
Academic Press is an imprint of Elsevier

32 Jamestown Road, London, NW1 7BY, UK

Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

525 B Street, Suite 1900, San Diego, CA 92101-4495, USA

First edition 2009

Copyright © 2009 Elsevier Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or

by any means electronic, mechanical, photocopying, recording or otherwise without the prior written

permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology

Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email:

permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web

site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a

matter of products liability, negligence or otherwise, or from any use or operation of any methods,

products, instructions or ideas contained in the material herein

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-374812-6

ISSN: 0065-2458
For information on all Academic Press publications

visit our web site at elsevierdirect.com
Printed and bound in USA

09 10 11 12 10 9 8 7 6 5 4 3 2 1

mailto:permissions@elsevier.com
http://elsevier.com/locate/permissions

Contributors
Prof. Robert Aalberts is the Lied Professor of Legal Studies at the University of

Nevada, Las Vegas. He received his Juris Doctor from Loyola University and an

M.A. from the University of Missouri-Columbia. Prior to his academic career, he

was an attorney for the Gulf Oil Company. His primary research interests include

real estate law, cyber law, and employment law. He has also published over 105

articles in legal and business periodicals. He is currently the Editor-in-Chief of the

Real Estate Law Journal where he has served for the past 16 years. He is also

coauthor of the textbook, Law and Business: The Regulatory Environment, 1994,
published by the McGraw-Hill Book Company and Real Estate Law, 7th edition,

2009 published by Southwestern/Cengage Learning.

Christopher Ackermann is a Scientist at the Fraunhofer Center for Experimental

Software Engineering, Maryland and is pursuing a Ph.D. at the University of Mary-

land, College Park. He received his Bachelor’s Degree from the University for

Applied Sciences, Mannheim, Germany in 2006 and earned his Master’s Degree

from the University of Maryland in 2008. He has been active in the fields of software

architectures, software testing and verification, model-based development, empirical

software engineering, software visualization, and change impact analysis. His current

research interests include software architecture analysis, testing and verification, and

model-based development.

Prof. Eric Allender received a B.A. from the University of Iowa in 1979, majoring

in Computer Science and Theatre, and a Ph.D. from Georgia Tech in 1985. He has

been at Rutgers University since then, serving as department chair from 2006 to

2009. He is a Fellow of the ACM and serves on the editorial boards of the ACM
Transactions on Computation Theory, Computational Complexity, and The Chicago
Journal of Theoretical Computer Science. He has chaired the Conference Commit-

tee for the annual IEEE Conference on Computational Complexity, and he serves on

the Scientific Board for the Electronic Colloquium on Computational Complexity

(ECCC).
ix

x CONTRIBUTORS
Prof. Hany Farid received his undergraduate degree in Computer Science and

Applied Mathematics from the University of Rochester in 1989. He received his

Ph.D. in Computer Science from the University of Pennsylvania in 1997. Following

a 2-year postdoctoral position in Brain and Cognitive Sciencesat MIT, he joined the

Dartmouth faculty in 1999. He is the David T. McLaughlin Distinguished Professor

of Computer Science and Associate Chair of Computer Science. He is also affiliated

with the Institute for Security Technology Studies at Dartmouth. He is the recipient

of an NSF CAREER award, a Sloan Fellowship, and a Guggenheim Fellowship. He

can be reached at farid@cs.dartmouth.edu, and more information about his work can

be found at www.cs.dartmouth.edu/farid.

Prof. David Hames is an Associate Professor of Management at the University of

Nevada, Las Vegas. He earned his B.A. from Albion College, his M.L.I.R. from

Michigan State University, and his Ph.D. from the University of North Caroling at

Chapel Hill. His research, which focuses on employment law, human resource man-

agement, and labor–management relations, has been published in journals such as

Group and Organization Management, Human Resource Management Review,
Leadership and Organization Development Journal, Employee Responsibilities &
Rights Journal, Labor Law Journal, and Risk Management & Insurance Review.

Prof. Andrew Johnson is an Associate Professor in the Department of Computer

Science and member of the Electronic Visualization Laboratory at the University of

Illinois at Chicago. His research focuses on the development and effective use of

advanced visualization displays, including virtual reality displays, autostereo dis-

plays, high-resolution walls and tables, for scientific discovery and in formal and

informal education.

Prof. Jason Leigh is an Associate Professor of Computer Science and Director of

the Electronic Visualization Laboratory (EVL) at the University of Illinois at

Chicago. He is a cofounder of VRCO, the GeoWall Consortium, and the Global

Lambda Visualization Facility. He currently leads the visualization and collabora-

tion research on the National Science Foundation’s OptIPuter project, and has led

EVL’s Tele-Immersion research since 1995. His main area of interest is in develop-

ing ultra-high-resolution display and collaboration technologies for supporting a

wide range of applications ranging from the remote exploration of large-scale data,

education, and interactive entertainment.

Dr. Mikael Lindvall is a Senior Scientist and the Director of the Software Archi-

tecture and Embedded Systems division at Fraunhofer Center for Experimental

Software Engineering, Maryland. He is interested in best practices and

http://www.cs.dartmouth.edu/farid
mailto:farid@cs.dartmouth.edu

CONTRIBUTORS xi
methodologies for software engineering, in general, and specializes on software

architecture evaluation and software evolution. He received his Ph.D. in Computer

Science from Linköpings University, Sweden, in 1997. His Ph.D. work focused on

evolution of object-oriented systems and was based on a commercial development

project at Ericsson Radio in Sweden.

Prof. Jörn Loviscach is a Professor for Computer Graphics, Animation, and Simula-

tion at Hochschule Bremen (University of Applied Sciences) in Bremen, Germany.

He is interested in 2D and 3D graphics algorithms and systems, human–computer

interaction, audio and music computing, in particular concerning applications that

require signal processing and/or the development of specialized electronics. A regular

contributor to conferences such as SIGGRAPH, Eurographics, and the AES Conven-

tion, he has published numerous chapters in book series such as Game Programming
Gems and ShaderX Programming. Before becoming a professor in 2000, he was

Deputy Editor-in-Chief of the popular German computer magazine ‘‘c’t,’’ the editorial

staff of which he joined soon after earning his doctorate degree in physics.

Dr. Jürgen Münch is Division Manager for Software and Systems Quality Man-

agement at the Fraunhofer Institute for Experimental Software Engineering (IESE)

in Kaiserslautern, Germany. Before that, he was Department Head for Processes and

Measurement at Fraunhofer IESE and an executive board member of the temporary

research institute SFB 501, which focused on software product lines. He received his

Ph.D. degree (Dr. rer. nat.) in Computer Science from the University of Kaiserslau-

tern, Germany, at the chair of Prof. Dr. Dieter Rombach. His research interests in

software engineering include (1) modeling and measurement of software processes

and resulting products, (2) software quality assurance and control, (3) technology

evaluation through experimental means and simulation, (4) software product lines,

and (5) technology transfer methods. He has significant project management expe-

rience and has headed various large research and industrial software engineering

projects, including the definition of international quality and process standards.

His main industrial consulting activities are in the areas of process management,

goal-oriented measurement, quality management, and quantitative modeling. He

has been teaching and training in both university and industry environments. He has

coauthored more than 80 international publications, and has been co-organizer,

program cochair, or member of the program committee of numerous high-standard

software engineering conferences and workshops. He is a member of ACM, IEEE,

the IEEE Computer Society, and the German Computer Society (GI).

Prof. Percy Poon is an Associate Professor of Finance at the University of Nevada,

Las Vegas. He received his Ph.D. in Finance from Louisiana State University.

xii CONTRIBUTORS
His primary research interests are in the investment area. He has published numer-

ous articles in both finance and other business periodicals, including the American
Business Law Journal, Journal of Finance, Journal of Banking and Finance, CACM,

Financial Review, and Financial Practice and Education. His research on portfolio

diversification has been cited by theWall Street Journal and the Investor’s Business
Daily. He has served as an ad hoc reviewer for various academic financial period-

icals, including Financial Management, Financial Review, and Financial Practice
and Education. He also offered his expertise to the business community, including

seminars to a utilities company on the uses of options and futures to hedge energy

costs.

Prof. Luc Renambot received a Ph.D. at the University of Rennes-1 (France) in

2000, conducting research on parallel rendering algorithms for illumination simula-

tion. Then holding a postdoctoral position at the Free University of Amsterdam,

until 2002, he worked on bringing education and scientific visualization to virtual

reality environments. In 2003, he joined EVL/UIC first as a PostDoc and now as

Research Assistant Professor, where his research topics include high-resolution

displays, computer graphics, parallel computing, and high-speed networking.

Prof. Günther Ruhe holds an Industrial Research Chair in Software Engineering at

University of Calgary. His main results and publications are in software engineering

decision support, software release planning, software project management, mea-

surement, simulation, and empirical research. From 1996 until 2001, he was Deputy

Director of the Fraunhofer Institute for Experimental Software Engineering. He is

the author of two books, several book chapters, and more than 120 publications.

Dr. Ruhe is a member of the ACM, the IEEE Computer Society, and the German

Computer Society (GI).

Dr. M. Omolade Saliu is a Decision Support Architect at Online Business Systems

in Calgary, Canada. He is currently involved in developing decision support solu-

tions for performance management. He received his Ph.D. in Computer Science

from the University of Calgary, Canada in 2007. His Ph.D. research was sponsored

by the Natural Sciences and Engineering Research Council of Canada (NSERC) and

the Alberta Informatics Circle of Research Excellence (iCORE). Saliu’s Ph.D.

research focussed on decision support for planning the releases of evolving software

systems. His research interests include software architecture evaluation, software

release planning, and decision support.

Prof. Paul D. Thistle is Professor of Finance at the University of Nevada, Las

Vegas. He earned his B.B.A. from the University of Portland and his M.S. and Ph.D.

CONTRIBUTORS xiii
in Economics from Texas A&M University. He has taught at the University of

Arizona, University of Alabama, and Western Michigan University, and was a

Heubner Postdoctoral Fellow at the Wharton School. While his primary research

interest is in insurance and risk management, he has published extensively in

economics, finance, insurance, real estate, and management information systems.

His research was supported by the Nevada Insurance Education Foundation.

Dr. Laurence Tratt is a Senior Lecturer at Bournemouth University and a Software

Consultant. He is an Associated Editor-in-Chief of IEEE Software. He received

the Ph.D. degree from King’s College of London. He is the chief designer of the

Converge programming language. His research interests include programming

languages, domain-specific languages, and software modeling.

Dr. Adam Trendowicz received a degree in Computer Science (B.Sc.) and in

Software Engineering (M.Sc.) from the Poznan University of Technology, Poland,

in 2000. He is currently a researcher at the Fraunhofer Institute for Experimental

Software Engineering (IESE), Kaiserslautern, Germany in the Processes and

Measurement department. Before that, he worked as a software engineering consul-

tant at Q-Labs GmbH, Germany. His research and industrial activities include

software cost modeling, measurement, data analysis, and process improvement.

Preface
This is volume 77, the last volume in the 50th year of publication of the Advances in
Computers. Since 1960, annual volumes have been produced containing chapters

authored by some of the leading experts in the field of computers. For 50 years, these

volumes offer ideas and developments that are changing our society. This volume

presents eight different topics covering many different aspects of computer science.

I hope you find them of interest. The first three chapters provide insights into the

different ways individuals can interact with electronic devices. First we look at

digital photography. Then we look at other display devices and in Chapter 3 at other

game interfaces that have been developed.

Today, the ubiquitous film camera has all but disappeared from view to be

replaced by ever cheaper and larger digital chips of memory. While allowing a

huge number of pictures to be taken essentially for free, there is a cost in security of

the pictures. Digital images and associated software allow the photographer (or

almost anyone else for that matter) to manipulate the bits of the image and hence

change the picture. How do we discover such tampering and how do digital forensics

work to uncover fakery? Hany Farid in ‘‘Photo Fakery and Forensics’’ in Chapter 1

of this volume discusses methods for detecting inconsistencies in lighting and pixel

correlations to detect forgeries.

Not only have cameras changed, but so too have all other visual devices

connected to the computer. Jason Leigh, Andrew Johnson, and Luc Renambot in

Chapter 2’s ‘‘Advances in Computer Displays’’ discuss a wide variety of visual

display technology—from the old-fashioned cathode ray tube (CRT) to more

modern plasma displays, steroscopic displays, and wall displays. They discuss

what the environment of the future—whether at work or at home—is likely to

contain.

In Chapter 3, Jörn Loviscach in ‘‘Playing with All Senses: Human–Computer

Interface Devices for Games’’ discusses mechanisms for interacting with games on a

computer. After quickly passing through the usual mouse, keyboard, and joystick, he

discusses pen and touch input devices, sensors, and cameras. Inertial sensors allow

the user to move the device and the computer to interpret that motion, such as in

Nintendo’s successful Wii machine. Incorporating all of these into the next
xv

xvi PREFACE
generation of game allows the user to experience a multimedia approach toward a

game—a far cry from the early Pong, which was a simple paddle for hitting an image

of a ball back across the screen.

One of the long-standing unsolved questions in computer science theory is the

resolution of the NP-completeness problem—simply stated as ‘‘Does P equal NP?’’

I have always been interested in this question since I was a graduate student in the

late 1960s when the problem was first posed. To date it has not yet been solved, but

I was very interested in seeing what has been learned over the past 40 years.

In Chapter 4, Eric Allender in ‘‘A Status Report on the P Versus NP Question’’

discusses what the question is and what has happened in this 40-year period.

Chapter 5 by Laurence Tratt is entitled ‘‘Dynamically Typed Languages.’’

Historically, most programming languages were compiled into executable machine

code by a compiler. For efficiency these languages such as FORTRAN, Algol,

Pascal, C were statically typed. That is, the data type (e.g., integer) was specified
so the compiler could generate efficient code for it. Today, there is more interest in

dynamically typed languages where data are processed while the program executes

and the distinction between compilation and execution is getting blurred. Languages

like Perl and Python, as well as the older LISP, are examples of this. In this chapter,

Dr. Tratt discusses the advantages of using such dynamically typed languages.

In Chapter 6, Adam Trendowicz and Jürgen Münch’s ‘‘Factors Influencing

Software Development Productivity—State-of-the-Art and Industrial Experiences’’

look at the continuing evolution of software engineering development practices.

Of particular interest is how one measures the productivity since scheduling of

appropriate resources is critical for completing a project with least organizational

impact? Over estimate productivity and you need to overspend to put more people

on project and under estimate productivity and you have employees with little to do.

In this chapter, the authors look at various factors that have been reported in the

literature as most important aspects affecting productivity.

In Chapter 7 ‘‘Evaluating the Modifiability of Software Architectural Designs’’ by

M. Omolade Saliu, Günther Ruhe, Mikael Lindvall, and Christopher Ackermann,

the authors present an architectural design evaluation technique called EBEAM.

Since software undergoes change as it evolves and since this becomes a dominant

cost factor over time, it is important to understand how modifiable the software is as

it develops. EBEAM is described and its use on an experimental system shows its

value.

As the Internet becomes more invasive in our lives, its impact, in terms of costs

and money transferred, is well into the multibillions of dollars (or euros or pounds)

per year. Although our legal system has been developing for hundreds of years, this

new technology is radically different from older systems. When you send a docu-

ment by email (e.g., the contents of a CD containing music), no object actually is

PREFACE xvii
sent— only the electronic bits that describe the document are sent. So who owns this

document? This is only one simple example. Can our 1000-year-old system based

upon English common law adapt to this new technology? In the final chapter, ‘‘The

Common Law and Its Impact on the Internet,’’ Robert Aalberts, David Hames, Percy

Poon, and Paul D. Thistle discuss how the legal system is adapting to this new

cyberworld.

I hope that you find these chapters of use to you in your work. If you have any

topics you would like to see in these volumes, let me know. If you would like

to write a chapter for a forthcoming volume, also let me know. I can be reached

at mvz@cs.umd.edu.
Marvin Zelkowitz

College Park, Maryland

mailto:mvz@cs.umd.edu

Photo Fakery and Forensics
ADVAN

ISSN: 00
HANY FARID
Department of Computer Science, Dartmouth College,
Hanover, New Hampshire 03755, USA
Abstract

Photographs can no longer be trusted. From the tabloid magazines to the fashion

industry, mainstream media outlets, political campaigns, and the photo hoaxes

that land in our email inboxes, doctored photographs are appearing with a

growing frequency and sophistication. I will briefly describe the impact of all

of this photographic tampering and recent technological advances that have the

potential to return some trust to photographs. Specifically, I will describe a

representative sample of image forensics techniques for detecting inconsistencies

in lighting, pixel correlations, and compression artifacts.
1. Photo Fakery . 2

1.1. Media . 2

1.2. Science . 2

1.3. Law . 3

1.4. Politics . 3

1.5. National Security . 4

2. Photo Forensics . 4

2.1. Lighting Direction (2D) . 5

2.2. Lighting Direction (3D) . 10

2.3. Lighting Environment . 20

2.4. Color Filter Array . 32

2.5. JPEG Ghosts . 41

3. Discussion . 50

Acknowledgments . 53

References . 53
CES IN COMPUTERS, VOL. 77 1 Copyright © 2009 Elsevier Inc.

65-2458/DOI: 10.1016/S0065-2458(09)01201-7 All rights reserved.

2 H. FARID
1. Photo Fakery

History is riddled with the remnants of photographic fakery. Stalin, Mao, Hitler,

Mussolni, Castro, and Brezhnev each had photographs manipulated in an attempt to

alter history. Cumbersome and time-consuming darkroom techniques were required

to alter history on behalf of Stalin and others. Today, powerful and low-cost digital

technology has made it far easier for nearly anyone to alter digital images. And the

resulting fakes are often very difficult to detect. This photographic fakery is having a

significant impact in many different areas.

1.1 Media

For the past decade, Adnan Hajj has produced striking war photographs from the

ongoing struggle in the Middle East. On 7 August 2006, the Reuters news agency

published one of Hajj’s photographs showing the remnants of an Israeli bombing of a

Lebanese town. In theweek that followed, hundreds of bloggers and nearly everymajor

news organization reported that the photograph had been doctored with the addition of

more smoke. The general consensus was one of outrage and anger—Hajj was accused

of doctoring the image to exaggerate the impact of the Israeli shelling. An embarrassed

Reuters quickly retracted the photograph and removed from its archives nearly 1000

photographs contributed byHajj. The case of Hajj is, of course, by nomeans unique. In

2003, BrianWalski, a veteran photographer of numerous wars, doctored a photograph

that appeared on the cover of the Los Angeles Times. After discovering the fake, the

outraged editors of the LA Times fired Walski. The news magazines Time and News-

weekhaveeachbeen rockedbyscandal after itwas revealed that photographs appearing

on their covers had been doctored. And, in the past few years, countless news organiza-

tions around the world have been shaken by similar experiences.

1.2 Science

Those in the media are not alone in succumbing to the temptation to manipulate

photographs. In 2004, Professor Hwang Woo-Suk and colleagues published what

appeared to be groundbreaking advances in stem cell research. This paper appeared

in one of the most prestigious scientific journals, Science. Evidence slowly emerged

that these results were manipulated and/or fabricated. After months of controversy,

Hwang retracted the Science paper and resigned his position at the University. An

independent panel investigating the accusations of fraud found, in part, that at least

nine of the 11 customized stem cell colonies that Hwang had claimed to have made

were fakes. Much of the evidence for those nine colonies, the panel said, involved

PHOTO FAKERY AND FORENSICS 3
doctored photographs of two other, authentic, colonies. While this case garnered

international coverage and outrage, it is by no means unique. In an increasingly

competitive field, scientists are succumbing to the temptation to exaggerate or

fabricate their results. Mike Rossner, the managing editor of the Journal of Cell
Biology estimates that as many as 20% of accepted manuscripts to his journal

contain at least one figure that has to be remade because of inappropriate image

manipulation [1].

1.3 Law

The child pornography charges against its Police Chief shocked the small town of

Wapakoneta, OH. At his trial, the defendant’s lawyer argued that if the State could not

prove that the seized images were real, then the defendant was within his rights in

possessing the images. In 1996, the Child Pornography Prevention Act (CPPA)

extended the existing federal criminal laws against child pornography to include certain

types of ‘‘virtual porn.’’ In 2002, the United States Supreme Court found that portions

of the CPPA, being overly broad and restrictive, violated First Amendment rights. The

Court ruled that ‘‘virtual’’ or ‘‘computer-generated’’ images depicting a fictitious

minor are constitutionally protected. The burden of proof in this case, and countless

others, shifted to the State who had to prove that the images were real and not computer

generated. Given the sophistication of computer-generated images, several state and

federal rulings have further found that juries should not be asked to make the determi-

nation between real and virtual. And at least one federal judge questioned the ability of

even expert witnesses to make this determination. This example highlights the general

complexities that exist at the intersection of digital technology and the law.

1.4 Politics

‘‘Fonda Speaks to Vietnam Veterans at Anti-War Rally’’ read the headline with

an accompanying photograph purportedly showing Senator John Kerry sharing a

stage with the then controversial Jane Fonda. The faux article was also a fake—a

composite of two separate and unrelated photographs. And just days after being

selected as a running mate to U.S. presidential hopeful John McCain, doctored

images of a bikini clad and gun-toting Sarah Palin were widely distributed on

the Internet. The pairing of one’s political enemies with controversial figures is

certainly not new. It is believed that a doctored photograph contributed to Senator

Millard Tydings’ electoral defeat in 1950. The photo of Tydings conversing with

Earl Browder, a leader of the American Communist party, was meant to suggest that

Tydings had communist sympathies. Recent political ads have seen a startling

number of doctored photographs pitting candidates in a flattering or damaging light.

4 H. FARID
1.5 National Security

With tensions mounting between the United States and Iran, the Iranian Govern-

ment announced the successful testing of ballistic missiles. As evidence, the gov-

ernment released a photograph showing the simultaneous launch of four missiles.

Shortly after its worldwide publication, it was revealed that the image had been

doctored. In reality, only three missiles had launched, while the fourth missile,

which failed to launch, was digitally inserted. This example highlighted the impor-

tance of image authentication and showed the potential implications of photo

tampering on a geopolitical stage.

While historically they may have been the exception, doctored photographs today

are increasingly impacting nearly every aspect of our society. While the technology

to distort and manipulate digital media is developing at breakneck speeds, the

technology to detect such alterations is lagging behind. To this end, I will describe

some recent innovations for detecting photo tampering that have the potential to

return some trust to photographs.
2. Photo Forensics

Digital watermarking has been proposed as a means by which an image can be

authenticated (see, e.g., [2, 3] for general surveys). The drawback of this approach is

that a watermark must be inserted at the time of recording, which would limit this

approach to specially equipped digital cameras. This method also relies on the

assumption that the digital watermark cannot be easily removed and reinserted—it

is not yet clear whether this is a reasonable assumption (e.g., [4]). In contrast to these

approaches, we have proposed techniques for detecting tampering in digital images

that work in the absence of any digital watermark or signature.

Given the variety of images and forms of tampering, the forensic analysis of

images benefits from a variety of tools that can detect various forms of tampering.

Over the past 8 years my students, colleagues, and I have developed a suite of

computational and mathematical techniques for detecting tampering in digital

images. Our approach in developing each forensic tool is to first understand how a

specific form of tampering disturbs certain statistical or geometric properties of an

image, and then to develop a computational techniques to detect these perturbations.

Within this framework, I describe five of such techniques.1
1 Portions of this chapter have appeared in [5–8].

PHOTO FAKERY AND FORENSICS 5
Specifically, I will describe three techniques for detecting inconsistencies in

lighting, the first two of which estimate the direction to a light source, and the

third of which estimates a more complex lighting environment consisting of multiple

light sources. The fourth technique exploits pixel correlations that are introduced

into an image as a result of the specific design of digital camera sensors. And the

final technique leverages the artifacts introduced by the JPEG compression algo-

rithm. These techniques were chosen as a representative sample of a larger body of

image forensic techniques.
2.1 Lighting Direction (2D)

Consider the creation of a forgery showing two movie stars, rumored to be

romantically involved, walking down a sunset beach. Such an image might be

created by splicing together individual images of each movie star. In so doing, it

is often difficult to exactly match the lighting effects due to directional lighting (e.g.,

the sun on a clear day). Differences in lighting can, therefore, be a telltale sign of

digital tampering. To the extent that the direction of the light source can be estimated

for different objects/people in an image, inconsistencies in the lighting direction can

be used as evidence of digital tampering.

The standard approaches for estimating light source direction begin by making

some simplifying assumptions (1) the surface of interest is Lambertian (the surface

reflects light isotropically), (2) the surface has a constant reflectance value, (3) the

surface is illuminated by a point light source infinitely far away, and (4) the angle

between the surface normal and the light direction is in the range 0–90�. Under these
assumptions, the image intensity can be expressed as

I x; yð Þ ¼ R N
!

x; yð Þ� L!
� �

þ A; ð1Þ

where R is the constant reflectance value, L
!
is a 3-vector pointing in the direction of

the light source, N
!

x; yð Þ is a 3-vector representing the surface normal at the point

(x, y), and A is a constant ambient light term [9] (Fig. 1, left). If we are only

interested in the direction of the light source, then the reflectance term, R,
can be considered to have unit value, understanding that the estimation of L

!
will

only be within an unknown scale factor. The resulting linear equation provides a single

constraint in four unknowns, the three components of L
!

and the ambient term A.
With at least four points with the same reflectance, R, and distinct surface

normals, N
!
, the light source direction and ambient term can be solved for using

standard least-squares estimation. To begin, a quadratic error function, embodying

the imaging model of Equation 1, is given by

N
ù

N
ù

L
ù

L
ù

FIG. 1. Schematic diagram of the imaging geometry for 3D surface normals (left) and 2D surface

normals (right). In the 2D case, the z-component of the surface normal (N
!
) is zero.

6 H. FARID
E L
!
;A

� �
¼ M

Lx
Ly
Lz
A

0
BB@

1
CCA�

I x1; y1ð Þ
I x2; y2ð Þ

⋮
I xp; yp
� �

0
BB@

1
CCA

��������

��������

��������

��������

2

¼ M v
! � b

!�� ���� ��2; ð2Þ

where k�k denotes vector norm, Lx, Ly, and Lz denote the components of the light

source direction L
!
, and

M ¼
Nx x1; y1ð Þ Ny x1; y1ð Þ Nz x1; y1ð Þ 1

Nx x2; y2ð Þ Ny x2; y2ð Þ Nz x2; y2ð Þ 1

⋮ ⋮ ⋮ ⋮
Nx xp; yp
� �

Ny xp; yp
� �

Nz xp; yp
� �

1

0
BB@

1
CCA; ð3Þ

where Nx xi; yið Þ, Ny xi; yið Þ, and Nz xi; yið Þ denote the components of the surface

normal N
!

at image coordinate xi; yið Þ. The quadratic error function above is mini-

mized by differentiating with respect to the unknown, v
!
, setting the result equal to

zero, and solving for v
!

to yield the least-squares estimate:

v
! ¼ MTM

� ��1
MT b

!
: ð4Þ

Note that this solution requires knowledge of 3D surface normals from at least

four distinct points (p � 4) on a surface with the same reflectance. With only a

single image and no objects of known geometry in the scene, it is unlikely that this

will be possible. Most approaches to overcome this problem rely on acquiring

multiple images [10] or placing an object of known geometry in the scene (e.g.,

a sphere) [11]. For forensic applications, these solutions are not practical.

PHOTO FAKERY AND FORENSICS 7
In [12], the authors suggest a clever solution for estimating two components of the

light source directionv (Lx and Ly) from only a single image. While their approach

clearly provides less information regarding the light source direction, it does make

the problem tractable from a single image. The authors note that at the occluding

boundary of a surface, the z-component of the surface normal is zero, Nz ¼ 0.

In addition, the x- and y-components of the surface normal, Nx and Ny, can be

estimated directly from the image (Fig. 1, right).

With this assumption, the error function of Equation 2 takes the form

Eð L!;AÞ ¼ M

Lx

Ly

A

0
B@

1
CA�

I x1; y1ð Þ
I x2; y2ð Þ

⋮

I xp; yp
� �

0
BBB@

1
CCCA

���������

���������

���������

���������

2

¼ Mv! � b
!�� ���� ��2;

ð5Þ

where

M ¼
Nx x1; y1ð Þ Ny x1; y1ð Þ 1

Nx x2; y2ð Þ Ny x2; y2ð Þ 1

⋮ ⋮ ⋮
Nx xp; yp
� �

Ny xp; yp
� �

1

0
BB@

1
CCA: ð6Þ

This error function is minimized, as before, using standard least squares to yield

the same solution as in Equation 4, but with the matrix M taking the form given in

Equation 6. In this case, the solution requires knowledge of 2D surface normals from

at least three distinct points (p � 3) on a surface with the same reflectance.

The intensity, I xi; yið Þ, at a boundary point, xi; yið Þ, cannot be directly measured

from the image as the surface is occluded. The authors in [12] note, however, that the

intensity can be extrapolated by considering the intensity profile along a ray coinci-

dent to the 2D surface normal. They also found that simply using the intensity close

to the border of the surface is often sufficient.

Weextend this basic formulation in twoways. First,we estimate the two-dimensional

light source direction from local patches along an object’s boundary (as opposed to

along extended boundaries as in [12]). This is done to relax the assumption that the

reflectance along the entire surface is constant. Then, a regularization (smoothness)

term is introduced to better condition the final estimate of light source direction.

The constant reflectance assumption is relaxed by assuming that the reflectance

for a local surface patch (as opposed to the entire surface) is constant. This requires

us to estimate individual light source directions, L
!i
, for each patch along a surface.

Under the infinite light source assumption, the orientation of these estimates should

not vary, but their magnitude may (recall that the estimate of the light source is only

within a scale factor, which depends on the reflectance value R, Equation 1).

8 H. FARID
Consider a surface partitioned into n patches, and, for notational simplicity, assume

that each patch contains p points. The new error function to beminimized is constructed

by packing together, for each patch, the 2D version of the constraint of Equation 1:

E1 L
!1

; . . . ; L
!n

;A
� �

¼ M

L1x
L1y
⋮
Lnx
Lny
A

0
BBBBBB@

1
CCCCCCA

�

I x11; y
1
1

� �
⋮

I x1p; y
1
p

� �
⋮

I xn1; y
n
1

� �
⋮

I xnp; y
n
p

� �

0
BBBBBBBBB@

1
CCCCCCCCCA

���������������

���������������

���������������

���������������

2

¼ M v
! � b

!�� ���� ��2;

ð7Þ

where

M ¼

Nx x11; y
1
1

� �
Ny x11; y

1
1

� �
0 0 1

⋮ ⋮ . . . ⋮ ⋮ ⋮
Nx x1p; y

1
p

� �
Ny x1p; y

1
p

� �
0 0 1

⋮ ⋮ . .
.

⋮ ⋮ ⋮
0 0 Nx xn1; y

n
1

� �
Ny xn1; y

n
1

� �
1

⋮ ⋮ . . . ⋮ ⋮ ⋮
0 0 Nx xnp; y

n
p

� �
Ny xnp; y

n
p

� �
1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð8Þ

The above quadratic error function is minimized, as before, using least squares

with the solution taking on the same form as in Equation 4. In this case, the

solution provides n estimates of the 2D light directions, L
!1

; . . . ; L
!n

, and an ambient

term A. Note that while individual light source directions are estimated for each

surface patch, a single ambient term is assumed.

While the local estimation of light source directions allows for the relaxation of

the constant reflectance assumption, it could potentially yield less stable results.

Note that under the assumption of an infinite point light source, the orientation of the

n light directions should be equal. With the additional assumption that the change in

reflectance from patch to patch is relatively small (i.e., the change in the magnitude

of neighboring L
!i

is small), we can condition the individual estimates with the

following regularization term:

E2 L
!1

; . . . ; L
!n

� �
¼
Xn
i¼ 2

L
!i � L

!i �1

����
����

����
����
2

: ð9Þ

This additional error term penalizes neighboring estimates that are different from

one another. The quadratic error function E1 �ð Þ (Equation 7) is conditioned by

PHOTO FAKERY AND FORENSICS 9
combining it with the regularization term E2 �ð Þ, scaled by a factor l, to yield the final
error function:

E L
!1

; . . . ; L
!n

;A

� �
¼ E1 L

!1
; . . . ; L

!n
;A

� �
þ lE2 L

!1
; . . . ; L

!n
� �

: ð10Þ

This combined error function can still be minimized using least-squares minimiza-

tion. The error function E2 �ð Þ is first written in a more compact and convenient form as

E2 v
!� �

¼ Cv
!��� ������ ���2; ð11Þ

where the 2n� 2� 2nþ 1 matrix C is given by

C ¼

�1 0 1 0 . . . 0 0 0 0 0

0 �1 0 1 . . . 0 0 0 0 0

⋮ . .
.

⋮
0 0 0 0 . . . �1 0 1 0 0

0 0 0 0 . . . 0 �1 0 1 0

0
BBBB@

1
CCCCA; ð12Þ

with v
! ¼ L

1

x L
1

y L
2

x L
2

y . . . L
n

x L
n

y A
� �T

. The error function of Equation 10 then takes

the form

E v
!� �

¼ Mv
!� b

!����
����

����
����
2

þ l Cv
!��� ������ ���2: ð13Þ

Differentiating this error function yields

E
0
v
!� � ¼ 2MTM v

! �2MTb
! þ2lCTCv

!

¼ 2 MTM þ lCTCð Þ v
! �2MTb

!
:

ð14Þ

Setting this result equal to zero and solving for v
!
yields the least-squares estimate:

v
! ¼ MTM þ lCTC

� �þ
MT b

!
; ð15Þ

where þ denotes pseudoinverse. The final light direction estimate is computed by

averaging the n resulting light direction estimates, L
!1

; . . . ; L
!n

.

The light direction estimation requires the localization of an occluding boundary.

These boundaries are extracted by manually selecting points in the image along an

occluding boundary. This rough estimate of the position of the boundary is used to

define its spatial extent. The boundary is then partitioned into approximately eight

small patches. Three points near the occluding boundary are manually selected for

each patch, and fit with a quadratic curve. The surface normals along each patch are

then estimated analytically from the resulting quadratic fit.

10 H. FARID
Shown in Fig. 2 are eight images of objects illuminated by the sun on a clear day.

To determine the accuracy of our approach, a calibration target, consisting of a flat

surface with a rod extending from the center, was placed in each scene. The target

was approximately parallel to the image plane, so that the shadow cast by the rod

indicated the direction of the sun. Errors in our estimated light source direction are

given relative to this orientation. The average estimation error is 4.8� with a

minimum and maximum error of 0.6� and 10.9�. The image returning the largest

error is the parking meters. There are probably at least three reasons for this larger

error, and for errors in general. The first is that the metallic surface violates the

Lambertian assumption. The second is that the paint on the meter is worn in several

spots causing the reflectance to vary, at times, significantly from patch to patch. And

the third is that we did not calibrate the camera so as to remove luminance

nonlinearities (e.g., gamma correction) in the image.

The creation of a digital forgery often involves combining objects/people from

separate images. In so doing, it is difficult to exactly match the lighting effects due to

directional lighting (e.g., the sun on a clear day). At least one reason for this is that

such a manipulation may require the creation or removal of shadows and lighting

gradients. And while large inconsistencies in lighting direction may be fairly

obvious, there is evidence from the human psychophysics literature that we are

surprisingly insensitive to differences in lighting across an image [13, 14]. To the

extent that the direction of the light source can be estimated for different objects/

people in an image, inconsistencies in lighting can be used as evidence of digital

tampering.
2.2 Lighting Direction (3D)

In the previous section, we described how to estimate the light source direction in

2D. While this approach has the benefit of being applicable to arbitrary objects, it

has the drawback that it can only determine the direction to the light source within

1 degree of ambiguity. Next we describe how the full 3D light source direction can

be estimated by leveraging a 3D model of the human eye. Specifically, we describe

how to estimate the 3D direction to a light source from specular highlights on the

eyes.

The position of a specular highlight is determined by the relative positions of the

light source, the reflective surface and the viewer (or camera). In Fig. 3, for example,

is a diagram showing the creation of a specular highlight on an eye. In this diagram,

the three vectors L
!
, N

!
, and R

!
correspond to the direction to the light, the surface

normal at the point at which the highlight is formed, and the direction in which

the highlight will be seen. For a perfect reflector, the highlight is seen only when the

FIG. 2. Shown are eight images with the extracted occluding boundaries (black), individual light

source estimates (white), and the final average light source direction (large arrow). In each image, the cast

shadow on the calibration target indicates the direction to the illuminating sun, and has been darkened to

enhance visibility.

PHOTO FAKERY AND FORENSICS 11

V = R

qr

qi

Light

Camera
Eye

N

L

FIG. 3. The formation of a specular highlight on an eye (small white dot on the iris). The position of

the highlight is determined by the surface normal N
!

and the relative directions to the light source L
!

and

viewer V
!
.

12 H. FARID
view direction V
! ¼ R

!
. For an imperfect reflector, a specular highlight can be seen

for viewing directions V
!

near R
!
, with the strongest highlight seen when V

! ¼ R
!
.

An algebraic relationship between the vectors L
!
, N

!
, and V

!
is first derived. We

then show how the 3D vectors N
!
and V

!
can be estimated from a single image, from

which the direction to the light source L
!

is determined.

The law of reflection states that a light ray reflects off of a surface at an angle of

reflection yr equal to the angle of incidence yi, where these angles are measured with

respect to the surface normal N
!

(Fig. 3).

Assuming unit length vectors, the direction of the reflected ray R
!

can be

described in terms of the light direction L
!

and the surface normal N
!
:

R
! ¼ L

! þ2 cos yið ÞN! � L
!� �

¼ 2 cos yið ÞN! � L
!
:

ð16Þ

By assuming a perfect reflector (V
! ¼ R

!
), the above constraint yields

L
! ¼ 2 cos yið ÞN! � V

!

¼ 2 V
! T N

!� �
N
! � V

!
:

ð17Þ

The light direction L
!

can, therefore, be estimated from the surface normal N
!

and

view direction V
!
at a specular highlight. Note that the light direction is specified with

respect to the eye, and not the camera. In practice, all of these vectors will be placed in a

common coordinate system, allowing us to compare light directions across the image.

To estimate the surface normal N
!
and view direction V

!
in a common coordinate

system, we first need to estimate the projective transform that describes the trans-

formation from world to image coordinates. With only a single image, this

PHOTO FAKERY AND FORENSICS 13
calibration is generally an underconstrained problem. In our case, however, the

known geometry of the eye can be exploited to estimate this required transform.

Throughout, uppercase symbols will denote world coordinates and lowercase will

denote camera/image coordinates.

The limbus, the boundary between the sclera (white part of the eye) and the iris

(colored part of the eye), can be well modeled as a circle [15]. The image of the

limbus, however, will be an ellipse except when the eye is directly facing the

camera. Intuitively, the distortion of the ellipse away from a circle will be related

to the pose and position of the eye relative to the camera. We therefore seek the

transform that aligns the image of the limbus to a circle.

In general, a projective transform that maps 3D world coordinates to 2D image

coordinates can be represented, in homogeneous coordinates, as a 3 � 4 matrix. We

assume that points on a limbus are coplanar, and define the world coordinate system

such that the limbus lies in the Z ¼ 0 plane. With this assumption, the projective

transformation reduces to a 3 � 3 planar projective transform [16], where the world

points X
!

and image points x! are represented by 2D homogeneous vectors.

Points on the limbus in our world coordinate system satisfy the following implicit

equation of a circle:

f X
!
; a
!� �

¼ X1 � C1ð Þ2 þ X2 � C2ð Þ2 � r2 ¼ 0; ð18Þ

where a! ¼ C1 C2 rð ÞT denotes the circle center and radius.

Consider a collection of points, X
!
i; i ¼ 1; . . . ;m, each of which satisfy Equation 18.

Under an ideal pinhole camera model, the world point X
!
i maps to the image point x

!
i

as follows:

x!i ¼ H X
!
i; ð19Þ

where H is a 3 � 3 projective transform matrix.

The estimation of H can be formulated in an orthogonal distance fitting frame-

work. Let E �ð Þ be an error function on the parameter vector a! and the unknown

projective transform H:

E a
!
;H

� �
¼
Xm
i¼ 1

min
X̂
! x

!
i � HX̂

!��� ������ ���2; ð20Þ

where X̂
!

is on the circle parametrized by a!. The error embodies the sum of the

squared errors between the data, x
!
i, and the closest point on the model, X̂

!
. This error

function is minimized using nonlinear least squares via the Levenberg–Marquardt

iteration [17].

Once estimated, the projective transform H can be decomposed in terms of intrinsic

and extrinsic camera parameters [16]. The intrinsic parameters consist of the camera

14 H. FARID
focal length, camera center, skew, and aspect ratio. For simplicity, we will assume that

the camera center is the image center and that the skew is 0 and the aspect ratio is 1,

leaving only the focal length f. The extrinsic parameters consist of a rotation matrix R
and translation vector t

!
that define the transformation between the world and camera

coordinate systems.Since theworld points lie on a singleplane, the projective transform

can be decomposed in terms of the intrinsic and extrinsic parameters as

H ¼ lK r
!
1 r
!
2 t
!

� �
; ð21Þ

where the 3 � 3 intrinsic matrix K is

K ¼
f 0 0

0 f 0

0 0 1

0
@

1
A; ð22Þ

where l is a scale factor, the column vectors r
!
1 and r

!
2 are the first two columns of

the rotation matrix R, and t
!

is the translation vector.

With a known focal length f, and hence a known matrix K, the world to camera

coordinate transform Ĥ can be estimated directly:

1

l
K�1H ¼ r

!
1 r
!
2 t
!

� �

Ĥ ¼ r
!
1 r
!
2 t
!� �

;

ð23Þ

where the scale factor l is chosen so that r
!
1 and r

!
2 are unit vectors. The complete

rotation matrix is given by

R ¼ r
!
1 r
!
2 r
!
1 � r

!
2

� �
; ð24Þ

where � denotes cross product. If the focal length is unknown, it can be directly

estimated as described in [6].

Recall that the minimization of Equation 20 yields both the transform H and the

circle parameters a! for the limbus. The unit vector from the center of the limbus to

the origin of the camera coordinate system is the view direction, v
!
. Let

X
!
c ¼ C1 C2 1ð Þ denote the estimated center of a limbus in world coordinates. In

the camera coordinate system, this point is given by

x
!
c ¼ Ĥ X

!
c: ð25Þ

The view direction, as a unit vector, in the camera coordinate system is then given by

v
! ¼ � x

!
c

k x!ck
; ð26Þ

r1
r2

d

p

q

Sclera

Cornea

A B

Limbus

V

N

N

S

V

FIG. 4. (A) A side view of a 3D model of the human eye. The larger sphere represents the sclera and

the smaller sphere represents the cornea. The limbus is defined by the intersection of the two spheres.

(B) The surface normal at a point S
!

in the plane of the limbus depends on the view direction V
!
.

PHOTO FAKERY AND FORENSICS 15
where the negative sign reverses the vector so that it points from the eye to

the camera.

The 3D surface normal N
!
at a specular highlight is estimated from a 3D model of

the human eye [18]. The model consists of a pair of spheres as illustrated in Fig. 4A.

The larger sphere, with radius r1 ¼ 11:5 mm, represents the sclera and the smaller

sphere, with radius r2 ¼ 7:8 mm, represents the cornea. The centers of the spheres

are displaced by a distance d¼ 4.7 mm. The limbus, a circle with radius p¼ 5.8 mm,

is defined by the intersection of the two spheres. The distance between the center of

the smaller sphere and the plane containing the limbus is q ¼ 5.25 mm. These

measurements vary slightly among adults, and the radii of the spheres are approxi-

mately 0.1 mm smaller for female eyes [18, 19].

Consider a specular highlight in world coordinates at location S
! ¼ Sx Sy

� �
,

measured with respect to the center of the limbus. The surface normal at S
!
depends

on the view direction V
!
. Fig. 4B is a schematic showing this relationship for two

different positions of the camera. The surface normal N
!
is determined by intersect-

ing the ray leaving S
!
, along the direction V

!
, with the edge of the sphere. This

intersection can be computed by solving a quadratic system for k, the distance

between S
!

and the edge of the sphere,

Sx þ kVxð Þ2 þ Sy þ kVy

� �2 þ qþ kVzð Þ2 ¼ r22 ;

k2 þ 2 SxVx þ SyVy þ qVz

� �
k þ S2x þ S2y þ q2 � r22

� �
¼ 0;

ð27Þ

where q and r2 are specified by the 3D model of the eye. The view direction

V
! ¼ Vx Vy Vz

� �
in the world coordinate system is given by

16 H. FARID
V
! ¼ R�1 v

!
; ð28Þ

where v
!

is the view direction in camera coordinates and R is the estimated rotation

between the world and camera coordinate systems. The surface normal N
!

in the

world coordinate system is then given by

N
! ¼

Sx þ kVx

Sy þ kVy

qþ kVz

0
@

1
A; ð29Þ

and in camera coordinates: n
! ¼ R N

!
.

Consider a specular highlight x
!
s specified in image coordinates and the estimated

projective transform H from world to image coordinates. The inverse transform H�1

maps the coordinates of the specular highlight into world coordinates:

X
!
s ¼ H�1 x

!
s: ð30Þ

The center C
!
and radius r of the limbus in the world coordinate system determine

the coordinates of the specular highlight, S
!
, with respect to the model:

S
!
¼ p

r
X
!
s � C

!� �
; ð31Þ

where p is specified by the 3D model of the eye. The position of the specular

highlight S
!

is then used to determine the surface normal N
!
. Combined with the

estimate of the view direction V
!
, the light source direction L

!
can be estimated from

Equation 17. To compare light source estimates in the image, the light source

estimate is converted to camera coordinates: l
! ¼ R L

!
.

To test the efficacy of this light estimation, synthetic images of eyes were

rendered using the pbrt environment [20]. The shape of the eyes conformed to the

3D model described above and the eyes were placed in 1 of 12 different locations.

For each location, the eyes were rotated by a unique amount relative to the camera.

The eyes were illuminated with two light sources: a fixed light directly in line with

the camera and a second light placed in one of four different positions. The 12

locations and 4 light directions gave rise to 48 images (Fig. 5). Each image was

rendered at a resolution of 1200 � 1600 pixels, with the cornea occupying less than

0.1% of the entire image. Shown in Fig. 5 are several examples of the rendered eyes,

along with a schematic of the imaging geometry.

The limbus and position of the specular highlight(s) were automatically extracted

from the rendered image. For each highlight, the projective transform H, the view

direction v
!

and surface normal n
!

were estimated, from which the direction to the

light source l
!
was determined. The angular error between the estimated l

!
and actual

FIG. 5. Synthetically generated eyes. Each of the upper panels corresponds to different positions and

orientations of the eyes and locations of the light sources. The ellipse fit to each limbus is shown with a

dashed line, and the small dots denote the positions of the specular highlights. Shown below is a schematic

of the imaging geometry: the position of the lights, camera, and a subset of the eye positions.

PHOTO FAKERY AND FORENSICS 17

18 H. FARID
l
!
0 light directions is computed as f ¼ cos�1

�
l
!

T � l
!
0

�
, where the vectors are

normalized to be unit length. With a known focal length, the average angular error

in estimating the light source direction was 2.8� with a standard deviation of 1.3� and
a maximum error of 6.8�. With an unknown focal length, the average error was 2.8�

with a standard deviation of 1.3� and a maximum error of 6.3�.
To further test the efficacy of our technique, we photographed a subject

under controlled lighting. A camera and two lights were arranged along a wall,

and the subject was positioned 250 cm in front of the camera and at the same

elevation. The first light L1 was positioned 130 cm to the left of and 60 cm above

the camera. The second light L2 was positioned 260 cm to the right and 80 cm

above the camera. The subject was placed in five different locations and orientations

relative to the camera and lights (Fig. 6). A 6-megapixel Nikon D100 camera with a

35 mm lens was set to capture in the highest quality JPEG format.

For each image, an ellipse was manually fit to the limbus of each eye. In these

images, the limbus did not form a sharp boundary—the boundary spanned roughly 3

pixels. As such, we fit the ellipses to the better defined inner outline [21] (Fig. 6).
FIG. 6. A subject at different locations and orientations relative to the camera and two light sources.

Shown to the right are magnified views of the eyes. The ellipse fit to each limbus is shown with a dashed

line and the small dots denote the positions of the specular highlights. See also Table I.

PHOTO FAKERY AND FORENSICS 19
The radius of each limbus was approximately 9 pixels, and the cornea occupied

0.004% of the entire image. Each specular highlight was localized by specifying a

bounding rectangular area around each highlight and computing the centroid of the

selection. The weighting function for the centroid computation was chosen to be the

squared (normalized) pixel intensity. The location to the light source(s) was esti-

mated for each pair of eyes assuming a known and unknown focal length. The

angular errors for each image are given in Table I. Note that in some cases an

estimate for one of the light sources was not possible when the highlight was not

visible on the cornea. With a known focal length, the average angular error was 8.6�,
and with an unknown focal length, the average angular error was 10.5�.
When creating a composite of two or more people, it is often difficult to match the

lighting conditions under which each person was originally photographed. Specular

highlights that appear on the eye are a powerful cue as to the shape, color, and

location of the light source(s). Inconsistencies in these properties of the light can be

used as evidence of tampering. We can measure the 3D direction to a light source

from the position of the highlight on the eye. While we have not specifically focused

on it, the shape and color of a highlight are relatively easy to quantify and measure

and should also prove helpful in exposing digital forgeries. Since specular highlights

tend to be relatively small on the eye, it is possible to manipulate them to conceal

traces of tampering. To do so, the shape, color, and location of the highlight would

have to be constructed so as to be globally consistent with the lighting in other parts

of the image. Inconsistencies in this lighting may be detectable using the technique

described in the previous section.
Table I

ANGULAR ERRORS (�) IN ESTIMATING THE LIGHT DIRECTION FOR THE IMAGES SHOWN IN FIG. 6

Image

Left eye Right eye Left eye Right eye

L1 L2 L1 L2 L1 L2 L1 L2

1 5.8 7.6 3.8 1.6 5.8 7.7 3.9 1.7

2 – 8.7 – 0.8 – 10.4 – 18.1

3 9.3 – 11.0 – 17.6 – 10.1 –

4 12.5 16.4 7.5 7.3 10.4 13.6 7.4 5.6

5 14.0 – 13.8 – 17.4 – 16.5 –

On the left are the errors for a known focal length, and on the right

are the errors for an unknown focal length. A ‘‘–’’ indicates that the

specular highlight for that light was not visible on the cornea.

20 H. FARID
2.3 Lighting Environment

In the previous two sections, we have shown how to estimate the direction to a

light source, and how inconsistencies in the illuminant direction can be used to

detect tampering. This approach is appropriate when the lighting is dominated by a

single light source, but is less appropriate in more complex lighting environments

containing multiple light sources or nondirectional lighting. Here, we describe how

to quantify such complex lighting environments and how to use inconsistencies in

lighting to detect tampering.

The lighting of a scene can be complex—any number of lights can be placed in

any number of positions, creating different lighting environments. To model such

complex lighting, we assume that the lighting is distant and that surfaces in the scene

are convex and Lambertian. To use this model in a forensic setting, we also assume

that the surface reflectance is constant and that the camera response is linear.

Under the assumption of distant lighting, an arbitrary lighting environment can be

expressed as a nonnegative function on the sphere, L
�
V
!�

, where V
!

is a unit vector

in Cartesian coordinates and the value of L
�
V
!�

is the intensity of the incident light

along direction V
!

(Fig. 7). If the object being illuminated is convex, the irradiance

(light received) at any point on the surface is due to only the lighting environment;

that is, there are no cast shadows or interreflections [22]. As a result, the irradiance,
V
Æ

N
Æ

X
Æ

FIG. 7. The irradiance (light received) at a point x! is determined by integrating the amount of

incoming light from all directions V
!

in the hemisphere about the surface normal N
!
.

PHOTO FAKERY AND FORENSICS 21
E
�
N
!�

, can be parametrized by the unit length surface normal N
!

and written as a

convolution of the reflectance function of the surface, R
�
V
!
; N

!�
, with the lighting

environment L
�
V
!�

:

E N
!� �

¼
ð
O
L V

!� �
R V

!
; N
!� �

dO; ð32Þ

where O represents the surface of the sphere and dO is an area differential on the

sphere. For a Lambertian surface, the reflectance function is a clamped cosine:

R V
!
; N
!� �

¼ max V
!
� N
!
; 0

� �
; ð33Þ

which is either the cosine of the angle between vectors V
!

and N
!
, or zero when

the angle is greater than 90�. This reflectance function effectively limits the integra-

tion in Equation 32 to the hemisphere about the surface normal N
!

(Fig. 7). In

addition, while we have assumed no cast shadows, Equation 33 explicitly models

attached shadows, that is, shadows due to surface normals facing away from the

direction V
!
.

The convolution in Equation 32 can be simplified by expressing both the lighting

environment and the reflectance function in terms of spherical harmonics. Spherical

harmonics form an orthonormal basis for piecewise continuous functions on the

sphere and are analogous to the Fourier basis on the line or plane. The first three

orders of spherical harmonics are shown in Fig. 8 and defined as

Y0; 0 N
!� �

¼ 1ffiffiffiffiffiffi
4p

p ; Y1;�1 N
!� �

¼
ffiffiffiffiffiffi
3

4p

s
y; Y1; 0 N

!� �
¼

ffiffiffiffiffiffi
3

4p

s
z;

Y1; 1 N
!� �

¼
ffiffiffiffiffiffi
3

4p

s
x; Y2;�2 N

!� �
¼ 3

ffiffiffiffiffiffiffiffi
5

12p

s
xy; Y2;�1 N

!� �
¼ 3

ffiffiffiffiffiffiffiffi
5

12p

s
yz;

Y2; 0 N
!� �

¼ 1

2

ffiffiffiffiffiffi
5

4p

s
3z2 � 1
� �

; Y2; 1 N
!� �

¼ 3

ffiffiffiffiffiffiffiffi
5

12p

s
xz; Y2; 2 N

!� �
¼ 3

2

ffiffiffiffiffiffiffiffi
5

12p

s
x2 � y2
� �

;

where N
! ¼ x y zð Þ in Cartesian coordinates.

The lighting environment expanded in terms of these spherical harmonics is

L V
!� �

¼
X1
n¼ 0

Xn
m¼�n

ln;mYn;m V
!� �

; ð34Þ

where Yn;m �ð Þ is the mth spherical harmonic of order n, and ln;m is the corresponding

coefficient of the lighting environment. Similarly, the reflectance function for

Lambertian surfaces, R
�
V
!
; N

!�
, can be expanded in terms of spherical harmonics,

FIG. 8. The first three orders of spherical harmonics as functions on the sphere. Shown from top to

bottom are the order zero spherical harmonic, Y0;0 �ð Þ; the three order one spherical harmonics, Y1;m �ð Þ; and
the five order two spherical harmonics, Y2;m �ð Þ.

22 H. FARID
and due to its symmetry about the surface normal, only harmonics withm¼ 0 appear

in the expansion

R V
!
; N

!� �
¼
X1
n¼ 0

rnYn; 0 0 0 V
!
� N
!� �T� �

: ð35Þ

Note that for m ¼ 0, the spherical harmonic Yn;0 �ð Þ depends only on the

z-component of its argument.

Convolutions of functions on the sphere become products when represented in

terms of spherical harmonics [22, 23]. As a result, the irradiance (Equation 32) takes

the form

E N
!� �

¼
X1
n¼ 0

Xn
m¼�n

r̂nln;mYn;m N
!� �

; ð36Þ

where

r̂n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p

2nþ 1

r
rn: ð37Þ

The key observation in [22, 23] was that the coefficients r̂n for a Lambertian

reflectance function decay rapidly, and thus the infinite sum in Equation 36 can be

well approximated by the first nine terms:

E N
!� �

�
X2
n¼ 0

Xn
m¼�n

r̂nln;mYn;m N
!� �

: ð38Þ

PHOTO FAKERY AND FORENSICS 23
Since the constants r̂n are known for a Lambertian reflectance function, the

irradiance of a convex Lambertian surface under arbitrary distant lighting can be

well modeled by the nine lighting environment coefficients ln;m up to order 2.

Irradiance describes the total amount of light reaching a point on a surface. For a

Lambertian surface, the reflected light, or radiosity, is proportional to the irradiance

by a reflectance term r. In addition, Lambertian surfaces emit light uniformly in all

directions, so the amount of light received by a viewer (i.e., camera) is independent

of the view direction.

A camera maps its received light to intensity through a camera response function

f �ð Þ. Assuming the reflectance term r is constant across the surface, the measured

intensity at a point x
!

in the image is given by [24]

I x
!� �

¼ f rtE N
!

x
!� �� �� �

; ð39Þ

where E �ð Þ is the irradiance, N
!

x
!� �

is the surface normal at point x
!
, and t is the

exposure time. For simplicity, we assume a linear camera response, and thus the

intensity is related to the irradiance by an unknown multiplicative factor, which is

assumed to have unit value—this assumption implies that the lighting coefficients

can only be estimated to within an unknown scale factor. Under these assumptions,

the relationship between image intensity and irradiance is simply

I x
!� �

¼ E N
!

x
!� �� �

: ð40Þ

Since, under our assumptions, the intensity is equal to irradiance, Equation 40 can

be written in terms of spherical harmonics by expanding Equation 38:

I x
!� � ¼ l0; 0pY0; 0ð N

!Þ þ l1;�1

2p
3
Y1;�1ð N

!
Þ þ l1; 0

2p
3
Y1; 0ð N

!
Þ þ l1; 1

2p
3
Y1; 1ð N

!
Þ

þ l2;�2

p
4
Y2;�2ð N

!
Þ þ l2;�1

p
4
Y2;�1ð N

!
Þ þ l2; 0

p
4
Y2; 0ð N

!
Þ

þ l2; 1
p
4
Y2; 1ð N

!
Þ þ l2; 2

p
4
Y2; 2ð N

!
Þ:

ð41Þ
Note that this expression is linear in the nine lighting environment coefficients,

l0; 0 to l2; 2. As such, given 3D surface normals at p � 9 points on the surface of an

object, the lighting environment coefficients can be estimated as the least-squares

solution to the following system of linear equations:

24 H. FARID
pY0; 0 N
!

x
!
1

� �� � 2p
3
Y1;�1 N

!
x
!
1

� �� �
. . .

p
4
Y2; 2 N

!
x
!
1

� �� �

pY0; 0 N
!

x
!
2

� �� � 2p
3
Y1;�1 N

!
x
!
2

� �� �
. . .

p
4
Y2; 2 N

!
x
!
2

� �� �
⋮ ⋮ ⋮

pY0; 0 N
!

x
!
p

� �� � 2p
3
Y1;�1 N

!
x
!
p

� �� �
. . .

p
4
Y2; 2 N

!
x
!
p

� �� �

0
BBBBBBBBB@

1
CCCCCCCCCA

l0; 0
l1;�1

⋮
l2; 2

0
BB@

1
CCA

¼

I x
!
1

� �
I x

!
2

� �
⋮

I x
!
p

� �

0
BBBB@

1
CCCCA;

M v
! ¼ b

!
;

ð42Þ

whereM is the matrix containing the sampled spherical harmonics, v
!
is the vector of

unknown lighting environment coefficients, and b
!

is the vector of intensities at

p points. The least-squares solution to this system is

v
! ¼ MTM

� ��1
MT b

!
: ð43Þ

This solution requires 3D surface normals from at least nine points on the surface

of an object. Without multiple images or known geometry, however, this require-

ment may be difficult to satisfy from an arbitrary image.

As in [5, 12], we observe that under an assumption of orthographic projection, the

z-component of the surface normal is zero along the occluding contour of an object.

Therefore, the intensity profile along an occluding contour simplifies to

I x
!� �

¼Aþ l1;�1

2p
3
Y1;�1 N

!� �
þ l1; 1

2p
3
Y1; 1 N

!� �
þ l2;�2

p
4
Y2;�2 N

!� �
þ l2; 2

p
4
Y2; 2 N

!� �
;

ð44Þ

where

A ¼ l0; 0
p

2
ffiffiffi
p

p � l2; 0
p
16

ffiffiffi
5

p

r
: ð45Þ

Note that the functions Yi; j �ð Þ depend only on the x- and y-components of the

surface normal N
!
. That is, the five lighting coefficients can be estimated from only

2D surface normals, which are relatively simple to estimate from a single image.2
2 The 2D surface normal is the gradient vector of an implicit curve fit to the edge of an object.

PHOTO FAKERY AND FORENSICS 25
In addition, Equation 44 is still linear in its now five lighting environment coeffi-

cients, which can be estimated as the least-squares solution to

1
2p
3
Y1;�1 N

!
x
!
1

� �� � 2p
3
Y1;1 N

!
x
!
1

� �� � p
4
Y2;�2 N

!
x
!
1

� �� � p
4
Y2;2 N

!
x
!
1

� �� �

1
2p
3
Y1;�1 N

!
x
!
2

� �� � 2p
3
Y1;1 N

!
x
!
2

� �� � p
4
Y2;�2 N

!
x
!
2

� �� � p
4
Y2;2 N

!
x
!
2

� �� �
⋮ ⋮ ⋮ ⋮ ⋮

1
2p
3
Y1;�1 N

!
x
!
p

� �� � 2p
3
Y1;1 N

!
x
!
p

� �� � p
4
Y2;�2 N

!
x
!
p

� �� � p
4
Y2;2 N

!
x
!
p

� �� �

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

A
l1;�1

l1;1
l2;�2

l2;2

0
BBBB@

1
CCCCA¼

I x
!
1

� �
I x

!
2

� �
⋮

I x
!
p

� �

0
BBBB@

1
CCCCA; ð46Þ

M v
! ¼ b

!
; ð47Þ

which has the same least-squares solution as before:

v
! ¼ MTM

� ��1
MT b

!
: ð48Þ

Note that this solution only provides five of the nine lighting environment

coefficients. We will show, however, that this subset of coefficients is still suffi-

ciently descriptive for forensic analysis.

When analyzing the occluding contours of objects in real images, it is often the case

that the range of surface normals is limited, leading to an ill-conditioned matrix M.

This limitation can arise from many sources, including occlusion or object geometry.

As a result, small amounts of noise in either the surface normals or the measured

intensities can cause large variations in the estimate of the lighting environment vector

v
!
. To better condition the estimate, an error function E v

!� �
is defined that combines

the least-squares error of the original linear system with a regularization term:

E v
!� �

¼ M v
!� b

!����
����

����
����
2

þ l C v
!��� ������ ���2; ð49Þ

where l is a scalar and the matrix C is diagonal with 1 2 2 3 3ð Þ on the diagonal. The
matrix C is designed to dampen the effects of higher order harmonics and is motivated

by the observation that the average power of spherical harmonic coefficients

for natural lighting environments decreases with increasing harmonic order [25].

26 H. FARID
For the full lighting model when 3D surface normals are available (Equation 49), the

matrix C has 1 2 2 2 3 3 3 3 3ð Þ on the diagonal.

The error function to be minimized (Equation 49) is a least-squares problem with

a Tikhonov regularization [26]. The analytic minimum is found by differentiating

with respect to v
!
:

dE0 v
!� �

d v!
¼ 2MTMv

!�2MT b
!
þ2lCTCv

!

¼ 2 MTM þ lCTCð Þ v
! �2MTb

!
;

ð50Þ

setting the result equal to zero, and solving for v
!
:

v
! ¼ MTM þ lCTC

� �þ
MTb

!
: ð51Þ

In practice, we have found that the conditioned estimate in Equation 51 is

appropriate if less than 180� of surface normals are available along the occluding

contour. If more than 180� of surface normals are available, the least-squares

estimate (Equation 48) can be used, though both estimates will give similar results

for small values of l.
The estimated coefficient vector v

!
(Equation 51) is a low-order approximation of

the lighting environment. For forensics purposes, we would like to differentiate

between lighting environments based on these coefficients. Intuitively, coefficients

from objects in different lighting environments should be distinguishable, while

coefficients from objects in the same lighting environment should be similar. In

addition, measurable differences in sets of coefficients should be mostly due to

differences in the lighting environment and not to other factors such as object color

or image exposure. Taking these issues into consideration, we propose an error

measure between two estimated lighting environments. Let v
!
1 and v

!
2 be two vectors

of lighting environment coefficients. From these coefficients, the irradiance profile

along a circle (2D) or a sphere (3D) is synthesized, from which the error is

computed. The irradiance profiles corresponding to v
!
1 and v

!
2 are given by

x
!
1 ¼ M v

!
1; ð52Þ

x
!
2 ¼ M v

!
2; ð53Þ

where the matrix M is of the form in Equation 42 (for 3D normals) or Equation 46

(for 2D normals). After subtracting the mean, the correlation between these zero-

mean profiles is

corr x
!
1; x

!
2

� �
¼ x

!
1
T x
!
2

k x!1kk x
!
2k

: ð54Þ

PHOTO FAKERY AND FORENSICS 27
In practice, this correlation can be computed directly from the lighting environ-

ment coefficients:

corr v
!
1; v

!
2

� �
¼ v

!
1
TQ v

!
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v
!
1
TQ v

!
1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v
!
2
TQ v

!
2

q ; ð55Þ

where the matrix Q for both the 2D and 3D cases is derived in [7]. By design, this

correlation is invariant to both additive and multiplicative factors on the irradiance

profiles x
!
1 and x

!
2. Recall that our coefficient vectors v

!
1 and v

!
2 are estimated to

within an unknown multiplicative factor. In addition, different exposure times under

a nonlinear camera response function can introduce an additive bias. The correlation

is, therefore, invariant to these factors and produces values in the interval [�1, 1].

The final error is then given by

D v
!
1; v

!
2

� �
¼ 1

2
1� corr v

!
1; v

!
2

� �� �
; ð56Þ

with values in the range [0, 1].

To test our ability to discriminate between lighting environments we photo-

graphed a diffuse sphere in 28 different locations with a 6.3-megapixel Nikon

D-100 digital camera set to capture in high-quality JPEG mode. The focal length

was set to 70 mm, the f-stop was fixed at f/8, and the shutter speed was varied to

capture two or three exposures per location. In total, there were 68 images. For each

image, the Adobe Photoshop ‘‘Quick Selection Tool’’ was used to locate the

occluding contour of the sphere from which both 2D and 3D surface normals

could be estimated. The 3D surface normals were used to estimate the full set of

nine lighting environment coefficients and the 2D surface normals along the occlud-

ing contour were used to estimate five coefficients. For both cases, the regularization

term l in Equation 51 was set to 0.01. For each pair of images, the error (Equation

56) between the estimated coefficients was computed. In total, there were 2278

image pairs: 52 pairs were different exposures from the same location and 2226 pairs

were captured in different locations. The errors for all pairs for both models (3D and

2D) are shown in Fig. 9. In both plots, the 52 image pairs from the same location are

plotted first (‘‘þ’’), sorted by error. The 2226 pairs from different locations are

plotted next (‘‘�’’). Note that the axes are scaled logarithmically. For the 3D case,

the minimum error between an image pair from different locations is 0.0027 and the

maximum error between an image pair from the same location is 0.0023. Therefore,

the two sets of data, same location versus different location, are separated by a

threshold of 0.0025. For the 2D case, 13 image pairs (0.6%) fell below 0.0025. These

image pairs correspond to lighting environments that are indistinguishable based on

the five-coefficient model.

1 100 1000

10−4

10−3

10−2

10−1

100

Image pair

Image pair

E
rr

or

10−4

10−3

10−2

10−1

100

E
rr

or

1 100 1000

FIG. 9. Errors between image pairs corresponding to the same (‘‘þ’’) and different (‘‘�’’) locations
using the full nine-parameter model with 3D surface normals (top) and using the five-parameter model

with 2D surface normals (bottom). Both the horizontal and vertical axes are scaled logarithmically.

28 H. FARID
To be useful in a forensic setting, lighting estimates from objects in the same

lighting environment should be robust to differences in color and material type, as

well as to geometric differences, since arbitrary objects may not have the full range

of surface normals available. To test our algorithm under these conditions, we

downloaded 20 images of multiple objects in natural lighting environments from

Flickr3 (Fig. 10). In each image, occluding contours of two to four objects were
3 http://www.flickr.com

F
IG
.
1
0
.
S
u
p
er
im

p
o
se
d
o
n
ea
ch

im
ag
e
ar
e
th
e
co
n
to
u
rs
fr
o
m
w
h
ic
h
th
e
su
rf
ac
e
n
o
rm

al
s
an
d
in
te
n
si
ty
v
al
u
es

ar
e
ex
tr
ac
te
d
to
fo
rm

th
e
m
at
ri
x
M

an
d

th
e
co
rr
es
p
o
n
d
in
g
v
ec
to
r
b!
(E
q
u
at
io
n
4
7
).

30 H. FARID
specified using a semiautomated approach. A coarse contour was defined by paint-

ing along the edge of the object using Adobe Photoshop. Each stroke was then

automatically divided into quadratic segments, or regions, which were fit to nearby

points with large gradients. The analyzed regions for all images are shown in Fig. 10.

Analytic surface normals and intensities along the occluding contour were measured

from the regions. With the 2D surface normals and intensities, the five lighting

environment coefficients were estimated (Equation 51). The regularization term l in
Equation 51 was increased to 0.1, which is larger than in the simulation due to an

increasing sensitivity to noise.

Across all 20 images, there were 49 pairs of objects from the same image and

1329 pairs of objects from different images. For each pair of objects, the error

between the estimated coefficients was computed. For objects in the same image, the

average error was 0.009 with a standard deviation of 0.007 and a maximum error of

0.027. For comparison, between objects in different images the average error was

0.295 with a standard deviation of 0.273. There were, however, 196 pairs of objects

(15%) from different images that fell below 0.027. The lighting environments in

these images (e.g., the two police images, the trees and skiers images, etc.) were

indistinguishable using the five coefficient model. For objects from the same image,

the pair with the maximum error of 0.027 is the basketball and basketball player. The

sweaty skin of the basketball player is somewhat shiny, a violation of the Lamber-

tian assumption. In addition, the shoulders and arms of the basketball player provide

only a limited extent of surface normals, making the linear system somewhat ill

conditioned. In contrast, the objects from the same image with the minimum error of

0.0001 are the left and right pumpkins on the bench. Both pumpkins provide a large

extent of surface normals, over 200�, and the surfaces are fairly diffuse. Since the

surfaces fit the assumptions and the linear systems are well conditioned, the error

between the estimated coefficients is small.

We created three forgeries by mixing and matching several of the images in

Fig. 10. These forgeries are shown in Fig. 11. Regions along the occluding contour

of two to four objects in each image were selected for analysis. These regions are

superimposed on the images in the right column of Fig. 11. Surface normals and

intensities along these occluding contour were extracted, from which the five

lighting environment coefficients were estimated (Equation 51) with the regulariza-

tion term l ¼ 0.1. Shown in each panel is a sphere rendered with the estimated

coefficients. These spheres qualitatively show discrepancies between the lighting.

For all pairs of objects originally in the same lighting environment, the average error

is 0.005 with maximum error of 0.01. For pairs of objects from different lighting

environments, the average error is 0.15 with a minimum error of 0.03.

The ability to estimate complex lighting environments was motivated by our

earlier work in which we showed how to detect inconsistencies in the direction to

FIG. 11. Shown on the left are three forgeries: the ducks, swans, and football coach were each added

into their respective images. Shown on the right are the analyzed regions superimposed in white, and

spheres rendered from the estimated lighting coefficients.

PHOTO FAKERY AND FORENSICS 31
an illuminating light source (Section 2.1). The work described here generalizes this

approach by allowing us to estimate more complex models of lighting and in fact can

be adapted to estimate the direction to a single light source. Specifically, by

considering only the two first-order spherical harmonics, Y1;�1 �ð Þ and Y1; 1 �ð Þ, the
direction to a light source can be estimated as tan�1 l1;�1=l1;1

� �
.

When creating a composite of two or more people, it is often difficult to exactly

match the lighting, even if the lighting seems perceptually consistent. The reason for

this is that complex lighting environments (multiple light sources, diffuse lighting,

32 H. FARID
directional lighting) give rise to complex and subtle lighting gradients and shading

effects in the image. Under certain simplifying assumptions (distant light sources

and diffuse surfaces), arbitrary lighting environments can be modeled with a nine-

dimensional model. This model approximates the lighting with a linear combination

of spherical harmonics. We have shown how to approximate a simplified five-

dimensional version of this model from a single image, and how to stabilize the

model estimation in the presence of noise. Inconsistencies in the lighting model

across an image are then used as evidence of tampering.

2.4 Color Filter Array

The previous three sections described forensic analysis based on detecting incon-

sistencies in lighting. These tools are particularly useful in determining if a photo-

graph was created by compositing several photographs together. Next, we describe a

complementary forensic analysis that can determine if any part of an image was

manipulated or changed (e.g., airbrushing) from the time of its original recording.

Most digital cameras capture color images using a single sensor in conjunction

with an array of color filters. As a result, only one third of the samples in a color

image are captured by the camera, the other two thirds being interpolated. This

interpolation introduces specific correlations between the samples of a color image.

When creating a digital forgery these correlations may be destroyed or altered.

We describe the form of these correlations, and propose a method that quantifies

and detects them in any portion of an image.

A digital color image consists of three channels containing samples from different

bands of the color spectrum, for example, red, green, and blue. Most digital cameras,

however, are equipped with a single CCD or CMOS sensor, and capture color images

using a color filter array (CFA). The most frequently used CFA, the Bayer array [27],

employs three color filters: red, green, and blue. The red and blue pixels are sampled on

rectilinear lattices, while the green pixels are sampled on a quincunx lattice (Fig. 12).

Since only a single color sample is recorded at each pixel location, the other two color

samples must be estimated from the neighboring samples to obtain a three-channel

color image. Let S x; yð Þ denote the CFA image in Fig. 12, and ~R x; yð Þ, ~G x; yð Þ, and
~B x; yð Þ denote the red, green, and blue channels constructed from S x; yð Þ as follows:

~R x; yð Þ ¼ S x; yð Þ if S x; yð Þ ¼ rx; y
0 otherwise;

ð57Þ

~G x; yð Þ ¼ S x; yð Þ if S x; yð Þ ¼ gx; y
0 otherwise;

ð58Þ

~B x; yð Þ ¼ S x; yð Þ if B x; yð Þ ¼ bx; y
0 otherwise;

ð59Þ

r1,1 g1,2 r1,3 g1,4 r1,5 g1,6

g2,1 b2,2 g2,3 b2,4 g2,5 b2,6

r3,1 g3,2 r3,3 g3,4 r3,5 g3,6

g4,1 b4,2 g4,3 b4,4 g4,5 b4,6 · · ·

r5,1 g5,2 r5,3 g5,4 r5,5 g5,6

g6,1 b6,2 g6,3 b6,4 g6,5 b6,6

...
. . .

FIG. 12. The top left portion of a CFA image obtained from a Bayer array. The red, r2iþ 1; 2jþ 1, and blue,

b2i; 2j, pixels are sampled on rectilinear lattices, while the green, g2iþ 1; 2j and g2i; 2jþ 1, pixels are sampled

twice as often on a quincunx lattice. Notice that at each pixel location only a single color sample is recorded.

PHOTO FAKERY AND FORENSICS 33
where (x, y) span an integer lattice. A complete color image, with channels R(x, y),
G(x, y), and B(x, y) needs to be estimated. These channels take on the nonzero values

of ~R x; yð Þ, ~G x; yð Þ, and ~B x; yð Þ, and replace the zeros with estimates from neighbor-

ing samples.

The estimation of the missing color samples is referred to as CFA interpolation or

demosaicking. CFA interpolation has been extensively studied and many methods

have been proposed (see, e.g., [28] for a survey and [29–31] for more recent

methods).

The simplest methods for demosaicking are kernel-based interpolation methods

that act on each channel independently. These methods can be efficiently imple-

mented as linear filtering operations on each color channel:

R x; yð Þ ¼
XN

u; v¼�N

hr u; vð Þ ~R x� u; y� vð Þ; ð60Þ

G x; yð Þ ¼
XN

u; v¼�N

hg u; vð Þ ~G x� u; y� vð Þ; ð61Þ

B x; yð Þ ¼
XN

u; v¼�N

hb u; vð Þ ~B x� u; y� vð Þ; ð62Þ

where ~R �ð Þ, ~G �ð Þ, ~B �ð Þ are defined in Equations 57–59, and hr �ð Þ, hg �ð Þ, hb �ð Þ are

linear filters of size 2N þ 1ð Þ � 2N þ 1ð Þ. Different forms of interpolation (nearest

neighbor, bilinear, bicubic [32], etc.) differ in the form of the interpolation filter

used. For the Bayer array, the bilinear and bicubic filters for the red and blue

channels are separable. The 1D filters are given by

34 H. FARID
hl ¼ 1=2 1 1=2½ �;
hc ¼ �1=16 0 9=16 1 9=16 0 �1=16½ �:

There are many other CFA interpolation algorithms including smooth hue transi-

tion [33], median filter [34], gradient-based [35], adaptive color plane [36], and

threshold-based variable number of gradients [37]. Regardless of their specific

implementations, each CFA interpolation algorithm introduces specific statistical

correlations between a subset of pixels in each color channel. Since the color filters

in a CFA are typically arranged in a periodic pattern, these correlations are periodic.

Consider, for example, the red channel, R(x, y), that has been sampled on a Bayer

array (Fig. 12), then CFA interpolated using bilinear interpolation. In this case, the

red samples in the odd rows and even columns are the average of their closest

horizontal neighbors, the red samples in the even rows and odd columns are the

average of their closest vertical neighbors, and the red samples in the even rows and

columns are the average of their closest diagonal neighbors:

R 2xþ 1; 2yð Þ ¼ R 2xþ 1; 2y� 1ð Þ
2

þ R 2xþ 1; 2yþ 1ð Þ
2

;

R 2x; 2yþ 1ð Þ ¼ R 2x� 1; 2yþ 1ð Þ
2

þ R 2xþ 1; 2yþ 1ð Þ
2

;

R 2x; 2yð Þ ¼ R 2x� 1; 2y� 1ð Þ
4

þ R 2x� 1; 2yþ 1ð Þ
4

þ R 2xþ 1; 2y� 1ð Þ
4

þ R 2xþ 1; 2yþ 1ð Þ
4

:

Note that in this simple case, the estimated samples are perfectly correlated to

their neighbors. As such, a CFA-interpolated image can be detected (in the absence

of noise) by noticing, for example, that every other sample in every other row or

column is perfectly correlated to its neighbors. At the same time, the noninterpolated

samples are less likely to be correlated in precisely the same manner. Furthermore, it

is likely that tampering will destroy these correlations, or that the splicing together

of two images from different cameras will create inconsistent correlations across the

composite image. As such, the presence or lack of correlations produced by CFA

interpolation can be used to authenticate an image, or expose it as a forgery.

We begin by assuming a simple linear model for the periodic correlations

introduced by CFA interpolation. That is, each interpolated pixel is correlated to a

weighted sum of pixels in a small neighborhood centered about itself. While perhaps

overly simplistic when compared to the highly nonlinear nature of most CFA

interpolation algorithms, this simple model is both easy to parametrize and can

:

PHOTO FAKERY AND FORENSICS 35
reasonably approximate each of the CFA interpolation algorithms described above.

Note that most CFA algorithms estimate a missing color sample from neighboring

samples in all three color channels. For simplicity, however, we ignore these

interchannel correlations and treat each color channel independently.

If the specific form of the correlations is known (i.e., the parameters of the

linear model), then it would be straightforward to determine which samples are

correlated to their neighbors. On the other hand, if it was known which samples

are correlated to their neighbors, the specific form of the correlations could be

easily determined. In practice, of course, neither are known. To simultaneously

estimate both we employ the expectation/maximization (EM) algorithm [38], as

described below.

Let f (x, y) denote a color channel (red, green, or blue) of a CFA-interpolated

image. We begin by assuming that each sample in f(x, y) belongs to one of two

models (1) M1 if the sample is linearly correlated to its neighbors, satisfying:

f x; yð Þ ¼
XN

u; v¼�N

au; v f xþ u; yþ vð Þ þ n x; yð Þ; ð63Þ

where the model parameters are given by the linear coefficients

a! ¼ au; vj � N 	 u; v 	 N
� �

(N is an integer and a0; 0 ¼ 0), and n(x, y) denotes
independent and identically distributed samples drawn from a Gaussian distribution

with zero mean and unknown variance s2; or (2)M2 if the sample is not correlated to

its neighbors, that is, is generated by an ‘‘outlier process.’’

The expectation–maximization algorithm (EM) is a two-step iterative algorithm

(1) in the E-step the probability of each sample belonging to each model is estimated

and (2) in the M-step the specific form of the correlations between samples

is estimated. More specifically, in the E-step, the probability of each sample of

f(x, y) belonging to model M1 is estimated using Bayes’ rule:

Pr f x; yð Þ 2 M1j f x; yð Þf g ¼ Pr f x; yð Þj f x; yð Þ 2 M1f gPr f x; yð Þ 2 M1f gP2
i¼ 1Pr f x; yð Þj f x; yð Þ 2 Mif gPr f x; yð Þ 2 Mif g ;

ð64Þ
where the prior probabilities Pr f x; yð Þ 2 M1f g and Pr f x; yð Þ 2 M2f g are assumed to

be equal to 1/2. The probability of observing a sample f (x, y) knowing it was

generated from model M1 is given by

Pr f x; yð Þj f x; yð Þ 2 M1f g ¼ 1

s
ffiffiffiffiffiffi
2p

p exp �
f x; yð Þ �PN

u; v¼�Nau; vf xþ u; yþ vð Þ
� �2

2s2

2
64

3
75

ð65Þ

36 H. FARID
The variance, s2, of this Gaussian distribution is estimated in the M-step.

A uniform distribution is assumed for the probability of observing a sample gener-

ated by the outlier model, M2, that is, Pr f x; yð Þj f x; yð Þ 2 M2f g is equal to the

inverse of the range of possible values of f(x, y). Note that the E-step requires

an estimate of the coefficients a!, which on the first iteration is chosen randomly.

In the M-step, a new estimate of a! is computed using weighted least squares, by

minimizing the following quadratic error function:

E a
!� �

¼
X
x; y

w x; yð Þ� f x; yð Þ �
XN

u; v¼�N

au; v f xþ u; yþ vð Þ
 !2

; ð66Þ

where the weights w x; yð Þ
 Pr f x; yð Þ 2 M1j f x; yð Þf g (Equation 64). This error

function is minimized by computing the gradient with respect to a!, setting this

gradient equal to zero, and solving the resulting linear system of equations. Setting

equal to zero the partial derivative with respect to one of the coefficients, as; t, yields

@E

@as; t
¼ 0; ð67Þ

X
x;y

w x; yð Þf xþ s; yþ tð Þ
XN

u; v¼�N

au; vf xþ u; yþ vð Þ

¼
X
x; y

w x; yð Þf xþ s; yþ tð Þf x; yð Þ: ð68Þ

Reordering the terms on the left-hand side yields:

XN
u; v¼�N

au; v
X
x; y

w x; yð Þf xþ s; yþ tð Þf xþ u; yþ vð Þ
 !

¼
X
x; y

w x; yð Þf xþ s; yþ tð Þf x; yð Þ: ð69Þ

This process is repeated for each component, as; t, of a!, to yield a system of linear

equations that can be solved using standard techniques. The E-step and the M-step

are iteratively executed until a stable estimate of a! is achieved. The final a! has the

property that it maximizes the likelihood of the observed samples.

We collected 100 images, 50 of resolution 512 � 512, and 50 of resolution

1024 � 1024. Each of these images were cropped from a smaller set of twenty

1600 � 1200 images taken with a Nikon Coolpix 950 camera, and twenty 3034 �
2024 images taken with a Nikon D100 camera. The Nikon Coolpix 950 employs a

four-filter (yellow, cyan, magenta, green) CFA, and was set to store the images in

PHOTO FAKERY AND FORENSICS 37
uncompressed TIFF format. The Nikon D100 camera employs a Bayer array, and

was set to store the images in RAW format. To avoid interference with the CFA

interpolation of the cameras, each color channel of these images was independently

blurred with a 3 � 3 binomial filter, and downsampled by a factor of 2 in each

direction. These downsampled color images, of size 256 � 256 or 512 � 512, were

then resampled onto a Bayer array, and CFA interpolated using the algorithms

described above.

Shown in Figs. 13 and 14 are the results of running the EM algorithm on eight

256 � 256 color images that were CFA interpolated. The parameters of the EM

algorithm were: N ¼ 1, s0 ¼ 0:0075, and p0 ¼ 1=256. Shown in the left column are

the images, in the middle column the estimated probability maps from the green

channel (the red and blue channels yield similar results), and in the right column the

magnitude of the Fourier transforms of the probability maps.4 Note that, although

the periodic patterns in the probability maps are not visible at this reduced scale,

they are particularly salient in the Fourier domain in the form of localized peaks.

Note also that these peaks do not appear in the images that are not CFA interpolated

(last row of Fig. 13 and 14).

Since it is likely that tampering will destroy the periodicity of the CFA correla-

tions, it may be possible to detect and localize tampering in any portion of an image.

To illustrate this, consider the leftmost image in Fig. 15, taken with a Nikon D100

digital camera and saved in RAW format. Each color channel of this image (initially

interpolated using the adaptive color plane technique) was blurred with a 3 � 3

binomial filter and downsampled by a factor of 2 in order to destroy the CFA

periodic correlations. The 512 � 512 downsampled image was then resampled on

a Bayer array and CFA interpolated. Next, composite images, 512 � 512 pixels in

size, were created by splicing, in varying proportions (1/4, 1/2, and 3/4), the non-

CFA-interpolated image and the same image CFA interpolated with the bicubic

algorithm. Shown in Fig. 15 are the probability maps obtained from running EM on

the red channel of the composite images. Notice that these probability maps clearly

reveal the presence of two distinct regions. Shown below each probability map are

the magnitudes of the Fourier transforms of two windows, one from the non-CFA-

interpolated portion (right), and one from the CFA-interpolated portion (left).
4 For display purposes, the probability maps were upsampled by a factor of 2 before Fourier

transforming. The periodic patterns introduced by CFA interpolation have energy in the highest horizon-

tal, vertical, and diagonal frequencies, which corresponds to localized frequency peaks adjacent to the

image edges. Upsampling by a factor of 2 shrinks the support of a probability map’s spectrum, and shifts

these peaks into the midfrequencies, where they are easier to see. Also for display purposes, the Fourier

transforms of the probability maps were high-pass filtered, blurred, scaled to fill the range [0, 1], and

gamma corrected with an exponent of 2.0.

Image p | (p)|

Bilinear

Bicubic

Smooth hue

3 × 3 median

No CFA
interpolation

FIG. 13. Shown in each row is an image interpolated with the specified algorithm, the probability map

of the green channel as output by the EM algorithm, and the magnitude of the Fourier transform of the

probability map. Note the peaks in jℱ pð Þj corresponding to periodic correlations in the CFA-interpolated
images, and the lack of such peaks in the non-CFA-interpolated image (last row).

38 H. FARID

Image p | (p)|

5 × 5 median

Gradient

Adaptive
color
plane

Variable
number of
gradients

No CFA
interpolation

FIG. 14. Shown in each row is an image interpolated with the specified algorithm, the probability map

of the green channel as output by the EM algorithm, and the magnitude of the Fourier transform of the

probability map. Note the peaks in jℱ pð Þj corresponding to periodic correlations in the CFA-interpolated
images, and the lack of such peaks in the non-CFA-interpolated image (last row).

PHOTO FAKERY AND FORENSICS 39

F
IG
.
1
5
.
S
h
o
w
n
ar
e
an

im
ag
e,

an
d
th
e
p
ro
b
ab
il
it
y
m
ap
s
o
f
co
m
p
o
si
te

im
ag
es

o
b
ta
in
ed

b
y
sp
li
ci
n
g
to
g
et
h
er

th
e
C
F
A
-i
n
te
rp
o
la
te
d
im

ag
e
(l
ef
t

p
o
rt
io
n
o
f
ea
ch

im
ag
e)

an
d
th
e
sa
m
e
im

ag
e
w
it
h
o
u
t
C
F
A
in
te
rp
o
la
ti
o
n
(r
ig
h
t
p
o
rt
io
n
).
A
ls
o
sh
o
w
n
ar
e
th
e
m
ag
n
it
u
d
es

o
f
th
e
F
o
u
ri
er

tr
an
sf
o
rm

s
o
f

w
in
d
o
w
s
fr
o
m

th
e
tw
o
re
g
io
n
s.
N
o
te

th
at

w
in
d
o
w
s
fr
o
m

th
e
C
F
A
-i
n
te
rp
o
la
te
d
re
g
io
n
s
(l
ef
t)
h
av
e
lo
ca
li
ze
d
p
ea
k
s
in

th
e
F
o
u
ri
er

d
o
m
ai
n
,
w
h
il
e
th
e

w
in
d
o
w
s
fr
o
m

th
e
‘‘
ta
m
p
er
ed
’’
re
g
io
n
s
(r
ig
h
t)
d
o
n
o
t.

PHOTO FAKERY AND FORENSICS 41
Notice the presence of localized frequency peaks in the CFA-interpolated portion,

and the lack of such peaks in the non-CFA-interpolated portion.

Shown in Fig. 16 is a perceptually plausible forgery created using Adobe Photoshop

(top row, right). The tampering consisted of hiding the damage on the car hood using

airbrushing, smudging, blurring, andduplication.Also shown is the original imageCFA

interpolated using bicubic interpolation (top row, left), the estimated probabilitymap of

the tampered image (middle row), and the magnitude of the Fourier transforms of two

windowsone froma tamperedportion (bottom row, left), andone fromanunadulterated

portion (bottom row, right). Note that even though the periodic pattern is not visible in

the probability map, localized frequency peaks reveal its presence. Note also that the

window from the tampered region does not contain frequency peaks.

The benefit of this approach is that nearly any manipulation to the image can be

detected. The drawback is that an original resolution version of the image is required

for authentication. And, as with any authentication scheme, our forensic analysis is

vulnerable to counterattack. A tampered image could, for example, be resampled

onto a CFA, and then reinterpolated. This attack, however, requires knowledge of

the camera’s CFA pattern and interpolation algorithm, and may be beyond the

reaches of a novice forger.
2.5 JPEG Ghosts

Although highly effective in some situations, the techniques described above are

not applicable when analyzing low-quality images. Detecting tampering in low-

quality images is particularly challenging since low-quality images often destroy

many artifacts that could be used to detect tampering. One such technique is described

next that detects tampering which results when part of a JPEG image is inserted into

another higher quality JPEG image. For example, when one person’s head is spliced

onto another person’s body, or when two separately photographed people are com-

bined into a single composite. This approachworks by explicitly determining if part of

an imagewas originally compressed at a lower quality relative to the rest of the image.

In the standard JPEG compression scheme [39, 40], a color image (RGB) is first

converted into luminance/chrominance space (YCbCr). The two chrominance chan-

nels (CbCr) are typically subsampled by a factor of 2 relative to the luminance

channel (Y). Each channel is then partitioned into 8 � 8 pixel blocks. These values

are converted from unsigned to signed integers (e.g., from [0, 255] to [�128, 127]).

Each block is converted to frequency space using a 2D discrete cosine transform

(DCT). Each DCT coefficient, c, is then quantized by an amount q:

ĉ ¼ round c=qð Þ; ð70Þ

FIG. 16. Shown are: (top) an original and a tampered image, (middle) the probability map of the

tampered image’s green channel, and (bottom) the magnitude of the Fourier transform of two windows

from the probability map. The windows correspond to a tampered and an unadulterated portion of the

forgery. Note the lack of peaks in the tampered region signifying the absence of CFA interpolation.

42 H. FARID

PHOTO FAKERY AND FORENSICS 43
where the quantization q depends on the spatial frequency and channel. Larger

quantization values q yield better compression at the cost of image degradation.

Quantization values are typically larger in the chrominance channels, and in the

higher spatial frequencies, roughly modeling the sensitivity of the human visual

system.

Consider now a set of coefficients c1 quantized by an amount q1, which are

subsequently quantized a second time by an amount q2 to yield coefficients c2.
With the exception of q2 ¼ 1 (i.e., no quantization), the difference between c1 and
c2 will be minimal when q2 ¼ q1. It is obvious that the difference between c1 and
c2 increases for quantization value q2 > q1 since the coefficients become increas-

ingly more sparse as q2 increases. For values of q2 < q1, the difference between c1
and c2 also increases because although the second quantization does not affect the

granularity of the coefficients, it does cause a shift in their values. Shown in

Fig. 17A, for example, is the sum of squared differences between c1 and c2 as a

function of the second quantization q2, where q1 ¼ 17, and where the coefficients

c1 are drawn from a normal zero-mean distribution. Note that this difference

increases as a function of increasing q2, with the exception of q2 ¼ q1, where
the difference is minimal. If q1 is not prime, unlike the above example, then

multiple minima may appear at quality values q2 that are integer multiples of q1.
As will be seen below, this issue can be circumvented by averaging over all of the

JPEG DCT coefficients.

Consider next a set of coefficients c0 quantized by an amount q0, followed by

quantization by an amount q1 < q0 to yield c1. Further quantizing c1 by q2 yields the
coefficients c2. As before, the difference between c1 and c2 will be minimal when

q2 ¼ q1. But, since the coefficients were initially quantized by q0, where q0 > q1,
we expect to find a second minimum when q2 ¼ q0. Shown in Fig. 17B is the sum of

squared differences between c1 and c2, as a function of q2, where q0 ¼ 23 and

q1 ¼ 17. As before, this difference increases as a function of increasing q2, reaches a
minimum at q2 ¼ q1 ¼ 17, and most interestingly has a second local minimum at

q2 ¼ q0 ¼ 23. We refer to this second minimum as a JPEG ghost, as it reveals that

the coefficients were previously quantized (compressed) with a larger quantization

(lower quality).

Recall that the JPEG compression scheme separately quantizes each spatial

frequency within a 8 � 8 pixel block. One approach to detecting JPEG ghosts

would be to separately consider each spatial frequency in each of the three lumi-

nance/color channels. However, recall that multiple minima are possible when

comparing integer multiple quantization values. If, on the other hand, we consider

the cumulative effect of quantization on the underlying pixel values, then this issue

is far less likely to arise (unless all 192 quantization values at different JPEG

qualities are integer multiples of one another—an unlikely scenario). Therefore,

0 10 20 30
0

1

2

3

4
A

B
Quantization

D
iff

er
en

ce
 (

�
 1

04
)

0 10 20 30
0

1

2

3

4

Quantization

D
iff

er
en

ce
 (

�
 1

04
)

FIG. 17. Shown in panel (A) is the sum of squared differences between coefficients quantized by an

amount q1 ¼ 17, followed by a second quantization in the range q2 2 1; 30½ � (horizontal axis)—this

difference reaches a minimum at q2 ¼ q1 ¼ 17. Shown in panel (B) is the sum of squared differences

between coefficients quantized initially by an amount q0 ¼ 23 followed by q1 ¼ 17, followed by

quantization in the range q2 2 1; 30½ � (horizontal axis)—this difference reaches a minimum at

q2 ¼ q1 ¼ 17 and a local minimum at q2 ¼ q0 ¼ 23, revealing the original quantization.

44 H. FARID

PHOTO FAKERY AND FORENSICS 45
instead of computing the difference between the quantized DCT coefficients, we

consider the difference computed directly from the pixel values, as follows:

d x; y; qð Þ ¼ 1

3

X3
i¼ 1

f x; y; ið Þ � fq x; y; ið Þ �2
; ð71Þ

where f (x, y, i), i ¼ 1, 2, 3, denotes each of three RGB color channels,5 and fq �ð Þ is
the result of compressing f �ð Þ at quality q.
Shown in the top left panel of Fig. 18 is an image whose central 200 � 200 pixel

region was extracted, compressed at a JPEG quality of 65/100, and reinserted into

the image whose original quality was 85. Shown in each subsequent panel is the sum

of squared differences (Equation 71) between this manipulated image, and a resaved

version compressed at different JPEG qualities. Note that the central region is

clearly visible when the image is resaved at the quality of the tampered region

(65). Also note that the overall error reaches a minimum at the saved quality of 85.

There are some variations in the difference images within and outside of the

tampered region which could possibly confound a forensic analysis. These fluctua-

tions are due to the underlying image content. Specifically, because the image

difference is computed across all spatial frequencies, a region with small amounts

of high spatial frequency content (e.g., a mostly uniform sky) will have a lower

difference as compared to a highly textured region (e.g., grass). To compensate for

these differences, we consider a spatially averaged and normalized difference

measure. The difference image is first averaged across a b � b pixel region:

d x; y; qð Þ ¼ 1

3

X3
i¼ 1

1

b2

Xb� 1

bx ¼ 0

Xb� 1

by ¼ 0

f xþ bx; yþ by; i
� �� fq xþ bx; yþ by; i

� � �2
; ð72Þ

and then normalized so that the averaged difference at each location (x, y) is scaled
into the range [0, 1]:

d x; y; qð Þ ¼ d x; y; qð Þ � minq d x; y; qð Þ½ �
maxq d x; y; qð Þ½ � �minq d x; y; qð Þ½ � : ð73Þ

Although the JPEG ghosts are often visually highly salient, it is still useful

to quantify if a specified region is statistically distinct from the rest of the image.

To this end, the two-sample Kolmogorov–Smirnov (K–S) statistic [41] is employed
5 The detection of JPEG ghosts is easily adapted to grayscale images by simply computing d x; y; qð Þ
(Equation 71) over a single image channel.

O
rig

in
al

50
55

60
65

70
75

80
85

35
40

45

F
IG
.
1
8
.
S
h
o
w
n
in

th
e
to
p
le
ft
p
an
el

is
th
e
o
ri
g
in
al

im
ag
e
fr
o
m

w
h
ic
h
a
ce
n
tr
al

2
0
0
�

2
0
0
re
g
io
n
w
as

ex
tr
ac
te
d
,
sa
v
ed

at
JP
E
G

q
u
al
it
y
6
5
,
an
d

re
in
se
rt
ed

in
to

th
e
im

ag
e
w
h
o
se

o
ri
g
in
al

q
u
al
it
y
w
as

8
5
.
S
h
o
w
n
in

ea
ch

su
b
se
q
u
en
t
p
an
el

is
th
e
d
if
fe
re
n
t
b
et
w
ee
n
th
is
im

ag
e
an
d
a
re
sa
v
ed

v
er
si
o
n

co
m
p
re
ss
ed

at
d
if
fe
re
n
t
JP
E
G
q
u
al
it
ie
s
in

th
e
ra
n
g
e
[3
5
,
8
5
].
A
t
th
e
o
ri
g
in
al
ly

sa
v
ed

q
u
al
it
y
o
f
6
5
,
th
e
ce
n
tr
al
re
g
io
n
h
as

a
lo
w
er

d
if
fe
re
n
ce

th
an

th
e

re
m
ai
n
in
g
im

ag
e.

PHOTO FAKERY AND FORENSICS 47
to determine if the distribution of differences (Equation 73) in two regions is similar

or distinct. The K–S statistic is defined as

k ¼ max
u

jC1 uð Þ � C2 uð Þj; ð74Þ

where C1 uð Þ and C2 uð Þ are the cumulative probability distributions of two specified

regions in the computed difference d(x, y, q), where each value of q is considered

separately.

There are two potential complicating factors that arise when detecting JPEG

ghosts in a general forensic setting. First, it is likely that different cameras and

photo-editing software packages will employ different JPEG quality scales and

hence quantization tables [42]. When iterating through different qualities it would

be ideal to match these qualities and tables, but this may not always be possible.

Working to our advantage, however, is that the difference images are computed

by averaging across all spatial frequencies. As a result small differences in the

original and subsequent quantization tables will likely not have a significant

impact. The second practical issue is that in the above examples we have

assumed that the tampered region remains on its original 8 � 8 JPEG lattice

after being inserted and saved. If this is not the case, then the misalignment may

destroy the JPEG ghost since new spatial frequencies will be introduced by

saving on a new JPEG block lattice. This problem can be alleviated by sampling

all 64 possible alignments (a 0–7 pixel shift in the horizontal and vertical

directions). Specifically, an image is shifted to each of these 64 locations prior

to saving at each JPEG quality. Although this increases the complexity of

the analysis, each comparison is efficient, leading to a minimal impact in overall

run-time complexity.

To test the efficacy of detecting JPEG ghosts, 1000 uncompressed TIFF images

were obtained from the Uncompressed Color Image Database (UCID) [43]. These

color images are each of size 512� 384 and span a wide range of indoor and outdoor

scenes. A central portion from each image was removed, saved at a specified JPEG

quality of Q0, reinserted into the image, and then the entire image was saved at the

same or different JPEG quality of Q1. The MatLab function imwrite was used to

save images in the JPEG format. This function allows for JPEG qualities to be

specified in the range of 1–100. The size of the central region ranged from 50 � 50

to 200 � 200 pixels. The JPEG quality Q1 was selected randomly in the range

40–90, and the difference between JPEG qualities Q0 and Q1 ranged from 0 to 25,

where Q0 	 Q1 (i.e., the quality of the central region is less than the rest of the

image, yielding quantization levels for the central region that are larger than for the

rest of the image). Note that this manipulation is visually seamless, and does not

disturb any JPEG blocking statistics.

48 H. FARID
Note that is assumed here that the same JPEG qualities/tables were used in the

creation and testing of an image, and that there is no shift in the tampered region

from its original JPEG block lattice. The impact of these assumptions will be

explored below, where it is shown that they are not critical to the efficacy of the

detection of JPEG ghosts.

After saving an image at quality Q1, it was resaved at qualities Q2 ranging from

30 to 90 in increments of 1. The difference between the image saved at quality Q1

and each image saved at quality Q2 was computed as specified by Equation 73, with

b ¼ 16. The K–S statistic (Equation 74) was used to compute the statistical

difference between the image’s central region and the rest of the image. If the

K–S statistic for any quality Q2 exceeded a specified threshold, the image was

classified as manipulated. This threshold was selected to yield a less than 1%

false-positive rate (an authentic image incorrectly classified as manipulated).

Many of the images in the UCID database have significant regions of either

saturated pixels, or largely uniform intensity patches. These regions are largely

unaffected by varying JPEG compression qualities, and therefore exhibit little varia-

tion in the computed difference images (Equation 73). As such, these regions provide

unreliable statistics and were ignored when computing the K–S statistic (Equation 74).

Specifically, regions of size b� bwith an average intensity variance less than 2.5 gray
values were simply not included in the computation of the K–S statistic.

Shown in Table II are the estimation results as a function of the size of the

manipulated region (ranging from 200 � 200 to 50 � 50) and the difference in

JPEG qualities between the originally saved central region, Q0, and the final saved

quality, Q1 (ranging from 0 to 25—a value of Q1 � Q0 ¼ 0 denotes no tampering).

Note that accuracy for images with no tampering (first column) is greater than 99%

(i.e., a less than 1% false-positive rate). Also note that the detection accuracy is

above 90% for quality differences larger than 20 and for tampered regions larger

than 100 � 100 pixels. The detection accuracy degrades with smaller quality

differences and smaller tampered regions. Shown in Fig. 19A are ROC curves for
Table II

JPEG GHOST DETECTION ACCURACY (%)

Q1 � Q0

Size 0 5 10 15 20 25

200 � 200 99.2 14.8 52.6 88.1 93.8 99.9

150 � 150 99.2 14.1 48.5 83.9 91.9 99.8

100 � 100 99.1 12.6 44.1 79.5 91.1 99.8

50 � 50 99.3 5.4 27.9 58.8 77.8 97.7

100

A

B

75

50

25

0
0 0.2 0.4

K-S statistic

A
cc

ur
ac

y
(%

)

0.6

100

75

50

25

0

K-S statistic

A
cc

ur
ac

y
(%

)

0 0.2 0.4 0.6 0.8

FIG. 19. Shown are ROC curves for (A): a tampered region of size 150� 150 and a quality difference

of 15; and (B) a tampered region of size 100 � 100 and a quality difference of 10. The solid curve

corresponds to the accuracy of detecting the tampered region, and the dashed curve corresponds to the

accuracy of correctly classifying an authentic image. The vertical dotted lines denote (from left to right)

false-positive rates of 10%, 5%, and 1%. See also Table II.

PHOTO FAKERY AND FORENSICS 49
a tampered region of size 150 � 150 and a quality difference of 15. Shown in

Fig. 19B are ROC curves for a tampered region of size 100 � 100 and a quality

difference of 10. In each panel, the solid curve corresponds to the accuracy of

50 H. FARID
detecting the tampered region, and the dashed curve corresponds to the accuracy of

correctly classifying an authentic image. The vertical dotted lines denote false-

positive rates of 10%, 5%, and 1%. As expected, there is a natural tradeoff between

the detection accuracy and the false positives which can be controlled with the

threshold on the K–S statistic.

The next few examples illustrate the efficacy of detecting JPEG ghosts in visually

plausible forgeries. In each example, the forgery was created and saved using Adobe

Photoshop CS3 which employs a 12-point JPEG quality scale. The MatLab function

imwrite was then used to recompress each image on a 100-point scale. To align the

original JPEG block lattice with the resaved lattice, the image was translated to each

of 64 possible spatial locations (between 0 and 7 pixels in the horizontal and vertical

directions). The shift that yielded the largest K–S statistic was then selected.

Shown in Fig. 20 are an original and doctored image. The inserted flying car was

originally of JPEG quality 4/12 and the final image was saved at quality 10/12.

Shown in the bottom portion of Fig. 20 are the difference images between the

tampered image saved at JPEG qualities 60–98 in steps of 2. The maximal K–S

statistic for the car was 0.92. Regions of low variance are coded with midlevel gray

in each panel. A second example is shown in Fig. 21. The inserted dolphin was

originally of JPEG quality 5/12 and the final image was saved at quality 8/12. Shown

in the bottom portion of Fig. 21 are the difference images between the tampered

image saved at JPEG qualities 60–100 in steps of 2. The maximal K–S statistic for

the dolphin was 0.84. In both examples, the JPEG ghosts of the inserted car and

dolphin are visually salient and statistically distinct from the rest of the image.

The advantage of this approach is that it is effective on low-quality images and

can detect relatively small regions that have been altered. The disadvantage of this

approach is that it is only effective when the tampered region is of lower quality than

the image into which it was inserted.
3. Discussion

Today’s technology allows digital media to be altered and manipulated in ways

that were simply impossible 20 years ago. Tomorrow’s technology will almost

certainly allow for us to manipulate digital media in ways that today seem unimag-

inable. And as this technology continues to evolve it will become increasingly more

important for the science of digital forensics to try to keep pace.

There is little doubt that as we continue to develop techniques for exposing

photographic frauds, new techniques will be developed to make better and harder

to detect fakes. And while some of the forensic tools may be easier to fool than

FIG. 20. Shown are the original (left) and doctored (right) image. Shown below are the different

images at qualities 60–98 in steps of 2.

PHOTO FAKERY AND FORENSICS 51
others, some tools will be difficult for the average user to circumvent. For example,

three of the techniques described here leverage complex and subtle lighting and

geometric properties of the image formation process that are nontrivial to correct in

FIG. 21. Shown are the original (left) and doctored (right) image. Shown below are the different

images at qualities 60–100 in steps of 2.

52 H. FARID

PHOTO FAKERY AND FORENSICS 53
a standard photo-editing software. As with the spam/antispam and virus/antivirus

game, an arms race between the forger and forensic analyst is somewhat inevitable.

The field of image forensics however has and will continue to make it harder and

more time consuming (but never impossible) to create a forgery that cannot be

detected. It is my hope that this new technology, along with awareness and sensible

policy and law, will help the media, the courts, and our society contend with this

exciting and at times puzzling digital age.
Acknowledgments

Thanks to my students and colleagues with whom I have worked over the years to develop these and other

digital forensic methods, in particular Micah K. Johnson, Eric Kee, Siwei Lyu, Alin Popescu, Weihong

Wang, and Jeffrey Woodward. This work was supported by a gift from Adobe Systems, Inc., a gift from

Microsoft, Inc., a grant from the National Science Foundation (CNS-0708209), a grant from the U.S. Air

Force (FA8750-06-C-0011), and by the Institute for Security Technology Studies at Dartmouth College

under grants from the Bureau of Justice Assistance (2005-DD-BX-1091) and the U.S. Department of

Homeland Security (2006-CS-001-000001). Points of view or opinions in this document are those of the

author and do not represent the official position or policies of the U.S. Department of Justice, the U.S.

Department of Homeland Security, or any other sponsor.
References

[1] H. Pearson, Image manipulation: CSI: Cell biology, Nature 434 (2005) 952–953.

[2] S. Katzenbeisser, F.A.P. Petitcolas, Information Techniques for Steganography and Digital Water-

marking, Artec House, Northwood, MA, 2000.

[3] I.J. Cox, M.L. Miller, J.A. Bloom, Digital Watermarking, Morgan Kaufmann Publishers,

San Francisco, CA, 2002.

[4] S.A. Craver, M. Wu, B. Liu, A. Stubblefield, B. Swartzlander, D.S. Wallach, Reading between the

lines: Lessons from the SDMI challenge, in: Proc. 10th USENIX Security Symposium,

Washington, DC, 2001.

[5] M.K. Johnson, H. Farid, Exposing digital forgeries by detecting inconsistencies in lighting, in: ACM

Multimedia and Security Workshop, New York, NY, 2005.

[6] M.K. Johnson, H. Farid, Exposing digital forgeries through specular highlights on the eye, in: Proc.

9th International Workshop on Information Hiding, Saint Malo, France, 2007.

[7] M.K. Johnson, H. Farid, Exposing digital forgeries in complex lighting environments, IEEE Trans.

Inf. Forensics Security 3 (2) (2007) 450–461.

[8] A.C. Popescu, H. Farid, Exposing digital forgeries in color filter array interpolated images, IEEE

Trans. Signal Process. 53 (10) (2005) 3948–3959.

[9] J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, Computer Graphics: Principles and Practice,

second Ed., Addison-Wesley Publishing Company, Inc., Boston, MA, 1993.

[10] J.M. Pinel, H. Nicolas, C. Le Bris, Estimation of 2D illuminant direction and shadow segmentation

in natural video sequences, in: Proc. VLBV, 2001, pp. 197–202.

[11] R. Brunelli, Estimation of pose and illuminant direction for face processing, Image Vision Comput.

15 (10) (1997) 741–748.

54 H. FARID
[12] P. Nillius, J.O. Eklundh, Automatic estimation of the projected light source direction, in: Proc. IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 2001.

[13] P. Sinha, Perceiving illumination inconsistencies, Invest. Ophthalmol. Vis. Sci. 41 (4) (2000) 1192.

[14] Y. Ostrovsky, P. Cavanagh, P. Sinha, Perceiving illumination inconsistencies in scenes, Technical

Report AI Memo 2001-029, Massachusetts Institute of Technology, 2001.

[15] K. Nishino, S.K. Nayar, Eyes for relighting, ACM Trans. Graphics 23 (3) (2004) 704–711.

[16] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University

Press, Cambridge, 2004.

[17] A. Ruszczyński, Nonlinear Optimization, Princeton University Press, Princeton, NJ, 2006.

[18] A. Lefohn, R. Caruso, E. Reinhard, B. Budge, P. Shirley, An ocularist’s approach to human iris

synthesis, IEEE Comput. Graphics Appl. 23 (6) (2003) 70–75.

[19] M.J. Hogan, J.A. Alvarado, J.E. Weddell, Histology of the Human Eye, W.B. Saunders Company,

Philadelphia, PA, 1971.

[20] M. Pharr, G. Humphreys, Physically Based Rendering: From Theory to Implementation, Morgan

Kaufmann Publishers, San Francisco, CA, 2004.

[21] D.R. Iskander, A parametric approach to measuring limbus corneae from digital images, IEEE

Trans. Biomed. Eng. 53 (6) (2006) 1134–1140.

[22] R. Ramamoorthi, P. Hanrahan, On the relationship between radiance and irradiance: Determining the

illumination from images of a convex lambertian object, J. Opt. Soc. Am. A 18 (2001) 2448–2559.

[23] R. Basri, D.W. Jacobs, Lambertian reflectance and linear subspaces, IEEE Trans. Pattern Mach.

Intell. 25 (2) (2003) 218–233.

[24] P. Debevec, J. Malik, Recovering high dynamic range radiance maps from photographs, in:

SIGGRAPH’97: Proc. 24th Annual Conference on Computer Graphics and Interactive Techniques,

1997, pp. 369–378.

[25] R.O. Dror, A.S. Willsky, E.H. Adelson, Statistical characterization of real-world illumination, J. Vis.

4 (9) (2004) 821–837.

[26] G.H. Golub, P.C. Hansen, D.P. O’Leary, Tikhonov regularization and total least squares, SIAM J.

Matrix Anal. Appl. 21 (1) (1999) 185–194.

[27] B.E. Bayer, Color imaging array, US Patent 3971065, 1976.

[28] R. Ramanath, W.E. Snyder, G.L. Bilbro, W.A. Sander, III, Demosaicking methods for Bayer color

arrays, J. Electron. Imaging 11 (3) (2002) 306–315.

[29] B.K. Gunturk, Y. Altunbasak, R.M. Mersereau, Color plane interpolation using alternating projec-

tions, IEEE Trans. Image Process. 11 (9) (2002) 997–1013.

[30] K. Hirakawa, T.W. Parks, Adaptive homogeneity-directed demosaicing algorithm, in: Proc. IEEE

International Conference on Image Processing, vol. 3, September 2003, pp. 669–672.

[31] D.D. Muresan, T.W. Parks, Adaptively quadratic (AQua) image interpolation, IEEE Trans. Image

Process. 13 (5) (2004) 690–698.

[32] R.G. Keys, Cubic convolution interpolation for digital image processing, IEEE Trans. Acoustics

Speech Signal Process. 29 (6) (1981) 1153–1160.

[33] D.R. Cok, Signal processing method and apparatus for producing interpolated chrominance values in

a sampled color image signal, US Patent 4642678, 1987.

[34] W.T. Freeman, Median filter for reconstructing missing color samples, US Patent 4724395, 1988.

[35] C.A. Laroche, M.A. Prescott, Apparatus and method for adaptively interpolating a full color image

utilizing chrominance gradients, US Patent 5373322, 1994.

[36] J.F. Hamilton, J.E. Adams, Adaptive color plan interpolation in single sensor color electronic

camera, US Patent 5629734, 1997.

PHOTO FAKERY AND FORENSICS 55
[37] E. Chang, S. Cheung, D.Y. Pan, Color filter array recovery using a threshold-based variable number

of gradients, in: N. Sampat and T. Yeh, (Eds.), Sensors, Cameras, and Applications for Digital

Photography, Proceedings of the SPIE, vol. 3650, 1999, pp. 36–43.

[38] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM

algorithm, J. R. Stat. Soc. B 99 (1) (1977) 1–38.

[39] Digital compression and coding of continuous-tone still images. Part 1. Requirements and guide-

lines, ISO/IEC JTC1 Draft International Standard 10918-1, 1991

[40] G.K. Wallace, The JPEG still picture compression standard, IEEE Trans. Consum. Electron. 34 (4)

(1991) 30–44.

[41] W.J. Conover, Practical Nonparametric Statistics, John Wiley & Sons, New York, NY, 1980.

[42] H. Farid, Digital image ballistics from JPEG quantization, Technical Report TR2006-583, Department

of Computer Science, Dartmouth College, 2006.

[43] G. Schaefer, M. Stich, UCID—An uncompressed colour image database, Technical Report, School

of Computing and Mathematics, Nottingham Trent University, UK, 2003.

Advances in Computer Displays
ADVAN

ISSN: 00
JASON LEIGH
Computer Science Department, University of Illinois at

Chicago, Chicago, Illinois 60607, USA

ANDREW JOHNSON

Computer Science Department, University of Illinois at

Chicago, Chicago, Illinois 60607, USA

LUC RENAMBOT

Computer Science Department, University of Illinois at

Chicago, Chicago, Illinois 60607, USA
Abstract

While the traditional role of displays has been for the viewing of television

programming, over the past 10 years displays have increasingly become

portals into virtual environments. It is therefore important to understand the

current state of the art in image display technology so that one can begin to

anticipate how this technology in the future will evolve, and how best to take

advantage of that evolution once it matures. This chapter focuses on the

issues of image display and how new advanced displays that are being used

mainly in research and higher education today may become commonplace in

the next 5–10 years.
1. Introduction . 58

2. Advances in Desktop Displays . 59

2.1. Cathode Ray Tube Displays . 59

2.2. Plasma Displays . 59

2.3. Active Matrix Liquid Crystal Displays . 59
CES IN COMPUTERS, VOL. 77 57 Copyright © 2009 Elsevier Inc.

65-2458/DOI: 10.1016/S0065-2458(09)01202-9 All rights reserved.

58 J. LEIGH ET AL.
1. Introduction

Everything from image capture, modification, creation, and output, either on

displays or on printers has been rapidly migrating from traditional photographic

and print techniques to computer-based techniques. It is inevitable, except in

perhaps artistic circumstances, that within 10 years all imaging will have

switched over to using computing rather than traditional film and print-based

media. While the traditional role of displays has been for the viewing of

television programming, over the past 10 years displays have increasingly

become portals into virtual environments. It is therefore important to understand

the current state of the art in image display technology so that one can begin to

anticipate how this technology in the future will evolve, and how best to

take advantage of that evolution once it matures. This chapter focuses on the

issues of image display and how new advanced displays that are being

used mainly in research and higher education today may become commonplace

in the next 5–10 years.
3. Advances in Wall Displays . 60

4. Advances in Portable Displays . 61

5. Touch Interfaces . 63

6. Advances in Stereoscopic Displays . 65

6.1. Head-Mounted Displays . 66

6.2. The CAVE . 66

6.3. Stereoscopic Wall Displays . 67

6.4. The GeoWall . 67

6.5. Autostereo Displays . 68

6.6. Autostereo Walls . 68

7. Display Environments of the Future . 70

7.1. In the Home . 70

7.2. In the Workplace . 70

8. Content Generation and Delivery to Displays 74

8.1. Middleware for Scalable Content Rendering 74

8.2. High-Speed Networking for Scalable Content Display 75

9. Conclusion . 76

References . 76

ADVANCES IN COMPUTER DISPLAYS 59
2. Advances in Desktop Displays

2.1 Cathode Ray Tube Displays

Cathode ray tube (CRT) displays, first invented in 1847 by German physicist

Ferdinand Braun, became commercially available in 1922. CRTs work by shining an

electron beam against a phosphor surface which causes the phosphor to emit visible

light. Deflecting the beam with a magnetic field enables the beam to be precisely

controlled to sweep across the CRT screen to ‘‘paint’’ a complete picture line by line.

The chief advantage of CRTs is that it can display higher resolutions on a smaller

area and has better color rendition than technologies such as LCD and plasma. The

chief disadvantages of CRTs, however, are that image generation by the deflection

of an electron beam requires the use of a large and deep evacuated glass tube which

is heavy and relatively fragile. Despite CRT’s superior image display characteris-

tics, with the advent of plasma and LCD displays, which do not suffer from these

disadvantages, the economies of scale driven by consumer demand for low-cost

large flat-screen televisions has resulted, for the most part, in the extinction of these

displays except in niche applications.
2.2 Plasma Displays

Plasma displays work by exciting xenon and neon gas contained in tiny cells that

are sandwiched between two layers of glass and electrodes. The application of a

charge to an individual cell causes the gas to ionize into plasma which then excites

phosphors to emit light. Color is achieved as a triad of subpixels (three cells). Each

cell is coated with a particular phosphor that results in the emission of either red,

green, or blue light. The brightness of the color subpixel is achieved by varying

the pulses of current flowing through the cell. The blending of the emitted light from

the triad results in the overall color of the pixel. As plasma displays use the same

phosphor coating as CRTs, they tend to have color reproduction comparable to

CRTs. They also consume approximately the same amount of power as CRTs.
2.3 Active Matrix Liquid Crystal Displays

LCDswork by passing light from a cold cathode fluorescent tube through a vertical

polarizing filter which is then rotated by the individual liquid crystal cells that make

up the display. The resulting light is passed through a horizontal polarizer and then

finally a color filter. The degree of alignment of the light with the horizontal

polarizer determines howmuch light passes through. Amatrix of thin-film transistors

60 J. LEIGH ET AL.
holds a varying degree of charge in each cell which determines the degree of rotation

of the light. Color is achieved by individual red, green, and blue filters covering each

liquid crystal cell. Each cell makes up one of three color subpixels much like in a

plasma display. LCDs have been a major competitor for plasma and while plasmas

provide better color gamut, LCDs have surpassed plasmas in their ability to display

very high-resolution images.

For example, introduced in 2001, the IBM T220 and T221 (nicknamed ‘‘Big

Bertha’’) provide over 9 megapixels of resolution (3840 � 2400) in a 22-in. form

factor. Recent LCDs from Sharp and Toshiba have 8 megapixels in a 52–62-in. form

factor. These latter screens are targeted as the ultimate replacements for CRTs in

digital film production.
3. Advances in Wall Displays

Until the mid-1990s, image creation for large wall displays (often called Power

Walls) primarily used CRT-based projectors. The main advantage of CRT projectors

is that they maintain good brightness to 10,000 h, are capable of generating very high-

resolution images (up to 1920 � 1200), and are able to refresh at high rates. When

compared to LCD and DLP (Digital Light Processing) projectors, CRT projectors also

deliver superior black levels. Because of their high refresh rates, CRT tubes were the

basis for many projected stereoscopic displays whereby the viewer donned 3D LCD

shutter glasses that were synchronized with the update of the projection screen. Virtual

reality (VR) systems such as the CAVE (see below) employed CRT projection walls

to create a room capable of showing stereoscopic 3D images whereby objects would

appear to float in the room as if real. The disadvantage of CRTs is their size and

weight relative to LCD and DLP projectors. CRT projectors require three tubes (for

each of the primary colors), whereas LCD/DLP projectors require a light source

consisting of a single lamp. Another disadvantage of CRT projectors is that they

need to be both geometry and color aligned as part of regular maintenance. The need

to align the three tubes separately has historically been a complex and time-consuming

task but is now achieved automatically in many commercial products.

In the mid- to late 1990s, LCD and DLP projectors were rapidly becoming

cheaper and also smaller. This was driven largely by the business presentation

market which required low-cost projectors for projecting presentation slides in

boardroom meetings. Tilings of LCD or DLP projectors were used to create larger

walls [1]. While these projectors were relatively inexpensive, it was difficult to align

the geometry and color of the screens. Techniques have been developed for auto-

matic alignment through the use of computer vision. As a result, commercial turnkey

FIG. 1. The 100-Megapixel LambdaVision LCD wall.

ADVANCES IN COMPUTER DISPLAYS 61
solutions are now available—but at a relatively high cost. Today, DLP projectors

such as Sony’s SXRD are capable of 8-megapixel resolution (4096 � 2160) and are

largely used in movie theaters. In prototype form is NHK’s Super Hi-Vision project

[2] which is capable of 7680 � 4320 (Fig. 1).

Currently, the most economical way to build scalable wall displays is by using

LCD panels rather than projectors due to the panels’ long life, high resolution, and

low cost. Other benefits include the fact that LCD panels are quite well color

calibrated and apart from the physical alignment of the panels during tiling, require

no further alignment, unlike projectors. Tilings of these have been used to create

ever greater resolution walls such as the 100 Megapixel LambdaVision display [3].

The main drawback of LCD panels is that they have mullions that prevent them from

producing truly seamless displays. Mullions do not adversely impact the viewing of

an image if they are taken into account in the rendering of the image. However,

mullions do make the reading of text difficult when it occludes either an entire

sentence or words. Driving these tilings of displays requires a cluster of computers,

often each computer drives anywhere between 1 and 4 displays, and a master

computer coordinates the entire cluster.
4. Advances in Portable Displays

The earliest portable displays from the 1980s all the way to the mid-1990s

were either monochromatic LEDs or LCDs—such as the ones used in digital

watches and calculators, and PDAs—such as the Apple Newton or Powerbook.

After the mid-1990s saw the advent of color LCDs which initially appeared in laptop

62 J. LEIGH ET AL.
computers and then increasingly on desktops as replacements for traditional CRTs.

While low-resolution head-mounted displays (HMDs) used small and therefore low-

resolution LCD panels, their high-resolution counterparts still used CRT displays.

These HMDs captured the imagination of the public in the early 1990s when the

concept of virtual reality was becoming popular. The iconic image of VR is that of a

person with a large helmet display covering their face. They were, however, not

particularly practical because having their eyes covered made it exceedingly cum-

bersome for anyone to move around physically. However, one practical application

of HMDs is its use in augmented reality applications whereby a viewer is able to see

computer graphics superimposed over the real-world environment. In the late 1990s,

the use of HMDs had largely faded in favor of using lightweight, and therefore

comfortable LCD shutter glasses, such as the ones used in the CAVE, which

permitted more than one person to view the 3D imagery at the same time.

New display technologies are on the horizon and will prove to enable entirely new

classes of applications. For example, pico projectors1 are small enough that they can

be encased in objects as small as a pack of cigarettes and can be driven by small

power cells such as AA batteries. Pico projectors consist of colored laser diodes

whose light reflects off a micromirror that scans horizontally and vertically to paint

the image—much like a CRT. Manufacturers of mobile devices such as cellular

phones are actively developing cellular phones with built-in pico projectors, in the

belief that it will be attractive to business travelers who will be able to carry large

display screens without incurring the physical burden associated with current LCD

laptops and screens.

Electronic paper displays [4] depict images in a manner similar to print on

paper (although presently at much lower resolution). The key advantage to e-paper

is its extremely low-power consumption. Once a pixel is activated the image

persists even when power is turned off. This is highly favorable in e-paper’s most

popular application, electronic book readers. In the simplest implementation,

e-paper displays are built from a grid of picture elements containing a dark-colored

dyed hydrocarbon oil and particles of titanium dioxide and a charging agent. These

cells are sandwiched between two transparent layers of electrodes. When a voltage is

applied to a cell, the charged particles are drawn to the layer with the opposite

charge. When the particles appear on the top side of the display, the display cell

appears white, and when the particles appear on the bottom side of the display

the display cell appears dark. By manufacturing the display with a plastic substrate,

e-paper displays can be made flexible therefore beginning to resemble the physical

properties of paper.
1 http://www.microvision.com

http://www.smarttech.com

ADVANCES IN COMPUTER DISPLAYS 63
Newer generation of e-paper displays also provides the ability to show color

images by including a separate red, green, and blue filter under each element of the

display, which reduces the overall effective resolution of the display by a third.

Furthermore, because e-paper displays have no backlight, and therefore depend on

reflected light, color displays tend to appear murky since as much as 50% of

reflected light is lost in the image. The chief disadvantage of current e-paper

displays compared to other displays is that they have extremely slow refresh rates

(on the order of a second) making them unsuitable for depicting real-time interactive

computer graphics. Another anticipated application for these displays is for digital

signage. Researchers have proposed digital sign designs whereby an e-paper poster

would be refreshed by a computer wirelessly. The sign and computer itself would be

powered by solar power.

Flexible displays [5] are driven by the interest to apply displays to surfaces that

are not necessarily flat or to enable displays that can be folded away to enhance

portability. This technology has the potential to allow users to carry much larger and

higher resolution displays without the bulk of a desktop display. One can envision

that in future laptops, very high-resolution displays can be opened like sheet music

between two poles. At a larger scale, flexible displays have the potential to replace

the front-projected pull-down screens often found in boardrooms. However,

presently flexible display technologies are still very much under research and

development rather than fully commercial products.
5. Touch Interfaces

The most widespread use of touch screens has been in automated teller machines.

They are popular in public displays because they lack any form of mechanical part that

could potentially suffer wear and tear over the course of millions of uses. More

importantly, they allow custom user interfaces to be created depending on the

application. Early touch interfaces tended to use beams of infrared light arranged

along two of the four sides of a display that shone upon either photoresistors or diodes

arranged on the opposite sides of the display. A finger occluding the light beam would

trigger a response in the software that could be equated with the press of a button.

Resistive touch screen is another example of an older touch technology. These are

prevalent in cell phones, PDAs, tablet computers, and game systems such as the

Nintendo DS. A resistive touch screen is composed of a layer of glass (at the bottom)

followed by a conductive and a resistive layer on top. On top of this resides an

additional layer which the user depresses. Each layer is separated by a very small

space. When the screen is pressed, the conductive and resistive layers touch each

64 J. LEIGH ET AL.
other closing the circuit. The resulting level of the current determines the position of

the touch. Since resistive touch screens work by applying pressure to the surface,

they can be operated with a finger or a stylus. The chief advantage of resistive

displays is that they are cheap to manufacture and robust to outside elements such

as water and dust. The disadvantages are that the screens offer only 75% clarity, and

it is difficult to create a touch screen that can register multiple simultaneous

touches—often described as multitouch screens.

The once more expensive capacitive touch screen [6] is fast replacing many

applications that have formerly used resistive touch screens—especially in popular

consumer items such as the iPhone. Two types of capacitive screens exist: surface

capacitive and projected capacitive. Surface capacitive relies on the screen and

the object that touches the screen to hold some charge (hence capacitance). When

the object is brought close to the screen, the resultant change in the reference charge

on the screen is detected by sensors at the corners of the screen which determine the

X and Y location of the touch point. Projected-capacitive touch screens, on the other

hand, work by projecting electrostatic field lines from the sensors—the object and

the surface point on the touch screen become two plates of a capacitor. The sensors

determine the position of the touch by detecting the resulting capacitive coupling

when the finger touches the screen.

All touch-screen displays prior to 2006 would only register one touch at a time.

SmartTech2 was one of the earliest developers of screens that could register more

than one touch—in their case two simultaneous touches. SmartTech’s approach

works by using cameras at the edges to produce 2D tracking of at most two targets.

Users can point with their fingers as well as use a special stylus which has a unique

identifying pattern at the tip that can be detected by the cameras. As a result,

multicolored pens can be accommodated by uniquely identifying the styli. Also

hovering is possible by detecting partial coverage of the stylus by the camera.

While research in touch-screen technology, user interfaces, and applications has

been active for over a decade, touch technologies saw a dramatic increase in

popularity with the advent of Apple’s iPhone (which uses a capacitive touch screen)

and New York University’s (NYU) multitouch table [7].

NYU’s multitouch table works on the principle of frustrated total internal reflec-

tion whereby infrared LEDs illuminate an acrylic touch surface by shining into and

along the edges of the display. Pressing the acrylic screen causes the infrared to pass

through, reflect off one’s finger, and then pass back through the acrylic where the

depression is sensed by an infrared camera. Image-tracking algorithms are used to

find ‘‘blobs’’ representing touches, and the movement of the blobs is correlated with
2 http://www.smarttech.com

http://www.smarttech.com

FIG. 2. TacTile: a 52-in. high-definition LCD-based multitouch table.

ADVANCES IN COMPUTER DISPLAYS 65
actions that are specific to the application such as panning and zooming. A projector

is placed beneath the screen to create the computer-generated image. This technique

also works effectively for LCD screens, which in general result in sharper looking

displays that are capable of greater resolution and brightness at a much lower cost.

Researchers at the Electronic Visualization Laboratory (EVL) at the University of

Illinois at Chicago have successfully built a 30-in. LCD multitouch screen, called

the MicroTable, with 4 megapixels of resolution. Pictured is EVL’s TacTile, a 52-in.

high-definition-resolution LCD-based multitouch table. Underway is the develop-

ment of the OmegaTable, which combines autostereoscopic techniques (described

below) with this type of capability to provide a multitouch display surface that can

show both 2D and 3D content without the need to wear specialized glasses (Fig. 2).

More advanced touch displays are in prototype form and the earliest products will

likely emerge in 2009. For example, Sharp’s touch screen places an optical sensor at

every LCD pixel. This allows it to be used as both a display and a touch screen

simultaneously rather than requiring a separate display and touch sensor layer as in

other approaches. The end result is a much thinner touch screen that can also be used

as a scanner.
6. Advances in Stereoscopic Displays

In the early 1990s, computer-generated stereoscopic displays consisted of either

CRT-based monitor and projectors that were mediated by LCD shutter glasses, or

HMDs that used pairs of miniature CRTs. The former was primarily intended to

66 J. LEIGH ET AL.
facilitate stereoscopic viewing. The latter combined stereoscopic viewing and a

viewer-centered perspective to achieve virtual reality.
6.1 Head-Mounted Displays

Invented in the mid-1960s by Ivan Sutherland, the Sword of Damocles is widely

considered the first VR and augmented reality HMD system. In a HMD, a pair of

miniature display elements is worn over the head, covering the users’ eyes. The

early HMDs used CRTs whereas more modern HMDs use either LCDs or organic

light-emitting diode (OLED) microdisplays. Some HMDs also include headphones

as well as six-degree-of-freedom tracking system that allowed the computer to

track the position and orientation of the viewer’s head (and hence eyes) in real

time. The head-tracking information is used to create a view of the world that

is based on the users’ viewpoint. This is generally called viewer-centered perspec-

tive, and when combined with stereoscopic computer graphics results in true

VR [8].

The chief advantage of HMDs was that it isolated the user from the real world to

provide full immersion in a virtual world. The chief disadvantage was that these

HMDs were heavy and had high lag between tracking head movements and

updating the visuals. As a result, users tended to become nauseated after only

short periods of use. Since the viewer’s eyes are covered with the displays, they

are only able to see what the screens display. Therefore, in many HMD config-

urations, a guardrail surrounds the user to prevent them from accidentally tripping

over obstacles.
6.2 The CAVE

An alternative method to achieving immersive virtual reality appeared in late

1991. Initially called the ‘‘Closet Cathedral,’’ by its inventors, the system was later

given its more widely known name, the CAVE [9]. The CAVE (a recursive acronym

for CAVE audio–visual experience automatic environment) consists of a 10 ft3 of a

room whose walls consist of rear projection screens. The original CAVE used large

CRT projectors capable of refreshing at 120 Hz. Stereoscopic viewing was achieved

using lightweight LCD shutter glasses that were synchronized with the projectors.

An Ascension Flock of Birds electromagnetic six-degree-of-freedom tracker was

used to track the main viewer and also to support three-space interaction with

absolute position and orientation tracking using a device called the Wand. The

CAVE allowed the user to wear lighter weight glasses and was still able to provide

a sense of immersion by its surround-screen walls. As a result, users were able to

FIG. 3. The CAVE.

ADVANCES IN COMPUTER DISPLAYS 67
comfortably work in the CAVE for hours at a time. Since a user can see his/her

physical body in relation to the virtual world, it allowed them to roam more freely

without fear of crashing into walls (Fig. 3).
6.3 Stereoscopic Wall Displays

Since the invention of the CAVE, many variations emerged—such as the RAVE,

a CAVE that has the ability to open its two side walls; and the CABIN, a six-sided

CAVE developed by Tokyo University [10]. These systems have been commercially

available since the mid-1990s. After the mid-1990s, the emergence of DLP projec-

tors that could be synchronized with 3D graphics at 100 Hz emerged and began to

replace CRT projectors in large CAVE environments. Today, these types of projec-

tors are the primary means to drive CAVE walls.
6.4 The GeoWall

Up until 2000, expensive computer systems (such as Silicon Graphics) and

projectors were necessary to drive these stereoscopic systems. However, these

were soon replaced with high-performance graphics cards intended for the PC

gaming market. In 2001, the Electronic Visualization Lab developed a low-cost

stereoscopic graphics wall driven by commodity DLP projectors, polarizing filters,

and a PC equipped with a dual-headed graphics card. Stereoscopic capability is

usually achieved by using a pair of DLP projectors that are fitted with linear or

68 J. LEIGH ET AL.
circular polarizers that are oriented in opposing directions. Audiences see the stereo

image by wearing low-cost polarized glasses that are oriented in the opposite

direction. Within 5 years over 500 were deployed in Geoscience Research Labora-

tories and Classrooms which ultimately resulted in the adoption of the name Geo-

Wall [11]. The popularity within the geosciences was driven by several factors:

firstly, the cost of the entire system was just under $10,000 rather than $1,000,000

(which was the typical cost of the CAVE); secondly, Geoscience data are highly

three dimensional; thirdly, the device could be easily constructed and maintained;

and lastly, a consortium was formed to support the development of software and

nurture collaborations with commercial Geoscience software companies.

6.5 Autostereo Displays

The holy grail of stereoscopic computer displays is autostereoscopy—the ability to

show stereoscopic images without requiring the user to wear any form of mediating

glasses. Autostereo displays work by presenting the viewer with a vertically inter-

leaved set of left and right eye stereoscopic images, and then using either vertical

strips of plastic lenses or a physical line screen barrier separated by a small gap [11].

This allows separate left and right eye images to be presented to the viewer without

requiring them towear any formof eyewear such as those used inHMDsor theCAVE.

One drawback of this technique is that when a viewer moves his/her head, an opposite

pair of images can potentially be presented to the viewer creating reversed stereo (also

known as pseudostereo). To compensate for this, head-tracking systems such as the

ones used in the CAVE, or camera-based tracking systems, were used to track the

viewers head to ensure the correct set of left/right eye images were presented to

the viewer. To support multiple viewers, multiple views must be simultaneously

projected from the display. Approaches include spatial multiplexing—where the

total resolution of the display is split between multiple views; multiprojector—where

an array of projectors simultaneously project multiple views onto a special transmis-

sive or reflective screen; or time sequential—where a single very fast display device

creates multiple views that are synchronized with a secondary optical component

(such as a ferroelectric liquid crystal shutter) that directs the images to the appropriate

zones in space. At the present time, the only practical approach is spatial multiplexing

as the approach can take advantage of new and higher density LCD displays.

6.6 Autostereo Walls

One significant drawback of autostereo displays is that at least half the horizontal

resolution of a display is lost to present both left and right eye images. This has led

some researchers to develop high-resolution autostereo displays using either a tiling of

ADVANCES IN COMPUTER DISPLAYS 69
LCD panels or an array of horizontally placed projectors [12]. In the former case,

a barrier screen-based system called Varrier used a 7 � 5 tiling of 21-in. LCD panels

providing an autostereo resolution of 3000� 6000 [13]. Shortly after the invention of

the Varrier, a major breakthrough was achieved whereby a screen could display both

autostereoscopic content and monoscopic content within subwindows on a single

screen. Known as the Dynallax (for dynamic parallax barrier), this particular approach

replaced the static barrier screen with an LCD panel that could be dynamically

controlled to draw lines of any width and pitch as well as regions of with and without

the line screens (and hence regions with and without the stereo effect) [14].

Whereas Varrier was designed to provide autostereo for a single viewpoint, the

Dynallax technique has been shown to be able to potentially support multiple views.

The ability to present multiple views simultaneously allows more than one viewer to

see autostereoscopic images at the same time. This is important if autostereo is to

ever become a practical mainstream display device (Fig. 4).

Commercial products are also beginning to emerge albeit still at a very low

resolution. For example, Philips’ WOWzone system consists of a tiling of 3 � 3

42-in. 1920 � 1080 LCDs that provides nine views at an effective autostereo

resolution of 640 � 3240 pixels.
FIG. 4. A Varrier display built with an array of 10 � 5 LCD displays.

70 J. LEIGH ET AL.
7. Display Environments of the Future

Computers and displays are embedding themselves into ever device and surface,

and will continue to do so as technology becomes cheaper and more powerful so as

to enable wholly new classes of applications. Within a decade, one can envision that

flat-screen displays will not only become ubiquitous, but will be embedded into

every surface of our homes, offices, and academic and research laboratories.

7.1 In the Home

US households on average have 2.24 televisions, and as many as 66% have three

or more televisions (not counting computer displays) [15]. In the next 5 years, we

imagine that all of these TVs will be replaced with large high-definition (HD) flat

screens. These screens will be used for entertainment/gaming, video conferencing

with friends and relatives, accessing the Internet, etc. The living room or dining

room might have a large screen that is used as a digital picture frame. Coffee tables

with intuitive touch-screen interfaces will also become attractive, enabling guests to

thumb through digital family albums. Even wall-mounted screens will have touch-

screen capabilities so that they can become digital whiteboards on which children

doodle or family members leave notes for one another.

Looking further out, the walls themselves might be covered from top to bottom

with display-capable materials with astounding dynamic range so that, for example,

the room could be bathed with lifelike vistas of outdoor scenery. The walls might

even become a major light source in the home. Digital wallpaper could be changed

on a whim, and live media could be placed anywhere on the walls, artwork, weather

information, stock quotes, or world news. For this to become a reality, the concept

of television has to evolve from a traditional passive viewing appliance into

an interactive appliance ubiquitously and seamlessly integrated into household

structures like walls and furniture.

7.2 In the Workplace

In the workplace, displays will pervade meeting rooms and individual offices/

cubicles far beyond what is seen in the classical boardroom. In meeting rooms, ultra-

large flat-panel displays (either rigid or flexible) will replace projectors. Apart from

the ‘‘wow’’ factor of having such a display, it makes practical sense when the cost of

maintaining a projection-based system exceeds that of maintaining a flat-panel

display system. In approximately 2 years, it will become economical to replace

boardroom projectors with massive (80þ in.) flat-panel displays. Flat panels also

ADVANCES IN COMPUTER DISPLAYS 71
have the added benefit that the content is clearly visible without dimming the room

lights, and they consume less power than projectors. As more flat-panel displays are

deployed in meeting rooms, the desire to use them for more than just presentations

will grow. They will be used for multisite video conferencing (such as in Cisco,

Polycom, and HP’s recent telepresence products) as well as for poster boards on

which digital information can be posted. The traditional paper-based War Room/

Project Room will be forever transformed. In traditional Project Rooms, the walls

are usually covered with notes and drawings from intense brainstorming sessions.

Teasley et al. [16] at the University of Michigan’s School of Information found that

engineering teams who worked in these environments enjoyed considerable perfor-

mance improvements over teams that worked in more traditional work environ-

ments. A person’s working memory can hold approximately 6–7 pieces of

information at a time. Externalizing one’s thoughts on a wall expands one’s working

memory and enables a team to collectively organize hundreds of thoughts at a time.
7.2.1 Cubicles
One would expect that, in the future, cubicle walls will have lightweight, low-

power, low-heat, displays imbedded in them that have both near-print-quality

resolution (at least 100 dpi) and can be controlled with touch. Higher resolution is

necessary in a cubicle because of the close proximity a person is to the walls/screens.

One can imagine that the display-enabled cubicle walls (which we call Trans-

Walls—for Transformable Walls) are modular, lightweight, and can snap together

to provide daisy-chained power and networking as well as physical configuration

information, so that an intelligent software controller can manage them as one

continuous surface. The computing to support the intelligence could be built directly

into the walls. Cameras could also be embedded in the walls, to be used for seamless

video conferencing, just as in Project Rooms. Novelist Will Shelf covers almost all

the wall surfaces of his office with Post-It notes to organize the little pieces of

detailed information that will eventually be woven into a coherent story. Many

knowledge workers, such as analysts, can relate to this; it is essentially a mini-

Project Room within one’s office where one can externalize all one’s thoughts on the

walls.
7.2.2 The Tradeshow Conferences
It is now quite common to see large panel displays at tradeshows, especially at

technology-related venues. Panel displays can be found in both commercial booths

and university research booths. In the future, one can imagine that conferences will

replace traditional pinup boards in poster sessions with digital poster boards

72 J. LEIGH ET AL.
constructed from TransWalls that can be rented from tradeshow audio–visual

companies. A presenter could simply walk up to a wall, enter a login ID or plug in

a thumbdrive, and immediately give a multimedia presentation (Fig. 5).
FIG. 5. A traditional paper-based conference poster session (left). University research booths are

making use of tiled display walls as digital poster boards. The poster on the right, consisting of twelve

30-in. Apple screens, is from the Scripps Institution’s booth at the American Geophysical Union meeting

in San Francisco.

ADVANCES IN COMPUTER DISPLAYS 73
7.2.3 Research Labs
High-resolution displays that are greater than 4 megapixels are becoming a

standard part of scientific research. For scientific disciplines, large displays are the

only means by which they can see data from their instruments. With the advent of

low-cost LCDs, research labs are now using tiled display walls as ‘‘mash-up’’

environments where they can juxtapose a variety of data so that they can look at

them as a whole [17]. While similar to the notion of Project Rooms, described

earlier, a key difference is that for large-scale scientific research, there is no other

way to look at the data. These projects routinely deal with time-varying data on the

order of terabytes to petabytes. It is impossible to manage this information by

printing out static diagrams on sheets of paper and pinning them to a wall. The

microscopes and telescopes used by scientists today are no longer simple optical

instruments, but are integrated with complex computing systems that perform noise

filtering, mosaicing, and feature detection. High-resolution displays are the lenses

into those instruments. TransWalls would be attractive in research laboratories so

that individual office tiled displays, or larger tiled walls, could be quickly built.

Scientists expect this degree of simplicity, as they typically have neither the patience

nor the expertise to work with esoteric computer gadgets (Fig. 6).
FIG. 6. A tiled display at the University of Michigan’s Atmospheric, Oceanic, and Space Sciences

Department is on the right. Undergraduate students use it to give presentations on class projects. The wall

is used as a storytelling environment, much like a traditional poster board.

74 J. LEIGH ET AL.
8. Content Generation and Delivery to Displays

Thus far, we have discussed fundamental display technologies and their uses.

Two crucial components for enabling these displays to be useful are intelligent

middleware and high-speed networking.
8.1 Middleware for Scalable Content Rendering

Content generation typically occurs in a number of ways: Localized content

rendering is where the work of doing the rendering of the content is conducted near

the displays. Interactive video games use this model because it minimizes latency.

Streamed content rendering involves the delivery of prerendered content such as a

movie that is streamed over a network link or over the air such as TV broadcast and

satellite.

High-resolution tiled displays have been found to be ideal for scientific research

because of the shear amount of data that need to be visualized. Increased screen real

estate and resolution enable users to display and juxtapose more data simultaneously

and thereby enhancing the users’ ability to derive insight from the data. The major

challenge in these scalable display environments is how to scale graphics rendering

algorithms to be able to handle the exponentially growing data volumes that are

accumulated in scientific research.

The traditional model for scalable rendering has assumed that faster graphics

cards will be more than capable of supporting rendering to keep pace with the

exponential growth of data size. Middleware such as WireGL, and its enhanced

version, chromium managed a high-resolution scene by distributing polygons only

to the computers responsible for rendering the particular viewport into the overall

scene [18]. Termed ‘‘sort-first rendering,’’ the advantage of this scheme was that if

an image filled a significant portion of the tiled display much of the geometry would

be evenly distributed across all the computers. However, if the image fell on only a

small portion of the wall, a load imbalance would result and overall rendering rate

would decrease dramatically.

An alternative approach replicates all the data across all the computers and simply

uses the raw graphics power to process the data to generate the images for the

individual viewports of the display tiles. Used in middleware such as CGLX, the

advantage of this approach is that many existing OpenGL applications can be easily

ported without modification of the code. The primary disadvantage is that the

amount of data that can be rendered is limited by the capabilities of the individual

graphics card.

ADVANCES IN COMPUTER DISPLAYS 75
A third approach delegates the rendering to a remote cluster of computers and

instead treats the tiled display simply as a large frame buffer connected via a high-

speed network. This approach was first pioneered in SAGE (the Scalable Adaptive

Graphics Environment) [19]. The scheme has greater scalability than previous

approaches because it allows multiple cluster computers that are potentially render-

ing different and very large data sets, to work concurrently and stream visualizations

to be displayed on the wall as individual windows as if on an enormous desktop. This

allows users to arbitrarily position and resize these windows on the wall and

therefore enabling them to work with multiple visualizations simultaneously.

By contrast, the techniques used in WireGL/Chromium and CGLX require that the

entire wall be used to display only one visualization application at a time. This is

acceptable for small tiled displays but becomes impractical for very large display

walls, especially those that can in the future potentially cover all the walls of a room.

The SAGE model also has the advantage that far less powerful graphics cards and

computers can be used to drive the display walls thereby making it more cost

effective for scientists to acquire them. These display walls can then connect into

global high-performance networks to take advantage of large-scale computing

resources that are deployed at supercomputing centers around the world.
8.2 High-Speed Networking for Scalable

Content Display

Traditional broadcast transmission (such as radio and television) has the advan-

tage that it can reach wide populations with low infrastructure cost. The disadvan-

tage is that limited bandwidth will constrict the number of channels that can be

served at any given time. In a networked streaming model, distributed servers

provide users with the desired content in an on-demand basis. However, these

systems can become overloaded if they are oversubscribed and therefore careful

replication and distribution of the content is needed in anticipation of access

demands. Furthermore, because of the lack of network service guarantees streamed

content can stutter when there is network congestion. To mitigate this most stream-

ing solutions buffer the content or allow for the full download of the content so that it

can be played off local storage. While buffering is tolerable for viewing movies, it is

unacceptable for applications such as video conferencing.

It is clear that the networks will be as important as the displays in the future. Next-

generation networks that enable users to dynamically provision light paths of

1–10 Gb/s are becoming a routine part of the world’s research infrastructure. The

Global Lambda Integrated Facility [20] is a consortium of network researchers

around the world that have created a vast network of 10 Gb network links for the

76 J. LEIGH ET AL.
purposes of providing scientific applications the bandwidth to stream data without

suffering the congestion experienced over the regular Internet. Researchers as part

of the Global Lambda Visualization Facility have been using these networks to

connect the aforementioned ultra-high-resolution display systems together for the

purposes of developing technology to enable routine collaborative science involving

participants around the world and large-scale data and visualization. It is anticipated

that this model of a hybrid network whereby some of the data are routed via

traditional network routers, and other data are switched using all-optical switches

will proliferate initially to large global businesses, and then eventually to the homes

so that optical fibers carrying gigabits of bandwidth can bring all content to the

homes. In the US, Verizon has already begun trials to bring fiber to the home.

In Japan, fiber to the home is already a service offered by Nippon Telephone and

Telegraph (NTT)—providing 100 Mb/s to subscribers. All these services, however,

are offered over the traditional Internet routed infrastructure and as of yet none

provide the kind of hybrid network capability currently used by research scientists.
9. Conclusion

In this chapter, we have discussed the evolution of display technologies, how

content is generated on them and how they will likely impact us in the future.

Displays will no doubt become more ubiquitous, possessing higher resolution and

capable of both 2D and autostereoscopic 3D. They will become more portable and

configurable, capable of touch interaction and will contain imbedded sensors, such

as cameras so that they are both an input and output device. While the current

generation of tileable displays is driven by separate clusters of computers, future

displays will have computing directly imbedded in them. All that is needed to

operate the display is a high-speed multigigabit network connection and electrical

power.

In the homes, displays will be used for everything from table surfaces to wallpa-

per. In work environments, displays will become the lenses that enable users to

control, filter, and examine the exponentially growing tsunami of data from the

Internet and from sensor arrays that are rapidly being deployed around the world.
References

[1] T. Funkhouser, K. Li, Large format displays, IEEE Comput. Graph. Appl. 25 (4) (2000) 20–21.

[2] M. Kanazawa, et al., Ultrahigh-definition video system with 4000 scanning lines, NHK Technical

Report, 2003.

ADVANCES IN COMPUTER DISPLAYS 77
[3] L. Renambot, A. Johnson, J. Leigh, Techniques for building cost-effective ultra-high-resolution

visualization instruments, in: 2005 NSF CISE/CNS Pervasive Computing Infrastructure Experience

Workshop, Urbana, IL, 27 July 2005.

[4] B. Comiskey, J.D. Albert, H. Yoshizawa, J. Jacobson, An electrophoretic ink for all-printed

reflective electronic displays, Nature 394 (6690) (1998) 253–255.

[5] G.H. Gelinck, et al., Flexible active-matrix displays and shift registers based on solution-processed

organic transistors, Nat. Mater. 3 (2) (2004) 106–110.

[6] R.G. Kable, Electrographic apparatus, United States Patent 4,600,80, 71986.

[7] J. Han, Low-cost multi-touch sensing through frustrated total internal reflection, in: Proc. 18th

Annual ACM Symposium on User Interface Software and Technology, 2005.

[8] B. Sherman, A.B. Craig, Understanding Virtual Reality, Morgan Kaufmann Publishers, San

Francisco, CA, 2003.

[9] C. Cruz-Neira, D.J. Sandin, T.A. DeFanti, Surround-screen projection-based virtual reality: the

design and implementation of the CAVE, in: Proc. SIGGRAPH’93 Computer Graphics Conference,

ACM SIGGRAPH, August 1993, pp. 135–142.

[10] M. Hirose, CABIN-A multiscreen display for computer experiments, in: Proc. International Confer-

ence on Virtual Systems and MultiMedia, 1997, pp. 78–83.

[11] A. Johnson, J. Leigh, P. Morin, P. Van Keken, GeoWall: Stereoscopic Visualization for Geoscience

Research and Education, IEEE Comput. Graph. Appl. 25 (6) (2006) 10–14.

[12] G.J. Martin, A.L. Smeyne, J.R. Moore, S.R. Lang, N.A. Dodgson, Three-dimensional visualization

without glasses: a large-screen autostereoscopic display, in: Proc. SPIE 4022, Cockpit Displays VII:

Displays for Defense Applications, Orlando, Florida, 26–28 April 2000.

[13] D. Sandin, T. Margolis, J. Ge, J. Girado, T. Peterka, T. DeFanti, The Varrier autostereoscopic virtual

reality display, in: Proc. ACM SIGGRAPH 2005, ACM Transactions on Graphics, 30 July 2005–4

August 2005.

[14] T. Peterka, R.L. Kooima, J.I. Girado, J. Ge, D.J. Sandin, A. Johnson, J. Leigh, J. Schulze, T.

A. DeFanti, Dynallax: solid state dynamic parallax barrier autostereoscopic VR display, in: Proc.

IEEE Virtual Reality Conference 2007 (VR’07), Charlotte, NC, 10–14 March 2007.

[15] N. Herr, Television & health, Sourcebook for Teaching Science, 20 May 2007.

[16] S.D. Teasley, A. Covi Lisa, M.S. Krishnan, J.S. Olson, Rapid software development through team

collocation, IEEE Trans. Software Eng. 28 (7) (2002) 671–683.

[17] J. Leigh, M. Brown, Cyber-commons: merging real and virtual worlds. Commun. ACM, 51 (1)

(2007) 82–85.

[18] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, P. Hanrahan, WireGL: a scalable graphics

system for clusters, in: International Conference on Computer Graphics and Interactive Techniques,

Proc. 28th Annual Conference on Computer Graphics and Interactive Techniques, 2001,

pp. 129–140.

[19] B. Jeong, L. Renambot, R. Jagodic, R. Singh, J. Aguilera, A. Johnson, J. Leigh, High-performance

dynamic graphics streaming for scalable adaptive graphics environment, in: SC’06: Proc. 2006

ACM/IEEE Conference on Supercomputing, Tampa, FL, 11–17 November 2006, p. 108.

[20] M. Brown (Ed.), Blueprint for the Future of High-Performance Networking. Commun. ACM

(CACM) 46 (11) (2003) 30–77.

Playing with All Senses:
Human–Computer Interface
Devices for Games
ADVAN

ISSN: 00
JÖRN LOVISCACH
Fachhochschule Bielefeld, University of Applied
Sciences, Fachbereich Ingenieurwissenschaften und
Mathematik, Wilhelm-Bertelsmann-Straße 10, 33602
Bielefeld, Germany
Abstract
For a long time, computer games were limited to input and output devices such

as mouse, joystick, typewriter keyboard, and TV screen. This has changed

dramatically with the advent of inexpensive and versatile sensors, actuators,

and visual and acoustic output devices. Modern games employ a wide variety of

interface technology, which is bound to broaden even further. This creates a new

task for game designers. They have to choose the right option, possibly combin-

ing several technologies to let one technology compensate for the deficiencies of

the other or to achieve more immersion through new modes of interaction. To

facilitate this endeavor, this chapter gives an overview on current and upcoming

human–computer interface technologies, describes their inner workings, high-

lights applications in commercial games and game research, and points out

promising new directions.
1.
 I
ntroduction . 80
2.
 T
ypology . 82
3.
 B
uttons, Keys, and Keyboards . 83
4.
 M
ice, Joysticks, Faders, and Similar . 85
5.
 P
en and Touch Input . 87
6.
 I
nertial Sensors . 90
7.
 C
ameras . 92
CES IN COMPUTERS, VOL. 77 79 Copyright © 2009 Elsevier Inc.

65-2458/DOI: 10.1016/S0065-2458(09)01203-0 All rights reserved.

80 J. LOVISCACH
8.
 S
pecific Position and Orientation Sensors 95
9.
 D
isplays . 97
9
.1.
 S
tandard Screens and Projected Displays 98
9
.2.
 H
ead-Mounted Displays . 99
9
.3.
 S
tereoscopy . 99
10.
 A
udio Input . 101
11.
 A
udio Output . 102
12.
 T
actile, Haptic, and Locomotion Interfaces 103
13.
 K
inetic Devices and Robots . 106
14.
 B
iosignal Sensors . 108
15.
 C
onclusion . 110
R
eferences . 112
1. Introduction

The quick success of Nintendo’s remote controller for the Wii gaming console,

see Fig. 1, after its launch in 2006 did not lead to the demise of the mouse and the

joystick as game input devices. It exposed, however, a dire need to explore other

options for user interface devices. Even though its technology as such cannot be

considered novel, it gained breakthrough popularity through its ingenious combina-

tion of different sensors in one wireless box, the availability of many games that

employ the new options, its very affordable price point (about US $40)—and its

‘‘hackability.’’ Quickly after its release, amateur software developers were able to

reverse engineer the device’s protocols to use it with standard desktop and notebook

computers.

In the wake of this success, more and more novel input devices for games become

available that turn technology that before was fragile and expensive into robust and

inexpensive packages. For instance, haptic input/output became affordable with the

Novint Falcon. And at press time of this book, Emotiv is expected to sell the EPOC,

a brain-to-computer interface based on electroencephalography (EEG), for about

US $300.

Several factors are key to this development. First, mass production can leverage

the cheapness of the bare hardware, even though its development may be expensive;

this effect also allowed consumer-level graphics cards to take the lead over highly

specialized professional 3D rendering subsystems. Second, embedded processors

within the devices as well as the computer’s central processing units have gained

FIG. 1. The Nintendo Wii Remote—depicted here twice with the gyroscope add-on called Motion

Plus—has triggered a new wave in tangible interaction. Image © 2008 Nintendo of Europe GmbH. Used

with permission.

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 81
considerably in power, which facilitates tasks such as image processing. Third,

accompanying technologies such as highly integrated chips (custom or configur-

able) and wireless connections have matured along with the processors and sensors.

Another driver of the trend to novel interfaces for games aremobile games as offered

for cellular phones and for Personal digital assistants (PDAs). Even though these

devices comprise keyboards (possibly on-screen), displays, and joysticks, their small

form factor severely hampers usability. Additional ways of input and output are sought

to enhance interaction.

This all has created a new playing field (pun intended) for tangible interaction [1]

and multimodal interfaces [2], with a particular focus on pervasive games [3], that is,

computer games that no longer detach the player from the physicality and the social

relations of the real world. In the long run, the devices that now become available for

gaming will also influence other strands of computer applications, possibly starting

with music creation (see Bierbaum et al. [4] for an example and Blaine [5] for a

survey), audio and video playback (see e.g., Tokuhisa et al. [6]), and pedestrial

navigation (see e.g., Stahl [7]). This effect, too, has been visible with 3D graphics

accelerators. Now that they are a standard facility in almost every computer, they are

increasingly employed for nongame purposes as well, ranging from visually sophisti-

cated windowing interfaces such as Apple OS X’s Aqua and Windows Vista’s Aero

Glass to complex scientific applications based on frameworks such as Nvidia CUDA.

82 J. LOVISCACH
2. Typology

There is a number of ways to structure the vast field of user interface devices.

A fundamental characteristic is the physical quantity upon which a device operates;

this quantity may be measured (input) and/or changed (output) by the device, see

Table I. Note, however, that the assignment of a given device to a physical quantity

may be ambiguous: Does not an optical computer mouse rather sense the motion of

the light pattern reflected from the underground than the position of the user’s hand?

Another basic attribute to look into may be whether the control is discrete

(a standard key can be either released or pressed) or continuous (a slider control

can occupy virtually infinitely many positions). One may even want to introduce

classes between these extremes. For instance, the shutter release button of most

digital cameras has three states (idle; pressed half for focusing; pressed fully for

releasing the shutter). A rotary knob may have 11 detents numbered from 0 to 10; a

slider may possess an electronically limited resolution of 256 steps.

Game adaptation through emotion [8] raises another distinction: some input

measurements may be controlled voluntarily by the user; others may not be subject

to immediate voluntary control such as the heart beat rate or the electrical conduc-

tivity of the skin (‘‘galvanic skin response’’). It can even be the purpose of the game

to use variables that the user cannot influence by will; or the objective may be to

train the user in doing so through biofeedback.

A vital issue with a typology based on physical or other fundamental aspects of

the interfaces is that a technique and its application in a game are only loosely

coupled. It may easily be possible to substitute one technique with another to
Table I

INTERFACE DEVICES AND THE PHYSICAL QUANTITIES THEY ARE BASED ON

Physical quantity Input device Output device

Position and/or

orientation

Keyboard, mouse, slider,

joystick

Motorized slider

Radiance and/or

reflectance

Camera input Visual display

Sound pressure Microphone Loudspeaker

Force and/or

acceleration

Force sensor, accelerometer,

gyroscope

Force-feedback device, hydraulic chair,

haptic device

Voltage and/or electrical

current

ECG, EEG, EMG, galvanic

skin response

Electrotactile display

This selection leaves out more exotic means such as air draft produced by fans.

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 83
achieve the same effect in gameplay. For instance, gesture input may be accom-

plished by camera, accelerometer, or mouse. The intelligent use of (simple?)

hardware together with potentially sophisticated signal processing and imaginative

game design renders many options exchangeable.

This chapter employs a pragmatic organization of the plethora of input devices

according to categories of interface hardware:

l Buttons, keys, and keyboards

l Mice, joysticks, faders, and similar

l Pen and touch input

l Inertial sensors

l Cameras

l Specific position and orientation sensors

l Displays

l Audio input

l Audio output

l Tactile, haptic and related interfaces

l Kinetic devices and robots

l Biosignal sensors

This structure may help in figuring out alternative, possibly unorthodox uses of

devices to fully leverage their potential. Every section outlines the working principle

of the specific class of devices, points out historic, current, and upcoming imple-

mentations as well as existing and potential applications of those devices in games.

This chapter mostly covers technology that is available to end users or close to that

point. For further developments such as olfactory displays and for detailed usage

guidelines see the survey on ‘‘unconventional human–computer interfaces’’ [9] and

the collection on ‘‘nontraditional interfaces’’ [10].
3. Buttons, Keys, and Keyboards

Even something as simple as a pushbutton is employed by game designers in a

large number of ways. At one extreme, a user may hold single buttons in his or her

hand; at another extreme, he or she may have to step on a floor panel containing a

dozen of buttons such as in the game ‘‘Dance Dance Revolution’’ (Konami, 1998).

Even the mockup musical instrument for ‘‘Guitar Hero’’ (Red Octane, 2005) can be

considered a number of buttons mounted in a sophisticated body. The game’s

84 J. LOVISCACH
objective is to press combinations of five buttons with four fingers on the ‘‘guitar’s’’

fretboard and to move the ‘‘strum bar’’—technically a combination of two but-

tons—up or down with the other hand.

Technically, a standard typewriter keyboard is nothing more than a collection of

pushbuttons. Keyboards have been a (if not the) standard input device for computer

games, so that for instance using the keys W, A, S, D has become a de facto standard
for moving about in space. Despite the long history, there is still innovation at least

in three different fields. First, keyboards may be reduced to only contain the most

important keys and do so in an ergonomic fashion. Sharkoon Rush Pad, for instance,

comprises only 62 keys in an almost square layout, with the W, A, S, D keys being

specially coated for better grip, see Fig. 2. Second, the keycaps may contain small

displays to facilitate assigning special functions to them. This is exemplified by the

Art Lebedev Studio’s Optimus Maximus keyboard (prohibitively priced at nearly

US $1900). Third, the user may place the keys freely to construct an individual

keyboard adapted to his or her playing style and/or to a specific game. In its product

DX1, the manufacturer Ergodex employs passive radio frequency identification to

allow the user to place solitary keys anywhere on a base panel, see Fig. 3. A different

approach to free placement is to use a base panel with two conductive layers;

buttons, sliders, and joysticks are equipped with embedded computers that connect

with pins to those layers to receive power and to transmit encoded data [11].
FIG. 2. Sharkoon Rush Pad—a reduced keyboard for gaming—features enhanced keys for steering.

Image © 2008 SHARKOON Technologies GmbH. Used with permission.

FIG. 3. The Ergodex DX1 system allows placing keys anywhere on its surface. Image © 2008

Ergodex. Used with permission.

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 85
In the realm of music, many more sophisticated pushbutton-type interfaces can be

found, such as musical instrument digital interface (MIDI) piano keyboards or input

devices that resemble clarinets or saxophones, the tone hole pads of which act like

buttons. Some of these may make their way into games—if appropriately priced. For

instance, Ion Audio manufactures the electronic drum kit ‘‘Drum Rocker’’ for about

US $300 to be used with the game ‘‘Rock Band’’ (MTV Games, 2007)—or to be

used for regular music making with appropriate additional electronics.
4. Mice, Joysticks, Faders, and Similar

Since its invention in 1967 by Douglas Engelbart, the operating principle of the

computer mouse has not changed much, with the biggest addition to the original

design possibly being the scrollwheel. Computer mice sense a position set by the

user’s hand. Thus, they can be grouped together with:

l Trackballs (inverted mice; much easier to handle in mobile settings)

l Joysticks (borrowed from an aircraft’s cockpit and suited well for corresponding

steering tasks)

l Rotary knobs (as in ball-and-paddle games like Atari’s ‘‘Pong’’ from the 1970s)

l Steering wheels and foot pedals (as used for car simulations)

Some variants of these devices can be seen: Amouse can come in the shape of a gun

handle and trigger such as the Zalman FPSGun. The Gyroxus Full-Motion Game Chair

86 J. LOVISCACH
priced at nearly US $600 is a full-body joystick controlled by the user’s leaning in the

intended direction. Mice, joysticks, and steering wheels are also available equipped

with force feedback, see Section 12. Special gamingmice are marketed for their higher

resolution (e.g., 1600 rather than 300 steps per inch) and alleged faster gliding.

In cheap or miniature versions such as in mobile phones, joysticks may be implemen-

ted through a set of four pushbutton switches placed in up/down/left/right directions

and operated by a small handle or a cross-shaped rocker. Pushbuttons, however, cannot

directly control a continuous position, but only steer the direction of a cursor, which

slows down the operation. A different option to create a miniature version of a joystick

is to measure force instead of position. This is the operating principle behind IBM’s

TrackPoint input device mounted in the center of a notebook computer’s keyboard.

This device still cannot directly control a position, but at least allows the user to control

a motion’s speed in addition to its direction.

Mouse-like force input devices can also be applied to control 3D motion and

rotation. The user clasps a handle which he or she can push or pull in every direction

and twist along every axis. The handle only moves by fractions of an inch; only the

applied force is important. Probably the most inexpensive of these devices is 3DCon-

nexion’s SpaceNavigator, priced below US $100. It comes with driver software that

for instance supports Google Earth as well as many 3D design applications.

Again, inexpensive controllers used for computer music could be beneficial for

games: ‘‘Fader boxes’’ offer up to dozens of sliders and/or rotary knobs. In more

advanced versions, each rotary knob is implemented as a rotary encoder encircled by

a ring of light-emitting diodes (LEDs). Similar to a computer mouse, the rotary

encoder does not register absolute position but only the amount of motion that

occurred. The computer uses the ring of LEDs to indicate the current setting. This

design has a decisive advantage over traditional, analog rotary knobs. The software

itself can change the apparent position of the controls simply by switching on a

different LED. This is indispensable to recall presets.

Modern connectors for computer periphery such as USB (cable-bound) and Blue-

Tooth (wireless) allow connecting different devices and/or several copies of the

same device at the same time. Technically, every player in a group in front of a

screen can hold his or her own game controller. Another option is to use one mouse

for the left hand and another for the right hand. Even though operating systems such

as Microsoft Windows will mix the data received from all mice to control the single

standard cursor on the screen, the position data of the individual mice are available

to software developers (through Windows’ RegisterRawInputDevices func-

tion). Thus, proprietary software that switches off the standard cursor can make full

use of several mice.

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 87
5. Pen and Touch Input

Pen-based interaction with a screen dates back to the 1950s, which is even further

back than the invention of the computer mouse. Pen-based input never became

popular with games on standard-sized consoles and PCs, even though graphics

tablets are readily available—as the standard computer peripheral for graphic

design. The reluctant use in games was not even changed by the advent of

TabletPCs in which display screen and graphics tablet are united. ‘‘Crayon Physics

Deluxe’’ by Petri Purho hints at the opportunities for game design, see Fig. 4. In the

2D world of the game, the player has to draw shapes that are subject to collisions and

physical forces; the objective is to bring a given object to a predefined target

position.

The situation is different with handheld computers (PDAs): Here, the pen is the

premium input device for any application—including games. The Nintendo DS

handheld gaming console possesses two screens, the lower of which also serves as

pen input device, see Fig. 5. Note, however, that a simple, PDA-like stylus neither

possesses buttons nor differentiates between different amounts of pressure; thus, the

interaction repertoire is reduced in comparison to a mouse.
FIG. 4. In Crayon Physics Deluxe, the player can use a TabletPC to draw shapes that are subject to

gravitational force and collisions with other shapes. Image © 2008 Petri Purho. Used with permission.

FIG. 5. The Nintendo DS mobile gaming console offers one standard screen and one touch-sensitive

screen. Its updated version DSi—which is depicted here—also contains two cameras, one of which faces

the user. Image © 2008 Nintendo of Europe GmbH. Used with permission.

88 J. LOVISCACH
Advanced pen input devices such as graphics tablets and the screens of most

TabletPCs operate through radio frequency position detection and even employ

active electronics in the stylus. In contrast, simple ‘‘resistive’’ touch panels use

two slightly separated layers of transparent conductive but resistive plastic on top of

the display screen. The touch with a stylus brings the two layers into contact below

the stylus’ tip. Voltage measurements can determine the position where the contact

took place. These panels can also be operated by a bare finger, which is more

natural, but less precise. A third touch panel technology is intended to be exclusively

operated by a finger: capacitive sensing. Here, the input device senses at which

locations the environment (i.e., the fingertip) can be electrically charged. This

technology is standard for touch pads on notebook computers, but can also be

found in more expensive touch panels.

Panels that can sense several fingers at the same time have been around at least

since the 1980s. Since 2004, Jazzmutant sells the Lemur multitouch display

intended for computer music applications. Its price of about US $2000 restricts its

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 89
use to the professional realm, however. In addition, it can only employ user interface

elements that are predefined by the manufacturer. With its name changed from

Jazzmutant to Stantum, this company, however, has begun to sell more versatile

multitouch kits to developers.

In 2006, the demonstrations of Jefferson Y. Han and his group directed the

public’s attention toward multitouch technology. The first success of a multitouch

device in the general market was the Apple iPhone, which can track four fingertips at

the same time. The first games that make use of this functionality do not use

multifinger gestures but rather track the two thumbs of the user while he or she

holds the iPhone in landscape mode with both hands. Another broad application area

may open with the successor of Windows Vista, as Microsoft has announced to

support multitouch devices in the company’s upcoming operating system version.

Microsoft already manufactures the multitouch device Surface, which, however, is

not intended for home gaming but for installation for instance in restaurants and

shops. Hardly any of the Surface demos known at the time of the writing of this

chapter address games.

Standard implementations of table-sized multitouch displays employ a horizontal

projection surface below which the projector is mounted. In addition, the positions

of the finger tips of (potentially many) users are tracked from below through infrared

(IR) lighting and cameras. In addition to detecting the locations of fingertips, one

can also recognize graphical identification patterns on the bottom of objects placed

on a semitransparent screen. This allows distinguishing between several objects and

determining their location and orientation. This is the basic sensing technology

behind the ReacTable [12], originally intended for music making. However, the

ReacTable sensing technology called ReacTIVision is freely available, so that many

student projects have created games with it.

Multitouch screen technology is a highly active field of research. In 2008,

Microsoft Research demonstrated an inexpensive solution called LaserTouch that

employs an invisible sheet of IR light above a standard display screen; fingertips

placed on the screen become visible to an IR-sensitive camera. In a joint venture, LG

and Philips showed a 52-in. dual-touch display on CES fair 2008. In addition, LG,

Planar Systems, and Toshiba Matsushita Displays develop standard-sized LC

screens that possess a dense array of optical sensors within into the screen.

A highly different kind of multitouch screen can be applied to create an ‘‘exertion

interface.’’ In the game ‘‘Remote Impact’’ [13], users punch or kick a wall-sized

stuffed textile sheet, aiming to hit the shadow projection of a remote user. The hits

are to be delivered with brute force in a boxing-game style. The elastic bands that

connect to a stationary frame and hold the fabrics in place are equipped with stretch

sensors. The data thus gained are used to compute a 2D force field.

90 J. LOVISCACH
6. Inertial Sensors

Inertial sensors respond to changes in linear motion. This category of input

devices comprises two major classes: accelerometers, which sense linear accelera-

tion, and gyroscopes, which sense angular velocity.

Accelerometers measure how quickly and in which direction the velocity changes

at the current point of time. By the laws of physics, gravitation (the attraction of all

objects to the earth’s center) is invariably mingled with mechanical force: By

physical experiments, one can not tell whether one rests on the earth’s surface or

whether one flies with a space rocket that continually accelerates at the right rate

(standard gravity, g ¼ 9.81 m/s2). This phenomenon makes it hard to tell actual

motion from gravity: A measurement of 1g can mean that the accelerometer is held

still on the earth’s surface; however, it could also mean that it is pushed with a speed

growing in the right fashion.

If there is little user-generated acceleration, the sensitivity of accelerometers to

gravity allows using them as tilt sensors that measure for instance by how many

angular degrees and in which direction an object to which the accelerometer is affixed

is off the vertical. Tilting the device may be more enjoyable than using a joystick, even

though it is also more challenging [14]. A very intuitive gaming application of tilt

sensing is to simulate water drops that flow downhill, depending on the amount and

the direction of tilt. However, tilt can also replace a joystick control. Newer versions

of the Guitar Hero controller (see Section 4) contain a three-axis accelerometer

to determine for instance if the ‘‘guitar’’ is held upright to play a solo.

Today, accelerometers are relatively easy to build as part of integrated circuits. To

this end, one etches a silicon chip in such a way that microscopic levers remain,

forming a microelectromechanical system (MEMS). The levers are flexed by gravity

or by kinetic acceleration. This way of production allows a price point of US $20

when bought in single units. Thanks to the efficient production, accelerometer chips

typically contain three basic units, one oriented along each of the x, y, and the z axes
(three-axis accelerometer). This allows determining a 3D acceleration vector.

Accelerometer chips are commonplace in mobile phones. Some models of note-

book computers employ accelerometers to bring the hard disk’s heads in a safe

position should the computer be dropped. Mostly, the data of such accelerometers

are available for other purposes such as tilt measurement in games. The most

prominent device containing an accelerometer (among other sensors) may be Nin-

tendo’s Wii Remote controller, see Fig. 1. Current research deals for instance with

the recognition of gestures based on its acceleration measurements [15]. Nintendo

also sells a holder for this controller in the shape of a steering wheel. Here, the

accelerometer is applied as a tilt sensor to measure the angle of rotation of the wheel.

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 91
In the basic game collection ‘‘Wii Sports,’’ the controller acts for instance as a

tennis racket (with an optional racket-shaped holder) that distinguishes between

different ways of hitting the ball, as bowling ball, or the virtual character’s fist in a

boxing game. The Wii Remote Controller can be extended by a second unit called

Nunchuk. This device is to be used with the other hand. It is attached via wire and

contains a joystick and another accelerometer chip. At press time of this chapter,

Asus has announced to manufacture a similar tandem of input devices called Eee

Stick. Both parts of the Eee Stick, however, are planned to communicate wirelessly.

Gyroscopes, the second major kind of inertial sensors, are based on miniature

gyros: spinning objects. As one changes the orientation of a gyro’s axis, it produces a

counterforce, which can be measured to determine the angular velocity (technically

for: rotation speed) of the orientation change. From the angular speed and the initial

orientation one can, in principle, derive the current orientation. Rotating elements

are not yet easily etched from silicon. Thus, gyroscopes produced as MEMS are

typically based on microscopic units that are forced to vibrate in one direction. If the

unit is subjected to rotation, the vibratory motion will slightly change the distance of

the tiny moving mass to the center of the rotation. This induces a measurable lateral

shift (Coriolis force).

Given the more complex technology, even single-axis gyroscopes easily cost US

$100 when bought in single units, so that they are hardly found in consumer devices.

This is bound to change with the Wii MotionPlus extension that Nintendo has

announced for early 2009, see Fig. 1. At a price of approximately US $50, it contains

a two-axis gyroscope and comes with a number of games that employ rotational

motion for instance to start frisbee disks. Since 2006, Sony’s SIXAXIS controller for

its PlayStation 3 gaming console offers a three-axis accelerometer and a three-axis

gyroscope. Even though instructions can be found on the Web how to use this device

with PCs, it did not gain widespread acceptance in the PC world. This may be

attributed to its form factor: It is intended to be held with both hands, which prohibits

many of the activities the Wii Remote is used for.

To compute a device’s orientation from the angular velocity output of a gyroscope

is a complex process. First, the mathematics is sophisticated, as one cannot look at

each axis on its own, which is a consequence of incommutativity. Typically, the

result of two rotations applied in sequence will depend on which one of the two is

applied first. Second and much harder, even small errors in the measurement of the

angular velocity will quickly pile up and render the computed orientation meaning-

less. Such errors stem from imprecise calibration, poor resolution of the value (such

as 256 steps), limited temporal resolution (such as 60 measurements per second),

noise, nonlinearity, and momentary overloads due to impacts or quick motion.

Attempting to compute an object’s position from accelerometer data runs into

similar or even worse problems. In this case, one has the acceleration data, that is,

92 J. LOVISCACH
the rate of change of the velocity, not even the velocity itself. The standard solution

for a reasonably stable determination of position and orientation through inertial

sensors is to fuse the data of different sensors, typically through a Kalman filter,

which weighs each information source by its reliability [16].
7. Cameras

Cheap webcams have become commonplace for video telephony and conferenc-

ing applications. Increasingly more notebook computers are sold with integrated

cameras that capture the user’s face. Many mobile phones and Nintendo’s mobile

console DSi, see Fig. 5, contain even two cameras: one as a standard digital still

camera, the other directed at the user when he or she looks at the display.

The most lightweight use of a camera in a game may be to photograph bar codes

or more advanced graphical codes [17] such as semacodes. Even a basic mobile

phone can take the photos and decipher the codes. Such codes can for instance serve

as proof that one player has found another player or a certain item, very similar to

RFID chips, see Section 8. For instance, in the ‘‘Assassin’’ mode of the game

‘‘Gridlockd’’ (http://gridlockd.net/, 2005), all players carry an individual semacode

pattern on their T-shirts and aim to eliminate their opponents from the game by

taking photographs of the semacodes of these players.

Even in games, a camera may be used for video conferencing. The computer may

also subject the camera’s signals to image processing and higher level computer vision

techniques such as pattern recognition. A popular input device for this purpose is

Sony’s EyeToy camera sold as an extension to the PlayStation 2 console; games

employ this camera to show the user’s mirror image immersed in game graphics and to

recognize when the player hits on-screen targets. One may borrow notations developed

in choreography to describe and analyze the user’s movements [18].

Basic image processing can track real puppets so that their motion can be

duplicated in a game engine [19]. A camera mounted below the ceiling, facing

downward, makes it relatively easy to track the user’s location and recognize arm

gestures [20]. In a sports game with an actual ball, one can use two cameras mounted

in different corners of the room to determine the heading and the velocity of the ball

[21]. With two cameras mounted close together, one can apply stereoscopic analysis

to recognize gestures for gaming [22]. Note that the use of connector ports such as

USB and FireWire facilitates attaching several cameras at the same time to a single

computer. However, if one software driver is used for both cameras—for instance

because both stem from the same manufacturer—the driver has to support this mode

of operation.

http://gridlockd.net/

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 93
Cameras that capture the user’s face may be employed to track the position of the

head or—mode precisely—the two eyes, for instance to steer autostereoscopic

displays (see Section 9.3). Current research work is directed at visually recognizing

the user’s emotional state [23] and capturing the face’s motion [24], for instance to

transfer the mimics to a avatar.

Handheld computers and potentially also future mobile phones with appropriate

computational power offer another use of the integrated cameras. The motion of the

device relative to its environment or specific objects or image patterns in the

environment can be tracked. This supports augmented reality applications, such as

the ‘‘Invisible Train’’ that drives around a real wooden miniature railroad track—if

watched through a PDA’s display held like a lense [25]. This is based on a port of the

augmented reality framework ARToolKit to the PocketPC platform [26]. Video-

based tracking of graphical markers also allows turning a handheld device into a

paddle for a virtual table tennis game [27]. The cameras of handheld devices can

capture regular street maps with a small number of markers to input locations for

quests in a mobile game [28]. Without any markers, the camera of the handheld

device can detect the motion of the foot of the user to let him or her kick a virtual

ball [29].

With today’s image processing on standard computers, the visible light reflected

off the environment does not ensure a highly robust and precise tracking. The

standard solution to this issue is to use IR light that either is emitted by LEDs

mounted on the object to be tracked or is emitted by LEDs mounted around the

camera and mirrored back by special retroreflective markers (spheres or flat dots)

placed on the object.

The IR sensor that is part of Nintendo’s Wii Remote controller is based on the

former option. A ‘‘sensor bar’’ houses two IR beacons, each formed from several

LEDs; an IR camera on the front of the Wii Remote locates these bright spots that

are invisible to humans. Actually, this device does not transmit the camera image to

the host computer, but only tracks and reports the locations of the brightest positions.

These data can be used by the host computer to compute the position and orientation

of the Wii Remote with respect to the sensor bar, up to some ambiguities, since two

xy image points do not suffice to fully determine all six degrees of freedom, that is,

xyz position plus three rotation angles. A more complex system was employed in the

P5 data glove, which was introduced in 2002 by Essential Reality for game use and

sold at about US $100. Eight IR LEDs were mounted all across the body of this data

glove; a separated IR receiver comprised two cameras.

The use of IR light reflected off markers on the object to be traced is well

established in professional motion capture systems, which are for instance employed

to animate synthetic characters for movie production. NaturalPoint sells a relatively

simple game input device that is based on this technology. The TrackIR 4:PRO,

FIG. 6. TrackIR 4 employs reflectors affixed to a cap or LEDs attached to a headset to determine the

position and orientation of the user’s head. Image © 2008 NaturalPoint. Used with permission.

94 J. LOVISCACH
priced at about US $180, see Fig. 6, tracks reflective markers on the user’s head to

determine its 3D position and orientation; these data may be used to adapt the

computer screen’s perspective to the position of the user’s eyes. Professional-style

IR motion capture cameras such as the NaturalPoint OptiTrack FLEX:V100 are now

available for little more than US $500; this price tag, however, still seems to be too

high for gaming applications. A little-used fact advertised by some tutorials on the

Internet is that many inexpensive webcams can be turned into IR cameras by

replacing their IR blocking filter (if present at all) by a filter that blocks visible light.

Instead of tracking body gestures or a face’s mimics, one can even try to capture

something as minute as the position of the eye’s pupil. Such eye-tracking is a

standard technique in user interface research to learn what the user is looking at.

Most systems employ the reflection of IR light off the surface (cornea) of the eye’s

lens and from the light-sensing tissue (retina) in its interior. This is relatively

straightforward in terms of technology and could in principle be sold at consumer-

level prices. First tests on shooting games modified to work with an eye-tracker

show promising results [30].

3DV Systems employs a completely different use of IR light in their DeepC

chipset. After emitting a strobe of IR light, the camera measures how long the light

takes to arrive on the sensor, thus effectively turning the camera into a 3D sensor that

measures the depth of the scene for every pixel. Since light requires only 0:09 ns

(a ten billionth fraction of a second) to travel by 1 in., such a measurement seems a

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 95
highly complex task. The trick is to use a high-speed shutter and measure the

percentage of light energy that has arrived before the shutter has closed. 3DV Systems

has announced to deliver a product called ZCam [31] intended to be used with games

in late 2009. This camera is said to take regular images at a resolution of 1:3
megapixels and depth images at 320� 240 pixels with a depth resolution of

1–2 cm. In games, this device may work particularly well for gesture recognition

and to track a user’s motion to animate an avatar [32]. Similar cameras are developed

by Canesta and by Primesense. The z-Snapper system of the German manufacturer

Vialux employs fringe patterns projected by a fast digital mirror device.
8. Specific Position and Orientation Sensors

Position and orientation or direction sensing is so vital to human–computer inter-

faces in general and to gaming interfaces in special that many more approaches than

mouse, joystick, and their ilk as well as camera-based solutions have been invented.

One of the interfaces popular with video games in the 1980s does no longer work with

current screens: the light gun. It sensed a bright mark on the screen or—more

precisely—the dot of the scanning beam inside a television’s tube; this dot is too

fast to be noticed by the human eye. Another technology that has mostly vanished from

the market of interfaces devices is distance sensing through ultrasound.

Today’s interfaces tend to be much more advanced, the simplest one possibly

being an electronic compass, that is, a highly sensitive magnetometer that detects the

direction of the earth’s magnetic field. The basic, two-axis version of such a device

suffices if one can guarantee that it is held horizontally flat. Otherwise, a three-axis

magnetometer is required that can determine the full 3D field vector. Even though

these devices can be built as integrated circuits with relatively simple external coils,

their prices start at about US $60 when bought in single units.

Handheld devices allow the player to leave his or her seat and make real places

part of the game activity. A major technical issue here is to track the players’

positions as they may be scattered over several blocks or even all of a town. The

satellite-based Global Positioning System (GPS) installed and maintained by the

US Department of Defense has become the standard means to this end. GPS also

forms the basis for car navigation systems, so that more and more handheld

computers and mobile phones come equipped with a GPS receiver. Such receivers

are also available as inexpensive add-ons that can be used with almost every

computing device through a serial connection or a BlueTooth wireless connection.

GPS operates through precisely timed radio signals emitted by satellites; depend-

ing on the distance, the signals of different satellites will reach a receiver with

96 J. LOVISCACH
different delay. Knowing the timing of at least four satellites, the receiver can

determine its 3D location. A similar principle underlies the Russian GLONASS

system that is currently being (reinstalled and the planned Galileo system of the

European Union.

Under best conditions, bare-bones GPS localization currently has an error of

approximately 10 m. With helper signals, the error can be reduced dramatically

[33]. Many GPS receivers employ the US-based Wide Area Augmentation System

(WAAS) or the equivalent European Geostationary Navigation Overlay Service

(EGNOS). These systemsmeasure the GPS position errors at a number of base stations

with known location and transmit region-specific correction data via satellites (hence

‘‘Satellite-Based Augmentation System,’’ SBAS). This correction brings the typical

error down to a level of several meters.

Most GPS receivers cannot only output position data, but can also determine their

velocity. These measurements are based on the Doppler effect, that is, the frequency

shift introduced into the received signal through motion. This measurement essen-

tially comes free of charge since the GPS receiver has to adjust its tuning to the

Doppler shift, the major part of which is due to the motion of the satellite and the

rotation of the earth. The data thus gained tend to be very accurate, the typical error

being in the order of velocities of several inches per second.

GPS operates in a radio frequency band that is attenuated or reflected by walls;

hence, GPS hardly works in buildings and may not work near high buildings. In case

the reception of the satellites’ signals breaks down, navigation systems can resort to

‘‘dead reckoning’’ based on last known location and direction and the current speed

and/or inertial sensors (see Section 6 and Lachapelle [34]).

A location-sensing method that is less precise but more robust and works inside

buildings is to use the cell structure of a mobile phone network (GSM or 3G). The

identification code (cell ID) of the cell to which the phone is connected allows

determining the location down to a single cell, which may have a diameter of a

kilometer in a city’s center, with 3G networks employing smaller cells. Time delay

measurements either within the network infrastructure or with specially equipped

phones can bring the error down to 50 m. Such localization abilities of mobile

phones are propelled by national legislations concerning the precise localizability of

emergency calls. Similar working principles—however, rather evaluating the differ-

ences in signal strength than in delay time—can be used on a smaller scale for

wireless local-area networks (WLAN). For a study on results with GSM and WLAN

see Varshavsky et al. [35]. A comprehensive survey on games employing cell IDs

and other localization methods is given in Rashid et al. [36].

Instead of being able to locate the user at any time, it may be sufficient to know if

he or she has reached a certain spatial station of the game. To this end, one can equip

the stations with visual markings to be detected by a handheld camera, see Section 7,

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 97
or—less intrusively—equip the stations with radio transmitters. If these are few and

are protected against theft, mains- or battery-powered embedded computers

equipped with BlueTooth transceivers may work well (see for instance Bruns

et al. [37]), totaling a cost of about US $100 per station. These can mostly be used

with to handheld computers or mobile phones without any additions.

If, however, one has to build many stations in an uncontrolled area, the electronics

they contain should be simple and cheap. No special hardware may be needed on the

receiver’s side if one installs beacons that send out high-power infrared light

patterns [38], since many handheld computers are equipped with an IrDA port for

communication through infrared light. This type of location sensing can be also

achieved through radio frequency identification (RFID) chips [39], which originally

were introduced to serve as intelligent replacements for bar codes on product

packages. On the downside, virtually no consumer-class device comes with an

integrated RFID reader. Even though bare-bones reader modules start at about US

$30, commercially sold readers easily cost several hundred US-$.

More along their original purpose, RFID chips can be embedded into physical game

objects such as playing cards. This provides a simple means to detect if one player has

hunted down another one [40] or if the player possesses a specific item or has played a

certain card, compare the Fruit Salad game of Jung et al. [41]. For applications of this

type, passive RFID tags are ideal due to their lower price (US $1–2 when bought in

single units) and due to their small reading range of up to 1 in. They are almost paper-

flat and are maintenance-free because they do not include a battery but are powered by

the radio field emitted by the reader. The German company PublicSolution has

introduced board games with a controller called Yvio that recognizes the positions

of the pieces on the board and guides the players through voice output.

Another close relative of position sensors is Nintendo’s ‘‘Wii Balance Board,’’ a

device that looks like a bathroom scale and contains four force sensors. These can be

used to measure the weight of a user standing on it or to track the location of the

center of mass when the user does physical exercises on the board. The Wii Balance

Board is sold with a set of games for muscle building, yoga, and balancing, but may

also be used as a steering device in a snowboard simulation.
9. Displays

The form factors of visual displays range from electronic goggles to cinema

screens and room lighting. This section first looks at screens and projections and

then at goggle-type personal displays. Stereoscopy (colloquially often called ‘‘real

3D’’) is treated in Section 9.3.

98 J. LOVISCACH
9.1 Standard Screens and Projected Displays

Whereas the typical computer screen is also the standard output device for games,

some specific variants can be noted: Flight simulator aficionados mount a number of

displays next to each other, leveraging the capabilities of modern computers to host

several graphics cards, each with several video outputs. The same way of using

multiple displays can also be found in professional flight simulators and in virtual

reality environments. For enhanced immersion or to accommodate more than one

user, wall-sized projected screens or completely surrounding projected screens may

be used such as in CAVE systems [42]. To enhance the graphics performance,

several computers may be networked instead of using one computer that would have

to feed lots of video output ports. Thanks to frameworks such as VR Juggler [43],

such systems can be built easily.

Possibly the simplest augmentation of a standard screen is to combine it with a

computer-controlled room illumination system, as is part of the amBX system

manufactured by Philips, see Fig. 7. The LED-based illumination contained in this

system can automatically adapt the color of the room to fit to the background color

displayed of the current image on the computer screen. Licensed developers may use

the programming interface provided by Philips to create other effects. This system

can be considered a minimum implementation of a ‘‘foveated display.’’ The human

visual perception is only acute in the very center (fovea) of the retina and then

quickly deteriorates. This ‘‘foveatisation’’ is not obvious because the brain steps in

to create a seemingly sharp perception. Computer displays can make use of this
FIG. 7. Philips’ amBX system comprises speakers with high-power LEDs to illuminate the room, fans,

and a rumbling rest for the user’s wrists. Image © 2008 Koninklijke Philips Electronics N.V. Used with

permission.

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 99
effect to fake high resolution where there is none. Foveated displays provide detailed

pictures around the area of interest and then—more or less gracefully—let the

resolution deteriorate outside of that range.

9.2 Head-Mounted Displays

In terms of size, electronic goggles are the most efficient option for displays.

Small screens based on liquid-crystal or organic-LED technology are placed right in

front of each of the user’s eyes, with a small intervening lens system letting the

displays appear as a large screen in a TV-like distance. The working principle dates

back to Ivan Sutherland’s constructions in the late 1960s.

The trend to mobile entertainment through notebook computers and portable

video players has lead to a simpler and affordable type of head-mounted displays

(HMDs), albeit with poor resolution. Some of these offer a stereoscopic mode, see

Section 9.3, only few possess the head-tracking sensors needed for believable virtual

reality. As the user moves his or her head around, the images displayed to the eyes

have to be changed accordingly. The head tracking data can also be employed to

control audio processing. The positioning of sound sources in the headphones that

typically are integrated with the HMD should correspond to the orientation of the

viewer’s head.

Even though they are highly portable and often are battery-powered, standard

HMDs as such cannot be used in mobile settings because the user is essentially

blindfolded. An option to solve this issue is to mount one or even two cameras on

the frame of the HMD. The video stream(s) thus created are delivered to the HMD,

with some additions or even replacements. Such a configuration supports gaming

in Augmented/Mixed Reality (AR/MR). An approach that may be more lightweight

in terms of technology is to use see-through displays, which overlay the computer-

generated picture optically. Being specialized AR devices, such displays, however,

are not yet affordable for end-user applications. AR/MR games may employ HMDs

for instance to add fictitious extraterrestrial invaders to the environment [44].

9.3 Stereoscopy

To create a better 3D impression, one needs to display an image to the left eye that

is slightly different from the one for the right eye. Such a ‘‘stereoscopic’’ presenta-

tion still is not perfectly realistic and is potentially disturbing, as the user’s eyes

focus a single screen depth and do not adjust (‘‘accommodate’’) to the virtual depth

of the depicted objects. Nonetheless, stereoscopic displays are mostly considered

‘‘real’’ 3D. Whereas they are standard in professional virtual reality applications,

they are known to home users mostly from well-equipped movie theaters. The broad

100 J. LOVISCACH
availability of digital projectors and the omnipresent use of computer animation and

digital postproduction initiated a renaissance of 3D movies, which already had a big

time in the 1950s. Many cinema-goers may experience 3D stereoscopy in the near

future and ask for similar displays in games.

The most efficient and effective solution for stereoscopy consists in HMDs, see

Section 9.2, as one can address the left and the right eye without any crosstalk

between them. A less costly route is to use a monitor or projector that displays the

images for the left and the right images in quick sequence; the user wears computer-

controlled liquid-crystal-based ‘‘shutter glasses’’ that alternatingly block each eye.

To prevent flicker, the display unit needs to support frame rates in excess of 120

frames per second. Current projectors and monitors—apart from outdated cathode-

ray tubes—mostly offer no frame rates that are substantially larger than 60 frames

per second; hence, shutter glasses are currently no practical solution for home users.

The video signal required for most HMDs is the same as that for shutter glasses: a

stream of images each of which is alternatingly intended for the left and for the right

eye. This allows to use a single standard video connector (typically, still of VGA

type), but cuts the effective frame rate down to 30 frames per second. This does not

lead to flicker, however, as the displays in front of the left and the right eye do not go

black—as shutter glasses would do—when it is the other display’s turn. Instead,

each display keeps its last image.

In the professional realm, stereoscopy via one video connector is done on ‘‘quad-

buffer’’ OpenGL graphics cards, a term which refers to the graphics card operating

with independent double-buffering for each eye. (Double-buffering means that the

graphics card outputs one image frame previously stored while the graphics chip

computes the next one.) Such cards are also equipped with a three-pin Mini-DIN

connector to control shutter glasses. Standard gaming graphics cards only offer

double-buffering or triple-buffering for one eye per video output.

Nvidia offers an inexpensive solution for stereoscopy throughout its line of

graphics chips. The graphics chips can send a control signal for shutter glasses via

the VGA connector, controlled by Nvidia’s ‘‘GeForce 3D Stereo Driver,’’ which at

the time of writing is only available for Windows Vista in an up-to-date version.

This driver supports shutter glasses, HMDs, and some types of autostereoscopic

displays (see below). Game software running on the computer only sees a stan-

dard—so to speak monocular—graphics card; behind the scenes, however, the

driver creates stereoscopic image pairs. To this end, it extracts 3D data from the

command stream sent to the graphics processor and builds views for the left and for

the right eye. These views are rendered and output alternatingly, frame by frame.

This transparent solution works with many games, but may fail for some special

visual effects that do not supply correct 3D depth data.

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 101
The standard solution employed for stereoscopy in movie theaters is often based

on polarization filters. Two projectors, each with separate video inputs, run in

parallel at the standard frame rate, the first projector for the left-eye images, the

second for the right-eye ones. Each projector’s light beam is fed through a different

polarization filter and directed onto the same, common screen. The silver screen

material is chosen so that the light’s polarization will not change as the light is

reflected toward the audience. The audience wears glasses with different polariza-

tion filters in front of their left and right eyes that suppress the light that stems from

the opposite projector. The dual projection systems required for this solution are

already available in form factors that resemble standard data projectors and direct

both beams through one joint lens. Currently priced starting at almost US $4000,

stereoscopic projectors are, however, not yet a choice for the home.

‘‘Autostereoscopic’’ displays are intended to overcome the use of goggles and

bulky head-mounted gear. They create hologram-like images that can be viewed

with the naked eye. Half a dozen of such technologies are already in the market-

place, even though none has yet had a commercial breakthrough. Most autostereo-

scopic displays are based on a thin layer of approximately pixel-sized lenses or

blocking stripes on the front of a standard liquid-crystal display. The lenses or

blockers direct the light of different pixels into different spatial directions, effec-

tively cutting the screen’s resolution at least by half. Some of these devices are

supported by Nvidia’s 3D Stereo Driver mentioned before.

In most implementations of autostereoscopic displays, either the user has to stand

in a particular place or the display has to adjust the lens or blocker geometry

automatically with the help of a head tracker. Such displays typically only support

one user at a time. This limitation can be overcome for instance through displays that

use more sophisticated blocker screens to send different images into, say, eight

spatial directions. However, this induces a strong loss in the brightness and in the

effective image resolution available in every single of the different directions.
10. Audio Input

The primary use of audio input is player-to-player communication in games. In

addition, games such as ‘‘SingStar’’ (Sony Computer Entertainment, 2004) have

popularized a karaoke-style mixing of the user’s singing with accompanying music,

awarding scores based on an automatic analysis of the rhythmic and tonal quality as

well as the expressivity. In principle, games could also easily make use of speech

recognition for hands-free command input. The necessary recognition routines are

part of today’s leading operating systems. Nonetheless, speech recognition is rarely

102 J. LOVISCACH
used—in games as well as in standard applications. Some notable exceptions from

this rule are the games ‘‘SWAT’’ (Vivendi Universal, 2003) and ‘‘Tom Clancy’s

Rainbow Six 3’’ (Ubisoft, 2003) that use speech recognition to allow the player to

issue commands. OC3 Entertainment employs speech recognition in its product

FaceFX Live to realistically animate the face of an avatar that represents the user.

More experimental uses of audio input have been proposed in research but have

not yet made their way into games or other applications. The time delay of the sound

of finger snapping to a number of microphones can be applied to localize the user

[45]. If the user blows onto a notebook computer’s screen, the target location of the

blowing is detectable through the built-in microphone [46]. The acoustic analysis of

speech can reveal the emotional state of the user [23], which could be employed for

instance to adapt the difficulty level of a game.
11. Audio Output

Audio output may be employed for better immersion, like the soundtrack of a

movie. It may, however, also serve as the main medium of output. Audio-only

games [47] can be used by visually impaired persons or they can be used in places

where watching a computer screen is distracting (e.g., when walking across the

street) or too clumsy (e.g., when sitting in a bus).

Television sets and computers are used both to play games and to watch movies.

Due to their support by DVD-based videos, surround-sound systems are available in

many homes and thus can be used for games as well—if the users did not even buy

them for gaming in the first place. The standard setup is still ‘‘5.1,’’ which

comprises six speakers: one above, below or behind the screen, one left and one

right from it, two speakers in the back, and one subwoofer.

The large number of speakers is required to ensure a consistent spatial impression

even when for listeners who are not placed in the center spot of the arrangement.

Theoretically, two speakers would suffice to provide a full three-dimensional sound

image, as a human has only two ears. This idea, however, faces severe practical

problems. A technique widely supported in audio programming frameworks such as

OpenAL and Microsoft DirectSound is the use of head-related transfer functions

(HRTFs) for headphone output. Depending on the 3D position of a virtual sound

source relatively to the user, the software computes how the sound would arrive at

the user’s ears. This result is output via headphones. The ‘‘how’’ comprises:

l Delay: Due to the limited speed of sound, the signal reaches one ear before the

other.

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 103
l Attenuation: The spatial expansion of the acoustic waves and the damping by

the travel through the air reduce the level. Most prominently, the listener’s head

itself often shadows one ear from the sound source.

l Filtering: The complex shape of the outer ear (‘‘pinna’’) boosts or cuts specific

frequencies, depending on the direction of the incoming sound wave. This is

described by HRTFs, which may also include the effects of delay and attenuation.

With the inclusion of HRTFs, an immersive 3D sound reproduction can in

principle be achieved through stereo headphones. Consumer-level systems are,

however, far from this goal. With them it is still not easy to tell if a sound is placed

in front of the listener or if it is placed in his or her back; and it is virtually impossible

to tell a sound position above the head from one below. The main reason for this is

that the pinna shape is highly individual, so that standardized HRTFs as offered by

typical software do not work well. One needs to use customized HRTFs, which are

very laborious to measure. Another issue is that small involuntary motions of the

head are vital to spatial sensing. Headphones, however, glue the sound field to the

listener’s head. This can be overcome through head tracking. As the listener rotates

the head, the presented sound field is rotated in reverse direction. An integrated

solution for audio production, the Beyerdynamic Headzone PRO headphone system

employs ultrasound to determine the orientation of the user’s head and adjusts the

sound field accordingly. Some less expensive surround-sound headphones for

games are not based on HRTF simulations but actually use several spatially

distributed loudspeakers in the earpieces.

Since decades, audio researchers have looked into realistic 3D sound reproduc-

tion. The Ambisonics system, for instance, is intended to model the local behavior of

the sound field at a given location. Wave field synthesis, a more general approach,

attempts to create a holographic sound image in a larger area. Both systems rely on

large arrays of loudspeakers. Up to now, such advanced audio solutions have rarely

made their way into consumer-level products. One exception, however, is the series

of ‘‘digital sound projectors’’ built by Yamaha. These contain up to 42 single

loudspeakers in a single box to be mounted below the TV screen. The multitude

of speakers is employed to create acoustic beams that are reflected off the walls and

hence reach the listener from the sides and from the back.
12. Tactile, Haptic, and Locomotion Interfaces

All interfaces that employ touch can be called ‘‘tactile,’’ which at its extreme

includes devices as simple as a sensor operated by touching. Generally, the term

‘‘haptic’’ is reserved for more complex devices that also possess kinesthetic aspects

104 J. LOVISCACH
such as position sensing. Resembling audio output devices, there are two major

strands of applications of tactile and haptic devices: First, they can improve immer-

sion (e.g., one can grasp and feel virtual objects); second, they provide a different

channel to the user that may be employed when other interactions modes are not

feasible due to the situation or due to a handicap. Thus, tactile and haptic interfaces

are found in mobile settings as well as in assistive technology such as braille readers

for the visually impaired. For a survey see Eid et al. [48].

This group of interface devices addresses both input and output. Mostly, they can

be seamlessly combined such as in the case of a steering wheel that requires

increasingly more force for larger turning angles and that shakes when a tire of

the virtual car plunges into a pothole. The most basic device may be a motor that

rotates an unbalanced mass. Such vibrators are used for the silent alert of mobile

phones but also in simple force-feedback computer mice, joysticks, and steering

wheels. Vibrators can be found in the Wii Remote controller as well as in the wrist

rest of Philips’ amBX system. Several manufacturers of mobile phones build in

Immersion’s VibeTonz system that allows a fine-grained design of vibration

responses. A momentary vibration is particularly beneficial as feedback for touch

panels or pen-based input devices, for instance to signal that a finger hovers above a

button on a screen or to inform the user that a key has been pressed [49].

Rather than only presenting vibrations or pushes, many force-feedback joysticks

can exert a defined amount of force in a specified xy direction. This is typically

accomplished through Microsoft’s DirectInput programming interface. Even though

standard gaming joysticks are rather imprecise, their functionality already hints at

the features of professional haptic input devices that allow the user to explore a 3D

space while feeling for instance the contact forces of surfaces that are flexible,

slippery, sticky, rough, or have a high friction. Such devices are used for virtual

reality applications such as surgeon training as well as for computer-aided 3D

construction and design.

With the Novint Falcon, precise haptic feedback has arrived in the arena of games.

At a price of about US $200, it allows the user to move a grip within a volume with a

diameter of approximately 4 in.; three motors can exert directed forces of up to the

weight force of 2 pounds. The Falcon comes with software that for instance

simulates the recoil of a gun or the weight of a fishing rod with a fish dangling on

the line. At the time of writing, only the xyz position plus the state of the buttons

were input and only a linear 3D force was output by the device. In principle, the

modular design allows more parameters to be recorded and/or influenced by repla-

cing the grip with a more sophisticated one. According to the manufacturer, such

alternate grips are under development. Expensive professional haptic devices record

for instance not only the position but also the orientation of a pen held by the user

and may apply translational as well as rotational forces to it.

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 105
On the experimental side, researchers have employed motorized faders (i.e., slide

controllers) for cheap but precise haptic feedback. These devices stem from sound

mixing consoles where they allow the instant recall of the settings made for a

specific piece of music. The slider can be used as a position sensor, where—

which is used in a mixing console—the motor can drive the slider to a given position

or—which can be used for haptics—the motor can exert a force onto the finger with

which the user touches the slider’s lever. In a game, this can for instance be applied

as an interface for a catapult [50].

To create a perception of touch, one can apply mechanics—as described before—

or one can try to stimulate the receptor cells in the skin by electrical pulses of several

hundred volts strength and lengths in the order of a millisecond. Such ‘‘electrotactile

displays’’ can easily display tactile patterns over larger areas, much easier than

mechanical solutions. They are researched into particularly as a means to support

visually impaired persons. Regularly, electrotactile displays do not believably sim-

ulate a relief on the surface; the sensation they cause rather resembles ‘‘pins and

needles.’’ This may explain their rare use.

Haptic devices are not confined to the human hand. More exotic applications of

computer-delivered pushes have been devised: TN Games manufactures the 3rd

Space Vest, sold for approximately US $140, that allows gamers to feel impacts

on their body, see Fig. 8. This is realized through eight pneumatic pads in the vest

that are driven by a compressor, controlled through a freely available software

development kit.

Many professional installations of Virtual Reality systems try to maintain the

illusion of large-scale locomotion. The user believes to walk or run over a seemingly

unlimited terrain. To realize this within a spatially confined system, techniques are

required to undo the user’s motion. For a unidirectional motion, a conveyor belt

suffices that is synchronized to the user’s gait. For two-dimensional motion, one

may for instance enclose the user in a huge sphere that can rotate freely on a

mounting base. The base may include motion sensors, such as in the case of Virtu-

Sphere Inc.’s VirtuSphere, which is sold in single units to professional users. Also

prohibitively expensive for home gaming, hydraulic seats such as the D-Box GP

PRO-200 series push, pull, and tilt the user’s seat to simulate the joggling on a rough

road or the g-forces during a jet plane’s U-turn. At the other end of the price scale

one finds such systems as the SmartCycle manufactured by Fisher-Price. This home-

trainer style stationary bike contains a computer to be connected to a TV set. Riding

the bike, children can take tours through ‘‘Math Mountain,’’ along ‘‘Letter Creek,’’

or engage in other educational games.

The ‘‘Artwork formerly known as PainStation’’—renamed due to legal issues—

by Volker Morawe and Tilman Reiff whips each of the two players depending on the

process of the game. On the fringe of the domain of tactile interfaces lies the output

FIG. 8. The 3rd SpaceTM vest provides computer-controlled pushes to the user’s torso to simulate

impacts. Image © 2008 TN GamesÒ. Used with permission.

106 J. LOVISCACH
of an air draft. The computer-controlled fans of Philips’ amBX system, see Fig. 7,

are intended to provide better immersion for instance in racing games. It has to be

noted, though, that already the Videorama system of the 1950 used wind. For more

background and a current use example see Moon and Kim [51].
13. Kinetic Devices and Robots

Currently, tangible user interfaces mostly address input. The output of physical
motion [52], however, is only rarely used in common computer applications. It can

be accomplished through simple actuators such as servo motors or through devices

as complex as a humanoid robot.

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 107
Puppets equipped with sensors and actuators may for instance be used in a boxing

game, even though the implementation put forward by Shimizu et al. [53] mostly

concerns motion input; the output consists of vibration. Extending the idea of

tracking the users’ actions from below a translucent table (see Section 5), one can

employ the projector to control palm-sized robots placed on the surface. The

computer produces specific graphical patterns below every robot; the robots detect

these patterns through light sensors and move in a way that is prescribed by the

respective pattern [54].

As opposed to industry robots, many robots for the home can be considered

‘‘smart toys,’’ and hence games, even though the objectives and the rules of the

game are not rigidly defined. From 1999 to 2006, Sony manufactured three different

generations of the robotic dog AIBO, which sold for approximately US $2000.

A related, but simpler product currently sold is the dinosaur-shaped Ugobe Pleo,

priced at about US $350, see Fig. 9.Whereas motion output is the primary interaction

mode of such robots, they contain lots of sensors to autonomously generate plausible

behavior. Both AIBO and Pleo can be programmed with the help of freely available

software development kits. This allows such applications as the AIBO turning its

head to a talking human and produce idle motion to simulate intense listening [55].
FIG. 9. Smart toys such as Pleo, an autonomous dinosaur-shaped robot, can be considered a special

kind of computer game interfaces. Image © 2008 UGOBE. Used with permission.

108 J. LOVISCACH
14. Biosignal Sensors

In the realm of Affective Computing, a number of biosignals has been put forward

for automated emotion detection. These comprise the electrical conductivity of the

skin (‘‘galvanic skin response’’), the heart beat rate as well as the rate and the volume

of breath. For a study of short-term responses of a number of signals see Ravaja et al.

[56]. Such signals can be employed to adapt a game to the emotional state of the

user [8] or to use that state to control the game [57]. In a biathlon-type game [58], the

heart beat rate may increase skiing speed but reduce shooting precision. Similar signals

can also be applied for relaxation purposes. The biofeedback game ‘‘The Journey

to the Wild Divine: The Passage’’ (Wild Divine Project, 2003) comes with three

finger sensors to measure skin conductivity and heart rate.

The electrical potentials of the brain present a much more complex vein of

biosignals. Their widespread use was long hampered by the complex pattern analy-

sis required and by the cumbersome and expensive EEG technology needed to

measure them. About a dozen up to more than hundred electrodes are planted in a

defined geometric pattern on a subject’s head. Typically, gel is applied below the

electrodes to improve contact. The electrodes’ output amounts to voltages as small

as the millionth fraction of a volt; it is fed into highly sensitive amplifiers that

contain strong filters to suppress power line hum.

The waveforms of EEG data easily give away if the user is awake and if his or her

eyes are open. Parameters such as the general alertness of the user may be extracted

in addition to parameters he or she can easily control voluntarily. Both types of

parameters can be exploited in game design [59]. Active triggers comprise the

response to visual input or to a rare event, imagined motion, and movement

preparation [60]. Since such activities of the brain are not easy to recognize with

help of a computer, one typically employs training. First, machine-learning algo-

rithms on the computer can be trained by presenting known data from a user.

Second, the user can learn to adapt to the system; similar to biofeedback training,

the system informs the user how well he or she performs.

Only adapting the machine to the user and not vice versa is hard: Krepki et al. [61]

employ a cap with 128 electrodes plus further measurement channels. A simpler

solution may be to train both the user and the system to cooperate. Together with

high integration, mass production, wireless and gel-less electrode caps this could

pave the way to the use of brain–computer interface techniques in games. This is the

objective of the manufacturer Emotiv that plans to sell the EEG-based input device

called EPOC in 2009 for a price of less than US $300, see Fig. 10. In the demonstra-

tions given so far, the 16-electrode system employed a game-like scenario to adapt

the user to the system and vice versa. It comes with driver software that can signal

FIG. 10. The Emotiv EPOC hardly resembles the bulky EEG caps used in traditional systems. Image

© 2008 Emotiv Systems. Used with permission.

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 109
cognitive intent such as lifting an object, basic emotions such as excitement and

facial expressions such as eye winking and smiling. A basic version of the software

development kit needed to build application software that leverages these data is

available free of charge. A gyroscope in the cap may detect nod and shake motion.

Also the manufacturer NeuroSky announced a series of EEG-based gaming input

devices, called ThinkGear, MindSet, and MindBuilder. According to the little

information that is publicly available at press time, these employ a single EEG

channel and output percentage levels of brain states called ‘‘attention’’ and

‘‘meditation.’’

A sibling to EEG, electromyography (EMG) records the signals controlling a

muscle. It may for instance be used to create subtle interfaces that can be operated

for instance by tensing the biceps without moving the arm, like in an isometric

FIG. 11. OCZ Technology Group’s Neural Impulse Actuator comprises a headband with three elec-

trodes. Image © 2008 OCZ Technology Inc. Used with permission.

110 J. LOVISCACH
exercise [62]. OCZ Technology Group’s Neural Impulse Actuator, sold for about US

$130, employs three sensors in a headband to collect a mixture of EEG and EMG data,

see Fig. 11. The software accompanying the device allows mapping the signals to

keystrokes, simulating joystick motion and hence controlling almost any software.

Games rarely deal directly with the inner chemistry of the human body. The game

Glucoboy (Guidance Interactive Healthcare, 2007) is exceptional in this respect. To

be used by young gamers who suffer from diabetes, it comes with a blood glucose

meter that grants access to games or rewards the user with game currency depending

on the measurement results.
15. Conclusion

Games are not as strictly tied to well-known modes of interaction as standard

applications are. They can more easily break with traditional interface devices. And

if they do so, the huge market volume allows to demonstrate otherwise expensive

technologies at affordable prices. In some cases, this can open up broader applica-

tion domains outside of gaming, first due to availability, second due to the public’s

familiarity with the device. Thus, gaming applications can act like both an eye

opener and a dam breaker. At the time of writing, however, this route remained

hypothetical as even the Wii Remote controller or the use of accelerometers in

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 111
general has not made it into standard applications, not even on handheld devices.

Even worse, many attempts to create novel game interfaces such as the P5 data glove

failed already in the gaming market itself.

One may speculate about the success factors. A device has advantages in the

marketplace if it is cheap enough so that prospective users do not mind losing their

investment if they find that it does not work for them. Another decisive point is the

support by a substantial number of games or other applications. Hoping to address

this issue, many manufacturers open up their communication protocols and/or

distribute free software development kits. This may, however, only result in a

number of homegrown software programs that do not address a larger audience.

An often overlooked aspect of a device’s usability is the setup required. For casual

games [63], even plugging in a cord may be too much, let alone finding a place

where to put a secondary box such as with the discontinued P5 data glove. Wireless

technology such as BlueTooth or its new siblings ZigBee and Wireless USB may be

a key enabler here.

Wireless data transmission is also vital in other respects: First, the physicality

introduced into games by some of the new controllers requires wireless connections

to the computer. This trend may grow up to the point where a number of interface

sensors and possibly also actuators are placed all over the user’s body [64]. Second,

wireless connections also allow users to connect on the fly, for instance for casual

gaming on the commuter train or for group gaming in front of the TV set in the

home. Mobile consoles such as Nintendo DS and Sony PlayStation Portable (PSP)

are equipped with WLAN transceivers—as are some mobile phones. Almost all

mobile phones support BlueTooth.

Game programmers are trained to work with input via joystick and keyboard and

output via graphics and audio. Most professional development is based on game

engines that wrap around the basic functions and offer a set of high-level routines for

tasks such as character animation or on-cue sound playback. The novel interface

devices presented in this chapter are, however, only rarely backed by high-level

programming interfaces. And even where this is a case, the programming interfaces

are not integrated with a standard game engine. For instance, triggering the playback

of a sound, starting a vibratory signal, and changing the room’s background illumi-

nation should all be part of a single game event managed by the engine. This vision

calls for middleware solutions that address a broader range of input and output

devices to relieve game programmers from two laborious tasks: first, to deal for

instance with the mathematics of signal processing and pattern classification; sec-

ond, to integrate the different input channels and output channels, which may also

comprise the fusion of data from different sensors for more robust recognition. The

first task is already taken up by companies such as AiLive, who create gesture

recognition middleware, and HaptX, who have developed a haptics engine.

112 J. LOVISCACH
On the side of game design, the novel options require a fresh and deep look at

what a human being is able to sense and to do, see Fisher et al. [65]. For instance,

computer-based workout games were unthinkable in the years of the Pong game, but

nowadays game designers have to look into the short- and long-term effects of

physical exercises. A second key issue for game designers is to combine different

interfaces in an effective and efficient way, which mostly will also be a natural and

intuitive way. Where once the mouse was used to select items and invoke a context

menu, one can now point with one’s finger onto a table-sized screen and speak a

command. This is applicable to control troops in a command-and-conquer-style

strategy game or to characters in The Sims [66].

References

[1] H. Ishii, Tangible bits: Beyond pixels, in: TEI’08: Proceedings of the International Conference on

Tangible and Embedded Interaction, ACM, New York, USA, 2008, pp. xv–xxv.

[2] A. Jaimes, N. Sebe, Multimodal human-computer interaction: A survey, Comput. Vis. Image

Underst. 108 (1–2) (2007) 116–134.

[3] C. Magerkurth, A.D. Cheok, R.L. Mandryk, T. Nilsen, Pervasive games: Bringing computer

entertainment back to the real world, Comput. Entertain. 3 (3) (2005) 4.

[4] G. Essl, M. Rohs, Shamus—A sensor-based integrated mobile phone instrument, in: ICMC’07:

Proceedings of the International Computer Music Conference, 2007.

[5] T. Blaine, The convergence of alternate controllers and musical interfaces in interactive entertain-

ment, in: NIME’05: Proceedings of the Conference on New Interfaces for Musical Expression,

National University of Singapore, Singapore, 2004, pp. 27–33.

[6] S. Tokuhisa, Y. Iwata, M. Inakage, Rhythmism: A VJ performance system with maracas based

devices, in: ACE’07: Proceedings of the International Conference on Advances in Computer

Entertainment Technology, ACM, New York, 2007, pp. 204–207.

[7] C. Stahl, The roaring navigator: A group guide for the zoo with shared auditory landmark display,

in: MobileHCI’07: Proceedings of the International Conference on Human-Computer Interaction

with Mobile Devices and Services, ACM, New York, USA, 2007, pp. 383–386.

[8] T. Saari, N. Ravaja, J. Laarni, M. Turpeinen, Towards emotionally adapted games based on user

controlled emotion knobs, in: DiGRA’05: Proceedings of the International Conference of the Digital

Games Research Association, 2005.

[9] S. Beckhaus, E. Kruijff, Unconventional human computer interfaces, in: SIGGRAPH’04 Course

Notes, 2004.

[10] P. Kortum (Ed.), HCI Beyond the GUI. Design for Haptic, Speech, Olfactory, and other Nontradi-

tional Interfaces, Morgan Kaufmann, Burlington, MA, 2008.

[11] N. Villar, K.M. Gilleade, D. Ramdunyellis, H. Gellersen, The VoodooIO gaming kit: A real-time

adaptable gaming controller, Comput. Entertain. 5 (3) (2007) 7.

[12] S. Jordà, G. Geiger, M. Alonso, M. Kaltenbrunner, The reacTable: Exploring the synergy between

live music performance and tabletop tangible interfaces, in: TEI’07: Proceedings of the International

Conference on Tangible and Embedded Interaction, ACM, New York, 2007, pp. 139–146.

[13] F. Mueller, S. Agamanolis, M.R. Gibbs, F. Vetere, Remote impact: Shadowboxing over a distance,

in: CHI’08: Extended Abstracts on Human Factors in Computing Systems, ACM, New York, 2008,

pp. 2291–2296.

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 113
[14] S. Bucolo, M. Billinghurst, D. Sickinger, User experiences with mobile phone camera game

interfaces, in: MUM’05: Proceedings of the International Conference on Mobile and Ubiquitous

Multimedia, ACM, New York, 2005, pp. 87–94.

[15] T. Schlömer, B. Poppinga, N. Henze, S. Boll, Gesture recognition with a Wii controller, in: TEI’08:

Proceedings of the International Conference on Tangible and Embedded Interaction, ACM, New

York, 2008, pp. 11–14.

[16] D. Jurman, M. Jankovec, R. Kamnik, M. Topic, Calibration and data fusion solution for the

miniature attitude and heading reference system, Sens. Actuators A Phys. 138 (2) (2007) 411–420.

[17] E. Toye, R. Sharp, A. Madhavapeddy, D. Scott, E. Upton, A. Blackwell, Interacting with mobile

services: An evaluation of camera-phones and visual tags, Pers. Ubiquitous Comput. 11 (2) (2007)

97–106.

[18] L. Loke, A.T. Larssen, T. Robertson, Labanotation for design of movement-based interaction,

in: IE2005: Proceedings of the Australasian Conference on Interactive Entertainment, Creativity

& Cognition Studios Press, Sydney, Australia, 2005, pp. 113–120.

[19] D. Hunt, J. Moore, A. West, M. Nitsche, Puppet show: Intuitive puppet interfaces for expressive

character control, in: Mediterra 2006: Proceedings of the International Conference on Gaming

Realities: The Challenge of Digital Culture, 2006, pp. 159–167.

[20] S. Laakso, M. Laakso, Design of a body-driven multiplayer game system, Comput. Entertain. 4 (4)

(2006) 7.

[21] F.F. Mueller, G. Stevens, A. Thorogood, S. O’Brien, V. Wulf, Sports over a distance, Pers.

Ubiquitous Comput. 11 (8) (2007) 633–645.

[22] Y. Wang, T. Yu, L. Shi, Z. Li, Using human body gestures as inputs for gaming via depth analysis,

in: ICME 2008: Proceedings of the International Conference on Multimedia and Expo, 2008,

pp. 993–996.

[23] Z. Zeng, M. Pantic, G.I. Roisman, T.S. Huang, A survey of affect recognition methods: Audio, visual

and spontaneous expressions, in: ICMI’07: Proceedings of the International Conference on Multi-

modal Interfaces, ACM, New York, 2007, pp. 126–133.

[24] E. Vendrovsky, I. Neulander, Markerless facial motion capture using texture extraction and nonlinear

optimization, in: SIGGRAPH’06: ACM SIGGRAPH 2006 Sketches, ACM, New York, 2006, p. 27.

[25] D. Wagner, T. Pintaric, D. Schmalstieg, The invisible train: Collaborative handheld augmented

reality demonstrator, in: SIGGRAPH’04: ACM SIGGRAPH 2004 Emerging Technologies, ACM,

New York, 2004, p. 2.

[26] D. Wagner, D. Schmalstieg, First steps towards handheld augmented reality, in: ISWC’03: Proceed-

ings of the 7th IEEE International Symposium on Wearable Computers, IEEE Computer Society,

Washington, DC, 2003, p. 127.

[27] A. Henrysson, M. Billinghurst, M. Ollila, Face to face collaborative AR on mobile phones,

in: ISMAR’05: Proceedings of the IEEE/ACM International Symposium on Mixed and Augmented

Reality, IEEE Computer Society, Washington, DC, 2005, pp. 80–89.

[28] O. Rath, J. Schöning, M. Rohs, A. Krüger, Sight quest: A mobile game for paper maps,

in: Intertain (Ed.), INTETAIN 2008: Adjunct Proceedings of the 2nd International Conference on

Intelligent Technologies for interactive entertainmen, 2008.

[29] V. Paelke, C. Reimann, D. Stichling, Foot-based mobile interaction with games, in: ACE’04:

Proceedings of the ACM SIGCHI International Conference on Advances in Computer Entertain-

ment Technology, ACM, New York, 2004, pp. 321–324.

[30] E. Jönsson, If looks could kill—An evaluation of eye tracking in computer games, Master’s Thesis at

the School of Computer Science and Engineering, Royal Institute of Technology, Stockholm, 2005.

114 J. LOVISCACH
[31] G. Yahav, G.J. Iddan, D. Mandelboum, 3D imaging camera for gaming application, in: ICCE’07:

Digest of Technical Papers of the International Conference on Consumer Electronics, 2007.

[32] Y. Pekelny, C. Gotsman, Articulated object reconstruction and markerless motion capture from

depth video, Comput. Graph. Forum 27 (2008) 399–408.

[33] B. Eissfeller, G. Ameres, V. Kropp, D. Sanroma, Performance of GPS, GLONASS and Galileo,

in: Photogrammetrische Woche, 2007, pp. 185–199.

[34] G. Lachapelle, Pedestrian navigation with high sensitivity GPS receivers and mems, Pers. Ubiqui-

tous Comput. 11 (6) (2007) 481–488.

[35] A. Varshavsky, M.Y. Chen, E. de Lara, J. Froehlich, D. Haehnel, J. Hightower, A. LaMarca,

F. Potter, T. Sohn, K. Tang, I. Smith, Are GSM phones the solution for localization?

in: WMCSA’06: Proceedings of the IEEE Workshop on Mobile Computing Systems & Applica-

tions, IEEE Computer Society, Washington, DC, 2006, pp. 20–28.

[36] O. Rashid, I. Mullins, P. Coulton, R. Edwards, Extending cyberspace: Location based games using

cellular phones, Comput. Entertain. 4 (1) (2006) 4.

[37] E. Bruns, B. Brombach, T. Zeidler, O. Bimber, Enabling mobile phones to support large-scale

museum guidance, IEEE MultiMedia 14 (2) (2007) 16–25.

[38] A. Butz, J. Baus, A. Kruger, Augmenting buildings with infrared information, in: ISAR’00: Pro-

ceedings of the International Symposium on Augmented Reality, 2000, pp. 93–96.

[39] L.M. Ni, Y. Liu, Y.C. Lau, A.P. Patil, LANDMARC: Indoor location sensing using active RFID,

Wirel. Netw. 10 (6) (2004) 701–710.

[40] O. Rashid, W. Bamford, P. Coulton, R. Edwards, J. Scheible, PAC-LAN:Mixed-reality gaming with

RFID-enabled mobile phones, Comput. Entertain. 4 (4) (2006) 4.

[41] B. Jung, A. Schrader, D.V. Carlson, Tangible interfaces for pervasive gaming, in: DiGRA’05: Proceed-

ings of the International Conference of the Digital Games Research Association, 2005.

[42] C. Cruz-Neira, D.J. Sandin, T.A. DeFanti, Surround-screen projection-based virtual reality: The

design and implementation of the cave, in: SIGGRAPH’93: Proceedings of the Conference on

Computer Graphics and Interactive Techniques, ACM, New York, 1993, pp. 135–142.

[43] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, C. Cruz-Neira, VR Juggler: A virtual

platform for virtual reality application development, in: VR’01: Proceedings of the Virtual Reality

Conference, IEEE Computer Society, Washington, DC, 2001, pp. 89–96.

[44] B. Avery, W. Piekarski, J. Warren, B.H. Thomas, Evaluation of user satisfaction and learnability for

outdoor augmented reality gaming, in: AUIC’06: Proceedings of the Australasian User Interface

conference, Australian Computer Society, Inc, Darlinghurst, Australia, 2006, pp. 17–24.

[45] J. Scott, B. Dragovic, Audio location: Accurate low-cost location sensing, in: PERVASIVE’05:

Proceedings of the International Conference on Pervasive Computing, Springer LNCS 3468, 2005,

pp. 1–18.

[46] S.N. Patel, G.D. Abowd, BLUI: Low-cost localized blowable user interfaces, in: UIST’07:

Proceedings of the ACM Symposium on User Interface Software and Technology, ACM, New

York, 2007, pp. 217–220.

[47] N. Rober, M. Masuch, Playing audio-only games: A compendium of interaction with virtual,

auditory worlds, in: DiGRA’05: Proceedings of the International Conference of the Digital Games

Research Association, 2005.

[48] M. Eid, M. Orozco, A.E. Saddik, A guided tour in haptic audio visual environments and applications,

Int. J. Adv. Media Commun. 1 (3) (2007) 265–297.

[49] E. Hoggan, S.A. Brewster, J. Johnston, Investigating the effectiveness of tactile feedback for mobile

touchscreens, in: CHI’08: Proceeding of the SIGCHI Conference on Human Factors in Computing

Systems, ACM, New York, 2008, pp. 1573–1582.

HUMAN–COMPUTER INTERFACE DEVICES FOR GAMES 115
[50] A. Shahrokni, J. Jenaro, T. Gustafsson, A. Vinnberg, J. Sandsj, M. Fjeld, One-dimensional force

feedback slider: Going from an analogue to a digital platform, in: NordiCHI’06: Proceedings of the

Nordic Conference on Human-Computer Interaction, ACM, New York, 2006, pp. 453–456.

[51] T. Moon, G.J. Kim, Design and evaluation of a wind display for virtual reality, in: VRST’04:

Proceedings of the ACM Symposium on Virtual Reality Software and Technology, ACM, New

York, 2004, pp. 122–128.

[52] A. Parkes, I. Poupyrev, H. Ishii, Designing kinetic interactions for organic user interfaces, Commun.

ACM 51 (6) (2008) 58–65.

[53] N. Shimizu, N. Koizumi, M. Sugimoto, H. Nii, D. Sekiguchi, M. Inami, A teddy-bear-based robotic

user interface, Comput. Entertain. 4 (3) (2006) 8.

[54] M. Kojima, M. Sugimoto, A. Nakamura, M. Tomita, M. Inami, H. Nii, Augmented coliseum: An

augmented game environment with small vehicles, in: TABLETOP’06: Proceedings of the IEEE

International Workshop on Horizontal Interactive Human-Computer Systems, IEEE Computer

Society, Washington, DC, 2006, pp. 3–8.

[55] J.D. Decuir, T. Kozuki, V. Matsuda, J. Piazza, A friendly face in robotics: Sony’s AIBO entertain-

ment robot as an educational tool, Comput. Entertain. 2 (2) (2004) 14.

[56] N. Ravaja, T. Saari, J. Laarni, K. Kallinen, M. Salminen, The psychophysiology of video gaming:

Phasic emotional responses to game events, in: DiGRA’05: Proceedings of the International

Conference of the Digital Games Research Association, 2005.

[57] R. Bernhaupt, A. Boldt, T. Mirlacher, D. Wilfinger, M. Tscheligi, Using emotion in games:

Emotional flowers, in: ACE’07: Proceedings of the International Conference on Advances in

Computer Entertainment Technology, ACM, New York, 2007, pp. 41–48.

[58] V. Nenonen, A. Lindblad, V. Häkkinen, T. Laitinen, M. Jouhtio, P. Hämäläinen, Using heart rate to

control an interactive game, in: CHI’07: Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, ACM, New York, 2007, pp. 853–856.

[59] A. Nijholt, D. Tan, Playing with your brain: Brain-computer interfaces and games, in: ACE’07:

Proceedings of the International Conference on Advances in Computer Entertainment Technology,

ACM, New York, 2007, pp. 305–306.

[60] R. Krepki, G. Curio, B. Blankertz, K.R. Müller, Berlin Brain-computer interface—The HCI com-

munication channel for discovery, Int. J. Hum. Comput. Stud. 65 (5) (2007) 460–477.

[61] R. Krepki, B. Blankertz, G. Curio, K.R. Müller, The Berlin brain-computer interface (BBCI)—

Towards a new communication channel for online control in gaming applications, Multimedia Tools

Appl. 33 (1) (2007) 73–90.

[62] E. Costanza, S.A. Inverso, R. Allen, Toward subtle intimate interfaces for mobile devices using an

EMG controller, in: CHI’05: Proceedings of the SIGCHI Conference on Human Factors in Comput-

ing Systems, ACM, New York, 2005, pp. 481–489.

[63] IGDA Casual Games SIG, Casual games white paper, 2006, http://www.igda.org/wiki/index.php/

Casual_Games_SIG/Whitepaper.

[64] E. Farella, A. Pieracci, L. Benini, L. Rocchi, A. Acquaviva, Interfacing human and computer with

wireless body area sensor networks: The WiMoCA solution, Multimedia Tools Appl. 38 (3) (2008)

337–363.

[65] B. Fisher, S. Fels, K. MacLean, T. Munzner, R. Rensink, Seeing, hearing, and touching: Putting it all

together, in: SIGGRAPH’04 Course Notes, 2004.

[66] E. Tse, S. Greenberg, C. Shen, C. Forlines, Multimodal multiplayer tabletop gaming, Comput.

Entertain. 5 (2) (2007) 12.

http://www.igda.org/wiki/index.php/Casual_Games_SIG/Whitepaper
http://www.igda.org/wiki/index.php/Casual_Games_SIG/Whitepaper

A Status Report on the P Versus
NP Question
ADVAN

ISSN: 00
ERIC ALLENDER
Department of Computer Science, Rutgers University,
New Brunswick, New Jersey 08855, USA
Abstract
We survey some of the history of the most famous open question in computing:

the P versus NP question. We summarize some of the progress that has been

made to date, and assess the current situation.
1.
 P
rologue . 118
2.
 W
hat Is the ‘‘P 5 NP?’’ Problem? . 119
2
.1.
CE

65
W

S

-2
hat Is an Efficient Reduction? . 120
2
.2.
 W
hy Is This an Audacious Notion? . 121
2
.3.
 W
hy Was This Such a Big Deal? . 123
2
.4.
 C
omplexity Classes . 124
2
.5.
 T
he Class NP . 125
2
.6.
 S
ubclasses of P . 127
2
.7.
 W
hat Is the ‘‘P 5 NP?’’ Problem? . 128
3.
 W
hy Is the ‘‘P 5 NP?’’ Problem Important? 129
3
.1.
 C
ryptography . 129
3
.2.
 U
nderstanding the World . 130
4.
 W
hat Progress Has Been Made in the Past 30 Years? 131
4
.1.
 S
mall Circuits and the Polynomial Hierarchy 131
4
.2.
 I
nteractive Proofs and Probabilistically Checkable Proofs 133
4
.3.
 H
ardness of Approximation . 136
4
.4.
 A
M and NP . 136
4
.5.
 A
verage-Case Complexity . 137
IN COMPUTERS, VOL. 77 117 Copyright © 2009 Elsevier Inc.

458/DOI: 10.1016/S0065-2458(09)01204-2 All rights reserved.

118 E. ALLENDER
4
.6. T
ime–Space Tradeoffs . 138
4
.7. T
he Isomorphism Conjecture . 138
5.
 W
here Are We now? (Barriers to Progress) 140
5
.1. N
onrelativizing Proof Techniques . 140
5
.2. N
atural Proofs . 141
6.
 C
onclusions: What Would a Solution Mean? 141
A
cknowledgment . 143
R
eferences . 143

1. Prologue

Does the world really need another survey of the P versus NP question? There are

excellent textbooks that deal with this topic at length (here is a partial list [1–4]) and

there have been a number of short survey articles by eminent authors [5–9]—not to

mention the excellent series of NP-completeness columns written by David Johnson

[10] that serve as an on-going ‘‘status report’’ on the P versus NP question. What

reasons can be given, to justify spending time and effort in creating yet another

overview of this topic?

First, I must confess to a selfish motive. I love computational complexity theory,

and I think that the world is a better place if more people have the opportunity to

learn something about the topic. The Advances in Computer Science series has a

venerable pedigree and has published wonderful papers about progress on many

exciting topics, but there has not been an update on the P versus NP problem in this

series. I see this is an opportunity to claim some prime real estate and use it for a

noble purpose: to trumpet the news that there has been thrilling and spectacular

progress on several fronts in complexity theory. We have learned that the world of

complexity is, in some ways, a much stranger place than anyone could have

suspected back in the early days of the field. (In particular, the theory of probabilis-

tically checkable proofs has led to very counterintuitive conclusions.) Simulta-

neously, the overarching lesson is that the computational universe exhibits much

more structure than we should have had any right to hope for; a surprisingly small

collection of tools allows us to categorize the overwhelming majority of computa-

tional problems that we really want to understand. How could I toss aside an

opportunity to spread the good news about complexity theory?

Second, the editor’s plea was hard to refuse:

I am interested in a chapter on complexity theory and the chronology of the ‘‘P¼NP?’’

problem—What is it? Why is it important? What has been done over the past 30 years?

And what is its current status? Has any progress been made since I was a graduate

A STATUS REPORT ON THE P VERSUS NP QUESTION 119
student? What is the impact if we do solve the question? What would it mean in the

long run if P ¼ NP? if P is not equal to NP? if it is proven undecidable if P ¼ NP?

This is an excellent list of questions. In fact, it provides me with a ready-made

outline for this chapter. Surely there are many readers of the Advances in Computer
Science series that share his feelings and questions. How could I turn my back on

such a need?

But the third and final reason is this: The P versus NP problem deals with the

central mystery of computation. The story of the long assault on this problem is our

Iliad and our Odyssey; it is the defining myth of our field. Just as authors throughout

history have returned time and again to the classic heroic tales to reveal new aspects

of the human condition, so do complexity theoreticians take up the task of retelling

the story of the P versus NP question from different perspectives. Most of the main

plot developments that will be recounted here have been described quite well in the

surveys that I list in the first paragraph of this prologue. I will try not to duplicate the

efforts of the authors of those surveys. In particular, I will not give a detailed history

of the past 30 years in complexity theory; the reader should consult Ref. [9] for an

excellent exposition of many of the developments that I discuss here, providing a

more detailed bibliography and many interesting insights. I do not claim that this

version of the story is superior to any of the recent surveys cited above—but at least

it is different from all of them, and brings out certain parts of the story that need to be

told. A great story is always worth retelling.
2. What Is the ‘‘P 5 NP?’’ Problem?

In the beginning, there was the reduction.

The story of NP-completeness begins with the story of the unreasonable effec-

tiveness of reducibility as a tool to characterize the complexity of computational

problems that we really care about solving. Prior to the breakthroughs of Cook [11],

Levin [12], and Karp [13], many of the fundamental properties of computational

complexity had already been worked out. For instance:

l The complexity of a problem f can be measured in terms of the size of the

smallest circuit computing f [14] or in terms of the running time of a program

computing f [15].

l ‘‘Most’’ functions on n input bits require circuits of nearly maximal (exponential)

size [14].

120 E. ALLENDER
l For ‘‘nice’’ time bounds t < T, programs running in time T can accomplish

more than programs running in time t [15] (and the restriction to ‘‘nice’’ time

bounds is essential [16]).

l It is tricky (but not impossible) to formalize the notion of a ‘‘tight lower bound’’

on the running time required to compute a function [17], because some problems

provably have nothing remotely like an ‘‘optimal’’ algorithm [18].

All of this was lovely and important—but something vital was missing. Nobody had

any idea how to say anything concrete about the computational complexity of any

natural problem. (The word ‘‘natural’’ appears over and over again in the literature of

computational complexity, although it seems impossible to give an adequate definition

of what people mean when they refer to problems being ‘‘natural.’’ A good rule of

thumb is that a function f is a ‘‘natural’’ computational problem if you can imagine

someone being paid to produce a program or a circuit that computes f. The functions f
that are shown to be hard to compute via diagonalization arguments [15, 18] fail this

test of ‘‘naturalness.’’) Thus the field of computational complexity, which by rights

should lie at the heart of our understanding of practical computation, instead was

perched perilously close to the no-man’s-land of irrelevance.

This is what changed as a result of the work of Cook, Levin, and Karp [11–13].

Their work introduced an audacious new tool: efficient reductions among computa-
tional problems. At this point we need to do three things:

1. Explain what an efficient reduction is

2. Explain why this is an audacious notion

3. Explain why this was such a big deal
2.1 What Is an Efficient Reduction?

Let us focus on the most basic and most useful version of reducibility: An efficient
reduction is a function (i.e., a transformation that takes a bit string as input and

produces a bit string as output) that is ‘‘easy to compute.’’ Initially (in the work of

Cook, Levin, and Karp) attention centered on polynomial-time reducibility, meaning

that a reduction f was considered ‘‘easy’’ if f(x) could be computed in time at most

p(n), where n is the length of the input string x, and p is a polynomial. We will also

consider other notions of ‘‘easy’’ later on.

To talk about ‘‘reducibility among computational problems’’ using this notion of

‘‘reduction,’’ it is convenient to limit our attention to computational problems that

produce a ‘‘yes’’ or ‘‘no’’ answer (such as the problem of taking a graph as input and

determining if the graph is connected, or taking (the binary representation of) a

number as input and determining if the number is composite). Most computational

A STATUS REPORT ON THE P VERSUS NP QUESTION 121
problems can easily be restated in this way. Thus a computational problem can be

viewed as a set: namely, we can identify a computational problem with the set of

input instances x for which the correct output is ‘‘yes.’’

Given two computational problems A and B, we say that A is efficiently reducible
to B if there is an efficient reduction f such that x is in A if and only if f(x) is in B. That
is, input instances of problem A can be ‘‘easily’’ encoded as input instances of

problem B; knowing the answer as to whether or not f xð Þ 2 B yields the answer of

whether x is in A. Many people find the name ‘‘reduction’’ confusing. The use of this

term traces back to the notion of ‘‘reducing’’ fractions (such as rewriting 2/4 as 1/2).

My battered edition of Webster’s Dictionary [19] characterizes this as a process ‘‘to

change (an expression) to an equivalent but more fundamental expression.’’ Thus a

reduction f showing that A is reducible to B is a way to change an instance of A into an

equivalent instance of B; we are ‘‘distilling’’ the computational essence of

problem A, and showing that, at heart, it consists of nothing much more complicated

than B.
The notion of reducibility is much older than complexity theory. The concept of a

mapping on bit strings inducing a ‘‘reduction’’ from one computational problem to

anotherwas already firmly established as a tool for showing that certain problems could

not be solved by computer programs (regardless of the running time). See any textbook

on computability theory (such as [20]) formore background. The work of Cook, Levin,

and Karp merely hijacked this well-known notion, and imposed time bounds.

2.2 Why Is This an Audacious Notion?

On the face of things, the notion of polynomial-time reducibility does not seem

like a very promising way to forge a link between practical concerns of real-world

computing and the abstract theory of computational complexity. According to this

definition, a function f that takes inputs of length n and requires n1;000;000 computa-

tional steps to compute is to be considered ‘‘easy to compute,’’ even though the sun

would most likely have become extinct long before any computing device would

have a chance to compute f(x) for inputs x consisting of even a handful of bits. How

can anyone be serious in proposing such a preposterous definition of ‘‘easy to

compute’’?

The reason behind this fraud is quite simple: It is convenient to maintain the

fiction that if f and g are easy to compute, then it should also be easy to compute

f g xð Þð Þ. This makes ‘‘reducibility’’ a transitive relation, so that if A is reducible to B
and B is reducible to C, then A is also reducible to C. There are many classes of

functions that one could use that would have this property. For instance, we could

consider a function to be ‘‘easy to compute’’ only if it could be computed in time

linear in the input length, or we could restrict attention to running time bounded by

122 E. ALLENDER
O n logk n
� �

for different values k. These notions have been studied, but they have

not turned out to be nearly as useful in characterizing ‘‘natural’’ problems as

polynomial-time reducibility has.

Focusing on polynomial-time reducibility brings other benefits, too. There are

lots of computer programs in wide use that run for time n2 on inputs of size n. One
would not want to exclude such transformations from the class of ‘‘easy’’ functions.

But once one allows quadratic time, there is no easy way to avoid allowing arbitrary

polynomial time; a function f computable in time n2 may produce output of size n2.
Thus computing f f xð Þð Þ will take time n4, and the reader can easily see where this
leads. If the composition of two ‘‘easy’’ functions is to be considered ‘‘easy,’’ then

one is led quite quickly to consider all polynomial-time-computable functions as

being ‘‘easy.’’

Another benefit of basing complexity theory on polynomial time is that, when we

are measuring run-time, we are freed from (almost all) concerns about being specific

about the type of computing device that our programs are running on, as well as what

language the programs are written in, etc. This is because, in the history of comput-

ing thus far, almost all ‘‘real-world’’ notions of computing that have been proposed

can easily be simulated with only a polynomial slow-down by Turing machines.

This is sometimes referred to as the ‘‘Invariance Thesis’’ [21] or the ‘‘Strong

Church-Turing Thesis’’ [22, 23]. (Do not worry if you do not know what Turing

machines are; think of them as a particularly simple programming language and

machine architecture. Occasionally one hears an objection to the Turing machine

model, indicating that Turing machines are more powerful than physical computa-

tional devices, since they come equipped with an infinite memory. However, this

objection misses the point. Programs are typically written to handle inputs of any
length; if a program is run on a machine with very limited memory the program may

be unable to execute properly on very large inputs, although the same program

would run fine on a machine that has more memory. Turing machines are intended to

model programs, rather than machines; the existence of a fast program for a given

problem is equivalent to the existence of a fast Turing machine for the problem.

Rather than thinking of Turing machines as being more powerful than physical

computers, it is more accurate to think of Turing machines as being a very restricted
class of programs.)

The Strong Church-Turing Thesis is not universally accepted. Probabilistic

computation (augmenting computers with a source of random bits [24]) and quan-

tum computing (see the work of Shor [25] for insight into the power of this model)

have both been proposed as physically realizable programming paradigms that

might provide more computational power. There are good reasons for considering

A STATUS REPORT ON THE P VERSUS NP QUESTION 123
these and other models of computation, and there are good reasons for being

skeptical about whether problems computable in polynomial time are truly

feasible, but there is no doubt about the fact that the class of problems solvable in

polynomial time now occupies a central position in the way that we understand

computation.
Definition 1
The class P consists of all computational problems A for which there is a
polynomial p and a Turing machine that takes input x of length n and determines
whether x is in A, in time bounded by p(n).

It is certainly not true that all problems in P are easy to compute. The value of the

definition lies in the fact that there is good reason to consider problems that do not lie
in P to be hard to compute.
2.3 Why Was This Such a Big Deal?

Efficient reducibility provided the first useful abstraction that enabled us to make

sense of a chaotic universe of computational problems. Prior to the development of

this tool, it was known that some problems had efficient algorithms while no

efficient algorithms had been discovered for other problems, but there was no way

to estimate the likelihood of an efficient algorithm being found, if none was already

known.

In what sense does efficient reducibility provide an abstraction? If A is efficiently

reducible to B, and B is efficiently reducible to A, then in a very meaningful sense, A
and B are ‘‘equivalent’’—they are merely two different ways of looking at the same

problem. Thus instead of infinitely many different apparently unrelated computa-

tional problems, one can deal instead with a much smaller number of classes of

equivalent problems. Technically, there are still infinitely many of these classes; it is

known that for any problem A that lies outside P there are infinitely many classes

that lie ‘‘between’’ P and A [26, 27]—but these constructions rely on ‘‘unnatural’’

computational problems, which are not the computational problems that people

really care about. The amazing fact (which is also amazingly useful) is that ‘‘natu-

ral’’ computational problems tend to clump into just a few equivalence classes. This

was completely unexpected. Nothing had prepared the computing community for

the shocking insight that there are really just a handful of fundamentally different
computational problems that people want to solve.

124 E. ALLENDER
2.4 Complexity Classes

The story just keeps getting better. Not only is there a framework of classes of

equivalent problems that helps us partition natural computational problems into

meaningful groups, but many of these equivalence classes correspond in a meaning-

ful way to resource bounds.

Let us illustrate this by means of an example. Consider the problem of computing

optimal next moves in a game of checkers. (Checkers is played on an 8-by-8 grid; we

actually consider the generalized problem that is played on an n-by-n grid.) Optimal

strategies for n-by-n checkers can be computed in time exponential in n, and thus

this problem lies in the class known as EXP (for ‘‘exponential time’’). It turns out

that Checkers is also a canonical problem for EXP, in the following sense:

every problem A 2 EXP is polynomial-time reducible to Checkers [28]. That is, every

problem in EXP can be rephrased as a problem of finding an optimalmove in a game of

checkers. This is a specific case of a very general phenomenon, known as ‘‘hardness.’’
Definition 2
Let C be a class of computational problems. A set A is hard for C if B is
polynomial-time reducible to A for every set B 2 C.
Definition 3
Let C be a class of computational problems. A set A is complete for C if A is hard
for C and A 2 C.

Thus Checkers is complete for EXP. This means that the computational complex-

ity of this problem is fairly well understood; it can be solved in exponential time, and

it cannot be solved in time much less than 2n because

l It is known [15] that there is some problem A in EXP that requires time O 2nð Þ:
l By completeness, A is reducible to Checkers in time nk for some k.

l If Checkers were solvable in time less than 2n
1=k
, the reduction from (b) would

yield an algorithm for A that runs too quickly, violating the lower bound (a).

If only things were always this nice! Next, we consider a completeness theorem

that produces a much less satisfactory result.

Consider the problem of determining if two regular expressions (i.e., the type of

expression that is used in the tool ‘‘grep’’) are equivalent (in the sense that they

denote the same regular set). This problem is complete for PSPACE (the class of

problems that can be solved by Turing machines using at most p(n) memory

A STATUS REPORT ON THE P VERSUS NP QUESTION 125
locations on inputs of length n, for some polynomial p) [29]. This is quite similar in

spirit to the claim that Checkers is complete for EXP, and we can still legitimately

claim that determining equivalence of regular expressions is a canonical problem for

PSPACE and in some sense is one of the most difficult problems in PSPACE—but

there is a significant difference. We do not know if PSPACE is equal to P, and thus

we cannot (currently) conclude anything about the time that is required of programs

that solve this problem.

. . . But there is more to be learned from this example. Even though we cannot

currently prove that programs require exponential time to solve the regular expres-

sion equivalence problem, we can say that it would be a dramatic breakthrough if

any subexponential-time algorithm for this problem were to emerge. It would imply

similarly fast algorithms for every PSPACE-complete problem (and many such

problems are known, all of which have resisted fast algorithmic solution), and it

would mean that any problem that can be solved by an algorithm that uses nk

memory (including algorithms that search through all 2n
k
strings in a large search

space looking for possible solutions to a problem) can be solved fairly quickly, in

time much less than is required to examine a search space of size 2n
k
. It seems

inconceivable that this should be possible, although we still have no formal proof

that it is really impossible. Taken together, this is very strong evidence that the

regular expression equivalence problem is hard to compute, even if it falls short of

the standard of a real proof.

P, PSPACE, and EXP are three important examples of complexity classes: classes
of computational problems that consist of all of the problems that can be computed

using a certain amount of some computational resource (such as time or memory).

Unfortunately, many important natural problems do not seem to be complete for any

class that is defined in terms of bounding computational resources on realistic models

of computation. This motivates turning to unrealistic models of computation.
2.5 The Class NP

Not only did Cook, Levin, and Karp introduce efficient reducibility as a useful

tool for classifying the complexity of natural problems, but they also focused

attention on the one complexity class that has turned out to be more useful than

any other: NP.

Unlike the complexity classes that have been discussed thus far (P, PSPACE,

EXP), NP is not defined in terms of computation on machines that are intended to

model real-world computing. A nondeterministic machine that runs in time t is
provided with access to a ‘‘magic word’’ m of length t, in addition to its ordinary

input x. We say that the machine accepts input x if there is any word m that could be

126 E. ALLENDER
provided to it, that would cause the computation on input (x, m) to output 1.

Otherwise, we say that the machine rejects its input x. Note that this is roughly the

same thing as allowing a machine to search through all of the 2t words of length t,
looking for a solution that would cause it to output 1. However, we say that the

running time of the machine is t, instead of the time 2t that it would take to search

through the entire list of possibilities deterministically. Viewed another way, a

nondeterministic machine running in time t on input x starts running 2t computations

simultaneously in parallel (one computation for each different choice of the ‘‘magic

word’’ m), and accepts if any of the 2t computations outputs 1. It is useful to think of

the ‘‘magic word’’ m as a ‘‘proof’’ that the input x should be accepted.

On the face of things, this looks like a really goofy model of computation. But it is

exactly the right model of computation to use, if we want to understand a host of

important computational problems.
Definition 4
The class NP consists of all computational problems A for which there is a
polynomial p and a nondeterministic machine running in time p(n) on inputs of
length n, that accepts input x if and only if x 2 A.

A few hundred of the most important NP-complete problems can be found in the

standard reference work by Garey and Johnson [30]. Some of the most familiar of

these are

l SAT (the set of Boolean formulae that have a satisfying assignment)

l CLIQUE (the set of pairs (G, k), where G is a graph for which there is a subset

of k vertices, all of which are connected to each other)

l 3-COLORABILITY (the set of graphs G whose vertices can be colored Red,

Green, and Blue, such that no edge has endpoints with the same color)

Note that, for these three examples, it is easy to see what the ‘‘magic word’’

would be that provides a proof of membership. For SAT it would be a satisfying

assignment (which can easily be checked to see that it is, indeed, a satisfying

assignment); for CLIQUE it would be a set of k vertices; for 3-COLORABILITY

it would be an assignment of colors to the vertices.

It is hard to overstate the usefulness of NP-completeness as a tool for understand-

ing the apparent intractability of many problems that we would dearly love to be able

to solve with computers. In 1997, Papadimitriou wrote [8]:

. . . about 6,000 papers each year have the term ‘‘NP-complete’’ on their title, abstract,
or list of keywords. This is more than each of the terms ‘‘compiler,’’ ‘‘database,’’

A STATUS REPORT ON THE P VERSUS NP QUESTION 127
‘‘expert,’’ ‘‘neural network,’’ and ‘‘operating system.’’ Even more surprising is the
diversity of the disciplines with papers referring to ‘‘NP-completeness’’: They range
from statistics and artificial life to automatic control and nuclear engineering.

Many other important computational problems do not seem to be NP-complete,

but are complete for complexity classes defined using variations on the theme of

nondeterminism (such as counting the number of different proofs of acceptance,

instead of merely asking if such a proof exists [31]).

One can easily establish the following inclusions:

P � NP � PSPACE � EXP:

Thus, just as we obtain no proof of intractability from the knowledge that a

problem is PSPACE-complete, so also a proof of NP-completeness yields no proof

that a problem is hard to compute, but the evidence of intractability is nearly as

compelling for NP-complete problems as it is for PSPACE-complete problems. In

practice, this turns out to be very useful information.

It is known that P is not equal to EXP, and thus at least one of the three inclusions

above must be a proper containment, but it is not known that any one of them is

proper. Most people working in the field would probably conjecture that all of these
containments are proper—but it is risky to rely on this sort of ‘‘intuition.’’ Later in

this chapter, we discuss one important example, where two classes that were thought

to be distinct turned out to be the same.

One strange thing about the nondeterministic model of computation is that the

tasks of accepting and rejecting an input are very different. Given any problem A,
the complementary problem �A ¼ x : x =2 Af g is in P if and only if A 2 P. This does

not seem to be true for NP. Consider SAT; nobody has any idea how to give a short

proof that a formula x does not have a satisfying assignment. This gives rise to the

complexity class coNP ¼ A : �A 2 NPf g. Clearly P � NP \ coNP.
2.6 Subclasses of P

Polynomial-time reducibility is not very useful for drawing distinctions between

problems in P—but useful distinctions can be made. What is needed is a more

delicate tool, defined analogously to polynomial-time reducibility, but using a more

restricted class of functions. We will not provide definitions here, but merely note

that logspace reducibility [32] is frequently used to define classes of complete

problems inside P, as are even more restrictive notions of reducibility, defined in

terms of small circuit classes [33, 34]. More information on subclasses of P can be

found by consulting the references [35–37].

128 E. ALLENDER
With very few exceptions, natural problems that are complete for NP, PSPACE,

and EXP (and other complexity classes) under polynomial-time reducibility remain

complete even when these more restrictive notions of reducibility are used instead.

Thus, there is essentially no drawback to using the more restrictive notions of

reducibility (since the problems that one wants to classify remain complete under

the more restrictive reducibility, and as a bonus one is able to show that certain

problems are complete for P and others are complete for interesting subclasses of P).

When one is first introduced to the notions of NP-completeness and completeness

in other complexity classes, it probably seems as if completeness is a very unusual

property, and that it should be rare for a problem to be complete for a complexity

class. However, the opposite is true. The surprising lesson that emerges, after

decades of experience in complexity theory, is that the overwhelming majority of
natural computational problems can be shown to be complete for one of about a
dozen or so complexity classes. Sometimes the definitions of these complexity

classes may seem cumbersome or complicated (just as the definition of NP may

strike one as being fairly unnatural at first). However, it is important to note that

these classes are ‘‘discovered, and not invented’’ (quoting Papadimitriou again [8]).

That is, it is not the case that some out-of-touch theoretician cooked up the definition

of these complexity classes merely to prove a few theorems. Rather, there was an

important class of computational problems out there that people were already

interested in, and then complexity theoreticians were able to show that the problems

were all in fact complete for some complexity class that could be described in terms

of resource bounds applied to some computational model.

Let us return again to the question that begins Section 2:
2.7 What Is the ‘‘P 5 NP?’’ Problem?

We have introduced P and NP, so perhaps the answer is clear: The ‘‘P ¼ NP?’’

problem is simply the question of whether those two complexity classes are one and

the same. But P and NP are just two of the most important complexity classes. The P

versus NP question really stands for a more fundamental and general question

concerning the nature of this entire framework of complexity classes, with its

partition of natural problems into classes of complete sets for various complexity

classes. How much of this structure is real, and how much is an illusion? The theory

of complexity classes seems to explain our inability to find fast programs for certain

problems—but is this explanation real, or is it simply a convenient and comforting

tale that we tell ourselves? We find it comforting, because it would mean that the

reason we have not found a fast algorithm is not because we are too stupid to find

it—it is because no fast algorithm is possible.

A STATUS REPORT ON THE P VERSUS NP QUESTION 129
3. Why Is the ‘‘P 5 NP?’’ Problem Important?

Once again, it seems that we are asking a question that we have already answered.

The authors of the 6000 papers per year that mention NP-completeness have their

own reasons for wanting to know if these complexity classes are equal or not. The

people who are trying to solve NP-complete optimization problems have a powerful

financial incentive for wanting to know if these problems have fast algorithms or

not. These are all significant reasons for why the P versus NP problem is impor-

tant—but there are some additional reasons that should be discussed, too. That is the

task we take up in the rest of this section.

3.1 Cryptography

Modern cryptography relies on the existence of one-way functions (functions f
that are easy to compute but have the property that no efficient algorithm can take as

input a string y in the range of f and produce as output a string x such that f(x) ¼ y).
Actually the requirements are much stronger; it is necessary that the task of finding

such an x be difficult on average, so that for the overwhelming majority of the strings
y in the range of f, there is no way to find x such that f(x) ¼ y. For instance, the RSA
cryptosystem [38] relies on multiplication being a one-way function; define f to be

the function that takes as input two prime numbers u and v each having the same

number of bits, and produces uv as output. If there is an efficient algorithm that can

find the prime factors of a given integer, then f is not one-way and many crypto-

graphic applications in wide use are insecure.

If P ¼ NP, then there would seem to be no way to salvage cryptography. The

problem of inverting a supposed one-way function lies in NP; if all of these problems

are in P, then to rescue the notion of a one-way function one would have to

hypothesize the existence of functions that are very easy to compute, but whose

inverses require time nk for very large values of k. Complexity theory currently

offers no suggestions as to how this might be accomplished.

But in fact, complexity theory currently offers few if any useful tools that can be

used to provide evidence that a given function is a cryptographically secure one-way

function. Let me elaborate on this point. If we know that a problem is NP-complete,

then there is a coherent theoretical framework explaining why the problem is

probably hard to compute; if the problem turns out to be easy, then the entire

framework comes crashing down. In contrast, consider the factoring problem. The

best evidence that factoring is hard comes from the fact that people have been trying

to find good factoring algorithms for a few hundred years, without success. This is

not particularly strong evidence, since there are several notable examples in which

130 E. ALLENDER
problems not previously known to reside in P have yielded to new algorithmic

insights and techniques. If factoring turns out to be easy, it will have dramatic

consequences for the practice of cryptography, but it will not fundamentally alter the

framework of complexity theory. Similar observations hold for all of the widely

considered candidate cryptographically secure one-way functions.

Another factor to keep in mind is that, if f is a one–one function, then the problem
of computing the inverse of f lies in NP \ coNP [39]. Thus to have one–one one-

way functions, one needs not only P 6¼ NP, but P 6¼ NP \ coNP which seems to be

a stronger hypothesis.

An alternate approach might be to design a function f that is ‘‘complete’’ in some

sense for the class of all one-way functions (so that f is cryptographically secure if

any function is). In fact, such a construction was presented already by Levin [40];

although, this construction holds little interest for practitioners, since the constants

in the security guarantees are quite weak.

Recall that this is the section of the chapter in which we are addressing the

question of why the P versus NP question is important. In order for modern

cryptography to rest on a firm foundation, a proof that P 6¼ NP is an absolutely

essential first step—but it would be only a first step. Much stronger intractability

results are required for cryptography.

3.2 Understanding the World

There are few areas of scientific enquiry that are untouched by algorithmic

considerations. In biology, economics, and physics, many of the natural processes

that are studied can be viewed as proceeding algorithmically. If a biological theory

(or an economic theory, a theory of evolution, etc.) requires that an organism (or

participants in a market, or an environmental system, respectively) arrives at an

optimal state, then it had better be the case that this does not require the solution of

an intractable computational problem, or else the theory lacks plausibility. But until

we know if P ¼ NP, we do not have a good understanding of which problems are

intractable. Aaronson has proposed hypothesizing the intractability of NP-complete

problems as a natural law, in order to judge the plausibility of certain interpretations

of quantum mechanics [41]. If certain aspects of a physical theory can be shown to

imply that there are efficient ways to solve NP-complete problems, then this should

throw doubt on the theory (since there is no empirical evidence that these problems

are amenable to efficient solution). But how compelling can such an argument be,

until we know for sure that conventional programs and computers are unable to

solve NP-complete problems?

The P versus NP problem can be cast as the problem of whether it is significantly

harder to find a proof of a theorem, than to merely check that a proof is correct, and

A STATUS REPORT ON THE P VERSUS NP QUESTION 131
thus it has profound implications for mathematics. That is, if we consider any fixed

formal proof system (so that the problem of checking if a proof is correct is simply a

syntactic procedure that can be automated), then the set of theorems that have proofs

of a reasonable length is a problem in NP. Stated another way, if you want to know if

there is a proof of some statement f that is at most 60 pages long, a nondeterministic

machine can determine the answer quickly (where the ‘‘magic word’’ is simply the

60 page proof). If P¼ NP then there is a relatively fast automatic way to find the 60

page proof, given only statement of the theorem. Long before the P versus NP

question was formalized, Gödel and von Neumann discussed precisely this scenario

[42]. The connection between complexity and the notion of proof has a long history

and has played a crucial role in some of the most dramatic developments of the

theory, as discussed later in this chapter.

For all of these reasons and more, there can be little question that the P versus NP

question is important.
4. What Progress Has Been Made in the
Past 30 Years?

This is the most dangerous section of the chapter to write. The dangers are

(at least) twofold:

l I can omit some really important developments

l I can get carried away about one or the other line of research and include more

detail than I should, resulting in a long, unreadable document

In order to steer a course between Scylla and Charybdis, I will try to keep the

chapter short and easy to read, even though this means that I will leave out some

great stories (and my treatment of the stories that I include will be far too brief).

4.1 Small Circuits and the Polynomial Hierarchy

In order to present some of the exciting developments of the past three decades,

I need to present a bit of material that is slightly older.

In a paper published in 1976 [43], Stockmeyer introduced a hierarchy of com-

plexity classes that sits ‘‘right above’’ NP. We have already been introduced to the

lowest levels in this hierarchy: P, NP, and coNP. A number of problems related to

NP optimization problems are more conveniently stated in a form that is hard for

both NP and for coNP and thus is not believed to lie in either class. For example,

consider the Traveling Salesperson Problem. This can be phrased as a problem in NP

132 E. ALLENDER
in the following form: Given a graph Gwith ‘‘distances’’ on the edges and a number

k, is there a path of length at most k that visits all of the vertices in the graph? But one
might find it more natural to ask ‘‘Given G, compute the length of the shortest path

that visits all of the vertices.’’ If one had a subroutine for the NP formulation of the

Traveling Salesman Problem, then this value could easily be computed using binary

search. Thus it lies in the class PNP (the class of problems that can be solved in

polynomial time using an ‘‘oracle’’—that is, a subroutine whose running time we do

not count—for a problem in NP). In fact, this turns out to be a complete problem for

PNP [44].

Once we have defined PNP, it is a short step to define NPNP and coNPNP. These

classes seem to bear the same relationship to PNP as NP and coNP bear to P, and thus

it seems that these classes provide substantial additional computational power over

PNP. There are natural and well-studied problems that are complete for NPNP and

coNPNP(e.g., [43], [101], [102]). This process can be continued, to define an infinite

hierarchy of complexity classes, known as the polynomial hierarchy. One property
of this hierarchy is that, if any two levels coincide, then the entire hierarchy

collapses to that level. Thus if NPNP ¼ coNPNP, then the entire hierarchy collapses

to NPNP; if P ¼ NP, then the hierarchy collapses to P. One reason the polynomial

hierarchy has come to be important in the field of complexity theory, is because the

belief that the hierarchy is infinite is nearly as well rooted as the belief that P 6¼ NP.

The story of small circuits for NP illustrates this use of the polynomial hierarchy.

Recall from Section 2 that there are two basic models of computation: programs

and circuits. With programs, there is one program that works for all input lengths;

with circuits, there is a different circuit for each input length. Of course, if you have

an efficient way to build circuits for your problem, there is not much difference

between these two notions. But there are many problems that have no program at all,
but which have small circuits (e.g., consider unary encodings of the Halting

Problem).

Circuit complexity is essential in order to prove that certain transformations from

input to output on a fixed input size are intractable. This is an important point, and it

is worth emphasizing.

Consider, for example, the following theorem regarding the problem of

determining whether a logic formula in a certain formalism (abbreviated WS1S) is

true or not.
Theorem 5 [45]
Any circuit of AND, OR, and NOT gates that takes as input a WS1S formula of
610 symbols and outputs a bit that says whether the formula is true must have at
least 10125 gates.

A STATUS REPORT ON THE P VERSUS NP QUESTION 133
Clearly, no such circuit can fit in the solar system. Note that this theorem is quite

specific about saying that this problem is difficult at a particular input length. This is

the sort of security guarantee that is required in cryptography, where one needs to

pick key lengths long enough so that the problem of cracking the system is intracta-

ble; it is not enough to know that programswill require a long amount of time for ‘‘big

enough’’ inputs—it is important to know just how big is ‘‘big enough.’’

Recall the Checkers problem (which is complete for EXP) from Section 2.4. We

know that any program that solves Checkers must run for time 2n
e
for large inputs—

but we have absolutely no proof that this problem does not have circuits of linear
size! (If this is the case, then there is no input size where Checkers becomes

intractable.) For all we know, perhaps all problems in EXP have circuits of polyno-

mial size.

Thus for example, if cryptographers are ever to have any hope of using theorems

of complexity theory to pick key sizes to make their cryptosystems secure, it is

essential to know not only that P 6¼ NP, but that NP does not have polynomial-size

circuits.

But is this question really any different from the P versus NP question? There is a

long line of research that tries to relate these problems, beginning with a result by

Karp and Lipton [46] showing that NP has polynomial-size circuits only if the

polynomial hierarchy collapses to NPNP. There has been work through the years

trying to show that the collapse happens at a lower level [47, 48], but it is still not

known if NP having polynomial-size circuits implies that the polynomial hierarchy

collapses to PNP.

There are many results in complexity theory of the form ‘‘X is true, unless the

polynomial hierarchy collapses.’’ This is taken as strong evidence that X is true.
4.2 Interactive Proofs and Probabilistically
Checkable Proofs

There is widespread agreement that the most significant change in our under-

standing of NP over the last three decades grew out of an expanded notion of

‘‘proof’’ [49, 50]. Recall that NP can be viewed as the class of sets B for which

there are short ‘‘proofs’’ that x 2 B, where a ‘‘proof’’ is just a string y so that a

polynomial-time program A can read the pair (x, y) and accept if and only if y
provides the information that is necessary to convince the program that x is in B.
Recall from Section 2 that there is a segment of the community that contends that

probabilistic polynomial-time algorithms are a more appropriate way to capture the

notion of ‘‘feasible computation.’’ Starting from this point of view, it seems natural

to consider an expanded version of NP, defined in an analogous way, but allowing a

134 E. ALLENDER
probabilistic algorithm A to determine if y provides convincing evidence that x is

in B. This leads to a complexity class called MA; the name comes from viewing the

process of proving membership in B as being a conversation between a magical

‘‘prover’’ (Merlin the Wizard, who provides the string y) and a mere mortal

with limited computational power, but owning a pair of dice to help him make

random choices (King Arthur). Viewing things this way, Merlin speaks first, giving

Arthur the string y, and then Arthur rolls his dice and does his computation on the

pair (x, y).
But is there any reason whyMerlin should have to speak first? One can also define

the class AM, where Arthur gets string x, rolls his dice to get some random bits, and

on the basis of these bits poses a question to Merlin, who then sends a string y (and
Arthur can do some computation to see if Merlin’s reply convinces him). One can

show that MA � AM. There seems to be no reason to stop at such short conversa-

tions; one can define an entire sequence of classes AMA, AMAM,. . ., as well as a
class IP (for ‘‘Interactive Proofs’’) where the conversation continues for a polyno-

mial number of rounds.

Why is this interesting?

One interesting fact is that AM¼ AMA¼ AMAM, and so on. That is, two rounds

of communication are as good as any constant number of rounds [49].

Much more interesting is the fact that there is an important computational

problem in AM that is not known to lie in NP: the graph nonisomorphism problem

[50]. The graph isomorphism problem (given two graphs G and H, are they isomor-

phic?) is easily seen to be in NP. (The ‘‘magic word’’ is simply a permutation of the

vertices of G, yielding the graph H.) But how can you provide a short proof that two

graphs are not isomorphic? If Merlin is all-powerful, then here is how Arthur can be

convinced. Arthur gets the graphs G and H and picks one at random, permutes the

vertices in a random way and obtains a new graph K1. He repeats this process and

obtains a graph K2, and so on, until he has 100 graphs K1; . . . ;K100. Arthur knows,

for each Ki, if Ki is a copy of G or of H. Arthur now sends the sequence K1; . . . ;K100

to Merlin, and asks Merlin to tell him which graph each Ki is a copy of. Note that ifG
and H are not isomorphic, the all-powerful Merlin has no problem doing this. But if

G and H are isomorphic, then Merlin has just a 1-in-2100 chance of sending Arthur

the right answer. Thus if Merlin sends Arthur the correct answer, Arthur is justified

in feeling quite confident that G and H are really not isomorphic.

Much of the initial interest in this type of ‘‘proof’’ came from the notion of ‘‘zero-

knowledge proofs’’ which has wide application in cryptography. (This comes from

the observation that Arthur gains no useful information in the preceding example,

other than being convinced that the graphs are not isomorphic.) This is a huge topic

that is surveyed elsewhere (e.g., [3, 9]).

A STATUS REPORT ON THE P VERSUS NP QUESTION 135
The class IP was something of a mystery for a while. It was felt that this notion of

‘‘proof’’ was probably not too much stronger than the usual notion of ‘‘proof,’’ and

many felt that it would be unlikely that IP would contain coNP. In fact, evidence was

presented that was considered at the time to be rather compelling, arguing that ‘‘new

techniques’’ would be required to show coNP � IP [51].

New techniques were found, and a dramatic series of papers ended by showing

that IP ¼ PSPACE [52, 53]!

According to the rules of IP interaction, Merlin is allowed to give different

responses to the same query from Arthur. That is, if Arthur has random sequence

r1 that causes him to ask query q at some point during his interaction with Merlin,

Merlin might give a different response than he gives during the interaction that

Arthur has with him when using random sequence r2. If the rules of the game are

changed, so that Merlin has to commit ahead of time to the response that he will give

to each possible query q from Arthur, this turns out to give a characterization of

nondeterministic exponential time (NEXP) [54]. This is an extremely counterintui-
tive characterization. Nondeterministic exponential time can be viewed as the class

of problems B where membership of x in B can be demonstrated by a ‘‘proof’’ of

length exponential in the length of x. This characterization means that Merlin can

provide an exponential-sized proof, and Arthur can be convinced of its correctness

by randomly picking just a small number of positions in the proof to examine!

Soon a similar characterization of NP was given, and various parameters in the

characterization were optimized, to obtain a truly spectacular and almost unbeliev-

able reworking of the notion of ‘‘proof’’ [55, 56]. Rather than giving a formal

definition of a ‘‘Probabilistically Checkable Proof,’’ let us give an example. Sup-

pose that you are asked to referee a paper, but you are very short of time. Rather than

read the entire paper, you randomly pick a few paragraphs, and if you do not see any

problem, then you decide to accept the paper. Most of us would consider this to be

very irresponsible behavior. How can one have any confidence in the correctness of

a proof without reading every symbol of the proof? But in fact any proof can be

encoded in such a way that this sort of ‘‘lazy’’ refereeing is sufficient. That is, the

proof can be encoded as a string y (of length not much greater than the length of the

original proof), so that a verifier can randomly choose k bits of y (where k is a

constant that does not depend on the length of y, and the verifier is using onlyO(log n)
random bits in order to make this selection), and will always accept if the proof is

correct, and will reject with very high probability if the proof is not correct [55, 56].

The proof of this characterization is one of the most complicated arguments in

complexity theory, and there has been a great deal of interest in finding a simpler

proof; substantial simplifications have been presented in the last few years [57, 58].

136 E. ALLENDER
4.3 Hardness of Approximation

Since the CLIQUE problem is NP-complete, we know not to expect to be able to

find the size of the largest clique in a graph. When we learn that it is hard to find an

optimal solution, it is natural to adjust our goals, and settle for getting the best

solution that we can. There is a huge literature on algorithms for finding approxi-

mate solutions to NP-complete optimization problems, and there were some early

results showing that certain approximations could not be obtained efficiently unless

P ¼ NP (e.g., [59]). For many years, however, there was little known about which

approximations could be obtained efficiently, and which ones are intractable.

The dramatic characterization of NP in terms of probabilistically checkable

proofs changed all of that. Given a probabilistically checkable proof, it is either

the case that all of the polynomially many probabilistic sequences lead to acceptance

or only a small fraction of them do. It turns out to be possible to build on this, to

reduce CLIQUE to instances where there is either a very large clique or else the

largest clique is quite small, and thus CLIQUE is hard to approximate unless P¼NP

[60, 61]. Related approaches work on many other optimization problems in NP, and

in some cases it is possible to give tight bounds, showing that a solution can be found

that is at most a times the optimal for some constant a, but doing any better is

NP-hard. (See Håstad [62] for one such example. There are many others.)
4.4 AM and NP

We discussed the Arthur/Merlin class AM in Section 2. It is safe to say that, back

when AM was introduced [49, 50], most people in the field were inclined to think

that AM was likely to contain problems that were outside of NP. In the intervening

years, there was astonishing progress made in the field of derandomization (i.e., the
study of eliminating the use of probabilistic bits in randomized algorithms). Since

this survey focuses on NP, I will limit the discussion here to the probabilistic analog

of NP, which is AM. Let us learn what has happened in the last two decades, to

change perceptions of the likely relationship between AM and NP.

A defining characteristic of a random coin toss is that it is unpredictable. The
outcome of a hard-to-compute function is also ‘‘unpredictable’’ in some sense

(although it is not clear that there is a meaningful connection between these two

settings, since a function always gives the same answer to a given question, unlike

tossing a coin). A sequence of important papers (see Nisan and Wigderson [63] and

Impagliazzo and Wigderson [64]) showed that this connection can be made precise

and exploited. If there is a problem A that is computable in time 2n that requires

circuits of size 2en for some e > 0 (i.e., if A requires circuits of nearly maximal size),

then computing A on all of the inputs of size O(log n) can be used to produce a

A STATUS REPORT ON THE P VERSUS NP QUESTION 137
sequence of bits that is enough like ‘‘noise’’ that it can be used to give a determin-

istic simulation of a probabilistic algorithm.

Related techniques were also applied [65–67] to generate random bits that could

be used to give nondeterministic simulations of AM. These techniques led to the

conclusion that NP ¼ AM if there is a problem computable in nondeterministic time

2n that requires nondeterministic circuits of size 2en for some e > 0. We will not

define nondeterministic circuits here—but we will mention that this hypothesis is

considered to be reasonably likely, and hence much of the complexity-theoretic

community would now conjecture that AM ¼ NP. Note that this also would imply

that the graph isomorphism problem is in NP \ coNP.
4.5 Average-Case Complexity

Even if we assume that P 6¼ NP and hence we must give up on the idea of having

efficient algorithms that solve NP-complete problems, there is still a pressing need

to have algorithms that perform as well as possible in solving these problems.

Various heuristics have been developed for different NP-complete problems that

seem to perform reasonably in various settings, and one occasionally hears the claim

that a particular heuristic ‘‘works well for instances that arise in practice.’’

Such claims can be difficult to evaluate, since it is usually very difficult to say

anything precise about the probability distribution on inputs in real-world settings.

Sometimes it is useful to talk about the performance of an algorithm when inputs of

a given length are distributed uniformly, but it is easy to give examples of problems

that are very easy to solve using the uniform distribution. For example, consider the

set f;fð Þ : f 2 SATf g. From one perspective, this is just a simple encoding of

SAT—but from another perspective, this set is trivial to solve on all but an

exponentially small fraction of the inputs (since we need only reject if the first

half of the string is different from the second half, and this will almost always be the

case).

Levin introduced a theory of average-case complexity [68] and presented an NP-

complete problem that is hard on average to solve, using any ‘‘reasonable’’ distri-

bution on the inputs. (It is necessary to restrict attention to some class of distribu-

tions, since—assuming that P 6¼ NP—any efficient algorithm will make errors on

some inputs, and there is always an ‘‘unreasonable’’ probability distribution that

places all of its weight on those inputs where the algorithm fails.) Levin focused on

distributions that are computable in polynomial time. Analogous studies have been

carried out, based on so-called ‘‘samplable’’ distributions, which are distributions

that can be ‘‘generated’’ by a probabilistic polynomial-time algorithm. This model

makes sense, if you hypothesize that the input instances that arise in practice are in

138 E. ALLENDER
fact generated by some feasible process. There are some excellent surveys of this

type of approach to average-case complexity [69–71].

Although the uniform distribution is not always the most relevant distribution to

consider, some very significant insights have been gained by considering how well

algorithms can perform on the uniform distribution. A crucial step in some of the

derandomization arguments that were considered in Section 4 was the proof that, if

there is any problem in EXP that is not solvable by polynomial-size circuits, then there

is a problem in EXP for which any polynomial-size circuit gives the wrong answer for

nearly half of the inputs of length n [72]. This is called a ‘‘worst-case-to-average-case’’
reduction, because it involves showing how to compute a function A correctly on all
inputs, by accessing any circuit that computes a related function A0 correctly on a large
fraction of the inputs. This sort of argument draws heavily on the theory of error-

correcting codes; the truth table of A0 is essentially an encoding of the truth table of A
using an error-correcting code. A circuit that computes A0 correctly on a reasonably

large fraction of the inputs can be viewed as a corrupted version of the codeword—but

there are a small enough number of errors so that the truth table of A can be recovered.

Related worst-case-to-average-case reductions are known for NP [73–76];

although, the parameters are not as good as in the corresponding results for EXP,

because of the additional technical obstacles that arise when working with NP.

4.6 Time–Space Tradeoffs

Proving that P 6¼ NP involves proving a superpolynomial lower bound on the run

time of any algorithm for SAT. Is there any way to measure our progress toward this

goal? For instance, do we know that SAT requires time n3, or time nlog n?
Sadly, the answer is ‘‘No.’’ We still do not know if SAT can be recognized in

linear time on a Turing machine. However, a series of papers beginning with

Fortnow [77] (and nicely surveyed by Van Melkebeek [78]) shows that algorithms

for SAT that use small space must run for time more than n1:8 [79]. (These results
hold not only for Turing machines, but for more general models of computation that

allow random access to memory locations.)
4.7 The Isomorphism Conjecture

All NP-complete problems are equivalent in some sense. Berman and Hartmanis

noticed that all of the NP-complete problems in the monograph by Garey and

Johnson [30] in fact are isomorphic to each other, in a very strong sense [80].

Namely, they showed that, for any two of these problems A and B, there is a bijection

A STATUS REPORT ON THE P VERSUS NP QUESTION 139
f such that both f and f�1 are computable in polynomial time, mapping A onto B.
Thus, in a natural and appealing way, it is reasonable to say that all of the

NP-complete problems in Garey and Johnson are simple re-encodings of each

other. They conjectured that, in fact, this is true for all NP-complete problems,

and not merely the ones in Garey and Johnson.

If true, this would of course imply P 6¼ NP, since if P ¼ NP there are finite sets
that are NP-complete.

The Berman–Hartmanis conjecture fueled interest in the general question of just

what can be proved about what NP-complete sets must ‘‘look like.’’ For instance,

they cannot be finite unless P¼ NP, but can they have a ‘‘small’’ number of strings?

If the isomorphism conjecture is true, any NP-complete set must have at least 2n
e

strings of infinitely many lengths n, for some e > 0. Can one prove that all NP-com-

plete sets must have this many strings (assuming P 6¼ NP)? Can there be sparse NP-
complete sets (i.e., sets with at most a polynomial number of strings of each length)?

We now have a fairly clear answer to these questions.

Mahaney’s Theorem [81] says that there are sparse NP-complete sets if and only

if P ¼ NP. Some years later, Ogihara and Watanabe gave a simpler proof of this

theorem that also extends to a larger class of reducibilities [82]. Very recently,

Buhrman and Hitchcock proved that the 2n
e
bound (i.e., the bound that is implied by

the isomorphism conjecture) is tight, unless the polynomial hierarchy collapses [83].

In spite of theorems such as this that seem to support the isomorphism conjecture,

there seems to be little confidence these days that the conjecture is true. For

example, if f is a cryptographically-secure one-way function, the set f(SAT) does
not appear to be isomorphic to SAT. There are a number of excellent surveys of

work on the isomorphism conjecture, including Kurtz et al. [84], Mahaney [85], and

Young [86].

Interestingly, when more restrictive notions of reducibility are considered, the

isomorphism conjecture can be replaced by an isomorphism theorem. Recall from
Section 6 that, in investigating subclasses of P it is useful to consider reductions

computed by restricted classes of circuits (these are known as AC0 reductions). With

very few exceptions, natural problems that are known to be complete for some

complexity class under any kind of reducibility can be shown to be complete under

AC0 reductions; thus the framework of complete sets that we use to understand the

complexity of natural problems can be formulated entirely in terms of AC0

reductions.

It turns out that for all complexity classes of interest, all the sets that are complete

under AC0 reductions are isomorphic under bijections f such that both f and f�1 are

computable in AC0 (and in fact the bijections can be shown to have a very restricted

form) [33, 34, 87]. Thus some form of the isomorphism conjecture turns out to be true.

140 E. ALLENDER
5. Where Are We now? (Barriers to Progress)

For many years, it was felt that radically new techniques would be needed, to

make any significant progress on the P versus NP problem. This was because the

‘‘traditional’’ techniques in the complexity theorist’s toolkit all ‘‘relativized.’’ What

does this mean?

Recall the notion of having ‘‘free’’ access to a problem as a subroutine or

‘‘oracle,’’ as discussed in Section 4.1. If you have a class of programs or machines

that characterize a complexity class such as P, NP, or EXP, and you provide each

such machine with an oracle for problem A, one obtains the new ‘‘complexity

classes’’ PA, NPA, and EXPA. Baker, Gill, and Solovay [88] observed that all of

the theorems that were proved using the usual proof techniques of the period (e.g.,

the theorem: P 6¼ EXP) would carry over relative to every oracle (and hence, for

every A, PA 6¼ EXPA). They also showed that there were sets A and B such that

l PA 6¼ NPA

l PB ¼ NPB

In fact, the set B can be chosen to be any PSPACE-complete set.

Over the next several years, a great many open problems in complexity theory

were shown to admit contradictory relativizations in this sense. The general sense in

the community was that it was generally hopeless to spend time on such questions,

since they obviously required nonrelativizing proof techniques, and nobody had a

good idea about how to develop such techniques. For instance, when Fortnow and

Sipser presented an oracle A relative to which coNPA⊈IPA [51], it convinced several

people to stop thinking about trying to show that IP contained the polynomial

hierarchy.
5.1 Nonrelativizing Proof Techniques

Thus the community sat up and took notice when it was shown that IP¼ PSPACE

[52, 53]. Finally, there was a fundamentally new set of tools to apply!

There followed an intense period of activity, where several new nonrelativizing

theorems were proved. (Since the focus of this chapter is on NP and I want to avoid

introducing new complexity classes, I will avoid describing these in more detail.)

Recently, Aaronson and Wigderson took up the challenge of characterizing these

‘‘new’’ proof techniques, and determining what their limits are [89]. They define a

new notion called ‘‘algebrization’’ (which I will not define here) and show that

essentially all of the results that have been proved using nonrelativizing proof

A STATUS REPORT ON THE P VERSUS NP QUESTION 141
techniques ‘‘algebrize.’’ They also show that the P versus NP problem cannot be

resolved by any algebrizing proof technique (nor can the problem of showing that

nondeterministic exponential time does not have circuits of polynomial size).

So once again we are in the position of needing fundamentally new proof

techniques in order to make progress on some of the big open questions, but at

least we once again know what some of the barriers are (and we also have received a

healthy jolt of optimism from the experience of seeing the barrier of relativization

fall a number of years ago). We shall overcome!

5.2 Natural Proofs

I would be dishonest if I were to give the impression that there is great optimism that

we are on the verge of a breakthrough that will finally resolve the big open problems in

complexity theory. There are many barriers to progress that have been identified.

Razborov and Rudich studied the approaches that have been followed in proving

superpolynomial circuit size lower bounds on restricted classes of circuits, and

observed that these approaches all fall into a certain ‘‘natural’’ approach to trying

to prove circuit lower bounds [90]. They also proved that, if cryptographically

secure one-way functions exist, then no such ‘‘natural proof’’ can prove that

problems in NP require circuits of more than polynomial size. At one level, this

was demoralizing, since it explained why some fairly modest-sounding lower

bounds cannot be obtained without formulating a fundamentally new approach.

On the other hand, work such as this can serve as a useful road map, helping the

community to plan its assault on the big open questions in complexity theory.

There have been a number of suggestions of possible strategies to avoid the

pitfalls represented by Natural Proofs and Algebrization [91–95]. I discuss some

of these at more length (and provide more background and motivation) in a recent

survey [96].
6. Conclusions: What Would a Solution Mean?

What would it mean to ‘‘solve’’ the P versus NP problem? How can one claim the

1 million dollar prize offered by the Clay Mathematics Institute [97]?

There seem to be three possible solutions (listed in my personal order of

preference):

1. Prove that P 6¼ NP

2. Prove that P ¼ NP

3. Prove that there is no proof one way or the other

142 E. ALLENDER
Let us deal with the last option first. It is certainly the most frustrating possibility

of the three. Imagine if a fast program for SAT exists, but there is no way to prove

that it actually works correctly! (You could use such a program to provide satisfying

assignments whenever it claimed that a formula was satisfiable—but how could you

know it was correct in claiming that a formula was not satisfiable? Of course, in this
case it would follow that P ¼ coNP and thus there is some sense in which there are

short ‘‘proofs’’ of unsatisfiability—but there might be no way to ‘‘prove’’ that these

‘‘proofs’’ were doing what they claimed.) I encourage the reader who wants to learn

more about this possibility to read the entertaining survey on this topic written by

Aaronson [98].

One point that Aaronson makes is that it is unlikely that a proof of this third

possibility will surface any time soon. This is because current approaches to proving

that a statement f is independent of some formal system S almost always prove that

f is actually independent of the stronger system that results by augmenting S by all

true first-order logic statements that contain only universal quantifiers. This is

relevant, because it is known that if ‘‘P 6¼ NP’’ is independent of this stronger

formal system, then one can show that SAT must have circuits of ‘‘almost’’

polynomial size. (Namely, it has circuits of size na nð Þ where a is a very slow-

growing function [99].) That is, if ‘‘P 6¼ NP’’ is independent of this stronger formal

system, then it is almost the same as SAT being easy to compute anyway.

Let us move on to the second possibility: P¼ NP. At one level this would be very

disheartening because it would mean that the entire framework of completeness that

seemed to explain so much was nothing but a glorious illusion. The optimistic way

for a proof of P ¼ NP to occur would actually yield an efficient (say, linear or
quadratic time) algorithm for SAT. In this case, the consequences would be

stunning. Mathematics could be automated. Machine learning and other tasks in

artificial intelligence would become trivial. Corporate efficiency would soar as all

sorts of optimization problems suddenly would become routine. Cryptography

would become impossible as currently conceived. Impagliazzo describes this possi-

ble world as ‘‘Algorithmica’’ [71], and the reader is encouraged to read his

description.

But this assumes that SAT has a truly efficient algorithm. The more pessimistic

possibility that might emerge from a proof of P¼ NP is an algorithm for SAT with a

running time of n1000. Worse yet would be a nonconstructive proof, showing that a

polynomial-time algorithm for SAT exists but providing no clue as to how to find

such an algorithm. (There is precedent for nonconstructive proofs that problems can

be solved in polynomial time [100], so this possibility cannot be dismissed out of

hand.) Historically, when natural problems have been shown to lie in P, in almost all

cases reasonably efficient algorithms have eventually been found. Problems that

really require time n1000 to solve seem to be exotic oddities that nobody would really

A STATUS REPORT ON THE P VERSUS NP QUESTION 143
want to try to compute anyway; natural problems seem to either have efficient

algorithms or require essentially exponential time. This optimistic belief is really

predicated on the computational universe not being truly perverse. We have no proof

that this optimism is warranted.

Finally, let us consider the preferred outcome: someone finds a proof that

P 6¼ NP. Again, there are several possibilities to consider.

One possibility is that P 6¼ NP but that every NP-complete problem is easy on

average in the sense of Levin [68]. This means that, for every fast algorithm for SAT

there are some instances where the algorithm gives a wrong answer—but these

instances essentially never come up in practice so you do not really notice it. This

corresponds to the possible world that Impagliazzo calls ‘‘Heuristica’’ [71]. It might

seem as if this outcome is indistinguishable from the case where P ¼ NP, but as

Impagliazzo points out [71], if P ¼ NP then every problem in the polynomial

hierarchy has a polynomial-time algorithm. In contrast, if SAT is easy on average,

it is not clear that the same is true for problems in the polynomial hierarchy.

Even if we are really lucky and a proof of P 6¼ NP shows that SAT requires nearly

exponential time, note that much, much more is required for some of the important

applications that rely on intractability lower bounds (such as cryptography). At the

very minimum, we would need circuit size lower bounds, in order to talk about

intractability for any given input size (as discussed in Section 4).

A proof that P 6¼ NP would not be the end of the story. It would only be the

beginning.

Acknowledgment

This work was supported in part by NSF grants CCF-0830133, CCF-0832787, and DMS-0652582.

References

[1] S. Arora, B. Barak, Computational Complexity: A Modern Approach. Cambridge University Press.

To appear, draft available at http://www.cs.princeton.edu/theory/complexity/.

[2] D.-Z. Du, K.-I. Ko, Theory of Computational Complexity, Wiley-Interscience, New York, 2000.

[3] O. Goldreich, Computational Complexity: A Conceptual Perspective, Cambridge University Press,

Cambridge, 2008.

[4] I. Wegener, Complexity Theory: Exploring the Limits of Efficient Algorithms, Springer, Berlin,

2005.

[5] M. Sipser, The history and status of the P versus NP question, in: Proceedings of ACM Symposium

on Theory of Computing (STOC), 1992, pp. 603–618.

[6] S.A. Cook, The importance of the P versus NP question, J. ACM 50 (1) (2003) 27–29.

[7] R. Impagliazzo, Computational complexity since 1980, in: Proceedings of the Conference on

Foundations of Software Technology and Theoretical Computer Science (FST&TCS), Lecture

Notes in Computer Science, vol. 3821, 2005, pp. 19–47.

http://www.cs.princeton.edu/theory/complexity/

144 E. ALLENDER
[8] C.H. Papadimitriou, NP-completeness: A retrospective, in: International Conference on Automata,

Languages, and Programming (ICALP), Lecture Notes in Computer Science, vol. 1256, 1997,

pp. 2–6.

[9] A.Wigderson, P, NP and mathematics—A computational complexity perspective, Proc. ICM 2006 1

(2007) 665–712.

[10] D.S. Johnson, NP-completeness columns, Twenty-Six Columns published in J. Algorithms (1981–

1992) and ACM Trans. Algorithms (2005-present), available at http://www.research.att.com/dsj/

columns/.

[11] S.A. Cook, The complexity of theorem-proving procedures, in: Proceedings of ACM Symposium on

Theory of Computing (STOC), 1971, pp. 151–158.

[12] L.A. Levin, Universal search problems, Probl. Inf. Transm. 9 (1973) 265–266.

[13] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher,

(Eds.), Complexity of Computer Computations, 1972, pp. 85–104.

[14] C. Shannon, The synthesis of two-terminal switching circuits, Bell Syst. Techn. J. 28 (1949) 59–98.

[15] J. Hartmanis, R. Stearns, On the computational complexity of algorithms, Trans. Am. Mathematical

Soc. 117 (1965) 285–306.

[16] A. Borodin, Computational complexity and the existence of complexity gaps, J. ACM 19 (1) (1972)

158–174.

[17] L.A. Levin, Computational complexity of functions, Theor. Comput. Sci. 157 (2) (1996) 267–271.

[18] M. Blum, A machine-independent theory of the complexity of recursive functions, J. ACM 14 (2)

(1967) 322–336.

[19] Merriam-Webster, Webster’s Seventh New Collegiate Dictionary, Merriam-Webster, 1969.

[20] S. Homer, A. Selman, Computability and Complexity Theory, Springer, Berlin, 2001.

[21] C.F. Slot, P. van Emde Boas, On tape versus core: An application of space efficient perfect hash

functions to the invariance of space, in: Proceedings of ACM Symposium on Theory of Computing

(STOC), 1984, pp. 391–400.

[22] E. Bernstein, U.V. Vazirani, Quantum complexity theory, SIAM J. Comput. 26 (5) (1997).

[23] S.A. Cook, An overview of computational complexity, Commun. ACM 26 (6) (1983) 400–408.

[24] J. Gill, Computational complexity of probabilistic turing machines, SIAM J. Comput. 6 (4) (1977)

675–695.

[25] P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quan-

tum computer, SIAM J. Comput. 26 (5) (1997) 1484–1509.

[26] R.E. Ladner, On the structure of polynomial time reducibility, J. ACM 22 (1) (1975) 155–171.

[27] S. Homer, Minimal degrees for polynomial reducibilities, J. ACM 34 (2) (1987) 480–491.

[28] J.M. Robson, N by N checkers is exptime complete, SIAM J. Comput. 13 (2) (1984) 252–267.

[29] A.R. Meyer, L.J. Stockmeyer, The equivalence problem for regular expressions with squaring

requires exponential space, in: IEEE Symposium on Foundations of Computer Science (FOCS),

1972, pp. 125–129.

[30] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the theory of NP-completeness,

W.H. Freeman and Company, New York, 1979.

[31] L.G. Valiant, The complexity of computing the permanent, Theor. Comput. Sci. 8 (1979) 189–201.

[32] N.D. Jones, Space bounded reducibility among combinatorial problems, J. Comput. Syst. Sci. 11

(1975) 68–85.

[33] M. Agrawal, E. Allender, S. Rudich, Reductions in circuit complexity: An isomorphism theorem and

a gap theorem, J. Comput. Syst. Sci. 57 (1998) 127–143.

http://www.research.att.com/dsj/columns/
http://www.research.att.com/dsj/columns/

A STATUS REPORT ON THE P VERSUS NP QUESTION 145
[34] M. Agrawal, The first-order isomorphism theorem, in: Proceedings of the Conference on Founda-

tions of Software Technology and Theoretical Computer Science (FST&TCS), Lecture Notes in

Computer Science, vol. 2245, 2001, pp. 70–82.

[35] R. Greenlaw, H.J. Hoover, W.L. Ruzzo, Limits to Parallel Computation: P-Completeness Theory,

Oxford University Press, Oxford, 1995.

[36] H. Vollmer, Introduction to Circuit Complexity, Springer, Berlin, 1999.

[37] E. Allender, Arithmetic circuits and counting complexity classes, in: J. Krajicek, (Ed.), Complexity

of Computations and Proofs, vol. 13, 2004, pp. 33–72. of Quaderni di Matematica.

[38] R.L. Rivest, A. Shamir, L.M. Adleman, A method for obtaining digital signatures and public-key

cryptosystems (reprint), Commun. ACM 26 (1) (1983) 96–99.

[39] G. Brassard, A note on the complexity of cryptography, IEEE Trans. Inf. Theory IT-25 (1979)

232–233.

[40] L.A. Levin, One-way functions and pseudorandom generators, Combinatorica 7 (4) (1987) 357–363.

[41] S. Aaronson, Guest column: NP-complete problems and physical reality, SIGACT News 36 (1)

(2005) 30–52.

[42] J. Hartmanis, Gödel, von Neumann and the P¼?NP problem, in: G. Rozenberg and A. Salomas,

(Eds.), Current Trends in Theoretical Computer Science, World Scientific Series in Computer

Science, vol. 40, 1993, pp. 445–450. .

[43] L.J. Stockmeyer, The polynomial-time hierarchy, Theor. Comput. Sci. 3 (1) (1976) 1–22.

[44] K.W. Wagner, More complicated questions about maxima and minima, and some closures of NP,

Theor Comput. Sci. 51 (1987) 53–80.

[45] L.J. Stockmeyer, A.R. Meyer, Cosmological lower bound on the circuit complexity of a small

problem in logic, J. ACM 49 (6) (2002) 753–784.

[46] R. Karp, R. Lipton, Turing machines that take advice, L’Ensignement Mathématique 28 (1982)

191–210.

[47] J.-Y. Cai, S
p
2 � ZPPnp, J. Comput. Syst. Sci. 73 (1) (2007) 25–35.

[48] T.C. Venkatesan, S. Roy, Oblivious symmetric alternation, in: Proceedings of the Symposium on

Theoretical Aspects of Computer Science (STACS), Lecture Notes in Computer Science number,

no. 3884, 2006, pp. 230–241.

[49] L. Babai, S. Moran, Arthur-Merlin games: A randomized proof system, and a hierarchy of complex-

ity classes, J. Comput. Syst. Sci. 36 (2) (1988) 254–276.

[50] S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof systems,

SIAM J. Comput. 18 (1) (1989) 186–208.

[51] L. Fortnow, M. Sipser, Are there interactive protocols for co-NP languages? Inf. Process. Lett. 28 (5)

(1988) 249–251.

[52] C. Lund, L. Fortnow, H. Karloff, N. Nisan, Algebraic methods for interactive proof systems, J. ACM

39 (1992) 859–868.

[53] A. Shamir, IP ¼ PSPACE, J. ACM 39 (4) (1992) 869–877.

[54] L. Babai, L. Fortnow, C. Lund, Non-deterministic exponential time has two-prover interactive

protocols, Comput. Complexity 1 (1991) 3–40.

[55] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verification and the hardness of

approximation problems, J. ACM 45 (3) (1998) 501–555.

[56] S. Arora, S. Safra, Probabilistic checking of proofs: A new characterization of NP, J. ACM 45 (1)

(1998) 70–122.

[57] I. Dinur, The PCP theorem by gap amplification, J. ACM 54 (3) (2007) 12.

[58] T. Holenstein, Parallel repetition: Simplifications and the no-signaling case, in: Proceedings of ACM

Symposium on Theory of Computing (STOC), 2007, pp. 411–419.

146 E. ALLENDER
[59] M.R. Garey, D.S. Johnson, The complexity of near-optimal graph coloring, J. ACM 23 (1) (1976)

43–49.

[60] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, M. Szegedy, Interactive proofs and the hardness of

approximating cliques, J. ACM 43 (2) (1996) 268–292.

[61] J. Hastad, Clique is hard to approximate within n1�e, Acta Mathematica 182 (1999) 105–142.

[62] J. Hastad, Some optimal inapproximability results, J. ACM 48 (4) (2001) 798–859.

[63] N. Nisan, A. Wigderson, Hardness vs. randomness, J. Comput. Syst. Sci. 49 (1994) 149–167.

[64] R. Impagliazzo, A. Wigderson, P¼ BPP if E requires exponential circuits: Derandomizing the XOR

lemma, in: Proceedings of ACM Symposium on Theory of Computing (STOC), 1997, pp. 220–229.

[65] A. Klivans, D. van Melkebeek, Graph nonisomorphism has subexponential size proofs unless the

polynomial-time hierarchy collapses, SIAM J. Comput. 31 (5) (2002) 1501–1526.

[66] P.B. Miltersen, N.V. Vinodchandran, Derandomizing Arthur-Merlin games using hitting sets,

Comput. Complexity 14 (3) (2005) 256–279.

[67] R. Shaltiel, C. Umans, Simple extractors for all min-entropies and a new pseudorandom generator,

J. ACM 52 (2) (2005) 172–216.

[68] L.A. Levin, Average case complete problems, SIAM J. Comput. 15 (1) (1986) 285–286.

[69] J. Wang, Average-case computational complexity theory, in: L. Hemaspaandra and A. Selman

(Eds.), Complexity Theory Retrospective II, 1997, pp. 295–328. .

[70] J. Wang, Average-case intractible NP problems, in: D.-Z. Du and K.-I. Ko, (Eds.), Advances in

Languages, Algorithms, and Complexity, 1997, pp. 313–378. .

[71] R. Impagliazzo, A personal view of average-case complexity, in: Structure in Complexity Theory

Conference, 1995, pp. 134–147.

[72] L. Babai, L. Fortnow, N. Nisan, A. Wigderson, BPP has subexponential time simulations unless

EXPTIME has publishable proofs, Comput. Complexity 3 (1993) 307–318.

[73] R. O’Donnell, Hardness amplification within NP, J. Comput. Syst. Sci. 69 (1) (2004) 68–94.

[74] A. Healy, S.P. Vadhan, E. Viola, Using nondeterminism to amplify hardness, SIAM J. Comput.

35 (4) (2006) 903–931.

[75] L. Trevisan, On uniform amplification of hardness in NP, in: Proceedings of ACM Symposium on

Theory of Computing (STOC), 2005, pp. 31–38.

[76] P. Gopalan, V. Guruswami, Hardness amplification within NP against deterministic algorithms, in:

IEEE Conference on Computational Complexity, 2008, pp. 19–30.

[77] L. Fortnow, Time–space tradeoffs for satisfiability, J. Comput. Syst. Sci. 60 (2000) 336–353.

[78] D. van Melkebeek, A survey of lower bounds for satisfiability and related problems, Found. Trends

Theor.Comput. Sci. 2 (2007) 197–303.

[79] R. Williams, Time–space tradeoffs for counting NP solutions modulo integers, in: IEEE Conference

on Computational Complexity, 2007, pp. 70–82.

[80] L. Berman, J. Hartmanis, On isomorphism and density of NP and other complete sets, SIAM J.

Comput. 6 (1977) 305–322.

[81] S. Mahaney, Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis,

J. Comput. Syst. Sci. 25 (2) (1982) 130–143.

[82] M. Ogiwara, O. Watanabe, On polynomial-time bounded truth-table reducibility of NP sets to sparse

sets, SIAM J. Comput. 20 (3) (1991) 471–483.

[83] H. Buhrman, J.M. Hitchcock, NP-hard sets are exponentially dense unless coNP � NP/poly, in:

IEEE Conference on Computational Complexity, 2008, pp. 1–7.

[84] S. Kurtz, S. Mahaney, J. Royer, The structure of complete degrees, in: A. Selman, (Ed.), Complexity

Theory Retrospective, Springer, Berlin, 1990, pp. 108–146.

A STATUS REPORT ON THE P VERSUS NP QUESTION 147
[85] S. Mahaney, The isomorphism conjecture and sparse sets, in: J. Hartmanis, (Ed.), Computational

Complexity Theory, American Mathematical Society Proceedings of Symposia in Applied Mathe-

matics #38, 1989, pp. 18–46 .

[86] P. Young, Juris Hartmanis: Fundamental contributions to isomorphism problems, in: A. Selman,

(Ed.), Complexity Theory Retrospective, Springer, Berlin, 1990, pp. 28–58.

[87] M. Agrawal, E. Allender, R. Impagliazzo, R. Pitassi, S. Rudich, Reducing the complexity of

reductions, Comput. Complexity 10 (2001) 117–138.

[88] T.P. Baker, J. Gill, R. Solovay, Relativizatons of the P ¼? NP question, SIAM J. Comput. 4 (4)

(1975) 431–442.

[89] S. Aaronson, A. Wigderson, Algebrization: A new barrier in complexity theory, in: Proceedings of

ACM Symposium on Theory of Computing (STOC), 2008, pp. 731–740.

[90] A. Razborov, S. Rudich, Natural proofs, J. Comput. Syst. Sci. 55 (1997) 24–35.

[91] M. Agrawal, Proving lower bounds via pseudo-random generators, in: Proceedings of the

Conference on Foundations of Software Technology and Theoretical Computer Science

(FST&TCS), Lecture Notes in Computer Science, vol. 3821, 2005, pp. 92–105.

[92] K. Mulmuley, M.A. Sohoni, Geometric complexity theory I: An approach to the P vs. NP and

related problems, SIAM J. Comput. 31 (2) (2001) 496–526.

[93] E. Allender, M. Koucký, Amplifying lower bounds by means of self-reducibility, in: IEEE

Conference on Computational Complexity, 2008, pp. 31–40.

[94] J. Friedman, Linear transformations in boolean complexity theory, in: Computation and Logic in

the Real World (CiE 2007), vol. 4497, of Lecture Notes in Computer Science, 2007, pp. 307–315.

[95] T. Chow, Almost-natural proofs, in: IEEE Symposium on Foundations of Computer Science

(FOCS), 2008.

[96] E. Allender, Cracks in the defenses: Scouting out approaaches on circuit lower bounds, in:

Computer Science – Theory and Applications (CSR 2008), vol. 5010, of Lecture Notes in

Computer Science, 2008, pp. 3–10.

[97] Clay Mathematics Institute, Millenium problems, http://www.claymath.org/millennium/.

[98] S. Aaronson, Is P versus NP formally independent? Bulletin of the EATCS 81 (2003) 109–136.

[99] S.A. Kurtz, M.J. O’Donnell, J.S. Royer, How to prove representation-independent independence

results, Inf. Process. Lett. 24 (1) (1987) 5–10.

[100] M.R. Fellows, M.A. Langston, Nonconstructive tools for proving polynomial-time decidability,

J. ACM 35 (3) (1988) 727–739.

[101] C. Umans, The minimum equivalent DNF problem and shortest implicants, J. Comput. Syst. Sci. 63

(2001) 597–611.

[102] M. Schaefer, Graph Ramsey theory and the polynomical hierarchy, J. Comput. Syst. Sci. 62 (2)

(2001) 290–322.

http://www.claymath.org/millennium/

Dynamically Typed Languages
ADVAN

ISSN: 00
LAURENCE TRATT
Bournemouth University, Poole, Dorset BH12 5BB,

United Kingdom
C

Abstract

Dynamically typed languages such as Python and Ruby have experienced a rapid

grown in popularity in recent times. However, there is much confusion as to

what makes these languages interesting relative to statically typed languages,

and little knowledge of their rich history. In this chapter, I explore the general

topic of dynamically typed languages, how they differ from statically typed

languages, their history, and their defining features.
1. Introduction . 150

2. Defining Types . 152

2.1. Types . 152

2.2. Compile-Time Versus Run-Time . 153

2.3. Static Typing . 153

2.4. Dynamic Typing . 154

2.5. Safe and Unsafe Typing . 155

2.6. Implicit Type Conversions . 156

2.7. Terminology Summary . 156

3. Disadvantages of Static Typing . 157

3.1. Static Types Are Inexpressive . 157

3.2. Types Are Represented by a Separate Language 159

3.3. Type Systems’ Correctness . 159

3.4. System Ossification . 160

3.5. Run-Time Dynamicity . 160
ES IN COMPUTERS, VOL. 77 149 Copyright © 2009 Elsevier Inc.

65-2458/DOI: 10.1016/S0065-2458(09)01205-4 All rights reserved.

150 L. TRATT
4. History . 160

4.1. Lisp and Its Derivatives . 161

4.2. Smalltalk . 162

4.3. Text-Processing Languages . 163

4.4. Declarative Languages . 164

4.5. Prototyping Languages . 164

4.6. Modern ‘‘Scripting’’ Languages . 165

5. Defining Features . 165

5.1. Simplicity . 166

5.2. High-Level Features . 166

5.3. Metaprogramming . 167

5.4. Refactoring . 171

5.5. ‘‘Batteries Included’’ Libraries . 171

5.6. Portability . 172

5.7. Unanticipated Reuse . 173

5.8. Interactivity . 173

5.9. Compile–Link–Run Cycle . 174

5.10. Run-Time Updates . 175

6. Disadvantages of Dynamic Typing . 175

6.1. Performance . 175

6.2. Debugging . 176

6.3. Code Completion . 177

6.4. Types as Documentation . 177

7. Variations . 178

7.1. Non-OO and OO Languages . 178

7.2. Optional Types . 178

7.3. Analysis . 179

8. The Future . 180

9. Conclusions . 180

Acknowledgment . 180

References . 181

1. Introduction

As computing is often split into software and hardware, so programming languages

are often split into dynamically and statically typed languages. The traditional,

simplified, definition of dynamically typed languages is that they do not enforce or

DYNAMICALLY TYPED LANGUAGES 151
check type safety at compile-time, deferring such checks until run-time. While

factually true, this definition leaves out what makes dynamically typed languages

interesting—for example, that they lower development costs [1] and provide the

flexibility required by specific domains such as data processing [2].

For many people, dynamically typed languages are the youthful face of a new

style of programming introduced in the past few years. In fact, they trace their roots

back to the earliest days of high-level programming languages in the 1950s via Lisp

[3]. Many important techniques have been pioneered in dynamically typed lan-

guages from lexical scoping [4] to Just-In-Time (JIT) compilation [5], and they

remain a breeding ground for new ideas.

Systems programming—seen as ‘‘serious’’ and thus demanding statically typed

languages—is often contrasted with scripting programming—seen as ‘‘amateurish’’

and thus needing little more than dynamically typed languages [1]. The derogative

use of the term ‘‘scripting’’ led to the creation of other terms such as ‘‘latently

typed’’ and ‘‘lightweight languages’’ to avoid the associated stigma. In reality, the

absence or presence of static typing has a number of effects on the use and

applicability of a language that simple comparisons ignore [6]. So while some

tasks such as low-level systems (e.g., operating systems), resource critical systems

(e.g., databases), or safety critical systems (e.g., systems for nuclear reactors) benefit

from the extra rigor of statically typed languages, for many other systems the

associated costs outweigh the benefits [7]. Gradually, dynamically typed languages

have come to be seen as a valid part of the software development toolkit, and not

merely second-class citizens [8].

From the mainstream’s perspective, dynamically typed languages have finally

come of age. More than ever before, they are used to build widely used real-world

systems, often for the Web, but increasingly for domains that were previously the

sole preserve of statically typed languages (e.g., [9]), often because of lower

development costs and increased flexibility [10, 11].

It should be noted that since there is no central authority defining dynamically

typed languages, there is great variation within those languages which are typi-

cally classified as dynamically typed languages; nevertheless all such languages

share a great deal in common. In this chapter, I explore the general topic of

dynamically typed languages, how they differ from statically typed languages,

their history, and their defining features. The purpose of this chapter is not to be a

cheerleader for dynamically typed languages—it is my contention that both stati-

cally typed and dynamically typed languages are required for the increasingly

broad range of tasks that software is put to. Rather this chapter aims to explain

what dynamically typed languages are and, by extension, to show where they may

and may not be useful.

152 L. TRATT
2. Defining Types

The lack of a widely understood definition of dynamically typed languages has

resulted in many misunderstandings about what dynamic typing is. Perhaps because

of this, alternative terms such as ‘‘soft typing’’ are sometimes used instead. Earlier I

gave the simplified, and oft-heard, definition that a dynamically typed language is

one that does not check or enforce type safety at compile-time. Inevitably, this

simplified definition does not capture everything it should—the subtleties and

variations in the use of dynamic typing preclude a short, precise definition.

In this section, I define various terms relating to dynamically typed languages,

building up an increasingly accurate picture of what is meant by this term.

Further reading on these topics can be found in [12, 13].

2.1 Types

At an abstract level, a type is a constraint which defines the set of valid values which

conform to it. At the simplest level all apples conform to an ‘‘Apples’’ type and all

oranges to an ‘‘Oranges’’ type. Types often define additional constraints: red apples are

conformant to the ‘‘Red Apples’’ type, whereas green apples are not. Types are

typically organized into hierarchies, meaning that all apples which conform to the

‘‘Red Apples’’ type also conform to the ‘‘Apples’’ type but not necessarily vice versa.

In programming languages, types are typically used to both classify values, and to

determine the valid operations for a given type. For example, the int type in most

programming language represents integers, upon which the operations þ, �, and so

on are valid. Most programming languages define a small number of built-in types,

and allow user programs to add new types to the system. While, abstractly, most

types define an infinite set, many built-in programming language types represent

finite sets; for example, in most languages the int type is tied to an underlying

machine representation of n bits meaning that only a finite subset of integers

conform to it.

In many Object orientated (OO) programming languages, the notions of type and

class are conflated. That is, a class ‘‘Apple’’ which defines the attribute ‘‘pip’’ and

the operation ‘‘peel’’ also implicitly defines a type of the same name to which

instances of the class automatically conform to. Because classes do not always

define types to which the classes’ instances conform [14, 15], in this chapter

I treat the two notions separately. This means that, abstractly, one must define a

separate type ‘‘Apples Type’’ to which instances of the ‘‘Apple Class’’ conform to.

This definition of types may seem unnecessarily abstract but, as shall be seen later,

the notion of type is used in many different contexts.

DYNAMICALLY TYPED LANGUAGES 153
2.2 Compile-Time Versus Run-Time

In this chapter, I differentiate between errors which happen at compile-time
and run-time. Compile-time errors are those which are determined by analyzing

program code without executing it; run-time errors are those that occur during

program execution.

Statically typed languages typically have clearly distinct compile-time and run-time

phases, with program code converted by a compiler into a binary executable which is

then run separately. In most dynamically typed languages (e.g., Converge, Perl, and

Python) ‘‘running’’ a file both compiles and executes it. The blurring, from an

external perspective, of these two stages often leads to dynamically typed languages

being incorrectly classified as ‘‘interpreted’’ languages. Internally, most dynamically

typed languages have distinct compilation and execution phases and, therefore, I use

the terms compile-time and run-time identically for both statically and dynamically

typed languages.
2.3 Static Typing

Before defining what dynamic typing is, it is easiest to define its ‘‘opposite.’’

Statically typed languages are those which define and enforce types at compile-time.

Consider the following Java [16] code:

int i ¼ 3;

String s ¼ "4";

int x ¼ i þ s;

It uses two built-in Java types: int (representing integers) and String (Unicode

character arrays). While a layman might expect that when this program is run, x will

be set to 7, the Java compiler refuses to compile this code; the compile-time error

that results says that the þ operation is not defined between values of type int and

String (though see Section 2.6 to see why the opposite does in fact work). This is

the essence of static typing: code which violates a type’s definition is invalid and

is not compiled. Such type-related errors can thus never occur in run-time code.
2.3.1 Implicit Type Declarations
Many statically typed languages, such as Java, require the explicit static

declaration of types. That is, whenever a type is used it must be declared before

hand, hence int i ¼ 3 and so on.

It is often incorrectly assumed that all statically typed languages require explicit

type declarations. Some statically typed languages can automatically infer the

154 L. TRATT
correct type of many expressions, requiring explicit declarations only when auto-

matic inference by the compiler fails. For example, the following Haskell [17] code

gives an equivalent compile-time error message to its Java cousin, despite the fact

that the types of i and s are not explicitly declared:

let

i ¼ 3

s ¼ "4"

in

i þ s

In this chapter, I define the term ‘‘statically typed languages’’ to include both

implicitly and explicitly statically typed languages.
2.3.2 Nominal and Structural Typing
As stated earlier, types are typically organized into hierarchies. There are two chief

mechanisms for organizing such hierarchies. Nominal typing, as found in languages

such as Java, is when an explicit named relationship between two types is recorded;

for example, a user explicitly stating that Oranges are a subtype of Fruit. Structural

typing, as found in languages such as Haskell, is when the components of two types

allow a type system to automatically infer that they are related in some way. For

example, the Orange type contains all the components of the Fruit type, plus an extra

‘‘peel thickness’’ component—a structurally typed system will automatically infer

that all Oranges are Fruits, but that opposite is not necessarily true. Structural typing as

described here is only found in statically typed languages although a similar feature—

duck typing—is found in dynamically typed languages (see Section 5.7).
2.4 Dynamic Typing

Dynamic typing, at its simplest level, is when type checks are left until run-time.

It is important to note that this is different than being typeless: both statically and

dynamically typed languages are typed, the chief technical difference between them

being when types are enforced. For example, the following Converge [18] code

compiles correctly but when run, the Int.þ function raises a run-time type exception

Expected arg 2 to be conformant to Number but got instance of

String:

i :¼ 3

s :¼ "4"

x :¼ i þ s

DYNAMICALLY TYPED LANGUAGES 155
In this example, one can trivially statically analyze the code and determine the

eventual run-time error. However, in general, dynamically typed languages allow

code which is more expressive than any current type system can statically check

[19]. For example, in non-OO languages static type systems typically prevent an

individual function from having multiple return points if each returns results of

differing, incompatible, types. In OO languages, on the other hand, the compiler

statically determines the set of methods (considering subtypes) that an object

method call refers to; in dynamically typed languages the method lookup happens

at run-time. This run-time lookup is known as late binding and allows objects to

dynamically alter their behavior, allowing greater flexibility in the manipulation of

objects, the price being that lookups can fail as in the above example.
2.5 Safe and Unsafe Typing

Programs written with static types are often said to be safe1 in the sense that type-
related errors caught at compile-time cannot occur at run-time. However, most

statically typed languages allow user programs to cast (i.e., force) values of one

type to be considered as conformant to another type. For example, in C one can cast

an underlying int value to be considered as an Orange, even if this is semantically

nonsensical; instances of the two types are unlikely to share the same memory

representation, and indeed may use different quantities of memory. Programs

which abuse this feature can crash arbitrarily. Languages whose type systems can

be completely overruled by the user are said to have an unsafe typing system.

In contrast to unsafe typing, languages with a safe type system do not allow the

user to subvert it. This can be achieved either by disallowing casting (e.g., Haskell)

or inserting run-time checks to ensure that casts do not subvert the type system

(e.g., Java). For example, an object which conforms to the Red Apple type can

always be cast to the Apple type. However, objects which conform to the Apple type

can only be cast to the Red Apple type if the object genuinely conforms to the Red

Apple type (or one of its subtypes); attempting to cast a Green Apple object to the

Red Apple type will cause a run-time check to fail and an exception to be raised.

The concept of safe and unsafe type systems is orthogonal to that of static and

dynamic typing. Static type systems can be safe (Java) or unsafe (C); all dynamically

typed languages of which I am aware are safe.2
1 This terminology is not universal, with ‘‘strong’’ and ‘‘weak’’ sometimes used in place of ‘‘safe’’

and ‘‘unsafe,’’ respectively.
2 Note that assembly languages are often classified as dynamically and weakly typed; such languages

fall considerably outside the scope of this chapter and are not considered herein.

156 L. TRATT
2.6 Implicit Type Conversions

In many languages—both statically and dynamically typed—a number of implicit

type conversions (also known as ‘‘coercions’’) are defined. This means that, in a

given context, values of an ‘‘incorrect’’ type are automatically converted into the

‘‘correct’’ type. For example, in Perl [20], the addition of a number and a string

evaluates to a number as the string is implicitly converted into a number; in contrast

in Python [21] a run-time type error is raised. The C language defines a large number

of implicit type conversions between number types. At the extreme end of the

spectrum, the TCL language implicitly converts every type into a string [22].

Implicit type conversions need not be symmetrical; for example, in Java, adding a

string to a number gives a compile-time warning (see Section 2.3 for an example)

while adding a number to a string returns a string.
2.7 Terminology Summary

Table I shows a comparison of a number of languages with respect to the terms

defined in this section. As is clearly shown, languages utilize types in almost every

conceivable combination, making the traditional ‘‘hard’’ distinction between stati-

cally and dynamically typed languages seem very simplistic. Both classes of

languages are typed, the chief technical difference between them being when
types are enforced. The terms ‘‘statically typed’’ and ‘‘dynamically typed’’ are

the source of much confusion but are sufficiently embedded within the community

that it is unlikely that they will be superseded—hence, why I use those terms in this

chapter. However, readers may find it more helpful to think of ‘‘static typing’’ as

that performed at compile-time and dynamic typing that performed at run-time. This

can help understand the real world, where most ‘‘statically typed’’ languages also

utilize run-time type checking, and where some ‘‘dynamically typed’’ languages

allow optional compile-time type checking.
Table I

LANGUAGE COMPARISON WITH RESPECT TO TYPING (‘‘n/a’’ MEANING ‘‘NOT APPLICABLE’’)

C Converge Haskell Java Perl Python Ruby

Compile-time type checking l ○ l l ○ ○ ○
Run-time type checking ○ l ○ l l l l

Safe typing ○ l l l l l l

Implicit typing ○ n/a l ○ n/a n/a n/a

Structural typing ○ n/a l ○ n/a n/a n/a

Run-time type errors ○ l ○ l l l l

Implicit type conversions l ○ ○ l l ○ l

DYNAMICALLY TYPED LANGUAGES 157
3. Disadvantages of Static Typing

The advantages of static typing are widely known [23] and include:

l Each errors detected at compile-time prevents a run-time error.

l Types are a form of documentation/comment.

l Types enable many forms of optimization.

Taken at face value, the first of these is a particularly compelling argument: why

would anyone choose to use less reliable languages? In reality, the absence or

presence of static typing has a number of effects on the use and applicability of a

language that are not explained by the above. In particular, because the overwhelm-

ing body of research on programming languages has been on statically typed

languages, the disadvantages of statically typed languages are rarely enumerated.

In this section, I enumerate some of the weaknesses of static typing and why it is,

therefore, not equally applicable to every programming task.
3.1 Static Types Are Inexpressive

As defined in Section 2.1, types are constraints. In practice, programming

language types most closely conform to the intuitive notion of ‘‘shape’’ or

‘‘form.’’ Perhaps surprisingly, in some situations types can be too permissive and

in others too restrictive (for an extreme example of this duality, see overloading in

Java [24]). Furthermore, as static types need to be checked at compile-time,

by definition they lack run-time information about values, further limiting their

expressivity (interestingly, the types used in dynamically typed languages are

virtually identical in expressivity to those used in statically typed languages,

probably due to cultural expectations rather than technical issues).
3.1.1 Overly Permissive Types
Consider the following Java code which fails at run-time with a division by

zero exception:

int x ¼ 2;

int y ¼ 0;

int z ¼ x/y;

Looking at this, programmers of even moderate experience can statically spot the

cause of the error: the divisor should not be zero. Java’s compiler cannot statically

158 L. TRATT
detect this error because the int type represents real numbers including zero; thus the

above code is statically type correct according to Java’s types. Not only is there not a

type in Java which represents the real numbers excluding zero, there is no mechanism

for defining such a type in a way that would result in equivalent code leading to a

compile-time error. This limitation is shared by virtually all statically typed languages.

As suggested above, the static types available in today’s mainstream languages

are particularly inexpressive. Though research languages such as Haskell contain

more advanced type systems, they still have many practical limitations. Consider the

head function, which takes a list and returns its first element; given an empty list,

head raises a run-time exception. Taking the head of an empty list is a common

programming error, and is particularly frustrating in programming languages such

as Haskell whose run-time error reporting makes tracking down run-time errors

difficult [25]. It is possible to make a new list type, and a corresponding head

function, which can statically guarantee that the head of an empty list will never

be taken [26]; however, this only works for lists whose size is always statically

known. Lists that are created on the basis of user input—a far more likely scenario—

are highly unlikely to be statically checkable. Trying to use a type system in this way

adds significant complexity to user programs with only minimal benefits.

Because of the general inexpressiveness of static types, an entirely separate strand

of research tries to statically analyze programs to detect errors that escape static type

checkers (see, e.g., [27] for work directly related to the head function).
3.1.2 Overly Restrictive Types
Since any practical type system needs to be both decidable and sound, they are not

complete; in other words, certain valid programs will be rejected by the type checker

[28, 29]. For example, type systems provide a fixed, typically small (or even empty),

number of ways of relating types, with Object orientated languages allowing types to

be defined as subtypes of others allowing a certain kind of polymorphism. However,

programmers often need to express relationships between types that static types

prevent, even in research languages with advanced type systems such as ML [19].
3.1.3 Type System Complexity
From a pragmatic point of view, relatively small increases in the expressivity of

static type systems cause a disproportionately large increase in complexity [2, 30].

This can be seen clearly in Abadi and Cardelli’s [15] theoretical work which defines

static type systems of increasing expressiveness for Object orientated languages;

their latter systems, though expressive, are sufficiently complex that, to the best of

my knowledge, they have never been implemented in any language.

DYNAMICALLY TYPED LANGUAGES 159
3.2 Types Are Represented by a Separate Language

Since most of us are used to the presence of explicit static types, it is easy to

overlook the fact that they are represented by an entirely different language from the

base programming language. In other words, when learning the syntax and seman-

tics of programming X, one must also learn the syntactically and semantically

distinct static type language XT. That X and XT are, at heart, separate languages

can be seen by the very different types of errors that result from violating each one’s

semantics. While programming languages have developed various mechanisms

when presenting error information to aid programmers, the error messages from

static type systems are often baroque and hard to understand [31].
3.3 Type Systems’ Correctness

Static type systems are often the most complex parts of a programming

language’s specification. Because of this, it is easy for them to contain errors

which then result in ‘‘impossible’’ run-time behavior [12].

A famous example comes from Eiffel [32], one of the first ‘‘mainstream’’

Object orientated languages. Eiffel allows overridden methods to use subtypes of

the parameters in the superclass. Consider classes A1, A2, B1, B2, and B3, where A2

subclasses A1, and B3 subclasses B2 which subclasses B1. In Object orientated

languages, in general, instances of subclasses (e.g., A2) can be considered as

instances of superclasses (e.g., A1); intuitively, this is because subclasses have

type-identical versions of everything in the superclass plus, optionally, extra things.

Eiffel subtly changes this, so that subclasses can contain type-compatible versions of

everything in the superclass plus, optionally, extra things. Therefore, in Eiffel, one

can define a method m(p1:B2) (meaning that m has a parameter p1 of type B2) in

class A1 that is overridden in class A2 by m(p1:B3). If an instance of A2 is

considered to be an instance of its superclass A1, then an instance of B2 can validly

be passed to A2::m which may then attempt to access an attribute present only in

instances of the subclass B3. Such covariant typing is unsafe and programs which

utilize it can crash arbitrarily at run-time despite it satisfying Eiffel’s type-safety

rules [33].

As the Eiffel example suggests, and despite their formal veneer, the vast majority

of static type systems are not proved correct; some are sufficiently complex that

a full proof of correctness is impractical or impossible [23]. Eiffel again gives us a

good example of the subtleties that type systems involve: counterintuitively type

theory shows that A2::m could safely use supertypes of the parameter types in A1::m

(i.e., contravariant typing), so A2::m(p1:B1) is type-safe [34].

160 L. TRATT
Flaws discovered in type systems are particularly invidious, because changes to

type systems will typically break most extant programs; for this reason, even modern

versions of Eiffel contain the above flaw (whilst alleviating it to some extent).

3.4 System Ossification

Virtually all software systems are changed, often continuously, and rarely in a

planned or anticipated manner, after their original development [35]. It is, therefore,

an implicit requirement that software be amenable to such change, which further

implies that programming languages facilitate such change.

When changing a program, it is often desirable to change small sections at a time and

see the effect of that change on that particular part of the program, so that any new

errors can be easily related to the change; when performing such changes it is often

expected that the program as a wholemay not work correctly. Static type systems often

prevent this type of development, because they require that the system as a whole is

always type correct: it is not possible to temporarily turn off static type checking.

As static types make changing a system difficult, they inevitably cause systems to

prematurely ossify, making them harder to adapt to successive changes [36].

3.5 Run-Time Dynamicity

Software is increasingly required to inspect and alter its behavior at run-time,

often in the context of critical systems that are expected to run without downtime,

which must be patched whilst still running [37]. Traditionally, statically typed

languages’ compilers have discarded most information about a program’s structure,

its types, and so on during the compilation process, as they are not considered central

to the program’s execution. This means that most such languages are incapable of

meaningful reflection [38]. Of those that do (e.g., Java), the ability to change the

run-time behavior of a program is relatively limited because of the possibility of

subverting the type system. This means that statically typed languages have

typically proved difficult to use in systems that require run-time dynamicity [36].
4. History

Dynamically typed languages have a long and varied history. While few

dynamically typed languages have had a direct impact on the programming main-

stream, they have had a disproportionate effect on programming languages in

general. Perhaps because of their inherently flexible nature, or the nature of the

people attracted to them, dynamically typed languages have pioneered a bewildering

DYNAMICALLY TYPED LANGUAGES 161
array of features. Thus, the history of dynamically typed languages is intertwined

with that of statically typed programming languages which, often after a significant

delay, have incorporated the features pioneered in dynamically typed languages.

To the best of my knowledge, a history of dynamically typed languages has not

yet been published, although the History of Programming Languages (HOPL)

conferences3 include histories of several of the most important languages (see,

e.g., [39–41]). A full history is far beyond the scope of this chapter. However,

there have been several important innovations and trends which explain the direction

that dynamically typed languages have taken and why current dynamically typed

languages take the shape they do. The initial history of dynamically typed languages

is largely of individual languages—Lisp and Smalltalk in particular—while the

more recent history sees groups of languages—such as so-called ‘‘scripting’’ lan-

guages including Perl, Python, and Ruby—forging a common direction. Therefore,

this section enumerates, in approximately chronological order, the major points in

the evolution of dynamically typed languages.

4.1 Lisp and Its Derivatives

Arguably, the first dynamically typed language certainly the oldest still in use, and

without doubt the most influential dynamically typed language is Lisp [3]. Created in

the 1950s, Lisp was originally intended as a practical notation for the l-calculus [42].
Lisp is notable for its minimal syntax, the smallest of any extant programming

language used in the real world, allowing it a similarly small and uniform semantics.

This simplicity—it was quickly discovered that it is possible to specify a minimal Lisp

interpreter in a single page of Lisp code—made its implementation practical on

machines of the day. That the innovations pioneered by, and within, Lisp are too

many to mention can be inferred from its introduction of the if-then-else

construct now taken for granted in virtually all programming languages.

Simply labeled, Lisp is an impure functional language. To modern eyes, Lisp is

unusual because its concrete syntax uses prefix notation as can be seen from this

simple example of a Fibonacci function:

(defun fib (n)

(if (¼ n 0)
3

0

(if (¼ n 1)

1

(þ (fib (� n 1)) (fib (� n 2))))))
http://research.ihost.com/hopl/

http://www.convergepl.org/documentation/

162 L. TRATT
Lisp’s minimal syntax allows it to be naturally represented by Lisp lists. Since

lists can be inspected, altered, and created this led to what is arguably Lisp’s most

distinctive feature: macros. A macro is effectively a special function which, at

compile-time, generates code. Macros allow users to extend a programming

language in ways unforeseen by its creators [43]. Macros have, therefore, been a

key facilitator in Lisp’s continued existence, as they allow the spartan base language

to be seamlessly extended: a typical Lisp implementation will implement most of its

seemingly ‘‘primitive’’ control structures through macros (see Section 5.3.2).

Despite many attempts, it was not until the late 1990s that a syntactically rich,

statically typed language gained a practical macro-like facility broadly equivalent to

Lisp’s (see [44, 45]).

Lisp invented the concept of garbage collection [46] where memory allocation

and deallocation is handled automatically by the Lisp interpreter or VM. Lisp was

also the first language whose implementations made significant efforts to address

performance concerns [47]; many of the resulting implementation techniques have

become standard parts of subsequent language implementations.
4.1.1 Scheme
Lisp has spawned many dialects, the most significant of which is Scheme [4].

For the purposes of this chapter, Scheme can be thought of as a version of Lisp with

a minimalist aesthetic, particularly with regard to its libraries. While Lisp has seen

reasonable industrial usage (particularly in the 1980s, when it was the language

of choice for artificial intelligence work), Scheme has largely been a research

language, albeit a very influential one.

Scheme was the first language to introduce closures, allowing full lexical scoping,

simplifying many types of programming such as graphical user interface (GUI)

programming. It also popularised the concept of continuations, allowing arbitrary

control structures to be constructed by the user [48]. Scheme also showed that

functions and continuations could be treated as first-class objects. Much of the

foundational work on safe, powerful, macros was done in Scheme (see, e.g., [49, 50]).

4.2 Smalltalk

Smalltalk is Lisp’s nearest rival in influence. Put simply, Smalltalk is a small,

uniform Object orientated language, heavily influenced by Lisp and Simula [51].

Compared to later languages, Smalltalk’s syntax is small and uncomplicated (though

not as minimalistic in nature as Lisp’s); however, in most other ways, Smalltalk-80

[52] (the root of all extant Smalltalk’s) is recognizably a modern, Object orientated,

imperative programming language.

DYNAMICALLY TYPED LANGUAGES 163
Smalltalk pioneered the idea of ‘‘everything is an object’’ where even primitive

values (integers, etc.) appear as normal objects whose classes are part of the standard

class hierarchy. Smalltalk has extensive metaprogramming abilities. Reflection

allows programs to query and alter themselves [53]. A metaobject protocol (MOP)

[54] allows objects to change the way they behave; from the perspective of this

chapter, the most significant of these abilities is metaclasses [55] (see Section 5.3.1).

In Smalltalk, every object can be queried at run-time to find out its type.

In common with most Object orientated languages, a Smalltalk class also implicitly

defines a type (see Section 2.1), so the ‘‘type’’ of an object is the Class object

which created it. A metaclass is simply the type of a class. In Smalltalk, the default

metaclass for a class is called Metaclass; a cycle is created in the type hierarchy so

that Metaclass is its own type. Metaclasses allow Smalltalk to present a uniform,

closed world where every object in a running system is typed by an object in the

same running system. Only a small amount of bootstrapping is needed to create this

powerful illusion (later proposals have shown how the metaclass concept can be

further simplified [56]).

4.3 Text-Processing Languages

Text processing is a perennial programming task, and several languages have

been wholly or mostly designed with this in mind. This domain has been dominated

by dynamically typed languages, because the processing of unstructured data ben-

efits greatly from the flexibility afforded by such languages [2].

The first languages aimed at these tasks, most noticeably SNOBOL4 [57], were

effectively domain-specific languages (DSLs) for text processing, and were not

suitable for more general tasks [58]. One of SNOBOL4’s direct successor languages

was Icon [59], which introduced a unique expression evaluation system which

dispenses with Boolean logic and allows limited backtracking within an imperative

language. This allows one to express complex string matching which can naturally

evaluate multiple possibilities.

Sed and AWK [60] represent an entirely different strand of text-processing

languages from SNOBOL and Icon. They can be thought of as enhanced UNIX

shell languages, with AWK extending Sed with a number of more general program-

ming language constructs. Perl [20] represents the final evolution of this family of

languages. Reflecting its role as a tool for ad hoc development, it integrates a

bewildering number of influences to an AWK base, and is notable for having

arguably the most sophisticated—or, depending on ones point of view, complex—

syntax of any programming language.

Most of the above languages are not, in the widely understood sense, general

purpose languages. Icon is the most obviously general purpose language, although

164 L. TRATT
because of the many idioms it encompasses, Perl has been used in many domains.

Because of the ubiquity of Sed and AWK and, in the early years of the Web, Perl’s

dominance of server side processing, these languages have been more widely used

than any other category of dynamically typed languages.
4.4 Declarative Languages

Although dynamically typed languages are often implicitly assumed to be imper-

ative languages, dynamic typing is equally applicable to declarative languages

which, for the purposes of this chapter, I define to mean logic and ‘‘pure’’ functional

languages (i.e., those without side effects). Prolog [61] was among the first, and

remains the most widely used, logic language. Logic languages are very unlike

‘‘normal’’ languages, with the user declaring relations among data, and then stating

a goal over this which the language engine then attempts to solve—the order in

which statements in the language are executed is nonlinear.

Pure functional languages4 have largely been confined to the research lab and

have tended to be coupled with exotic static type systems. Although Erlang [62]

started existence as a distributed variant of Prolog, it has since evolved to become

one of the few dynamically typed pure functional languages. This perhaps reflects its

industrial origins where it was designed to implement robust, scalable, distributed

systems, particularly telephony systems [63]. Erlang is arguably the most successful

pure functional language yet with several million LoC systems. By eschewing static

types, it is able to focus on the hard issues surrounding distributed systems, including a

number of unique concepts relating to message passing and fault tolerance.
4.5 Prototyping Languages

Object orientated languages derived from SIMULA such as Smalltalk are class-

based languages: objects are created by instantiating classes. While everything in

Smalltalk is an object, practically speaking classes are a very distinguished type of

object from the user’s perspective. Self [64] aimed to distill the Object orientated

paradigm down to its bare essentials: objects, methods, and message sends.

In particular, Self removed classes as a fundamental construct; new objects are

created by cloning another object. The notion of type in Self, and other prototyping

languages, is thus subtly different than in other languages.
4 The ‘‘pure’’ name is a misnomer, since a truly side effect free program would be incapable of input/

output. Informally, ‘‘pure’’ is generally used to mean ‘‘no explicit side effects such as assignment.’’

DYNAMICALLY TYPED LANGUAGES 165
Because of their minimalistic nature, raw prototyping languages tend to be

particularly inefficient. Self pioneered a number of important implementation

techniques [65] that ultimately allowed Self to become one of the highest

performing dynamically typed languages. Much of this work has found its way

into other languages, including statically typed languages such as Java [5].
4.6 Modern ‘‘Scripting’’ Languages

The resurgence of interest in dynamically typed languages is largely due to what

were originally dismissively called ‘‘scripting’’ languages [1], which had their roots

in text-processing languages such as Sed and AWK (see Section 4.3). Unlike many

of the languages described earlier in this section, these languages were not designed

with innovation as a primary goal, and instead emphasized consolidation and

popularization. They have, therefore, focused on practical issues such as portability,

and shipping with extensive libraries. TCL [22] was the first such language which

gained reasonable popularity in large part because of its bundled GUI toolkit. Python

and Ruby [66]—fundamentally very similar languages once surface syntax issues

are ignored—can be seen as modernized, if less internally consistent, versions of

Smalltalk. Because of their inherent flexibility, such languages were initially often

used to ‘‘glue’’ other systems together, but have increasingly seen to be useful for a

wide range of programming tasks, such as Web programming tasks. Lua [67] is

a smaller language (both conceptually, and in its implementation) than either Python

and Ruby, and has been more explicitly designed as an embeddable programming

language; it has been used widely in the computer games industry to allow the

high-level definition and extension of games [68].

While this subcategory of dynamically typed languages has not greatly advanced

the state of the art, it has been the driving factor in validating dynamically typed

languages and making them a respected part of a programmer’s toolbox. Most new

systems written using dynamically typed languages use this category of languages.
5. Defining Features

In previous sections, I have defined the fundamental terms surrounding types and

programming languages, and presented a brief history of dynamically typed

languages. In this section, I enumerate the defining features and characteristics

of dynamically typed languages, and explain why they make such languages inter-

esting and useful. Some of these features and characteristics have recently found

166 L. TRATT
their way into new statically typed languages, either as a core feature or as library

add-ons. However, no statically typed language contains all of them, nor is that

likely to occur for both technical and cultural reasons.

5.1 Simplicity

A defining characteristic of virtually all dynamically typed languages is conceptual

simplicity. Fundamentally, dynamically typed languages are willing to trade run-time

efficiency for programmer productivity. Such simplicity makes both learning and

using dynamically typed languages simpler, in general, than statically typed languages

since there are less ‘‘corner cases’’ to be aware of. At its most extreme, Lisp’s minimal

syntax means that a full interpreter written in Lisp can fit on one page. Although most

dynamically typed languages include as standard a greater degree of syntax and

control structures than Lisp, this general principle remains.

At the risk of stating the obvious, dynamically typed languages do not contain

constructs relating to static types. This is a significant form of simplification, as

although static typing is sometimes considered to be the simple ‘‘tagging’’ of

variables with a given type name, static typing has a much more pervasive effect

on a language. For example, static typing requires an (often significant) extension to

a language’s grammar to allow type ‘‘tags’’ to be expressed and requires concept(s)

allowing static types to be related to one another (e.g., the Java concept of interface).

The learning curve of dynamically typed languages is considerably shallower

than for most statically typed languages. For example, in many dynamically typed

languages, the classic ‘‘hello world’’ program is simply print "Hello world!"

or a minor syntactic variant. In Java, at the other extreme, it requires a seven-line

program—in a file whose name must exactly match the class contained within it—

using a bewildering array of unfamiliar concepts. While programming beginners

obviously struggle with the complexity that a language like Java forces on every

user, it is widely known that programming professionals find it easier to learn new

dynamically typed languages [1].

5.2 High-Level Features

Dynamically typed languages pioneered what are often informally known as

‘‘high-level features’’—those which abstract away from low-level machine concerns.
5.2.1 Built-in Data Types
Whereas many statically typed languages provide only very simple built-in data

types—integers and user-defined structures—dynamically typed languages typi-

cally provide a much richer set. The two universal data types are lists (automatically

DYNAMICALLY TYPED LANGUAGES 167
resizing arrays) and strings (arbitrary character arrays); most dynamically typed

languages also provide support for dictionaries (also known as associative arrays or

hash tables; fast key/value lookup) and sets. These data types are typically tightly

integrated into the main language, often with their own syntax, and used consistently

and frequently throughout libraries. In contrast, most statically typed languages

defer most such data types to libraries; consequently, they are rarely as consistently

or frequently used.

Complex data structures are often naturally expressed using just built-in data

types. For example, the following Converge code shows how dictionaries of sets

representing room numbers and employees are naturally represented:

x :¼ Dict{10 : Set{"Fred", "Sue"}, 17 : Set{"Barry",

"George", "Steve"}, 18 : Set{"Mark"}}

x[10].add("Andy")

x[17].del("Steve")

After the above has been evaluated the dictionary referenced by X looks as

follows:

Dict{10 : Set{"Fred", "Andy", "Sue"}, 17 : Set{"Barry",

"George"}, 18 : Set{"Mark"}}

Using built-in data types not only improves programmer productivity, but also

execution speed as built-in data types is highly optimized.
5.2.2 Automatic Memory Management
Manual memory management—when the programmer must manually allocate

and free memory—wastes programmer resources (consuming perhaps around

30–40% of a programmer’s time [69]) and is a significant source of bugs [46].

Lisp was the first programming language to introduce the concept of garbage collec-

tion, meaning that memory is automatically allocated and freed by the language

run-time, largely removing this burden from the programmer. Virtually, all dynami-

cally typed languages (and, more recently, most statically typed languages) have

followed this lead.

5.3 Metaprogramming

Metaprogramming is the querying, manipulation, or creation of one program by

another; often a program will perform such actions upon itself. Metaprogramming

can occur at either, or both of, compile-time or run-time. Dynamically typed

languages have extensive metaprogramming abilities.

168 L. TRATT
5.3.1 Reflection
Formally, reflection can be split into three main aspects [70, 71]:

1. Introspection: the ability of a program to examine itself.

2. Self-modification: the ability of a program to alter its structure.

3. Intercession: the ability of a program to alter its behavior.

For the purposes of this chapter, reflection is considered to be a run-time ability.

For example, in Smalltalk, programs can perform deep introspection on objects at

run-time to determine their types (see Section 4.2). In the following Smalltalk

examples, ‘‘!’’ means ‘‘evaluates to’’:
2 þ 2 ! 4

(2 þ 2) class ! SmallInteger
(2 þ 2) class class ! SmallInteger class
(2 þ 2) class class class ! Metaclass
Self-modification allows behavior to be added, removed, or changed at run-time.

For example, in Smalltalk if a variable ie references an appropriate method (the

definition of which is left to the reader), then it can be added to the Number class, so

that all numbers can easily test whether they are odd or even:

3 isEven ! Message not understood
Number addSelector: #isEven withMethod ie ! Adds method
isEven to Number

3 isEven ! false

Unfettered run-time modification of a system is dangerous, since it can have

subtle, unintended consequences. However, careful use of reflection allows

programmers to bend a language to their particular circumstances rather than

the other way around. Most dynamically typed languages are capable of intro-

spection; many are capable of self-modification; relatively few are capable of

intercession (Smalltalk being one of the few). While a few statically typed

languages such as Java support the introspective aspects of reflection, few are

as consistently reflective as Smalltalk and its descendants, and none allow the

level of manipulation as shown above.

Some OO languages have a MOP [54] which allows intercession, as objects can

alter the way they respond to message sends. For example, in Python, objects can

override the __getattribute__ function which receives a message name and

returns an object of its choosing. The following example code (although too simple

DYNAMICALLY TYPED LANGUAGES 169
for production use) shows how Python objects can be made to appear to automati-

cally have automatic ‘‘getter’’ methods if they do not exist:

class C(object):

x ¼ 2

def __getattribute__(self, name):

if name.startswith("get_"):

v ¼ object.__getattribute__(self, name [4 :])

return lambda : v

else:

return object.__getattribute__(self, name)

i¼ C()

print i.x

print i.get_x()

In this example, both i.x and i.get_x() evaluate to the same result. Similar

tricks can be played with the setting and querying of object slots. While delving into

the MOP can easily introduce complications such as infinite loops, it can be useful,

as in this example, to allow one object to emulate the behavior of another, allowing

otherwise incompatible frameworks and libraries to interact. Reflection also allows

much deeper changes to a system such as allowing run-time modification of whole

program aspects [72].
5.3.2 Compile-Time Metaprogramming
Compile-time metaprogramming allows the user to interact with the compiler to

allow the construction of arbitrary program fragments. Lisp’s macros are the

traditional form of compile-time metaprogramming and are used extensively to

extend the minimal base language. For example, the when control structure is a

specialized form of if, taking a condition and a list of expressions; if the condition

holds, when evaluates all expressions, returning the result of the final expression.

In Common Lisp [73] (alongside Emacs Lisp, one of the major extant Lisp

implementations) when can be implemented as follows:

(defmacro when (cond &rest body)

‘(if �cond (progn �@body)))

Whenever a ‘‘function call’’ to when is encountered during compilation, the

above macro is executed and the resultant generated code statically replaces the

‘‘function call.’’ The two major features in the above are the quote’ which in

essence returns the quoted expression as an abstract syntax tree (AST) (i.e., without

evaluating it) and the insertion � which inserts one Lisp AST in another.

170 L. TRATT
Because macros in Lisp are often considered to rely on some of Lisp’s defining

features—in particular its minimal syntax which means that Lisp ASTs are simply

lists of lists—subsequent dynamically typed languages did not have an equivalent

system. In a rare occurrence, the statically typed languages MetaML [44] and then

Template Haskell [45] showed how a practical compile-time metaprogramming

system could be naturally integrated into a modern syntactically rich language.

Compile-time metaprogramming is slightly more generic in concept than traditional

macros, as it allows users to interact with the compiler, where such interactions may

not always lead to the generation of code. Converge (created by this chapters author)

integrates a Template Haskell-like system into a dynamically typed language, and

uses it to implement a syntax extension feature which allows syntactically distinct

DSLs to be embedded into normal programs.
5.3.3 Eval
Colloquially referred to by its short name, ‘‘eval’’ refers to the ability, almost

wholly confined to dynamically typed languages, to evaluate arbitrary code expres-

sions as strings at run-time. In other words, code fragments can be received from, for

example, end users, evaluated and the resulting value used for arbitrary purposes.

Note that eval is very different from compile-time metaprogramming, since expres-

sions are evaluated at run-time, not compile-time, and any value can be returned

(not just ASTs). While eval has many obvious downsides—allowing arbitrary code

to be executed at run-time has severe security implications—when used carefully

(e.g., in configuration files) it can reduce the need for arbitrary mini-programming

languages to be implemented within a system.
5.3.4 Continuations
First popularised in Scheme, continuations remain a relatively exotic construct,

with support only found in a handful of other languages, noticeably including

Smalltalk. At a high-level, they can be thought of as a generalized form of coroutine

[48] which allows a safe way of defining ‘‘goto’’ points, capturing a certain part of

the current program state and allowing that part to be suspended and later resumed.

Continuations are sufficiently powerful that all other control structures can be

defined in terms of them.

The low-level power of continuations, and the fact that they subvert normal

expectations of control flow, has meant that they have been talked about rather

more than they have been used. However, they have recently shown to be a natural

match for Web programming, where the back button in Web browsers causes huge

problems because it is effectively an ‘‘undo’’; most Web systems give unpredictable

DYNAMICALLY TYPED LANGUAGES 171
and confusing results if the back button is used frequently. Continuations can

naturally model the chain of resumption points that represent each point in the

users browsing history, as can be seen in the Smalltalk Seaside framework [74].

This means that Web systems respect user’s intuition when the back button is used,

but are not unduly difficult to develop.

5.4 Refactoring

Refactoring is the act of applying small, behavior-preserving transformations, to a

system [75]. The general aim of refactoring is to maintain, or restore, the internal

quality of a system after a series of changes so that further changes to the system are

practical. A key part of the refactoring definition ‘‘behavior-preserving’’: it is vital

that refactorings do not introduce new errors into a system. In practice, two distinct

types of refactorings can be identified:

1. Small, tightly defined, and automatable refactorings. Exemplified by the

‘‘move method’’ refactoring where a method is moved from class C to D.

2. Larger, typically project-specific, nonautomatable refactorings. A typical

example is splitting a module or class into two to separate out functionality.

Statically typed languages have an inherent advantage over dynamically typed

languages in the first type of refactoring because of the extra information encoded in

static types. However, static types are a burden in the second type of refactoring

because they always require the entire system to be type correct. This means that it is

not possible to make, and test, small local changes to a subsystem when such

changes temporarily violate the type system; instead, the entire refactoring must

be implemented in one fell swoop which means that any resulting errors are difficult

to relate to an individual action. Counterintuitively, perhaps, static types inhibit

large-scale refactorings, tending to ossify a program’s structure (see Section 3.4).

The flexibility of dynamically typed languages, on the other hand, encourages

continual changes to a system [36], though it is often wise to pair it with a suitable

test suite to prevent regressions (see Section 6.2).

5.5 ‘‘Batteries Included’’ Libraries

Traditionally, many statically typed languages—from Algol to Ada—have been

designed as paper standards, detailing their syntax and semantics, but typically

agnostic as to libraries. Such languages are then implemented by multiple vendors,

each of which is likely to provide different libraries. In contrast, most dynamically

typed languages—with the notable exception of the Lisp family—have been defined

by their initial implementation and its accompanying libraries. The majority of

172 L. TRATT
modern dynamically typed languages (see Section 4.6) come with a rich set of

standard libraries—the so-called ‘‘batteries included’’ approach5 [76]—which

encompass enough functionality to be suitable for a majority of common program-

ming tasks. Implicit in this is the assumption that if the initial implementation is

replaced, the standard library will be provided in a backward-compatible fashion; in

comparison to paper-based standards, it is often difficult to distinguish between the

language and its libraries. Furthermore, due to the emphasis on a rich set of standard

libraries, it is relatively easy to define new, external libraries without requiring the

installation of many dependent libraries.

As described in Section 6.1, the performance of dynamically typed languages

varies from slightly to significantly slower than statically typed languages;

however, suitable use of libraries (which are typically highly optimized) can often

significantly diminish performance issues.
5.6 Portability

Portable software is that which runs on multiple target platforms. For the purposes

of this chapter, a platform can be considered to be a combination of hardware and

operating system.6 For most nonspecialized purposes, users wish their software to

run on as many platforms as practical.

One way of achieving portability is to allow programs to deal, on an as-needs

basis, with known variations in the underlying platform; the other is to provide

abstractions which abstract away from the hardware and the operating system [77].

Since dynamically typed languages aim to present a higher-level view of the world

to programs (see, e.g., Section 5.2), they follow this latter philosophy. There are

many examples of such abstractions, but two in particular show the importance of

abstracting away from the hardware and the operating system. First, ‘‘primitive

types’’ such as integers will typically automatically change their representation from

an efficient but limited machine type to a variably sized container as necessary, thus

preventing unintended overflow errors. Second, file libraries provide simple open

and read calls (note that garbage collection typically closes files automatically in

dynamically typed languages, so explicit calls to close are less important) which

abstract away from the wide variety of file-processing calls found in different

operating systems. By providing such abstractions, dynamically typed programs
5 While this phrase originated in the Python community, it reflects a common belief among most

dynamically typed languages.
6 A precise definition of platform would have to cope with many ontological difficulties, such as the

Java Virtual Machine which defines a ‘‘platform-independent’’ platform of its own.

DYNAMICALLY TYPED LANGUAGES 173
are typically more portable than most statically typed languages because there is less

direct reliance on features of the underlying platform.

5.7 Unanticipated Reuse

A powerful type of reuse is when functionality is composed from smaller units in

ways that are reasonable and valid, but not anticipated by the authors of each

subunit. Ousterhout shows how, by using untyped text as its medium and lazy

evaluation as its process, the UNIX shell can chain together arbitrary commands

with pipes [1]. For example, the following command counts how many lines the

word ‘‘dynamic’’ occurs in .c files:

find . -name "*.c" j grep -i dynamic j wc -l

The enabling factor in such reuse is the loose contracts placed on input and output

data: if the UNIX shell, for example, forced data passed through pipes to be

statically typed it is unlikely that such powerful chains of commands could be

created as commands would not be as easily reusable.

Dynamically typed languages allow similar reuse to the UNIX shell, but with a

subtle twist. While most Unix shell commands demand nothing of input text (which

may be empty, all on one line, etc.), and statically typed languages demand the

complete typing of all inputs, dynamically typed languages allow shades of gray in-

between. Essentially, the idea is that functions should demand (and, possibly, check)

the minimum of any inputs to ensure correct functionality, thus allowing functions to

operate correctly on a wide range of seemingly unrelated input. This philosophy,

while longstanding, has recently acquired the name duck typing to reflect the

intuitive notion that if an input ‘‘talks like a duck and quacks like a duck, it is a

duck’’—even if other aspects of the input may not look like a duck [78]. Duck

typing can be seen as the run-time, dynamically typed equivalent of structural typing

(see Section 2.3.2). A good example of the virtues of duck typing can be found in

Python where functions that deal with files often expect only a simple read method

in any input objects; this allows programs to make many nonfile objects

(e.g., network streams) appear as files, thus reducing the number of cases where

specialized functions must be created for different types.

5.8 Interactivity

Virtually, all dynamically typed languages are interactive, in the sense that users

can execute commands on a running instance of the system and, if desired, perform

further interactive computations on the result. Arguably, the most powerful interac-

tive systems are for Smalltalk, where systems are generally developed within an

174 L. TRATT
interactive GUI system containing both system tools (the compiler, etc.) and the

users code [52]. Most languages, however, provide such interactivity via a

command-line interface which allows normal expressions to be entered and imme-

diately evaluated. This allows the run-time system presented by the language to be

explored and understood. For example, the following session shows how the Python

shell can be used to explore the type system and find out help on a method:

>>> True.__class__

<type 0bool0>

>>> True.__class__.__class__

<type 0type0>

>>> dir(True.__class__.__class__)

[0__base__0, 0__bases__0, 0__basicsize__0, 0__call__0,
0__class__0, 0__cmp__0, 0__delattr__0, 0__dict__0,
0__dictoffset__0, 0__doc__0, 0__flags__0,
0__getattribute__0, 0__hash__0, 0__init__0,
0__itemsize__0, 0__module__0, 0__mro__0, 0__name__0,
0__new__0, 0__reduce__0, 0__reduce_ex__0, 0__repr__0,
0__setattr__0, 0__str__0, 0__subclasses__0,
0__weakrefoffset__0, 0mro0]

>>> help(True.__class__.__class__.mro)

mro(. . .)

mro() �> list

return a type’s method resolution order

>>>

By providing an interactive interface, dynamically typed languages encourage

exploration of the run-time system, and also allow small examples to be worked on

without any ‘‘compile link’’ overhead.
5.9 Compile–Link–Run Cycle

In the majority of programming languages—with the notable exception of Small-

talk and languages directly influenced by it such as Self (see Section 8)—programs

are stored in one or more files. To run a program in a statically typed language, one

must typically compile each individual file of the program, and link them together to

produce a binary, which can then be run. This process is know as the ‘‘compile–link–

run’’ cycle. Because statically typed languages are relatively complex to compile and

link, this is often a lengthy process—even on modern machines, large applications can

DYNAMICALLY TYPED LANGUAGES 175
take several hours to compile and link from scratch. This is often a limiting factor in

rapid application development [79].

In contrast, most dynamically typed languages conflate the compile–link–run

cycle, allowing source files to be directly ‘‘run.’’ As compilation of individual

modules is often done on an ‘‘as-needs’’ basis, and since the compilation and linking

of dynamically typed languages is much simpler since no static types need to be

checked, this means the user experiences a much shorter compile–link–run cycle.

5.10 Run-Time Updates

With the increasing trend of software providing long-running services

(e.g., switches, financial applications), it is necessary to upgrade software without

stopping it [37]. This means replacing or augmenting values in the run-time system,

typically with data and functionality in the ‘‘old’’ system existing side-by-side with

the ‘‘new.’’

While it is possible to perform limited run-time updates with statically typed

languages, the general requirement to retain the type safety of the running system

(without which random low-level crashes are likely), and the difficulty of migrating

data, makes this extremely challenging in such languages (see Section 3.5).

Dynamically typed languages have two significant advantages in such situations.

First, reflection allows arbitrary manipulation and emulation of data. Second, there

is no absolute requirement to maintain type safety in the updated system as, at worse,

any type errors resulting from updating data or functionality will result in a standard

run-time type error (in contrast, subverting the type system of a statically typed

language is likely to lead to a low-level crash). Erlang makes heavy use of these

features to allow extensive run-time updating in a way that allows resultant systems

to keep running for very long periods of time [62].
6. Disadvantages of Dynamic Typing

6.1 Performance

Much has been said and written about the relative performance of various

programming languages over the years; regrettably, much has been based on

superstition, supposition, or unrepresentatively small examples. There is little

doubt that, in practice, equivalent programs in dynamically typed languages are

slower than in statically typed languages. While on certain macro benchmarks some

language implementations (typically Lisp or Smalltalk implementations) can

achieve approximate parity with statically typed languages, a general rule of

176 L. TRATT
thumb is that the most finely tuned dynamically typed language implementations

are approximately two times slower than the equivalent statically typed

implementation7.

The performance gap between dynamically typed and statically typed languages

has lowered over recent years, in large part due to innovations surrounding JIT

compilation [5]—the difference in speed between dynamically typed language

implementations with and without JIT compilation is typically a factor of 3–5.

Currently, the performance between different dynamically typed language imple-

mentations varies wildly, with languages such as Ruby an order of magnitude slower

than leading Lisp’s. As there are few technical reasons for such differences,

and given recent trends such as common virtual machines and the awareness of

the benefits of JIT compilation, it is likely that the performance gap between

implementations will narrow considerably.

Arguably, more important than absolute performance measured in minutes and

seconds is the performance relative to requirements: in other words, does the

program ‘‘run fast enough?’’ Thanks in part to the advancements of commodity

computers, for most real-world purposes, this question is often redundant. For

certain tasks, particularly very low-level tasks, or those on low-performance com-

puters such as some embedded systems, statically typed languages retain an impor-

tant advantage. However, it is interesting to note that in certain data-intensive and

performance-sensitive domains such as scientific computing dynamically typed

languages have proved to be very successful (see, e.g., [76, 80]). There are two

explanations for this. First, the high-level nature of dynamically typed languages

allows programmers to focus on improving algorithms rather than low-level coding

tricks. Second, dynamically typed languages typically come with extensive, highly

optimized libraries to which the most performance critical work is often deferred

(the so-called ‘‘batteries included’’ approach [76]).
6.2 Debugging

A fundamental difference between statically and dynamically typed languages

is that the former can detect and prevent certain errors at compile-time (see

Section 2.3). Logically, this implies that dynamically typed programs are inherently

more error-prone than statically typed languages. This is potentially a real problem,
7 As shown by ‘‘The Computer Language Benchmarks Game’’ http://shootout.alioth.debian.org/

which, despite its stated limitations, is one of the best attempts to compare performance, and is notable

for the variety of language implementations it includes.

http://www.convergepl.org/documentation/

DYNAMICALLY TYPED LANGUAGES 177
hence why it is included in the ‘‘disadvantages’’ section. However in practice,

run-time type errors in deployed programs are exceedingly rare [79].

There are three main reasons why run-time type errors are rarely an issue.

First, type errors represent a small, generally immediately obvious, trivially fixed

class of errors and are thus typically detected and fixed quickly during development.

Second—as shown in Section 3—static types do not capture many of the more

important and subtle errors that one might hoped would have been detected; such

errors thus occur with equal frequency in statically and dynamically typed programs.

Third, automated testing will tend to detect most type errors. This last point is

particularly interesting. Unit testing is when a test suite is created that can, without

user intervention, be used to check that a system conforms to the tests. Unit tests are

often called ‘‘regression suites’’ to emphasize that they are intended to prevent

errors creeping back into a system. The first unit test suite was for Smalltalk [81], but

virtually all languages now have an equivalent library or facility, for example, Java

[82]. As this suggests, unit testing allows developers to make guarantees of their

programs that are considerably in excess of anything that static typing can provide.
6.3 Code Completion

Many modern developers make use of sophisticated integrated development

environments (IDEs) to edit programs. One feature associated with such tools is

code completion. In particular when a variable of type T is used in a slot lookup, the

functions and attributes of the type are automatically displayed. This feature makes

use of static types to ensure that (modulo any use of reflection) its answers are fully

accurate. A fully equivalent feature is not possible for dynamically typed languages

since it is not possible to accurately determine the static type of an arbitrary

expression.
6.4 Types as Documentation

Since most statically typed languages force users to explicitly state the types that

functions consume and return, statically typed programs have an implicit form of

documentation within them, which happens to be machine checkable [23]. There is

little doubt that this form of documentation is often useful and that dynamically

typed languages do not include it. However, since it is possible to informally notate

the expected types of a function in comments, or associated documentation strings

processed by external tools, this is not a major disadvantage; furthermore, some

dynamically typed languages include optional type systems (see Section 7.2) that

allow code to be annotated with type declarations when desired.

178 L. TRATT
7. Variations

In the majority of this chapter, I have described a homogenized picture of

dynamically typed languages, emphasizing the culturally common aspects of most

languages. Inevitably, this smooths over some important differences and variations

between languages; this section details some of these.

7.1 Non-OO and OO Languages

Dynamically typed languages come in both OO (e.g., Converge, Python) and non-

OO (e.g., Lisp) flavors. Unsurprisingly, older dynamically typed languages tend to

be non-OO, with languages of the past decade or more almost exclusively OO.

Interestingly, the transition between these two schools can be seen in languages such

as Python (and, to a lesser extent, Lua) which started as non-OO languages but

which were subsequently retrofitted with sufficient OO features that their early

history is only rarely evident. The general principles are largely the same in

both cases, and in most of this chapter I have avoided taking an exclusively OO or

non-OO approach.

OO does, however, introduce some new differentiating factors between statically

and dynamically typed languages. In particular, static typing allows OO languages

to introduce new ways of method dispatch (such as method overloading) due to

polymorphism. While metaprogramming allows dynamically typed languages to

introduce analogous features, they are not tightly integrated into the language,

or frequently used. In part, because of this, it is generally easier to move between

non-OO and OO programming styles in dynamically typed languages such as

Python than to attempt the same in a statically typed OO language such as Java.

It is notable that dynamically typed languages have played a major part in the

continued development of OO. For example, languages such as Self introduced

the notable concept of prototyping [64]; Smalltalk has been used as the workbench

for innovations such as traits [83] which defines an alternative to inheritance for

composing functionality.

7.2 Optional Types

In most of this chapter, dynamic and static typing have been talked about as if they

are mutually exclusive—and in most current languages this is true. While not

integrated into any mainstream language, there is a long history of work which

aims to utilize the benefits of both approaches [2] and blur this distinction. There are

three main ways of achieving this. First, one can add a ‘‘dynamic type’’ to a

DYNAMICALLY TYPED LANGUAGES 179
statically typed language, meaning that most data are statically typed, with some

‘‘dynamically typed’’ (see, e.g., [84, 85]). Second, and of greater interest to this

chapter, one can add an optional type system to a dynamically typed language.

Intuitively, optional typing is easily defined: static types can be added at selected

points in a program, or discovered through type inference, and those types are

statically checked by a compiler. Optional typing thus means that portions a program

can be guaranteed not to have type errors. Exactly how much of a program needs to

be statically typed varies between approaches, for example, some proposal require

whole modules to be fully statically typed [86] where others allow a free mixture of

dynamic and static typing [87]. Optional types have two further advantages: they

offer the possibility that extra optimizations can be used on statically typed portions

[19]; they also provide a machine-checkable form of documentation within source

code (see Section 6.4).

Optional typing raises two particularly important questions:

1. Are type violations fatal errors (as they are in fully statically typed languages),

or merely informative warnings?

2. Should static typing effect the run-time semantics of the system?

There is currently no agreement on either of these points. For example, as

described in Section 7.1 static typing in OO languages can affect method dispatch,

meaning that OO programs could perform method dispatch differently in statically

and dynamically typed portions. Because of this, one possibility is to make optional

types truly optional, in that their presence or absence does not affect the run-time

semantics of a program [23]. Taking this route also raises the possibility of using

different type systems within one program.

For the purposes of this chapter, optional typing is considered to subsume a

number of related concepts—including gradual typing, soft typing, and pluggable

typing. As this may suggest, optional typing in its various form is still relatively

immature and remains an active area of research.

7.3 Analysis

One approach to validating the correctness of a program is analysis. Static

analysis involves analyzing the source code of a system for errors, and is capable

of finding various classes of errors, not just type errors. Static analysis is a

well-established technique in certain limited areas, such as safety critical systems,

where developers are prepared to constrain the systems they write in order to be

assured of correctness. Such a philosophy is at odds with that of dynamically typed

languages, which emphasize flexibility. Furthermore, the inherent flexibility of

dynamically typed languages would lead to a huge increase in the search space.

180 L. TRATT
Therefore, static analysis is unlikely to be a practical approach for analyzing

dynamically typed programs. Another approach to analysis is to perform it at run-

time—dynamic analysis—when virtual machines, libraries, and so on are aug-

mented with extra checks which aim to detect many errors at the earliest possible

point, rather than waiting until a program crashes. Although such tools are in their

infancy some, such as the Dialyzer system which performs such analysis for Erlang

systems [88], are in real-world use.
8. The Future

Definitively predicting the future of dynamically typed languages is impossible

since there is no central authority, or single technology, which defines such languages.

Nevertheless, certain trends are currently evident. The increasing popularity of dyna-

mically typed languages mean a revived interest in performance issues; while lan-

guages such as Self have shown that dynamically typed languages can have efficient

implementations, few current languages have adopted such techniques. As dynami-

cally typed languages continue to be used in the real world, increasingly for larger

systems, users are likely to demand better performance. Experimentation in optional

typing is likely to continue, with optional type systems eventually seeing real use in

mainstream languages. The cross-fertilization of ideas between statically and dyna-

mically typed languages will continue, with language features such as compile-time

metaprogramming crossing both ways across the divide. It is also likely that we will

see an increase in the number of dynamically typed DSLs, since such languages tend

by nature to be small and ‘‘lightweight’’ in feel.
9. Conclusions

In this chapter, I detailed the general philosophy, history, and defining features of

dynamically typed languages. I showed that, while a broad banner, such languages

share much in common. Furthermore, I have highlighted their contribution to the

development of programming languages in general and, I hope, a sense of why they

are currently enjoying such a resurgence.

Acknowledgment

I am grateful to Éric Tanter who provided insightful comments on a draft of this chapter. All remaining

errors and infelicities are my own.

DYNAMICALLY TYPED LANGUAGES 181
References

[1] J. Ousterhout, Scripting: higher-level programming for the 21st century, Computer 31 (3) (1998)

23–30.

[2] E. Meijer, P. Drayton, Static typing where possible, dynamic typing when needed: the end of the cold

war between programming languages, in: Proc. OOPSLA’04 Workshop on Revival of Dynamic

Languages, October 2004.

[3] J. McCarthy, Recursive functions of symbolic expressions and their computation by machine (Part I),

Commun. ACM 3 (4) (1960) 184–195.

[4] G. Sussman, G. Steele, Jr., Scheme: an interpreter for extended lambda calculus, Technical Report

AI Lab Memo AIM-349, MIT AI Lab, December 1975.

[5] J. Aycock, A brief history of Just-In-Time, ACM Comput. Surv. 35 (2) (2003) 97–113.

[6] L.D. Paulson, Developers shift to dynamic programming languages, Computer 40 (2) (2007) 12–15.

[7] R.P. Loui, In praise of scripting: real programming pragmatism, Computer 41 (7) (2008) 22–26.

[8] D. Spinellis, V. Guruprasad, Lightweight languages as software engineering tools, in: USENIX

Conference on Domain-Specific Languages, October 1997, USENIX Association, Berkeley, CA,

pp. 67–76.

[9] S. Karabuk, F.H. Grant, A common medium for programming operations-research models, IEEE

Software 24 (5) (2007) 39–47.

[10] O.L. Madsen, B. Magnusson, B. Mølier-Pedersen, Strong typing of Object orientated languages

revisited, in: Proc. OOPSLA, 1990, ACM, Ottawa, Canada, pp. 140–150.

[11] P. Norvig, Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp,

Morgan Kaufmann, San Mateo, CA, 1992.

[12] L. Cardelli, Type systems, in: The Computer Science and Engineering Handbook. CRC Press, Boca

Raton, FL, 1997, pp. 2208–2236.

[13] B.C. Pierce, Types and Programming Languages, MIT Press, Cambridge, MA, 2002.

[14] W. Cook, W. Hill, P. Canning, Inheritance is not subtyping, in: Proc. 17th Symposium on Principles

of Programming Languages, 1990, pp. 125–135.

[15] M. Abadi, L. Cardelli, A Theory of Objects, Springer-Verlag, New York, 1996.

[16] J. Gosling, B. Joy, G. Steele, G. Bracha, The Java Language Specification, second ed., Addison-

Wesley, Boston, MA, 2000.

[17] S.P. Jones, Haskell 98 Languages and Libraries: The Revised Report, Cambridge University Press,

New York, 2003.

[18] L. Tratt, Converge Reference Manual, July 2007 (http://www.convergepl.org/documentation/,

accessed 3 June 2008).

[19] R. Cartwright, M. Fagan, Soft typing, in: Proc. SIGPLAN’91 Conference on Programming Lan-

guage Design and Implementation, 1991, pp. 278–292.

[20] L. Wall, T. Christiansen, J. Orwant, Programming Perl, O’Reilly, third ed., 2000.

[21] G. Rossum, Python 2.3 Reference Manual, (http://www.python.org/doc/2.3/ref/ref.html, accessed

3 June 2008).

[22] J. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA, 1994.

[23] G. Bracha, Pluggable type systems, in: OOPSLA’04 Workshop on Revival of Dynamic Languages,

October 2004.

[24] D. Ancona, E. Zucca, S. Drossopoulou, Overloading and inheritance, in: Workshop on Foundations

of Object Orientated Languages (FOOL8), 2001.

[25] M. Shields, T. Sheard, S.P. Jones, Dynamic typing as staged type inference, in: Proc. Symposium

on Principles of Programming Languages, January 1998, pp. 289–302.

http://www.convergepl.org/documentation/
http://www.python.org/doc/2.3/ref/ref.html

182 L. TRATT
[26] H. Xi, F. Pfenning, Eliminating array bound checking through dependent types, in: Proc. Conference

on Programming Language Design and Implementation, 1998, pp. 249–257.

[27] N. Mitchell, C. Runciman, Unfailing Haskell: a static checker for pattern matching, in: Proc.

Symposium on Trends in Functional Programming, 2005, pp. 313–328.

[28] A. Aiken, E.L. Wimmers, T.K. Lakshman, Soft typing with conditional types, in: Proc. Symposium

on Principles of Programming Languages, 1994, ACM, New York, pp. 163–173.

[29] D.C.J. Matthews, Static and dynamic type checking, in: Advances in Database Programming

Languages, 1990, pp. 67–73.

[30] D.B. MacQueen, Reflections on standard ML, in: Functional Programming, Concurrency, Simula-

tion and Automated Reasoning, vol. 693 of LNCS, Springer-Verlag, New York, 1993, pp. 32–46.

[31] E. Meijer, Confessions of a used programming language salesman, SIGPLAN Notices 42 (10)

(2007) 677–694.

[32] B. Meyer, Eiffel: The Language, Prentice-Hall International, London, 1992.

[33] W.R. Cook, A proposal for making Eiffel type-safe, Comput. J. 32 (4) (1989) 305–311.

[34] G. Castagna, Covariance versus contravariance: conflict without a cause, ACM Transactions on

Programming Languages and Systems, May 1995, pp. 431–447.

[35] M.M. Lehman, L.A. Belady, Program Evolution: Processes of Software Change, Academic Press,

London, 1985.

[36] O. Nierstrasz, A. Bergel, M. Denker, S. Ducasse, M. Gälli, R. Wuyts, On the revival of dynamic

languages, in: Proc. Software Composition 2005, vol. 3628 of LNCS, 2005, pp. 1–13.

[37] M. Hicks, S.M. Nettles, Dynamic software updating, ACM Trans. Program. Lang. Syst. 27 (6)

(2005) 1049–1096.

[38] F.N. Demers, J. Malenfant, Reflection in logic, functional and Object orientated programming: a

short comparative study, in: Proc. IJCAI’95 Workshop on Reflection and Metalevel Architectures

and Their Applications in AI, August 1995, pp. 29–38.

[39] G.L. Steele, R.P. Gabriel, The Evolution of Lisp, 1996, pp. 233–330.

[40] A.C. Kay, The Early History of Smalltalk, 1996, pp. 511–598.

[41] R.E. Griswold, M.T. Griswold, History of the Icon Programming Language, Addison-Wesley, 1996,

Reading, MA, 1996, pp. 599–624.

[42] J. McCarthy, History of LISP, in: Proc. History of Programming Languages, 1978, ACM, NewYork,

pp. 173–185.

[43] C. Brabrand, M. Schwartzbach, Growing languages with metamorphic syntax macros, in: ACM

SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation, 2000,

ACM, San Diego, CA.

[44] T. Sheard, Using MetaML: a staged programming language, in: Advanced Functional Programming,

September 1998, pp. 207–239.

[45] T. Sheard, S.P. Jones, Template meta-programming for Haskell, in: Proc. Haskell Workshop 2002,

ACM, New York.

[46] R. Jones, R. Lins, Garbage Collection: Algorithms for Automatic Dynamic Memory Management,

John Wiley & Sons, New York, 1999.

[47] R.P. Gabriel, Performance and Evaluation of LISP Systems, MIT Press, Cambridge, MA, 1986.

[48] C.T. Haynes, D.P. Friedman, M. Wand, Continuations and coroutines, in: Proc. Symposium on LISP

and Functional Programming, 1984, ACM, Austin, TX, pp. 293–298.

[49] E. Kohlbecker, D.P. Friedman, M. Felleisen, B. Duba, Hygienic macro expansion, in: Proc.

Symposium on Lisp and Functional Programming, 1986, ACM, Austin, TX, pp. 151–161.

[50] W. Clinger, J. Rees, Macros that work, in: Proc. 19th ACM Symposium on Principles of Program-

ming Languages, January 1991, ACM, New York, pp. 155–162.

DYNAMICALLY TYPED LANGUAGES 183
[51] O.J. Dahl, K. Nygaard, An Algol-based simulation language, Commun. ACM 9 (9) (1966) 671–678.

[52] A. Goldberg, D. Robson, Smalltalk-80: The Language, Addison-Wesley, Reading, MA, 1989.

[53] P. Maes, Concepts and experiments in computational reflection, in: Proc. OOPSLA, 1987, ACM,

New York, pp. 147–155.

[54] G. Kiczales, J. Rivieres, D.G. Bobrow, The Art of the Metaobject Protocol, MIT Press, Cambridge,

MA, 1991.

[55] I.R. Forman, S.H. Danforth, Putting Metaclasses to Work: A New Dimension in Object Orientated

Programming, Addison-Wesley, Reading, MA, 1998.

[56] P. Cointe, Metaclasses are first class: the ObjVLisp model, in: Proc. Object Orientated Programming

Systems, Languages, and Applications, October 1987, pp. 156–162.

[57] R.E. Griswold, J.F. Poage, I.P. Polonsky, The SNOBOL4 Programming Language, second ed.,

Prentice-Hall, Englewood Cliffs, NJ, 1971.

[58] R.E. Griswold, A history of the SNOBOL programming languages, SIGPLAN Notices 13 (8) (1978)

275–308.

[59] R.E. Griswold, M.T. Griswold, The Icon Programming Language, Peer-to-Peer Communications,

third ed. 1996.

[60] A.V. Aho, B.W. Kernighan, P.J. Weinberger, The AWK Programming Language, Addison-Wesley,

Reading, MA, 1998.

[61] L. Sterling, E. Shapiro, The Art of Prolog, second ed., MIT Press, Cambridge, MA, 1994.

[62] R. Virding, C. Wikstrom, M. Williams, J. Armstrong, Concurrent Programming in Erlang, Prentice

Hall, New York, 1996.

[63] J. Armstrong, A history of Erlang, in: Proc. History of Programming Languages, 2007, ACM,

New York, .

[64] D. Ungar, R.B. Smith, Self: the power of simplicity, in: Proc. OOPSLA, October 1987, pp. 227–241.

[65] C. Chambers, D. Ungar, Customization: optimizing compiler technology for SELF, a dynamically-

typed Object orientated programming language, SIGPLAN Notices 24 (7) (1989) 146–160.

[66] D. Thomas, A. Hunt, Programming Ruby: A Pragmatic Programmer’s Guide, Addison-Wesley,

Reading, MA, 2000.

[67] R. Ierusalimschy, Programming in Lua, second ed., Lua.org, 2006.

[68] R. Ierusalimschy, L.H. de Figueiredo, W. Celes, The evolution of Lua, in: Proc. History of

Programming Languages, 2007, ACM, New York.

[69] P. Rovner, On adding garbage collection and runtime types to a strongly-typed, statically-checked,

concurrent language, Technical Report CSL-84-7, Xerox Parc, 1985

[70] G. Bracha, D. Ungar, Mirrors: design principles for meta-level facilities of Object orientated

programming languages, in: Proc. OOPSLA, 2004, ACM, New York, pp. 331–344.

[71] S. Mostinckx, T. Cutsem, S. Timbermont, E.G. Boix, É. Tanter, W. Meuter, Mirror-based reflection

in AmbientTalk, Software Pract. Exper. 2009.

[72] F. Ortin, J.M. Cueva, Dynamic adaptation of application aspects, J. Syst. Software 71 (2004)

229–243.

[73] G.L. Steele Jr., Common Lisp the Language, second ed., Digital Press, Newton, MA, 1990.

[74] S. Ducasse, A. Lienhard, L. Renggli, Seaside: a flexible environment for building dynamic Web

applications, IEEE Software 24 (5) (2007) 56–63.

[75] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving the Design of

Existing Code, Addison-Wesley, Reading, MA, 1999.

[76] T.E. Oliphant, Python for scientific computing, Comput. Sci. Eng. 9 (3) (2007) 10–20.

[77] H. Spencer, G. Collyer, #ifdef considered harmful, or portability experience with C News, in: Proc.

Summer 1992 USENIX Conference, 1992, San Antonio, TX, pp. 185–198.

184 L. TRATT
[78] A. Koenig, B.E. Moo, Templates and duck typing, Dr. Dobb’s, 2005.

[79] L. Tratt, R. Wuyts, Dynamically typed languages, IEEE Software 24 (5) (2007) 28–30.

[80] X. Cai, H.P. Langtangen, H. Moe, On the performance of the Python programming language for

serial and parallel scientific computations, Sci. Program. 13 (1) (2005) 31–56.

[81] K. Beck, Simple Smalltalk testing: with patterns, 1994 (http://www.xprogramming.com/testfram.

htm, accessed 14 July 2008).

[82] J. Link, P. Fröhlich, Unit Testing in Java: How Tests Drive the Code, Morgan Kaufmann, San

Mateo, CA, 2003.

[83] N. Schärli, S. Ducasse, O. Nierstrasz, A.P. Black, Traits: composable units of behaviour? in: Proc.

ECOOP, vol. 2743 of LNCS, July 2003, pp. 248–274.

[84] M. Abadi, L. Cardelli, B. Pierce, G. Plotkin, Dynamic typing in a statically typed language, ACM

Trans. Program. Lang. Syst. 13 (2) (1991) 237–268.

[85] F. Henglein, Dynamic typing: syntax and proof theory, Sci. Comput. Program. 22 (3) (1994)

197–230.

[86] S. Tobin-Hochstadt, M. Felleisen, The design and implementation of typed Scheme, SIGPLAN

Notices 43 (1) (2008) 395–406.

[87] J.G. Siek, M. Vacharajani, Gradual typing with unification-based inference, Dynamic Languages

Symposium, 2008.

[88] T. Lindahl, K. Sagonas, Detecting software defects in telecom applications through lightweight

static analysis: a war story, in: C. Wei-Ngan (Ed.), Programming Languages and Systems:

Proceedings of the Second Asian Symposium (APLAS’04), vol. 3302, of LNCS, November 2004,

Springer-Verlag, New York, pp. 91–106.

http://www.xprogramming.com/testfram.htm
http://www.xprogramming.com/testfram.htm

Factors Influencing Software
Development Productivity—
State-of-the-Art and Industrial
Experiences
ADVAN

ISSN: 00
ADAM TRENDOWICZ
Fraunhofer Institute for Experimental

Software Engineering, Fraunhofer-Platz 1,

67663 Kaiserslautern, Germany
JÜRGEN MÜNCH
Fraunhofer Institute for Experimental

Software Engineering, Fraunhofer-Platz 1,

67663 Kaiserslautern, Germany
Abstract
Managing software development productivity is a key issue in software organi-

zations. Business demands for shorter time-to-market while maintaining high

product quality force software organizations to look for new strategies to

increase development productivity.

Traditional, simple delivery rates employed to control hardware production

processes have turned out not to work when simply transferred to the software

domain. The productivity of software production processes may vary across

development contexts dependent on numerous influencing factors. Effective

productivity management requires considering these factors. Yet, there are

thousands of possible factors and considering all of them would make no

sense from the economical point of view. Therefore, productivity modeling

should focus on a limited number of factors with the most significant impact

on productivity.

In this chapter, we present a comprehensive overview of productivity factors

recently considered by software practitioners. The study results are based on

the review of 126 publications as well as international experiences of the
CES IN COMPUTERS, VOL. 77 185 Copyright © 2009 Elsevier Inc.

65-2458/DOI: 10.1016/S0065-2458(09)01206-6 All rights reserved.

186 A. TRENDOWICZ AND J. MÜNCH
Fraunhofer Institute, including the most recent 13 industrial projects, four work-

shops, and eight surveys on software productivity. The aggregated results show

that the productivity of software development processes still depends signifi-

cantly on the capabilities of developers as well as on the tools and methods

they use.
1.
 I
ntroduction . 187
2.
 D
esign of the Study . 190
2
.1. R
eview of Industrial Experiences . 190
2
.2. R
eview of Related Literature . 191
2
.3. A
ggregation of the Review Results . 195
3.
 R
elated Terminology . 196
3
.1. C
ontext Versus Influence Factors . 196
3
.2. C
lassification of Influence Factors . 196
4.
 O
verview of Factors Presented in Literature 197
4
.1. C
rosscontext Factors . 197
4
.2. C
ontext-Specific Factors . 197
4
.3. R
euse-Specific Factors . 202
4
.4. S
ummary of Literature Review . 202
5.
 O
verview of Factors Indicated by Industrial Experiences 205
5
.1. D
emographics . 205
5
.2. C
ross-Context Factors . 206
5
.3. C
ontext-Specific Factors . 207
5
.4. S
ummary of Industrial Experiences . 211
6.
 D
etailed Comments on Selected Productivity Factors 213
6
.1. C
omments on Selected Context Factors 213
6
.2. C
omments on Selected Influence Factors 218
7.
 C
onsidering Productivity Factors in Practice 229
7
.1. F
actor Definition and Interpretation . 229
7
.2. F
actor Selection . 230
7
.3. F
actor Dependencies . 231
7
.4. M
odel Quantification . 232
8.
 S
ummary and Conclusions . 233
A
cknowledgments . 235
R
eferences . 235

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 187
1. Introduction

Rapid growth in the demand for high-quality software and increased investment

in software projects show that software development is one of the key markets

worldwide [2, 122]. Together with the increased distribution of software, its variety

and complexity are growing constantly. A fast changing market demands software

products with ever more functionality, higher reliability, and higher performance.

Software project teams must strive to achieve these objectives by exploiting the

impressive advances in processes, development methods, and tools. Moreover, to

stay competitive and gain customer satisfaction, software providers must ensure that

software products with a certain functionality are delivered on time, within budget,

and to an agreed level of quality, or even with reduced development costs and time.

This illustrates the necessity for reliable methods to manage software development

productivity, which has traditionally been the basis of successful software manage-

ment. Numerous companies have already measured software productivity [3] or

planned to measure it for the purpose of improving their process efficiency, reducing

costs, improving estimation accuracy, or making decisions about outsourcing their

development.

Traditionally, the productivity of industrial production processes has been

measured as the ratio of units of output divided by units of input [4]. This

perspective was transferred into the software development context and is usually

defined as productivity [5] or efficiency [6]. As observed during an international

survey performed in 2006 by the Fraunhofer Institute for Experimental Software

Engineering, 80% of software organizations adapt this industrial perspective on

productivity to the context of software development, where inputs consist of the

effort expended to produce software deliverables (outputs). The assumption those

organizations make is that measuring software productivity is similar to measur-

ing any other forms of productivity. Yet, software production processes seem

to be significantly more difficult than production processes in other industries

[7, 8, 120]. This is mainly because software organizations typically develop new

products as opposed to fabricating the same product over and over again. More-

over, software development is a human-based (‘‘soft’’) activity with extreme

uncertainties from the outset. This leads to many difficulties in the reliable

definition of software productivity. Some of the most critical practical conse-

quences are that software development productivity measures based simply on

size and effort are hardly comparable [7, 125], and that size-based software

estimates are not adequate [9].

188 A. TRENDOWICZ AND J. MÜNCH
These difficulties are related to a variety of practical issues. One of these is

software sizing.1 Large numbers of associated, mutually interacting, and usually

unknown factors influencing software productivity (besides size) are another critical

issue. Even if reliable and consistent size measurement is in place, the key question

of software productivity measurement usually remains and may be formulated as

follows: ‘‘What makes software development productivity vary across different

contexts?’’ In other words, which characteristics of the project environment capture

the reasons why projects consumed different amounts of resources when normalized

for size.

To answer this question, characteristics that actually differentiate software pro-

jects and their impact on development productivity have to be considered. Those

characteristics include personnel involved in the project, products developed, as

well as processes, technologies and methods applied.

Yet, there are several pragmatic problems to be considered when analyzing

software project characteristics and their impact on productivity. One is, as already

mentioned, the practically infinite quantity of potential factors influencing software

productivity [11]. Even though it is possible to select a limited subset of the most

significant factors [12, 13], both factors and their impact on productivity may differ

depending on productivity measurement level and context [7]. This also means that

different project characteristics may have different impacts on the levels of single

developer, team, project, and whole organization. Moreover, even if considered on

the same level, various productivity factors may play different roles in the embedded

software, in Web applications, and in waterfall or incremental development. This

implies, for example, that factors and their ratings covered by the COCOMO model

[14] would require reappraisal when applied in a context other than that in which the

model was built [15].

To address this issue, considerable research has been directed at identifying

factors that have a significant impact on software development productivity. This

includes (1) studies dealing directly with identifying productivity factors [16];

(2) studies aiming at building cost and productivity modeling and measurement

techniques, methods, and tools [8]; (3) data collection projects intending to build

software project data repositories useful for benchmarking productivity and predict-

ing cost [17–20]; and (4) studies providing influence factors hidden in best practices

to reduce development cost (increase productivity) [13, 123].
1 Software sizing (size measurement) as a separate large topic is beyond the scope of this chapter.

For more details on the issue of size measurement in the context of productivity measurement, see, for

example, [10].

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 189
Although a large amount of work has been directed recently at identifying

significant software productivity factors, many software organizations actually still

use the simplified definition of productivity provided in [12]. In the context of high-

maturity organizations [3], where production processes are stable and projects

largely homogeneous, a simple productivity measure may work, provided that it is

used to compare similar projects. Yet, in the case of crosscontext measurement of

heterogeneous projects with unstable processes, using simple productivity may lead

to serious problems. In consequence, organizations that failed to measure simplified

productivity find it either difficult to interpret and/or entailing little benefit [7].

Software organizations do not consider productivity factors because they often do

not know which ones they should start with—which are the most significant ones.

Existing publications provide hardly any support in this matter. Published results are

distributed over hundreds of publications, which in many cases lack a systematic

approach to presenting influence factors (e.g., context information, relative impact

on productivity) and/or present significant factors implicitly as cost drivers in a cost

model, project attributes in a data repository, or best practices for improving

development processes.

In this study, we try to provide a systematic overview of those productivity factors

that have the most significant impact on software productivity. In doing so, we

assume that software cost is a derivative of software productivity and, therefore, we

do not treat factors influencing cost (also called cost drivers) separately. Besides

commonly available published studies investigating productivity factors, the over-

view also includes internal experiences gained in recent years at the Fraunhofer

Institute for Experimental Software Engineering (IESE) in several industrial pro-

jects, workshops, and surveys performed in the area of software productivity

measurement and cost modeling. Yet, due to confidentiality reasons, we do not

disclose some sensitive data such as company name or titles of respective internal

reports that may indicate the names of the involved industry partners. Instead, we

refer to certain characteristics of the companies. Such context information might be

useful when selecting relevant factors for similar contexts, based on the overview

presented in this chapter.

The remainder of the chapter is organized as follows. Section 2 presents the

design of the study. Section 3 provides brief definitions of the terminology used.

Sections 4 and 5 provide a summary of productivity factors based on the literature

review and the authors’ industrial experiences gained at Fraunhofer IESE, respec-

tively. An in-depth discussion on selected productivity factors presented in the

literature is given in Section 6. Section 7 provides an overview of several practical

issues to be considered when identifying and productivity factors and using them to

model software development productivity and cost. Finally, Section 8 summarizes

the presented results and discusses open issues.

190 A. TRENDOWICZ AND J. MÜNCH
2. Design of the Study

The review of productivity factors presented in this chapter consists of two parts.

First, we present a review of the authors’ individual experiences gained during a

number of industrial initiatives. Here, we would include factors identified for the

purpose of cost and productivity modeling as well as factors acquired during surveys

and workshops performed by Fraunhofer IESE in the years 1998–2006 (also referred

to as IESE studies). The second part presents an overview of publications regarding

software project characteristics that have an influence on the cost and productivity of

software development.
2.1 Review of Industrial Experiences

The review includes the following industrial initiatives:

l International commercial projects regarding cost and/or productivity model-

ing performed in the years 1998–2006 at medium and large software organiza-

tions in Europe (mainly Germany, e.g., [21]), Japan, India, and Australia

(e.g., [22]).

l International workshops on cost and/or productivity modeling performed in the

years 2005–2006 in Germany and Japan (e.g., [7, 24, 124]). The workshop

results include factors explicitly encountered by representative of various,

international software organizations. The considered factors consist of both

factors that were considered by experts as having a significant impact on

productivity but not already measured, and factors already included in the

organizational measurement system for managing development cost and

productivity.

l Surveys on productivity measurement practices performed in various interna-

tional companies in the years 2004–2006. These surveys concerned productivity/

cost modeling and included questions about the most significant factors influen-

cing software productivity. The 2004 study was a state-of-the-practice survey

performed across 12 business units of a global software organization dealing

mainly with embedded software. The four 2005 studies were performed across

Japanese units of internationally operating software organizations dealing both

with embedded and business applications. Finally, the 2006 survey was per-

formed across 25 software organizations all over the world and covered various

software domains.

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 191
2.2 Review of Related Literature
2.2.1 Review Scope and Criteria
The design of the review is based on the guidelines for structural reviews in

software engineering proposed by Kitchenham [25]. Yet, based on the conclusions

of J�rgensen and Shepperd [10], we relied on a manual rather than an automatic

search of relevant references. The automatic search through the INSPEC repository

was complemented by a manual search through references found in reviewed papers

and using a generic Web search machine (http://www.google.com). The automatic

search criteria were specified as follows:
INSPEC: (SOFTWARE AND ((COST OR EFFORT OR PRODUCTIVITY)

WITH (FACTORS OR INDICATORS OR DRIVERS OR MEASURE))).

TX. ¼ 417 documents

The available papers2 were selected for inclusion (full review) based on the title

and abstract. The review was done by one researcher. The criteria used to decide

whether to include or exclude papers were as follows:

l Availability and age. The papers had to be published no earlier than 1995. Since
the type and impact of influence factors may change over the time [26], we limit

our review to the past decade.

We made an exception for papers presenting software project data sets. Although

indirectly, we did include those that were collected and first published before 1995

but that were applied to validate cost/productivity models published after 1995.

l Relevancy. The papers had to report factors with a potential impact on software

development cost and/or productivity. Implicit and explicit factors were con-

sidered. Explicit factors are those considered in the context of productivity

modeling/measurement. Implicit factors include those already included in

public-domain cost models and software project data repositories. Algorithmic
cost estimation models, for example, include so-called cost drivers to adjust the

gross effort estimated based only of software size (e.g., [121]). Analogy-based
2 Unfortunately, some publications could not be obtained though the library service of Fraunhofer

IESE.

http://www.google.com

192 A. TRENDOWICZ AND J. MÜNCH
methods, on the other hand, use various project characteristics found in the

distance measure, which is used to find the best analogues to base the final

estimate on. Common software project data repositories indirectly suggest a

certain set of attributes that should be measured to assure quality estimates.

l Novelty. We did not consider studies that adopt a complete set of factors from

other reference and do not provide any novel findings (e.g., transparent model)

on a factor’s impact on productivity. We do not, for instance, consider models

(e.g., those based on neural networks) that use as their input the whole set of

COCOMO I factors and do not provide any insight into the relative impact of

each factor on software cost.

l Redundancy. We did not consider publications presenting the results of the

same study (usually presented by the same authors). In such cases, only one

publication was included in the review.

l Perspective. As already mentioned in the introduction, there are several possi-

ble perspectives on productivity in the context of software development. In this

review, we will focus on project productivity, that is, factors that make devel-

opment productivity differ across various projects. Therefore, we will, for

example, not consider the productivity of individual development processes

such as inspections, coding, or testing. This perspective is the one most com-

monly considered in the reviewed literature (although not stated directly) and is

the usual perspective used by software practitioners [7].

Based on the aforementioned criteria, 136 references were included in the full

review. After a full review, 122 references in total were considered in the results

presented in this chapter. Several references (mostly books) contained well-

separated sections where productivity factors were considered in separate contexts.

In such cases, we considered these parts as separate references. This resulted in the

final count of 142 references. For each included reference, the following information

was extracted:

l Bibliographic information: title, authors, source and year of publication, etc.;

l Factor selection context: implicit, explicit, cost model, productivity measure,

project data repository;

l Factor selection method: expert assessment, literature survey, data analysis;

l Domain context: embedded software (Emb), management information systems

(MIS), and Web applications (Web);

l Size of factor set: initial, finally selected;

l Factor characteristics: name, definition, weighting (if provided).

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 193
2.2.2 Study Limitations
During the literature review, we faced several problems that may limit the validity

of this study and its conclusions. First, the description of factors given in the

literature is often incomplete and limited to a factor’s name only. Even if both

name and definition are provided, factors often differ with respect to their name;

although according to the attached definition, they refer to the same phenomenon

(factor).

Second, published studies often define factors representing a multidimensional

phenomenon, which in other studies is actually decomposed into several separate

factors. For instance, the software performance constraints factor is sometimes

defined as time constraints, sometimes as storage constraints, and sometimes as

both time and storage constraints.

Moreover, instead of factors influencing development productivity, some studies

considered a specific factor’s value and its specific impact on productivity. For

instance, some studies identified the life cycle model applied to developing software

as having an impact of productivity, while others directly pointed out incremental

development as increasing overall development productivity.

Finally, factors identified implicitly within cost models (especially data-driven

models) are burdened with a certain bias, since in most cases, data-driven models are

built using the same commonly available (public) data repositories (e.g., [1, 14, 19,

27, 28]). In consequence, factors identified by such cost models are limited a priori

to specific set of factors covered by the data repository used.

To moderate the impact of those problems on the study results, we undertook the

following steps:

l We excluded from the analysis those models that were built on one of the

publicly available project repositories and simply used all available factors. We

focused on models that selected a specific subset of factors or were built on

their ‘‘own,’’ study-specific data.

l We compared factors with respect to their definition. If this was not available,

we used a factor’s name as its definition.

l In our study, we decomposed a complex factor into several base factors

according to the factor’s definition.

l We generalized factors that actually referred to a specific factor’s value to a

more abstract level. For instance, the ‘‘iterative development’’ factor actually

refers to a specific value development life cycle model factor—we classified

this factor as ‘‘life cycle model.’’

l Finally, we excluded (skipped) factors whose meaning (based on the name and/

or definition provided) was not clear.

194 A. TRENDOWICZ AND J. MÜNCH
2.2.3 Demographical Information
Among the reviewed references, 33 studies identified factors directly in the

context of development productivity modeling, 82 indirectly in the context of cost

modeling (e.g., estimation, factor selection), 14 in the context of a project data

repository (for the purpose of cost/productivity estimation/benchmarking), nine

in the context of software process improvement, two in the context of schedule

modeling, and, finally, two in the context of schedule estimation (see Fig. 1).

Regarding the domain, 27 references considered productivity factors in the

context of embedded software and software systems, 50 in the context of manage-

ment information systems, and four in the context of Web applications (see Fig. 2).

The remaining references either considered multiple domains (18) or did not explic-

itly specify it (43).

With respect to development type, 19 references analyzed productivity factors in

the context of new development, 44 in the context of enhancement/maintenance, and

15 in the context of software reuse and COTS development (see Fig. 3).
1.4%

1.4%

6.3%

9.9%

23.2%

57.7%

Not specified

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0%

Schedule estimation

Process improvement

Project data repository

Productivity modeling

Cost modeling

M
od

el
in

g
co

nt
ex

t

Percentage of references

FIG. 1. Literature distribution regarding modeling context.

30.3%

2.8%

12.7%

19.0%

35.2%

Not specified

Web applications

Multiple domains

Embedded and software systems

Management infomation systems

D
om

ai
n

Percentage of references

0.0% 10.0% 20.0% 30.0% 40.0%

FIG. 2. Literature distribution regarding domain.

10.6%

13.4%

31.0%

45.1%

Reuse and COTS

0.0% 10.0% 20.0% 30.0% 40.0% 50.0%

New development

Enhancement and maintenance

Not specified

D
ev

el
op

m
en

t t
yp

e

Percentage of references

FIG. 3. Literature distribution regarding development type.

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 195
Most of the analyzed studies started with some initial set of potential productivity

factors and applied various selection methods to identify only the most significant

ones. The analyzed references ranged from 1 to 200 initially identified factors that

were later reduced down to the 1–31 most significant factors.

In total, the reviewed references mentioned 246 different factors, with 64 repre-

senting abstract phenomena (e.g., team experience and skills) and the remaining 178

concrete characteristics (e.g., analyst capability or domain experience).
2.3 Aggregation of the Review Results

Due to space limitations, we do not provide the complete lists of factors we

identified in this study. Instead, we report those factors that are most commonly

considered as having the greatest impact on software development productivity.

Both in the literature and in the IESE studies, various methods were used to

determine the significance of the considered factors. Several authors present a

simple ranking of factors with respect to their significance [21]; others used various

weighting schemas to present the relative impact of each considered factor on

productivity or cost [16].

We aggregated the results presented in various studies in the following procedure:

l We ranked factors with respect to the weightings they were given in the source

study. The factor having the greatest weight (impact on productivity) was

ranked with ‘‘1,’’ the next one as ‘‘2,’’ and so on. If the source study reported

factors without distinguishing their impact/importance, we considered all

factors as having rank ‘‘1.’’ The disadvantage of the applied aggregation

procedure is that the information regarding the ‘‘distance’’ between factors

with respect to their weight was lost.

[29

196 A. TRENDOWICZ AND J. MÜNCH
l We aggregated the results for each factor using two measures (1) number of

studies a given factor was considered in (Frequency) and (2) median factor’s

rank3 over all the studies it was considered in (Median rank).
3. Related Terminology

3.1 Context Versus Influence Factors

In practice, it is difficult to build a reliable productivity model that would be

applicable across a variety of environments. Therefore, usually only a limited

number of factors influencing productivity are considered within a model; the rest

is kept constant and described as the so-called context for which the model is built

and in which it is applicable. Building, for instance, a model for business application

and embedded real-time software would require covering a large variety of factors

that play a significant role in both domains. Alternatively, one may build simpler

models for each domain separately. In that case, the factor ‘‘application domain’’

would be constant for each model. We would refer to factors that describe a

modeling context as context factors. On the other hand, factors that are included

in the model to explain productivity variance within a certain context will be called

influence factors. Moreover, we would say that context factors determine influence

factors, that is, dependent on the project context, different factors may have a

different impact on productivity and may interact with each other differently.

3.2 Classification of Influence Factors

To gain better visibility, we further categorized (after several other authors [22,

30, 31]) the identified influence factors into four groups: product, personnel, project,

and process factors.

Product factors cover the characteristics of software products being developed

throughout all development phases. These factors refer to such products as soft-

ware code, requirements, documentation, etc. and their characteristics, such as

complexity, size, volatility, etc.

Personnel factors reflect the characteristics of personnel involved in the software
development project. These factors usually consider the experience and capabilities

of such project stakeholders as development team members (e.g., analysts,

designers, programmers, project managers) as well as software users, customers,

maintainers, subcontractors, etc.
3 We assume ranks to be on the equidistant ordinal scale, which allows applying median operation

].

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 197
Project factors regard various qualities of project management and organization,

development constraints, working conditions, or staff turnover.

Process factors are concerned with the characteristics of software processes as

well as methods, tools, and technologies applied during a software development

project. They include, for instance, the effectiveness of quality assurance, testing

quality, quality of analysis and documentation methods, tool quality and usage,

quality of process management, or the extent of customer participation.
4. Overview of Factors Presented in Literature

In total, 246 different factors were identified in the analyzed literature. This

section presents the most commonly used productivity factors we found in the

reviewed literature. First, we present factors that are commonly selected across all

development contexts. Then, we present the most popular factors selected in the

context of a specific model, development type, and domain. Additionally, factors

specific for software reuse are analyzed.

Regarding the studies where project data repositories were presented, we ana-

lyzed publicly available data sets that contain more than only size and effort data

(see, e.g., [32] for an overview).
4.1 Crosscontext Factors

Table I presents top four productivity factors and three context factors that were

found to be the most significant ones according to all studies reviewed.

The most commonly identified factors represent complex phenomena, which

might be decomposed to basic subfactors. For each complex factor, we selected (at

most) three most commonly identified subfactors. Team capability and experience,
for instance, is considered to be the most influential productivity factor. Specifically,

programming language experience, application experience and familiarity, and
project manager experience and skills are those team capabilities that were most

often selected in the reviewed studies.
4.2 Context-Specific Factors

In Tables II–IV, each cell contains information in the form X/Y, where X is the

number of studies where a certain factor was selected (Frequency) and Y means

the median rank given to the factor over those studies (Median rank). Moreover, the

most significant factors for a certain context are marked with bold font and cells

Table I

TOP CROSSCONTEXT PRODUCTIVITY FACTORS

Influence factors Frequency (no. of references) Median rank

Team capabilities and experience 64 1

Programming language experience 16 1

Application experience and familiarity 16 1
Project manager experience and skills 15 1

Software complexity 42 1

Database size and complexity 9 1
Architecture complexity 9 1

Complexity of interface to other systems 8 1.5

Project constraints 41 1

Schedule pressure 43 1
Decentralized/multisite development 9 1

Tool usage and quality/effectiveness 41 1

CASE tools 12 1

Testing tools 5 1

Context factors

Programming language 29 1

Domain 14 1

Development type 11 1

198 A. TRENDOWICZ AND J. MÜNCH
containing factors that were classified as the most significant ones in two or more

contexts are gray-filled. An empty cell means that a factor did not appear in a certain

context at all.

For each considered context number of relevant references is given in the table

header (in brackets).
4.2.1 Model-Specific Factors
Table II presents the most common factors selected in the context of cost model-

ing (CM), productivity measurement (PM), project data repositories (DB), and

studies on software process improvement (SPI).
4.2.2 Development-Type-Specific Factors
Table III presents the most common productivity factors selected in the context of

new development (Nd) and maintenance/enhancement projects (Enh/Mtc). We con-

sidered maintenance and enhancement together because the considered references

did not make a clear difference between those two types of development.

Table II

TOP MODEL-SPECIFIC PRODUCTIVITY FACTORS

Influence factors PM (33) CM (82) DB (14) SPI (9)

Team capabilities and experience 14/1 39/1 6/1 3/1

Overall personnel experience 5/1 4/1 – 1/1

Project manager experience and skills 3/2 6/7 3/1 3/1

Task-specific expertise 3/6 2/9.5 – –

Application experience and familiarity 2/1 12/1 1/1 –

Programming language experience 3/9 11/1 2/1 –

Tool experience 1/1 4/1 2/1 –

Teamwork capabilities 1/1 2/1 2/1 –

Training level – 4/1 1/1 2/1

Tool usage and quality/effectiveness 12/2 22/1 5/1 2/1

CASE tools 4/5.5 3/1 4/1 1/1

Testing tools 1/1 4/3.5 – –
Team size 8/1 14/1 5/1 1/1

Reuse 8/1 9/1 5/1 2/2.5

Reuse level 5/1 7/1 3/1 2/2.5

Quality of reused assets 2/1 – – –

Software complexity 7/2.3 25/1 8/1 1/1

Architecture complexity 2/6.5 6/1 1/1 –

Complexity of interface to other systems 1/1 6/2 1/1 –

Database size and complexity 1/1 4/10 4/1 –

Code complexity 1/1 2/1 4/1 –

Team organization 6/2 21/1 3/1 3/1

Team cohesion/communication 3/3 14/1 – 1/3

Staff turnover – 11/1 2/1 2/1.5

Team structure 4/1 4/3.5 1/1 2/1

Project constraints 9/3 21/3 6/1 3/1

Schedule pressure 9/1 16/5 5/1 2/1

Decentralized development 1/16 5/7 2/1 1/1

Process maturity and stability 2/1 7/1 – 4/1

Methods usage 7/6 16/1 5/1 3/1

Reviews and inspections 2/11 4/1 2/1 2/1

Testing 1/5 2/1 1/1 2/1

Requirements management – 2/1 1/1 2/1

Context factors

Programming language 8/1 12/1 8/1 1/1

Life cycle model 2/1 3/1 3/1 1/1

Domain 2/4.5 7/1 4/1 1/1

Development type – 7/1 3/1 1/1

Target platform 1/1 3/1 3/1 –

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 199

Table III

TOP DEVELOPMENT-TYPE-SPECIFIC PRODUCTIVITY FACTORS

Influence factors Nd (19) Enh/Mtc (43)

Team capabilities and experience 8/1 26/1

Task-specific experience 3/11 1/5

Application experience and familiarity 1/1 11/1

Programmer capability 1/1 5/3

Programming language experience – 10/1.5

Analyst capabilities – 6/3

Project constraints 7/6 17/1

Schedule pressure 7/5 13/2

Distributed/multisite development 3/8 4/1

Reuse 5/1 11/4

Reuse level 4/1 7/4

Quality of reusable assets 1/1 1/1
Management quality and style 5/1 5/8

Team motivation and commitment 5/1 4/4.5

Product complexity 5/7 17/2

Interface complexity to hardware and software – 6/2

Architecture complexity 1/1 6/2

Database size and complexity – 4/10

Logical problem complexity – 3/1

Required software quality 4/2 15/4
Required reliability 4/2 13/4

Required maintainability – 3/4

Tool usage 3/1 17/2
Testing tools – 3/5

Tool quality and effectiveness 1/6 2/1.5

Method usage 2/4.3 13/4

Review and inspections 1/8 4/1

Testing – 3/1

Context factors

Programming language 4/1 10/1

Target platform 1/1 3/1

Domain – 8/3

Development type – 6/1

200 A. TRENDOWICZ AND J. MÜNCH
4.2.3 Domain-Specific Factors
Table IV presents the most common productivity factors selected in the context of

specific software domains: embedded systems (Emb), management and information

systems (MIS), and Web applications (Web).

Table IV

TOP PRODUCTIVITY FACTORS USED TO MODEL SOFTWARE COST

Influence factors Emb (27) MIS (50) Web (4)

Team capabilities and experience 14/1 20/1 3/3

Programming language experience 5/1 4/3 1/3
Training level 3/1 1/1 –

Application experience and familiarity 1/1 9/1 –

Programmer capability 1/2 6/3.5 –
Design experience – 1/3 1/1

IT technology experience 1/1 1/1 1/1

Team size 8/1 9/1 1/3

Reuse 3/1 9/1 1/5

Reuse level 2/3.5 6/1 1/5

Tools usage and quality 12/1 9/1 3/2

CASE tools 3/1 4/1 –

Methods usage 12/1 8/1.5 –

Reviews and inspections 4/1 1/1 –

Testing methods 2/3 1/1 1/2

Modern programming practices 2/6 2/5 –

Project constraints 9/1 16/2.2 –

Schedule pressure 7/1 12/3 –

Distributed/multisite development 1/1 5/7 –

Requirements quality 8/1 9/2 1/2

Requirements quality 4/1 – –

Requirements volatility 4/1 8/2.5 1/2

Required software quality 8/1 12/3.5 2/4.5

Required software reliability 7/1 10/4 –

Required software maintainability – 4/3.5 –

Software complexity 3/1 17/1 3/3

Database size and complexity – 7/1 –
Source code complexity 1/1 4/1 –

Complexity of interface to other systems 3/1 2/2.5 1/3

Architecture complexity 3/1 3/1 1/1

Context factors

Programming language 7/1 10/1 1/1

Domain 4/1 4/2 –

Target platform 2/1 4/1 –

Life cycle model 2/1 3/1 –

Development type 1/1 4/1 1/1

Business sector 1/14 4/1 –

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 201

Table V

TOP REUSE-SPECIFIC PRODUCTIVITY FACTORS

Factor Frequency (no. of references) Median weight

Quality of reusable assets 12 1

Maturity 7 1

Volatility 5 1
Reliability 3 1

Asset complexity 9 1

Interface complexity 5 1
Architecture complexity 4 1

Team capabilities and experience 6 1

Integrator experience and skills 3 1

Integrator experience with the asset 3 1
Integrator experience with COTS process 3 1

Product support (from supplier) 6 1

Supplier support 6 1

Provided training 5 1
Required software quality 4 1

Required reliability 3 1

Required performance 3 1

Context factors

Life cycle model 2 1

Programming language 1 1

Domain 1 1

202 A. TRENDOWICZ AND J. MÜNCH
4.3 Reuse-Specific Factors

From among the reviewed references, 15 focused specifically on reuse-oriented

software development, that is, development with and for reuse (including COTS—

commercial-off-the-shelf components). Table V summarizes the most common

factors influencing development productivity in that context.
4.4 Summary of Literature Review

The review of the software engineering publications presented here shows that

software development productivity still depends on the capabilities of people and

tools involved (Fig. 4).

The productivity factors selected by researchers and software practitioners con-

firm requirements specification, coding, and testing as the traditionally acknowl-

edged essential phases for the success of the whole development process. Moreover,

the high importance of project constraints and project manager’s skills suggests

project management as another key factor for project success. Finally, as might have

7.7%

9.9%

20.4%

28.9%

28.9%

29.6%

45.1%

Development type

Domain

Programming language

Project constraints

Tool usage & quality/effectiveness

Software product complexity

Team capability and experience

P
ro

du
ct

iv
ity

 fa
ct

or

Percentage of usage

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0%

FIG. 4. Literature review: most common productivity factors.

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 203
been expected, the internal (architecture, data) and external (interfaces) complexity

of software is a significant determinant of development productivity.

Yet, software complexity and programming language are clearly factors preferred in

the context of project data repositories. This most probably reflects a common intuition

of repository designers that those factors have a significant impact on development

productivity and numerous software qualities (e.g., reliability, maintainability).

As already mentioned in the introduction, the importance of a certain productivity

factor varies depending on the project context. The skills of software programmers

and analysts, for instance, seem to play a more important role in enhancement/

maintenance projects. Similarly, tool/method usage seems to be less important in

new development projects. On the other hand, software development that is not a

continuation of a previous product/release seems to significantly rely on the quality

of project management and team motivation.

The results presented in the literature support the claim made by Fenton and

Pfleeger [30] who suggest that software complexity might have a positive impact on

productivity in the context of new development (and thus is not perceived as a factor

worth considering) and a negative impact in case of maintenance and enhancement.

What might be quite surprising is that the domain is not considered in the new

development project at all (Fig. 5).

Regarding software domain-specific factors, there are several significant differ-

ences between factors playing an important role in the embedded and MIS domains.

The productivity of embedded software development depends more on tools and
methods used, whereas that of MIS depends more on the product complexity (Fig. 6).
Finally, reuse is not as significant a productivity factor as commonly believed.

Less than 17% of publications mention reuse as having a significant influence on

development productivity. This should not be a surprise, however, if we consider the

complex nature of the reuse process and the numerous factors determining its

success (Fig. 7).

26.3%

26.3%

10.5%

21.1%

26.3%

15.8%

21.1%

26.3%

36.8%

42.1%

18.6%

9.3%

11.6%

30.2%

23.3%

25.6%

39.5%

34.9%

39.5%

39.5%

60.5%

Domain

Team motivation and
commitment

Management quality
and style

Method usage

Programming
language

Reuse

Tool usage

Required software
quality

Product complexity

Project constraints

Team capability and
experience

P
ro

du
ct

iv
ity

 fa
ct

or

Percentage of usage

New development Enhancement and maintenance

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0%

FIG. 5. Literature review: development-specific factors.

11.1%

11.1%

25.9%

29.6%

29.6%

29.6%

44.4%

44.4%

33.3%

51.9%

18.0%

34.0%

20.0%

18.0%

18.0%

24.0%

16.0%

18.0%

32.0%

40.0%

Reuse

Software complexity

Programming
language

Team size

Requirements
characteristics

Required software
quality

Methods usage

Tools usage and
quality

Project constraints

Team capability and
experience

D
om

ai
n

Percentage of usage

Embedded Management and information systems

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0%

FIG. 6. Literature review: domain-specific factors.

204 A. TRENDOWICZ AND J. MÜNCH

6.7%

6.7%

13.3%

26.7%

40.0%

40.0%

60.0%

80.0%

Programming language

Domain

Life cycle model

Required software quality

Team capability & experience

Product support (from supplier)

Asset complexity

Quality of reusable assets

P
ro

du
ct

iv
ity

 fa
ct

or

Percentage of usage

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0%

FIG. 7. Literature review: reuse success factors.

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 205
According to the reviewed studies, the complexity and quality of reusable assets

are key success factors for software reuse. Furthermore, the support of the asset’s

supplier and the capabilities of development team (for integrating the asset into the

developed product) significantly influence the potential benefits/losses of reuse (see

Section 6.2.4 for a comprehensive overview of key reuse success factors).
5. Overview of Factors Indicated by
Industrial Experiences

This section summarizes experiences regarding the most commonly used produc-

tivity factors indicated by our industrial experiences gained in recent years at

Fraunhofer IESE. The studies summarized here are subject to a nondisclosure

agreement, thus only aggregated results without any details on specific companies

are presented.

5.1 Demographics

The IESE studies considered in this section include:

l Thirteen industrial projects on cost and productivity modeling performed for

international software organizations in Europe (mostly), Japan, India, and

Australia.

l Four international workshops on software cost and productivity modeling,

which took place in the years 2005–2006 in Germany and Japan. The workshop

206 A. TRENDOWICZ AND J. MÜNCH
participants came from both academic (universities, research institute) and

industrial (software and system) contexts.

l Eight worldwide surveys on cost and productivity modeling. This includes one

crosscompany survey where we talked to a single representative of various

software organizations, and seven surveys where we talked to a number of

software engineers within a single company.

The studies considered here covered a variety of software domains (Fig. 8) and

development types (Fig. 9).

In total, we identified 167 different factors, with 31 of them representing complex

phenomena and 136 basic concepts (subfactors).

5.2 Cross-Context Factors

Table VI and Figure 10 present these productivity factors that were selected

most often in the context of all IESE studies (commercial projects, surveys, and

workshops).

Similarly to published studies, development team capabilities, project constraints,
and method usage were considered as the most significant factors influencing
8.0%

28.0%

40.0%30.0%20.0%10.0%0.0%

28.0%

36.0%

Web applications

Management information systems

Multiple domains

Embedded & Real-time

D
om

ai
n

Percentage of studies

FIG. 8. Industrial experiences: application domains considered.

8.0%

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0%

8.0%

12.0%

24.0%

48.0%

Enhancement & maintenance

Reuse

New development

Outsourcing

Multiple

D
ev

el
op

m
en

t t
yp

e

Percentage of studies

FIG. 9. Industrial experiences: development types considered.

Table VI

INDUSTRIAL EXPERIENCES: CROSS-CONTEXT PRODUCTIVITY FACTORS

Factor Frequency (no. of references) Median rank

Requirements quality 23 1

Requirements volatility 20 1

Requirements novelty 11 1
Team capabilities and experience 23 3

Project manager experience and skills 10 4.5

Programming language experience 10 17
Teamwork and communication skills 9 3

Domain experience and knowledge 9 5

Project constraints 20 4.6

Schedule pressure 13 2
Distributed/multisite development 11 6

Customer involvement 18 2

Method usage and quality 18 4.3

Requirements management 10 2.5
Reviews and inspections 7 5

Required software quality 18 8.5

Required software reliability 16 4

Required software maintainability 10 15

Context factors

Life cycle model 8 3

Development type 3 5

Domain 2 1.5

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 207
software development productivity. Unlike other practitioners, software engineers

involved in IESE undertakings selected requirements novelty and stability, customer
involvement, and required software reliability and maintainability as high-

importance productivity factors. High importance of requirements volatility and

customer involvement might be connected to the fact that most of the IESE studies

regarded outsourcing projects where stable requirements and communication

between software supplier and contractor are essential for project success.

The fact that programming language does not occur at all as a context factor

results from the homogeneous context of most IESE studies (most of them regard a

single business unit or group where a single programming language is in use).
5.3 Context-Specific Factors

In this section, we look at the variances in selected productivity factors across

different contexts they were selected in.

8%

12%

32%

72%

72%

72%

80%

92%

92%

Domain

Development type

Life cycle type

Required product
quality

Customer/user
participation

Method usage

Project constraints

Requirements quality

Team capability
and experience

P
ro

du
ct

iv
ity

 fa
ct

or

Percentage of usage
0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

FIG. 10. Industrial experiences: cross-context factors.

208 A. TRENDOWICZ AND J. MÜNCH
Each cell of Tables VII and IX contains information in the form X/Y, where X is

the number of studies where a certain factor was selected (Frequency) and Y means

the median rank given to the factor over those studies (Median rank). Moreover, the

most significant factors for a certain context are marked with bold font and cells

containing factors that were classified as the most significant ones in two or more

contexts are gray-filled. An empty cell means that a factor did not appear in a certain

context at all.

For each context considered, the number of relevant references is given in the

table header (in brackets).
5.3.1 Study-Specific Factors
In Table VII, the most commonly selected factors across various study types are

presented.

Notice that practically no context factors were considered in the context of

commercial projects, which, in fact, took place in a homogeneous context where

all usually significant context factors were constant (thus had no factual impact on

productivity).

Moreover, product qualities and constraints such as reliability, maintainability,

and performance (execution time and storage) are also mentioned only in the context

of specific commercial projects.

Table VII

INDUSTRIAL EXPERIENCES: STUDY-SPECIFIC PRODUCTIVITY FACTORS

Factor C&P (13) Srv (8) Wsk (4)

Requirements quality 13/3 8/1 2/1

Requirements volatility 12/1 6/1 2/1

Requirements novelty 7/9 3/1 1/1

Required software quality 13/13.5 4/2 1/1

Required software reliability 12/5 3/3 1/1
Required software maintainability 9/16 1/1 –

Required software usability 7/19 – –

Project constraints 12/7.5 5/3 3/1
Schedule pressure 6/2.5 5/3 2/1

Distributed/multisite development 5/14 4/3.5 2/1

Budget constraints – – 2/1

Team capability and experience 12/7.3 8/1 3/1

Programming language experience 8/20.5 1/15 1/1

Project manager experience and skills 7/8 2/4.5 1/1

Platform (virtual machine) experience 5/14 – –

Teamwork and communication skills 3/4 6/2 –
Domain experience and knowledge 4/18.5 4/3 1/1

Training level 3/19 1/4 2/1

Software product constraints 11/12 2/8 1/1

Execution time constraints 11/11 2/7 –

Storage constraints 6/18.5 1/1 –

Customer/user involvement 10/2 7/2 1/1

Method usage 10/8.5 7/3 1/1

Reviews and inspections 3/9 4/1.5 –

Requirements management 6/1.5 4/3 –

Tool usage and quality 9/10 6/4.7 1/1

Testing tools 1/35 2/3 –
Project management tools 1/42 2/10.5 –

Reuse 10/14 4/2 3/1

Reuse level 6/13.5 3/3 2/1

Required software reusability 6/12 1/18 2/3

Context factors

Life cycle model 2/18 3/5 3/1

Domain – 2/1.5 –

Development type – 2/6 1/1

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 209

210 A. TRENDOWICZ AND J. MÜNCH
5.3.2 Development-Type-Specific Factors
For most of the studies considered here, the development type was either not clear

(not explicitly stated) or productivity factors were given as valid for multiple

development types. Since there are too little data to analyze productivity factors

for most of the development types considered, we only take a closer look at factors

that are characteristic for organizations outsourcing their software development

(Table VIII).

It might be no surprise that in outsourcing projects, requirements quality and

customer involvement are key factors driving development productivity. Stable

requirements and communication with the software customer (especially during

early development phases) are commonly believed to have crucial impact on the

success of outsourcing projects.
5.3.3 Domain-Specific Factors
Unfortunately, most of the IESE studies considered either regarded multiple

domains or the domain was not clearly (explicitly) specified. Therefore, we analyzed

only factors specific for the embedded systems (Emb) and management and informa-

tion systems (MIS) domains, for which a reasonable number of inputs were available.

Similar to what we found in the related literature, the usage of tools (especially
testing) is characteristic of the embedded domain. Regarding method usage,
Table VIII

INDUSTRIAL EXPERIENCES: PRODUCTIVITY FACTORS IN THE OUTSOURCING CONTEXT

Factor Frequency (no. of references) Median weight

Requirements quality 6 6.2

Requirements volatility 6 1.5

Requirements novelty 5 11

Customer/user involvement 6 4

Project constraints 6 8.5

Distributed/multisite development 3 14

Concurrent hardware development 3 12

Legal constraints 3 30
Software complexity 6 12.5

Database size and complexity 6 22

Complexity of device-dependent operations 2 8.5

Complexity of control operations 2 9

Context factors

Life cycle model 1 18

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 211
different methods play an important role in the embedded and MIS domains. Use of

early quality assurance methods (reviews and inspections) is regarded as having a

significant impact on productivity in the MIS domain, whereas use of late methods,

such as testing, counts more in embedded software development.

Requirements management as well as configuration and change management

activities are significant productivity factors only in the MIS domain. Software

practitioners do not relate them to productivity variance in the embedded domain

because they are usually consistently applied across development projects. According

to our observation, however, the effectiveness of those activities varies widely and

therefore should be considered as a significant influence factor (Table IX).

5.4 Summary of Industrial Experiences

The productivity factors observed in the most recent IESE studies do not differ

much from those indicated in the reviewed literature. Capabilities of development
team, project constraints, and methods usage are the main impact factors. The

outsourcing character of the projects considered in the majority of the IESE studies

gave priority to some additional factors such as requirements quality (volatility,

complexity, and novelty), required product quality (reliability, maintainability, and

performance), and customer involvement.
There were slight differences between the factors considered across various

domains. As in the reviewed literature, tool and method usage were regarded as

more significant in the embedded domain.

The IESE studies considered referred to a rather narrow context (organization,

business unit, group, etc.), where such characteristics as domain and programming

language were quite homogeneous. That is most probably why common context

factors from the literature (see Section 4.1) do not actually count in the context of

IESE studies. Constant factors do not introduce any variance across projects and

thus do not explain productivity variance, which in practice makes their consider-

ation useless (Fig. 10).

One quite surprising observation is that the implementation of early quality

assurance techniques such as reviews and inspections does not seem to have a

deciding impact on development productivity. In only 6 out of 25 studies, this factor

was stated explicitly as having a significant impact on productivity. At the same

time, our practical experiences indicate that those activities are usually ineffective or

are not applied at all. This contradicts the common belief that early quality assurance

activities contribute significantly to the improvement of development productivity

(through decreased testing and rework effort).

Another interesting observation is that while requirements volatility is considered to
have a significant impact on development productivity, requirements management

Table IX

INDUSTRIAL EXPERIENCES: DOMAIN-SPECIFIC PRODUCTIVITY FACTORS

Factor Em (9) MIS (7)

Requirements quality 9/5 7/1

Requirements volatility 9/1 7/1

Requirements novelty 6/10 –

Requirements complexity – 2/1

Software complexity 9/5 5/9

Architecture complexity 3/7 –

Database size and complexity 3/22 2/16.5

Team capabilities and experience 9/8.4 7/3

Programming language experience 7/19 –

Project manager experience and skills 5/9 3/3

Teamwork and communication skills 2/1 5/3

Customer/user involvement 8/2 7/2

Involvement in design reviews 2/19.5 –

Tool usage and quality 8/9 3/15

Testing tools 2/18 –

Method usage 8/9.6 7/3

Requirements management 3/3 7/2

Reviews and inspections 2/6.5 4/7

Testing methods 4/5.5 2/8

Documentation methods 5/20 –

Configuration management and change control 2/22.5 3/4

Project constraints 7/9 6/3.7

Schedule pressure 3/9 5/2
Distributed/multisite development 3/14 4/8.5

Context factors

Life cycle model 3/14 1/9

Domain 1/1 1/2

Application type – 1/2

212 A. TRENDOWICZ AND J. MÜNCH
is not consistently regarded as having such an impact. It is, however, believed

that proper quality management may moderate the negative influence of unstable

requirements on development productivity.

Finally, an interesting and, at the same time, surprising observation we made is

that very mature organizations (e.g., two organizations at CMMI L-5 and one

ISO-9001 certified) consider as very significant factors such factors as Clarity of
development team roles and responsibilities, which are actually common for rather

immature organizations.

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 213
6. Detailed Comments on Selected
Productivity Factors

This section presents a brief overview of publications presenting in-depth inves-

tigations on rationales underlying the influence of certain factors on software

development productivity as well as dependencies between various factors. The

summary presented here includes empirical research studies as well as industrial

experiences.
6.1 Comments on Selected Context Factors

This section presents an overview of literature regarding the experiences with

context factors, that is, factors that are used to limit the context of productivity

modeling and analysis (see Section 3.1).
6.1.1 Programming Language
The analysis of the factors presented in the reviewed literature showed that

programming language is the most common context factor (Table I). The impact

of a programming language on development productivity is considered to be so large

that some authors present average development productivities for certain languages,

independent of other potential factors [33]. Moreover, a single organization or

business unit usually uses a limited number of distinct languages. Therefore, con-

sidering this factor when analyzing productivity within a single organization usually

makes no sense. This conclusion is confirmed several data analysis studies (e.g., [34,

35, 126]) where programming language has significant impact on productivity when

analyzed on crossorganization data whereas no influence was observed on

organization-specific data.
6.1.2 Application Domain
According to the literature review presented (Table I), the application domain is

considered as the second most significant context factor.

The studies presented in the literature provide evidence not only that factors

influencing productivity vary across different application domains, but also that,

in principle, the magnitude of productivity alone varies across different domains.

Putnam and Myers [36, 119], for example, analyzed the QSM data repository [37]

and found out that there is a common set of factors influencing software process

214 A. TRENDOWICZ AND J. MÜNCH
productivity. They also found out that the analyzed projects tend to cluster around a

certain discrete value of productivity,4 and that except for a limited number of

projects (outliers), each cluster actually represents a certain application domain.

Therefore, although an exact productivity measurement would require considering

other influence factors within a certain context (cluster), general conclusions about

productivity within a certain context can already be drawn. The authors provided

evidence that projects in a real-time domain tend to be less productive, in general,

than in the business systems domain. Jones combines productivity variance across

domains with different levels of project documentation generally required in each

domain. He observed [31] that the level of documenting varies widely across various

software domains. The productivity of military projects, for instance, suffers due to

the extremely high level of documentation required (at least three times more

documentation per function point is required than in MIS and Software Systems

domains) [31].
6.1.3 Development Type
Development type is another important factor that determines how other project

characteristics influence development productivity.

Fenton and Pfleeger [30] suggest, for instance, that software complexity might

have a positive impact on productivity in the context of new development and a

negative one in case of maintenance and enhancement. The development team is

able, for example, to produce more output (higher productivity) even though the

output is badly structured (high complexity). Yet, one may expect that if producing

badly structured output might be quite productive, then maintaining it might be quite

difficult and thus unproductive. This could be, for instance, observed well in the con-

text of software reuse, where the required quality and documentation of reusable

artifacts have a significant impact on the productivity of their development (negative

impact) and reuse (positive impact).

In the context of maintenance projects, the purpose of software change has a

significant impact on productivity. Bug fixes, for instance, are found to be more

difficult (and therefore less productive) than comparably sized additions of new

code by approximately a factor of 1.8 [38]. Bug fixes tend to be more difficult than

additions of new code even when additions are significantly larger.

Corrective maintenance (bug fixes), however, seems to be much more productive

than perfective maintenance (enhancements) [39]. This supports the common intui-

tion that error corrections usually consist of a number of small isolated changes,
4 The standard deviation of process productivity within clusters ranged from �1 to �4.

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 215
while enhancements include larger changes to the functionality of the system.

In both types of changes, the extent of coupling between modified software units

may amplify or moderate the impact of change type on productivity. Changing a

certain software component requires considering the impact of the change on all

coupled components. This usually includes reviewing, modifying, and retesting

related (coupled) components. Therefore, the more coupled components the more

additional work is required (lower productivity).

The time spam between software release and change (so-called ‘‘aging’’ or

‘‘decay’’ effect) is also considered as a significant productivity factor in enhance-

ment and maintenance projects. Graves [38], for instance, confirms the findings of

several earlier works. He provides statistically significant evidence that a one-year

delay in change would cost 20% more effort than similar change done earlier.

Finally, maintenance productivity has traditionally been influenced by the

personal capabilities of software maintainers. It was, for example, found that one

developer may require 2.75 times as much effort as another developer to perform

comparable changes [38]. Yet, it is not always clear exactly which personnel char-

acteristics are determinant here (overall experience, domain experience, experience

with changed software, extent of parallel work, etc.).
6.1.4 Process Maturity
Process maturity is rarely identified directly as a factor influencing development

productivity. Yet, numerous companies use project productivity as the indirect

measure of software process maturity and/or use productivity improvement as a

synonym of process improvement. Rico [40] reports, for instance, that 22% of all

measures applied for the purpose of software process improvement are productivity

measures. Another 29% are development effort, cost, and cycle time measures,

which, in practice, are strongly related to development productivity.

A common belief that pushes software organizations toward process improvement

is that high-maturity organizations (e.g., as measured according to the CMMI model

[41]) are characterized by high-productivity processes5 [3, 17, 42, 43]. In fact, there

are several studies that provide quantitative evidence of that belief. Diaz and King

[17] report, for instance, that moving a certain software organization from CMM

level 2 to level 5 in the years 1997–2001 consistently increased project productivity

by the factor 2.8. A threefold increase in productivity within organizations approa-

ching higher CMM levels has been confirmed by several other software companies
5 Putnam [42] analyzed the QSM database and showed that there seems to be a strong correlation

between an organization’s CMM level and its productivity index.

216 A. TRENDOWICZ AND J. MÜNCH
worldwide [3]. Harter et al. [44] investigate the relationships between process

maturity measured on the CMM scale, development cycle time, and effort for

30 software products created by a major IT company over a period of 12 years.

They found that in the average values for process maturity and software quality, a

1% improvement in process maturity leads to a 0.32% net reduction in cycle time,

and a 0.17% net reduction in development effort (taking into account the positive

direct effects and the negative indirect effects through quality).

Yet, according to other studies (e.g., [45, 46]), overall organization maturity can

probably not be considered as a significant factor influencing productivity. One may

say that high maturity entails a certain level of project characteristics (e.g., CMMI

key practices) positively influencing productivity; however, which characteristics

influence productivity and to which extent varies most probably between different

maturity levels. In that sense, process maturity should be considered as a context

rather than as an influence factor. Influence factors should then refer to single key

practices rather than to whole maturity levels.

Overall maturity improvement should be selected if the main objective is a long-

term one, for example, high-quality products delivered on time and within budget. In

that case, increased productivity is not the most important benefit obtained from

improved maturity. The more important effects of increased maturity are stable

processes, which may, in turn, facilitate the achievement of short-term objectives,

such as effective productivity improvement (Fig. 11). One must be aware that

although increasing the maturity of a process will not hurt productivity in the

long-term perspective, it may hurt it during the transition to higher maturity levels.

It has been commonly observed (e.g., [48]) that the introduction of procedures, new

tools, and methods is, in the short-term perspective, detrimental to productivity

(so-called learning effect). Boehm and Sullivan [47], for instance, illustrate

productivity behavior when introducing new technologies (Fig. 11).

This learning effect can be moderated by introducing a so-called delta team
consisting of very skilled personnel who are is able to alleviate the short-term,

negative effect on productivity of implementing certain key process areas (KPAs).

This is, however, nothing else than preventing the productivity decrease caused by

investments on implementing certain KPAs by improving factors that have proved

to have a significant positive impact on productivity (in this case, team capabilities).

Benefits from process improvement and from introducing new technologies can also

be gained faster by sharing experiences and offering appropriate training and

management support [49, 50].

An alternative way of moderating the short-term, negative impact of process

improvement on productivity would be to first implement KPAs that have a

short-term, positive impact on productivity (e.g., team capabilities, personnel

Unprece-
dented

Prece-
dented

Component-
based

COTS System of
systems

Relative productivityEstimation error

Time, domain understanding

P
ro

du
ct

iv
ity

/e
st

im
at

io
n

er
ro

r

VHLL

FIG. 11. Short-term effect on productivity of introducing new technology [47].

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 217
continuity) in order to offset the negative impact of implementing other KPAs.

Example practices (KPAs) that have proved to make the greatest contribution to

organizational maturity (highest benefits) can be found in [3].

Yet, a certain maturity level (optionally confirmed by a respective certification) is

rather a ‘‘side effect’’ (a consequence) of process improvement (e.g., driven by a

high-productivity objective) rather than an objective for its own sake—which is the

right sequence [51].

Finally, the maturity of measurement processes should be the subject of special

attention since inconsistent measurements usually lead to misleading conclusions

with respect to productivity and its influencing factors. In that sense, one may say

that mature and rigorous measurement processes have a significant impact on

productivity [52]. Boehm and Sullivan [47] claim that there is about a �15%

range of variation in effort estimates between projects and organizations due to

the counting rules for data. Niessink and van Vliet [53] observed, in turn, that the

existence of a consistently applied (repeatable) process is an important prerequisite

for a successful measurement program. If, for instance, a process exists in multiple

variants, it is important to identify those factors that differentiate various variants

and to know which variant is applied when.

218 A. TRENDOWICZ AND J. MÜNCH
6.1.5 Development Life Cycle
Only a few studies selected the development life cycle model as a significant

factor influencing software productivity. This factor is, however, usually addressed

indirectly as a context factor. Existing empirical studies and in the field exper-

ience (e.g., [54]) confirm, for instance, the common belief that iterative and incre-

mental software development significantly increases development productivity

(as compared to the traditional waterfall model).
6.2 Comments on Selected Influence Factors

In this section, we present an overview of comments on and experiences with

selected factors influencing software development productivity.
6.2.1 Development Team Characteristics
Team size and structure is an important team-related factor influencing develop-

ment productivity. In principle, the software engineering literature indicates signifi-

cant benefits from using small teams. According to Camel and Bird [55], a common

justification for small teams is not that a small team is so advantageous, but that

a large team is disadvantageous. However, this does not seem to be consistent for the

whole development life cycle. Brooks [56] says, for instance, that when we add

people at the project’s end, the productivity goes down. Blackburn et al. [57] support

this thesis claiming that the small ‘‘tiger teams’’ in later stages of software develop-

ment (after requirements specification) tend to increase productivity. Those experi-

ences support the manpower Rayleigh buildup curve proposed in [58] and adapted in

[36] where a larger team is used during early development phases and the team size

drops during later phases.

However, the impact of team size on productivity has much to do with the

communication and coordination structure [30, 59, 60]. In other words, the impact

of team size depends significantly on the degree to which team members work

together or separately, and on the communication structure [61] rather than simply

on the number of people in a team. It has been observed that the main reason why

large teams are usually so unproductive is primarily the burden of maintaining

numerous communication links between the team members working together

[55]. Thus, even large teams, where developers work mostly independently, do

not seem to have a significant negative impact on productivity compared to small

teams [61].

Even if large teams are indispensable, their negative influence on productivity can

be moderated by an effective team (communication) structure and communication

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 219
media. For instance, even in large-scale projects, minimizing the level of work

concurrency by keeping several small, parallel teams (with some level of indepen-

dence) instead of one large team working together seems to be a good strategy for

preventing a drop in productivity [62]. That is, for example, why agile methods

promoting two-person teams working independently (pair programming) may be

(however only in certain conditions) more productive than large teams working

concurrently [63]. Yet, as further reported in [63], well-defined development pro-

cesses are not without significance in agile development. A large industrial case

study proved, for example, that even pairs of experienced developers working

together need a collaborative, role-based protocol to achieve productivity [63].

Observing social factors in hyperproductive organizations, Cain et al. [64] found

the developer close to the core of the organization. Average and low productive

organizations exhibit much higher prestige values for management functions than

for those who directly add value to the product (developers). Collaborations in these

organizations almost always flow from the manager in the center to other roles in the

organization. Even though a star structure (‘‘chief surgical team’’) is mostly the

favored communication structure, it seems that its impact on productivity depends

on who plays the central role, managerial (outward control flow) or technical

(inward control flow) staff. The authors point to architect as an especially presti-

gious role in a team within highly productive organizations.

The use of proper communication media may also significantly improve team

communication and, in consequence, development productivity. Face-to-face com-

munication still seems to be the most efficient way of communication. Carey and

Kacmar [65], for instance, observed that although simple tasks can be accomplished

successfully using electronic communication media (e.g., telephone, email, etc.)

complex tasks may result in lower productivity and larger dissatisfaction with

electronic medium used. Agile software development considers one of the most

effective ways for software developers to communicate to be standing around a

whiteboard, talking, and sketching [66]. Ambler [51] goes further and proposes to

define a specific period during the day (�5 h) during which team members must be

present together in the workroom. Outside that period, they may go back to their

regular offices and work individually. A more radical option would be to gather the

development team in a common workroom for the whole duration of the project.

Teasley et al. [67] conclude their empirical investigation by saying that having

development teams reside in their own large room (an arrangement called radical
collocation) positively affected system development. The collocated projects had

significantly higher productivity and shorter schedules than both the performance

of similar past projects considered in the study and industry benchmarks. Yet, face-

to-face communication does not guarantee higher productivity and may still vary

widely dependent on the team communication structure (especially for larger teams).

220 A. TRENDOWICZ AND J. MÜNCH
Finally, it was observed that, besides a core team structure, close coupling to the

quality assurance staff and the customer turned out to be a pattern within highly

productive software organizations [64].

Staff turnover is another team-related project characteristic having a major impact

on development productivity. Collofello et al. [68] present an interesting study

where, based on a process simulation experiment, they investigated the impact of

various project strategies on team attrition. No action appeared to be the most

effective strategy when schedule pressure is high and cost containment is a priority.

Replacing a team member who left a team alleviates the team exhaustion rate

(lightens increased attrition). Even though overstaffing is an expensive option,

replacing a team member who left with several new members minimizes the

duration of the project. Thus, this strategy should be considered for projects in

which the completion date has been identified as the highest priority. It is, however,

not clear how those results (especially regarding overstaffing) relate to Brooks’ real-

life observation that putting more staff at the end of a project makes it even more

late [56].

Task assignment is the next reported human-related factor differentiating software

development productivity. Boehm [43], for instance, introduces in his COCOMO II

model the task assignment factor to reflect the observation that proper assignment

of people to corresponding tasks has a great impact on development productivity.

Hale et al. [61, 69] go further and investigate related subfactors such as intensity,
concurrency, and fragmentation. They observed that the more time is spent on the

task by the same developer (intensity), the higher the productivity. Further, the more

team members work on the same task (concurrency), the lower the productivity

(communication overhead disproportionately larger than task size). Finally, the

more fragmented the developer’s time over various tasks (fragmentation), the

lower the productivity (due to overhead to switch work context).

Finally, team capabilities and skills is traditionally acknowledged as the most

significant personnel characteristic that influences development productivity. Team

capabilities also have an indirect impact on productivity by influencing other factors

with a potential impact on development productivity. The impact of the team

structure on productivity, for instance, usually assumes highly skilled technical

people. Moreover, the full benefits of tool support and technological improvements

cannot be achieved without capable personnel [70]. On the other hand, the impact

of team capabilities on productivity may be amplified or moderated by other

factors. An appropriate management and communication structure can, for instance,

moderate the negative impact of a low-experienced team on productivity; it can,

however, never compensate for the lack of experience [57].

Researchers and practitioners agree about the high importance of team capabil-

ities regarding development productivity. Yet, it is not clear exactly which skills

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 221
have an impact on productivity, and which do not. Presented in Sections 4 and 5

suggests that programming language skills, domain experience, and project

management skills are essential characteristics of a highly productive development

team. Krishnan [59], however, claims that whereas higher levels of domain experi-

ence of the software team is associated with a reduction in the number of field

defects in the product (higher quality), there is no significant direct association

between either the language or the domain experience of the software team and the

dollar costs incurred in developing the product. This does not, however, necessary

imply no impact on productivity. Software teams with low experience (<2 years)

may cost more due to lower productivity, whereas highly experienced teams

(>10 years) may cost more due to higher salaries. Here we can again see that

when observing development productivity and its influence factors, a careful defi-

nition of respective measures is crucial for the validity of the conclusions drawn.

Although not reflected by the results presented in this chapter (Sections 4 and 5),

significant team capabilities do not only cover technical skills. There are several

nontechnical skills that are found to be essential with respect to development

productivity. Examples are ability and willingness to learn/teach quickly, multiarea

(general) specialization, knowledge of fundamentals, and flexibility [71]. It has been

observed (especially in a packaged software development environment) that it is the

innovation, creativity, and independence of the developers that determine develop-

ment productivity and project success [69, 72]. Yet, as warned in [73], an emphasis

on creativity and independence creates an atmosphere that contributes to a general

reluctance to implement accurate effort and time reporting. This, in turn, limits the

reliability of the collected productivity data and may lead to wrong conclusions

regarding productivity and its impact factors.
6.2.2 Schedule/Effort Distribution
The right schedule and work distribution are the next significant parameters

influencing development productivity. Looking at the published investigations,

one may get the impression that the development schedule should be neither too

long nor to short. Thus, both schedule over- and underestimation may have a

negative impact on productivity.

Several authors have observed the negative impact of schedule compression on

productivity (so-called deadline effect) [43, 74]. A schedule compression of 25%

(which is considered as very low compression) may, for instance, lead to a 43%

increase in development costs [75]. Schedule compression is recognized as a key

element by practically all of the most popular commercial cost estimation tools (e.g.,

PRICE-S [76], SLIM [36, 119], SEER-SEM [77], and COCOMO I/II [14, 43]),

which implement various productivity penalties related to it [75].

222 A. TRENDOWICZ AND J. MÜNCH
Others show that schedule expansion also seems to have a negative impact on

development productivity [26, 57, 75]. One of the possible explanations of this

phenomenon is the so-called Parkinson’s low, which says that ‘‘the cost of the

project will expand to consume all available resources’’ [78].

Yet, the right total schedule is only one part of success. The other part is its

right distribution across single development phases. An investigation on productiv-

ity shown in [57] concludes that some parts of the process simply need to be

‘‘unproductive,’’ that is, should take more time. This empirical insight confirms

the common software engineering wisdom that more effort (and time) spent on early

development stages bears fruit, for example, through less rework in later stages and

finally increases overall project productivity. Apparently, the initial higher analysis

costs of highly productive projects are more than compensated for by the overall

shorter time spent on the total project [23, 79]. If the analysis phase, for example, is

not done properly in the first place, it takes longer for programmers to add, modify,

or delete codes. The Norden’s Rayleigh curve [58] may here be taken as a reference

shape of the most effective effort and time distribution over the software develop-

ment life cycle. Yet, the simple rule of ‘‘the more the better’’ does not apply here and

after exceeding a certain limit of time spent on requirements specification, the

overall development productivity (and product quality) may drop [16]. The results

of a case study at Ericsson [80] determined, for example, that the implementation

phase had the largest improvement potential in the two studied projects, since it

caused a large faults-slip-through to later phases, that is, 85 and 86% of the total

improvement potential of each project.
6.2.3 Use of Tools and Methods
The effect of the usage of certain tools and technologies on software develop-

ment productivity is widely acknowledged (see Sections 4 and 5), but at the same

time, paradoxically not well understood [81]. The opinions regarding the impact of

tool usage vary largely across individual studies. Following the factors in Boehm’s

COCOMO II model [43], numerous organizations consider tool usage as a signifi-

cant means for improving development productivity. Yet, empirical studies have

reported their positive and negative effects [57] as well as little (no significant)

direct effect [60]. This paradox might be explained by findings that the effect

of tool usage on development productivity is coupled with the impact of other

factors and that isolated use of tools makes little difference in the productivity

results [1, 71, 82].

It has been observed, for instance, that due to the significant costs involved in

learning the CASE tools, the effect of tools in some projects is negative, that is, they

increase the effort required for developing software products [83]. Other significant

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 223
factors affecting the relationship between tool usage and development productivity

are the degree of tool integration, tool maturity, tool training and experience,

appropriate support when selecting and introducing corresponding tools (task-

technology fit), team coordination/interaction, structured methods use, documenta-

tion quality, and project size [54, 82–85]. For instance, when teams receive both

tool-specific operational training and more general software development training,

higher productivity is observed [83]. The same study reports on a 50% increase in

productivity if tools and formal structured methods are used together.

Abdel-Hamid [1] observed, moreover, that studies conducted in laboratory set-

tings using relatively small pilot projects tend to report productivity improvements

of 100–600%, whereas when the impact of CASE tools is assessed in real organiza-

tional settings, much more modest productivity gains (15–30%) or no gains at all

were found. The author relevantly summarizes that project managers are the main

source of failed CASE tools application, because most often they do not institute

rudimentary management practices needed before and during the introduction of

new tools. What they usually do is to look for a solution they can buy. Actually, in a

simulation presented by Abdel-Hamid, almost half the productivity gains from new

software development tools were squandered by bad management. Moreover,

Ambler [51] underlines being flexible regarding tool usage. He observed that each

development team works on different things, and each individual has different ways

of working. Forcing inappropriate tools on people will not only hamper progress, it

can destroy team morale.

The impact of project size and process maturity on the benefits gained from

introducing tools is shown in [86]. The authors observed at IBM software solutions

that in the context of advanced processes, productivity gains through requirements

planning tools may vary between 107.9% for a small project (five features) and

�23.5% for a large project (80 features). Yet, in the context of a small project

(10 features) such a gain may vary between �26.1 and 56.4% when regular and

advanced processes are applied, respectively. A replicated study confirmed this

trend—productivity decreases with growing project size and higher process com-

plexity. The productivity loss in the larger project was due to additional overhead for

processing and maintaining a larger amount of data produced by a newly introduced

tool. Higher process complexity, on the other hand, brings more overhead related to

newly introduced activities (processes). Yet, measuring at the macrolevel makes it

difficult to separate the impact of the tool from other confounding variables (such as

team experience and size/complexity of a single feature). Therefore, the results of

Bruckhaus [86] should be interpreted cautiously [87].

The use of software tools to improve project productivity is usually interpreted in

terms of automated tools that assist with project planning, tracking, and manage-

ment. Yet, nonautomated tools such as checklists, templates, or guidelines that

224 A. TRENDOWICZ AND J. MÜNCH
help software engineers interpret and comply with development processes can be

considered as supporting the positive impact of high-maturity processes on

improved project productivity [71].
6.2.4 Software Reuse
Reuse of software products, processes, and other software artifacts is considered

the technological key to enabling the software industry to achieve increased levels of

productivity and quality [7, 88].

Reuse contributes to an increase in productivity in both new development and

software maintenance [89]. There are two major sources of savings generated by

reuse (1) less constructive work for developing software (reuse of similar and/or

generic components) and (2) less analytical work for testing software and rework to

correct potential defects (reuse of high-quality components). In other words, soft-

ware reuse catalyzes improvements in productivity by avoiding redevelopment and

improvements in quality by incorporating components whose reliability has already

been established [90]. That is, for example, why reuse benefits are greater for more

complex reusable components [91] (however, this positive effect levels off beyond a

certain component size).

Nevertheless, reuse is not for free and may, at least at the beginning, bring

negative savings (productivity loss). A high-quality, reusable (generic) software

component first needs to be developed, which usually costs more that developing

specific software (not intended to be reused). Populating the repository of reusable

artifacts alone contributes to an initial loss of productivity [91]. The repository must

not expand indefinitely, due to additional maintenance costs. On the one hand,

creating and maintaining rarely used, small repositories of small components tends

to cost more than the reuse savings they generate. As the repository size increases,

opportunities for reuse tend to increase, generating more development savings. On

the other hand, maintaining and searching through very large repositories may again

generate negative reuse savings.

Later on, to actually reuse a certain component, it has to be identified as available

in the repository and retrieved. Then, the feasibility of the component to be reused in

a specific context has to be determined (a component has to be analyzed and

understood). Even if accepted, a component often cannot be reused as is, but has

to be modified in order to integrate it into the new product. At the end, it has to be

(re)tested in a new context. In each step of reuse, a number of factors influencing

its productivity have to be considered. Finally, if the total cost for retrieving,

evaluating, and integrating a component is less than the cost of writing it from

scratch, it makes economic sense to reuse the component.

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 225
The success of reuse depends on numerous factors. Rinie and Sonnemann [92]

used an industrial survey to identify several leading reuse success factors (so-called

reuse capability indicators):

l Use of product-line approach

l Architecture that standardizes interfaces and data formats

l Common software architecture across the product line

l Design for manufacturing approach

l Domain engineering

l Management that understands reuse issues

l Software reuse advocate(s) in senior management

l Use of state-of-the-art tools and methods

l Precedence of reusing high-level software artifacts such as requirements and

design versus just code reuse

l Tracing end-user requirements to the components that support them

Atkins et al. [87, 93] confirm part of these results in an empirical study where the

change effort of large telecommunication software was reduced by about 40%

by using a version-sensitive code editor and about four times when the domain

engineering technologies were applied.

The impact of reuse on development productivity, like most other influence

factors, is strongly coupled with other project characteristics. It should thus not be

simplified by taking as granted the positive impact of reuse on productivity. Frakes

and Succi [94] observed, for instance, a certain inconsistency regarding the relation-

ship between reuse and productivity across various industrial data sets, with some

relationships being positive and others negative.

One of the factors closely coupled with reuse is the characteristics of the person-

nel involved in reuse (development of reusable assets and their reuse). Morisio et al.

[95] observed that the more familiar developers are with reused, generic software

(framework), the more benefit is gained when reusing it. The authors report that

although developing a reusable asset may cost 10 times as much as ‘‘traditional’’

development, the observed productivity gain of each development where the asset is

reused reached 280%. Thus, the benefit from creating and maintaining reusable

(generic) assets increases with the number of its reuses.

Another factor influencing the impact of reuse on development productivity is the

existence of defined processes. Soliman [96], for example, identifies the lack of a

strategic plan available to managers to implement software reuse as a major factor

affecting the extent of productivity benefits gained from reuse. Major issues for

managers to consider include commitments from top management, training for

226 A. TRENDOWICZ AND J. MÜNCH
software development teams, reward systems to encourage reuse, measurement

tools for measuring the degree of success of the reuse program, necessary reuse

libraries, rules regarding the development of reusable codes, domain analysis, and

an efficient feedback system.

Software reuse in the context of object-oriented (OO) software development is
one specific type of reuse that proved to be especially effective in increasing

development productivity [97, 98]. Yet, the common belief that using the OO

paradigm is sufficient for improving development productivity does not have

much quantitative evidence supporting it [98]. OO reuse requires considering

several aspects, such as the type of reuse or the domain context of reuse. Results

of experiments in the context of Cþþ implementation show, for instance, that since

black-box reuse (class reuse without modification) increases programmer produc-

tivity, the benefits of white-box reuse (reuse by deriving a new class from an existing

one through inheritance) are not so clear (especially for reuse of third-party library

classes) [29]. Finally, introducing the OO paradigm, like introducing any new

technology, requires considering and often adjusting the business context (model)

to gain the expected productivity benefits [74]. For example, inappropriate schedule

planning (constrained or too long) or lack of process control (e.g., over the effects of

newly introduced technology) may completely level down any benefit from the

applied new technology, including the object-oriented paradigm [74].

The use of COTS components is closely related to software reuse and might, in

practice, be classified as a subclass of software reuse. Yet, software reuse differs

from COTS software in three significant ways [1]: (a) reuse components are not

necessarily able to operate as standalone entities (as is assumed to be the case with

most components defined as COTS software); (b) reuse software is generally

acquired internally within the software developing organization (by definition,

COTS components must come from outside); and (c) reused software usually

requires access to the source code, whereas with COTS components, access to the

source code is rare (references to so-called ‘‘white-box’’ COTS notwithstanding).

From that perspective, the productivity of software development in the context of

software reuse and use of COTS is influenced by overlapping sets of factors.

In principle, the factors presented in the literature focus on the productivity of

integrating COTS into developed software [1]. Abts [99] postulates, for instance, that

increasing the number of COTS components is economically beneficial only up to a

certain point, where the savings resulting from the use of COTS components break

even with the maintenance costs arising from the volatility of such components.

Finally, software product lines and domain engineering as the most recent

incarnations of the reuse paradigm should be considered as a potential factor

influencing productivity of software development in general, and software changes

in particular. In fact, they may potentially reduce the cost of software change

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 227
three- to fourfold (telecommunication switch system) [100, 101]. Such a gain is in

line with the generally accepted view that domain engineering techniques improve

software productivity two- to 10-fold. Yet, the cost of change is also influenced by

other factors. Besides, quite obviously, the size and complexity of change, the type

of change also has a substantial impact on change productivity. Similarly to [38], the

authors observed, for instance, that changes that fix bugs are more difficult than

comparably sized additions of new code (see also Section 6.1.3).

Concluding, there are various aspects of software reuse (besides simply the level

of reuse) that have to be taken into account when considering reuse as a way to

increase development productivity in a certain context. In practice, it is recom-

mended to collect organization-specific data related to reuse and productivity, and

use these data to guide reuse projects. However, one has to be careful when defining

both productivity and reuse measures for that purpose, since improper measure

definition might lead to wrong conclusions [102].
6.2.5 Software Outsourcing
Outsourcing has recently been gaining a lot of attention from the software

community as a means for reducing development costs. According to SPR data

[13], the level of outsourcing tripled in the years 1989–2000. In 2000, about 15% of

all information systems were produced under contract or outsource agreements (2%

international outsource).

Now, it is not clear if reduced cost is related to lower manpower costs or higher

development productivity at organizations providing outsourcing services. Analyz-

ing the ISBSG data [19], Carbonneau [103] confirmed the results of earlier studies

(e.g., [104]) that outsourced projects do not have significantly different productivity

(in terms of functionality delivered per effort invested) than in-source projects.

Therefore, software development outsourcing will only lead to significant cost

savings when the outsourcing provider has access to significantly cheaper labor.

This is consistent with prior research [105], which concludes that ‘‘an external

developer must have a considerable cost advantage over an internal developer in

order to have the larger net value.’’

Nowadays, companies are more and more interested not only in lower labor cost

but also in increased productivity of outsourcing projects. A study performed across

15 business units of a large international software organization performed by

Fraunhofer IESE showed that 42% of the respondents plan to use productivity

measurement to actually manage outsourcing projects. For that purpose, they need

to identify factors that influence productivity in the context of outsourcing.

In case of outsourcing projects, communication between software provider and

outsourcing organization seems to be a crucial aspect influencing development

228 A. TRENDOWICZ AND J. MÜNCH
productivity. As already mentioned in Section 6.2.1, the number of involved people

(team size) as well as communication structure have a significant impact on devel-

opment productivity. This is especially true for outsourced projects [46, 106], since

outsourcing projects usually suffer from a geographical and mental distance between

the involved parties. Software might be outsourced to an organization in the same

country (near-shore) or abroad (far-shore). Due to geographical, temporal, and

cultural distances, international outsourcing is found to be between 13 and 38%

more expensive than national outsourcing [107]. In that context, communication

facilities play an essential role. A summary of communication means in the context

of offshoring projects can be found, for instance, in Moczadlo [108] (Fig. 12).

Team and task distribution is another project aspect related to communication

between project stakeholders (see also Section 6.2.1) and thus should be considered

in the context of software outsourcing. de Neve and Ebert [109] strongly advise

building coherent and collocated teams of fully allocated engineers. Coherence
means splitting the work during development according to feature content and

assembling a team that can implement a set of related functionality. Collocation
means that engineers working on such a set of coherent functionality should sit

in the same building, perhaps within the same room. Full allocation implies that

engineers working on a project should not be distracted by different tasks in

other projects.
13.3%

20.0%

30.7%

33.3%

54.7%

60.0%

85.3%

88.0%

100.0%

22.7%

25.3%

30.7%

22.7%

20.0%

17.3%

9.3%

6.7%

0.0%

64.0%

54.7%

38.7%

44.0%

25.3%

22.7%

5.3%

5.3%

0.0%

Virtual meeting rooms

Video conferences

Workflow systems

Discussion forums,
chats

Inter- and intranet
applications

Telephone conferences

Face-to-face
communication

Telephone/fax

Email

C
om

m
un

ic
at

io
n

m
ea

ns

Percentage of consideration

Very important Neither Less important/unimportant

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0% 100.0% 110.0%

FIG. 12. Importance of communication channels [108].

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 229
Another already known factor that influences the productivity of outsourcing

projects is project management, including realistic, detailed, and well-structured

project planning [109, 110]. Those aspects cover factors such as schedule pressure

and distribution (see Section 6.2.2), as well as task assignment (see Section 6.2.1).

Customer/contractor involvement, which is less important in case of in-house

development (see results in Sections 4 and 5), becomes essential in outsourcing,

where a software product is developed completely by a service provider [110]. It is

recommended, for instance, that ‘‘at least one technical staff from the contracting

organization should be involved in the details of the work, to form a core of technical

expertise for in-house maintenance’’ [110].
7. Considering Productivity Factors in Practice

There are several essential issues that must be considered when selecting factors

for the purpose of modeling software development productivity, effort/cost,

schedule, etc.

This section presents a brief overview of the most important aspects to be

considered in practice.
7.1 Factor Definition and Interpretation

Despite similar naming, the productivity factors presented in the literature usually

differ significantly across various studies with respect to the phenomenon they

actually represent. Moreover, our experience (e.g., [111]) is that, in practice, even

if factor definitions suggest similar underlying phenomena, these may be interpreted

differently by various experts—dependent on their background and experiences.

Software reliability, for instance, is sometimes defined (or at least tacitly inter-

preted) as including safety and security and sometimes not.

Furthermore, a high-level view on abstract productivity factors that aggregate a

number of specific indicators within a single factor may mask potential productivity

problems, as poor results in one area (indicator) can be offset by excellence in another

[73]. Therefore, it is recommended identifying project aspects influencing produc-

tivity on the level of granularity ensuring identification of potentially offsetting

factors. Team capabilities, for instance, may cover numerous specific skills such as

communication or management skills. It may thus be that low communication skills

of developers are not visible because they are compensated by great management

skill of the project manager. In such a case, considering team capabilities as a

productivity indicator would not bring much value.

230 A. TRENDOWICZ AND J. MÜNCH
Therefore, to maximize the validity of the collected inputs (factor’s significance,

factor’s value, and factor’s impact on productivity), the exact definition of the

factors as well as related measures has to be done in the first place. Blindly adopting

published factors and assuming that everyone understands them may consistently

(and usually does) lead to large disappointments. Unclear factor definition results in

invalid data and inaccurate and instable models. In consequence, after investing

significant effort, software organizations finally completely give up quantitative

project management.
7.2 Factor Selection

One of the major purposes of the overview presented in this chapter is to support

software practitioners in selecting factors relevant in their specific context. We are,

however, far from suggesting uncritical adoption of the ‘‘top’’ factors presented here.

This chapter is supposed to increase a software practitioner’s understanding of

possible sources of productivity drivers rather than bias his thinking while selecting

factors relevant in his specific context. The overview presented here should, at most,

be taken as a starting point and reference for selecting context-specific factors.

As with any decision support technology, the prerequisite when selecting produc-

tivity factors is that they maximize potential benefit while minimizing related

costs. On the business level, they should then contribute to the achievement of

organizational goals, such as productivity control and improvement, while generat-

ing minimal additional costs. On the software project level, the selected factors

should cover (explain) a possibly large part of the observed productivity variance

and be of minimal quantity to assure an acceptable cost of collecting, interpreting,

and maintaining respective project data.

Therefore, an effective factor selection approach is an essential step in modeling

productivity or any productivity-related phenomena.

Selecting an optimal6 set of productivity factors is not a trivial task. In principle,

we distinguish three major selection approaches: based on experts’ assessments,

based on data analysis, and a hybrid approach where both data- and expert-based

methods are combined. Industrial experiences (e.g., [111]) indicate that none of the

first two methods is able to provide us with an optimal set of factors.

Data-based factor selection techniques provide a subset of already measured

factors that has usually been selected arbitrarily, for example, based on one of the

popular cost estimation models [112, 113]. Data-based selection can usually be
6 A minimal amount of factors that would meet specified cost- and benefit-related criteria, for

example, effective productivity control at minimal modeling cost.

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 231
easily automated and thus does not cost much (in terms of manpower7). One

significant limitation is that data-based selection simply reduces the set of factors

given a priori as input. This means in practice that if input data does not cover certain

relevant productivity factors, a data-based approach will not identify them. It may at

most exclude irrelevant factors. Maximizing the probability of covering all relevant

factors would require collecting a significant amount of data, hopefully covering all

relevant factors, which would most probably disqualify such an approach due to

high data collection costs.

On the other hand, expert-based factor selection techniques seem to be more

robust, since experts are able to identify (based on their experience) factors unmea-

sured so far. However, experts tend to be very inconsistent in their assessments,

depending, for example, on personal knowledge and expertise. Across 17 IESE

studies where we asked experts to rank identified factors with respect to their impact

on productivity and where we measured Kendall’s coefficient of concordance

W 2 ð0; 1Þ [115] to quantify experts’ agreement, in half of the cases (46%) experts

disagreed significantly (W � 0.3 at a significance level p ¼ 0.05).

Hybrid approaches to selecting productivity factors seem to be the best alterna-

tive. In the reviewed literature, however, merely 6% of the studies directly propose

some kind of combined selection approach. Most of the published studies (45%)

select productivity factors based on experts’ opinion or already published factors

(with COCOMO factors [43] coming out on top). A successful attempt at combining

data- and expert-based approaches within an iterative framework has been made, for

example, in [111].
7.3 Factor Dependencies

In practice, productivity factors are not independent of each another. Identification of

reciprocal relationships between productivity factors is a crucial aspect of productivity

modeling. On the one hand, explicit consideration of factors’ dependencies provides

software practitioners with a more comprehensive basis for decision making. On

the other hand, the existence of relationships between productivity factors limits the

applicability of certain modeling methods (e.g., multiple regression models) and

thus must be known in advance, before applying certain modeling methods.

In practice, we may distinguish between several kinds of between-factor relation-

ships. Factors may be in a causal relationship, which means that a factor’s change

(cause) leads to (causes) a change (effect) to a related factor. A factor may also
7 Factor selection techniques are easy to automate; however, many of them contain NP-hard algo-

rithms (e.g., [114]), which actually limits their practical applicability.

Productivity

High
requirements

volatility

Disciplined
requirements
management

Customer’s low
capabilities and

experience

Increases

In
cr

ea
se

s

Moderates

FIG. 13. Types of factor relationships.

232 A. TRENDOWICZ AND J. MÜNCH
be correlated, which means that changes to a factor go in parallel with changes to

another factor. Although factors linked in a causal relationship should be correlated,

correlation does not imply causal association.

Moreover, besides influencing another factor, a factor may also influence the

strength of another factor’s impact on productivity. For example (Fig. 13),Customer’s
low capabilities and experiences contributes to Higher requirements volatility, which
in turn leads to higher development effort. Now, the negative impact of Higher
requirements volatility can be moderated (decreased) by Disciplined requirements
management.

There are several practical issues to be considered regarding factor dependen-

cies. The first one is how to identify various kinds of dependencies? Data-

based (analytical) methods are able at most to identify correlations. Cause–effect

relationships can be identified by experts, who, however, tend to disagree in their

subjective assessments. The next issue is what should we do with the identified

dependencies? Should we explicitly model or better eliminate them? What alterna-

tive techniques exist to model or eliminate the identified relationships? Existing

publications on productivity measurement/modeling do not explicitly pay much

attention to those issues.
7.4 Model Quantification

Quantitative productivity management requires systematic collection of related

project data. This entails quantifying selected productivity factors and their impact

on productivity.

Proper definition of measures for each identified factor later on contributes to the

cost and reliability of collecting the data upon which quantitative productivity

management will take place. Noncontinuous factors (nominal, ordinal), especially,

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 233
require a clear and unambiguous definition of scales, reflecting distinct (orthogonal)

classes. Wrong measurement processes and improper scales definition usually lead

to unreliable, messy data, which significantly limits the applicability of certain

analysis methods and the reliability of the obtained analysis results (see, e.g., [111]).

Finally, the impact each identified factor has on productivity and, if explicitly

modeled, on other factors should be quantified. Some statistical approaches, for

example, regression, provide certain weights that reflect each factor’s impact on

productivity. Data mining provides a set of techniques dedicated to weight a factor’s

impact (e.g., [114]). One major disadvantage of those methods is that the weights

they provide are rather hard to interpret by experts. There are also several appro-

aches based on expert assessments to quantify a factor’s impact on productivity. The

COBRA method [111], for instance, uses a percentage change of productivity

caused by the worst-case factor value, which is very intuitive and easy to asses by

experts. A less intuitive measure is used within Bayesian Belief Nets [116], where

the conditional probability of a certain productivity value given the values of the

influencing factors is assessed.
8. Summary and Conclusions

This chapter has presented a comprehensive overview of the literature and of

experiences made within Fraunhofer IESE regarding the most common factors

influencing software development productivity.

The major outcome of the study is that the success of software projects still relies

upon humans.

The second most commonly considered factors are tool and method. However,

even the best tool or method alone is not a silver bullet and cannot be a substitute for

highly skilled people and effective work coordination. Investing in people is still

considered as bringing more benefit than investing in tools and methods only [57].

Tools and methods should therefore be considered as human aid that amplifies the

positive impact of highly skilled and well-coordinated teams on development

productivity [60].

Some productivity factors refer to using or not using certain activities. Yet, a

certain activity may be consistently applied across development projects and there-

fore, at first glance, not by considered as having an impact on development produc-

tivity. However, when we consider the effectiveness of a certain activity, it may

occur that it still has a significant impact on productivity. This calls for considering

software development methods, processes, and tools in terms of their effectiveness

rather than simply using or not using them.

234 A. TRENDOWICZ AND J. MÜNCH
Moreover, any software development effort, even if staffed with skilled indivi-

duals, is likely to be unsuccessful if it does not explicitly account for how people

work together [60]. A software development environment is a complex social

system that may squander the positive impact of skillful individuals as well as

software tools and methods if team communication and coordination fail [1].

Factors facilitating team communication and work coordination are particularly

important in the context of software outsourcing. Geographical and, often, mental

distance between the involved parties (e.g., outsourcing company, software pro-

vider, etc.) require dedicated managerial activities and communication facilities to

maintain a satisfactory level of productivity.

The most commonly selected factors support the thesis that schedule is not a

simple derivative of project effort. The negative impact of project schedule on

productivity, however, is considered only in terms of schedule constraints (com-

pression). Parkinson’s low (‘‘cost of the project will expand to consume all available

resources’’) seems not to be considered in daily practice.

Several ‘‘top’’ factors support the common intuition regarding the requirements

specification as the key development phase. First of all, requirements quality and

volatility are considered to be essential drivers of development productivity. Several

further factors are considered as either contributing to the quality and volatility of

requirements or moderating the impact of already instable requirements on produc-

tivity. Distribution of the project effort (manpower) focusing on the requirements

phase as well as significant customer involvement in the early phases of the

development process are the factors most commonly believed to increase require-

ments quality and stability. The impact of already instable requirements may, on the

other hand, be moderated by disciplined requirements management as well as early

reviews and inspections.

Finally, the results obtained here do not support the traditional belief that software

reuse is the key to productivity improvements. It seems that the first years of

enthusiasm also brought much disappointment. A plethora of factors that should

be considered to gain the expected benefits from reuse might explain this situation.

Ad hoc reuse, without any reasonable cost-benefit analysis and proper investments

to create a reuse environment (e.g., creation and maintenance of high-quality

reusable assets, integration support, appropriate team motivation, and training)

usually contributes to a loss in productivity.

The factors presented in this chapter result from a specific aggregation approach

that reflects current industrial trends. However, it must be considered that the

analyzed studies usually differ widely with respect to the identified factors, their

interdependencies, and their impact on productivity. Therefore, each organization

should consider potential productivity factors in its own environment (‘‘what is good

for them does not have to necessarily be good for me’’), instead of uncritically

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 235
adopting factors used in other contexts (e.g., COCOMO factors) [51]. Moreover,

since software is known as a very rapidly changing environment, selected factors

should be reviewed and updated regularly.

Selecting the right factors is just a first step toward quantitative productivity

management. The respective project data must be collected, analyzed, and inter-

preted from the perspective of the stated productivity objectives [117, 118]. Incon-

sistent measurements and/or inadequate analysis methods may, and usually do, lead

to deceptive conclusions about productivity and its influencing factors [102]. In that

sense, one may say that rigorous measurement processes and adequate analysis

methods also have a significant impact on productivity, although not directly [52].

Therefore, such aspects as clear definition and quantification of selected factors,

identification of factor interdependencies, as well as quantification of their impact

on productivity has to be considered.

Acknowledgments

We would like to thank Sonnhild Namingha from the Fraunhofer Institute for Experimental Software

Engineering (IESE) for reviewing the first version of this chapter.

References

[1] T.K. Abdel-Hamid, The slippery path to productivity improvement, IEEE Software 13 (4) (1996)

43–52.

[2] Gartner, Inc. press releases, Gartner Says Worldwide IT Services Revenue Grew 6.7 Percent in

2004, 8 February 2005 (http://www.gartner.com/press_releases/pr2005.html).

[3] M.C. Paulk, M.B. Chrissis, The 2001 High Maturity Workshop, Special Report, CMU/SEI-2001-

SR-014, Carnegie Mellon Software Engineering Institute, Pittsburg, PA, 2002.

[4] National Bureau of Economic Research, Inc., Output, Input, and Productivity Measurement.

Studies in Income and Wealth, vol. 25 by the Conference on Research in Income and Wealth,

Technical Report, Princeton University Press, Princeton, NJ, 1961.

[5] IEEE Std 1045–1992, IEEE Standard for Software Productivity Metrics, IEEE Computer Society

Press, Los Alamitos, CA, 1992.

[6] K.G. van der Pohl, S.R. Schach, A software metric for cost estimation and efficiency measurement

in data processing system development, J. Syst. Software 3 (1983) pp. 187–191.

[7] N. Angkasaputra, F. Bella, J. Berger, S. Hartkopf, A. Schlichting, Zusammenfassung des 2. Work-

shops ‘‘Software-Produktivitätsmessungen’’ zum Thema Produktivitätsmessung und Wiederver-

wendung von Software [Summary of the 2nd Workshop ‘‘Software Productivity Measurement’’ on

Productivity Measurement and Reuse of Software], IESE-Report Nr, 107.05/D, Fraunhofer Insti-

tute for Experimental Software Engineering, Kaiserslautern, Germany, 2005 (in German).

[8] L.C. Briand, I. Wieczorek, Software resource estimation, in: Encyclopedia of Software Engineering,

(J.J. Marciniak, Ed.), vol. 2. John Wiley & Sons, New York, NY, 2002, pp. 1160–1196.

[9] T. Meznies, Z. Chen, D. Port, J. Hihn, Simple software cost analysis: Safe or unsafe? in: Proc.

International Workshop on Predictor Models in Software Engineering, St. Louis, MO, 15 May 2005.

http://www.gartner.com/press_releases/pr2005.html

236 A. TRENDOWICZ AND J. MÜNCH
[10] M. J�rgensen, M. Shepperd, A systematic review of software development cost estimation studies,

IEEE Trans. Software Eng. 33 (1) (2007) 33–53.

[11] T. Noth, M. Kretzschmar, Estimation of Software Development Projects, Springer-Verlag, Berlin,

1984, (in German).

[12] F.J. Heemstra, M.J.I.M. van Genuchten, R.J. Kusters, Selection of Cost Estimation Packages,

Research report EUT/BDK/36, Eindhoven University of Technology, Eindhoven, Netherlands, 1989.

[13] C. Jones, Software Assessments, Benchmarks, and Best Practices, Addison-Wesley Longman, Inc.,

New York, NY, 2000.

[14] B.W. Boehm, Software Engineering Economics, Prentice Hall PTR, Upper Saddle River, NJ, 1981.

[15] B.A. Kitchenham, N.R. Taylor, Software project development cost estimation, J. Syst. Software 5

(1985) 267–278.

[16] T.C. Jones, Estimating Software Cost, McGraw-Hill, New York, NY, 1998.

[17] D. Diaz, J. King, How CMM impacts quality, productivity, rework, and the bottom line, CrossTalk:

J. Defense Software Eng. 15 (3) (2002) 9–14.

[18] D. Greves, B. Schreiber, K. Maxwell, L. Van Wassenhove, S. Dutta, The ESA initiative for

software productivity benchmarking and effort estimation, Eur. Space Agency Bull. 87 (1996).

[19] ISBSG Data Repository. Release 9, International Software Benchmarking Group, Australia, 2005.

[20] Software Technology Transfer Finland (STTF). (http://www.sttf.fi/index.html).

[21] L.C. Briand, K. El Emam, F. Bomarius, COBRA: A hybrid method for software cost estimation,

benchmarking and risk assessment, in: Proc. 20th International Conference on Software Engineering,

April 1998, pp. 390–399.

[22] M. Ruhe, R. Jeffery, I. Wieczorek, Cost estimation for Web applications, in: Proc. 25th Inter-

national Conference on Software Engineering, Portland, OR, 3–10 May 2003, pp. 285–294.

[23] C. Andersson, L. Karlsson, J. Nedstam, M. Höst, B. Nilsson, Understanding software processes

through system dynamics simulation: A case study, in: Proc. 9th Annual IEEE International Confer-

ence and Workshop on the Engineering of Computer-Based Systems, 8–11 April 2002, pp. 41–50.

[24] J. Heidrich, A. Trendowicz, J. Münch, A. Wickenkamp, Zusammenfassung des 1st International

Workshop on Efficient Software Cost Estimation Approaches, WESoC’2006, IESE Report

053/06E, Fraunhofer Institute for Experimental Software Engineering, Kaiserslautern, Germany,

April 2006 (in German).

[25] B. Kitchenham, Procedures for Performing Systematic Reviews, Technical Report TR/SE-0401,

Keele University, Keele, UK, 2004.

[26] K.D. Maxwell, L. Van Wassenhove, S. Dutta, Software development productivity of European

space, military, and industrial applications, IEEE Trans. Software Eng. 22 (10) (1996) 706–718.

[27] J.M. Desharnais, Analyse statistique de la productivite des projects de development en informa-

tique apartir de la technique des points des function, Master’s Thesis, University of Montreal,

Canada, 1989 (in French).

[28] C.F. Kemerer, An empirical validation of software cost estimation models, Commun. ACM 30

(1987) 416–429.

[29] M. Lattanzi, S. Henry, Software reuse using Cþþ classes. The question of inheritance, J. Syst.

Software 41 (1998) 127–132.

[30] N.E. Fenton, S.L. Pfleeger, Software Metrics. A Rigorous and Practical Approach, second ed.,

International Thomson Computer Press, London, 1997.

[31] C. Jones, Software cost estimating methods for large projects, CrossTalk: J. Defense Software Eng.

18 (4) (2005) 8–12.

[32] C. Mair, M. Shepperd, M. Jorgensen, An analysis of data sets used to train and validate cost

prediction systems, in: Proc. InternationalWorkshop on Predictor Models in Software Engineering,

St. Louis, MO, 15 May 2005, pp. 1–6.

http://www.sttf.fi/index.html

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 237
[33] K. Kennedy, C. Koelbel, R. Schreiber, Defining and measuring productivity of programming

languages, Int. J. High Performance Comput. Appl. 11 (4) (2004) 441–448.

[34] E. Mendes, C. Lokan, R. Harrison, C. Triggs, A replicated comparison of cross-company and

within-company effort estimation models using the ISBSG database, in: Proc. International Metrics

Symposium, Como, Italy, 2005, pp. 36–46.

[35] S. Vijayakumar, Use of historical data in software cost estimation, Comput. Control Eng. J. 8 (3)

(1997) 113–119.

[36] L.H. Putnam, W. Myers, Measures for Excellence: Reliable Software on Time, Within Budget,

Yourdon Press, Upper Saddle River, NJ, 1992.

[37] The QSM Project Database, Quantitative Software Management, Inc., McLean, VA (http://www.

qsm.com/database.html).

[38] T.L. Graves, A. Mockus, Inferring change effort from configuration management databases, in:

Proc. 5th International Software Metrics Symposium, Bethesda, MD, 1998, pp. 267–273.

[39] V. Basili, L. Briand, S. Condon, Y.M. Kim, W.L. Melo, J.D. Valen, Understanding and predicting

the process of software maintenance releases, in: Proc. 18th International Conference on Software

Engineering, Berlin, Germany, 1996, pp. 464–474.

[40] F. Rico, Using Cost Benefit Analyses to Develop Software Process Improvement (SPI) Strategies,

A DACS State-of-the-Art Report, ITT Industries Advanced Engineering & Sciences Division,

New York, NY, 2000.

[41] CMMI Project Team, CMMISM for Software Engineering, Version 1.1, Staged Representation,

Technical Report CMU/SEI-2002-TR-029, Carnegie Mellon Software Engineering Institute, Pitts-

burg, PA, 2002.

[42] L.H. Putnam, Linking the QSM Productivity Index with the SEI Maturity Level. Version 6,

Quantitative Software Management, Inc., McLean, VA, 2000 (http://www.qsma.com/pdfs/

LINKING6.pdf).

[43] B.W. Boehm, C. Abts, A.W. Brown, S. Chulani, B.K. Clark, E. Horowitz, R. Madachy, D. Refer,

B. Steece, Software Cost Estimation with COCOMO II, Prentice-Hall PTR, Upper Saddle River,

NJ, 2000.

[44] D.E. Harter, M.S. Krishnan, S.A. Slaughter, Effect of process maturity on quality, cycle time, and

effort in software product development, Manage. Sci. 46 (4) (2000) 451–466.

[45] B.K. Clark, Quantifying the effects of process improvement on effort, IEEE Software 17 (6) (2000)

65–70.

[46] J.D. Herbsleb, A. Mockus, An empirical study of speed and communication in globally distributed

software development, IEEE Trans. Software Eng. 29 (6) (2003) 481–494.

[47] B.W. Boehm, K.J. Sullivan, Software economics: A roadmap, in: Proc. International Conference on

Software Engineering, Limerick, Ireland, 2000, pp. 319–343.

[48] J. Griffyth, Human factors in high integrity software development: A field study, in: Proc. 15th

International Conference on Computer Safety, Reliability and Security, Vienna, Austria, 23–25

October 1997, Springer-Verlag, London, 1997.

[49] P. Tomaszewski, L. Lundberg, Software development productivity on a new platform: An indus-

trial case study, Inform. Software Technol. 47 (4) (2005) 257–269.

[50] W.K. Vaneman, K. Trianfis, Planning for technology implementation: An SD(DEA) approach, in:

Proc. Portland International Conference on Management of Engineering and Technology,

Technology Management in the Knowledge Era, PICMET-Portland State University, Portland,

OR, 2001.

[51] S.M. Ambler, Doomed from the start: What everyone but senior management seems to know,

Cutter IT J. 17 (3) (2004) 29–33.

http://www.qsm.com/database.html
http://www.qsm.com/database.html
http://www.qsma.com/pdfs/LINKING6.pdf
http://www.qsma.com/pdfs/LINKING6.pdf

238 A. TRENDOWICZ AND J. MÜNCH
[52] S.B. Hai, K.S. Raman, Software engineering productivity measurement using function points:

A case study, J. Inf. Technol. Cases Appl. 15 (1) (2000) 79–90.

[53] F. Niessink, H. van Vliet, Two case studies in measuring software maintenance effort, in: Proc.

International Conference on Software Maintenance, Bethesda, MD, 16–20 November 1998, IEEE

Computer Society Press, Los Alamitos, CA, 1998, pp. 76–85.

[54] G.H. Subramanian, G.E. Zarnich, An examination of some software development effort and

productivity determinants in ICASE tool projects, J. Manage. Inform. Syst. 12 (4) (1996) 143–160.

[55] E. Carmel, B.J. Bird, Small is beautiful: A study of packaged software development teams, J. High

Technol. Manage. Res. 8 (1) (1997) 129–148.

[56] F.P. Brooks, The Mythical Man-Month: Essays on Software Engineering, 20th Anniversary ed.,

Addison-Wesley, Reading, MA, 1995.

[57] J.D. Blackburn, G.D. Scudder, L. Van Wassenhove, Concurrent software development, Commun.

ACM 43 (4) (2000) 200–214.

[58] P.V. Norden, Curve fitting for a model of applied research and development scheduling, IBM J.

Res. Dev. 3 (2) (1958) 232–248.

[59] M.S. Krishnan, The role of team factors in software cost and quality: An empirical analysis, Inform.

Technol. People 11 (1) (1998) 20–35.

[60] S. Sawyer, P. Guinan, Software development: Processes and performance, IBM Syst. J. 34 (7)

(1998) 552–569.

[61] R.K. Smith, J.E. Hale, A.S. Parrish, An empirical study using task assignment patterns to improve

the accuracy of software effort estimation, IEEE Trans. Software Eng. 27 (3) (2001) 264–271.

[62] M. Cusumano, R. Selby, How Microsoft builds software, Commun. ACM 40 (6) (1997) 53–61.

[63] A. Parrish, R. Smith, D. Hale, J. Hale, A field study of developer pairs: Productivity impacts and

implications, IEEE Software 21 (5) (2004) 76–79.

[64] B.G. Cain, J.O. Coplien, N.B. Harrison, Social patterns in productive software development

organizations, Ann. Software Eng. 2 (1) (1996) 259–286.

[65] J.M. Carey, C.J. Kacmar, The impact of communication mode and task complexity on small group

performance and member satisfaction, Comput. Hum. Behav. 13 (1) (1997) 23–49.

[66] A. Cockburn, Agile Software Development, Addison-Wesley Professional, Boston, MA, 2001.

[67] S.D. Teasley, L.A. Covi, M.S. Krishnan, J.S. Olson, Rapid software development through team

collocation, IEEE Trans. Software Eng. 28 (7) (2002) 671–683.

[68] J. Collofello, D. Houston, I. Rus, A. Chauhan, D.M. Sycamore, D. Smith-Daniels, A system

dynamics software process simulator for staffing policies decision support, in: Proc. 31st Annual

Hawaii International Conference on System Sciences, vol. 6, Kohala Coast, HI, 6–9 January 1998,

pp. 103–111.

[69] J. Hale, A. Parrish, B. Dixon, R.K. Smith, Enhancing the COCOMO estimation models, IEEE

Software 17 (6) (2000) 45–49.

[70] I.R. Chiang, V.S. Mookerjee, Improving software team productivity, Commun. ACM 47 (5) (2004)

89–93.

[71] R. Bechtold, Reducing software project productivity risk, CrossTalk: J. Defense Software Eng.

13 (5) (2000) 19–22.

[72] E. Carmel, S. Sawyer, Packaged software teams: What makes them so special? Inform. Technol.

People 11 (1) (1998) 6–17.

[73] Anonymous, Above average(s): Measuring application development performance, Intranet Net-

working Strategies Rep. 8 (3) (2000) 1–4.

[74] T.E. Potok, M.A. Vouk, The effects of the business model on object-oriented software development

productivity, IBM Syst. J. 36 (1) (1997) 140–161.

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 239
:

l

l

:

.

,

,

.

.

l

,

,

,

[75] Y. Yang, Z. Chen, R. Valerdi, B.W. Boehm, Effect of schedule compression on project effort, in

Proc. 5th Joint International Conference & Educational Workshop, the 15th Annual Conference for

the Society of Cost Estimating and Analysis and the 27th Annual Conference of the Internationa

Society of Parametric Analysts, Denver, CO, 14–17 June 2005.

[76] R. Park, The central equations of the PRICE software cost model, in: Proc. 4th COCOMO Users’

Group Meeting, , Software Engineering Institute, Pittsburgh, PA, November 1988.

[77] R.W. Jensen, in: An improved macrolevel software development resource estimation modelAn

improved macrolevel software development resource estimation model, in: Proc. 5th Internationa

Society of Parametric Analysts Conference, St. Louis, MO, 26–28 April 1983, pp. 88–92.

[78] C.N. Parkinson, Parkinson’s Law and Other Studies in Administration, Houghton Mifflin

Company, Boston, MA, 1957.

[79] M.A. Mahmood, K.J. Pettingell, A.I. Shaskevich, Measuring productivity of software projects

A data envelopment analysis approach, Decision Sci. 27 (1) (1996) 57–80.

[80] L.O. Damm, L. Lundberg, C. Wohlin, Faults-slip-through—A concept for measuring the efficiency

of the test process, Software Process Improv. Practice 11 (1) (2006) 47–59.

[81] C.F. Kemerer, Software Project Management Readings and Cases, McGraw-Hill, Chicago, IL, 1997

[82] R. Bazelmans, Productivity—The role of the tools group, ACM SIGSOFT Eng. Notes 10 (2) (1985)

63–75.

[83] P. Guinan, J. Cooprider, S. Sawyer, The effective use of automated application development tools

IBM Syst. J. 36 (1) (1997) 124–139.

[84] J. Baik, B.W. Boehm, B.M. Steece, Disaggregating and calibrating the CASE tool variable in

COCOMO II, IEEE Trans. Software Eng. 28 (11) (2002) 1009–1022.

[85] C.D. Cruz, A proposal of an object oriented development cost model, in: Proc. European Software

Measurement Conference, Technologisch Instituut VZW, Antwerp, Belgium, 1998, pp. 581–587.

[86] T. Bruckhaus, N.H. Madhavii, I. Janssen, J. Henshaw, The impact of tools on software productivity

IEEE Software 13 (5) (1996) 29–38.

[87] D.L. Atkins, T. Ball, T.L. Graves, A. Mockus, Using version control data to evaluate the impact of

software tools: A case study of the Version Editor, IEEE Trans. Software Eng. 28 (7) (2002) 625–637

[88] V. Basili, H.D. Rombach, The TAME project: Towards improvement-oriented software environ-

ments, IEEE Trans. Software Eng. 14 (6) (1988) 758–773.

[89] V. Basili, Viewing maintenance as reuse-oriented software development, IEEE Software 7 (1)

(1990) 19–25.

[90] R.W. Selby, Enabling reuse-based software development of large-scale systems, IEEE Trans

Software Eng. 31 (6) (2005) 495–510.

[91] D.L. Nazareth, R.A. Rothenberger, Assessing the cost-effectiveness of software reuse: A model for

planned reuse, J. Syst. Software 73 (2004) 245–255.

[92] D.C. Rine, R.M. Sonnemann, Investments in reusable software. A Study of software reuse

investment success factors, J. Syst. Software 41 (1) (1998) 17–32.

[93] D.L. Atkins, A. Mockus, H.P. Siy, Measuring technology effects on software change cost, Bel

Labs Tech. J. 5 (2) (2000) 7–18.

[94] W.B. Frakes, G. Succi, An industrial study of reuse, quality, and productivity, J. Syst. Software 57

(2001) 99–106.

[95] M. Morisio, D. Romano, C. Moiso, Framework based software development: Investigating the

learning effect, in: Proc. 6th IEEE International Software Metrics Symposium, Boca Raton, FL

4–6 November 1999, pp. 260–268.

[96] K.S. Soliman, Critical success factors in implementing software reuse: A managerial prospective

in: Proc. International on Information Resources Management Association Conference, Anchorage

AK, 21–24 May 2000, pp. 1174–1175.

240 A. TRENDOWICZ AND J. MÜNCH
[97] V.R. Basili, L.C. Briand,W.L. Melo, How reuse influences productivity in object-oriented systems,

Commun. ACM 39 (10) (1996) 104–116.

[98] J.A. Lewis, S.M. Henry, D.G. Kafura, An empirical study of the object-oriented paradigm and

software reuse, in: Proc. Conference on Object-Oriented Programming Systems, Languages and

Applications, 1991, pp. 184–196.

[99] C.M. Abts, B.W. Boehm, COTS Software Integration Cost Modeling Study, University of Southern

California Center for Software Engineering, Los Angeles, CA, 1997.

[100] A. Mockus, D.M. Weiss, P. Zhang, Understanding and predicting effort in software projects, in:

Proc. 25th International Conference on Software Engineering, Portland, OR, 3–10May 2003, IEEE

Computer Society Press, Los Alamitos, CA, 2003, pp. 274–284.

[101] H. Siy, A. Mockus, Measuring domain engineering effects on software change cost, in: Proc. 6th

International Symposium on Software Metrics, Boca Raton, FL, IEEE Computer Society Press, Los

Alamitos, CA, 1999, pp. 304–311.

[102] P. Devanbu, S. Karstu, W.Melo,W. Thomas, Analytical and empirical evaluation of software reuse

metrics, in: Proc. 18th International Conference on Software Engineering, 1996, p. 189.

[103] R. Carbonneau, Outsourced Software Development Productivity, Report MSCA 693T.

John Molson School of Business, Concordia University, Montreal, Canada, 2004.

[104] M.J. Earl, The risks of outsourcing IT, Sloan Manage. Rev. 37 (3) (1996) 26–32.

[105] E.T.G. Wang, T. Barron, A. Seidmann, Contracting structures for custom software development:

The impacts of informational rents and uncertainty on internal development and outsourcing,

Manage. Sci. 43 (12) (1997) 1726–1744.

[106] J.D. Herbsleb, A. Mockus, T.A. Finholt, R.E. Grinter, An empirical study of global software

development: Distance and speed, in: Proc. 23rd International Conference on Software Engineering,

Toronto, Canada, 2001.

[107] M. Amberg, M. Wiener, Wirtschaftliche Aspekte des IT Offshoring [Economic Aspects of IT

Offshoring], Arbeitspapier. 6, Universität Erlangen-Nürnberg, Germany, 2004 (in German).

[108] R. Moczadlo, Chancen und Risiken des Offshore Development. Empirische Analyse der Erfahrun-

gen deutscher Unternehmen [Opportunities and Risks of Offshore Development. Empirical Analy-

sis of Experiences Made by German Companies], FH Pforzheim, Pforzheim, Germany, 2002.

[109] P. de Neve, C. Ebert, Surviving global software development, IEEE Software 18 (2) (2001) 62–69.

[110] J. Herbsleb, D. Paulish, M. Bass, Global software development at siemens: Experience from nine

projects, in: Proc. 27th International Conference on Software Engineering, St. Louis, MO, 2005.

[111] A. Trendowicz, J. Heidrich, J. Münch, Y. Ishigai, K. Yokoyama, N. Kikuchi, Development of a

hybrid cost estimation model in an iterative manner, in: Proc. 28th International Conference on

Software Engineering, Shanghai, China, 2006, pp. 331–340.

[112] Z. Chen, T. Menzies, D. Port, B. Boehm, Finding the right data for software cost modeling, IEEE

Software 22 (6) (2005) 38–46.

[113] C. Kirsopp, M.J. Shepperd, J. Hart, Search heuristics, case-based reasoning and software project

effort prediction, in: Proc. Genetic and Evolutionary Computation Conference, Morgan Kaufmann

Publishers, Inc., San Francisco, CA, 2002, pp. 1367–1374.

[114] M. Auer, A. Trendowicz, B. Graser, E. Haunschmid, S. Biffl, Optimal project feature weights in

analogy-based cost estimation: Improvement and limitations, IEEE Trans. Software Eng. 32 (2)

(2006) 83–92.

[115] D. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, third ed., Chapman

& Hall/CRC, Boca Raton, FL, 2003.

[116] N. Fenton, W. Marsh, M. Neil, P. Cates, S. Forey, M. Tailor, Making resource decisions for

software projects, in: Proc. 26th International Conference on Software Engineering, May 2004,

pp. 397–406.

FACTORS INFLUENCING SOFTWARE DEVELOPMENT PRODUCTIVITY 241
[117] V.R. Basili, Software Modeling and Measurement: The Goal Question Metric Paradigm, Computer

Science Technical Report Series, CS-TR-2956 (UMIACS-TR-92-96), University of Maryland,

College Park, MD, 1992.

[118] R. Basili, D.M. Weiss, A methodology for collecting valid software engineering data, IEEE Trans.

Software Eng. SE-10 (6) (1984) 728–737.

[119] L.H. Putnam, W. Myers, Executive Briefing: Managing Software Development, IEEE Computer

Society Press, Los Alamitos, CA, 1996.

[120] CHAOS Chronicles, The Standish Group International, Inc., West Yarmouth, MA, 2007.

[121] A.J. Albrecht, Measuring application development productivity, in: Proc. IBM Applications

Development Symposium, Monterey, CA, 14–17 October 1979, pp. 83–92.

[122] Gartner, Inc., press releases, Gartner Survey of 1,300 CIOs Shows IT Budgets to Increase by 2.5

Percent in 2005, 14 January 2005 (http://www.gartner.com/press_releases/pr2005.html).

[123] D. Herron, D. Garmus, Identifying your organization’s best practices, CrossTalk: J. Defense

Software Eng. 18 (6) (2005) 22–25.

[124] N. Angkasaputra, F. Bella, S. Hartkopf, Software Productivity Measurement—Shared Experience

from Software-Intensive System Engineering Organizations, IESE-Report No. 039.05/E Fraunho-

fer Institute for Experimental Software Engineering, Kaiserslautern, Germany, 2005.

[125] B.A. Kitchenham, E. Mendes, Software productivity measurement using multiple size measures,

IEEE Trans. Software Eng. 30 (12) (2004) 1023–1035.

[126] K. Maxwell, L. Van Wassenhove, S. Dutta, Performance evaluation of general and company

specific models in software development effort estimation, Manage. Sci. 45 (6) (1999) 787–803.

[127] J.P. Mclver, E.G. carmines, J.L. Sullivan, Unidimensional Scaling, Sage Publications, Beverly

Hills, CA, 2004.

http://www.gartner.com/press_releases/pr2005.html

Evaluating the Modifiability of
Software Architectural Designs
ADVAN

ISSN: 00
M. OMOLADE SALIU
Performance Management Practice, Online Business

Systems, Calgary, Canada

GÜNTHER RUHE

Computer Science Department, University of Calgary,

Calgary, Canada

MIKAEL LINDVALL

Fraunhofer Center for Experimental, Software

Engineering, College Park, Maryland, USA

CHRISTOPHER ACKERMANN

Fraunhofer Center for Experimental, Software

Engineering, College Park, Maryland, USA
C

6

Abstract

In this chapter, we propose an architectural design evaluation technique called

EBEAM (Expert-Based Evaluation of Architecture for Modifiability) that

assists experts in articulating their knowledge of architectural designs and

expressing the knowledge in measurable terms. EBEAM supports the evaluation

of different architectural design versions for modifiability. In addition, EBEAM

supports relative comparison between these design versions and the target

design. We develop EBEAM as a generalized technique that is reusable for

evaluating other architectural design attributes, apart from modifiability. We

discuss EBEAM in detail and report on two case studies that investigate its

applicability, and one study that validates the results of the evaluations made

using EBEAM.
ES IN COMPUTERS, VOL. 77 243 Copyright © 2009 Elsevier Inc.

5-2458/DOI: 10.1016/S0065-2458(09)01207-8 All rights reserved.

244 M. O. SALIU ET AL.
1. Introduction . 245

2. Evaluating Software Architectural Designs 245

3. Overview of the EBEAM . 247

4. STAGE I: Evaluation of Design Characteristics 249

4.1. Identifying Design Characteristics (I-1) 249

4.2. Comments on the Excluded Characteristics 254

4.3. Evaluating Design Characteristics (I-2) 255

4.4. Assigning Weights to Experts (I-3) . 257

4.5. Aggregating the Contribution of Design

Characteristics to Modifiability (I-4) . 257

5. STAGE II: Evaluation of Architectural Designs 258

5.1. Identify Architectural Design Candidates

and Define the Target Design (II-1) . 258

5.2. Evaluation of Design Candidates for a Fixed Characteristic (II-2) 258

5.3. Computing the Weight for Local Experts (II-3) 260

6. STAGE III: Overall Modifiability Evaluation 261

6.1. Combining the Design Modifiability Matrices of All Experts (III-1) 261

6.2. Rank Architectural Designs (III-2) . 262

7. CASE STUDY I: The Application of EBEAM to TSAFE Designs 263

7.1. Context . 263

7.2. Evaluating TSAFE Designs Using EBEAM 264

7.3. Results and Discussions . 265

8. Empirical Validation . 273

8.1. Defining and Selecting the Objective Metrics 273

8.2. Expert-Judgment Using EBEAM on Selected Design Characteristics . . . 276

8.3. Comparing the Objective and Subjective Measures on TSAFE

Architectural Designs . 277

9. CASE STUDY II: The Application of EBEAM to CGS Designs 280

9.1. Context . 281

9.2. Evaluating CGS Designs and Results 282

10. Applicability of the EBEAM Technique 285

10.1. Benefits of EBEAM . 286

10.2. Limitations . 287

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 245
1. Introduction

In this chapter, we propose an architectural design evaluation technique called

expert-based evaluation of architecture for modifiability (EBEAM) that assists

experts in articulating their knowledge of architectural designs and expressing the

knowledge in measurable terms. EBEAM supports the evaluation of different

architectural design versions for modifiability. In addition, EBEAM supports rela-

tive comparison between these design versions and the target design. We develop

EBEAM as a generalized technique that is reusable for evaluating other architectural

design attributes, apart from modifiability. We discuss EBEAM in detail and

report on two case studies that investigate its applicability. We also present another

empirical study to validate the results of the evaluations made using EBEAM.
2. Evaluating Software Architectural Designs

According to Lehman’s laws of software evolution [1], software systems must be

continually adapted, or they become progressively less satisfactory to use in

their environment. Therefore, we often need to extend the functionalities of an

operational system by adding new features or removing defects discovered during

usage of the software system [2]. The ease of adding features in the system

depends on the modifiability of its architectural design. Bengtsson [3] defines

modifiability as:

Modifiability is the ease with which a system can be adapted to changes in the

functional specification, in the environment, or in the requirements.

Improving the modifiability of an architectural design implies that future changes

will take less time and will be less costly to implement. When compared to a less

modifiable design, the architectural design with improved modifiability will allow
11. Related Work . 288

12. Summary . 291

. Appendix A: UML Models for TSAFE Architectural Designs 292

Acknowledgments . 294

References . 294

246 M. O. SALIU ET AL.
for smoother evolution. Thus, new upgraded versions of the system can be delivered

earlier to the customers. Software that lacks modifiability is sometimes

re-architected to increase the modifiability. Typically, re-architecting does not

necessarily add user value, because it does not provide new functionalities. Since

re-architecting could also be expensive, it is desirable to have a technique to assess

whether the re-architected software achieves the desired improvement in modifi-

ability. It is also important to assess the potential improvement in modifiability, in

case there are several candidate architectures available that address the improve-

ments in different ways. Information about the modifiability would also be useful for

determining the amount of effort required and the risks involved in implementing

new features. In the literature, there are several objective metrics that are defined

on architectural design characteristics to correlate them with quality attributes

(e.g., modifiability) [4].

For several reasons, using only architectural design metrics is not sufficient for

measuring the improvement in modifiability. First, architectural design metrics

have not been able to combine measures obtained for several architectural design

characteristics, because of the problem of aggregating measures that are based on

different scales. Second, several aspects of software architectures are difficult to

measure, and can only be assessed by the experts that designed the architectures.

For example, it is difficult for someone unfamiliar to the system to measure how

well the names of the components convey their role in the system, but an expert

could answer such a question. A major problem, however, pertains to how experts

can be systematically involved in such evaluations. One option is to have a review

and evaluation of the architectural design candidates by experts, but it is difficult

and expensive to hire experts in the field for architectural reviews (especially for

small projects). The current architects (and other people in the development team)

understand the system and the various architectural design candidates, but are

somewhat biased, especially if they contributed to the definitions of the various

candidates.

Given the aforementioned difficulties, it is important to have a methodology that

assists experts in articulating their knowledge of an architectural design and expres-

sing this knowledge in measurable terms, and also in relation to another architectural

version of the same system. We describe an evaluation technique named EBEAM

that assists experts in articulating their knowledge of architectural design candidates

in a systematic manner.

We focus on modifiability of architectural designs, because the architecture has a

significant effect on the overall system costs. However, the same technique could be

used for any other attribute desired of an architectural design. The case study

described in this chapter examines the particular case when a redesign and reimple-

mentation of a software architectural design have been conducted. Nevertheless,

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 247
EBEAM can also be used earlier in the lifecycle when changes have yet to be

conducted. During the case study, we used EBEAM to evaluate the improvement of

the new version of a system relative to the old version, and also in relation to the

overall architectural goals (i.e., the target design).

The results obtained from EBEAM can be used to determine the level of

improvement in the modifiability of the architectural design, and whether the

improvement is close to the target architectural goals. This information together

with information about the (actual or estimated) cost to achieve the improvement

can be used to determine the cost for further improvement.
3. Overview of the EBEAM

EBEAM is a three-stage evaluation technique that is based on a systematic

elicitation of the judgment from experts and transforming the results into quantita-

tive measures. We adopt and adapt the analytic hierarchy process (AHP) [5] as part

of our three-stage approach to help experts articulate their judgments. EBEAM

allows the participation of multiple experts in the evaluation process. Li and Smidts

[6] discuss the importance of using multiple experts in making judgments.

The activities involved in the three stages of EBEAM, shown in Fig. 1, are

as follows:

Stage I: Evaluation of Design Characteristics

This stage of EBEAM requires experts that are knowledgeable in architec-

tural design to identify the characteristics that influence the modifiability of

architectural designs. Then, these experts evaluate and rank the relative

importance of these characteristics to modifiability. Using aggregation

schemes established in the literature and discussed by Forman and Peniwati

[7] and Clemen and Winkler [8], we combine the judgments made by all the

different experts into a unified measure. Any expert that has knowledge and

experience in architectural designs could participate in this phase. Thus, the

experts do not necessarily have to be familiar with the candidate architec-

tural designs. This model can be improved over time by having more experts

add their knowledge and experience to it.
Stage II: Evaluation of Architectural Designs

In Stage II, the experts with knowledge about the candidate architectural

designs (we refer to them as the local experts) individually compare each

candidate in relation to the other candidates or the specific architectural

goals or both. This comparison is performed based on how the candidate

architectural designs handle each of the characteristics evaluated in the

S
ta

g
e

I:
 E

va
lu

at
io

n
of

 d
es

ig
n

ch
ar

ac
te

ris
tic

s
ba

se
d

on
 im

pa
ct

 o
n

m
od

i fi
ab

ili
ty

•

U
se

 o
f a

pp
ro

pr
ia

te
 n

am
in

g
•

M
in

im
iz

ed
 c

ou
pl

in
g

•
A

pp
ro

pr
ia

te
 u

se
 o

f d
es

ig
n

pa

tte
rn

s
an

d
ar

ch
ite

ct
ur

al
 s

ty
le

s
•

P
ro

pe
r

do
cu

m
en

ta
tio

n
•

et
c.

I-
1:

Id
en

ti
fy

 d
es

ig
n

ch

ar
ac

te
ri

st
ic

s

I-
2:

E
va

lu
at

e
d

es
ig

n

ch
ar

ac
te

ri
st

ic
s

S
ta

g
e

II:
 E

va
lu

at
io

n
of

 a
rc

hi
te

ct
ur

al
 d

es
ig

ns
 b

as
ed

 o
n

ea
ch

 d
es

ig
n

ch
ar

ac
te

ris
tic

s

II-
1a

:
Id

en
ti

fy

ar
ch

it
ec

tu
ra

l
d

es
ig

n

ca
n

d
id

at
es

II-
2:

E
va

lu
at

e
ar

ch
it

ec
tu

ra
l

d
es

ig
n

s

II-
1b

:
D

ef
in

e
ta

rg
et

ar

ch
it

ec
tu

ra
l

d
es

ig
n

(i

f
ap

p
lic

ab
le

)

G
en

er
al

 e
xp

er
ts

e 1
e 2

e m
e 1

e 2
e m

C
on

fid
en

ce
 le

ve
l(C

L)
C

on
si

st
en

cy
 r

at
io

(C
R

)
A

ss
ig

n
w

ei
gh

ts
 b

as
ed

on

 C
R

 a
nd

 C
L

I-
3:

A

ss
ig

n

w
ei

g
h

ts
 t

o

ex
p

er
ts

I-
4:

A
g

g
re

g
at

e
re

su
lt

s

S
ta

g
e

III
:

O
ve

ra
ll

m
od

ifi
ab

ili
ty

ev
al

ua
tio

n
C

om
bi

ne
 th

e
pr

io
rit

y
ve

ct
or

s
fr

om

ge
ne

ra
l e

xp
er

ts

w
ith

 e
ac

h
pr

io
rit

y
m

at
rix

 fr
om

 th
e

lo
ca

l e
xp

er
ts

III
-1

:
A

g
g

re
g

at
e

o
ve

ra
ll

re
su

lt
s

L
o

ca
l e

xp
er

ts

V
ec

to
rs

 o
f r

el
at

iv
e

m
od

ifi
ab

ili
ty

 o

f t
he

 a
rc

hi
te

ct
ur

al
 d

es
ig

ns
 o

n
 e

ve
ry

 c
ha

ra
ct

er
is

tic
R

es
ul

ts
 b

as
ed

 o
n

ea
ch

 lo
ca

l
 e

xp
er

t

II-
4:

In
d

iv
id

u
al

ex

p
er

t
re

su
lt

s

C
on

fid
en

ce
 le

ve
l(C

L)
C

on
si

st
en

cy
 r

at
io

(C
R

)
A

ss
ig

n
w

ei
gh

ts
 b

as
ed

on

 C
R

 a
nd

 C
L

II-
3:

A

ss
ig

n

w
ei

g
h

ts
 t

o

ex
p

er
ts

R
an

k
th

e
ar

ch
ite

ct
ur

al

de
si

gn
 c

an
di

da
te

s
ba

se
d

on
 o

ve
ra

ll
pr

io
rit

y
ve

ct
or

D
et

er
m

in
e

di
st

an
ce

 to
 th

e
ta

rg
et

 a
rc

hi
te

ct
ur

al
 d

es
ig

n

III
-2

:
R

an
k

ca
n

d
id

at
es

 a
n

d

m
ak

e
d

ec
is

io
n

s

• • •

•
C

om
bi

ne
d

pr
io

rit
y

ve
ct

or

 o
f i

m
pa

ct
 o

f d
es

ig
n

 c
ha

ra
ct

er
is

tic
s

on

 m
od

ifi
ab

ili
ty

•

• •

• • •

• •

F
IG
.
1
.
O
v
er
v
ie
w
o
f
th
e
E
B
E
A
M

fr
am

ew
o
rk
.

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 249
first stage. By using the knowledge and experience of the local experts, we

can evaluate important characteristics that are difficult or even impossible to

measure objectively. This is further simplified because we use relative

measures instead of absolute measures.
Stage III: Overall Architectural Modifiability Evaluation

In Stage III, we consolidate the results from the general experts in Stage I

with the judgments from the local experts in Stage II to produce the relative

modifiability of the architectural designs. The consolidation approach we

adopt aims to reduce the bias from local experts.
It should be noted that there can be overlap between the general experts and the local

experts, because some experts could posses both general architectural design knowl-

edge as well as the knowledge about the specific architectural design candidates.

We have published an earlier version of this evaluation technique in [9]. EBEAM

builds on the idea in this previous work, but focuses on software architectures and

uses a more fine-grained set of architectural design characteristics. The previous

work also involves a straightforward application of the AHP. On the other hand,

EBEAMdefines a new three-stage process that adapts theAHP, especiallywith regards

to the aggregation of the judgments frommultiple experts. TheEBEAMalso introduces

a new and more robust weighting scheme that considers the consistency in the judg-

ments made by each expert and their familiarity/confidence in making the judgments.
4. STAGE I: Evaluation of
Design Characteristics

This stage is concerned with the identification of the design characteristics that

contribute to modifiability and also the evaluation of their relative contributions.
4.1 Identifying Design Characteristics (I-1)

Every major post-implementation activity (e.g., implementing change requests)

requires that the technical development team first develops an understanding of the

existing architectural design. An architectural design that adheres to tested design

principles and practices would facilitate this understanding to a higher degree than

would an architectural design that does not follow such principles. These design

principles (e.g., minimized coupling), when adhered to, can result in an architectural

design that facilitates understandability. We focused on adherence to design princi-

ples as a way to measure the goodness of an architectural design. Because

250 M. O. SALIU ET AL.
irrespective of the domain of a software system, adherence to characteristics of good

and tested design principles and practices may result in a more modifiable system.

The first task is to identify the desired characteristics of software architectural

designs that could be considered good practices. There are several software archi-

tectural design ideas that are considered to be good practices [10]. There are also

discussion forums (e.g., Hacknot [11]) where software architectural design experts

discuss the characteristics that a good software architectural design should possess.

There is no doubt that there is a long list of architectural design characteristics to

explore [4]. In the process of coming up with the characteristics of a good architec-

tural design, we explored the vast literature on software architectural design,

extracted the generally accepted architectural design practices and refined the result-

ing set. To achieve this, we organized two workshops involving participants drawn

from experienced architectural designers and researchers at the Fraunhofer Center in

Maryland (FC-MD). The first workshop resulted in an initial list that we later used to

conduct a pilot study on architectural evaluation. During the second workshop, we

discussed the results of the pilot study, identified the coverage and applicability of the

initial list of characteristics, and refined the characteristics. The final list of char-

acteristics is based on experiences of the software developers, existing software

architectural design literature, and experiences of the researchers involved in the

study. Some of the characteristics that made the initial list, but were later excluded,

are size of the system, size of files, size of folders making up the system, and use of

less-complex algorithms. A discussion of their exclusion appears in Section 4.2. The

chosen design characteristics that influence modifiability include the following.
4.1.1 Use of Appropriate and Representative
Naming
The names of the components, classes, methods, parameters, attributes, and all

other constructs of a system should closely correspond to the functionality and the

roles they represent in the system. Appropriate naming allows programmers to

quickly understand the structure of a software system, identify components and

their responsibilities, and relationships of a component with other components. The

importance of using representative naming is discussed in [10].
4.1.2 Minimized Coupling
Coupling is a measure of the interdependence between entities in a system,

for example, components, classes, modules, and so on. It measures the number of

connections from and to a component [12]. The quality of a component increases as

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 251
component coupling decreases [13]. Tight coupling can magnify the implementation

effort of new features since the dependencies to the rest of the programcan lead to ripple

effects [14]. Tight coupling also makes it difficult to comprehend the role of a

component.

A special case of coupling is the coupling to Libraries. It is important to encourage

reuse of libraries to prevent the re-implementation of functionality that the compo-

nents in the library provide. However, coupling from libraries and other common

components and functions to application-specific components must be avoided.
4.1.3 Minimized Coupling to COTS
(Including Languages)
Another special case of coupling is the coupling to COTS components and

coupling to programming languages and vendor unique libraries. While it is desir-

able to reuse such components, it is often important that the COTS components are

wrapped so that the coupling is to the wrapper rather than to the COTS component

itself. High direct coupling to COTS components can create problems with modifi-

ability, since replacing the COTS component increases with increased coupling.

This characteristic, for example, is motivated by a recent project at FC-MD in which

coupling to COTS was analyzed [15].
4.1.4 Maximized Cohesion
Cohesion is the strength or logical unit of software components [16]. Entities that

provide a certain function should be bundled together to facilitate programmers’

identification of components (classes and packages) that are related to each other.

Even if we do not desire coupling, it is a known fact that we cannot live without

coupling. It is better to have couplings inside components than couplings between

components. Couplings inside components could indicate the coming together of

related classes, which inherently translates to high cohesion.

Even though there are definitions for how to measure cohesion, it requires an

expert to judge whether the right components are grouped together, especially from

the perspective of functionality.
4.1.5 Appropriate Use of Design Patterns
and Architectural Styles
Design patterns represent frequently used ways to combine classes or associate

objects to achieve a certain purpose [17]. Most software developers agree on the

benefits of design patterns and try to build software based on them to provide an

252 M. O. SALIU ET AL.
easily modifiable software system. Nevertheless, incorrect implementation of design

patterns leads to confusion, because developers tend to make wrong assumptions

that the existence of a design pattern means the pattern has been implemented

correctly. If design patterns are not implemented correctly, the software architecture

may be difficult to understand and it may not readily accommodate future changes.

For example, empirical studies in Hochstein and Lindvall [12] indicate that the goal

of developing a modifiable system based on design patterns is seldom reached

because of incorrect implementation.

One of the questions requiring difficult decisions when building the architectural

design of a system is the selection and use of appropriate architectural style(s) [18].

Architectural styles constrain the roles of architectural elements (i.e., components,

connectors, and data) that may be used to compose a system or subsystem, and also

the pattern of relationships among the elements [19]. Examples of architectural

styles include pipe and filter model, layered model, and client–server. Decisions on

architectural styles choices determine the suitability of the architecture in addressing

the problem and affect the desired functionality and performance [18].

The need to choose appropriate style and the correct implementation thereof is of

high interest from modifiability perspective; using appropriate architectural styles

helps to understand the roles of the components and how they interact.

Appropriate usage of architectural styles and design patterns is difficult to mea-

sure, but an expert who knows about the roles of the system components and how

they interact can determine whether suitable patterns are used.
4.1.6 Proper Use of Information Hiding

(Including Interfaces)
One major criterion suggested for decomposing systems into modules is the

information hiding principle [20]. In making design decisions, this principle requires

that, ‘‘system details that are likely to change independently should be the secrets of

separate modules; the only assumptions that should appear in the interfaces between

modules are those that are considered unlikely to change [21].’’ In essence, it

requires hiding design decisions to protect other parts of a software architectural

design from changing, if the design decisions change. Proper use of information

hiding ensures that changes are easier to perform because the changes are typically

local rather than global. Applying this principle perfectly is not always easy because

of the difficulty of estimating the likelihood of change [21].

The use of interfaces also facilitates reuse because in order to use the component

only the interface class needs to be understood. In addition, it is a good design

practice to maintain narrow interfaces. We define narrow interfaces by three criteria:

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 253
(1) low number of available methods, (2) low number of parameters, and (3) use of

simple parameters. Even though some rules of thumbs, such as the ones above,

do exist, it is difficult to measure these characteristics. Notwithstanding, an expert

can determine not only whether the size, but also whether the structure of the

interface is appropriate.
4.1.7 Maximized Modularity
Modularization is one of the techniques proposed for the structural decomposition

of software systems. The goal of modularization is to allow modules to be designed

and revised independently [21], thereby improving the ease of change. A proper

modular structure facilitates change, because it isolates some changes to a small part

of a software system [20]. Measuring modularity is difficult; at the same time an

expert with knowledge about the software system can recognize whether the system

is decomposed into appropriate modules.
4.1.8 Minimized Duplication and Redundancy
Each design problem is expected to be solved once, instead of providing different

solution instances for the same problem. Such duplication may cause unnecessary

overhead of understanding two or more different solutions [11]. There are many

reasons why duplicated functionality decreases modifiability. One reason is that it

takes less effort to make a change in one place than in many places. Another reason

is that it is easy to forget changing many different but similar design decisions. In

addition, when there are many instances of the same entity, it is confusing and

difficult to understand why they all exist and which one to use. It is also difficult to

maintain consistency between the different solutions [11]. Several duplications

could exist in an architectural design, including duplication of algorithms.
4.1.9 Minimized Concurrency and Threads
A system that only has one thread is easier to understand than a system with many

threads and concurrent processes. Implementing concurrency and threads makes the

design difficult to understand, because there are a lot of codes that distract from

the implementation of the functionalities. We may not be able to avoid this kind of

implementation mechanisms for some problems, but it constitutes a good design

principle to reduce their usage as much as possible [11]. Concurrency is not bad, but

the constructs for implementing concurrency could make it difficult to understand

the design.

254 M. O. SALIU ET AL.
4.1.10 Proper Documentation
Documentation plays an important role for modifiability because it facilitates

understanding of the architectural design. According to Clements and colleagues

[22], an architecture must be documented in order for the architecture to achieve its

effectiveness. Documentation provides explanations about the design in a way that

enables designers new to the design or code base of the system to get a good

overview quickly. Documentation provides clarifications on design decisions

already made, which could help during modification tasks, thereby increasing the

ease of modification (EoM) by enhancing understandability.
4.2 Comments on the Excluded Characteristics

A number of software design characteristics were not included in this list for

various reasons. We did not include size as an attribute of modifiability because size

can be seen as an effect of other characteristics. Modifiability can be increased by

adding comments, by using longer and more expressive names, and by dividing

complex algorithms into smaller pieces, but all these could also increase the size. On

the other hand, getting rid of duplications often means decreased size. Thus, an

increase in size may not necessarily mean that the code resulting from the design

would be more difficult to modify.

We have also not included number of files and number of folders, because

redesigning a system to increase modifiability often means adding more structures,

classes, files, and so on. Since our interest is to compare two or more architectural

design versions of the same system, we believe size, number of files and folders may

not really change much, and even if they change it will not have big relative impact

on the modifiability of the system.

By comparing two versions of a system, we also avoid other context-oriented

characteristics such as nonreal-time versus real-time systems and nonembedded

versus embedded systems. These factors definitely have huge impact on modifiabil-

ity, but they are irrelevant when comparing two version of the same system. By

comparing two versions of the same system, we also avoid discussions regarding

essential and accidental complexity [23]. The essential complexity relates to the

complexity of the problem to be solved, while accidental complexity relates to

the complexity of the solution. Accidental complexity refers to the extra complexity

in the solution to a design problem, which results from the specific design approach

adopted in solving a problem. A good design is expected to minimize accidental

complexity. Thus, focusing our characteristics selection on good design principles

subsumes minimization of accidental complexity. On the other hand, the unavoidable

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 255
software complexity resulting from the nature of the problem being solved is an

essential complexity [23].

Thus, it is safe to conclude that the set of characteristics we have selected and

refined would apply to any type of system, as long as we are evaluating different

design versions of the same system.
4.3 Evaluating Design Characteristics (I-2)
4.3.1 Definition of Goal and Alternatives
To evaluate the contribution of design characteristics to modifiability, EBEAM

first structures the problem in a hierarchical form as shown in Fig. 2. At the top is the

goal, that is, the relative contribution of the design characteristics to modifiability. In

the middle layer are the architectural design characteristics that contribute to the

goal (in AHP, they are also known as the criteria). The experts (i.e., e1; e2; . . . ; em)
that would evaluate the relative contribution of each characteristic to the goal are

represented in the third layer. We adopt this hierarchical structuring from the AHP,

but adapted the evaluation process using a new aggregation and weighting scheme

for the participating experts.
Relative contribution to
modifiability

Appropriate
naming

G
en

er
al

ex
p

er
ts

e1 eme2

Minimized
coupling

Maximized
cohesion . . .

Proper
documentation

. . .

A
rc

h
it

ec
tu

ra
l

d
es

ig
n

ch
ar

ac
te

ri
st

ic
s

G
o

al

FIG. 2. Evaluation of architectural design characteristics.

256 M. O. SALIU ET AL.
4.3.2 Prioritization of Design Characteristics
Each expert, selected according to their general knowledge and experience in

architectural designs, performs pairwise comparison between the design character-

istics. Pairwise comparison is carried out to determine which of the characteristics

contribute more to modifiability than another. The weighting scale used for the

purpose of this pairwise comparison is shown in Table I. Since we have 10

characteristics, we need a 10 � 10 matrix that contains the list of these character-

istics in the rows and columns. This matrix enables us to relatively compare each

characteristic from the row to all the other characteristics in the column. For each

pair of design characteristics (starting with ‘‘appropriate and representative naming’’

and ‘‘minimized coupling,’’ e.g.), their relative contribution to modifiability is

described by the ‘‘intensity of contribution.’’ Using the comparison scale in

Table I (adapted from AHP [5]), the expert inserts into the comparison matrix, the

number representing his chosen importance intensity in the cell that appears in the

intersection of the two properties being compared. The question the expert is asking

herself or himself while comparing each pair of characteristics to get the intensity of

importance value is ‘‘How does characteristic-i (row) contribute to the modifiability

of software designs when compared to characteristic-j (column)?’’

On completing the pairwise comparison, the aggregated eigenvalues computation

establishes a priority vector, Ve(z) 1 � z � Zð Þ, 0 � Ve zð Þ � 1ð Þ, which represents
Table I

SCALE FOR PAIRWISE COMPARISON OF ARCHITECTURAL DESIGN CHARACTERISTICS

Intensity of

contribution Definition Explanation

1 Equal contribution The two characteristics (i and j) are of

equal importance

3 Moderate contribution Experience slightly favor one characteristic

over another

5 Strong contribution Experience strongly favors one characteristic

over another

7 Very strong contribution A characteristic is strongly favored and its

dominance demonstrated in practice

9 Extreme contribution The evidence favoring one over another is of

highest possible order of affirmation

2, 4, 6, 8 Intermediate values between

two adjacent judgments

When compromise is needed

Reciprocals If characteristic i has one of the above numbers assigned to it when compared with

characteristic j, then j has the reciprocal value when compared with i

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 257
the relative contribution of all the Z characteristics from the perspective of each

expert e. It is guaranteed that the entries in the vector Ve(z) satisfyP
z¼1;...;ZVe zð Þ ¼ 1:

4.4 Assigning Weights to Experts (I-3)

Having different knowledge and experience in architectural design research and

practice, the general experts would be expected to exhibit different confidence levels

(CLe) in making judgments on the characteristics. Each expert is asked to rate his

confidence level (CLe) in making the judgments on a scale of 1 (lowest) to 9

(highest). Their confidence level (CLe) shows the extent to which their judgments

can be trusted. But given that a highly confident expert might not be necessarily

consistent when making the comparison judgments, we also need to consider the

consistency of the comparisons that an expert makes. The consistency ratio (CRe)

for an expert e defines the accuracy of the pairwise comparisons carried out by the

expert. The lower the CRe of expert e, the higher the accuracy of the judgment s(he)

made. A consistency ratio of 0.10 or less is considered acceptable [5].

We derive the weight of the experts by integrating both CLe and CRe. The

consequence of this premise is that the more confident an expert is about his ability

to make judgment on the characteristics, and the more consistent he performs

the relative comparison tasks, the more the influence he wields in determining the

overall contribution of each characteristic to modifiability. We employ the consis-

tency formulas discussed in Saaty [5] to compute the consistency ratio from the

comparison matrix prepared by each expert. Because a lower CRe is desirable,

we use 1 � CRe as a multiplicative factor of the confidence level, so that we do

not penalize a highly consistent expert. To consider the impact an expert has on the

final priority vector, we compute the weight We 1 � e � Eð Þ for each expert using

the formula:

We ¼ CLe 1� CReð ÞP
e¼1;...;ECLe 1� CReð Þ ; ð1Þ

where 0 � We � 1. The weights of all the experts satisfy
P

e ¼ 1,. . .,EWe ¼ 1.
4.5 Aggregating the Contribution of Design
Characteristics to Modifiability (I-4)

In this step, we aggregate the different priority vectors resulting from the

evaluation of all the experts. This results in a single overall vector of relative

contribution of each characteristic from the perspectives of all the experts. During

258 M. O. SALIU ET AL.
this aggregation procedure, the weight of each expert is a multiplicative weighting

factor of the vectors of relative contribution of the characteristics, as given in

Equation 2.
V zð Þ ¼
X

e¼1;...;E
Ve zð ÞWe; 1 � z � Z ð2Þ

This type of aggregation scheme is referred to as the weighted arithmetic mean of

priorities (AIP) [7]. There are evidences in the literature to support the fact that

weighted linear combination of the judgment of experts, such as the one in

Equation 2, performs better than other more mathematically complex aggregation

methods [8]. Besides, they are more easily understood.
5. STAGE II: Evaluation of Architectural Designs

In this stage of EBEAM, we evaluate the relative modifiability of the architectural

design candidates, and their relative modifiability with respect to the target design.
5.1 Identify Architectural Design Candidates

and Define the Target Design (II-1)

The first task here is to identify the architectural design candidates, which are

different design versions of the same system. If applicable, the software architects

also define a specification of the target architectural design. Lindvall et al. [24]

discuss the idea of specifying a target (or ideal) design for an existing system

architecture. For example, existing versions of the design for Client–Server archi-

tecture may currently allow direct communication between the clients and the

server. In an ideal case, the target design specification could be defined such that

no Client component except the Mediator should be allowed to contact the Server

directly. Such a target design may define some goals that are yet to be implemented

in the existing design versions, probably due to lack of resources.
5.2 Evaluation of Design Candidates
for a Fixed Characteristic (II-2)

Each local expert with knowledge of the architectural candidates performs rela-

tive pairwise comparison of the architectural design candidates and the target design

with respect to each of the design characteristics. (In AHP, the architectural

design candidates and the target design would be known as the alternatives

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 259
to compare.) The goal is to evaluate the relative EoM of any pair of candidates being

compared based on the manner the architectural design candidates handle the

characteristic under consideration. We structure the problem (similar to the one

for the design characteristics) as shown in Fig. 3. The question to ask when

comparing two designs, based on the characteristic under consideration, is of the

following form: ‘‘How much easier to modify would design-i be when compared to

design-j, if we only consider their use of minimized coupling?’’ The same question

applies to all the other characteristics that contribute to modifiability. The rating

scale used is given in Table II.

Each local expert develops one comparison matrix for each characteristic on

which the candidates are compared. It should be noted that the target design (if

applicable) also constitutes one of the candidates, for comparison purposes. For each

of these matrices developed we also compute the consistency ratio for the purpose of

assigning weights during aggregation. During this step, we also compute the priority

vector for each comparison matrix developed. The priority vector shows the relative

modifiability of the candidate designs based on each characteristic, and from the

perspective of each expert.

Let us suppose we have N architectural design candidates (including the target

design) to compare. Combining all the priority vectors for one expert would result in

a Z � N matrix that shows, for every entry (z, n), the relative modifiability of each

design in column n with respect to the attribute in row z. Higher value in a cell of the
matrix translates to higher modifiability of the design in the column relative to other
Relative modifiability based
on characteristic-z

Design-1 Design-2 Design-N Target

L
o

ca
l

ex
p

er
ts

e1 eme2

. . .

. . .

A
rc

h
it

ec
tu

ra
l

d
es

ig
n

ca
n

d
id

at
es

G
o

al

FIG. 3. Evaluation of architectural designs.

Table II

SCALE FOR PAIRWISE COMPARISON OF ARCHITECTURAL DESIGNS

Intensity of

contribution Definition Explanation

1 Equal contribution The two architectural designs (i and j) are of equal

importance

3 Moderate contribution Experience slightly favor one architectural design

over another

5 Strong contribution Experience strongly favors one architectural design

over another

7 Very strong contribution An architectural design is strongly favored and its

dominance is demonstrated in practice

9 Extreme contribution The evidence favoring one architectural design over

another is of highest possible order of affirmation

2, 4, 6, 8 Intermediate values between

two adjacent judgments

When compromise is needed

Reciprocals If architectural design i has one of the above numbers assigned to it when compared with

architectural design j, then j has the reciprocal value when compared with i

260 M. O. SALIU ET AL.
design candidates, and consequently the easier it is to modify the design. The matrix

by each expert e is described by:

fe z; nð Þ; 1 � e � E; 1 � n � N; 1 � z � Z; ð3Þ
where each row z (representing one characteristic) in the priority matrix fe z; nð Þ for
each expert e must satisfy the inequality

P
n¼1;...;Nfe z; nð Þ ¼ 1.
5.3 Computing the Weight for Local Experts (II-3)

For the purpose of aggregating the judgment by all the experts, weights must be

assigned to the experts to reflect the influence that each expert wields on the final

matrix. The process of weight assignment is similar to the one described by Equation 1.

One difference here is that we replace confidence level in Equation 1with a measure of

domain familiarity (DF). Also, the DF is assessed on per-design basis for each expert

e (i.e., DFe,n)—an expert maybe more familiar with one architectural design candidate

than the other. Thus, he could specify different familiarity level for different design

candidates on a scale of 1 (lowest) to 9 (highest). Also, from the previous step, it is clear

that the CR is also derived on per-characteristic basis for each expert (i.e., CRe,z),

because each expert develops one comparison matrix for each characteristic. Thus, a

CRmust be computed for each comparisonmatrix. As a result, the weightWe,n for each

expert e on design n is computed as:

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 261
We;n ¼
DFe;n 1� CRe;z

� �
P

e¼1;...;EDFe;n 1� CRe;z

� � ; ð4Þ

where1 � n � N; 1 � z � Z: Equation 4 shows that we derive the relative weight of
each expert for specific characteristic and on specific design candidate during

aggregation.
6. STAGE III: Overall Modifiability Evaluation

During this stage of EBEAM, we consolidate the results from the local experts

with the judgment from the general experts (i.e., results from Stage I) to produce the

relative modifiability of the architectural design candidates, and their closeness to

the target design.

6.1 Combining the Design Modifiability Matrices

of All Experts (III-1)

Using the priority matrix (i.e., described by Equation 3) developed by each expert,

we have to combine all their priority matrices into a single aggregated matrix, in

order to establish the overall relative priorities of the design candidates from the

perspectives of all the experts. Unlike the aggregation carried out in Stage I (see

Equation 2), the aggregation required here is a little tricky. First, because we have to

combine design modifiability matrices and not vectors. Second, because we have

to consider the weighting vectorWe,n defined in Equation 4, and also augment it with

the priority vector V(z) of the characteristics. The combined matrix is described by:

y z; nð Þ ¼
X

e
V zð Þfe n; zð ÞWe;n: ð5Þ

Since we are combining matrices and vectors, we perform a cell by cell computa-

tion. This explains the weighting scheme described by Equation 4. On expanding

Equation 5 further, the resulting priority matrix y(z, n) is given by:

y z; nð Þ ¼ V zð Þ
P

e¼1;...;Efe n; zð ÞDFe;n 1� CRe;z

� �
P

e¼1;...;EDFe;n 1� CRe;z

� �
" #

; ð6Þ

where 1 � n � N, 1 � z � Z.
Now, we have a Z � N priority matrix that aggregates the judgment of all the

experts. From this priority matrix, we can determine the overall relative modifiabil-

ity of each design candidate in terms of each characteristic that contributes to

262 M. O. SALIU ET AL.
modifiability. The information derived from here is useful in helping us determine

which subset of characteristics is actually contributing to the low modifiability of

a design. Such information could assist architects when making refactoring or

redesign decisions.

6.2 Rank Architectural Designs (III-2)
6.2.1 Rank the Designs Based on

Modifiability Values
We derive a priority vector from the aggregated priority matrix y(z, n) developed
in the previous step by summing over each column (i.e., each column represent a

design candidate) of the matrix. The higher the priority value assigned to a design, the

easier it is to modify the design relative to the other candidates, and consequently

the higher the modifiability of the design. Thus, we define the EoM based on these

modifiability values, as follows:

EoM nð Þ ¼
X

z¼1;...;Z
y z; nð Þ; ð7Þ

where y z; nð Þ is the Z � N matrix described by Equation 6. Each entry in the

modifiability vector is normalized, where 0 � EoM nð Þ � 1 and
P

nEoM nð Þ ¼ 1.

While y(z, n) gives the overallmodifiability of each designwith respect to each of the

characteristics, the EoM(n) gives the overall modifiability over all the characteristics.

All the design candidates can then be ranked based on their modifiability values.
6.2.2 Determine the Distance from
the Target Design
To measure the distance from the target, we idealize the modifiability values in

the priority matrix y(z, n) and also in the priority vector EoM(n). By idealizing, we

mean selecting the design with the largest modifiability value (i.e., definitely the

target design) and dividing all the other values in the priority matrix (respectively,

the priority vector) by this largest value. Thus, the target design now has a modifi-

ability value 1, then the modifiability value for every other design candidate would

be proportionately less than 1. These idealized priorities can help in road mapping,

as we would be able to measure how far we are from the goal specified for the target

design. For instance, if the target design has modifiability value of 1 on a specific

characteristic, and the best design version has a modifiability value of 0.75 on the

same characteristic, it implies that the best of the design versions has achieved 75%

of the goal defined for that design characteristic.

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 263
However, if there is no target architectural design specified for the system, we

simply exclude target design from consideration in the EBEAM evaluation process.

Thus, the modifiability evaluation is conducted relative to the available design

versions.
7. CASE STUDY I: The Application of EBEAM
to TSAFE Designs

The application of EBEAM to a real life software project was conducted at the

FC-MD in the summer of 2006. We used EBEAM to evaluate the architectural

design versions of the air traffic control piece of software—the tactical separation-

assisted flight environment (TSAFE) system. We discuss the study in details.

7.1 Context

The system under consideration is a prototype of the TSAFE software system

defined by NASA Ames Research Center [25] and implemented by Dennis [26].

This implementation was later turned into a testbed by FC-MD [27]. TSAFE was

proposed as a principal component of a larger Automated Airspace Computing

system that shifts the burden from human controllers to computers. The TSAFE

prototype checks conformance of aircraft flights to their flight plans, predicts future

trajectories, and displays results on a geographical map. We refer to this original

prototype as TSAFE I. Figure 4 shows the high-level structure of TSAFE I with its

four main components: the client, the parser, the database, and the engine. TSAFE

runs in two independent threads: the parsing thread and the main thread. In the

parsing thread, the parser reads data from a radar feed, extracts flight information,

and sends it to the database component. In the main thread, a timer in the client
Select flights

Insert
Update

Client
module

DatabaseParser Engine

Start parsing
Start engine

Notify observers

FIG. 4. Conceptual view of TSAFE I.

264 M. O. SALIU ET AL.
component initiates the process of updating the flight data every 3s. The client

requests data from the database and sends it to the engine component for computa-

tion. The engine sends the computation results to the client to be displayed on a

graphical user interface (GUI).

Since TSAFE I was a prototype, it only implemented the most basic functions

from the original NASA description [25]. An earlier analysis study was conducted at

FC-MD using TSAFE I as the basis for an experimental software testbed [28].

During the experimental study, new set of features that would be required in

TSAFE in the future were described. These features are related to demands that

would be placed on TSAFE I when operating in a real environment.

After several analyses conducted during the experiments in Ackermann and

Lindvall [28], it was discovered that it would be difficult to incorporate the new

set of features into TSAFE I because the architecture is not easily modifiable. This

prompted the need to redesign the system in order to fix the modifiability problems

and then create structures to accommodate the implementation of the change

requests. The newly created design of TSAFE is now referred to as TSAFE II.

Both TSAFE I and TSAFE II have different structures but their external GUI and

behavior are identical. Details regarding how the new architectural design was

created from the old design are discussed in Ackermann and Lindvall [28]. The

high-level design models of TSAFE I and TSAFE II are given by Figs. A.1 and A.2

in Appendix A.

During the design of TSAFE II, the designers focused on improving the manner in

which a subset of design characteristics (i.e., naming, coupling, cohesion, and use of

design patterns) is handled. Having completed the design of TSAFE II, it is important

to be able to show whether there is improvement in modifiability. It is also necessary

to show the extent of the improvement, and in terms of which design characteristics.

In addition, it is desirable to determine how the current versions of the architectural

designs measure up to the target design. With these issues under consideration,

EBEAM was seen as a systematic method that could help with the evaluation and

communication of results to third party. Most importantly, EBEAM could generate

quantitative measures without ignoring the knowledge and experience of the local

experts.

7.2 Evaluating TSAFE Designs Using EBEAM

The goal of this evaluation is to compare the architectural designs of TSAFE I and

TSAFE II with respect to modifiability. Apart from comparing the two implemented

design versions (i.e., TSAFE I and TSAFE II), it is important to determine how close

the current designs are to realizing the projected design goals in terms of other

design characteristics. The projected design goals are encapsulated in a conceptual

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 265
design known as the Target TSAFE. To perform the modifiability evaluation using

EBEAM, we treat all the three designs (TSAFE I, TSAFE II, and Target TSAFE) as

candidate designs. From the evaluation results, we can determine the relative

modifiability of the two versions as well as their closeness to the target architecture

design in terms of all the design characteristics.

During the case study, three experts participated in Stage I of the EBEAM

evaluation process. The requirements for selecting these experts were based on

their experience in architectural design in general. With their experiences, these

experts could evaluate the relative contribution of the design characteristics to

modifiability, without having particular design candidates on mind. For Stage II,

only two experts that are familiar with the TSAFE system and its different design

versions participated. These two experts (i.e., Architect-1 and Architect-2)

compared the three candidate designs to evaluate the relative modifiability of

TSAFE I and TSAFE II, and the closeness of the two versions to the Target

TSAFE. The two experts that evaluated the design candidates in Stage II also

participated in the evaluation of the design characteristics in Stage I. The participa-

tion of these experts in both stages is not a requirement. In fact, it would be more

desirable to have the local experts participate only in the evaluation of architectural

design candidates to reduce bias. For the case study, however, there were not enough

independent experts for Stage 1 of the evaluation process. This is not a limitation of

the EBEAM technique.

7.3 Results and Discussions
7.3.1 Results from Stage I: Contribution of

Design Characteristics to Modifiability
On completing the first stage of the evaluation, the priority vectors resulting from

each of the three experts, which show the relative contribution of design character-

istics to modifiability, are given in Table III. We have not included the comparison

matrix completed by each expert or the process of computing the priority vectors,

because they adhere to the EBEAM process. In Table III, the columns named

‘‘Rank’’ represent the relative ranking of the contribution of each design character-

istic to modifiability, based on each expert’s evaluation. For example, expert e1
ranked ‘‘minimized concurrency and threads’’ as the most important characteristic

that determines how modifiable an architectural design would be, while ranking

‘‘minimized duplication’’ as the least important characteristic. The results in

Table III shows that the experts do not completely agree on how each attribute

relatively contribute to modifiability. However, a perfect correlation is not expected,

because EBEAM is supposed to support the experts in articulating their individual

T
a
b
l
e
II
I

C
O
N
T
R
IB
U
T
IO

N
O
F
T
H
E
C
H
A
R
A
C
T
E
R
IS
T
IC
S
T
O
M

O
D
IF
IA

B
IL
IT
Y

F
R
O
M

T
H
E
P
E
R
S
P
E
C
T
IV

E
S
O
F
T
H
E
T
H
R
E
E
P
A
R
T
IC
IP
A
T
IN

G
E
X
P
E
R
T
S

Z
D
es
ig
n
ch
ar
ac
te
ri
st
ic
s

E
x
p
er
t
e 1

E
x
p
er
t
e 2

E
x
p
er
t
e 3

A
g
g
re
g
at
ed

re
su
lt

P
ri
o
ri
ty

v
ec
to
r

V
1
(z
)

R
an
k

P
ri
o
ri
ty

v
ec
to
r

V
2
(z
)

R
an
k

P
ri
o
ri
ty

v
ec
to
r

V
3
(z
)

R
an
k

P
ri
o
ri
ty

v
ec
to
r

V
(z
)

P
ri
o
ri
ty

v
ec
to
r

(%
)

R
an
k

1
M
in
im

iz
ed

co
u
p
li
n
g

0
.1
5
9
1

R
(2
)

0
.2
3
4
5

R
(1
)

0
.2
5
6
4

R
(1
)

0
.2
1
5
1

2
1
.5
1

R
(1
)

2
M
ax
im

iz
ed

co
h
es
io
n

0
.1
4
4
1

R
(3
)

0
.1
9
2
5

R
(2
)

0
.1
2
3
3

R
(4
)

0
.1
5
1
3

1
5
.1
3

R
(2
)

3
M
ax
im

iz
ed

m
o
d
u
la
ri
ty

0
.1
0
9
2

R
(6
)

0
.1
2
9
4

R
(4
)

0
.1
4
3
8

R
(3
)

0
.1
2
7
1

1
2
.7
1

R
(3
)

4
M
in
im

iz
ed

co
n
cu
rr
en
cy

an
d
th
re
ad
s

0
.1
7
0
9

R
(1
)

0
.0
4
3
3

R
(6
)

0
.0
8
5
6

R
(6
)

0
.1
0
3
6

1
0
.3
6

R
(4
)

5
P
ro
p
er

in
fo
rm

at
io
n
h
id
in
g
(i
n
cl
u
d
in
g

in
te
rf
ac
es
)

0
.0
3
0
9

R
(9
)

0
.1
0
5
0

R
(5
)

0
.1
7
4
3

R
(2
)

0
.1
0
2
4

1
0
.2
4

R
(5
)

6
A
p
p
ro
p
ri
at
e
u
se

o
f
d
es
ig
n
p
at
te
rn
s

an
d
ar
ch
it
ec
tu
ra
l
st
y
le
s

0
.1
1
0
8

R
(5
)

0
.0
4
0
2

R
(7
)

0
.0
9
9
3

R
(5
)

0
.0
8
5
8

8
.5
8

R
(6
)

7
M
in
im

iz
ed

co
u
p
li
n
g
to

C
O
T
S

(i
n
cl
u
d
in
g
la
n
g
u
ag
e)

0
.0
5
3
7

R
(8
)

0
.1
7
6
6

R
(3
)

0
.0
2
0
9

R
(1
0
)

0
.0
7
8
9

7
.8
9

R
(7
)

8
P
ro
p
er

d
o
cu
m
en
ta
ti
o
n

0
.1
3
8
7

R
(4
)

0
.0
2
1
9

R
(1
0
)

0
.0
2
6
1

R
(9
)

0
.0
6
5
1

6
.5
1

R
(8
)

9
U
se

o
f
p
ro
p
er

an
d
re
p
re
se
n
ta
ti
v
e

n
am

in
g

0
.0
6
5
5

R
(7
)

0
.0
2
7
6

R
(9
)

0
.0
3
6
3

R
(7
)

0
.0
4
4
2

4
.4
2

R
(9
)

1
0

M
in
im

iz
ed

d
u
p
li
ca
ti
o
n

0
.0
1
7
2

R
(1
0
)

0
.0
2
9
2

R
(8
)

0
.0
3
4
0

R
(8
)

0
.0
2
6
6

2
.6
6

R
(1
0
)

C
o
n
fi
d
en
ce

le
v
el
—

C
L
¼

8
7

8

C
o
n
si
st
en
cy

ra
ti
o
—

C
R
¼

0
.0
4
9
4

0
.0
9
7
6

0
.0
8
3
6

1
�C

R
¼

0
.9
5
0
6

0
.9
0
2
4

0
.9
1
6
4

C
L
�(

1
�

C
R
)
¼

7
.6
0
4
8

6
.3
1
6
8

7
.3
3
1
2

W
e
¼

0
.3
5
7
8

0
.2
9
7
2

0
.3
4
5

S
o
rt
ed

b
as
ed

o
n
ra
n
k
in
g
o
f
th
ei
r
co
n
tr
ib
u
ti
o
n
to

m
o
d
if
ia
b
il
it
y
.

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 267
knowledge and experience, which we cannot expect to be the same, although some

levels of agreements exist. For example, the results from expert e2 and expert e3
agree that ‘‘minimized coupling’’ contributes to EoM the most. The results from

expert e1 almost agree with this ranking as well, as expert e1 also ranked minimized

coupling as the second most important characteristic.

The consistency ratio (CRe), confidence level (CLe), and the weight computed for

each expert e are also given in Table III. This weight is computed for each expert

using Equation 1. Although expert e1 and expert e3 claimed to exhibit the same

confidence level, but expert e1 achieved a higher CR when performing the evalua-

tion of the design characteristics. The higher CR for e1 indicates that we can trust the
judgments of expert e1 more than the judgments of expert e3, which invariably

translates to the higher weight assigned to e1. Expert e2 has the lowest weight

because the expert has lower CL and lower CR than the other two experts. The

weights are used in the aggregation scheme for unifying the different priority vectors

from each expert’s evaluation into a single priority vector. The resulting priority

vector shows the relative contribution of each architectural design characteristic to

modifiability. The aggregation scheme is defined in Equation 2.

The priority vector reflecting the aggregated views of all the experts is also shown

in Table III. For easy interpretation, we also present the priority vectors as percen-

tages. The percentages enable us to reason in terms of what percentage of the

relative modifiability values that a specific characteristic assumes. The column

named ‘‘Rank’’ in the aggregated result represents the relative ranking of each

characteristic based on their impact on modifiability. (Note: we have sorted

Table III according to these final rankings.) The aggregated result ranked ‘‘mini-

mized coupling’’ as the architectural design characteristic that has the highest

contribution to the modifiability of architectural designs (i.e., rank R(1)). The

interpretation is that, if only one choice is possible, all the experts agree that they

would rather select an architectural design that minimizes coupling over another

design that minimizes duplication. The reasoning supporting such decision is that, it

would be easier to modify a candidate with minimized coupling than another

without minimized coupling, but which exhibits minimized duplication. The final

aggregated priority vector given here would be used in Stage III when aggregating

the results with those from TSAFE designs evaluation.

Our interpretation of results here should be treated with caution, however,

because it only reflects the judgment of the participating experts based on their

experience. It could turn out to be different ranking if the evaluation is performed by

different architectural design experts. For the purpose of our study, this is not a

limitation, because the experts have been drawn from the same environment where

we need the results to evaluate specific design candidates.

268 M. O. SALIU ET AL.
7.3.2 Results from Stage II: Evaluation
of TSAFE Designs
Results from the evaluation of TSAFE architectural designs, according to the

perspectives of the two architects (i.e., the local experts), are given as part of

Table IV. Table IV also contains the results of the consistency ratios (CRe,z). The

CRe,z is computed for each expert, using each comparison matrix developed for the

design candidates with respect to each characteristic. In the last row of the table, we

have the domain familiarity of each architect with respect to each of the design

candidates. The DFe,n entries show that the architects claimed the same level of

familiarity on all the design candidates, but their consistency ratio for each compar-

ison would ensure the architects do not have the same influence on the overall

modifiability result. In addition, Table IV has a column named ‘‘Priorities of design

characteristics.’’ This column represents the overall priority vector shown in

Table III which already unifies the design experts’ evaluation of the relative

contribution of each characteristic to modifiability. This overall priority vector

would be used as a multiplicative factor of each of the priority matrices from the

architects’ evaluation of the design candidates.

In Table IV, there are two Z � N priority matrices with each of the matrices

representing the result from one architect. Every entry (z, n) in each priority matrix

represents the relative modifiability of the architectural design candidate in column

n with respect to the characteristic in row z. This priority matrix is described by

Equation 3. For example, looking at the entries for ‘‘minimized coupling’’ in the first

row for Architect-1, the architect evaluated the modifiability of TSAFE I as having a

value of 0.0567 compared to the modifiability of TSAFE II that stands at 0.2946, and

that of Target TSAFE which is 0.6486.

These modifiability values have been evaluated with respect to the way in which

the architectural design candidates handle ‘‘minimized coupling’’ from the perspec-

tive of Architect-1. But what do the numbers really mean? In a simple term, suppose

Architect-1 is given 100 points to distribute among the three candidates based on

the way the candidates handled coupling, TSAFE I would receive 5.67% while

TSAFE II and Target TSAFE would receive 29.46 and 64.86%, respectively.

Therefore, TSAFE II is a major improvement over TSAFE I and it is more modifi-

able than TSAFE I in terms of reduced coupling. Notwithstanding the improved

modifiability of TSAFE II, it is still far from the Target TSAFE design in terms of

minimizing coupling in the architecture. This implies that Architect-I knows that the

coupling would still need to be reduced considerably in order to achieve the target

coupling level envisaged for the Target TSAFE. For example, suppose we have

client/server architecture and TSAFE II implements it in such a way that there are

bi-directional calls between the server and the client components, but the target is to

T
a
b
l
e
IV

E
V
A
L
U
A
T
IO

N
O
F
T
S
A
F
E
D
E
S
IG

N
S
F
R
O
M

T
H
E
P
E
R
S
P
E
C
T
IV

E
S
O
F
T
H
E
T
W
O
A
R
C
H
IT
E
C
T
S

Z

D
es
ig
n

ch
ar
ac
te
ri
st
ic
s

A
rc
h
it
ec
t-
1
(e

1
)

A
rc
h
it
ec
t-
2
(e

2
)

P
ri
o
ri
ti
es

o
f

d
es
ig
n

ch
ar
ac
te
ri
st
ic
s

V
(z
)

T
S
A
F
E

I

T
S
A
F
E

II

T
ar
g
et

T
S
A
F
E

C
o
n
si
st
en
cy

ra
ti
o
(C
R
)

1
�
C
R

T
S
A
F
E

I

T
S
A
F
E

II

T
ar
g
et

T
S
A
F
E

C
o
n
si
st
en
cy

ra
ti
o
(C
R
)

1
�

C
R

1
M
in
im

iz
ed

co
u
p
li
n
g

0
.0
5
6
7

0
.2
9
4
6

0
.6
4
8
6

0
.0
7
0
1

0
.9
2
9
9

0
.0
5
4
8

0
.3
5
8
3

0
.5
8
6
9

0
.0
3
2
0

0
.9
6
8
0

0
.2
1
5
1

2
M
ax
im

iz
ed

co
h
es
io
n

0
.0
8
6
9

0
.2
7
3
7

0
.6
3
9
3

0
.0
4
6
6

0
.9
5
3
4

0
.0
5
4
8

0
.3
5
8
3

0
.5
8
6
9

0
.0
3
2
0

0
.9
6
8
0

0
.1
5
1
3

3
M
ax
im

iz
ed

m
o
d
u
la
ri
ty

0
.1
1
1
1

0
.4
4
4
4

0
.4
4
4
4

0
.0
0
0
0

1
.0
0
0
0

0
.0
5
8
1

0
.2
2
9
9

0
.7
1
2
0

0
.1
4
5
3

0
.8
5
4
7

0
.1
2
7
1

4
M
in
im

iz
ed

co
n
cu
r-

re
n
cy

an
d
th
re
ad
s

0
.3
3
3
3

0
.3
3
3
3

0
.3
3
3
3

0
.0
0
0
0

1
.0
0
0
0

0
.1
2
5
0

0
.1
2
5
0

0
.7
5
0
0

0
.0
0
0
0

1
.0
0
0
0

0
.1
0
3
6

5
P
ro
p
er

in
fo
rm

at
io
n

h
id
in
g
(i
n
cl
u
d
in
g

in
te
rf
ac
es
)

0
.1
2
2
6

0
.3
2
0
2

0
.5
5
7
1

0
.0
1
5
8

0
.9
8
4
2

0
.0
5
4
3

0
.3
0
5
9

0
.6
3
9
9

0
.0
9
4
4

0
.9
0
5
6

0
.1
0
2
4

6
A
p
p
ro
p
ri
at
e
u
se

o
f

d
es
ig
n
p
at
te
rn
s

an
d
ar
ch
it
ec
tu
ra
l

st
y
le
s

0
.1
0
9
6

0
.3
0
9
2

0
.5
8
1
3

0
.0
0
3
2

0
.9
9
6
8

0
.0
5
5
6

0
.2
4
2
4

0
.7
0
2
0

0
.1
8
6
7

0
.8
1
3
3

0
.0
8
5
8

7
M
in
im

iz
ed

co
u
p
li
n
g

to
C
O
T
S
(i
n
cl
u
d
-

in
g
la
n
g
u
ag
e)

0
.3
3
3
3

0
.3
3
3
3

0
.3
3
3
3

0
.0
0
0
0

1
.0
0
0
0

0
.2
5
0
0

0
.2
5
0
0

0
.5
0
0
0

0
.0
0
0
0

1
.0
0
0
0

0
.0
7
8
9

8
P
ro
p
er

d
o
cu
m
en
ta
ti
o
n

0
.2
0
0
0

0
.2
0
0
0

0
.6
0
0
0

0
.0
0
0
0

1
.0
0
0
0

0
.1
1
1
1

0
.1
1
1
1

0
.7
7
7
8

0
.0
0
0
0

1
.0
0
0
0

0
.0
6
5
1

9
U
se

o
f
p
ro
p
er

an
d

re
p
re
se
n
ta
ti
v
e

n
am

in
g

0
.0
8
1
9

0
.3
4
3
1

0
.5
7
5
0

0
.0
2
5
1

0
.9
7
4
9

0
.0
5
7
7

0
.3
4
6
8

0
.5
9
5
5

0
.0
1
8
8

0
.9
8
1
2

0
.0
4
4
2

1
0

M
in
im

iz
ed

d
u
p
li
ca
ti
o
n

0
.3
3
3
3

0
.3
3
3
3

0
.3
3
3
3

0
.0
0
0
0

1
.0
0
0
0

0
.0
6
0
5

0
.2
0
0
9

0
.7
3
8
6

0
.1
4
6
0

0
.8
5
4
0

0
.0
2
6
6

D
o
m
ai
n
fa
m
il
ia
ri
ty

(D
F
)

8
8

8
8

8
8

W
e
so
rt
in

d
es
ce
n
d
in
g
o
rd
er

o
f
th
e
co
n
tr
ib
u
ti
o
n
o
f
p
ri
o
ri
ti
es

o
f
d
es
ig
n
ch
ar
ac
te
ri
st
ic
s.

270 M. O. SALIU ET AL.
have just the client call the server for services rather than allowing bi-directional

calls. Then, it would be necessary to reduce the coupling in TSAFE II by a factor of

2 to attain the objectives defined for Target TSAFE. This interpretation is straight-

forward because the values derived by the architect for each of the candidates

evaluated are relative to one another. Similar interpretation applies to all the other

entries in the two priority matrices.
7.3.3 Results from Stage III: Overall

Modifiability of TSAFE Designs
To aggregate the views of the architects, as shown in Table IV, we combine the

priority matrices, the priority of design characteristics, the consistency ratios, and

the domain familiarity using Equation 6. Instead of giving the raw values as matrices

and vectors, we present the results as figures to ease understanding. Figure 5 shows

the aggregated result that represents the relative modifiability of each candidate with

respect to each architectural design characteristic. Figure 5 generally shows that

TSAFE II constitutes a major improvement over TSAFE I across all the design

characteristics, but TSAFE II still falls short of the specification envisaged for the

Target TSAFE. This evaluation does not end only in the design comparisons, as it

also allows us to know what characteristics of the design to focus on when making

refactoring or redesign decisions.

Looking at the first characteristic (i.e., minimized coupling) in Fig. 5, for exam-

ple, TSAFE II has achieved a major improvement over TSAFE I, but it is still far

from achieving the target design in terms of coupling. But looking at the fourth

characteristic (i.e., minimized concurrency and threads), TSAFE II is not any better

than TSAFE I based on the evaluation of both architects. In addition, the two TSAFE

design versions are not yet close to the Target TSAFE design in terms of their use of

minimized concurrency and threads. The two TSAFE versions are also not better

than each other in terms of documentation and coupling to COTS.

Figure 6 shows the final overall modifiability values that are computed from the

fine-grained values given in Fig. 5, using Equation 7. The figure gives a more

coarse-grained evaluation that allows us to easily rank the architectural designs

and make decisions about which design is more modifiable overall, without looking

at each design characteristic. This is more useful when we only have to choose from

a set of candidate designs, regardless of the fine-grained information on the design

characteristics.

The radar diagram in Fig. 7 is the transformation of the aggregated modifiability

result shown in Fig. 5 into its idealized form, as discussed in Section 6.2.2.

The Target TSAFE now represents the current goal, which is to attain a level 1

0.
00

00

0.
02

00

0.
04

00

0.
06

00

0.
08

00

0.
10

00

0.
12

00

0.
14

00

M
in

im
iz

ed
co

up
lin

g
M

ax
im

iz
ed

co
he

si
on

M
ax

im
iz

ed
m

od
ul

ar
ity

M
in

im
iz

ed
co

nc
ur

re
nc

y
an

d
th

re
ad

s

P
ro

pe
r

in
fo

rm
at

io
n

hi
di

ng
(in

cl
ud

in
g

in
te

rf
ac

es
)

A
pp

ro
pr

ia
te

us
e

of
 d

es
ig

n
pa

tte
rn

s
an

d
ar

ch
ite

ct
ur

al
st

yl
es

M
in

im
iz

ed
co

up
lin

g
to

C

O
T

S
(in

cl
ud

in
g

la
ng

ua
ge

)

P
ro

pe
r

do
cu

m
en

ta
tio

nU
se

 o
f p

ro
pe

r
an

d
re

pr
es

en
ta

tiv
e

na
m

in
g

M
in

im
iz

ed
du

pl
ic

at
io

n

Relative modifiability values

D
es

ig
n

ch
ar

ac
te

ris
tic

s

T
S

A
F

E
 I

T
S

A
F

E
 II

T
ar

ge
t T

S
A

F
E

F
IG
.
5
.
A
g
g
re
g
at
ed

T
S
A
F
E
m
o
d
if
ia
b
il
it
y
w
it
h
re
sp
ec
t
to

ea
ch

ch
ar
ac
te
ri
st
ic
.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

TSAFE I TSAFE II Target TSAFE

A
gg

re
ga

te
d

re
la

tiv
e

m
od

ifi
ab

ili
ty

TSAFE design candidates

FIG. 6. Overall modifiability evaluation of the candidates.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

Minimized coupling

Maximized cohesion

Maximized modularity

Minimized concurrency
and threads

Proper information
hiding (including interfaces)

Appropriate use of design patterns
and architectural styles

Minimized coupling to
COTS (including language)

Proper documentation

Use of proper and
representative naming

Minimized duplication

TSAFE I TSAFE II Target TSAFE

FIG. 7. Idealized representation of the aggregated modifiability with respect to each characteristic.

272 M. O. SALIU ET AL.

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 273
(i.e., 100%) on all design characteristics. The results shown in the radar diagram is

useful for road mapping, since it is possible to determine how far we are from the

goals specified for the target design. In Fig. 7, the target architectural design (Target

TSAFE) is used as a reference. For instance, the radar diagram shows TSAFE II to

be in the mid-way to achieving the specified goal in terms of maximized cohesion.

Coupling to COTS is the design characteristic for which the current versions of the

architectural designs have made the most improvement in terms of modifiability.

Conversely, there is still no proper documentation available for TSAFE II. Docu-

mentation remains the characteristic for which the current design is farthest from

reaching the target design goals.
8. Empirical Validation

The goal of this empirical validation is to verify the efficacy of EBEAM in

assisting the experts to correctly articulate their knowledge of architectural designs.

We defined and selected some architectural design metrics, collected data on the

design candidates in terms of the metrics, and compared the results with the results

from expert judgment. This empirical validation study was conducted in Fall 2007;

about 3 months after the case study in which the experts articulated their knowledge

of the architectural designs using EBEAM and results collected. This implies that

the results from design metrics were not available during the case study discussed

above, thereby reducing the possibility of the metrics results introducing bias into

the judgments of the experts.
8.1 Defining and Selecting the Objective Metrics

Several design metrics have been discussed in the literature. For objective metrics

collection, we chose a subset of the design characteristics discussed in Section 4.1.

We only chose a subset of the characteristics, because it is not possible to define

objective metrics on most of the characteristics. Since we only need the objective

metrics for validation purposes, it is not even necessary to define metrics on all the

characteristics. The design characteristics we have chosen include coupling, dupli-

cation, and information hiding/interfaces. These metrics can be computed from the

unified modeling language (UML) models, except for measure of duplication that

requires specialized tools. In the sequel, we discuss the metrics we have defined and

those we have selected for use in this study.

274 M. O. SALIU ET AL.
8.1.1 Coupling Metrics
Although there are many existing coupling metrics [29], we focus on defining

metrics that can easily be captured at both coarse-grained and fine-grained levels. The

two coupling metrics provided here are based on measuring the relationship between

elements that belong to different components/modules of a software system. It should

be noted that we use the terms module and component interchangeably.
8.1.1.1 High-Level System Coupling Metric. This metric

is aimed at capturing the number of calls that exist between all the components of the

architectural design of a system. The metric does not consider the individual classes

in the components. The purpose is to have a high-level view of the number of

components as well as the number of relationships that exist among them. The

system coupling metric (SCM) is measured as a count of the number of directional

inter-component references. We do not ignore the direction of the arrows because

we want to capture the number of components as well as the different calls that exist.

From the UML model of TSAFE I in Fig. A.1 (see Appendix A), we compute

the SCM(TSAFE I) ¼ 9, while UML model in Fig. A.2 (Appendix A) gives SCM

(TSAFE II) ¼ 4. These values are computed by adding all the arrows in each UML

model. For example, we have just three components in TSAFE II, but the Client and

the Server components are involved in bi-directional calls for services. These

coupling measures do not include the number of coupling to libraries. The lower

the value of SCM the easier to modify the corresponding architectural design

candidate is assumed to be, and vice versa. According to the results here, TSAFE

II is more modifiable than TSAFE I.
8.1.1.2 Fan-In/Fan-Out Metric. The fan-in/fan-out coupling met-

ric proposed by Henry and Kafura [30] is a directional measure of coupling. The fan-

in/fan-out captures the inbound and outbound relationship to and from the elements

in a component. Given a component C, the fan-in is the number of components that

call it and the number of global data elements (or libraries) from which C retrieves

information. The fan-out for a component C is the number of components called by

C, including the number of data elements (or libraries) that C alters.

The results of the fan-in/fan-out metrics for each component of TSAFE I

and TSAFE II as computed from the low level views captured in Figs. A.3 and

A.4 (see Appendix A) are given in Table V. The lower the value of fan-in/fan-out the

easier it is to modify the components as well as the corresponding architectural

design of the system, and vice versa.

Table V

COUPLING MEASURES FOR TSAFE I AND TSAFE II

TSAFE I TSAFE II

Components Fan-in Fan-out Components Fan-in Fan-out

Main 0 10 Main 0 5

Client 1 6 Client 3 2

Engine 12 0 Server 5 1

Database 10 0

Feed 4 11

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 275
8.1.2 Interfaces Metrics
We define two metrics for interfaces. The first metric is the number of interfaces

(NOI)whichcounts the numberof classes fromdifferent components that directly assess

classes in a particular component C. The second metric is the classes calling interfaces

(CCI) which is a count of the classes in a component that directly assess the classes

in other components. The NOI and CCI calculation for each component C and the sum

for the entire system for TSAFE I and TSAFE II appear in Table VI. The interface

metricswas computed from the low level views of the UMLmodels of the architectures

shown in Figs. A.3 and A.4 (Appendix A) for TSAFE I and TSAFE II, respectively.

We compute the NOI metric for each component of both TSAFE I and TSAFE II.

Suppose we consider theMain component of TSAFE I and that of TSAFE II, these two

Main components do not receive any direct call from any class outside of it. Thus, the

NOI for the Main component of TSAFE I is 0 and that of TSAFE II is 0. We also

compute the NOI for the rest of the components; the results appear in Table VI.We can

see in Table VI that the NOI(TSAFE I)¼ 10 and NOI(TSAFE II)¼ 5, respectively.

In addition, we compute the CCI for both TSAFE I and TSAFE II. The results of

the CCI also appear in Table VI. For example, if we look at the Main component in

TSAFE I architectural design model in Fig. A.3, we can see that six classes in the

Main component call several other classes in the other components. On the other

hand, the Main component of TSAFE II architectural design has only one class that

issues calls to classes in the other components. The goal is always to try to minimize

the total number of these calls in a system. For example, instead of six classes in the

Main component directly accessing data from the classes in the other components of

the system, it is better to provide one interface through which these communications

can take place. Table VI contains this measure for all the components in the system,

where the total for all the components of TSAFE I is given as CCI(TSAFE I) ¼ 14,

and that of TSAFE II is given as CCI(TSAFE II) ¼ 4.

Table VI

INTERFACES MEASURES FOR TSAFE I AND TSAFE II

TSAFE I TSAFE II

Components

Number of

interfaces

(NOI)

Classes calling

interfaces (CCI) Components

Number of

interfaces

(NOI)

Classes calling

interfaces (CCI)

Main 0 6 Main 0 1

Client 1 2 Client 2 2

Engine 5 0 Server 3 1

Database 1 0 Total 5 4

Feed 3 6

Total 10 14

276 M. O. SALIU ET AL.
The lower the total NOI computed for an architectural design candidate, the easier

it would be to modify the architectural design, and vice versa. Thus, TSAFE II is

generally assumed to be more modifiable than TSAFE I according to the results.
8.1.3 Duplication
The tool we used to measure duplication in the code implementation of TSAFE I

and TSAFE II is the Simian UI tool [31]. The Simian UI is a tool for finding and

removing duplicated regions of code from within the Eclipse IDE. The measure is

based on blocks that include more than six lines of code. For this measure, the result

is that TSAFE I and TSAFE II contain the same amount of duplicated regions,

namely 1321 blocks each.
8.2 Expert-Judgment Using EBEAM on Selected

Design Characteristics

Since we focused on defining metrics for three characteristics, it is important that

we also choose the same three characteristics from the expert judgment evaluation

using EBEAM.

The good thing about EBEAM is that, we can easily extract the judgment of the

experts on a subset of the design characteristics, without requiring the experts to

perform the evaluation all over. The relative values obtained for each of the

characteristics would be different from what we have in the results discussed

in the case study because the relative comparison would be based on just three

characteristics and not on all 10 characteristics considered earlier. The result of the

Table VII

EVALUATION OF TSAFE I AND TSAFE II DESIGNS ON THREE CHARACTERISTICS

Z Design characteristics

Architect-1 (e1) Architect-1 (e2)

Priorities of design

characteristics V(z)

TSAFE

I

TSAFE

II

TSAFE

I

TSAFE

II

1 Minimized coupling 0.1250 0.8750 0.1111 0.8889 0.6519

2 Proper information hiding

(including interfaces)

0.2500 0.7500 0.1111 0.8889 0.2704

3 Minimized duplication 0.5000 0.5000 0.1667 0.8333 0.0777

Priority vector 0.1879 0.8121 0.1154 0.8846

Table VIII

AGGREGATED TSAFE EVALUATION FROM ALL ARCHITECTS

Attributes TSAFE I TSAFE II

Minimized coupling 0.0770 0.5749

Proper information hiding including interfaces 0.0488 0.2216

Minimized duplication 0.0259 0.0518

Final priority vector 0.1517 0.8483

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 277
evaluation by each of the architects is shown in Table VII, while an aggregated result

is shown in Table VIII. Table VIII compares TSAFE I with TSAFE II, with respect

to each characteristic from modifiability perspective. Table VIII also shows the final

overall modifiability of the two architectural designs, with TSAFE I having a

relative modifiability value of 0.1517 while the relative modifiability value of

TSAFE II is 0.8483. The result clearly shows that the modifiability, measured in

this way, is higher for TSAFE II than for TSAFE I.
8.3 Comparing the Objective and Subjective

Measures on TSAFE Architectural Designs

It is important that we have a basis for comparing the results from design metrics to

those obtained from expert judgment. There is no straightforward way to accomplish

this, because the results from the objective metrics defined on different characteristics

are not on the same scale or unit, for all three characteristics considered.Wedonot have

this problem with EBEAM, however. Notwithstanding, we can define approximate

mappings that would ease the comparison. Table IX contains all the modifiability

results computed using design metrics. The reader should note that we sum up the

Table IX

TSAFE EVALUATION USING METRICS

Metrics TSAFE I TSAFE II

System coupling metric 9 4

Fan-in/fan-out 54 16

Number of interfaces 10 5

Classes calling interfaces 14 4

Duplication 1321 1321

278 M. O. SALIU ET AL.
fan-in/fan-out for eachof theTSAFEarchitectural designs, becauseweneed to compare

the architectural designs and not the components that make up the designs—although

Henry and Kafura [30] did not perform such additions in their work.

Because the results from EBEAM are normalizedmeasures (i.e., between 0 and 1),

comparison between results from expert judgment and the metrics would only make

sense if we normalize the results from design metrics. The easiest way to do this is to

find the ratio of each architectural design measure relative to the measures within its

metric category.

Thus, given two architectural designs with values A and B, we would compute

their metric values m(A) and m(B) using the following formulas:

m Að Þ ¼ 1� A

Aþ B

� �
ð8Þ

m Bð Þ ¼ 1� B

Aþ B

� �
ð9Þ

In Equations 8 and 9, we subtract from 1 to change the interpretation of the metric

values such that higher values mean higher modifiability, and vice versa for lower

values. This is necessary to ensure that the interpretation of results obtained using

design metrics is consistent with those results obtained from expert-judgment

using EBEAM. Recall that assigning higher values to an architectural design on a

particular characteristic in EBEAM implies higher relative modifiability on that

characteristic. On applying Equations 8 and 9 to the measures given in Table IX, we

obtained the results given in Table X.

To compare the results from objective and subjective measures, we can choose

any of the two coupling metrics and any of the two interfaces metrics in Table X to

represent the objective metrics for these two characteristics (i.e., coupling and

interfaces). This decision is justified, because the results from different metrics

that measures the same characteristic produced correlated results. For example,

both SCM and fan-in/fan-out consistently ranked TSAFE II as better than TSAFE I

Table X

NORMALIZED METRICS FOR TSAFE EVALUATION

Metrics TSAFE I TSAFE II

System coupling metric 0.3077 0.6923

Fan-in/fan-out 0.2286 0.7714

Number of interfaces 0.3333 0.6667

Classes calling interfaces 0.2222 0.7778

Duplication 0.5000 0.5000

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 279
in terms of reduced coupling. Thus, whether we discuss results in terms of SCM or in

terms of fan-in/fan-out is immaterial; the relative preference between the candidates

in terms of coupling remains the same. The same argument applies to the measures

derived from NOI and CCI, as both measures agree in their ranking of the two design

candidates.

Now, suppose we choose SCM and NOI as the representative metrics for coupling

and interfaces, respectively. Figure 8 shows the bar charts of the results from metric-

based approach. It is easy to deduce the relative modifiability of the two architec-

tural design candidates with respect to each characteristic. Except for duplication

measures in which the two architectural designs perform equally, TSAFE II is

clearly better than TSAFE I.

Now, looking at the results from expert judgment using EBEAM (see Table VIII),

we see that the values for TSAFE I and TSAFE II fall between 0 and 1 for each

characteristic. However, the modifiability values of the two architectural designs do

not add to 1 for each characteristic, as we now have for the metrics results in

Table X. Thus, we need to apply Equations 8 and 9 to Table VIII without subtracting

1 from the results. The normalized results using the EBEAM are given in Table XI

with the corresponding bar chart in Fig. 9.

The results shown for the metrics-based approach in Fig. 8 and the results from

EBEAM in Fig. 9 are both consistent in their conclusions that TSAFE II is overall a

superior architectural design candidate in terms of modifiability TSAFE I. Although

the two figures reveal that we do not have perfect correlation in the exact values

resulting from the two approaches in terms of each characteristic considered, but this

should not be expected. The most important issue is whether EBEAM could assist

expert in making consistent judgment that reflects reality. By consistently ranking

the design candidates, EBEAM allows easy judgment between competing design

candidates. Meanwhile, the difference in the conclusion drawn by expert assessment

and designmetricswith respect to duplication could be an indication of the limitation of

human expert in coping with more fine-grained assessments. Especially, for a task as

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

System coupling
metric

Number of
interfaces

Duplication

N
or

m
al

iz
ed

 m
od

ifi
ab

ili
ty

 m
ea

su
re

s

Design characteristics

TSAFE I TSAFE II

FIG. 8. Metrics results on TSAFE I and TSAFE II.

Table XI

NORMALIZED TSAFE EVALUATION USING EBEAM

Attributes TSAFE I TSAFE II

Minimized coupling 0.1181 0.8820

Proper information hiding (including interfaces) 0.1806 0.8195

Minimized duplication 0.3334 0.6667

280 M. O. SALIU ET AL.
arduous as sifting through codes that implements a design to count duplicated entities,

only a rough approximation could be expected from an expert, at the very best.
9. CASE STUDY II: The Application of
EBEAM to CGS Designs

EBEAM was employed in evaluating the architectural designs of the Common

Ground Software (CGS) developed at the John Hopkins University Applied Physics

Laboratory (JHU/APL) Space Department. This study, which is not as detailed as the

TSAFE I TSAFE II

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

Minimized coupling Proper information
hiding (including

interfaces)

Minimized duplication

N
or

m
al

iz
ed

 m
od

ifi
ab

ili
ty

 v
al

ue
s

Design characteristics

FIG. 9. Results of EBEAM on TSAFE I and TSAFE II.

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 281
one conducted with the TSAFE architects due to participation of experts, evaluates

the applicability of the architecture evaluation method in a different domain.

9.1 Context

The JHU/APL Space Department develops Mission Operations Center (MOC)

system software using a shared software architecture called Common Ground for all

JHU/APL-supported NASA missions. The Common Ground architecture is 10 years

old; it is difficult to maintain for current missions and to evolve for reuse in future

missions. For instance, the CGS has a number of dependencies on technologies that

have become obsolete. To avoid further maintenance and evolution problems, the

Software Architecture Visualization and Evaluation (SAVE) tool and process devel-

oped by FC-MD was applied to the CGS [32]. SAVE allows JHU/APL to align the

actual architecture (as currently defined in the source code) of CGS with the planned

architecture for CGS (as defined by the architectural goals).

The process of applying SAVE to the CGS involves generating a high-level

description of the actual architecture from the source code, defining a planned

282 M. O. SALIU ET AL.
architecture including architectural goals and design rational, identifying deviations

between the planned and actual architecture, creating a new target architecture based
on updated architecture goals, and creating a roadmap to align on-going system

development and maintenance with the new target architecture. For a detailed discus-

sion of the infusion of SAVE tool and process into the CGS, the reader can consult

Stratton et al. [15, 32]. The most interesting aspect of this technology infusion project

to us in this study was the availability an actual (or current), target, and planned (or

ideal) architectural design candidates. The possibility of having two concrete versions

of the CGS architectural design and a planned (or ideal) version immediately shows

that applicability of EBEAM in evaluating the different versions. Without going into

the details of the evaluation process, which is clear from Case Study I, we briefly

discuss the EBEAM application to CGS and the results.

9.2 Evaluating CGS Designs and Results

This study comprised the comparison of architectural design of Current CGS and

Target CGS with respect to modifiability. It also involves the comparison of these two

design candidates to the ideal design in order to determine the closeness of existing

candidates to the envisioned ideal architectural design. A JHU/APL senior software

engineerwho has extensiveCGS experience conducted the study.Given that the Stage I

of EBEAM is generic, we concentrated the study on Stage II of EBEAM. The specific

knowledge and expertise of the senior software engineer on the CGS architectural

design is the important aspect of the study, while the priorities of architectural design

characteristics (see Table III) obtained in the first case study can be applied.

Table XII shows the results of the evaluation conducted on the CGS designs. Each

entry (z � n) in the priority matrix represents the modifiability of the CGS architec-

tural design candidates in column n with respect to the characteristics in row z.
The priorities of design characteristics are also represented in the table. Detail

interpretation of these results follows from the discussion of results in Section 7

presented earlier.

The results from aggregating priorities of design characteristics and the evalua-

tion of design candidates by the software engineer are shown in Fig. 10. Similarly,

Fig. 11 shows the graphical radar representation of the idealized analysis that

captures the extent to which the current architectural design candidates for CGS

are close to realizing the envisioned Ideal Design. The interpretation of results is

straightforward, given the previous discussion of Section 7. For example, Fig. 10

shows that the Target CGS architecture has improved significantly in terms of

minimizing duplication and concurrency and threads. In fact, the software engineer

performing the evaluation is of the opinion that the Target CGS is close to the

envisioned Ideal CGS in terms of these two design characteristics (i.e., minimizing

Table XII

EVALUATION OF CGS DESIGNS

Software engineer

Attributes

Current

CGS

Target

CGS

Ideal

CGS

Consistency

ratio (CR) 1� CR

Priority of

design

characteristics

V(z)

1 Minimized coupling 0.1429 0.1429 0.7143 0.0000 1.0000 0.2151

2 Maximized

cohesion

0.1429 0.1429 0.7143 0.0000 1.0000 0.1513

3 Maximized

modularity

0.2000 0.2000 0.6000 0.0000 1.0000 0.1271

4 Minimized concur-

rency and threads

0.1429 0.4286 0.4286 0.0000 1.0000 0.1036

5 Proper information

hiding (including

interfaces)

0.1429 0.1429 0.7143 0.0000 1.0000 0.1024

6 Appropriate use of

design patterns

and architectural

styles

0.0612 0.2157 0.7231 0.1035 0.8965 0.0858

7 Minimized coupling

to COTS (includ-

ing language)

0.0612 0.2157 0.7231 0.1035 0.8965 0.0789

8 Proper

documentation

0.2000 0.2000 0.6000 0.0000 1.0000 0.0651

9 Use of proper and

representative

naming

0.3333 0.3333 0.3333 0.0000 1.0000 0.0442

10 Minimized

duplication

0.0909 0.4545 0.4545 0.0000 1.0000 0.0266

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 283
duplication and concurrency/threads). The other characteristics in which significant

improvements have been made in the Target CGS over the Current CGS are

minimized coupling to COTS and appropriate use of design patterns and architecture

styles. In most of the other design characteristics, except for use of proper naming,

no significant improvement exists in the Target CGS. The implication of these

results is that, the architects can focus their redesign effort on improving the four

design characteristics that have seen no improvement in the target CGS.

With the Ideal CGS used as the benchmark in the idealized analysis representation

of Fig. 11, we can easily deduce the closeness or otherwise of Target CGS to the

design goal from the perspectives of different design characteristics evaluated.

0.
00

00

0.
02

00

0.
04

00

0.
06

00

0.
08

00

0.
10

00

0.
12

00

0.
14

00

0.
16

00

0.
18

00

M
in

im
iz

ed

co
up

lin
g

M
ax

im
iz

ed
co

he
si

on
M

ax
im

iz
ed

m
od

ul
ar

ity
M

in
im

iz
ed

co

nc
ur

re
nc

y
an

d
th

re
ad

s

P
ro

pe
r

in
fo

rm
at

io
n

hi
di

ng
(in

cl
ud

in
g

in
te

rf
ac

es
)

A
pp

ro
pr

ia
te

us
e

of
 d

es
ig

n
pa

tte
rn

s
an

d
ar

ch
ite

ct
ur

al

st
yl

es

M
in

im
iz

ed
co

up
lin

g
to

C

O
T

S
(in

cl
ud

in
g

la
ng

ua
ge

)

P
ro

pe
r

do
cu

m
en

ta
tio

n
U

se
 o

f p
ro

pe
r

an
d

re
pr

es
en

ta
tiv

e
na

m
in

g

M
in

im
iz

ed

du
pl

ic
at

io
n

Relative modifiability values

D
es

ig
n

ch
ar

ac
te

ris
tic

s

C
ur

re
nt

 C
G

S
T

ar
ge

t C
G

S
Id

ea
l C

G
S

F
IG
.
1
0
.
A
g
g
re
g
at
ed

C
G
S
m
o
d
if
ia
b
il
it
y
w
it
h
re
sp
ec
t
to

d
es
ig
n
ch
ar
ac
te
ri
st
ic
.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

Minimized coupling

Maximized cohesion

Maximized modularity

Minimized concurrency
and threads

Proper information
hiding (including interfaces)

Appropriate use of design patterns
and architectural styles

Minimized coupling to
COTS (including language)

Proper documentation

Use of proper and
representative naming

Minimized duplication

Current CGS Target CGS Ideal CGS

FIG. 11. Idealized modifiability of CGS with respect to design characteristic.

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 285
For example, maximized cohesion, minimized coupling, and proper information

hiding remain the three designed characteristics that the least improvement has been

achieved in the Target CGS. These are the three characteristics on which the Target

CGS is farthest from the goal.

This second study essentially demonstrates the applicability of EBEAM across

different domains. It also shows the usefulness of EBEAM even when we do not

have multiple experts to perform the evaluations.
10. Applicability of the EBEAM Technique

Observations from the results obtained using both EBEAM and design metrics

show that the two approaches are not competing, but rather complementary. There-

fore, expert judgment can be employed to evaluate candidate architectures for

characteristics that cannot be measured using metrics, and vice versa. If there are

no mechanisms to collect metrics, then expert judgment would suffice for evaluating

286 M. O. SALIU ET AL.
all the architectural design characteristics. Especially, if all we have are high-level

architectural designs without the codes that implement the architectures, then it

would be hard to even consider using some of the existing metrics. Example of this

is the conceptual view of the target architectural design that we considered during

the case study that we discuss in this chapter.

In fact, there are situations in which objective metrics exist for measuring specific

characteristics, but such metrics may not be able to capture the detail meaning of the

characteristics. If we consider characteristics like use of proper and representative
naming, one could define a metric that uses the Thesaurus to check for appropriate

naming. This type of metrics would only confirm the use of meaningful names, but it

cannot measure whether such names are representative. During the first case study

presented, the lead architect that worked on redesigning TSAFE I shared his experience

on the use of representative naming. He discovered a particular component that was

named ‘‘Feed’’ in TSAFE I, which took him several days to decipher what the compo-

nent actually does. This componentwas later discovered to be a component that handles

parsing tasks, whichwould have been easier to understand if named ‘‘Parser.’’ TheEoM

of such component would be inhibited, because the naming convention is not represen-

tative of the tasks the component performs, even though the naming convention is

meaningful. Ametric would show the name ‘‘Feed’’ as proper because it is meaningful.

It is only through expert judgment evaluation that we can establish whether the naming

conventionadopted across the architectural designs are representative.Closely related to

this is the fact thatwe can easily determinewhether documentation exists, butwe cannot

use metrics to determine how proper and useful the documentation is.

In concluding our discussions on EBEAM and the empirical studies presented, we

summarize the benefits, limitations, and threats to validity of using the EBEAM for

architectural design evaluation.

10.1 Benefits of EBEAM

The major benefit of the EBEAM technique presented in this chapter is that it

does not just give a high-level measure that simply identifies which architectural

candidate is better than another. It also allows the architects to see which architec-

tural characteristic needs to be re-examined to increase the modifiability of the

candidate. It is not enough to say that an architecture restructuring has been

performed and modifiability has been improved. It is important to know what

aspects have been improved in the redesigned architecture. Thus, the results derived

from EBEAM can serve as a pointer to what aspects of the existing architectural

design require further improvement to increase modifiability.

Because of the flexibility and adaptability properties of EBEAM, the results from

Stage I (i.e., evaluating the contribution of characteristics to modifiability) can be

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 287
updated with new knowledge and experience of new experts, whenever such become

available. The new experts simply have to carry out their own evaluation, and the

aggregated results are recomputed to accommodate the new knowledge, if desired.

There are several other benefits that would justify the use of EBEAM over design

metrics. These benefits include the following:

l EBEAM is a generic modifiability evaluation technique that can be applied to

any architectural design, regardless of the domain of the software system as

demonstrated by the two case studies. Somemetrics are not defined to be generic,

and would work within certain programming paradigms only. For example, some

metrics properties defined by Weyuker [33] have been found to be irrelevant to

object-oriented design metrics, especially the structural metrics [34, 35]. There

are hosts of other metrics that are targeted at only object-oriented designs, like

those by Chidamber and Kemerer [36]. Metrics defined on datasets collected

from a specific software product cannot always be generalized to other products,

especially if the software products are from different domains.

l The results fromEBEAMare basedon ratio scalemeasures.The aggregationof the

judgment of experts also retains ratio scalemeasures. Themeasures fromEBEAM

are alsonormalized relativemeasures that enable easy comparison of results. In the

case of design metrics, however, raw measurements taken on different design

characteristics would all be on different range of values and scales/units. Thus, it is

not possible to aggregate thesemeasures into a single measure to support decision

making. And consequently, it complicates the comparison of different candidates

using raw metric results [37]. Some metrics have been criticized in the literature

becauseof theway themetrics assumemeasurement scale types [38] that contradict

standard measurement practices [38, 39].

l EBEAM can easily be adopted and adapted to assess other architectural design

attributes, even though we have developed it with modifiability as the focus.

The experts only need to identify the characteristics that influence such attri-

butes, and the nature of influence that each characteristic have on the attributes.

Nevertheless, the evaluation process remains the same.
10.2 Limitations

We identified the following limitations of the EBEAM technique and threats to

the experiments discussed in the case study:

l The EBEAM presents a repeatable evaluation process, but it does not guarantee

that an expert will always give the same relative ranking to each characteristic

and the architectural design candidates, if the expert is not consistent in

288 M. O. SALIU ET AL.
his judgment. The consistency of an expert in making judgments depends on

how focused the expert during the comparison procedures.

l We consider as an approximation the choice of design characteristics for

evaluating modifiability. Modifiability would always be influenced by several

other issues. But using this approximation for assessment would suffice for the

task of comparing any two or more architectural design candidates.

l The EBEAM is a heavy-weight technique. Adopting EBEAM requires that

software architects devote time to the process of articulating their knowledge.

l As part of EBEAM, experts are asked to rate their confidence level (CL) in

making judgment on design characteristics and also their domain familiarity

(DF) with the architectural design of the system being evaluated. Some

experts may assign higher ratings for themselves on these two factors, even

if they do not posses high CL or DF. This could happen if the experts do not

want to reveal that they posses little knowledge of the design characteristics,

and also little knowledge of the architectural design candidates. We cannot

independently verify their ratings in this case, because it is difficult to

ascertain that the ratings they give for CL and DF are consistently in sync

with their levels of expertise.
11. Related Work

To determine how the characteristics of architectural designs compare to the

desired characteristics of a system, techniques for evaluating architectural designs

are important. Architecture evaluation can be performed at different stages in the

development life cycle. Lindvall et al. [24] distinguish between early and late

software architecture evaluation. Early evaluation is carried out on architectures

that are yet to be implemented. These architectures are typically a description of the

system to be built. Although it is impossible to fully understand the actual design

characteristics of a system until it is built and tested, a model of the system can help

characterize the architectural design for evaluation purposes. On the other hand, late

evaluation is used to evaluate software architectures once an implemented version of

the system exists. Late architecture evaluation is useful because it helps in identify-

ing deficiencies in the existing architecture, and guides the reconstruction of the

architecture to address these deficiencies. An example of a late architecture evalua-

tion method and tool is the SAVE [40]. The tool extracts the architecture from a

system implementation and visualizes it in a diagram. The evaluation is done

by comparing the extracted diagram to another diagram that represents the

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 289
design specification. The output is a diagram annotated with deviations between the

implemented architecture and its design.

SAVE, likemost architecture evaluation approaches, assesses properties of the static

structure of a software system. Only few approaches focus on the system’s runtime

structure, that is, the dynamic architecture. For example, Lindvall et al. [41] analyzed
the differences in how the system is structured during design time and during runtime

[41]. Dynamic architectures are becoming increasingly important with the emerging

trend of distributed systems and framework-based architectures because dependencies

are often established only during runtime and not visible during design time. Object-

based distributed frameworks, such as CORBA and Java RMI, are more and more

widely used for implementing even smaller applications with the goal to divide the

services of a system into independent components. OSGI is a framework-based

architecture that serves a similar purpose, but is based on the idea of plug-ins [42]. In

light of this development, the analysis of dynamic architectures becomes an increas-

ingly important issue. An approach for evaluating dynamic dependencies for

framework-based architectures has been introduced byGanesan et al. [43]. The authors
have developed strategy for constructing an architecture model via Colored Petri Nets

(CPN) by monitoring events during system execution.

In addition to structural characteristics, software architectures also possess behav-

ioral properties. The behavior describes the way architecture components interact

[44]. UML Sequence Diagrams are a common way to model system behavior in the

design phase, but is also widely used to illustrate the implemented behavior in

various reverse engineering approaches [45, 46]. However, the goal of most reverse

engineering approaches is to derive a general understanding of the system’s behav-

ior but they do not provide capabilities to evaluate it to a given design. An exception

is the work presented in Ackermann et al. [47]. The authors discuss an approach for

evaluating the adherence of several behavioral properties—namely sequence,

parameter, and timing—to a behavior specification. The result of this evaluation is

a graphical representation of the deviations.

Abowd et al. [48] categorize existing architecture evaluation methods into two—

questioning and measuring techniques. Questioning techniques generate qualitative

questions to be asked about architecture, while measuring techniques are based on

quantitative measurements on the architecture to determine a specific quality attri-

bute. Instead of providing ways to generate questions that should be asked about an

architectural design, the measuring techniques provide answers to existing questions

that the evaluation team already has about particular qualities of the architecture.

Questioning techniques include scenarios, checklists, and questionnaires, while

measuring techniques include metrics, simulations, prototypes, and experiences.

Most of the existing works on architecture evaluation are based on questioning

techniques, with scenarios being the most widely used questioning technique.

290 M. O. SALIU ET AL.
Scenarios are used to capture events that could happen during the life of a system.

Some of the architectural evaluation techniques that are based on questioning tech-

niques include the Architecture Tradeoff Analysis Method (ATAM) [49], Cost-

Benefit Analysis Method (CBAM) [50], Active Reviews for Intermediate Design

(ARID) [51], Scenario-Based Architecture Analysis Method (SAAM) [52] and its

variants, Architecture-Level Prediction of Software Maintenance (ALPSM) [53],

Software Architecture Evaluation Model (SAEM) [54], and Architecture Level

Modifiability Analysis (ALMA) [3]. Each technique has different views about archi-

tecture evaluation and presents different approaches to assessing architectural

designs. Measuring techniques for architecture evaluation are relatively rare, though.

Shereshevsky et al. [55] and Lindvall et al. [24] are two examples of research in this

area. Existingmeasuring techniques use coupling or cohesionmeasures or both, as the

basis for their evaluation.Measurement-based techniques have some limitations: they

are always strongly dependent on the context, it is difficult to determine the right set of

metrics, and the interpretation of puremeasurement data is often unclear (what does it

mean if a value is 4 instead of 5). For amore detailed discussion of existing evaluation

techniques in the literature, the reader should refer to the survey by Dobrica and

Niemela [51] which discusses various early evaluation techniques, and the compari-

son framework by Babar et al. [56] and Kazman et al. [57].

The existing techniques discussed above are mostly targeted at evaluating a single

architecture [58]. These techniques are used to determine the suitability of architec-

tural designs with respect to quality attributes of a software system. The evaluation

techniques could clarify whether a given architecture satisfies certain properties, but

they do not directly result in criteria collation and analysis. EBEAM is useful for

evaluating a single architecture from the perspective of a chosen quality attribute,

and also useful for selecting among competing architectural design candidates.

While we require experts to answer questions about the goodness characteristics

of architectural designs when making their judgments, the resulting judgments are

transformed to measurable quantities to better support decision-making. Therefore,

EBEAM is a bridge between measuring and questioning techniques (see chapter

‘‘Advances in Computer Displays’’ for a discussion of these techniques). By com-

bining both measurement-based approach and questioning-based approach, we take

advantage of the benefits that each approach has to offer. Each architectural design

candidate can be compared based on quantitative results generated with respect to

different design characteristics considered. Of all the existing techniques, the closest

to EBEAM is the architecture evaluation technique proposed by Svahnberg et al.

[58]. In contrast to our work, Svahnberg and his colleagues simply focused on

comparing candidate architectures based on the presence of competing quality

attributes. Their technique is mostly useful for early architectural design evaluation,

and they do not support fine-grained evaluation based on selected characteristics.

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 291
The EBEAM presented in this chapter is more general, because it can be used during

both early and late phases of architectural designs.
12. Summary

In this chapter, we have discussed our expert judgment-based technique (i.e.,

EBEAM) for evaluating the modifiability of software architectural designs. We have

reported a case study that uses EBEAM to evaluate the architectural designs of the

prototype system for NASA flight assistance known as TSAFE. The architectural

designs of TSAFE that were evaluated include the initial prototype, a redesigned

version, and the target design. To validate the results obtained from EBEAM on

TSAFE design evaluations, we defined a set of design metrics, evaluated the

modifiability of the architectural designs of TSAFE using these metrics, and com-

pared the results. Both EBEAM and the metrics show correlation in their results. We

briefly presented another case study that applied EBEAM to the CGS developed at

the JHU/APL.

We developed EBEAM as three-stage evaluation technique that can be performed

independently, depending on the relevance of the knowledge that a participating expert

has at that stage of the evaluation process. The three-stage formulation of the technique

ensures that, the bias of individual experts in the first stage of the assessment would not

be propagated down to the subsequent stages of the evaluation process. While we

acknowledge that the bias of the experts cannot be completely eliminated, reducing the

bias is an initial attempt. We can only verify the extent to which bias influences results

after an extensive longitudinal study involving the application of EBEAM to different

projects, and also in different development environments.

In developing EBEAM, we have also proposed a new weighting scheme to assign

importance to experts. The weighting scheme considers the consistency with which

the experts make their judgments about the characteristics or the architectural

candidates being compared. Our empirical study did not reveal how much influence

the inclusion of the consistency of judgment exerts on the final results, because the

consistency ratio of the experts that participated in the study at FC-MD was close.

But this is not expected to be the case all of the time, because varying degrees of

inconsistency could occur, especially when there are more experts involved.

The contributions of EBEAM that we have proposed in this chapter include:

1. Proposing architectural design evaluation technique (i.e., EBEAM) that assists

experts in articulating their knowledge and experience, and transforming these

into quantifiable results.

292 M. O. SALIU ET AL.
2. Combining measurement-based approach with questioning-based approach

in EBEAM, thereby taking advantage of the benefits that each approach has

to offer.

3. Conducting exploratory study involving detailed analyses of design character-

istics that influence the modifiability of software architectural designs.

4. Describing the way EBEAM can be adopted for making architectural compar-

ison and selection decisions.

5. Demonstrating the applicability of EBEAM in a case study using a prototype

of the TSAFE system defined by the NASA Ames Research Center [25, 26]

and another study that used the CGS developed at the JHU/APL.

6. Evaluating the correlation between the results obtained from expert judgment

using EBEAM and the results from design metrics.
Appendix A: UML Models for TSAFE
Architectural Designs
tsafe/main
<< Subsystem >>

tsafe/client
<< Subsystem >>

tsafe/engine
<< Subsystem >>

tsafe/TsafeDatabase.java

tsafe/feed
<< Subsystem >>

FIG. A.1. High level coupling in TSAFE I.

tsafe/main

<< Subsystem >>

tsafe/client

<< Subsystem >>
tsafe/server

<< Subsystem >>

FIG. A.2. High level coupling in TSAFE II.

tsafe/main

gui

<< Subsystem >>

<< Subsystem >>

<< Subsystem >>
feedsourcechooser

FeedSourceChooserDialog.java

ServerSourceDialog.java

ConfigConsole.java

RuntimeDatabase.java

tsafe/client

ParametersDialog.java
tsafe/engine

EngineCalculator.java

EngineObserver.java

EngineResults.java

EngineParameters.java

TsafeEngine.java

<< Subsystem >>

TsafeClient.java

tsafe//TsafeDatabase.java

tsafe/feed

asdi

ASDIParser.java

RouteParser.java

FixParser.java

FeedParser.java MessageExtractor.java

NASFields.java

ServerReader.java

<< Subsystem >>

<< Subsystem >>

<< Subsystem >>

DataReader.java SimpleCalculator.java

FIG. A.3. Low level view of TSAFE I.

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 293

tsafe/main

tsafe/client

graphical_client

tsafe/server

server_gui

utils

SplashScreen.java

WaitCursorEventQueue.java

ServerInterface.java
ClientInterface.java

−

−

−

−

−

−

−

−

−

−

<< Subsystem >>

<< Subsystem >>

<< Subsystem >>

<< Subsystem >>

<< Subsystem >>

<< Subsystem >>

Main.java

GraphicalClient.java

FIG. A.4. Low level view of TSAFE II.

294 M. O. SALIU ET AL.
Acknowledgments

This research is partially funded by the National Science and Engineering Research Council of Canada

(NSERC) and Informatics Circle of Research Excellence (iCORE). This work is partially sponsored by

NSF grant CCF0438933, ‘‘Flexible High Quality Design for Software.’’ We thank FC-MD for using their

facilities during the workshops and the empirical studies, Patricia Costa for contributing her knowledge

and expertise, William C. Stratton for facilitating the study conducted at JHU/APL, and Jens Knodel for

stimulating discussions and helpful comments on earlier drafts of the paper.
References

[1] M.M. Lehman, Laws of software evolution revisited, in: Proceedings of 5th European Workshop on

Software Process Technology (EWSPT’96), Nancy, France, Oct. 9–11, 1996, pp. 108–124.

[2] P. Grubb, A.A. Takang, Software Maintenance: Concepts and Practice, second ed., World Scientific,

New Jersey, 2003.

[3] P. Bengtsson, N. Lassing, J. Bosch, H. van-Vliet, Architecture-level modifiability analysis (ALMA),

J. Syst. Softw. 69 (1–2) (2004) 129–147.

[4] D. Kelly, A study of design characteristics in evolving software using stability as a criterion, IEEE

Trans. Softw. Eng. 32 (5) (2006) 315–329.

[5] T.L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, New York, 1980.

[6] M. Li, C. Smidts, A ranking of software engineering measures based on expert opinion, IEEE Trans.

Softw. Eng. 29 (9) (2003) 811–824.

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 295
[7] E. Forman, K. Peniwati, Aggregating individual judgments and priorities with the analytic hierarchy

process, Eur. J. Oper. Res. 108 (1) (1998) 165–169.

[8] R.T. Clemen, R.L. Winkler, Combining probability distributions from experts in risk analysis, Risk

Anal. 19 (2) (1999) 187–203.

[9] O. Saliu, G. Ruhe, Software release planning for evolving systems, Innov. Syst. Softw. Eng. NASA

J. 1 (2) (2005) 189–204.

[10] H. Erdogmus, What’s good software, anyway? IEEE Softw. 24 (2) (2007) 5–7.

[11] Hacknot, The top 10 elements of good software design, http://www.hacknot.info/hacknot/action/

showEntry?eid¼54 (last accessed: Aug. 6, 2006).

[12] L. Hochstein, M. Lindvall, Diagnosing architectural degeneration, in: Proceedings of 28th NASA/

IEEE Software Engineering Workshop (SEW-28), Greenbelt, MD, USA, Dec. 3–4, 2003,

pp. 137–142.

[13] H. Dhama, Quantitative models of cohesion and coupling in software, J. Syst. Softw. 29 (1) (1995)

65–74.

[14] S.S. Yau, J.S. Collofello, Some stability measurements for software maintenance, IEEE Trans.

Softw. Eng. 6 (6) (1980) 545–552.

[15] W. Stratton, D. Sibol, M. Lindvall, P. Costa, Technology infusion of the SAVE tool into the common

ground software development process for NASA missions at JHU/APL, in: Proceedings of 2007

IEEE Aerospace Conference, Big Sky, MT, USA, March 3–10, 2007.

[16] J. Krauskopf, Elemental concerns (software design), IEEE Potentials 9 (1) (1990) 13–15.

[17] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Design, Addison-Wesley, Reading, MA, 1994.

[18] M. Shaw, Comparing architectural design styles, IEEE Softw. 12 (6) (1985) 27–41.

[19] M. Shaw, P. Clements, Toward boxology: Preliminary classification of architectural styles, in:

Proceedings of Second International Software Architecture Workshop, San Francisco, USA, 1996,

pp. 50–54.

[20] D. Parnas, On the criteria to be used in decomposing systems into modules, Commun. ACM 15 (12)

(1972) 1053–1058.

[21] D. Parnas, P. Clements, D. Weiss, The modular structure of complex systems, in: Proceedings of 7th

International Conference on Software Engineering (ICSE’84), Orlando, FL, USA, 1984,

pp. 408–417.

[22] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, J. Stafford, Documenting

Software Architectures: Views and Beyond, Addison-Wesley, Reading, MA, 2002.

[23] F.P. Brooks, No silver bullet: Essence and accidents of software engineering, Computer 20 (4)

(1987) 10–19.

[24] M. Lindvall, R. Tesoriero, P. Costa, An empirically-based process for software architecture evalua-

tion, Empir. Softw. Eng. 8 (1) (2003) 83–108.

[25] H. Erzberger, The automated airspace concept, in: Proceedings of 4th USA/Europe Air Traffic

Management R & D Seminar, Santa Fe, NM, USA, Dec. 3–7, 2001, pp. 1–15.

[26] G. Dennis, Building a Trusted Computing Base for Air Traffic Control Software, Master’s Thesis,

Massachusetts Institute of Technology, Boston, MA, 2003.

[27] M. Lindvall, I. Rus, P. Donzelli, A. Memon, M. Zelkowitz, A. Betin-Can, T. Bultan, C. Ackermann,

B. Anders, S. Asgari, V. Basili, et al. Experimenting with software testbeds for evaluating mew

technologies, Empir. Softw. Eng. Int. J. 12 (4) (2007) 417–444.

[28] C. Ackermann, M. Lindvall, Understanding change requests in order to predict software impact, in:

Proceedings of 30th NASA/IEEE Software Engineering Workshop (SEW 2006), Columbia, MD,

USA, April 25–26, 2006.

http://www.hacknot.info/hacknot/action/showEntry?eid=54
http://www.hacknot.info/hacknot/action/showEntry?eid=54
http://www.hacknot.info/hacknot/action/showEntry?eid=54

296 M. O. SALIU ET AL.
[29] L.C. Briand, J.W. Daly, J.K. Wust, A unified framework for coupling measurement in object-

oriented systems, IEEE Trans. Softw. Eng. 25 (1) (1999) 91–121.

[30] S. Henry, D. Kafura, Software structure metrics based on information flow, IEEE Trans. Softw. Eng.

7 (5) (1981) 510–518.

[31] Simian, Simian UI—The Code Similarity Analyzer, Redhill Consulting Pty Ltd., http://www.

integility.com/simian_ui (last accessed: Nov. 15, 2006).

[32] W.C. Stratton, D.E. Sibol, M. Lindvall, P. Costa, The SAVE tool and process applied to ground

software development at JHU/APL: An experience report on technology infusion, in: Proceedings of

31st IEEE Software Engineering Workshop (SEW-31), Columbia, MD, March 6–8, 2007,

pp. 187–193.

[33] E.J. Weyuker, Evaluating software complexity measures, IEEE Trans. Softw. Eng. 14 (9) (1988)

1357–1365.

[34] J. Alghamdi, M.O. Saliu, Analysis and theoretical validation of object-oriented coupling metrics, in:

Proceedings of IASTED International Multi-Conference on Applied Informatics (AI’03), Innsbruck,

Austria, Feb. 10–13, 2003, pp. 1145–1152.

[35] Gursaran, G. Roy, On the applicability of Weyuker property 9 to object-oriented structural inheri-

tance complexity metrics, IEEE Trans. Softw. Eng. 27 (4) (2001) 381–384.

[36] S.R. Chidamber, C.F. Kemerer, A metrics suite for object-oriented design, IEEE Trans. Softw. Eng

20 (6) (1994) 476–493.

[37] A.P. Nikora, J.C. Munson, Determining fault insertion rates for evolving software systems, in:

Proceedings of 9th International Symposium on Software Reliability Engineering, 1998,

pp. 306–315.

[38] B. Kitchenham, S.L. Pfleeger, N. Fenton, Towards a framework for software measurement valida-

tion, IEEE Trans. Softw. Eng. 21 (12) (1995) 929–944.

[39] N. Fenton, Software measurement: a necessary scientific basis, IEEE Trans. Softw. Eng. 20 (3)

(1994) 199–206.

[40] P. Miodonski, T. Forster, J. Knodel, M. Lindvall, D. Muthig, Evaluation of Software Architectures

with Eclipse, Technical Report IESE-Report 107.04/E, Institute of Experimental Software Engi-

neering, Kaiserslautern, Germany, 2004.

[41] M. Lindvall, C. Ackermann, W.C. Stratton, D.E. Sibol, A. Ray, L. Yonkwa, J. Kresser, S. Godfrey,

J. Knodel, Using sequence diagrams to detect communication problems between systems, in:

Proceedings of IEEE Aerospace Conference, March 1–8, 2008, pp. 1–11.

[42] OSGI, OSGI—The dynamic module system for Java, http://www.osgi.org (last accessed: Nov. 30,

2008).

[43] D. Ganesan, T. Keuler, Y. Nishimura, Architecture compliance checking at runtime: An industry

experience report, in: Proceedings of 8th International Conference on Quality Software (QSIC’08),

Oxford, UK, Aug. 12–13, 2008, pp. 347–356.

[44] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, second ed., Addison-Wesley

Professional, Reading, 2003.

[45] L.C. Briand, Y. Labiche, J. Leduc, Toward the reverse engineering of UML sequence diagrams for

distributed Java software, IEEE Trans. Softw. Eng. 32 (9) (2006) 642–663.

[46] W. DePauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, J. Yang, Visualizing the execution of

Java programs 2269 (2001) 151–162.

[47] C. Ackermann, D. Sibol, W. Stratton, M. Lindvall, S. Godfrey, An analysis framework for inter-

system interaction behavior, in: Proceedings of 19th IEEE International Symposium on Software

Reliability Engineering (ISSRE), Redmond, WA, Nov. 11–14, 2008.

http://www.integility.com/simian_ui
http://www.integility.com/simian_ui
http://www.osgi.org

EVALUATING THE MODIFIABILITY OF SOFTWARE ARCHITECTURE 297
[48] G. Abowd, L. Bass, P. Clements, R. Kazman, L. Northrop, A. Zaremski, Recommended Best

Industrial Practice for Software Architecture Evaluation. CMU/SEI-96-TR-025, Carnegie Mellon

University, Pittsburgh, USA, 1997, pp. 1–34.

[49] R. Kazman, M. Klein, M. Barbacci, T.H. Longstaff, L.J. Carriere, The architecture tradeoff analysis

method, in: Proceedings of International Conference on Engineering of Complex Computer Systems

(ICECCS98), 1998, pp. 68–78.

[50] R. Kazman, J. Asundi, M. Klein, Quantifying the costs and benefits of architectural decisions, in:

Proceedings of 23rd International Conference on Software Engineering (ICSE 2001), Toronto,

Canada, 2001, pp. 297–306.

[51] L. Dobrica, E. Niemela, A survey on software architecture analysis methods, IEEE Trans. Softw.

Eng. 28 (7) (2002) 638–653.

[52] R. Kazman, L. Bass, M. Webb, G. Abowd, SAAM: A method for analyzing the properties of

software architectures, in: Proceedings of 16th International Conference on Software Engineering-

Sorrento, Italy, May 16–21, 1994, pp. 81–90.

[53] P. Bengtsson, J. Bosch, Architecture level prediction of software maintenance, in: Proceedings of

3rd European Conference on Software Maintenance and Reengineering (CSMR), Amsterdam,

Netherlands, 1999, pp. 139–147.

[54] J.C. Duenas, W.L. de-Oliveira, J.A. de-la-Puente, A software architecture evaluation model, in:

Proceedings of 2nd International Workshop On Development and Evolution of Software Architec-

tures for Product Families, Spain, 1998, pp. 148–157.

[55] M. Shereshevsky, H. Ammari, N. Gradetsky, A. Mili, H.H. Ammar, Information theoretic metrics

for software architectures, in: Proceedings of International Computer Software and Applications

Conference (COMPSAC 2001), Chicago, IL, USA, 2001.

[56] M.A. Babar, L. Zhu, R. Jeffrey, A framework for classifying and comparing software architecture

evaluation methods, in: Proceedings of Australian Software Engineering Conference, Melbourne,

Australia, April, 2004, pp. 309–319.

[57] R. Kazman, L. Bass, M. Klein, T. Lattanze, L. Northrop, A basis for analyzing software architecture

analysis methods, Softw. Qual. J. 13 (4) (2005) 329–355.

[58] M. Svahnberg, C. Wohlin, L. Lundberg, M. Mattsson, A quality-driven decision support method for

identifying software architecture candidates, Int. J. Soft. Eng. Knowl. Eng. 13 (5) (2003) 547–573.

The Common Law and Its Impact on
the Internet
ADVAN

ISSN: 00
ROBERT AALBERTS
Department of Finance, University of Nevada, Las Vegas,

4505 Maryland Parkway, Las Vegas, Nevada 89154, USA
DAVID HAMES
Department of Management, University of Nevada,

Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada

89154, USA
PERCY POON
Department of Finance,University of Nevada, Las Vegas,

4505 Maryland Parkway, Las Vegas, Nevada 89154, USA
PAUL D. THISTLE
Department of Finance,University of Nevada, Las Vegas,

4505 Maryland Parkway, Las Vegas, Nevada 89154, USA
Abstract

This chapter begins with a discussion of the English common law, the basis for

much of American law today, and its evolving role in regulating the cyberworld.

The common law, based on case precedents, has proven to be very adept at

resolving new and difficult problems, at times more quickly and competently

than legislation. This same mechanism is being used today to solve problems to

protect Internet users from destructive ‘‘cyberevils’’ such as spamming and other

kinds of cybertorts. In the second part of our chapter, we contrast the cases of

Doe v. XYCCo. andDelfino v. Agilent to illustrate the application of common law

doctrines in managing risks arising from employees’ use of the Internet.
CES IN COMPUTERS, VOL. 77 299 Copyright © 2009 Elsevier Inc.

65-2458/DOI: 10.1016/S0065-2458(09)01208-X All rights reserved.

300 R. AALBERTS ET AL.
1. Introduction

When the Normans invaded England in 1066 AD, the bow and arrow was the most

high-tech hardware they possessed. Still, the Normans leveraged this technology to

vanquish its Anglo-Saxon enemy and impose a new legal regime called the common

law. Today, we look to the same system to provide us with both a sword and a shield to

thwart spam, adware, spyware, and other enemies lurking in a dangerous virtual world.

Still, how can such an ancient legal system offer protections in a nonphysical

world the Normans could never have imagined? The common law legal system was

devised in the eleventh century in an environment of great fear and repression. Few

rules were in place. Yet, it has survived for many centuries and has evolved into

arguably the most practical, adaptive, and functional legal system the world has ever

seen. Indeed, in a seminal study by LaPorta et al. [1], in which they examined 49

countries with both common law and civil law legal systems, the authors concluded

that the flexibility afforded by the common law, which uses independent judges and

juries and applies law on a case-by-case basis, creates an environment in which there
1. Introduction . 300

1.1. A Brief Primer on the Common Law . 301

1.2. Common Law Actions and the Internet 302

1.3. The Common Law Versus Statutes . 306

2. The Common Law in Action: Employer Liability to Third-Party

Victims on the Internet . 307

2.1. A Study in Failure to Protect Third Parties: The XYC Corp. 307

2.2. Delfino v. Agilent Technologies: A Case of Competence 309

2.3. Employer Liability Without Fault—The Doctrine of Respondeat Superior . 310

2.4. Negligent Supervision and Retention of Employees 311

2.5. Intentional Harm on the Internet . 311

2.6. Cybertorts . 312

3. Why Doe Lost and Delfino Won—A Case of Risk Management 313

3.1. Why the Court Said XYC Was Liable . 313

3.2. Why the Court Said Agilent Should Not Be Liable 315

4. Conclusion . 315

Acknowledgments . 317

References . 317

THE COMMON LAW AND ITS IMPACT ON THE INTERNET 301
are stronger property rights, less corruption, and more efficiency.1 Moreover, the

common law’s flexibility, versus the rigidity of statutory and regulatory law used

exclusively in the civil law system, is measurably better at creating new rules for

protecting investors and other stakeholders.

The common law’s importance in protecting activities on the Internet cannot be

understated. The Internet is one of the greatest innovations and generators of wealth

the world has ever seen. However, to be truly effective it cannot function properly in

a lawless environment. Property rights need to be protected or the incentives

necessary for the creation of wealth will be undermined. The common law has

proven for centuries that it is up to the challenge.

This chapter will first explore how and why this thousand-year-old legal system has

risen to such towering accomplishments and where it will likely evolve in its new role

of protecting the cyberworld. The second part will discuss a case study concerning the

liability of employers for the wrongful acts of their employees on the Internet at work.

The aim of this section is to demonstrate how the courts applying the common law of

two states, New Jersey and California, met the challenge. The lesson that was learned

from these two cases is that the common law creates rights and duties that the users of

the Internet must understand to protect their personal and property interests.

1.1 A Brief Primer on the Common Law

The common law’s foundation was based on a very simple but inspired premise.

After the successful invasion of England, a succession of Norman kings sent their

most trusted administrators, later called judges, out into the shires or counties of the

newly vanquished English realm. Here, they were instructed to set up a system to

manage and pacify this new but very hostile frontier.

The judges quickly learned that pursuing a peaceful approach to settling disputes

could avoid bloody uprisings and conflicts. They discovered that the local Anglo-

Saxon inhabitants, in many cases, already possessed customs and common sense

solutions that they could successfully draw upon to solve many local problems as

well as to placate those who may pose a threat to them in the future.

Indeed, today much like the approach used by the old common law judges, the

idea of listening first to those who are aggrieved and then hammering out a solution

based on evolving common law principles has and will continue to solve many of the
1 In the civil law system, legislation is primary source of law and courts base their decisions on

provisions of the relevant codes and/or statutes. The civil law system is used in continental Europe and

much of Latin America, East Asia, and Africa. In the common law system, cases have traditionally been

the primary source of law and courts base their decisions on prior case law. The common law system tends

to be used in countries, like the U.S., whose legal traditions originated in Great Britain.

302 R. AALBERTS ET AL.
Internet’s most dangerous threats. After all, the Internet is, if anything, a new frontier

marked by conflict and in a constant state of change. The more devious inhabitants of

cyberspace (hackers, spammers, etc.), much like the local and hostile Anglo-Saxons

of the eleventh century, are not only clever and destructive, but can regroup and

strike quickly. The common law came into being as a system to do precisely what we

are trying to do today in pacifying the Internet—manage a threatening and hostile

adversary in a new, albeit nonspatial, environment called cyberspace.

The common law’s flexibility offers a number of advantages for managing cyber-

space. The judge-made, common law can, in many instances, not only react faster, but

has often performed historically more competently than legislatures. This has espe-

cially been the case in confronting the unpredictable threats posed by new technologies.

Legislative bodies, such as Congress, are slow and often riddled with special interests.

As a result, these elective bodies are reluctant to address issues that are too politically

sensitive or are overly influenced by special interests.Moreover, the laws they produce,

in the form of statutes and codes, are often narrow, as well as vague. Statutes can take

years to decipher and often yield unintended consequences. Courts, on the other hand,

are able to intervene and apply well-settled, centuries-old rules of law (i.e., trespass,

nuisance, etc.) to the specific facts arising in modern conflicts. This allows courts the

flexibility of adapting long-standing and well- understood legal principles to the many

new problems created by modern technological developments.

The structure of the common law can also bestow the benefits of learning from the

past while constructing a better-managed future. This key attribute can help guide the

Internet. One of the bases of the common law is the deference given to precedents.

Once a precedent is established other judges generally must, because of the doctrine of

stare decisis, apply these precedents. Indeed, the common law has enjoyed widespread

credibility and functionality due to its strong adherence to stare decisis. Courts are able
to impart certainty, fairness, and predictability upon those who are seeking their

guidance. Of course, judges can overrule established precedent. But if they do, they

must be prepared to articulate compelling socioeconomic, political, or technological

reasons. Overruling precedent, in the words of Chief Justice of the Supreme Court

John Roberts during his confirmation hearings, inflicts a ‘‘jolt’’ on the legal system [2].

Tradition and practicality dictate an almost sacred respect for this venerable doctrine.
1.2 Common Law Actions and the Internet

In recent years, the common law has protected Internet users from a variety of

threats and intrusions often originating from the broad sweep of tort law.2 We will

begin by discussing one very old common law action in tort called trespass to chattels
2 A tort is defined by West’s Legal Dictionary as ‘‘A civil wrong (other than a breach of contract) that

has caused harm to person or property.’’

THE COMMON LAW AND ITS IMPACT ON THE INTERNET 303
and then explain its present legal utility to managing the Internet. After that, we will

turn to another venerable common law action, nuisance. One important doctrinal

development concerning the applicability of trespass to chattels and nuisance to the

Internet will also be presented to demonstrate the dynamic and flexible nature of the

common law. To this end, our chapter will hopefully reveal how the common law will,

in a number of key instances, offer some of the protections for combating the Internet

problems of the future.
1.2.1 Trespass to Chattels
The common law action of trespass to chattels3 was created centuries ago to battle

those who were transporting or carrying off another’s personal property. Often, this

was a farmer’s livestock—hence the word chattel, the Norman French word for cattle.

Today, it encompasses all direct interferences with another’s personal property [3].

For years, trespass to chattels was overshadowed by its more popular legal brother—

conversion4—which often afforded better monetary relief. The Internet, however, has

spawned a legal renaissance for this long ignored action. As one commentator notes: ‘‘

[Trespass to chattels is] a centuries-old. . .theory that languished for years in the dusty
archives of obscure legal doctrine learned and then promptly forgotten in the first year

of law school, which has unexpectedly found new life courtesy of the Internet’’ [4].

The efficacy of trespass to chattels in combating Internet incursions was signaled

in a 1996 case titled Thrifty-Tel, Inc. v. Bezenek [5]. In Thrifty-Tel, the defendants

were accused of ‘‘phreaking’’—the practice of cracking a phone network, usually as

a way of making free long-distance calls. Since existing state or federal statutes did

not, at least at that time, address phreaking, the court was forced to rely on the

common law. Importantly, the court ruled that the flow of electrons was sufficiently

tangible to constitute physical contact, a required element of a trespass to chattels.

The significance of Thrifty-Tel cannot be understated. Just 1 year later, in

CompuServe, Inc. v. Cyber Promotions, Inc. [6], an Ohio court followed the same

logic but applied it for the first time to spammers. The court argued that science now

afforded the opportunity to quantify what was, in the past, not possible. This includes

gases, shockwaves, and particulates. Furthermore, the electronic message sent through

CompuServe’s ISP by Cyber Promotions caused harm to CompuServe’s ISP because
3 Trespass to chattels is defined by West’s Legal Dictionary as a ‘‘Tort with the following elements (a)

personal property-Chattel, (b) plaintiff is in possession of the chattel or is entitled to immediate possession,

(c) intent to dispossess or to intermeddle with the chattel, (d) dispossession, impairment, or deprivation of use

for a substantial time, (e) causation of the dispossession, impairment, or deprivation.’’
4 Conversion is defined by West’s Legal Dictionary as the ‘‘unauthorized exercise of dominion or

control over someone’s personal property (chattel).’’

304 R. AALBERTS ET AL.
the ‘‘multitudinous electronic mailing’’ demands the disk space and drains the proces-

sing power of plaintiff’s computer equipment. This, in turn, caused ‘‘the value of that

equipment to CompuServe [to be] diminished even though it is not physically

damaged by defendants’ actions’’ [7].

Possibly the most important trespass to chattels case involving the Internet was

eBay v. Bidder’s Edge, Inc. [8]. In eBay the defendant Bidder’s Edge infiltrated

eBay’s Web site with search ‘‘spiders’’ which ‘‘screen scraped’’ eBay’s Web site and

placed the information on its own Web site. eBay argued that Bidder’s Edge caused

its Web site to lose the use of a section of its computer space and therefore its

efficiency. This, it claimed, constituted a trespass to chattels. Although Bidder’s

Edge scraped a relatively small load of 1.53% off of eBay’s listing servers, the court

maintained that if its actions were not stopped, more companies would do the same.

In the aggregate, the court argued, ‘‘eBay would be brought to its knees by what

would be then a debilitating load’’ [8]. Trespass to chattels, however, hit a jurispru-

dential detour a few years later. While some may view this as a weakness, the

dynamic that unfolded further showed how adaptive the common law can be as it

solves the complexities of the cyberworld. In the now famous case of Intel Corp. v.
Hamidi [9], a disgruntled Intel ex-employee sent out, over a 2-year period, in excess

of 30,000 inflammatory and uncomplimentary emails about his former employer to

Intel employees. Hamidi’s behavior, while troublesome, did not reach the point

where he could be prosecuted under existing statutes. He did not, for example,

breach computer security barriers. When asked, he obligingly removed recipients

from his mailing list. His barrage of emails also did not cause physical damage or a

disruption of Intel’s computer system nor were employees kept from using their

computers. The havoc that Hamidi wreaked was more pedestrian. His emails

sparked a swell of water cooler talk setting off productivity and morale issues at

Intel. Apparently Hamidi’s email struck some sensitive nerves at the chip giant.

What the Hamidi case did trigger legally, however, is a repositioning of the

common law concerning a trespass to chattels and the future emergence of the

common law action of nuisance as a legal weapon. Under California’s common

law, trespass to chattels requires that there must be a showing of actual damage to

Intel’s servers, such as slowing it down or causing a loss of a quantifiable amount of

its system. This, as stated, did not occur in the Hamidi case.
1.2.2 Will Nuisance Emerge as a Viable Action in
Internet Law?
The outcome of the Hamidi case was not completely unanticipated, at least by legal

scholars and commentators. Before the decisionwas issued, someworried that trespass

to chattels, especially after the eBay and CompuServe rulings, might be traveling in an

THE COMMON LAW AND ITS IMPACT ON THE INTERNET 305
unreasonable and dangerous direction. For example, how chilling would it be to

Internet activity if anyone who sends out information that any recipient thinks is

spam, could be sued? These kinds of questions were taken seriously in the Hamidi
decision. Undoubtedly, other courts felt the same need for an alternative action.

The early, but decidedly savvy common law lawyers were, if anything, able to

seek out alternative methods for solving their clients’ troubles. They were some of

the earliest practitioners of arguing fine distinctions and analogies for advancing

their cases. Times have not changed. The narrowing of trespass to chattels has only

opened up the action of nuisance as another means for solving Internet woes.

Interestingly enough, it was the Hamidi court that has helped this process along.

Nuisance, like trespass to chattels, is also a very old common law action. It is

invoked when one landowner unreasonably interferes with the use and enjoyment of

another’s land.5 Unlike a trespass, however, it does not require an actual physical

invasion. Invisible incursions, like foul smells, fumes, and electromagnetic energy,

can constitute a nuisance.

Possibly the greatest contribution that nuisance may offer the Internet is a method

for determining fair outcomes. Nuisance requires a balancing of the extent of the harm

caused versus its social utility as a means to determine whether it is reasonable to

outlaw a purported nuisance. Or as one economic commentator explains ‘‘Unreason-

ableness alternatively may exist if the activity is meritorious but the defendant fails

properly to internalize the costs of his activity, thereby imposing a negative externality

on society in addition to whatever social utility his activity provides’’ [10].

The Hamidi court consistently hinted that a burden/benefit approach may be the

best way to counter the various injurious Internet activities—especially those that

cannot be quantified. For example, the court noted that ‘‘Creating an absolute

property right to exclude undesired communications from one’s email and Web

servers might help force spammers to internalize the costs they impost on ISPs and

their customers. But such a property rule might also create substantial new costs, to

email and e-commerce users and to society generally, in lost ease and openness of

communication and in lost network benefits’’ [9]. For these reason, a case-by-case

analysis is likely the best method for making these determinations.
1.2.3 The Future of Pop-up Ads, Spyware,

and Adware
Pop-up ads are quite possibly the most irritating features we face on the Internet.

Can trespass to chattels or nuisance take on these annoyances? One argument is that

pop-ups, including those embedded on our hard drives by spyware and adware, can
5 Nuisance is defined by West’s Legal Dictionary as the ‘‘an unreasonable interference with the use

and enjoyment of land.’’

306 R. AALBERTS ET AL.
slow down a system or even cause a computer to crash. This could occur, for

example, when a user’s project takes up most of his computer’s processing power,

memory, and hard drive space only to be lost by the uninvited arrival of pop-ups, not

to mention spiders, Webcrawlers, and robots. In such a case, valuable data would be

lost if the system crashes. However, such an outcome is probably rare. Thus,

nuisance may be a better bet.
1.2.4 Spam and Electronic Nuisance
Although nuisance has not been directly applied to spam, it could likely provide

computer users with legal protection. And even though it has been traditionally tied

to invasions to real property, nuisance has already been successfully invoked in at

least two cases—one involving a series of unwanted and intrusive phones calls and

another when someone caused another to have electronic disturbances to his TV

reception. Thus, interference with personal property located in, say, a house can be a

nuisance to its inhabitants. Expanding the doctrine to computers in homes is a

foreseeable extension.

As discussed, nuisance employs a burden/benefit framework to determine its

social utility. Assuming that spam is defined as illegitimate commercial solicita-

tions, spam received over time can be not only highly annoying, but is often used to

sell fraudulent products and services. Moreover, it may even threaten the proper

functioning of a system as well as individual computers. Its benefit, of course, is

economic. Spam helps unscrupulous individuals make huge amounts of money—

a decidedly small amount of social utility.6

1.3 The Common Law Versus Statutes

State and federal legislative bodies have, of course, addressed some of these

Internet evils. There can be problems with statutes, however. Statutes are typically

created to target a specific problem raised by special interest groups ranging from

corporations to consumer protection groups and then brought to the attention of

lawmakers. A good example of this is Congress’ 2003 CAN-SPAM Act. The Act

outlaws unsolicited commercial email sent by illegitimate marketers. However, it

has been criticized as ineffective for several reasons. First, a private person cannot
6 Based on data from the National Technology Readiness Survey [11], Aalberts, Poon, and Thistle

[12] estimate the cost of the approximately one trillion spam emails sent in 2004 at $22 billion. This

includes the cost of sending spam and the value of time spent dealing with spam. Since 4.7 million adults

purchased a product or service advertised in spam emails, they would have to value their purchases at over

$4600 per person in order for the benefits of spam to outweigh the cost.

THE COMMON LAW AND ITS IMPACT ON THE INTERNET 307
use it; only the FTC, state authorities and ISPs can. Second, it preempts similar state

laws, some of which were in place and were stronger and arguably better. Lastly,

Congress, for whatever political reason, furnished spammers with an enormous

break by incorporating an opt-out provision which implies consent to receive

spam unless the recipient states otherwise. Of course, the task of opting out of

thousands of spam messages can be, if anything, daunting. In addition, the act of

opting out verifies that the email address is valid and active, which almost certainly

leads to even more spam in the future. Apparently, Congress, with perhaps the

exception of well-heeled lobbyists, does not normally listen as well as a judge might

to those who have something valuable to offer.
2. The Common Law in Action: Employer
Liability to Third-Party Victims on the Internet

To demonstrate the common law’s importance for settling ongoing disputes that

arise in cyberspace we present two quite recent cases, one from New Jersey, Doe v.
XYC Co. [13] and the other, Delfino v. Agilent Technologies, Inc. [14] from Califor-

nia. These cases reveal the increasing importance of managing employees properly in

their use of the Internet and both concern well-settled common law principles that

have been applied to resolve disputes occurring in the physical realm for centuries.

2.1 A Study in Failure to Protect Third Parties:

The XYC Corp.

Most ISP supervisors are aware they possess legal rights to monitor employee

Internet use. Laws, such as the federal Electronic Communications Protection Act

and others, generally allow employers great leeway to monitor [15]. Yet, as men-

tioned, statutes can only go so far, often lacking the flexibility to react to unique but

important disputes that may arise both in the physical and cyber realm. One such

development arose in a 2005 New Jersey decision, Doe v XYC Corp. This case

created a legal duty to monitor workers properly and reasonably in order to protect

third parties. The case, the first of its kind, has subsequently sent shockwaves as well

as garnered support throughout both the legal and business communities [16].

The compelling facts in Doe portend just how far-reaching the case and the duty it

created may become. XYC’s problems began when employees lodged complaints

concerning a fellow employee, Doe, who was apparently accessing and viewing

pornographic sites on his company computer. To verify the information, the com-

pany’s Senior Network Administrator (SNA) checked Doe’s computer logs

308 R. AALBERTS ET AL.
revealing sites with highly suspicious names such as ‘‘bestiality’’ and ‘‘necrophilia.’’

Sensing an obvious legal and moral problem looming, the SNA confronted Doe and

ordered him to stop visiting ‘‘inappropriate sites.’’ Doe, however, continued to

disobey the order. Sensing his lack of cooperation, the SNA and Doe’s immediate

supervisor continued to probe and found evidence of similar sites. In response the

SNA went directly to the Director of the Network and PC Services (the Director)

requesting an investigation. At this point, the Director made a significant mistake.

Instead of investigating the allegations, she ‘‘admonished’’ the SNA and told him

never to access any employee’s Internet activity in the future. In fact, the SNA was

told that violations of this policy could result in his job loss. Doe, unaware of his

supervisor’s latest discovery, continued to access the illicit sites. Ironically, the

company also had a second Internet use policy that allowed the accessing and

review of its employees’ sites if it was business related.

Doe’s suspicious behavior continued to agitate his coworkers. Some caught

him, for example, shielding his computer and quickly minimizing images, as well

as leaving provocative pictures inadvertently on his screen. Finally, in reaction to

the latest developments and in apparent defiance of the Director’s injunction,

Doe’s immediate supervisor entered his cubicle while he was at lunch and

clicked on his ‘‘Web sites visited.’’ He discovered a number of probable child

pornography sites including one with the title ‘‘Teenflirts.org: The Original

Non-Nude Teen Index.’’ Thereafter, the supervisor, with permission from his

superiors (who were not involved with the Director) told Doe to quit his unlawful

Internet activities. He agreed to this second demand, yet defiantly continued

accessing the sites.

Doe’s behavior continued for approximately 2 years after the initial complaints by

coworkers. Eventually, company supervisors notified the police, who found nude

photographs of Doe’s own 10-year-old stepdaughter in the company dumpster.

These were the same pictures that he had sent out as ‘‘payment’’ for access onto

the child pornography sites. The discovery of the pictures formed the basis for a

search warrant of his office and computer in which an additional 70 downloaded

pictures were discovered, including more pictures of his stepdaughter.

Doe’s ex-wife subsequently sued XYC for failing to investigate and protect her

daughter. XYC prevailed at the trial level in a motion for summary judgment, but the

appellate court overruled it stating: ‘‘. . .[the] defendant had a duty to report Employee’s

activities to the proper authorities and to take effective internal action to stop those

activities.’’ The court further maintained that: ‘‘Defendant was under a duty to

exercise reasonable care to stop Employee’s activities, specifically his viewing of

child pornography which by its very nature has been deemed by the state and federal

lawmakers to constitute a threat to ‘others’. . .’’ The court’s use of the phrases

‘‘duty to report’’ and ‘‘duty to exercise reasonable care’’ are particularly significant.

THE COMMON LAW AND ITS IMPACT ON THE INTERNET 309
The case was subsequently sent back to the trial court to determine if the victim had

suffered psychological harm.7
2.2 Delfino v. Agilent Technologies: A Case

of Competence

In contrast to XYC’s botched ISP management, Agilent Technologies performed

competently thereby avoiding the kinds of legal problems XYC suffered. Perhaps

more importantly for ISP managers, Agilent’s prudent crisis management may serve

as a valuable common law precedent to counter the heightened legal responsibilities

the Doe case may have created.

In Delfino, the plaintiffs Michelangelo Delfino and Mary Day received a series of

threatening messages, as well as postings on a message board, from a source with

the screen name of ‘‘Crack_smoking_jesus.’’ In fact, an Agilent employee named

Cameron Moore was sending the messages to apparently harass and intimidate the

plaintiffs due to litigation pending against him instigated partly by the plaintiffs.

Ultimately, it was discovered that some of Moore’s threats had been sent from work.

For this reason, the plaintiffs also sued Agilent for, among other actions, negligent

supervision and retention of Moore.

Agilent first learned of the threats against the plaintiffs when an FBI special agent

requested information on an IP address that originated from Agilent. Agilent’s IT

personnel quickly agreed to cooperate with the FBI and succeeded in tracing the

threats to Moore. When the Agilent ISP personnel confronted him with the informa-

tion, Moore apologized, but contended that no threats had gone through Agilent’s

computer systems. He was told to agree in writing to never engage in this kind of

activity again. Agilent management then gave Moore a ‘‘stern warning’’ but acknowl-

edged that they had no proof that any of the threatening emails had gone through its

system. Moore was also reminded that the company’s Standards of Business Conduct

does not allow employees to use company systems for personal reasons.

After several more months of investigation, the FBI told Agilent that it was about

to arrest Moore. Agilent’s management inquired whether the arrest was related to

Moore’s use of Agilent systems. The FBI assured them that it was not. Still, Agilent

did not put the matter to rest but continued to stay on top of the investigation. It

asked the FBI for its arrest affidavit and continued to interrogate Moore. During the

latest line of questioning, Moore admitted that he had sent, while at work, emails

that ‘‘weren’t nice and could be interpreted as threats.’’ After the admission, Moore
7 In a 8 May 2006 interview in the Lawyers Weekly USA with the lead counsel who represented the

plaintiff’s ex-wife and child, it was revealed that the case was privately settled.

310 R. AALBERTS ET AL.
was put on administrative leave and several days later terminated for ‘‘misuse of

Agilent’s assets.’’

The facts in the Doe case are a good example of how a company can become

liable through the fault, in this case negligence, of its supervisory personnel for

failing to intervene competently once they become aware of a potential legal

problem. The Delfino case, on the other hand, demonstrates that when a company’s

management quickly and adeptly reacts to a problem, they can avoid liability. The

following discussion delves into the law regarding the supervision of employees and

how the court resolved both cases.
2.3 Employer Liability Without Fault—The Doctrine

of Respondeat Superior

In both cases, it is apparent that the employees were not engaged in activities that
were within the normal scope of their workplace duties. And because they were not,

neither XYC nor Agilent was found liable under the theory respondeat superior (see
Endnote). Still, an understanding of this doctrine is important to understand how

companies can be found liable for their employees’ wrongful acts. Under respondeat
superior, employees’ wrongful acts or torts impute liability onto their employers [3].

Simply put, liability is assigned to the employer (usually a business entity such as a

corporation or a limited liability company) even if it (through its management and

supervisory personnel) did not approve or consent to the employee’s particular act.

Still, the employee’s acts must, as mentioned, occur within the scope of the employ-

ee’s workplace duties. For ISP and other management personnel, the doctrine is

particularly worrisome since their companies become strictly or vicariously liable
once these acts are committed.8 The Restatement (Second) of Agency Section 228

provides the generally accepted definition ofwhat constitutes the scope of employment.

The conduct of the employee is within the scope of employment if:

1. It is of the kind the employee is employed to perform.

2. It occurs within authorized space and time limits.

3. Some or all of it is done to serve the employer.

4. If the employees use force against each other [7].
8 Strict liability is liability without fault. Under strict liability, the plaintiff only needs to prove that the tort

happenedand that thedefendantwas responsible.Vicarious liability is liability for thewrongful acts of another.

Negligence is behavior that falls short of what a reasonable personwould do to protect others from foreseeable

harm.Under negligence, the plaintiffmust prove that the defendant owed a duty of care to the plaintiff, that the

defendant breached that duty, that the breach of dutywas the proximate cause of harm to the plaintiff, and that

the plaintiff suffered injuries to his person or property. See generally West’s Legal Dictionary.

THE COMMON LAW AND ITS IMPACT ON THE INTERNET 311
Although the doctrine has existed for decades, it remains controversial since the

employer is liable even after its management personnel exercises due diligence in

selecting and supervising an employee who subsequently commits an illegal act.

In contrast to the foregoing, in which employees are engaged in the course and

scope of their jobs, actions in which the employer would not be liable under this

doctrine are those that are ‘‘purely motivated by personal interests or are outrageous in

nature. . .’’ Exceptions to these may occur when the ‘‘employee harms another because

of the opportunity that the job offers’’ [19]. This class of employer liability could

arise due to an employee’s negligence or even when he intentionally harms another

such as when an employee defrauds a third party on the job to enrich himself [3].
2.4 Negligent Supervision and Retention
of Employees

Since the errant employees in both the Doe and Delfino cases were not engaged in
activities that fell within the scope of their jobs, the pertinent legal issue was whether

their employers had negligently supervised and retained these employees. This

means that even if employees on the job are not acting within the scope of

employment or are not furthering their workplace duties, the employers themselves

can be negligent for the hiring, supervision and retention of dangerous or careless

employees. This means that an employer will not be subject to strict or vicarious

liability like they would be under the doctrine of respondeat superior[3], but directly
could still be liable for negligence. This theory is pertinent since, as it will be

discussed below, XYC was found to be negligent in its supervision/retention of

Doe, while Agilent was not in respect to how it managed Moore.
2.5 Intentional Harm on the Internet

Employers may also incur liability when their employees engage in intentionally

harmful acts at work. If an employee intentionally injures another’s person or

property, the employer can be liable if it is ‘‘reasonably connected with the employ-

ment as to be within its ‘scope’’’ [3]. An exception to this occurs if the employees’

motives, for example, are ‘‘purely personal,’’ that is, are ‘‘unprovoked, highly

unusual, and quite outrageous’’ [3]. Even under this scenario a company’s liability

can attach if management knew or should have known that the employee would act

in such a personal or outrageous way. An example of this occurs when an employee,

such as a bouncer, possesses known dangerous and aggressive behaviors, and then

injures someone while on the job.

312 R. AALBERTS ET AL.
Both Doe and Moore engaged in intentional acts that hurt others outside their

companies. Although the case, as mentioned, was remanded to the trial court to

determine what injuries his stepdaughter may have suffered, Doe’s intentional

transmission of ‘‘kiddie porn’’ is considered under the law to constitute a threat to

others.9 Moore was accused of a tort known as the intentional infliction of emotional

distress, among other acts.
2.6 Cybertorts

Cybertorts are torts committed in cyberspace [17]. The legal environment sur-

rounding cybertorts is complicated and evolving. For example, in the first part of this

chapter, we explored the torts of trespass to chattels and nuisance and how they

pertain to the Internet. Now the legal duty imposed on employers, after Doe in

particular, may significantly expand the legal landscape for these and other kinds of

torts committed in the workplace.

In 1996, the law surrounding ISP liability for cybertorts was greatly clarified when

Title V of the Telecommunications Act of 1996, better known as the Communications

Decency Act (CDA) was passed. Under the CDA, Section 230 Congress shielded

commercial ISPs from civil liability should they fail to remove or block tortious

activities as long as the ISP does not actually have input in the creation of the offensive

material. The law also protects ISPs that attempt to block and screen offensive

material under the so-called ‘‘Good Samaritan’’ exception. Initially the law was passed

to protect ISPs from defamation but has since been expanded to include virtually all

tort liability. With ISP immunity, which includes other intermediaries such as Web

sites and online information content providers, successful prosecution of cybertort

activities has generally been thwarted, most often because the victims are unable to

locate and sue the victimizers. Still, even if they can be located, they are usually not

‘‘deep pocketed’’ corporate defendants who are heavily insured and able to pay off

large judgments [11]. Thus, cases like Doe and Delfino, in which economically viable

corporations are being sued, will likely increase.10
9 The duty to report child pornography once it becomes known is required under federal law at 42 USC

Section 13032(b) and imposes sanctions on ISPs at 42 USC Section 13032(b)(4).
10 It is noteworthy that XYC Company did not assert that it had immunity as an ISP under the broad

protections of the Communications Decency Act, 47 USC Section 230. The court in Delfino, on the other

hand, did argue for CDA immunity successfully. Not all employers, however, own and operate their ISP’s

and so may not be protected by this provision. Moreover, immunity can be lost in certain circumstances. For

example, in a potentially influential case from the 9th Circuit, Fair Housing Council of San Fernando Valley
v. Roommates.Com, LLC, 2008 WL 879293 (9th Cir., 3 April 2008), an ISP lost its immunity under CDA

Section 230 when it became a non-neutral ‘‘information content provider.’’ Roommates.com contains facts

different from both theDoe andDelfino cases discussed in this chapter.Moreover, as stated above, there is an

affirmative duty to report child pornography once an ISP operator becomes aware of it.

THE COMMON LAW AND ITS IMPACT ON THE INTERNET 313
The law concerning employer liability is complex and a full discussion is beyond

the scope of this chapter. However, the main legal issues can be summarized with

the aid of Fig. 1. The first question is whether the individual is an independent

contractor or an employee (Node A in Fig. 1). Employers are not strictly liable for

the acts of independent contractors, but may be liable for negligent selection or

retention of the contractor (Node B). If the individual is an employee, the next

question is whether the employee is acting within the scope of employment (Node

C). If the employee is acting within the scope of employment, as described in the

Restatement (Second) of Agency, then the employer is strictly liable. If the

employee is not acting within the scope of employment, other issues become

important (Node D). The employer may be liable for negligent supervision and

retention of the employee (Node E), if the employee intentionally harms a third party

(Node F) or if the employee commits cybertorts (Node G).
3. Why Doe Lost and Delfino Won—A Case
of Risk Management

Even though both XYCCo. and Agilent were sued under the same cause of action—

negligent supervision and retention—the differing outcomes are easy to understand.
3.1 Why the Court Said XYC Was Liable

TheDoe case illustrates the harm that can be caused by highly imprudent behavior

both in the way a company generally manages its workers, and its failure to

effectively respond to trouble.11 One of XYC’s biggest mistakes was the confusion

caused by having two computer use policies. One policy was well-distributed and

specifically stated that emails were the company’s property and should not be

considered confidential. The policy also stated that anyone aware of the ‘‘misuse

of the Internet for other than business reasons was to report it to Personnel’’ [14].
11 How influential theDoe case will be on future common law courts is highly speculative. Although it

is important to point out that, while a company like XYC may not be liable for the contents posted on its

ISP if it qualifies under the CDA immunity, once an employer does learn of employee wrongdoing, at

least under the reasoning of Doe, it takes on a legal duty to supervise and retain its employee in a non-

negligent manner. One case, besides Delfino, has also found employers not liable for the wrongful acts of

employees on the Internet. In that case, Booker v. GTE.Net LLC, 214 F. Supp.2d 746 (E.D. Ky. 2002), the

employer GTE.Net, much like Agilent Company, was considerably more careful in how it handled the

wrongful acts of its employees than the XYC Company.

Employer may be liableIs employer
negligent in the

selection/retention
of IC?

 Employer is not liableB
NoIndependent contractor (IC)

The worker is Employer is strictly liable
A

Acts within scope of employment
Employer is liable

Company employee
Yes

E
No

C
Employer is liable

Yes Acts outside scope of employment
Intentional harm

FD
No

Cybertorts
Employer may be liable

Yes

G
No

Yes

Negligent/retention

Employer is not liable

Employer is not liable

Employer is not liable

FIG. 1. Employer liability for the actions of its employees on the Internet.

314 R. AALBERTS ET AL.
Yet, at the same time it had another company policy, communicated by email,

prohibiting the monitoring of employee computer usage.

The inconsistency prompted the court to rule that the first policy, in which XYC

reserved rights, conflicted with the privacy rights it conferred to their employees

under the second policy. In effect the court decided that the former policy negated

the latter stating that ‘‘[d]efendant [XYC Co.] recognized its right to monitor

employee Web site activity and emails by promulgating and distributing a policy

to that effect during the relevant time period’’ [13]. Moreover, the court explained,

XYC produced its own duty to monitor but then failed to carry it out properly.

Consequently, once management had notice of Doe’s dangerous actions, it had a

‘‘. . .duty to investigate the employee’s activities and to take prompt and effective

action to stop the unauthorized activity, lest it result in harm to innocent third

parties’’ [13].

THE COMMON LAW AND ITS IMPACT ON THE INTERNET 315
The Delfino case clearly demonstrates how a prudent policy that is clear and

expeditiously enforced can save a company from civil liability. Delfino is signifi-

cant, not only as a positive Internet management model for ISP personnel, but also

because it suggests that a company, like Agilent, can be shielded as a ‘‘provider or

user of an interactive computer service’’ under CDA Section 230. What is important

to note is the court’s statement that ‘‘even if the [CDA] immunity did not apply’’

Agilent still would not have been liable for the torts the plaintiffs alleged. These

actions help us to better understand and apply the lessons the case offers. It also may

benefit other ISP supervisors in the future who may not presently enjoy this special

immunity, since it is currently a binding precedent only in a portion of California.

3.2 Why the Court Said Agilent Should Not Be Liable

The Delfino court gave three reasons for exonerating Agilent for the negligent

supervisor/retention of Moore. First, the court stated that Agilent owed no duty of

care (a required element in proving negligence) to the plaintiffs. Although there are a

number of factors a court looks at to determine whether a duty exists, several of the

factors were considered of particular importance for Agilent. One was that Agilent,

despite its careful procedures, had no prior notice that Moore was harassing the

plaintiffs. Foreseeability of harm is very important in creating a legal duty. XYC, on

the other hand, experienced ample opportunities to foresee the kind of harmDoemight

inflict on someone. Moreover, the court explained, Agilent should shoulder no ‘‘moral

blame,’’ another factor, since it had promulgated a clear, consistent policy for discov-

ering and thus preventing this sort of activity. A tougher policy meant to prevent harm

might have even, according to the court, resulted in a ‘‘chilling effect’’ and ‘‘extreme

employer oversight of employee’s [Internet] activities.’’ This language suggests that

Agilent did what it was supposed to do, but not to excessive lengths. The court

additionally argued that imposing ‘‘a duty to the world for all acts of its employees’’

even when some are not business related, would be too burdensome. The court

concluded by maintaining that such a risk, one that is an ‘‘unknown malicious act of

an employee bearing no relationship to his job,’’ is not likely to be insurable. Courts, it

noted, have been very reluctant to impose an uninsurable duty on employers [14].
4. Conclusion

The common law has been called upon for centuries to settle some of the most

troublesome problems confronting individuals, businesses, and government. Now,

some of these problems have morphed from those occurring in physical space to

those creating havoc in cyberspace.

316 R. AALBERTS ET AL.
These ‘‘cyberevils’’ range from such cybertorts as defamation, ‘‘cyberassment’’

(including Webjacking, spoofing, cybersquatting, denial of service attacks or email

bombs, sending viruses, cyberbullying, sexual harassment, etc.) [18], intentional inflic-

tion of mental distress, as well as spamming, trespass to chattels (personal property)

mentioned in the first part of this chapter. Unfortunately, all of these will continue to

occur. Then again, the common law will likely be up to the task of addressing the

problems as they arise and helping victims to be compensated for losses theymay incur.

The Doe case, discussed in the second part of this chapter, portends the potential

for large-scale harm that can befall ISP personnel who fail to manage prudently

while also giving guidance to those who follow Agilent’s example. Both cases were

cases of first impression, that is, there were no previous cases or precedents for the

courts to follow. Given the general paucity of Internet cases and the doctrine of stare
decisis, they will likely be influential on courts in the future.

In the end, management personnel must be aware of the law and what it can offer

both as a sword and as a shield in combating the cyber enemies who may impair

property and harm people. Those, for example, who chose to imitate Agilent’s

management approach can feel confident relying on that legal outcome, while

companies, like XYC, which retain malicious employees who harm others outside

the company and possess ineffectual management policies and personnel, may

become vulnerable to lawsuits and expensive judgments. These two cases, both

the product of the common law, will likely influence the cyberworld of tomorrow.
Endnote Legal Definitions*

Conversion: The unauthorized exercise of dominion or control over someone’s

personal property (chattel).

Negligence: Behavior that falls below what the average reasonable person would

do to protect others from foreseeable risks of harm. The plaintiff must prove that the

defendant owed a duty of care to the plaintiff, that the defendant breached that duty,

that the breach of duty was the cause of harm to the plaintiff, and that the plaintiff

suffered injuries to his person or property.

Nuisance: An unreasonable interference with the use and enjoyment of land.

Respondeat superior: The liability of an employer for the wrongful acts of his

employee.

Stare decisis: To abide by or adhere to decided cases.

Strict liability: Liability without fault.

Tort: A civil wrong (other than a breach of contract) that has caused harm to

person or property.

THE COMMON LAW AND ITS IMPACT ON THE INTERNET 317
Trespass to chattels: Tort with the following elements: (a) personal property-

Chattel, (b) plaintiff is in possession of the chattel or is entitled to immediate

possession, (c) intent to dispossess or to intermeddle with the chattel, (d) disposses-

sion, impairment, or deprivation of use for a substantial time, (e) causation of the

dispossession, impairment, or deprivation.

Vicarious liability: Liability for the wrongful acts of another.

*W. Statsky, West’s Legal Thesaurus/Dictionary, West Publishing Company, St. Paul, MN, 1985

(ISBN 0-314-85305-7).
Reference Books on Internet/Cyberlaw

I. Ballon, E-Commerce and Internet Law: Treatise with Forms, Glasser Legal-Works, Little Falls, NJ,

2001 (ISBN 1-88807-94-5).

G.B. Delta, and J.H. Matsuura, Law of the Internet, Aspen Publishers, Inc., New York, NY, 2001 (ISBN

0735522197).

M.A. Lemley, P.S. Menell, R.P. Merges, P. Samuelson, Software and Internet Law, third ed., Aspen

Publishers, Inc., New York, NY, 2006 (ISBN 9780735558649).

D.G. Post, P.S. Berman, P. Bellia, Bellia, Berman and Post’s Cyberlaw, West Publishing Company, St.

Paul, MN, 2002 (ISBN-13: 9780314166876).

D.M. Powers, The Internet Legal Guide: Everything You Need to Know When Doing Business Online,

John Wiley & Sons, New York, NY, 2001 (ISBN 0471164232).

D.W. Quinto, D. Desai, Law of Internet Disputes, Aspen Publishers, Inc., New York, NY, 2001

(ISBN 0735525927).

R.A. Spinello, Regulating Cyberspace: The Policies and Technologies of Control, Quorum Books,

Westport, CT, 2002 (ISBN 1-56720-445-7).

Acknowledgments

The authors wish to express their appreciation to Diane Crawford and the Communications of the ACM for

allowing us to use research and articles we have published in that journal as the basis for this chapter.

References

[1] R. LaPorta, F. Lopez-de-Silanes, A. Scheifer, R. Vishny, Law and finance, J. Polit. Econ. 105 (1998)

1113.

[2] S. Stolberg, A. Liptak, Roberts fields questions on privacy and precedents, The New York Times.

com, 2005.

[3] W. Keeton, D. Dobbs, R. Keeton, D. Owen, Prosser and Keeton on Torts, fifth ed., West Publishing

Company, St. Paul, MN, 1984 (ISBN 0-314-74880-6).

[4] T. Loomis, Internet trespass: companies turn to an old tort for a new reason, New York Law J. 227

(2000) 5.

[5] Thrifty-Tel, Inc. v. Bezenek, 46 Cal. App. 4th 1559, 1996.

[6] CompuServe, Inc. v. Cyber Promotions, Inc., 962 F. Supp. 1015 (ND Ohio, 1997).

318 R. AALBERTS ET AL.
[7] American Law Institute, Restatement (Second) of Agency, American Law Institute Publishers,

St. Paul, MN, 2005 (ISBN 0-314-96119-4).

[8] eBay v. Bidder’s Edge, Inc., 100 F. Supp. 2d 1058 (ND Cal., 2000).

[9] Intel Corp. v. Hamidi, 71 P.3d 296 (Cal. 4th Cir., 2003).

[10] S. Kam, Intel v. Hamidi: trespass to chattels and a doctrine of cyber-nuisance, Berkeley Technol.

Law J. 19 (2004) 427.

[11] Rockbridge Associates, National Technology Readiness Survey, Center for Excellence in Service,

R.H. Smith School of Business, University of Maryland (available at http://www.rhsmith.umd.edu/

ces/ntrs.html; last checked 1 May 2008), 2004.

[12] R. Aalberts, P. Poon, P. Thistle, Trespass, nuisance and spam: eleventh century common law meets

the Internet, Commun. ACM 50 (2007) 40.

[13] Doe v. XYC Co., 382 N.J. Super. 122, 887 A.2d 1156, 2005.

[14] Delfino v. Agilent Technologies, Inc., 145 Cal App. 4th 790, 52 Cal. Rptr. 3rd 376 (Cal. App. 6th

Dist., 2006).

[15] L. Sotto, et al., Workplace privacy in the U.S.: what every employer should know, Practicing Law

Inst. 861 (2006) 201.

[16] H. Gunnarsson, Must employers try to stop employees ‘‘unauthorized activity’’? Illinois Bar J. 94

(2006) 172.

[17] M.L. Rustad, T.H. Koenig, Rebooting cybertort law, Wash. Law Rev. 80 (2005) 335–361.

[18] C.E. Smith, Intentional infliction of emotional distress: an old arrow targets the new head of the hate

hydra, Denver Univ. Law Rev. 80 (2002) 1–58.

[19] L. Papa, S. Bass, How employees can protect themselves from liability for employees’ misuse of

computer Internet, and email systems in the workplace, Boston Univ. J. Sci. Technol. Law 10 (2004)

110.

http://www.rhsmith.umd.edu/ces/ntrs.html
http://www.rhsmith.umd.edu/ces/ntrs.html

Author Index
Numbers in italics indicate the pages on which complete references are given.
A

Aalberts, R., 299–317, 318
Aaronson, S., 130, 140, 142, 145, 147
Abadi, M., 152, 158, 179, 181, 184
Abdel-Hamid, T. K., 193, 222, 223, 226,

234, 235
Abowd, G. D., 102, 114, 289, 290, 297
Abts, C. M., 215, 220–222, 226, 231,

237, 240
Ackermann, C., 243–294, 295, 296
Acquaviva, A., 111, 115
Adams, J. E., 34, 54
Adelson, E. H., 25, 54
Adleman, L. M., 129, 145
Agamanolis, S., 89, 112
Agrawal, M., 127, 139, 141, 144,

145, 147
Aguilera, J., 75, 77
Aho, A. V., 163, 183
Aiken, A., 158, 182
Albert, J. D., 62, 77
Albrecht, A. J., 191, 241
Alghamdi, J., 287, 296
Allender, E., 127, 139, 141, 144, 145, 147
Allen, R., 110, 115
Alonso, M., 89, 112
Altunbasak, Y., 33, 54
Alvarado, J. A., 15, 54
Amberg, M., 228, 240
Ambler, S. M., 217, 219, 223, 235, 237
Ameres, G., 96, 114
31
American Law Institute Publishers, 304,

310, 318
Ammar, H. H., 290, 297
Ammari, H., 290, 297
Ancona, D., 157, 181
Anders, B., 263, 295
Andersson, C., 222, 236
Angkasaputra, N., 187–190, 192, 224,

229, 235, 241
Armstrong, J., 164, 175, 183
Arora, S., 118, 135, 143, 145
Asgari, S., 263, 295
Asundi, J., 290, 297
Atkins, D. L., 223, 225, 239
Auer, M., 231, 233, 240
Avery, B., 99, 114
Aycock, J., 151, 165, 176, 181
9

B

Babai, L., 133, 135, 136, 138,

145, 146
Babar, M. A., 290, 297
Bachmann, F., 254, 295
Baik, J., 223, 239
Baker, A., 98, 114
Baker, T. P., 140, 147
Ball, T., 223, 225, 239
Bamford, W., 97, 114
Barak, B., 118, 143
Barbacci, M., 290, 297
Barron, T., 227, 240

320 AUTHOR INDEX
Basili, V. R., 214, 224, 226, 235, 237, 239,
240, 241, 263, 295

Basri, R., 22, 54
Bass, L., 254, 289, 290, 295, 296, 297
Bass, M., 229, 240
Bass, S., 311, 318
Baus, J., 97, 114
Bayer, B. E., 32–34, 37, 54
Bazelmans, R., 222, 239
Bechtold, R., 221, 222, 224, 238
Beckhaus, S., 83, 112
Beck, K., 171, 177, 183, 184
Belady, L. A., 160, 182
Bella, F., 187–190, 192, 224, 229,

235, 241
Bengtsson, P., 245, 290, 294, 297
Benini, L., 111, 115
Bergel, A., 160, 171, 182
Berger, J., 187–190, 192, 224, 229, 235
Berman, L., 138, 146
Bernhaupt, R., 108, 115
Bernstein, E., 122, 144
Betin-Can, A., 263, 295
Bierbaum, A., 98, 114
Biffl, S., 231, 233, 240
Bilbro, G. L., 33, 54
Billinghurst, M., 90, 93, 113
Bimber, O., 97, 114
Bird, B. J., 218, 238
Black, A. P., 178, 184
Blackburn, J. D., 218, 220, 222, 233, 238
Blackwell, A., 92, 113
Blaine, T., 81, 112
Blankertz, B., 108, 115
Bloom, J. A., 4, 53
Blum, M., 120, 144
Bobrow, D. G., 163, 168, 183
Boehm, B. W., 188, 193, 215–217, 220–223,

226, 230, 236, 237, 239, 240
Boix, E. G., 168, 183
Boldt, A., 108, 115
Boll, S., 90, 113
Bomarius, F., 190, 195, 236
Borodin, A., 120, 144
Bosch, J., 245, 290, 294, 297
Brabrand, C., 162, 182
Bracha, G., 153, 157, 159, 168, 177, 179,

181, 183
Brant, J., 171, 183
Brassard, G., 130, 145
Brewster, S. A., 104, 114
Briand, L. C., 187, 188, 190, 195, 214, 235,

236, 237, 240, 247, 289, 296
Brombach, B., 97, 114
Brooks, F. P., 218, 220, 238, 254, 255, 295
Brown, A. W., 215, 220–222, 231, 237
Brown, M., 73, 75, 77
Bruckhaus, T., 223, 239
Brunelli, R., 6, 53
Bruns, E., 97, 114
Buck, I., 74, 77
Bucolo, S., 90, 113
Buhrman, H., 139, 146
Bultan, T., 263, 295
Butz, A., 97, 114
C

Cai, J. -Y., 133, 145
Cain, B. G., 219, 220, 238
Cai, X., 176, 184
Canning, P., 152, 181
Carbonneau, R., 227, 240
Cardelli, L., 152, 158, 159, 179, 181, 184
Carey, J. M., 219, 238
Carlson, D. V., 97, 114
Carmel, E., 218, 221, 238
Carmines, E. G., 241
Carriere, L. J., 290, 297
Cartwright, R., 155, 158, 179, 181
Castagna, G., 159, 182
Cates, P., 223, 240
Cavanagh, P., 10, 54
Celes, W., 165, 183
Center for Excellence in Service, 306,

312, 318

AUTHOR INDEX 321
Chambers, C., 165, 183
Chang, E., 34, 55
CHAOS Chronicles, 187, 241
Chauhan, A., 220, 238
Chen, M. Y., 96, 114
Chen, Z., 187, 213, 221, 222, 230, 235,

239, 240
Cheok, A. D., 81, 112
Cheung, S., 34, 55
Chiang, I. R., 220, 222, 238
Chidamber, S. R., 287, 296
Chow, T., 141, 147
Chrissis, M. B., 187, 189, 215–217, 235
Christiansen, T., 156, 163, 181
Chulani, S., 215, 220–222, 231, 237
Clark, B. K., 215, 216, 220–222, 231, 237
Clay Mathematics Institute, 141, 147
Clemen, R. T., 247, 248, 295
Clements, P., 252, 253, 254, 289, 295,

296, 297
Clinger, W., 162, 182
CMMI Project Team, 215, 237
Cockburn, A., 219, 238
Cointe, P., 163, 183
Cok, D. R., 34, 54
Collofello, J. S., 220, 238, 251, 295
Collyer, G., 172, 183
Comiskey, B., 62, 77
CompuServe, Inc. v. Cyber Promotions,

Inc., 303, 317
Condon, S., 214, 237
Conover, W. J., 45, 55
Cook, S. A., 118–120, 122, 143, 144
Cook, W. R., 152, 159, 181, 182
Cooprider, J., 222–223, 239
Coplien, J. O., 219, 220, 238
Costanza, E., 110, 115
Costa, P., 251, 258, 281, 282, 288, 290,

295, 296
Coulton, P., 96, 97, 114
Covi, L. A., 71, 77, 219, 238
Cox, I. J., 4, 53
Craig, A. B., 66, 77
Craver, S. A.., 4, 53
Cruz, C. D., 223, 239
Cruz-Neira, C., 66, 77, 98, 114
Cueva, J. M., 169, 183
Curio, G., 108, 115
Cusumano, M., 219, 238
Cutsem, T., 168, 183
D

Dahl, O. J., 162, 183
Daly, J. W., 274, 296
Damm, L. O., 222, 239
Danforth, S. H., 163, 183
Debevec, P., 23, 54
Decuir, J. D., 107, 115
DeFanti, T. A., 66, 69, 77, 98, 114
de Figueiredo, L. H., 165, 183
de-la-Puente, J. A., 290, 297
de Lara, E., 96, 114
Delfino v. Agilent Technologies, Inc.,

307, 313, 315, 318
Demers, F. N., 160, 182
Dempster, A. P., 35, 55
de Neve, P., 228, 229, 240
Denker, M., 160, 171, 182
Dennis, G., 263, 292, 295
de-Oliveira, W. L., 290, 297
DePauw, W., 289, 296
Desharnais, J. M., 193, 236
Devanbu, P., 227, 235, 240
Dhama, H., 251, 295
Diaz, D., 188, 215, 236
Dinur, I., 135, 145
Dixon, B., 220, 221, 238
Dobbs, D., 303, 310, 311, 317
Dobrica, L., 290, 297
Dodgson, N. A., 69, 77
Doe v. XYC Co., 307, 314, 318
Donzelli, P., 263, 295
Dragovic, B., 102, 114
Drayton, P., 151, 163, 178, 181
Dror, R. O., 25, 54

322 AUTHOR INDEX
Drossopoulou, S., 157, 181
Duba, B., 162, 182
Ducasse, S., 160, 171, 178, 182, 183, 184
Du, D. -Z., 118, 143
Duenas, J. C., 290, 297
Dutta, S., 188, 191, 213, 222, 236, 241
E

Earl, M. J., 227, 240
eBay v. Bidder’s Edge, Inc., 304, 318
Ebert, C., 228, 229, 240
Edwards, R., 96, 97, 114
Eid, M., 104, 114
Eissfeller, B., 96, 114
Eklundh, J. O., 7, 24, 54
Eldridge, M., 74, 77
El Emam, K., 190, 195, 236
Erdogmus, H., 250, 295
Erzberger, H., 263, 264, 292, 295
Essl, G., 81, 112
Everett, M., 74, 77
F

Fagan, M., 155, 158, 179, 181
Farella, E., 111, 115
Farid, H., 1–52, 53, 55
Feige, U., 136, 146
Feiner, S. K., 8, 53
Felleisen, M., 162, 179, 182, 184
Fellows, M. R., 142, 147
Fels, S., 112, 115
Fenton, N. E., 196, 203, 214, 218, 223,

236, 240, 287, 296
Finholt, T. A., 228, 240
Fisher, B., 112, 115
Fjeld, M., 105, 115
Foley, J. D., 8, 53
Forey, S., 223, 240
Forlines, C., 112, 115
Forman, E., 247, 258, 295
Forman, I. R., 163, 183
Forster, T., 286, 296
Fortnow, L., 135, 138, 140, 145, 146
Fowler, M., 171, 183
Frakes, W. B., 225, 239
Freeman, W. T., 34, 54
Friedman, D. P., 162, 170, 182
Friedman, J., 141, 147
Froehlich, J., 96, 114
Fröhlich, P., 177, 184
Funkhouser, T., 60, 76
G

Gabriel, R. P., 161, 162, 182
Gälli, M., 160, 171, 182
Gamma, E., 251, 295
Ganesan, D., 289, 296
Garey, M. R., 126, 136, 138, 144, 146
Garlan, D., 254, 295
Garmus, D., 188, 241
Gartner, Inc., 187, 192, 235, 241
Geiger, G., 89, 112
Ge, J., 69, 77
Gelinck, G. H., 63, 77
Gellersen, H., 84, 112
Gibbs, M. R., 89, 112
Gilleade, K. M., 84, 112
Gill, J., 122, 140, 144, 147
Girado, J. I., 69, 77
Godfrey, S., 289, 296
Goldberg, A., 162, 174, 183
Goldreich, O., 118, 134, 143
Goldwasser, S., 133, 134, 136, 145, 146
Golub, G. H., 26, 54
Gopalan, P., 138, 146
Gosling, J., 153, 181
Gotsman, C., 95, 114
Gradetsky, N., 290, 297
Grant, F. H., 151, 181
Graser, B., 231, 233, 240
Graves, T. L., 214, 215, 223, 225, 227,

237, 239
Greenberg, S., 112, 115
Greenlaw, R., 127, 145
Greves, D., 188, 236

AUTHOR INDEX 323
Griffyth, J., 216, 237
Grinter, R. E., 228, 240
Griswold, M. T., 161, 163, 182, 183
Griswold, R. E., 161, 163, 182, 183
Grubb, P., 245, 294
Guinan, P., 218, 222–234, 238, 239
Gunnarsson, H., 307, 318
Gunturk, B. K., 33, 54
Gursaran, 287, 296
Guruprasad, V., 151, 181
Guruswami, V., 138, 146
Gustafsson, T., 105, 115
H

Haehnel, D., 96, 114
Hai, S. B., 217, 235, 238
Häkkinen, V., 108, 115
Hale, D., 219, 238
Hale, J. E., 218–221, 238
Hämäläinen, P., 108, 115
Hames, D., 299–317

Hamilton, J. F., 34, 54
Han, J., 64, 77
Hanrahan, P., 20, 22, 54, 74, 77
Hansen, P. C., 26, 54
Harrison, N. B., 219, 220, 238
Harrison, R., 213, 237
Harter, D. E., 216, 237
Hart, J., 230, 240
Hartkopf, S., 187–190, 192, 224, 229,

235, 241
Hartley, R., 13, 54
Hartling, P., 98, 114
Hartmanis, J., 119, 120, 124, 131, 144,

145, 146
Hastad, J., 136, 146
Haunschmid, E., 231, 233, 240
Haynes, C. T., 162, 170, 182
Healy, A., 138, 146
Heemstra, F. J., 188, 189, 236
Heidrich, J., 190, 229–231, 233, 236, 240
Helm, R., 251, 295
Henglein, F., 179, 184
Henry, S. M., 193, 226, 236, 240, 274,

278, 296
Henrysson, A., 93, 113
Henshaw, J., 223, 239
Henze, N., 90, 113
Herbsleb, J. D., 216, 228, 229, 237, 240
Herr, N., 70, 77
Herron, D., 188, 241
Hicks, M., 160, 175, 182
Hightower, J., 96, 114
Hihn, J., 187, 235
Hill, W., 152, 181
Hirakawa, K., 33, 54
Hirose, M., 67, 77
Hitchcock, J. M., 139, 146
Hochstein, L., 250, 252, 295
Hogan, M. J., 15, 54
Hoggan, E., 104, 114
Holenstein, T., 135, 145
Homer, S., 121, 123, 144
Hoover, H. J., 127, 145
Horowitz, E., 215, 220–222, 231, 237
Höst, M., 222, 236
Houston, D., 220, 238
Huang, T. S., 93, 102, 113
Hughes, J. F., 8, 53
Humphreys, G., 16, 54, 74, 77
Hunt, A., 165, 183
Hunt, D., 92, 113
I

Iddan, G. J., 95, 114
IEEE Std 1045–1992, 187, 235
Ierusalimschy, R., 165, 183
Impagliazzo, R., 118, 136, 142, 143, 143,

146, 147
Inakage, M., 81, 112
Inami, M., 107, 115
Intel Corp. v. Hamidi, 304, 305, 318
Inverso, S. A., 110, 115
ISBSG Data Repository, 188, 193,

227, 236

324 AUTHOR INDEX
Ishigai, Y., 229–231, 233, 240
Ishii, H., 81, 106, 112
Iskander, D. R., 18, 54
Ivers, J., 254, 295
Iwata, Y., 81, 112
J

Jacobs, D. W., 22, 54
Jacobson, J., 62, 77
Jagodic, R., 75, 77
Jaimes, A., 81, 112
Jankovec, M., 92, 113
Janssen, I., 223, 239
Jeffery, R., 190, 196, 236
Jeffrey, R., 290, 297
Jenaro, J., 105, 115
Jensen, E., 289, 296
Jensen, R. W., 221, 239
Jeong, B., 75, 77
Johnson, A., 57–76, 77
Johnson, D. S., 118, 126, 138, 144
Johnson, M. K., 4, 14, 24, 27, 53
Johnson, R., 251, 295
Johnston, J., 104, 114
Jones, C., 188, 196, 214, 227, 236
Jones, N. D., 127, 144
Jones, R., 162, 167, 182
Jones, S. P., 154, 158, 162, 170, 181, 182
Jones, T. C., 188, 195, 222, 236
Jönsson, E., 94, 113
Jordà, S., 89, 112
Jorgensen, M., 197, 236
Jouhtio, M., 108, 115
Joy, B., 153, 181
Jrgensen, M., 188, 191, 197, 227, 236
Jung, B., 97, 114
Jurman, D., 92, 113
Just, C., 98, 114
K

Kable, R. G., 64, 77
Kacmar, C. J., 219, 238
Kafura, D. G., 226, 240, 274, 278, 296
Kallinen, K., 108, 115
Kaltenbrunner, M., 89, 112
Kamnik, R., 92, 113
Kam, S., 305, 318
Kanazawa, M., 61, 76
Karabuk, S., 151, 181
Karloff, H., 135, 140, 145
Karlsson, L., 222, 236
Karp, R. M., 113, 119, 120, 144, 145
Karstu, S., 227, 235, 240
Katzenbeisser, S., 4, 53
Kay, A. C., 161, 182
Kazman, R., 289, 290, 296, 297
Keeton, R., 303, 310, 311, 317
Keeton, W., 303, 310, 311, 317
Kelly, D., 246, 250, 294
Kemerer, C. F., 193, 222, 236, 239,

287, 296
Kennedy, K., 213, 237
Kernighan, B. W., 163, 183
Keuler, T., 289, 296
Keys, R. G., 33, 54
Kiczales, G., 163, 168, 183
Kikuchi, N., 229–231, 233, 240
Kim, G. J., 106, 115
Kim, Y. M., 214, 237
King, J., 188, 215, 236
Kirsopp, C., 230, 240
Kitchenham, B. A., 187, 188, 191, 236,

241, 287, 296
Klein, M., 290, 297
Klivans, A., 137, 146
Knodel, J., 286, 296
Koelbel, C., 213, 237
Koenig, A., 173, 184
Koenig, T. H., 312, 318
Kohlbecker, E., 162, 182
Koizumi, N., 107, 115
Kojima, M., 107, 115
Ko, K. -I., 118, 143
Kooima, R. L., 69, 77
Kortum, P., 83, 112

AUTHOR INDEX 325
Koucký, M., 141, 147
Kozuki, T., 107, 115
Krauskopf, J., 251, 295
Krepki, R., 108, 115
Kresser, J., 289, 296
Kretzschmar, M., 188, 236
Krishnan, M. S., 71, 77, 216, 218, 219,

221, 237, 238
Kropp, V., 96, 114
Krüger, A., 93, 97, 113, 114
Kruijff, E., 83, 112
Kurtz, S. A., 139, 142, 146, 147
Kusters, R.J., 188, 189, 236
L

Laakso, M., 92, 113
Laakso, S., 92, 113
Laarni, J., 82, 108, 112, 115
Labiche, Y., 289, 296
Lachapelle, G., 96, 114
Ladner, R. E., 123, 144
Laird, N. M., 35, 55
Laitinen, T., 108, 115
Lakshman, T. K., 158, 182
LaMarca, A., 96, 114
Lang, S. R., 69, 77
Langston, M. A., 142, 147
Langtangen, H. P., 176, 184
LaPorta, R., 300, 317
Laroche, C. A., 34, 54
Larssen, A. T., 92, 113
Lassing, N., 245, 290, 294
Lattanze, T., 290, 297
Lattanzi, M., 196, 226, 236
Lau, Y. C., 97, 114
Le Bris, C., 6, 53
Leduc, J., 289, 296
Lefohn, A., 15, 54
Lehman, M. M., 160, 182, 245, 294
Leigh, J., 57–76, 77
Levin, L. A., 119, 120, 130, 137, 143,

144, 145, 146
Lewis, J. A., 226, 240
Lienhard, A., 171, 183
Li, K., 60, 76
Li, M., 247, 294
Lindahl, T., 180, 184
Lindblad, A., 108, 115
Lindvall, M., 243–294, 295, 296
Link, J., 177, 184
Lins, R., 162, 167, 182
Liptak, A., 302, 317
Lipton, R., 133, 145
Little, R., 254, 295
Liu, B., 4, 53

Liu, Y., 97, 114
Li, Z., 92, 113
Lokan, C., 213, 237
Loke, L., 92, 113
Longstaff, T. H., 290, 297
Loomis, T., 303, 317
Lopez-de-Silanes, F., 300, 317
Loui, R. P., 151, 181
Lovasz, L., 136, 146
Loviscach, J., 79–112

Lundberg, L., 216, 222, 237, 239, 290, 297
Lund, C., 135, 140, 145
M

MacLean, K., 112, 115
MacQueen, D. B., 158, 182
Madachy, R., 215, 220–222, 231, 237
Madhavapeddy, A., 92, 113
Madhavii, N. H., 223, 239
Madsen, O. L., 151, 181
Maes, P., 163, 183
Magerkurth, C., 81, 112
Magnusson, B., 151, 181
Mahaney, S., 139, 146, 147
Mahmood, M. A., 222, 239
Mair, C., 197, 236
Malenfant, J., 160, 182
Malik, J., 23, 54
Mandelboum, D., 95, 114

326 AUTHOR INDEX
Mandryk, R. L., 81, 112
Margolis, T., 69, 77
Marsh, W., 223, 240
Martin, G. J., 69, 77
Masuch, M., 102, 114
Matsuda, V., 107, 115
Matthews, D. C. J., 158, 182
Mattsson, M., 290, 297
Maxwell, K. D., 188, 191, 213, 222, 236, 241
McCarthy, J., 151, 161, 181, 182
Mclver, J. P., 241
Meijer, E., 151, 159, 163, 178, 181, 182
Meinert, K., 98, 114
Melo, W. L., 214, 226, 227, 235, 237, 240
Memon, A., 263, 295
Mendes, E., 187, 213, 237, 241
Menzies, T., 187, 230, 235, 240
Merriam-Webster, 121, 144
Mersereau, R. M., 33, 54
Meuter, W., 168, 183
Meyer, A. R., 125, 132, 144, 145
Meyer, B., 159, 182
Micali, S., 133, 134, 136, 145
Mili, A., 290, 297
Miller, M. L., 4, 53
Miltersen, P. B., 137, 146
Miodonski, P., 286, 296
Mirlacher, T., 108, 115
Mitchell, N., 158, 182, 289, 296
Mockus, A., 216, 223, 225, 227, 228, 237,

239, 240
Moczadlo, R., 228, 240
Moe, H., 176, 184
Moiso, C., 225, 239
M�lier-Pedersen, B., 151, 181
Moo, B. E., 173, 184
Mookerjee, V. S., 220, 222, 238
Moon, T., 106, 115
Moore, J. R., 69, 77, 92, 113
Moran, S., 133, 136, 145
Morin, P., 68, 77
Morisio, M., 225, 239
Mostinckx, S., 168, 183
Motwani, R., 135, 145
Mueller, F. F., 89, 92, 113
Müller, K. R., 108, 115
Mullins, I., 96, 114
Mulmuley, K., 141, 147
Münch, J., 190, 229–231, 233, 236, 240
Munson, J. C., 287, 296
Munzner, T., 112, 115
Muresan, D. D., 33, 54
Muthig, D., 286, 296
Myers, W., 213, 218, 221, 237
N

Nakamura, A., 107, 115
National Bureau of Economic Research,

187, 235
National Technology Readiness Survey,

306, 312, 318
Nayar, S. K., 13, 54
Nazareth, D. L., 224, 239
Nedstam, J., 222, 236
Neil, M., 223, 240
Nenonen, V., 108, 115
Nettles, S. M., 160, 175, 182
Neulander, I., 93, 113
Nicolas, H., 6, 53
Niemela, E., 290, 297
Nierstrasz, O., 160, 171, 178, 182, 184
Niessink, F., 217, 238
Nii, H., 107, 115
Nijholt, A., 108, 115
Nikora, A. P., 287, 296
Nillius, P., 7, 24, 54
Ni, L. M., 97, 114
Nilsen, T., 81, 112
Nilsson, B., 222, 236
Nisan, N., 135, 136, 138, 140, 145, 146
Nishimura, Y., 289, 296
Nishino, K., 13, 54
Nitsche, M., 92, 113
Norden, P. V., 218, 222, 238
Nord, R., 254, 295

AUTHOR INDEX 327
Northrop, L., 289, 290, 297
Norvig, P., 151, 181
Noth, T., 188, 236
Nygaard, K., 162, 183
O

O’Brien, S., 92, 113
O’Donnell, M. J., 142, 147
O’Donnell, R., 138, 146
Ogiwara, M., 139, 146
O’Leary, D. P., 26, 54
Oliphant, T. E., 172, 176, 183
Ollila, M., 93, 113
Olson, J. S., 71, 77, 219, 238
Opdyke, W., 171, 183
Orozco, M., 104, 114
Ortin, F., 169, 183
Orwant, J., 156, 163, 181
Ostrovsky, Y., 10, 53
Ousterhout, J., 151, 156, 165, 166,

173, 181
Owen, D., 303, 310, 311, 317
P

Paelke, V., 93, 113
Pan, D. Y., 34, 55
Pantic, M., 93, 102, 113
Papadimitriou, C. H., 118, 126, 128, 144
Papa, L., 311, 318
Parkes, A., 106, 115
Parkinson, C. N., 222, 239
Park, R., 221, 239
Parks, T. W., 33, 54
Parnas, D., 252, 253, 295
Parrish, A. S., 219–221, 238
Patel, S. N., 102, 114
Patil, A. P., 97, 114
Paulish, D., 229, 240
Paulk, M. C., 187, 189, 215–217, 235
Paulson, L. D., 151, 181
Pearson, H., 3, 53
Pekelny, Y., 95, 114
Peniwati, K., 247, 258, 295
Peterka, T., 69, 77
Pettingell, K. J., 222, 239
Pfenning, F., 158, 182
Pfleeger, S. L., 196, 203, 214, 218, 236,

287, 296
Pharr, M., 16, 54
Piazza, J., 107, 115
Piekarski, W., 99, 114
Pieracci, A., 111, 115
Pierce, B. C., 152, 179, 181, 184
Pinel, J. M., 6, 53
Pintaric, T., 93, 113
Pitassi, R., 139, 147
Plotkin, G., 179, 184
Poage, J. F., 163, 183
Polonsky, I. P., 163, 183
Poon, P., 299–317, 318
Popescu, A. C., 4, 53
Poppinga, B., 90, 113
Port, D., 187, 230, 235, 240
Potok, T. E., 221, 226, 238
Potter, F., 96, 114
Poupyrev, I., 106, 115
Putnam, L. H., 213, 215, 218, 221, 237, 241
R

Rackoff, C., 133, 134, 136, 145
Ramamoorthi, R., 20, 22, 54
Ramanath, R., 33, 54
Raman, K. S., 217, 235, 238
Ramdunyellis, D., 84, 112
Rashid, O., 96, 97, 114
Rath, O., 93, 113
Ravaja, N., 82, 108, 112, 115
Ray, A., 289, 296
Razborov, A., 141, 147
Rees, J., 162, 182
Refer, D., 215, 220–222, 231, 237
Reimann, C., 93, 113
Reinhard, E., 15, 54
Renambot, L., 57–76, 77
Renggli, L., 171, 183

328 AUTHOR INDEX
Rensink, R., 112, 115
Restatement (Second) of Agency, 304,

310, 318
R. H. Smith School of Business, 306,

312, 318
Rico, F., 215, 237
Rine, D. C., 225, 239
Rivest, R. L., 129, 145
Rivieres, J., 163, 168, 183
Rober, N., 102, 114
Roberts, D., 171, 183
Robertson, T., 92, 113
Robson, D., 162, 174, 183
Robson, J. M., 124, 144
Rocchi, L., 111, 115
Rockbridge Associates, 306, 312, 318
Rohs, M., 81, 93, 112, 113
Roisman, G. I., 93, 102, 113
Romano, D., 225, 239
Rombach, H. D., 224, 239
Rossum, G., 156, 181
Rothenberger, R. A., 224, 239
Rovner, P., 167, 183
Royer, J. S., 139, 142, 146, 147
Roy, G., 287, 296
Roy, S., 133, 145
Rubin, D. B., 35, 55
Rudich, S., 127, 139, 141, 144, 147
Ruhe, G., 243–294, 295
Ruhe, M., 190, 196, 236
Runciman, C., 158, 182
Rus, I., 220, 238, 263, 295
Rustad, M. L., 312, 318
Ruszczyn’ski, A., 13, 54
Ruzzo, W. L., 127, 145
S

Saari, T., 82, 108, 112, 115
Saaty, T. L., 247, 256, 257, 294
Saddik, A. E., 104, 114
Safra, S., 135, 145, 146
Sagonas, K., 180, 184
Saliu, M. O., 243–294, 295, 296
Salminen, M., 108, 115
Sander, W. A., 33, 54
Sandin, D. J., 66, 77, 98, 114
Sandsj, J., 105, 115
Sanroma, D., 96, 114
Sawyer, S., 218, 221–223, 233, 234,

238, 239
Schach, S. R., 187, 235
Schaefer, G., 47, 55
Schaefer, M., 132, 147
Schärli, N., 178, 184
Scheible, J., 97, 114
Scheifer, A., 300, 317
Schlichting, A., 187–190, 192, 224,

229, 235
Schlömer, T., 90, 113
Schmalstieg, D., 93, 113
Schöning, J., 93, 113
Schrader, A., 97, 114
Schreiber, B., 188, 236
Schreiber, R., 213, 237
Schulze, J., 69, 77
Schwartzbach, M., 162, 182
Scott, D., 92, 113
Scott, J., 102, 114
Scudder, G. D., 218, 220, 222, 233, 238
Sebe, N., 81, 112
Seidmann, A., 227, 240
Sekiguchi, D., 107, 115
Selby, R. W., 119, 224, 238, 239
Selman, A., 121, 144
Sevitsky, G., 289, 296
Shahrokni, A., 105, 115
Shaltiel, R., 137, 146
Shamir, A., 129, 135, 140, 145
Shannon, C., 119, 144
Shapiro, E., 164, 183
Sharp, R., 92, 113
Shaskevich, A. I., 222, 239
Shaw, M., 252, 295
Sheard, T., 158, 162, 170, 181, 182
Shen, C., 112, 115

AUTHOR INDEX 329
Shepperd, M. J., 188, 191, 197, 227, 230,

236, 240
Shereshevsky, M., 290, 297
Sherman, B., 66, 77
Sheskin, D., 231, 240
Shields, M., 158, 181
Shi, L., 92, 113
Shimizu, N., 107, 115
Shirley, P., 15, 54
Shor, P. W., 122, 144
Sibol, D. E., 251, 281, 282, 289, 295, 296
Sickinger, D., 90, 113
Siek, J. G., 179, 184
Singh, R., 75, 77
Sinha, P., 10, 54
Sipser, M., 118, 135, 143, 145
Siy, H. P., 225, 227, 239, 240
Slaughter, S. A., 216, 237
Slot, C. F., 122, 144
Smeyne, A. L., 69, 77
Smidts, C., 247, 294
Smith, C. E., 316, 318
Smith-Daniels, D., 220, 238
Smith, I., 96, 114
Smith, R. B., 164, 178, 183
Smith, R. K., 218–221, 238
Snyder, W. E., 33, 54
Software Technology Transfer Finland

(STTF), 188, 236
Sohn, T., 96, 114
Sohoni, M. A., 141, 147
Soliman, K. S., 225, 239
Solovay, R., 140, 147
Sonnemann, R. M., 225, 239
Sotto, L., 307, 318
Spencer, H., 172, 183
Spinellis, D., 151, 181
Stafford, J., 254, 295
Stahl, C., 81, 112
Stearns, R., 119, 120, 124, 144
Steece, B. M., 215, 220–223, 231, 237, 239
Steele, G. L., 151, 153, 161, 162, 169, 181,

182, 183
Sterling, L., 164, 183
Stevens, G., 92, 113
Stichling, D., 93, 113
Stich, M., 47, 55
Stockmeyer, L. J., 125, 131, 132, 144, 145
Stolberg, S., 302, 317
Stoll, G., 74, 77
Stratton, W. C., 251, 281, 282, 289,

295, 296
STTF. see Software Technology Transfer

Finland

Stubblefield, A., 4, 53
Subramanian, G. H., 218, 233, 238
Succi, G., 225, 239
Sudan, M., 135, 145
Sugimoto, M., 107, 115
Sullivan, J. L., 241
Sullivan, K. J., 216, 217, 237
Sussman, G., 151, 162, 181
Svahnberg, M., 290, 297
Swartzlander, B., 4, 53
Sycamore, D. M., 220, 238
Szegedy, M., 135, 136, 145, 146
T

Tailor, M., 223, 240
Takang, A. A., 245, 294
Tan, D., 108, 115
Tang, K., 96, 114
Tanter, É., 168, 183
Taylor, N. R., 188, 236
Teasley, S. D., 71, 77, 219, 238
Tesoriero, R., 258, 288, 290, 295
The QSM Project Database, 213, 237
Thistle, P. D., 299–317, 318
Thomas, B. H., 99, 114
Thomas, D., 165, 183
Thomas, W., 227, 235, 240
Thorogood, A., 92, 113
Thrifty-Tel, Inc. v. Bezenek, 303, 317
Timbermont, S., 168, 183
Tobin-Hochstadt, S., 179, 184

330 AUTHOR INDEX
Tokuhisa, S., 81, 112
Tomaszewski, P., 216, 237
Tomita, M., 107, 115
Topic, M., 92, 113
Toye, E., 92, 113
Tratt, L., 149–180, 184
Trendowicz, A., 190, 229–231, 233,

236, 240
Trevisan, L., 138, 146
Trianfis, K., 216, 237
Triggs, C., 213, 237
Tscheligi, M., 108, 115
Tse, E., 112, 115
Turpeinen, M., 82, 108, 112
U

Umans, C., 132, 137, 146, 147
Ungar, D., 164, 165, 168, 178, 183
University of Maryland, 306, 312, 318
Upton, E., 92, 113
V

Vacharajani, M., 179, 184
Vadhan, S. P., 138, 146
Valen, J. D., 214, 237
Valerdi, R., 221, 222, 239
Valiant, L. G., 127, 144
van Dam, A., 8, 53
van der Pohl, K. G., 187, 235
Vaneman, W. K., 216, 237
van Emde Boas, P., 122, 144
van Genuchten, M. J. I. M., 188, 189, 236
Van Keken, P., 68, 77
van Melkebeek, D., 137, 138, 146
van Vliet, H., 217, 238
Van Wassenhove, L., 188, 191, 213, 220,

222, 233, 236, 238, 241
Varshavsky, A., 96, 114
Vazirani, U. V., 122, 144
Vendrovsky, E., 93, 113
Venkatesan, T. C., 133, 145
Vetere, F., 89, 112
Vijayakumar, S., 213, 237
Villar, N., 84, 112
Vinnberg, A., 105, 115
Vinodchandran, N. V., 137, 146
Viola, E., 138, 146
Virding, R., 164, 175, 183
Vishny, R., 300, 317
Vlissides, J., 251, 289, 295, 296
Vollmer, H., 127, 145
Vouk, M. A., 221, 226, 238
W

Wagner, D., 93, 113
Wagner, K. W., 132, 145
Wallace, G. K., 41, 55
Wallach, D. S., 4, 53
Wall, L., 156, 163, 181
Wand, M., 162, 170, 182
Wang, E. T. G., 227, 240
Wang, J., 138, 146
Wang, Y., 92, 113
Warren, J., 99, 114
Webb, M., 290, 297
Weddell, J. E., 15, 54
Wegener, I., 118, 143
Weinberger, P. J., 163, 183
Weiss, D. M., 227, 235, 240, 241, 252,

253, 295
West, A., 92, 113
Weyuker, E. J., 287, 296
Wickenkamp, A., 190, 236
Wieczorek, I., 187, 188, 190, 196,

235, 236
Wiener, M., 228, 240
Wigderson, A., 118, 136, 138, 140, 144,

146, 147
Wikstrom, C., 164, 175, 183
Wilfinger, D., 108, 115
Williams, M., 164, 175, 183
Williams, R., 138, 146
Willsky, A. S., 25, 54
Wimmers, E. L., 158, 182
Winkler, R. L., 247, 248, 295

AUTHOR INDEX 331
Wohlin, C., 222, 239, 290, 297
Wulf, V., 92, 113
Wu, M., 4, 53
Wust, J. K., 274, 296
Wuyts, R., 160, 171, 175, 177, 182, 184
X

Xi, H., 158, 182
Y

Yahav, G., 95, 114
Yang, J., 289, 296
Yang, Y., 221, 222, 239
Yau, S. S., 251, 295
Yokoyama, K., 229–231, 233, 240
Yonkwa, L., 289, 296
Yoshizaw, H., 62, 77
Young, P., 139, 147
Yu, T., 92, 113
Z

Zaremski, A., 289, 297
Zarnich, G. E., 218, 233, 238
Zeidler, T., 97, 114
Zelkowitz, M., 263, 295
Zeng, Z., 93, 102, 113
Zhang, P., 227, 240
Zhu, L., 290, 297
Zisserman, A., 13, 54
Zucca, E., 157, 181

Subject Index
A

abstract productivity factors, 229

abstract syntax tree, 169

accelerometers, 90

active matrix liquid crystal displays, 59–60

aggregated CGS modifiability, design

characteristics, 284

algorithms

image-tracking, 64

polynomial-time, 133

Anglo-Saxon enemy, 300

Apple class, 152

Apple Newton, 61

approximation, hardness of, 136

AR see augmented reality

architectural design characteristics

contribution, intensity of, 256

evaluation, 255, 288
architectural styles, 252

characteristics, 250

COTS components, 251

design candidates, 258–9

design patterns, 251

information hiding principle, 252–3

maximized cohesion, 251

measuring techniques, 290

minimized concurrency and

threads, 253

minimized coupling, 250

modularization, 253

redundancy, 253

target design, identification, 258

technique, 243, 246
33
excluded characteristics,

comments, 254–5

metrics

evaluation, 259, 288

modifiability improvement,

measurement, 246

scale for pairwise comparison, 260

modifiability, contribution of, 265

relative ranking, 265–6

TSAFE designs evaluation, 267

architecture tradeoff analysis method

(ATAM), 290

Arthur/Merlin (AM) class, 136–7

AST see abstract syntax tree

ATAM see architecture tradeoff analysis
method

audio input, use in player-to-player

communication in games, 101

audio output, 102–3

augmented reality (AR), 66, 99

automated teller machines, touch interfaces

for, 63

autostereo displays, stereoscopic

images, 68

‘‘autostereoscopic’’ displays, 101

autostereoscopy, 68

autostereo walls, 68–9

average-case complexity, 137–8
3

B

Bayer arrays, 32

CFA image, 33

Bayesian belief nets, 233

334 SUBJECT INDEX
Bayes’ rule, 35

beam deflection, magnetic field, 59

Berman–Hartmanis conjecture, 139

biosignal sensors, 108–10

black-box reuse, 226

Blue Tooth, wireless connection, 86, 95

Boehm’s COCOMO II model, 222

Boolean logic, 163

brain–computer interface, 108

bug fixes, 214
C

camera coordinate system, 14

cameras, 92

capacitive screens, types of, 64

CASE tools, 222–3

cathode ray tube (CRT), advantages/

disadvantages, 59

cause–effect relationships, 232

CAVE, 66–7

CBAM see cost-benefit analysis method

CCD sensors, 32

CCI see classes calling interfaces

CDA see Communications Decency Act

CFA see color filter arrays
CFA-interpolated images, 38

CGS designs

evaluation, 282–5

idealized modifiability, 285

child pornography, impact of

photo fakery, 3

Child Pornography Prevention Act

(CPPA), 3

classes calling interfaces (CCI), 275

client–server architecture, 258

Closet Cathedral see CAVE
CMOS sensors, 32

coercions, 156

cold cathode fluorescent tube, 59

color channels, 34

colored petri nets (CPN), 289

color filter arrays (CFA), 32–41
demosaicking methods, 33

interpolation algorithms, 34

commercial-off-the-shelf components

(COTS), 202

common law principles, 301–2

communication media, 219

Communications Decency Act (CDA), 312

compile-time errors, 153

complexity classes, of equivalent

problems, 124

computer animation, 100

computer games

see also computer animation

biosignal sensors, 108–10

buttons, keys, and keyboards, 83–5

input device, 84

kinetic devices and robots, 106–7

mice, joysticks, and faders, 85–6

pen and touch input, 87–9

software, 100

tactile, haptic, and locomotion

interfaces, 103–6

typology, 82–3

‘‘computer-generated’’ images, 3

computer graphics, real-time interactive, 63

computer use policies, 313

consumer-level systems, 103

content generation and delivery to displays

high-speed networking, scalable content

display, 75–6

scalable content rendering,

middleware, 74–5

Coriolis force, 91

cost-benefit analysis method, 290

COTS see commercial-off-the-shelf

components

COTS software, 226

CPN see colored petri nets

CPPA see Child Pornography Prevention

Act (CPPA)

crosstalk, 100

CRT projectors, advantages/

disadvantage, 60

SUBJECT INDEX 335
cryptography, and existence of one-way

functions, 129–30

cubicle walls, 71

custom user interfaces, 63

cyberevils, 299
D

data-based factor selection techniques, 230

data-driven models, 193

data mining, 233

DCT see discrete cosine transform
deadline effect, 221

Delfino vs. Agilent technologies, 309–10
desktop displays, advances

active matrix liquid crystal

displays, 59–60

cathode ray tube (CRT) displays, 59

future
home, 70

workplace, 70–3

plasma displays, 59

DF see domain familiarity

digital camera sensors, 5

digital forgery, 10

digital images

forensic analysis, 4

photo fakery, 2

techniques for detecting tampering, 4

digital light processing (DLP), 60

projectors, 67

digital tampering, 5

techniques for detecting, 41

digital wallpaper, 70

digital watermarking, 4

DirectInput programming interface, 104

disciplined requirements management, 232

discrete cosine transform (DCT), 41

displays

see also desktop displays, advances

head-mounted, 99

standard screens and projected

displays, 98–9
stereoscopy, 99–101

DLP see digital light processing
doctored photographs, 3

domain familiarity (DF), 260

Dynallax, 69

dynamically typed languages

definition, 152

disadvantages
code completion, 177

debugging, 176–7

documentation, 177

performance, 175–6

metaprogramming abilities

compile-time, 169–70

continuations, 170–1

eval, 170

reflection, 168

non-OO and OO languages, 178

optional types, 178–9

dynamic parallax barrier see Dynallax
E

EBEAM see Expert-Based Evaluation of

Architecture for Modifiability

e-commerce users, 305

Eiffel, overridden methods, 159

electron beam, cathode ray tube, 59

Electronic Communications Protection

Act, 307

electronic paper, 62

Electronic Visualization Laboratory

(EVL), Chicago, 65

electrotactile displays, 105

employees

employer liability action, 314

negligent supervision and

retention, 311

employer liability, 310

e-paper see electronic paper
Erlang, 164

European Geostationary Navigation Overlay

Service (EGNOS), 96

336 SUBJECT INDEX
expectation/maximization (EM)

algorithm, 35

experimental software engineering, 187

Expert-Based Evaluation of Architecture

for Modifiability, 243

analytic hierarchy process (AHP), 247

applicability
benefit, 286

design metrics, 285

architectural designs,

evaluation, 247–8

architectural modifiability

evaluation, 249

common ground software (CGS), 280

CORBA and Java RMI, 289

design characteristics

evaluation, 247

expert judgment evaluation, 276–7

modifiability, 255

design modifiability matrices, 261

empirical validation

coupling metrics, 274

design characteristics, 273

duplication, 276

fan-in/fan-out coupling metric, 274

high-level system coupling

metric, 274

interfaces metrics, 275

flexibility and adaptability properties of,

286–7

limitations of, 287–8

rank architectural designs

based on modifiability values, 262

distance, target design, 262

SAVE, 288–9

structure, 248

three-stage evaluation technique, 247

TSAFE designs, applications

conceptual view of, 263

FC-MD, 263

goal of, 264

NASA Ames Research Center, 263

TSAFE I and TSAFE II, results, 281
expert-based factor selection

techniques, 231
F

factor relationships, types of, 232

FC-MD see Fraunhofer Center
in Maryland

Fibonacci function, 161

flat-panel display system, 70

flexible displays, 63

flight simulators, 98

Fraunhofer Center in Maryland

(FC-MD), 250

Fraunhofer IESE, 205
G

Galileo system, of European Union, 96

games see computer games

Gaussian distribution, 35–36

global positioning system (GPS), 95

graphics card, dual-headed, 67

gyroscopes, 91
H

handheld computers, 87, 93

Haskell, 158

head-mounted displays (HMDs), 62, 66, 99

head-related transfer functions (HRTFs),

headphone output, 102

high-definition (HD) flat screens, 70

high-pass filters, 37

high-resolution tiled displays, 74

high-speed networking, scalable content

display, 75–6

history of programming languages

(HOPL), 161

HMDs see head-mounted displays

human–computer interfaces, 95

unconventional, 83

humanoid robot, 106

human visual system, sensitivity, 43

SUBJECT INDEX 337
I

IBM software solutions, 223

IDEs see integrated development

environments

IESE see Institute for Experimental

Software Engineering

image-tracking algorithms, 64

incremental software development, 218

inertial sensors, 90–2

influencing factors, 206, 213, 218

availability and age, 191

classification
personnel factors, 196

process factors, 197

product factors, 196

project factors, 197

comments on, 218

context, 196

development cost, 188

domain-specific factors, 200

literature analysis

context-specific factors, 197–8

cost modeling (CM), 198

crosscontext factors, 197

development-type-specific

factors, 198

reuse-specific factors, 202

software development productivity, 218

top crosscontext productivity

factors, 198

top development-type-specific

productivity factors, 200

top model-specific productivity

factors, 199

top productivity factors, model

software cost, 201

top reuse-specific productivity

factors, 202

Institute for Experimental Software

Engineering (IESE), 189, 205

integrated development environments

(IDEs), 177
interface devices, physical quantities, 82

interface hardware, categories, 83

Internet

adware, 305

common law actions
eBay and CompuServe rulings, 304

nuisance, 304–5

trespass to chattels, 303–4

common laws, 301

cybertorts, 312–13

Delfino court, 315

employees, employer liability

action, 314

intentional harm, 311–12

legal definitions, 316–17

pop-up ads, 305

spam, 306

spyware, 305

Webcrawlers, 306

well-settled common law

principles, 307

XYC Corp, 307–8

interpolation filters, 33

iPhone, touch technologies in, 64

IR blocking filters, 94
J

Java’s compiler, 157

JHU/APL Space Department, Mission

Operations Center (MOC), 281

JPEG blocking statistics, 47

JPEG compression algorithm, 5

JPEG ghosts, 41–50

just-in-time (JIT) compilation, 151
K

Kalman filters, 92

key process areas (KPAs), 216

kinetic devices, and robots, 106–7

Kolmogorov–Smirnov (K–S)

statistics, 45

338 SUBJECT INDEX
L

Lambertian reflectance function, 22

Lambertian surface, 21

language comparison, typing, 156

laser diodes, 62

LaserTouch, 89

LCD multitouch screen see MicroTable

learning effect, 216

least-squares minimization, 9

Levenberg–Marquardt iteration, 13

light-emitting diodes (LEDs), 86

lighting environment, low-order

approximation of, 26

light source

approaches for estimating, 5

estimate, 7

first-order spherical harmonics for

estimating, 31

least-squares estimation, 5

synthetically generated eyes and, 17

Lisp

code, 161

Fibonacci function, 161

functional language, 161

graphical user interface (GUI), 162

macros, 162

scheme, 162

Smalltalk, 162

literature distribution, 194

LoC systems, 164

logic gates, theorems, 132
M

machine learning, 142

Mahaney’s theorem, 139

management information systems

(MIS), 192

product complexity, 203

software systems domains, 214

Web applications, 200

median rank, 208

microelectromechanical system (MEMS), 90
micromirror, 62

MicroTable, 65

mixed reality (MR), 99

modifiability evaluation

of candidates, 272

idealized representation, 272

multitouch screen technology, 89

multitouch table, New York University’s

(NYU), 64

musical instrument digital interface

(MIDI), 85
N

natural problems, classification, 125

Nippon Telephone and Telegraph

(NTT), 76

non-CFA-interpolated image, 38

nondeterministic exponential time

(NEXP), 135

Norden’s Rayleigh curve, 222

NP-complete problem, 119

CLIQUE problem and, 136

intractability, 130

isomorphism conjecture, 138–9

use, 126

number of interfaces (NOI), 275
O

object orientated (OO) programming

languages

software reuse, 226

type and class, 152

object-oriented (OO) software

development, 226

OmegaTable, 65

OpenAL, 102

OpenGL

applications, 74

graphics cards, 100

organic light-emitting diode (OLED)

microdisplays, 66

outward control flow, 219

SUBJECT INDEX 339
P

personal digital assistants (PDAs), 81

phosphor, 59

photo fakery see photographic fakery
photo forensics, image forensic techniques

color filter array, 32–41

digital watermarking, drawbacks, 4

JPEG ghosts, 41–50

lighting direction (2D), 5–10

lighting direction (3D), 10–19

lighting environment, 20–32

photographic fakery, impact of

in law, 3

in media, 2

in national security, 4

in politics, 3

in science, 2–3

photoresistors, 63

photo tampering, 4

Pico projectors, 62

plasma displays, 59

polarizing filters, 67

politics, photo fakery in, 3

polynomial hierarchy and small

circuits, 131–2
polynomial-time algorithms, 133

polynomial-time-computable

functions, 122

polynomial-time reducibility, 120–1

portable displays, advances in, 61–3

Powerbook, 61

power walls see wall displays
P problem, subclasses, 127–8

probabilistic computation, 122

program code, execution, 153

programming error, 158

programming languages, 207

built-in types, 152

changing a program, 160

compile–link–run cycle, 174–5

compile-time vs. run-time, 153

declarative languages, 164

disproportionate effect, 160
dynamically typed languages, 150–1

dynamic typing

analysis, 179–80

automatic memory management, 167

batteries included libraries, 171–2

built-in data types, 166

duck typing, 173

high-level features, 166–7

history of, 165

interactive computations, 173–4

late binding, 155

Lisp, 161

metaprogramming, 167

reflection, 168

run-time error, 155

run-time type exception, 154

safe and unsafe type systems, 155

simplicity, 166

template Haskell, 170

template Haskell-like system, 170

UNIX shell, 173

implicit type conversions, 156

macros, 162

portable software, 172–3

prototyping languages, 164

run-time dynamicity, 160

run-time updates, 175

scripting languages, 165

Smalltalk, 162

statically typed languages, 151

static typing

advantages/disadvantages, 157–60

analysis, 179–80

built-in Java types, 153

dynamic typing, 154

error messages, 159

explicit static declaration, 153–4

Haskell, 154

nominal typing, 154

overly permissive, 157–8

restrictive types, 158

run-time dynamicity, 160

safe (Java)/unsafe (C), 155

340 SUBJECT INDEX
programming languages, (Continued)
structural typing, 154

system complexity, 158

systems’ correctness, 159

system ossification, 160

types, 152

variations, 178–80

pseudostereo, 68

PSPACE-complete problem, 125

P vs. NP problem, 119, 140
Q

quadratic error function, 8

quantum mechanics, 130

quincunx lattices, 32
R

radio frequency band, 96

radio frequency identification (RFID), 97

ReacTable, 89

ReacTIVision, 89

resistive touch screen, advantages/

disadvantages, 63–4

reuse capability indicators, 225

RGB color channels, 45
S

Satellite-Based Augmentation System

(SBAS), 96

Scalable Adaptive Graphics Environment

(SAGE), 75

scalable content display, high-speed

networking for, 75–6

scalable content rendering, middleware

for, 74–5

senior network administrator (SNA), 307

servo motors, 106

SIMULA, Smalltalk, 164

six-degree-of-freedom tracking system, 66

SNOBOL, text-processing languages, 163

software architectural designs
aggregation scheme, 257–8

AHP, 255

assigning weights to experts, 257

definition, 255

design characteristics, prioritization, 256

evaluation, 245

identifying design characteristics, 249

modifiability, 246

software development productivity

application domain, 213–14

context vs. influence factors, 196
cost/productivity models, 191

demographical information, 194

development life cycle model, 218

development type, 214–15

Fraunhofer IESE, 233

high-quality software, 187

identifying factors, 188

IESE studies methods, 195

impact of problems, 193

industrial experiences
application domains, 206

context-specific factors, 207–11

cross-context factors, 206–7

demographics, 205–6

development-type-specific

factors, 210

domain-specific productivity

factors, 210, 212

outsourcing context, 210

requirements management, 211

requirements volatility, 211

study-specific productivity

factors, 209

industrial experiences, review of, 190

influencing factors, 206, 213, 218

availability and age, 191

classification, 196

comments, 218

context, 196

development cost, 188

development team characteristics,

218–21

SUBJECT INDEX 341
schedule/effort distribution, 221–2

software outsourcing, 227–9

software reuse, 224–7

tools and methods, 222–4

top cross-context productivity

factors, 198

top development-type-specific

productivity factors, 200

top model-specific productivity

factors, 199

top productivity factors, model

software cost, 201

INSPEC repository, 191

literature distribution, 194–5

literature review, 193, 202–5

common productivity factors, 203

development-specific factors, 204

domain-specific factors, 204

importance of, 202

product complexity, 203

reuse success factors, 205

military projects, productivity, 214

novelty, 192

people capabilities, 202

practice

factor definition and

interpretation, 229–30

factor dependencies, 231–2

factor selection, 230–1

model quantification, 232–3

pragmatic problems, 188

process maturity, 215–17

programming language, 213

redundancy, 192

relevancy, 191

software organizations, 185

staff turnover, 220

task assignment, 220

time-to-market, 185

software development toolkit, 151

software organizations

CMM levels, 215

embedded software, 190
Fraunhofer IESE, 227

productivity development, 185

productivity factors, 189

project management, 230

software outsourcing, 227

software performance constraints

factor, 193

software programmers, skills of, 197

software sizing, 188

sort-first rendering, 74

spam

electronic nuisance, 306

legal protection, 306

speech recognition, 101

spherical harmonics, 21

stereoscopic 3D images, 60

stereoscopic displays, advances, 65–6

CAVE, 66–7

GeoWall, 67–8

head-mounted displays, 66

stereoscopic wall displays, 67

stereoscopic graphics wall, 67
T

target architectural design, 272–3

target CGS architecture, 282

target TSAFE design, 268

task distribution, 228

TCL language implicitly conversion, 156

telecommunication switch system, 227

text-processing languages

Sed and AWK, 165

SNOBOL and Icon, 163

thin-film transistors, 59

Tikhonov regularization, 26

time–space tradeoffs, 138

touch interfaces, 63–5

touch screen

displays, 64

interfaces, intuitive, 70

projected-capacitive, 64

resistive, 63

tracking systems, camera-based, 68

342 SUBJECT INDEX
tradeshow conferences, 71–2

transformable walls see cubicle walls
TSAFE architectural designs

aggregated, characteristic, 271

coupling measures, 275

duplication, 276

fan-in/fan-out, 278

metrics results, 280

objective vs. subjective, 277–80
SCM and NOI, 279

UML models, 292

evaluation, 268–9, 277
aggregated priority vector, 267

metrics, 278

normalized metrics, 279

interfaces measures, 276

low level view, 293–4

modifiability, 270

typology, physical/fundamental aspects

of interfaces, 82
U

ultra-high-resolution display

systems, 76

Uncompressed Color Image Database

(UCID), 47
unified modeling language (UML)

models, 273

user interface devices, 82
V

version-sensitive code editor, 225

VibeTonz system, 104

video conferencing, 70, 92

video telephony, 92

‘‘virtual’’ images see
‘‘computer-generated’’ images

virtual reality (VR) systems, 60, 66

visual displays, form factors, 97
W

wall displays

advancements, 60–1

image creation, 60

webcams, 92

Web programming, 165, 170

white-box reuse, 226

Wide Area Augmentation System

(WAAS), 96

Wii remote controller, 93, 104

wireless data transmission, 111

wireless local-area networks (WLAN), 96

Contents of Volumes in This Series
Volume 42

Nonfunctional Requirements of Real-Time Systems

TEREZA G. KIRNER AND ALAN M. DAVIS

A Review of Software Inspections

ADAM PORTER, HARVEY SIY, AND LAWRENCE VOTTA

Advances in Software Reliability Engineering

JOHN D. MUSA AND WILLA EHRLICH

Network Interconnection and Protocol Conversion

MING T. LIU

A Universal Model of Legged Locomotion Gaits

S. T. VENKATARAMAN

Volume 43

Program Slicing

DAVID W. BINKLEY AND KEITH BRIAN GALLAGHER

Language Features for the Interconnection of Software Components

RENATE MOTSCHNIG-PITRIK AND ROLAND T. MITTERMEIR

Using Model Checking to Analyze Requirements and Designs

JOANNE ATLEE, MARSHA CHECHIK, AND JOHN GANNON

Information Technology and Productivity: A Review of the Literature

ERIK BRYNJOLFSSON AND SHINKYU YANG

The Complexity of Problems

WILLIAM GASARCH

3-D Computer Vision Using Structured Light: Design, Calibration, and Implementation Issues

FRED W. DEPIERO AND MOHAN M. TRIVEDI

Volume 44

Managing the Risks in Information Systems and Technology (IT)

ROBERT N. CHARETTE

Software Cost Estimation: A Review of Models, Process and Practice

FIONA WALKERDEN AND ROSS JEFFERY

Experimentation in Software Engineering

SHARI LAWRENCE PFLEEGER

Parallel Computer Construction Outside the United States

RALPH DUNCAN

Control of Information Distribution and Access

RALF HAUSER
343

344 CONTENTS OF VOLUMES IN THIS SERIES
Asynchronous Transfer Mode: An Engineering Network Standard for High Speed Communications

RONALD J. VETTER

Communication Complexity

EYAL KUSHILEVITZ

Volume 45

Control in Multi-threaded Information Systems

PABLO A. STRAUB AND CARLOS A. HURTADO

Parallelization of DOALL and DOACROSS Loops—a Survey

A. R. HURSON, JOFORD T. LIM, KRISHNA M. KAVI, AND BEN LEE

Programming Irregular Applications: Runtime Support, Compilation and Tools

JOEL SALTZ, GAGAN AGRAWAL, CHIALIN CHANG, RAJA DAS, GUY EDJLALI, PAUL HAVLAK, YUAN-SHIN

HWANG, BONGKI MOON, RAVI PONNUSAMY, SHAMIK SHARMA, ALAN SUSSMAN, AND MUSTAFA UYSAL

Optimization Via Evolutionary Processes

SRILATA RAMAN AND L. M. PATNAIK

Software Reliability and Readiness Assessment Based on the Non-homogeneous Poisson Process

AMRIT L. GOEL AND KUNE-ZANG YANG

Computer-Supported Cooperative Work and Groupware

JONATHAN GRUDIN AND STEVEN E. POLTROCK

Technology and Schools

GLEN L. BULL

Volume 46

Software Process Appraisal and Improvement: Models and Standards

MARK C. PAULK

A Software Process Engineering Framework

JYRKI KONTIO

Gaining Business Value from IT Investments

PAMELA SIMMONS

Reliability Measurement, Analysis, and Improvement for Large Software Systems

JEFF TIAN

Role-Based Access Control

RAVI SANDHU

Multithreaded Systems

KRISHNA M. KAVI, BEN LEE, AND ALLI R. HURSON

Coordination Models and Language

GEORGE A. PAPADOPOULOS AND FARHAD ARBAB

Multidisciplinary Problem Solving Environments for Computational Science

ELIAS N. HOUSTIS, JOHN R. RICE, AND NAREN RAMAKRISHNAN

Volume 47

Natural Language Processing: A Human–Computer Interaction Perspective

BILL MANARIS

CONTENTS OF VOLUMES IN THIS SERIES 345
Cognitive Adaptive Computer Help (COACH): A Case Study

EDWIN J. SELKER

Cellular Automata Models of Self-replicating Systems

JAMES A. REGGIA, HUI-HSIEN CHOU, AND JASON D. LOHN

Ultrasound Visualization

THOMAS R. NELSON

Patterns and System Development

BRANDON GOLDFEDDER

High Performance Digital Video Servers: Storage and Retrieval of Compressed Scalable Video

SEUNGYUP PAEK AND SHIH-FU CHANG

Software Acquisition: The Custom/Package and Insource/Outsource Dimensions

PAUL NELSON, ABRAHAM SEIDMANN, AND WILLIAM RICHMOND

Volume 48

Architectures and Patterns for Developing High-Performance, Real-Time ORB Endsystems

DOUGLAS C. SCHMIDT, DAVID L. LEVINE, AND CHRIS CLEELAND

Heterogeneous Data Access in a Mobile Environment – Issues and Solutions

J. B. LIM AND A. R. HURSON

The World Wide Web

HAL BERGHEL AND DOUGLAS BLANK

Progress in Internet Security

RANDALL J. ATKINSON AND J. ERIC KLINKER

Digital Libraries: Social Issues and Technological Advances

HSINCHUN CHEN AND ANDREA L. HOUSTON

Architectures for Mobile Robot Control

JULIO K. ROSENBLATT AND JAMES A. HENDLER

Volume 49

A Survey of Current Paradigms in Machine Translation

BONNIE J. DORR, PAMELA W. JORDAN, AND JOHN W. BENOIT

Formality in Specification and Modeling: Developments in Software Engineering Practice

J. S. FITZGERALD

3-D Visualization of Software Structure

MATHEW L. STAPLES AND JAMES M. BIEMAN

Using Domain Models for System Testing

A. VON MAYRHAUSER AND R. MRAZ

Exception-Handling Design Patterns

WILLIAM G. BAIL

Managing Control Asynchrony on SIMD Machines—a Survey

NAEL B. ABU-GHAZALEH AND PHILIP A. WILSEY

A Taxonomy of Distributed Real-time Control Systems

J. R. ACRE, L. P. CLARE, AND S. SASTRY

346 CONTENTS OF VOLUMES IN THIS SERIES
Volume 50

Index Part I

Subject Index, Volumes 1–49

Volume 51

Index Part II

Author Index

Cumulative list of Titles

Table of Contents, Volumes 1–49

Volume 52

Eras of Business Computing

ALAN R. HEVNER AND DONALD J. BERNDT

Numerical Weather Prediction

FERDINAND BAER

Machine Translation

SERGEI NIRENBURG AND YORICK WILKS

The Games Computers (and People) Play

JONATHAN SCHAEFFER

From Single Word to Natural Dialogue

NEILS OLE BENSON AND LAILA DYBKJAER

Embedded Microprocessors: Evolution, Trends and Challenges

MANFRED SCHLETT

Volume 53

Shared-Memory Multiprocessing: Current State and Future Directions

PER STEUSTRÖM, ERIK HAGERSTEU, DAVID I. LITA, MARGARET MARTONOSI, AND MADAN VERNGOPAL

Shared Memory and Distributed Shared Memory Systems: A Survey

KRISHNA KAUI, HYONG-SHIK KIM, BEU LEE, AND A. R. HURSON

Resource-Aware Meta Computing

JEFFREY K. HOLLINGSWORTH, PETER J. KELCHER, AND KYUNG D. RYU

Knowledge Management

WILLIAM W. AGRESTI

A Methodology for Evaluating Predictive Metrics

JASRETT ROSENBERG

An Empirical Review of Software Process Assessments

KHALED EL EMAM AND DENNIS R. GOLDENSON

State of the Art in Electronic Payment Systems

N. ASOKAN, P. JANSON, M. STEIVES, AND M. WAIDNES

Defective Software: An Overview of Legal Remedies and Technical Measures Available to Consumers

COLLEEN KOTYK VOSSLER AND JEFFREY VOAS

CONTENTS OF VOLUMES IN THIS SERIES 347
Volume 54

An Overview of Components and Component-Based Development

ALAN W. BROWN

Working with UML: A Software Design Process Based on Inspections for the Unified Modeling Language

GUILHERME H. TRAVASSOS, FORREST SHULL, AND JEFFREY CARVER

Enterprise JavaBeans andMicrosoft Transaction Server: Frameworks for Distributed Enterprise Components

AVRAHAM LEFF, JOHN PROKOPEK, JAMES T. RAYFIELD, AND IGNACIO SILVA-LEPE

Maintenance Process and Product Evaluation Using Reliability, Risk, and Test Metrics

NORMAN F. SCHNEIDEWIND

Computer Technology Changes and Purchasing Strategies

GERALD V. POST

Secure Outsourcing of Scientific Computations

MIKHAIL J. ATALLAH, K. N. PANTAZOPOULOS, JOHN R. RICE, AND EUGENE SPAFFORD

Volume 55

The Virtual University: A State of the Art

LINDA HARASIM

The Net, the Web and the Children

W. NEVILLE HOLMES

Source Selection and Ranking in the WebSemantics Architecture Using Quality of Data Metadata

GEORGE A. MIHAILA, LOUIQA RASCHID, AND MARIA-ESTER VIDAL

Mining Scientific Data

NAREN RAMAKRISHNAN AND ANANTH Y. GRAMA

History and Contributions of Theoretical Computer Science

JOHN E. SAVAGE, ALAN L. SALEM, AND CARL SMITH

Security Policies

ROSS ANDERSON, FRANK STAJANO, AND JONG-HYEON LEE

Transistors and 1C Design

YUAN TAUR

Volume 56

Software Evolution and the Staged Model of the Software Lifecycle

KEITH H. BENNETT, VACLAV T. RAJLICH, AND NORMAN WILDE

Embedded Software

EDWARD A. LEE

Empirical Studies of Quality Models in Object-Oriented Systems

LIONEL C. BRIAND AND JÜRGEN WÜST

Software Fault Prevention by Language Choice: Why C Is Not My Favorite Language

RICHARD J. FATEMAN

Quantum Computing and Communication

PAUL E. BLACK, D. RICHARD KUHN, AND CARL J. WILLIAMS

Exception Handling

PETER A. BUHR, ASHIF HARJI, AND W. Y. RUSSELL MOK

348 CONTENTS OF VOLUMES IN THIS SERIES
Breaking the Robustness Barrier: Recent Progress on the Design of the Robust Multimodal System

SHARON OVIATT

Using Data Mining to Discover the Preferences of Computer Criminals

DONALD E. BROWN AND LOUISE F. GUNDERSON

Volume 57

On the Nature and Importance of Archiving in the Digital Age

HELEN R. TIBBO

Preserving Digital Records and the Life Cycle of Information

SU-SHING CHEN

Managing Historical XML Data

SUDARSHAN S. CHAWATHE

Adding Compression to Next-Generation Text Retrieval Systems

NIVIO ZIVIANI AND EDLENO SILVA DE MOURA

Are Scripting Languages Any Good? A Validation of Perl, Python, Rexx, and Tcl against C, Cþþ, and Java

LUTZ PRECHELT

Issues and Approaches for Developing Learner-Centered Technology

CHRIS QUINTANA, JOSEPH KRAJCIK, AND ELLIOT SOLOWAY

Personalizing Interactions with Information Systems

SAVERIO PERUGINI AND NAREN RAMAKRISHNAN

Volume 58

Software Development Productivity

KATRINA D. MAXWELL

Transformation-Oriented Programming: A Development Methodology for High Assurance Software

VICTOR L. WINTER, STEVE ROACH, AND GREG WICKSTROM

Bounded Model Checking

ARMIN BIERE, ALESSANDRO CIMATTI, EDMUND M. CLARKE, OFER STRICHMAN, AND YUNSHAN ZHU

Advances in GUI Testing

ATIF M. MEMON

Software Inspections

MARC ROPER, ALASTAIR DUNSMORE, AND MURRAY WOOD

Software Fault Tolerance Forestalls Crashes: To Err Is Human; To Forgive Is Fault Tolerant

LAWRENCE BERNSTEIN

Advances in the Provisions of System and Software Security—Thirty Years of Progress

RAYFORD B. VAUGHN

Volume 59

Collaborative Development Environments

GRADY BOOCH AND ALAN W. BROWN

Tool Support for Experience-Based Software Development Methodologies

SCOTT HENNINGER

Why New Software Processes Are Not Adopted

STAN RIFKIN

CONTENTS OF VOLUMES IN THIS SERIES 349
Impact Analysis in Software Evolution

MIKAEL LINDVALL

Coherence Protocols for Bus-Based and Scalable Multiprocessors, Internet, and Wireless Distributed

Computing Environments: A Survey

JOHN SUSTERSIC AND ALI HURSON

Volume 60

Licensing and Certification of Software Professionals

DONALD J. BAGERT

Cognitive Hacking

GEORGE CYBENKO, ANNARITA GIANI, AND PAUL THOMPSON

The Digital Detective: An Introduction to Digital Forensics

WARREN HARRISON

Survivability: Synergizing Security and Reliability

CRISPIN COWAN

Smart Cards

KATHERINE M. SHELFER, CHRIS CORUM, J. DREW PROCACCINO, AND JOSEPH DIDIER

Shotgun Sequence Assembly

MIHAI POP

Advances in Large Vocabulary Continuous Speech Recognition

GEOFFREY ZWEIG AND MICHAEL PICHENY

Volume 61

Evaluating Software Architectures

ROSEANNE TESORIERO TVEDT, PATRICIA COSTA, AND MIKAEL LINDVALL

Efficient Architectural Design of High Performance Microprocessors

LIEVEN EECKHOUT AND KOEN DE BOSSCHERE

Security Issues and Solutions in Distributed Heterogeneous Mobile Database Systems

A. R. HURSON, J. PLOSKONKA, Y. JIAO, AND H. HARIDAS

Disruptive Technologies and Their Affect on Global Telecommunications

STAN MCCLELLAN, STEPHEN LOW, AND WAI-TIAN TAN

Ions, Atoms, and Bits: An Architectural Approach to Quantum Computing

DEAN COPSEY, MARK OSKIN, AND FREDERIC T. CHONG

Volume 62

An Introduction to Agile Methods

DAVID COHEN, MIKAEL LINDVALL, AND PATRICIA COSTA

The Timeboxing Process Model for Iterative Software Development

PANKAJ JALOTE, AVEEJEET PALIT, AND PRIYA KURIEN

A Survey of Empirical Results on Program Slicing

DAVID BINKLEY AND MARK HARMAN

Challenges in Design and Software Infrastructure for Ubiquitous Computing Applications

GURUDUTH BANAVAR AND ABRAHAM BERNSTEIN

350 CONTENTS OF VOLUMES IN THIS SERIES
Introduction to MBASE (Model-Based (System) Architecting and Software Engineering)

DAVID KLAPPHOLZ AND DANIEL PORT

Software Quality Estimation with Case-Based Reasoning

TAGHI M. KHOSHGOFTAAR AND NAEEM SELIYA

Data Management Technology for Decision Support Systems

SURAJIT CHAUDHURI, UMESHWAR DAYAL, AND VENKATESH GANTI

Volume 63

Techniques to Improve Performance Beyond Pipelining: Superpipelining, Superscalar, and VLIW

JEAN-LUC GAUDIOT, JUNG-YUP KANG, AND WON WOO RO

Networks on Chip (NoC): Interconnects of Next Generation Systems on Chip

THEOCHARIS THEOCHARIDES, GREGORY M. LINK, NARAYANAN VIJAYKRISHNAN, AND MARY JANE IRWIN

Characterizing Resource Allocation Heuristics for Heterogeneous Computing Systems

SHOUKAT ALI, TRACY D. BRAUN, HOWARD JAY SIEGEL, ANTHONY A. MACIEJEWSKI, NOAH BECK,

LADISLAU BÖLÖNI, MUTHUCUMARU MAHESWARAN, ALBERT I. REUTHER, JAMES P. ROBERTSON,

MITCHELL D. THEYS, AND BIN YAO

Power Analysis and Optimization Techniques for Energy Efficient Computer Systems

WISSAM CHEDID, CHANSU YU, AND BEN LEE

Flexible and Adaptive Services in Pervasive Computing

BYUNG Y. SUNG, MOHAN KUMAR, AND BEHROOZ SHIRAZI

Search and Retrieval of Compressed Text

AMAR MUKHERJEE, NAN ZHANG, TAO TAO, RAVI VIJAYA SATYA, AND WEIFENG SUN

Volume 64

Automatic Evaluation of Web Search Services

ABDUR CHOWDHURY

Web Services

SANG SHIN

A Protocol Layer Survey of Network Security

JOHN V. HARRISON AND HAL BERGHEL

E-Service: The Revenue Expansion Path to E-Commerce Profitability

ROLAND T. RUST, P. K. KANNAN, AND ANUPAMA D. RAMACHANDRAN

Pervasive Computing: A Vision to Realize

DEBASHIS SAHA

Open Source Software Development: Structural Tension in the American Experiment
COSKUN BAYRAK AND CHAD DAVIS

Disability and Technology: Building Barriers or Creating Opportunities?

PETER GREGOR, DAVID SLOAN, AND ALAN F. NEWELL

Volume 65

The State of Artificial Intelligence

ADRIAN A. HOPGOOD

Software Model Checking with SPIN

GERARD J. HOLZMANN

CONTENTS OF VOLUMES IN THIS SERIES 351
Early Cognitive Computer Vision

JAN-MARK GEUSEBROEK

Verification and Validation and Artificial Intelligence

TIM MENZIES AND CHARLES PECHEUR

Indexing, Learning and Content-Based Retrieval for Special Purpose Image Databases

MARK J. HUISKES AND ERIC J. PAUWELS

Defect Analysis: Basic Techniques for Management and Learning

DAVID N. CARD

Function Points

CHRISTOPHER J. LOKAN

The Role of Mathematics in Computer Science and Software Engineering Education

PETER B. HENDERSON

Volume 66

Calculating Software Process Improvement’s Return on Investment

RINI VAN SOLINGEN AND DAVID F. RICO

Quality Problem in Software Measurement Data

PIERRE REBOURS AND TAGHI M. KHOSHGOFTAAR

Requirements Management for Dependable Software Systems

WILLIAM G. BAIL

Mechanics of Managing Software Risk

WILLIAM G. BAIL

The PERFECT Approach to Experience-Based Process Evolution

BRIAN A. NEJMEH AND WILLIAM E. RIDDLE

The Opportunities, Challenges, and Risks of High Performance Computing in Computational Science and

Engineering

DOUGLASS E. POST, RICHARD P. KENDALL, AND ROBERT F. LUCAS

Volume 67

Broadcasting a Means to Disseminate Public Data in a Wireless Environment—Issues and Solutions

A. R. HURSON, Y. JIAO, AND B. A. SHIRAZI

Programming Models and Synchronization Techniques for Disconnected Business Applications

AVRAHAM LEFF AND JAMES T. RAYFIELD

Academic Electronic Journals: Past, Present, and Future

ANAT HOVAV AND PAUL GRAY

Web Testing for Reliability Improvement

JEFF TIAN AND LI MA

Wireless Insecurities

MICHAEL STHULTZ, JACOB UECKER, AND HAL BERGHEL

The State of the Art in Digital Forensics

DARIO FORTE

352 CONTENTS OF VOLUMES IN THIS SERIES
Volume 68

Exposing Phylogenetic Relationships by Genome Rearrangement

YING CHIH LIN AND CHUAN YI TANG

Models and Methods in Comparative Genomics

GUILLAUME BOURQUE AND LOUXIN ZHANG

Translocation Distance: Algorithms and Complexity

LUSHENG WANG

Computational Grand Challenges in Assembling the Tree of Life: Problems and Solutions

DAVID A. BADER, USMAN ROSHAN, AND ALEXANDROS STAMATAKIS

Local Structure Comparison of Proteins

JUN HUAN, JAN PRINS, AND WEI WANG

Peptide Identification via Tandem Mass Spectrometry

XUE WU, NATHAN EDWARDS, AND CHAU-WEN TSENG

Volume 69

The Architecture of Efficient Multi-Core Processors: A Holistic Approach

RAKESH KUMAR AND DEAN M. TULLSEN

Designing Computational Clusters for Performance and Power

KIRK W. CAMERON, RONG GE, AND XIZHOU FENG

Compiler-Assisted Leakage Energy Reduction for Cache Memories

WEI ZHANG

Mobile Games: Challenges and Opportunities

PAUL COULTON, WILL BAMFORD, FADI CHEHIMI, REUBEN EDWARDS, PAUL GILBERTSON, AND

OMER RASHID

Free/Open Source Software Development: Recent Research Results and Methods

WALT SCACCHI

Volume 70

Designing Networked Handheld Devices to Enhance School Learning

JEREMY ROSCHELLE, CHARLES PATTON, AND DEBORAH TATAR

Interactive Explanatory and Descriptive Natural-Language Based Dialogue for Intelligent Information

Filtering

JOHN ATKINSON AND ANITA FERREIRA

A Tour of Language Customization Concepts

COLIN ATKINSON AND THOMAS KÜHNE

Advances in Business Transformation Technologies

JUHNYOUNG LEE

Phish Phactors: Offensive and Defensive Strategies

HAL BERGHEL, JAMES CARPINTER, AND JU-YEON JO

Reflections on System Trustworthiness

PETER G. NEUMANN

CONTENTS OF VOLUMES IN THIS SERIES 353
Volume 71

Programming Nanotechnology: Learning from Nature

BOONSERM KAEWKAMNERDPONG, PETER J. BENTLEY, AND NAVNEET BHALLA

Nanobiotechnology: An Engineer’s Foray into Biology

YI ZHAO AND XIN ZHANG

Toward Nanometer-Scale Sensing Systems: Natural and Artificial Noses as Models for Ultra-Small,

Ultra-Dense Sensing Systems

BRIGITTE M. ROLFE

Simulation of Nanoscale Electronic Systems

UMBERTO RAVAIOLI

Identifying Nanotechnology in Society

CHARLES TAHAN

The Convergence of Nanotechnology, Policy, and Ethics

ERIK FISHER

Volume 72

DARPA’s HPCS Program: History, Models, Tools, Languages

JACK DONGARRA, ROBERT GRAYBILL, WILLIAM HARROD, ROBERT LUCAS, EWING LUSK, PIOTR LUSZCZEK,

JANICE MCMAHON, ALLAN SNAVELY, JEFFERY VETTER, KATHERINE YELICK, SADAF ALAM, ROY

CAMPBELL, LAURA CARRINGTON, TZU-YI CHEN, OMID KHALILI, JEREMY MEREDITH, AND

MUSTAFA TIKIR

Productivity in High-Performance Computing

THOMAS STERLING AND CHIRAG DEKATE

Performance Prediction and Ranking of Supercomputers

TZU-YI CHEN, OMID KHALILI, ROY L. CAMPBELL, JR., LAURA CARRINGTON, MUSTAFA M. TIKIR, AND

ALLAN SNAVELY

Sampled Processor Simulation: A Survey

LIEVEN EECKHOUT

Distributed Sparse Matrices for Very High Level Languages

JOHN R. GILBERT, STEVE REINHARDT, AND VIRAL B. SHAH

Bibliographic Snapshots of High-Performance/High-Productivity Computing

MYRON GINSBERG

Volume 73

History of Computers, Electronic Commerce, and Agile Methods

DAVID F. RICO, HASAN H. SAYANI, AND RALPH F. FIELD

Testing with Software Designs

ALIREZA MAHDIAN AND ANNELIESE A. ANDREWS

Balancing Transparency, Efficiency, AND Security in Pervasive Systems

MARK WENSTROM, ELOISA BENTIVEGNA, AND ALI R. HURSON

Computing with RFID: Drivers, Technology and Implications

GEORGE ROUSSOS

Medical Robotics and Computer-Integrated Interventional Medicine

RUSSELL H. TAYLOR AND PETER KAZANZIDES

354 CONTENTS OF VOLUMES IN THIS SERIES
Volume 74

Data Hiding Tactics for Windows and Unix File Systems

HAL BERGHEL, DAVID HOELZER, AND MICHAEL STHULTZ

Multimedia and Sensor Security

ANNA HAĆ

Email Spam Filtering

ENRIQUE PUERTAS SANZ, JOSÉ MARÍA GÓMEZ HIDALGO AND JOSÉ CARLOS CORTIZO PÉREZ

The Use of Simulation Techniques for Hybrid Software Cost Estimation and Risk Analysis

MICHAEL KLÄS, ADAM TRENDOWICZ, AXEL WICKENKAMP, JÜRGEN MÜNCH,

NAHOMI KIKUCHI, AND YASUSHI ISHIGAI

An Environment for Conducting Families of Software Engineering Experiments

LORIN HOCHSTEIN, TAIGA NAKAMURA, FORREST SHULL, NICO ZAZWORKA,

VICTOR R. BASILI, AND MARVIN V. ZELKOWITZ

Global Software Development: Origins, Practices, and Directions

JAMES J. CUSICK, ALPANA PRASAD, AND WILLIAM M. TEPFENHART

Volume 75

The UK HPC Integration Market: Commodity-Based Clusters

CHRISTINE A. KITCHEN ANDMARTYN F. GUEST

Elements of High-Performance Reconfigurable Computing

TOM VANCOURT ANDMARTIN C. HERBORDT

Models and Metrics for Energy-Efficient Computing

PARTHASARATHY RANGANATHAN, SUZANNE RIVOIRE, AND JUSTIN MOORE

The Emerging Landscape of Computer Performance Evaluation

JOANN M. PAUL, MWAFFAQ OTOOM, MARC SOMERS, SEAN PIEPER AND MICHAEL J. SCHULTE

Advances in Web Testing

CYNTRICA EATON AND ATIF M. MEMON

Volume 76

Information Sharing and Social Computing: Why, What, and Where?

ODED NOV

Social Network Sites: Users and Uses

MIKE THELWALL

Highly Interactive Scalable Online Worlds

GRAHAM MORGAN

The Future of Social Web Sites: Sharing Data and Trusted Applications with Semantics

SHEILA KINSELLA, ALEXANDRE PASSANT, JOHN G. BRESLIN, STEFAN DECKER, AND AJIT JAOKAR

Semantic Web Services Architecture with Lightweight Descriptions of Services

TOMAS VITVAR, JACEK KOPECKY, JANA VISKOVA, ADRIAN MOCAN, MICK KERRIGAN, AND DIETER FENSEL

Issues and Approaches for Web 2.0 Client Access to Enterprise Data

AVRAHAM LEFF AND JAMES T. RAYFIELD

Web Content Filtering

JOSÉ MARÍA GÓMEZ HIDALGO, ENRIQUE PUERTAS SANZ, FRANCISCO CARRERO GARCÍA, AND MANUEL DE

BUENAGA RODRÍGUEZ

	Copyright
	Contributors
	Preface
	Photo Fakery and Forensics
	Abstract
	Photo Fakery
	Media
	Science
	Law
	Politics
	National Security

	Photo Forensics
	Lighting Direction (2D)
	Lighting Direction (3D)
	Lighting Environment
	Color Filter Array
	JPEG Ghosts

	Discussion
	Acknowledments
	References

	Advances in Computer Displays
	Abstract
	Introduction
	Advances in Desktop Displays
	Cathode Ray Tube Displays
	Plasma Displays
	Active Matrix Liquid Crystal Displays

	Advances in Wall Displays
	Advances in Portable Displays
	Touch Interfaces
	Advances in Stereoscopic Displays
	Head-Mounted Displays
	The CAVE
	Stereoscopic Wall Displays
	The GeoWall
	Autostereo Displays
	Autostereo Walls

	Display Environments of the Future
	In the Home
	In the Workplace
	Cubicles
	The Tradeshow Conferences
	Research Labs

	Content Generation and Delivery to Displays
	Middleware for Scalable Content Rendering
	High-Speed Networking for Scalable Content Display

	Conclusion
	References

	Playing with All Senses: Human-Computer Interface Devices for Games
	Introduction
	Typology
	Buttons, Keys, and Keyboards
	Mice, Joysticks, Faders, and Similar
	Pen and Touch Input
	Inertial Sensors
	Cameras
	Specific Position and Orientation Sensors
	Displays
	Standard Screens and Projected Displays
	Head-Mounted Displays
	Stereoscopy

	Audio Input
	Audio Output
	Tactile, Haptic, and Locomotion Interfaces
	Kinetic Devices and Robots
	Biosignal Sensors
	Conclusion
	References

	A Status Report on the P Versus NP Question
	Abstract
	Prologue
	What Is the ``P NP?´´ Problem?
	What Is an Efficient Reduction?
	Why Is This an Audacious Notion?
	Definition 1

	Why Was This Such a Big Deal?
	Complexity Classes
	Definition 2
	Definition 3

	The Class NP
	Definition 4

	Subclasses of P
	What Is the ``P NP?´´ Problem?

	Why Is the ``P NP?´´ Problem Important?
	Cryptography
	Understanding the World

	What Progress Has Been Made in the Past 30 Years?
	Small Circuits and the Polynomial Hierarchy
	Theorem 5 [45]

	Interactive Proofs and Probabilistically Checkable Proofs
	Hardness of Approximation
	AM and NP
	Average-Case Complexity
	Time-Space Tradeoffs
	The Isomorphism Conjecture

	Where Are We now? (Barriers to Progress)
	Nonrelativizing Proof Techniques
	Natural Proofs

	Conclusions: What Would a Solution Mean?
	Acknowledments
	References

	Dynamically Typed Languages
	Abstract
	Introduction
	Defining Types
	Types
	Compile-Time Versus Run-Time
	Static Typing
	Implicit Type Declarations
	Nominal and Structural Typing

	Dynamic Typing
	Safe and Unsafe Typing
	Implicit Type Conversions
	Terminology Summary

	Disadvantages of Static Typing
	Static Types Are Inexpressive
	Overly Permissive Types
	Overly Restrictive Types
	Type System Complexity

	Types Are Represented by a Separate Language
	Type Systems' Correctness
	System Ossification
	Run-Time Dynamicity

	History
	Lisp and Its Derivatives
	Scheme

	Smalltalk
	Text-Processing Languages
	Declarative Languages
	Prototyping Languages
	Modern "Scripting" Languages

	Defining Features
	Simplicity
	High-Level Features
	Built-in Data Types
	Automatic Memory Management

	Metaprogramming
	Reflection
	Compile-Time Metaprogramming
	Eval
	Continuations

	Refactoring
	"Batteries Included" Libraries
	Portability
	Unanticipated Reuse
	Interactivity
	Compile-Link-Run Cycle
	Run-Time Updates

	Disadvantages of Dynamic Typing
	Performance
	Debugging
	Code Completion
	Types as Documentation

	Variations
	Non-OO and OO Languages
	Optional Types
	Analysis

	The Future
	Conclusions
	Acknowledments
	References

	Factors Influencing Software Development Productivity-State-of-the-Art and Industrial Experiences
	Introduction
	Design of the Study
	Review of Industrial Experiences
	Review of Related Literature
	Review Scope and Criteria
	Study Limitations
	Demographical Information

	Aggregation of the Review Results

	Related Terminology
	Context Versus Influence Factors
	Classification of Influence Factors

	Overview of Factors Presented in Literature
	Crosscontext Factors
	Context-Specific Factors
	Model-Specific Factors
	Development-Type-Specific Factors
	Domain-Specific Factors

	Reuse-Specific Factors
	Summary of Literature Review

	Overview of Factors Indicated by Industrial Experiences
	Demographics
	Cross-Context Factors
	Context-Specific Factors
	Study-Specific Factors
	Development-Type-Specific Factors
	Domain-Specific Factors

	Summary of Industrial Experiences

	Detailed Comments on Selected Productivity Factors
	Comments on Selected Context Factors
	Programming Language
	Application Domain
	Development Type
	Process Maturity
	Development Life Cycle

	Comments on Selected Influence Factors
	Development Team Characteristics
	Schedule/Effort Distribution
	Use of Tools and Methods
	Software Reuse
	Software Outsourcing

	Considering Productivity Factors in Practice
	Factor Definition and Interpretation
	Factor Selection
	Factor Dependencies
	Model Quantification

	Summary and Conclusions
	Acknowledments
	References

	Evaluating the Modifiability of Software Architectural Designs
	Abstract
	Introduction
	Evaluating Software Architectural Designs
	Overview of the EBEAM
	STAGE I: Evaluation of Design Characteristics
	Identifying Design Characteristics (I-1)
	Use of Appropriate and Representative Naming
	Minimized Coupling
	Minimized Coupling to COTS (Including Languages)
	Maximized Cohesion
	Appropriate Use of Design Patterns and Architectural Styles
	Proper Use of Information Hiding (Including Interfaces)
	Maximized Modularity
	Minimized Duplication and Redundancy
	Minimized Concurrency and Threads
	Proper Documentation

	Comments on the Excluded Characteristics
	Evaluating Design Characteristics (I-2)
	Definition of Goal and Alternatives
	Prioritization of Design Characteristics

	Assigning Weights to Experts (I-3)
	Aggregating the Contribution of Design Characteristics to Modifiability (I-4)

	STAGE II: Evaluation of Architectural Designs
	Identify Architectural Design Candidates and Define the Target Design (II-1)
	Evaluation of Design Candidates for a Fixed Characteristic (II-2)
	Computing the Weight for Local Experts (II-3)

	STAGE III: Overall Modifiability Evaluation
	Combining the Design Modifiability Matrices of All Experts (III-1)
	Rank Architectural Designs (III-2)
	Rank the Designs Based on Modifiability Values
	Determine the Distance from the Target Design

	CASE STUDY I: The Application of EBEAM to TSAFE Designs
	Context
	Evaluating TSAFE Designs Using EBEAM
	Results and Discussions
	Results from Stage I: Contribution of Design Characteristics to Modifiability
	Results from Stage II: Evaluation of TSAFE Designs
	Results from Stage III: Overall Modifiability of TSAFE Designs

	Empirical Validation
	Defining and Selecting the Objective Metrics
	Coupling Metrics
	High-Level System Coupling Metric
	Fan-In/Fan-Out Metric

	Interfaces Metrics
	Duplication

	Expert-Judgment Using EBEAM on Selected Design Characteristics
	Comparing the Objective and Subjective Measures on TSAFE Architectural Designs

	CASE STUDY II: The Application of EBEAM to CGS Designs
	Context
	Evaluating CGS Designs and Results

	Applicability of the EBEAM Technique
	Benefits of EBEAM
	Limitations

	Related Work
	Summary
	Appendix A: UML Models for TSAFE Architectural Designs
	Acknowledments
	References

	The Common Law and Its Impact on the Internet
	Abstract
	Introduction
	A Brief Primer on the Common Law
	Common Law Actions and the Internet
	Trespass to Chattels
	Will Nuisance Emerge as a Viable Action in Internet Law?
	The Future of Pop-up Ads, Spyware, and Adware
	Spam and Electronic Nuisance

	The Common Law Versus Statutes

	The Common Law in Action: Employer Liability to Third-Party Victims on the Internet
	A Study in Failure to Protect Third Parties: The XYC Corp.
	Delfino v. Agilent Technologies: A Case of Competence
	Employer Liability Without Fault-The Doctrine of Respondeat Superior
	Negligent Supervision and Retention of Employees
	Intentional Harm on the Internet
	Cybertorts

	Why Doe Lost and Delfino Won-A Case of Risk Management
	Why the Court Said XYC Was Liable
	Why the Court Said Agilent Should Not Be Liable

	Conclusion
	Endnote Legal Definitions*
	Acknowledments
	References

	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Subject Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Contents of Volumes in This Series

