
Academic Press is an imprint of Elsevier

32 Jamestown Road, London, NW1 7BY, UK

Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

525 B Street, Suite 1900, San Diego, CA 92101-4495, USA

First edition 2010

Copyright © 2010 Elsevier Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or

by any means electronic, mechanical, photocopying, recording or otherwise without the prior written

permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology

Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email:

permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web

site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a

matter of products liability, negligence or otherwise, or from any use or operation of any methods,

products, instructions or ideas contained in the material herein

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-381027-4

ISSN: 0065-2458
For information on all Academic Press publications

visit our web site at elsevierdirect.com
Printed and bound in USA

10 11 12 10 9 8 7 6 5 4 3 2 1

Contributors
Dr. Joshua N. Adkins is a Staff Scientist at Pacific Northwest National Laboratory

(PNNL) and his research centers on the comprehensive characterization of proteins

through space (associated proteins, structural determinants, and localization) and

time (before and after treatment, cell cycle, day–night cycle, and evolutionary

changes) to better understand biological systems. Of particular interest to Dr. Adkins

are challenging biological studies that require bridging the gaps between technology

development and biological application. He leads a talented and multidisciplinary

team comprised of scientists from PNNL, universities, and other research organiza-

tions whose aim is to develop a systems-level understand of the causative agents of

Typhoid Fever and the Black Plague.

Douglas J. Baxter is a Senior Research Scientist at the Department of Energy’s

Pacific Northwest National Laboratory working as a consultant in the Visualization

and User services group for the Molecular Science Computing Facility in the

Environment Molecular Sciences Laboratory. He has been developing software

for parallel high-performance scientific computing for over 25 years and has cur-

rently involved in computational biology (MSPolygraph and Scalablast), some

climate modeling, subsurface chemistry, and power grid computations. He received

his M.S. in Computer Science from Stanford University.

Dr. William R. Cannon joined PNNL in January 2000, where his current research

interests are in (1) simulation of cellular processes such as replication and recombi-

nation, (2) statistical and biological inference of cellular networks, and (3) develop-

ment of a Web-based problem-solving environment for bioinformatics, especially

with regard to synchronous processes in the cell.

Dr. Daniel G. Chavarria-Miranda is a Research Scientist at the Department of

Energy’s Pacific Northwest National Laboratory working in the areas of scalable

programming models, multithreaded systems, compilers, and programming lan-

guages. He is co-Principal Investigator of the Center for Adaptive Supercomputing

Software (CASS-MT), who is conducting research on the use of multithreaded
ix

x CONTRIBUTORS
systems for nontraditional parallel applications, and he is also Principal Investigator

for PNNL’s portion of the DOE/ASCR Center for Scalable Parallel Programming

Models. Dr. Chavarrı́a-Miranda is a member of the Association for Computing

Machinery (ACM). He earned his Ph.D. in Computer Science from Rice University.

Sutanay Choudhury is a Computer Scientist in Department of Energy’s Pacific

Northwest National Laboratory working on High-Performance Computing and

Scientific Data Management. His areas of interests include parallel and distributed

computing techniques, data mining, and machine learning.

Ian Gorton is the chief architect for Pacific Northwest National Laboratory’s Data-

Intensive Computing Initiative. His research interests include software architectures

and middleware technologies. He received a Ph.D. in Computer Science from

Sheffield Hallam University. Gorton is a member of the IEEE Computer Society.

Contact him at ian.gorton@pnl.gov.

Deborah K. Gracio is a computational and statistical analytics division director at

Pacific Northwest National Laboratory. Her research interests are integrated compu-

tational environments and computational biology. She received an M.S. in Electrical

Engineering from Washington State University. She is a senior member of the IEEE

and the American Association for the Advancement of Science. Contact her at

Debbie.gracio@pnl.gov.

Todd D. Halter is a Senior Scientist at the Department of Energy’s Pacific North-

west National Laboratory with over 20 years experience in the fields of Computer

Science, Physics, Mathematics, and Chemistry. Since 1998, Todd has been working

on the Atmospheric Radiation Measurement (ARM) Program—the largest global

change research program supported by the US Department of Energy as a value-

added product and data system developer and project manager. Todd has served as a

group manager, project manager, system architect, and developer with experience in

all aspects of staff and project management, budget and resource management,

architecture and system design, coding, testing, installation, and maintenance for

several other projects within PNNL. Todd holds an M.S. in Computer Science from

Washington State University.

Navdeep D. Jaitly received his M.S. degree in Computer Science from the Univer-

sity of Waterloo. He worked as a Software Developer in IBM Toronto Labs, as a

Senior Research Scientist and Group Leader in Bioinformatics at Caprion Pharma-

ceuticals in Montreal and as a Senior Research Scientist at Pacific Northwest

National Laboratory. His research interests include machine learning and statistics

CONTRIBUTORS xi
and he has spent several years in their application to mass spectrometry. He is

currently a graduate student in Computer Science at the University of Toronto where

he is pursuing research in machine learning.

John R. Johnson leads high-performance computing (HPC) activities for the

Pacific Northwest National Laboratory’s Defense and Special Programs. John’s

current research is in data-intensive, irregular applications requiring novel HPC

approaches, for example, streaming sensors, complex networks, and multimedia

analysis. Prior to joining PNNL, John worked on portfolio construction and optimi-

zation for a large global investment firm. Before that John was a Research Program

Manager at Lawrence Livermore National Laboratory leading programs exploring

computing architectures and progressive algorithms for data-intensive applications.

John leads the CS team for a massively parallel, high-fidelity physics simulation

project under the Department of Energy’s (DOE) ASCI program where he received a

DOE award for technical excellence and a technical achievement award from the

National Nuclear Security Administration. John has a B.A. in Mathematics from the

University of California, Berkeley, an M.S. in Computer Science from Johns

Hopkins University, and Ph.D. studies at the University of Chicago.

Dr. Holger M. Kienle holds a Ph.D. degree from the University of Victoria, Canada

(2006), a Diploma in Computer Science from the University of Stuttgart, Germany

(1999), and a Master of Science degree in Computer Science from the University of

Massachusetts, Dartmouth (1995). He received a 2-year Post Graduate Research

Fellowship (1997–1998) from the University of California, Santa Barbara, to work

as a member of Professor Hölzle’s Object-Oriented Compilers group. He is currently

a postdoctoral student in Computer Science at the University of Victoria, Canada,

where he is a member of Professor Müller’s research group. His interests include

software reverse engineering, domain-specific languages, virtual worlds, and legal

issues that impact information technology. He is program co-chair for WSE 2010

and co-organizer of the WASDeTT Workshop series. He has served on the program

committees of CSMR, ICSM, WCRE, and WSE. His e-mail address is kienle@cs.

uvic.ca.

Dr. Richard T. Kouzes is a Laboratory Fellow at the Department of Energy’s

Pacific Northwest National Laboratory working in the areas of nonproliferation,

homeland security, and computational applications. He is an adjunct Professor of

Physics at Washington State University, a Fellow of the Institute of Electrical and

Electronics Engineers, and a Fellow of the American Association for the Advance-

ment of Science. He earned his Ph.D. in Physics from Princeton University and is the

author of over 300 papers. His e-mail is rkouzes@pnl.gov.

xii CONTRIBUTORS
Prof. Alfred W. Loo is an Associate Professor at the Department of Computing and

Decision Sciences, Lingnan University, Hong Kong. He is also a Chartered Engi-

neer, Chartered Mathematician, Chartered IT Professional, and Chartered Scientist.

His research interests are in the areas of wireless security, peer-to-peer systems, and

distributed computing. He can be reached at alfred@LN.ln.edu.hk.

Matthew C. Macduff is a Computer Engineer at the Department of Energy’s

Pacific Northwest National Laboratory with a focus on network, system, and

software architecture. He has worked extensively for 16 years with data manage-

ment systems as an administrator, programmer, designer, and task leader. He is most

familiar with Linux and Solaris systems and Cisco network equipment. His current

interest is the Scientific Data Management capabilities as they apply to the DOE

Atmospheric Radiation Measurement (ARM) project.

Prof. Ami Marowka is an adjunct Assistant Professor in the Department of

Computer Science of Bar-Ilan University, Israel. Before joining to Bar-Ilan Univer-

sity he was an Assistant Professor in the Department of Software Engineering of

Shenkar College of Engineering and Design. Before joining Shenkar he was an

Associate Researcher in the Department of Computer Science of University of

Houston and a member in the High-Performance Computing Tools Group

(HPCT). Professor Marowka earned his Ph.D. degree in the School of Computer

Science and Engineering at the Hebrew University of Jerusalem, Israel. His primary

research interest is in portability of high-performance applications. Other research

areas include parallel computing, use of advanced computer architectures, program-

ming methodology, tools for parallel computers, and ad hoc networks. His e-mail

address is amimar2@yahoo.com.

Dr. Andres Marquez is a Scientist at Pacific Northwest National Laboratory. He is

the Principal Investigator for Performance Evaluation on the Cray XMT and for the

Energy Smart Data Center project. Dr. Marquez is a high-performance computer and

compiler architect who has worked on the development of the German Supercompu-

ters SUPRENUM and MANNA, on the GENESIS European Supercomputer design

studies, on US Supercomputer design studies for the Hybrid Technology and Multi-

threaded Technology (HTMT) computer and on academic high-performance comput-

ing projects such as the Efficient Architecture for Running Threads (EARTH) and the

Compiler Aided Reorder Engine (CARE). He has published over 30 peer-reviewed

papers in journals and conferences in the fields of hardware-, software- and systems

architecture and IT infrastructure. He can be reached at andres.marquez@pnl.gov.

CONTRIBUTORS xiii
Dr. Dennis J. McFarland received the B.S. and Ph.D. degrees from the University

of Kentucky, Lexington, in 1971 and 1978, respectively. He is currently a Research

Scientist with theWadsworth Center for Laboratories and Research, New York State

Department of Health, Albany. His research interests include the development of

EEG-based communication and auditory perception. He can be reached at

mcfarlan@wadsworth.org.

Dr. Matthew E. Monroe is a SeniorResearch Scientist at theDepartment of Energy’s

Pacific Northwest National Laboratory working in the area of proteomics. His research

involves development of algorithms and software for custom and automated analysis of

proteomics and bioinformatics data, includingmanaging, summarizing, andmining the

large volumes of data generated bymass spectrometry-based proteomic analysis. Areas

of expertise include microcolumn liquid chromatography, LC-MS/MS of peptides and

proteins using Q-TOF and ion trap mass spectrometry, and analytical instrumentation

design and automation. Dr. Monroe is currently the lead developer for administering,

optimizing, and expanding a large collection of SQL Server databases used to process

and organize data from the AMT tag process.

Prof. Hausi A. Müller is an Associate Dean Research, Faculty of Engineering and

Professor of Computer Science, University of Victoria, British Columbia, Canada.

He was founding Director of the Bachelor of Software Engineering program.

In collaboration with IBM, CA and SEI, his research group investigates methods,

models, architectures, and techniques for self-managing and self-adaptive software-

intensive systems. Dr. Müller’s research interests include software engineering,

software evolution, autonomic computing, diagnostics, SOA governance, software

architecture, software reverse engineering, reengineering, program comprehension,

visualization, and software engineering tool evaluation. He is Program Co-Chair for

IBM CASCON 2010. He was General Chair of VISSOFT 2009 and co-organizer of

SEAMS 2006-10 and DEAS 2005. He was General Chair for IWPC 2003 and ICSE

2001. Dr. Müller serves on the Editorial Board of IEEE Transactions on Software

Engineering and as Vice-Chair of IEEE Computer Society Technical Council on

Software Engineering (TCSE). His e-mail address is hausi@cs.uvic.ca.

Dr. Christopher S. Oehmen is a Senior Research Scientist at the Department of

Energy’s Pacific Northwest National Laboratory. He is in the Computational Biol-

ogy and Bioinformatics group focusing on high-performance applications in bioin-

formatics and machine learning and is the originator of ScalaBLAST, a massively

parallel sequence analysis program. Dr. Oehmen earned his Ph.D. in Biomedical

Engineering from the Joint Graduate Program in Biomedical Engineering, The

University of Memphis and The University of Tennessee Health Science.

xiv CONTRIBUTORS
Dr. William A. Pike is a Senior Research Scientist at the Pacific Northwest

National Laboratory specializing in analytic reasoning, visualization, knowledge

representation, and collaborative systems. He is the research coordinator for the

Department of Homeland Security’s National Visualization and Analytics Center,

and also leads work in visualization for cyber security. He has published in such

outlets as the International Journal of Human–Computer Studies, the Proceedings
and the National Academy of Sciences, and Information Visualization. Dr. Pike
holds a Ph.D from Penn State University.

Chad Scherrer is a Research Scientist at the Pacific Northwest National Laboratory

whose work involves solving a variety of problems in statistics, mathematical

modeling, and high-performance computing. He has contributed to domain pro-

blems in aviation safety, cyber security, and radiation detection. Chad leads the

Statistical Text Analysis task of the Center for Adaptive Supercomputing Software-

Multithreaded Architectures (CASS-MT), which focuses on multithreaded architec-

tures for problems where irregularity leads to load-balance problems or other

inefficiencies on conventional hardware.

Dr. Anuj R. Shah is a Senior Research Scientist in the Scientific Data Management

group at the Pacific Northwest National Laboratory (PNNL). His expertise is in

the field of bioinformatics, heterogeneous data integration, machine learning,

high-performance computing, software architectures, and algorithm development.

He is the principal investigator on a PNNL Laboratory Directed Research and

Development project under the Data-Intensive Computing Initiative on devising

high-performance data analysis pipelines for streaming data. His current work

includes deisotoping algorithms for proteomics data, application of machine learning

frameworks to predict various properties of peptides identified using mass spectrom-

etry and proteomics. Dr. Shah has more than 6 years of experience working in

interdisciplinary teams facilitating biological research and has authored and

coauthored a number of peer-reviewed journal and conference papers.

Dr. Oreste Villa received his M.S. degree in Electronic Engineering in 2003 from

the University of Cagliari (Italy) with final score 110/110. His thesis focused on the

design of reconfigurable low-power coprocessor devices. In 2004 he received his

M.E. degree in Embedded Systems Design from the University of Lugano (Switzer-

land) majoring on cycle-accurate multicore simulation frameworks. In 2004,

founded by STMicroelectronics, he enrolled the Ph.D. program of Politecnico di

Milano (Italy) focusing his research in design and programmability issues of multi-

core architectures. In May 2006 he joined PNNL (Pacific Northwest National

Laboratory) as Ph.D. intern researching on programming techniques and algorithms

CONTRIBUTORS xv
for advanced multicore architectures, on cluster fault tolerance and virtualization

techniques for HPC. In March 2008 he received his Ph.D. degree from Politecnico di

Milano (Italy). Since May 2008, Dr. Villa is a Research Scientist in the HPC group

at PNNL, where he focuses his research on performance/programmability of

advanced multicore architectures for scientific computing, on architectural studies

of advanced architectures for irregular applications, and on cluster fault tolerance.

Dr. Bobbie-Jo Webb-Robertson is a Senior Research Scientist in the computa-

tional biology and bioinformatics group at the Department of Energy’s Pacific

Northwest National Laboratory working in the area of statistical methods develop-

ment for the analysis of high-throughput data. She has applied machine learning

applications to areas such as bioremediation, homeland security, and biomedical

research. She is an adjunct Professor of Computer Science at Washington State

University and earned her Ph.D. in 2002 in Decision Sciences and Engineering

Systems from Rensselaer Polytechnic Institute.

Dr. Paul D. Whitney received his Ph.D. in Statistics from the University of

Wisconsin in 1984. He has been a Research Scientist at PNNL since 1991. He has

developed information retrieval methods, exploratory analyses algorithms and soft-

ware for these areas of interest, notably for image and text data. He has both led and

contributed to the development of a variety of information visualization methods.

His recent research focuses social and behavioral modeling. This research combines

data analysis with models for organizations and individual behavior. Dr. Whitney’s

involvement in this work includes managing projects, developing and implementing

low-level algorithms for the characterization and analysis of graph data, leading

projects to design transaction analysis tools, and designing/analyzing experiments to

assess the effectiveness of the scenario analysis algorithms.

Dr. Jonathan R. Wolpaw, M.D., is Chief of the Laboratory of Neural Injury and

Repair at the Wadsworth Center of the NYS Department of Health and a Professor of

Biomedical Sciences at SUNY (Albany). His laboratory has developed and is using

operant conditioning of spinal reflexes to define the plasticity underlying learning.

This work has demonstrated that reflex conditioning changes the spinal cord and has

begun to reveal the mechanisms of change, and is now showing that conditioning

can guide spinal cord plasticity to improve walking after spinal cord injuries.

Dr. Wolpaw is also leading development of EEG-based brain–computer interface

(BCI) technology to restore communication and control to people who are paral-

yzed. His group has shown that noninvasive EEG-based BCI technology can

give control similar to that achieved by electrodes placed in the brain, and has

xvi CONTRIBUTORS
begun to provide BCI systems to severely disabled people for daily use in their

homes. These achievements have received wide recognition and numerous national

and international awards. He can be reached at wolpaw@wadsworth.org.

Nino Zuljevic is a Software Engineer at the Department of Energy’s Pacific

Northwest National Laboratory. His primary focus areas are computational applica-

tions in homeland security, energy conservation, biology, and risk sciences. He

earned his B.S. in Computer Science from Washington State University.

Preface
The Advances in Computers has been chronicling the developments in the computer

industry since its first volume, published in 1960. This present volume is number 79

in the series. Each year we publish three volumes, each containing five to seven

chapters, on new technology affecting the information technology industry. In this

current volume, we present five chapters on topics relevant to today’s computer user

and researcher. The Advances is the oldest continuously published book series that

keeps up with the every changing face of computer technology.

In volumes 72 (from 2008) and 75 (from 2009), we presented several chapters on

the technology useful for the development of new high-performance computers.

In Chapter 1 of this present volume, ‘‘Applications in Data-Intensive Computing’’

by Anuj R. Shah, Joshua N. Adkins, Douglas J. Baxter, William R. Cannon, Daniel

G. Chavarria-Miranda, Sutanay Choudhury, Ian Gorton, Deborah K. Gracio, Todd

D. Halter, Navdeep D. Jaitly, John R. Johnson, Richard T. Kouzes, Matthew

C. Macduff, Andres Marquez, Matthew E. Monroe, Christopher S. Oehmen,

William A. Pike, Chad Scherrer, Oreste Villa, Bobbie-Jo Webb-Robertson, Paul

D. Whitney, and Nino Zuljevic, the authors look at data-intensive problems and give

several examples of how these new high-speed machines can be used to solve such

problems. By data-intensive, they are looking at organizations that capture informa-

tion at terabytes (or a 1 followed by 12 zeros) of information per day. They first

describe the hardware now being developed to process such data and then describe

their MeDICi middleware (e.g., a software framework) useful for characterizing and

solving such data-intensive applications.

Related to the technology described in Chapter 1, Ami Marowka, in Chapter 2’s

‘‘Pitfalls and Issues of Manycore Programming,’’ looks at the emerging technology

of manycore programming. Computer processors cannot increase in speed arbi-

trarily. Issues such as the speed of light (and speed of electrons in wires) provide

ultimate barriers to increasing processor performance. In order to provide increased

performance, modern CPUs contain multiple processors on the same CPU chip.

Thus, new PCs now contain two, four, or more independent processors, each running

at the same clock rate as earlier single processor machines. The difficult problem is

how to use all processors effectively so that applications can make better use of all
xvii

xviii PREFACE
this computing power. Previously this was the domain of the large supercomputers

running at well-funded research laboratories. Now it is a problem faced by almost

every user of a modern desktop or laptop machine. How to understand and address

the software and hardware limitations of such multicore processors is the goal of this

chapter.

Alfred Loo, in Chapter 3’s ‘‘Illusion of Wireless Security,’’ addresses the prob-

lem of providing security in a wireless world. Today, an increasing percent of users

connect to the Internet via wireless connections—a local area network (LAN) in

their home or place of employment or a regional wireless network (WIFI). How

secure are these connections since wireless signals are easy to intercept and often

easy to interpret? What security mechanisms are in place, how secure are they, and

what improvements can be made to add to their security? These related topics are

the focus of this chapter.

In Chapter 4, Dennis Mcfarland and Jonathan Wolpaw, in ‘‘Brain–Computer

Interfaces of the Operation of Robotic and Prosthetic Devices,’’ describe an exciting

new development in computer technology. Since the human brain produces signals

that are detectable on the scalp, brain–computer interfaces can translate these signals

into outputs that communicate a user’s intent without the participation of peripheral

nerves and muscles. This allows for the direct control of devices without the need for

invasive surgery. Especially for those with physical limitations and handicaps, such

devices offer the ability to replace biological functions with mechanical ones.

The authors explore this topic further.

In the last chapter, ‘‘The Tools Perspective on Software Reverse Engineering:

Requirements, Construction and Evaluation’’ by Holger M. Kienle and Hausi

A. Müller, the authors provide a comprehensive discussion of the problems in

reverse engineering software. It is often necessary to understand the designs of a

software system when you only have the executable program. The design may have

been lost or the design documents might not have kept up with the changing role of

the program itself as it became modified over numerous versions and over many

years. The authors address the reverse engineering task from three perspectives:

(1) requirements for reverse engineering tools, (2) construction of reverse engineer-

ing tools, and (3) evaluation of reverse engineering tools.

I hope that you find these chapters of interest. I am always looking for new and

interesting topics to appear in these pages. If you have any suggestions of topics for

future chapters, or if you wish to contribute such a chapter yourself, I can be reached

at mvz@cs.umd.edu.

Marvin Zelkowitz

College Park, Maryland

Applications in Data-Intensive
Computing
ADVAN

ISSN: 00
ANUJ R. SHAH
Pacific Northwest National Laboratory, Richland,

Washington, USA
JOSHUA N. ADKINS
Pacific Northwest National Laboratory, Richland,

Washington, USA
DOUGLAS J. BAXTER
Pacific Northwest National Laboratory, Richland,

Washington, USA
WILLIAM R. CANNON
Pacific Northwest National Laboratory, Richland,

Washington, USA
DANIEL G. CHAVARRIA-MIRANDA
Pacific Northwest National Laboratory, Richland,

Washington, USA
SUTANAY CHOUDHURY
Pacific Northwest National Laboratory, Richland,

Washington, USA
CES IN COMPUTERS, VOL. 79 1 Copyright © 2010 Elsevier Inc.

65-2458/DOI: 10.1016/S0065-2458(10)79001-X All rights reserved.

2 A.R. SHAH ET AL.
IAN GORTON
Pacific Northwest National Laboratory, Richland,

Washington, USA
DEBORAH K. GRACIO
Pacific Northwest National Laboratory, Richland,

Washington, USA
TODD D. HALTER
Pacific Northwest National Laboratory, Richland,

Washington, USA
NAVDEEP D. JAITLY
Pacific Northwest National Laboratory, Richland,

Washington, USA
JOHN R. JOHNSON
Pacific Northwest National Laboratory, Richland,

Washington, USA
RICHARD T. KOUZES
Pacific Northwest National Laboratory, Richland,

Washington, USA
MATTHEW C. MACDUFF
Pacific Northwest National Laboratory, Richland,

Washington, USA
ANDRES MARQUEZ
Pacific Northwest National Laboratory, Richland,

Washington, USA

APPLICATIONS IN DATA-INTENSIVE COMPUTING 3
MATTHEW E. MONROE
Pacific Northwest National Laboratory, Richland,

Washington, USA
CHRISTOPHER S. OEHMEN
Pacific Northwest National Laboratory, Richland,

Washington, USA
WILLIAM A. PIKE
Pacific Northwest National Laboratory, Richland,

Washington, USA
CHAD SCHERRER
Pacific Northwest National Laboratory, Richland,

Washington, USA
ORESTE VILLA
Pacific Northwest National Laboratory, Richland,

Washington, USA
BOBBIE-JO WEBB-ROBERTSON
Pacific Northwest National Laboratory, Richland,

Washington, USA
PAUL D. WHITNEY
Pacific Northwest National Laboratory, Richland,

Washington, USA
NINO ZULJEVIC
Pacific Northwest National Laboratory, Richland,

Washington, USA

4 A.R. SHAH ET AL.
Abstract
The total quantity of digital information in the world is growing at an alarming

rate. Scientists and engineers are contributing heavily to this data ‘‘tsunami’’ by

gathering data using computing and instrumentation at incredible rates. As data

volumes and complexity grow, it is increasingly arduous to extract valuable

information from the data and derive knowledge from that data. Addressing

these demands of ever-growing data volumes and complexity requires game-

changing advances in software, hardware, and algorithms. Solution technologies

also must scale to handle the increased data collection and processing rates and

simultaneously accelerate timely and effective analysis results. This need for

ever faster data processing and manipulation as well as algorithms that scale to

high-volume data sets have given birth to a new paradigm or discipline known as

‘‘data-intensive computing.’’ In this chapter, we define data-intensive comput-

ing, identify the challenges of massive data, outline solutions for hardware,

software, and analytics, and discuss a number of applications in the areas of

biology, cyber security, and atmospheric research.
1.
 I
ntroduction . 4
2.
 W
hat Is Data-Intensive Computing? . 6
2
.1.
 H
ardware Architectures . 7
2
.2.
 D
ata-Intensive Data Analytics . 13
2
.3.
 S
oftware Infrastructures for

Data-Intensive Applications . 15
3.
 A
pplications in Data-Intensive

Computing at PNNL . 20
3
.1.
 A
pplications in Biological Sciences . 21
3
.2.
 D
ata-Intensive Cyber Analytics . 39
3
.3.
 A
pplications in Atmospheric Radiation Measurement Program 49
4.
 C
onclusions . 62
A
cknowledgement . 63
R
eferences . 63
1. Introduction

Advances in technology have empowered individuals with the ability to generate

digital content with mouse clicks and voice commands. Digital pictures, e-mails,

text messages, home videos, audio, and Web pages are common examples of digital

APPLICATIONS IN DATA-INTENSIVE COMPUTING 5
content that are generated on a regular basis. A family on vacation can generate

pictures and video content that require up to several terabytes of disk space.

According to a comprehensive study [1] by IDC, a provider of market intelligence,

individuals generate 70% of the currently existing digital content. The total amount

of information in the world in 2006 was estimated at about 160 exabytes and is

expected to grow to 1 atabytes by the end of 2010, amounting to a sixfold increase in

data volume. In terms of size, 1 atabyte equates to a stack of books that could reach

from the sun to Pluto and back. A recent update to the 2007 Gantz study [2]

estimates that the digital universe is 10% bigger than originally thought in 2007.

The 2008 report identifies the following rapidly growing areas of the digital uni-

verse: digital television, surveillance cameras, Internet access in emerging countries,

sensor-based applications, data centers supporting ‘‘cloud computing,’’ and social

networks.

The Gantz study therefore alludes to the fact that scientists and engineers are

quickly becoming significant contributors to this data ‘‘tsunami.’’ Scientists and

engineers engaged in research are generating and gathering data at incredible rates.

For example, Chevron Corporation accumulates data at a rate of 2 TB a day, or

23 MB every second [3]. In science, high-energy physics remains the leading

generator of raw data. The Atlas experiment for the Large Hadron Collider (http://

atlasexperiment.org) at the Center for European Nuclear Research generates 1 billion

proton collision events per second. If all the data were recorded, it would fill 100,000

compact disks every second. Despite the immense scale of this experimental facility,

it is not the only colossal science project of recent years [4]. The sequencing of the

human genome, a milestone in the field of biology, has opened the floodgates for

several follow-up studies that aim to explore the complex workings of the cell. In

astronomy, data collection now exceeds the terabyte range on a nightly basis [5] and

the amount of data collected will grow incredibly as new high-resolution telescopes

are deployed in the next decade. In climate modeling, currently used models

generate terabytes of data [6] and future models promise petabytes of data available

for analysis as the resolution of climate simulations improve.

Sheer data volume is only part of the problem. The complex nature of these data

sets introduces an additional level of processing challenge. For example, the Atlas

experiment is a one-of-a-kind effort to understand the nature of basic forces, and the

information gained may change our children’s science textbooks. It brings experi-

mental physics into new territory and will force scientists to look at new ways of

analyzing and understanding the large volumes of data generated. Data complexity

also is an attribute of most biological experiments and studies. For example, an

effort to characterize viruses in aquatic microorganisms involved the collection of

ocean samples from the North Atlantic, the Panama Canal, and the South Pacific [7].

This effort yielded a total of 7.7 million sequencing reads. Understanding the

6 A.R. SHAH ET AL.
functional characteristics of the cell involves detailed modeling and simulation of

individual processes arising from complex interactions between the numerous con-

stituents of a cell such as proteins, DNA, RNA, and small molecules [8]. As another

example, climate modeling presents numerous challenges in describing the details of

the atmosphere, the oceans, the land, as well as the energy from the sun. Scientists

use these models to make predictions hundreds of years into the future.

Revolutions in scientific experimentation, data sensor diversity, computing

power, and the availability of inexpensive, distributed communications have driven

this explosion in the volume and complexity of data. As data volumes and complex-

ity grow, it is increasingly arduous to extract valuable information from the data and

derive knowledge. Scientists spend many computer hours trying to organize, sort,

and filter the data to manageable pieces so they can draw conclusions about the big

picture [9]. They follow prescribed procedures for data filtering, processing, and

analysis to reach their conclusions.

The reductionist approach to data analysis has provided invaluable knowledge for

centuries and has allowed scientists to detect the unexpected. However, as data

volumes grow and analysis becomes more complex, discovering new information

and extracting knowledge becomes more difficult [10]. Therefore, progress in

science and discovery will be achieved only by effectively coupling computational

power with experimental and field data through innovations in data and knowledge

management, information analytics, visualizations, and decision analysis. Addres-

sing these demands of ever-growing data volumes and complexity requires game-

changing advances in software, hardware, and algorithm development. Solution

technologies also must scale to handle the increased data collection and processing

rates and simultaneously accelerate timely and effective analysis results. This need

for faster data processing and manipulation as well as algorithms that scale to high-

volume data sets have given birth to a new paradigm or discipline known as ‘‘data-

intensive computing’’ (DIC).

In Section 2, we tackle the definition of DIC. In Section 3, we discuss applications

of DIC through explicit examples of three areas of work at Pacific Northwest

National Laboratory (PNNL): biology, cyber security, and atmospheric research.
2. What Is Data-Intensive Computing?

We define DIC as ‘‘collecting, managing, analyzing, and understanding data at

volumes and rates that push the frontiers of current technologies’’ [11]. One can

treat DIC as a computational paradigm in which the sheer volume of data is the

dominant performance parameter. DIC promises not only an evolutionary change in

APPLICATIONS IN DATA-INTENSIVE COMPUTING 7
informatics, but also revolutionary changes in the way researchers gather and

process information. The impacts of these changes will range from the hardware

and algorithms to the presentation of knowledge to the end user.

DIC facilitates human understanding of complex problems. Data-intensive appli-

cations provide timely and meaningful analytical results in response to exponen-

tially growing data complexity and associated analysis requirements through the

development of new classes of software, algorithms, and hardware.

To be more specific about what DIC encompasses, it is valuable to determine how

to quantitatively define the term. But, quantifying the meaning of DIC is heavily

impacted by the complexity of factors that need to be considered, and quantification

is limited to a point in time since DIC is rapidly evolving. Classifying a problem as

data intensive could depend upon the data rates (gigabytes/s to terabytes/s) and data

volumes (terabytes to petabytes) involved, but other factors such as the variability in

data rate, bandwidth of data paths, number of data-handling units, complexity of the

data and analysis, and human limitations in interacting with the data can all be

important. In the following sections, we describe the state of the art in hardware

architectures, data analytics, and software application architectures that are key

ingredients in DIC applications.

2.1 Hardware Architectures

Data-intensive applications present unique challenges for computing systems and

architectures. Applications can be roughly divided into two categories: irregular and

regular, based upon memory access patterns. Regular applications, such as aircraft

modeling, climate modeling, and molecular dynamics, typically are driven by

computational kernels that have good spatial and temporal locality (e.g., dense

matrix multiplication, structured grids) and can benefit from hierarchical memory

structures and caches. Irregular applications, such as social network and media

analysis, cyber network analysis, and infrastructure (electrical, transportation, com-

munication) modeling, typically have computational kernels based on graph algo-

rithms (e.g., centrality, breadth-first search, connected components) that have poor

locality and cannot benefit from cache-based systems.

With the explosion of data and data-intensive applications over the past decade,

there has been an accelerated increase in novel computing architectures. These range

from computationally intense, data-parallel streaming processors such as graphics

processing units (GPUs), customizable logic in field-programmable gate arrays

(FPGAs), massively multithreaded processors that can hide memory latency,

active-storage-based clusters where processors are housed on disks to minimize

data movement yet scale in computational capability as more active disks are added,

to solid-state disk technology that is dramatically increasing disk performance.

8 A.R. SHAH ET AL.
Over the past few years, researchers have actively investigated how to exploit this

heterogeneous pool of new architectures to meet the rapidly growing challenges of

both regular and irregular data-intensive applications.
2.1.1 Graphics Processing Units
A 2007 Price Waterhouse Coopers report [12] projected that the international

market for video games would grow to $48.9 billion dollars by 2011. This followed a

2006 report from the Entertainment Software Association [13], in which it was noted

that the US global sales of entertainment software in 2004 were already $25.4

billion. In 2004, the leading providers of graphics coprocessors (nVidia and ATI)

had just started to provide more flexible programming access to their special

purpose hardware. The $25 billion dollar market that was thriving in 2004 drove,

and continues to drive, a highly specialized computing hardware market that has

produced revolutionary processor advances, with new generation systems intro-

duced every 6–12 months—targeted specifically to accelerating video game perfor-

mance. These processors employ hundreds of floating-point units and operate in a

streaming single instruction multiple data (SIMD) mode.

With the introduction of increased programmability, there were several initial

studies on how to exploit GPUs for more general applications beyond the gaming

market. For example, shortly after the first programmable GPUs entered the market,

Flath et al. [14] successfully fielded a real-time aircraft-based system that performed

georegistration of streaming high-resolution imagery (including jitter removal,

motion detection, and blob finding) at 44 Mpixels/s on up to 5 TB of raw data

enabling real-time transmission of high-resolution imagery over low bandwidth

radio communication. Johnson et al. [15] demonstrated the use of GPUs for a range

of problems in image processing and knowledge discovery with speedups over

conventional processing architectures of up to two orders of magnitude. They also

were the first to emulate double-precision arithmetic in software on GPUs while still

realizing performance gains over traditional CPUs. Luebke et al. [16] demonstrated

searching and sorting as well as some database operations on GPUs. Techniques for

programming GPUs were introduced in Ref. [17]. It was quickly recognized that

GPUs can offer orders of magnitude performance increases for a wide range of

applications that can leverage the massive investment in computing gaming (see

Ref. [18] for a survey). In 2008, nVidia announced the T10P Tesla GPU with 240

cores that can achieve a teraFLOP1 of (single precision) computing power, thus
1 A FLOP is 1 floating-point operation per second.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 9
solidifying the role of theGPUas a driving architecture for high-performanceDIC. To

meet the ever expanding mobile market, nVidia has recently announced the

Tegra processor—a system-on-a-chip integrating CPU, GPU, and memory controller

that can be used on handhelds. At this point GPUs have entered themainstream forDIC

with market pressure leading the introduction of new software development frame-

works for GPUs such as CUDA—a C language-based parallel architecture that sim-

plifies the programming of GPUs [19]. GPUs and GPU clusters have been used for

many general-purpose data-intensive applications ranging from real-time image and

speech processing [20], to document analysis [21], database operations [22], and

bioinformatics [23].

While not strictly a GPU, the Sony Toshiba IBM (STI) Cell processor was intro-

duced to provide accelerated coprocessing for the Sony PlayStation 3 [24, 25].

While GPUs have hundreds of parallel SIMD cores, the STI Cell has eight ‘‘syner-

gistic processing elements,’’ connected via a high-speed bus and a controller

PowerPC processor. The SPEs can operate as SIMD processors, controlled by a

PowerPC but they can also pass messages and data to each other over the high-

speed bus. The STI Cell processor offers more direct control of data movement and

algorithm flow than does the GPU and it has been demonstrated to perform over 200

GFLOPs. The STI Cell has been utilized for data-intensive problems in scientific

computing [26], biology [27], speech processing [28], string matching [29], graph

algorithms [30], multimedia indexing [31], and many other areas.
2.1.2 Reconfigurable Computing Devices:
Field-Programmable Gate Arrays
Many fields in experimental science are moving toward high-throughput meth-

odologies where scientific instruments can process large numbers of samples and

produce corresponding massive amounts of data. For this reason, it is becoming

increasingly important to perform online processing of the data as it is being

produced by the instrument, without having to wait for data to be captured and

then processed offline. While GPUs and general-purpose CPUs can be used for this

processing, often there is specialized domain-specific logic that is needed to achieve

adequate performance. FPGA boards offer the opportunity for the application

developer to create specialized, reconfigurable hardware that can be directly

attached to the data capture ports of a digital instrument to provide real-time data

processing and analysis. Recent work has demonstrated that FPGAs can provide

real-time complex data processing in many fields including text categorization [32],

10 A.R. SHAH ET AL.
image processing [33], DNA sequencing [34], network intrusion detection [35], real-

time delivery of financial information [36], and other applications.

Developing and testing FPGA designs that will be processing streaming data

from an instrument requires a significant design, development, and testing efforts.

It is also quite difficult to determine beforehand what footprint a particular

processing design will occupy and what its performance will be. Fortunately

more flexible and less demanding platforms for initial prototyping and testing

can be employed. Hybrid CPU/FPGA high-performance computing (HPC) systems

provide a platform to develop and prototype processing algorithms for FPGAs that

can be tested under more flexible software control while still having to deal with

details, nuances, and idiosyncrasies of hardware platforms.
2.1.3 Multithreaded Systems
The increasing performance differential between the capabilities of memory

subsystems and microprocessors has caused a large class of applications to become

memory-bound: that is, their performance is determined mainly by the speed at

which the memory subsystem can deliver data words to the microprocessor. Over

the years, several hardware and software mechanisms have been proposed to

increase the performance of such applications by reducing the exposed stall times

seen by the microprocessor. Most commodity microprocessors utilize a cache

hierarchy, whereby small sections of high-speed memory hold data, which has

been recently fetched from main memory. Cache mechanisms are highly effective

for regular applications that exhibit good temporal and spatial locality. However,

many irregular applications do not exhibit such locality; their memory access

patterns are not easily predictable. This is particularly true for data-intensive appli-

cations that use dynamically allocated large, pointer-linked data structures such as

graphs and trees.

Multithreaded architectures maintain multiple threads of execution and utilize

hardware-based context switching to overlap the memory latency incurred by any

thread with the computations from other threads. The Cray MTA-2 processor [37]

and its successor the Cray Threadstorm processor [38] in the single job acceleration

category and Sun Niagara-1 [39] and Niagara-2 [40] processors in the throughput

category are examples of state-of-the-art multithreaded processors. These proces-

sors represent very different approaches to realizing higher application performance

through the use of multiple thread contexts to overlap memory access latencies.

Because of the memory latency tolerance, these multithreaded platforms have the

potential of significantly improving the execution speed of irregular data-intensive

applications.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 11
2.1.3.1 Cray MTA-2 and XMT. The Cray MTA-2 processor

exploits thread-level parallelism by interleaving 128 hardware thread streams on

one instruction pipeline [41,42]. Each stream has a 32-entry register file, a status

word and a program counter associated with it. Ready stream selection to issue

instructions does not incur cycle penalties. A long instruction word is comprised of a

memory operation, a fused multiply–add, and a branch/logical or floating-point add

operation. The MTA-2 supports fine grain synchronization by guarding each mem-

ory word with full/empty bits.

The Cray XMT is the commercial name for the shared-memory multithreaded

machine developed by Cray [43] under the code name ‘‘ELDORADO’’ [38,41,42].

The system is composed of dual-socket Opteron AMD service nodes and custom-

designed multithreaded compute nodes with Threadstorm processors. The entire

system is connected with the Cray Seastar-2.2 high-speed interconnect. The XMT

system can scale up to 8192 Threadstorm processors and 128 TB of shared memory.

Each Threadstorm is associated with a memory system that can accommodate up to

8 GB of 128-bit wide DDR memory. Each memory controller has an associated

128 KB buffer. Memory is structured with full–empty-, pointer forwarding-, and

trap-bits to support fine-grained thread synchronization with little overhead. The

memory is hashed at a granularity of 64 bytes (Fig. 1) and fully accessible through

load/store operations to any Threadstorm processor connected to the Seastar-2.2

network, which is configured in a 3D toroidal topology. While memory is
Memory buffers (128 KB � module)

Memory modules

Physical memory (8 GB � N)

Hardware shuffling
64 byte granularity

Virtual memory (16 GB � N)

Threadstorm 1
128 threads

Threadstorm 2
128 threads

Threadstorm 3
128 threads

Threadstorm N
128 threads

FIG. 1. Cray XMT memory access structure.

12 A.R. SHAH ET AL.
completely shared among Threadstorm processors, it is decoupled from the main

memory in the AMD Opteron service nodes. Communication between Threadstorm

nodes and Opteron nodes is performed through a Lightweight Communication

Library (LUC). Continuous random accesses to local memory by the Threadstorm

processor caps memory bandwidth at around 100 million requests per second,

whereas global access can sustain request rates of 90–30 million with system

configurations ranging from 1000 to 4000 processors.

The software environment on the Cray XMT includes a custom, multithreaded

operating system for the Threadstorm compute nodes, a parallelizing C/Cþþ cross-

compiler targeting Threadstorm, a standard Linux 64-bit environment executing on

the service and I/O nodes, as well as the necessary libraries to provide communica-

tion and interaction between the two parts of the XMT system. The parallelizing

C/Cþþ compiler generates multithreaded code that is mapped to the threaded

capabilities of the processors automatically. Parallelism discovery happens fully

or semiautomatically by the addition of pragmas (directives) to the C/Cþþ source

code. The compiler parallelism discovery focuses on analyzing loop nests and

mapping loop iterations in a data-parallel manner to threads.
2.1.4 Active-Storage Systems
The notion of active storage and its application to DIC was proposed over a decade

ago by Riedel et al. [44]. The principle of active storage is to move portions of the

application-level code to processing units on the disk. This idea has been extended

and rapidly commercialized through systems, such as the Netezza data warehouse,

that integrate FPGAs and general-purpose processors at the hardware level with the

disk to provide computational capability at the disk so that computations can be

distributed and performed where the data reside, rather than moving large amounts

of data across a network. These systems have been demonstrated to offer orders of

magnitude performance increases for problems in graph search and natural language

understanding. Yoo et al. [45] demonstrated the largest known bidirectional breadth-

first search on a 300 billion edge graph, with 95% of the searches completing in less

than 5 min, using a Netezza data warehouse. Also using a Netezza system, Davidson

et al. [46] studied publication citation graphs, a key component in the field of

bibliometrics. They were able to analyze bibliographic coupling (where two papers

cite a common earlier reference) up to 46 billion coupling coefficients and achieved

two orders of magnitude speedup over traditional architectures. This study also

explored implementations of graph search on integrated circuit network data and

word sense disambiguation in natural language processing.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 13
2.1.5 Solid-State Storage
Solid-state devices have been studied for decades, where ‘‘solid state’’ in this

context is to be distinguished from ‘‘mechanical’’ or spinning-disk technology.

Solid-state devices, composed of NAND flash nonvolatile memory, have tradition-

ally been financially prohibitive for use as general-purpose storage devices. How-

ever, the rapid advances in DIC—the need for people to exchange music, pictures,

movies, and share files—led to the development of USB flash drives, and are now

requiring advanced disk technologies. Solid-state drives developed by FusionIO

have recently been demonstrated to provide significantly increased speed over

spinning disk [47]. One of the more interesting results in the recent investigation

of solid-state storage was that increasing the number of I/O threads increased the

performance of data transfers, contrary to the behavior of current spinning-disk

drives [48]. Ajwani et al. [49] also provide an initial evaluation of solid-state storage

devices and conclude that flash drives outperform traditional hard drives for read

operations, but not for write operations. However, they also note that existing

external memory models for algorithm design that are based on traditional storage

architectures do not fully exploit the capability of solid-state devices and that more

work needs to be done to better design algorithms to take advantage of these new

technologies. Results like these have driven new approaches to data-intensive

application organization and design that may seem counterintuitive given previous

generations of systems. Technical performance differentiators of solid-state tech-

nologies compared to traditional spinning disk and the growth in commercial

viability of these systems are likely to have significant implications on data-intensive

applications in the next few years.
2.2 Data-Intensive Data Analytics

The conventional approach to data analysis is a sequential process in which data

are first generated and stored to be processed later. However, in our ever-changing

digital landscape, postponing the data analysis can have significant impacts on the

rate of scientific and knowledge discovery. The rate at which digital information is

generated is making it imperative to invent new algorithms and data processing

mechanisms that are capable of analyzing streaming and high-volume data.

The challenges associated with the scale and complexity of high-volume streaming

data have both computational and human factors perspectives. One challenge is that

the complexity of the information in the data increase with the data set size. Accord-

ingly, the representations used in analysis must scale similarly. Another challenge is

that the complexity of the information in petabyte-scale data dwarfs the comprehension

capacity of a human learner. Visual approaches help address this challenge.

14 A.R. SHAH ET AL.
2.2.1 Objectives and Approach
Data analysis ends with human understanding and action. However, the informa-

tion scale dwarfs individual capabilities for understanding and is often compared to

trying to take a drink from a fire hose. In such situations, the sheer data volume

makes data discovery incredibly difficult.

Many analysis challenges also stem from the heterogeneity of the data that must

be processed. For instance, for cyber security, the network packets, various system

states, and contextual information (e.g., collaborators, news releases, security/

hacker Web sites, etc.) are all relevant for indicating the current and future health

of the nodes on a network. In such applications, data types and objects are numerous

and vast in size. For example, network traffic for 1 year is in the exabyte range.

Modern scientific instrumentation is capable of creating terabytes of structured data

on a daily basis. Computer-based simulations generate information at large scales.

Digital imagery is easy to create and store.

The diversity of data types encountered can be addressed by a common strategy:

1. The data objects, be they images, text, network packet, or numeric, are

encoded as numeric or categorical vectors.

2. The vectors then are analyzed with available data analysis routines.

3. The analytic results are mapped back into the original domain of the data.

The advantage of this strategy is that it allows an analyst to rapidly explore

diverse data types with standard data analytic methodologies and algorithms. Once

the first step is completed, the wealth of available software for clustering, classify-

ing, trending, and relating numeric data can be mapped to the analysis of text or

network or other data objects. The individual coordinates in the numeric vector are

not necessarily meaningful. Of course, to be useful, the entire vector needs to

discriminate with respect to the decision problem(s) at hand. There is extensive

experience in diverse technical communities in accomplishing the above sequence

of analytic steps. For text, this experience includes n-grams, word frequencies,

mappings into concept spaces, such as word-net and dimension-reduced forms

[50–52]. For networks, there are standard approaches based on graph characteristics

[53]. Once the vector data are analyzed, the results are mapped back into the context

of the data. So, document clusters that are calculated based on vectors that represent

each document can be labeled with text from the documents in the clusters. See

Whitney et al. [54] for additional examples.

Frameworks for understanding and discussing the scaling of data analysis algo-

rithms and computing are established (e.g., [53,55]). Wegman [55] suggests that, for

purposes of scaling analyses to data analysis problems, it is necessary to employ

APPLICATIONS IN DATA-INTENSIVE COMPUTING 15
algorithms that have complexity at most O(n), where n scales as the number of

floating-point data items.

For addressing large data stream problems, there are standard categories of

approaches. These categories are described below:

l Analytic focus. A typical instance in the context of the Internet is retrieval by

key word search. This is, from the perspective of a user, a simple act that greatly

reduces the amount of available information to a manageable amount. Another

instance in this category of analyses is anomaly detection, which focuses user

attention on atypical instances within the data stream.

l Summarization. In this category, high-level views of the data are created.

A cluster analysis is a standard instance of a data summary where the data

stream is summarized as the occurrence of a list of clusters. Machine learning

results in a focused listing of categories that occur. There is the potential for

significant loss of information. However, in conjunction with capabilities that

use the summary as an entry point into the data, summarization is quite powerful.

l Data reduction. This ismore often an intermediate step as opposed to a direct analytic

output. The feature calculation used to create the vectors in the analysis pattern

can greatly reduce the size of the data stream. These features are often ‘‘lossy,’’

but are designed with the intent of capturing the information in the data stream.

2.3 Software Infrastructures for
Data-Intensive Applications

Data-intensive applications exist in diverse forms. Some simply require an algo-

rithm to run over a massive data set, and often these can be trivially parallelized and

executed on a cluster in a single program. Other applications require more complex

analytics that are often too computationally expensive to run on complete data sets.

In such cases, preprocessing steps are required to reduce the data set to a form that is

amenable for complex analytics. Still other applications can operate on very large

volumes of reasonably structured data, making them amenable for deployment on

parallel database systems that support query languages such as SQL. The following

sections explore these alternatives in more detail.
2.3.1 Data Processing Pipelines
Emerging from the scientific domains, many large data problems are addressed

with processing pipelines. A pipeline is initiated when raw data that originate from a

scientific instrument or a simulation are captured and stored. The first stage of

16 A.R. SHAH ET AL.
processing typically applies techniques to reduce the data in size by removing noise,

or process it (e.g., index, summarize, or markup) so that it can be more efficiently

manipulated by downstream analytics. Once the capture and initial processing has

taken place, complex algorithms search and process the data.

These algorithms create information and/or knowledge that can be utilized by

individuals or further computational processes. Often, these analytics require large-

scale distributed or specialized HPC platforms to execute. Finally, the analysis results

are presented to users so that they can be digested and acted upon. This stage may use

advanced visualization tools, and enable the user to step back through the processing

steps that have been executed in order to perform forensic investigations to validate the

outcome. Users also may need facilities to modify parameters on some of the analytics

that have been performed and re-execute various steps in the processing pipeline.

As depicted in Fig. 2, processing pipelines start with large data volumes having

low information content. These data are reduced by the subsequent processing steps

in the pipeline to create relatively small data sets that are rich in information and are

suitable for visualization or human understanding. Inmany applications, for example,

the Atlas (http://atlas.web.cern.ch/Atlas/index.html) high-energy physics experi-

ment; large data sets are moved between sites over high-speed, wide-area networks

for downstream pipeline processing.

Constructing applications structured as processing pipelines is a complex activity.

Pipelines can have complex topologies, incorporating branches, loops, and merges.

They also typically comprise distributed codes and require the pipeline to marshal

the data sets between each step in the pipeline. Many programmatic approaches can
Near-real time Time
Low

Low

High

High

Data volume

Information density

I n t e g r a t i o n

Manage
the explosion

of data
(high-throughput

data capture)

Extract
knowledge

from massive
datasets

(fusion, active
analysis, predictive

modeling)

Reduce data
(facilitate human
understanding)

FIG. 2. Blueprint for a data processing pipeline.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 17
be employed to coordinate the various steps in the processing, ranging from

operating system-level shell scripts to generic workflow coordination technologies

such as MeDICi (middleware for data-intensive computing) [56] and Kepler [57].
2.3.1.1 Data Warehouses. Commercial enterprises are voracious

users of data warehousing technologies. Mainstream database technology vendors

supply these technologies to provide archival storage of business transactions for

business-analysis purposes. As enterprises capture and store more data, data ware-

houses have grown to petabyte size. Best known is Wal-Mart’s data warehouse,

which over the span of a decade has grown to store more than a petabyte of data [58],

fueled by daily data from 800 million transactions generated by its 30 million

customers.

The data warehousing approach also finds traction in science. The Sloan Digital

Sky Survey (SDSS) (http://cas.sdss.org/dr6/en/) SkyServer stores the results of

processing raw astronomical data from the SDSS telescope in a data warehouse

for subsequent data mining by astronomers. While the SkyServer data warehouse

currently only stores terabytes of data, it has been suggested that the fundamental

design principles can be leveraged in the design [59] of the data warehouse for the

Large Synoptic Survey Telescope (www.lsst.org) that is to commence data produc-

tion in 2012. The telescope will produce 6 petabytes of raw data each year, requiring

the data warehouse to grow at an expected rate of 300 TB/year.
2.3.1.2 Cloud Computing. Driven by the explosive growth of the

Internet, search enterprises such as Google, Microsoft, Amazon, and Yahoo! have

developed multipetabyte data centers based on low-cost commodity hardware. Data

are stored across a number of widely geographically distributed physical data

centers, each of which might contain over 100,000 nodes. Access to the data is

provided by a set of services that are available over standard Internet protocols (IPs)

such as Web services. These massive data centers and the software infrastructure

that developers use to create applications are known as ‘‘clouds.’’

Clouds provide the following two main advantages:

1. The illusion of infinite computing resources available on demand, thereby

eliminating the need for cloud computing users to invest in expensive comput-

ing infrastructures.

2. The elimination of an up-front commitment by cloud users, thereby allowing

organizations to scale the use of hardware and software resources to meet their

needs.

18 A.R. SHAH ET AL.
Programming models such as MapReduce [60] and its open-source counterpart,

Hadoop (http://hadoop.apache.org/) provide abstractions to simplify writing

applications that access this massively distributed data collection. Essentially,

MapReduce distributes data and processing across clusters of commodity computers

and processes the data in parallel locally at each node. In this way, massively parallel

processing can be simply achieved with clusters that comprise thousands of nodes.

In addition, the supporting run-time environment provides transparent fault toler-

ance by automatically duplicating data across nodes and detecting and restarting

computations that fail on a particular node.

For data-intensive applications that are inherently suitable for data-parallelism

approaches, cloud computing is an attractive option. Massive data sets can be

distributed across the cloud and segmented into chunks that can be processed in

parallel by tasks running on individual nodes across the cloud. This effectively

provides a batch processing and analytics environment for applications that analyze

large data sets. Not surprisingly, this approach is attracting interest from the scien-

tific community. The National Science Foundation is partnering with Google and

IBM to provide a 1600-node cluster for academic research (http://www.nsf.gov/

news/news_summ.jsp?cntn_id¼111186). Supported by the Hadoop open-source

software, this provides an experimental platform for scientists and researchers to

investigate new DIC applications.
2.3.2 MeDICi—The Middleware for

Data-Intensive Computing
A major cause of overheads in data-intensive applications is moving data from

one computational resource to another. In an ideal situation, data are produced and

analyzed at the same location, making movement of data unnecessary. In reality,

however, this is not always possible. For example, scientific instruments such as

telescopes, mass spectrometers, or genome-sequencing machines typically generate

data locally and the resulting data sets are moved to computational sites for detailed

analyses. In cyber security, network traffic is captured and initially processed locally

by nodes that act as network sensors. Periodically, the processed data are transmitted

to an analytics and data archiving site at which it is combined with data from the

whole network and analyzed for suspicious behavior.

For this reason, we have created the MeDICi technology [61]. The MeDICi code

is a middleware platform for building complex, high-performance analytical appli-

cations. These applications are structured as workflows (also called pipelines) of

software components, each of which perform some analysis on incoming data and

then pass their results to the next step in the workflow. The MeDICi project

APPLICATIONS IN DATA-INTENSIVE COMPUTING 19
comprises three, loosely coupled subprojects, which are briefly described below and

depicted in Fig. 3:

1. MeDICi integration framework (MIF) is a component-based, asynchronous

messaging platform for distributed component integration.

2. MeDICi workflow is a Business Process Execution Language [62]-based

design and execution environment that integrates with MIF components or

standard Web services to provide workflow definition tools and a standards-

based recoverable workflow execution engine.

3. MeDICi provenance is a Java API, Resource Description Framework (RDF)-

based store and content management system for capturing and querying

important metadata that can be used for forensic investigations and reconstruc-

tion of application results.

In a MeDICi workflow application, the designer creates a workflow graphically

with the DWF language, which is a simplification of the standard BPEL workflow

description language. Each task in the workflow calls an associated Web service,

which may be a standard service located somewhere on the Internet, or a Web

service supported by a MIF component deployed in the MIF container. MIF com-

ponents wrap computational codes that require complex integration, and support a
Data content locations

Provenance
metadata

store

Data
resources

High-
perfomance
computers

Compute
clusters

Grid
computing

Work-
stations

Data and
provenance

Data and
provenance

Workflow execution
and monitoring

Input data Analysis

BPEL workflow
engine

Provenance
store

MeDICi
integration
framework

FIG. 3. MeDICi architecture overview.

Workflow
component A

Workflow
component B

Cache://ref1

Cache://ref1

Cache://ref1

“Invoke A”
“Invoke B”
cache:/ref1

MIF component A MIF component B

“Write file”
file://data1

“Retrieve file”
cache://ref1

File://data1

Cache

FIG. 4. Efficient data set exchange between components in MeDICi workflow.

20 A.R. SHAH ET AL.
protocol that is designed to minimize the data transfer overheads between elements

of the workflow. This architecture is shown in Fig. 4.

Optionally, MIF components can record metadata about the data (known as

provenance) they receive/produce, and the processing carried out. The metadata

are passed transparently from a component to the MIF container, and this sends a

message to a message queue called ProvenanceListener. MeDICi provenance takes

these messages from the queue, and stores them in an RDF store for subsequent

analysis by scientists.

MeDICi is a freely available, open-source technology that can be downloaded

from http://medici.pnl.gov. It is being used in applications in atmospheric sciences,

cyber security, bioinformatics [63], and carbon sequestration research.
3. Applications in Data-Intensive
Computing at PNNL

In the following sections, we discuss applications in DIC from a number of

scientific domains that we are working on at PNNL. First, we describe several

data-intensive applications we are working on in biology. Then, we discuss

APPLICATIONS IN DATA-INTENSIVE COMPUTING 21
applications in cyber security where the biggest challenges are presented in the

fields of data streams and analysis of real-time network traffic. Finally, we discuss

data-intensive applications of the Atmospheric Radiation Monitoring Program,

which is a Department of Energy (DOE) sponsored, collaborative effort involving

a number of research institutes.
3.1 Applications in Biological Sciences

Since commencing the sequencing of the human genome [64], the biological

sciences have posed interesting challenges for computing. The sheer volume of

genomic and proteomic data generated at individual research institutions has out-

paced the development of applications to process the data. In this section, we first

discuss a common data-intensive application in biological sequence analysis. The

comparison of a large number of biological sequences against a very large database

to discern the extent of similarity is a fundamental problem in bioinformatics. Then

we discuss data-intensive applications in proteomics. Using high-resolution liquid

chromatography (LC) coupled with mass spectrometry as our example, we discuss a

novel technology that has broad application in sensor analytics and smart online data

collection. We also discuss the application of novel hardware architectures in the

context of ion mobility spectrometry.
3.1.1 Biological Sequence Analysis
3.1.1.1 The Challenge. In much the same way that computer com-

ponents have undergone continuous significant improvement in performance, the

technology for determining the linear sequence of molecular units in genes and

proteins has transformed the way in which modern biological research is conducted.

At one time, determining the sequence of a single gene or protein required heroic

effort and led to an environment where laboratories (by necessity) specialized in

studying a single gene or class of genes. Today, things are much different. Sequenc-

ing technology has improved to the point where obtaining the complete genome for

cultured organisms is within the reach of many single-investigator grants, in terms of

both expense and time. Small- and large-scale genome-sequencing centers regularly

complete and publish newly sequenced genomes, typically doubling the entire

volume of sequenced genes every 18 months (http://www.ncbi.nlm.nih.gov/

Genbank/genbankstats.html)! This has led to an explosion in the public genome

information available and a data-driven revolution in the field of microbial biology.

More complex eukaryotic organisms such as plants and animals have correspond-

ingly more complex genomes. Analyzing the sequences of eukaryotes comes with

22 A.R. SHAH ET AL.
additional complexity because many genes have alternate ways of being assembled

from the linear chromosomal sequence, a feature that is not common in microbes.

A new direction of genome research, known as metagenomics, is focused on

understanding the genes produced by communities rather than isolated organisms.

Metagenomics is evolving quickly, enabled by continued improvement in sequenc-

ing technology. It is also driving new kinds of biological investigations that involve

interplay between processes and metabolic pathways that span multiple organisms.

This is an important key to understanding any biosystem because humans and

microbes generally live as symbionts; for instance, humans are hosts for microbes

that are essential to our health.

Regardless of whether one is studying relatively simple microbial genomes, more

complex eukaryotes, or extremely complex community systems, the availability of

sequence data is both a blessing and a curse. On one hand, a vast and rapidly

growing resource of annotated sequence data is available to help characterize

newly sequenced systems. But the main drawback is that finding true relationships

from complex relationships gets harder as the underlying data set grows. Typical

full-genome analysis is already beyond the reach of typical desktop systems unless

one is willing to wait days or weeks for the results. Multiple full-genome analysis is

even further beyond reach. Unfortunately, this often leads biologists to make an

unpleasant decision between disregarding some data in the hopes of bringing the

hypothesis to a tractable computing time and accepting sequence analysis as

the rate-determining step.

As an example, a recent paper from the Venter Institute [65] details analysis of a

large geospatially distributed collection of genome community samples. This anal-

ysis required months of computing just to compare all the sequences against one

another to feed downstream analysis. For most biologists, this level of computing is

not available, but the desire and need to operate at this scale exists. If data are

available (which in this case it is) and a hypothesis requires one to operate on that

data (which often it does), there should be widely accessible tools for performing the

analysis. Similar situations have been faced in astrophysics, chemistry, climate

modeling, and a host of other scientific applications. The challenge for DIC is to

bring large-scale biological analysis within reach of bench biologists without forc-

ing them to specialize in HPC or algorithm implementation.
3.1.1.2 ScalaBLAST: A Parallel-Processing Algorithm

for High-Performance BLAST. Our solution to the challenges of

complexity and data size in bioinformatics are based on DIC principles to (1) solve

the throughput challenge with efficiently implemented high-performance algorithms

for sequence analysis; (2) solve the time-to-solution challenge by making these tools

APPLICATIONS IN DATA-INTENSIVE COMPUTING 23
available to biologists via easy-to-use interfaces that hide the details of high-

performance systems from the end user; and (3) help solve the complexity challenge

by presenting intuitive representations of sequence analysis with dynamic, interac-

tive visualizations. In the following sections, we describe how these features of DIC

can shift biological sequence research to an environment in which bench biologists

have the computing tools and infrastructure needed to generate and evaluate com-

plex hypotheses on massive sequence data sets. This advance shifts the analyst’s

time from waiting for completion of the computing step to looking at representations

of output from computing.

A first step toward creating data-intensive solutions for computational biology

and bioinformatics has been the creation of an efficient parallel version of the

BLAST algorithm [66,67], which is the workhorse of many bioinformatics analyses.

ScalaBLAST [68], originally developed for large-scale BLAST calculations, has

been used over the last several years to drive increasingly large analysis tasks using

thousands of processors, for instance in the Molecular Sciences Computing Facility

supercomputers at PNNL, as well as at other supercomputing facilities. The Scala-

BLAST code has allowed users to create very large query and target protein lists for

the purpose of finding out which top-k members of the target list are statistically

similar to each sequence in the query list. Efficient scaling is achieved by partition-

ing independent BLAST queries to independent process groups while dividing the

database at run-time among processors in a group. This combination of parallel

query and database partitioning has resulted in near-perfect scaling to over 1800

processors.
3.1.1.3 Scientific Impact. The integrated microbial genome (IMG)

data resources at the Joint Genome Institute (JGI) have made extensive use of

ScalaBLAST to perform BLAST calculations at the scale of hundreds or even

thousands of microbial, eukaryal, and viral genomes combined [69,70]. For large-

scale calculations used to update the IMG data resources, ScalaBLAST routinely

performed BLAST calculations in fewer than 2 days that would take years on

dedicated single-CPU machines. The combination of ScalaBLAST to accelerate

the underlying BLAST calculations and the IMG data representations and analysis

tool suite has proven to be an effective way of putting, indirectly, the power of

supercomputing in the hands of bench biologists [71].

The ScalaBLAST code is also used in a different configuration to address the

problem of finding how proteins are conserved across species. Many proteins are

essential to survival and are common across many species that share some function.

As an example, microbes that perform a particular metabolic reaction often have

very similar proteins to perform those reactions. Finding how the proteins of a single

24 A.R. SHAH ET AL.
organism ‘‘map’’ to closely related organisms is known as ortholog detection.

Orthologs are proteins that appear in different species, but essentially perform the

same molecular task in each species.

To address multiple-species investigation of orthologs, ScalaBLAST was mod-

ified so it retained knowledge of the query species and performed many concurrent

(or subsequent) BLAST calculations of a large query list against a collection of

separate isolated microbial genomes. This arrangement of ScalaBLAST calculations

is known as tiled ScalaBLAST [72]. The resulting alignment data were fed to a

separate analysis application (http://en.wikipedia.org/wiki/Inparanoid), which used

the BLAST output for a pair of genomes to map the genomes onto each other by

identifying which proteins are orthologs. Inparanoid on multiple-species pairs

resulted in identification of clusters of proteins from many species that share a

task. Driven at a large scale, this analysis is a useful way to transform sequence data

from a collection of organisms into a mapping of each genome onto all the others.

A second use of ScalaBLAST for more sophisticated sequence analysis is support

vector machine (SVM)-Hustle [73]. In this application, ScalaBLAST scores are used

to create a collection of statistical classifiers for recognizing to which protein family

a given protein belongs. This is a common analytical technique applied to newly

sequenced genes or proteins to gain some understanding of the type of process in

which it might be involved before devising wet-lab experiments to verify the

function. Protein family prediction with SVM-Hustle requires BLAST scores for

all pairs of sequences in the set—a set that numbers in the tens of thousands. While

this could have been done with traditional BLAST, the fact that it could be done

rapidly with ScalaBLAST allowed SVM-Hustle to be developed and tested in a

number of configurations in a short time and will allow it to be retrained rapidly as

the public sequence data sets change.

A similar task to protein family prediction is that of protein homology detection.

Proteins are homologs when they share similar sequence-related characteristics.

Conventional BLAST calculations can identify homologous proteins when they

have sequence similarity above 20%, but many naturally occurring protein homolog

pairs have sequence similarity below that level. To identify these homologous pairs,

we have developed a more sensitive homology tool that uses a statistical learning

technique SVM to train with a data set of homologous pairs and nonhomologous

pairs. The SVM-based homology tool (SHOT) [74] has been shown to significantly

improve the sensitivity of homology detection over that of BLAST. The SHOT must

be trained using a large number of homolog pairs (and nonpairs). This training is

performed with a vectorized form of the protein pairs that relies on BLAST scores.

The ScalaBLAST code is extensively used in SHOT analysis, both in training and in

the final application of the SHOT classifier to new sequences.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 25
3.1.1.4 Visualizing Biological Networks. An important dif-

ference between DIC and conventional high-throughput computing or HPC is that

the patterns in data evident from DIC tend to be much more complex. Having solved

the throughput problem for a variety of bioinformatics challenges, it was interesting

to see how often the next question is ‘‘now what?’’ The fact that ScalaBLAST can

perform an all versus all-BLAST calculation of a three million protein data set in

less than a day also means it can deliver hundreds of gigabytes (or even terabytes) of

output in a day. Eliminating simplifying assumptions in bioinformatics analysis and

driving multiple-genome analysis with DIC applications creates a new data problem:

How does the end user make sense of all that output?

We have addressed this challenge by linking postprocessing using high-through-

put sequence analysis tools (like ScalaBLAST and SHOT) with visual metaphors

and visualization applications to create an interface by which bench biologists can

devise and test hypotheses.

One example of this is the use of SHOT to associate arbitrary proteins with a basis

set of well-characterized proteins to form cursory star clusters. Figure 5 illustrates

the use of such star clusters where the central node is a well-characterized basis
FIG. 5. SHOT output visualized using ‘‘star’’ representation. Each central node is a well-characterized

SCOP protein, and each peripheral node is a protein from one of five uncharacterized species. Edges are

colored to indicate the identity of the species. Large radius stars have large number of related proteins,

giving the appearance of pie charts.

26 A.R. SHAH ET AL.
protein (in this case, a protein from the SCOP database http://scop.protres.ru/) and

the color of the edge conveys the identity of the species having the link. This has

been used for multiple-genome analysis for up to 10 closely related species. Work-

ing directly with microbiologists has revealed the utility of this representation,

which from a distance, allows analysts to determine which basis proteins are over-

or underrepresented in a given species.

A second example of the value added to data-intensive bioinformatics by visuali-

zation is evident when looking at ortholog clusters across multiple species. Illu-

strated in Fig. 6 are increasingly fine-grained views of ortholog clusters across 10

Shewanella species [74]. In this study, ortholog clusters are used in tandem with

SHOT star clusters to identify and refine protein groups that had unusual distribution

in the 10 genomes as well as to identify novel functional roles that these proteins had

based on their association to basis proteins and each other. This analysis is per-

formed without any prior expectation of a hypothesis of interest and hinged entirely

on iterative analysis done on multiple genomes. Ortholog clusters can be viewed

with this technique either in tandem with SHOT output or as a straightforward

visualization method for multiple-species mappings.
3.1.1.5 Closing the Loop Between High-Performance

Computing, Analysis Tools, and Visualization. Visual

metaphors to represent complex patterns in biological data can be a powerful vehicle

for making the output of high-throughput bioinformatics accessible to researchers.

This can be implemented with a variety of approaches, including some of those

already described in this chapter, as well as Web-based front-ends to large-scale

compute resources. Web services or applications are commonly used to enable

bioinformatics enhanced by specialized hardware transparently to the users. This

can be thought of as a straight-through pipeline for high-throughput bioinformatics

(Fig. 7).

Closing the loop between visual metaphors and specialized hardware is an even

more powerful DIC methodology that is implemented for use in bioinformatics

applications. In this computing model, one feeds a visual representation with

multiple-genome data analysis output (e.g., from BLAST or SHOT) depicting the

relationships between data elements in a cursory view. From this view, biologists

can drill down, selecting portions of the data for more analysis and computing, as

illustrated in the bottom panel of Fig. 7. Allowing researchers to arbitrarily drill

down or up through data, even when doing so requires large-scale computing,

creates a capability in which potentially a large number of preliminary hypotheses

can be inferred and tested from a single data set. Also, different analytical capabil-

ities can be brought to bear on user-defined subsets of the data where the use of these

FIG. 6. Top: ortholog clusters for 10 Shewanella species. Orthologs can cluster in complex arrange-

ments that are very difficult to search for, but easy to interpret when found. Bottom: one cluster has joined

two close ortholog groups, each being represented by seven species. The protein pair linking the two tight

clusters may have dual functionality.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 27
methods on the full data set is intractable. The key to this approach is to ensure that,

at each level of refinement, enough computer capacity and efficient algorithms are

available through the interface to ensure that rounds of refinement and coarsening

take a short time. We have previously demonstrated this as one way of allowing the

DIC analysis

DIC analysis

Data

Visualization

Visualization

Data

FIG. 7. Top: straight-through analysis allows users to visualize complex patterns in data revealed by

DIC. Bottom: allowing users to direct DIC computing tasks based on what patterns they see in the visual

metaphors makes the pipeline a more dynamic and interactive tool, enabling real-time hypothesis

generation and testing.

28 A.R. SHAH ET AL.
data, and the patterns in it, to direct generation of hypotheses, thereby allowing one

to find the unexpected [74]. This is potentially a revolutionary approach to biology

where researchers do not decide a priori what the hypothesis is, but rather it is

inferred from the data. This can be a powerful tool to augment more classical

hypothesis-directed biological research.
3.1.2 High-Throughput Proteomics Analysis
Proteins are the ultimate functional macromolecules in cellular systems, and the

fraction of potentially expressed proteins actually present in a cell, tissue, or biofluid

at a given time is strongly dependent on the organism environment and physiological

state. In addition, the functions of proteins also may be moderated by posttransla-

tional modifications, such as phosphorylation, or by complexation with other bio-

molecules or small molecules.

Recent years have seen a rapid increase in the research referred to as proteomics.

Generally, proteomics is defined as the study of proteins to obtain global measure-

ments of abundance levels, posttranslational modifications, interactions, and loca-

tions. A wide variety of technologies are being used in the field of proteomics. One

of the most widely used technologies is known as ‘‘shotgun’’ or ‘‘bottom-up’’

proteomics, in which a complex protein mixture is digested with a protease and

analyzed with tandemmass spectrometry (MS/MS) coupled with LC [75–80]. In this

approach, digested pieces of the proteins, called peptides, are passed through a

cylindrical liquid column. As peptides elute through the liquid column, they are

fragmented in a mass spectrometer and the fragmentation spectra are collected.

Interpretation of the fragmentation spectra is performed using search algorithms that

APPLICATIONS IN DATA-INTENSIVE COMPUTING 29
match these patterns to theoretical patterns constructed from translation of

sequence databases described above. The matches identified by this process are

then used to infer the proteins present in the sample. This approach has substantial

resolving power to identify a large fraction of the proteins in a complex mixture.

This technology is characterized as highly data intensive and relatively low

throughput.

Typical proteomics experiments regularly search hundreds of thousands of spec-

tra against databases containing anywhere from a few thousand proteins to hundreds

of thousands of sequences. While search times do not scale linearly with increasing

database sizes, searching for modifications on sequences increases the complexity of

these searches multifold. A single-modification search with InsPecT [81], a popular

search engine, takes 1 s per spectrum against a 30 MB database. Multiple levels of

complexity are introduced by increasing database size, searching for posttransla-

tional modifications, and complexity of the biological sample under investigation.

For example, research in microbial communities typically generates databases with

millions of proteins [7] and poses challenging questions to researchers. A common

approach to reducing database sizes is the use of a clustering technique based on

either sequence composition or functional characteristics. Clustering of very large

biological databases is an area of active research, and parallel-processing algorithms

are becoming more common [82] because of the data-intensive nature of the

problem. Sequence-based clustering of biological data may require the computation

of a pairwise similarity measure (Smith-Waterman scores or BLAST scores)

between all possible sequences. The ScalaBLAST application described above

provides efficient computation of the all versus all-BLAST scores matrix.

To mitigate this limitation in protein characterization, there has been broad

interest in the development of approaches that are able to both perform high-

throughput analyses and provide protein identifications with reduced experiment

times. At PNNL, a method has been developed based upon the use of accurate mass

and elution time (AMT) tags [76,83,84] in which a database of identifications is

developed from the result of the time-consuming MS/MS experiments described

above. The elution time is measured from the LC column while the mass spectro-

meter outputs a mass/charge measurement that is deconvolved to obtain an accurate

mass measurement. Current generation mass spectrometers exhibit very high sensi-

tivities and increasing dynamic ranges to detect peptides accurately within a few

parts per million (ppm). Patterns of mass and elution time in subsequent LC–MS/MS

experiments (in which fragmentation is not performed) are matched to this curated

database to infer the presence of peptides in the sample, which are eventually rolled

up to identify the proteins.

Figure 8 graphically illustrates the AMT tag approach. A significant challenge in

identification with the AMT approach is eliminating the variation in elution time

Biological
sample

Protein
extraction

Complex
protein
mixture

Tryptic
digest

Peptide
mixture

LC
fractionation

High-resolution
LC-MS

LC-MS/MS

AMT tag
databases

Peptide
fractions

Matching of
elution time and

peptide mass

Confident
peptide

identification
and abundance

Accurate mass
and elution time
measurements

Accurate
mass and time
tag database
generation

High-
throughput
quantitative
proteomics

FIG. 8. Accurate mass and time (AMT) tag proteomics approach.

30 A.R. SHAH ET AL.
across experiments. One solution to this problem is to use a predictive capability to

calculate elution times based on a peptide sequence [85]. Another approach focuses

on aligning data sets across multiple experiments against a common baseline and

against an existing AMT tag database [86]. Subsequent experiments with the AMT

approach do not spend any time fragmenting peptide signatures and are relatively

high throughput. Current throughput at PNNL allows about 10 global proteome

measurements per day, per instrument. This throughput rate can be compared to the

days or weeks required for similar levels of coverage required for a single traditional

‘‘shotgun-derived’’ global proteome analysis.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 31
3.1.2.1 The Tandem Mass Spectrometry Challenge.
Perhaps the most significant computational challenge in proteomics is the identifi-

cation of peptides from MS/MS data. High-throughput technologies such as the

AMT pipeline still depend on the development of databases from MS/MS analyses.

These MS/MS experiments are performed independently and sampling of ions is a

probabilistic process, which can be modeled as a logistic distribution with more

abundant peptides and provide near-complete detection of proteins present in a

biological study. Additionally, analysis of redundantly collected spectra adds to

computational analysis time without adding to the information generated. Finally,

the added complexity from posttranslationally modified peptides or unexpected

single amino acid substitutions results in exponentially increasing computational

needs.

In comparison to proteomic analysis of single organisms from pure culture,

analogous proteomic assessments of microbial community samples are difficult at

best, and often involve undesirable assumptions about the data to make the analyses

computationally feasible and less error prone. For example, the identification of

nontryptic peptides or more than one type of posttranslationally modified peptide

from microbial community samples increases the number of candidate peptides to a

level at which the computations do not finish in a reasonable time with the use of

current codes and computer architectures (Fig. 9). Furthermore, for most microbial

communities, sequence information is not available, meaning that a database of

proteins (and hence peptide candidates) for a microbial community is an incomplete

estimate, at best.

To illustrate the increasing difficulty of identifying peptides with increasing

sample complexity, consider that each MS/MS spectrum must be assessed in the

context of a database of candidate peptides, and that the databases grow by orders of

magnitude with the complexity of the sample source, as shown in Fig. 9. In addition,

expanding the search to include a single type of posttranslational modification

further increases the search space by another order of magnitude. For an MS/MS

spectrum from a microbial community sample, including four common types of

posttranslational modifications means that the detection method must select the one

correct candidate out of nearly 1011 possible candidates. This leads to results

containing either an unreasonably high number of false identifications or a large

number of spectra being discarded.

While several groups have developed methods for making assumptions about the

data to reduce the time to solution [87,88], much less work has been done regarding

the mathematical models used in the identification process to improve accuracy or

the examination of different computer architectures for processing the data.

Nominal candidates

1.00 � 1011

1.00 � 1010

1.00 � 109

1.00 � 108

1.00 � 107

1.00 � 106

1.00 � 105

1.00 � 104

P
ep

tid
e

ca
nd

id
at

es
/s

pe
ct

ru
m

Protein family Bacterial
genome

Human genome Microbial
community

Including one modification
Four modification types

FIG. 9. Number of tryptic peptide candidates for each individual MS/MS spectrum grows by several

orders of magnitude when posttranslational modifications are considered. The term ‘‘Nominal Candi-

dates’’ refers to peptide candidates containing unmodified amino acids. Also shown is the number of

candidates to be considered when one or four types of posttranslational modifications are allowed.

32 A.R. SHAH ET AL.
The development of advanced model spectra from spectra libraries [89–91] for

detecting highly specific fingerprints of the peptide spectra results in increased

accuracy and a greater number of spectra being identified. One of the challenges

has been to integrate the use of model spectra from spectral libraries with previous

identification methods that rely on ad hoc model spectra and ad hoc measures of

similarity between model spectra and experimentally observed spectra. Our

approach to this challenge has been to develop both our statistical similarity measure

and our model spectra on the principles of statistical mechanics that govern the

physical and chemical processes in the laboratory. The end result is a single analysis

method that can use either model spectra derived from either spectral libraries or

averaged training data on diverse peptides.

As shown in Fig. 10, such an approach can at least double the number of peptides

that are identified and will much more precisely elucidate the proteomic state of a

cell population by identifying a larger set of proteins that are expressed under

specific growth conditions. The x-axis shows the percent increase in the identifica-

tion rate, while the y-axis shows the number of peptides at that increased level of

identification. On average, the 44 peptides were identified with 2.4 times more

Percentage increase in identification rate

N
um

be
r

of
 p

ep
tid

es
 (

44
 to

ta
l)

250 350 450 550 650 750 850 950 1050 1150 1250 1350 1450 1550 1650
0

5

10

15

20

25

30

FIG. 10. Histogram of the percent increase in the number of spectra identified for the 44 peptides for

which spectral libraries were available.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 33
spectra when realistic model spectra derived from experimental data are used rather

than generic, one-size-fits-all approach to generating model spectra.

Although the use of spectral libraries may be the most significant advance in

peptide identification since 1994, it presents a significant challenge with respect to

data management and throughput. One consequence of spectral libraries is that a

model spectrum for each peptide needs to be stored in a database and that database

needs to be readily accessible for use in HPC programs. This challenge becomes

particularly significant when one considers that peptides that have posttranslational

modifications have spectra that are different from the unmodified form of the

peptide. As shown in Fig. 10, if complete spectral libraries were available as a result

of either experimentation or computation, the database would be on the order of

several exabytes. We have been addressing this challenge by developing code that

allows for fault-tolerant access to global storage resources, both memory and disk.

The code has been implemented and tested on architectures that allow for globally

accessible memory (SGI Altix) and on large commodity clusters that use global file

systems (Chinook, an HPC Linux cluster at the Molecular Sciences Computing

Facility at PNNL with 2310 nodes/4620 quad-core processors on which the Lustre

file system is used).

34 A.R. SHAH ET AL.
Furthermore, as these methods progress, it will be desirable to reanalyze existing

data sets with the new methods to elucidate the understanding of the biological

processes involved in the samples. However, the computational reanalysis of exist-

ing data sets of MS/MS spectra will be extremely demanding. For example, the

Environmental Molecular Sciences Laboratory at PNNL currently stores over

21 million spectra for Shewanella oneidensis MR-1 alone, and over one billion

spectra all together. The reanalysis of the data will be time-prohibitive if current

software and hardware capabilities are used.
3.1.2.2 Increasing Throughput Through Smart
Instrument Control. Our proposed high-performance, data-intensive

analysis pipeline (Fig. 11) builds on the key components used in the current AMT

tag process to convert the current static process into a novel, dynamic approach that

brings the in silico analytical process to the instrument rather than decoupling the

two. This capability was not possible previously because of our inability to do online

processing of the captured data. Using MeDICi as our underlying architecture, we

overcome the above limitations and provide enhanced information extraction that

automatically analyzes incoming data and makes intelligent decisions, based on
Online de-isotoping
module

Decision control

Visualization
and

control software

Alignment,
peak matching

module

AMT
database

LC
MS

Ion Source

Detection

Parent mass/charge list

Parent mass/charge list

Feature list

Feature list

Incoming spectra

MeDICi integration framework

FIG. 11. High-performance data analysis pipeline for smart instrument control.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 35
statistical decision theory, to sample new ions intelligently and iteratively augment

data collected. This technology allows experiments to move into the paradigm of

true large-scale experiments rather than a large collection of independent experi-

ments. Complex biological samples are characterized in more depth and at a faster

rate, thus facilitating systems biology. In addition, exploration of unexpected events

also could be feasible through the possibility of controlling the experiments

dynamically.

This system would also make feasible the exploration of new paradigms, such as

one in which multiple mass spectrometers may be intelligently controlled in a

coordinated manner with a scalable, online computational system to perform

biological analyses previously not imagined.

The smart instrument control technology builds upon several existing components

that have been developed to process mass spectrometry data in a retrospective

manner. The individual components are:

l Feature discovery algorithms. Data generated by a mass spectrometer coupled

to a separations system, such as liquid chromatography, which adds a time

dimension to an experiment, includes a series of mass spectra acquired over

time. Each ion in an analysis is observed in the mass and time dimensions with

an intensity pattern that is somewhat predictable from its chemical formula, its

abundance, the charge it carries, and the resolution of the instrument. However,

during the course of an analysis, the actual formula is unknown and discovering

features is further complicated by the presence of noise and overlapping ion

signatures. We have developed and implemented internally and externally

developed algorithms [92–95] to discover features in an individual mass spec-

trum in an unsupervised manner and to group together the same features in

consecutive spectra [96]. These algorithms are currently available to the prote-

omics community in two software packages: Decon2LS and VIPER [96] at

http://ncrr.pnl.gov/software. Our initial experiments suggest that the feature

discovery process is slower on spectra containing much information. The

advantage of using MeDICi as our underlying pipeline allows us the flexibility

to connect HPC hardware such as the FPGA to deisotope spectra. The feasibil-

ity of using FPGA for fast deconvolution of mass spectra has been illustrated by

Bogdan et al. [97].

l Alignment algorithms. Features discovered in mass spectrometry data are

identified by matching them to a database of previously identified peptides

on the basis of mass and time values. However, before matching can be

performed, corrections in variability in mass and elution time dimensions

need to be made. We have developed a dynamic-programming, time-warping

algorithm which finds the transformation function in the mass and time

36 A.R. SHAH ET AL.
dimensions and results in the maximum likelihood of the data being observed

from the database [86].

l Database searching algorithm. Fragmentation spectra collected during an

MS/MS experiment need to be interpreted using a search algorithm

[81,88,98,99] that matches them against theoretical patterns of peptides in a

species being analyzed.

l High-performance DIC using MeDICi. The most important piece for the

implementation of this technology is the use of a robust underlying plumbing

mechanism that supports data distribution, multiple types of hardware and

software modules, and reliable data delivery. Our DIC architecture, the

MeDICi integration framework, in addition to simplifying the pipeline creat-

ing process also facilitates the data handling and transformation of data while

passing through the pipeline to maximize the performance of the applications.

The architecture also enables analytical codes written in any language and

running on any platform to be plugged into a MeDICi pipeline, simply

through the creation of a few lines of code, and without changing the analysis

code itself.

Our first-generation version of this pipeline implements a serialized framework

in which events are collected synchronously. Mass spectroscopy spectra are

directly pumped into the MeDICi integration framework that is responsible for

reliable, in-order delivery to a number of software processing modules, the feature

discovery module, and a central visualization and control software. The feature

discovery module interprets the mass spectrum with our current deisotoping

algorithm, which is a refinement of the THRASH algorithm [92]. This feature

list is then forwarded to an online alignment and peak-matching module. This

module compares the features to those existing in a database and sends appropriate

feedback to the mass spectrometer with a list of parent ions to be fragmented in the

next fragmentation cycle. This avoids the fragmentation of previously observed

species and helps the mass spectrometer delve into the lower level features on a

spectrum-by-spectrum basis.
3.1.2.3 Scientific Impact. Mass spectrometry promises to be a valu-

able medium in discovering biomarkers for diseases that may have multiple under-

lying causes, such as cancers [100–108]. There has been significant interest in the

use of mass spectrometry to discover biomarkers; one modern and well-publicized

example was published by Petricoin et al. [109]. This particular example used mass

spectrometry-based patterns to classify patient blood plasma samples as coming

from women with ovarian cancer or noncancer. The research has been considered

APPLICATIONS IN DATA-INTENSIVE COMPUTING 37
controversial for multiple reasons. One of the major reasons has been the classifica-

tion based on highly abundant low-resolution mass spectral peaks without any

reasonable means to perform specific identification of the measured species and

patterns [110]. The other major concern was that the number of samples used in the

study resulted in low statistical significance. Further, the specificity of the measure-

ments resulted in unacceptable numbers of false-positive cancer detections, leading

to worry for the patient and substantial follow-up costs for the health care system

[111,112]. This study and the associated controversy highlighted the need for

‘‘smart instrument control’’ methods in which (1) the identity of each analyte was

considered important and possibly relevant in biomarker discovery, (2) methods

were needed to mitigate the effects of highly abundant species which were generally

not considered useful even for classification purposes, and (3) the methods used

were capable of at least hundreds of individual measurements with extremely high

sensitivity and specificity.

Smart instrument control methodologies allow measurements to be performed

that depend on the results of a previous measurement or set of measurements. This

allows sophisticated strategies that, for example, minimize the remeasurement of

previously identified species when building a database of expressed peptides.

In conventional experiments, many repeated experimental and sample fractionation

methods are performed to achieve the needed detection of a broad dynamic range of

peptides. These advanced instrument control methods require the ability of move

large volumes of data and process the data streams in real time.
3.1.3 Inverse Hadamard Transform for Ion

Mobility Separation Coupled with
Mass Spectrometry
Mass spectrometers measure the mass-to-charge ratio of ions present in a physical

sample with a high degree of accuracy and precision. The analysis of complex

mixtures, such as those found in proteomics analysis, with mass spectrometry

benefits from the coupling of separation technologies, such as liquid chromatography

with mass spectrometry. This separation spreads the complexity across hundreds to

thousands of spectra. As the sample complexity increases and throughput require-

ments continue to increase, the need for more sophisticated strategies are justified.

At PNNL, we have added ion mobility separation (IMS) between the liquid chroma-

tography and mass spectrometry systems, thus allowing ultrahigh-throughput anal-

ysis of complex mixtures. In IMS, ions are moved through a background gas in a

drift tube. An electrical field is applied to the drift tube, thus forcing the ions to drift

through the tube. The ions drift at a speed based on their cross-sectional area, with

38 A.R. SHAH ET AL.
more compact ions reaching the end of the drift tube first. A time-of-flight (TOF)

mass spectrometer is placed at the end of the drift tube to analyze the ions present as

a function of drift time. While unique information regarding an ion’s size may be

determined with IMS, the sensitivity and overall utility of the technique has been

limited because of its inherently low duty cycle. This is because a packet of ions

must clear the drift tube before the next batch can enter. Use of multiplexing

techniques, such as the Hadamard transform [113], may have significantly increased

the utilization. The captured data have been physically convolved by the Hadamard

encoding process and must be computationally deconvolved to obtain the actual

sample data. However, applying the Hadamard transform to increase the instrument

utilization requires real-time online processing to deconvolve the data to support

smart instrument control methods.
3.1.3.1 Hadamard Transform. The encoding random sequence

used to control the ion gate at the entrance to the drift tube can be represented as a

Simplex matrix. Simplex matrices are composed of ones and zeroes and have

dimensions N�N, where N¼2m�1, m2N. The number of ones and zeroes in any

particular row is approximately equal, thus accounting for the 50% utilization

achieved by mass spectrometers with this technique.

The dimensional size (N) or order of the transform is chosen based on the range of

flight times being used in the instrument. All Simplex matrices are either right
circulant or left circulant, which means that the elements of each row of the matrix

are equivalent to the elements of the previous row of the matrix shifted by one

column to the right or left, respectively. The physical convolution of the data is

equivalent to

y ¼ SNxþ e;

where y is the data vector observed at capture time, SN is the selected Simplex matrix

of dimensional size N, x is the spectrum data vector that has been obfuscated by the

physical convolution, and e is a time-independent noise vector. More details on

Simplex matrices and their use in the Hadamard encoding process can be found in

the literature [114].

To perform the computational deconvolution of the captured data (y), the inverse
of the Simplex matrix (S) used in the encoding must be utilized. The captured data

vector is multiplied by the inverse Simplex matrix (S�1
N) to obtain the expected set of

spectra (each spectrum is referred to as scans, i.e., the frame) that represents one

IMS. Each spectrum or scan is acquired from the TOF with a high-speed analog-to-

digital converter to read the ion signal from the detector.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 39
3.1.3.2 Real-Time Processingwith Hybrid High-Perfor-
mance Computing Hardware Architectures. We have

implemented the design for the inverse Hadamard transform computation on a single

node of a Cray XD-1. The full implementation of the design uses 22% of the slices

(5201 out of 23,616) of the Virtex II-Pro XC2VP50 FPGA on the XD-1’s node.

It uses 36% of the BlockRAM elements (85 out of 232) and only 1% of the 18�18

multipliers (4 out of 232). The design also uses two of the four 4-MB QDR SRAM

memory banks available on the XD-1 node. The design achieved a clock frequency

of 142 MHz out of a maximum achievable frequency of 199 MHz. The maximum

data transfer bandwidth on the XD-1 node is 1.422 GBps. However, this bandwidth

can only be achieved under a design that operates at the maximum frequency of

199 MHz. Designs operating at lower clock frequencies achieve a proportional

bandwidth. In our case, we achieved a data rate of 1.01 GBps.

Our data set consists of 100 frames of 620 scans each, with 3380 16-bit elements

per scan. The total size of the data set is thus 400 MB. The streaming time at

approximately 900 MBps is 0.46 s, which includes the ongoing frame accumulation

processing. The inverse transform process for the accumulated frame takes 0.11 s

and is twice as fast as executing the inverse transform algorithm on the host 2.4-GHz

AMD Opteron CPU. The data write-back time for the result of the inverse transform

is 4 ms.

Our research has determined that it is feasible to use FPGAs for processing mass

spectrometry data at very high rates (GBps range). We have also shown that is

possible to implement domain-specific signal processing algorithms (inverse Hada-

mard transform) to operate in conjunction with high-speed data capture.
3.2 Data-Intensive Cyber Analytics

Ensuring the security and reliability of communications systems requires the

ability to process vast amounts of transactional records for indicators of problems,

often in real time. Such systems include computer networks, voice networks, and

power-grid control systems.

Cyber security poses particularly acute analytic challenges, not least because of

the immense volume and complexity of the activity that occurs over computer

networks. A typical enterprise computing network might generate billions of packet

transactions per day, each a subcomponent of a larger activity such as Web surfing,

but some that might also be indicative of more malevolent activity. Moreover, unlike

domains where the endpoints in a transaction are well defined, such as could be the

case in financial transactions or communication between power-grid components,

there is a tremendous variety of activity occurring over computer networks.

40 A.R. SHAH ET AL.
Generally, while the source and destination IP addresses involved in a transaction

are known, the exact applications involved in the transaction are not. Finally, the

number of unique ‘‘actors’’ on a computer network can be large. Specifically,

the number of machines on a network being protected might number in the hundreds

or thousands, and the number of external IP addresses to which these machines

might connect is several orders of magnitude larger, for example, there are 232

unique addresses in IPv4 and 2128 in IPv6. The number of new malicious code

threats also has increased dramatically, growing from 140,690 in 2006 to 1,656,227

in 2008 [115].

While the sensor technology to instrument and transmit records of each transac-

tion in a computer network exists, analytic techniques to detect and characterize

security events are less well developed. These events are sometimes ‘‘anomalous,’’

that is, they are statistically separable from ‘‘background’’ communication, but not

all anomalies are malicious nor are all malicious activities easily recognized as

anomalies. Indeed, the more sophisticated an attack, the more the attacker will

attempt to make his behavior appear normal. Many approaches to detecting com-

puter security problems take a deterministic approach, in which signatures of known

malicious activity are used as patterns against which to match current traffic. While

these methods are generally effective at detecting instances of previously discovered

threats, they are not well suited to discovering new threats quickly or to enabling

timely triage, decision making, and response actions by analysts.
3.2.1 The Cyber-Security Analytics Challenge
The cyber analytics challenge, therefore, is to enable the full range of ‘‘human-in-

the-loop’’ discovery and detection such that both high-level situational awareness of

broad patterns in data and detailed analysis of potential threats involving small

amounts of signal in an overwhelming amount of noise are possible. While entirely

automated approaches to security are desirable, the reality of sophisticated attacks

means that humans are almost always needed to discover, or at least confirm,

potentially malicious activity. Cyber analytics research must focus on how best to

support human cognitive abilities; when dealing with high-volume streaming net-

work traffic, this means leveraging the innate perceptual abilities of humans to

detect off-normal conditions without inducing cognitive overload. Our approach to

data-intensive cyber analytics involves two complementary processes: data reduc-

tion and visualization.

Data reduction can involve the development of models, signatures, or statistics,

all of which can help aggregate large amounts of low-level data into more informa-

tion-dense representations. The aim of these derivative representations is to preserve

APPLICATIONS IN DATA-INTENSIVE COMPUTING 41
the structure of the underlying data with as much fidelity as possible, while reducing

the volume of what must be analyzed to a level more appropriate for human inquiry.

Visualization involves the depiction of structure, trends, or relationships in data

such that humans can maintain awareness of system state and can explore, form, and

test hypotheses. Neither data-reduction techniques, such as modeling, nor visualiza-

tion is typically sufficient when used in isolation; however, when the two processes

are used in tandem, new mixed-initiative systems that support automated detection

and human-driven exploration are possible. The following sections introduce a

selection of data-intensive cyber analytics applications and outlines future needs

for continued development.

In cyber analytics, a central goal is to understand the processes by which actors

are engaged in potentially malicious activity. Cyber analytics typically (although not

always exclusively) proceeds in a top-down fashion; antivirus tools or intrusion

detection systems often use signatures of known events to classify new events.

Malicious actors also have a limited and familiar set of motivations for attacks,

such as fame, fortune, power, or revenge. These high-level motivations may be

fulfilled in a variety of common attack vectors, such as denial of service, eaves-

dropping, or man-in-the-middle activities, in which attackers intercept and modify

communications between other parties. But because attack vectors can vary in the

details of their implementation, focusing on low-level ‘‘bits on the wire’’ can make

it difficult to recognize and respond to problems. Thus, cyber analysts often search

for events that match high-level descriptions of known problems, and then proceed

by interpreting observed events from the top down. Context, such as knowledge of

current world events and computer security vulnerabilities, helps analysts focus their

searches. Once a sequence of events or data is recognized as being constant with

respect to the appearance of higher level symptoms, it can be used as a signature for

rapid future detection.

In the cyber-security field, patterns are often referred to as attack signatures.

Usually, these signatures are specific to a particular attack tool or method and have a

single data source. While there is considerable existing work on the identification of

individually anomalous events in data streams (e.g., [116,117]), an outstanding

challenge (and one we address in the following section) is identifying sequences

of linked behaviors over time. Prior work has also addressed attack graph visualiza-

tion [118], but there is a recognized need to develop approaches that scale to

operational data volumes, support exploration across levels of abstraction, and

allow user-driven pathway definition [119]. Zhuge and Shi [120] draw parallels

between the information analysis strategies for computer and biological epidemics,

suggesting that the development of cross-domain analytical techniques is an area

ripe for breakthrough.

42 A.R. SHAH ET AL.
Most contemporary visualization approaches for computer network analysis

problems typically focus on node connectivity and traffic flow (e.g., [121,122]) or

on firewall alert and packet-level visualization (e.g., [123]). Kafadar and Wegman

[124], for instance, characterize ‘‘exotic’’ traffic simply as that with particularly

high IP address or port frequencies, even though threats may also be carried in

seemingly normal or noisy traffic. They do, however, rightly suggest that many

existing visualization models are limited to static data sets of moderate size, not the

continuously evolving and high-volume data typical of the network security domain.

Wegman and Marchette [125] call for new ‘‘evolutionary graphics’’ capable of

better communicating change over time. Such graphics have broad applicability

because the need to succinctly communicate normal and abnormal events in data and

to help analysts identify patterns at a range of temporal scales transcends domains.

Visual analytics offers tools to support this cross-scale analysis. Our approach is

to aggregate low-level log data to broader behaviors that characterize an actor

(malicious or otherwise) over time, while allowing the end user to drill down to

more detailed records when needed. This technique reduces, in part, the data

overload problem by increasing the level of abstraction at which massive data can

be analyzed.
3.2.2 Data-Intensive Analysis Tools
There are two broad categories of analytic work in cyber security: tactical and

strategic. Tactical work is concerned with the largely reactive tasks of detecting

suspicious activity and assessing its impact on an organization; whereas, strategic

work is concerned with identifying larger patterns and motives, and conducting

proactive assessments of future attack methods [126]. Additionally, tactical work is

typically intended to occur in as near real time as possible, while strategic work may

involve less time-critical decision making. While large data volumes are a challenge

in both realms, the techniques we describe in this section are designed largely to

support the real-time analysis problem. In strategic or forensic activities, often the

solution to an analysis problem is the construction of a database to hold records of

network transactions for later inspection. Real-time analysis, however, demands

new information-management architectures, data-reduction techniques, and human–

computer interfaces.

The cyber analysis tools we describe in this section all use network flow data as

their primary source of transactional information. While there are many methods for

generating them, ‘‘flows’’ are essentially sessions that record the attributes of a

series of packets between two parties; all of the packets within a particular time

window to and from particular ports are aggregated into a single flow. Flow records

do not contain the actual content of the packets they aggregate and, although packet

APPLICATIONS IN DATA-INTENSIVE COMPUTING 43
content can be useful in assessing the nature of a potential threat, it is unavailable for

many real-world analysis challenges because of encryption or privacy restrictions.

In the following sections, we illustrate complementary techniques for data-inten-

sive analysis. Each application takes a different approach to addressing the problem

of data scale, but each is designed to support the human analyst in detecting and

understanding events in high-volume data streams. Some applications rely on the

use of DIC hardware, while others are handled mostly in software.
3.2.2.1 StatsView. A PNNL developed tool, StatsView alerts analysts

to significant changes in aggregate trends of network traffic. It uses three statistical

models, each with different assumptions about the behavior of the network, to

determine when a statistically significant change occurs. These changes are flagged

for the analyst as events that should be investigated thoroughly (Fig. 12). Essen-

tially, StatsView is a triage tool; it examines the entire volume of flow traffic from a

sensor and finds cases where current traffic volume in predefined categories departs

from the volume seen over the past hour. It provides the most general level of

situational awareness, helping an analyst determine whether current conditions are

within normally observed boundaries. StatsView, like the other tools described

below, is a Java application with the MeDICi architecture to calculate statistics
FIG. 12. StatsView computes several statistics across the full volume of network flows and flags

anomalous events for the analyst.

44 A.R. SHAH ET AL.
and populate a visualization client with analytic results. The network flows that

these tools analyze are collected with sensors at a network gateway and summarize

the traffic between an enterprise network and the rest of the Internet. Typically,

these flows are bidirectional in that they represent both the ‘‘request’’ and

‘‘response’’ components of a transaction. StatsView incorporates a MeDICi listener

that receives streaming flow data from an aggregator. The computation of StatsView

statistics could be distributed across multiple analysis nodes, using MeDICi to

transmit data to them and deliver processed results to the StatsView client.
3.2.2.2 NUANCE. While tools like StatsView are effective for detect-

ing changes in the aggregate characteristics of high-volume data, some cyber threats

may not stand out from the noise of everyday network activity to raise an alert with

standard anomaly detection techniques. For instance, an SQL injection attack might

be manifested as just a handful of flows; buried in a stream of millions of flows, what

techniques can help these few flows stand out? New methods are needed for more

finely segmenting traffic to improve the signal-to-noise ratio.

The NUANCE code [127] is an attempt to create behavioral models of each

machine on a network, so anomalies at the level of an individual host, rather than an

entire sensor, which may aggregate data from multiple hosts, can be detected. While

there are existing host-based intrusion detection and activity profiling systems,

NUANCE uses a modeling technique that characterizes the expected activity of

each machine on a network over multiple time periods from minutes, to hours, to

days. These models provide analysts with a unique view into the baseline behavior

of their hosts. This is a level of insight that many argue is crucial to improving

situational awareness (Fig. 13). The current network activity to or from a host is

compared to the model results and departures from expected activity above a user-

defined threshold could be flagged for the analyst.

The NUANCE behavior model consists of parsing, statistics, and curve-fitting

components, connected through MeDICi. The parser receives real-time network

data and summarizes each record as a timestamp and a list of ‘‘groups’’ to which

the transaction belongs. Group membership is assigned by rules such as ‘‘Is this

packet from a .edu domain?’’ ‘‘Is this an HTTP packet?’’ or ‘‘Is this an HTTP

Packet from ABC Co.?’’ The statistics thread monitors output from the parser and

maintains an array of sufficient statistics for each IP address and group. For a given

actor, the statistical model expresses the expected traffic rate over time as a periodic

function with an exponentiated Fourier series.

Techniques, such as NUANCE, help address the data-intensive cyber analytics

challenge through data reduction. By segmenting traffic by actor and then looking

only for actors who appear to be behaving anomalously, NUANCE helps target

FIG. 13. NUANCE crafts a behavioral model (red curves) for each actor on a network, which it

compares to observed activity (blue histogram) to identify smaller anomalies than aggregate anomaly

detection techniques would capture.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 45
human attention to only those portions of data most worthy of scrutiny. It also

introduces visualization into the analysis workflow at a later point than traditional

discovery tools; rather than display the full volume of network data for the analyst to

explore, visualization is used only after specific events are detected in that data. The

NUANCE code has been used to model traffic for test cases on the order of hundreds

of network actors on a single processing node. The ability of MeDICi to distribute

the modeling load allows NUANCE to scale readily by adding additional modeling

nodes.
3.2.2.3 CLIQUE. While looking for anomalous behaviors in NUANCE

provides insight into streaming data that is otherwise hard to obtain, there is still the

challenge of discovering sets of related behaviors over time. For instance, a cyber

exploit, such as a rootkit that surreptitiously exfiltrates data from a user’s machine,

might have precursor phases whereby the attacker first performs reconnaissance on

target machines, attempts to install the malware, etc. Rather than detect the anoma-

lous transmission of large amounts of data to an external site, which is statistically

comparatively easy to detect, but by which point the damagemay already be done, it is

desirable to understand how the components of an attack behavior relate to each other

such that precursor events can be detected and presented to the analyst for action.

46 A.R. SHAH ET AL.
The CLIQUE code is based on the premise of ‘‘correlation layers,’’ or compo-

nents for iteratively abstracting data into correlated sets. In the cyber-security

domain, network packets first might be correlated or aggregated into sessions.

These sessions, in turn, can be correlated into longer term, evolving behaviors for

the parties in that session and these behaviors then correlated into linked collections

of activities that represent activities associated in a common purpose—a ‘‘clique.’’

The NUANCE models cannot make associations between events over time to

identify larger scale cyber activities. To overcome this limitation, a real-time

streaming classifier is used in CLIQUE to group network flows into bins of like

activity. The categorical classifier finds natural groupings among flows. Once each

flow is tagged with a category, a sequence identification process examines the

pattern of categories that each IP address manifests. Through this approach, it is

possible to detect and permit sequences that are typically benign, while highlighting

for the analyst sequences that are typically only seen in relation to known malicious

activity or seen rarely.
3.2.2.4 Partial Dimensions Tree. The Partial Dimensions Tree

(PDTree) application involves large sets of network traffic data [128]. Analysis is

performed to detect anomalies in network traffic packet headers to locate and

characterize network attacks and to help predict and mitigate future attacks. This

application is a special case of a more widely applicable analysis method to find

relationships and patterns in the data [42]. It uses ideas from conditional probability

in conjunction with a novel data structure and algorithm. When dealing with

multivariate categorical data we can ask, for any combination of variables and

instantiation of values for those variables, how many times this pattern has

occurred? Because multiple variables are being considered simultaneously, the

resulting count or contingency table specifies a joint distribution. The massive

data volume prevalent in cyber-security analyses has a large number of variables

and observations, as well as many distinct values for variables. A PDTree data

structure is a practical simplification of the All Dimensions Tree (ADTree) data

structure described by Moore and Lee [129] that can store the instance counts for

different combinations of variables. The PDTree structure requires less memory

than the ADTree when used in conjunction with domain knowledge about the

expected variable combinations. On the Cray XMT, the PDTree is a multiple type,

recursive tree structure. Figure 14 illustrates the absolute performance and relative

increases in computational speed obtained with the PDTree code analyzing a one

million record and a 500,000 record data set derived from cyber-security traffic data

on the Cray MTA-2.

0

0
0

5

10

15

20

25

30

35

40

4 8 12 16 20 24 28 32

0

50

100

150

200

250

4 8 12 16 20 24 28 32
Processors

Processors

1 M

1/2 M

1 M

1/2 M

T
im

e
(s

)
S

pe
ed

up

FIG. 14. Wall clock time (left) and speedup (right) for 1/2 and 1 million records on the Cray

MTA-2 [128].

APPLICATIONS IN DATA-INTENSIVE COMPUTING 47
We have extended our original PDTree implementation to handle very large data

sets with the Cray XMT hybrid execution capabilities through a Lightweight User

Communication (LUC)-based remote procedure call (RPC) mechanism. We have

developed a LUC server to execute on the Opteron service nodes, which have direct

access to a large Lustre file system. The server opens a very large file with PDTree

data resident on the Lustre file system. The server then proceeds to stream chunks of

48 A.R. SHAH ET AL.
the file in response to requests from a Threadstorm LUC client. The server reads the

file in binary mode in fixed size chunks and sends the data to the Threadstorm client

after discarding incomplete records that might appear at the end of the read chunk.

Each one of the read chunks is then processed as a record set and inserted into its

corresponding place in the PDTree. This process closely follows the expected use of

a PDTree-like application for anomaly detection in a realistic networking environ-

ment with streaming data coming from network routers and sensors. Figure 15

illustrates the streamed execution style. A more detailed discussion is provided by

Chavarria-Miranda et al. [41,128].
3.2.2.5 Future Needs. While current data-intensive cyber analysis

tools are beginning to change the dominant analytic paradigm from ‘‘data-

object’’-level analysis, that is, displaying individual flows for the analyst, to

derivative ‘‘feature’’-level analyses, that is, displaying derived behaviors or pat-

terns that aggregate low-level flows into more abstract representations, there

remain significant outstanding challenges. First among these challenges is better

feedback between human and automated discovery processes. To create effective

mixed-initiative systems, it is necessary for automated approaches to be trained by

their users and to evolve over time based on their users needs. For instance,
10
50

100

200

500

T
im

e
(s

)

20 50 100
Processors

FIG. 15. Wall clock time (left) and speedup (right) for PDTree streamed execution on a preproduction

Cray XMT using five chunks of �4,100,000 records from a 4-GB Lustre [128].

APPLICATIONS IN DATA-INTENSIVE COMPUTING 49
analysts need to be able to provide feedback like ‘‘yes, show me more of these

kinds of events’’ or ‘‘no, the anomaly the system has flagged is benign, don’t show

me another case of it.’’ In turn, automated systems need to be able to challenge the

user hypotheses, perhaps by playing a ‘‘devil’s advocate’’ role and suggesting

alternative explanations for events. This degree of cooperation is necessary to

ensure that large data spaces are adequately assessed. Second, substantial new

research into the most effective visual representations for high-volume data is

needed. Typical cognition and perception studies involve small sample data sets,

but methods for supporting human understanding of what is going on in a data

space of hundreds of millions of features or more are underdeveloped. What are

the best ways to summarize vast amounts of network traffic to users such that

important patterns or trends are highlighted, but potentially important features are

not ‘‘averaged out?’’ Scalable visualizations—interfaces that simultaneously sup-

port focus and context—are necessary. Third, analytic principles need to be

generalized across domains so common tools and techniques can be applied to

the wide of application areas challenged with high-volume transactional data from

computer networks to supervisory control and data acquisition (SCADA) systems

to financial fraud.
3.3 Applications in Atmospheric Radiation

Measurement Program

The Atmospheric Radiation Measurement (ARM) program [130], a multilabora-

tory, multiorganization program, is the largest Climate Research program sup-

ported by US DOE. The ARM Climate Research Facility (ACRF) is a DOE user

facility responsible for design and maintenance of the ARM Data System Infra-

structure. In 1989, DOE’s Office of Science created the ARM program to address

scientific uncertainties related to global climate change, with a specific focus on

the crucial role of clouds and their influence on the transfer of radiation in the

atmosphere. Heavily instrumented sites have been established at three primary

locations (Fig. 16): (1) the Southern Great Plains in United States, (2) the Tropical

Western Pacific, and (3) the North Slope of Alaska. Additionally, two mobile

facilities and short-duration aircraft campaigns are used to measure all climato-

logically important properties of the atmosphere. Except for the aircraft cam-

paigns, each deployment operates on a nearly continuous basis to collect high-

quality research data sets. Following are the main drivers behind these exercises

[131,132]:

1. Determining the accuracy of both solar and infrared radiative transfer calcula-

tions for a cloudy atmosphere

FIG. 16. Location of ARM program sites. The yellow and red markers (M) represent permanent and

mobile sites, respectively.

50 A.R. SHAH ET AL.
2. Using the knowledge of larger scale atmospheric properties to predict the

cloud properties in a column of atmosphere

3. Validating data collected from other sensing experiments as satellite

missions
3.3.1 Data-Flow Architecture
As illustrated in Fig. 17, the ACRF data-system architecture is a centrally

managed architecture [133]. The ‘‘site data system’’ refers to the computing infra-

structure located at each site that is responsible for periodically communicating with

every local sensor and data-collection system. The heterogeneous data format and

communication protocol for different instruments require the data-collection pro-

cess to be highly resilient and modular. Key challenges in this phase lie in ensuring

data integrity and time-synchronization with a universal time reference.

Following collection from sensors, data are routed to the central Data Manage-

ment Facility located at PNNL. Incoming data for every data source are processed

ARM climate research facility data flow architecture

ARM Mobile Facility (AMF)

Site system*

Site system*

Site system*

Site system*

Site system*

Site system*

*Site system

North Slope Alaska (NSA) region

Barrow

TBD

Atqasuk

Darwin

Manus

Nauru

Collector

Instrument

Instrument

Instrument

Instrument

Extended facility

Boundary facility

Central facility

Research
machine

Site data
system

Non-ARM data
source

Satellite ISP

Satellite ISP

Satellite ISP

Satellite ISP

Satellite ISP

Satellite ISP

Satellite ISP

ISP

ACRF users

ANL VPN

DMF VPN

ESNet

Site data
system

Research
machine

SGP

External data
center

BNL

VAP
machine

(production)

VAP
machine

(development)

Site data
system

Research
machine

Data quality
machine

PNNL

Archive

Reprocessing
center

ORNL

Raw data
Processed data

(hourly)
(hourly)

(daily)
(daily)

ANL, Argonne National Laboratory
BNL, Brookhaven National Laboratory
ORNL, Oak Ridge National Laboratory
PNNL, Pacific Northwest National Laboratory

Atmospheric user
community

Southern Great Plains (SGP) region

Trophic Western Pacific (TWP) region

Archiving and Reprocessing

Data Management Facility (DMF)

FIG. 17. ARCF data-flow architecture.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 51
hourly by an ingest software suite [133]. The ingest suite is a modular framework

that converts native format data files to the ARM standard NetCDF format [134] and

performs validations as min–max delta checks and ascending order of timestamps in

52 A.R. SHAH ET AL.
data records. Once processed through the ingest suite, the data sets for each data

stream pass through a series of downstream processes prior to being transferred to

the Data Archive at Oak Ridge National Laboratory. The specific set of downstream

processes operating on a data stream depends on the characteristics of the specific

data product. Such downstream processes include software for:

l Verifying data integrity

l Archival of files and associated metadata management

l Analysis and visualization for data quality assessment and reporting

l Applying complex algorithms to produce data products with richer scientific

content, Value-Added Products (VAPs)
3.3.2 Computing Challenges
As mentioned earlier, the primary focus of the ACRF architecture is to collect

high-quality research data sets. Over the years, dramatic reductions in storage costs

coupled with improved connectivity with even the remote sites have motivated

ARM scientists to maximize the use of sensing capabilities.

However, as the increased observational database improves the representation of

clouds and related processes in the scientific world, it also helps identifying the new

areas to explore. For example, once the theory for studying atmospheric character-

istics at the particular wavelength matures, a next step is to develop a model for the

entire frequency spectrum, which subsequently results in increased temporal and

frequency domain sampling of the observed phenomena. This advance naturally

translates into fielding new research instruments with unique characteristics.

Insights gained following the deployment and initial data-collection period lead to

analyzing instrument performance, improving measurement accuracy, and develop-

ing better retrieval techniques. In this example of data-driven science, data and

science enrich each other in a cumulative fashion.

Figure 18 shows the projected storage and data transfer requirements at ACRF

through 2015. The rapid growth in data (Fig. 18) presents multifaceted challenges to

the ACRF. In the following sections, we present a glimpse of the thrusts at ACRF in

four major areas:

1. Efficient data transfer/storage. Section 3.3.2.1 describes a data-filtering

scheme used for compressing the high-volume spectral data from ARM

cloud radars.

2. Stronger guarantees for data quality. Section 3.3.2.2 provides the motivation

and brief overview of the data quality analysis for one of major data products

from ARM.

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015
0

50

100

150

250

200

350

300

400

450

0

200

400

600

800

1000

1200

Data collected from ARM sites

Data sent to archive

Data requested from archive

Network traffic in Gb

Archive size (TB)

FIG. 18. Projected data transfer and storage requirements for the ACRF.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 53

54 A.R. SHAH ET AL.
3. Reducing time to insight. Section 3.3.2.3 describes a study focused on the

state-of-the-art scientific workflow tools for rapid development of data analy-

sis modules.

4. Exhaustive and systematic management of metadata. Section 3.3.2.4 describes
the latest efforts in the area of data provenance.
3.3.2.1 Cloud Radar Spectra Processing. The cloud radars

are a key component of the ground-based sensing architecture at ACRF. The latest

radar systems continuously record spectral information, providing a very rich data

set for deriving physical information at the small scale not previously available in a

continuous manner. However, the size of the resulting spectral data files present a

significant challenge in transferring and storing the data. The average data volume

(include downstreamdata products) expected from a radar system is around 15 GB/day

[135]. The ARM program expects to have 27 operational radar systems over the next

2–3 years that will result in nearly 0.4 TB to be collected daily.

When first challenged with spectral data processing and network-based transfer,

investigations into compression techniques for radar spectra were started at ACRF.

It is well known that radar data from clear-sky conditions contains low information

content.

A cloud detection algorithm developed by Kollias et al. [136] was selected for

determining if a spectrum corresponds to clouds or other objects of interest. The

algorithm performed the initial masking based on the signal-to-noise ratio and

determined an appropriate threshold for a field on a profile-by-profile basis with

the Hildebrand and Sekhon [137] technique. A final mask was determined by

applying a 3–x–3 point majority filter to the first-pass mask (Fig. 19). The spectral

algorithm ran onsite and was implemented in interactive data language [138]. The

cloud detection algorithm identified data segments with low information content and

replaced the samples with a predetermined constant value. The volume of the final

data set was observed to be around 5–35% of the original volume depending on the

noise content. This technique seemed to work well in practice, although there were

some problems. For example, the cloud detection algorithm sometimes missed very

‘‘thin’’ clouds. Tuning the algorithm to detect these objects ran the risk of poten-

tially saving spectra that were not meteorologically significant. Currently, this

problem is being addressed by capturing additional spectral moments that also

serve as statistical summary of the data. An additional engineering challenge

involves adapting and implementing this technique for different radar systems that

often have very different format and precision characteristics.

FIG. 19. Spectra profiles before and after filtering.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 55

56 A.R. SHAH ET AL.
3.3.2.2 QCRad: A Data Quality Analysis Scheme for
Radiation Measurements. Providing detailed characterization of

data quality, which is one of the primary responsibilities at ACRF, is achieved by

assigning a quality rating to every data record. Lessons learned from advanced

statistical experiments, analysis of historical data, and improved visual analytics

capabilities contribute toward continuous evolvement of the data-quality-assurance

process. The ACRF Data Quality Office at the University of Oklahoma carries out

detailed inspection of the daily processed data [139]. For advanced analysis, efforts

are undertaken to identify the sources of uncertainty and, for cases in which the data

are of sufficient quality, tests are performed to ascertain the presence of biases or

precision errors. In this section, we present a brief overview of the QCRad Value-

Added Procedure [140] that implements an exhaustive quality control of surface

broadband radiometer data. This example demonstrates the complexity of data

validation algorithms that are unique for every sensor class.

The QCRad quality-testing methodology involves climatological analyses of

surface radiation data to define appropriate limits for trapping unusual data values.

In addition to fairly standard min–max limits for the concerned data fields, this

methodology makes effective use of knowledge about the cross-correlation between

different parameters and derives tighter bounds for performing quality checks.

It applies multiple tests to every data value and each progressive test is restrictive

or tighter than the previous one.

A separate QC field in the output file accompanies each output data sample. The

value of the QC field is set according to the severity of a test failure or infeasibility

of a test. A value of zero indicates successful passing of checks, a nonzero value

indicates a problem, and higher values suggest an increasing severity of problems

with the data. Figure 20A shows a graph of down welling diffuse shortwave

irradiance as a function of solar zenith angle. The green, blue, and red lines in the

graph refer to maximum limits computed by three techniques. The green line refers

to the limits computed from long-term observations of most frequent values for the

particular sensor. The blue line defines the limit derived from all historical observa-

tions. This accounts for data values that are possible but occur rarely and, thus, might

be anomalous data. The red line refers to the globally physically possible limits for

surface radiation measurements established by the Baseline Surface Radiation

Network. Tests involving the first two levels only annotate the sample with the

appropriate code, thus leaving the user with the decision of whether or not to use the

data. Any data falling outside the second level of testing is considered an error, in

which case the sample value is set to �9999 and the QC field to set appropriately to

indicate the test failed. Figure 20B illustrates a case where the limits as indicated by

the envelope, for the results of a cross-comparison test are computed. Points shown

0
0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300

A

B

10 20 30 40 50 60 70 80 90 100
SZA

SZA

Diffuse SW limits test

D
iff

us
e

S
W

0
0.7

0.8

0.9

10 20 30 40 50 60 70 80 90 100

1

1.1

1.2

1.3

G
S

W
/s

um

GSW/sum test

FIG. 20. (A) Example of applying multiple bounds for progressively stricter quality checks. (B)

Illustration of an application of data correction algorithm, where black indicates corrected values (images

provided by the ARM program).

APPLICATIONS IN DATA-INTENSIVE COMPUTING 57
in red and black represent data values before and after applying a correction

algorithm. The effectiveness of the correction process can be clearly seen (Fig. 20B).

The above cases highlight a few problems. To capture the errors in the data, it is

important to incorporate the domain knowledge for each and every sensor in the data

validation process. Developments of these algorithms or tests often proceed in an

iterative and incremental fashion. As the data volume grows, it is important to adapt

processing frameworks that can leverage on the processing power of cluster or

multicore architectures for quick feedback. Second, it is critically important to

58 A.R. SHAH ET AL.
have rapid prototyping tools that abstract away the complexities of DIC and parallel

processing and let the user focus more into the scientific pursuits. The next section

discusses an investigation in this direction.
3.3.2.3 Rapid Development with Service-Oriented

Scientific Workflow Frameworks. In the ACRF, VAPs refer to

software suites that perform advanced scientific analysis and generate higher level

data sets. Traditionally the VAPs contain serial Fortran or C implementation of

various physics algorithms, and have complex input–output dependencies that result

in a large monolithic codebase and require manual processing guidance. The com-

plexity of the overall process hinders code reuse and prevents rapid data analysis. For

large-scale data processing tasks, the intermediate steps often can be distributed

across multiple computing nodes. However, the complexity of partitioning the input

data across multiple compute nodes, merging or combining the output results of

intermediate steps before proceeding to another computation phase, and dealing with

fault tolerance are problems that result in diversion from actual data analysis

(Fig. 21). Figure 21A demonstrates the interaction of the MeDICi architecture with

the Kepler workflow engine on a VAP. Figure 21B shows the actual workflow of the

Broadband Heating Rate Profile (BBHRP) VAP with the embedded parallelism.

To support a more interactive and reusable computing environment, a study was

carried out to implement the ARM Program BBHRP VAP [141], in which the

Kepler [142,143] and MeDICi technologies [61,144] are used. Kepler is an estab-

lished Scientific Workflow technology that comes prepacked with a number of

components suited for scientific computing. Its ‘‘drag-and-drop’’ design environ-

ment supports multiple execution modes and complex control structures that are

typical features of VAPs. The MeDICi Integration Framework is a software integra-

tion framework that allows a component-based programming model and supports

execution on a distributed-processing system. The MeDICi asynchronous messag-

ing-based intercomponent communication framework has been found to be more

robust and efficient than the Kepler job-monitoring implementation for a distributed-

computing environment; hence, the combination of Kepler and MeDICi were chosen

as the underlying development framework. A detailed description of this study was

presented by Chase et al. [145]. The following were the main observed benefits of a

service-oriented workflow technology for VAP development:

l It allowed splitting the BBHRP application into simple, independent compo-

nents that can be reused.

l The workflow development environment provides a higher level abstraction of

the application.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 59
l Simply changing a configuration can control parallel execution of various phases.

l Hides details of underlying job execution typically performed by complex shell

scripts.

The separation of responsibilities, in which a software developer could be tasked

with implementing an algorithm (i.e., a component in the workflow) and the domain

scientists could design the high-level workflow structure was the most positive

outcome of this exercise.
3.3.2.4 Metadata and Data Provenance. Within ARM,

metadata include everything from the computing environment, file information

(e.g., creation date, last modified date, owner), instrument and algorithm
Existing tools

Kepler

Scientist

Data
visualization

NetCDF
read/write

IngestVAP

Atmospheric
algorithms

Component library

MeDICi

A

FIG. 21. (Continued)

Composite component

End date

Start date
Steup

service Data list
sevice Array to

Sequence Distributor Composite
component Communicator Sequence

to array Cleanup

Array
length

Number of
time

stamps

Input

Variable
setter

Correlation_id

bbhrp date

Date
service RrtwLw

service
Cloud
force

RrtmLw
SetupSw
Service RrtmSw

service
Cloud
force

RrtmSw
Data
clean

n, where n is the number of threads executed in parallel

B

FIG. 21. (A) Interaction between MeDICi architecture and Kepler workflow engine. (B) ACRF VAP workflow.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 61
information, user annotations, and provenance tracking information such as curation

history. Provenance is informally defined as ‘‘. . .a causal graph that shows how a

result was computed’’ [146]. The positive effect of formal use of provenance is that

both producer and consumer communities, motivated by different problems, can

make their own assessments about the efficient use of metadata. Without metadata,

analysts would be forced to rely on personal knowledge to identify interesting data

sets or download climate data in bulk and sift through entire data sets just to find the

relevant subset. As the number and size of data sets continue to grow, it becomes

challenging to collect useful and informative metadata because the current

approaches to gathering the data are invasive and require significant interaction

from the scientist or for the developer to have domain knowledge. From an opera-

tional standpoint, provenance many times exists partially embedded in the software,

reference databases, Web sites, or configuration files and may not be completely

available or evident to the scientific community.
3.3.3 ARM Value-Added Products
As stated before, the VAPs provide derived data products through complicated

workflows. VAPs use information from sensors, models, algorithms, and other

VAPs to derive information of interest that is either impractical or impossible to

measure directly or routinely. Areas in which VAPs help fill the unfulfilled mea-

surement needs of ARM include information like cloud microphysics, aerosol

properties, atmospheric state, and radiometric properties. The VAPs also are used

to improve the quality of existing sensor data, and to help the scientist choose the

‘‘best’’ data when multiple sensors are producing similar data at the same location.

As stated before, the file-based standard NetCDF is used in the ARM program for

data storage. One reason the NetCDF format was chosen for data storage on the

ARM program is the ability NetCDF provides to embed the metadata with the data.

This provides users the information they need to analyze the data. A significant user

need is to directly disseminate provenance into the VAP output NetCDF file,

providing needed information without requiring significant changes to the large

body of existing VAP workflows. As the ARM program continues to advance its

understanding of atmospheric science, the need for an increasing number and

diversity of deployed sensors and VAPs will increase significantly. This increase

is expected to affect the amount of data used by the scientists as well as the

complexity of VAP interdependency (Fig. 22). Provenance is a significant contribu-

tor to the overarching data-driven standard advancing scientific discovery and many

of the day-to-day tasks relating to data processing and reprocessing, error detection,

and data quality.

RL PROF

MERGE EXT

BE ASR

MR DEP

MWR AVG

BE FLUX ILong

SCF SPEC ALB

SW DIFT CORR IDult

GSW CORR ILong

CLD CLASS IWang

TWR MR
AERI PROF

MWR RET VAR ANAL

BA EBBR

QC RAD ILong

SFC CLD GRID ILong

MPL POL AVG SW FLUX ANAL ILong

MFRSR CLD OD IMin

Langley

MFR OD IBarnmich

MPL COD IComFly

MPL NOR

BBHRP

MRG Sounding

Microbase

AEROSOL BE

LS SONDE
AIP IOgren

ARSCL

Required dependency

Optional dependeney
RL PROF

A series of related VAPs

FIG. 22. ACRF VAP dependency graph.

62 A.R. SHAH ET AL.
4. Conclusions

This chapter has outlined some of the efforts being carried out at PNNL to

advance the state of the art in DIC for biology, cyber security, and atmospheric

sciences. The parallel developments at PNNL in DIC for these three fields have

provided a synergy that has allowed for rapid progress in these application areas.

At the core of this progress has been the transparency of accessing DIC resources

through the MeDICi framework.

DIC is evolving rapidly, a transformation driven by the demands of science,

engineering, and commerce. In all application areas, issues abound, while solutions

lag, partly due to the difficulty of defining the full scope of what is encompassed by

the diversity of DIC. Core issues of data-intensive architectures and approaches

require a concerted effort in order that progress can be made before we collapse

under the burden of our data-intensive world.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 63
Acknowledgement

This work was supported by the Pacific Northwest National Laboratory’s LDRD-funded Data-Intensive

Computing Initiative. Pacific Northwest National Laboratory is operated for the Department of Energy by

Battelle under contract DE-AC06-76RLO 1830. PNNL-SA-37658.
References

[1] J.F. Gantz, F.D. Reinsel, C. Chute, W. Schlichting, J. Mcarthur, S. Minton, I. Xheneti, A. Toncheva,

A. Manfrediz, IDC—The Expanding Digital Universe: A Forecast of Worldwide Information

Growth Through 2010, An IDC White Paper—sponsored by EMC.IDC, Framingham, MA, 2007,

24 pp. Accessed January 11, 2010 at http://www.emc.com/collateral/analyst-reports/expanding-

digital-idc-white-paper.pdf.

[2] J.F. Gantz, C. Chute, A. Manfrediz, S. Minton, D. Reinsel, W. Schlichting, A. Toncheva, The

Diverse and Exploding Digital Universe: An Updated Forecast of Worldwide Information

Growth Through 2011, An IDC White Paper—sponsored by EMC.IDC, Framingham, MA, 2008.

16 pp. Accessed January 11, 2010, at http://www.emc.com/collateral/analyst-reports/diverse-

exploding-digital-universe.pdf.

[3] G. Anthes, Chevron:Where Size Is Opportunity, Computerworld Inc., Framingham,MA, 2006, p. 22.

[4] R. Highfield, Large Hadron Collider: Thirteen Ways to Change the World, 2008. (September 16

Issue), http://www.telegraph.co.uk.

[5] S.H. Muggleton, 2020 Computing: exceeding human limits, Nature 440 (2006) 409–410.

[6] W. Strand, Climate model data management—future challenges, Geophys. Res. Abs. 8 (2006)

05249. Accessed June 22, 2009, at http://www.cosis.net/abstracts/EGU06/05249/EGU06-J-05249.

pdf?PHPSESSID¼2637d92889c27b41f86472d745c8ad36.

[7] S.J. Williamson, D.B. Rusch, S. Yooseph, A.L. Halpern, K.B. Heidelberg, J.I. Glass, C. Andrews-

Pfannkoch, D. Fadrosh, C.S. Miller, G. Sutton, M. Frazier, J.C. Venter, The Sorcerer II Global

Ocean Sampling Expedition: Metagenomic characterization of viruses within aquatic microbial

samples, PLoS ONE 3 (1) (2008) e1456.

[8] A.-L. Barabasi, Z.N. Oltvai, Network biology: understanding the cell’s functional organization,

Nat. Rev. Genet. 5 (2004) 101–113.

[9] A. Szalay, J. Gray, 2020 Computing: science in an exponential world, Nature 440 (2006) 413–414.

[10] J.J. Thomas, K.A. Cook, Illuminating the Path: The Research and Development Agenda for Visual

Analytics, IEEE Computer Society, Los Alamitos, CA, 2005.

[11] R.T. Kouzes, G.A. Anderson, S.T. Elbert, I. Gorton, D. Gracio, The changing paradigm of data

intensive computing, Computer 42 (1) (2009) 26–34.

[12] Price Waterhouse Coopers, Global entertainment and media outlook: 2007–2011, Price Waterhouse

Coopers Report. 2007.

[13] R.W. Crandall, J.G. Sidak, Video games: serious business for America’s economy, Entertainment

Software Association Report. 2006. Available at http://ssrn.com/abstract¼969728.

[14] L. Flath,M. Kartz, R. Frank, Utilizing commercial graphics processors in the real-time geo-registration

of streaming high-resolution imagery, in: GP2 Workshop, Chapel Hill, NC, August 7–8, 2004.

[15] J. Johnson, R. Frank, S. Vaidya, The evaluation of GPU-based programming environments for

knowledge discovery, in: HPEC, 2004.

[16] D. Luebke, M. Harris, J. Kruger, T. Purcell, N. Govindaraju, I. Buck, C. Woolley, A. Lefohn,

GPGPU: general purpose computation on graphics hardware, in: SIGGRAPH’04: ACM

64 A.R. SHAH ET AL.
SIGGRAPH 2004 Course Notes, ACM Press, New York, NY, 2004. http://dx.doi.org/10.1145/

1103900.1103933.

[17] R. Fernando (Ed.), GPU Gems, Addison-Wesley Professional, New York, NY, 2004.

[18] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A.E. Lefohn, T. Purcell, A survey

of general-purpose computation on graphics hardware, Comput. Graph. Forum 26 (1) (2007)

80–113.

[19] J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel programming with CUDA, ACM

Queue 6 (2) (2008) 40–53.

[20] J. Chong, Y. Yi, A. Faria, N. Satish, K. Keutzer, Data-parallel large vocabulary continuous speech

recognition on graphics processors, in: Proceedings of the 1st Annual Workshop on Emerging

Applications and Many Core Architecture (EAMA), 2008.

[21] D. Steinkraus, I. Buck, P. Simard, Using GPUs for machine learning algorithms, in: Proceedings of

the 5th International Conference on Document Analysis and Recognition (ICDAR), 2005.

[22] N.K. Govindaraju, M. Lin, D. Manocha, GPGP: general purpose computations using graphics proces-

sors, in: Proceedings of the 9th Annual Workshop on High Performance Embedded Computing, 2005.

[23] Y. Liu, W. Huang, J. Johnson, S. Vaidya, GPU accelerated Smith-Waterman, in: International

Conference on Computational Science, 2006, 4 vols, pp. 188–195.

[24] B. Flachs, S. Asano, S.H. Dhong, P. Hofstee, G. Gervais, R. Kim, T. Le, P. Liu, J. Leenstra,

J. Liberty, B. Michael, H. Oh, et al., A streaming processing unit for a CELL processor, in: IEEE

International Solid-State Circuits Conference, 2005.

[25] H.P. Hofstee, Power efficient processor architecture and the cell processor, in: HPCA, 2005.

[26] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, K. Yelick, The potential of the cell processor

for scientific computing, in: Conference on Computing Frontiers, Ischia, Italy, 2005.

[27] F. Blagojevic, D.S. Nikolopoulos, A. Stamatakis, C.D. Antonopoulous, Dynamic multigrain paral-

lelization on the cell broadband engine, in: Principles and Practice of Parallel Programming,

San Jose, CA, 2007.

[28] Y. Liu, H. Jones, S. Vaidya, M. Perrone, B. Tydlitát, A.K. Nanda, Speech recognition systems on the

Cell Broadband Engine processor, IBM J. Res. Dev. 51 (5) (2007) 583–592.

[29] D.P. Scarpazza, O. Villa, F. Petrini, Peak-performance DFA-based string matching on the cell

processor, in: IEEE International Parallel and Distributed Processing Symposium, 2007 (IPDPS

2007), (2007), pp. 1–8. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber¼4228362.

[30] O. Villa, D.P. Scarpazza, F. Petrini, J.F. Peinador, Challenges in mapping graph exploration

algorithms on advanced multi-core processors, in: Proceedings of the 21st IEEE International

Parallel and Distributed Processing Symposium (IPDPS), Long Beach, CA, March 26–30, 2007.

[31] L.-K. Liu, Q. Liu, A. Natsev, K.A. Ross, J.R. Smith, A.L. Varbanescu, Digital media indexing on the

cell processor, in: Proceedings of the 2007 IEEE International Conference on Multimedia and Expo,

(2007), pp. 1866–1869. http://dx.doi.org/10.1109/ICME.2007.4285038.

[32] C.M. Kastner, G.A. Covington, A.A. Levine, J.W. Lockwood, HAIL: a hardware-accelerated

algorithm for language identification, in: International Conference on Field Programmable Logic

and Applications, August 24–26, 2005, pp. 499–504. http://ieeexplore.ieee.org/stamp/stamp.jsp?

arnumber¼1515771&isnumber¼32467.

[33] K. Siozios, D. Soudris, A novel methodology for exploring interconnection architectures

targeting 3-D FPGAs, in: 3rd HiPEAC Workshop on Reconfigurable Computing (WRC),

Paphos, Cyprus, 2009.

[34] J.D. Buhler, J.M. Lancaster, A.C. Jacob, D. Roger, Mercury BLASTN: faster DNA sequence

comparison using a streaming hardware architecture, in: Proceedings of the 3rd Annual Reconfigur-

able Systems Summer Institute, Urbana-Champaign, IL, 2007.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 65
[35] I. Sourdis, D. Pnevmatikatos, Fast, large-scale string match for a 10Gbps FPGA-based network

intrusion detection system, in: Proceedings of the 13th International Conference on Field Program-

mable Logic and Applications (FPL 2003), Lisbon, Portugal, September 1–3, 2003.

[36] S. Parsons, D.E. Taylor, High Speed Processing of Financial Information Using FPGA Devices,

2008. US Patent Application US 2007/0243675 A1.

[37] W. Anderson, P. Briggs, C.S. Hellberg, D.W. Hess, A. Khokhlov, M. Lanzagorta, R. Rosenberg,

Naval Research Laboratory, Early experience with scientific programs on the Cray MTA-2.,

in: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing, 2003, p. 46.

[38] J. Feo, D. Harper, S. Kahan, P. Konecny, ELDORADO, in: N. Bagherzadeh, M. Valero, A. Ramirez

(Eds.), Proceedings of the 2nd Conference on Computing Frontiers, ACM Press, Ischia, Italy, 2005,

pp. 28–34.

[39] P. Kongetira, K. Aingaran, K. Olukotun, Niagara: a 32-way multithreaded SPARC processor, IEEE

Micro 25 (2) (2005) 21–29.

[40] U.G. Nawathe, M. Hassan, L. Warriner, K. Yen, B. Upputuri, D. Greenhill, A. Kumar, H. Park, An

8-core, 64-thread, 64-bit power efficient SPARC SOC (Niagara2), in: Proceedings of the 2007

International Symposium on Physical Design, Austin, TX, ACM Press, New York, NY, 2007,

pp. 2–2.

[41] D. Chavarria-Miranda, A. Marquez, J. Nieplocha, K. Maschhoff, C. Scherrer, Early experience with

out-of-core applications on the Cray XMT, in: Proceeding of MTAAP’08: Workshop on Multi-

threaded Architectures and Applications, IEEE, Miami, FL, 2008.

[42] C. Scherrer, N. Beagley, J. Nieplocha, A. Marquez, J. Feo, D. Chavarria-Miranda, Probability

convergence in a multithreaded counting application, in: IEEE International Parallel and Distributed

Processing Symposium, 2007, pp. 1–5.

[43] Cray, Cray XD-1, 2009. Accessed January 1, 2010, at http://www.cray.com/products/Legacy.aspx.

[44] E. Riedel, G. Gibson, C. Faloutsos, Active storage for large-scale data mining and multimedia,

in: Proceedings of the 24th International Conference on Very Large Databases (VLDB’98),

New York, NY, August 24–27, 1998.

[45] A. Yoo, S. Kohn, T. Brugger, I. Kaplan, S. Pingry, Searching a massive semantic graph on Netezza

performance server, in: Conference on Supercomputing, Tampa, FL, 2006.

[46] G.S. Davidson, K.W. Boyack, R.A. Zacharski, S.C. Helmreich, J.R. Cowie, Data-Centric Computing

with the Netezza Architecture, Sandia Technical Report. 2006.

[47] M. Gokhale, J. Cohen, W.A. Yoo, M. Miller, A. Jacob, C. Ulmer, R. Pearce, Hardware technologies

for high-performance data-intensive computing, Computer 41 (4) (2008) 60–68.

[48] C. Ulmer, M. Gokhale, Threading opportunities in high-performance flash-memory storage, in: High

Performance Embedded Computing (HPEC) Workshop, 2008.

[49] D. Ajwani, I. Malinger, U. Meyer, S. Toledo, Characterizing the performance of flash memory

storage devices and its impact on algorithm design, in: Proceedings of the 7th International

Workshop on Experimental Algorithms (WEA), Provincetown, MA, 2008, pp. 208–219.

[50] M.W. Berry, S.T. Dumais, G.W. O’Brien, Using linear algebra for intelligent information retrieval,

SIAM Rev. 37 (4) (1995) 573–595.

[51] M. Damashek, Gauging similarity with n-grams; language-independent categorization of text,

Science 267 (1995) 843–848.

[52] G. Salton, C. Yang, A. Wong, A vector space model for automatic indexing, Commun. ACM 18 (11)

(1975) 613–620.

[53] G. Schmidt, T. Ströhlein, Relations and Graphs, Springer-Verlag, Berlin, 1993.

[54] P.D. Whitney, D. Cox, D.S. Daly, H.P. Foote, D.L. McQuerry, J.M. Sloughter, Toward the routine

analysis of diverse data types, J. Comput. Graph. Stat. 12 (4) (2003) 915–926.

66 A.R. SHAH ET AL.
[55] E. Wegman, Huge data sets and the frontiers of computational feasibility, J. Comput. Graph. Stat.

4 (4) (1995) 281–295.

[56] I. Gorton, J. Chase, A.S. Wynne, J. Almquist, A. Chappell, Servicesþcomponents¼data intensive

scientific workflow applications with MeDICi, in: Proceedings of the International Symposium on

Component-Based Software Engineering, Springer-Verlag, Berlin, 2009.

[57] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.A. Lee, J. Tao, Y. Zhao,

Scientific workflow management and the Kepler system, Concurr. Comput.: Pract. Exp. 18 (10)

(2006) 1039–1065.

[58] Information Week, August 6, 2007.

[59] A. Szalay, J. Gray, J. Vandenberg, Petabyte scale data mining: dream or reality? in: SPIE Astronomy

Telescopes and Instruments, Waikoloa, HI, 2003.

[60] J.Dean, S.Ghemawat,MapReduce: simplified data processing on large clusters, Commun.ACM 51 (1)

(January 2008) 107–113.

[61] I. Gorton, A.S. Wynne, J.P. Almquist, J. Chatterton, The MeDICi integration framework: a platform

for high performance data streaming applications, in: WICSA 2008, 7th IEEE/IFIP Working

Conference on Software Architecture, 2008, pp. 95–104.

[62] BPEL, 2009. Accessed at http://www.softcare.com/whitepapers/wp_whatis_bpel.php.

[63] A.R. Shah, M. Singhal, T.D. Gibson, C. Sivaramakrishnan, K.M. Waters, I. Gorton, An extensible,

scalable architecture for managing bioinformatics data and analyses, in: Proceedings of the 4th IEEE

International Conference on eScience’08, Indianapolis, IN, 2008, pp. 190–197.

[64] R.H. Waterston, E.S. Lander, J.E. Sulston, On the sequencing of the human genome, Proc. Natl.

Acad. Sci. 99 (6) (2002) 3712–3716.

[65] S. Yooseph, G. Sutton, D.B. Rusch, A.L. Halpern, S.J. Williamson, K. Remington, J.A. Eisen,

K.B. Heidelberg, G. Manning, W. Li, L. Jaroszewski, P. Cieplak, et al., The Sorcerer II Global

Ocean Sampling Expedition: expanding the universe of protein families, PLoSBiol. 5 (3) (2007) e16.

[66] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool,

J. Mol. Biol. 215 (3) (1990) 403–410.

[67] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Gapped

BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res.

25 (17) (1997) 3389–3402.

[68] C.S. Oehmen, J. Nieplocha, ScalaBLAST: a scalable implementation of BLAST for high performance

data-intensive bioinformatics analysis, IEEE Trans. Parallel Distrib. Syst. 17 (8) (2006) 740–749.

[69] V.M. Markowitz, F. Korzeniewski, K. Palaniappan, E. Szeto, G. Werner, A. Padki, X. Zhao,

I. Dubchak, P. Hugenholtz, I. Anderson, A. Lykidis, K. Mavrommatis, et al., The integrated

microbial genomes (IMG) system, Nucleic Acids Res. 34 (Database-Issue) (2006) 344–348.

[70] V.M. Markowitz, N. Ivanova, E. Szeto, K. Palaniappan, K. Chu, D. Dalevi, I.-M.A. Chen,

Y. Grechkin, I. Dubchak, I. Anderson, A. Lykidis, K. Mavrommatis, et al., IMG/M: a data

management and analysis system for metagenomes, Nucleic Acids Res. 36 (Database-Issue)

(2008) 534–538.

[71] A.R. Shah, V.M. Markowitz, C.S. Oehmen, High-throughput computation of pairwise sequence

similarities for multiple genome comparisons using ScalaBLAST, in: IEEE/NIH Life Science

Systems and Applications Workshop (LISA 2007), Bethesda, MD, November 8–9, 2007, pp. 89–91.

[72] C.S. Oehmen, W.R. Cannon, Bringing high performance computing to the biologist’s workbench:

approaches, applications and challenges, SciDAC 2008: J. Phys.: Conf. Ser. 125 (2008) 012052.

[73] A.R. Shah, C.S. Oehmen, B.-J. Webb-Robertson, SVM-Hustle—an iterative semi-supervised

machine learning approach for pairwise protein remote homology detection, Bioinformatics 24 (6)

(2008) 783–790.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 67
[74] B.J.M. Webb-Robertson, C.S. Oehmen, A.R. Shah, A feature vector integration approach for a

generalized support vector machine pairwise homology algorithm, Comput. Biol. Chem. 32 (6)

(2008) 458–461.

[75] R. Aebersold, M. Mann, Mass spectrometry-based proteomics, Nature 422 (6928) (2003) 198–207.

[76] B. Bogdanov, R.D. Smith, Proteomics by FTICR mass spectrometry: top down and bottom up, Mass

Spectrom. Rev. 24 (2) (2005) 168–200.

[77] W.H. McDonald, J.R. Yates III, Shotgun proteomics: integrating technologies to answer biological

questions, Curr. Opin. Mol. Ther. 5 (3) (2003) 302–309.

[78] S. Sechi, Y. Oda, Quantitative proteomics using mass spectrometry, Curr. Opin. Chem. Biol. 7 (1)

(2003) 70–77.

[79] D.A. Wolters, M.P. Washburn, J.R. Yates III, An automated multidimensional protein identification

technology for shotgun proteomics, Anal. Chem. 73 (23) (2001) 5683–5690.

[80] C.C. Wu, M.J. MacCoss, K.E. Howell, J.R. Yates III, A method for the comprehensive proteomic

analysis of membrane proteins, Nat. Biotechnol. 21 (5) (2003) 532–538.

[81] S. Tanner, H. Shu, A. Frank, L.C. Wang, E. Zandi, M. Mumby, P.A. Pevzner, V. Bafna, InsPecT:

identification of post-translationally modified peptides from tandem mass spectra, Anal. Chem.

77 (14) (2005) 4626–4639.

[82] Y. Chen, S. Yu, M. Leng, Parallel sequence alignment algorithm for clustering system, in: Knowl-

edge Enterprise: Intelligent Strategies in Product Design, Manufacturing and Management, vol. 207,

Springer-Verlag, Boston, MA, 2006, pp. 311–321.

[83] L. Pasa-Tolic, C. Masselon, R.C. Barry, Y. Shen, R.D. Smith, Proteomic analyses using an accurate

mass and time tag strategy, BioTechniques 37 (4) (2004) 621–624, 626–636.

[84] J.S. Zimmer, M.E. Monroe, W.J. Qian, R.D. Smith, Advances in proteomics data analysis and

display using an accurate mass and time tag approach, Mass Spectrom. Rev. 25 (2006) 450–482.

[85] K. Petritis, L.J. Kangas, B. Yan, E.F. Strittmatter, M. Monroe, W. Qian, J.N. Adkins, R.J. Moore,

Y. Xu, M.S. Lipton, D.G. Camp II, R.D. Smith, Improved peptide elution time prediction for

reversed-phase liquid chromatography-MS by incorporating peptide sequence information, Anal.

Chem. 78 (14) (2006) 5026–5039.

[86] N. Jaitly, M.E. Monroe, V.A. Petyuk, T.R. Clauss, J.N. Adkins, R.D. Smith, Robust algorithm for

alignment of liquid chromatography–mass spectrometry analyses in an accurate mass and time tag

data analysis pipeline, Anal. Chem. 78 (21) (2006) 7397–7409.

[87] R. Craig, R.C. Beavis, A method for reducing the time required to match protein sequences with

tandem mass spectra, Rapid Commun. Mass Spectrom. 17 (2) (2003) 2310–2316.

[88] J.K. Eng, A.L. McCormack, J.R. Yates III, An approach to correlate tandem mass spectral data of

peptides with amino acid sequences in a protein database, J. Am. Soc. Mass Spectrom. 5 (11) (1994)

976–989.

[89] I. Beer, E. Barnea, T. Ziv, A. Admon, Improving large-scale proteomics by clustering of mass

spectrometry data, Proteomics 4 (4) (2004) 950–960.

[90] R. Craig, J.C. Cortens, D. Fenyo, R.C. Beavis, Using annotated peptide mass spectrum libraries for

protein identification, J. Proteome Res. 5 (8) (2006) 1843–1849.

[91] J.R. Yates III, S.F. Morgan, C.L. Gatlin, P.R. Griffin, J.K. Eng, Method to compare collision-

induced dissociation spectra of peptides: potential for library searching and subtractive analysis,

Anal. Chem. 70 (17) (1998) 3557–3565.

[92] D.M. Horn, R.A. Zubarev, F.W. Lafferty, Automated reduction and interpretation of high resolution

electrospray mass spectra of large molecules, J. Am. Soc. Mass Spectrom. 11 (4) (2000) 320–332.

[93] A.L. Rockwood, S.L. Van Orden, R.D. Smith, Rapid calculation of isotope distributions, Anal.

Chem. 67 (15) (1995) 2699–2704.

68 A.R. SHAH ET AL.
[94] M.W. Senko, S.C. Beu, F.W. McLafferty, Automated assignment of charge states from resolved

isotopic peaks for multiply charged ions, J. Am. Soc. Mass Spectrom. 6 (4) (1995) 52–56.

[95] M.W. Senko, S.C. Beu, F.W.McLafferty, Determination ofmonoisotopicmasses and ion populations

for large biomolecules from resolved isotopic distributions, J. Am. Soc. Mass Spectrom. 6 (1995)

229–233.

[96] M.E. Monroe, N. Tolic, N. Jaitly, J.L. Shaw, J.N. Adkins, R.D. Smith, VIPER: an advanced software

package to support high-throughput LC-MS peptide identification, Bioinformatics 23 (15) (2007)

2021–2023.

[97] I. Bogdan, D. Coca, J. Rivers, R.J. Beynon, Hardware acceleration of processing of mass spectro-

metric data for proteomics, Bioinformatics 23 (6) (2007) 724–731.

[98] W.R. Cannon, K.H. Jarman, B.-J. Webb-Robertson, D.J. Baxter, C.S. Oehmen, K.D. Jarman,

A. Heredia-Langner, K.J. Auberry, G.A. Anderson, Comparison of probability and likelihood

models for peptide identification from tandem mass spectrometry data, J. Proteome Res. 4 (5)

(2005) 1687–1698.

[99] R. Craig, R.C. Beavis, TANDEM: matching proteins with tandem mass spectra, Bioinformatics

20 (9) (2004) 1466–1467.

[100] R. Aebersold, L. Anderson, R. Caprioli, B. Druker, L. Hartwell, R. Smith, Perspective: a program

to improve protein biomarker discovery for cancer, J. Proteome Res. 4 (2005) 1104–1109.

[101] A. Alaiya, M. Al-Mohanna, S. Linder, Clinical cancer proteomics: promises and pitfalls,

J. Proteome Res. 4 (2005) 1213–1222.

[102] K.S. Anderson, J. LaBaer, The sentinel within: exploiting the immune system for cancer biomar-

kers, J. Proteome Res. 4 (2005) 1123–1133.

[103] M.A. Gillette, D.R. Mani, S.A. Carr, Place of pattern in proteomic biomarker discovery,

J. Proteome Res. 4 (4) (2005) 1143–1154.

[104] J.M. Jacobs, J.N. Adkins, W.-J. Qian, T. Liu, Y. Shen, D.G. Camp II, R.D. Smith, Utilizing human

blood plasma for proteomic biomarker discovery, J. Proteome Res. 4 (4) (2005) 1073–1085.

[105] S. Srivastava, R.-G. Srivastava, Proteomics in the forefront of cancer biomarker discovery,

J. Proteome Res. 4 (4) (2005) 1098–1103.

[106] S. Srivastava, M. Verma, R. Gopal-Srivastava, Proteomic maps of the cancer-associated infectious

agents, J. Proteome Res. 4 (4) (2005) 1171–1180.

[107] J. Villanueva, J. Philip, C.A. Chaparro, Y. Li, R. Toledo-Crow, Correcting common errors in

identifying cancer-specific serum peptide signatures, J. Proteome Res. 4 (2005) 1060–1072.

[108] F. Vitzthum, F. Behrens, S.L. Anderson, J.H. Shaw, Proteomics: from basic research to diagnostic

application. A review of requirements & needs, J. Proteome Res. 4 (2005) 1086–1097.

[109] E.F. Petricoin, A.M. Ardekani, B.A. Hitt, P.J. Levine, V.A. Fusaro, S.M. Steinberg, G.B. Mills,

C. Simone, D.A. Fishman, E.C. Kohn, L.A. Liotta, Use of proteomic patterns in serum to identify

ovarian cancer, Lancet 359 (9306) (2002) 572–577.

[110] E.P. Diamandis, Proteomic patterns in serum and identification of ovarian cancer—reply, Lancet

360 (9327) (2002) 170–171.

[111] M. Elwood, Proteomic patterns in serum and identification of ovarian cancer—reply, Lancet 360

(9327) (2002) 170.

[112] B. Rockhill, Proteomic patterns in serum and identification of ovarian cancer—reply, Lancet 360

(9327) (2002) 169–171.

[113] B.H. Clowers, W.F. Siems, H.H. Hill, S.M.Massick, Hadamard transform ion mobility spectrometry,

Anal. Chem. 78 (1) (2006) 44–51.

[114] J.R. Kimmel, Continuous, Multiplexed Time-of-Flight Mass Spectrometry of Electrosprayed Ions,

2004. Ph.D. Thesis, Stanford University, pp. 18–46.

APPLICATIONS IN DATA-INTENSIVE COMPUTING 69
[115] Symantec, M. Fossi, E. Johnson, T. Mach (Eds.), Symantec Global Internet Security Threat Report,

vol. XIV, Symantec, Cupertino, CA, 2009.

[116] J.Bigham,D.Gamez, L.Ning, Safeguarding SCADAsystemswith anomaly detection, in: Proceedings

of the 2nd InternationalWorkshop onMathematical Methods,Models andArchitectures for Computer

Network Security (MMM-ACNS 2003), Lecture Notes in Computer Science, 2776, 2003,

pp. 171–182.

[117] L. Feng, X.H. Guan, S. Guo, Y. Gao, P. Liu, Predicting the intrusion intentions by observing system

call sequences, Comput. Secur. 23 (3) (2004) 241–252.

[118] S. Noel, M. Jacobs, P. Kalapa, S. Jajodia, Multiple coordinated views for network attack graphs,

in: IEEE Workshop on Visualization for Computer Security 2005 (VizSEC 05), Minneapolis,

MN, 2005.

[119] P. Saraiya, C. North, K. Duca, Visualizing biological pathways: requirements analysis, systems

evaluation and research agenda, Inform. Visual. 4 (3) (2005) 191–205.

[120] H. Zhuge, X. Shi, Fighting epidemics in the information and knowledge age, Computer 36 (10)

(2003) 114–116.

[121] S. Krasser, G. Conti, J. Grizzard, J. Gribschaw, H. Owen, Real-time and forensic network data

analysis using animated and coordinated visualization, in: IEEE Workshop of Information Assur-

ance and Security, West Point, NY, 2005.

[122] L. Paulson, Researchers develop network-security visualization tools, Computer 37 (4) (2004)

17–18.

[123] G. Conti, K. Abdullah, J. Grizzard, J. Stasko, J.A. Copeland, M. Ahamad, H.L. Owen, C. Lee,

Countering security information overload through alert and packet visualization, IEEE Comput.

Graph. Appl. 26 (2) (2006) 60–70.

[124] K. Kafadar, E.J. Wegman, Visualizing ‘‘typical’’ and ‘‘exotic’’ Internet traffic data, Comput. Stat.

Data Anal. 50 (12) (2006) 3721–3743.

[125] E.J. Wegman, D. Marchette, On some techniques for streaming data: a case study of Internet packet

headers, J. Comput. Graph. Stat. 12 (4) (2003) 893–914.

[126] A. D’Amico, K. Whitley, The real work of computer network defense analysts, in: VizSEC 2007:

Proceedings of the Workshop on Visualization for Computer Security, Springer-Verlag, Sacra-

mento, CA, 2008, pp. 19–37.

[127] W. Pike, C. Scherrer, S. Zabriskie, Putting security in context: visual correlation of network activity

with real-world information, in: VizSEC 2007: Proceedings of the Workshop on Visualization for

Computer Security, Springer-Verlag, Sacramento, CA, 2008, pp. 203–220.

[128] D. Chavarria-Miranda, A. Marquez, J. Nieplocha, K. Maschhoff, C. Scherrer, Early experience

with out-of-core applications on the Cray XMT, in: IEEE International Symposium on Parallel and

Distributed Processing (IPDPS 2008), April 14–18, 2008.

[129] A. Moore, M.S. Lee, Cached sufficient statistics for efficient machine learning with large datasets,

J. Artif. Intell. Res. 8 (1998) 67–91.

[130] Atmospheric Radiation Measurement Climate Research Facility (ACRF), ARM Annual Report.

2008. Technical report available from U.S. Department of Energy as DOE/SC-ARM-0706.

[131] T.P. Ackerman, The Role of Global Observations for Climate and Other Applications, DOE/SC-

ARM/TR-067Pacific Northwest National Laboratory, Richland, WA, 2005.

[132] Atmospheric Radiation Measurement Program (ARM), Report on the ARM Climate Research

Facility Expansion Workshop, DOE/SC-ARM-0707, Pacific Northwest National Laboratory for

the U.S. Department of Energy, Richland, WA, 2007.

[133] M.C. Macduff, R.C. Eagan, ACRF Data Collection and Processing Infrastructure, DOE/SC-ARM/

TR-046. Pacific Northwest National Laboratory, Richland, WA, 2004.

70 A.R. SHAH ET AL.
[134] NetCDF, 2009. Accessed at http://www.unidata.ucar.edu/software/netcdf/.

[135] K. Widener, K. Johnson, ARM cloud radars—a year in review and a look to the future,

in: Proceedings of 17th ARM Science Team Meeting, Monterey, CA, 2007.

[136] P. Kollias, M.A. Miller, E.P. Luke, K.L. Johnson, E.E. Clothiaux, K.P. Moran, K.B. Widener,

B.A. Albrecht, The atmospheric radiation measurement program cloud profiling radars:

second-generation sampling strategies, processing, and cloud data products, J. Atmos. Ocean.

Technol. 24 (7) (2007) 1199–1214.

[137] P.H. Hildebrand, R.S. Sekhon, Objective determination of the noise level in Doppler spectra,

J. Appl. Meteor. 13 (7) (1974) 808–811.

[138] IDL, Interactive Data Language. 2009. Accessed June 29, 2009, at http://www.ittvis.com.

[139] R.A. Peppler, K.E. Kehoe, K.L. Sonntag, C. Bahrmann, S. Richardson, S. Christensen, R. McCord,

K. Doty, R. Wagener, R. Eagan, J. Liljegren, B. Orr, et al., Quality Assurance of ARM Program

Climate Research Facility Data, DOE/SC-ARM/TR-082, Pacific Northwest National Laboratory,

Richland, WA, 2008.

[140] C.N. Long, Y. Shi, An automated quality assessment and control algorithm for surface radiation

measurements, Open Atmos. Sci. J. (TOASJ) 2 (2008) 23–37.

[141] Value-Added Product (VAP), 2009. Accessed January 1, 2010, at http://www.arm.gov/data/vaps.

[142] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, S. Mock, Kepler: an extensible system

for design and execution of scientific workflows, in: Proceedings of the 16th International

Conference on Scientific and Statistical Database Management (SSDBM’04), Santorini Island,

Greece, June 21–23, 2004.

[143] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, S. Mock, The Kepler Project,

2008. Accessed June 23, 2009, at https://kepler-project.org/.

[144] MeDICi: Middleware for Data-Intensive Computing, 2009. Accessed June 29, 2009, at http://

medici.pnl.gov/.

[145] C. Jared, G. Ian, et al., KeplerþMeDICi Service-Oriented Scientific Workflow Applications,

Proceedings of the 2009 Congress on Services - I, IEEE Computer Society, 2009.

[146] J. Cheney, Principles of Provenance, University of Edinburgh, Edinburgh, UK, 2009. Accessed

June 23, 2009, at http://www.beliefproject.org/events/brainstormings/brainstorming1/ppt/james-

cheney-principles-of-provenance.pdf.

Pitfalls and Issues of Manycore
Programming
ADVAN

ISSN: 00
AMI MAROWKA
Department of Computer Science, Bar-Ilan University,
Ramat Gan, Israel
Abstract
The transition from sequential computing to parallel computing represents the

next turning point in the way software engineers design and write software. The

addition of more processing cores has emerged as the primary way to boost

the computing power of microprocessors, but first the research community has

to overcome certain hardware and software challenges along the way to on-chip

scalable systems.

The primary consequence is that applications will increasingly need to be

parallelized to fully exploit processor throughput gains that are now becoming

available. However, parallel code is more difficult to write than that of serial

code. Writing applications in a way that permits different parts of a computing

task be divided up and executed simultaneously across multiple cores is not new.

Efforts today focus on translating the knowledge of building off-chip super-

computing based on multiprocessors to on-chip hypercomputing based on multi-

core processors. While the software may present the biggest challenge, there

are also hardware changes that need to be made to overcome issues such as

scalability and portability.

The aim of this chapter is to explain the primary difficulties and issues of

manycore programming. Firstly, the unsolved problem of the parallel computa-

tion model and its implications for issues such as portability and performance

prediction is discussed. Secondly, the obstacles incurred by parallel hardware

architectures on software development are covered. Thirdly, the main traps and

pitfalls of multicore programming are addressed. Finally, the human factor in the

success of the parallel revolution is presented.
CES IN COMPUTERS, VOL. 79 71 Copyright © 2010 Elsevier Inc.

65-2458/DOI: 10.1016/S0065-2458(10)79002-1 All rights reserved.

72 A. MAROWKA
1.
 I
ntroduction . 72
1
.1. T
he Missing Parallel Computation Model 76
1
.2. T
he Portability Problem . 78
1
.3. T
he Scalability Challenge . 81
1
.4. A
 Simple Example—Portability and Scalability 83
2.
 P
arallel Hardware Obstacles . 85
2
.1. T
he Multiarchitecture Problem . 85
2
.2. T
he Cache Coherence Problem . 88
2
.3. T
he False-Sharing Problem . 91
2
.4. A
 Simple Example—Cache Coherency and False Sharing 93
3.
 P
arallel Software Issues . 97
3
.1. D
ata Dependency . 98
3
.2. M
emory Consistency Model . 102
3
.3. D
ata Race Conditions . 105
3
.4. L
ocks and Deadlocks . 107
4.
 T
he Human Factor . 110
4
.1. T
eaching Parallel Programming Today 111
4
.2. A
 Wish List . 112
5.
 C
onclusions . 113
R
eferences . 114
1. Introduction

The device should be as simple as possible, that is, contain as few elements as possible.

This can be achieved by never performing two operations simultaneously, if this would

cause a significant increase in the number of elements required. The result will be that

the device will work more reliably and the vacuum tubes can be driven to shorter times

than otherwise.

John von Neumann, 1945 [1]

The paradigm shift from sequential computing to parallel computing is a revolu-

tionary leap, not an evolutionary step. It is a revolutionary leap because it changes

almost any topic in the computer science discipline. The prefix parallel can be

added to any topic: parallel architectures, parallel OS, parallel algorithms, parallel

languages, parallel data structures, parallel databases, and so on. But the parallel

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 73
revolution is a revolution in progress: while advances in parallel hardware accelerate

everyday, the development of parallel software lags behind.

Parallel computing is not a new concept. The first computers, such as the ENIAC

[2] and IAS [3], were highly parallel machines and the lessons that were learnt from

their design are still relevant today. The ENIAC was a parallel, data-flow machine in

which program memory was locally stored in each unit. The IAS was an asynchro-

nous machine with parallel memory and parallel arithmetic. However, although the

computer pioneers—John von Neumann, Presper Eckert, John Mauchly, and

Herman Goldstine—designed their computers to be highly parallel machines, they

did not use the parallel features of the machines because of its complexity. They

claimed that serial operation is preferred in electronic machines, provided the

components are fast enough. As mentioned in their reports [1, 4, 5], the advantages

of a serial machine over a parallel one are reduced hardware, increased reliability,

and ease of programming. Therefore, parallel computing will remain a research

niche for many years to come.

In the past two decades, parallel computing has remained an elitist discipline in

that only professional programmers in rich scientific and engineering communities

could afford the state-of-the-art parallel machines. Multiprocessor machines are

very expensive and demand a highly specialized expertise in systems administration

and programming skills. The turning point finally arrived in 2005, when parallel

computing on any desktop became a reality [6]. Two things were missing prior to

2005: low-cost parallel computers and simple, easy-to-use parallel programming

environments. However, they are available now and will change the way developers

design and build software applications. The two complementary technologies bring

parallel computing to the desktop. On the hardware side is the multicore processor

for desktop computers; on the software side is the integration of the OpenMP

parallel programming model [7, 8] into Microsoft Visual Cþþ 2005. These tech-

nologies promise massive exposure to parallel computing that nobody can ignore;

a technology shift is therefore unavoidable. The HPC research community has made

astonishing progress in this period of time. Today, efforts are focused on translating

the knowledge of building off-chip supercomputing based on multiprocessors to

on-chip hypercomputing based on multicore processors.

Two walls have forced chip makers to change processor design to multicore

processor architectures: the performance-wall and the power-wall.

The performance-wall refers to the observation of a slowing down in performance

improvement of single-core processors. It is becoming increasingly difficult for

processor designers to continue to use pipelining and superscalar techniques to

enhance the speed of modern processors (Fig. 1) [9].

The power-wall refers to the observation of an exponential increase in the power

consumption of single-core processors due to an increase in the number of

10,000

1000

100

10

1
1990 1995 2000 2005

Year

S
P

E
C

in
t2

00
0

Intel CPU

FIG. 1. The performance wall.

74 A. MAROWKA
transistors on a single die for implementing pipelining and superscalar techniques

in higher frequencies (Fig. 2) [9, 10]. Thus, replacing the large superscalar

processor with several small cores with a lower clock rate achieves better perfor-

mance per watt.

The primary consequence of the transition to multicore processors is that applica-

tions will increasingly need to be parallelized to fully exploit the throughput gains

now becoming available. Unfortunately, parallel code is more complex to write than

that of serial code [11, 12]. Parallel programming is no doubt much more tedious
and error-prone than serial programming, but it is not impossible. The main

difficulties in programming multicore processors are as follows:

� Thinking in Parallel. Parallel programming demands a different way of

thinking. Sequential programming is a deterministic and linear process. There-

fore, it is very intuitive to the way we solve problems through the use of

algorithms. In contrast, parallel programming is a multiprocess approach

where the behavior of the processes is intrinsically nondeterministic. Parallel-

ism requires programmers to think in a way humans find difficult. However,

allowing nondeterminism in parallel programs is the key to achieving

high-performance and scalable programs. The nondeterminism in a parallel

120

100

80

40

20

0

60

140

P
ow

er
 (

W
)

1995 1998 2001 2003 2005
Year

Intel CPU

FIG. 2. The power wall.

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 75
program is controllable when it is necessary. Moreover, it is possible to learn

how to think in parallel and how to write bug-free parallel programs [13].

� Familiarity with Underlying Architecture. Parallel programming demands a

close familiarity with the details of the underlying multicore processor archi-

tecture. This knowledge is needed for matching the logical-structure of the

program to the physical architecture of the processor. The programmer has to

know such details as the number of cores, the memory layout, the cache

memory hierarchy, and much more. Better matching leads to better perfor-

mance and achieves desirable scalability. Sequential programming frees the

programmer from this entire burden.

� New Programming Issues. Parallel programming demands the understanding

of new programming issues that are absent from sequential programming,

including: the relationship between the logical threads and the underlying

physical processors and cores; how threads communicate and synchronize;

how to measure performance in a parallel environment; and the sources of load

unbalancing. The programmer must check for dependencies, deadlocks, con-

flicts, race conditions, and other issues related to parallel programming.

76 A. MAROWKA
� Invisible Problems. Many parallel programming bugs are caused because they

cannot be detected just from inspection of the source code. Actually, What-

You-See (in the source code) is not What-You-Get (after optimizations). For

example, aggressive optimizations such as branch prediction and reordering

instructions for out-of-order execution are done ‘‘under-the-hood’’ and can

change the meaning of programs. Moreover, these techniques are often the

main cause of tricky data-race problems that are very hard to detect.

� Difficult Debugging. Debugging a parallel program is a highly tedious and

difficult task. Although parallel debuggers and visual profiling analyzers exist

and are improving all the time, finding a bug in a parallel program is like

finding a needle in a haystack. The complexity of parallel debugging is due to

the invisible problems and to the timing complexity of parallel program flow

that harden on finding temporary bugs, whose appearance cannot be predicted.

The aim of this chapter is to explain the main difficulties and barriers to successful

manycore programming. First, the unsolved problem of parallel computation model

and its implications on issues such as portability and performance prediction is

discussed. Next, the obstacles incurred by parallel hardware architectures on soft-

ware development are covered. Then, the main traps and pitfalls of multicore

programming are addressed. Finally, the human factor on the success of the parallel

revolution is presented.

Terminology Comment: Throughout this chapter the term parallel revolution is

used, and not the more popular term the concurrency revolution, because it better

reflects the essence of current revolution. Concurrency is used in computer science

to refer multiple software threads of execution that are running in an interleaving
mode on a single-core processor, while, the parallel is used to refer multiple threads

of execution that are running simultaneously on multicore processor.
1.1 The Missing Parallel Computation Model

The goal of a computation model is to establish an abstract and theoretical

framework for describing and evaluating algorithms in a way that predicts their

performance on real computers. Moreover, the main role of a computational model

is to serve as a bridging model between the computer (the hardware) and the

algorithm (the software) together with a simple cost function for performance

prediction.

The Von Neumann model serves as a universal sequential computation model.

The blossoming of the computing industry in the last six decades is evidence that the

Von Neumann model is a success story as it offers a simple model of computation; it

enables the design of simple and easy-to-use programming languages founded on it;

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 77
it is based on architecture independency; guaranteeing performance among a variety

of sequential architectures; and it enables the foundation of a simple cost model.

Despite many efforts, no solid framework exists for developing parallel software

that is portable and efficient across multiple processors. The lack of such a frame-

work is mostly due to the absence of a universal model of parallel computation

which can play a role similar to Von Neumanns model that plays for the sequential

computing, inhibiting the diversity of the existing parallel architecture, and parallel

programming models [14]. The lack of a unified parallel computation model, and

therefore of a generic parallel programming model, is the main reason for the

postponement of the shift of parallel computing to the mainstream.

Many parallel computational models, parallel programming models, and parallel

languages have been introduced in the last three decades [15]. Parallel computa-

tional models such as PRAM and its extensions are pure theoretical models while

others such as LogP [16] and BSP [17, 18] are practical models. The PRAMmodel is

an attempt to follow the role of the RAM model in sequential computing. However,

the PRAMmodel fails to introduce an adequate performance model that enables one

to predict the performance of parallel programs on real parallel machines. On the

other hand, parallel models such as LogP and BSP introduced a simple cost model

based on four parameters that capture the complexity of the underlying architecture

and improve the accuracy of performance prediction by computational analysis.

Unfortunately, there is no consensus in the HPC community on which model to

choose as a standard. As a result, a variety of parallel machine architectures exists

among different computer manufacturers or among multicore processor generations

made by the same vendor. This situation leads to a very difficult portability problem

where the rewriting of parallel programs, as each new machine or a new multicore

processor appears, is unavoidable. In the last decade there were unsuccessful

attempts to combine the three main parallel programming paradigms (data parallel,

message-passing, and shared-variable) into a unified framework.

As philosopher of science, Thomas Kuhn explains in his book, The Structure of
Scientific Revolutions [19], the acceptance or rejection of a scientific revolution is

more influenced by social conditions than by scientific facts. According to Kuhn’s

observation, a paradigm shift (a term coined by Kuhn) occurs after three phases. The

first phase, the preparadigm phase, in which there is no consensus on any particular
theory; the second phase, normal science, in which there is a widespread consensus

on the appropriate research directions that the community has to follow; and the

third phase, revolutionary science, a period of crisis where anomalies in research

reveal the weakness of a paradigm. At the end of the crisis a new paradigm is

accepted. The preparadigm phase of the parallel computing revolution was the

period of the first three decades of the sequential computing era, when there was

no consensus on parallel computing feasibility and practicality. The normal science

78 A. MAROWKA
phase started two decades ago, when the scientific community began to explore

parallel machines and programming paradigms. The third phase started in the year

2005, when the first desktop multicore processors appeared, marking the beginning

of the crisis period, the revolutionary science.
The efforts of manycore research to make parallel programming a general-

purpose programming are concentrated today in four research centers. The Univer-

sal Parallel Computing Research Center (UPCRC) at University of Illinois at

Urbana-Champaign planned a research agenda that ‘‘aims to make client parallel

programming synonymous with programming...to develop disciplined parallel pro-

gramming models and languages, supported by sophisticated development and

execution environments, that will offer the analog of modern sequential program-

ming principles of safety, structure, and separation of concerns’’ [20].

The Pervasive Parallelism Laboratory (PPL) at Stanford University focuses on

‘‘making parallel programming practical for the masses’’ by year 2012 [21]. The

research aims to create a unified platform (algorithms, programming models, run-

time systems, and architectures for scalable parallelism) that supports 10,000 hard-

ware threads.

The Parallel Computing Laboratory at Berkeley sees the ‘‘ultimate goal as the

ability to productively create efficient and correct software that scales smoothly as

the number of cores per chip doubles biennially’’ [22]. Key to this approach is a layer

of libraries and programming frameworks centered on the 13 computational bottle-

necks (‘‘dwarfs’’) that they identified in the original Berkeley View report [23].

The DARPA High Productivity Computing Systems (HPCS) program is focused

on providing a new set of tools that improve programmability, portability,

robustness, and productivity of HPC applications [24]. The HPCS program is

developing three parallel programming languages (Chapel, Fortress, and X10)

focused on improving programmer productivity. These languages are looking for

novel approaches to express computation by mathematical notation (Fortress); new

parallel programming concepts based on object-oriented paradigm (X10); and new

high-level abstractions for data, task, and nested parallelism.
1.2 The Portability Problem

Software portability, or the degree to which application can be moved from one

environment to another and get essentially the same results, is obviously of supreme

practical importance.

Performance is often cited as the main reason for the current push toward manycore

processors. Performance is hard to achieve and requires programming time and

programmer expertise. Expertise is necessary to understand the characteristics of the

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 79
machine and the application. Time is necessary to find the best ways to exploit them

by transforming and specializing the code.

Portability across multicore processors and operating systems also requires

programming time and programming expertise. It may be easier to achieve this

with scientific applications rather than with interactive software, but it always

requires code generalization. Portability is attained by ignoring the target architec-

ture as much as possible.

Parallel Performance Portability is much more difficult than sequential portabil-

ity. The lack of parallel software portability is mainly because high-speed computers

support parallelism in many different forms, such as instruction-level parallelism,

vector parallelism, loop-level parallelism, and task parallelism. Furthermore, data

can be placed in many different types of storage, such as registers, caches, local

memories, or shared memories. Today’s multicore architectures are very diverse in

the levels of parallelism and data storage they provide. If one has to find the best mix

of these resources for every program then the lack of program portability is

unavoidable. However, even if the management of these resources is provided by

sophisticated hardware mechanisms, compilers, or operating systems, the program-

mer often has to take special care in writing the programs so that these mechanisms

can be effective. This means, for example, that one must make sure that data placed

in longer latency storage by the compiler get accessed infrequently, or that the levels

of parallelism supported automatically by the given machine will be apparent to the

optimization tool.

There is a need for efficient matching techniques to cope with the parallel

portability problem caused by the diversity of parallel architecture and parallel

programming models. Matching complex parallel applications to complex manycore

processors in order to exploit the efficient use of available resources is the main

challenge toward achieving scalable portability [25–28]. Parallel applications induce
different logical structures, such as tree, mesh, hypercube, and butterfly. In the past

two decades the motivation of the vendors of parallel computers to build machines

based on these topologies stems from the ambition to match the physical topologies to

the geometry and logical structures of common algorithms in computer science. For

example, fluid dynamic problems often induce 2D/3D dimensional grid structures.

Divide-and-conquer algorithms induce tree structures; the FFT algorithm induces a

butterfly structure; and the Batchers sort algorithm induces a hypercube structure.

The increasing complexity of parallel applications and parallel machine architec-

ture demands a higher level of parallel programming models, languages, and tools

that hide these complexities from the programmer. To preserve the simplicity, ease

of use, and portability of the programming workmanship, there is a need to move up

to a higher level of programming abstractions. Many effective techniques have been

developed in the last decade and have drastically reduced the transfer cost within

80 A. MAROWKA
certain areas. Each has its own relative merits; some methods are cheap, others

efficient; while still others are wide ranging [25, 29–31]. These techniques are now

making a comeback [22, 23].

For example, Auto-tuners [29, 30, 32] are high-level libraries that use automati-

cally calibrated statistical models to select from among several implementations and

to optimize the parameters of each implementation. Model-based parameter optimi-

zation provides a form of adaptive algorithm. This leads to portability with high-

performance because the library selects and tunes the best implementation for the

current platform and workload.

The Template/Skeleton/Sketching [33, 34] is another concept to achieve portabil-

ity. This approach restricts the computational model seen by programmers and

allows them to use only a small set of skeletons or high-level parallel language

constructs. The main advantage of this approach is the possibility of devising

automatic or quasi-automatic tools that guarantee portability and performance of

the code produced. Parallel constructs correspond to those forms of parallelism

(pipeline, task farm, data parallel, and reduce) that are more often encountered in

parallel algorithms. For each target architecture, an implementation template can be

associated with each of these forms of parallelism. Typically, for a given distributed

memory MIMD machine, a template consists of a set of communicating processes

with mapping directives on the processor network, and with an analytical perfor-

mance model used to automatically tune parameters such as degree of parallelism

and task granularity. The template concept seems to hold some promise in addres-

sing the problem of portable expression of parallel algorithms and applications.

A software component can be developed as a generic module to increase its

degree of portability, parameterized by types, by operations, or by other modules.

Since different architectures have different performance-relevant features, a porta-

ble program must execute different sequences of source-code instructions on differ-

ent machines. This requires having different program variants, the selection of

which is determined by the programs tuning parameters. A good generic model

allows these tuning parameters to be calculated from its machine parameters. The

drawback of this approach is that generic, but suboptimal, methods must be chosen.

This results in a more complex source code with an attendant decrease in perfor-

mance. Rewriting an algorithm for a refined data-type can be automated if the

relationship between the abstract and realization data-types is specified accurately

by an abstraction function. Consequently, it is possible to generate several versions

of an algorithm for different representations of the data, after which these algorithms

can be compared with respect to performance.

Similarly, it is possible to generate several executables, each implementing

different algorithms and data-structures based on the special characteristics of the

computer under consideration. If automatic generation of source-code is a goal, all

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 81
development steps must be worked out precisely. This may be tedious, depending on

the tools that are available.

A necessary, but still not sufficient, condition for a parallel programming model

to become a portable one is its widespread adoption by the community. For example,

the OpenMP [7, 8] parallel programming model has been adopted by the entire

software community and can be found as an integral part of any compiler and

operating system. This is the reason for choosing OpenMP for the demonstration

examples in this chapter. However, OpenMP cannot preserve this achievement

because of the lack of a cost model as well as deviations from the formal specifica-

tion, such as extended features which are not part of the standard, allowing behaviors

called implementation defined to vary among different compliant implementations.

However, an aware programmer can avoid using features that might cause unspeci-

fied behaviors.

1.3 The Scalability Challenge

Scalability of a parallel system is the ability to achieve more performance as

processing nodes increase. A system (hardware þ software) whose performance

improves after adding more nodes, proportionally to the number of nodes added, is

said to be a scalable system. Obtaining a scalable manycore processor system is the

most challenging issue of the parallel revolution.

It is worth noting if the underlying manycore processor architecture is scalable but

the software is not, and vice versa. Both the hardware and the software have to

exhibit a combined scalable system. Intuitively, a scalable system has to be able to

scale up. However, future manycore-based systems will also have to exhibit

the ability to scale down to reduce costs, save power consumption, and to enable

modern parallel multitasking operating systems, based on techniques such as gang-
scheduling [35], to schedule a parallel application to a different number of cores for

better system utilization.

With regard to hardware, the main scalability challenge of the designers of many-

core architectures is to cope with the bandwidth wall problem. The bandwidth wall

refers to the situation in which bandwidth limitation becomes a bottleneck that limits

4–64 core processors (multicore) to scale up to 100–1000 core processors (manycore).

Over the last two decades, memory performance has been steadily losing ground

to CPU performance. During this period, CPU speed improved at an annual rate of

55%, while memory speed only improved at 10%, causing the CPU-memory

performance gap to widen. Therefore, the bandwidth and latency of main memory

(static DRAM) have not kept pace with CPU performance. Currently, processor

caches provide access to data with latencies 100 times less than DRAM latencies.

Bandwidth, likewise, is reduced as one move from cache to main memory.

82 A. MAROWKA
Higher aggregate bandwidth and reduced latency are needed for core-to-memory

high-volume traffic and for core-to-core communications. It is not improbable to

assume that off-chip communications interconnects such as crossbars, meshes, and

trees will be implemented on-chip aside from other new communication technolo-

gies that will be developed. However, network scalability is limited not only by

topological properties such as node degree, diameters, symmetry, and bisection-

bandwidth, but also by physical technology and management requirements such as

packaging, power dissipation, and cooling.

Over the last two decades, the chipmakers have coped with the bandwidth wall

problem by increasing the cache memory size (from KB to MB) and by introducing

sophisticated cache techniques (smarter cache hierarchies). However, it seems that

manycore processors will need new approaches. Two promising technologies have

the potential to reduce the CPU-memory gap: 3D memories devices and optical

interconnects. HP Labs call for on-chip optics and argue that a 256-core will deliver

as much as 10 Teraflops of performance and will need as much as 20 TFlops

bidirectional bandwidth to support a relatively flat programming model [36].

Intel lists five challenges for IC scaling [37] and claims that chip-to-chip optical

interconnects can address the bandwidth bottleneck if future technologies will find a

way to effectively integrate photonics with silicon logic. Using optical interconnects

for on-chip signaling may be further off in the future due to the difficulties of scaling

optical transceivers and interconnects to the dimensions required. Future architectures

will require bandwidths of 200GB/s–1.0 TB/s formanycore tera-scale computing [38].

With regard to software, the enemy of scalability is serial code. Amdahls Law is

based on the observation that parallel portions of a program can be sped up infinitely

in theory, but the serial portion is always serial and will always limit the speed of

parallel code. Serialization of parallel code can be caused by legitimate serial code,

such as I/O operations, but also by unnecessary overhead. Such overhead is incurred

by using a mutual exclusion mechanism, such as looks, for synchronizing simulta-

neous access to shared memory by multiple threads. Unfortunately, lock-based

synchronization has its downside. Coarse-grained locking does not scale well,

while the more sophisticated fine-grained locking exposes the code to deadlocks

and data races. Therefore lock-free programming paradigms attract many research-

ers. One of the emerging lock-free programming concepts is transactional memory
(TM) [39, 40]. However, TM programming is still in the research stage and does not

resolve all parallel programming challenges. Moreover, there are practitioners who

claim that writing scalable and correct multithreaded code with locks is possible

and offer a bag of tricks [41]. A recent research supports this claim and shows that

state-of-the-art parallel programming models such as the Intel Threading Building

Blocks (TBB) are able to deliver fine-grained locking while freeing the programmer

from dealing with locks [42].

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 83
1.4 A Simple Example—Portability and Scalability

The following example demonstrates the scalability and the performance porta-

bility issues of contemporary multicore processors. The experiments were con-

ducted on a laptop computer equipped by Intel Core 2 Duo CPU T8100, 2.1 GHz,

and 1 GB of RAM. On the software side, the compilers used were MS Visual Studio

Cþþ 2005 and Intel Cþþ version 11.0 on top of the MS Windows XP Professional

operating system. The compiler options were set to their default values. The

parallelization was done by OpenMP 2.0. The results shown have an average time

of 20 runs of 10 measurements each.

Listing 1—Loop Parallelization Version 1.

float A[100000], B[100000];
void a1 (int n, float *a, float *b)
{
int i ;
#pragma omp parallel for
for (i¼1; i<n ; iþþ) /* i is private by default */

b[i] ¼ (a[i] þ a [i�1]) / 2.0;
}

The data-parallel example (listing 1) parallelizes a simple loop using the OpenMP

compiler directive. This is the first example that appears in the OpenMP specifica-

tion. Compiling the code with the MS Visual Studio Cþþ compiler and running it

with two threads yields a speedup of 0.53 as compared to a run with one thread.

There is nothing wrong with this code; the poor performance is due to the low work

granularity inside the loop. The amount of work inside the loop does not compensate

for the overhead incurred by the memory subsystem.

Now, let us put more work inside the loop. The modified code (listing 2) was run

with a granularity of 1, 10,100, and 1000, and the measurements were taken for

Microsoft and Intel compilers. The results are plotted in Figs. 3 and 4.

Listing 2—Loop Parallelization Version 2.

float A[100000], B[100000];
void a1(int n, float *a, float *b)
{
int i, j, granularity ;
#pragma omp parallel for
for (i¼1; i<n ; iþþ) /* i is private by default */

for (j¼0; j < granularity ; jþþ)
b[i] ¼ (a[i] þ a[i�1]) / 2.0;

}

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
1 10 100 1000

Granularity

S
pe

ed
up

0.53

1.38

1.75 1.8
1.931.81

1.71.66

IntelMS

FIG. 3. Loop parallelization speedups for Microsoft and Intel compilers.

1 10 100 1000

100,000

10,000

1000

100

Granularity

T
im

e
(m

s)

124

616

1674

1247

8919

11,399

77,097

100,192

IntelMS

FIG. 4. Loop parallelization times for Microsoft and Intel compilers.

84 A. MAROWKA

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 85
Figure 3 plots the speedup as a function of the granularity. First, it can be observed

that the behaviors of the compilers are not the same. In case of Microsoft, the impact

of the granularity on the speedup is more significant as compared to Intel. Second,

the scalability of fine-grained computations is poor. Figure 4 plots the running times

as a function of the granularity. It can be observed again that the two compilers

achieve different performance gains. Intel outperforms Microsoft for fine-grained

computations and the opposite is true for coarse-grained computations. The perfor-

mance gap between the two compilers is up to a 500% difference for only two cores
and two threads.
2. Parallel Hardware Obstacles

I think today this shift toward parallelism is being forced not by somebody with a great

idea, but because we do not know how to build hardware the conventional way

anymore.

David Patterson, 2007 [43]

when we start talking about parallelism and ease of use of truly parallel computers, we

are talking about a problem that is as hard as any that computer science has faced.

John Hennessy, 2007 [43]

Designing and constructing manycore processors that scale up to hundreds of

cores on a single die poses great challenges on the hardware architects. In the

low level of the hardware, chipmakers will have to explore advanced technologies

such as nonsilicon-based and nanoscale technologies. The discussion in this section

concentrates on issues related to high-level hardware design aspects. First, the

problem of multiarchitectures of multicore processors and its implications for

software design is presented. Next, the cache coherence problem and false-sharing

issues are described followed by a multiversion example that demonstrates their

impact on the performance of a parallel application.
2.1 The Multiarchitecture Problem

The Multiarchitecture Problem refers to the situation where parallel machines

vendors and multicore chipmakers design their products based on different archi-

tectures. The existence of variety of parallel architectures is due to the absence of

a universal parallel computation model that can be used as a common guidelines

framework for constructing parallel machines and multicore processors. Therefore,

86 A. MAROWKA
it is very difficult to create parallel programs that are able to preserve performance

portability and scalability on different parallel machines and multicore processors.

The core of any parallel architecture is the interconnection network that links

the system’s nodes. During the last two decades, multiprocessor machines have

been built with many different network topologies [44]. There are static topologies

(2-2.5-3D Meshes, Hypercube, Tree, Ring, and shuffle-Exchange, among others) and

dynamic topologies (Bus, Crossbar, Multistage-network, and Fat-tree, among others)

and each topology has different properties (diameter, bisection width, edge length, and

edges per node). Therefore, designing a parallel algorithm must take into account all

these underlying hardware characteristics for efficient matching between the logical

structure induced by the algorithm and the physical layout of the hardware. For

example, reduction is a basic operation in parallel programming for the computation

of summation, minimum, or maximum of a list of values. The reduction operation

induces a tree structure that matches perfectly to a tree topology. But for other

topologies, such as Mesh or Hypercube, efficient embedding of a tree structure into

these topologies is required. Unfortunately, compilers do not do that automatically.

Therefore, the matching task is left to the programmer who has to do it manually.

Embedding of an algorithmic structure into a network topology can help but does

not solve the problem. Usually, the logical layout of an algorithm is more complex

and the only way to achieve scalable performance is to design different algorithms

that solve the same problem for different topology networks. Table I lists the

complexities and the Isoefficiency functions of two practical algorithms, the bitonic
sort algorithm and Dijkstra’s Single-Source Shortest Paths algorithm, on three

different topologies [45]. The isoefficiency function determines the degree of
Table I

THE COMPLEXITY AND SCALABILITY DEGREES OF BITONIC-SORT AND DIJKSTRA’S ALGORITHMS FOR

HYPERCUBE, MESH, AND RING TOPOLOGIES

Algorithm

Bitonic sort

Architecture Maximum processors Parallel run time Isoefficiency function

Hypercube Yð2
ffiffiffiffiffiffiffiffiffi

logðnÞ
p

Þ Yðn=ð2
ffiffiffiffiffiffiffiffiffiffiffi

logðnÞ
p

Þ logðnÞÞ Y(plog(p)log2(p))

Mesh Y(log2(n)) Y(n/log(n)) Yðð2 ffiffi

p
p Þ ffiffiffi

p
p Þ

Ring Y(log(n)) Y(n) Y((2p)p)

Dijkstra’s single-source

shortest paths

Hypercube Y(n/log(n)) Y(nlog(n)) Y(p2log2p)
Mesh Y(n0.66) Y(n1.33) Y(p3)

Ring Yð ffiffiffi

n
p Þ Y(n1.5) Y(p4)

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 87
scalability of the parallel system. A small isoefficiency function indicates that the

parallel system is highly scalable. The maximum number of processors indicates

how far the system can scale up while maintaining a cost-optimal formulation. The

data of Table I confirms that the impact of a network’s topology, the number of

processors, and other characteristics on the performance and scalability of a parallel

algorithm is significant. Now it is clearer why the motivation of current research

efforts is to develop auto-tuners and sketching techniques [32].

Parallel architectures do not differ from each other only by the network topology.

They are also designed based on different concepts. There are parallel vector

machines versus processor-arrays architectures; shared-memory and distributed-

memory architectures; Single Instruction Multiple Data (SIMD) architectures versus

Multiple Instructions Multiple Data (MIMD) architectures; Asymmetrical Multi-

computers versus Symmetrical Multicomputers architectures; Clusters architectures

and hybrid architectures [46].

Contemporary multicore processors contain two to eight cores. Currently, most of

them do not contain interconnection networks (there are exceptions such as SUN

Niagara processors that use Crossbar and Tilera 64 that uses 2-DMesh) but it is most

likely that future manycore processors will use some kind of interconnection net-

works on-chip. However, the first generations of multicore processors architectures

also differ from each other in many other aspects. There are architectural differences

among different processors vendors and also among multicore processors genera-

tions from the same vendor.

Figures 5 and 6 describe the layouts of the first Intel multicore processors. It can

be observed that the main architectural differences among the processors lie in their

cache-memory subsystems. The first Intel multicore processor, the Pentium D, is a

dual-core processor and contains ‘‘distributed’’ L1 and L2 cache-memories; the

next processor generation. The Core 2 Duo is a dual-core processor with separated

L1 cache-memories and shared L2 cache-memory. The third generation, the Core

2 Quad, is a quad-core processor containing two separated ‘‘Core 2 Duo’’ proces-

sors. The last generation, the Corei7, is a quad-core processor with separated L1 and

L2 cache-memories and shared L3 cache-memory. Some of the processors were

launched with Simultaneous Multithreading (SMT) technology (or Hyperthreading

as it is called by Intel) while others have not included that technology.

There are other architectural features of Intel processors (and other vendors as

well) that are changed from one processor generation to another one, such as cache

associativity, occupation policy (Intel usually uses inclusive policy while AMD uses

exclusive policy), and cache coherence protocols. However, the point is clear. Each

one of these processors demands a specific programming treatment for gaining

the expected performance and scalability [47]. For example, Intel recommends

a Client–Server programming strategy with Intel Core 2 Duo processor [48].

CPU
state

CPU
state

CPU
state

CPU
state

CPU
state

Execution
units

Execution
units

Execution
units

Execution
units

Execution
units

 L1 cache

L1 cache L1 cache L1 cache L1 cache

L 2 cache L 2 cache L 2 cache

L1 cache L1 cache L1 cache

CPU
state

CPU
state

CPU
state

Execution
units

Execution
units

Execution
units

L 2 cache L 2 cache

A B

C

FIG. 5. Intel Multicore Generations: (A) Pentium D (B) Core 2 Duo (C) Core 2 Quad.

88 A. MAROWKA
The reason is that the shared L2 cache of the Core 2 Duo is not banked. The L2 cache

serves only one core at any given clock cycle while a round robin scheme is used to

allocate L2 cache services to the cores for instances where both cores request L2

service. Therefore, many applications do not scale well on multicore processors [49].

2.2 The Cache Coherence Problem

Maintaining the coherence property of a multilevel cache-memory hierarchy

(Figs. 5 and 6) incurs another serious performance problem known as the cache
coherence problem. An inconsistent memory view of a shared piece of data might

CPU
state

Execution
units

L1
cache

L 3 cache

CPU
state

CPU
state

CPU
state

Execution
units

Execution
units

Execution
units

L 2
cache

L 2
cache

L 2
cache

L 2
cache

L1
cache

L1
cache

L1
cache

D

FIG. 6. Intel Multicore Generations: (D) Corei7.

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 89
occur when multiple caches are storing copies of that data item. In such a case, the

memory subsystem is acting to insure a coherent memory view for all cores. Figure 7

illustrates the coherency problem. Two different cores, A and B, read the value of a

shared variable V (Fig. 7A and B). Then, core B writes a new value to variable V

(Fig. 7C). At this point, core A has an obsolete value of variable V (without knowing

that the value is not valid anymore). Therefore, immediate action is required

to invalidate the copy of variable V stored in the cache of core A. Otherwise,

the inconsistent view of the main memory will lead to unexpected results.

Multicore processors apply coherency control, called Snoopy Coherency Proto-
cols, in the writing of shared data. Two classes of protocols are most common: write-
invalidate and write-update. The write-invalidate protocol invalidates all cached

copies of a variable before writing its new value. The write-update protocol broad-
casts the newly cached copy to update all other cached copies with the same value.

Core A

 V
5 Memory

5Cache Cache

Core B

 V

 V

5

Core A Core B

55

Memory

CacheCache

Core BCore A

8

5 8

Memory

CacheCache

A

B

C

FIG. 7. Illustration of the cache-coherence problem.

90 A. MAROWKA
The underlying mechanisms that implement these protocols constantly monitor the

caching events across the bus between the cores and the memory subsystem and act

accordingly, hence the term snoopy protocols.
The memory-subsystems architectures of multicore processors are designed as

bus-based systems that support Uniform Memory Access (UMA). However, it is

probable that memory-subsystems architectures of manycore processors will be

network-based that support Nonuniform Memory Access (NUMA). Since snoopy

coherency protocols are bus-based protocols, they are not appropriate for scalable

NUMA-based architectures. For applying coherency control in NUMA systems,

Directory-Based Coherency Protocols are usually used. The directory approach is to
use a single directory to record sharing information about every cached data item.

The protocol constantly keeps track of which cores have copies of any cached data

Table II

LATENCY COSTS OF CACHE-MEMORIES ON AN INTEL CORE DUO SYSTEM

Case Data location Latency (cycles/ns)

L1 to L1 Cache L1 Cache 14 core cycles þ 5.5 bus cycles

Through L2 Cache L2 Cache 14 core cycles

Through Main 14 core cycles þ 5.5 bus cycles

Memory Memory þ40–80 ns

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 91
item, so that when a write operation is invoked to a particular data item, its copies

can be invalidated.

Coherency protocols incur substantial overhead that inhibits scaling up the multi-

core systems. An on-chip deeper multilevel cache-memory hierarchy makes the

cache coherence problem harder. Table II lists the latency costs that an application

can suffer in loading data on an Intel Core Duo system [48]. As can be observed,

a deeper cache-memory hierarchy leads to higher latencies. Now it is clearer what

the obstacle is and where it lies to inhibit better speedup in the example of

Section 1.4 (Fig. 3).

Cache-memory coherency management is a programmer-transparent obstacle that

can be resolved by eliminating sharing data. Unfortunately, eliminating sharing data

might lead to poor performance and nonscalable applications. Therefore, any solu-

tion must be carefully checked from all angles before final implementation. The

example in Section 2.4 demonstrates the cost of the cache-memory coherency

management.
2.3 The False-Sharing Problem

The cache coherent problem occurs when multiple cores are writing into a shared

data item. Unfortunately, cache incoherency might also occur when multiple cores

are writing into different data items that are located adjacent to each other, hence the

name false sharing.
Figure 8 illustrates a false-sharing situation. Data items are moved between main

memory and cache in chunks called cache lines, typically of size 64 or 128 bytes.

If two cores are writing into different adjacent memory locations that are mapped to

the same cache-line they may continuously invalidate each other’s caches. Cores A

and B in Fig. 8 read from and write into different elements of array V. Core A reads

from and writes into the first element of array V, while core B reads from and writes

into the second element of array V. After both cores read from V, each one stores the

same cache-line in its private cache. When core A updates its element to the value 1,

Core A

 V
0

Memory

0Cache Cache

Core B

 V

 V

2

Core A Core B

22

Memory

CacheCache

Core BCore A

2

2 2

Memory

CacheCache

1

1 1 0

1

1 1

3

3 3

A

B

C

FIG. 8. Illustration of the false-sharing problem.

92 A. MAROWKA
the shared cache-line must be shipped to Core B’s private cache (sometimes via the

main-memory) although the second element of array V remains untouched

(Fig. 8A). Now, core B updates its element to the value 2, and the shared cache-

line must be shipped to core A’s private cache although the first element of array

V remains untouched (Fig. 8B). And once again core A updates its element to the

value 3, and again the shared cache-line must be shipped to core B’s private cache

(Fig. 8C).

False-sharing situations cannot be detected easily by inspecting the source code or

by using profiling tools. Fortunately, there are simple rules and programming

techniques that can be enforced for minimizing the occurrence of false-sharing

situations. Such programming techniques include padding data structures with

dummy data, aligning them in memory on cache-line boundaries, or keeping them

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 93
apart by allocating different threads to them. The example in the next section

demonstrates such techniques.
2.4 A Simple Example—Cache Coherency
and False Sharing

The following example demonstrates the overhead costs of different basic syn-

chronization mechanisms and the impact of cache coherency management and false-

sharing situations on the performance. The example program scans an array of 100M

integers and counts the odd numbers. The experiments were conducted on a laptop

computer equipped by Intel Core 2 Duo CPU T8100, 2.1 GHz, and 1 GB of RAM.

For software, the compiler used was Intel Cþþ version 11.0 on top of MSWindows

XP Professional operating system. The compiler options were set to their default

values. The parallelization was done by OpenMP 2.0. The results shown are an

average time of 10 measurements.

Listings 3–9 present different versions of the same program using different

synchronization facilities and programming techniques. Figure 9 plots the running
10,000

1000

100

10

1

T
im

e
(m

s)

Ser
ia

l

Lo
ck

s

Crit
ica

l

Ato
m

ic
Dist

rib
ut

e_
W

_F
S

Dist
rib

ut
e_

W
O

_F
S

Red
uc

tio
n
6286 6079

1206

104120 98
168

FIG. 9. Overheads costs of different synchronization mechanisms and programming techniques.

94 A. MAROWKA
time results. Listing 3 presents the serial version of a counting program that lasts

168 ms. Listing 4 presents the first OpenMP parallel version of the counting

program that uses locks for protecting the shared counter count. In this case, the

program runs 6286 ms which exhibit the very high overhead incurred by the

parallelism using locks. The program version using critical-section for protecting

the shared counter (Listing 5) does not achieve much better result (6079 ms).

Replacing the OpenMP critical directive with atomic directive (Listing 6) improves

the performance dramatically (1206 ms). Now that the synchronization overhead is

reduced to a minimum, the remaining overhead is mainly due to the cache coher-

ency management.

Listing 3—Serial Counting of odd numbers.

#define N 100000000
int a[N], count¼0;
void serial ()
{
int i ;
for (i¼0; i<N; iþþ)
if (a[i] % 2){
countþþ; // count odd numbers

}
}

}

The impact of the cache coherency management is reduced by using distributed

counters (Listing 7). Each thread employs a private counter (counter [0] and

counter [1]) and their values are summed at the end of the counting. Now the

total counting takes 120 ms, which is a speedup of 1.4. The private counters are

located adjacent to each other and thus liable to incur false-sharing situations.

To eliminate these false-sharing situations, the counters are padded by dummy

data that prevents them from sharing the same cache-line (Listing 8). The running

time after eliminating a false-sharing situation is 104 ms, an improvement of

13.3%, thus increasing the speedup to 1.61. The last experiment uses the OpenMP

reduction operation (Listing 9). In this case, OpenMP implicitly creates private

copies of the count variable for each thread. When the counting is over, the

values of the private counters are added into the global variable count. By using

the OpenMP reduction operation, the running time achieved is 98 ms, a speedup

of 1.71. Therefore, it is recommended to use ready-made parallel constructs

and parallel libraries, where possible, because they are optimized for the target

machines.

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 95
Listing 4—Shared counter protected by locks.

#define N 100000000
int a[N], count¼0;
int num_thrds ¼ 2;
void locks (int num_thrds)
{
int i ;
omp_lock_t lck ;
omp_init_lock(&lck) ;
#pragma omp parallel for num_threads (num_thrds)
for (i ¼ 0; i<N; iþþ) /* i is private by default */

if (a[i] % 2){
omp_set_lock(&lck) ;
countþþ;
omp_set_lock(&lck);

}
}

}

Listing 5—Shared counter protected by critical section.

#define N 100000000
int a[N], count¼0;
int num_thrds ¼ 2;
void critical (int num_thrds)
{
int i ;
#pragma omp parallel for num_threads(num_thrds)
for (i ¼ 0; i<N; iþþ) /* i is private by default */

if (a[i] % 2){
#pragma omp critical
countþþ;

}
}

}

Listing 6—Shared counter protected by atomic operation.

#define N 100000000
int a[N], count¼0;
int num_thrds ¼ 2;

96 A. MAROWKA
void atomic (int num_thrds)
{
int i ;
#pragma omp parallel for num_threads(num_thrds)
for (i ¼ 0; i<N; iþþ) /* i is private by default */
if (a[i] % 2){
#pragma omp atomic
countþþ;

}
}

}

Listing 7—Distributed counters.

#define N 100000000
int a[N], count¼0, counter [2] ;
int num_thrds ¼ 2;
void distributed_counters(int num_thrds)
{
int i ;
#pragma omp parallel num_threads(num_thrds)
{
int id¼omp_get_thread_num () ;
#pragma omp for
for (i ¼ 0; i<N; iþþ) /* i is private by default */
if (a[i] % 2) {counter[id]þþ;}

}
count ¼ counter[0]þcounter[1] ;

}

Listing 8—Distributed counters with False-Sharing Elimination.

#define N 100000000
struct padding_int
{
int value ;
char dummy [60];

} counters [2];
int a[N], count¼0;
int num_thrds ¼ 2;
void distributed_counters_without_fs(int num_thrds)

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 97
{
int i ;
#pragma omp parallel num_threads(num_thrds)
{

int id¼omp_get_thread_num () ;
#pragma omp for
for (i ¼ 0; i<N; iþþ) /* i is private by default */
if (a [i] % 2) {counters [id]. valueþþ;}

}
count ¼ count [0]. valueþcount [1]. value ;

}

Listing 9—Shared counter protected by reduction operation.

#define N 100000000
int a[N], count¼0;
int num_thrds ¼ 2;
void reduction (int num_thrds)
{
int i ;
#pragma omp parallel for reduction (þ:count) num_threads

(num_thrds)
for (i ¼ 0; i<N; iþþ) /* i is private by default */
if (a[i] % 2) {countþþ;}
}

}

3. Parallel Software Issues

I won’t be surprised at all if the whole multithreading idea turns out to be a flop. . .
I think it’s a pipe dream. . . I also admit that I haven’t got many bright ideas about what

I wish hardware designers would provide instead of multicore, now that they’ve begun

to hit a wall with respect to sequential computation.

Donald E. Knuth, 2008 [50]

Manycore programming introduces new software programming issues that were

absent from the sequential programming. This section presents the most bothersome

and error-prone issues that the programmer has to cope with. These issues demand

high programming skills by the programmer and have a significant impact on the

performance portability, predictability, programmability, and the correctness of

parallel applications.

98 A. MAROWKA
3.1 Data Dependency

Parallelizing compilers that convert a given sequential program into an equiva-

lent parallel program in an automatic manner were research-intensive topic during

the last three decades. Unfortunately, the performance gain that can be achieved

by automatic parallelization of modern compilers is only 5–10% on average [51].

Automatic parallelization poses many challenges and requires sophisticated com-

pilation techniques to identify which parts of the sequential program can be

executed in parallel. The main challenge is to find dependences that limit paral-

lelism and then to transform the code into an equivalent code that ensures

effective utilization of parallelism. The transformed program must preserve the

meaning of the original computation and produce the correct results with every

input.

The problem of data dependence analysis is intractable (NP-complete) and is

followed by aggressive transformation such as loop interchange, loop splitting, loop

distribution, vectorization, and parallelization to achieve efficient results across

various parallel architectures. Therefore, these transformations are not usually

found in classic optimizers and most of the tedious work of finding data depen-

dences inside the source code and transform them into parallelizable code remains

on the shoulders of the programmer. Fortunately, there are tools, such as Intel

Threading Checker [52] and Intel Parallel Composer parallel lint feature [53] that

can help the programmer find data dependences in source code and to advice on

possible transformations. The following are the main definitions and terminology

related to dependency theory:

Data Dependence Definition [54]:

There is a data dependence from statement S1 to statement S2 (statement S2

depends on statement S1) if and only if

1. Both statements access the same memory location and at least one of them

stores into it.

2. There is a feasible run-time execution path from S1 to S2.

There are three kinds of data dependences expressed in terms of read-write order

of statements S1, S2:

� True dependence: S2 has a true dependence on S1 iff S2 reads a value written

by S1.

� Antidependence: S2 has an antidependence on S1 iff S2 writes a value read by
S1.

� Output dependence: S2 has an output dependence on S1 iff S2 writes a variable
written by S1.

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 99
Statements S1 and S2 can be executed in parallel iff there are no True, Anti, or

Output dependences between S1 and S2.

Since loops are computational-intensive piece of code they are the first candidates

for parallelization. Therefore, dependences in loops are deserved for formulation,

definition, and treatment of their own:

Loop Dependence Definition [54]:

There exists a dependence from statement S1 to statement S2 in a common nest of

loops if and only if there exist two iteration vectors i and j for the nest, such that

1. i < j or i ¼ j and there is a path from S1 to S2 in the body of the loop,

2. Statement S1 accesses memory location M on iteration i and statement S2

accesses location M on iteration j, and
3. One of these accesses is a write.

If a loop nest contains loop dependence it is called loop-carried dependence
otherwise it is called loop-independent dependence. Bernsteins conditions [55]

treat dependences in loop from the opposite viewpoint and state that two iterations

I1 and I2 can be safely executed in parallel if

1. Iteration I1 does not write into a location that is read by iteration I2.

2. Iteration I2 does not write into a location that is read by iteration I1.

3. Iteration I1 does not write into a location that is also written into by

iteration I2.

The following example illustrates loop-carried dependence:

Listing 10—An example of loop carried dependence.

for (i¼0; i<N�1; iþþ) {
a(i) ¼ b(i) þ 2; // s1
b(iþ1) ¼ a(i)� 6; // s2

}

This loop exhibits the dependence between s1 and s2 because on every iteration

the computed value of array-a is immediately used in s2. There is also dependence

between s2 and s1 because on every loop-iteration, other than the first iteration, the

value of array-b that is used is the one that was computed on the previous iteration.

Identifying these dependences is difficult, since different loop iterations access

different elements of the arrays.

The loop-carried dependence in the loop above prohibits parallelization without

synchronization. Fortunately, there is a simple transformation, called loop distribu-
tion, which can be applied to the loop for creating new opportunities for parallelism

as follows:

100 A. MAROWKA
Listing 11—An example of loop distribution transformation.

pragma omp parallel {
pragma omp for
for (i¼0; i< N�1; iþþ){
a(i) ¼ b(i) þ 2; // s1

}
pragma omp for
for (i¼0; i < N�1; iþþ){
b(iþ1) ¼ a(i)�6;//s2

}
}

The code above is parallelized by OpenMP after the two statements, s1 and s2,

were distributed between two successive and separated loops that each one can be

parallelized.

Let us examine other cases of dependences and transformation techniques. In the

example below, the loop cannot be parallelized because the antidependence and

output-dependence caused by the assignments to the variable t:

Listing 12—An example of antidependence and output-dependence.

for (i¼0, i < N, iþþ){
t ¼ a(i); // s1
a(i) ¼ b(i); // s2
b(i) ¼ t; // s3

}

Applying privatization transformation on the variable t does not change the

meaning of the code, but enables to parallelize the code by OpenMP as follows:

Listing 13—An example of privatization transformation.

pragma omp parallel for private (t)
for (i¼0; i < N; iþþ){
t ¼ a(i); // s1
a(i) ¼ b(i); // s2
b(i) ¼ t; // s3

}

Since loop distribution transformation eliminates loop-carried dependences, it can

be used to convert a sequential loop to multiple parallel loops. However, this transfor-

mation implicitly inserts a synchronization barrier between the separated loops and

thus decreases the granularity of parallelism and creates extra communication and

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 101
synchronization overhead. To minimize these side effects of the loop distribution

transformation, a technique called loop fusion is applied to recombine fine-grained

loops into dependence-free coarse-grained loops as demonstrated below:

Listing 14—An example of loop fusion transformation—before transformation.

for (i¼0; i < N; iþþ){
a(i) ¼ b(i) þ 1; // s1
c(i) ¼ a(i) þ c(i � 1); // s2
d(i) ¼ a(i) þ 8; // s3

}

In the example above, there is a carried dependence from s2 to itself. Applying

loop distribution transformation creates three separate loops as follows:

Listing 15—An example of loop fusion transformation—after loop distribution.

for (i¼0; i < N; iþþ){
a(i) ¼ b(i) þ 1; // s1

}
for (i¼0; i < N; iþþ){
c(i) ¼ a(i) þ c(i � 1); // s2

}
for (i¼0; i < N; iþþ){
d(i) ¼ a(i) þ 8; // s3

}

The first and the third loops above carry no dependence and therefore can be made

parallel. Moreover, it is possible to recombine, or fuse, these loops into a larger loop

without sacrificing parallelism. The final transformation is illustrated below:

Listing 16—An example of loop fusion transformation—after loop fusion.

pragma omp parallel for
for (i ¼ 0; i < N; iþþ){
a(i) ¼ b(i) þ 1; // s1
d(i) ¼ a(i) þ 8; // s3

}
for (i¼0; i < N; iþþ){
c(i) ¼ a(i) þ c(i � 1); // s2

}

Although the examples and the transformation techniques presented above are

very encouraging, there are many cases where dependences cannot be identified for

certain because they rely on data that are changed dynamically or because there is a

need for a priori information that is known to the user only. The following example

102 A. MAROWKA
illustrates a situation where the question of dependency depends on the values of the

array-b that can be changed frequently before entering the loop:

Listing 17—Loop carried dependence that cannot be transformed.

for (i¼0; i<N; iþþ)
a[i] ¼ f(a [b [i]]);
3.2 Memory Consistency Model

Manycore systems support cache-coherency mechanisms (see Section 2.2) for

maintaining a consistent view of shared-memory in multilevel cache-memory archi-

tectures. However, imposing cache-coherency alone does not guarantee complete

memory consistency that insures correctness and predictability of the running results

of a multithread application. The reason is that the order of the memory accesses of

one thread (running in one core) may be differently observed by another thread

(running in another core) in each execution of the program, leading to inconsisten-

cies and unexpected results. To overcome this problem there is a need for a well-

defined policy that determines the ordering rules of memory events. Such a policy is

called a memory consistency model.
The following example illustrates how uncontrolled read/write events that are

executed under-the-hood and are not visible to the programmer may lead to events

ordering that yield an unexpected result:

Listing 18—An example of invisible interleaving scenario (1).

Global MinValue ¼ 10; // initialization
Thread-0 (Core 0) Thread-1 (core 1)
MinValue ¼ Min (MinValue, 0); MinValue ¼ Min(MinValue, 1);

The expected outcome from the above simple example is that the value of

MinValue is 0 at the end of this tiny program no matter which thread invokes the

Min function first. Unfortunately, there is a possibility that the order of read/write

events inside the Min function will lead to a counterintuitive result:

Listing 19—An example of invisible interleaving scenario (2).

Global MinValue ¼ 10; // initialization
Thread-0 (Core 0) Thread-1 (core 1)
Reg1¼MinValue . . .

Reg2¼0 Reg1¼MinValue
If (Reg2<Reg1) MinValue¼Reg2 Reg2¼1
. . . If(Reg2<Reg1)MinValue¼Reg2

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 103
Due to relative timing and speed of the hardware cores, the order of the read/write

events of the program happens to be as presented above. In such a case, the value of

MinValue ends up containing the wrong value of 1 and not the expected correct

minimum value of 0. Such a phenomenon is called a data race condition. Moreover,

the situation is more frustrating in practice because it happens sporadically and thus

makes the debugging of such a problem a very tedious task. To prevent such a

scenario in advance, the intervention of the programmer is a must. One simple

solution is to call the Min function from inside a critical section as in the following

OpenMP example:

Listing 20—An OpenMP solution to the invisible interleaving scenario.

int MinValue ¼ 10;
#pragma omp parallel shared (MinValue) num_threads (2)
{
int id ;
id ¼ omp_get_thread_num () ;
#pragma omp critical
MinValue ¼ Min(MinValue, id) ;

}

The next example illustrates another common optimization scenario of modern

compilers and/or parallel architecture that leads to a surprising result due to the

absence of synchronization between simultaneous read/write events of two indepen-

dent threads:

Listing 21—An example of reordering scenario (1).

Shared-A¼shared-B¼0; // initialization
Thread-0 (Core 0) Thread-1 (core 1)
1: local -2 ¼ shared-A 3: local -1 ¼ shared-B
2: shared-B ¼ 1 4: shared-A ¼ 2

In the example given above, the program uses local variables local-1 and local-

2 and shared variables shared-A and shared-B. The shared variables are initialized

to 0. It may seem that it is impossible for the program end up with the result

local2 ¼¼ 2, local1 ¼¼ 1. Intuitively, either statement 1 or statement 3 should be

executed first. If statement 1 appears first, it should not be able to see the write at

statement 4. If statement 3 appears first, it should not be able to see the write at

statement 2. Surprisingly, it does not work because compilers and architectures are

allowed to reorder the read/write operations of individual threads. The reordering is

allowed if it does not change the execution correctness of the individual threads:

104 A. MAROWKA
Listing 22—An example of reordering scenario (2).

Shared-A¼shared-B¼0; // initialization
Thread-0 (Core 0) Thread-1 (core 1)
1: shared-B ¼ 1 3: local-1 ¼ shared-B
2: local-2 ¼ shared-A 4: shared-A ¼ 2

Now, it is easy to see how the result local-2 ¼¼ 2 and local-1 ¼¼ 1 might occur.

Leslie Lamport introduced a strict memory consistency model called sequential
consistency [56]. The sequential consistency model allows interleaving between the

read/write events of individual threads but requires that all individual threads have

to preserve their read/write events in the order they appear in the program. The

interleaving scenario of the first example above (Listing 18) leads to unexpected

result but does not violate the rules of the sequential consistency model. However,

the second example above (Listing 21) violates the rules of sequential consistency

model. The sequential consistency restriction inhibits the compiler and the underly-

ing hardware from performing aggressive optimizations. However, it does not

free the programmer from the responsibility of keeping the code unambiguous by

implying proper synchronizations between threads operations and by avoiding

breaking of necessary data and control dependencies.

Manycore processor and compiler designers are eager to make the whole system

run faster. To do so, they apply aggressive optimizations and use programming

techniques such as buffering and pipelining that violate the restrictions of the

sequential consistency model. Therefore, alternative memory consistency models

that implement weaker ordering constraints have been defined and are called

relaxed memory consistency models [57]. For example, the Intel IA-32 architecture

supports very strong memory consistency model but not as strong as sequential

consistency because it allows read and write operations to be executed out of order.

Therefore, IA-32 is classified as relaxed memory consistency model. Akhter and

Roberts [47] show and explain how and why IA-32 breaks Dekker’s Algorithm [58]

as follows:

Listing 23—Dekker’s Algorithm (1).

x ¼ 0; y ¼ 0; // initialization
Thread-0 (Core 0) Thread-1 (core 1)
x ¼ 1 y ¼ 1
reg1 ¼ y reg2 ¼ x

Under sequential consistency in the Dekker’s Algorithm above either reg1 or reg2

is set to 0, but never both of them, no matter how the instructions of the two threads

are interleaved. However, the IA-32 allows reordering the instructions as follow:

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 105
Listing 24—Dekker’s Algorithm (2).

x¼0; y¼0; // initialization
Thread-0 (Core 0) Thread-1 (core 1)
reg1 ¼ y reg2 ¼ x
x ¼ 1 y ¼ 1

Now, both registers might set to 0 and therefore break the semantic of the algorithm,

that is, to guarantee that at any time at most one of reg1 or reg2 will be set to zero.

Standardization of formal specifications of memory semantics, from the view-

point of the processor and the parallel programming model, is essential for providing

portability of parallel systems and for reducing the complexity of developing

parallel application. However, no matter how strong the memory consistency

model is, the programmer has to be familiar with the memory operation restrictions

of the underlying architecture, the implications of the compiler optimizations on the

program correctness, and the semantic behavior of the synchronization mechanisms

supported by the programming model.
3.3 Data Race Conditions

Multiple threads accessing shared data simultaneously may lead to a timing

dependent error known as data race condition. Data races may be hidden in the

code without interfering or harming the program execution until the moment when

threads are scheduled in a scenario (the condition) that break the program execution.

Moreover, usually data races cannot be detected just by inspecting the source code

as illustrated in the previous section in the case of Min function. Even a simple

operation such as y þ ¼ 2 is usually translated by the compiler to two low-level

operations (tmp ¼ y; y ¼ tmp þ 1;).

The following example demonstrates how different timing scenarios lead to

different results:

Listing 25—Data race illustration (0).

a¼b¼x ¼ 0; // initialization
Thread-0 (Core 0) Thread-1 (core 1)
a ¼ x b ¼ x
x ¼ a þ 1 x ¼ b þ 2

The above is the original code as appeared to the programmer upon inspection of

the source code. The x variable is shared by the two threads and is initialized to 0.

If the two threads execute their instructions in lock-step, then it is impossible to

determine the value of x at the end of the program because the outcome of

106 A. MAROWKA
simultaneous write operations to a shared variable is undefined. But if a write to x is
done only by one thread at a time, then there are a few scenarios:

Listing 26—Data race illustration (1).

a¼b¼x¼0; // initialization
Thread-0 (Core 0) Thread-1 (core 1)
a ¼ x

b ¼ x
x ¼ b þ 2

x ¼ a þ 1
>>>>>>> x is equal to 1

Listing 27—Data race illustration (2).

a¼b¼x¼0; // initialization
Thread-0 (Core 0) Thread-1 (core 1)

b ¼ x
a ¼ x
x ¼ a þ 1

x ¼ b þ 2
>>>>>>> x is equal to 2

Listing 28—Data race illustration (3).

a¼b¼x ¼ 0; // initialization
Thread-0 (Core 0) Thread-1 (core 1)
a ¼ x
x ¼ a þ 1

b ¼ x
x ¼ b þ 2

>>>>>>>> x is equal to 3

The three scenarios illustrated above yield three different results. However, none

of these scenarios violate the rules of sequential consistency model. Data race

conditions are usually resolved by using a lock that prevents unwanted thread

interleaving situations.

There are tools, such as the Intel Threading Checker, that may help to detect

hidden data races. However, even the best tool cannot detect every data race

condition because it is intermittent, nondeterministic, nonrepeatable, and timing

dependent problem where the number of the schedule permutations of threads is

huge.

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 107
3.4 Locks and Deadlocks

Manycore programming uses multiple threads to access shared-memory objects.

To avoid unpredictable situations such as race conditions, mutual exclusion techni-

ques are used to impose constraints on the order that threads access a shared-

memory location. An exclusive access to a shared object can be guaranteed by

using locks, also called mutexes. Listing 4 illustrates a simple example of using

OpenMP locks for protecting simultaneous access to a shared variable (count).
There are many types of mutexes, each one used in different kinds of situations

and each one incur different amount of overhead. There are low-level primitive

locking mechanisms (semaphores, condition-variables, and mutexes) and high-level
locking mechanisms (recursive-mutexes, read-write mutexes, spinmutexes, queuing-
mutexes, and monitors). For example, OpenMP supports the locking constructs

lock–unlock, atomic, single, and critical. Lock–unlock and critical constructs are

used for protecting coarse-grained critical sections where atomic is applied to a

single assignment statement for protecting a single shared variable. Figure 10 is a

bar chart of the OpenMP locking construct overhead measured by running the EPCC

microbenchmarks [59] with two threads on three different platforms (Intel Pentium

D, Intel Core 2 Duo, and Intel 2 Quad) [49]. Analysis of the results leads to the

conclusion that it costs less to use the critical directive than to use the lock–unlock
0

Single
Critic

al

Lock−unlock
Atomic

2

4

6

8

10

12

C
lo

ck
 c

yc
le

s
(�

10
00

)

Pentium D Core 2 Duo Core 2 Quad

FIG. 10. OpenMP locking overheads of two threads on Intel Pentium D, Intel Core 2 Duo, and Intel

Core 2 Quad machines.

0

2

4

6

8

10

12

14

16

C
lo

ck
 c

yc
le

s
(�

10
00

)

Mustex
Atomic

Spin_mutex

Queuing_mustex

Pentium D Core 2 Duo Core 2 Quad

FIG. 11. TBB Locking overheads of two threads on Intel Pentium D, Intel Core 2 Duo, and Intel Core

2 Quad machines.

108 A. MAROWKA
pair directive and since the overhead of the atomic directive is negligible is recom-

mended for use, where possible, instead of the critical or lock–unlock directives.
Another example is the Intel TBB, which offers enhanced mutexes called mutex,

spin_mutex, queuing_mutex, and atomic. For example, a task invoking a request to

lock on spin_mutex waits (spins) until it can acquire the lock. It is very fast in low-

contention scenarios and incurs very low overhead as shown in Fig. 11. Queuing_
mutex is less desirable locking mechanism because it incurs more overhead though

it offers fairness and avoids starvation by enforcing FIFO policy on the arriving

locking requests [42].

Improper use of locks may cause many problems that are very difficult to detect

without a sophisticated debugging tool. One such situation is known as deadlock. A
deadlock is a situation in which a task A is waiting to acquire a lock on a shared object

r1 locked by a task B, while locking a shared object r2 requested by task B. Since both
tasks are blocked and waiting for release the object held by the other task, and none of

them volunteers to be the first to release its object, the program execution is stuck.

There are four conditions that lead to a deadlock situation:

� Exclusiveness: Exclusive assignment of an object to a task.

� Multilock: Allowing a task to acquire a lock on one object while locking

another object.

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 109
� Ownership: A locked object can be released only by the task that holds it.

� Cycling: A task is willing to acquire a lock on an object held by another task

that willing to acquire a lock on an object held by him.

Deadlocks can be avoided by breaking any one of these conditions.

Listing 29—An example of a deadlock caused by an incorrect locking hierarchy.

#include <stdio.h>

#include <omp.h>
int globalX ¼ 0;
int globalY ¼ 0;
int work0 ()
{
omp_set_lock (&lck0) ;

globalXþþ;
omp_set_lock (&lck1);
globalYþþ;

omp_unset_lock (&lck1);
omp_unset_lock (&lck0);
return 0;

}
Int work1 ()
{
omp_set_lock (&lck1);

globalXþþ;
omp_set_lock (&lck0) ;
globalYþþ;

omp_unset_lock (&lck0) ;
omp_unset_lock (&lck1) ;
return 0;

}
int main (int argc, char *argv [])
{
omp_lock_t lck0 ;

omp_lock_t lck1 ;
omp_init_lock(&lck0) ;
omp_init_lock(&lck1) ;

#pragma omp parallel sections
{
#pragma omp section

110 A. MAROWKA
WORK0() ;
#pragma omp section
WORK1() ;

}
printf (‘‘TOTAL ¼ (\%d,\%d)\n’’, globalX, globalY);
omp_destroy_lock(&lck0) ;
omp_destroy_lock(&lck1) ;

}

The above example (Listing 29) illustrates the potential for deadlock because of

an incorrect locking hierarchy. The two threads in this program invoke two functions

(WORK0 and WORK1) that attempt to acquire two locks (lck0 and lck1) in reverse

order for exclusive access of two global variables (globalX, globalY). If both

threads obtain only the first critical section (an access to globalX) deadlock occurs

because the second critical section (an access to globalY) never becomes available.

The deadlock is avoided if one of the threads acquires both critical sections. This

nondeterministic behavior of the threads execution can lead to situations where

potential deadlocks lay dormant in the code for a long time without causing any

damage until the day they suddenly appear for a moment and then disappear again.

For example, Edward Lee reported on a case where a deadlock appeared 4 years

after the application was launched [60].

One way to avoid deadlocks is to impose an ordering (eliminating cycles in the

resource acquisition graph) on the locks and demand that all threads acquire their

locks in the same order. Other techniques to prevent deadlock are timer-attached
mutex and exception-aware mutex. In a timer-attached mutex a timer is attached to

the mutex, thus guaranteeing that the mutex will be released after a predetermined

time if a release operation has not been invoked before. An exception-aware mutex
is a technique that ensures that a mutex gets released when an exception occurs.
4. The Human Factor

A machine is not easy-to-program if it is not easy-to-teach ... education for parallelism

has become a key benchmark. Namely, for parallelism, education is CS research.

Uzi Vishkin, 2009 [61]

A revolution without revolutionaries is like a human without oxygen. The parallel

revolution needs scientists, theoretical and practical, who will lead the computer

science community to the next era of computing. These scientists have to agree on a

bridging model that will guide the computer science practitioners how to build

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 111
manycore architectures together with software systems and algorithms. But first and

foremost, there is a need to educate the next generation of computer scientists and

engineers that will carry the parallel revolution in the years to come. A recent panel

discussion of top scientists regarding the future of manycore computing emphasized

the need for education:

‘‘Education for thinking in parallel as early as possible in one’s career is very

important. It was clear to all that regardless of how manycore programming will end

up looking, CS must take immediate action toward educating a new generation of

people about parallelism. This education scope must soon reach the level of parallel

computing education available during the 1990s, but should not stop at that. To the

extent possible the education for parallelism should be pushed as early as possible in

CS education: to lower division undergraduates and K-12 education.’’ [62].

This section is a discussion about the education and training of parallel computing

and programming and a brief wish list of the most important issues that must not be

overlooked by the parallel computing research community

4.1 Teaching Parallel Programming Today

Many kinds of parallel computing and programming courses are offered by the

academia. Most of them are introductory courses, while courses that focus on

specific domains such as parallel algorithms or parallel databases are almost nonex-

istent. Some courses are limited to specific research parallel programming models

such as BSP [17, 18] and XMT [63], while others are limited to commercial products

such as MPI [64] and OpenMP [7, 8].

The parallel revolution calls for modifying almost any course in the computer

science curriculum. The prefix parallel can be added to any topic: parallel archi-

tectures; parallel OS, parallel algorithms, parallel languages, parallel datastructures,

parallel databases, and so on. However, changing the entire computer science

curriculum at once is a radical step and is not recommended. On the other hand,

lecturers need to prepare their students today for the parallel era. Therefore, it is

recommended that they start with a broad introductory parallel computing course of

representative topics, theoretical and practical, that teach what parallel computing is

all about [65].

We concluded three main wishes from our students expectations. First, the

students wish to have a broad view of parallel computing. Second, the students

want to understand why parallel programming is difficult. And third, they are eager

to try it and wish to have hands-on training. From a survey of the courses offered in

universities and colleges around the world we learned three main things. First, most

of the courses are based on textbooks that do not teach the students how to think in

parallel. Second, the textbooks and the courses avoid discussion of the traps and

112 A. MAROWKA
pitfalls of parallel programming. And third, the courses cover only a few subjects

and usually focus on parallel architectures, parallel programming models, and

parallel algorithms.

As for the textbooks, there are many of them, but they all offer very nearly

the same topics. The most popular textbooks do not cover topics such as data-

dependency, load-balancing, and scheduling. They do not mention important areas

such as parallel databases even though all of the commercial databases today are

parallel, and technologies such as data-mining and data-warehouse could not exist

without large-scale parallel machines. There are no textbooks that can be considered

as the ‘‘bibles’’ of parallel computing and the parallel programming in the way that

Hennessy and Patterson’s textbook plays for sequential computer architecture [66],

and Cormen et al.’s textbook plays for sequential algorithms [67].
4.2 A Wish List

Writing a scalable and portable application for manycore systems will be impos-

sible task unless the collaboration between the academic research communities and

the computer industry can provide appropriate development environments and tools

for the mainstream programmer. Language designers, as well as designers of parallel

operating systems, compilers, and computer architectures should keep in mind that

the principal users of their products are programmers and thus they must design

their products from the programmer’s point of view. With this in mind, we offer the

following wish list:

� A bridging model: Parallel programming models should be based on a compu-

tational model that is suitable for developing manycore programs. Such a

model does not need to be the prefect model but it should present a broad

consensus of the community and play a role similar to Von Neumanns model

that plays for the sequential computing.

� Portability: Software should be able to run unchanged, with high performance,

on any general-purpose manycore architecture. However, programming for

portability should get higher priority than programming for high performance.

� Scalability: The performance of manycore systems, hardware and software,

should be able to scale up from a few core to several hundred cores and also be

able to scale down from several hundred cores to a few cores.

� Predictability: The performance of applications on manycore architectures

should be predictable through the use of a simple cost model.

� Ease of Programming: Programming of manycore applications should be

based on a simple and intuitive parallel programmer model. Such a model

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 113
should support high-level abstraction that hides the details of the target

manycore processor architecture from the programmer.

� Standardization: Standards have several purposes besides the obvious and

economically very important one of portability. One such purpose is the setting

of quality standards in, for example, minimum levels of generality, consis-

tency, and naturalness in languages. The Multicore Associations Communica-

tion API (MCAPI) is one such effort [68]. MCAPI is a communications API

for messaging and streaming. It is targeted toward intercore communication in

a multicore chip. Accordingly, a principal design goal of MCAPI is to serve as

a low-latency interface leveraging efficient on-chip interconnects in a multi-

core chip.

� Automatic parallelization: State-of-the-art compilers can achieve less than

10% performance improvement by using automatic parallelization. Three

decades of research in the area of parallelizing compilers have yielded a better

understanding of the stumbling blocks that inhibit efficient automatic paralle-

lization. Achieving superlinear speedup by automatic parallelization seems

unreasonable goal, but compilers should improve their ability to identify code

that can be parallelized and then do the job of parallelizing it without manual

intervention from programmers.

� Debugging tools: Parallel programming is not only hard and tedious demand-

ing different thinking and creativity, but also a very error-prone one.

The lack of multicore programming tools for mainstream developers is perhaps

the biggest challenge the industry faces today. Debugging tools are improving all the

time but lack sophistication. They demand from the programmer a broad knowledge

about the details of the underlying architecture and familiarity with the hardware

counters. Debugging tools should be able to analyze the code and report on bugs and

potential bugs while freeing the programmer from the need to be hardware experts.
5. Conclusions

Hey, the world has changed. The La-Z-Boy approach isn’t going to work anymore. You

can’t just sit there, waiting for your single processor to get a lot faster and your software

to get faster, and then you can add the feature sets. That era is over. If you want things

to go faster, you’re going to have to do parallel computing.

David Patterson, 2007 [43]

Parallel computing is rapidly entering mainstream computing, and multicore

processors can now be found in the heart of supercomputers, desktop computers,

114 A. MAROWKA
and laptops. Consequently, applications will increasingly need to be parallelized to

fully exploit the multicore processor throughput gains that are becoming available.

However, the promising potential of future manycore processors will be greatly

diminished if the industry cannot overcome certain hardware and programming

challenges.

This chapter presents the main hardware and software challenges that designers of

manycore architectures, alongside designers of software tools, have to face. How-

ever, there are more issues, such as load balancing, scheduling, thread-safety,

thread-affinity, and performance metrics, that are not covered in this chapter.

Chip makers and system builders have begun efforts to educate developers and

provide them with better tools for multicore programming. But many of the tools

available are still works in progress. Currently, the responsibility to bridge the gap

between hardware and software to write better parallel programs may ultimately lie

with developers. Many programmers are not up to speed on the latest developments

in hardware design. They should study chip architectures to understand how their

code can perform better. This is not a desirable situation. Parallel programming

should be as simple and productive as sequential programming.
References

[1] J. von Neumann, First Draft of a Report on EDVAC, Moore School of Electrical Engineering,

University of Pennsylvania, Pennsylvania, 1945, June 30.

[2] J. Van Der Spiegel, J.F. Tau, T.F. Ala’illma, L.P. Ang, The ENIAC: History, operation and

reconstruction in VLSI, in: R. Rojas, U. Hashagen (Eds.), The First Computers, History and

Architectures, MIT press, Cambridge, MA, 2002, pp. 121–178.

[3] W. Aspray, The institute for advances study computer: A case study in the application of concepts

from the history of technology, in: R. Rojas, U. Hashagen (Eds.), The First Computers, History and

Architectures, MIT press, Cambridge, MA, 2002, pp. 179–193.

[4] M. Marcus, A. Akera, Exploring the architecture of early machine: The historical relevance of the

ENIAC machine architecture, IEEE Ann. Hist. Comput. 18 (1996) 17–24.

[5] J.P. Eckert, J.W. Mauchly, H.H. Goldstine, J.G. Brainerd, Description of the ENIAC and Comments

on Electronic Digital Computing Machines, Moore School of Electrical Engineering, University of

Pennsylvania, Pennsylvania, 1945, November 30.

[6] A. Marowka, Parallel computing on any desktop, Commun. ACM 50 (9) (2007) 74–78.

[7] OpenMP Architecture Review Board, OpenMP Application Program Interface, 2008. Version 3.0,

May.

[8] B. Chapman, G. Jost, R. van der Pas, Using OpenMP Portable Shared Memory Parallel Program-

ming, MIT Press, Cambridge, MA, 2007.

[9] T. Mattson, J. DeSouza, How Fast is Fast? Measuring and Understanding Parallel Performance,

2008. Intel Webinar.

[10] K. Olukotun, L. Hammond, The future of microprocessors, ACM Queue (2005) 27–34 September.

[11] H. Sutter, The free lunch is over: A fundamental turn toward concurrency in software, Dr. Dobb’s J.

30 (3) (2005) 202–210.

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 115
[12] H. Sutter, J. Larus, Software and the concurrency revolution, ACM Queue 3 (7) (2005) 54–62.

[13] A. Marowka, Think parallel: Teaching parallel programming today, IEEE Distrib. Syst. Online 9 (8)

2008.

[14] S. Hambrush, Models for Parallel Computatio, in: Proceeding of ICPP Workshop on Challenges for

Parallel Processing, pp. 92–95.

[15] D. Skillcorn, D. Talia, Models and languages for parallel computation, ACM Comput. Surv. 30 (2)

(1998) 123–169.

[16] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian, T. von

Eicken, LogP: Towards a realistic model of parallel computation, in: Proceeding of 4th ACMSIG-

PLAN Symposium on Principles and Practices of Parallel Programming, pp. 1–12.

[17] L.G. Valiant, A bridging model for parallel computation, Commun. of ACM 33 (8) (1990) 103–111.

[18] H.R. Bissling, Parallel Scientific Computation: A Structured Approach Using BSP and MPI, Oxford

Press, Oxford, 2004.

[19] T.S. Kuhn, The Structure of Scientific Revolutions, first Ed., University of Chicago Press, Chicago,

1962, p. 168.

[20] Parallel@Illinois. University of Illinois at Urbana-Champaign, http://www.parallel.illinois.edu/.

[21] Pervasive Parallelism Laboratory at Stanford University, http://ppl.stanford.edu/wiki/index.php/

Pervasive_Parallelism_Laboratory.

[22] Parallel Computing Laboratory at Berkeley, http://parlab.eecs.berkeley.edu/about.html.

[23] K. Asanovic, et al., The Landscape of Parallel Computing Research: A View from Berkeley,

University of California, Berkeley, CA, 2006. http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/

EECS-2006-183.html, Technical Report No. UCB/EECS-2006-183, December 18.

[24] http://www.highproductivity.org/.

[25] A. Marowka, Portability of Parallel and Distributed Application, The Hebrew University of Jerusalem,

Israel, 2000, PhD Dissertation.

[26] A. Marowka, I. Yarchi, M. Bercovier, Scalable portability evaluation of high performance applica-

tions, Int. J. Comput. Appl. 7 (1) (2000) 39–47.

[27] A. Marowka, M. Bercovier, A scalable portability model for parallel computing, J. Parallel Distrib.

Comput. Pract. (PDCP) 3 (3) (2000) 133–156.

[28] A. Marowka, Portability of Parallel and Distributed Applications: Is it Possible to Build a Portable

and Scalable Parallel Application? VDM Verlag, Germany, 2009.

[29] E.A. Brewer, High level optimization via automated statistical modeling, ACM SIGPLAN Notices

30 (8) 1995. Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP’95).

[30] E.A. Brewer, Portable High-Performance Supercomputing: High-Level Platform-Dependent Opti-

mization, 1994. MIT Ph.D. Dissertation, September.

[31] T. Hey, J. Ferrante, Portability and Performance of Parallel Processing, Wiley, Chichester, NY,

1994.

[32] J. Demmel, J. Dongarra, et al., Self-adapting linear algebra algorithms and software, Proc. IEEE 93

(2) (2005) 293–312.

[33] Skeletal Parallelism Homepage, www.dcs.ed.ac.uk/home/mic/skeletons.html.

[34] R. Barret, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Pozo, C. Romine, H. Van,

Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM,

Philadelphia, PA, 1993.www.netlib.org/utk/papers/etemplates/paper.html.

[35] D.G. Feitelson, L. Rudolph, Toward convergence in job schedulers in parallel supercomputers,

in: D.G. Feitelson, L. Rudolph (Eds.), Proceeding of the 2ndWorkshop on Job Scheduling Strategies

for Parallel Processing, April. LNCS 1162 (1996) 1–26. Springer, Berlin.

116 A. MAROWKA
[36] R. Merritt, HP calls for on-chip optics, EE Times (2009) January.

[37] M. LaPedus, Intel lists five challenges for IC scaling, EE Times (2009) February.

[38] I. Young, E. Mohammed, J. Liao, A. Kern, S. Palermo, B. Block, M. Reshotko, P. Chang, Optical I/O

Technology for Tera-Scale Computing, in: International Solid State Circuits Conference (ISSCC).

[39] A. Adl-Tabatabai, C. Kozyrakis, B. Saha, Unlocking concurrency, ACM Queue (2007) 24–33,

January.

[40] M. Herlihy, E. Moss, Transactional memory: Architectural support for lock-free data structures,

in: Proceedings of the 20th Annual International Symposium on Computer Architecture, San Diego,

CA, May.

[41] B. Cantrill, J. Bonwick, Real-world concurrency, ACM Queue (2008) 16–25, September.

[42] A. Marowka, Empirical Analysis of Parallelism Overheads of CMPs, in: Proceeding of Eighth

International Conference on Parallel Processing and Applied Mathematics (PPAM, September

2009), LNCS, Springer.

[43] K. Olukotun, A Conversation with Hennessy and Patterson, ACM Queue (2007) 14–22, January.

[44] W.J. Dally, B. Patrick, Principles and Practices of Interconnection Networks, Morgan Kaufmann

Series in Computer Architecture and Design, Morgan Kaufmann, San Francisco, CA, 2004.

[45] V. Kumar, A. Grama, A. Gupta, G. Karipis, Introduction to Parallel Computing, Benjamin/

Cummings, Redwood City, CA, 1994.

[46] D. Culler, J.P. Singh, A. Gupta, Parallel Computer Architecture: A Hardware/Software Approach,

Morgan Kaufmann Series in Computer Architecture and Design, Morgan Kaufmann, San Francisco,

CA, 1998.

[47] S. Akhter, J. Roberts, Multi-Core Programming: Increasing Performance Through Software Multi-

threading, Intel Press, 2006.

[48] A. Mendelson, J. Mandelblat, S. Gochman, A. Shemer, R. Chabukswar, E. Niemeyer, A. Kumar,

CMP implementation in systems based on the Intel Core Duo Processor, Intel Technology Journal

10 (2) 2006.

[49] A. Marowka, Performance of OpenMP Benchmarks on Multicore Processors, in: 8th International

Conference on Algorithms and Architectures for Parallel Processing (ICA3PP), LNCS Proceeding,

vol. 5022, pp. 208–219 Agia Napa, Cyprus, June 9–11.

[50] D.E. Knuth, A. Binstock, Interview with Donald Knuth, InformIT, 2008, April 25.

[51] D. Miles, B. Leback, D. Norton, Optimizing Application Performance on Cray Systems with PGI

Compilers and Tools, in: Proceedings of CUG.

[52] Intel Thread Checker, http://software.intel.com/en-us/intel-thread-checker/.

[53] Intel Composer, http://software.intel.com/en-us/intel-parallel-composer/.

[54] R. Allen, K. Kennedy, Optimizing Compilers for Modern Architectures: A Dependence-Based

Approach, Morgan Kaufmann, San Francisco, CA, 2001.

[55] A.J. Bernstein, Analysis of programs for parallel processing, IEEE Trans. Electron. Comput. 15 (5)

(1966) 757–763.

[56] L. Lamport, How to make a multiprocessor computer that correctly executes multiprocess programs,

IEEE Trans. Comput. C-28 (9) (1979) 690–691.

[57] S.V. Adve, K. Gharachorloo, Shared memory consistency models: A tutorial, IEEE Comput. 29 (12)

(1996) 66–76.

[58] E.W. Dijkstra, Cooperating Sequential Processes, Academic Press, London, 1968. Programming

Languages.

[59] M. Bull, D. O’Neill, Microbenchmark Suite for OpenMP 2.0, in: Proceedings of the Third European

Workshop on OpenMP (EWOMP01), Barcelona, Spain, pp. 41–48.

PITFALLS AND ISSUES OF MANYCORE PROGRAMMING 117
[60] E.A. Lee, The Problem with Threads, Electrical Engineering and Computer Sciences, University of

California, Berkeley, 2006, Technical Report No. UCB/EECS-2006-1.

[61] U. Vishkin, The PRAM-On-Chip Proof-of-Concept, 2009. Workshop on Theory and Many-Cores

(T&MC).

[62] Workshop on Theory and Many-Cores (T&MC), http://www.umiacs.umd.edu/conferences/tmc2009/,

University of Maryland, College Park, Maryland, 2009, May 29.

[63] U. Vishkin, S. Dascal, E. Berkovich, J. Nuzman, Explicit multi-threading (XMT) bridging models

for instruction parallelism (extended abstract), in: Proc. 10th ACM Symposium on Parallel Algo-

rithms and Architectures (SPAA), http://www.umiacs.umd.edu/users/vishkin/XMT/index.shtml.

[64] M. Snir, et al., MPI: The Complete Reference, MIT Press, Cambridge, MA, 1996. http://www.mcs.

anl.gov/research/projects/mpi/.

[65] A. Marowka, Think parallel: Teaching parallel programming today, IEEE Distrib. Syst. Online 9 (8)

2008.

[66] J.L. Hennessy, D.A. Patterson, Computer Architecture, Fourth Ed: A Quantitative Approach,

Morgan Kaufmann, San Francisco, CA, 2006.

[67] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, McGraw-Hill, 2003.

[68] J. Holt, A. Agarwal, S. Brehmer, M. Domeika, P. Griffin, F. Schirrmeister, Software standards for

the multicore era, IEEE Micro (2009) 40–50 March/April.

Illusion of Wireless Security
ADVAN

ISSN: 00
ALFRED W. LOO
Lingnan University, Hong Kong, China
Abstract
This chapter examines the misunderstanding of wireless security from user

behavior perspectives. Many users believe their wireless connections are safe

and they do not realize the serious consequences of possible security breaches.

These problems must be rectified quickly due to expanding use of wireless

facilities.

Corporations also underestimate the potential dangers. IT managers do not

provide enough education and support for users’ wireless connections at home or

public places. IT managers are not paying enough attention to issues and that

pose a serious threat. Urgent action is required in light of the recent high-profile

security breaches due to ignorance and negligent use.

Most threats come from the ignorance of users, the inactive attitudes of

corporations, and the improper implementation of security features by wireless

devices manufacturers. Thus manufacturers need to develop more secure

products by devoting more time to the development of security features and

design of human–computer interface (HCI). As technology alone will never be

able to solve all security problems, enhancement of the coordination between

employers and end-users is required.

In addition to discussing the truths and myths, countermeasures are presented

to rectify these problems. This chapter differs from other security papers in that

the minutiae of technical terms (such as algorithms, details of data frames, etc.)

are avoided as far as possible so it can reach a wider audience.
1.
 I
ntroduction . 120
1
.1.
CE

65
A

S

-2
wareness Level of Users . 121
1
.2.
 O
rganization of This Chapter . 122
2.
 W
ireless Routers . 122
2
.1.
 F
unctions of Wireless Routers . 123
IN COMPUTERS, VOL. 79 119 Copyright © 2010 Elsevier Inc.

458/DOI: 10.1016/S0065-2458(10)79003-3 All rights reserved.

120 A. W. LOO
2
.2. T
he Myths . 126
2
.3. T
he Truths . 128
2
.4. T
he Consequences . 132
2
.5. C
ountermeasures . 134
3.
 S
mart Phones . 137
3
.1. O
verview of Bluetooth Technology . 137
3
.2. I
l
lusions . 140
3
.3. R
easons for the Misunderstandings . 141
3
.4. P
ossible Attacks . 141
3
.5. C
onsequences . 142
3
.6. P
hone Virus Development . 143
3
.7. C
ountermeasures . 145
4.
 T
hreats of Public Wireless Networks . 147
4
.1. W
ar Driving . 149
4
.2. P
ossible Attacks . 150
5.
 I
llusions of Encryptions . 153
5
.1. B
asic Concept of Encryption . 154
5
.2. O
ther Applications of Encryption . 157
5
.3. I
l
lusions . 158
6.
 C
onclusion . 162
A
cknowledgments . 163
R
eferences . 166
1. Introduction

The Her Majesty’s Revenue and Customs (HMRC) department of the British

Government has lost the personal details of 25 million people in a security breach [1].

It caused huge embarrassment and the UK Prime Minister, Mr. Gordon Brown, who

has been forced to apologize. The chairman of HMRC,Mr. Paul Gray, resigned. Up to

7 million families have been warned to be on alert for attempts of fraudulence.

Certainly, it was a shock to members of these families. Many computer security

professionals were also very surprised as this breach did not involve any high-tech

hacking. It was simply a user mistake.

Two computer disks were sent from Her Majesty’s Revenue and Customer

department to National Audit Office in London via internal mail. However, these

ILLUSION OF WIRELESS SECURITY 121
disks never arrived at their destination. Data on the disks include names, addresses,

date of birth, National Insurance numbers, and bank account details. In addition to

putting bank accounts under threat, the missing information could be used to

impersonate the victims to buy goods or take out a loan. These pieces of information

are more valuable than credit card numbers in the black market and can be sold for

high prices.

We expect this kind of organization to be aware of security threats and their

serious consequences as they are processing very sensitive and important data.

An organization of such a size should be able to employ a team of security experts.

Researchers in IT security are very active and papers in this area are abundant [2–4].

We tend to believe security experts in government have adopted all possiblemeasures

and such breaches are highly unlikely. However, this incident has once again proved

the vulnerabilities of highly secured computer systems with ignorant users.

Organizations with fewer resources are even more vulnerable than the above-

mentioned department. The incident is a wakeup call for every organization to

review security measures and policies for their computer users.
1.1 Awareness Level of Users

The strength of the security of a computer system is always measured by its

weakest component. The weakest components in most systems are the end-users,

particularly when they are accessing the corporation’s databases with wireless

facilities at home or in public areas. The reasons are simple:

l Wireless facilities are relatively new for end-users and there is a great deal of

misunderstanding over their security features.

l While computer facilities within the organization are protected by computer

experts, the connections from employees’ homes and public places are not.

l Research papers and books on wireless security are written for technical people.

Most users, including some computer professionals, are not able to understand

these materials.

l Wireless products were not widely available in the consumer markets 10 years

ago. Wireless technology courses were rare (except for Electronics/Electrical

Engineering majors) in universities at that time and thus even computer profes-

sionals who graduated in the past decade have very little knowledge in the

modern wireless technologies.

Many nontechnical users are using the following wireless facilities today:

122 A. W. LOO
l Wireless routers

l Smart phones

l Public Wi-Fi networks

Improper use of the above facilities poses serious threats to both individuals and

corporations. Recent experiments [5–9] indicated the low level of public awareness

of potential dangers. Furthermore, both individuals and corporations underestimate

these dangers and they do not realize the serious consequences. Security threats are

simply ignored. This problem must be rectified quickly due to widespread use of

these wireless devices.

1.2 Organization of This Chapter

Most threats come from ignorance of users, inactive attitudes of corporations, and

improper implementation of security feature from wireless devices vendors. Exam-

ples of possible hacking and damages are presented in the rest of this chapter. These

issues are discussed in a nontechnical way so it can reach a wide range of audience.

Thus, this chapter differs from other security papers in that technical terms (such as

algorithms, details of data frames, etc.) are minimized as far as possible.

The remainder of this chapter is organized as follows. Section 2 presents the

threats of wireless routers and the possible consequence. Wireless communication

standards and terms are introduced to readers as background information. Counter-

measures which can minimize the threats are discussed. Section 3 presents the

security issues associated with ‘‘smart’’ phones as many people are not aware of

these problems. An overview of Bluetooth technology is presented. Other wireless

threats are discussed in further detail and solutions are provided. Section 4 presents

the threats of using public wireless fidelity (Wi-Fi) networks. Section 5 discusses the

illusions of encryption. An overview of encryption is provided. We summarize our

discussion of this chapter in Section 6.
2. Wireless Routers

Wireless routers began to be available about a decade ago. The cost has been

decreasing quickly in the past few years due to mass production. Now they are

inexpensive—most cost less than US $60. It is extremely easy to install a wireless

router. The wireless router provides the following conveniences to the users:

l It is quite common that families have several computers. These computers are

usually in different rooms. To share broadband communication, the installation

ILLUSION OF WIRELESS SECURITY 123
of network cables would be a time-consuming and expensive task, depending on

the distances between rooms. Wireless routers solve this problem easily. Theo-

retically, a typical wireless router can support 256 computers simultaneously.

l Users can move their computers easily around the home, as long as they remain

within the coverage of the wireless signal. They do not need to rearrange

network cables. For example, you have installed your notebook computer in

the bedroom. On a particular day, you are working on an urgent project for the

company. You continue to work with your computer at mid-night but you do

not want to disturb your spouse. You can simply take your notebook computer

to the living room. You will still be able to access the Internet via the wireless

facility and save hours of cable reconnection.
2.1 Functions of Wireless Routers

When a computer tries to access the Internet, it needs to connect to the computer of

an Internet service provider (ISP) first. Usually user needs to log in with a valid

account and password which is provided by the ISP. After the login process, a unique

Internet protocol (IP) address will be assigned to the user’s computer as in Fig. 1. The

user will type the uniform resource locator (URL) of the remote Web server on

his/her Internet browser. This URLwill then be sent to the ISP. The ISP’s computer is

the one that actually contacts the remote Web server according to the URL. The

remote Web server will send the Web page to the ISP first. The ISP will then convey

the Web page to the user as in Fig. 2, the traditional wired communication.

In a wireless connection, the ISP computer works in the same way as in the wired

communication. However, a wireless router is added in between the user’s computer

and the ISP’s computer as in Fig. 3. We can consider the router as a small dedicated

computer. Its function is to convey messages between the user’s computer and the

ISP’s computer. The ISP’s computer does not know whether it is talking to a

computer or a router. It does not know how many computers are using the router as

well. Thus the wireless router is acting as a coordinator between the ISP and the user.
2.1.1 Overview of IEEE802 Standards
Wireless routers use the IEEE802.11 standards to communicate with user’s com-

puters. These standards were developed by the IEEE (Institute of Electronic and

Electrical Engineers) which is a nonprofit making organization. IEEE (often pro-

nounced as eye-triple-E) has developed many different communications standards to

make sure devices from different vendors can communicate with each other.

User’s computer ISP’s computer Remote Web server

(1) Log in to ISP

(2) Assign a unique IP address

(3) Send an URL

(6) Convey the Web page to user

(4) Convey the URL

(5) Get the Web page and send
 it to ISP

FIG. 1. Login process.

124 A. W. LOO
The first design began in 1990 and it took 7 years to be completed. It uses the

2.4 GHz radio band for communication. Users do not need a license to use this band

in most countries. This is one of the reasons that this standard has become so

popular. The standard specifies the communication between wireless client and

the access points. It also defines the optional use of encryption. However, there

are some well-known security weaknesses in this standard and the maximum speed

is only 2 Mbps. This version is obsolete now.

To overcome the shortcomings of the first design, IEEE workgroups have devel-

oped new IEEE802.11 standards. They differentiate these newer standards by

User’s computer

Web page Web page

Web pages

W
eb page

W
eb

page

URL URL
U

R
L

U
R

L

ISP’s computer

Remote Web server

Internet

FIG. 2. Web surfing with wired communication.

ILLUSION OF WIRELESS SECURITY 125
appending a letter behind the 802.11. Although there are large numbers of new

standards, only four standards have products in the market now. They are

IEEE802.11a, IEEE802.11b, IEEE802.11g, and IEEE802.11n.

Before 2003, the most popular standard was the IEEE802.11b. Under this stan-

dard, the data transfer rate is improved to 11 Mbps and the range to 100 m while still

using the 2.4 GHz radio band. Access points and network cards using this standard

are inexpensive. Devices from different vendors are extremely compatible with each

other. Installation is easy and there is widespread use in small offices and homes. As

the standard is slower than 11a and 11g, 11b products have been phasing out of the

market in recent years. However, there are still a large number of 11b devices in use

today.

On the other hand, IEEE802.11a offers much higher speed (up to 54 Mbps).

It uses the 5 GHz radio band so it avoids interference from electronic devices

(such as microwave ovens, cordless phones, etc.). A wireless signal spectrum

is presented in Fig. 4. However, this radio band is not available for unlicensed

User’s computer 2

Internet

Remote
Web server

IPS’s
computer 1

 URL

Web page

 URL

Web page

 URL

Web page

 URL

Web pageWireless router

Web
pages

User’s computer 1

FIG. 3. Web surfing with wireless communication.

126 A. W. LOO
use in all countries. Another problem is that IEEE802.11a devices are not backward

compatible to the slower IEEE802.11b. This problem may be a barrier deterring

organizations which already have IEEE802.11b devices from deploying 802.11a.

IEEE802.11g provides a higher speed (up to 54 Mbps) and it is backward com-

patible to 802.11b. Organizations do not need to replace all existing 802.11b devices

when they add new 802.11g technologies. The first products under this standard

became available in January 2003. It also uses the 2.4 GHz radio band.

The next generation of IEEE802 is 11n which still uses the 2.4 GHz radio band.

It provides higher speed (up to 300 Mbps) and better security. At the time of

writing this chapter, IEEE802.11n is still in a draft form. However, many vendors

are selling ‘‘11n draft’’ routers now in order to gain a better marketing position in

the future. Many people believe that the difference between the final version and the

draft will be little. Most vendors also hope that their ‘‘draft’’ products will be

compatible to the final version by simply updating the firmware on the devices in

the future.

The differences between these four standards are summarized in Table B.I.
2.2 The Myths

The author had a recent discussion with one of his friends. The friend is a

seasoned application programmer and has a master’s degree. He is using a wireless

router at home and believes his wireless connection to be secure. It is not. If an

application programmer puts his faith in myths, we cannot expect anyone with less

computer knowledge to be aware of the security problems.

TelevisionRadio Space and satellite, radio astronomy

300 kHz 3 MHz 30 MHz 300 MHz 3 GHz 30 GHz 300 GHz

2.4 GHz 5 GHz

Microwave oven Wireless
router, IEEE
802.11b,g,n

Wireless
router, IEEE

802.11a

Cordless phone

FIG. 4. Wireless signal spectrum.

ILLUSION OF WIRELESS SECURITY 127
In theory, nothing can be 100% safe. For example, if you want to protect your

house from burglary, you can install a good lock on your door. A determined thief can

still break into your house provided he has the right equipment and enough time.

Even if he cannot break the lock, he can break the door. Alternatively he can break the

window, drill a hole on the wall, dig a tunnel, use explosives, etc. However, all these

methods will force him to take a longer time to finish the task. He will make more

noise. Carrying more equipment will increase the chance that he will be detected or

even arrested before or after the task. A rational thief will compare his cost with the

estimated valuables in your house. He might decide that it is not worthwhile to break

into your house provided you have the right degree of security.

Wireless communication is very similar to the above scenario. However, while

many users believe their doors, at least, are locked, the truth is the doors are not even

closed and are actually wide open [2,10,11]. Intruders can simply walk in.

A wireless router user might believe the following:

128 A. W. LOO
l Wireless routers have been in the consumer market for several years. A lot of

people are using them so it must be a mature and safe technology. There are

enough security features in the router so their communications are automati-

cally protected.

l It is time consuming to hack a computer so attackers will go after the computers

of corporations. There is nothing valuable enough in home communications to

attract hackers. Users have little to lose. There will not be any serious con-

sequences even if their transmissions are intercepted by hackers.
2.3 The Truths

Most wireless routers have some security features. However, these features are

optional and usually turned off. As many users do not have the security knowledge,

they do not know how to turn these features on.
2.3.1 Stealing Bandwidth
The installation of a router is quite easy and users can complete it within minutes.

A small installation program will ask the user to type in the account name and

password of their ISP during the initialization process. Users might believe that they

are protected by the password afterwards; indeed, the account name and password

are stored in the router. When users turn on their computers and routers, the router

will log in to the ISP automatically as in Fig. 5. The computers will then communi-

cate with the router directly and access the Internet through the router. The router

will not ask the computer to supply an account name and password again. This

means the hacker’s computer can connect to the router without any knowledge of the

account.

The hacker does not need any hacking tools as nowadays’ operating systems (e.g.,

Microsoft Windows XP) can find any nearby routers and connect to them almost

automatically. Hackers can connect to the Internet and perform illegal operations

such as hacking other computers, spreading viruses, organizing terrorist activities,

etc. He/she does not need to get into the users’ house or plug in any cable. He might

be sitting inside a car [12–14] which is parked on the road near the user’s house.

Hackers might also be the neighbors of users. All he needs is a notebook with a

wireless LAN card. It is extremely difficult for the user to detect this hacking

process. As the hacker does not need to supply any account name, password,

IP address, or any identification to the ISP, it is impossible to trace the hacker

afterwards.

User’s computer

(7) Get the Web page and
 send it to ISP

(6) Convey the URL

(8) Convey the Web page

(5) Convey the URL

(2) Assign a unique IP address

(1) Log in to ISP

(9) Distribute the Web page to
user

(4) Send an URL

(3) Assign a dummy IP address

Wireless router ISP’s computer Remote Web server

FIG. 5. Operation of a wireless router.

ILLUSION OF WIRELESS SECURITY 129
Hacking can take place automatically if proper software is installed on the

computer. For example, a hacker could leave their computer on in a van while

masquerading as technicians from telephone or electricity companies. They do

not need to stay in the van during the hacking processes. Antennas and amplifiers

can extend the area of wireless coverage. A study [15] shows that it is possible to

attack a target from 20 miles away. This kind of hacking is more difficult to detect

(Fig. 6).

As the router is actually sending/receiving messages for the computers, it is

impossible for the ISP to detect the number of users. This creates headaches for

the users and Governments. When the police come to the doors of the legitimate

users, they will have a hard time explaining what is going on. Governments will also

have problems in identifying the hackers from the ISP’s records. Even if the hacker

Internet

 ISP’s computer

 URL

Web page

 URL

Web pageWireless
router

Performing illegal activities

Performing illegal activities

 Legitimate user’s
computer

Attacker’s computer

Attacker’s mobile phone

FIG. 6. Stealing bandwidth.

130 A. W. LOO
is caught on the scene, it will be difficult to collect evidence, prosecute, and convict

him/her in the court as there need be no particular hacking tools (hardware/software)

on his/her computer.

There is another illusion in the initiation process. Many routers have a default

account ‘‘admin’’ (with the same default password ‘‘admin’’). Users can change the

password or create a new account. They might believe this is another level of

protection. Actually this account is used only when the users want to view or revise

the settings in the router. Hackers do not need this piece of information to access the

Internet through the router. This illusion only gives users a false feeling of security.
2.3.2 Eavesdropping
The most well-known problem of wireless communication is that it is susceptible

to anonymous attackers. The attacker can use very simple equipment to intercept the

wireless signals and decode the information being transmitted to the access point.

ILLUSION OF WIRELESS SECURITY 131
Such equipment can be just the devices (e.g., notebook computer and smart phones

as in Fig. 7) which are used to access the network. These devices can be configured

to intercept all traffic on a network so long as the attacker is in the proximity of the

transmitter. Wireless packet analyzers [16,17] for such purposes can easily be

obtained from the Internet.

The use of antennas and amplifiers enables longer distance attacks. Wireless

signals may travel outside a building. Recent studies show that it is feasible to attack

a target from 20 miles away [15]. It is almost impossible to detect and prevent such

attacks.

As a notebook computer or smart phone is so small and there is no physical wired

connection, an attacker can hide anywhere within the coverage area. An attacker can

monitor transmissions from parking lots and nearby areas. Even if the user knows an

attacker is around and he/she is hacking the network, it is still almost impossible to

identify the attacker.
Remote servers

Internet
Attacker’s

mobile phone

Attacker’s
computer

User

Router

FIG. 7. Eavesdropping.

132 A. W. LOO
2.4 The Consequences

Many companies have developed applications with Internet technologies. These

applications offer many advantages. Their employees can access the databases of the

company with an Internet browser such as Internet Explorer or Firefox. There is no

need to install special programs on the end-users’ computers. In the past, updating

application programs on the end-users’ computers was tedious and error prone.

These tasks have been minimized or eliminated as all programs are held on the

servers. Naturally, employees can also access the systems with their home compu-

ters so they can continue to work at home.

Such advantages are accompanied by additional risks. Many systems rely on only

account name and password to authenticate users. If the hacker can get this infor-

mation while the user is accessing corporate databases, every security feature

installed by the corporation will fail and the unauthorized intrusion will go

undetected.

Some corporations protect their login pages with secure socket layer (SSL) or other

similar techniques. Such traditional methods for wired communication can also be

effective for wireless networks. For example, the Web site sends a public key to the

user for encryption for every session. The users are pretty safe if the corporation is

using such techniques. It is useless for hackers even they can intercept the transmis-

sions. Users might believe that further encryption is not necessary. However, users

will also access Web sites which do not require high levels of security. A patient

hacker can obtain hints from these nonsecured communications of the users.

It is common for users to have multiple accounts. For example, after purchasing

new products (such as mobile phones, TV, etc.) many companies allow their

customers to send the warranty information through their Web sites. Customers

need to create an account in order to obtain updated information about their

products. Many Web sites which provide free information will also ask their readers

to create new accounts. As these Web pages do not involve any money or confiden-

tial information, encryption techniques might not be used. Attackers can easily

obtain the account names and passwords of a user if this information is sent over a

wireless connection without proper protection. The attacker can then masquerade as

a legitimate user to attack, for example, the user’s corporation.

In theory, users should use different passwords (and account names) for different

accounts [18]. However, it is similar to asking our younger generation not to have

sex before marriage. In practice, many people use the same password for multiple

purposes as it is extremely difficult to remember all accounts and passwords,

especially when some accounts are not used frequently. If the account name and

ILLUSION OF WIRELESS SECURITY 133
password are intercepted in an unsecured transmission, the hacker can spoof the user

and break into the company’s database.

Even if the users use different passwords, it is still dangerous not to protect

passwords for nonsecured Web sites. By conducting analysis on users’ commu-

nications, hackers can find out the pattern of users in composing the passwords.

It is difficult for humans to remember a combination of characters and numbers

which have no meaning. A common practice is to take words and numbers

which they are familiar with and combine them. Let us look at the following

example.

One user might use the first four characters of his son’s name (e.g., ‘‘davi’’ from

‘‘David’’), combined with year of his son’s birthday (e.g., 1992). To make it a little

more difficult to crack, the user reverses the order and add a special character in the

middle so the final password is 2991@ivad. This password is not bad for the

following reasons:

l It is easy to remember so user does not need to write it down.

l It does not use a complete word from the dictionary so hackers are forced to

spend more time in a ‘‘brute-force’’ attack (trying many different combinations

by varying one character at a time).

l It uses alphabetic, numeric, and special characters so this will maximize the

number of possible combinations.

l The password is long enough (i.e., nine characters in this case).

However, an assiduous hacker will find out the pattern if he can intercept one

password in nonsecure communications. The attacker can then try the user’s corpo-

rate account with his daughter’s name and year of birthday (by adding or subtracting

a small number from the 1992 in the above example). If this does not succeed, the

attacker can try his wife’s name or something similar. In other words, such informa-

tion could help to minimize the number of trials needed to break into a computer

system.

By eavesdropping to user’s communications, hackers can find out the user’s

favorite or frequently used words and Web sites. This kind of information can also

speed up the hacking process. Thus it is important to encrypt all communications

even if there is no confidential information in the Web pages.

Finding executives of a target corporation is also easy. The names of executives

can be found in their companies’ Web sites. Sometimes there are even photos and

brief biographies on the same Web page. Hackers can follow the executives’ cars

and find their residences easily. Armed with this knowledge, the hacker is ready to

carry out his job.

134 A. W. LOO
2.5 Countermeasures

Users will not be able to solve these problems by themselves due to limited

resources and knowledge. Three parties need to work together in order to tackle

these threats and minimize any possible damages. These parties are:

l Corporations

l Manufacturers of wireless devices

l Users
2.5.1 The Corporation’s Responsibilities
Parents will not leave their babies in the jungle and expect them to protect

themselves. Nevertheless, many organizations do not take care of the home Internet

connections of their employees. The widespread use of wireless routers of their

employees is a threat to many computer systems. There are many ways to attack a

wireless communication so it is almost impossible to make it absolutely safe.

There are also basic weaknesses in the current technologies (e.g., WEP [3,19])

which are still being used in many routers. However, we should make the hacker’s

life as difficult as possible. In other words, we must force the hacker to invest more

time, install more hardware or/and software for each attack. This will increase the

hacker’s risk of being caught. Corporations should urgently review their security

measures. Some new measures are easy to implement and we provide a few

examples as follows:

l Corporations should educate their employees so they know the risks and

countermeasures. From time to time, they can offer short seminars (preferably

less than 1 hour) and materials should be explained in layman’s terms.

l Corporations should remind users to be vigilant and report suspected cases to

authorities as soon as possible. For example, a car is parked around the user’s

house for a long time, over many days: if the driver is not his neighbor or a

legitimate visitor, users should try to find out more information.

l The users should be taught to turn on some easy and common security features

of the router. These features can be deployed in a few minutes provided the

router manufacturer builds software with good HCIs. It is not possible to

discuss all features in this chapter, but we will provide a few examples:
– Every LAN card has a MAC address. In layman’s term, it is a global unique

serial number for the LAN card. Users can store the MAC address and ask the

router only to accept computers with the right MAC addresses. Using MAC

ILLUSION OF WIRELESS SECURITY 135
addresses to identify users is not completely foolproof. If the hacker knows

the MAC address, he can install a special program and spoof the address to

the router.

– Communication between computers and routers are transmitted in plain text.

Messages can be intercepted easily. The hacker needs only an ordinary

computer and wireless LAN card to intercept the signal. The countermeasure

is to turn on the security features in the router. Users can specify an

encryption key on the router and the computers. Messages between compu-

ters and routers will then be encrypted. The keys should be changed fre-

quently as there are weaknesses in encryption technology.

– Wireless routers broadcast their service set identifier (SSID) to surrounding

computers. We can consider the SSID to be the ‘‘name’’ of a router. Usually

it is a default name assigned by the manufacturer. Computers need this name

for proper connection to the router. The user should change this name often

and disable the broadcasting of the router. This measure will make the

hacking more time consuming.

– Every router comes with an administrator account that has a default pass-

word. Some users do not bother to change this password. Once hackers log

into routers, they can modify the settings and/or turn off all security mechan-

isms. Users should change the password (and account name) to protect the

settings.
l Most routers installations are easy. However, some routers come with poor

HCIs in the parts which activate the security features. It is difficult for users

to select a good router on their own. Corporations should evaluate routers and

recommend only products with good security features and human–computer

interfaces. If enough corporations are offering these kinds of recommend-

ations, it will force the manufactures to pay more attention to developing

these areas.

l Adoption of digital certificates and virtual private network (VPN) should be

considered as it will provide higher levels of security in the long run.
2.5.2 The Manufacturer’s Responsibilities
There are flaws [3,19,20] in the current security technologies of wireless routers.

Security experts are proposing new standards to overcome these problems. How-

ever, manufacturers of routers can still improve security while they are waiting for

the new standards. Security will never be perfect as hackers can always find new

methods to crack systems anyway. In the mean time, some things can be done

quickly and easily. Examples of improvements include:

136 A. W. LOO
l Router manufacturers should make their products safer by turning on security

features as default settings. User should be warned of the risks if they turn off

these features.

l Manufacturers should incorporate small resident programs which allow the user

to check the numbers of computers connected to the router at any particular

time. These programs could be executed in the user’s computer or the router (if

the router has enough memory).

l Log files should be maintained so users can check whether there is any intruder.

l Wired equivalent privacy (WEP) and Wi-Fi protected access (WPA) are two

common methods to encrypt traffic between the device (e.g., laptop computer)

and the wireless routers. However, most home routers have the instructions to

ignore setting the WEP key when installing, thus adding a level of insecurity.

Users should set their own keys to add some level of security.

There are known weaknesses in the WEP encryption. WPA should be used

[19,21] if it is available. However, many networks need to support old devices

which cannot use new encryption techniques. It is still worth deploying this method.

The current WEP key encryption can be cracked when the hacker collects enough

of a user’s transmissions. The encryption key should be changed frequently. How-

ever, changing keys frequently is easier said than done. As the key resides in both

computer and router, it is tedious and a little bit difficult for nontechnical users to do

this task. It is more time consuming if the user has more than one computer:

l Manufacturers should provide a program which could change the key on both

devices. To make things even easier, the program should be automatically

executed when the user turns on the computer. Instead of asking the user for

the new key, the program can generate random keys and update all devices

periodically. The SSID should be changed in the same way.

l Once a new hacking method is discovered, it (with countermeasures, if any)

should be announced in the manufacturers’ Web site or sent to the users through

e-mail. Updated software and/or firmware (if any) which can combat the new

attack should be available for downloading from the manufacturers’ Web sites.
2.5.3 User Responsibilities
l Users must follow the security procedures of their employers. It is their duty to

safeguard the system by using computers properly.

l Users should invest their time in learning how to use wireless communications

safely, such as by attending seminars offered by their employers.

ILLUSION OF WIRELESS SECURITY 137
l Users should be vigilant at all times. For example, many computer systems

display the last time that users logged in. These records should be checked to

detect intruders.
3. Smart Phones

A security experiment known as BlueBag [22, 23] was conducted in March 2006

to test the vulnerabilities of mobile devices. A computer with a Bluetooth sniffing

program was hidden in a suitcase that was rolled around train stations, shopping

centers, airports, and other public places. The objective was to find out the number

of Bluetooth-enabled mobiles devices that could be infected with viruses wirelessly.

To our dismay, the answer was: a lot.
In less than 23 hours, more than 1400 vulnerable devices were discovered, most

of which were mobile phones. This number reflects the low level of public aware-

ness about the potential dangers. Phone users also underestimate the possible

damage if their mobile phones are compromised.

These kinds of security breaches also have serious consequences for corporations

and telephone companies. However, most security teams in corporations simply

believe that mobile phones are for individual use only. It is thus not their duty to

protect these applications or even to understand the security problems. Hence,

mobile phones may be the next easy target for professional hackers [24].
3.1 Overview of Bluetooth Technology

Bluetooth is named after the King Harald Bluetooth who united Denmark and

Norway. He was known for his skill in getting people to talk to each other. This

technology [25,26] enables two devices to communication wirelessly within a short

distance. Such devices include computers, mobile phones, headsets, keyboards,

printers, etc. The initial objective of Bluetooth was to replace cables with low-

cost, low-power wireless technology. Its functions and standards were further

developed by the Bluetooth Special Interest Group (SIG). Members of this group

include Ericsson, Nokia, IBM, Microsoft, Intel, Toshiba, and other companies. The

Bluetooth-enabled equipment shipments have grown to 800 million in 2007 and its

predicted growth is over 1.8 billion by 2012 [27].

This technology can also be used to replace the inconvenient Infrared. It makes it

easy to synchronize devices and transfer files. However, it is not a competitor of

IEEE802.11 standards as the low-power Bluetooth can operate only within a

138 A. W. LOO
relatively short distance. It simply enables users to eliminate or minimize the

number of cables between computers and peripherals.

Two Bluetooth-enabled devices can communicate with each other directly. For

example, two mobile phones can exchange data in a basement that is not covered by

a telephone company signal. Bluetooth uses a free 2.4 GHz radio band to communi-

cate within a range of up to 10 or 100 m (depending on the model). Examples of

Bluetooth applications include the following:

l A user can answer phone calls with a Bluetooth headset when the phone is in his/

her pocket or briefcase. In some countries, it is illegal to hold a phone while one is

driving. Bluetooth headsets/earphones provide a perfect solution for drivers.

l Computers can transmit data to printers without cable connections.

l PDA/smart phones can synchronize files with PCs.

l Business cards, photos, and ring tones can be exchanged between phones.
3.1.1 Improper Implementation
Bluetooth technology is designed with security issues in mind. Nothing is perfect,

however, so there are weaknesses [25,28] in the standards. Most threats [29–31],

though, come from improper implementation by manufacturers.

For example, one important Bluetooth security feature is the user’s ability to

switch between the ‘‘discoverable’’ and ‘‘hidden’’ modes. Every Bluetooth device

should have a unique address that is 48 bits long. To connect to a Bluetooth device,

this address must be known. It is extremely easy for a PC to scan the addresses of

nearby Bluetooth devices if they are in the ‘‘discoverable’’ mode. Switching the

device to ‘‘hidden’’ mode will provide much better protection from unauthorized

connection.

The default setting of some mobile phones is the ‘‘discoverable’’ mode. Because

most users do not understand Bluetooth technology, they do not switch their phones

to the ‘‘hidden’’ mode. To make matters worse, it is difficult in some phones to find

the right menu to turn the mode to ‘‘hidden,’’ because of poor HCI design. The

wrong default setting exposes users to great risk.

Although the ‘‘hidden’’ mode is not a foolproof method of protection [23,28],

it does mean it will take hackers much longer to hack the devices. One hacking

approach is the brute-force discovery method. An example is the RedFang program

developed by Ollie Whitehouse, which tries to connect to each Bluetooth

device, one by one. As each address is 48 bits long, it seems impossible to test all

of the combinations (i.e., 248), as this would take years. Unfortunately, some

ILLUSION OF WIRELESS SECURITY 139
manufacturers assign the Bluetooth addresses in a predictable way which can

further weaken the security features [25].

The first 3 bytes (24 bits) are assigned to a specific manufacturer, which is free to

allocate the last 3 bytes to its own products. In other words, the first 3 bytes of all of

the products of a certain manufacturer will be identical. If hackers know the

manufacturer of the phone, then the number of possible address will be

16,777,216 (i.e., 224). Unfortunately, some manufacturers assign the last 3 bytes in

a predictable way. For example, a manufacturer might use the first byte (of the

remaining 3 bytes) to identify a particular phone model. The addresses of all phones

of the same model will start with the same 4 bytes, so hackers need to try only the

last 2 bytes. The number of combinations then drops to 65,536 (i.e., 216). This

example shows how improper implementation can weaken the security features.

Although 65,536 is still a large number, hackers can use multiple computers (or a

computer with multiple Bluetooth dongles) to carry out simultaneous attacks, or use

other techniques to speed up the process. The model of a phone can be learned if it

used in a public place once. Some people get used to putting the phones on a table or

hanging them around their necks.

Another weakness is in the pairing process [25,28] that two Bluetooth devices

need to go through before data exchange. Devices need to send an identical PIN to

each other. A key will then be generated and stored in both devices so that later

communication can take place automatically. However, the first step of this pairing

process is done in plain text and is not encrypted. Hackers can intercept the

communication during pairing. These pieces of information will help the hackers

to speed up the hacking process later [25].

Improper implementation in the pairing process includes the use of very short

PINs instead of longer and more secure PINs. Poor HCI design also deters users

from changing the default PINs in certain Bluetooth-enabled devices.

It is also possible to force the devices to repeat the pairing for each round of

communication. This provides the illusion of security, but, in actuality, it provides

attackers with more opportunities to intercept the messages during the pairing

process.
3.1.2 Proof-of-Concept Viruses and Tools
Security researchers have developed viruses and tools to prove the feasibility of

attacks on mobile phones. We introduce several of them, so that readers will have a

better idea of the state of the art in phone virus development:

l Cabir. This is the first Bluetooth virus, and was released in 2003. It can infect

certain makes of phones with Bluetooth technology. The infected phone will

140 A. W. LOO
replicate itself quickly to other phones through Bluetooth communications.

This virus is not dangerous, as it only consumes battery power and does not

cause any other serious damage.

l Commwarrior. In addition to spreading among Bluetooth devices, this virus

will also read users’ phones and send MMS messages containing the Comm-

warrior file. This virus can replicate itself quickly all over the world, as it is not

restricted by the short distances of Bluetooth technology.

l Blooover. The BlueBag project (mentioned at the beginning of this chapter)

needs a computer to carry out attacks. The Blooover (from the phrase ‘‘Blue-

tooth Hoover’’) tool proves that it is also possible to use a smart phone to

perform similar attacks. It is written in Java and runs on a smart phone. Bloo-

over can detect vulnerable phones and carry out other attacks. It can also initiate

phone calls and perform call forwarding.

l BlueSniper ‘‘rifle.’’ Some phone manufacturers underestimate the threats

against Bluetooth, because they believe Bluetooth hacking can only be done

over a short distance. John Hering and his colleagues at Flexilis developed a

device in the shape of a rifle [31]. Using a vision scope and an antenna that

connects to a laptop or PDA, they aimed the rifle at a taxi stand from the 11th

floor of a hotel in Las Vegas. They were able to collect 300 address books from

Bluetooth-enabled devices. In later experiments it was successfully used on a

target 1.1 miles away. This shows that the distance can be extended greatly with

the right equipment. It also proves the possibility of picking out a particular

victim from among a group.

3.2 Illusions

Manufacturers incorporate PDA features into mobile phones to make them

‘‘smart.’’ Indeed, we can consider smart phones to be small computers with the full

functions of phones. Users can read and send e-mail messages, and they can browse

the Internet, read files, and work on spreadsheet applications. Smart phones are much

lighter and smaller than notebooks, making them good tools for business. The number

of smart phones worldwide will reach 500 million by 2012 [32].

As smart phones can perform the tasks of a computer, they are vulnerable to the

same kind of hacking attacks. However, there are many misunderstandings, and

most mobile phone owners tend to believe:

l There are enough security features in the phones.

l Hackers are not interested in phones.

l There is no such thing as a phone virus.

l They have little to lose even if their phones are hacked.

ILLUSION OF WIRELESS SECURITY 141
3.3 Reasons for the Misunderstandings

Many high-profile computer hacking cases have been widely discussed in news-

papers and on television. Yet the hacking of mobile phones is hardly ever mentioned

in the media. Users might believe that the existence of phone viruses is only a rumor,

as they are not aware of the new threats.

In the past, hackers were teenagers and amateurs who wanted to prove their talent

by paralyzing large numbers of computers. Their work attracted a lot of attention,

but they rarely gained any financial benefit. However, the new trend in hacking is

that it has become a full-time job. Hackers quietly steal information from victims’

computers and gain financial rewards. Victims might not discover these intrusions

for a long time, and some of them might never discover the heists. These kinds of

hackers do not want any publicity, as it would increase their chances of being

caught. This creates the illusion that hacking activities are much rarer than they

are in reality.

Furthermore, many corporations are unwilling to reveal security breaches in their

organizations, particularly when these events involve the sensitive data of clients.

Not only would such revelations be public relations disasters, but also they would

also cause further financial losses. Admitting negligence could invite lawsuits from

clients and law enforcement agents [33]. No news is not good news in the world of

computer security.
3.4 Possible Attacks

All hacking problems related to computers could happen via smart phones.

Furthermore, there are unique problems, as phones have more functions. Users

also tend to store more personal data in phones. Examples of these problems include

the following:

l The ability of a phone to call certain numbers, such as the emergency number

911, could be blocked.

l Hackers could retrieve address books, calendars, photos, or other files from a

phone.

l Compromised phones could infect other phones that use Bluetooth or MMS.

l Hackers could send SMS or MMS to other phones without any user interaction.

l Hackers could remotely control a phone to make phone calls or connect to the

Internet.

142 A. W. LOO
3.5 Consequences

These problems seem to be harmless, so most users do not recognize the serious

consequences. Some possible consequences will now be discussed:

l Leaking calendars and address books. Hackers could sell these pieces of

information to a user’s competitors. This is valuable information, as rivals

could find the names of clients (or potential clients). Hackers could also alter

the details of a user’s calendar. As a result, the user could miss important

appointments with his/her clients, while rivals approach them with another

proposal. Losing important clients could be detrimental to the user and his/

her employer.

l Bugging devices. Hackers could instruct the user’s phone to make a phone call

to the attacker’s phone without the user’s consent. They can then eavesdrop on

(or even record) the user’s conversation and the phone then becomes a potent

bugging device.
The user might discover these calls in the phone’s call registry. However, he/

she may believe that the calls were initiated due to the accidental pushing of

certain buttons when the phone was in a pocket or bag. More advanced hackers

can erase the records on the phone. Prudent hackers can even use prepaid phone

cards, so that it is impossible to trace their identities afterwards.

It is also possible for hackers to set up a gateway, so that users’ phone calls

are routed through the hackers’ phones so they can listen to users’ phone

communications.
l Sending SMS. Terrorists can use SMS messages. For example, they could send

false bomb threats to airlines using legitimate users’ phones. This would

consume government resources as the government investigates false leads

while the terrorists carry out the real attacks. There would be no way to trace

the terrorists, and the phone owners could be in serious trouble.

l Causing financial losses. Hackers could send a large number of MMS messages

with a user’s phone. MMS services are still quite expensive for large files, and it

would be a burden for users to pay these phone bills. Updating or downloading

large files with GPRS services would have same effect.

l Revealing passwords. People have many account names and passwords to

remember these days. For example, they may have an e-mail account, a

corporate account, an Internet banking account, supermarket accounts, etc.

Some may also need to remember their ATM PINs, the code to open the gate

of their apartment building, and another code to activate the alarm systems of

their office or home. As mobile phone users almost always carry their phones

with them, they may believe them to be a safe and convenient place to store

ILLUSION OF WIRELESS SECURITY 143
these account numbers and passwords. Attackers, however, can retrieve such

passwords on compromised phones. The disclosure of these pieces of informa-

tion not only endangers the phone users themselves, but also jeopardizes the

security of their employers’ security systems.

l Identity theft. There are black markets in which hackers can buy and sell

personal information [24,34]. The price varies depending on the sensitivity of

the data and the value of the victims. For example, Jeremy Jaynes in the US

managed to earn $24 million before he was arrested [3]. His case involved a

stolen database that included a million personal detail records.

l Attacks on telephone networks. If a virus infects a large number of phones, it

can instruct all of them to make phone calls (or send SMS or MMS messages)

simultaneously at a certain time. This tactic would paralyze a city’s telephone

networks and create chaos.

l Leaking corporation data. Employees can download files from the company’s

computer onto their phones so that they can continue to work at home. Many

high-end mobile phones can also receive e-mail messages. They enable users to

keep in touch with their colleagues and clients. It would be a disaster if the

phones were hacked.
3.6 Phone Virus Development

Developing software for phones is more difficult and complicated than it is for

ordinary computers. As a result, the development usually takes much longer.

Development difficulties include the following:

l The memory of a phone is much smaller than that of a computer, so programs

must be carefully designed to reduce the size. Special tools are usually required

for development. For example, Java programmers need to use J2ME instead of

J2EE, which is used for computers. It takes a while for a computer programmer

to pick up the skills needed for phone development.

l The screen is quite small, so application messages must be succinct.

l It is more time consuming and difficult for users to type in data. Phones usually

have only 10–20 buttons, whereas a normal computer keyboard has more than

100. A good application design must minimize the input keystrokes for users.

l Phones come with many different standards. These include:
– The size of the screen and resolutions

– Memory size

– The number of buttons (and/or interface methods, such as touch-screen,

joystick, etc.)

144 A. W. LOO
– Operating systems (e.g., Symbian, Linux, Palm, Microsoft, Android, etc.)

– Programming languages
l Phones need to use the services of telephone companies in order to function.

Unfortunately, there are many different standards for these services too.

Due to the existence of different standards, software developers must convert

and test their programs for different brands and models. It is a nightmare for

maintenance, too, as there are many versions of the same program for different

platforms.

An efficient virus does not need any human interface, so small screens and

different buttons on phones do not bother hackers. However, the other problems

discussed above do slow down the development of virus programs. Hackers have

learning curves too, which is why the number of phone viruses is relatively small.

However, we will have a very different scenario in the near future for the following

reasons:

l Phones are now being mass-produced in even greater numbers. Manufacturers

are able to make phones with faster CPUs and more memory while maintaining

the same price ranges. For example, the latest models come with 32 GB of

storage. Phone viruses may become more sophisticated and perform subtler

attacks.

l Software developers are aware of the above problems. There are now more

tools for development, testing, and conversion between different models. It also

takes less time to write programs than it did earlier. Ironically, virus writers also

benefit from this progress.

l The number of business applications and phone users is growing every day.

Hackers now have more to gain financially from attacking phones.

l It is easier to cheat phone users than computer users with social engineering

techniques [35]. The media seldom discuss these kinds of dangers, and phone

manufacturers also downplay the possible risks. Low levels of awareness

among users make them easy targets. They get used to downloading ring

tones, wallpaper, games, etc.
Viruses can masquerade as operating system updates or telephone company

services. Due to small phone screens, very little information about the source

and the received file will be displayed. It is very difficult for users to judge

whether a file comes from a trusted source. The success rate of hacking will

thus be higher, and more attackers will switch to hacking phones as it becomes

more cost effective for them.

ILLUSION OF WIRELESS SECURITY 145
3.7 Countermeasures

Countermeasures will not be effective without cooperation between wireless

device manufacturers, corporations, and users. One party’s actions will change the

behavior of the others. We present their responsibilities in the following sections.
3.7.1 Manufacturer Responsibilities
Some manufacturers claim that mobile phones are safe from hacking. Their

strongest arguments are that attacks must be carried out over short distances and

that hackers do not have enough time to hack the phones.

Unfortunately, this is not always true, as is clear in the following examples:

l The communication distance of Bluetooth devices can be easily extended with

inexpensive antenna, as in the BlueSniper experiments.

l A user might go to the same restaurant/fast food chain for breakfast or lunch

every day. An assiduous hacker has plenty of time to carry out an attack.

l An attacker might be a user’s colleague [36]. There are at least 8 h every day

over a prolonged period in which to make the attack.

l Bluetooth is not the only method of spreading viruses. Users with MMS, GPRS,

or ‘‘WAP push’’ might be convinced to install a virus through social engineer-

ing technique. Once a phone is infected, the virus can replicate itself in the

phones of colleagues or family members. In some countries, mobile telephone

services are less expensive than fixed lines. Many people never turn off their

phones because they simply do not have fixed telephone lines at home. Family

members’ phones have months and even years to infect each other.

New specification, Bluetooth version 3, has been finalized to address the above

weaknesses in April 2009. However, it will take at least another year until devices

supporting the new Bluetooth specification are on the market. Till then, all old

devices are vulnerable to the existing attacks. Furthermore, hackers will always find

new ways to attack. However, some measures should be adopted to make devices

safer and more difficult to attack. These measures include the following:

l Manufacturers should allocate more resources to implement security properly.

l Logs of bluetooth pairing activities should be maintained so that users can

detect any intrusion attempts as soon as possible.

l The default security setting should be at the maximum level.

l Manufacturers should pay attention to HCI design so that users can fine-tune

the security settings easily.

146 A. W. LOO
l Security issues should be discussed in the user’s manual.

l Usually, the easiest way to fix a security flaw is to update the phones’ firmware.

Manufacturers should inform registered users as soon as possible when new

firmware is available.
3.7.2 Corporation Responsibilities
Phones viruses will hit corporations and cause substantial damage in the future. It

is only a matter of time. Equipped with powerful smart phones, employees will

discover new ways to improve their jobs. For example, they can download files from

the company’s computer onto their phones so that they can continue to work at

home. This is better than using USB drives, as employees do not even need to take

the phones out of their pockets or briefcases. When they go home, they may forget to

pull the USB drives from their computers, but they seldom leave their phones in the

office. However, it would be a disaster if the phones were lost or hacked. Security

teams need to be prepared for future challenges. Corporations should take a proac-

tive approach. Examples of the countermeasures they could take include the

following:

l Devise a policy for the use of mobile devices by their employees.

l Learn and monitor the latest developments in phones and other related

technology.

l Employees do not have the knowledge to choose phones with good security

features, because there are so many models. Corporations should provide a list

of phones with good security features and HCI design. If enough corporations

do the same thing, it will force manufacturers to spend more resources on

implementing security features correctly.

l Educate employees to select and use their phones properly. They should be

taught to fine-tune the security features. For example, a short seminar could be

offered to employees, and up-to-date guidelines could be issued. The content of

these guidelines may change over time, as technology and hacking techniques

will continue to advance. The guidelines could include the following:
– Switch the Bluetooth security setting to ‘‘hidden’’ mode.

– Activate Bluetooth only when it is needed.

– Do not accept any unsolicited pairing requests.

– Minimize pairing operations in public areas.

– Monitor the numbers and names of the paired devices on the phone to

discover any suspicious connections.

ILLUSION OF WIRELESS SECURITY 147
– Update the phone’s firmware when there is a new version available.

– Pay attention if the phone consumes power at a faster rate than is normal or

there are any other anomalies.
3.7.3 User Responsibilities
It is the duty of phone users to protect themselves and their employers’ data.

In addition to adhering to the above guidelines, it would be useful for users to do the

following:

l Be vigilant and treat a smart phone as a computer. Almost all of the precautionary

measures for computers can be applied to phones.

l Invest in the time to update their knowledge, for example, by attending

employers’ seminars.

l Be aware of social engineering techniques.

l Check the following logs on the phone, if available:
– GPRS usages

– ‘‘Phone call’’ records

– If the usages show any dramatic increase, the user should try to identify the

problems with assistance of experts.
l Verify the sender of suspicious SMS, MMS, and e-mailing messages on the

phone.

l Encrypt data files on the phones.

l Install antivirus software package for mobile phones.
4. Threats of Public Wireless Networks

Wi-Fi is a more consumer friendly term referring to wireless networks which use

the IEEE802.11 family wireless networking protocols (discussed in Section 2.1.1).

Many telephone service companies, Internet services providers, governments, and

commercial firms set up Wi-Fi networks in public places such as airports, train

stations, bus stations, coffee shops, etc.

Users can, for example, check their e-mail messages, surf the Internet, conduct

e-banking transactions, or access the databases of their employer in a public place, as

long as it is covered by these Wi-Fi networks. ‘‘Hot spots’’ are the places where

people can receive the Wi-Fi signals.

148 A. W. LOO
SomeWi-Fi networks are free of charge. For example, some coffee shops provide

free wireless connections for their clients. Some local or national governments

install free networks in order to promote a better image and/or attract tourists.

Some Wi-Fi networks require the users to subscribe to the service before they can

use networks. Many users believe these networks are safe. However, this is not true

as many wireless network operators fail to implement enough security features.

In the early stage of public Wi-Fi networks, users usually accessed the networks

with notebook computers. Nowadays, many high-end smart phones are Wi-Fi

enabled. There are two ways for owners of such smart phones to surf the Internet:

l Use the telephone signal (e.g., GSM) to access the Internet (Fig. 8).

l Use the Wi-Fi networks (Fig. 9).

The telephone signals are encrypted so the communications are protected.

Although this encryption can be cracked, attackers need expensive facilities. It is

also more difficult to obtain these facilities. At the time of writing, these facilities

are usually used by law enforcement agents and not affordable to ordinary attackers.

Instead of using the telephone signals to surf the Internet, smart phone owners can

use the Wi-Fi signals. Doing this provides them the following advantages:

l The Wi-Fi speed is usually higher.

l The charges (if any) for Wi-Fi connection is usually lower.

l Some places (e.g., inside a mall with thick walls) are not covered by telephone

signals.

On the other hand, the Wi-Fi networks are easier to crack if enough security

features are not properly implemented. Smart phones can automatically connected

to unsecured Wi-Fi networks. It is quite difficult for the owners to distinguish

whether they are accessing the Internet with Wi-Fi or telephone signals due to

poor HCI design. Owners might not be able to detect that their phones switch the

connection methods in a particular places. Thus they do not pay attention to security.
Servers of
telephone company

Telephone signals

Internet

FIG. 8. Using telephone signals.

ISP

Internet

Wi-Fi
access point

Mobile phone

FIG. 9. Using Wi-Fi.

ILLUSION OF WIRELESS SECURITY 149
4.1 War Driving

‘‘War Driving’’ is the act for searching both public and private wireless networks

around a specific area, mapping the population of wireless access points for statisti-

cal purposes. The first officially recognized War Driving was performed by Peter

Shipley in 1999, who presented his work to the hacker community in 2001 [10].

Since then the practice has been conducted in order to gather data to promote

awareness of wireless technology applications.

These statistics can be used to raise awareness of the security problems with

wireless networks [37]. The person who performs War Driving usually takes a

moving vehicle with a wireless equipped computer, such as a notebook computer,

PDA or smart phones. However, if someone performs War Driving for the purposes

stealing Internet access or committing computer crimes, the activity would be

treated as a criminal offence [38].
4.1.1 Tools for Performing War Driving
Wi-Fi equipped computers can use different software packages to perform War

Driving. Wireless security auditor (WSA), a complete wireless network analysis and

auditing program, helps normal users close any vulnerability before hackers try to

break in. Other software packages, such as AirMagnet, Sniffer PDA, and Fluke

Wave Runner, are intended for expert protocol users, and allow the capture of

wireless packets for detailed analysis [39]. Most of these packages can be obtained

from the Internet at no cost.
4.1.2 Survey Results
We summarized the latest War Driving results in Tables A.I–A.III. Although

there is a trend that networks are becoming more secure each year, there are still a

large number of insecure networks. Some experiments have also been conducted

150 A. W. LOO
within commercial areas. The results indicate that ignorance is not limited to

individual users. Insecure networks are also common in many corporations. This

reflects the low level of awareness in both individuals and corporations.
4.2 Possible Attacks

Wireless networks have almost all the security issues of wired networks. Wireless

networks provide many advantages. However, wireless networks cannot replace the

wired connection. Thus both wireless networks and wired networks will continue to

coexist in the foreseeable future. Many messages need to travel through both wired

and wireless networks before they reach their final destinations. In addition to the

old issues, there are some new security threats which are unique to wireless networks

due to the following reasons:

l It is very easy to capture the wireless communications as attackers do not need

to tap to the cables. Even if the wireless communications are encrypted, the

attacker can record the messages and do the analysis at a later time.

l It is more difficult to identify the attackers.

l Attackers need only very simple facilities.

We can consider wireless threats as a superset of the wired problem, as depicted in

Fig. 10.
Wireless threats Wired

FIG. 10. Threats of wired and wireless networks.

ILLUSION OF WIRELESS SECURITY 151
4.2.1 Bogus Access Point
Attackers can set up bogus access points (Fig. 11) in public places. Bogus access

points can have the same SSID of any popular service provider. Once connected, the

bogus access point can direct the user to legitimate servers. The user might believe

his communications are protected by the service provider. However, all commu-

nications go through the access point so the attacker can intercept the information

easily.

On the other hand, the bogus access point can also direct the user to the attacker’s

server. For example, the attacker’s server can masquerade as the user’s bank. It can

ask the user to supply the account number, password, and other sensitive information.
4.2.2 Jamming
Jamming can break communication between users and the legitimate access point.

The attacker listens to the communication first and collects information on the user.

Next he can break the communication at the right moment by sending strong

wireless signals to the user. He can then impersonate the jammed user to continue

communication as in Fig. 12. The access point and server cannot detect this kind of

interruption if there are insufficient security measures.

It is also possible for an attacker to install an access point and impersonate the

server as shown in Fig. 13. Access points can be purchased at a low cost and easily
User’s computer Bogus access point of
attacker

Internet

Legitimate
servers

Attacker’s
servers

FIG. 11. Bogus access point.

Access point

Internet

Jamming device Attacker

User

FIG. 12. User jammed by attacker.

152 A. W. LOO
configured with limited knowledge. Indeed the rogue access point needs only a

stronger signal than the existing access point in order to intercept the user signals.

When the user connects to the attacker’s computer, the attacker can ask the user to

supply his/her password and/or other important information. The attacker can then

use the account and password to attack the network. Similar masquerading attacks

are much more difficult in a wired network. Many vendors of wireless access points

are not providing sufficient security features to protect networks from such attacks.
4.2.3 Man-in-the-Middle Attack
A Man-in-the-Middle (MITM) attack intercepts the message from the network.

The attacker then modifies and/or adds data in the message. This modified message

is injected back into the network to continue its journey. If the attack is successful,

User

Attacker

Jamming device

Attacker’s access point

 User’s access point

FIG. 13. Access point jammed by attacker.

ILLUSION OF WIRELESS SECURITY 153
the attacker can impersonate either the user or the server. Such attacks can create

both confidentiality and integrity problems.

This process is more complex than other attacks. The attacker must have good

communications knowledge and also needs to collect information about the network

before he can launch his attack. However, there are some software packages

designed for this task and they are available in the public domain. An attacker can

use these packages to gain unauthorized access to networks (Fig. 14).
5. Illusions of Encryptions

Let us examine the process of sending a letter from a small town of country A to

another small town of country B. The closest post office will be the one which sorts

and distributes it to a central office. This central post office might send it to another

office with an international airport in country A. The letter will go to the post office

of a big city in country B with its own international airport. The letter will then go

through similar sorting and distribution processes in different post offices before it

reaches its destination. Similarly, any Internet communication messages must be

relayed by many servers before they reach their destination. The situation is even

worse, in fact: there are no physical envelopes. People can read the messages easily

unless their proper protection is put in place.

Send a message Intercept the message

Process the messageSend the modified
message

Modify the message

Original message

e.g., transform 1 million to
David’s account

e.g., transfer 2 million
to John’s account

User Attacker’s notebook

Modified message

Remote servers

FIG. 14. Man-in-the-Middle attack.

154 A. W. LOO
Encryption technologies can solve a lot of problems mentioned. Ironically, they

can also cause illusions. Users might believe that everything is protected once they

use encryption techniques. However, modern computer systems consist of many

different parts and functions. There are many different encryption techniques. Most

of the time, one encryption technique can provide protection to some parts only.

In the rest of this section, we will present some basic concepts of encryptions. We

will then discuss what is actually protected.
5.1 Basic Concept of Encryption

To put it simply, encryption is the process of converting original data into

unreadable code. It can then be transmitted to the destination. Once it reaches the

destination, it can be transformed back into the original message. Even if it is

intercepted by a third party, the attacker cannot understand the meaning of the

code. Nowadays, encryption techniques can also be used to authenticate users or

servers, and to verify the integrity of data.

ILLUSION OF WIRELESS SECURITY 155
5.1.1 Single Key Encryptions
Single key (or secret key) encryption consists of two parts—a key and an

algorithm. An algorithm is a series of complex operations. There are over thousand

encryption algorithms. Many security experts are still trying to develop more

efficient algorithms today. Discussion of the details of these algorithms is beyond

the scope of this chapter. Interested readers should refer to Refs [40–42]. We will

only present a simple example so readers can understand the later part of our

discussion.

For example, party A wants to send a message ‘‘dog’’ to party B. Party A can use

the following technique:

l Key: 2

l Operation (algorithm): shift each character to two positions according to the

alphabetical list as in Fig. 15.

After the transformation, party A will send ‘‘fqi’’ to party B. Party B can convert

it back to ‘‘dog’’ if he has the key ‘‘2’’ and knows the operation. Of course this

encryption can be ‘‘cracked’’ within seconds with the aid of computers. In real life,

the key is usually a long string of characters and the operations are more complex.

It will be very time consuming to crack the encryption. This technique is also called

‘‘symmetric key’’ as both parties have the same key for encryption and decryption.

The single key system has the following problems:

l A key must be sent from one party to another before they can communicate with

each other with encryption. The key itself must be sent in a secure way.

Sometimes this is inconvenient or even impossible.

l Key management can be a time-consuming exercise. For example, party A

wants to talk with party B and C. He needs to keep two keys if he does not want

B to understand the conversation between A and C. If someone wants to

communicate with 100 parties, he needs 100 keys. It will be a very heavy

burden for ordinary users.
b c d ge h i j k l m n o p qf

FIG. 15. Shift each character to two positions.

156 A. W. LOO
5.1.2 Two Keys (Public Key) Encryptions
In the two keys system, user has two keys—one private key and one public key.

He can post his public key on a Web page or send it to his friends through unsecured

e-mail messages. However, he must keep the private key secret.

For example, party B uses the public key of party A to encrypt the message and

send it to party A. Party A can then decrypt the incoming message with his private

key as in Fig. 16.
Party B Party A

2. Receive the key Public key of party A
1. Send public key

of party A

3. Encrypt message
with public key

4. Send encryption
 message

Encrypted message

5. Receive encrypted
 message

Decrypt the
encrypted message
with private key

6.

Private key

FIG. 16. Public key and private key.

ILLUSION OF WIRELESS SECURITY 157
The operations are similar to the following translation example. The user has two

dictionaries (i.e., an English-African and African-English dictionary). We are refer-

ring to a particular African language which is used only by a very small and extinct

tribe. He can distribute the English-African dictionary to all his friends. A friend can

use this dictionary to translate an English message to an African message easily.

His friend can send this message to the user through a unsecured network. The user

can translate it back to English as he has an African-English message (i.e., a

dictionary which is arranged in the sequence of African words).

An attacker cannot translate the African message quickly if he has only an

English-African dictionary. He needs to search the whole dictionary in order to

find one African word because it is arranged in the alphabetical order of English.

Thus it will take a much longer time for the attacker to crack the message.

In theory, most encryptions can be cracked. However, it will be useless for the

attacker if he takes 100 years to crack it with the fastest computer. It will not be a

threat to the sender and recipient as both of them will have long passed away! Public

and private key encryption techniques solve the key management problem. How-

ever, single key is usually more computationally efficient. A lot of modern systems

use both techniques.
5.2 Other Applications of Encryption

In addition to encrypting data, this technique can provide the following functions:

1. Authentication

l It can verify the identity of a party. This could be either an individual or

an organization.

l Traditional authentication depends on account name and password to

authenticate its users. However, it is not safe enough for critical systems,

such as banking systems, for the following reasons:
– Users do not choose their passwords wisely (e.g., their birthdays).

– Users do not protect their passwords properly. For example, they

might write them down and stick them on their computer monitors.

l Basically it is a two keys system (Fig. 17). The server sends a challenge

(usually a string of characters). The user’s computer generates a message

(called response) using his private key and ‘‘challenge.’’ The response is

sent to the server. The server then verifies the response with another key.

The challenge/response is different every time. An attacker will not be

able to crack the system even if he can intercept them.

User

Challenge

Servers

1. Send challenge

3. Send response
Response

4.

Accept or reject connection
request

5. Send decision

2. Generate “response”
using “challenge”
and user’s private key

6. Accept decision
from servers

Verify response with
user’s public key

FIG. 17. Challenge and response.

158 A. W. LOO
2. Digital signatures

l The digital signature technique produces a digital fingerprint which is unique

to a message. It verifies that a message has not been altered in transit.
5.3 Illusions

As discussed earlier, encryption can generate illusions to users because they

believe everything is safe. In many encryption methods, users need to select keys

for the encryption. Weak keys can be cracked quickly and they cannot provide real

protections. Guidelines for good keys/password management include:

ILLUSION OF WIRELESS SECURITY 159
l Do not use a complete word which can be found in a dictionary.

l Do not use the names of your spouse, children, pets, yourself, etc.

l Do not use addresses or telephone numbers.

l Do not write down the keys/passwords.

l Do not reuse keys/passwords for different accounts/devices.

l It should be at least eight characters long.

l It should consist of at least one number, one alphabetical character, and one

special symbol (e.g., #, $, etc.).

l Keys/passwords should be changed periodically.

In addition to password/keys selection, we will examine other illusions one

by one.
5.3.1 Encryption in Routers
Turning on the encryption in the routers only protects the communication between

the user’s computer and the router (Fig. 18). Users’ messages will still go through

the Internet which is unprotected.
Wireless router
with encryption

User’s computer 2

User’s computer 1

IPS’s
computer 1

Web pageWeb page Web page

Remote
Web server

Web page

Web pages

URLURLURLURL

Internet

Protected
by encryption

Not protected

FIG. 18. Encryption in the router.

160 A. W. LOO
5.3.2 Web Server with Secure Socket Layer
Some Web servers use SSL which is basically a public key technique to encrypt

messages (Fig. 19). Most Internet browsers such as Internet Explorer or Firefox can

handle key exchanges and encryptions between the user’s computers and Web

servers automatically. Users do not need to do anything to initiate the encryption.

A particular sign (such as a lock) will be displayed on the certain position of the Web

page. However, a server might not protect all communications. It might only protect

a certain sensitive page such as login pages. Users need to watch the special sign on

every page if he is working on important information. Some companies also have

several servers. Users might be interacting with different servers at different times.

The servers might implement different levels of security.
5.3.3 Virtual Public Network
An employee can access his e-mail or company account in a hot spot if he has a

notebook computer or smart phone. However, because the communication needs to

go through a public network, information can be intercepted by the attacker in the

middle. SSL protects only the communication with the Internet browser as discussed

in Section 5.3.2.

Virtual public network (VPN) is another solution which protects the communica-

tion between two computers. To implement a VPN, a client program needs to be

executed in the user’s computer. Data packets between the user’s computer and the

corporation’s communication will be encrypted.

VPN technology uses the idea of tunneling. VPN tunneling establishes a logical

network connection (Fig. 20). Such connection may include nodes in a public

network. Transmissions between VPN client and server are protected. The security

level is as good as using a private network. That is why we call it virtual private
network. However, communications with other servers will not be protected.
5.3.4 Digital Certificate
Digital certificate is an electronic file which can be used to verify the identity of a

party on the Internet. We can consider it an ‘‘electronic passport.’’ Both individuals

and corporations can be identified by checking the digital certificate. We trust a

passport because we trust that the issuing body (i.e., the government in this case)

does a good job in identifying the passport holder. However, there are some

governments with corrupted officers or poor efficiency. The strength of identifica-

tion depends on the trustworthiness of the issuing government.

Web browser of user’s computer Web server

2. Receive public key
Public key 1.

3. Generate a
 symmetric key

4. Encrypt symmetric
 key with public key

5. Send encrypted
 symmetric key

Encrypted symmetric key 6.

7.

9. Encrypted mesages 8.Communicate with
symmetric key

Send public key
of server

Receive
symmetric key

Decrypt symmetric
key

Communicate
with symmetric key

FIG. 19. Encryption with SSL.

ILLUSION OF WIRELESS SECURITY 161

Internet

User’s computer
(with VPN client)

Not protected

Protected

VPN tunnel

Web server

VPN server

Unsecured connection

FIG. 20. VPN tunnel.

162 A. W. LOO
Digital certificate is similar to the passport case. It is issued by an organization

called a certificate authority (CA). However, there are many CAs which can issue

the digital certificates. An attacker can also issue a certificate to himself. In addition

to checking the digital certificate, users must check the issuing body. Unfortunately

users have very limited knowledge on the trustworthiness of CAs. Corporations

should protect a list of trusted CAs to their users.

6. Conclusion

Technology alone will never be able to solve all security problems. Enhancement

of the coordination between employers, end-users, and wireless facilities manufac-

turers is constantly required. Users should understand that it is their obligation to

ILLUSION OF WIRELESS SECURITY 163
protect their employers’ computer systems by understanding the risks and appropri-

ate countermeasures, and that it would be worthwhile investing their time in updat-

ing their knowledge. Employers and manufacturers should make this process as easy

as possible. Indeed, common sense, constant vigilance, and up-to-date knowledge

are the best weapons in the fight against hacking.

It is also important for corporations to set up a clear user policy. In addition to

establishing the policy, they also need to review it frequently and enforce it

effectively.

Every technology has its weaknesses. The risks of using wireless technology are

relatively low compared with other technologies, provided they are used properly.

Most of the existing threats come from the ignorance of users, improper security

implementations by some manufacturers, and the inactive attitude of many corpora-

tions. Better coordination among these three parties, up-to-date knowledge, and

vigilance will substantially reduce the risks.

There is no silver bullet or panacea in the fight against hacking. However, it is

interesting to note the sad, but true, ‘‘Tiger’’ theory: ‘‘to survive in the jungle, one

does not need to run faster than the tiger. All one needs to do is to run faster than the

other people. The tiger is not interested in chasing the fastest runner.’’ If a corpora-

tion has a reasonable level of security measures, rational hackers will attack other,

weaker organizations, because their hacking will be more cost effective. It always

pays to be the leader in the implementation of proper security measures.
Acknowledgments

This work in part has been supported by the research funding of Lingnan University. Parts of this chapter

have been published in the following papers (by the same author):

l A. Loo, Security threats of smart phones and Bluetooth, Commun. ACM 52 (3) (2009) (© ACM,

2009).

l A. Loo, The myths and truths of wireless security: an end-user perspective, Commun. ACM 51 (2)

(2008) 66–71 (© ACM, 2008).

164 A. W. LOO
Appendix A
Table A.I

WI-FI SECURITY (WAR DRIVING) SURVEY IN 2006

Consideration factors of Wi-Fi security

Cities

Hong Kong London Paris Hannover

WEP/WPA encryption enabled (%) 61.80 60.00 70.50 45.00

Adoption of WEP encryption (%) 79.31 N/A N/A 89.00

Adoption of WPA/WPA2 encryption (%) 20.69 N/A N/A 11.00

Adoption of factory default SSID (%) 44.33 4.00 1.39 0.60

Hiding of SSID (%) N/A 30.00 33.00 8.00

Adoption of 802.11g (%) 82.77 67.60 85.00 51.20

Sample size 4344 Over 260 1000 300
Table A.II

WI-FI SECURITY (WAR DRIVING) SURVEY IN 2007

Consideration factors of Wi-Fi security

Cities

Hong Kong London Macau Paris

WEP/WPA encryption enabled (%) 72.43 65.00 65.12 90.00

Adoption of WEP encryption (%) 72.49 N/A 85.12 41.00

Adoption of WPA/WPA2 encryption (%) 27.51 N/A 14.88 49.10

Adoption of factory default SSID (%) 30.00 1.50 44.36 5

Hiding of SSID (%) N/A 19.40 N/A N/A

Adoption of 802.11g AP (%) 91.00 81.90 89.36 N/A

Sample size 6662 Over 400 2923 18,313

Table A.III

WI-FI SECURITY (WAR DRIVING) SURVEY IN 2008

Consideration factors of Wi-Fi security

Cities

Hong Kong Xian Macau Santiago

WEP/WPA encryption enabled (%) 78 53.90 77.00 84.00

Adoption of WEP encryption (%) 47 37.90 51.00 61.00

Adoption of WPA/WPA2 encryption (%) 31 16.00 26.00 23.00

Adoption of factory default SSID (%) 32 N/A N/A N/A

Hiding of SSID (%) 8 3.00 N/A 77.00

Adoption of 802.11g (%) 97 N/A N/A N/A

Sample size 7388 2015 Nil Over 1700

Appendix B

Table B.I

DIFFERENCES OF DIFFERENT IEEE802.11 STANDARDS

Features

IEEE Version

IEEE802.11 IEEE802.11a IEEE802.11b IEEE802.11g IEEE802.11n

Speed (Mbps) 2 54 11 54 300

Frequency band (GHz) 2.4 5 2.4 2.4 2.4

Finalized in 1997 1999 1999 2003 Not finalized

yet

Indoor coverage range

(m)

�15 �45 �45 �100

Outdoor coverage range

(m)

�30 �90 �90 �400

Advantages l First

standard

l Avoid interference with

other devices such as

cordless phones and

microwave oven

l Less expensive l Compatible with

IEEE802.11b

devices which are

still widely used

l Compatible

with

IEEE802.11b

and

IEEE802.11g
l Most popular before

2003

l Faster than

IEEE802.11b

l Faster than

IEEE b and g
l Has been around the

longest
l Longer coverage range

than 11a

166 A. W. LOO
References

[1] K. Poynter, Review of Information Security at HMRevenue and Customs: Final Report, 2008. http://

webarchive.nationalarchives.gov.uk/þ/http://www.hmtreasury.gov.uk/media/0/1/poynter_review

250608.pdf.

[2] B. Bahli, Y. Benslimane, An exploration of wireless computing risks, Inform. Manage. Comput.

Security 12 (3) (2004) 245–254.

[3] J. Edney, W. Arbaugh, Real 802.11 Security, Addison-Wesley, Boston, MA, 2004.

[4] T. Swaminatha, C. Elden, Wireless Security and Privacy, Addison-Wesley, Boston, MA, 2003.

[5] Professional Information Security Association and Hong Kong Wireless Technology Industry

Association, Hong Kong and Macau Wi-Fi Security Survey (War Driving) 2007, 2008.

[6] Professional Information Security Association and Hong Kong Wireless Technology Industry

Association, Hong Kong and Macau Wi-Fi Security Survey (War Driving) 2008, 2009.

[7] G. Valadon, F. Le Goff, C. Berger, Daily Walks in Paris: A Practical Analysis of Wi-Fi Access

Points, ACM, New York, NY, 2007.

[8] Viruslist.com, 2009. http://www.viruslist.com/en/find?words¼warþdrivingþ.

[9] ZerOne Security Team, War-Driving 2008. 2008. http://bigpack.blogbus.com/files/12265721420.

pdf.

[10] H. Berghel, Wireless infidelity I: war driving, Commun. ACM 47 (9) (2004) 21–26.

[11] Reuters News, Wireless Networks Easy to Hack. 8 August 2005. http://www.itweb.co.za/sections/

internet/2005/0508081002.asp?S¼Reuters&A¼REU&O¼FPW.

[12] Associate Press, Florida Man Charged with Stealing Wi-Fi: Practice Is Common, but Arrests Are

Unusual. 6 July 2005. http://www.msnbc.msn.com/id/8489534.

[13] A. Leary, Wi-Fi cloaks a new breed of intruder, St. Petersburg Times 2005. July 4.

[14] J. Wakefield, Wireless Hijacking under Scrutiny, 2005. http://news.bbc.co.uk/1/hi/technology/

4721723.stm.

[15] M. Maxim, D. Pllio, Wireless Security, McGraw-Hill, New York, NY, 2002.

[16] A. Orebaugh, Wireshark & Ethereal Network Protocol Analyzer Toolkit, Syngress, Rockland, MA,

2007.

[17] C. Sanders, Practical Packet Analysis: Using Wireshark to Solve Real-World Network Problems,

No Starch Press, San Francisco, CA, 2007.

[18] B. Ives, K.R. Walsh, H. Schneider, The domino effect of password reuse, Commun. ACM 47 (4)

(2004) 75–78.

[19] J. Chen, M. Jiang, Y. Liu, Wireless LAN security and IEEE802.11i, IEEEWireless Commun. 12 (1)

(2005) 27–36.

[20] J. McCullough, Caution! Wireless Networking, Wiley, Chichester, 2004.

[21] H.I. Bulbul, I. Batmaz, M. Ozel, Wireless Network Security: Comparison of WEP (Wired Equiva-

lent Privacy) Mechanism, WPA (Wi-Fi Protected Access) and RSN (Robust Security Network)

Security Protocols, e-Forensics, Scotland, 2008.

[22] R. McMillan, ‘‘BlueBag’’ PC Sniffs out Bluetooth Flaws, IDG News Services, San Francisco, CA,

2006.

[23] M. Repo, Going Around with Bluetooth in Full Safety, F-Secure, Helsinki, 2006.

[24] Computer Weekly, The Cybermen Fight Back. 2006. http://www.bcs.org/server.php?

show¼conWebDoc.5959.

[25] M. Bialoalowv, Bluetooth Security Review, 2005. http://www.securityfocus.com/infocus/1830.

[26] B. Hopkins, R. Antony, Bluetooth for Java, Apress, New York, NY, 2003.

ILLUSION OF WIRELESS SECURITY 167
[27] Lakshmi, Bluetooth Standard and IPv6, 2008. http://www.ipv6.com/articles/applications/Bluetooth.

htm.

[28] Y. Shaked, A. Wool, Cracking the Bluetooth pin, in: Proceedings of 3rd USENIX/ACM Conference

on Mobile Systems, Applications, and Services, 2005.

[29] M. Herfurt, Detecting and Attacking Bluetooth-Enabled Cellphones at the Hannover Fairground,

CeBIT, Hannover, 2004.

[30] B. Laurie, A. Laurie, Serious Flaws in Bluetooth Security Lead to Disclosure of Personal Data,

A.L. Digital Ltd, London, 2004. http://www.thebunker.net/security/bluetooth.htm.

[31] K. Zetter, Security Cavities Ail Bluetooth, http://www.wired.com/politics/security/news/2004/08/

64463.

[32] G. Cova, X. Huagang, G. Qiang, E. Guerrero, R. Ricardo, J. Estevez, A perspective of state-of-the-

art wireless technologies for e-health applications,IT in Medicine & Education 1 (2009) 76–81.

[33] B. Schneier, CardSystems Exposes 40 Million Identities. Schneier on Security, June 2005. http://

www.schneier.com/blog/archives/2005/06/cardsystems_exp.html.

[34] D. Tynan, Computer Privacy, O’Reilly, Sebastopol, CA, 2005.

[35] H. Berghel, Phishing mongers and posers, Commun. ACM 49 (4) (2006) 21–25.

[36] D. Llett, Mafia Insiders Infiltrating Firms, 2006. http://News.Com.

[37] C. Hurley, R. Rogers, F. Thornton, B. Baker, WarDriving and Wireless Penetration Testing,

Syngress, Boston, MA, 2007.

[38] J.C. Sipior, B.T. Ward, Unintended invitation: organizational Wi-Fi use by external roaming users,

Commun. ACM 50 (8) (2007) 72–77.

[39] IBM Corporation, Security Research: Wireless Security Auditor (WSA), 2009.

[40] E. Cayirci, Security in wireless ad hoc and sensor networks, Wiley, Chichester, 2009.

[41] G. Schudel, Router Security Strategies: Securing IP Network Traffic Planes, 2008.

[42] J.R. Vacca, Guide to Wireless Network Security, Springer, New York, NY, 2006.

Brain–Computer Interfaces
for the Operation of Robotic
and Prosthetic Devices
ADVAN

ISSN: 00
DENNIS J. MCFARLAND
Laboratory of Neural Injury and Repair, Wadsworth
Center, New York State Department of Health, Albany,
New York, USA
JONATHAN R. WOLPAW
Laboratory of Neural Injury and Repair, Wadsworth
Center, New York State Department of Health, Albany,
New York, USA
Abstract
A brain–computer interface (BCI) uses signals recorded from the brain to

convey the user’s intent. BCIs can be used for communication or can provide

control signals for robotic and prosthetic devices. In studies to date, both

invasive and noninvasive recording methods have proved effective and have

reached comparable levels of performance. The major challenge for both inva-

sive and noninvasive BCI-based robotic control is to achieve the speed, accu-

racy, and reliability necessary for real-world applications. These requirements

vary with the specific application and with the control strategy employed.
1.
 I
ntroduction . 170
2.
 B
rain–Computer Interface Research and Development 171
3.
 B
CI Movement Control . 176
4.
 B
CI Operation of Robotic and Prosthetic Devices 178
5.
 C
urrent and Future Developments in BCI Movement Control 180
CES IN COMPUTERS, VOL. 79 169 Copyright © 2010 Elsevier Inc.

65-2458/DOI: 10.1016/S0065-2458(10)79004-5 All rights reserved.

170 D.J. MCFARLAND AND J.R. WOLPAW
6.
el

T

go

se

co
C

e

h

o

l

m

onclusion . 183
A
cknowledgments . 184
R
eferences . 184
1. Introduction

The electrical activity of the brain produces signals that are detectable on the

scalp, on the cortical surface, or within the brain. Brain–computer interfaces (BCIs)

translate these signals into outputs that communicate a user’s intent without the

participation of peripheral nerves and muscles [1] (see Fig. 1). Because they do not

depend on neuromuscular control, BCIs can provide communication and control

options for people with devastating neuromuscular disorders such as amyotrophic
Device
commands

Signal features
Signal

acquisition
and

processing

Translation
algorithm

BCI System

FIG. 1. Basic design and operation of any BCI system. Signals from the brain are acquired by

ctrodes on the scalp or brain and processed to extract signal features that reflect the user’s intent.

ese features are translated into commands to operate a device. The user must develop and maintain

d correlation between his/her intent and the signal features employed by the BCI; and the BCI must

ect and extract features that the user can control and must translate those features into device

mands (adapted from Ref. [1]).

BRAIN–COMPUTER INTERFACES 171
lateral sclerosis (ALS), brainstem stroke, cerebral palsy, and spinal cord injury. The

central purpose of BCI research and development is to enable these users to convey

their wishes to caregivers, to use word-processing programs and other software, or

even to control a robotic arm or a neuroprosthesis. More recently, there has been

speculation that BCIs could be useful to people with lesser, or even no, motor

impairments.

It has been known since the pioneering work of Hans Berger over 80 years ago

that the electrical activity of the brain can be recorded noninvasively by electrodes

on the surface of the scalp [2]. Berger observed that a rhythm of about 10 Hz,

reactive to light, was prominent on the posterior scalp. He called it the alpha rhythm.

This and other observations by Berger showed that the electroencephalogram (EEG)

could serve as an index of the gross state of the brain.

Electrodes on the surface of the scalp are at a distance from the source of the

signals in brain tissue and are separated from it by the coverings of the brain, the

skull, subcutaneous tissue, and the scalp. As a result, these signals are considerably

degraded and only the synchronized activity of large numbers of neural elements can

be detected. This limits the resolution with which brain activity can be monitored.

Furthermore, scalp electrodes also pick up activity from sources other than the brain.

These other sources include environmental noise (e.g., 50- or 60-Hz activity from

power lines) and biological noise (e.g., electrical activity from the heart, skeletal

muscles, and eyes). Nevertheless, since the time of Berger, many studies have used

the EEG very effectively to gain insight into brain function. Many of these studies

have used averaging to separate EEG from superimposed electrical noise.

There are two major paradigms used in EEG research. Evoked potentials are

transient waveforms that are phase-locked to an event such as a visual stimulus.

They are typically analyzed by averaging many similar events in the time domain.

The EEG also contains oscillatory features. Although these oscillatory features may

occur in response to specific events, they are usually not phase-locked and are

typically studied by spectral analysis. Historically, most EEG studies have examined

phase-locked evoked potentials. Both of these major paradigms have been studied in

BCI research (see Ref. [1] for review).
2. Brain–Computer Interface Research
and Development

The term brain–computer interface originated with Vidal [3] who devised a BCI

system based on visual evoked potentials [3]. His users viewed a diamond-shaped

red checkerboard illuminated with a xenon flash. By attending to different corners of

172 D.J. MCFARLAND AND J.R. WOLPAW
the flashing checkerboard, Vidal’s users could generate right, up, left, or down

commands. This enabled them to move through a maze presented on a graphic

terminal. The EEG was digitized and analyzed by an IBM360 mainframe and the

experimental events were controlled by a XDS Sigma 7 computer. The users first

provided data to train a stepwise linear discriminant function. The discriminant

function was then applied online in real-time to allow navigation of the maze. Thus,

Vidal [3] used signal-processing techniques to realize real-time analysis of the EEG

with minimal averaging. The waveforms shown by Vidal [3] suggest that his BCI

used EEG activity in the time frame of the N100–P200 (i.e., negative and positive

peaks at approximately 100 and 200 ms, respectively) components [4].

Vidal’s achievement was an interesting demonstration or proof of principal.

At the time, it was far from practical given that it depended on a shared mainframe

system with limited processing capacity. Vidal [3] also included in his system online

removal of non-EEG (i.e., ocular) artifacts. Somewhat earlier, Dewan [5] instructed

users to explicitly use eye movements in order to modulate their brain waves.

He showed that subjects could learn to transmit Morse code messages using EEG

activity associated with eye movements. The fact that both the Dewan and Vidal

BCIs depended on eye movements made them somewhat less interesting from

scientific or clinical points of view, since they required actual muscle control

(i.e., eye movements) and simply used EEG to reflect the resulting gaze direction.

Farwell and Donchin [6] reported the first use of an EEG-based spelling device

that used the P300 evoked potential (see Fig. 2A). Their users viewed a 6�6 matrix

of the letters of the alphabet and several other symbols. They focused attention on

the desired selection as the rows and columns of the matrix were repeatedly flashed

to elicit evoked potentials. Whenever the desired selection flashed, it elicited a P300

evoked potential from the brain (i.e., a positive voltage peak at about 300 ms) [4].

By detecting this response, the BCI system was able to recognize which item the

user wanted to select. Farwell and Donchin [6] found that their users were able to

spell the word ‘‘brain’’ with the P300 spelling device. In addition, they did an offline

comparison of detection algorithms and found that the stepwise linear discriminant

analysis was generally best. The fact that the P300 potential reflects attention rather

than simply gaze direction implied that this BCI did not depend on muscle (i.e., eye-

movement) control. Thus, it represented a significant advance. Several groups have

further developed this BCI method (e.g., [7–9]).

Wolpaw et al. [10] reported the first use of sensorimotor rhythms (SMRs)

(i.e., 9–13 Hz activity recorded from central scalp locations associated with motor

function) for cursor control (see Fig. 2B). SMRs are EEG rhythms that are modu-

lated by movement or the imagination of movement and are spontaneous in the sense

that they do not require specific stimuli for their occurrence. People learned to use

SMRs to move a cursor to hit a target located on the top or bottom edge of a video screen.

V
ol

ta
ge

 (
a/

d
u)

A B

C

Other
choices
Desired
choice

–50

0

50

100

150
–100 0 100 200 300 400 500

0
0

1

2

3

4

5 10 15 20 25 30

Time (ms)

Pz

A
m

pl
itu

de
 (

mV
)

Bottom target

Frequency (Hz)
Top
target
Bottom
target

Top target

1 s 10 mV

100 mV

100 mV

ON ON ON
OFF OFF OFF

20 s

0.5 sRow of neurons

Glass
cone

Cortex

Neurites

Skull bone Gold wire
Cement

Power
induction Transmitter

FIG. 2. Present-day human BCI systems. (A, B) Noninvasive and (C) invasive. (A) P300 BCI.

A matrix of possible selections is presented on a screen and scalp EEG is recorded while groups of

these selections flash in succession. The BCI system determines which choice evokes a P300 response

(see text). (B) Sensorimotor rhythm (SMR) BCI. Scalp EEG is recorded over sensorimotor cortex. Users

control SMR amplitudes to move a cursor to a target on the screen (see text). (C) Cortical neuronal BCI.

Electrodes implanted in cortex detect action potentials of single neurons. Users control neuronal firing

rates to move a cursor to a target on the screen (see text) (adapted from Ref. [1]).

BRAIN–COMPUTER INTERFACES 173
Cursor movement was controlled by SMR amplitude (measured by spectral analy-

sis). A distinctive feature of this task is that it required the user to rapidly switch

between two states in order to select a particular target. The rapid bidirectional

nature of the Wolpaw et al. [10] paradigm made it distinct from prior studies that

174 D.J. MCFARLAND AND J.R. WOLPAW
produced long-term unidirectional changes in brain rhythms as a new therapeutic

technique (e.g., [11]). A series of subsequent studies showed that the signals that

controlled the cursor were actual EEG activity and also that covert muscle activity

did not mediate this EEG control (e.g., [12, 13]).

These initial SMR results were subsequently replicated by others (e.g., [14, 15])

and extended to multidimensional control [16, 17]. Together, these P300 and SMR

BCI studies showed that noninvasive EEG recording of brain signals can serve as the

basis for communication and can control devices.

More recently, a number of laboratories have explored the possibility of develop-

ing BCIs using single-neuron activity detected by microelectrodes implanted in

cortex (e.g., [18, 19]; see Fig. 2C). Much of this research had been done in

nonhuman primates. However, there have been trials in human users (e.g., [18]).

Other studies have shown that recordings of electrocorticographic (ECoG) activity

from the surface of the brain can also provide signals for a BCI (e.g., [20]). To date

these studies have indicated that invasive recording methods could also serve as the

basis for BCIs. At the same time, important issues concerning their suitability for

long-term human use remain to be resolved.

Communication and control applications are interactive processes that require the

user to observe the results in order to maintain good performance and to correct

mistakes. For this reason, actual BCIs need to run in real-time and to provide real-

time feedback to the user. While many early BCI studies satisfied this requirement

(e.g., [10, 15]), later studies have often been based on offline analyses of prerecorded

data (e.g., [21]). For example, in the Lotte et al. [22] review of studies evaluating

BCI signal classification algorithms, most had used offline analyses. Indeed, the

current popularity of BCI research is probably due in part to the ease with which

offline analyses can be performed on publicly available data sets. While such offline

studies may help to guide actual online BCI investigations, there is no guarantee that

offline results will generalize to online performance. The user’s brain signals are

often affected by the BCI’s outputs, which are in turn determined by the algorithm

that the BCI is using. Thus, it is not possible to predict results exactly from offline

analyses, which cannot take those effects into account.

Muller and Blankertz [14] have advocated a machine-learning approach to BCI in

which a statistical analysis of a calibration measurement is used to train the system.

The goal of this approach is to develop a ‘‘zero-training’’ method that provides

effective performance from the first session. They contrast this approach with one

based on training users to control specific features of brain signals (e.g., [10]).

A system that can be used without extensive training is appealing since it requires

less initial effort on the part of both the BCI user and the system operator. The

operation of such a system is based upon the as yet uncertain premise that the user

can repeatedly and reliably maintain the specified correlations between brain signals

BRAIN–COMPUTER INTERFACES 175
and intent. Figure 3 presents three different conceptualizations of where adaptation

might take place to establish and maintain good BCI performance. In the first the

BCI adapts to the user, in the second the user adapts to the BCI, and in the third both

user and system adapt to each other.

It is certainly possible to devise a system that does not require training on the part

of the user. From a practical standpoint, the issues are whether such a system is

optimal and whether any benefit from extensive training is worth the time that is

required for the user. Certainly, it is desirable for a BCI system to operate as rapidly

and accurately as possible when first used by the user. However, adaptation on the

part of the user is inevitable. If continued adaptation by the system is part of normal

use then it has no real cost for the user. To the extent that system adaptation requires

knowledge of the users’ intent, it may be necessary to periodically conduct some

kind of calibration run. In this case, there is a cost in terms of user time and effort.

However, disabled individuals who would actually benefit from a BCI system are

not casual users and would presumably be willing to invest time and effort to

optimize operation.

A number of BCI systems are designed to detect the user’s performance of specific

cognitive tasks. Curran et al. [23] suggest that cognitive tasks such as navigation

and auditory imagery might be more useful in driving a BCI than motor imagery.

However, SMR-based BCIs may have several advantages over systems that

depend on complex cognitive operations. For example, the structures involved

in auditory imagery (i.e., the subjective experience of hearing in the absence

of auditory stimulation) are also likely to be driven by auditory sensory input.
The BCI adapts The user adapts The BCI and the user
adapt to each other

User

BCI system

User

BCI system

User

BCI system

FIG. 3. Three approaches to BCI design. The arrows indicate whether the BCI, the user, or both adapt

to optimize and maintain BCI performance (adapted from Ref. [12]).

176 D.J. MCFARLAND AND J.R. WOLPAW
Wolpaw andMcFarland [17] report that with extended practice users report that motor

imagery is no longer necessary to operate an SMR-based BCI. As is typical of many

simple motor tasks, performance becomes automatized with extended practice. Auto-

matized performance may be less likely to interfere with mental operations that users

might wish to engage in concurrent with BCI use. For example, composing a

manuscript is much easier if the writer does not need to think extensively about

each individual keystroke. Thus a BCI might be more practical if it does not depend

upon complex cognitive operations.

As noted above, EEG recording may be contaminated by nonbrain activity (e.g.,

line noise, muscle activity, etc.) [24, 25]. Activity recorded from the scalp represents

the superposition of many signals, some of which originate in the brain and some of

which originate elsewhere. These include potentials generated by the retinal dipoles

(i.e., eye movements and eye blinks) and the facial muscles. It is noteworthy that

mental effort is often associated with changes in eye blink rate and muscle activity

(e.g., [26]). BCI users might generate these artifacts without being aware of what

they are doing simply by making facial expressions associated with effort.

Facial muscles can generate signals with energy in the spectral bands used as

features in an SMR-based BCI. Muscle activity can also modulate SMR activity.

For example, a user could move his/her right hand to reduce SMR activity over the

left hemisphere. This sort of mediation of the EEG by peripheral muscle movements

was a concern during the early days of BCI development. As noted earlier, Dewan

[5] trained users to send Morse code messages using occipital alpha rhythms

(i.e., 9–12 Hz activity recorded from the back of the scalp and associated with visual

functions) modulated by voluntary movements of eye muscles. For this reason,

Vaughan et al. [13] recorded EMG from 10 distal limb muscles while BCI users

used SMRs to move a cursor to targets on a video screen. EMG activity was very low

in these well-trained users. Most importantly, the correlations between target posi-

tion and EEG activity could not be accounted for by EMG activity. Similar studies

have been done with BCI users moving a cursor in two dimensions [17]. These

studies show that SMR modulation does not require actual movements or muscle

activity.
3. BCI Movement Control

Movement control applications can be based on either kinematic control or goal

selection. For kinematic control, the BCI specifies the exact movements of

the device continuously and in real time. For goal selection, the BCI simply

indicates the desired outcome, and downstream hardware and software handle the

BRAIN–COMPUTER INTERFACES 177
continuous kinematic control that achieves the outcome. Goal selection is also

known as inverse kinematic control since the specific control parameters are com-

puted from knowledge of the goal. Goal selection is much less demanding in terms

of the complexity and rate of the control signals the BCI needs to provide. For

example, to control a robotic arm in three-dimensional space, kinematic control

requires that the BCI provide three control signals continuously in real time, while

goal selection simply requires that the BCI specify the final location of the hand part

of the robotic arm. Goal selection might also convey more complex commands, such

as ‘‘make coffee.’’ This would of course require a downstream device with detailed

and continually updated knowledge of the environment. The advantage of goal-

based control is that the BCI itself needs to provide much less information. On the

other hand, kinematic control can provide more flexible control in a wider variety of

circumstances. It is also possible to combine the two approaches (e.g., [27]).

The control requirements of robotic and prosthetic medical devices vary widely.

A wheelchair could be operated with two independent control signals, for example,

one for angular direction and another for speed of movement. At the same time,

extremely high accuracy and reliability is essential if the wheelchair is to be used in

a potentially hazardous environment (e.g., city traffic). In contrast, a prosthetic arm

would need many more degrees of freedom if all of the joints are to be controlled,

but accuracy and reliability may be less critical (e.g., picking up objects).

As discussed earlier, BCIs can be either noninvasive or invasive. Present-day

noninvasive BCIs derive the user’s intent from scalp-recorded electroencephalo-

graphic (EEG) activity. They are clearly able to provide simple communication and

control to people with severe disabilities (e.g., [28–30]). Present-day invasive BCIs

determine the user’s intent from neuronal action potentials or local field potentials

recorded from within the cerebral cortex or from its surface. They have been studied

mainly in nonhuman primates and to a limited extent in people [18–20, 31–37].

These invasive BCIs face significant technical difficulties and entail clinical risks.

Recording electrodes must be implanted in or on the cortex and must function well

for long periods (i.e., many years), and they risk infection and other kinds of damage

to the brain. The impetus to develop invasive BCI methods is based in part on the

common belief [18, 38–42] that only invasive BCIs will be capable of providing

their users with real-time multidimensional sequential control of a robotic arm or a

neuroprosthesis.

Nevertheless, in an early study Wolpaw and McFarland [16] showed that a

noninvasive BCI that uses scalp-recorded EEG activity (i.e., SMRs) can provide

humans with multidimensional movement control. Furthermore, more recent studies

[17, 43] showed that a noninvasive EEG-based BCI that incorporates an adaptive

algorithm and other technical improvements can give humans two-dimensional

movement control and sequential control comparable in movement time, precision,

178 D.J. MCFARLAND AND J.R. WOLPAW
and accuracy to that achieved by invasive BCIs in monkeys [32, 36] or humans [18].

Two-dimensional control with SMRs has been achieved by other groups as well

(e.g., [44, 45]). Most recently, McFarland et al. [46] showed that an EEG-based BCI

can provide three-dimensional movement control comparable to that achieved by

invasive methods [19].
4. BCI Operation of Robotic and
Prosthetic Devices

Chapin et al. [33] provided the first demonstration of direct robotic control using

brain signals. They first trained rats to obtain water rewards while action potentials

were recorded from neurons in motor cortex. Subsequently, four of six animals

learned to use these brain signals alone (without actually pressing the bar) to move

a robotic arm in one dimension to obtain water.

Carmena et al. [32] trained monkeys to operate a lever to position a cursor over a

target and then adjust the cursor size so as to obtain juice rewards. During this initial

phase, signals were recorded from neurons in motor cortex. Subsequently, the

animals were able to use these brain signals to perform the task. Carmena et al.

[32] report that the monkeys were able to perform the task even when their arms did

not move. In a subsequent analysis of the Carmena et al. [32] data, Lebedev et al.

[47] reported that as training progressed; the neuronal activity became less repre-

sentative of actual hand movements and more representative of the robotic actuator.

This suggests that the neuronal activity became tuned to the robotic task as a result

of brain plasticity (i.e., adaptive changes in brain function such as learning). This

group also developed a system combining neural signals with sensor-driven reflex-

like reactions [48]. An offline simulation using the original monkey data showed

that the shared control paradigm improved performance over that produced by

neural signals alone.

Taylor et al. [49] compared neutrally controlled cursor and robotic arm move-

ments in two monkeys trained to make reaching movements in virtual three-dimen-

sional space while neuronal activity was recorded from motor cortex. Subsequently,

the animals learned to control the cursor and robotic arm with neural activity alone.

They found that robotic arm movement was slower than cursor movement and that

the animals tended to make sharper turns with cursor movement (due to the

mechanical properties of the robotic arm). This same group subsequently trained a

different pair of monkeys to move a robotic arm in three dimensions, and in addition,

to control a gripper [50]. This allowed the monkeys to perform a self-feeding task.

The authors refer to this as ‘‘embodied prosthetic control.’’

BRAIN–COMPUTER INTERFACES 179
To date, invasive studies in animals have shown that direct neural control of

prosthetic devices is possible. These studies have been performed in animals with

intact motor systems, and have relied on pretraining with actual movement.

Recently, Hochberg et al. [18] trained a human user with a cortical implant to

open and close a prosthetic hand and to control a simple robotic arm in two

dimensions. This individual had a high spinal cord injury that precluded training

the BCI with signals produced during actual hand movements. Neurons in motor

cortex served as input to linear decoders that controlled the prosthesis or robotic

arm. The authors state that their user was able to control the robotic arm within about

10 min and could use it to grip a piece of candy and deliver it to the hand of a

technician.

Millan et al. [51] used noninvasive EEG signals recorded over sensorimotor areas

to provide two human users with control of a mobile robot. These users imagined

three mental states corresponding to ‘‘turn left,’’ ‘‘turn right,’’ and ‘‘move for-

ward.’’ User commands were determined by a classifier that used spectral features

from the EEG as input and were combined with robot sensor information to allow

navigation. Both users successfully moved the robot through several rooms.

Galan et al. [52] describe a similar system that was used to control a simulation of

the movement of a wheelchair through a virtual environment. This system

incorporated intelligent control of the virtual wheelchair so that it only allowed for

movement that was consistent with environmental information from the wheel-

chair’s sensors. Galan et al. [52] state that their machine-learning approach allows

for autonomous operation over long periods of time without adaptive algorithms.

Excluding the first session, one of their user’s performances varied between 50%

and 100% correct choices during sessions of 10 trials while the other user varied

between 40% and 80% correct choices. Thus, while the system did not require

continuous adaptation, performance was quite variable.

At the Wadsworth Center we have extended our studies using SMRs for multidi-

mensional and mouse-like control of cursor movements [17, 43, 46] to control of a

simple robotic arm [53]. In prior training, the user learned to move the cursor in two

dimensions from the center of the screen to a target at one of 20 possible locations on

the periphery of the screen. Then, the robotic arm was placed in front of the screen

and its movements were substituted for those of the cursor. Performance with the

robotic arm was comparable to that with the cursor both in the percent of trials

completed within the allotted time and in the median time per trial. The median time

was slightly longer for the arm because its movement was slowed to accommodate

its tendency for mechanical oscillations.

Bell et al. [54] described a humanoid robot controlled by the P300 response of a

human operator. The robot was equipped with a video camera that displayed objects

in its environment to the human user. These objects were sequentially and repeatedly

180 D.J. MCFARLAND AND J.R. WOLPAW
outlined in the user’s display and the EEG response was used to determine which

object the user wished to select. Based on this information, the robot would pick up

the desired object. Accuracy improved with more repetitions. The authors report that

the robot could select from among four possible choices in 5 s with 95% accuracy.

Pfurtscheller et al. [55] trained a tetraplegic patient to control a hand orthosis

(i.e., a device applied to a human limb to control or enhance movement) with EEG

recorded over sensorimotor cortex. The patient was originally trained to use motor

imagery to produce changes in the EEG. Following this initial training, the patient

could use these EEG signals to control the opening and closing of his normally

paralyzed hand by the orthosis. Muller-Putz et al. [29] trained a different patient with

a spinal cord lesion to control an implanted neuroprosthesis. Again, the patient was

originally trained to use motor imagery to modulate EEG. The patient then used his

EEG to step through several phases of a hand grip.

Collaboration between RIKEN and TOYOTA produced a BCI system based upon

motor imagery that could control a wheelchair [56]. These investigators used left-

hand and right-hand imagery for lateral control and foot imagery for forward

control. In addition, they added EMG from a cheek muscle to provide a reliable

stop signal.

In summary, BCI studies using both invasive and noninvasive recording of brain

activity have been successful in demonstrating the feasibility of controlling robotic

devices. However, for the most part, these studies have only been demonstrations of

the potential use of BCI technology for robotic and prosthetic applications. The

practical application of invasive approaches will require solutions to problems of

long-term recording stability and safety. Noninvasive methods require development

of recording methodology that can meet the needs of everyday use and can be

supported by caregivers who are not skilled technicians. Both methodologies will

need to improve their speed, accuracy, and reliability in order to provide truly useful

robotic or prosthetic control.
5. Current and Future Developments
in BCI Movement Control

To date, most groups using invasive BC methods to control movements have used

direct kinematic control. This is probably due to the basic-science research tradition

from which these researchers come: they have traditionally focused on understand-

ing the neural basis of movement control by studying neuronal correlates of kine-

matic parameters. Noninvasive studies have been more mixed; while some have

developed kinematic control, others have pursued a goal-selection approach.

BRAIN–COMPUTER INTERFACES 181
Robotic and prosthetic applications do not appear to represent a unique challenge

for BCI technology. Investigators using both invasive methods and noninvasive

methods achieved a smooth transition from paradigms that control cursor movements

to those that control actual mechanical devices. The major problem for BCI applica-

tions is in providing fast, accurate, and reliable control signals. Certainly, develop-

ments in robotics will be useful for systems used by actual patients, but these

developments will not by themselves solve the problems that are specific to

BCI development.

The practical use of kinematic control may require a larger number of indepen-

dent control signals than are currently available from BCI technology. For example,

robotic arms often have seven or more degrees of freedom, and the human hand and

arm have even more. As noted above, invasive methods have achieved three

dimensions of movement control plus grasp control [50] and noninvasive methods

have achieved two dimensions of movement control plus selection (i.e., grasp)

control [43] and three dimensions of movement control [46]. At the same time,

the goal-selection strategy (i.e., reverse kinematic control) is certainly applicable to

robotic applications with current BCI methodology, and may provide a good

alternative for control of complex and sequential movements.

Several commercial endeavors have recently produced inexpensive devices that

are purported to measure EEG. Both Emotiv and Neurosky have developed products

with a limited number of electrodes that do not use conventional gel-based recording

technology [57]. These devices are intended to provide input for video games. It is

not clear to what extent these devices use actual EEG activity as opposed to scalp

muscle activity or other nonbrain signals. Given the well-established prominence of

EMG activity in activity recorded from the head, it seems likely that such signals

account for much of the control produced by these devices.

Both noninvasive and invasive methods could benefit from improvements in

recording methods. Current invasive methods have not yet dealt adequately with

the need for long-term performance stability. The brain’s complex reaction to an

implant is still imperfectly understood and can impair long-term performance.

Current noninvasive (i.e., EEG) electrodes require a certain level of skill in the

person placing them, and require periodic maintenance to maintain sufficiently good

contact with the skin. More convenient and stable electrodes are under development.

Improved methods for extracting key EEG features, for translating those features

into device control, and for training users should also help to improve BCI

performance.

Developments in robotic technology may also facilitate BCI use. Kim et al. [58]

identify several potential areas of interest. These include shared control between the

user and robotic device, impedance control in the robotic device, and soft actuators.

As discussed earlier, shared control involves combining user commands with device

182 D.J. MCFARLAND AND J.R. WOLPAW
intelligence (e.g., [48,52]). Kim et al. [58] note that the neuromuscular system

adaptively modulates mechanical impedance in a manner appropriate for the task

at hand. BCI signals could be used to control this aspect of robotic arm operation as

well as positioning. Soft actuators deal with the safety issues inherent in human

interactions while at the same time maintaining adequate performance.

Recent developments in computer hardware have provided compact portable

systems that are extremely powerful. Use of digital electronics has also lead to

reductions in the size and improvements in the performance of EEG amplifiers.

Thus, it is no longer necessary to use a large time-shared mainframe as was the case

for Vidal [3]. Standard laptops can easily handle the vast majority of real-time BCI

protocols. There have also been improvements in signal-processing and machine-

learning algorithms. Coupled with the discovery of new EEG features for BCI use

and the development of new paradigms for user training, these improvements are

gradually increasing the speed and reliability of BCI communication and control.

These developments can be facilitated by the use of a standard BCI-related software

platform such as BCI2000 [59].

BCI2000 is a general-purpose research and development system that can readily

incorporate alone or in combination any brain signals, signal-processing methods,

output devices, and operating protocols. BCI2000 consists of a general standard for

creating interchangeable modules designed according to object-oriented principles

(see Fig. 4). These consist of a source module for signal acquisition, a signal-

processing module, and a user application. Configuration and coordination of
Event markers

Event markersEvent markers

Brain signals Control signals
Signal

processing
User

application

Operator

VisualizationSystem configuration

Source

storage

FIG. 4. BCI2000 design. BCI2000 consists of four modules: operator, source, signal processing, and

application. The operator module handles system configuration and online presentation of results to the

operator or investigator. During operation, information is communicated from source to signal processing

to user application and back to source (adapted from Ref. [59]).

BRAIN–COMPUTER INTERFACES 183
these three modules is accomplished by a fourth operator module. To date many

different source modules, signal-processing modules, and user applications have

been created for the BCI2000 standard (see http://www.bci2000.org/BCI2000/

Home.html).

A number of specific realizations of the BCI2000 standard are available and

illustrate the utility of this approach. EEG is recorded with a number of different

commercial amplifiers. In some cases, the computer is interfaced with the EEG

amplifiers through analogue-to-digital (A/D) converters such as the Data Transla-

tion DT3000 series PCI boards. In other cases, such as the g.USBamp by g.tec, the

amplifier and A/D converter are a single unit that interfaces via USB ports. Acqui-

sition modules are available for both of these cases, as well as for several others [60].

These acquisition modules work interchangeably with a number of different signal-

processing modules. Oscillatory signals can be quantified by Fourier-based spectral

analysis, autoregressive spectral analysis, or digital filtering. Interchangeable signal-

processing modules are available for each of these methods. Finally, there are

several distinct realizations of the BCI2000 application module, as the specific

task performed by the BCI user may vary. Since the source code is readily available

online (http://www.bci2000.org/BCI2000/Home.html), these modules can be modi-

fied. Alternatively, the documentation describes how to create entirely new modules.

In the latter case, the advantage of the BCI2000 standard is that only the new module

needs to be created since the others will still be completely functional and will

interface with it seamlessly.

The speed and accuracy of current BCI technology limits its utility to users who

have few other options. As such, developments in the next 10 years will probably

focus on this group of users and involve technical issues related to making systems

suitable for home use. This will require BCI systems that are robust and usable by

nonexpert caregivers. Use of BCI devices by individuals without severe motor

impairments will depend upon new scientific developments that are currently unpre-

dictable. Devices that claim to use EEG but probably rely on artifacts (e.g., electrical

signals from muscles or the eyes) will probably continue to appear on the market.
6. Conclusion

How far BCI technology will develop and how useful it will become depend on

the success and focus of future research and development. At present, it is apparent

that BCIs can serve the basic communication needs of people whose severe motor

disabilities prevent them from using conventional augmentative communication

devices.

184 D.J. MCFARLAND AND J.R. WOLPAW
Current noninvasive (i.e., EEG) methods require a certain level of skill in the

person placing them, and require periodic maintenance to maintain sufficiently good

contact with the skin. More convenient and stable electrodes are under development.

Improved methods for extracting key EEG features, for translating those features

into device control, and for training users should also help to improve BCI perfor-

mance. Current invasive methods have not yet resolved all the issues associated with

long-term use. Research now underway is attempting to do so. Invasive and nonin-

vasive BCIs have achieved similar levels of multidimensional movement control

and both approaches warrant continued research efforts.

Up to the present, almost all BCI research has taken place in the laboratory.

If BCIs are to become important new communication and control options for people

with motor disabilities, careful and comprehensive clinical research is essential.

Furthermore, if widespread use is to become possible, the practical issues of

economic feasibility and technical support must be satisfactorily addressed.

Acknowledgments

Work in the authors’ laboratory has been supported by grants from NIH (HD30146 (NCMRR/NICHD)

and EB00856 (NIBIB & NINDS)), the James S. McDonnell Foundation, the Altran Foundation, the ALS

Hope Foundation, and the Brain Communication Foundation. We thank Stefan Winden for his helpful

comments on this chapter.

References

[1] J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan, Brain–computer

interfaces for communication and control, Clin. Neurophysiol. 113 (2002) 767–791.

[2] E. Neidermeyer, Historical aspects, in: E. Neidermeyer, F. Lopes da Silva (Eds.), Electroencepha-

lography: Basic Principals, Clinical Applications, and Related Fields, fifth Ed., Lippincott Williams

and Wilkins, Philadelphia, PA, 2005, pp. 1–15.

[3] J.J. Vidal, Real-time detection of brain events in EEG, Proc. IEEE 65 (1977) 633–641.

[4] C.S. Herrmann, R.T. Knight, Mechanisms of human attention: event-related potentials and oscilla-

tions, Neurosci. Biobehav. Rev. 25 (2001) 465–476.

[5] E.M. Dewan, Occipital alpha rhythm eye position and lens accommodation, Nature 214 (1967)

975–977.

[6] L.A. Farwell, E. Donchin, Talking off the top of your head: toward a mental prosthesis utilizing

event-related brain potentials, Electroencephalogr. Clin. Neurophysiol. 70 (1988) 510–523.

[7] J.D. Bayliss, S.A. Inverso, A. Tentler, Changing the P300 brain computer interface, Cyberpsychol.

Behav. 7 (2004) 694–704.

[8] C. Guger, S. Daban, E. Sellers, C. Holzner, G. Kraus, R. Carabalona, F. Gramatica, G. Edlinger,

How many people are able to control a P300-based brain–computer interface (BCI)? Neurosci. Lett.

462 (2009) 94–98.

[9] D.J. Krusienski, E.W. Sellers, D.J. McFarland, T.M. Vaughan, J.R. Wolpaw, Toward enhanced P300

speller performance, J. Neurosc. Methods 167 (2008) 15–21.

BRAIN–COMPUTER INTERFACES 185
[10] J.R. Wolpaw, D.J. McFarland, G.W. Neat, C.A. Forneris, An EEG-based brain–computer interface

for cursor control, Electroencephalogr. Clin. Neurophysiol. 78 (1991) 252–259.

[11] M.B. Sterman, L.R. MacDonald, R.K. Stone, Biofeedback training of sensorimotor EEG in man and

its effect on epilepsy, Epilepsia 15 (1974) 395–416.

[12] D.J. McFarland, W.A. Sarnacki, T.M. Vaughan, J.R. Wolpaw, Brain–computer interface (BCI)

operation: signal and noise during early training sessions, Clin. Neurophysiol. 116 (2005) 56–62.

[13] T.M. Vaughan, L.A. Miner, D.J. McFarland, J.R. Wolpaw, EEG-based communication: analysis of

concurrent EMG activity, Electroencephalogr. Clin. Neurophysiol. 107 (1998) 428–433.

[14] K.-R. Muller, B. Blankertz, Towards noninvasive brain–computer interfaces, IEEE Signal Process.

Mag. 23 (2006) 125–128.

[15] G. Pfurtscheller, D. Flotzinger, J. Kalcher, Brain–computer interface—a new communication device

for handicapped persons, J. Microcomput. Appl. 16 (1993) 293–299.

[16] J.R. Wolpaw, D.J. McFarland, Multichannel EEG-based brain–computer communication, Electro-

encephalogr. Clin. Neurophysiol. 90 (1994) 444–449.

[17] J.R. Wolpaw, D.J. McFarland, Control of a two-dimensional movement signal by a non-invasive

brain–computer interface, Proc. Natl. Acad. Sci. USA 51 (2004) 17849–17854.

[18] L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D.R.

D. Penn, J.P. Donoghue, Neuronal ensemble control of prosthetic devices by a human with tetra-

plegia, Nature 442 (2006) 164–171.

[19] D.A. Taylor, S. Helms Tillery, A.B. Schwartz, Direct cortical control of 3D neuroprosthetic devices,

Science 296 (2002) 1829–1832.

[20] E.C. Leuthardt, G. Schalk, J.R. Wolpaw, J.G. Ojemann, D.W. Moran, A brain–computer interface

using electrocorticographic signals in humans, J. Neural Eng. 1 (2004) 63–71.

[21] B. Blankertz, K.-R. Muller, D.J. Krusienski, G. Schalk, J.R. Wolpaw, A. Schlogl, G. Pfurtscheller,

J. Millan, M. Schroder, N. Birbaumer, The BCI competition III: validating alternative approaches to

actual BCI problems, IEEE Trans. Neural Syst. Rehabil. Eng. 14 (2006) 153–159.

[22] F. Lotte, M. Congedo, A. Lecuyer, F. Lamarche, B. Arnaldi, A review of classification algorithms

for EEG-based brain–computer interfaces, J. Neural Eng. 4 (2007) 1–13.

[23] E. Curran, P. Sykacek, M. Stokes, S.J. Roberts, W. Penny, I. Johnsrude, A. Owen, Cognitive tasks

for driving a brain–computer interface system: a pilot study, IEEE Trans. Neural Syst. Rehabil. Eng.

12 (2004) 48–54.

[24] M. Fatourechi, A. Bashashati, R.K. Ward, G.E. Birch, EMG and EOG artifacts in brain computer

interface systems: a survey, Clin. Neurophysiol. 118 (2007) 480–494.

[25] I.I. Goncharova, D.J. McFarland, T.M. Vaughan, J.R. Wolpaw, EMG contamination of EEG:

spectral and topographical characteristics, Clin. Neurophysiol. 114 (2003) 1580–1593.

[26] E.M. Whitham, T. Lewis, K.J. Pope, S.P. Fitzbibbon, C.R. Clark, S. Loveless, D. DeLosAngeles,

A.K. Wallace, M. Broberg, J.O. Willoughby, Thinking activates EMG in scalp electrical recordings,

Clin. Neurophysiol. 119 (2008) 1166–1175.

[27] R. Boulic, D. Thalmann, Combined direct and inverse kinematic control for articulated figure

motion editing, Comput. Graph. 11 (1992) 189–202.

[28] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kubler, J. Perlmouter,

E. Taub, H. Flor, A spelling device for the paralyzed, Nature 398 (1999) 297–298.

[29] G.R. Muller-Putz, R. Scherer, G. Pfurtscheller, R. Rupp, EEG-based neuroprosthesis control: a step

towards clinical practice, Neurosci. Lett. 382 (2005) 169–174.

[30] T.M. Vaughan, D.J. McFarland, G. Schalk, W.A. Sarnacki, D.J. Krusienski, E.W. Sellers,

J.R. Wolpaw, The Wadsworth BCI research and development program: at home with BCI, IEEE

Trans. Neural Syst. Rehabil. Eng. 14 (2006) 229–233.

186 D.J. MCFARLAND AND J.R. WOLPAW
[31] R.A. Andersen, S. Musallam, B. Pesaran, Selecting signals for a brain–machine interface, Curr.

Opin. Neurobiol. 14 (2004) 720–726.

[32] J.M. Carmena, M.A. Lebedev, R.E. Crist, J.E. O’Doherty, D.M. Santucci, D.F. Dimitrov, P.G. Patil,

C.S. Henriquez, M.A.L. Nicolelis, Learning to control a brain–machine interface for reaching and

grasping by primates, PLoS Biol. 1 (2003) 193–208.

[33] J.K. Chapin, K.A. Moxon, R.S. Markowitz, M.A.L. Nicolelis, Real-time control of a robot arm using

simultaneously recorded neurons in the motor cortex, Nat. Neurosci. 2 (1999) 664–670.

[34] P.R. Kennedy, R.A.E. Bakay, M.M. Moore, K. Adams, J. Goldwaithe, Direct control of a computer

from the human central nervous system, IEEE Trans. Rehabil. Eng. 8 (2000) 198–202.

[35] B. Pesaran, J.S. Pezaris, M.S. Sahani, P.P. Mitra, R.A. Andersen, Temporal structure in neuronal

activity during working memory in macaque parietal cortex, Nat. Neurosci. 5 (2002) 805–811.

[36] M.D. Serruya, N.G. Hatsopoulos, L. Paminski, M.R. Fellows, J.P. Donoghue, Instant neural control

of a movement signal, Nature 416 (2002) 141–142.

[37] J. Wessberg, C.R. Stambaugh, J. Kralik, P.D. Beck, M. Laubach, J.K. Chapin, J. Kim, J. Biggs,

M.A. Srinivasan, M.A. Nicoleis, Real-time prediction of hand trajectory by ensembles of cortical

neurons in primates, Nature 40 (2000) 361–365.

[38] J.K. Chapin, Neural prosthetic devices for quadriplegia, Curr. Opin. Neurobiol. 13 (2000) 1–5.

[39] J.P. Donoghue, Connecting cortex to machines: recent advances in brain interfaces, Nat. Neurosci.

5 (2002) 1085–1088.

[40] E.E. Fetz, Real-time control of a robotic arm, Nat. Neurosci. 2 (1999) 583–584.

[41] P. Konig, P.F. Verschure, Neurons in action, Science 296 (2002) 1817–1818.

[42] M.A.L. Nicolelis, Actions from thoughts, Nature 409 (2001) 403–407.

[43] D.J. McFarland, D.J. Krusienski, W.A. Sarnacki, J.R. Wolpaw, Emulation of computer mouse

control with a noninvasive brain–computer interface, J. Neural Eng. 5 (2008) 101–110.

[44] F. Cincotti, D. Mattia, F. Aloise, S. Bufalari, G. Schalk, G. Oriolo, A. Cherubini, M.G. Marciani,

F. Babiloni, Non-invasive brain–computer interface system: towards its application as assistive

technology, Brain Res. Bull. 75 (2008) 796–803.

[45] A. Kostov, M. Polak, Parallel man–machine training in development of EEG-based cursor control,

IEEE Trans. Rehabil. Eng. 8 (2000) 203–205.

[46] D.J. McFarland, W.A. Sarnacki, J.R. Wolpaw, Electroencephalographic (EEG) control of three-

dimensional movement, Soc. Neurosci. Abst. 2008. Available at http://www.abstractsonline.com/

viewer/viewAbstract.asp?CKey={CD433551-1B3F-48F0-9FD0-3DE3D157AE87}&MKey=

{AFEA068D-D012-4520-8E42-10E4D1AF7944}&AKey={3A7DC0B9-D787-44AA-BD08-

FA7BB2FE9004}&SKey={FA317E68-3331-4F94-B0D9-6FA70986F1E4} (November 2008)

Abstract 778.4.

[47] M.A. Lebedev, J.M. Caramena, J.E. O’Doherty, M. Zacksenhouse, C.S. Henriquez, J.C. Principe,

M.A.L. Nicolelis, Cortical ensemble adaptation to represent velocity of an artificial actuator

controlled by a brain–machine interface, J. Neurosci. 25 (2005) 4681–4683.

[48] H.K. Kim, S.J. Biggs, D.W. Schloerb, J.M. Carmena, M.A. Lebedev, M.A.L. Nicolelis,

M.A. Srinivasan, Continuous shared control for stabilizing reaching and grasping with brain–

machine interfaces, IEEE Trans. Biomed. Eng. 53 (2006) 1164–1173.

[49] D.M. Taylor, S.I. Helms Tillery, A.B. Schwartz, Information conveyed through brain-control: cursor

vs robot, IEEE Trans. Neural Syst. Rehabil. Eng. 11 (2003) 195–199.

[50] M. Velliste, S. Perel, M.C. Spalding, A.S. Whitford, A.B. Schwartz, Cortical control of a prosthetic

arm for self-feeding, Nature 453 (2008) 1098–1101.

[51] J.R. Millan, F. Renkens, J. Mourifio, W. Gerstner, Noninvasive brain-actuated control of a mobile

robot by human EEG, IEEE Trans. Biomed. Eng. 51 (2004) 1026–1033.

BRAIN–COMPUTER INTERFACES 187
[52] F. Galan, M. Nuttin, E. Lew, P.W. Ferrez, G. Vanacker, J. Philips, J.R. Millan, A brain-actuated

wheelchair: asynchronous and non-invasive brain–computer interfaces for continuous control of

robots, Clin. Neurophysiol. 119 (2008) 2159–2169.

[53] D.J. McFarland, J.R. Wolpaw, Brain–computer interface operation of robotic and prosthetic devices,

Computer 41 (2008) 48–52.

[54] C.J. Bell, P. Shenoy, R. Chalodhorn, R.P.N. Rao, Control of a humanoid robot by a noninvasive

brain–computer interface in humans, J. Neural Eng. 5 (2008) 214–220.

[55] G. Pfurtscheller, C. Guger, G. Muller, G. Krausz, C. Neuper, Brain oscillations control hand orthosis

in a tetraplegic, Neurosci. Lett. 292 (2000) 211–214.

[56] K. Choi, A. Cichocki, Control of a wheelchair by motor imagery in real time, in: C. Fyfe, D. Kim,

S.-Y. Lee, H. Yin (Eds.), Intelligent Data Engineering and Automated Learning (IDEAL’2008),

Springer, Berlin, 2008, pp. 330–337.

[57] E. Singer, Brain games, Technol. Rev. (2008) 82–84 July/August.

[58] H.K. Kim, S. Park, M.A. Srinivasan, Developments in brain–machine interfaces from the perspec-

tive of robotics, Hum. Mov. Sci. 28 (2009) 191–203.

[59] G. Schalk, D.J. McFarland, T. Hinterberger, N. Birbaumer, J.R. Wolpaw, BCI2000: a general-

purpose brain–computer interface (BCI) system, IEEE Trans. Biomed. Eng. 51 (2004) 1034–1043.

[60] J. Mellinger, G. Schalk, BCI2000: a general-purpose software platform for BCI research,

in: G. Dornhege, J.R. Millan, T. Hinterberger, D.J. McFarland, K.-R. Muller (Eds.), Towards Brain–

Computer Interfacing, MIT Press, Cambridge, MA, 2007, pp. 581–593.

The Tools Perspective on
Software Reverse Engineering:
Requirements, Construction,
and Evaluation
ADVAN

ISSN: 00
HOLGER M. KIENLE
Department of Computer Science
University of Victoria, Canada
HAUSI A. MÜLLER
Department of Computer Science
University of Victoria, Canada
Abstract
Software reverse engineering is a subdiscipline of software engineering, striving to

provide support for the comprehension of software systems by creating suitable

representations of the system in another formor higher level of abstraction. In order

to be effective, reverse engineering needs tool support, which provides functional-

ity to extract low-level facts from the systems, to analyze and generate knowledge

about the systems, and to visualize that knowledge so that reverse engineers are able

to comprehend the aspects of the system that they are interested in effectively.

This chapter explores the issue of building tools for reverse engineering. Since

tools are an important part of conducting research in reverse engineering, it is

worthwhile to reflect upon the state of tool building with the goal to advance

upon it—and thus to advance reverse engineering research as a whole. We tackle

this goal by looking at the issue of tools through a set of lenses. The purpose of

each lens is to focus on a critical topic for tool building by surveying the current

state-of-the-art and identifying challenges that need to be addressed.

In this chapter we discuss three lenses, namely (1) requirements for reverse

engineering tools, (2) construction of reverse engineering tools, and (3) evalua-

tion of reverse engineering tools. The first lens identifies a number of generic

quality attributes that reverse engineering tools should strive to meet.
CES IN COMPUTERS, VOL. 79 189 Copyright © 2010 Elsevier Inc.

65-2458/DOI: 10.1016/S0065-2458(10)79005-7 All rights reserved.

190 H.M. KIENLE AND H.A. MÜLLER
The second lens approaches tools from the observation that since tool building is

a key activity in research, it should be conducted in an effective and rather

predictable manner. The third lens looks at the role that tools play in supporting

the evaluation of reverse engineering research. While each lens looks at the topic

from a different perspective, taken together they provide a holistic picture of tool

building in the reverse engineering domain.
1.
 I
ntroduction and Background . 190
1
.1. T
echniques, Processes, and Tools . 192
1
.2. T
ool Components . 194
1
.3. E
xploring Tools Through a Set of Lenses 198
2.
 T
ool Requirements Lens . 199
2
.1. S
calability . 201
2
.2. I
n
teroperability . 206
2
.3. C
ustomizability . 212
2
.4. U
sability . 221
2
.5. A
doptability . 227
2
.6. R
equirements of Exchange Formats . 236
2
.7. D
iscussion . 240
3.
 T
ool Construction Lens . 242
3
.1. T
ool Architecture . 243
3
.2. C
omponent-Based Tool Development . 247
3
.3. M
odel-Driven Tool Development . 252
3
.4. D
iscussion . 254
4.
 T
ool Evaluation Lens . 258
4
.1. E
valuation-Driven Tool Building . 262
4
.2. T
heory-Grounded Tool Building . 265
4
.3. D
iscussion . 268
5.
 C
onclusions . 271
R
eferences . 274
1. Introduction and Background
‘‘Week by week his understanding of his world improves, the white spaces on his map

filling up with trails and landmarks.’’

Hari Kunzru, The Impressionist

Broadly speaking, reverse engineering is the process of extracting know-how or

knowledge from a human-made artifact [1]. A human-made artifact refers to an

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 191
object that embodies knowledge or know-how that was previously discovered or

applied by the artifact’s creator. An alternative definition is provided by the

US Supreme court, who defines reverse engineering as ‘‘a fair and honest means

of starting with the known product and working backwards to divine the process

which aided in its development or manufacture’’ [2].

Reverse engineering has a long-standing tradition in many areas, most notably in

traditional manufacturing (e.g., automotive and medical devices [3]), but also in

technology-oriented and information-based industries such as semiconductors, digi-

tal media, telecommunications, electronics, and computer software. The latter area

is the focus of this chapter. In the literature, the term software reverse engineering is
used to emphasize that the target is some kind of software (system). Since we are

only concerned with software we will simply use reverse engineering when it is clear

from the context that we mean software reverse engineering.

In the software domain, Chikofsky and Cross define reverse engineering as ‘‘the

process of analyzing a subject system to [. . .] create representations of the system in

another form or at a higher level of abstraction’’ [4]. Thus, the reverse engineering

process typically starts with lower levels of abstraction (e.g., source code of a high-

level programming language) to create higher levels of understanding (e.g, UML class

or interaction diagrams). Note that this definition emphasizes that reverse engineering

of software produces some kind of knowledge or facts about the software. In contrast,

in the manufacturing area the goal of reverse engineering is often to come up with a

process that allows to duplicate an existing artifact in the absence of technical

drawings, computer models, or other kinds of technical documentation [3].

To thwart a possible misconception, the purpose of software reverse engineering

rarely is to develop competing software [4, 5]. Reverse engineering of ‘‘foreign’’

software is much more likely for the purpose of security assessments, uncovering

cryptographic techniques, and ensuring interoperability. In this respect, there is a

significant difference between reverse engineering in the software and

manufacturing domains. While it can be very challenging to duplicate a manufac-

tured artifact (e.g., a fighter plane), it is trivial to duplicate software via copying it.

The open source community has demonstrated that the functionality of huge soft-

ware systems can be ‘‘duplicated’’ by implementing the software from scratch.

In fact, many software engineers wish that they could do just that—to scrap their

legacy systems and rebuild the same functionality with a cleaner design and differ-

ent technologies. This leads to the most common purpose of software reverse

engineering which is also the focus of this chapter, namely to enable software

owners to gain a better understanding of their own software assets so that they are

in a position to evolve it.

It is safe to assume that reverse engineering has been performed since the very

beginning of software in the form of debugging and disassembly. Academic interest

192 H.M. KIENLE AND H.A. MÜLLER
into reverse engineering started around the mid-1980s with dispersed publications

appearing in a number of conferences and journals (e.g., see reprints of articles in

Ref. [6])—leading to the emergence of a dedicated community and the first Working

Conference on Reverse Engineering (WCRE) in 1993. While it is fair to speak of a

dedicated community of reverse engineering researchers [7], one should understand

that reverse engineering blends into other research areas such as program compre-

hension (a.k.a. program understanding) [8], reengineering [6], software maintenance

and evolution [9, 10], compiler construction (front-end) [11], software visualization

[12], software metrics [13], software modeling [14, 15], and support for collabora-

tion [16, 17].

1.1 Techniques, Processes, and Tools

Academic research in reverse engineering over at least two decades has yielded

a broad portfolio of different techniques, processes/methods, and tools. Important

techniques include representations of call graphs, impact analysis, identification

of abstract data types, clustering, clone detection (a.k.a. code duplication), archi-

tecture recovery, redocumentation, cliché recognition, and extraction of business

rules. The diversity of reverse engineering techniques is also demonstrated by the

software artifacts that these techniques are targeting [17]. Traditionally, techni-

ques have focused on code of high-level programming languages such as Cobol

and C—and to a lesser degree assembly—as well as databases (so-called data

reverse engineering [18]). There are also dynamic analyses that provide tracing

information about the running system [19]. More recently, reverse engineering has

broadened its range to include web sites, bug tracking and repository information,

and higher level documentation in the form of UML diagrams and natural

language texts.

A reverse engineering process gives important guidance on issues such as identi-

fying relevant stakeholders for a reverse engineering project, setting project goals,

defining workflows, and selecting appropriate tools and techniques. At the micro-

level, reverse engineers follows a workflow that is characterized by three distinct

activities: extraction, analysis, and synthesis/visualization. To illustrate these activ-

ities, we describe how a reverse engineer would obtain a call graph from the subject

system [20].

Extraction: A reverse engineering activity starts with extracting facts from a

software system’s sources (i.e., the artifacts). For a static call graph, only facts

from the source code itself need to be extracted. It is necessary to know the

procedures (or methods) as well as the calls made within the procedures. Further-

more, the position of the calls within the source code (e.g., source file name and line

number) is often of interest.

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 193
Analysis: Certain analyses are performed that use the facts generated in the

extraction step. To obtain a call graph, the analysis has to match procedure calls

with the corresponding procedure definitions. This matching is not necessarily

trivial, for instance, for a call via a function pointer, or a dynamic method call.

With this information it is possible to construct a graph structure that represents the

call graph.

Synthesis: Results of analyses are presented to the user in an appropriate form.

Information typically is presented in a mixture of both textual and graphical form.

A call graph is typically rendered with nodes (representing procedures), arcs (repre-

senting procedure calls), and node labels (giving the name of the procedure).

A reverse engineering tool may show a static rendering of the call graph (e.g.,

Ciao/CIA [21, 22]) or may offer interactive functionality to explore the graph, for

example, via applying layout algorithms (e.g., Rigi [23]).

In the micro-level process, reverse engineers use different comprehension strate-

gies such as bottom-up (i.e., starting from the code and then grouping parts of the

program into higher level abstractions), and top-down (i.e., starting with hypotheses

driven by knowledge of the program’s domain and then mapping them down to the

code) [24]. Some reverse engineers try to understand a program systematically in

order to gain a global understanding, while others take an as-needed approach,

restricting understanding to the parts related to a certain task [25]. The latter

approach can be seen as just-in-time comprehension (JITC) [26, 27]; its concept is

nicely illustrated by Holt’s law of maximal ignorance: ‘‘Don’t learn more than you

need to get the job done’’ [28].

The micro-level process exclusively focuses on the technical perspective and

assumes a single, isolated reverse engineer. This is appropriate for a simple reverse

engineering project such as a well-defined technical problem or an academic

exemplar. In contrast, the macro-level process aims to be more holistic, addressing

not only technical, but also business and policy issues and stakeholders [29]. Thus,

the activities of the micro-level are driven by the macro-level process, which sets

high-level objectives for the overall reverse engineering effort.

Besides techniques and processes, tools are a crucial result of reverse engineering

research. Tools are needed to support and validate novel techniques. Typically,

reverse engineering techniques require tool support because performing them

manually is impractical. Algorithms embodied in a technique may be too complex

or cumbersome to perform manually (e.g., creating a call graph manually via code

inspection). Also, whenever the target software system changes, the technique needs

to be reapplied (e.g., recreating of a call graph whenever the system changes).

As a result, it is expected in the reverse engineering community that a proposed

technique is accompanied by a supporting tool and validation that demonstrates the

technique’s feasibility. While the supporting tool is typically a proof-of-concept

194 H.M. KIENLE AND H.A. MÜLLER
prototype rather than an industrial-strength tool, it should meet certain key require-

ments such as scalability and usability, or other objective evaluation criteria. The

tool is then evaluated against the requirements or criteria with the help of empirical

studies (Section 4). But tools are not strictly a vehicle to validate techniques—they

are more than that because there is a symbiotic relationship between building of

tools and exploring of research ideas [30].

On the one hand, the construction of tools is an important part of reverse

engineering research. On the other hand, tool construction is neither simple nor

cheap to accomplish [31]. Tool building is costly, requiring significant resources.

This is especially the case if the tool has to be robust enough to be used in

(industrial) user studies. Sometimes a significant part of the resources of an entire

research group are devoted to building, evaluating, and improving a tool.
1.2 Tool Components

The reverse engineering community has developed many reverse engineering

tools—prominent examples include Bauhaus [32, 33], Ciao/CIA [21, 22], Columbus

[34], GUPRO [35], Moose [30], Rigi [23], PBS [36], and SHriMP [37]. Importantly,

most of these reverse engineering tools have a similar software architecture, con-

sisting of several components with standard functionalities (Fig. 1): extractor,

analyzer, visualizer, and repository. The extractor, analyzer, and visualizer compo-

nents reflect the reverse engineering activities of extraction, analysis, and synthesis,

respectively (see Section 1.1). In the following, we give a brief overview of the four

tool component types.
Extractors Visualizers

Artifacts

Analyzers

Repository

FIG. 1. Components of reverse engineering tools.

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 195
1.2.1 Repository
The most central component is the repository. It gets populated with facts

extracted from the target software system. Analyses read information from the

repository and possibly augment it with further information. Information stored in

the repository is presented to the user with visualizers.

Examples of concrete implementations of repositories range from simple text files

to commercial databases. Many reverse engineering tools store data in text files and

define their own exchange format [38]. For example, the Rigi tool defines the Rigi

Standard Format (RSF) [23, 39], which has been adopted by a number of other tools

as well. The Moose tool defines the MSE exchange format [40]. Many tool now also

support the GXL format [41].

The data in a repository conforms to a schema.1 The purpose of a schema is to

impose certain constraints on otherwise unrestricted (data) structures. An important

design consideration for a schema is its granularity—it ‘‘has to be detailed enough to
provide the information needed and coarse grained enough for comfortable

handling’’ [42].

Schemas are often discussed exclusively in the context of repositories. This is

understandable because of the repository’s central role to facilitate data exchange.

However, the remaining three component types also adhere to schemas, but this is

often not recognized because these schemas are typically implicit and internal. For

example, extractors, analyzers, and visualizers often use in-memory data structures

(such as abstract syntax trees or control-flow graphs). For data export, these com-

ponents then have to transform the data from their internal representations in order to

conform with the repository’s schema.
1.2.2 Extractors
Extractors populate the repository with facts obtained from the artifacts that make

up the subject system. The extractor has to provide all the facts that are of interest to

its clients (i.e., subsequent analyses).

Most reverse engineering tools focus on the extraction of static facts from source

code. Static extraction techniques use a number of different approaches. Some

extractors use compiler-technology to parse the source. Many parsers are in fact

based on compiler frontends. For example, Rigi’s Cþþ parser is built on top of

IBM’s Visual Age compiler [43]. However, there are also parsers that have been

built from scratch such as the Columbus Cþþ parser [34].
1 Schemas are also known as meta-models and domain models.

196 H.M. KIENLE AND H.A. MÜLLER
In contrast to parsing, there are lightweight approaches such as lexical extractors,

which are based on pattern matching of regular expressions. Lexical approaches are

not precise, that is, they can produce fact bases with false positives (i.e., facts that do

not exist in the source) and false negatives (i.e., facts that should have been extracted

from the source) [44]. On the other hand, they are more flexible than parsers [45].

Typically, lexical extractor tools are agnostic to the target language, and reverse

engineers use them to write ad hoc patterns to extract information required for a

particular task. Such lightweight approaches are a natural match for JITC.
1.2.3 Analyzers
Analyzers query the repository and use the obtained facts to synthesize useful

information for reverse engineering tasks. Reverse engineering research has devel-

oped a broad spectrum of automated analyses [46, 47].

Analyses can be distinguished by the kinds of representation that they operate upon:

lexical, syntactic, control flow, data flow, and semantic [48]. Call graphs, for instance,

can be constructed based on lexical matching of function declarations and calls.

However, depending on the target language this approach can produce a significant

number of false positives and false negatives. For example, in C a lexical approach

cannot distinguish between macros and function calls. To reduce such imprecisions,

a syntactic approach can be used. To improve precision of the call targets, pointer

analysis could be used, which requires the construction of a flow graph.

Another approach to classify analyses is with the help of dichotomies [49, 50]—

important ones in the context of reverse engineering are as follows:

Static versus dynamic: Static analyses produce information that is valid for all

possible executions, whereas dynamic analyses results are only valid for a specific

program run. To assist the reverse engineer, both types of analyses are useful. There

are tools that combine both static and dynamic information such as Shimba [51].

Sound versus unsound: Sound analyses produce results that are guaranteed to hold
for all program runs. Unsound analyses make no such guarantees. Thus, dynamic

analyses are always unsound. Unsound analyses are rather common in the reverse

engineering domain. As explained above, many techniques that construct call graphs

are unsound because they make simplifying assumptions, thus yielding a potentially

wrong or else incomplete result. Still, even if the result of an analysis is unsound,

it may give valuable information to a reverse engineer.

Speed versus precision: Static analyses typically trade speed for precision or vice

versa. This trade-off is well exemplified by the field of pointer analysis, which has

produced various different analysis techniques [52]. Speed is often a problem for

analyses that rely on data-flow information, especially if the target systems has

millions of lines of code.

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 197
Multilanguage versus single-language: Many analyses are tailored toward a

specific programming language (e.g., pointer analysis or clustering for C). However,

for a (global) analysis to be truly useful in a heterogeneous environment, language

boundaries must be crossed. In fact, many industrial systems are based on multiple

languages [53].
1.2.4 Visualizers
For software engineers to make the most effective use of the information that is

gathered by extractors and augmented by analyzers, the information has to be

presented in a suitable form by software visualizers. Mili and Steiner define software

visualization as ‘‘a representation of computer programs, associated documentation

and data, that enhances, simplifies and clarifies the mental representation the

software engineer has of the operation of a computer system’’ [54]. Since the

complexity of software makes it difficult to visualize, it is important that tools

choose suitable techniques. Particularly, different kinds of visualizations are more

or less effective, depending on the comprehension task [55]. Some information

needs to be suitably condensed to give a birds-eye view of the subject system

(e.g., call dependencies between files or modules rather than procedures), other

information has to be presented in the most suitable representation for human

consumption (e.g., call dependencies shown in tabular reports or directed graphs).

Many reverse engineering tools use graphs to convey information [56]. The Rigi

environment represents software structures as typed, directed graphs and provides a

graph visualizer/editor to manipulate the graphs [23]. Rigi graphs can have different

colors (to distinguish node and arc types), but all nodes and arcs have the same

shape. Polymetric views utilize height and width of nodes, and width of edges to

convey additional (e.g., metric) information [57]. The SHriMP visualization tool has

a view that represents graphs with a nested layout [58]. Leaf nodes can be opened up

to reveal, for example, a text editor (e.g., to view source) or an HTML viewer (e.g.,

to view Javadoc) [59].

Approaches also differ on how the visualized information can be manipulated.

For example, one can distinguish between different levels of modifiability:

Static information: Static information is read-only such as a textual report or a

static picture of a graph or diagram. Viewers for such information can offer naviga-

tional aids such as hypermedia to navigate between pieces of information [60].

Generation of views from static information: Even if the underlying static infor-

mation cannot be modified, viewers can offer customizable views to selectively

suppress and highlight information. Views can be created by applying filters or layouts.

Rigi, for instance, has filters to suppress the rendering of certain nodes and arcs.

198 H.M. KIENLE AND H.A. MÜLLER
Enhancement of static information: Some approaches do not allow the user to

change the underlying information, but to enhance it. For example, a viewer might

allow the user to add annotations to read-only entities. Rigi allows the user to group

nodes into a parent node, facilitating the construction of a superimposed hierarchical

tree-structure on the static node structure.

Modification of information: An editor can allow the user to change and manipu-

late the underlying information. Note that changes are typically constrained in some

way in order to ensure the information’s consistency. For example, a graph editor

that allows the user to delete a node, typically also deletes the arcs attached to that

node in order to keep the graph meaningful.
1.3 Exploring Tools Through a Set of Lenses

In a sense, when it comes to tools the ‘‘rubber’’ (i.e., research ideas) ‘‘hits the road’’

(i.e., applying the research ideas). The practicality of a proposed technique can be

shown by embodying the technique in a tool and by applying the tool to real-world

problems. Conversely, if a tool gets adopted and used in industry it is a strong

indication of the usefulness of the tool’s techniques and/or process. A tool or

prototype is a viable strategy to transition research results from academia to industry.

Given that tools are a crucial part of reverse engineering research that strongly

interact with research in reverse engineering techniques and processes, we believe

that more emphasis should be directed toward understanding of and improving upon

tool building and understanding its overall research impact.

Thus, in this chapter, we specifically focus on reverse engineering tools—as

opposed to techniques and processes—and explore their impact on research with

the help of three lenses that address tool requirements, tool construction, and tool

evaluation (Table I).2 Each lens looks at the topic from a different perspective.

Taken together, the lenses provide a holistic picture. For each lens, we describe its

—purpose and raison d’être,
—historical importance,

—current state-of-the-art,

—future directions.

The first lens, tool requirements, identifies a number of generic quality attributes

that reverse engineering tools should strive to meet. The tool construction lens

approaches tools from the observation that since tool building is a key activity in
2 The idea to approach this topic through several lenses was inspired by the metatriangulation

approach as described by Jasperson et al. [61].

Table I

LENSES TO EXPOSE REVERSE ENGINEERING RESEARCH CHALLENGES IN TOOL BUILDING

Lens Explanation Key topics

Tool requirements What are the requirements for useful

and usable reverse engineering

tools?

Quality attributes (scalability, interoper-

ability, customizability, usability,

adoptability), functional requirements

Tool construction How can reverse engineering tools be

constructed in an effective and

efficient manner?

Component-based tool building, model-

based tool building, tool-building

process

Tool evaluation How to evaluate and compare reverse

engineering tools? What theories

should reverse engineering

embrace?

Empirical research, evaluation-driven

tool building, theory-grounded tool

building

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 199
research that is both pervasive and costly, it should be conducted in an effective and

rather predictable manner. The tool evaluation lens discusses how tools support the

evaluation of research.

In this chapter, we put an emphasis on the first lens, exploring tool requirements

in greater detail with the help of an in-depth literature survey. The lenses on tool

construction and evaluation are primarily guided by our own experiences and

observations. Even though we address the lenses in isolation for clarity, one should

be aware that there are interdependencies among them. Where needed, we point out

how lenses influence each other.

The rest of this chapter is organized as follows. In Sections 2, 3, and 4, we discuss

each of the three tool lenses on requirements, construction, and evaluation, respec-

tively. Section 5 concludes and identifies key issues to advance research in reverse

engineering.
2. Tool Requirements Lens
‘‘Tool research should not be entirely focused on new paradigms, but should address

real user needs and expectations.’’

Kenny Wong [62]

In this section, we discuss requirements—mostly quality attributes—of reverse

engineering tools. In order to ensure an objective coverage of the requirements, we

have conducted an extensive review of the reverse engineering literature. To our

knowledge, this is the first attempt of a comprehensive requirements survey in this

200 H.M. KIENLE AND H.A. MÜLLER
domain. We mainly focus on quality attributes when discussing tool requirements

because they equally apply to a broad range of reverse engineering tools with

varying functionalities. The identified requirements are useful to communicate

assumptions about tool building in the reverse engineering domain. A requirement

that has been reported (independently) by several sources is a good indication that

reverse engineering tools should meet this requirement in order to be useful and

fulfill the expectations of users.

Bass et al. state, ‘‘each domain has its own requirements for availability, modifi-

ability, performance, security, or usability’’ [63]. This is an important observation

because it shows that the particular requirements of a certain domain can be better

understood by starting from generic, domain-neutral requirements. However, each

domain instantiates this generic, high-level requirement differently, depending on

the particular domain’s characteristics. Thus, it is insufficient to simply state the

generic requirements for a domain without further elaborating on them—but that is

what most reverse engineering research does. Furthermore, one cannot expect to

meet all requirements equally well. In the words of Bass et al., ‘‘no quality

can be maximized in a system without sacrificing some other quality or qualities’’

[64, p. 75]. Following this line of thought, a reverse engineering tool or development

approach that is missing or lacking in some of the requirements identified in the

following subsections can still be satisfactory. However, there needs to be a con-

scious decision on requirements that is informed by some kind of trade-off analysis.

Again, currently research is lacking in this respect.

Even though we chose the term requirements, it is not meant to be interpreted in

an overly restrictive sense. In the words of Carney and Wallnau, the term require-

ments ‘‘has connotations that are often overly restrictive’’ and ‘‘the terms ‘prefer-

ence’ and ‘desire’ might be more accurate than ‘requirement.’’’ [65]. Still, since

requirements is firmly established in the literature we will stick to it.

Several researchers have discussed requirements of tools in some detail. In his

dissertation, Wong has distilled 23 high-level and 13 data requirements for software

understanding and reverse engineering tools [62]. Tichelaar discusses six require-

ments for reengineering environments [66]. Some researchers discuss requirements

in the context of a certain kind of tool. For instance, Hamou-Lhadj et al. discuss

requirements for trace analysis tools [67], and van Deursen and Kuipers state

requirements for document generators [68]. Hainaut et al. analyze requirements

for database reverse engineering environments [18]. Other researchers address

requirements of specific tool functionalities. Koschke et al. give 14 requirements

for intermediate representations in the context of reverse engineering [69], and

Ducasse and Tichelaar discuss requirements of exchange formats and schemas [70].

Tool requirements are also exposed by the criteria used in tool assessments,

comparisons, and surveys. For example, there are comparisons of the features of

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 201
reverse engineering tools [71–75], fact extractors [76, 77], design recovery [78], and

software visualizers for static [79, 80] and dynamic code structure [19, 81], and

repository-based data [82]. Some of these comparisons are based on the experiences

of the researchers assessing the tool(s), while others are based on controlled user

studies, structured demonstrations, or questionnaires.

In the remainder of this section, we first discuss the identified quality attributes

(i.e., scalability, interoperability, customizability, usability, and adoptability)

and then give functional requirements for exchange formats; more details can be

found in the first author’s dissertation [83]. When discussing quality attributes we

first give examples of researchers that have postulated the requirement for reverse

engineering tools as a whole. Then, where applicable, we address the implications

that a certain requirement has on tool components (i.e., repository, extractor,

analyzer, and visualizer), and discuss techniques that enable tools to meet these

requirements.
2.1 Scalability
‘‘Software developers frequently confront issues of bigness, a.k.a scale. A harsh

criticism of a solution to a software problem is the comment, ‘but it doesn’t scale.’’’

David West [84]

It is important to realize that reverse engineering tools might be used on subject

systems of significant size. For example, one academic reverse engineering tool has

been used on Microsoft Excel, which was reported to have 1.2 million lines of C

code at the time [85]. A survey among users of software visualization tools has

found that there is equal weight on the visualization of small, medium, and large

target systems [79]. One-third of the visualized systems were large (i.e., more than

one million LOC), one-third were medium (i.e., between one million and 100,000

LOC), and one-third were small (i.e., less than 100,000 LOC). Bellay and Gall have

evaluated four reverse engineering tools (Software Refinery, Imagix 4D, Rigi, and

SNiFFþ) using a 150,000 LOC embedded software system programmed in C and

assembly as a case study [72]. Even though this system is well below a million lines,

they conclude that ‘‘many shortcomings of reverse engineering tools are due to the

size of the case study system.’’ Baxter et al., discussing the requirements that the

Design Maintenance System (DMS) has to meet, make aware of the relationship

between system size and processing time [86]:

‘‘A fundamental problem is the sheer size of large software systems. DMS is capable of

reading literally tens of thousands of source files into a single session to enable analysis

202 H.M. KIENLE AND H.A. MÜLLER
across entire systems. . . . Size translates into computational costs: 1 microsecond per

source line means 2.5 seconds of CPU to do anything to 2.5 million lines.’’

Whereas some tool implementations handle only limited input, serving often as a

proof-of-concept prototype, realistic industrial-strength tools have to handle large

target systems. Favre et al. state that ‘‘very often, a large number of unexpected

problems are discovered when applying good tools at a large scale. This includes not

only the size of the software but also the size of the company’’ [87].

Scalability as a general requirement for reverse engineering tools is discussed by a

number of researchers, for instance:

—Brown states for his CodeNavigator tool that it has been designed to ‘‘provide

information about large-scale software systems’’ [88]. Furthermore, addressing

program understanding tools such as CodeNavigator in general, he observes: ‘‘to

be effective, they must be able to handle systems of significant size’’ [88].

—In the context of legacy systems (which are typically large, highly complex,

and mission-critical), Wong gives the following tool requirement: ‘‘Handle the

scale, complexity, and diversity of large software systems’’ [62].

—Based on their experiences with the Moose reverse engineering environment,

Ducasse et al. state that ‘‘it should be possible to handle a legacy system of any size

without incurring long latency times’’ [89].

—Lethbridge and Anquetil have developed a list of key requirement for software

exploration tools that support JITC. Among the requirements, they state that the

system should ‘‘be able to automatically process a body of source code of very large

size, that is, consisting of at least several million lines of code’’ [90].

—In his dissertation, Tilley says ‘‘it is essential that any approach to reverse

engineering be applicable to large systems. For example, effective approaches to

program understanding must be applicable to huge, multimillion line software

systems’’ [91].
2.1.1 Repositories
The amount of information that needs to be stored in the repository can affect

scalability.3 Cox and Clark say ‘‘a repository is scalable when there are no restricting

limitations on the amount of extracted information or code that is stored’’ [93]. The

amount of extracted information can be quite large. For example, a GXL file

generated with the Columbus tool to represent the Mozilla 1.6 Web browser has a
3 This is especially the case for trace data of dynamic analyses, because a small program can, in

principle, generate an infinite amount of trace data [93].

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 203
size of about 3.5 GB and contains about 4.5 million nodes [94]. The Datrix

representation of Vim 6.2 (220,000 LOC) has 3,008,664 relations and 1,852,326

entities [95]. Reverse engineering environments that use exchange formats as their

repository should ensure that it ‘‘works for multimillion lines of code (e.g., 3–10

MLOC)’’ [41]. Similarly, Wong requires for a scalable data format to ‘‘handle

multimillion line software systems’’ [62]. St-Denis et al. also list scalability

among their requirements for model interchange formats (‘‘can be used for real-

life, e.g., large-scale applications’’) [96]. They discuss the following factors that

may affect scalability: ‘‘the compressibility of the model interchange object, the

possibility of exchanging partial or differential models and the possibility of using

references (e.g., hyperlinks) to information instead of the information itself.’’

Another factor is incremental construction and loading of information to achieve

resource optimization [21, 70]. Hamou-Lhadj et al., discussing the requirements of

trace exploration tools, state that input/output performance is critical since traces can

become very large and users do not tolerate systems with a poor response time [67].

They also note that ‘‘a general XML format, such as GXL, often requires more

processing than a tuned special format. Performance of parsing XML poses an

obstacle, especially for large data sets.’’

Analogous to repository scalability, there is a scalability requirement for the in-

memory data structures of reverse engineering components. Ducasse and Tichelaar

state that ‘‘the greater the level of detail, the higher the memory consumption and

load time of information from databases or files and the slower the response times of

tools that use the information’’ [70]. For example, the internal representation of

Software Refinery’s C extractor is about 35 times the size of the source code [97].
2.1.2 Extractors
Since the extractor has to read in and process all relevant sources of the target

system, scalability is an important concern. In the context of web service mining,

Sneed says that tools ‘‘have to be very fast, since they will be scanning through

several million lines of code to identify which portions of that code are potential

web services’’ [98]. A related scalability concern is the question ‘‘how

many models do you need to extract?’’ since each model might require a unique

extractor [70].

As already mentioned in Section 1.2, there is a broad spectrum of extractor

techniques with different performance trade-offs. For example, van Deursen and

Kuipers observe that ‘‘lexical analysis is very efficient. This allows us to analyze

large numbers of files in a short time, and also allows us to experiment with different

lexical patterns: If a pattern does not yield the correct answer, the analysis can be

204 H.M. KIENLE AND H.A. MÜLLER
easily changed and rerun’’ [68]. Ferenc et al., discussing the Columbus tool, state

‘‘parsing speed’’ as a requirement for Cþþ extractors [34]. Bellay and Gall also give

‘‘parse speed’’ among their reverse engineering tool evaluation criteria [72]. They

also give incremental parsing as a criterion, which ‘‘provides the ability to parse only

the parts that changed, thereby reducing the parse time.’’ For performance reasons,

extractors are often divided into scanner and parser [86].
2.1.3 Analyses
Researchers seem to discuss the scalability or performance of analyses only if

there is a potential problem with the run-time of an analysis. For batch-style

analyses, there is a problem if the analysis cannot be executed in a longer time-

frame such as a nightly run. In contrast, an analysis’ run-time of an interactive tool

should be almost instantaneous in the best case. Compared to the other tool compo-

nents, researchers have stated few general requirements for analyses. An explanation

might be that the scalability of analyses is mainly dependent on the time complexity

of particular algorithms.

Moise and Wong discuss their experiences with the Rigi tool in an industrial case

study. They have developed three specific analyses (written in Tcl) for clustering the

subject system according to different criteria. They report for their analyses that

‘‘performance is becoming a serious issue with decomposition times running poten-

tially into hours’’ [99]. Researchers have also discussed scalability and performance

issues in the context of trace data compression [19, 67].

An important technique to make analyses more scalable is to ‘‘support incremen-

tal analyses’’ [62]. Nierstrasz et al. [30] state for their tool that

‘‘one key technique that allows Moose to deal with large volumes of data is lazy

evaluation combined with caching. For example, although Moose provides for an

extensive set of metrics, not all of them are needed for all analyses. Even the relevant

metrics are typically not needed for all entities in the system. Thus, instead of

computing all metrics for all entities at once, our infrastructure allows for lazy

computation of the metrics.’’

Flexible analyses can trade precision for scalability. For example, Fiutem et al.

state for their Architecture Recovery Tool (ART): ‘‘To achieve scalability to large

industrial size systems, special attention was also devoted to the speed of conver-

gence of the iterative fixpoint method by conceiving a flexible analyzer that allows

fine tuning of the trade-off between execution time performance and flow informa-

tion precision’’ [100].

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 205
2.1.4 Visualizers
A visualizer’s rendering speed has to scale up to large amounts of data. This is

especially the case for interactive systems that allow direct manipulation of graphs

or diagrams. In a user study of visualization tools ‘‘users stopped the generation of

call graphs because they felt it was taking too long’’ [101]. Storey et al., reporting on

a user study with the SHriMP visualizer, found the following: ‘‘The single most

important problem with SHriMP views was the slow response of the interface. Since

SHriMP views are based on direct manipulation, users expecting immediacy were

disturbed by the slow response’’ [102]. Czeranski et al. made the experience that

‘‘the Bauhaus GUI, which is based on Rigi, has a few unpleasant properties. It is

relatively slow, which can cause noticeable waiting periods for large graphs, and

hence sometimes disrupts the fluent use of the tool’’ [103]. There is also the issue of

lacking performance: ‘‘For scalability we must consider if the tool supports large

software projects. If the technique does not appear to scale, it may be the implemen-

tation which does not scale rather than the technique’’ [82].

Armstrong and Trudeau state in their tool evaluation that ‘‘fast graph loading and

drawing is essential to the usability of any visualization tool’’ [74]. Bellay and Gall

use ‘‘speed of generation’’ of textual and graphical reports as an assessment criterion

and experienced that ‘‘graphical views often need an unacceptable amount of time to

be generated because of the layout algorithms’’ [72]. Contrary to Bellay and Gall’s

findings, Moise andWong note that their ‘‘case study showed that Rigi can deal with

large graphs’’ [99]. In their survey, Bassil and Keller include ‘‘tool performance

(execution speed of the tool)’’ as a practical aspect of software visualization tools

[79, p. 5].
2.1.5 Discussion
Most researchers discuss scalability in the context of computational performance

and efficiency. However, it is typically discussed without giving explicit or quanti-

tative metrics to measure them. The following is a fairly typical example: ‘‘The

overall repository software is responsive and quite usable. However, in a few places

the performance is slower than we would have liked. For example, large pick lists

(>500 elements) take a few moments to load’’ [104].

Considering the large number of publications about reverse engineering tools,

there is a surprising low number of more or less quantitative measures about tools’

performance such as the following ones:

—‘‘CodeCrawler can visualize at this time ca. 1 million entities. Note that we

keep all the entities in memory’’ [57].

206 H.M. KIENLE AND H.A. MÜLLER
—ISVis can analyze ‘‘program event traces numbering over 1,000,000 events’’

[92].

—‘‘Mozilla compiled on our Linux system 4 in about 35 minutes, while the

Acacia extraction took three and a half hours and the translation into TA took

another three hours’’ [105].

Furthermore, as the above examples suggest, each researcher reports measure-

ments based on different criteria and metrics; even tool evaluations tend to not use

objective measurements for comparisons among tools [72, 74].

It appears that researchers are also neglecting—or purposely withholding—per-

formance measures. For example, in the domain of trace exploration tools, Hamou-

Lhadj and Lethbridge made the following observation [19]:

‘‘In order to visualize and analyze large program executions, an efficient representation

of the event space is needed. Unfortunately, most of the tools mentioned above do not

even discuss this aspect, which makes us have doubts regarding their scalability. It is

also important to note that most of the experiments that are conducted by the authors of

these tools are based on very small execution traces.’’

There is an increased awareness in the software engineering community that

approaches need to scale to industrial demands [106]. As a next step, the develop-

ment of accepted criteria for the evaluation of tools such as benchmarks [77, 107]

would be helpful to make performance and scalability measurements more

meaningful.

2.2 Interoperability
‘‘Building tools is expensive, in terms of both time and resources. An infrastructure for

tool interoperability allows tool designers and users to re-purpose tools, which helps to

amortize this cost.’’

Ferenc et al. [108]

Interoperability is the ‘‘ability of a collection of communicating entities to (a)

share specified information and (b) operate on that information according to an

agreed operational semantics’’ [109]. In other words, tools that interoperate are able

‘‘to pass information and control among themselves’’ [110].

In a small survey about negative aspects of reverse engineering tools, 6 software

engineers out of 19 (31%) complained that tools are not integrated and/or are

incompatible with each other [90]—this was also the most frequent complaint!

Reverse engineering researchers have recognized the need for interoperability.

Woods et al. [111] observe that

—‘‘many tools have been written with closed architectures that hide useful

internal products.’’

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 207
—‘‘many external products are not produced in a useful form for further compu-

tation.’’ They further conclude that ‘‘the bottom-line is that existing program

understanding tools and environments have not been designed to interoperate.’’

Making tools interoperable yields a number of potential benefits. Interoperability

enables code reuse in general because it becomes easier for a tool to utilize the

functionalities of another one. As a result, reusing of existing functionality can

‘‘prevent repetitive ‘wheel-creation’’’ [112]. Zelkowitz and Cuthill view interopera-

bility as a way to improve automation in software engineering: ‘‘Tool integration . . .
is crucial to effectively provide automated support for activities. In order to auto-

mate activities with a tool set, there must be a seamless way to pass information and

control among the tools’’ [113]. Furthermore, interoperability reduces the time and

effort to (opportunistically) assemble a tool set that supports a particular reverse

engineering task or process, because ‘‘no one tool performs well in all tasks’’ [81].

For instance, the developers of the Dali tool say, that ‘‘one of our emphases has been

to provide an open, lightweight environment so that tools can be integrated

opportunistically’’ [114].

A number of researchers address interoperability as a general tool requirement;

for instance:

—Interoperability is among the tool requirements given by Lethbridge and

Anquetil. They require from tools to ‘‘wherever possible, be able to interoperate

with other software engineering tools’’ [90].

—Tichelaar, discussing requirements for reengineering environments, states that

‘‘a reengineering effort is typically a cooperation of a group of specialized tools.

Therefore, a reengineering environment needs to be able to integrate with external

tools, either by exchanging information or ideally by supporting run-time integra-

tion’’ [66]. Similarly, Ducasse et al. say, ‘‘the environment should be able to operate

with external tools like graph drawing tools, diagrammers (e.g., Rational Rose) and

parsers’’ [89].

—Wong addresses interoperability in the context of tool integration [62]: ‘‘Tool

integration is necessary to combine diverse techniques effectively to meet software

understanding needs.’’

—Interoperability is among the 12 requirements that Hainaut et al. identify for

tools that aid in the reverse engineering of database systems: ‘‘A CARE tool must

easily communicate with the other development tools (e.g., via integration hooks or

communications with a common repository)’’ [18].

—The designers of the Augur tool say, ‘‘we would like Augur to be broadly

usable in real engineering practice. This means that it must be interoperable with a

range of existing tools and infrastructures,’’ and further ‘‘Augur’s design emphasizes

interoperability and extensibility so that it may be incorporated into existing devel-

opment efforts without significant overhead’’ [115].

208 H.M. KIENLE AND H.A. MÜLLER
For tools to interoperate, they have to agree on a suitable interoperability mecha-

nism in some form or another. As a consequence, research papers often directly

address the question of how to achieve interoperability, without explicit stating it as

a requirement first.
2.2.1 Techniques
One ambitious approach that has been proposed to achieve interoperability among

tools are the Common Object-based Reengineering Unified Model (CORUM) [111]

and CORUM II [112] frameworks. These proposals strive to provide a common

framework, or middleware architecture, for reverse engineering tools, encompassing

standard APIs and schemas for ASTs, CFGs, call graphs, symbol tables, metrics

information, execution traces, and so on.

A less ambitious approach compared to the CORUM frameworks is the commu-

nity’s efforts to define a common exchange format. Exchange formats enable

interoperability between tools. A particular tool can utilize an exchange format to

make information available to another tool. Panas et al. say ‘‘in order to have a

properly working combination of two or more tools that have been developed

independently, they must be able to exchange information. For this purpose we

need a common data representation that is general enough to support a variety of

data’’ [116]. Exchange formats use simple files as a (temporary) repository for

information transfer. In this case, the coupling between tools that exchange infor-

mation is loose; an information producer need not to know its information con-

sumers. Examples of exchange formats in the reverse engineering domain are RSF,

TA, GraX, CDIF, and GXL; there are also a number of general-purpose data

exchange and encoding formats such as ASN.1, SGML, and XML [38].

A file-based exchange format is a rather primitive form of data interoperability

because there is no coordination mechanism for concurrent access. Thus, it is the

responsibility of the tool user to assure data-consistency and to initiate data transfer

from one tool to another. An example of a more sophisticated solution is a repository

common to all tools (e.g., in the form of a database management system) such as

proposed by the CORUM framework. Whereas a central repository has many

benefits (e.g., data consistency), it is also a heavyweight solution. Brown cautions,

‘‘the common data repository is often a large, complex resource that must be

controlled, managed, and maintained. This can occupy a great deal of time,

money, and effort’’ [117]. Similarly, Wong concludes from the RevEngE project,

which used the object-oriented Telos software repository, ‘‘there are significant

difficulties in using and maintaining advanced integration technologies’’ [62].

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 209
2.2.2 Schema
Exchange formats and common repositories are effective at communicating the

structure (or syntax) of data. However, even if tools are able to read the data, it is of

little use if they do not know how to interpret it. Schemas are a vehicle to convey

semantic information about the data (i.e., its meaning and use). Interoperability

among tools is much more effective if they agree on a certain schema [118]. Godfrey

puts it this way: ‘‘we feel that the particular syntax to define an exchange format is a

small issue . . . We consider the semantic model (design of the schemas) to be the

most important issue’’ [105]. Whereas syntax is domain-neutral, the schema models

a particular domain or reflects an intended use. Thus, a single schema will not

suffice. For example, there are schemas with different granularities to represent

source code: fine-grained (e.g., a detailed Cþþ AST [108]), coarse-grained

(e.g., the PBS high-level schema to model abstract architectures [119]), and in

between (e.g., the Dagstuhl Middle Model [120]). Researchers try to establish

standard schemas for other domains as well, for instance, execution traces: ‘‘There

is also a need for a common [schema] for representing the execution traces of object-

oriented systems in order to permit interoperability among tools’’ [19]. In practice,

the diversity of tools makes it difficult to agree on schemas. Moise and Wong make

the following observation:

‘‘Often, an existing schema may not fit as-is to the particular software being analyzed

or the tools being used. Consequently, schema reuse is not a simple task, and a

proliferation of new schemas has resulted’’ [118].

All schemas have in common that they have weak semantics [121], that is,

meaning is derived from the names of schema entities and possibly informal

documentation. For example, an entity called line number is presumably used on a

source code fragment that exists at the given line number in a particular file.

However, even if this assumption is correct, it is still not clear if line numbers are

counted starting from zero or one, if the line number applies to raw or preprocessed

source, if the line number denotes where the fragment begins or ends, and so on.
2.2.3 API
Exchange formats specify the structure of the data and how it is stored on disk.

However, how to actually read/write the exchange format and how to represent it in

memory is not part of its specification [122]. Thus, tools often implement their own

readers and writers. These readers and writers have their own proprietary interface,

reflecting the specific needs of a particular tool. Furthermore, the features of the

programming language influence the nature and functionality of the API [40, 122].

210 H.M. KIENLE AND H.A. MÜLLER
As a consequence, tools rarely can share an interface and its implementation.

Interoperability can be achieved if tools agree on a standardized API to read,

write, and manipulate data. A popular example of APIs that enable interoperability

for relational data is Open Database Connectivity (ODBC) and Java Database

Connectivity (JDBC). The GSEE software exploration tool supports JDBC for data

import [123].

Dedicated frameworks for reverse engineering offer an infrastructure for tool

integration via common data or control flows. Tools can implement certain inter-

faces to plug into the infrastructure. The CORUM frameworks are an effort to define

common APIs for the reverse engineering domain. However, these efforts have not

caught on in the reverse engineering community. Generally, the more sophisticated

the interoperability mechanism, the more standardization and agreement among

tools is necessary. Jin observes, ‘‘although the use of APIs significantly improves

the speed and ease of interaction among tools, they still need to know how they can

interact with each other. A tool must be aware of the requests it can make of another

tool it interfaces with’’ [124]. This form of tool interaction can be achieved by

extending the API with message passing mechanisms based on a message bus (e.g.,

ToolBus), or point-to-point connections.

One can attempt to draw an analogy between exchange formats (e.g., RSF) and

APIs (e.g., ODBC) on how they achieve interoperability. Both abstract from the

tools’ execution environments. For example, RSF is stored in ASCII files, abstract-

ing away different file systems. Similarly, ODBC abstracts from a concrete rela-

tional database. All data adheres to the same structure, or syntax: With RSF, data is

represented in tuples, in ODBC data is represented in tables. The underlying model

in RSF is a typed, directed, attributed graph; in ODBC it is relational algebra. Both

approaches allow schema introspection: RSF has an (optional) schema description

file; ODBC has catalog functions.
2.2.4 Discussion
Interoperability and integration of tools has been extensively addressed by

researchers in the context of CASE tools and software development environments.

Meyers identifies a number of requirements for tool integration: (1) it should be easy

to write new tools for use in a development environment, (2) a new tool should be

easy to add to the environment without the need to modify other existing tools that

are already part of the environment, and (3) there should be no need for different

tools to perform the same task (e.g., no more than one parser for a particular

language) [125]. He also discusses several approaches to system integration that

have been already discussed here: shared file system (i.e., tools exchange data based

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 211
on exchange formats), selective broadcasting (i.e., message passing among tools),

simple databases (i.e., tools use a common database as repository), and canonical

representations (i.e., tools share a common schema).

One approach pursued by the reverse engineering community to achieve interop-

erability is to agree on a common exchange format. This is exemplified by the thrust

to establish GXL. There are also concrete proposals for schemas in a number of

areas (e.g., Cþþ ASTs, mid-level architectural information, and trace extraction),

but no proposal has achieved widespread use yet. The community has also consid-

ered more ambitious interoperability mechanisms such as a common repository and

APIs. For instance, Sim acknowledges the usefulness of a standard exchange format,

but argues to move toward a common API:

‘‘Data interchange in the form of a standard exchange format (SEF) is only a first step

towards tool interoperability. Inter-tool communication using files is slow and cum-

bersome; a better approach would be an application program interface, or API, that

allowed tools to communicate with each other directly.... Such an API is a logical next

step that builds on the current drive towards a SEF’’ [126].

However, there is no indication that the reverse engineering community is

devoting significant effort to realize this proposal. This is perhaps not surprising,

considering that discussion on standard schemas has just begun. In a sense, agree-

ment on an API is comparable to a simultaneous agreement of a standard exchange

format along with a number of the most important schemas. Furthermore, exchange

formats have their own benefits and it is not clear that APIs are necessarily a move in

the right direction.

There is another approach to interoperability that has been mostly ignored so far

by the reverse engineering community, namely service-oriented architectures

(SOAs). SOA aims to integrate heterogeneous software systems with the use of

middleware and services. Software systems expose their functionalities as services,

communicating with each other via some kind of middleware. Reverse engineering

tools could offer functionalities as web services, and thus allow other tools to

discover and call their services in a standardized form. Tool services would allow

the development of new reverse engineering functionality via service composition,

possibly even on demand. To our knowledge work in this direction is limited so far.

Ghezzi and Gall are proposing an approach based on web services [127]. They

envision software analysis web services (which are wrappers of already existing

tools) that are registered in an analysis catalog (which is organized with the help of a

taxonomy). There is an analysis broker that enables users to manage the catalog and

to compose services. To facilitate interoperability they propose to use ontologies

encoded in OWL to represent inputs to and results of tools.

212 H.M. KIENLE AND H.A. MÜLLER
2.3 Customizability
‘‘It has been repeatedly shown that no matter how much designers and programmers try

to anticipate and provide for users’ needs, the effort will always fall short.’’

Scott Tilley [91]

Customizability is another important requirement for reverse engineering tools.4

As the introductory quote by Tilley suggests, reverse engineering activities are quite

diverse and depend on many factors. As a result, reverse engineers have to continu-

ously adapt their tools to meet changing needs. Thus, it is insufficient for a reverse

engineering tool to be general (i.e., it can be used without change in different

contexts), it has to be flexible as well (i.e., it can be easily adapted to a new

context) [128].

Michaud looks at software customization by asking what is customized, how is it

customized, who performs it, and when does it occur [129]. In terms of what is

customized one can distinguish between data, presentation, and control customiza-

tion. In terms of how software is customized one can distinguish between source

code customization and other forms that do not require to write code such as option

screens, wizards, and configuration files. Customizations can be performed by the

tool designers, a dedicated person who customizes the tool to suit a group of users,

and the tool users themselves. Customization mechanisms are put in place during

tool development by the original tool designers. These mechanisms are then used

when installing the tool and during run-time.

In the context of data reverse engineering, Davis observes that ‘‘tools need [to be]

customized to each project’’ [130]. Customizability also enables to meet needs that

cannot be foreseen by tool developers, for instance, if a tool is applied in a new

context or domain. Best states, ‘‘if the designer does not create an architecture that

lends to extensibility, opportunities to use the tool in other domains can be missed’’

[131]. Tilley characterizes such customizable tools as domain-retargetable [91].

Conversely, a tool that is not customizable is probably too rigid to meet the changing

needs of reverse engineers except in a few well-understood circumstances. Marko-

sian et al. say for reengineering tools, ‘‘in our experience, lack of customizability is
the single most common limiting factor in using tools for software analysis and

transformation’’ [132].

Many tool developers, including commercial ones that produce mass-market

software, see customizability as an important requirement to satisfy their customers.
4 Since most researchers do not distinguish between customizability and extensibility, we use both

terms interchangeably. A concept related to customizability is end-user programmability, which allows

users of an application to tailor it programmatically to their needs [92].

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 213
In the following, we give examples of researchers that discuss extensibility as a

general tool requirement:

—Buss and Henshaw discuss their experiences with the reverse engineering of

IBM’s SQL/DS system. Among the lessons learned, they state that ‘‘any reverse

engineering toolkit must be extensible to meet your problem domain needs,’’ and

‘‘since reverse engineering is an open-ended, context-dependent activity, it is

imperative that its toolkits be similarly open-ended, flexible, extensible, and versa-

tile’’ [133].

—In his dissertation about domain-retargetable reverse engineering, Tilley states,

‘‘a successful reverse engineering environment should provide a mechanism through

which users can extend the system’s functionality’’ [91].

—Bellay and Gall’s evaluation framework for reverse engineering tools contains

a toolset extensibility criterion: ‘‘Tool extensibility is an important feature of many

types of tools. This is also the case for reverse engineering tools, in which additional

functionality often needs to be integrated to meet the specific constraints of a reverse

engineering activity’’ [72]. The framework further distinguishes between extensibil-

ity of parsers, user interfaces, and tool functionality.

—Hainaut et al. give ‘‘functional extensibility’’ for CASE tools as a requirement,

motivating it with ‘‘no CASE tool can satisfy the needs of all users in any possible

situation’’ [18].

—Reiss has developed a tool, CLIME, to aid software maintenance by formulat-

ing constraints on development artifacts such as source code, UML design diagrams,

comments, and test cases. Such a tool should be ‘‘adaptable to new design techni-

ques and approaches’’ and as a result ‘‘must be open and extensible’’ [134].

Typically, tools enable customization of their functionalities via configuration

files, built-in scripting support, or programmable interfaces [129].
2.3.1 Repositories
A repository consists of a schema and the data stored according to the schema.

Each repository provides a rudimentary form of extensibility, because the data that is

stored in the repository is not fixed, but customized by the applications that uses the

repository. Thus, a more meaningful form of repository customizability is to look at

the customizability of a repository’s schema. In fact, customizability of a reverse

engineering tool is often realized with an extensible schema. The developers of the

Moose reengineering tool state, ‘‘the extensibility of Moose is inherent to the

extensibility of its [schema]’’ [89].

A number of researchers agree that an exchange format ‘‘should be extensible,

allowing users to define new schemas for the facts stored in the format as needed’’

[119, 126]. More specifically, Ducasse et al. require that ‘‘an environment for

214 H.M. KIENLE AND H.A. MÜLLER
reverse engineering and reengineering should be extensible in many aspects: . . . the
[schema] should be able to represent and manipulate entities other than the ones

directly extracted from the source code (e.g., measurements, associations, relation-

ships, etc.)’’ [89]. Among the requirements that Ferenc et al. have identified for a

Cþþ schema is the need for schemas to ‘‘be modular and easily extensible’’ [34].

Similarly, Riva states that an exchange format ‘‘should be easy to extend by the

users themselves without the knowledge of complicated procedures’’ [135]. One of

Wong’s requirements for a reverse engineering repository is to ‘‘support dynami-

cally evolvable schemas’’ [62]. He further elaborates, ‘‘this flexibility to evolve

schemas dynamically and incrementally is especially important in software under-

standing. New needs and concepts often arise over time.’’ Event traces are an

example of data obtained with a dynamic analysis. The ISVis tools supports the

extension of trace data with new event types without having to change the tool itself:

‘‘As far as ISVis is concerned, events have types, and the exact nature of the type is

unimportant to the pattern matching ISVis provides’’ [92].

One can distinguish between the following forms of schema extensibility:

Fixed: Fixed schemas model a certain domain, which is not expected to change.

For example, the Bauhaus Resource Graph models the design level of procedural

languages [33]. A number of analyses and visualizations have been implemented

based on this schema. Consequently, changes in the schema are expected to cause

changes in the Bauhaus tool.

Ad hoc: This approach allows to add information in an unstructured way, typically

in the form of annotations or extensions (which can range from free comments in

natural language to formal assertions) [69]. For example, software engineering

environments allow tool-specific decorations of abstract syntax trees [125], and

UML allows to attach string tags to entities. Tool is then expected to ignore

annotations that they do not know.

Domain-extensible: Domain-extensible schemas provide a core schema describ-

ing certain common domain features [136]. The core schema can then be extended.

The FAMIX schema of the Moose tool provides a language-independent represen-

tation of object-oriented features, the core model, which can be extended with

language-specific information [89]. Similarly to FAMIX, the Dagstuhl Middle

Model allows extensibility via subclassing [120].

Domain-retargetable: Domain-retargetable schemas are domain-neutral per se,
allowing the specification of any domain. For instance, the TA exchange format has

been used to define schemas for architecture recovery at various levels of abstraction

[90, 119, 137]. RSF has schemas to represent higher level software architectures,

Cþþ, Java, web sites, C, COBOL, PL/AS, LaTeX, and so on. The Rigi tool is a

generic graph viewer that can visualize data that adheres to any RSF schema.

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 215
2.3.2 Extractors
There are few customizable extractors for reverse engineering. An early example

of a customizable parser is Software Refinery’s DIALECT. Newcomb and

Markosian report their experiences with the migration of a COBOL payroll system

[138]. They give a simple customization example of DIALECT:5 ‘‘the OS/VS

compiler used for the payroll system allowed some periods at the end of sentences

to be omitted; this syntax had not previously been handled by REFINE/COBOL.’’

TXL is a source code analysis and transformation tool that allows grammar

customizations via so-called agile parsing [139]. In TXL, there is a base grammar

for the input language that can be customized with grammar overrides (e.g., to

support a particular dialect or analysis task). A typical idiom in TXL programs is to

first include the base grammar and then to change selected nonterminals with

redefine statements. For example, the left side of Fig. 2 shows a definition of a

statement nonterminal for a toy imperative language. In order to introduce a block

construct to this toy language, a redefine can be used that extends the nonterminal

with a block_statement alternative (right side of Fig. 2).

Whereas parsers typically target only a single language and offer very limited

customizations (e.g., via command-line switches), lexical analyzers do not target a

particular language and can be extensively customized via pattern specifications.

Cox and Clark make the following observation about their lexical extractor:
5 Customizations of parsers is difficult to accomplish because it is necessary to understand the

particular parsing technique (e.g., LALR or LL) as well as the grammar itself. Since DIALECT is a

LALR(1) parser, it probably needs expert knowledge to actually customize it.

FIG. 2. Example of a grammar override in TXL.

216 H.M. KIENLE AND H.A. MÜLLER
‘‘Lexical tools are often faster to develop than parser-based tools and, when developed

using hierarchical pattern sets, can be easily extended or adapted for novel situations.

Extension is performed through the addition of new lexical levels or additional patterns

in an existing level’’ [140].
2.3.3 Analyzers
Most program analyses are fixed in the sense that the reverse engineer cannot turn

any knobs to influence the outcome of the analysis (e.g., one cannot trade speed for

precision, or vice versa). For instance, there are many clone detection analyses, but

few of them can be easily customized to control what constitutes a code clone and

what does not. However, flexible analyses can be valuable because it allows the

reverse engineer to instruct an analysis to focus its effort on information that is most

relevant to a particular reverse engineering task [50].

Jackson and Rinard believe that software analyses should give the engineers more

control, for instance, to customize the precision of an analysis: ‘‘Engineers need

different degrees of precision in different situations, at different points in the

program, and for different data structures. Applying a single analysis uniformly

across the entire program is therefore counterproductive’’ [49].

The IntensiVE tools offer a specification language to express structural con-

straints of Java source code (e.g., to check for design patterns or coding conventions)

[141]. Constraints are written in a declarative Prolog-style language, called SOUL,

that has predefined predicates that match Java language concepts (e.g., MethodDe-

claration and CatchClause). The unification semantics of SOUL can be customized

to follow different rules. Figure 3 shows how the unification of predicates can be

customized. Atkinson and Griswold have developed a whole-program analysis tool

that allows the user to control the precision of its analysis as well as its termination

criteria [142]. This avoids wasted resources caused by analyses that are more general

than a certain reverse engineering activity actually requires.
2.3.4 Visualizers
In Bassil and Keller’s survey on software visualization tools, 45% of the respon-

dents rated the ‘‘possibility to customize visualization’’ as ‘‘absolutely essential’’

[79]. The developers of the Sextant software comprehension tool say, ‘‘we conclude

that software exploration tools should be extensible to accommodate for domain-

specific navigation elements and relationships as needed’’ [143]. Reiss states that

‘‘since we cannot anticipate all visualizations initially, it should be easy to add new

graphical objects to the system’’ [144]. Among the requirements that Favre states for

FIG. 3. Customizing SOUL’s unification behavior in the IntensiVE tool.

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 217
his GSEE software exploration environment is the need for ‘‘customizable

exploration’’ [123].

Reiss has analyzed why software understanding tools are often not used and

concludes that ‘‘the primary reason was that they failed to address the actual issues

that arise in software understanding. In particular, they provided fixed views of a

fixed set of information and were not flexible enough’’ [145]. Even though

customizations seem important, Wang et al. say that ‘‘existing visualization tools

typically do not allow easy extension by new visualization techniques’’ [146]. They

have developed the EVolve software visualization framework, which ‘‘is extensible

in the sense that it is very easy to integrate new data sources and new kinds of

visualizations.’’ A new visualization is realized by extending the EVolve Java

framework, which already provides abstractions for bar charts, tables, dot-plots,

and so on. Storey et al.’s visualization evaluation framework addresses customiz-

ability of tool interactions:

‘‘Effective interaction to suit particular user needs will normally require a high degree

of customization. . . . Saving customizations and sharing customizations across team

members may also be important’’ [82].

Storey et al. have evaluated 12 different visualization tools, concluding that

Advizor and Xia/Creole have high customizability; VRCS, Palantir, and Jazz have

low customizability; and the rest having no support for customizability. Based on

this study it appears that there is a number of tools that support customizability, but

this feature is not yet pervasive.

218 H.M. KIENLE AND H.A. MÜLLER
Visualization tools support a number of customization mechanisms. In the

following we discuss typical ones with examples:

Extensibility hooks: Tools can provide hooks that make it easier to add function-

ality programmatically. In order to add functionality one has to write code in the

tool’s implementation language. Tool provides basic hooks via subclassing, design

patterns, and APIs. There are also more advanced schemes where tools are imple-

mented as frameworks and have plug-in architectures (Section 3.1).

For example, the EDGE graph editor allows to customize nodes and edges via

subclassing from base classes that support default behavior [147]. EDGE also provides

callbacks that are invoked for actions such as reading a graph, drawing a node, and

deleting an edge. Similarly, Graphviz has an API that allows to manipulate the in-

memory representation of graphs as described in Dot [148]. EVolve is a visualization

framework implemented in Java. In order to support a new visualization, the Visuali-

zation class needs to be subclassed and the class’ abstract methods must be implemen-

ted [146]. The GSEE tool is implemented as an object-oriented framework dedicated to

software exploration and a set of customizable tools that instantiate the framework.

Scripting: Tools can offer a scripting layer to simplify end-user programming.

AT&T’s graphviz provides an interactive editor, Dotty, which can be customized

with a dedicated scripting language, called Lefty [148]. The Rigi graph editor can be

scripted with Tcl/Tk [23]. This makes it easy tomodify Rigi’s user interface to provide

new user interactions and to change existing ones (e.g., via adding or modifying drop-

down menus and pop-up forms). However, Rigi’s graph visualization cannot be easily

changed (e.g., the shapes of nodes are fixed). The implementors of the Dali architecture

reconstruction tool chose the Rigi tool for its extensibility via scripting:

‘‘We needed to use a tool that provided both domain specific functionality—to do the

necessary graph editing and manipulation—and extensibility, to integrate with the rest

of the functionality of Dali. We are currently using Rigi for this purpose, since it

provides both the ability to manipulate software models as graphs and extensibility via

a control language based on Tcl’’ [114].

Soft Vision is an open visualization toolkit whose functionality is very similar to

Rigi’s. The toolkit has a layered architecture consisting of a Cþþ core to improve

performance and a Tcl/Tk layer [149]. The Cþþ core exposes an API to the

scripting layer. Customization is accomplished either via the Cþþ API or Tcl

scripting. The authors made the experience that ‘‘for most visualization scenarios

imagined by our users, writing (or adapting) a few small Tcl scripts of under 50 lines

was enough. This was definitely not the case with other reverse engineering systems

we worked with’’ [149].

Mondrian is a visualization framework that can be scripted with Smalltalk [150].

Since the scripting provides intuitive abstractions new visualization can be defined

view := ViewRenderer new.
view nodes: model classes

using: (Rectangle withBorder width: #NOA; height: #NOM;
liniarColor: #LOC within: model classes).

view edges: model inheritances
using: (Line from: #superclass to: #subclass).

view layout: TreeLayout new.
view open.

FIG. 4. Scripting a view with Mondrian [150].

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 219
with a few lines of code. To give an intuition of Mondrian’s capabilities, Fig. 4

shows as sample script and the resulting graph that it generates.

Declarative specifications: Declarative specifications can take various forms,

ranging from domain-specific languages to setting option interactively with the

tool’s user interface. Dot has a specification language to define a graph and

to control its rendering. Similarly, EDGE has a description language to specify

properties of the graph [147].

The following gives an example:

Graph.x-spacing: 30

Graph.layout.algorithm: ReduceCrossings

Node.borderwidth: 2

Node.label.font: TimesRoman8

Edge.arrow.style: solid

Edge.routing: straight

Configuration files and UI-based customizations can be seen as a rudimentary

form of declarative specification.

In the best case, tools offer various customization strategies. For example, the

Rigi tool has a startup file to configure fonts, icons, text editor, etc. As mentioned

before, more advanced customizations can be performed via Tcl/Tk scripting.

However, Rigi’s architecture provides no direct support to easily customize its

underlying C/Cþþ implementation.

Having various strategies at their disposal allows users to make trade-offs

decisions. For example, programmatic customization is very powerful, but has a

220 H.M. KIENLE AND H.A. MÜLLER
steep learning curve. In contrast, scripting offers better rapid prototyping, but may

lack needed performance. And so on.
2.3.5 Discussion
Whereas our survey suggests that researchers see tool customizability as an

important requirement, many tools are lacking in this respect, especially extractors

and analyzers. In fact, customizability of extractors and analyzers is often forced by

scalability problems. For example, dynamic traces easily can become too huge to be

efficiently stored, retrieved, and investigated. As a result, trace extractors can be

customized for extracting only information at a certain level of granularity (e.g.,

functions, blocks, or statements), certain event types (e.g., function return or object

creation), or parts of the execution (e.g., code of certain classes or packages) [19].

There is also the approach to have a fixed extractor or analysis with the idea to have

its result then customized in a separate processing step (e.g., by a subsequent

analysis and/or visualization).

There are also analyses that are generic (i.e., they can operate independently of the

actual data or schemas) and thus do not need to be customized.6 A typical example

of such an analysis is a graph layout or a textual differencing algorithm. While such

generic analyses have the advantage that they are applicable across all schemas, they

have the disadvantage that they cannot exploit the domain knowledge encapsulated

by a particular schema.

A tool’s schema offers a key opportunity to achieve customizability. Indeed, Sim

et al. offer the thesis that ‘‘tools supporting program comprehension and software

maintenance require flexible conceptual models that can be modified as the user or

task requires’’ [151]. Equally importantly, schemas should allow introspection

during run-time. This has been already realized by reverse engineering repositories.

Similarly to the schemas of repositories, tools should reify conceptual properties

such that they can be queried and perhaps even modified during run-time. This could

lead to tools that can be customized to the task at hand during run-time (rather than

during a dedicated customization step that is performed off-line). A step in this

direction is the Fame library, which enables run-time meta-modeling [40].

Last, tools are currently focusing exclusively on customization, disregarding

personalization. In contrast to customization, which is controlled by the user,
6 These analyses typically exploit the fact that all schemas adhere to a commonmeta-schema (or meta-

meta-model). For example, all RSF schemas are composed of nodes, arcs, and attributes, even though

concrete schemas differ by the actual types of these entities.

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 221
personalization is initiated by the tool itself. It seems worthwhile to try to apply

research results of personalization of systems such as web applications to tools.
2.4 Usability
‘‘Nice tool, but it takes some time to get used to it.’’

user feedback for the sv3D visualization tool [152]

Usability can be defined as the ease of use of a system for a particular class of

users carrying out specific tasks in a specific environment [153]. This definition

emphasizes that usability depends on the context of use as well as the user.

Usability encompasses a set of other quality attributes or characteristics such as

[153, 154]:

Learnability: The system should be easy to learn so that the user can rapidly begin

working with the system.

Efficiency: The system should be efficient to use, enabling a user who has learned

the system to attain a high level of productivity.

Memorability: The system should be easy to recall, allowing the casual user to

return to the system without having to relearn everything.

Satisfaction: The system should be pleasant and comfortable to use.

Among the goals of software engineering are the construction of systems that

users find both useful and usable. The same is true for the construction of reverse

engineering tools. Meeting the usability requirement of users has several benefits

[154]. It improves the product, resulting in productive and satisfied users; increases

the reputation of the product and the developer, potentially increasing the product’s

use; and decreases costly redevelopment caused by user complaints.

Researchers in the reverse engineering field have pointed out the importance of

usability as follows:

—In a position statement for a WCRE panel, Müller et al. state, ‘‘reverse

engineering tool developers not only need to understand the technology side but

also need to take the business requirements and the application usability more and

more into account’’ [155].

—Walenstein says in his dissertation about cognitive support in software engi-

neering tools: ‘‘The first rule of tool design is to make it useful; making it usable is

necessarily second, even though it is a close second’’ [156].

—Discussing tool design and evaluation, Wong assures that ‘‘for program

understanding tools, careful design and usability testing of the user interface is

important’’ [62].

222 H.M. KIENLE AND H.A. MÜLLER
—In a talk entitled Creating Software Engineering Tools That Are Usable,
Useful, and Actually Used Singer states: ‘‘Simply put, if a tool isn’t usable it

won’t be used’’ [157].

—Maccari and Riva have conducted an empirical evaluation of CASE tool usage

at Nokia [158]. The respondents rated the modeling requirement to ‘‘be intuitive and

easy to use’’ as highly useful (i.e., the median value of the responses was above four

on a five-point scale). However, based on their experience with existing CASE tools

such as Rational Rose, the respondents replied that this requirement is ‘‘insuffi-

ciently well implemented.’’

—In a survey, participants rated the importance of requirements for software

visualization tools [79]. The requirement ‘‘ease of using the tool (e.g., no cumber-

some functionality)’’ was selected as the second-most important practical aspect,

which 72% rated as very important (i.e., the highest value on a four-point scale) [79,

p. 8]. However, the authors of the survey believe that ‘‘unfortunately, we found a

disturbing gap between the high importance attached to the two aspects ease of use

and quality of the user interface, and the ratings of these qualities in the software

visualization tools in practical use’’ [79].

Tool developers often are not aware of the importance of usability or do not know

how to achieve it. However, in order to systematically identify and improve a tool’s

usability problems, it is necessary to change tool developers’ attitudes toward

usability [159]. There are two approaches how one can design for usability [154]:

product-oriented and process-oriented.
2.4.1 Product-Oriented Usability
Product-oriented approaches consider usability to be a product characteristic that

can be captured with design knowledge embodied in interface guidelines, design

heuristics, and usability patterns. For instance, Toleman and Welsh report on the

evaluation of a language-based editor’s interface based on 437 guidelines [160].

This catalog covers functional areas such as data entry, data display, sequence

control, and user guidance [161].

The evaluation of the usability of reverse engineering tools is often focused on the

user interface. Toleman and Welsh say, ‘‘user interface design guidelines are an

important resource that can and should be consulted by software tool designers’’

[160]. In Bassil and Keller’s survey, 69% believe that ‘‘quality of user interface

(intuitive widgets)’’ is a very important requirement [79, p. 12]. Reiss, who has

implemented many software engineering tools, believes that ‘‘having a good user

interface is essential to providing a usable tool’’ [162]. He provides a rationalization

for the user interface choices of the CLIME tool, but does not support his decisions

with background literature. For the BLOOM software visualizer, Reiss emphasizes

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 223
that both usefulness and usability are important: ‘‘While it is important to provide a

wide range of different analyses and to permit these to be combined in order to do

realistic software understanding, it is equally important to offer users an intuitive

and easily used interface that lets them select and specify what information is

relevant to their particular problem’’ [145].

Storey’s cognitive framework emphasizes usefulness aspects for comprehension

tools, but also has a design element that requires to ‘‘reduce UI cognitive overhead’’

[163]. Storey et al. further elaborate on this design element, stating that ‘‘poorly

designed interfaces will of course induce extra overhead. Available functionality

should be visible and relevant and should not impede the more cognitively

challenging task of understanding a program’’ [164].

Design heuristics suggest properties and principles that are believed to have a

positive effect on usability. Heuristics address issues such as consistency, task match,

memory-load, and error handling. Bass et al. have collected 26 general usability

scenarios [165]. A scenario describes an interaction that a user has with the system

under consideration from a usability point of view. Examples of scenarios are

Aggregating Data (i.e., systems should allow users to select and act upon arbitrary

combinations of data), Aggregating Commands (i.e., systems should provide a batch

or macro capability to allow users to record, aggregate, and replay commands),

Providing Good Help (i.e., systems’ help procedures should be context dependent

and sufficiently complete to assist users in solving problems), Supporting Interna-

tional Use (i.e., systems should be easily configurable for deployment in multiple

cultures), Modifying Interfaces (i.e., system designers should ensure that their user

interfaces can be easily modified), and Verifying Resources (i.e., systems should

verify that all necessary resources are available before beginning an operation).

To our knowledge, there is no catalog of design heuristics for the reverse

engineering domain. However, researchers sometimes relate their experiences,

providing tidbits of ad hoc usability advice. Examples of such tidbits, grouped by

usability characteristics, are:

Learnability: Respondents in Bassil and Keller’s survey view learnability as

relatively less important; less than half see ‘‘ease of learning and installation of

the tool’’ as a very important aspect [79, p. 7].7 In contrast, Reiss emphasizes that

software developers ‘‘will use new tools, languages, resources, etc., if (and this is a

big if) the cost of learning that tool does not exceed its expected rewards and the tool
7 Unfortunately, this item in the survey combines two distinct attributes: learnability and ease of

installation. The authors decided to group these together because both attributes can be considered as a

necessary up-front investment to get productive with the tool (private e-mail correspondence with Rudi

Keller).

224 H.M. KIENLE AND H.A. MÜLLER
has been and can easily shown to provide real benefits’’ [166]. For search tools that

are based on pattern matching, Bull et al. require ‘‘an easy to specify pattern’’ [167].

This requirement trades improved query learnability (as well as simplicity and

specification time) for less expressive power [168].

Easy installation: A tool should be easy to install. Reiss says that ‘‘it is rare to find

a software visualization tool that an uninformed programmer can take off the shelf

and use on their particular system immediately’’ [166]. Generally, the more difficult

the installation, the less likely that the tool will be tried out. Thus, in the best case a

tool requires zero installation. A promising approach is to make tool functionality

available via the web browser. D’Ambros et al. say that ‘‘if a tool is available as a

web application then there is no installation and the cost for people to ‘give it a try’ is

minimal’’ [169]. The REportal reverse engineering tool is implemented as a Web

portal. Users can upload the source code that they want to analyze and then run

analyses; thus ‘‘users are not required to install any software on their computers in

order to use the portal services’’ [170].

Efficiency: According to Reiss, a tool’s usage should ‘‘have low overhead and be

unintrusive’’ [134]. Especially, it should not interfere with existing tools or work

practices. Reverse engineers often manually inspect, create, and modify the data

represented with an exchange format. To simplify this activity, these formats should

be human readable and composable (Section 2.6).

Memorability: The scripting interface of a tool should not overwhelm the user

with too many commands. For instance, Moise and Wong made the experience that

‘‘the Rigi command library was difficult to learn and awkward to use with the sheer

number of commands’’ [99].

Satisfaction: In order to keep reverse engineers motivated, tools should be

enjoyable to use. Especially, ‘‘do not automate-away enjoyable activities and

leave only boring ones’’ [171]. Tools should be designed to ‘‘keep control of the

analysis and maintenance in the hands of the [users]’’ [172]. Otherwise, the user may

feel threatened and devalued by the tool.
2.4.2 Process-Oriented Usability
Process-oriented approaches such as user-centered design consider usability as a

design goal that can be achieved with a collection of techniques involving the end

users (e.g., task analysis, interviews, and user observations). Singer answers the

question of ‘‘How do you make a tool usable?’’ with the recommendation to

‘‘conduct pilot tests on [the] target user group,’’ and to ‘‘bring it to users early and

often’’ [157].

The SHriMP tool has a history of user studies, which also had the goal to improve

the tool’s usability. For instance, a pilot study (involving 12 users who were

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 225
videotaped using think-aloud) has lead to recommendations for interface improve-

ments to SHriMP (and Rigi) [102, 163]. These recommendations were then used to

redesign SHriMP’s interface [163]. The redesign involved, for instance, a more

effective navigation of the visualized graphs combining contextþdetail with

panþzoom, alternative methods of source code browsing, and the introduction of

modes to reduce the cognitive overhead of the users during navigation. The new

interface was then evaluated with another user study (which used videotaping and

think-aloud, but also a questionnaire and an informal interview) [163, 173]. Besides

SHriMP, the TkSee tool is also an example of a reverse engineering tool that has

employed user studies (see below).

Awkward usage scenarios or work patterns can also give hints on how to improve

usability. For instance, observing the work of professional software engineers,

Singer and Lethbridge found that they did ‘‘jumping back and forth between tools,

primarily Unix command line (performing grep) to editor and back. This jumping

involved the use of cut and paste to transfer data and was frequently awkward’’

[174]. This scenario points toward a better integration and interoperability of tools to

improve usability.
2.4.3 Usability in TkSee
The design and evolution of the TkSee search tool is an example of a tool-building

effort that has combined both product-oriented and process-oriented approaches in

the form of guidelines and user studies to improve the tool’s usability. A product-

oriented approach was followed by evaluation of TkSee based on Nielsen’s usability

guidelines [175]. Three evaluators identified 114 usability problems. The types of

problems found were poor or missing feedback (e.g., what has happened following

an interaction), possible confusion about tool behavior, possible misinterpretation

(e.g., meaning of labels or menu items), poor labeling, lack of labeling, lack of

consistency, poor graphical design, unnecessary features, lack of needed features,

lack of robustness (e.g., tool crashes or hangs), incorrect behavior, and nonoptimal

interaction.

The usability analysis of TkSee showed that it is important to have several

evaluators with different backgrounds. One of the evaluators had a background in

usability, but no background about the problem domain (i.e., program comprehen-

sion). This person tended to find general usability problems related to feedback,

labeling, and graphical design, etc. In contrast, another evaluator that was already

knowledgeable about TkSee and the problem domain tended to point out missing

features and incorrect behavior. TkSee was also evaluated with a user analysis

involving videotaping and think-aloud usability testing [175]. Eight participants

found 72 problems, of which 53% had already been identified before by the

Hierarchy. Different relationships
represented by indentation

Text area, showing source code and
highlighting the item selected on the
hierarchy at the left

Type (purple) of the variable
above

Variable (green) found in the
file above

Problem report (green P)
related to file above

Line of code from grep (purple
binoculars) found in routine
above

Routine (brown) found in the
file above

File (blue). At zero indentation,
meaning it was part of the
original search

Improvement: Menus and
icons relating to a specific
pane are found directly above
that pane

Bookmark: Indentation indicates that it was
created while viewing another. Since it is
selected, its contents is shown below

Improvement: More compact
area for history of bookmarks

Improvement: Ability to open
the displayed file in an editor
of the user’s choice

FIG. 5. Changes to TkSee resulting from usability evaluation [175].

226 H.M. KIENLE AND H.A. MÜLLER
evaluators. This shows that both product-oriented and process-oriented approaches

are complimentary and that both should be used to evaluate a tool’s usability.

Figure 5 shows a screenshot of TkSee after its redesign, identifying some changes

that were made as a result of the usability evaluation.
2.4.4 Discussion
In 1991, Grudin observed that ‘‘resistance to unfriendly systems is growing. There

is growing competitive pressure for usability in the marketplace, particularly in

mature application domains’’ [176]. Almost two decades after this statement, it is

questionable whether usability of software has improved drastically. Whereas the

problem of usability seems to have more visibility, it is still difficult to overcome

due to other, competing pressures such as feature creep and time to market.

Usability is recognized as a problem by researchers, but it is often addressed in an

ad hoc manner. Tool developers rarely discuss how they established the usability of

their design. Toleman and Welsh testify, ‘‘in general, the design rationales for

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 227
software tools that are available rarely indicate the basis for the design of the user

interface’’ [160]. There is the underlying problem that researchers in reverse engi-

neering have neither made an attempt to define nor clarified what they mean by

usability. As a result, usability is often judged subjectively by the tool developers.

Toleman and Welsh criticize that ‘‘software tool designers consider themselves

typical users of the tools that they build and tend to subjectively evaluate their

products rather than objectively evaluate them using established usability methods’’

[160]. Too often, usability is only superficially addressed. Lanza and Ducasse

address the usability of their CodeCrawler visualization tool by saying that ‘‘our

tool has been downloaded over 2000 times and, although we have not performed a

user survey yet, from personal and e-mail discussions with the users, we

have learned that after a short learning time they know what they can get out of

each view’’ [57]. Whereas these indications are encouraging for CodeCrawler

indeed, they cannot replace a more formal usability assessment (such as exemplified

by SHriMP and TkSee). In contrast, the developers of the Sextant software

exploration tool go one step further by first stating five functional requirements

(i.e., integrated comprehension, cross-artifact support, explicit representation,

extensibility, and traceability), and then arguing how Sextant meets these require-

ments [177].

Storey’s cognitive dimensions framework is mostly focused on improving

the usefulness of a program comprehension tool, but not its usability. Green and

Petre introduce a framework to assess the usability of programming environments

[178]. As a start, researchers should apply existing usability framework while

developing usability guidelines specifically for the reverse engineering domain.
2.5 Adoptability
‘‘Technologists tend to think that if they build a good thing, people will find their way

to it and adopt it on their own, based on its inherent goodness...Wrong.’’

Lauren Heinz [179]

For almost all new ideas, practices, technologies, tools, and other innovations8 in

general, there is the concern of how to get them adopted. As the above quote

suggests, adoption of innovations cannot be taken for granted, regardless of the

perceived benefits by its proponents. This painful experience has been repeatedly

made by different innovators in diverse areas. An example of a famous adoption
8 Roger defines an innovation as ‘‘an idea, practice, or object that is perceived as new by an individual

or other unit of adoption’’ [181, p. 11].

228 H.M. KIENLE AND H.A. MÜLLER
problem in the software engineering area are CASE tools. Even though CASE tools

were promoted as significantly increasing software development effectiveness in

terms of productivity and quality, many developers did not use these tools or

abandoned them later on—leading to questions such as ‘‘why are CASE tools not

used?’’ [181].

The attempt to move toward a common exchange format for reverse engineering

is an interesting example of the adoption of a new standard within a research

community. The goal of a common exchange format is to simplify tool interopera-

bility. However, to achieve this vision, a diverse group of stakeholder have to agree

to adopt a standard first. Establishing a standard exchange format or schema is

difficult because existing tools have to be modified for compliance, which may not

be economical [108]. But without a critical mass, an exchange format does not make

the transition to a standard exchange format. Adoption of a new format can be

encouraged by addressing the functional and nonfunctional requirements of its

users.9 In other words, the exchange format should be an ‘‘early and clear win for

adopters’’ [182].

Perhaps the most import theory that is able to explain adoption is diffusion of

innovations [180]. The theory’s roots are in sociology, but there are hundreds of

publications that have applied it to study the adoption of innovations in a vast

number of fields. Diffusion of innovations has identified the following character-

istics as most significant [180, p. 15]:

Relative advantage (þ): Relative advantage is the degree to which an innovation

is perceived to be better than what it supersedes. The immediacy of the rewards of

adopting an innovation is also important and explains why preventive innovations

have an especially low adoption rate.

Relative advantage can mean that reverse engineers notice that a certain tool

allows them to perform certain tasks with more ease, in less time, or with higher job

satisfaction.

Compatibility (þ): Compatibility denotes the consistency with existing values,

past experiences, and needs. Generally, innovations are understood by putting them

in relation with the familiar and the old-fashioned.

Favre et al. make the observation that ‘‘users are more likely to adopt a tool that

works in the same environment they use on a daily basis. This means that SE tools

should be integrated to the existing set of tools’’ [87]. For example, Buss and
9 Whereas it is clear that the users of an exchange format are researchers in the reverse engineering

field, it is difficult to assess the requirements of this rather diverse community. Proposals for standard

schemas face the same problem; a group of researchers proposing a schema for C/Cþþ note, ‘‘there is one

fundamental issue that we have not yet resolved: who are the end users of this schema and what are their

requirements?’’ [109].

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 229
Henshaw report on a platform conflict of their tool; as a result ‘‘the product

maintainers are uncomfortable with the unfamiliar environment on which the anal-

ysis is run’’ [183]. The tool designers of sgrep try to improve adoption by making

their tool compatible with a popular existing search tool, grep. They state, ‘‘sgrep is

designed to be used in place of grep, so it is important that many of the design

decisions found in grep, transfer over to sgrep’’ [167]. Since grep is a command-line

tool, sgrep follows this pattern: ‘‘Although graphical user interfaces are often easier

to use for novice users, we believe that familiarity is more important than ease of
use, for the kinds of tasks we envision for sgrep’’ (emphasis added).

Complexity (�): Complexity is the difficulty of understanding and using an

innovation.

Adoption of a tool can be increased by making it easier to use, or by providing

training sessions and appropriate documentation. Complexity can also be reduced by

identifying and eliminating unnecessary tool features.

Trialability (þ): Trialability denotes the degree to which an innovation can be

experimented with, without committing to it.

The authors of a work practice study involving the TkSee tool believe that an

important factor in the adoption of the tool by developers was that ‘‘we allowed them

to continue their existing work practices (e.g., use of grep), rather than forcing them to

adopt a radical new paradigm’’ [174].Also, the TkSee search tool can be easily tried out

because reverse engineers can readily switch betweenTkSee and other search tools that

they were using before. A tool is easier to try out if it is easy to install (Section 2.4).

Observability (þ): Observability is the degree to which the results of an innova-

tion are visible to others.

For instance, if a tool is visibly used for other developers, it can have a beneficial

impact on adoption. Kollmann relates an experience he made in an industrial

project: ‘‘It can be observed that once a certain number of people have made positive

experiences with [an innovation], the propagation is often carried out considerably

faster. People seem to trust the experiences others have made and are easier

convinced to come aboard, resulting in a kind of snowball effect’’ [184].

These characteristics help to explain the rate of adoption. Adoptions that are

positively related (‘‘þ’’) with the above characteristics will be adopted more rapidly

than other innovations. Besides these characteristics, there are other factors that

determine adoption, for instance, communication channels, nature of the social

system, activities of change agents, and individual/collective decision-making.

Developers of reverse engineering tools have mostly ignored the question of

whether their tools are actually adopted by software developers and maintainers.

For program understanding tools, Mayrhauser and Vans have observed expectations

that users better adapt to a tool if they want to use it: ‘‘we still see attitudes reflected

in tool builders’ minds that if we just teach programmers to understand code the way

230 H.M. KIENLE AND H.A. MÜLLER
they ought to (i.e., the way their tools work), the understanding problem will be

solved’’ [185]. Thus, instead of lowering adoption barriers and increasing the users’

incentives to adopt, this attitude expects users to pick up a tool in spite of the raised

adoption hurdles.

In the last few years, however, the reverse engineering community has started to

pay more attention to this question. This trend is exemplified by the following

sources:

—In 1996, Rugaber and Wills already point out that there is an adoption problem

of reverse engineering tools: ‘‘Reengineering research has had notably little effect

on actual software reengineering practice. Most of the published papers in the field

present techniques supported by prototype tools; few of which have actually been

used on real projects’’ [186].

—Eight years later, the organizers of the Fourth International Workshop on Adop-
tion-Centric Software Engineering come to a similar conclusion: ‘‘Research tools in

software engineering often fail to be adopted and deployed in industry’’ [187].

—Lethbridge makes the general observation that ‘‘one of the beliefs that moti-

vates software engineering tools builders is, ‘if we build it, they will come.’

Unfortunately, they often don’t come and we wonder why’’ [188]. Similarly,

Wong stresses that it is not enough to devise a new technique or tool and ‘‘simply

expect practitioners to pick it up and adopt it’’ [62].

—Software exploration tools use graphical presentation to visualize information

about a software system. Even though researchers perceive these tools as valuable

for reverse engineering and maintenance tasks, Storey reports that ‘‘despite the large

number of software visualization tools, few of these tools are used in practice’’

[164]. Storey et al. use the adoption problem as motivation to propose a framework

of cognitive design elements to guide tool design.

—In a roadmap paper for reverse engineering research for the first decade after

the year 2000, Müller et al. state that they believe ‘‘perhaps the biggest challenge to

increase effectiveness of reverse engineering tools is wider adoption; tools can’t be

effective if they aren’t used’’ [46].

—In his dissertation, Wong demands from researchers to ‘‘address the practical

issues underlying reverse engineering tool adoption’’ [62]. Discussing lessons

learned from his Reverse Engineering Notebook, he says, ‘‘make adoption issues

an integral part of reverse engineering tool research and design’’ [62].
2.5.1 Tool Adoption Research
There are few researchers who see the adoption of their tools as a first-class

requirement for their research endeavor. One notable exception is the Adoption-

Centric Reverse Engineering (ACRE) project, which explores the adoption problem

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 231
of reverse engineering tools. It has initiated a series of four workshop on Adoption-

Centric Software Engineering (ACSE 2001–2004) [187]. ACRE addresses the

adoption problem with two lenses, cognitive support and interoperability. Since

most research tools only support a few selected program understanding or mainte-

nance tasks, reverse engineers typically have to integrate them with other tools to

use them effectively. ACRE proposes to investigate the use of data, control, and

presentation integration technologies such as XML protocols, the GXL exchange

format, Web browsers, ECMAScript, SVG, Eclipse, and web services to make tools

more interoperable and thus more adoptable. The other lens, cognitive support,

refers to the means by which tools assist the cognitive work of their users (i.e.,

thinking and reasoning) [156]. Examples of everyday tools that provide some form

of cognitive support are shopping lists, address books, and pocket calculators.

Without them, certain tasks would have to be performed with an increased cognitive

load (e.g., in terms of memorization and computation).

Lethbridge considers adoption using three factors: costs, benefits, and risks of tool

use [188]. Potential adopters often do not perform a formal analysis of these factor,

relying on their ‘‘gut feeling’’ instead. Examples of costs of use are (c1) purchasing of

the tool, (c2) purchasing of extra hardware or support software, (c3) time to install and

configure the tool, and (c4) time to learn the tool. Examples of benefits of use are (b1)

time saved by the tool, and (b2) value of the increased quality of work done. Examples

of risks are (r1) costs are higher than expected, (r2) benefits are less than expected, (r3)

unintended negative side effects (e.g., data corruption), (r4) discontinued tool support,

and (r5) difficulty to revert to previous work environment. Discussing the factors,

Lethbridge says that ‘‘in addition to perceiving costs and benefits differently, adopters

will more intensively perceive the risks, and the more risks they perceive, the more

their perceived benefits must exceed their costs of adoption to take place’’ [188]. In

contrast, tool researchers tend to focus on costs and benefits, ignoring or down-playing

the risks. Lethbridge’s factors can be used to assess tool-adoption scenarios. For

instance, adopting a reverse engineering tool that is build on top of an office suite

(as envisioned by ACRE) should have low purchasing costs assuming the office suite

is already used (c1 and c2), a simple installation process if the tool is provided as a

plug-in (c3), and favorable learning curve resulting in saved time (c4 and b1). On the

other hand, updating the office suite might render the plug-in inoperative (r4) and users

might become trapped in a certain data format (r5).

Tilley et al. have looked at the adoption of research-off-the-shelf (ROTS) soft-

ware [189]. They say,

‘‘in our opinion, adoption is one of themost important, yet perhaps least appreciated, areas

of interest in academic computer science circles. . . . Indeed, it can be argued that ‘transi-
tionability’ as a quality attribute should receive more emphasis in most software projects’’

232 H.M. KIENLE AND H.A. MÜLLER
In applied fields such as software engineering, ‘‘it may be a measure of success for

the results of an academic project to be adopted by an industrial partner and used on

a regular basis.’’ However, whereas adoption is a desirable (long-term) goal for a

research project, it is not a necessary criterion for success. This is caused by the

academic reward structure, which emphasizes publications rather than workable

tools. As a result, the adoption of ROTS software is complicated by lacking

‘‘completeness (e.g., a partial solution due to an implicit focus on getting ‘just

enough’ done to illustrate the feasibility of a solution, rather than going the ‘last

mile’ to bring the prototype to market).’’ This is especially the case if the software is

the result of a one-person effort produced as part of a Master’s thesis or dissertation.

Additional complications for adoption are ‘‘understandability (e.g., a lack of high-

quality documentation)’’ and ‘‘robustness (e.g., an implementation that is not quite

ready for prime time).’’ Huang et al. also look at the relationship between academia

and industry: ‘‘Both parties know that they have a symbiotic relationship with one

another, yet they seem unable to truly understand what each other needs’’ [190].

Industry has a potential interest in research results that can mature and then be

integrated into existing processes to improve software development. To encourage

interest from industry, researcher have to solve relevant problems and not to work on

problems that are ‘‘removed from the current needs of potential users.’’

Also, adoption of tools and techniques by industry could be encouraged with

third-party case studies and quantitative data, but these are rarely available for

ROTS software [191].
2.5.2 Adoption Factors
Researchers have suggested many potential factors that affect tool adoption,

summarized as follows:

Tool: Researchers have mostly focused on factors that can be attributed to the tool

itself. To get adopted, tools have to be both useful and usable. Storey says,

‘‘although there are many software exploration tools in existence, few of them are

successful in industry. This is because many of these tools do not support the right

tasks’’ [163]. Bull et al. state, ‘‘in any field, ease of use and adaptability to the tasks

at hand are what causes a tool to be adopted’’ [167]. Wong believes that ‘‘light-

weight tools that are specialized or adaptable to do a few things very well may be

needed for easier technology insertion’’ [192]. He also says, ‘‘by making tools

programmable, they can more easily be incorporated into other toolsets, thus easing

an adoption issue of tool compatibility’’ [62]. Tilley et al. suggest that research tools

might be more adoptable if they were more understandable, robust, and complete

[189]. Devanbu points to inadequate performance of research tools, which are often

not intended for large-scale applications [193]. In contrast to most research tools that

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 233
require some effort and expertise for installation, popular tools are easily installed or

even already preinstalled [194].

User: For adoption, besides the characteristics of the tool, characteristics of the

tool users play an important role. When starting to use a tool, users often want

positive feedback very quickly. Tilley makes the point that ‘‘it is an unfortunate fact

that many developers will give a tool only a short window of opportunity to succeed.

If they cannot get the tool up and running in 10 min and see real results, without

looking at the manual, they will often abandon the tool’’ [195]. Many users would

not even consider a very small trial period no matter of the potential benefits that it

promises—if users are happy with their existing tools they do not see the need of

trying (yet) another one. Devanbu [193] says,

‘‘developers are pressured by schedules, and keenly aware of the need to meet cost,

schedule or quality requirements. This engenders a conservative bias towards simple,

and/or familiar tools, even if somewhat outdated. Builders of complex tools with steep

learning curves (even ones promising significant gains) face the daunting hurdle of

convincing busy developers to invest training time’’

The TkSee tool has collected some experiences with developers at Mitel. Less

than half of the developers at Mitel used the tool for significant work over a 2-year

period. For users who did not adopt, Lethbridge and Herrera found that ‘‘at some

point during their learning attempts, many users had concluded that further learning

was not worth additional investment of their very limited time’’ [175]. Interestingly,

user that did not adopt tended to state reasons that revealed misconception of the

TkSee tool ‘‘either because it had not proved rapidly learnable or else because they

had found some aspect of it difficult to understand’’ [175]. TkSee was introduced to

the developers without ‘‘extensive documentation or training.’’ Lethbridge and

Herrera elaborate on this point, ‘‘we feel sure that a more proactive training program

might have helped increase adoption to some extent; however, we do not feel that

more extensive documentation would have helped much—we hardly ever observed

anyone look at the existing documentation’’ [175].

Organization: Often developers do not make the decision to adopt a tool all by

themselves because they are constrained by their organization.10 This is true for

industry, which often mandates certain tools, as well as open source projects that

assume a certain toolset (e.g., GCC, CVS, and Bugzilla).

From an organization’s perspective, ‘‘adopting a different toolset or environment

discards the hard-earned employees’ experience’’ [196]. Furthermore, ‘‘changing
10 Rogers defines an organization as ‘‘a stable system of individuals who work together to achieve

common goals through a hierarchy of ranks and a division of labor’’ [181, p. 375].

234 H.M. KIENLE AND H.A. MÜLLER
tools requires changing processes, which is also an expensive undertaking. As a

result, the state of tool adoption in industry is rather static and conservative’’ [196].

Devanbu also stresses that tools have to integrate smoothly into an existing process:

‘‘Software tools work best if their operation is well tuned to existing processes.

Thus, a tool that generates paper output may not be helpful in an email-based

culture’’ [193]. Similarly, Wong says ‘‘software understanding techniques and

tools need to be packaged effectively and made compatible with existing processes,

users, and tools’’ [62].

In a social system such as an organization, the adoption of innovations can be

promoted by change agents or innovation champions [180, p. 398]. If such an entity

is missing the innovation probably will not get adopted. Lethbridge and Singer have

rediscovered this approach for tool adoption of TkSee: ‘‘We had significant diffi-

culty introducing new tools. One technique that seems to hold promise is to train a

single individual (in our case somebody new to the organization) and have him or

her act as a consultant for others’’ [197].

Whereas the diffusion of innovations theory has developed characteristics that

hold across innovations and social systems, there might be also the need to consider

domain-specific characteristics. Cordy reports his experiences with the technical,

social, cultural, and economical drivers of the Canadian finance industry and

financial data processing in general, which he gained during 6 years of project

work with Legasys Corporation [172]. In Cordy’s experience, resistance to tool

adoption is strong because of unhappy past experiences with many inadequate and

premature CASE tools. As a result of the pressure of quick, low-risk enhancements

of financial applications, for maintainers ‘‘only the source is real’’ [172]. Thus,

reverse engineering tools have to present results in terms of source, and not abstract

diagrams. Also, robust extractors are needed because ‘‘having no answer is

completely unacceptable, and programmers will rapidly drop any analyzer that

fails to yield answers due to parse errors.’’ The decision to adopt a tool is not

made by upper management, but individually by the maintenance programmers and

their group manager. In order to convince programmers to adopt a maintenance tool,

it is important that they do not feel threatened by it; the workflow of the tool should

be such that ‘‘all control is left in the hands of the programmer.’’ Cordy says, ‘‘this

philosophy of assist, don’t replace, is the only one that can succeed in the social and

management environment of these organizations.’’ Cordy believes that ‘‘by studying

the maintenance culture of each industrial community, by treating their way of doing

things with respect, and by working to understand how our techniques can best be fit

into their existing working environment, we can both increase chances of adoption

and enhance our own success’’ [172].

Cost: The adoption of an innovation can be explained by the cost that it causes the
users and their organization. Glass [198] says that

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 235
‘‘learning a new tool or technique actually lowers programmer productivity and product

quality initially. The eventual benefit is achieved only after this learning curve is

overcome. Therefore, it is worth adopting new tools and techniques, but only (a) if

their value is seen realistically and (b) if patience is used in measuring benefits.’’

Patterson makes the point that research software is free of charge, but this does not

mean that adoption and use of it has no cost—there is a difference between cost of

purchase and the cost of ownership [199]. An example of the cost of ownership is

tool administration: ‘‘Once installed, some complex tools require a great amount of

administration. . . . The amount of work and the skills required could be a serious

barrier to the adoption of complex tools’’ [87].

Tilley and Distante say, ‘‘ultimately, people will only adopt a technique if they see

significant benefit in its use that far outweigh the costs associated with learning and

using the technique in the first place’’ [200]. Storey et al. state that ‘‘the adoption of

any tool has a cost associated with it. Economic cost is a key concern, in addition to

other costs such as the cost of installing the tool, learning how to use it, and the costs

incurred during its usage’’ [82]. In their tool survey, Bassil and Keller did ask for the

importance of the ‘‘cost of the tool’’ [79, p. 1]. Interestingly, 50% of the respondents

from academia rated this aspect as ‘‘very important,’’ compared to only 32% of

respondents from industry.
2.5.3 Discussion
There are many factors that influence the adoption of a tool—and many of these

cannot be influenced by the tool developers directly. Rifkin reaches a similar

conclusion when he says that ‘‘as designers of processes and tools that we want

adopted by others, we should understand that there is only so much power in the

technical content of our processes and tools’’ [201]. However, tool developers

should make an effort by leveraging the factors that they are able to influence to

increase the likelihood of tool adoption.

In order to increase the incentives of academic researchers who conduct applied

research to focus more on the adoption of their proposed tools and techniques, it is

necessary to change the academic reward structure. Researchers already have an

incentive to raise adoption to a first-class requirement because an adopted tool has

indirectly proven its usefulness [202]. However, as Storey points out, the opposite is

not necessarily true: ‘‘A lack of adoption is not enough to indicate that a tool is not

useful as there are many barriers to adoption (e.g., seemingly trivial usability issues

can impede usage of a tool)’’ [203].

Researchers in the software engineering area have drawn from existing work to

understand and improve adoption of tools, technologies, and methods. ACRE draws

236 H.M. KIENLE AND H.A. MÜLLER
from ideas of cognitive science to understand, measure, and evaluate the cognitive

support of tools [204]. Storey et al. include cognitive support in their evaluation

framework of software visualization tools [82]. Sun and Wong apply cognitive

theories of human perception, especially Gestalt theory, to evaluate the SHriMP

tool and to suggest improvements for it [205]. Lethbridge et al. incorporates

elements of the technology acceptance model and diffusion of innovation theory

to explain tool adoption. Tilley et al. look at the adoption of research tools through

the lenses of Moore’s Crossing the Chasm and Christensen’s The Innovator’s
Dilemma [189]. Examples of other applicable theories and models are cognitive

fit, consumer behavior theory, technology transfer, SEI’s Technology Transition

Practices, and technology readiness level.

Besides reverse engineering, other computer science areas have discussed adop-

tion of their tools and techniques (e.g., product lines [206], open source [207],

groupware [208], and functional programming [209]). There are many more exam-

ples, including workshops on technology transfer and adoption (e.g., [210]), and

journal special issues (e.g., [211]). It is encouraging that a growing number of

researchers have started to realize that adoption is an important challenge that

needs to be addressed. Unfortunately, these efforts are still immature. Suggestions

to improve adoption are often based on guesswork without providing an underlying

theory, or apply existing theories without empirical data.

2.6 Requirements of Exchange Formats

The discussion, so far, has centered on quality attributes. However, the functional

requirements of tools are equally important. Indeed, tool builders have to evaluate the

functional requirements of their tools carefully, because a tool can be only useful to its

users if it provides the functionality that the users need to fulfill their tasks. In fact, the

second-largest complaint in Lethbridge’s survey was missing or wrong mix of tool

features (15%) [90]. As a result, Lethbridge and Anquetil require tools to ‘‘incorpo-

rate all frequently-used facilities and advantages of tools that software engineers

already commonly use’’ [90]. But what are these frequently used facilities?

In contrast to quality attributes which are more component-agnostic, functional

requirements are typically tied to a particular component of the reverse engineering

tool (Fig. 1). As an example, we will here discuss the functional requirements for

exchange formats, which is an approach to realize the tool’s repository component.

In other work, we have explored requirements for software visualization tools in

more detail [212].

The research community has discussed extensively the functional and nonfunc-

tional requirements for exchange formats. This discussion was started by the reali-

zation that a common exchange format would be beneficial for the whole

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 237
community.11 In the following, we briefly summarize the requirements for exchange

formats reported in the literature:

Graph model: Wong recommends to ‘‘use a graph model with multiple node

types, arc types, and attached attributes’’ [62]. Examples of exchange formats that

adhere to this model are RSF, TA, MSE, and GXL.

Version control: One of Wong’s data requirements is to ‘‘provide version control

over schemas and fact bases’’ [62]. An exchange format does not need to provide

version control, but should also not unduly complicate the use of it.

Textual form: An exchange format should be textual. This simplifies processing

and makes the format human-readable [96, 214]. Riva notes that ‘‘a human readable

format allows us to navigate the data with simple text editors and eventually repair

corrupted files’’ [135].

File-based: There are researchers who say data should be stored as files. Riva

made the experience with FAMIX that it is convenient when ‘‘all the extracted data

are contained in one single file that is easy to archive and transfer’’ [135].

Formality: An exchange format should be well defined and formally documented

to ‘‘eliminate the possibility of conflicting interpretations of the specification for

encoding and decoding model data [96].

Composability: The fact bases of an exchange format should be composable [62].

For example, two RSF files can be simply appended to form a new, syntactically

valid RSF file. A related requirement is that the exchange format ‘‘should be

incremental, so that it is possible to add one subsystem at a time’’ [41, 119]. Flat

formats such as RSF are easier to compose than nested ones such as XML [70].

Granularity: The exchange format should ‘‘work for several levels of abstraction’’

such as fine-grained AST-level and coarse-grained architectural-level [119]. Simi-

larly, Koschke et al. state that an intermediate representation ‘‘should support

different levels of granularity from fine-grained to coarse-grained’’ [69]. Kamp

says, ‘‘the repository should support the use of the level of granularity appropriate
to the current program comprehension task’’ [42].

Neutrality: The exchange format should be neutral with respect to the stored

information and the platform. For example, it should ‘‘work for several source

languages’’ and ‘‘work for static and dynamic dependencies’’ [41, 119]. For

St-Denis et al., ‘‘the neutrality requirement ensures that the model interchange

format is independent of user-specific modeling constructs in order to allow a

maximum number of model users to share model information’’ [96].
11 Examples of discussion forums are WoSEF (held at ICSE 2000) [214], a WCRE 2000 working

session on exchange formats, and Dagstuhl Seminar 01041 on Interoperability of Reengineering Tools
(held in January 2001).

238 H.M. KIENLE AND H.A. MÜLLER
Incremental loading: Ducasse and Tichelaar state that ‘‘incremental loading of

information is about the ability to load new entities or additional information for

entities that already exist in a model. The reasons for considering incremental

loading are resource optimization and the merging of information from different

sources’’ [70].

Naming: Entities in the source model have to be represented in a suitable form in

the exchange format. This mapping should be unambiguous (e.g., variables with the

same name but in different scopes should be distinguishable from each other [62]).

This can be accomplished with unique (but artificial) identifiers or a unique naming

scheme [70]. In the FAMIX model, ‘‘all the entities have a unique name that is built

using precise rules’’ [135].

Querying: Tichelaar et al. state that ‘‘a large portion of reengineering is devoted to
the search for information. Therefore it should be easy to query the exchange format.

Especially, processing by ‘standard’ file utilities (e.g., grep, sed) and scripting

languages (such as Perl, Python) should be easy’’ [214]. Many exchange formats

are associated with dedicated query languages, which have their own requirements

[215].

Popularity: Even though not a technical issue, popularity and enthusiastic sup-

porters are an important requirement since an exchange format has to facilitate data

exchange between many and diverse (skeptical) stakeholders [41, 96, 119]. In this

context, it can be desirable that the exchange format supports industry standards or is

a standard itself [214].

Koschke and Sim point out that there are different stakeholders for an exchange

format such as tool users and tool builders [213]. The requirements of different

stakeholders are not necessarily the same. For instance, a tool user might favor a

format that is human-readable, whereas a tool builder is primarily interested in a

format that can be parsed easily and efficiently. On the one hand, formality is highly

desirable to reduce ambiguity. On the other hand, according to Bosworth ‘‘simple,

relaxed, sloppily extensible text formats and protocols often work better than

complex and efficient binary ones. Because there are no barriers to entry, these

are ideal. A bottom-up initiative can quickly form around them and reach a tipping

point in terms of adoption’’ [216]. Perhaps not surprising, the reverse engineering

community has primarily focused on technical issues of exchange formats, neglect-

ing to discuss overarching issues such as rationale and economic impacts [217].
2.6.1 Schema
The schema is an important part of the exchange format; consequently, research-

ers have stated dedicated requirements for it. Several of Wong’s data requirements

are targeted at schemas. According to him, a schema should ‘‘support aggregation,

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 239
inheritance, hierarchy, and constraints’’ [62]. Another important requirement is

extensibility. Wong believes that the schema should be ‘‘dynamically extensible’’

[62]. Extensibility can be achieved with inheritance of schema entities, which is

supported by several exchange formats (e.g., TA and FAMIX). Inheritance facil-

itates extensibility because it allows to add new schema entities in a defined manner

[70]. Extensibility is highly desirable to support multilanguage tools. Ferenc et al.

say, ‘‘the schema should be independent of any parsing technology’’ [108] and Riva

argues for a ‘‘separation between data and presentation’’ [135]. A lesson learned

from the Moose tool is to ‘‘make your [schema] explicit’’ [30]. Wong also says that

the exchange format should ‘‘support introspection of schemas’’ [62]. This means

that a tool should be able to query the schema itself and not just the data. To facilitate

introspection, a meta-schema is needed (which is either formally or informally

defined). Ducasse and Tichelaar introduce meta–meta-models as an axis in their

tool design space [70]. They state that while an existing meta-schema has the benefit

that it is already predefined and agreed upon by all tool users, it is less flexible and

constrains extensibility.12
2.6.2 Other Domains
Besides reverse engineering, interchange formats are used in many different

domains ranging from networking (e.g., ASN.1) and graphics (e.g., JPEG) to

business processes (e.g., PSL) and biosciences (e.g., HDF5). It is an interesting

question whether different domains have mostly disjoint or mostly overlapping

requirements for exchange formats. If the latter is the case, then different domains

can learn from each others’ requirements and experiences. There is also the ques-

tions if a general exchange format such as XML could replace domain-specific ones.

GraphML is a generic XML-based format to represent graphs and as such its key

goal is to ‘‘represent arbitrary graphs with arbitrary additional data’’ [218].

GraphML’s designers state as requirements simplicity, generality, extensibility,

and robustness. Mendling has looked at exchange format requirements of different

domains and found that ‘‘the challenges are quite similar across different domains’’

[217]. Indeed, most of the requirements that he identified apply to the reverse

engineering domain: readability, ease of implementation, support of standards,

platform independence, efficiency, and free availability. For the schema, he found

simplicity in the sense that it is easy to understand, completeness (i.e., to be able to
12 For example, Rigi’s schema is constrained by the fact that it must contain a level arc to model

hierarchical graphs. Rigi’s meta-schema is constrained because it allows only nodes, arcs, and attributes

with a fixed semantics.

240 H.M. KIENLE AND H.A. MÜLLER
represent all relevant concepts of the domain), generality (i.e., to be applicable in all

scenarios that are relevant in the domain), unambiguous, and extensible.

Given the overlap of requirements one may ask why the reverse engineering

community has pursued the definition of a dedicated exchange format rather than

using an existing one. In fact, researchers have leveraged existing formats such

CDIF and XML.13 However, while general exchange formats typically offer gener-

ality—because they have been designed with an eye on this particular require-

ments—and often also extensibility, they are suffering in terms of simplicity and

readability. Also, they often lack with respect to ease of implementation, which is a

concern if no standard library is available.
2.7 Discussion

Elicitation and documentation of requirements is an important activity during

software development. However, requirements are often short-cut or deemphasized

when developing reverse engineering tools [220]. For example, researchers often

rely on ‘‘an intuitive notion of what features are beneficial’’ when developing a

software visualizer [24]. The notion of the tool requirements are thus mostly in the

minds of the researchers.

While requirements elicitation is a moving target in a research setting, there can

be great value in reifying the tool requirements and their rationale, and tracking

changes in the requirements as the tool evolves. One approach to ensure that

requirements feature more prominently in tool construction is to employ a dedicated

process for tool building, which explicitly address the elicitation and evolution of

requirements (Section 3). Tool requirements can also inform tool evaluation

(Section 4). For example, one can pick suitable requirements for measuring and

comparing tools.

Explicitly articulated tool requirements can play an important role in driving

research, especially if a community can agree on a set of desirable and/or idealized

requirements whose achievement can serve as a visionary goal. For example, Wong

states that addressing all of this 23 tool requirements represents ‘‘a significant

research challenge,’’ and recommends to ‘‘summarize and distill lessons learned

from reverse engineering experience to derive requirements for the next generation

of tools’’ [62]. Similarly, Hamou-Lhadj et al. have identified requirements for trace

exploration tools and in doing so ‘‘have uncovered a number of requirements that

raise very interesting research challenges’’ [67]. The discussed quality attributes
13 Before the advent of XML, researchers have also proposed to use HTML’s meta tags to encode

reverse engineering information [220].

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 241
reflect the current state of tool requirements and thus can serve as a starting point for

future research directions.

In a sense, requirements can drive research from the bottom-up by informing and

constraining the tool that gets developed. This approach can complement the more

prominent approach of top-down research, which first constructs a tool—based on

more or less vague hypotheses or notions—and then tries to find evidence that the

tool is useful indeed.

However, most sources of the requirements that we found are based on personal

experiences and observations that are inferred, gathered, and reported in an unsys-

tematic manner. In our literature survey, we found that requirements are often

discussed without citing related work or disclosing where else the requirement

may have come from, or mentioned without giving a detailed explanation or

rationalization. Also, researchers do not discuss the applicable scope of a stated

requirement. For instance, is the requirement believed to apply to all software

systems, to the domain of software or reverse engineering, to certain kinds of

tools, or to one tool in particular? Lastly, a requirement is often discussed in

isolation, without addressing dependencies or trade-offs with other requirements.

Perhaps surprisingly, only Lethbridge and Anquetil explicitly separate their require-

ments into functional and nonfunctional ones [90]. Such a distinction makes it easier

to judge the scope and applicability of requirements. Furthermore, they explicitly

identify requirements that their tool does not address (yet), thus making their tool’s

limitations more explicit.

In addition to the requirements gathered in an ad hoc manner, more formal

techniques are needed that are grounded in studying of actual users in a realistic

setting; this trend can be already observed in software visualization research [16,

221].

Whereas tool requirements seem relatively stable, they are not fixed. Changes in

development and maintenance processes and in the characteristics of software need

to be reflected in the requirements for reverse engineering tools. Thus, researchers

should continuously reevaluate their assumptions. For example, a previously

neglected requirement that is starting to receive more attention by researchers is

collaboration and multiuser support [17]. This need was already articulated in 1990

for software development tools [221], and reiterated later on for the reverse engi-

neering domain (e.g., Rugaber in 1996 [48] and Storey in 2005 [203]). In contrast,

Bellay and Gall argue that multiuser support in reverse engineering tools is ‘‘not of

such importance as in development tools because the application normally does not

change and only one person may reverse engineer it’’ [72]. However, this view

seems dated considering the large amount of commercial and open source software

that is developed and maintained in a distributed, collaborative work-style. Indeed,

Koschke states that ‘‘large maintenance and reverse engineering projects require

242 H.M. KIENLE AND H.A. MÜLLER
team-work and, hence, visualizations need to support multiple users that may work

at the same system at the same time at possibly different locations’’ [222].

The emerging importance of this requirement is also reflected in Storey et al.’s

software visualizer framework, which has a dimension to distinguish the team size

that a particular tool targets [82]. Examples of tools that support teams in (near) real-

time are the Jazz collaborative development environment [223] and the Churrasco

collaborative software evolution analysis tool [224]. There are also commercial

IDEs emerging that emphasize collaboration such as IBM’s Jazz (jazz.net).
3. Tool Construction Lens

The building of tools is an important part of many research efforts, especially in

the reverse engineering domain. The tangible results of reverse engineering research

is often embodied in tools, for instance, as a reference or proof-of-concept

implementation.

Even though tool building is a popular technique to validate research, it is neither

simple nor cheap to accomplish. Tool building is costly, requiring significant

resources. This is especially the case if the tool has to be robust enough to be used

in (industrial) user studies. Nierstrasz et al., who have developed the well-known

Moose tool [30], say that

‘‘in the end, the research process is not about building tools, but about exploring ideas.

In the context of reengineering research, however, one must build tools to explore

ideas. Crafting a tool requires engineering expertise and effort, which consumes

valuable research resources.’’

Sometimes a significant part of the resources of an entire research group are

devoted to building, evaluating, and improving a tool. Given the significant cost

associated with tool building, researchers should explore how tools can be con-

structed in effective and efficient manner. Wasted resources for tool building trans-

late to less research output, slower iteration and communication of research, and

reduced opportunities for adoption and transition of tools and techniques to industry.

Traditional tool building that constructs everything from scratch offers the most

flexibility since almost all functionality is implemented from scratch and under the

full control of the developer. On the downside, this approach is costly (e.g., in terms

of longer development time) and can result in idiosyncratic tools that are difficult to

learn and use. On the other hand, as for any software development project, there

is the desire in tool construction to reuse. This point is articulated by Shaw as

follows [225]:

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 243
‘‘Most applications devote less than 10% of their code to the overt function of the

system; the other 90% goes into system or administrative code: input and output; user

interfaces, text editing, basic graphics, and standard dialogs; communication; data

validation and audit trails; basic definitions for the domain such as mathematical or

statistical libraries; and so on. It would be very desirable to compose the 90% from

standard parts.’’

There is a desire among researchers to build upon existing functionality and

infrastructure. Participants of a tool building workshop for reverse engineering

articulated that they ‘‘were tired of writing parsers/analyzers and wanted to avoid

writing another one, in particular a Cþþ parser’’ [213]. This desire is driven by the

realization that in tool building comparably little effort is spent on the research

contribution, and that a significant effort is needed for the supporting infrastructure.

Researchers would rather work on core activities that advance research than being

tied up in lower level plumbing.

There are many different forms of reuse ranging from design and code scavenging

to very high-level languages [226]. However, one can distinguish between two

major techniques to achieve reuse: compositional and generative reuse. These two

reuse techniques correspond to component-based (Section 3.2) and model-driven

(Section 3.3) tool development, respectively. Before turning to these two techni-

ques, we discuss an overarching issue, namely architectures for reverse and software

engineering tools (Section 3.1).
3.1 Tool Architecture

The importance of architecture on software systems is firmly established [64]—

tool construction is no exception in this respect. Importantly, tool architecture

interacts with tool requirements (Section 2). The required quality attributes of a

system often drive the decision to select a particular architecture or architectural

style [63]. Conversely, the chosen architecture of a software system has a profound

impact on its quality attributes [227].

When building a tool, fundamental questions of the architecture are how to

separate the tool’s overall functionality into functional units, and how to interface

these units with each other. For example, Fig. 1 shows a generic, high-level reverse

engineering architecture, consisting of four components: extractors, analyzers,

visualizers, and a repository. This architecture exposes the conceptual, or logical,
structure of the software, in which the components (or units) are abstractions of the

systems’ functional requirements and are related by the shares-data-with

relation [64].

244 H.M. KIENLE AND H.A. MÜLLER
One can also look at the introduced conceptual architecture as a reference model
for reverse engineering tools [64, p. 25]. A reference model emerges through

increasing consensus of a research community and thus indicates a maturation of

the research domain. The domain of compilers provides an example of a widely

known reference model with the following functional units [11]: lexical analyzer,

syntax analyzer, semantic analyzer, intermediate code generator, code optimizer,

code generator, symbol-table manager, and error handler. Reference models in

reverse engineering are important because they provide a frame of reference to

guide researchers in understanding and implementing tools in the reverse engineer-

ing domain.

The concrete architecture of a reverse engineering tool does not necessarily

coincide with the conceptual tool architecture presented above. At one extreme,

one could imagine a monolithic architecture that groups extraction, analysis, and

visualization into a single component (without any interfaces). In practice, one can

distinguish three different architectural approaches for tool building [87, 110, 228]:

Data-driven: In this approach, the tool’s (functional) units are rather loosely

coupled and communicate via an agreed-upon data model. Data communication

can be accomplished with a repository or an exchange/document format.

A typical example of a data-driven integration framework is the Unix pipe
mechanism, which composes new programs from existing ones (also called filters)
by connecting the textual output of one program to the input of another.14 In this

case, the components are executable programs and the data model are textual

streams grouped into lines and lines grouped into fields via special characters such

as whitespaces or colons.

Ciao/CIA is an example of a reverse engineering tool that follows this approach,

which the authors call repository-based reverse engineering [22]. A typical use of

Ciao is a pipeline that consists of a sequence of query commands followed by a

visualization command. Figure 6 shows the typical constituents of such a pipeline

[230, p. 188].

Control-driven: In this approach, tool components are more tightly coupled

because they are based on an infrastructure that allows them to pass messages

among each other (e.g., via a message server). The underlying communication

infrastructure can be provided by the operating system or by more sophisticated

wiring standards such as CORBA, COM, or JavaBeans.
14 Salus summarizes the philosophy of Unix as follows: (1) write programs that do one thing and do it

well; (2) write programs to work together; and (3) write programs that handle text streams, because that is

a universal interface [230, p. 53].

C
source

cia
C program
database

Cref

Subsys

Subset Dagger Graph

Dot

Dotty

FIG. 6. CIA pipeline [230].

Search

History

Filter Selector Hotbox

Display

Data
Persistent
storage

FIG. 7. ShriMP’s architecture in terms of JavaBean components (boxes) and adapters between

components (arrows) [231].

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 245
For example, the SHriMP tool’s core architecture now consists of a number of

JavaBean components (Fig. 7) [231]. All components know the abstract concepts of

the data model, consisting of entities and relationships. Most important are the

Persistent Storage, Data, and Display components. The Persistent Storage Bean

reads and writes data (i.e., entities and relations) to and from a repository. It passes

the data to a Data Bean, which constructs the data’s in-memory representation. The

Data Bean’s interface allows the data to be queried and manipulated. SHriMP

already provides implementations of Persistent Storage Beans that read and write

RSF and GXL. A generic Data Bean implementation is also provided. Entities and

relationships in the Data Bean are visualized as nodes and arcs of a directed,

hierarchical graph in the Display Bean. Examples of other components are Search

Bean (to search through information associated with entities and relationships) and

Filter Bean (to determine whether certain entities and relationships should be

hidden). All components are independent from each other and can be replaced

with other compatible beans.

A variant of the control-driven approach restricts communication patterns by

having a single master component that controls a number of slave components.

An example is the use of Emacs as a central component that invokes other services

such as compiler, make, lint, and debugger. Many IDEs have been developed on top

of Emacs; in fact, XEmacs (then called Lucid Emacs) was created to realize Lucid’s

Energize C/Cþþ development environment.

246 H.M. KIENLE AND H.A. MÜLLER
Presentation-driven: This approach refers to a seamless interoperation at the user-

interface level. Components are tightly integrated and have a common look-and-

feel. Examples of technologies are compound documents such as OLE and

OpenDoc. In order to achieve such tight integration some kind of dedicated

infrastructure is necessary.

IDEs are a prime example of presentation-driven development tools. Since these

IDEs are often customizable based on a plug-in mechanism (e.g., Eclipse, IBM

VisualAge, and Microsoft Visual Studio), many reverse engineering tools are

implemented as IDE integrations. However, there are also examples of presenta-

tion-driven reverse engineering tools that are not based on IDEs (e.g., SolidFX [232]

and Columbus) or leverage Web browsers for the user interface (e.g., Churrasco and

SPO [169]).

VizzAnalyzer is a plug-in-based tool framework that allows to write analyses and

visualization plug-ins [116]. The plug-ins are communicating by manipulating a

graph data structure. Figure 8 shows the framework’s architecture with two analysis

plug-ins (Recorder and Analyzer) and two visualization plug-ins (yEd and Vizz3d).

Two of these plug-ins enable to add plug-ins themselves (e.g., to support new

layouts for Vizz3d).

The three approaches introduced above are usually inclusive. The presentation-

driven approach needs functionality to pass control and data in order to achieve

seamless integration of components; and the control-driven approach needs to pass

data along.

In practice, tools combine the above approaches. Reverse engineering tools often

decouple the extractor component from the rest of the tool with a data-driven

approach involving an exchange format.15 Analyses and visualization are often

tightly integrated with a control-driven and/or presentation-driven approach.

The SolidFX tool is based on presentation-driven integration and thus has the

look-and-feel of an IDE [232]. The individual components for fact extraction,

analysis, and visualization communicate via a central fact database. In order to

accommodate third-party tools, SolidFX offers control-integration with a query API

to the fact database and data-integration based on various formats (XML for ASTs,

XMI for UML diagrams, SQL for metrics, Dot and VCG for graphs). Interestingly,

SolidFX’s developers previously used the same components of their tool in a loosely
15 Historically, reverse engineering tools developed in the late 1980s and early 1990s, supported only

a single programming language (e.g., MasterScope for Lisp, FAST for Fortran, and Cscope for C [22]).

Since these tools consisted of a single extractor, there was often a tight coupling between the extractor and

the rest of the system [22, 234]. This rather tight coupling was inflexible and made it difficult or

impossible to support additional languages.

... ...

Core

Analyses Visualizations

Recoder Analyzer yEd Vizz3d

Analyzer

Algorithms

Vizz3d

Layouts Metaphors

VizzAnalyzer - framework

GML GXL ...

FIG. 8. Two-level plug-in architecture of the VizzAnalyzer Framework [116].

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 247
coupled manner without having a presentation-driven IDE. They relate their experi-

ences of these two different architectures as follows:

‘‘For the parsing phase, the [IDE] was not much more effective—a simple text

makefile-like project was sufficient. However, for the exploration phase, the [IDE]

and its tight tool integration were massively more productive than using the same tools

standalone, connected by little scripts and data files’’

Telea and Voinea [232].

3.2 Component-Based Tool Development
‘‘Programs these days are like any other assemblage—films, language, music, art,

architecture, writing, academic papers even—a careful collection of preexisting and

new components.’’

Biddle, Martin, and Noble [234]

Component-based development (CBD) is a widely applied and highly successful

approach for developing software systems [235]. Consequently, researchers have

started to adopt the idea of CBD for developing their research tools. In the following,

we refer to this approach to tool building—which reuses existing, prepackaged

functionality—as component-based tool development (CBTD). As opposed to

248 H.M. KIENLE AND H.A. MÜLLER
traditional tool building, which is characterized by a high degree of custom code and

little reuse, CBTD leverages software components as building blocks. For example,

Fig. 9 shows the reuse of components in the CIA tool [230, p. 178]. External

components are shown as diamonds, while tool-internal components are shown as

ovals.

A key driver for CBTD is the reuse of existing code in the form of components.

If a component is carefully selected, its existing functionality can cover a significant

part of the tool functionality. As a result, significantly less code needs to be written

and subsequently maintained. Reiss has implemented a software development

environment, Desert, based on FrameMaker. He reports that for Desert’s editor,

‘‘FrameMaker provides many of the baseline features we needed,’’ specifically

‘‘it displays both pictures and text’’ and ‘‘it can display high-quality program

views’’ [236]. Similarly, the authors of SLEUTH say that ‘‘FrameMaker provides

an effective starting point for our prototype. Many of the basic features necessary for

document creation and editing are provided, allowing effort to be concentrated on

more specialized features’’ [237].
X-ray clao

claed Focus Deadobj

TestTube

cladiffDaggerDotty

Dot DayView clafan claq1 Subsys

Daytona cq1 inc1

Program database

cia

libpp libast libcia

FIG. 9. Reuse of components in the CIA tool.

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 249
In principle, all kinds of components are candidates for CBTD. Thus, the defini-

tion of a component in the context of CBTD should be rather broad such as the one

provided by Czarnecki and Eisenecker, who define (software) components as

‘‘building blocks from which different software systems can be composed’’ [238].

Examples of applicable components for CBTD are

—IDEs (e.g., Eclipse, Microsoft Visual Studio, IBM Visual Age, TogetherSoft

Together).

—Commercial off-the-shelf products (e.g., Microsoft Office and Internet

Explorer) and their open-source counterparts (e.g., OpenOffice and Firefox).16

—Components based on Sun’s JavaBeans and Java Enterprise Beans (EJB), and

Microsoft’s Component Object Model (COM) and Distributed COM (DCOM).

—Object-oriented frameworks to realize GUIs (e.g., Java’s Abstract Windows

Toolkit (AWT) and Swing, Eclipse’s Standard Widget Toolkit (SWT), and the

Microsoft Foundation Classes (MFC)).

—Unix tools (e.g., awk, sed, and grep), text editors (e.g., Emacs), and scripting

languages (e.g., Perl).

—Libraries for domains such as standard data structures (e.g., Cþþ Standard

Template Library (STL)), graph data structures (e.g., LEDA), as well as library

collections (e.g., from AT&T [230]).

The fact that CBTD is widely applied is exemplified by many tools that leverage

components to implement functionalities for fact extraction and visualization [83,

235]. Table II gives examples of software and reverse engineering tools that base

their visualizations on components. This list represent only a smaller sample, but

illustrates the broad range of components that have been leveraged. Finding suitable

components for implementing a tool is important because the characteristics of the

component will determine the whole tool building effort.

The use of components fundamentally changes the development of tools and has

unique benefits and drawbacks. This fact is often not realized by tool builders.

Important questions for CBTD that have to be addressed by researchers are: What

are good candidate components for CBTD given a tool’s application domain, its

required functionality, its desired quality attributes, and its envisioned users? What

impact has a certain component on the overall tool architecture, on the ramp-up time

and implementation effort for the tool, and on the further maintenance and evolution

of the tool? What characteristics of the components and the architecture minimize

risks and maximize effects? And so on.
16 Both commercial and open-source products are summarized as off-the-self (OTS) products.

Table II

EXAMPLES OF COMPONENTS TO BUILD GRAPH-BASED VISUALIZERS [235]

Component type Host component Tool-building examples

OTS products Office/Visio REVisio [239]

Huang et al. [240]

Nimeta [241]

VDE [242]

Galileo/Nova [244–246]

FrameMaker SLEUTH [237]

Desert [246]

Web browsers REPortal [170]

Software Bookshelf [36]

TypeExplorer [68]

IDEs Eclipse SHriMP [247]

MARPLE [248]

Rational Rose Rose/Architect [249]

UML/Analyzer [250]

Berenbach [251]

Together JaVis [252]

GoVisual [253]

Tools AT&T Graphviz Reflexion model viewer [85]

ReWeb [254]

CANTO [255]

SVG SVG graph editor [256]

SPO [257]

Libraries OpenGL Extravis [258]

CodeCity [259]

SolidFX [232]

250 H.M. KIENLE AND H.A. MÜLLER
The use of components also has an impact on the tool’s quality attributes. In the

following, we briefly give examples how CBTD can impact the five quality attri-

butes introduced in Section 2:

Scalability: Scalability is especially a concern for visualizations. Generally,

components such as Visio and PowerPoint are able to handle the rendering of dozens

of graphical objects. This is sufficient for small to medium software graphs. How-

ever, the rendering of larger graphs can cause problems in terms of screen updating

and rendering speed. For example, the developers of the Nova tool state that their

tool’s ‘‘response time is largely dependent on package performance. . . . We spent

significant effort understanding Visio’s drawing speed and exploring ways to use

Visio that would give us better drawing performance’’ [243]. Also, different

components and different versions of the same components can differ in their

performance characteristics. For example, in Visio 4.1 the drawing speed of objects

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 251
increases quadratically with the number of shapes already present on the page; in

contrast, Visio 5.0’s behavior is linear [243].

Interoperability: Components can have a wide range of interoperability mechan-

isms and make implicit assumptions about the way they interact with other

components. Thus, it is unlikely that two independently developed components

that do not adhere to the same component model will interoperate seamlessly

out-of-the-box. This phenomenon is known as architectural mismatch [260].

Interoperability is less of an issue if the tool is based on a single component

only. Also, architectural mismatch is less of a problem for data integration

compared to control and presentation integration. Wrappers and bridges can be

used to integrate heterogeneous components; however, this solution can turn out to

be brittle. The SHriMP tool is using an AWT-SWT bridge to integrate with

Eclipse, but this approach has several undesirable effects (e.g., risk of deadlocks

and lost keyboard events) [261].

Customization: Customizations of components are limited by the functionality

that the API and/or scripting language provides. Based on their customization

experiences with several commercial components, Egyed and Balzer say that

‘‘sadly, ‘real world’ COTS tools are often only partially accessible and customiz-

able, greatly limiting their reuse’’ [262]. Reiss reports the following limitation in the

FrameMaker API: ‘‘While FrameMaker notified the API that a command was over,

it did not provide any information about what the command did or what was

changed’’ [246]. As a consequence, customizations of components without the use

of source code modifications always run the risk that certain desirable tool function-

alities cannot be realized at all, or with less fidelity. Nova’s developers had to cope

with undocumented restrictions of Microsoft Office components: ‘‘Due to [the] lack

of package documentation, we discovered certain limitations of the packages only

after working with them extensively. In some cases, the limitations were quite

serious’’ [243]. For example, they found out that ‘‘the maximum number of shapes

Visio 4.0 could store on a single drawing page was approximately 5400.’’

Usability: Familiarity of the target users with a certain product improves usability

and helps adoptability. Reiss explains the decision to use FrameMaker as a compo-

nent with the fact that ‘‘we wanted an editor that programmers would actually use.

This meant that the base editor must be familiar to them, preferably one they were

using already’’ [236]. Furthermore, popular components can reduce the need for

documentation: ‘‘Because such components are also popular stand-alone applica-

tions, users are often already familiar with them, and much of the application

documentation applies when the application is used as a component’’ [244]. Tool

implementors can also leverage the existing infrastructure of the help system to

seamlessly provide documentation for their tool. For example, Microsoft Office’s

Assistant can be customized in Visual Basic to provide tool-specific help.

252 H.M. KIENLE AND H.A. MÜLLER
Adoptability: The market share of components can improve a tool’s adoptability.

The popularity of PowerPoint was an important factor for the developers of VDE:

‘‘Visio is a commercial product with many similarities to PowerPoint . . . It might

provide a better technical fit to our needs, but lacks PowerPoint’s enormous user

base’’ [242].
3.3 Model-Driven Tool Development
‘‘Truly model-driven development uses automated transformations in a manner similar

to the way a pure coding approach uses compilers.’’

Kelly and Tolvanen [263]

CBTD reuses existing components, integrating and customizing them so that they

fit together. In contrast, model-driven tool development (MDTD) generates code

from a domain-specific, higher level specification [238, 264]. Thus, MDTD can be

seen as a form of generative reuse. The reusable assets in these techniques are less

intuitive and less palpable compared to compositional reuse because they consist of

patterns for code generation and transformations.

The idea of MDTD derives from generative development approaches such as

domain-specific modeling (DSM), model-driven development (MDD), generative

programming, and Microsoft’s software factories [15]. Traditionally, software

development is code-driven. As a result, the code and its models—if models do

exist in the first place—are disconnected in the sense that there is limited traceability

and synchronization [263]. In contrast, model-driven software development

employs models as the primary vehicle to express software. From the models a

code generator produces executable code. The code generator (or model trans-

former) embodies the reusable part that can be (re)applied to different models.

Typically, the code generator will not generate the complete application’s code,

but rather fill in missing pieces in an existing code base (e.g., instantiation of an

object-oriented framework). As a result, models are executable in the same sense

that source code is an executable specification.

Rugaber and Stirewalt propose to apply the model-driven approach to the reverse

engineering process [265]. Reverse engineering of a system would produce models

that can act as formal specifications of the system under study. From these models,

supported by a code generator, ‘‘another version of the original system’’ can be

produced.

Examples of generative techniques and concepts that can be applied for MDTD are

—Traditional scanner and parser generators such as lex and yacc.

—Meta-compilation systems for generating language-based tools such as LISA

and JastAdd (both based on attribute grammars).

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 253
—Meta-CASE tools, which provide facilities for specifying and generating CASE

and software development environments (e.g., IPSEN, MetaEditþ, and the Generic

Modeling Environment (GME)).

—Application generators such as Neighbors’ Draco and Batory’s GenVoca

systems [264].

—Executable meta-modeling (e.g., Kermeta) and modeling frameworks (e.g.,

Eclipse EMF/JET).

—Meta-programming, and source transformation and rewrite systems (e.g.,

DMS, Stratego, ASFþSDF, Rascal, and TXL).

—Fourth-generation languages (4GLs) such as (relational) query languages and

report generators.

—Generative programming techniques such as Cþþ template metaprogramming

and aspect-oriented programming [238].

In practice, there is an overlap between the capabilities of the above techniques

and the techniques are not clearly delineated. What they have in common is a

domain-specific (modeling) language. These languages allow to specify the solution

using problem domain concepts. They are often declarative (allowing the user to

express what is to be done rather than how it is to be done) and based on different

underlying paradigms or concepts (e.g., grammars, algebraic specifications, and

first-order logic).

While CBTD is widely applied, to our knowledge there are only few examples of

MDTD in the reverse engineering domain. Favre emphasizes the importance that

meta-models have in software construction [266]. Each software artifact (e.g.,

source code, test case, bug tracking entry, database record, and XML document)

is, in fact, a model that conforms to a meta-model. The meta-model is not necessar-

ily explicit, but may be implicitly encoded in the model’s operation.17 Metaware is a

software that operates at the level of meta-models (e.g., compilers, IDEs, testing

frameworks, databases management, and XSLT). Explicit—or reified—meta-mod-

els that are easily processable by metaware are an important step toward MDTD.

Favre has implemented the GSEE, which is a meta-model-driven tool that interprets a

meta-model specification and customizes the tool accordingly [123, 136].

The Moose reverse engineering environment is based on an executable meta-

model (EMOF 2.0 compliant) implemented in Smalltalk [267, 268]. This approach

allows it to not only specify the meta-model, but also to attach behavior to it in the

form of Smalltalk code. The implementors of Moose justify this approach as
17 To give an example, an XML file may have an explicit meta-model in the form of a DTD or XML

Schema. If an explicit form is missing the schema may be implicitly encoded within the tools that read the

XML file and the tools’ expectation of well-formed input.

254 H.M. KIENLE AND H.A. MÜLLER
follows: ‘‘we felt the need to meta-describe our environment to enable us to be more

efficient building new tools for our reengineering research. Using meta-modeling

was just a means to introduce more flexibility and extensibility in our tools’’ [267].

The meta-model is implemented in a dedicated framework, called Fame, and

leverages Smalltalk’s reflection capabilites, class extension, and pragmas. With

Fame, functionality such as serialization and UI behavior can be realized in a generic

manner by operating on the meta-level. Note that Fame is based on an interpretative

approach (i.e., no code is generated from the model).

In contrast, the developers of the REforDI tool use ‘‘reusable frameworks, formal

specifications, and generators to reduce the implementation effort’’ of their tools

[269]. They explicitly motivate this decision with the observation that ‘‘hand-coding

of re-engineering tools is a painstaking business.’’ The REforDI tool uses TXL and

PROGRES specifications for design and code transformation as well as graphical,

interactive functionality of the tool. According to the authors, the tool requires less

than 1000 lines of handwritten C code. However, they caution that ‘‘the concept of

graph grammars and the PROGRES language might be a bit difficult to learn for

newcomers’’ [269].

Another example of MDTD is model-driven visualization (MDV) [270, 271].

MDV’s vision is to leverage model-driven design for creating software visualization

so that ‘‘researchers and tool designers will be able to spend more time designing and

evaluating their tools and less time building them’’ [270].MDV’s reference architecture

is depicted in Fig. 10. Both software and visualizations conform to a software meta-

model and various visualization meta-models, respectively. The visualization meta-

models cover domains such as graph-based, tree-based, and chart-based visualizations.

At the meta-model level, transformations are applied that map from the software

meta-model to visualization meta-models. A transformation encodes the abstract and

visualize/synthesize activities of the reverse engineering process (Section 1.1).

The authors have instantiated the reference architecture in an Eclipse-based

framework. The source meta-model adheres to the Dagstuhl Middle Model, the

visualization meta-models are described with Emfatic/EMF, and the transformations

are written with the Atlas Transformation Language (ATL). Figure 11 gives a toy

example that shows how entities from a higher level source code meta-model (with

File, Function, and Call entities) could be mapped to a graph-based visualizer meta-

model (with Graph, Node, and Edge entities, respectively) [266].

3.4 Discussion

Researchers are pursing CBTD and MDTD because they are hoping to become

more productive in tool development. Increased productivity in tool building frees

resources for other research activities and leads to a faster innovation cycle.

Views
of a software system

Represented

by

C
on

fo
rm

s
to

C
on

fo
rm

s
to

Software
metamodel Graph

metamodel

Tree

Bar Chart

del

el
Model

transformation

Software model

FIG. 10. MDV reference architecture [270].

Graph.label = file.name

Targets

File

Name

Callees

Call

Function Callers

0..1

Node

Shape
color

Target

Source

Edge

Style
arrow

Visualization
metamodel

1
1

1

*

*

* *

Architectural
metamodel

0..1

*
**

*

*

0..1 1

Graph

LabelTransformation
model (17)

Node.shape = box”
and node.color = green”

Edge.style = plain”
and edge.arrow = none”

”
”

”
”

FIG. 11. Mappings between source and visualization meta-models [266].

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 255

256 H.M. KIENLE AND H.A. MÜLLER
These approaches to tool building are based on existing techniques—CBTD

relates to CBD and MDTD relates to MDD—that are also used for the construction

of software in general. This is desirable because they can leverage existing meth-

odologies, technologies, tools, and experiences. However, since the academic tool-

building domain has distinctive characteristics it appears that the existing, generic

approaches should not be applied blindly. In order to establish best practices for tool

building researchers have to elevate this lens to a first-order research topic.

A yardstick for success of the tool construction lens is the generation of results

that make tool building in academia more predictable and effective.

This means, for example, establishing workshops about tool building and pub-

lishing issues about tool building. In fact, there are encouraging signs in that

direction. For example, Coppit and Sullivan have introduced an approach to tool

construction that they call package-oriented programming (POP). In a sense, POP is

an instantiation of CBTD that focuses on ‘‘the use of multiple, architecturally

compatible, mass-market packages as large components’’ [272]. The use of multiple

components is motivated by the observation that many tools require functionality

that needs to be drawn from several independent domains such as text editing (e.g.,

provided by Word) and graph editing (e.g., provided by Visio). POP proposes to use

components that are architecturally compatible to simplify integration and to mini-

mize architectural mismatch.

Furthermore, reverse engineering researchers of successful tools have published

about their experiences. For example, Lanza describes his experiences with the

CodeCrawler software visualizer [273], discussing CodeCrawler’s architecture

(composed of three subsystems: core, meta-model, and visualization engine), the

visualization engine (realized by extending the HotDraw framework), and desirable

interactive mechanisms for usability. Furthermore, he distills lessons learned for

all of the discussed issues. He observes that ‘‘to our knowledge there is no explicit

work about the implementation and architecture of reverse engineering tools, and

more specifically about software visualization tools.’’ Guéhéneuc describes his

use of design patterns and Java language idioms when constructing the Ptidej

tool suite [274]. In addition, it would be highly desirable to identify lessons learned

that generalize over individual tool building experiences. Currently, there are few

examples of researchers that have published such lessons learned (e.g., [169, 275,

276]).

Research is also needed in technological issues. For example, an important topic

is effective tool integration. Wuyts and Ducasse describe a tool integration frame-

work based on Smalltalk and how it is used in the StarBrowser [277]. Another

example is the push to establish a discipline for software that depends on grammars

(so-called grammarware) by Klint et al. [278]. It is certainly the case that reverse

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 257
engineering tools are grammarware. The development of parsers for reverse engi-

neering is characterized by ad hoc approaches rather than engineering. Klint et al.

provide a first step toward grammarware engineering by describing a number of

principles that should be followed, a life cycle for grammarware, and a list of

research challenges.

Process is a neglected area with respect to tool building. It seems that few

academic tool building efforts make use of an explicit process. This is hard to

justify, because any software should be constructed based on a process. However,

a process has to take care not to stifle unnecessarily the creative elements in

research. As a first step, we have proposed a dedicated process framework for tool

building in academia [279]. This framework is lightweight and makes allowance for

the diversity of academic research projects (e.g., tool requirements, degree of

technical uncertainty, complexity and size of the problem, and number and expertise

of the development team).

Besides individual efforts, there needs to be a recognition of the tool building lens

by the research community. One forum for researchers to meet and discuss tool

building issues is the International Workshop on Academic Software Development
Tools and Techniques (WASDeTT) [280, 281]. WASDeTT was held twice in 2008

and addresses topics such as

—Language-independent tools: How can we build tools that work across multiple

languages?

—Tool building in an industrial context: How to build tools that get adopted by

industry?

—Data interoperability among tools: How to exchange data between tools and

how to process this data?

—Maturation of tools: How to grow a tool from an early prototype into a mature

tool or framework?

—Tool building methodology: How—and to what degree—can we adopt estab-

lished software engineering techniques for building research tools?

—Tool building in teams: How to build tools in larger—and possibly

distributed—teams?

—Tool implementation language: How does the choice of a programming

language impact the building of a tool, its usability, and the context in which the

tool can be applied?

Some instances of WASDeTT are coupled with special issues on Experimental
Software and Toolkits (EST) [282]. In fact, the organizers of the first WASDeTT

say that ‘‘one important goal of this workshop series is to enable researchers to

publish about their tools so that they can get scientific credit for their tool building

efforts’’ [280].

258 H.M. KIENLE AND H.A. MÜLLER
4. Tool Evaluation Lens
‘‘Evaluate the effectiveness of reverse engineering tools and techniques through empir-

ical studies.’’

Wong [62, Requirement 23]

It is not sufficient to build a reverse engineering tool for its own sake. The

effectiveness of the tool has to be evaluated as well in some form. This can be

accomplished with empirical research, which is a field that studies real-world

phenomenon. In the context of tools this means to study how tools are used by

certain subjects and how effective the tools are in accomplishing certain tasks on

certain kinds of systems. In software engineering, the emphasis has been on devel-

opment of new technologies rather than on evaluation and comparison of the effects

of these technologies [283]. Similarly, reverse engineering tends to focus on the

building of new tools, rather than evaluating these tools. However, both tool

building and tool evaluation are need to establish reverse engineering as a science.

A tool evaluation has the following components (or treatment factors) [284]:

(1) the tool under study, (2) a subject system that is applied on the tool, (3) tasks to

be performed on the subject system with the tool, and (4) the users that operate the

tool. Generally speaking, an empirical study involves the following steps [283]:

(1) formulating a research question, (2) designing a study, (3) gathering data, and

(4) analyzing and interpreting the data. Empirical studies of tools can be grouped

into the following approaches:

Case studies: A case study investigates the tool within a real-life context.18 As a

result, a case study often has little control over the evaluation setting. Also, the tasks

that are performed with the tool are typically not well described because reverse

engineering tools are typically used in an exploratory style and on an as-needed

bases during software development.

According to Sj�berg et al., ‘‘case studies are particularly important for the

industrial evaluation of software engineering methods and tools’’ [283]. Case studies

are perhaps the most popular approach to evaluate reverse engineering tools.

However, most case studies are rather weak in the sense that the tool is applied to

a smaller subject system and that the users of the tool are its developers. Few case

studies are conducted within an industrial context. In the ideal case, the ‘‘tool under
18 We use the term case study rather loosely guided by what researches in reverse engineering consider

to be a case study in their publications. Many of these ‘‘case studies’’ may not actually conform to a more

rigorous definition. Sj�berg et al. report on a literature study where they found that 58% of case study

papers did not meet their definition of evaluative case study [284].

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 259
investigation is tried out on a real project using the standard project development

procedures of the evaluating organization’’ [285].

Experiments: Experiments investigate a tool within a controlled environment with

the goal to obtain certain measurements to test a hypothesis or theory. In an

experiment, users of the tool can be selected and assigned to groups based on their

characteristics. The tasks that are performed with the tool tend to be small, but

relatively well defined. Since experiments use controlled treatment factors they are

replicable and exhibit little bias.

There are very little experiments that evaluate reverse engineering tools. Storey

et al. have conducted a user experiment to evaluate the effectiveness of the user

interfaces of three different tools: Rigi (which uses a multiple windows approach),

SHriMP views (single window), and Unix standard tools (grep and vi) [102]. The

experiment measured correctness of performing a number of reverse engineering

tasks and the time to complete the tasks. This experiment showed that Unix standard

tools were the least effective.

Panas and Staron have conducted an experiment involving CBTD in which they

used ad hoc composition and a framework-based approach (VizzAnalyzer) to build

a reverse engineering tool [286]. They use the Goal-Question-Metric approach to

answer questions about the effectiveness of tool construction and the tool quality.

The experiment showed that framework customization is superior to ad hoc
composition.

Benchmarking: Benchmarking is often associated with performance comparisons

such as the well-known SPEC and TPC benchmarks. However, benchmarking also

has a broader meaning that covers evaluation approaches that use a well-defined task

sample associated with a performance measure so that a comparison among alter-

natives (e.g., different tools) is possible.

Benchmarking has characteristics from both case studies and experiments. They

have qualitative and quantitative elements [284]. Benchmarking allows a direct

comparison of results and has built-in replication. On the other hand, there is little

control over the users of the tools and how they apply it. Consequently, benchmarks

are preferable ‘‘if the tool undertakes automatic transformation of data with little or

no interaction with the tool user (e.g., a speech synthesizer, or a compiler)’’ [285].

Sim has developed the CppETS benchmark to measure the performance of Cþþ
fact extractors [77]. The task sample is structured into accuracy and robustness tests.

Accuracy checks whether an extractor is able to produce correct facts for preproces-

sing directives and Cþþ entities such as variables, functions, and exceptions.

Robustness tests issues such as missing header files, Cþþ dialects, and embedded

languages. The benchmark was applied to four extractors (Ccia, cppx, Rigi’s Cþþ
parser, and TkSee/SN). Figure 12 shows the scores of the extractors for both kinds of

tests. A drawback of CppETS is that scoring involves a significant amount of manual

0
0

2 4 6 8 10

2

4

6

8

10

12

14

Robustness

A
cc

ur
ac

y

cppx

Rigiparse

TkSee/SN
Ccia

FIG. 12. Score of Cþþ fact extractors in the CppETS benchmark [77].

260 H.M. KIENLE AND H.A. MÜLLER
labor. In the best case, a benchmark is automated so that it can be easily rerun or

applied to a different tool.

Perhaps as a result of Sim’s efforts [287], the reverse engineering community has

proposed a number of benchmarks (e.g., for software evolution [288], clone detec-

tion [289, 290], design pattern detection [291], and recommender systems [292]).

Bellon et al. have evaluated clone detectors with the help of a benchmark [290]. All

necessary information is made available so that the benchmark can be replicated.

They hope that ‘‘benchmark evaluation becomes a standard procedure for every new

clone detector’’ [290].

Feature analysis: A feature analysis is based on a number of criteria that users

have for a particular reverse engineering activity and mapping those criteria to

features that a tool should have in order to support the activity [285]. The criteria

and features could be based on personal opinion or synthesized by means such as

questionnaires or (systematic) literature reviews. Often the first step is omitted or not

explicitly identified. As a result, a feature analysis is then focused on how well a tool

meets a given number of desired features.

Researchers often use feature analysis to evaluate a given tool. For example, the

developers of Sextant evaluate their tool with five functional requirements. Feature

analysis is also popular to compare different tools among each other. For example,

Bellay and Gall have compared the capabilities of four reverse engineering tools

(i.e., Refine/C, Imagix 4D, Rigi, and SNIFFþ) in terms of their general capabilities,

Assessment criteria

Analysis
Parsable source languages

Other importable sources

Incremental parsing
Reparse
Fault tolerant parser
Quality of parse error statements
Parse abortable
Parse errors viewable during parsing
Parse stopped at error or continued

Point and click movement from parse
results to source code

Parsing results
Parsing speed
Define and undefine
Preprocessor command configurable
Support for additional compiler switches
Project definition

Refine/C Imagix 4D Rigi

0 0

Sniff+

++ ++
C (ANSI),
C (K&R)

C (ANSI), C++ C (ANSI), C++,
IDL

C (ANSI), C++,
COBOL, PL/AS,

Latex

/ / /gdb and tcov
results

−
−
− −

−
−

− −

− −

−
−
−
−

−

−

−

0
+
+

+

++ ++

++++
+
+ +

Stopped

0 0

File

+
+

+
+
+

+
+
+

+ +

+
++

+

+

Continued

File, directory,
makefile

Continued Continued

0

00

File Directory

FIG. 13. Feature analysis of the analyzer capabilites of four tools [73].

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 261
analysis, representation, and editing/browsing [73]. Figure 13 shows the feature list

that compares the tools’ analysis capabilities.

There are also a number of other tool comparisons and comparative frameworks as

already described in Section 2. For example, Guéhéneuc et al. introduce a comparison

framework for design recovery and apply it to two tools [78]. The framework

addresses eight concerns: context, intent, users, input, technique, output, implemen-

tation, and tool. Some tool comparisons incorporate benchmarks, but feature analysis

is mostly qualitative.

Structured tool demonstration and other challenges: A structured tool demonstra-

tion is ‘‘a hybrid evaluation technique that combines elements from experiments,

case studies, and technology demonstrations’’ [293]. Such a demonstration was held

as part of a CASCON workshop where different teams had to perform certain

reverse engineering tasks with their tool on the same system in a live setting.

Thus, a demonstration covers the entire reverse engineering experience in a day.

Each tool is assigned an impartial observer who records how the tools are used to

solve the tasks and who acts as ‘‘apprentice,’’ trying to become proficient in the tool.

The organizers of the event emphasize that the purpose of such a demonstration is

not to establish a ranking but rather to give the participants insights into their own

tools. They pose the thesis that

262 H.M. KIENLE AND H.A. MÜLLER
‘‘a structured demo provides a lot of insight for tool designers into their own tools and

allows them to directly compare their tool capabilities with other tools and learn about

future tool extensions’’

Sim et al. [151].

In a follow-up study, two additional tools (GUPRO and Bauhaus) performed the

same tasks on the same subject system, but not live [151].

Other more informal tool challenges have been conducted as well. These chal-

lenges have less control over the treatment factors which means that they rely on

personal interpretation, and do not allow comparability or reproducibility. The

perhaps first event of this kind was a call to test different tools on an industrial

legacy system [294]. The organizer expected 20–30 participants and results were

presented in a session at CSMR 1998. In another event, eight tools did participate in

the analysis of the SORTIE legacy system (30,000 lines of Borland Cþþ) [295].

The teams had the task to rearchitect the system and to submit a report. Results were

presented at WCRE 2001.

The working conference onMining Software Repositories (MSR) has established

the Mining Challenge since 2006. The challenge focuses on a particular software

system (e.g., Eclipse) but has no fixed task sample nor does it prescribe a task.

Similarly, VISSOFT 2007 did feature a Tool Demo Challenge for visualization tools

to perform a number of suggested tasks (e.g., architecture, source code, or evolution

analysis) on Azureus or GCC. Three tools did participate (CGA Call Graph

Analyzer, Rigi, and VERSO) and submitted short reports.

Empirical research plays a key role for two interrelated activities: the evaluation of

an existing tool and the generation of theories that inform the construction of tools.

We call the first activity evaluation-driven tool building and the latter one theory-
grounded tool building, discussing them in Sections 4.1 and 4.2, respectively.
4.1 Evaluation-Driven Tool Building
‘‘In general, the testing of the effectiveness of many tools has been seriously lacking.

The value of many research ideas have not been adequately substantiated through

empirical studies.’’

Storey et al. [24]

We define the term evaluation-driven tool building to emphasize that tool evalu-

ation should be an integral part of a tool building effort. Evaluation should be

considered not only as an afterthought but also during the whole tool building

project.

Sensalire et al. describe a tool evaluation cycle that consists of four steps [296]

(Fig. 14). This cycle emphasizes that tool building is an iterative activity that

Tool development

Tool improvements
based on results

Tool evaluation

Evaluation results

FIG. 14. Tool building and tool evaluation cycle [296].

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 263
receives feedback by conducting evaluations. In the reverse engineering community,

there is increasing realization that tool evaluations are needed to advance the field

(e.g., [156, 203, 296]). Concerns that proper tool evaluations are needed have been

voiced in the community at least for a decade (e.g., [24]).

However, tool evaluation is not yet a standard practice. In order to establish tool

evaluations more firmly, there needs to be a consensus in the community what

constitute a ‘‘proper’’ evaluation. Typical examples of tool evaluations that can be

found in the literature are

—Personal impression of the tool developers.

—Anecdotes of tool usage reported back to the tool developers.

—Checking the tool’s features against a list of requirements (Section 2).

—Observational user studies.

Evaluations of tools involving users are mostly conducted with a smaller number

of subjects. Furthermore, these subjects are often from a purely academic back-

ground. Less than 10% of the empirical studies in software engineering use profes-

sional software developers [299]. For reverse engineering, this number is probably

even lower, leading to the question—perhaps voiced in exasperation—of ‘‘by the

way, did anyone study any real programmers?’’ [27].

Many user studies are controlled experiments (i.e., they are conducted in an

artificial environment, in vitro). In addition, more studies that evaluate a tool’s

adoption and use in industry (i.e., natural work environment, in vivo) would be

highly desirable. Such studies are less controlled by their nature, pose logistical

challenges, and ‘‘may result in vast amounts of data that is difficult to analyze’’

264 H.M. KIENLE AND H.A. MÜLLER
[203]. Controlled experiments with their quantitative nature should be complemen-

ted with qualitative studies that ideally observe industrial programmers [300].

Another concern is that most user studies have a small sample size. Huang and

Tilley observe that most software engineering studies have this problem: ‘‘In most

software engineering studies, researchers are often pleased if they can attract a dozen

students to participate in their experiment’’ [202]. Sj�berg et al. report in a survey

that on average studies have 49 subjects (with a wide range from 4 to 266) [299].

Studies with a small sample size suffer from the problem that their statistical

significance is questionable. There are large studies in software engineering such

as an evaluation of pair programming that involved 295 professional software

developers [301]. Unfortunately, to our knowledge there are no studies for reverse

engineering that are even remotely comparable in terms of size and effort.

Empirical studies can be distinguished by their distance from human contact [27]:
first-degree contact exhibits a direct involvement of study participants, second-

degree contact exhibits indirect involvement of participants by collecting data

about them, and third-degree contact relies on theories that have been informed by

lower degrees of contact. User studies are first-degree with respect to the human

contact. While first-degree of contact has many benefits, it also poses potential

problems. Storey cautions that ‘‘observations can also be disruptive and could be

subject to the Hawthorne effect (e.g., a programmer may change her behavior

because she is observed)’’ [203]. If students are involved there is the added problem

that they ‘‘will often feel pressured to participate in their professor’s research even if

they are assured that participation is voluntary’’ [302]. Also, Berry and Tichy state

that ‘‘students in particular have a strong desire to please their instructors’’ [303].

These problems are mitigated by evaluation approaches that are based on second-

degree (e.g., instrumentation of tools to collect usage information [304]) and third-

degree (e.g., application of feature analysis to evaluate the tool).

Importantly, evaluation is not necessarily a ‘‘big-bang’’ activity that happens after

the tool has been ‘‘finished.’’ Instead, evaluation issues should be considered as

early as possible in the development effort. For example, user interface evaluations

can be already conducted before functionality is implemented with the help of

paper-based prototypes. When designing the tool it can be useful to consider already

how the tool can be instrumented to record user interactions during an experiment.

Evaluations can be designed based on the tool’s expected research contributions.

Such evaluations should be planned during tool development since experiments

involving users can take a long time to plan and to get approved by ethics commit-

tees. Tool prototypes can be used to evaluate certain aspects of the tool in a

lightweight, informal manner. For example, Google uses agile techniques such as

‘‘guerilla usability testing (e.g., limited numbers of users hijacked from the Google

cafeteria at short notice)’’ [305]. A promising approach that enables the evaluation

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 265
of tools while they are being developed is a process based on (evolutionary)

prototyping (e.g., SEI’s Evolutionary Development method [64]).
4.2 Theory-Grounded Tool Building
‘‘The best theory is inspired by practice and the best practice is inspired by theory.’’

Knuth [306]

The purpose of a theory is to explain a set of empirical observations. In tool

building, a theory can be used to guide an empirical study and to explain its

outcome. Also, a theory can be useful to drive tool requirements. Storey argues

that theories are needed as a solid foundation for research [203]:

‘‘Irrespective of the evaluation technique used, theoretical underpinnings will benefit

the evaluations as the results will be easier to interpret. Although our long term goal

may be to build better tools, we need to understand why they are better than other

approaches.’’

In the following, we use the term theory rather loosely—incorporating (working)

hypotheses, scientific laws, recurring experiences, lessons learned, etc.—including

it to mean a proposed explanation for a phenomenon that is able to improve upon

tool building.

An experiment without an underlying theory is mostly only able to establish that

the tool has a characteristic based on some measure (e.g., superiority of a tool in

terms of maintenance speed). Thus, the experiment is able to support a claim, but

lacks a reasoning why this is so. Theories provide a framework for experiments by

guiding the setup, focusing the observations, and providing reasoning for the out-

comes [156]. There is a large number of potential theories from various scientific

fields that can be applied to reason about tools. For example, program comprehen-

sion can be investigated at least with cognitive, psychological, and socio-cultural

theories [300]. Exton proposes to utilize constructivist learning theories for tool

building [307]. He notes, for instance, that ‘‘constructivist learning environments

provide multiple representations of reality.’’ An implication for program compre-

hension tools is that they should have ‘‘the ability to present the same information

with the same level of abstraction but with a different emphasis.’’

While cognitive theories are suitable to study individuals, theories from social

sciences are needed if tool is used in a collaborative work style [16]. In this context,

O’Brien et al. recommend to incorporate socio-cultural theory, believing that

‘‘socio-cultural psychologists would consider that research methods focusing solely

on the individual in a purely experimental environment are deficient and incapable

of gaining a true insight into how understanding occurs. In fact, most empirical work

266 H.M. KIENLE AND H.A. MÜLLER
carried out to date does not take into consideration external validity in terms of the

programmers’ environment, the source code used in these studies, or the tasks

required of participants’’ [300]. Theories about adoption and technology transfer

then can be applied to reason about tool adoption in an organizational setting

(Section 2.5). This has been advocated by the Adoption-Centric Software Engineer-

ing project, which treats tool adoption as a first-class goal.

Instead of applying theories with little or no modification, general theories can be

leveraged as a foundation to formulate dedicated theories for tool building and the

reverse engineering domain. There are a number of different program understanding

strategies that derive from cognitive theories (i.e., bottom-up, top-down, knowledge-

based, opportunistic vs. systematic, and the integrated model) [203]. For example,

Solloway and Ehrlich’s theory of top-down understanding ‘‘borrows’’ from two

sources: text comprehension and problem solving theories [308]. Program compre-

hension theories can be used to come up with tool requirements. In fact, Storey

observes that ‘‘many of the researchers that developed the traditional cognitive

theories for program comprehension discuss the implications of the developed

theories on tool design’’ [203]. However, she also concludes that ‘‘in many cases,

the connection to tools and how they could be improved or evaluated according to

the theories could be stronger.’’

Formation of theories is often grounded in (empirical) observations rather than

controlled experiments; the latter are more suitable for testing theories. Theories for

program comprehension are often based on observation of programmers and their

work practices. Examples of observational techniques are work diaries, think-aloud,

shadowing, and participant observation via joining the team [309]. Lethbridge and

Singer have developed a method called Work Analysis with Synchronized Shadow-

ing (WASS) to study and record the work of software engineers [27]. Synchronized

shadowing uses two note-takers during the observation that place different emphasis

on the kinds of data that they are collecting. The records are later merged and

encoded in use case maps, which show the flow of tasks including tools such as grep

and emacs, contexts such as documents and other people, and actions. Based on the

use case maps, work patterns can be synthesized whose interpretation can lead to

theories and tool requirements. Lethbridge and Singer used WASS to study eight

industrial software engineers and were able to derive a number of requirements for

software exploration tools. For example, they found that a ‘‘tool should have a

simple command to automatically locate occurrences of whatever is in the copy

buffer’’ [27]. This is based on their observation that users frequently used the copy

buffer as the argument when performing a search with the editor.

Mayrhauser and Vans use their integrated model of program comprehension to

study industrial programmers with think-aloud doing maintenance tasks. Based on

their observations, they map maintenance tasks to information needs and tool

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 267
capabilities [310]. For example, they found that programmers want to come back to

a code segment that they looked at previously. Thus, they have the information need

of ‘‘browsed locations’’ which a reverse engineering tool can satisfy by offering a

‘‘history of browsed locations.’’ More recently, Ko et al. have conducted an experi-

ment with students performing maintenance tasks in Eclipse [311]. They say that

‘‘the central goal of our study was to elicit design requirements for tools to help with

maintenance tasks’’ and consequently propose six such requirements and how a tool

could realize them. For example, their study suggests that part of a task entails ‘‘to

collect a working set of task-relevant code fragments.’’ In Eclipse, part of the

working set is represented by the open file tabs and the state of the package explorer.

As a consequence, switching of tasks results in a loss of the working set that needs to

be manually recovered. They propose that a tool should ‘‘provide a working set

interface that supports the quick addition and removal of task-relevant code frag-

ments.’’ In a sense, these findings refine Mayrhauser and Vans’ observation that a

history of browsed code locations is important during maintenance.

For tool building, theories constitute existing knowledge that can be used to build

better tools. In this context, it is important to ‘‘package’’ theories in such a form that

they can be more easily applied by researchers that are primarily interested in tool

building as opposed to advancing and developing theories. Walenstein has done

extensive research in how to apply cognitive theories to tool building, distilling his

findings in a cognitive modeling framework (HASTI) that can be used to reason

about cognitive support [312]. He explicitly states that ‘‘HASTI is tailored specifi-

cally to the needs of application-oriented researchers. They need abstractions and

simplifications such that the important issues of cognitive support can be efficiently

raised and addressed. They also need prebuilt models that can be rapidly and widely

applied to yield insight’’ [156]. Examples of other cognitive theories that can be

applied by tool builders are Green and Petre’s cognitive dimensions framework

[178], Storey’s cognitive design elements for software exploration [163, 164], and

Murray’s cognitive patterns (or microtheories) for program comprehension

[313, 314]. Storey has applied her design elements to guide and assess the SHriMP

visualization tool; similarly, Farah has applied Murray’s patterns for her Temporal

Model Explorer tool [315]. The patterns enabled the generation of a number of

(candidate) tool features.

A promising approach for generating theories for program comprehension is

grounded theory, which is commonly applied in areas such as cognitive science

and psychology. With grounded theory, new theories are synthesized bottom-up

from experimental data rather than being informed—and constrained—by existing

theories. Additional data leads to a refinement of the theory so that it continues to

support all available data. Researchers in the reverse engineering domain have both

advocated (e.g., [16]) and applied (e.g., [27, 316]) grounded theory. However, it is

268 H.M. KIENLE AND H.A. MÜLLER
crucial to not abuse grounded theory as a fig leaf for unsystematic theory generation.

Based on their experiences, Adolph et al. caution that ‘‘like many other researchers

who have claimed to follow grounded theory methods and even produce a grounded

theory, many of us have only borrow[ed] a few grounded theory practices and have

not followed grounded theory as a comprehensive method’’ [317].
4.3 Discussion
‘‘Scientific rivalry between experimenters and between tool builders can thereby lead

to an exponential growth in the capabilities of the tools and their fitness to purpose.’’

Hoare [318]

The key elements of empirical research in the reverse engineering domain—

theories, experiments, and tools—are mutually dependent on each other. This is

illustrated in Fig. 15. Theories can guide tool experiments (e.g., Walenstein’s

HASTI [312]) and to a lesser degree provide requirements for tool building (e.g.,

Mayrhauser and Vans [310]). Experiments can be used for tool evaluation and to

confirm or refute theories. Same as theories, experiments can provide requirements

for tool building (e.g., Lethbridge and Singer [27]).

An approach to tool building that is evaluation-driven and theory-grounded has to

follow a suitable process that incorporates theories, experiments, and tool building.

An example of such a process that incorporates these elements is described by

Storey [163]. The process consists of ‘‘several iterative phases of design, develop-

ment, and evaluation’’ and has been used on the SHriMP tool. Figure 16 depicts a

rendering of the process iterations with SHriMP as the subject tool. There is an

‘‘iterative cycle of design and test’’ that aims at improving a tool [164]. The (initial)

design of the tool is guided by Storey’s cognitive design elements framework, which

is a theory that provides a catalog of issues that should be addressed by software

exploration tools. Evaluation of the tool’s design and implementation can be accom-

plished by empirical studies based on observation of tool users. This cycle is
ToolExperimentsTheories

FIG. 15. Cycles of tool construction, experimentation, and theory creation.

How do programmers
understand programs?

How can program understanding
tools enhance how programmers
understand programs?

(Re)design and implement

Observe and evaluate

FIG. 16. Storey’s process consisting of two feedback cycles [163].

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 269
embedded in a larger iterative cycle for improving the underlying theory. When

adopting Storey’s process, the cognitive design elements framework could be

replaced with a different theory.

Compared to the other two lenses, tool evaluation is still in its infancy. However,

the evaluation of tools has made rapid advances within the last few years, which is a

source for optimism that some form of empirical evaluation will become an

expected component when reporting a research result. However, empirical studies

are costly and thus should be conducted strategically (e.g., based on cost-benefit

concerns). For example, the goal is not to maximize the quality, but to find the right

level of quality [283]. Having a large number of lower quality studies that are only

conducted as a token effort to get a tool or method published may turn out to be

detrimental to the long-term impact that empirical studies can have in synthesizing

broadly accepted theories. In fact, if empirical studies are not following a rigorous

procedure, the resulting data ‘‘may fail to support even a true hypothesis, or,

conversely, false hypotheses may be believed to be true’’ [319]. It is now expected

that an empirical study discusses threads to validity. However, instead of repeating

(boilerplate) discussions for each evaluation, the effort should go toward reducing the

threads. Also, not everything needs to be empirically investigated (e.g., it may be

sufficient to rely on qualified opinions or long-term anecdotal evidence). For example,

Parnas points out that the effectiveness of Kirchhoff’s circuit law has not been empiri-

cally evaluated—its effectiveness is simply accepted by electrical engineers [320].

Key concerns for empirical research in the reverse engineering domain are the

development of agreed-up standards that make it easier to conduct, compare, and

reason about empirical studies. In his WCRE 2006 keynote, Briand makes the point

270 H.M. KIENLE AND H.A. MÜLLER
that ‘‘it is important that the reverse engineering research community strives to

provide guidelines and develop specific empirical procedures and benchmarks that

would eventually converge to become standard practices’’ [321]. An example of

work in this direction is the proposal of a framework for defining and performing

experiments for program comprehension, and of collaborations among researchers

where each participant contributes to a study in a different way [298, 322].

Researchers have also proposed a common coding scheme for observational studies

[323]. Reverse engineering can benefit from software engineering, which is facing

similar challenges [324]. Zelkowitz and other researchers advocate the sharing of

information related to empirical studies in software engineering among research

groups [325]. Examples of information that should be shared are experimental

results in the form of quantitative data; artifacts that support an experiment such

as code, design documents, and test plans; tools for data collection; and procedures

and guidelines such as reporting forms.

A straightforward approach to advance empirical studies is to work toward a

benchmark, or at least a common set of subject systems. A benchmark is relatively

easily applied and promises replication. Without a standard set of subject systems

and evaluation principles encoded in a benchmark, there is the risk that tool evalua-

tions are biased by applying a new tool or technique to favorable software systems.

In addition, defining a benchmark can have a community-building effect, advancing

the discipline: ‘‘Throughout the benchmarking process, there is greater communica-

tion and collaboration among different researchers leading to a stronger consensus

on the community’s research goals’’ [287]. Communication of lessons learned are

another example that can help to advance empirical research. Sensalire et al.

describe lessons learned based on five different user studies with software visuali-

zation tools [296]. Adolph et al. discuss lessons learned in applying grounded theory

in the software engineering domain [317].

A key problem of empirical research is lack of knowledge and interest.

Reverse engineering researchers that are willing to advance the state of empirical

research (e.g., by applying grounded theory) are rather ill equipped because their

background has not prepared them to apply social science research methodology

[317]. Huang and Tilley provide an example that affirms this point [202]:

‘‘We are novice empiricists who are interested in using empirical studies as a measure-

ment instrument; we are not particularly interested in becoming experts concerning

empirical methods per se. As novices, we struggled with learning how to properly

execute an empirical study, while at the same time remaining focused on the underlying

problem that we were interested in exploring.’’

Also, researchers that have chosen an engineering discipline are often not partic-

ularly keen on becoming experts in empirical research. One avenue to raise the

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 271
quality of empirical studies and the construction and application of theories is that

the reverse engineering community works toward establishing a research environ-

ment that encourages researchers to specialize in empirical research involving tools.

Such a research environment would need to give adequate scientific credit for

empirical work (e.g., synthesizing of tool requirements and replication of tool

evaluations) on a par with nonempirical work. This would lead to a mutual fertiliza-

tion of researchers that focus on tool building and tool evaluations. Walenstein

describes a grand vision of theory-based research in which multidisciplinary collab-

oration would lead to theories that serve as a foundation for software engineering

research. In this vision, ‘‘software engineering researchers will be portrayed as

consumers of theoretical advances from other disciplines, the focus of the software

engineering thread of research will be set on applications of theories derived

elsewhere’’ [156, p. 56].
5. Conclusions

In this chapter, we have addressed the issue of academic tool building in the

reverse engineering domain. We have explored this issue with the help of three

lenses: tool requirements, tool construction, and tool evaluation. Each lens repre-

sents an opportunity to reflect upon the current research practice and how to improve

upon it.

Each lens has the potential to positively influence other lenses, which in the best

case may lead to a positive feedback cycle. Articulating tool requirements represents

an opportunity to make research goals more explicit. For example, what are the

desirable quality attributes that the tool has to meet? It is expected that this set of

requirements will be changed and refined as research advances and the tool gets

constructed. Thus, tool requirements and tool construction are mutually influencing

each other. Initial tool requirements can serve as early guidance for tool construc-

tion. For example, quality attributes can inform tool architecture. Conversely,

experiences gained by building and test-driving a tool prototype can refine the

tool’s requirements.

The tool’s quality attributes also depends on the evaluation. For example, what

are the minimum requirements so that the tool can be used for the envisioned tool

evaluation? If the tool is evaluated by the tool developers themselves (e.g., bench-

marking its scalability) then usability and adoptability are less of a concern.

Conversely, if the tool is evaluated by a user study then a certain level of usability

has to be met. Furthermore, the tool has to scale up to accommodate at least the

evaluation environment, which may be a subject system with millions of lines of

272 H.M. KIENLE AND H.A. MÜLLER
code in an industrial setting. A key motivation of empirical studies is to show that a

new tool or technique provides a measurable benefit compared to the state-of-the-

practice. Finkelstein and Kramer point out that researchers ‘‘cannot expect industry

to make very large big-bang changes to processes, methods and tools, at any rate

without substantial evidence of the value derived from those changes’’ [106]. Thus,

convincing empirical studies can support tool adoption by industry. While there is a

considerable attention on process in software engineering, the process of developing

tools in academia is still neglected. Oivo proposes to make the development work in

a research project the subject of empirical study, treating it as an experiment or

quasi-experiment [326]. This approach provides a more realistic environment for

experimentation compared to small-scale user studies involving students. It has the

potential to strengthen empirical results and to introduce more rigor into academic

tool building.

Besides the discussed lenses, reverse engineering research is experiencing a

number of new challenges due to novel perspectives on how to reverse engineer

systems and due to the shifting nature of the systems themselves. These challenges

reflect back on the lenses in terms of new emerging tool requirements, new tool

architectures, and new avenues for empirical evaluations.

Research in software evolution has led to the realization that there is no strict

separation between the development and maintenance phase of a software system

[10]. Similarly, reverse engineering activities are not removed from forward engi-

neering activities—both are rather intertwined. This understanding has conse-

quences on reverse engineering tools. First, it leads to a tighter integration of the

reverse engineering tools with the software development tools, meaning in practice

that reverse engineering functionality is integrated seamlessly within the develo-

pers’ IDE. Second, reverse engineering functionality has to be accessible not only

instantaneously but also produce results instantaneously. Thus, batch-processing of

tasks that run for a longer time period are out-of-step with a highly interactive, IDE-

driven working style. In a sense, each additional second that an analysis takes

rapidly decreases its attractiveness for the tool user. Thus, the idea of JITC is

complemented by real-time comprehension and real-time reverse engineering.

Third, following the lead of IDEs to become more collaborative, reverse engineering

tools are following suit. Incorporating collaborate features enables novel reverse

engineering functionality, not just augmenting existing reverse engineering

approaches with a collaborative touch. However, this also leads to new challenges

for tool evaluation because studies now have to cope with multiple tool instances

that operate in a collaborative environment. Fourth, tighter integration of reverse

and forward engineering in a single environment means that reverse engineering

tools have access to and can leverage data sources that were previously not avail-

able. If data about every single keystroke of the user becomes available for data

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 273
mining, powerful recommender systems that operate in real-time become feasible.

Thus, we expect that reverse engineering will increasingly incorporate and leverage

functionality such as can be found in recommender systems. Furthermore, these new

data sources can be used in empirical studies of tool usage.

In a user study involving software visualization tools for performing corrective

maintenance, the participants questioned the need for dedicated tool support, voicing

their preference for the Eclipse IDE [75]. This may be explained with the fact that

Eclipse is offering functionality that was previously only provided by reverse engi-

neering tools. Either way, it shows that reverse engineering tools are now competing

with vanilla IDEs. If research in reverse engineering wants to stay relevant it has to

show that its tools are useful beyond the state-of-the-art of industrial software

development environments. A study of doing maintenance with Eclipse showed

that only 20% of the time is spent editing code besides other activities such as reading

code (20%), searching for names (13%), and navigating dependencies (16%) [311].

The study also exposed the potential of new tool support that could save up to 35% of

the time spent on code navigation duringmaintenance tasks. Thus, dedicated tools for

program comprehension and reverse engineering have the potential to make a huge

impact if they support the right functionality (i.e., usefulness) together with the right

interactions (i.e., usability). However, the increasing complexity of the underlying

reverse engineering infrastructure and the pressure to compete with polished indus-

trial tools may necessitate a community effort to collaborate on a common infrastruc-

ture (e.g., in the form of an application framework) for doing joint reverse engineering

research [327, 328]. Such an infrastructure should allow ‘‘the state-of-the-art to be

readily applied’’ and thus to advance upon it more easily [327].

The constantly changing nature of software means that reverse engineering

approaches have to adapt accordingly. Traditionally, reverse engineering is

concerned with large monolithic systems that are coded in a statically typed high-

level language. Over the years, established programming languages have been

getting more dynamic in nature (e.g., Cþþ’s RTTI and C#’s Reflection.Emit) and

new languages already have more dynamic features (e.g., Ruby). Domains such as

web applications often rely on scripting languages on the client side (e.g., Java-

Script) and server side (e.g., PHP). This trend has an impact on reverse engineering

tools because static analyses are becoming less precise and whole program analyses

are becoming impractical [297]. Thus, dynamic analyses are playing a more promi-

nent role in dynamic languages to complement statically derived information.

Besides programming languages, the targeted systems are changing their char-

acteristics. Systems are becoming less monolithic, more dynamic, and more adap-

tive in nature. This trend is exhibited by approaches such as SOA (where services are

loosely coupled and can be discovered during run-time) and self-adaptive systems

(where the system reconfigures itself during run-time) [329]. These kinds of

274 H.M. KIENLE AND H.A. MÜLLER
software require analyses that monitor the system at all levels of granularity and

corresponding visualizations [330]. Such systems also often have components that

are black boxes in the sense that their inner workings and source code are not

accessible for reverse engineering. Thus, reverse engineering techniques may have

to rely primarily on analyzing the interfaces and observing the interactions of black-

box components. The same characteristic holds for emerging approaches such as

Software as a Service (SaaS) and cloud computing, which hide most parts of the

software behind the service provider’s server. While such restrictions are not

entirely new and can also be encountered in COTS-based and distributed systems,

the increasing impact of SOA, SaaS, clouds, and self-adaptivity may necessitate

radically different reverse engineering techniques.

There is also the realization that systems do not exist in isolation and have to be

studied and understood in a broader context. The concept of Systems of Systems

(SoS) acknowledges that the boundary of a software system is often blurred and

shifting because it communicates with other systems. Also, a SoS includes systems

over which the integrator has little or no control [331]. As a consequence, the subject

system that reverse engineering targets may not be readily identifiable and easily

bounded if that system is in fact a SoS. This problem becomesmore pronounced if the

reverse engineering target broadens toward ultralarge-scale (ULS) systems [332].

Looking at the challenges ahead, research in reverse engineering promises to

remain exciting, despite—or perhaps because of—its growing maturation in all three

lenses. While tool building is a means to an end, it does no harm that it has a very

attractive characteristic—it is fun!
References

[1] P. Samuelson, S. Scotchmer, The law and economics of reverse engineering, Yale Law J. 111 (7)

(2002) 1575–1663.

[2] B.C. Behrens, R.R. Levary, Practical legal aspects of software reverse engineering, Commun. ACM

41 (2) (1998) 27–29.

[3] V. Raja, K.J. Fernandes (Eds.), Reverse Engineering: An Industrial Perspective, Springer Series in

Advanced Manufacturing, Springer-Verlag, Berlin, 2008.

[4] E.J. Chikofsky, J.H. Cross II, Reverse engineering and design recovery: A taxonomy, IEEE Softw.

7 (1) (1990) 13–17.

[5] E. Eilam, Reversing: Secrets of Reverse Engineering, Wiley, New York, NY, 2005.

[6] R.S. Arnold (Ed.), Software Reengineering, IEEE Computer Society Press, 1993.

[7] A.E. Hassan, R.C. Holt, The small world of software reverse engineering, in: 11th IEEE Working

Conference on Reverse Engineering (WCRE’04), 2004, pp. 278–283.

[8] A.V. Mayrhauser, A.M. Vans, Program Understanding: Models and Experiments, Advances in

Computers, vol. 40, Elsevier, The Netherlands, 1995.

[9] M.W. Godfrey, D.M. German, The past, present, and future of software evolution, in: Frontiers of

Software Maintenance (FoSM 2008), 2008, pp. 129–138.

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 275
[10] T. Mens, S. Demeyer (Eds.), Software Evolution, Springer-Verlag, Berlin, 2008.

[11] A.V. Aho, R. Sethi, J.D. Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley,

Boston, MA, 1986.

[12] S. Diehl (Ed.), Software Visualization, Springer-Verlag, Berlin, Vol. 2269 of Lecture Notes in

Computer Science, 2002.

[13] N. Fenton, M. Neil, Software metrics: Roadmap, in: Conference on the Future of Software Engi-

neering, 2000, pp. 359–370.

[14] T. Kühne, Matters of (meta-) modeling, J. Softw. Syst. Model. 5 (4) (2006) 369–385.

[15] R. France, B. Rumpe, Model-driven development of complex software: A research roadmap,

in: Future of Software Engineering (FOSE’07), 2007, pp. 37–54.

[16] M.-A. Storey, C. Bennett, R.I. Bull, D.M. German, Remixing visualization to support collaboration

in software maintenance, in: Frontiers of Software Maintenance (FoSM 2008), 2008, pp. 139–148.

[17] J. Whitehead, Collaboration in software engineering: A roadmap, in: Future of Software Engineering

(FOSE’07), 2007, pp. 214–225.

[18] J. Hainaut, V. Englebert, J. Henrard, J.-M. Hick, D. Roland, Requirements for information system

reverse engineering support, in: 2nd IEEE Working Conference on Reverse Engineering

(WCRE’95), 1995, pp. 136–145.

[19] A. Hamou-Lhadj, T.C. Lethbridge, A survey of trace exploration tools, in: Conference of The Centre

for Advanced Studies On Collaborative Research (CASCON’04), 2004, pp. 42–55.

[20] B.G. Ryder, Constructing the call graph of a program, IEEE Trans. Softw. Eng. SE-5 (3) (1979)

216–226.

[21] Y. Chen, M.Y. Nishimoto, C.V. Ramamoorthy, The C information abstraction system, IEEE Trans.

Softw. Eng. 16 (3) (1990) 325–334.

[22] Y.R. Chen, G.S. Fowler, E. Koutsofios, R.S. Wallach, Ciao: A graphical navigator for software and

document repositories, in: 11th IEEE International Conference on Software Maintenance

(ICSM’95), 1995.

[23] H.M. Kienle, H.A. Müller, The Rigi reverse engineering environment, in: 1st International Work-

shop on Advanced Software Development Tools and Techniques (WASDeTT1), 2008. http://scg.

unibe.ch/download/wasdett/wasdett2008-paper06.pdf.

[24] M.D. Storey, K. Wong, H.A. Müller, How do program understanding tools affect how programmers

understand programs, Sci. Comput. Programming 36 (2–3) (2000) 183–207.

[25] K. Erdos, H.M. Sneed, Partial comprehension of complex programs (enough to perform mainte-

nance), in: 6th IEEE International Workshop on Program Comprehension (IWPC’98), 1998,

pp. 98–105.

[26] J. Singer, T. Lethbridge, N. Vinson, N. Anquetil, An examination of software engineering work

practices, in: Conference of the Centre for Advanced Studies on Collaborative Research (CAS-

CON’97), 1997, pp. 209–223.

[27] T. Lethbridge, J. Singer, Studies of the work practices of software engineers, in: H. Erdogmus,

O. Tanir (Eds.), Advances in Software Engineering: Topics in Comprehension, Evolution, and

Evaluation, Springer-Verlag, 2001, pp. 51–72. Ch. 3.

[28] R. Holt, Software architecture as a shared mental model, in: 1st ASERC Workshop on Software

Architecture, 2001. http://webdocs.cs.ualberta.ca/~kenw/conf/awsa2001/papers/holt.pdf.

[29] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, C. Riva, Symphony: View-driven software

architecture reconstruction, in: 4th IEEE/IFIP Conference on Software Architecture (WICSA’04),

2004, pp. 122–132.

276 H.M. KIENLE AND H.A. MÜLLER
[30] O. Nierstrasz, S. Ducasse, T. Gı̂rba, The story of Moose: An agile reengineering environment,

in: 10th European Software Engineering Conference held jointly with 13th ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering (ESEC/FSE-13), 2005, pp. 1–10.

[31] H.M. Kienle, Must tool building remain a craft? in: 10th Workshop on Object-Oriented Reengineer-

ing (WOOR 2007), 2007. http://scg.unibe.ch/wiki/events/woor2007/.

[32] R. Koschke, Zehn Jahre WSR—Zwölf Jahre Bauhaus, in: 10th Workshop Software Reengineering

(WSR 2008), 2008. http://www.informatik.uni-bremen.de/st/papers/bauhaus-wsr08.pdf.

[33] R. Koschke, Atomic Architectural Component Recovery for Program Understanding and Evolution,

Ph.D. thesis, University of Stuttgart, Germany, 2000.

[34] R. Ferenc, A. Beszedes, M. Tarkiainen, T. Gyimothy, Columbus—reverse engineering tool an

schema for Cþþ, in: 18th IEEE International Conference on Software Maintenance (ICSM’02),

2002, pp. 172–181.

[35] J. Ebert, B. Kullbach, V. Riediger, A. Winter, Gupro—generic understanding of programs: An

overview, in: Graph-Based Tools, First International Conference on Graph Transformation, Else-

vier, Amsterdam, Vol. 72 of Electronic Notes in Theoretical Computer Science, 2002, pp. 47–56.

[36] P.J. Finnigan, R.C. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H.A. Müller, J. Mylopolous,

S.G. Perelgut, M. Stanley, K. Wong, The software bookshelf, IBM Syst. J. 36 (4) (1997) 564–593.

[37] M.D. Storey, H.A. Müller, Manipulating and documenting software structures using SHriMP views,

in: 11th IEEE International Conference on Software Maintenance (ICSM’95), 1995, pp. 275–284.

[38] H.M. Kienle, Exchange format bibliography, ACM SIGSOFT Softw. Eng. Notes 26 (1) (2001)

56–60.

[39] K. Wong, Rigi User’s Manual: Version 5.4.4, Department of Computer Science, University of

Victoria, 1998. http://www.rigi.cs.uvic.ca/downloads/rigi/doc/rigi-5.4.4-manual.pdf. (June).

[40] A. Kuhn, T. Verwaest, FAME—a polyglot library for metamodeling at runtime, in: Models@run.

time 2008, 2008. http://www.comp.lancs.ac.uk/�bencomo/MRT08/papers/MRT08_manuscript18.

pdf.

[41] R.C. Holt, A. Winter, A. Schürr, GXL: Towards a standard exchange format, in: 7th IEEE Working

Conference on Reverse Engineering (WCRE’00), 2000, pp. 162–171.

[42] M. Kamp, Managing a Multi-File, Multi-Language Software Repository for Program Comprehen-

sion Tools—A Generic Approach, Fachberichte Informatik 1/98, Universität Koblenz-Landau,

Institut für Informatik, Koblenz, Germany, 1998.

[43] J. Martin, Leveraging IBM VisualAge for Cþþ for reverse engineering tasks, in: Conference of the

Centre for Advanced Studies on Collaborative Research (CASCON’99), 1999, pp. 83–95.

[44] G.C. Murphy, D. Notkin, Lightweight lexical source model extraction, ACM Trans. Softw. Eng.

Methodol. 5 (3) (1996) 262–292.

[45] L. Moonen, Lightweight impact analysis using island grammars, in: 10th IEEE International

Workshop on Program Comprehension (IWPC’02), 2002, pp. 219–228.

[46] H. Müller, J. Jahnke, D. Smith, M. Storey, S. Tilley, K. Wong, Reverse engineering: A roadmap,

in: Conference on the Future of Software Engineering, 2000, pp. 49–60.

[47] H.A. Müller, H.M. Kienle, Reverse Engineering, in: P. Laplante (Ed.), Encyclopedia of Software

Engineering, Auerbach Publications, 2010.

[48] S. Rugaber, Program understanding, in: A. Kent, J.G. Williams (Eds.), Encyclopedia of Computer

Science and Technology, Marcel Dekker, New York, 1996, pp. 341–368.

[49] D. Jackson, M. Rinard, Software analysis: A roadmap, in: Conference on the Future of Software

Engineering, 2000, pp. 135–145.

[50] H.M. Kienle, H.A. Müller, Leveraging program analysis for web site reverse engineering, in: 3rd

IEEE International Workshop on Web Site Evolution (WSE’01), 2001, pp. 117–125.

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 277
[51] T. Systä, K. Koskimies, H. Müller, Shimba—an environment for reverse engineering Java software

systems, Softw.—Pract. Exp. 31 (4) (2001) 371–394.

[52] M. Hind, Pointer analysis: Haven’t we solved this problem yet? in: ACM SIGPLAN/SIGSOFT

Workshop on Program Analysis for Software Tools and Engineering (PASTE’01), 2001, pp. 54–61.

[53] C. Jones, The Year 2000 Software Problem: Quantifying the Costs and Assessing the Consequences,

ACM Press, New York, 1998.

[54] R. Mili, R. Steiner, Software engineering: Introduction, in: S. Diehl (Ed.), Software Visualization,

Springer-Verlag, Berlin, Vol. 2269 of Lecture Notes in Computer Science, 2002, pp. 129–137.

[55] G.C. Murphy, D. Notkin, K.J. Sullivan, Software reflection models: Bridging the gap between

design and implementation, IEEE Trans. Softw. Eng. 27 (4) (2001) 364–380.

[56] R. Koschke, Software visualization in software maintenance, reverse engineering, and re-engineer-

ing: A research survey, J. Softw. Maintenance Evol.: Res. Pract. 15 (2) (2003) 87–109.

[57] M. Lanza, S. Ducasse, Polymetric views—a lightweight visual approach to reverse engineering,

IEEE Trans. Softw. Eng. 29 (9) (2003) 782–795.

[58] M.D. Storey, F.D. Fracchia, H.A. Müller, Customizing a fisheye view algorithm to preserve the

mental map, J. Vis. Lang. Comput. 10 (3) (1999) 245–267.

[59] J. Michaud, M. Storey, H. Müller, Integrating information sources for visualizing Java programs,

in: 17th IEEE International Conference on Software Maintenance (ICSM’01), 2001, pp. 250–258.

[60] S.R. Tilley, M.J. Whitney, H.A. Müller, M.D. Storey, Personalized information structures, in: 11th

ACM International Conference on Systems Documentation (SIGDOC’93), 1993, pp. 325–337.

[61] J.S. Jasperson, B.S. Butler, T.A. Carte, H.J.P. Croes, C.S. Saunders, W. Zheng, Power and informa-

tion technology research: A metatriangulation review, MIS Q. 26 (4) (2002) 397–459.

[62] K. Wong, The reverse engineering notebook, Department of Computer Science, University of

Victoria, 1999. http://hdl.handle.net/1828/278. Ph.D. thesis.

[63] L. Bass, M. Klein, F. Bachmann, Quality attribute design primitives and the attribute driven design

method, in: F. van der Linden (Ed.), PFE-4 2001, Springer-Verlag, Berlin, Vol. 2290 of Lecture

Notes in Computer Science, 2002, pp. 169–186.

[64] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, SEI Series in Software

Engineering, Addison-Wesley, Reading, MA, 1998.

[65] D.J. Carney, K.C. Wallnau, A basis for evaluation of commercial software, Inf. Softw. Technol.

40 (14) (1998) 851–860.

[66] S. Tichelaar, Modeling object-oriented software for reverse engineering and refactoring, Ph.D.

thesis, Universität Bern, 2001, December.

[67] A. Hamou-Lhadj, T.C. Lethbridge, L. Fu, Challenges and requirements for an effective trace

exploration tool, in: 12th IEEE International Workshop on Program Comprehension (IWPC’04),

2004, pp. 70–78.

[68] A. van Deursen, T. Kuipers, Building documentation generators, in: 15th IEEE International

Conference on Software Maintenance (ICSM’99), 1999, pp. 40–49.

[69] R. Koschke, J. Girard, M. Würthner, An intermediate representation for integrating reverse engi-

neering analyses, in: 5th IEEE Working Conference on Reverse Engineering (WCRE’98), 1998,

pp. 241–250.

[70] S. Ducasse, S. Tichelaar, Dimensions of reengineering environment infrastructures, J. Softw.

Maintenance Evol.: Res. Pract. 15 (5) (2003) 345–373.

[71] T. Skramstad, M.K. Khan, Assessment of reverse engineering tools: A MECCA approach, in: 2nd

IEEE Symposium on Assessment of Quality Software Development Tools, 1992, pp. 120–126.

[72] B. Bellay, H. Gall, An evaluation of reverse engineering tool capabilities, J. Softw. Maintenance:

Res. Pract. 10 (5) (1998) 305–331.

278 H.M. KIENLE AND H.A. MÜLLER
[73] B. Bellay, H. Gall, A comparison of four reverse engineering tools, in: 4th IEEE Working Confer-

ence on Reverse Engineering (WCRE’97), 1997, pp. 2–11.

[74] M.N. Armstrong, C. Trudeau, Evaluating architectural extractors, in: 5th IEEEWorking Conference

on Reverse Engineering (WCRE’98), 1998, pp. 30–39.

[75] M. Sensalire, P. Ogao, A. Telea, Classifying desirable features of software visualization tools for

corrective maintenance, in: 4th ACM Symposium on Software Visualization (SOFTVIS’08), 2008,

pp. 87–90.

[76] G.C. Murphy, D. Notkin, W.G. Griswold, E.S. Lan, An empirical study of static call graph

extractors, ACM Trans. Softw. Eng. Methodol. 7 (2) (1998) 158–191.

[77] S.E. Sim, R.C. Holt, S. Easterbrook, On using a benchmark to evaluate Cþþ extractors, in: 10th

IEEE International Workshop on Program Comprehension (IWPC’02), 2002, pp. 114–123.

[78] Y.-G. Guéhéneuc, K. Mens, R. Wuyts, A comparative framework for design recovery tools, in: 10th

IEEE European Conference on Software Maintenance and Reengineering (CSMR’06), 2006,

pp. 123–134.

[79] S. Bassil, R.K. Keller, Software visualization tools: Survey and analysis, in: 9th IEEE International

Workshop on Program Comprehension (IWPC’01), 2001, pp. 7–17.

[80] H. Padda, A. Seffah, S. Mudur, Investigating the comprehension support for effective visualization

tools, in: 2nd International Conference on Advances in Computer-Human Interaction (ACHI’09),

2009, pp. 283–288.

[81] M.J. Pacione, M. Roper, M.Wood, A comparative evaluation of dynamic visualisation tools, in: 10th

IEEE Working Conference on Reverse Engineering (WCRE’03), 2003, pp. 80–89.

[82] M.D. Storey, D. Cubranic, D.M. German, On the use of visualization to support awareness of human

activities in software development: A survey and a framework, in: ACM Symposium on Software

visualization (SoftVis’05), 2005, pp. 193–202.

[83] H.M. Kienle, Building reverse engineering tools with software components, Department of Com-

puter Science, University of Victoria, 2006. https://dspace.library.uvic.ca:8443/dspace/handle/

1828/115. Ph.D. thesis (November).

[84] D. West, Looking for love (in all the wrong places), ACM SIGPLAN Notices 39 (12) (2004) 57–63.

[85] G.C. Murphy, D. Notkin, Reengineering with reflexion models: A case study, IEEE Comput. 30 (8)

(1997) 29–36.

[86] I.D. Baxter, C. Pidgeon, M. Mehlich, DMS: Program transformations for practical scalable software

evolution, in: 26th ACM/IEEE International Conference on Software Engineering (ICSE’04), 2004,

pp. 625–634.

[87] J. Favre, J. Estublier, R. Sanlaville, Tool adoption issues in a very large software company,

in: 3rd International Workshop on Adoption-Centric Software Engineering (ACSE’03), 2003,

pp. 81–89.

[88] P. Brown, Integrated hypertext and program understanding tools, IBM Syst. J. 30 (3) (1991)

363–392.

[89] S. Ducasse, M. Lanza, S. Tichelaar, Moose: An extensible language-independent environment for

reengineering object-oriented systems, in: International Symposium on Constructing Software

Engineering Tools (COSET’00), 2000.

[90] T.C. Lethbridge, N. Anquetil, Architecture of a Source Code Exploration Tool: A Software

Engineering Case Study, Department of Computer Science, University of Ottawa, Canada, 1997.

Tech. Rep. TR-97-07.

[91] S.R. Tilley, Domain-retargetable reverse engineering, Ph.D. thesis, Department of Computer Sci-

ence, University of Victoria, 1995.

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 279
[92] D. Jerding, S. Rugaber, Using visualization for architectural localization and extraction, in: 4th IEEE

Working Conference on Reverse Engineering (WCRE’97), 1997, pp. 56–65.

[93] A. Cox, C. Clarke, Representing and accessing extracted information, in: 17th IEEE International

Conference on Software Maintenance (ICSM’01), 2001, pp. 12–21.

[94] R. Ferenc, Transformations Among the Three Levels of Schemas for Reverse Engineering, Schloss

Dagstuhl, Germany, 2005. http://www.dagstuhl.de/05161/Materials/. Dagstuhl Seminar 05161.

[95] Y. Yu, H. Dayani-Fard, J. Mylopoulos, P. Andritsos, Reducing build time through precompilations

for evolving large software, in: 21st IEEE International Conference on Software Maintenance

(ICSM’05), 2005, pp. 59–68.

[96] G. St-Denis, R. Schauer, R.K. Keller, Selecting a model interchange format: The SPOOL case study,

in: 33rd IEEE Hawaii International Conference on System Sciences (HICSS’00), 2000.

[97] A.S. Yeh, D.R. Harris, M.P. Chase, Manipulating recovered software architecture views, in: 19th

ACM/IEEE International Conference on Software Engineering (ICSE’97), 1997, pp. 184–194.

[98] H.M. Sneed, Migrating to web services: A research framework, in: 1st International Workshop on

Service-Oriented Architecture Maintenance (SOAM’07), 2007. http://www.cs.vu.nl/csmr2007/

workshops/4-%20SneedSOAPaper.pdf.

[99] D.L. Moise, K. Wong, An industrial experience in reverse engineering, in: 10th IEEE Working

Conference on Reverse Engineering (WCRE’03), 2003, pp. 275–284.

[100] R. Fiutem, G. Antoniol, P. Tonella, E. Merlo, ART: An architectural reverse engineering environ-

ment, J. Softw. Maintenance: Res. Pract. 11 (5) (1999) 339–364.

[101] M. Sensalire, P. Ogao, Visualizing object oriented software: Towards a point of reference for

developing tools for industry, in: 4th IEEE International Workshop on Visualizing Software for

Understanding and Analysis (VISSOFT’07), 2007, pp. 26–29.

[102] M.D. Storey, K. Wong, P. Fong, D. Hooper, K. Hopkins, H.A. Müller, On designing an experiment

to evaluate a reverse engineering tool, in: 3rd IEEE Working Conference on Reverse Engineering

(WCRE’96), 1996, pp. 31–40.

[103] J. Czeranski, T. Eisenbarth, H.M. Kienle, R. Koschke, D. Simon, Analyzing xfig using the Bauhaus

tool, in: 7th IEEE Working Conference on Reverse Engineering (WCRE’00), 2000, pp. 197–199.

[104] M. Blaha, D. LaPlant, E. Marvak, Requirements for repository software, in: 5th IEEE Working

Conference on Reverse Engineering (WCRE’98), 1998, pp. 164–173.

[105] M.W. Godfrey, Practical data exchange for reverse engineering frameworks: Some requirements,

some experience, some headaches, ACM SIGSOFT Softw. Eng. Notes 26 (1) (2001) 50–52.

[106] A. Finkelstein, J. Kramer, Software engineering: A roadmap, in: Conference on the Future of

Software Engineering, 2000, pp. 5–22.

[107] L.J. Fulop, P. Hegedus, R. Ferenc, T. Gyimóthy, Towards a benchmark for evaluating reverse

engineering tools, in: 15th IEEE Working Conference on Reverse Engineering (WCRE’08), 2008,

pp. 335–336.

[108] R. Ferenc, S.E. Sim, R.C. Holt, R. Koschke, T. Gyimóthy, Towards a standard schema for C/Cþþ,

in: 8th IEEE Working Conference on Reverse Engineering (WCRE’01), 2001, pp. 49–58.

[109] G. Lewis, L. Wrange, Approaches to Constructive Interoperability, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, 2004. http://www.sei.cmu.edu/pub/documents/04.reports/

pdf/04tr020.pdf. Tech. Rep. CMU/SEI-2004- TR-020, December.

[110] M.V. Zelkowitz, Modeling software engineering environment capabilities, J. Syst. Softw. 35 (1)

(1996) 3–14.

[111] S. Woods, L. O’Brien, T. Lin, K. Gallagher, A. Quilici, An architecture for interoperable program

understanding tools, in: 6th IEEE International Workshop on Program Comprehension (IWPC’98),

1998, pp. 54–63.

280 H.M. KIENLE AND H.A. MÜLLER
[112] R. Kazman, S.G. Woods, S.J. Carrière, Requirements for integrating software architecture and

reengineering models: CORUM II, in: 5th IEEE Working Conference on Reverse Engineering

(WCRE’98), 1998, pp. 154–163.

[113] M. Zelkowitz, B. Cuthill, Application of an information technology model to software engineering

environments, J. Syst. Softw. 37 (1) (1997) 27–40.

[114] R. Kazman, S.J. Carrière, Playing detective: reconstructing software architecture from available

evidence, J. Automated Softw. Eng. 6 (2) (1999) 107–138.

[115] J. Froehlich, P. Dourish, Unifying artifacts and activities in a visual tool for distributed software

development, in: 26th ACM/IEEE International Conference on Software Engineering (ICSE’04),

2004, pp. 387–396.

[116] T. Panas, J. Lundberg, W. Löwe, Reuse in reverse engineering, in: 12th IEEE International

Workshop on Program Comprehension (IWPC’04), 2004, pp. 52–61.

[117] A.W. Brown, Control integration through message-passing in a software development environ-

ment, Softw. Eng. J. 8 (3) (1993) 121–131.

[118] D.L. Moise, K. Wong, Issues in integrating schemas for reverse engineering, in: J.-M. Favre,

M. Godfrey, A. Winter (Eds.), International Workshop on Meta-Models and Schemas for Reverse

Engineering (ateM’03), vol. 94, Elsevier, The Netherlands, 2004, pp. 81–91.

[119] I.T. Bowman, M.W. Godfrey, R.C. Holt, Connecting software architecture recovery frameworks,

in: 1st International Symposium on Constructing Software Engineering Tools (CoSET’99), 1999.

[120] T.C. Lethbridge, S. Tichelaar, E. Ploedereder, The dagstuhl middle metamodel: A schema for

reverse engineering, in: J.-M. Favre, M. Godfrey, A. Winter (Eds.), International Workshop on

Meta-Models and Schemas for Reverse Engineering (ateM’03), vol. 94, Elsevier, The Netherlands,

2004, pp. 7–18.

[121] J. Park, S. Ram, Information systems interoperability: What lies beneath? ACM Trans. Office Inf.

Syst. 22 (4) (2004) 595–632.

[122] H.M. Kienle, J. Czeranski, T. Eisenbarth, The API perspective of exchange formats, in: Workshop

on Standard Exchange Format (WoSEF), 2000. http://www.ics.uci.edu/�ses/wosef/papers/

Kienle-api.ps.

[123] J. Favre, GSEE: A generic software exploration environment, in: 9th IEEE International Workshop

on Program Comprehension (IWPC’01), 2001, pp. 233–244.

[124] D. Jin, Ontological Adaptive Integration of Reverse Engineering Tools, Queen’s University,

Canada, 2004. Ph.D. thesis (August).

[125] S. Meyers, Difficulties in integrating multiple development systems, IEEE Softw. 8 (1) (1991)

49–57.

[126] S.E. Sim, Next generation data interchange: Tool-to-tool application program interfaces, in: 7th

IEEE Working Conference on Reverse Engineering (WCRE’00), 2000, pp. 278–280.

[127] G. Ghezzi, H. Gall, Towards software analysis as a service, in: 4th International ERCIMWorkshop

on Software Evolution and Evolvability (Evol’08), 2008, pp. 1–10.

[128] D.L. Parnas, Designing software for ease of extension and contraction, IEEE Trans. Softw. Eng.

SE-5 (2) (1979) 128–137.

[129] J.W. Michaud, A Software Customization Framework, Department of Computer Science, Univer-

sity of Victoria, Victoria, Canada, 2003. Master’s thesis.

[130] K.H. Davis, Lessons learned in data reverse engineering, in: 8th IEEE Working Conference on

Reverse Engineering (WCRE’01), 2001, pp. 323–327.

[131] C. Best, Designing a Component-Based Framework for a Domain Independent Visualization Tool,

Master’s thesis, Department of Computer Science, University of Victoria, Victoria, Canada, 2002.

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 281
[132] L. Markosian, P. Newcomb, R. Brand, S. Burson, T. Kitzmiller, Using and enabling technology to

reengineer legacy systems, Commun. ACM 37 (5) (1994) 58–70.

[133] E. Buss, J. Henshaw, A software reverse engineering experience, in: Conference of the Centre for

Advanced Studies on Collaborative Research (CASCON’91), 1991, pp. 55–73.

[134] S.P. Reiss, Constraining software evolution, in: 18th IEEE International Conference on Software

Maintenance (ICSM’02), 2002, pp. 162–171.

[135] C. Riva, Reverse architecting: Suggestions for an exchange format, in: Workshop on Standard

Exchange Format (WoSEF), 2000.

[136] J. Favre, A new approach to software exploration: Back-packing with GSEE, in: 6th IEEE European

Conference on Software Maintenance and Reengineering (CSMR’02), 2002, pp. 251–262.

[137] J.B. Tran, R.C. Holt, Forward and reverse repair of software architecture, in: Conference of the

Centre for Advanced Studies on Collaborative Research (CASCON’99), 1999.

[138] P. Newcomb, L. Markosian, Automating the modularization of large cobol programs: Application

of an enabling technology for reengineering, in: 1st IEEE Working Conference on Reverse

Engineering (WCRE’93), 1993, pp. 222–230.

[139] T.R. Dean, J.R. Cordy, A.J. Malton, K.A. Schneider, Agile parsing in txl, Automated Softw. Eng.

10 (4) (2003) 311–336.

[140] A. Cox, C. Clarke, Syntactic approximation using iterative lexical analysis, in: 11th IEEE Interna-

tional Workshop on Program Comprehension (IWPC’03), 2003, pp. 154–163.

[141] J. Brichau, A. Kellens, S. Castro, T. D’Hondt, Enforcing structural regularities in software using

IntensiVE, in: 1st International Workshop on Academic Software Development Tools and Tech-

niques (WASDeTT-1), 2008.

[142] D.C. Atkinson, W.G. Griswold, The design of whole-program analysis tools, in: 18th ACM/IEEE

International Conference on Software Engineering (ICSE’96), 1996, pp. 16–27.

[143] M. Eichberg, M. Haupt, M. Mezini, T. Schäfer, Comprehensive software understanding with

Sextant, in: 21st IEEE International Conference on Software Maintenance (ICSM’05), 2005,

pp. 315–324.

[144] S.P. Reiss, A framework for abstract 3D visualization, in: IEEE Symposium on Visual Languages

(VL’93), 1993, pp. 108–115.

[145] S.P. Reiss, An overview of BLOOM, in: ACM SIGPLAN/SIGSOFT Workshop on Program

Analysis for Software Tools and Engineering (PASTE’01), 2001, pp. 38–45.

[146] Q. Wang, W. Wang, R. Brown, K. Driesen, B. Dufour, EVolve: An open extensible software

visualization framework, in: ACM Symposium on Software Visualization (SoftVis’03), 2003,

pp. 37–38.

[147] F.J. Newbery, An interface description language for graph editors, in: IEEE Symposium on Visual

Languages (VL’88), 1988, pp. 144–149.

[148] E.R. Gansner, S.C. North, An open graph visualization system and its applications to software

engineering, Softw.—Pract. Exp. 30 (11) (2000) 1203–1233.

[149] A. Telea, A. Maccari, C. Riva, An open toolkit for prototyping reverse engineering visualizations,

in: Symposium on Data Visualization 2002 (VISSYM’02), 2002, pp. 241–249.

[150] M. Meyer, T. Girba, M. Lungu, Mondrian: An agile information visualization framework, in: ACM

Symposium on Software visualization (SoftVis’06), 2006, pp. 135–144.

[151] S.E. Sim, M. Storey, A. Winter, A structured demonstration of five program comprehension tools:

Lessons learnt, in: 7th IEEE Working Conference on Reverse Engineering (WCRE’00), 2000,

pp. 210–212.

[152] A. Marcus, D. Comorski, A. Sergeyev, Supporting the evolution of a software visualization tool

through usability studies, in: 13th IEEE International Workshop on Program Comprehension

(IWPC’05), 2005, pp. 307–316.

282 H.M. KIENLE AND H.A. MÜLLER
[153] A. Holzinger, Usability engineering methods for software developers, Commun. ACM 48 (1)

(2005) 71–74.

[154] E. Folmer, J. Bosch, Architecting for usability: A survey, J. Syst. Softw. 70 (1–2) (2004) 61–78.

[155] H.A. Müller, K. Wong, M. Storey, Reverse engineering research should target cooperative infor-

mation system requirements, in: 5th IEEE Working Conference on Reverse Engineering

(WCRE’98), 1998, p. 255.

[156] A. Walenstein, Cognitive support in software engineering tools: A distributed cognition environ-

ment, Ph.D. thesis, Simon Fraser University, Vancouver, 2002, May.

[157] J. Singer, Creating software engineering tools that are useable, useful, and actually used, 2004, talk

given at the University of Victoria, December.

[158] A. Maccari, C. Riva, Empirical evaluation of CASE tools usage at Nokia, J. Empirical Softw. Eng.

5 (3) (2000) 287–299.

[159] N. Bevan, Quality in use: Meeting user needs for quality, J. Syst. Softw. 49 (1) (1999) 89–96.

[160] M.A. Toleman, J. Welsh, Systematic evaluation of design choices for software development tools,

Softw.—Concepts & Tools 19 (3) (1998) 109–121.

[161] S.L. Smith, J.N. Mosier, Guidelines for Designing User Interface Software, The MITRE Corpora-

tion, Bedford, MA, 1986. http://www.dfki.de/�jameson/hcida/papers/smith-mosier.pdf. Tech.

Rep. ESD-TR-86-278, August.

[162] S.P. Reiss, Incremental maintenance of software artifacts, in: 21st IEEE International Conference

on Software Maintenance (ICSM’05), 2005, pp. 113–122.

[163] M.-A.D. Storey, A Cognitive Framework for Describing and Evaluating Software Exploration

Tools, Ph.D. thesis, Simon Fraser University, Vancouver, 1998, December.

[164] M.D. Storey, F.D. Fracchia, H.A. Müller, Cognitive design elements to support the construction of

a mental model during software exploration, J. Syst. Softw. 44 (3) (1999) 171–185.

[165] L. Bass, B.E. John, J. Kates, Achieving Usability Through Software Architecture, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, 2001. http://www.sei.cmu.edu/

pub/documents/01.reports/pdf/01tr005.pdf. Tech. Rep. CMU/SEI-2001-TR-005, March.

[166] S.P. Reiss, The paradox of software visualization, in: 3rd International Workshop on Visualizing

Software for Understanding and Analysis (VISSOFT’05), 2005, pp. 59–63.

[167] R.I. Bull, A. Trevors, A.J. Malton, M.W. Godfrey, Semantic grep: Regular expressionsþ relational

abstraction, in: 9th IEEE Working Conference on Reverse Engineering (WCRE’02), 2002,

pp. 267–276.

[168] S. Paul, A. Prakash, A query algebra for program databases, IEEE Trans. Softw. Eng. 22 (3) (1996)

202–217.

[169] M. D’Ambros, M. Lanza, M. Lungu, R. Robbes, Promises and perils of porting software visualization

tool to the web, in: 11th IEEE International Symposium onWeb Systems Evolution (WSE’09), 2009.

[170] S. Manchoridis, T.S. Sounder, Y. Chen, D.R. Gansner, J.L. Korn, REportal: A web-based portal site

for reverse engineering, in: 8th IEEE Working Conference on Reverse Engineering (WCRE’01),

2001, pp. 221–230.

[171] T.C. Lethbridge, J. Singer, Strategies for studying maintenance, in: 2nd Workshop on Empirical

Studies of Software Maintenance (WESS’96), 1996, pp. 79–83.

[172] J.R. Cordy, Comprehending reality—Practical barriers to industrial adoption of software mainte-

nance automation, in: 11th IEEE International Workshop on Program Comprehension (IWPC’03),

2003, pp. 196–206.

[173] M.D. Storey, K. Wong, H.A. Müller, How do program understanding tools affect how program-

mers understand programs, in: 4th IEEE Working Conference on Reverse Engineering

(WCRE’97), 1997, pp. 12–21.

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 283
[174] J. Singer, T. Lethbridge, Studying work practices to assist tool design in software engineering,

in: 6th IEEE International Workshop on Program Comprehension (IWPC’98), 1998, pp. 173–179.

[175] T.C. Lethbridge, F. Herrera, Assessing the usefulness of the TKSee software exploration tool,

in: H. Erdogmus, O. Tanir (Eds.), Advances in Software Engineering: Topics in Comprehension,

Evolution, and Evaluation, Springer-Verlag, Berlin, 2001, pp. 73–93, Ch. 11.

[176] J. Grudin, Interactive systems: Bridging the gaps between developers and users, IEEE Comput.

24 (4) (1991) 59–69.

[177] T. Schäfer, M. Eichberg, M. Haupt, M. Mezini, The SEXTANT software exploration tool, IEEE

Trans. Softw. Eng. 32 (9) (2006) 753–768.

[178] T.R.G. Green, M. Petre, Usability analysis of visual programming environments: A ‘cognitive

dimensions’ framework, J. Vis. Lang. Comput. 7 (2) (1996) 131–174.

[179] L. Heinz, TransPlant: Helping organizations to make the transition, news@sei 4 (4) 2002. http://sei.

cmu.edu/news-at-sei/features/2001/4q01/feature-4-4q01.html.

[180] E.M. Rogers, Diffusion of Innovations, fourth Ed., The Free Press, New York, 1995.

[181] J. Iivari, Why are CASE tools not used? Commun. ACM 39 (10) (1996) 94–103.

[182] R. Holt, Wosef introduction, in: Workshop on Standard Exchange Format (WoSEF), 2000.

[183] E. Buss, J. Henshaw, Experiences in program understanding, in: Conference of the Centre for

Advanced Studies on Collaborative Research (CASCON’92), 1992, pp. 55–73.

[184] R. Kollmann, Experiences with an industrial long-term reengineering project, in: 11th IEEE

Working Conference on Reverse Engineering (WCRE’04), 2004, pp. 8–16.

[185] A. von Mayrhauser, A.M. Vans, From program comprehension to tool requirements for an

industrial environment, in: 2nd IEEE Workshop on Program Comprehension (WPC’93), 1993,

pp. 78–86.

[186] S. Rugaber, L.M. Wills, Creating a research infrastructure for reengineering, in: 3rd IEEEWorking

Conference on Reverse Engineering (WCRE’96), 1996, pp. 98–102.

[187] B. Balzer, M. Litoiu, H. Müller, D. Smith, M. Storey, S. Tilley, K. Wong, 4th international

workshop on adoption-centric software engineering, in: 4th International Workshop on Adop-

tion-Centric Software Engineering (ACSE’04), 2004, pp. 1–2.

[188] T.C. Lethbridge, Value assessment by potential tool adopters: Towards a model that considers

costs, benefits and risks of adoption, in: 4th International Workshop on Adoption-Centric Software

Engineering (ACSE’04), 2004, pp. 46–50.

[189] S. Tilley, S. Huang, T. Payne, On the challenges of adopting ROTS software, in: 3rd International

Workshop on Adoption-Centric Software Engineering (ACSE’03), 2003, pp. 3–6.

[190] S. Huang, S. Tilley, Z. Zhiying, On the yin and yang of academic research and industrial practice,

in: 3rd International Workshop on Adoption-Centric Software Engineering (ACSE’03), 2003,

pp. 19–22.

[191] S. Tilley, S. Huang, On selecting software visualization tools for program understanding in an

industrial context, in: 10th IEEE International Workshop on Program Comprehension (IWPC’02),

2002, pp. 285–288.

[192] K. Wong, On inserting program understanding technology into the software change process, in: 4th

IEEE Workshop on Program Comprehension (WPC’96), 1996, pp. 90–99.

[193] P.T. Devanbu, Re-targetability in software tools, ACM SIGAPP Appl. Comput. Rev. 7 (3) (1999)

19–26.

[194] J. Martin, Tool adoption: A software developer’s perspective, in: 3rd International Workshop on

Adoption-Centric Software Engineering (ACSE’03), 2003, pp. 7–9.

[195] S.R. Tilley, Coming attractions in program understanding ii: Highlights of 1997 and opportunities

in 1998, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1998. http://

284 H.M. KIENLE AND H.A. MÜLLER
www.sei.cmu.edu/pub/documents/98.reports/pdf/98tr001.pdf. Technical Report CMU/SEI-98-TR-

001.

[196] M. Jazayeri, The education of a software engineer, in: 19th IEEE Conference on Automated

Software Engineering (ASE’04), 2004, pp. xviii–xxvii.

[197] T.C. Lethbridge, J. Singer, Understanding software maintenance tools: Some empirical research,

in: 3rd Workshop on Empirical Studies of Software Maintenance (WESS’97), 1997, pp. 157–162.

[198] R.L. Glass, Facts and Fallacies of Software Engineering, Addison-Wesley, Boston, MA, 2002.

[199] D.A. Patterson, 20th century vs. 21st century c&c: The SPUR manifesto, Commun. ACM 48 (3)

(2005) 15–16.

[200] S. Tilley, D. Distante, On the adoption of an approach to reengineering web application transac-

tions, in: 4th International Workshop on Adoption-Centric Software Engineering (ACSE’04),

2004, pp. 13–20.

[201] S. Rifkin, Two good reasons why new software processes are not adopted, in: 3rd International

Workshop on Adoption-Centric Software Engineering (ACSE’03), 2003, pp. 23–29.

[202] S. Huang, S. Tilley, On the challenges in fostering adoption via empirical studies, in: 4th Interna-

tional Workshop on Adoption-Centric Software Engineering (ACSE’04), 2004, pp. 43–45.

[203] M. Storey, Theories, methods and tools in program comprehension: Past, present and future,

in: 13th IEEE International Workshop on Program Comprehension (IWPC’05), 2005, pp. 181–191.

[204] A. Walenstein, Observing and measuring cognitive support: Steps toward systematic tool evalua-

tion and engineering, in: 11th IEEE International Workshop on Program Comprehension

(IWPC’03), 2003, pp. 185–194.

[205] D. Sun, K. Wong, On understanding software tool adoption using perceptual theories, in: 4th

International Workshop on Adoption-Centric Software Engineering (ACSE’04), 2004, pp. 51–55.

[206] C. Krueger, Eliminating the adoption barrier, IEEE Softw. 19 (4) (2002) 29–31.

[207] H. Wang, C. Wang, Open source software adoption: A status report, IEEE Softw. 18 (2) (2001)

90–95.

[208] J. Grudin, Groupware and social dynamics: Eight challenges for developers, Commun. ACM 37 (1)

(1994) 92–105.

[209] A. Moran, Report on the first commercial users of functional programming workshop, ACM

SIGPLAN Notices 39 (12) (2004) 17–20.

[210] W. Harrison, R. Wieringa, Introduction to the workshop on technology transfer in software

engineering, in: 2006 International Workshop on Software Technology Transfer in Software

Engineering (TT’06), 2006, pp. 1–2.

[211] J. Segal, C. Morris, Developing scientific software, part 2, IEEE Softw. 26 (1) (2009) 79.

[212] H.M. Kienle, H.A. Müller, Requirements of software visualization tools: A literature survey, in: 4th

IEEE International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT

2007), 2007, pp. 2–9.

[213] S.E. Sim, R. Koschke, Wosef: Workshop on standard exchange format, ACM SIGSOFT Softw.

Eng. Notes 26 (1) (2001) 44–49.

[214] S. Tichelaar, S. Ducasse, S. Demeyer, FAMIX: Exchange experiences with CDIF and XMI,

in: Workshop on Standard Exchange Format (WoSEF), 2000. http://www.ics.uci.edu/�ses/

wosef/papers/Tichelaar.ps.

[215] R.C. Holt, A. Winter, J. Wu, Towards a Common Query Language for Reverse Engineering,

Institut für Informatik, Universität Koblenz-Landau, Koblenz, Germany, 2002. Tech. Rep. 8/2002,

August.

[216] A. Bosworth, Learning from the web, ACM Queue 3 (8) (2005) 26–32.

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 285
[217] J. Mendling, A survey on design criteria for interchange formats, Department of Information

Systems, New Media Lab, Vienna University of Economics and Business Administration, Vienna,

Austria, 2004. Technical Report.

[218] U. Brandes, M. Eiglsperger, I. Merman, M. Himsolt, M.S. Marshall, GraphML progress report:

Structural layer proposal, in: 9th International Symposium on Graph Drawing (GD 2001), 2001,

pp. 109–112.

[219] S.R. Tilley, D.B. Smith, On using the web as infrastructure for reengineering, in: 5th IEEE

International Workshop on Program Comprehension (IWPC’97), 1997, pp. 170–173.

[220] J. Buckley, Requirements-based visualization tools for software maintenance and evolution, IEEE

Comput. 42 (4) (2009) 106–108.

[221] D.B. Smith, P.W. Oman, Software tools in context, IEEE Softw. 7 (3) (1990) 15–19.

[222] R. Koschke, Software visualization for reverse engineering, in: S. Diehl (Ed.), Software Visualiza-

tion, Springer-Verlag, Berlin, Vol. 2269 of Lecture Notes in Computer Science, 2002, pp. 138–150.

[223] S. Hupfer, L.-T. Cheng, S. Ross, J. Patterson, Introducing collaboration into an application

development environment, in: ACM Conference on Computer Supported Cooperative Work

(CSCW’04), 2004, pp. 21–24.

[224] M. D’Ambros, M. Lanza, A flexible framework to support collaborative software evolution

analysis, in: 12th IEEE European Conference on Software Maintenance and Reengineering

(CSMR’08), 2008, pp. 3–12.

[225] M. Shaw, Architectural issues in software reuse: It’s not just the functionality, it’s the packaging,

in: Symposium on Software Reusability (SSR’95), 1995, pp. 3–6.

[226] C.W. Krueger, Software reuse, ACM Comput. Surv. 24 (2) (1992) 131–183.

[227] M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, Prentice Hall,

New Jersey, 1996.

[228] A.I. Wasserman, Tool integration in software engineering environments, in: F. Long (Ed.),

Software Engineering Environments: International Workshop on Environments, Springer-Verlag,

Berlin, Vol. 467 of Lecture Notes in Computer Science, 1990, pp. 137–149.

[229] P.H. Salus, A Quarter Century of UNIX, UNIX and Open Systems Series, Addison-Wesley,

Boston, MA, 1994.

[230] B. Krishnamurthy, Practical Reusable UNIX Software, Wiley, New York, NY, 1995.

[231] C. Best, M. Storey, J. Michaud, Designing a component-based framework for visualization in

software engineering and knowledge engineering, in: 14th ACM/IEEE International Conference on

Software Engineering and Knowledge Engineering (SEKE’02), 2002, pp. 323–326.

[232] A. Telea, L. Voinea, An interactive reverse engineering environment for large-scale Cþþ code,

in: 4th ACM Symposium on Software Visualization (SOFTVIS’08), 2008, pp. 67–76.

[233] H. Reubenstein, R. Piazza, S. Roberts, Separating parsing and analysis in reverse engineering,

in: 1st IEEE Working Conference on Reverse Engineering (WCRE’93), 1993, pp. 117–125.

[234] R. Biddle, A. Martin, J. Noble, No name: Just notes on software reuse, ACM SIGPLAN Notices

38 (2) (2004) 76–96.

[235] H.M. Kienle, Component-based tool development, in: Frontiers of Software Maintenance (FoSM

2008) at ICSM 2008, 2008, pp. 87–98.

[236] S.P. Reiss, The Desert environment, ACM Trans. Softw. Eng. Methodol. 8 (4) (1999) 297–342.

[237] A.L. Powell, J.C. French, J.C. Knight, A systematic approach to creating and maintaining software

documentation, in: 11th ACM Symposium on Applied Computing (SAC’96), 1996, pp. 201–208.

[238] K. Czarnecki, U.W. Eisenecker, Generative Programming: Methods, Tools, and Applications,

Addison-Wesley, Boston, MA, 2000.

286 H.M. KIENLE AND H.A. MÜLLER
[239] Q. Zhu, Y. Chen, P. Kaminski, A. Weber, H. Kienle, H.A. Müller, Leveraging Visio for adoption-

centric reverse engineering tools, in: 10th IEEE Working Conference on Reverse Engineering

(WCRE’03), 2003, pp. 270–274.

[240] J. Hartmann, S. Huang, S. Tilley, Documenting software systems with views II: An integrated

approach based on XML, in: 19th ACM International Conference on Computer Documentation

(SIGDOC’01), 2001, pp. 237–246.

[241] C. Riva, Y. Yang, Generation of architectural documentation using XML, in: 9th IEEE Working

Conference on Reverse Engineering (WCRE’02), 2002, pp. 161–169.

[242] N.M. Goldman, R.M. Balzer, The ISI visual design editor generator, in: IEEE Symposium on

Visual Languages (VL’99), 1999, pp. 20–27. http://mr.teknowledge.com/daml/

briefing_associate_publications.htm.

[243] M.A. Copenhafer, K.J. Sullivan, Exploration harnesses: Tool-supported interactive discovery of

commercial component properties, in: 14th IEEE Conference on Automated Software Engineering

(ASE’99), 1999, pp. 7–14.

[244] D. Coppit, K.J. Sullivan, Galileo: A tool built from mass-market applications, in: 22nd ACM/IEEE

International Conference on Software Engineering (ICSE’00), 2000, pp. 750–753.

[245] D. Coppit, K.J. Sullivan, Sound methods and effective tools for engineering modeling and analysis,

in: 25thACM/IEEE International Conference onSoftware Engineering (ICSE’03), 2003, pp. 198–207.

[246] S.P. Reiss, Program editing in a software development environment (draft). http://www.cs.brown.

edu/�spr/research/desert/fredpaper.pdf, 1995.

[247] X. Wu, A. Murray, M. Storey, R. Lintern, A reverse engineering approach to support software

maintenance: Version control knowledge extraction, in: 11th IEEE Working Conference on

Reverse Engineering (WCRE’04), 2004, pp. 90–99.

[248] F. Arcelli, C. Tosi, M. Zanoni, S. Maggioni, The MARPLE project—A tool for design pattern

detection and software architecture reconstruction, in: 1st International Workshop on Advanced

Software Development Tools and Techniques (WASDeTT-1), 2008. http://scg.unibe.ch/download/

wasdett/wasdett2008-paper02.pdf.

[249] A. Egyed, P.B. Kruchten, Rose/Architect: A tool to visualize architecture, in: 32rd IEEE Hawaii

International Conference on System Sciences (HICSS’99), 1999.

[250] A.F. Egyed, Heterogeneous View Integration and its Automation, University of Southern Califor-

nia, Los Angeles, CA, 2000. Ph.D. thesis, August.

[251] B. Berenbach, Towards a unified model for requirements engineering, in: 4th International

Workshop on Adoption-Centric Software Engineering (ACSE’04), 2004, pp. 26–29.

[252] K. Mehner, Javis: A UML-based visualization and debugging environment for concurrent Java

programs, in: S. Diehl (Ed.), Software Visualization, Springer-Verlag, Berlin, Vol. 2269 of Lecture

Notes in Computer Science, 2002, pp. 163–175.

[253] C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S. Leipert, P. Mutzel, A new approach for visualizing

UML class diagrams, in: ACM Symposium on Software Visualization (SoftVis’03), 2003,

pp. 179–188.

[254] F. Ricca, P. Tonella, Understanding and restructuring Web sites with ReWeb, IEEE MultiMed.

8 (2) (2001) 40–51.

[255] G. Antoniol, R. Fiutem, G. Lutteri, P. Tonella, S. Zanfei, E. Merlo, Program understanding and

maintenance with the CANTO environment, in: 13th IEEE International Conference on Software

Maintenance (ICSM’97), 1997, pp. 72–81.

[256] T.Y. Lin, F. Zou,H.M.Kienle, H.A.Müller, A customizable SVGgraph visualization engine, in: SVG

Open 2007, 2007. http://www.svgopen.org/2007/papers/CustomizableSVGGraphVisualization

Engine/.

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 287
[257] M. Lungu, M. Lanza, The small project observatory, in: 1st International Workshop on Advanced

Software Development Tools and Techniques (WASDeTT-1), 2008. http://scg.unibe.ch/download/

wasdett/wasdett2008-paper08.pdf.

[258] D. Holten, Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data,

IEEE Trans. Vis. Comput. Graph. 12 (5) (2006) 741–748.

[259] R. Wettel, M. Lanza, Visualizing software systems as cities, in: 4th IEEE International Workshop

on Visualizing Software for Understanding and Analysis (VISSOFT’07), 2007, pp. 92–99.

[260] D. Garlan, R. Allen, J. Ockerbloom, Architectural mismatch or why it’s hard to build systems out of

existing parts, in: 17th ACM/IEEE International Conference on Software Engineering (ICSE’95),

1995, pp. 179–185.

[261] D. Rayside, M. Litoiu, M. Storey, C. Best, R. Lintern, Visualizing flow diagrams in WebSphere

Studio using SHriMP views, Inf. Syst. Front. 5 (2) (2003) 161–174.

[262] A. Egyed, R. Balzer, Unfriendly COTS integration—Instrumentation and interfaces for improved

plugability, in: 16th IEEE Conference of Automated Software Engineering (ASE’01), 2001,

pp. 223–231.

[263] S. Kelly, J.-P. Tolvanen, Domain-Specific Modeling: Enabling Full Code Generation, Wiley,

New Jersey, 2008.

[264] T.J. Biggerstaff, A perspective of generative reuse, Ann. Softw. Eng. 5 (1998) 169–226.

[265] S. Rugaber, K. Stirewalt, Model-driven reverse engineering, IEEE Softw. 21 (4) (2004) 45–53.

[266] J. Favre, Cacophony: Metamodel-driven software architecture reconstruction, in: 11th IEEE

Working Conference on Reverse Engineering (WCRE’04), 2004, pp. 204–213.

[267] S. Ducasse, T. Gı̂rba, A. Kuhn, L. Renggli, Meta-environment and executable meta-language using

smalltalk: An experience report, J. Softw. Syst. Model. 8 (1) (2009) 5–19.

[268] S. Ducasse, T. Gı̂rba, Using smalltalk as a reflective executable meta-language, in: 9th Interna-

tional Conference on Model Driven Engineering Languages and Systems (MoDELS 2006), 2006,

pp. 604–618.

[269] K. Cremer, A. Marburger, B. Westfechtel, Graph-based tools for re-engineering, J. Softw. Mainte-

nance and Evol.: Res. Pract. 14 (4) (2002) 257–292.

[270] R.I. Bull, M.-A. Storey, J.-M. Favre, M. Litoiu, An architecture to support model driven software

visualization, in: 14th IEEE International Conference on Program Comprehension (ICPC’06),

2006, pp. 100–106.

[271] R.I. Bull, Model Driven Visualization: Towards a Model Driven Engineering Approach for

Information Visualization, Department of Computer Science, University of Victoria, Melbourne,

Australia, 2008. http://hdl.handle.net/1828/1048. Ph.D. thesis.

[272] D. Coppit, K.J. Sullivan, Multiple mass-market applications as components, in: 22nd ACM/IEEE

International Conference on Software Engineering (ICSE’00), 2000, pp. 273–282.

[273] M. Lanza, Codecrawler—Lessons learned in building a software visualization tool, in: 7th IEEE

European Conference on Software Maintenance and Reengineering (CSMR’03), 2003, pp. 1–10.

[274] Y.-G. Guéhéneuc, Ptidej: Promoting patterns with patterns, in: 1st ECOOP workshop on Building a

System using Patterns, 2005. http://www.iro.umontreal.ca/�ptidej/Publications/Documents/

ECOOP05BSUP.doc.pdf.

[275] R. Balzer, A. Egyed, N. Goldman, T. Hollebeek, M. Tallis, D. Wile, Adapting COTS applications:

An experience report, in: 2nd IEEE International Workshop on Incorporating COTS-Software into

Software Systems: Tools and Techniques (IWICSS’07), 2007.

[276] H.M. Kienle, Building reverse engineering tools with software components: Ten lessons learned,

in: 14th IEEE Working Conference on Reverse Engineering (WCRE 2007), 2007, pp. 289–292.

288 H.M. KIENLE AND H.A. MÜLLER
[277] R. Wuyts, S. Ducasse, Unanticipated integration of development tools using the classification

model, Computer Languages, Syst. Struct. 30 (1–2) (2004) 63–77.

[278] P. Klint, R. Lämmel, C. Verhoef, Toward an engineering discipline for grammarware, ACM Trans.

Softw. Eng. Methodol. 14 (3) (2005) 331–380.

[279] H.M. Kienle, H.A. Müller, Towards a process for developing maintenance tools in academia,

in: 15th IEEE Working Conference on Reverse Engineering (WCRE’08), 2008, pp. 237–246.

[280] R. Wuyts, H.M. Kienle, K. Mens, M. van den Brand, A. Kuhn, Academic software development

tools and techniques: Report on the 1st workshopWASDeTT at ECOOP 2008, in: P. Eugster (Ed.),

Object-Oriented Technology, Springer Verlag, Berlin, ECOOP 2008 Workshop Reader, Vol. 5475

of Lecture Notes in Computer Science, 2009, pp. 87–103. .

[281] H.M. Kienle, L. Moonen, M.W. Godfrey, H.A. Müller, 2nd international workshop on advanced

software development tools and techniques (WASDeTT): Tools for software maintenance, visuali-

zation, and reverse engineering, in: 24th IEEE International Conference on Software Maintenance

(ICSM’08), 2008, pp. 408–409.

[282] M. van den Brand, Guest editor’s introduction: Experimental software and toolkits (EST), Sci.

Comput. Program. 69 (1–3) (2007) 1–2.

[283] D.I.K. Sjoberg, T. Dyba, M. Jorgensen, Collaboration in software engineering: A roadmap,

in: Future of Software Engineering (FOSE’07), 2007, pp. 214–225.

[284] S.E. Sim, A Theory of Benchmarking with Applications to Software Reverse Engineering, Univer-

sity of Toronto, Ontario, Canada, 2003. Ph.D. thesis, October.

[285] B. Kitchenham, DESMET: A Method for Evaluating Software Engineering Methods and Tools,

Department of Computer Science, University of Keele, Staffordshire, UK, 1996. Tech. Rep.

TR96-09.

[286] T. Panas, M. Staron, Evaluation of a framework for reverse engineering tool construction, in: 21st

IEEE International Conference on Software Maintenance (ICSM’05), 2005, pp. 145–154.

[287] S.E. Sim, S. Easterbrook, R.C. Holt, Using benchmarking to advance research: A challenge to

software engineering, in: 25th ACM/IEEE International Conference on Software Engineering

(ICSE’03), 2003, pp. 74–83.

[288] S. Demeyer, T. Mens, M. Wermelinger, Towards a software evolution benchmark, in: 4th ACM

International Workshop on Principles of Software Evolution (IWPSE’04), 2001, pp. 174–177.

[289] A. Lakhotia, J. Li, A. Walenstein, Y. Yang, Towards a clone detection benchmark suite and results

archive, in: 11th IEEE International Workshop on Program Comprehension (IWPC’03), 2003,

pp. 285–286.

[290] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo, Comparison and evaluation of clone

detection tools, IEEE Trans. Softw. Eng. 33 (9) (2007) 577–591.

[291] L.J. Fulop, R. Ferenc, T. Gyimothy, Towards a benchmark for evaluating design pattern miner

tools, in: 12th IEEE European Conference on Software Maintenance and Reengineering

(CSMR’08), 2008, pp. 143–152.

[292] R. Robbes, Of Change and Software, Ph.D. thesis, University of Lugano, Lugano, Switzerland,

2008, December.

[293] S.E. Sim,M. Storey, A structured demonstration of five program comprehension tools, in: 7th IEEE

Working Conference on Reverse Engineering (WCRE’00), 2000, pp. 184–193.

[294] J. Charles, Snapshots from industry: Reverse engineering project seeking participants, IEEE Softw.

14 (3) (1997) 118.

[295] M.D. Storey, S.E. Sim, K. Wong, A collaborative demonstration of reverse engineering tools, ACM

SIGAPP Appl. Comput. Rev. 10 (1) (2002) 18–25.

THE TOOLS PERSPECTIVE ON SOFTWARE REVERSE ENGINEERING 289
[296] M. Sensalire, P. Ogao, A. Telea, Evaluation of software visualization tools: Lessons learned, in: 5th

IEEE International Workshop on Visualizing Software for Understanding and Analysis

(VISSOFT’09), 2009.

[297] G. Confora, M. Di Penta, New frontiers of reverse engineering, in: Future of Software Engineering

(FOSE’07), 2007, pp. 326–341.

[298] G.A.D. Lucca, M.D. Penta, Experimental settings in program comprehension: Challenges and open

issues, in: 14th IEEE International Conference on Program Comprehension (ICPC’06), 2006.

[299] D.I. Sjoberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A. Karahasanovic, N.-K. Liborg,

A.C. Rekdal, A survey of controlled experiments in software engineering, IEEE Trans. Softw.

Eng. 31 (9) (2005) 733–753.

[300] M.P. O’Brien, J. Buckley, C. Exton, Empirically studying software practitioners—Bridging the gap

between theory and practice, in: 21st IEEE International Conference on Software Maintenance

(ICSM’05), 2005, pp. 433–442.

[301] E. Arisholm, H. Gallis, T. Dyba, D.I. Sjoberg, Evaluating pair programming with respect to system

complexity and programmer expertise, IEEE Trans. Softw. Eng. 33 (2) (2007) 65–86.

[302] J.E. Sieber, Protecting research subjects, employees and researchers: Implications for software

engineering, J. Empirical Softw. Eng. 6 (4) (2001) 329–341.

[303] D.M. Berry, W.F. Tichy, Comments on ‘‘formal methods application: An empirical tale of software

development’’ IEEE Trans. Softw. Eng. 29 (6) (2003) 567–571.

[304] L. Hattori, M. Lanza, An environment for synchronous software development, in: ICSE Compan-

ion, 31st International Conference on Software Engineering (ICSE 2009), 2009, pp. 223–226.

[305] I. Au, R. Boardman, R. Jeffries, P. Larvie, A. Pavese, J. Riegelsberger, K. Rodden, M. Stevens,

User experience at Google: Focus on the user and all else will follow, in: Conference on Human

Factors in Computing Systems (CHI’08), 2008, pp. 3681–3686.

[306] D.E. Knuth, Theory and practice, Theor. Comput. Sci. 90 (1) (1991) 1–15.

[307] C. Exton, Constructivism and program comprehension strategies, in: 10th IEEE International

Workshop on Program Comprehension (IWPC’02), 2002, pp. 281–284.

[308] E. Soloway, K. Ehrlich, Empirical studies of programming knowledge, IEEE Trans. Softw. Eng.

SE-10 (5) (1984) 595–609.

[309] T.C. Lethbridge, S.E. Sim, J. Singer, Studying software engineers: Data collection techniques for

software field studies, J. Empirical Softw. Eng. 10 (3) (2005) 311–341.

[310] A. von Mayrhauser, A.M. Vans, From code understanding needs to reverse engineering tool

capabilities, in: 5th IEEE International Workshop on Computer-Aided Software Engineering

(CASE’93), 1993, pp. 230–239.

[311] A.J. Ko, H.H. Aung, B.A. Myers, Eliciting design requirements for maintenance-oriented ides:

A detailed study of corrective and perfective maintenance tasks, in: 27th ACM/IEEE International

Conference on Software Engineering (ICSE’05), 2005, pp. 126–135.

[312] A. Walenstein, HASTI: A lightweight framework for cognitive reengineering analysis, in: 14th

Psychology of Programmers Workshop (PPIG’02), 2002. http://www.ppig.org/papers/14th-

walenstein.pdf.

[313] A.R. Murray, Discourse structure of software explanation: Snapshot theory, cognitive patterns and

grounded theory methods, University of Ottawa, Ontario, Canada, 2006. Ph.D. thesis.

[314] A. Murray, T.C. Lethbridge, Presenting micro-theories of program comprehension in pattern form,

in: 13th IEEE International Workshop on Program Comprehension (IWPC’05), 2005, pp. 45–54.

[315] H. Farah, Applying Cognitive Patterns to Support Software Tool Development, Ph.D. thesis,

University of Ottawa, Ontario, Canada, 2006.

290 H.M. KIENLE AND H.A. MÜLLER
[316] A. Murray, T.C. Lethbridge, On generating cognitive patterns of sofware comprehension,

in: Conference of The Centre for Advanced Studies On Collaborative Research (CASCON’05),

2005, pp. 200–211.

[317] S. Adolph, W. Hall, P. Kruchten, A methodological leg to stand on: Lessons learned using

grounded theory to study software development, in: Conference of the Centre for Advanced Studies

on Collaborative Research (CASCON’08), 2008, pp. 166–178.

[318] C. Hoare, Retrospective: An axiomatic basis for computer programming, Commun. ACM 52 (10)

(2009) 30–32.

[319] A. Sillitti, Designing empirical studies: Assessing the effectiveness of agile methods, ACM

SIGSOFT Softw. Eng. Notes 34 (5) (2009) 35–37.

[320] D.L. Parnas, The limits of empirical studies of software engineering, in: IEEE International

Symposium on Empirical Software Engineering (ISESE’03), 2003, pp. 2–5.

[321] L.C. Briand, The experimental paradigm in reverse engineering: Role, challenges, and limitations,

in: 13th IEEE Working Conference on Reverse Engineering (WCRE’06), 2006, pp. 3–8.

[322] M. Di Penta, R. Stirewalt, E. Kraemer, Designing your next empirical study on program compre-

hension, in: 15th IEEE International Conference on Program Comprehension (ICPC’07), 2007,

pp. 281–285.

[323] S. Lang, A. von Mayrhauser, Building a research infrastructure for program comprehension

observations, in: 5th IEEE International Workshop on Program Comprehension (IWPC’97),

1997, pp. 165–169.

[324] D. Budgen, G. Hoffnagle, M. Muller, F. Robert, A. Sellami, S. Tilley, Empirical software

engineering: A roadmap, in: 10th International Workshop on Software Technology and Engineer-

ing Practice (STEP’02), 2002.

[325] M.V. Zelkowitz, Data sharing enabling technologies: Working group results, in: V.R. Basili et al.,

(Ed.), Empirical Software Engineering Issues, Springer-Verlag, Berlin, Vol. 4336 of Lecture Notes

in Computer Science, 2007, pp. 108–110.

[326] M. Oivo, New opportunities for empirical research, in: V.R. Basili et al. (Ed.), Empirical Software

Engineering Issues, Springer-Verlag, Berlin, 2007, p. 22. Vol. 4336 of Lecture Notes in Computer

Science.

[327] O. Nierstrasz, M. Denker, T. Gı̂rba, A. Kuhn, A. Lienhard, D. Röthlisberger, Self-Aware, Evolving

Eternal Systems, Universtiy of Bern, Switzerland, 2008. http://www.iam.unibe.ch/publikationen/

techreports/2008/iam-08-001. Technischer Bericht IAM-08-001.

[328] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, M. Jazayeri, Challenges in

software evolution, in: 8th IEEE International Workshop on Principles of Software Evolution

(IWPSE’05), 2005, pp. 13–22.

[329] H.A. Müller, H.M. Kienle, U. Stege, Autonomic computing: Now you see it, now you don’t,

in: A.D. Lucia, F. Ferrucci (Eds.), Software Engineering: International Summer Schools, Springer

Verlag, Berlin, ISSSE 2006–2008, Salerno, Italy, Revised Tutorial Lectures, Vol. 5413 of Lecture

Notes in Computer Science, 2009, pp. 32–54.

[330] H. Müller, Bits of history, challenges for the future and autonomic computing technology, in: 13th

IEEE Working Conference on Reverse Engineering (WCRE’06), 2006, pp. 9–18.

[331] D. Smith, E. Morris, D. Carney, Adoption centric problems in the context of systems of systems

interoperability, in: 4th International Workshop on Adoption-Centric Software Engineering

(ACSE’04), 2004, pp. 63–68.

[332] W. Pollak (Ed.), Ultra-Large-Scale Systems: The Software Challenge of the Future, SEI, Pitts-

burgh, PA, 2006. http://www.sei.cmu.edu/uls/.

Author Index
A

Abdullah, K., 42

Ackerman, T. P., 50

Adams, K., 177

Adkins, J. N., 30, 35–36

Adl-Tabatabai, A., 82

Admon, A., 32

Adolph, S., 268, 270

Adve, S. V., 104

Aebersold, R., 28, 36

Agarwal, A., 113

Ahamad, M., 42

Aho, A. V., 192, 244

AI-Mohanna, M., 36

Aingaran, K., 10

Ajwani, D., 13

Akera, A., 73

Akhter, S., 87, 104

Ala’illma, T. F., 73

Alaiya, A., 36

Allen, R., 98–99, 251

Almquist, J., 17

Almquist, J. P., 18, 64

Aloise, F., 178

Altintas, I., 17, 58

Altschul, S. F., 21

Andersen, R. A., 177

Anderson, G. A., 6, 36

Anderson, I., 23

Anderson, K. S., 36

Anderson, L., 36

Anderson, S. L., 36

Anderson, W., 10
29
Andrews-Pfannkoch, C., 5, 29

Andritsos, P., 203

Ang, L. P., 73

Anquetil, N., 193, 202, 206–207,

214, 236, 241

Anthes, G., 5

Antoniol, G., 204, 250, 260

Antonopoulous, C. D., 9

Antony, R., 137

Arbaugh, W., 121, 134–135, 143

Arcelli, F., 250

Ardekani, A. M., 36

Arisholm, E., 264

Armstrong, M. N., 201, 204–206, 213, 241

Arnaldi, B., 174

Arnold, R. S., 191

Asano, S., 9

Asanovic, K., 78, 80

Aspray, W., 73

Atkinson, D. C., 216

Au, I., 264

Auberry, K. J., 36

Aung, H. H., 267, 273
1

B

Babiloni, F., 178

Bafna, V., 29, 36

Bahli, B., 121, 127

Bahrmann, C., 56

Bakay, R. A. E., 177

Baker, B., 149

Balzer, B., 230–231, 244

Balzer, R. M., 250–252, 256

292 AUTHOR INDEX
Barabasi, A.-L., 6

Barnea, E., 32

Barret, R., 80

Barry, R. C., 29, 36

Bashashati, A., 176

Bass, L., 200, 223, 243–244, 265

Bassil, S., 201, 205, 216, 222–223, 235

Batmaz, I., 136

Baxter, D. J., 36

Baxter, I. D., 201, 204

Bayliss, J. D., 172

Beavis, R. C., 31–32, 36

Beck, P. D., 177

Beer, I., 32

Behrens, B. C., 190

Behrens, F., 36

Bell, C. J., 179

Bellay, B., 201, 204–206, 213, 241, 261

Bellon, S., 260

Bennett, C., 192, 241, 265, 267

Benslimane, Y., 121, 127

Bercovier, M., 79

Berenbach, B., 250

Berger, C., 122

Berghel, H., 127, 144, 149

Berkley, C., 17, 58

Berkovich, E., 111

Bernstein, A. J., 99

Berry, D. M., 264

Berry, M. W., 13–14, 80

Best, C., 212, 245, 251

Beszedes, A., 194–195, 214

Beu, S. C., 35

Bevan, N., 222

Beynon, R. J., 35

Bialoalowv, M., 137–139

Biddle, R., 247

Biggerstaff, T. J., 252–253

Biggs, S. J., 177–178, 182

Bigham, J., 41

Binstock, A., 97

Birbaumer, N., 170–171, 173–174, 177, 182

Birch, G. E., 176

Bissling, H. R., 77, 111

Blagojevic, F., 9
Blaha, M., 205

Blankertz, B., 174

Block, B., 82

Boardman, R., 264

Bogdan, I., 35

Bogdanov, B., 28

Bonwick, J., 82

Bosch, J., 221–222

Bosworth, A., 238

Boulic, R., 177

Bowman, I. T., 209, 213–214, 237–238

Boyack, K. W., 12

Brainerd, J. G., 73

Brand, R., 212

Brandes, U., 239

Branner, A., 174, 177–179

Brehmer, S., 113

Brewer, E. A., 80

Briand, L. C., 270

Brichau, J., 216

Briggs, P., 10

Broberg, M., 176

Brown, A. W., 208

Brown, P., 202

Brown, R., 217–218

Brugger, T., 11, 48

Buck, I., 8–9

Buckley, J., 240–241, 264–266

Budgen, D., 270

Bufalari, S., 178

Buhler, J. D., 10

Bulbul, H. I., 136

Bull, M., 107

Bull, R. I., 192, 224, 229, 232, 241, 254–255,

265, 267

Burson, S., 212

Buss, E., 213, 229

Butler, B. S., 198
C

Camp II, D. G., 36

Cannon, W. R., 23, 36

Cantrill, B., 82

Caplan, A. H., 174, 177–179

AUTHOR INDEX 293
Caprioli, R., 36

Carabalona, R., 172

Carmena, J. M., 177–178, 182

Carney, D. J., 200, 274

Carr, S. A., 36

Carrière, S. J., 207–208, 218

Carte, T. A., 198

Castro, S., 216

Cayirci, E., 155

Chabukswar, R., 87, 91, 108

Chalodhorn, R., 179

Chan, T., 80

Chang, P., 82

Chaparro, C. A., 36

Chapin, J. K., 177–178

Chapman, B., 73–74, 81, 111

Chappell, A., 17

Charles, J., 262

Chase, J., 17

Chase, M. P., 203

Chatterton, J., 18, 64

Chavarria-Miranda, D., 11, 46–48

Chen, I.-M. A., 23

Chen, J., 134–136

Chen, Y., 29, 36, 193–194, 203, 224,

246, 250

Cheney, J., 61

Cheng, L.-T., 242

Cherubini, A., 178

Chikofsky, E. J., 191

Choi, K., 180

Chong, J., 9

Christensen, S., 56

Chu, K., 23

Chute, C., 5

Cichocki, A., 180

Cieplak, P., 22

Cincotti, F., 178

Clark, C. R., 176

Clarke, C., 202, 216

Clauss, T. R., 30, 36

Clements, P., 200, 243–244, 265

Clothiaux, E. E., 53
Clowers, B. H., 38

Coca, D., 35

Cohen, J., 13

Comorski, D., 221

Confora, G., 263, 273

Congedo, M., 174

Conti, G., 42

Cook, K. A., 6

Copeland, J. A., 42

Copenhafer, M. A., 250–251

Coppit, D., 250–251, 256

Cordy, J. R., 215, 224, 234

Cormen, T., 112

Cortens, J. C., 32

Cova, G., 140

Covington, G. A., 9

Cowie, J. R., 12

Cox, A., 202, 216

Cox, D., 14

Craig, R., 31–32, 36

Crandall, R. W., 8

Cremer, K., 254

Crist, R. E., 177–178

Croes, H. J. P., 198

Cross II, J. H., 191

Cubranic, D., 201, 205, 217, 235–236, 242

Culler, D., 77, 87

Curran, E., 175

Cuthill, B., 207

Czarnecki, K., 249, 252–253

Czeranski, J., 205, 209
D

Daban, S., 172

Dalevi, D., 23

Dally, W. J., 86

Daly, D. S., 14

Damashek, M., 14

D’Ambros, M., 224, 242, 246, 256

D’Amico, A., 42

Dascal, S., 111

Davidson, G. S., 12

294 AUTHOR INDEX
Davis, K. H., 212

Dayani-Fard, H., 203

Dean, J., 18

Dean, T. R., 215

D. L.sAngeles, D., 176

Demeyer, S., 192, 237–238, 260, 273

Demmel, J., 80, 87

Denker, M., 273

D. S.uza, J., 74

Devanbu, P. T., 232–234

Dewan, E. M., 172, 176

D’Hondt, T., 216

Dhong, S. H., 9

Di Penta, M., 263, 270, 273

Diamandis, E. P., 36

Diehl, S., 192

Dijkstra, E. W., 104

Dimitrov, D. F., 177–178

Distante, D., 235

Domeika, M., 113

Donato, J., 80

Donchin, E., 172

Dongarra, J., 80, 87

Donoghue, J. P., 174, 177–179

Doty, K., 56

Dourish, P., 207

Driesen, K., 217–218

Druker, B., 36

Dubchak, I., 23

Duca, K., 41

Ducasse, S., 194, 197, 200, 202–205,

207, 213–214, 227, 237–239, 242,

253–254, 256, 273

Dufour, B., 217–218

Dumais, S. T., 14

Dyba, T., 258, 264, 269
E

Eagan, R. C., 51, 56

Easterbrook, S., 206, 259–260, 270

Ebert, J., 194

Eckert, J. P., 73
Edlinger, G., 172

Edney, J., 121, 134–135, 143

Egyed, A. F., 250–251, 256

Ehrlich, K., 266

Eichberg, M., 216, 227, 248

Eiglsperger, M., 239

Eilam, E., 191

Eisen, J. A., 21–22

Eisenbarth, T., 205, 209

Eisenecker, U. W., 249, 252–253

Elbert, S. T., 6

Elden, C., 121

Elwood, M., 36

Eng, J. K., 31–32

Englebert, V., 192, 200, 207, 213

Erdos, K., 193

Estevez, J., 140

Estublier, J., 202, 228, 235, 244

Exton, C., 264–266
F

Fadrosh, D., 5, 29

Faloustsos, C., 11, 48

Farah, H., 267

Faria, A., 9

Farwell, L. A., 172

Fatourechi, M., 176

Favre, J., 202, 210, 214, 217, 228,

235, 244, 253

Favre, J.-M., 253–255

Feitelson, D. G., 81

Fellows, M. R., 177–178

Feng, L., 41

Fenton, N., 192

Fenyo, D., 32

Feo, J., 10–11, 48

Ferenc, R., 194–195, 203, 206, 209, 214,

228, 239, 260

Fernandes, K. J., 191

Fernando, R., 8

Ferrante, J., 80

Ferrez, P. W., 179, 182

AUTHOR INDEX 295
Fetz, E. E., 177

Finkelstein, A., 206, 272

Finnigan, P. J., 194, 250

Fishman, D. A., 36

Fitzbibbon, S. P., 176

Fiutem, R., 204, 250

Flachs, B., 9

Flath, L., 8

Flor, H., 177

Flotzinger, D., 174

Folmer, E., 221–222

Fong, P., 205, 225, 259

Foote, H. P., 14

Forneris, C. A., 172–174

Fossi, M., 38, 40

Fracchia, F. D., 197, 223, 230, 267–268

France, R., 252

Frank, A., 29, 36

Frank, R., 8

Frazier, M., 5, 29

French, J. C., 248, 250

Friehs, G. M., 174, 177–179

Froehlich, J., 207

Fu, L., 200, 203, 240

Fulop, L. J., 206, 260

Fusaro, V. A., 36
G

Galan, F., 179, 182

Gall, H., 201, 211, 261

Gallagher, K., 206, 208

Gallis, H., 264

Gamez, D., 41

Gansner, D. R., 224, 250

Gansner, E. R., 218

Gantz, J. F., 5

Gao, Y., 41

Garlan, D., 243, 251

Garland, M., 9

Gatlin, C. L., 32

German, D. M., 192, 201, 205, 217,

235–236, 242, 274
Gerstner, W., 179

Gervais, G., 9

Ghanayim, N., 177

Gharachorloo, K., 104

Ghemawat, S., 18

Ghezzi, G., 211

Gibson, G., 11, 48

Gibson, T. D., 20

Gillette, M. A., 36

Girard, J., 200, 214, 237

Gı̂rba, T., 194, 204, 218–219, 239, 242,

253–254, 273

Glass, J. I., 5, 29

Glass, R. L., 234

Gochman, S., 87, 91, 108

Godfrey, M. W., 192, 206, 209, 213–214,

224, 229, 232, 237–238, 257

Gokhale, M., 13

Goldman, N. M., 250, 252, 256

Goldstine, H. H., 73

Goldwaithe, J., 177

Goncharova, I. I., 176

Gorton, I., 6, 17–18, 64

Govindaraju, N., 8

Govindaraju, N. K., 9

Gracio, D., 6

Grama, A., 86

Gramatica, F., 172

Gray, J., 6, 17

Grechkin, Y., 23

Green, T. R. G., 227, 267

Greenhill, D., 10

Gribschaw, H., 42

Griffin, P. R., 32, 113

Griswold, W. G., 201, 216

Grizzard, J., 42

Grudin, J., 226, 236

Guan, X. H., 41

Guéhéneuc, Y.-G., 201, 256, 261

Guerrero, E., 140

Guger, C., 172, 180

Guo, S., 41

296 AUTHOR INDEX
Gupta, A., 86–87

Gutwenger, C., 250

Gyimóthy, T., 194–195, 206, 209, 214, 228,

239, 260
H

Hainaut, J., 192, 200, 207, 213

Hall, W., 268, 270

Halpern, A. L., 5, 21–22, 29

Hambrush, S., 77

Hammond, L., 74

Hamou-Lhadj, A., 192, 200–201, 203–204,

206–207, 209, 220, 240

H. A.Müller, 250

Hannay, J. E., 263–264

Hansen, O., 263–264

Harper, D., 10

Harris, D. R., 203

Harris, M., 8

Harrison, W., 236

Hartmann, J., 250

Hartwell, L., 36

Hassan, A. E., 191

Hassan, M., 10

Hatsopoulos, N. G., 177–178

Hattori, L., 264

Haupt, M., 216, 227, 248

Hegedus, P., 206

Heidelberg, A. B., 5, 29

Heidelberg, K. B., 21–22

Heinz, L., 227

Hellberg, C. S., 10

Helmreich, S. C., 12

Helms Tillery, S. I., 174, 177–178

Hennessy, J. L., 112

Henrard, J., 192, 200, 207, 213

Henriquez, C. S., 177–178

Henshaw, J., 213, 229

Heredia-Langner, A., 36

Herfurt, M., 139

Herlihy, M., 82

Herrera, F., 225–226, 233
Herrmann, C. S., 172

Hess, D. W., 10

Hey, T., 80

Hick, J.-M., 192, 200, 207, 213

Higgins, D., 17

Highfield, R., 5

Hildebrand, P. H., 53

Hill, H. H., 38

Himsolt, M., 239

Hind, M., 196

Hinterberger, T., 177, 182

Hirschfeld, R., 273

Hitt, B. A., 36

Hoare, C., 268

Hochberg, L. R., 174, 177–179

Hoffnagle, G., 270

Hofmeister, C., 193

Hofstee, H. P., 9

Hollebeek, T., 256

Holt, J., 113

Holt, R. C., 191, 193–195, 203, 206,

209, 213–214, 228, 237–239, 250,

259–260, 270

Holten, D., 250

Holzinger, A., 221

Holzner, C., 172

Hooper, D., 205, 225, 259

Hopkins, B., 137

Hopkins, K., 205, 225, 259

Horn, D. M., 35–36

Howell, K. E., 28

Huagang, X., 140

Huang, S., 231–232, 235–236, 250, 264, 270

Huang, W., 9

Hugenholtz, P., 23

Hupfer, S., 242

Hurley, C., 140

Husbands, P., 9
I

Ian, G., 58

Iivari, J., 228

AUTHOR INDEX 297
Inverso, S. A., 172

Ivanova, N., 23

Iversen, I., 177

Ives, B., 132
J

Jackson, D., 196, 216

Jacob, A. C., 10, 13

Jacobs, J. M., 36

Jacobs, M., 41

Jaeger, E., 17, 58

Jahnke, J., 196, 230

Jaitly, N., 30, 35–36

Jajodia, S., 41

Jared, C., 58

Jarman, J. H., 36

Jaroszewski, L., 22

Jasperson, J. S., 198

Jazayeri, M., 233–234, 273

Jeffries, R., 264

Jerding, D., 206, 214

Jiang, M., 134–136

Jin, D., 210

John, B. E., 223

Johnson, E., 38

Johnson, J., 8–9

Johnson, K. L., 51, 53

Johnsrude, I., 175

Jones, C., 197

Jones, H., 9

Jones, M., 17, 58

Jorgensen, M., 258, 269

Jost, G., 73–74, 81, 111

Jünger, M., 250
K

Kafadar, K., 42

Kahan, S., 10

Kalapa, P., 41

Kalas, I., 194, 250

Kalcher, J., 174

Kamil, S., 9
Kaminski, P., 250

Kamp, M., 195, 237

Kampenes, V. B., 263–264

Kangas, L. J., 30

Kaplan, I., 11, 48

Karahasanovic, A., 263–264

Karipis, G., 86

Karp, R., 77

Kartz, M., 8

Kastner, C. M., 9

Kates, J., 223

Kazman, R., 200, 207–208, 218,

243–244, 265

Kehoe, K. E., 56

Kellens, A., 216

Keller, R. K., 201, 203, 205, 216, 222–223,

235, 237

Kelly, S., 252

Kennedy, K., 98–99

Kennedy, P. R., 177

Kern, A., 82

Kerr, S., 194, 250

Keutzer, K., 9

Khan, M. K., 201

Khokhlov, A., 10

Kienle, H. M., 189–274

Kim, H. K., 178, 181–182

Kim, J., 177

Kim, R., 9

Kimmel, J. R., 38

Kitchenham, B., 259–260

Kitzmiller, T., 212

Klein, K., 250

Klein, M., 200, 243

Klint, P., 256

Knight, J. C., 248, 250

Knight, R. T., 172

Knuth, D. E., 97, 265

Ko, A. J., 267, 273

Kohn, E. C., 36

Kohn, S., 11, 48

Kollias, P., 53

Kollmann, R., 229

298 AUTHOR INDEX
Konecny, P., 10

Kongetira, P., 10

Konig, P., 177

Korn, J. L., 224, 250

Korzeniewski, F., 23

Koschke, R., 193–194, 197, 200, 205–206,

209, 214, 228, 237–239, 242–243, 260

Koskimies, K., 196

Kostov, A., 178

Kotchoubey, B., 177
Kouzes, R. T., 6

Kozyrakis, C., 82

Kraemer, E., 270

Kralik, J., 177

Kramer, J., 206, 272

Krasser, S., 42

Krausz, G., 172, 180

Krinke, J., 260

Krishnamurthy, B., 244–245, 248–249

Kruchten, P. B., 250, 268, 270

Krueger, C. W., 236, 243

Kruger, J., 8

Krusienski, D. J., 172, 174, 177, 179, 181

Kubler, A., 177

Kuhn, A., 195, 209, 253–254, 257, 273

Kuhn, T. S., 77

Kühne, T., 192

Kuipers, T., 200, 204, 250

Kullbach, B., 194

Kumar, A., 10, 87, 91, 108

Kumar, V., 86

Kupke, J., 250
L

L. B.ar, J., 36

Lafferty, F. W., 35–36

Lakhotia, A., 260

Lakshmi, 137

Lamarche, F., 174

Lämmel, R., 256

Lamport, L., 104

Lan, E. S., 201

Lancaster, J. M., 10
Lander, E. S., 21

Lang, S., 270

Lanza, M., 197, 202, 205, 207, 213–214, 224,

227, 242, 246, 250, 256, 264

Lanzagorta, M., 10

L. P.dus, M., 82

L. P.ant, D., 205

Larus, J., 74

Larvie, P., 264

Laubach, M., 177

Laurie, A., 138

Laurie, B., 138

Le Goff, F., 122

Le, T., 9

Leary, A., 128

Leback, B., 98

Lebedev, M. A., 177–178, 182

Lecuyer, A., 174

Lee, C., 42

Lee, E. A., 17, 110

Lee, M. S., 46

Leenstra, J., 9

Lefohn, A. E., 8

Leipert, S., 250

Leiserson, C., 112

Leng, M., 29, 36

Lethbridge, T. C., 192–193, 200–204,

206–207, 209, 214, 220, 224–226,

229–231, 233–234, 236, 240–241,

266–268

Leuthardt, E. C., 174, 177

Levary, R. R., 190

Levine, A. A., 9

Levine, P. J., 36

Lew, E., 179, 182

Lewis, G., 206

Lewis, T., 176

Li, J., 260

Li, W., 22

Li, Y., 36

Liao, J., 82

Liberty, J., 9

Liborg, N.-K., 263–264

AUTHOR INDEX 299
Lienhard, A., 273

Liljegren, J., 56

Lin, M., 9

Lin, T. Y., 206, 208, 250

Linder, S., 36

Lintern, R., 250–251

Liotta, L. A., 36

Lipman, D. J., 21

Lipton, M. S., 30

Litoiu, M., 230–231, 244, 251, 254–255

Liu, L.-K., 9

Liu, P., 9, 41

Liu, Q., 9

Liu, T., 36

Liu, Y., 9, 134–136

Llett, D., 145

Lockwood, J. W., 9

Long, C. N., 56

Lotte, F., 174

Loveless, S., 176

Löwe, W., 208, 246–247

Lucca, G. A. D., 263, 270

Ludäscher, B., 17

Luebke, D., 8

Luke, E. P., 53

Lundberg, J., 208, 246–247

Lungu, M., 218–219, 224, 246, 250, 256

Lutteri, G., 250

Lykidis, A., 23
M

Maccari, A., 218, 222

MacCoss, M. J., 28

MacDonald, L. R., 174

Macduff, M. C., 51

Mach, T., 38

Madden, T. L., 21
Maggioni, S., 250

Malinger, I., 13

Malton, A. J., 215, 224, 229, 232

Manchoridis, S., 224, 250

Mandelblat, J., 87, 91, 108

Manfrediz, A., 5
Mani, D. R., 36

Mann, M., 28

Manning, G., 21–22

Manocha, D., 9

Marburger, A., 254

Marchette, D., 42

Marciani, M. G., 178

Marcus, A., 221

Marcus, M., 73

Markosian, L., 212, 215

Markowitz, R. S., 177–178

Markowitz, V. M., 23

Marowka, A., 73, 75, 79–80, 82, 88,

107–108, 111

Marquez, A., 11, 46–48

Marshall, M. S., 239

Martin, A., 247

Martin, J., 195, 233, 237

Marvak, E., 205

Maschhoff, K., 46–48

Masselon, C., 29, 36

Massick, S. M., 38

Mattia, D., 178

Mattson, T., 74

Mauchly, J. W., 73

Mavrommatis, K., 23

Maxim, M., 129, 131

Mayrhauser, A. V., 191

Mcarthur, J., 5

M. C.rd, R., 56

M. C.rmack, A. L., 31

M. C.llough, J., 135

M. D.nald, W. H., 28

M. F.rland, D. J., 170–179, 181–182

M. L.fferty, S. W., 35

M. M.llan, R., 137

M. Q.erry, D. L., 14

Mehlich, M., 201, 204

Mehner, K., 250

Mellinger, J., 183

Mendelson, A., 87, 91, 108

Mendling, J., 238–239

Mens, K., 201, 257, 261

300 AUTHOR INDEX
Mens, T., 192, 260, 273

Merlo, E., 204, 250, 260

Merman, I., 239

Merritt, R., 82

Meyer, M., 218–219

Meyer, U., 13

Meyers, S., 210, 214

Mezini, M., 216, 227, 248

Michael, B., 9

Michaud, J., 197, 245

Michaud, J. W., 212–213

Miles, D., 98

Mili, R., 197

Millan, J. R., 174, 179, 182

Miller, C. S., 5, 29

Miller, M. A., 13, 53

Miller, W., 21

Mills, G. B., 36

Miner, L. A., 172, 174, 176

Minton, S., 5

Mitra, P. P., 177

Mock, S., 58

Mohammed, E., 82

Moise, D. L., 204–205, 209, 224

Monroe, M. E., 29–30, 35–36

Moonen, L., 193, 196, 257

Moore, A., 46

Moore, M. M., 177

Moore, R. J., 30

Moran, A., 236

Moran, D. W., 174, 177

Moran, K. P., 53

Morgan, S. R., 32

Morris, C., 236

Morris, E., 274

Mosier, J. N., 222

Moss, E., 82

Mourifio, J., 179

Moxon, K. A., 177–178

Mudur, S., 201

Muggleton, S. H., 5

Mukand, J. A., 174, 177–179
Muller, G., 180

Müller, H. A., 189–274

Muller, K.-R., 174

Muller, M., 270

Muller-Putz, G. R., 177, 180

Mumby, M., 29, 36

Murphy, G. C., 196–197, 201, 250

Murray, A. R., 250, 267

Musallam, S., 177

Mutzel, P., 250

Myers, B. A., 267, 273

Mylopolous, J., 194, 250

Mylopoulos, J., 203
N

Nanda, A. K., 9

Natsev, A., 9

Nawathe, U. G., 10

Neat, G. W., 172–174

Neidermeyer, E., 171

Neil, M., 192

Neuper, C., 180

Newbery, F. J., 218–219

Newcomb, P., 212, 215

Nickolls, J., 9

Nicolelis, M. A. L., 177–178, 182

Niemeyer, E., 87, 91, 108

Nieplocha, J., 11, 21, 46–48

Nierstrasz, O., 194, 204, 239,

242, 273

Nikolopoulos, D. S., 9

Ning, L., 41

Nishimoto, M. Y., 193–194, 203, 246

Noble, J., 247

Noel, S., 41

North, C., 41

North, S. C., 218

Norton, D., 98

Notkin, D., 196–197, 201, 250

Nuttin, M., 179, 182

Nuzman, J., 111

AUTHOR INDEX 301
O

O’Brien, G. W., 14

O’Brien, L., 206, 208

O’Brien, M. P., 264–266

Ockerbloom, J., 251

Oda, Y., 28

O’Doherty, J. E., 177–178

Oehmen, C. S., 14, 21, 23, 26, 28, 36

Ogao, P., 205, 262–263, 270, 273

Oh, H., 9

Oivo, M., 272

Ojemann, J. G., 174, 177

Oliker, L., 9

Oltvai, Z. N., 6

Olukotun, K., 10, 74, 85, 113

Oman, P. W., 241

O’Neill, D., 107

Orebaugh, A., 131

Oriolo, G., 178

Orr, B., 56

Owen, A., 175

Owen, H. L., 42

Owens, J. D., 8

Ozel, M., 136
P

Pacione, M. J., 207

Padda, H., 201

Padki, A., 23

Palaniappan, K., 23

Palermo, S., 82

Paminski, L., 177–178

Panas, T., 208, 246–247, 259

Park, H., 10

Park, J., 209

Park, S., 181–182

Parnas, D. L., 212, 269

Parsons, S., 10

Pasa-Tolic, L., 29, 36

Patil, P. G., 177–178

Patrick, B., 86

Patterson, D. A., 77, 112, 235
Patterson, J., 242

Paul, S., 224

Paulson, L., 42

Pavese, A., 264

Payne, T., 231–232, 236

Pearce, R., 13

Peinador, J. F., 9

Penn, D. R.D., 174, 177–179

Penny, W., 175

Penta, M. D., 263, 270

Peppler, R. A., 56

Perel, S., 178, 181

Perelgut, S. G., 194, 250

Perlmouter, J., 177

Perrone, M., 9

Pesaran, B., 177

Petre, M., 227, 267

Petricoin, E. F., 36

Petrini, F., 9

Petritis, K., 30

Petyuk, V. A., 30, 36

Pevzner, P. A., 29, 36

Pezaris, J. S., 177

Pfurtscheller, G., 170–171, 173–174,

177, 180

Philip, J., 36

Philips, J., 179, 182

Piazza, R., 246

Pidgeon, C., 201, 204

Pike, W., 44

Pingry, S., 11, 48

Pllio, D., 129, 131

Ploedereder, E., 209, 214

Pnevmatikatos, D., 10

Polak, M., 178

Pollak, W., 274

Pope, K. J., 176

Powell, A. L., 248, 250

Poynter, K., 120

Pozo, V., 80

Prakash, A., 224

Principe, J. C., 178

Purcell, T., 8

302 AUTHOR INDEX
Q

Qian, W. J., 29–30, 36

Qiang, G., 140
R

Raja, V., 191

Ram, S., 209

Ramamoorthy, C. V., 193–194, 203, 246

Rao, R. P. N., 179

Rayside, D., 251

Reinsel, F. D., 5

Reinsel, S., 5

Reiss, S. P., 213, 216–217, 222–224, 248,

250–251

Rekdal, A. C., 263–264

Remington, K., 21–22

Renggli, L., 253–254

Renkens, F., 179

Repo, M., 137–138

Reshotko, M., 82

Reubenstein, H., 246

Ricardo, R., 140

Ricca, F., 250

Richardson, S., 56

Riede, E., 11, 48

Riediger, V., 194

Riegelsberger, J., 264

Rifkin, S., 235

Rinard, M., 196, 216

Riva, C., 193, 214, 218, 222, 237–239, 250

Rivers, J., 35

Rivest, R., 112

Robbes, R., 224, 246, 256, 260

Robert, F., 270

Roberts, J., 87, 104

Roberts, S. J., 175, 246

Rockhill, B., 36

Rockwood, A. L., 35

Rodden, K., 264

Roger, D., 10

Rogers, E. M., 228, 234

Rogers, R., 140
Roland, D., 192, 200, 207, 213

Romine, C., 80

Roper, M., 207

Rosenberg, R., 10

Ross, K. A., 9

Ross, S., 242

Röthlisberger, D., 273

Rudolph, L., 81

Rugaber, S., 196, 206, 214, 230, 241, 252

Rumpe, B., 252

Rupp, R., 177, 180

Rusch, D. B., 5, 21–22, 29

Ryder, B. G., 192
S

Saha, B., 82

Sahani, M. S., 177

Sahay, A., 77

Saleh, M., 174, 177–179

Salton, G., 14

Salus, P. H., 244

Samuelson, P., 190

Sanders, C., 131

Sanlaville, R., 202, 228, 235, 244

Santos, E., 77

Santucci, D. M., 177–178

Saraiya, P., 41

Sarnacki, W. A., 174–175, 177–179, 181

Satish, N., 9

Saunders, C. S., 198

Scarpazza, D. P., 9

Schäfer, T., 216, 227, 248
Schaffer, A. A., 21

Schalk, G., 174, 177–178, 182–183

Schauer, R., 203, 237

Schauser, K. E., 77

Scherer, R., 177, 180

Scherrer, C., 44, 46–48

Schirrmeister, F., 113

Schlichting, W., 5

Schloerb, D. W., 178, 182

Schlogl, A., 174

Schmidt, G., 14

AUTHOR INDEX 303
Schneider, H., 132

Schneider, K. A., 215

Schneier, B., 141

Schroder, M., 174

Schudel, G., 155

Schürr, A., 195, 203, 237–238

Schwartz, A. B., 174, 177–178, 181

Scotchmer, S., 190

Sechi, S., 28

Seffah, A., 201

Segal, J., 236

Sekhon, R. S., 53

Sellami, A., 270

Sellers, E. W., 172, 177

Senko, M. W., 35

Sensalire, M., 205, 262–263, 270, 273

Serruya, M. D., 174, 177–179

Sethi, R., 192, 244

Shah, A. R., 14, 20, 23, 26, 28

Shaked, Y., 138–139

Shalf, J., 9

Shaw, J. H., 36

Shaw, J. L., 35

Shaw, M., 242–243

Shemer, A., 87, 91, 108

Shen, Y., 29, 36

Shenoy, P., 179

Shi, X., 41

Shi, Y., 56

Shu, H., 29, 36

Sidak, J. G., 8

Sieber, J. E., 264

Siems, W. F., 38

Sillitti, A., 269

Sim, S. E., 206, 209, 211, 213, 220, 228,

237–239, 243, 258–262, 266, 270

Simard, P., 9

Simon, D., 205

Simone, C., 36

Singer, E., 181

Singer, J. P., 193, 222, 224–225, 229, 234,

263–264, 266–268
Singh, J. P., 87

Singhal, M., 20

Siozios, K., 9

Sipior, J. C., 149

Sjoberg, D. I. K., 258, 263–264, 269

Skadron, K., 9

Skillcorn, D., 77

Skramstad, T., 201

Sloughter, J. M., 14

Smith, D. B., 196, 230–231, 240–241,

244, 274

Smith, J. R., 9

Smith, R. D., 28–30, 35–36

Smith, S. L., 222

Sneed, H. M., 193, 203

Snir, M., 111

Soloway, E., 266

Sonntag, K. L., 56

Soudris, D., 9

Sounder, T. S., 224, 250

Sourdis, I., 10

Spalding, M. C., 178, 181

Srinivasan, M. A., 177–178, 181–182

Srivastava, R.-G., 36

Srivastava, S., 36

Stamatakis, A., 9

Stambaugh, C. R., 177

Stanley, M., 194, 250

Staron, M., 259

Stasko, J., 42

St-Denis, G., 203, 237

Stege, U., 273–274

Stein, C., 112

Steinberg, S. M., 36

Steiner, R., 197

Steinkraus, D., 9

Sterman, M. B., 174

Stevens, M., 264

Stirewalt, K., 252

Stirewalt, R., 270

Stokes, M., 175

Stone, R. K., 174

304 AUTHOR INDEX
Storey, M.-A. D., 192, 196–197, 220–221,

223, 225, 230–232, 235, 241, 244–245,

250–251, 254–255, 261–262, 264–269

Storey, M. D., 193–194, 197, 201, 205, 217,

223, 225, 230, 235–236, 240, 242, 259,

262–263, 267–268

Strand, W., 5

Strittmatter, E. F., 30

Ströhlein, T., 14

Subramonian, R., 77

Sullivan, K. J., 197, 250–251, 256

Sulston, J. E., 21

Sun, D., 236

Sutter, H., 74

Sutton, G., 5, 21–22, 29

Swaminatha, T., 121

Sykacek, P., 175

Symantec, M., 40

Systä, T., 196

Szalay, A., 6, 17

Szeto, E., 23
T

Talia, D., 77

Tallis, M., 256

Tanner, S., 29, 36

Tao, J., 17

Tarkiainen, M., 194–195, 214

Tau, J. F., 73

Taub, E., 177

Taylor, D. A., 174, 177–178

Taylor, D. E., 10

Taylor, D. M., 178

Telea, A., 218, 246–247, 250,

262–263, 270, 273

Tentler, A., 172

Thalmann, D., 177

Thomas, J. J., 6

Thornton, F., 140

Tichelaar, S., 200, 202–203, 207, 209,

213–214, 237–239

Tichy, W. F., 264
Tilley, S. R., 196–197, 202, 212–213,

230–233, 235–236, 240, 244,

250, 264, 270

Toledo, S., 13

Toledo-Crow, R., 36

Toleman, M. A., 222, 227

Tolic, N., 35

Tolvanen, J.-P., 252

Toncheva, A., 5

Tonella, P., 204, 250

Tosi, C., 250

Tran, J. B., 214

Trevors, A., 224, 229, 232

Trudeau, C., 201, 204–206, 213, 241

Tydlitát, B., 9

Tynan, D., 143
U

Ullman, J. D., 192, 244

Ulmer, C., 13

Upputuri, B., 10
V

Vacca, J. R., 155

Vaidya, S., 8–9

Valadon, G., 122

Valiant, L. G., 77, 111

van den Brand, M., 257

van der Pas, R., 73–74, 81, 111

Van Der Spiegel, J., 73

van Deursen, A., 193, 200, 204, 250

Van, H., 80

Van Orden, S. L., 35

Vanacker, G., 179, 182

Vandenberg, J., 17

Vans, A. M., 191, 230, 267–268

Varbanescu, A. L., 9

Vaughan, T. M., 170–177

Velliste, M., 178, 181

Venter, J. C., 5, 29

Verhoef, C., 256

AUTHOR INDEX 305
Verma, M., 36

Verschure, P. F., 177

Vidal, J. J., 171–172

Villa, O., 9

Villanueva, J., 36

Vinson, N., 193

Vishkin, U., 110–111

Vitzthum, F., 36

Voinea, L., 246–247, 250

von Eicken, T., 77

von Mayrhauser, A., 230, 267–268, 270

von Neumann, J., 72–73
W

Wagener, R., 56

Wakefield, J., 128

Walenstein, A., 221, 231, 236, 260,

263, 265, 267–268, 271

Wallace, A. K., 176

Wallnau, K. C., 200

Walsh, K. R., 132

Wang, C., 236

Wang, H., 236

Wang, L. C., 29, 36

Wang, Q., 217–218

Wang, W., 217–218

Ward, B. T., 149

Ward, R. K., 176

Warriner, L., 10

Washburn, M. P., 28

Wasserman, A. I., 244

Waterston, R. H., 21

Webb-Robertson, B. J. M., 14, 23, 26, 28, 36

Weber, A., 250

Wegman, E. J., 14, 42

Welsh, J., 222, 227

Wermelinger, M., 260, 273

Werner, G., 23

Wessberg, J., 177
West, D., 201

Westfechtel, B., 254

Wettel, R., 250

Whitehead, J., 274
Whitford, A. S., 178, 181

Whitham, E. M., 176

Whitley, K., 42

Whitney, M. J., 197

Whitney, P. D., 14

Widener, K. B., 51, 53

Wieringa, R., 236

Wile, D., 256

Williams, S., 9

Williamson, S. J., 5, 21–22, 29

Willoughby, J. O., 176

Wills, L. M., 230

Winter, A., 195, 203, 220, 237–238, 262

Wolpaw, J. R., 170–179, 181–182

Wolters, D. A., 28

Wong, A., 14

Wong, K., 193–194, 196, 199–200, 202–205,

207–209, 214, 221, 223–225, 230–232,

234, 236–240, 244, 250, 258–259,

262–263, 267–268

Wood, M., 207

Woods, S. G., 206–208

Wool, A., 138–139

Woolley, C., 8

Wrange, L., 206

Wu, C. C., 28

Wu, J., 238

Wu, X., 250

Wuyts, R., 201, 256–257, 261

Wynne, A. S., 17–18, 64
X

Xheneti, I., 5

Xu, Y., 30
Y

Yan, B., 30

Yang, C., 14

Yang, Y., 250, 260

Yarchi, I., 79

Yates I. I. J. R., 28, 31–32

Yeh, A. S., 203

306 AUTHOR INDEX
Yelick, P., 9

Yen, K., 10

Yi, Y., 9

Yoo, A., 11, 48

Yoo, W. A., 13

Yooseph, S., 5, 21–22, 29

Young, I., 82

Yu, S., 29, 36

Yu, Y., 203
Z

Zabriskie, S., 44

Zacharski, R. A., 12

Zacksenhouse, M., 178

Zandi, E., 29, 36

Zanfei, S., 250
Zanoni, M., 250

Zelkowitz, M. V., 206–207, 244, 270

Zetter, K., 138, 140

Zhang, J., 21

Zhang, Z., 21

Zhao, I., 23

Zhao, Y., 17

Zheng, W., 198

Zhiying, Z., 232

Zhu, Q., 250

Zhuge, H., 41

Zimmer, J. S., 29, 36

Ziv, T., 32

Zou, F., 250

Zubarev, R. A., 35–36

Subject Index
A

ARM Climate Research Facility (ACRF),

49–50

Atmospheric radiation measurement (ARM)

program

ACRF, 49–50

cloud radar spectra processing, 53, 55–56

data-collection, 51

data-flow architecture, 51–52

data transfer and storage requirements,

53–54

metadata and data provenance, 61

QCRad, data quality analysis scheme
correction process, 57

data validation process, 58

diffuse shortwave irradiance, 56–57

surface radiation data, 56

retrieval techniques., 52

service-oriented scientific workflow, 58–61

advantages, 59

broadband heating rate profile

(BBHRP) VAP, 58, 60

‘‘drag-and-drop’’ design, 58

high-level workflow structure, 61

MeDICi architecture and Kepler

workflow engine interaction, 58–59

value-added products, 61–62
B

Bitonic sort algorithm, 86

Bluetooth technology

applications, 138

improper implementation, 138–139
30
objective, 137

proof-of-concept viruses and tools, 139–140

Brain–computer interfaces (BCI)

acquisition modules, 183

alpha rhythm, 171

BCI2000 standard, 182–183

brain’s complex reaction, 181

communication and control, 170

digital electronics, 182

interchangeable signal-processing

modules, 183

kinematic control, 180–181

movement control
7

invasive BCI, 177–178

kinematic control and goal selection,

176–177

noninvasive BCI, 177

two-and three-dimensional control, 178

neuromuscular disorders, 170–171

research and development

electrocorticographic (ECoG)

activity, 174

EMG, 176

facial muscles, 176

Morse code message, 172, 176

motor imagery, 175–176

navigation and auditory imagery, 175

sensorimotor rhythms (SMRs), 172–174

signal classification algorithm, 174

stepwise linear discriminant

function, 172

user and system adaptation, 175

visual evoked potentials, 171

‘‘zero-training’’ method, 174

308 SUBJECT INDEX
Brain–computer interfaces (BCI)

(Continued)

robotic and prosthetic devices
embodied prosthetic control, 178

humanoid robot, 179

invasive and noninvasive recording, 180

machine-learning approach, 179

motor cortex, 178

RIKEN and TOYOTA

collaboration, 180

soft actuators, 181–182

surface electrodes, 171
C

Cabir virus, 139–140

Commwarrior virus, 140
D

Data dependency

automatic parallelization, 98

loop-carried dependence, 99, 102

loop dependence, 99

loop distribution transformation, 99–100

loop fusion transformation, 101

types, 98

Data-intensive computing (DIC)

atmospheric radiation measurement

(ARM) program
ACRF, 49–50

cloud radar spectra processing, 53,

55–56

data-collection, 51

data-flow architecture, 51–52

data transfer and storage requirements,

53–54

metadata and data provenance, 61

QCRad, data quality analysis, 56–58

retrieval techniques., 52

service-oriented scientific workflow,

58–61

value-added products, 61–62

biological sequence analysis

biological network visualization, 25–26
downstream analysis, 22

high-performance computing, 26–28

linear sequence, 21–22

metagenomics, 22

ScalaBLAST algorithm, 22–23

scientific impact, 23–24

data analytics

analytic focus, 15

data reduction., 15

digital imagery, 14

high-volume streaming data, 13

summarization, 15

vectors, 14

data-intensive analysis tools

CLIQUE code, 45–46

data-object-level analysis, 49

encryption, 43

feature-level analyses, 49

NUANCE code, 44–45

partial dimensions tree (PDTree)

application, 46–48

scalable visualizations, 49

StatsView tool, 43–44

tactical and strategic work, 42

data-intensive cyber analytics

attack signatures, 41

cross-scale analysis, 42

data reduction, 40–41

definition, 6

digital content, 4–5

enterprise computing network, 39

evolutionary graphics, 42

hardware architectures

active-storage systems, 12

data-parallel streaming processors, 7

field-programmable gate arrays, 9–10

graphics processing units, 8–9

multithreaded systems, 10–12

regular and irregular applications, 7

solid-state storage, 13

high-throughput proteomics analysis

accurate mass and time (AMT) tag

approach, 29–30

fragmentation spectra, 28

SUBJECT INDEX 309
mass/charge measurement, 29

proteome measurement, 30

proteomics definition, 28

scientific impact, 36–37

sequence-based clustering, 29

smart instrument control, 34–36

tandem mass spectrometry, 31–34

human-in-the-loop discovery, 40

intrusion detection system, 41

inverse Hadamard transform

Hadamard transform, 38

ion mobility separation (IMS), 37–38

mass-to-charge ratio, 37

real-time processing, 39

time-of-flight (TOF) mass

spectrometer, 38

sheer data volume, 5–6

software infrastructures

data processing pipelines, 15–18

MeDICi, 18–20

source and destination IP addresses, 40

visualization, 41–42

Design Maintenance System (DMS), 201
E

Electroencephalogram (EEG)

amplifiers, 182–183

digital electronics, 182

evoked potentials, 171

Morse code message transmission, 172

nonbrain activity, 176

noninvasive electrodes, 181

sensorimotor cortex, 180

sensorimotor rhythms (SMRs),

172–174, 176

Encryptions

applications, 157–158

illusions
digital certificate, 160, 162

router, 159

virtual public network (VPN), 160, 162

Web server, 160–161
single key/secret key, 155

two keys/public key, 156–157
H

Hawthorne effect, 264

High-throughput proteomics analysis

accurate mass and time (AMT) tag

approach, 29–30

fragmentation spectra, 28

mass/charge measurement, 29

proteome measurement, 30

proteomics definition, 28

scientific impact, 36–37

sequence-based clustering, 29

smart instrument control
alignment algorithms, 35–36

database searching algorithm, 36

feature discovery algorithms, 35

high-performance data analysis

pipeline, 34

high-performance DIC, MeDICi, 36

in silico analytical process, 34

THRASH algorithm, 36

tandem mass spectrometry

advanced model spectra, 32

analogous proteomic assessments, 31

computational reanalysis, 34

fault-tolerant access, 33

probabilistic process, 31

spectral libraries, 32–33

tryptic peptide candidates, 31–32
I

IEEE802 Standards

encryption, 124

login process, 124

signal spectrum, 125, 127

Web surfing, 125–126

IEEE802.11 standards, 165

Integrated microbial genome (IMG), 23

Internet service provider (ISP), 123

310 SUBJECT INDEX
K

Kuhn’s paradigm shift

normal science phase, 77–78

preparadigm phase, 77

revolutionary science phase, 78
L

Lock-free programming paradigm, 82
M

Man-in-the-middle (MITM) attack, 152–154

Manycore programming

ENIAC machine, 73

human factor
parallel programming, teaching, 111–112

wish list, 112–113

IAS machine, 73

Intel Core 2 Duo CPU T8100, 83

loop parallelization, 83–85

missing parallel computation model

DARPA High Productivity Computing

Systems (HPCS), 78

Kuhn’s paradigm shift, 77–78

parallel architecture, 77

Parallel Computing Laboratory, 78

PRAM model, 77

Universal Parallel Computing Research

Center (UPCRC), 78

Von Neumann model, 76

multicore processors, 74–76

parallel computing, 73

parallel hardware obstacles

cache coherence problem, 88–91

distributed counter, 96–97

false-sharing problem, 91–93

multiarchitecture problem, 85–88

OpenMP 2.0, 93

serial counting, 94

shared counter protection, 95–97

parallel revolution, 76

parallel software issues
data dependency, 98–102

data race condition, 105–106

locks and deadlocks, 107–110

memory consistency model, 102–105

performance-wall, 73–74

portability problem

auto-tuners, 80

logical structure, 79

OpenMP, 81

parallel performance portability, 79

performance, 78–79

software portability, 78

template/skeleton/sketching concept, 80

tuning parameters, 80

power-wall, 73–75

scalability challenge, 81–82

Memory consistency model

Dekker’s algorithm, 104–105

invisible interleaving scenario, 102

OpenMP solution, 102

relaxed memory consistency model, 104

reordering scenario, 103–104

sequential consistency model, 104

Model-driven visualization (MDV), 254–255

Multithreaded systems

cache mechanisms, 10

Cray MTA-2 and XMT, 11–12

memory latency, 10
P

Package-oriented programming (POP), 256

Parallel hardware obstacles

cache coherence problem
cache-memory coherency

management, 91

directory-based coherency protocols, 90

INTEL core Duo system, 91

multilevel cache-memory hierarchy, 88

nonuniform memory access

(NUMA), 90

snoopy coherency protocol, 89

uniform memory access (UMA), 90

distributed counter, 96–97

SUBJECT INDEX 311
false-sharing problem, 91–93

multiarchitecture problem

bitonic sort algorithm, 86

common guideline framework, 85

contemporary multicore processors, 87

Dijkstra’s algorithm, 86

Intel multicore processors, 87–89

OpenMP 2.0, 93

serial counting, 94

shared counter protection, 95–97

Parallel software issues

data dependency
automatic parallelization, 98

loop-carried dependence, 99, 102

loop dependence, 99

loop distribution transformation, 99–100

loop fusion transformation, 101

types, 98

data race condition, 105–106

locks and deadlocks

exception-aware mutex, 110

incorrect locking hierarchy, 109–110

Intel threading building block (TBB)

locking overheads, 108

mutexes, 107

OpenMP locking overheads, 107

timer-attached mutex, 110

memory consistency model

Dekker’s algorithm, 104–105

invisible interleaving scenario, 102

OpenMP solution, 102

relaxed memory consistency model, 104

reordering scenario, 103–104

sequential consistency model, 104

Partial dimensions tree (PDTree) application

all dimensions tree (ADTree) data

structure, 46

anomaly detection, 48

Cray MTA-2, 46–47

lightweight user communication (LUC),

47–48

Lustre file system, 47
network traffic, 46

Threadstorm client, 48

Pervasive Parallelism Laboratory (PPL),

78

Public wireless networks

advantages, 148

attacks
bogus access point, 151

jamming, 151–152

man-in-the-middle (MITM) attack,

152–154

threats, 150

Internet surfing, 148

survey results, 149–150

war driving tools, 149

Wi-Fi network, 147
Q

QCRad, data quality analysis scheme

correction process, 57

data validation process, 58

diffuse shortwave irradiance, 56–57

surface radiation data, 56
R

Routers

bandwidth stealing
hacking, 129

initiation process, 130

operation, 128–129

consequences, 132–133

countermeasures

corporation responsibilities, 134–135

manufacturer responsibilities, 135–136

user responsibilities, 136–137

eavesdropping, 130–131

functions

IEEE802 Standards, 123–126

Internet service provider (ISP), 123

myths, 126–128

312 SUBJECT INDEX
S

ScalaBLAST code, 23

Secure socket layer (SSL), 132, 160–161

Sensorimotor rhythms (SMRs), 172–174

Service-oriented architectures (SOAs), 211

Service-oriented scientific workflow

advantages, 59

broadband heating rate profile (BBHRP)

VAP, 58, 60

‘‘drag-and-drop’’ design, 58

high-level workflow structure, 61

MeDICi architecture and Kepler workflow

engine interaction, 58–59

Service set identifier (SSID), 135

Single key/secret key encryption, 155

Smart instrument control

alignment algorithms, 35–36

database searching algorithm, 36

feature discovery algorithms, 35

high-performance data analysis

pipeline, 34

high-performance DIC, MeDICi, 36

in silico analytical process, 34

THRASH algorithm, 36

Smart phones

attacks, 141

BlueBag security experiment, 137

Bluetooth technology
applications, 138

improper implementation, 138–139

objective, 137

proof-of-concept viruses and tools,

139–140

consequences, 142–143

countermeasures

corporation responsibilities, 146–147

manufacturer responsibilities,

145–146

user responsibilities, 147

illusions, 140

phone virus development, 143–144

Software infrastructures

data processing pipelines
blueprint, 16
cloud computing, 17–18

data capture and storage, 15

data warehouse, 17

downstream analytics, 16

MeDICi

architecture, 19–20

data movement, 18

MIF component, 19–20

ProvenanceListener, 20

workflow application, 18–19

Software reverse engineering tools

adoptability
academic reward structure., 235

adoption factors, 232–235

CASE tools, 228

compatibility, 228–229

complexity, 229

diffusion of innovation, 228

observability, 229

SHriMP tool, 236

tool adoption research, 230–232

trialability, 229

collaboration, 241–242

components, 194

analyzers, 196–197

extractors, 195–196

repository, 195

visualizers, 197–198

construction lens

CodeCrawler software visualizer, 256

component-based tool development,

247–252

compositional and generative reuse, 243

experimental software and toolkits

(EST), 257

idiosyncratic tools, 242

model-driven tool development,

252–254

package-oriented programming

(POP), 256

proof-of-concept implementation, 242

tool architecture, 243–247

customizability

analyzers, 216

data reverse engineering, 212

SUBJECT INDEX 313
extensibility, 213

extractors, 215–216

mass-market software, 212
personalization, 220–221
repositories, 213–214
textual differencing algorithm,

220

visualizers, 216–220

definition, 190–191

diversity, 192

duplicate software, 191

elicitation and documentation, 240

evaluation lens

benchmark, 270

benchmarking, 259–260

case studies, 258–259

evaluation-driven tool building,

262–265

experiments, 259

feature analysis, 260–261

Kirchhoff’s circuit law, 269

mutual fertilization, 271

SHriMP tool, 268

Storey’s process iterations, 268–269

structured tool demonstration, 261–262

theory-grounded tool building, 265–268

treatment factors, 258

exchange formats

composability and formality, 237

domains, 239–240

file-based storage, 237

functional and nonfunctional

requirements, 236

graph model, 237

incremental loading, 238

naming and querying, 238

neutrality and granularity, 237

popularity, 238

schema, 238–239

textual form, 237

version control, 237

exploration, 198–199

extraction, 192

interoperability

API, 209–210
CORUM frameworks, 208

definition, 206

schemas, 209

service-oriented architectures

(SOAs), 211

tool integration, 207, 210

macro-level process, 193

micro-level process, 192–193

multiuser support, 241

quality attributes, 199–200

scalability

analysis, 204

computational performance and

efficiency, 205–206

DesignMaintenance System (DMS), 201

extractors, 203–204

repositories, 202–203

visualizers, 204–205

synthesis, 193

systems of systems (SoS), 274

trade-off analysis, 200

usability

characteristics, 221

CodeCrawler visualization tool, 227

definition, 221

importance of, 221–222

process-oriented usability, 224–225

product-oriented usability, 222–224

Sextant software exploration tool, 227

TkSee search tool, 225–226
T

Tandem mass spectrometry

advanced model spectra, 32

analogous proteomic assessments, 31

computational reanalysis, 34

fault-tolerant access, 33

probabilistic process, 31

spectral libraries, 32–33

tryptic peptide candidates, 31–32

Tool construction lens

CodeCrawler software visualizer, 256

component-based tool development

(CBTD)

314 SUBJECT INDEX
Tool construction lens (Continued)
adoptability, 252

application, 249–250

CIA tool, 248

customization, 251

FrameMaker, 248

interoperability, 251

scalability, 250–251

usability, 251

compositional and generative reuse, 243

experimental software and toolkits

(EST), 257

idiosyncratic tools, 242

model-driven tool development (MDTD)

code generator, 252

domain-specific (modeling)

language, 253

generative techniques and concepts,

252–253

REforDI tool, 254

Smalltalk code, 253–254

source and visualization meta-models,

254–255

package-oriented programming (POP), 256

proof-of-concept implementation, 242

tool architecture

control-driven approach, 244–245

data-driven integration framework, 244

presentation-driven integration,

246–247

quality attributes, 243

reference model, 244

ShriMP’s architecture, 245

VizzAnalyzer, 246–247

Tool evaluation lens

benchmarking, 259–260

case studies, 258–259

discussion
benchmark, 270

Kirchhoff’s circuit law, 269

mutual fertilization, 271

SHriMP tool, 268

Storey’s process iterations, 268–269

evaluation-driven tool building

controlled experiments, 263–264
evaluation cycle, 262–263

first-and second-degree contact, 264

iterative activity, 262

paper-based prototypes, 264–265

experiments, 259

feature analysis, 260–261

structured tool demonstration, 261–262

theory-grounded tool building

cognitive theories, 266–267

HASTI, 267

program comprehension theories,

266–267

socio-cultural theory, 265

unsystematic theory generation, 268

Work Analysis with Synchronized

Shadowing (WASS), 266

treatment factors, 258

Tool requirements lens

adoptability
academic reward structure., 235

adoption factors, 232–235

CASE tools, 228

compatibility, 228–229

complexity, 229

diffusion of innovation, 228

observability, 229

SHriMP tool, 236

tool adoption research, 230–232

trialability, 229

collaboration, 241–242

customizability

analyzers, 216

data reverse engineering, 212

extensibility, 213

extractors, 215–216

mass-market software, 212

personalization, 220–221

repositories, 213–214

textual differencing algorithm, 220

visualizers, 216–220

elicitation and documentation, 240

exchange formats

composability and formality, 237

domains, 239–240

file-based storage, 237

SUBJECT INDEX 315
functional and nonfunctional

requirements, 236

graph model, 237

incremental loading, 238

naming and querying, 238

neutrality and granularity, 237

popularity, 238

schema, 238–239

textual form, 237

version control, 237

interoperability

API, 209–210

CORUM frameworks, 208

definition, 206

schemas, 209

service-oriented architectures

(SOAs), 211

tool integration, 207, 210

multiuser support, 241

quality attributes, 199–200

scalability

analysis, 204

computational performance and

efficiency, 205–206

Design Maintenance System

(DMS), 201

extractors, 203–204

repositories, 202–203

visualizers, 204–205

trade-off analysis, 200

usability

characteristics, 221

CodeCrawler visualization tool,

227

definition, 221

importance of, 221–222

process-oriented usability, 224–225

product-oriented usability, 222–224

Sextant software exploration tool,

227

TkSee search tool, 225–226

Two keys/public key encryption, 156–157
V

Virtual private network, 135

Virtual public network, 160, 162
W

War driving, 149–150

Web sites, 132

Wired equivalent privacy (WEP), 136

Wireless security

encryptions
applications, 157–158

illusions, 158–162

single key/secret key, 155

two keys/public key, 156–157

organization, 122

public wireless networks

advantages, 148

attacks, 150–153

Internet surfing, 148

survey results, 149–150

war driving tools, 149

Wi-Fi network, 147

routers

bandwidth stealing, 128–130

consequences, 132–133

countermeasures, 134–137

eavesdropping, 130–131

functions, 123–126

myths, 126–128

smart phones

attacks, 141

BlueBag security experiment, 137

Bluetooth technology, 137–140

consequences, 142–143

countermeasures, 145–147

illusions, 140

phone virus development, 143–144

user awareness, 121–122

Wi-Fi security survey, 164

Write-invalidate protocol, 89

Write-update protocol, 89

Contents of Volumes in This Series
Volume 42

Nonfunctional Requirements of Real-Time Systems

TEREZA G. KIRNER AND ALAN M. DAVIS

A Review of Software Inspections

ADAM PORTER, HARVEY SIY, AND LAWRENCE VOTTA

Advances in Software Reliability Engineering

JOHN D. MUSA AND WILLA EHRLICH

Network Interconnection and Protocol Conversion

MING T. LIU

A Universal Model of Legged Locomotion Gaits

S. T. VENKATARAMAN

Volume 43

Program Slicing

DAVID W. BINKLEY AND KEITH BRIAN GALLAGHER

Language Features for the Interconnection of Software Components

RENATE MOTSCHNIG-PITRIK AND ROLAND T. MITTERMEIR

Using Model Checking to Analyze Requirements and Designs

JOANNE ATLEE, MARSHA CHECHIK, AND JOHN GANNON

Information Technology and Productivity: A Review of the Literature

ERIK BRYNJOLFSSON AND SHINKYU YANG

The Complexity of Problems

WILLIAM GASARCH

3-D Computer Vision Using Structured Light: Design, Calibration, and Implementation Issues

FRED W. DEPIERO AND MOHAN M. TRIVEDI

Volume 44

Managing the Risks in Information Systems and Technology (IT)

ROBERT N. CHARETTE

Software Cost Estimation: A Review of Models, Process and Practice

FIONA WALKERDEN AND ROSS JEFFERY

Experimentation in Software Engineering

SHARI LAWRENCE PFLEEGER

Parallel Computer Construction Outside the United States

RALPH DUNCAN

Control of Information Distribution and Access

RALF HAUSER
317

318 CONTENTS OF VOLUMES IN THIS SERIES
Asynchronous Transfer Mode: An Engineering Network Standard for High Speed Communications

RONALD J. VETTER

Communication Complexity

EYAL KUSHILEVITZ

Volume 45

Control in Multi-threaded Information Systems

PABLO A. STRAUB AND CARLOS A. HURTADO

Parallelization of DOALL and DOACROSS Loops—a Survey

A. R. HURSON, JOFORD T. LIM, KRISHNA M. KAVI, AND BEN LEE

Programming Irregular Applications: Runtime Support, Compilation and Tools

JOEL SALTZ, GAGAN AGRAWAL, CHIALIN CHANG, RAJA DAS, GUY EDJLALI, PAUL HAVLAK, YUAN-SHIN

HWANG, BONGKI MOON, RAVI PONNUSAMY, SHAMIK SHARMA, ALAN SUSSMAN, AND MUSTAFA UYSAL

Optimization Via Evolutionary Processes

SRILATA RAMAN AND L. M. PATNAIK

Software Reliability and Readiness Assessment Based on the Non-homogeneous Poisson Process

AMRIT L. GOEL AND KUNE-ZANG YANG

Computer-Supported Cooperative Work and Groupware

JONATHAN GRUDIN AND STEVEN E. POLTROCK

Technology and Schools

GLEN L. BULL

Volume 46

Software Process Appraisal and Improvement: Models and Standards

MARK C. PAULK

A Software Process Engineering Framework

JYRKI KONTIO

Gaining Business Value from IT Investments

PAMELA SIMMONS

Reliability Measurement, Analysis, and Improvement for Large Software Systems

JEFF TIAN

Role-Based Access Control

RAVI SANDHU

Multithreaded Systems

KRISHNA M. KAVI, BEN LEE, AND ALLI R. HURSON

Coordination Models and Language

GEORGE A. PAPADOPOULOS AND FARHAD ARBAB

Multidisciplinary Problem Solving Environments for Computational Science

ELIAS N. HOUSTIS, JOHN R. RICE, AND NAREN RAMAKRISHNAN

Volume 47

Natural Language Processing: A Human–Computer Interaction Perspective

BILL MANARIS

CONTENTS OF VOLUMES IN THIS SERIES 319
Cognitive Adaptive Computer Help (COACH): A Case Study

EDWIN J. SELKER

Cellular Automata Models of Self-replicating Systems

JAMES A. REGGIA, HUI-HSIEN CHOU, AND JASON D. LOHN

Ultrasound Visualization

THOMAS R. NELSON

Patterns and System Development

BRANDON GOLDFEDDER

High Performance Digital Video Servers: Storage and Retrieval of Compressed Scalable Video

SEUNGYUP PAEK AND SHIH-FU CHANG

Software Acquisition: The Custom/Package and Insource/Outsource Dimensions

PAUL NELSON, ABRAHAM SEIDMANN, AND WILLIAM RICHMOND

Volume 48

Architectures and Patterns for Developing High-Performance, Real-Time ORB Endsystems

DOUGLAS C. SCHMIDT, DAVID L. LEVINE, AND CHRIS CLEELAND

Heterogeneous Data Access in a Mobile Environment — Issues and Solutions

J. B. LIM AND A. R. HURSON

The World Wide Web

HAL BERGHEL AND DOUGLAS BLANK

Progress in Internet Security

RANDALL J. ATKINSON AND J. ERIC KLINKER

Digital Libraries: Social Issues and Technological Advances

HSINCHUN CHEN AND ANDREA L. HOUSTON

Architectures for Mobile Robot Control

JULIO K. ROSENBLATT AND JAMES A. HENDLER

Volume 49

A Survey of Current Paradigms in Machine Translation

BONNIE J. DORR, PAMELA W. JORDAN, AND JOHN W. BENOIT

Formality in Specification and Modeling: Developments in Software Engineering Practice

J. S. FITZGERALD

3-D Visualization of Software Structure

MATHEW L. STAPLES AND JAMES M. BIEMAN

Using Domain Models for System Testing

A. VON MAYRHAUSER AND R. MRAZ

Exception-Handling Design Patterns

WILLIAM G. BAIL

Managing Control Asynchrony on SIMD Machines—a Survey

NAEL B. ABU-GHAZALEH AND PHILIP A. WILSEY

A Taxonomy of Distributed Real-time Control Systems

J. R. ACRE, L. P. CLARE, AND S. SASTRY

320 CONTENTS OF VOLUMES IN THIS SERIES
Volume 50

Index Part I

Subject Index, Volumes 1–49

Volume 51

Index Part II

Author Index

Cumulative list of Titles

Table of Contents, Volumes 1–49

Volume 52

Eras of Business Computing

ALAN R. HEVNER AND DONALD J. BERNDT

Numerical Weather Prediction

FERDINAND BAER

Machine Translation

SERGEI NIRENBURG AND YORICK WILKS

The Games Computers (and People) Play

JONATHAN SCHAEFFER

From Single Word to Natural Dialogue

NEILS OLE BENSON AND LAILA DYBKJAER

Embedded Microprocessors: Evolution, Trends and Challenges

MANFRED SCHLETT

Volume 53

Shared-Memory Multiprocessing: Current State and Future Directions

PER STEUSTRÖM, ERIK HAGERSTEU, DAVID I. LITA, MARGARET MARTONOSI, AND MADAN VERNGOPAL

Shared Memory and Distributed Shared Memory Systems: A Survey

KRISHNA KAUI, HYONG-SHIK KIM, BEU LEE, AND A. R. HURSON

Resource-Aware Meta Computing

JEFFREY K. HOLLINGSWORTH, PETER J. KELCHER, AND KYUNG D. RYU

Knowledge Management

WILLIAM W. AGRESTI

A Methodology for Evaluating Predictive Metrics

JASRETT ROSENBERG

An Empirical Review of Software Process Assessments

KHALED EL EMAM AND DENNIS R. GOLDENSON

State of the Art in Electronic Payment Systems

N. ASOKAN, P. JANSON, M. STEIVES, AND M. WAIDNES

Defective Software: An Overview of Legal Remedies and Technical Measures Available to Consumers

COLLEEN KOTYK VOSSLER AND JEFFREY VOAS

CONTENTS OF VOLUMES IN THIS SERIES 321
Volume 54

An Overview of Components and Component-Based Development

ALAN W. BROWN

Working with UML: A Software Design Process Based on Inspections for the Unified Modeling Language

GUILHERME H. TRAVASSOS, FORREST SHULL, AND JEFFREY CARVER

Enterprise JavaBeans andMicrosoft Transaction Server: Frameworks for Distributed Enterprise Components

AVRAHAM LEFF, JOHN PROKOPEK, JAMES T. RAYFIELD, AND IGNACIO SILVA-LEPE

Maintenance Process and Product Evaluation Using Reliability, Risk, and Test Metrics

NORMAN F. SCHNEIDEWIND

Computer Technology Changes and Purchasing Strategies

GERALD V. POST

Secure Outsourcing of Scientific Computations

MIKHAIL J. ATALLAH, K. N. PANTAZOPOULOS, JOHN R. RICE, AND EUGENE SPAFFORD

Volume 55

The Virtual University: A State of the Art

LINDA HARASIM

The Net, the Web and the Children

W. NEVILLE HOLMES

Source Selection and Ranking in the WebSemantics Architecture Using Quality of Data Metadata

GEORGE A. MIHAILA, LOUIQA RASCHID, AND MARIA-ESTER VIDAL

Mining Scientific Data

NAREN RAMAKRISHNAN AND ANANTH Y. GRAMA

History and Contributions of Theoretical Computer Science

JOHN E. SAVAGE, ALAN L. SALEM, AND CARL SMITH

Security Policies

ROSS ANDERSON, FRANK STAJANO, AND JONG-HYEON LEE

Transistors and 1C Design

YUAN TAUR

Volume 56

Software Evolution and the Staged Model of the Software Lifecycle

KEITH H. BENNETT, VACLAV T. RAJLICH, AND NORMAN WILDE

Embedded Software

EDWARD A. LEE

Empirical Studies of Quality Models in Object-Oriented Systems

LIONEL C. BRIAND AND JÜRGEN WÜST

Software Fault Prevention by Language Choice: Why C Is Not My Favorite Language

RICHARD J. FATEMAN

Quantum Computing and Communication

PAUL E. BLACK, D. RICHARD KUHN, AND CARL J. WILLIAMS

Exception Handling

PETER A. BUHR, ASHIF HARJI, AND W. Y. RUSSELL MOK

322 CONTENTS OF VOLUMES IN THIS SERIES
Breaking the Robustness Barrier: Recent Progress on the Design of the Robust Multimodal System

SHARON OVIATT

Using Data Mining to Discover the Preferences of Computer Criminals

DONALD E. BROWN AND LOUISE F. GUNDERSON

Volume 57

On the Nature and Importance of Archiving in the Digital Age

HELEN R. TIBBO

Preserving Digital Records and the Life Cycle of Information

SU-SHING CHEN

Managing Historical XML Data

SUDARSHAN S. CHAWATHE

Adding Compression to Next-Generation Text Retrieval Systems

NIVIO ZIVIANI AND EDLENO SILVA DE MOURA

Are Scripting Languages Any Good? A Validation of Perl, Python, Rexx, and Tcl against C, Cþþ, and Java

LUTZ PRECHELT

Issues and Approaches for Developing Learner-Centered Technology

CHRIS QUINTANA, JOSEPH KRAJCIK, AND ELLIOT SOLOWAY

Personalizing Interactions with Information Systems

SAVERIO PERUGINI AND NAREN RAMAKRISHNAN

Volume 58

Software Development Productivity

KATRINA D. MAXWELL

Transformation-Oriented Programming: A Development Methodology for High Assurance Software

VICTOR L. WINTER, STEVE ROACH, AND GREG WICKSTROM

Bounded Model Checking

ARMIN BIERE, ALESSANDRO CIMATTI, EDMUND M. CLARKE, OFER STRICHMAN, AND YUNSHAN ZHU

Advances in GUI Testing

ATIF M. MEMON

Software Inspections

MARC ROPER, ALASTAIR DUNSMORE, AND MURRAY WOOD

Software Fault Tolerance Forestalls Crashes: To Err Is Human; To Forgive Is Fault Tolerant

LAWRENCE BERNSTEIN

Advances in the Provisions of System and Software Security—Thirty Years of Progress

RAYFORD B. VAUGHN

Volume 59

Collaborative Development Environments

GRADY BOOCH AND ALAN W. BROWN

Tool Support for Experience-Based Software Development Methodologies

SCOTT HENNINGER

Why New Software Processes Are Not Adopted

STAN RIFKIN

CONTENTS OF VOLUMES IN THIS SERIES 323
Impact Analysis in Software Evolution

MIKAEL LINDVALL

Coherence Protocols for Bus-Based and Scalable Multiprocessors, Internet, and Wireless Distributed

Computing Environments: A Survey

JOHN SUSTERSIC AND ALI HURSON

Volume 60

Licensing and Certification of Software Professionals

DONALD J. BAGERT

Cognitive Hacking

GEORGE CYBENKO, ANNARITA GIANI, AND PAUL THOMPSON

The Digital Detective: An Introduction to Digital Forensics

WARREN HARRISON

Survivability: Synergizing Security and Reliability

CRISPIN COWAN

Smart Cards

KATHERINE M. SHELFER, CHRIS CORUM, J. DREW PROCACCINO, AND JOSEPH DIDIER

Shotgun Sequence Assembly

MIHAI POP

Advances in Large Vocabulary Continuous Speech Recognition

GEOFFREY ZWEIG AND MICHAEL PICHENY

Volume 61

Evaluating Software Architectures

ROSEANNE TESORIERO TVEDT, PATRICIA COSTA, AND MIKAEL LINDVALL

Efficient Architectural Design of High Performance Microprocessors

LIEVEN EECKHOUT AND KOEN DE BOSSCHERE

Security Issues and Solutions in Distributed Heterogeneous Mobile Database Systems

A. R. HURSON, J. PLOSKONKA, Y. JIAO, AND H. HARIDAS

Disruptive Technologies and Their Affect on Global Telecommunications

STAN MCCLELLAN, STEPHEN LOW, AND WAI-TIAN TAN

Ions, Atoms, and Bits: An Architectural Approach to Quantum Computing

DEAN COPSEY, MARK OSKIN, AND FREDERIC T. CHONG

Volume 62

An Introduction to Agile Methods

DAVID COHEN, MIKAEL LINDVALL, AND PATRICIA COSTA

The Timeboxing Process Model for Iterative Software Development

PANKAJ JALOTE, AVEEJEET PALIT, AND PRIYA KURIEN

A Survey of Empirical Results on Program Slicing

DAVID BINKLEY AND MARK HARMAN

Challenges in Design and Software Infrastructure for Ubiquitous Computing Applications

GURUDUTH BANAVAR AND ABRAHAM BERNSTEIN

324 CONTENTS OF VOLUMES IN THIS SERIES
Introduction to MBASE (Model-Based (System) Architecting and Software Engineering)

DAVID KLAPPHOLZ AND DANIEL PORT

Software Quality Estimation with Case-Based Reasoning

TAGHI M. KHOSHGOFTAAR AND NAEEM SELIYA

Data Management Technology for Decision Support Systems

SURAJIT CHAUDHURI, UMESHWAR DAYAL, AND VENKATESH GANTI

Volume 63

Techniques to Improve Performance Beyond Pipelining: Superpipelining, Superscalar, and VLIW

JEAN-LUC GAUDIOT, JUNG-YUP KANG, AND WON WOO RO

Networks on Chip (NoC): Interconnects of Next Generation Systems on Chip

THEOCHARIS THEOCHARIDES, GREGORY M. LINK, NARAYANAN VIJAYKRISHNAN, AND MARY JANE IRWIN

Characterizing Resource Allocation Heuristics for Heterogeneous Computing Systems

SHOUKAT ALI, TRACY D. BRAUN, HOWARD JAY SIEGEL, ANTHONY A. MACIEJEWSKI, NOAH BECK,

LADISLAU BÖLÖNI, MUTHUCUMARU MAHESWARAN, ALBERT I. REUTHER, JAMES P. ROBERTSON,

MITCHELL D. THEYS, AND BIN YAO

Power Analysis and Optimization Techniques for Energy Efficient Computer Systems

WISSAM CHEDID, CHANSU YU, AND BEN LEE

Flexible and Adaptive Services in Pervasive Computing

BYUNG Y. SUNG, MOHAN KUMAR, AND BEHROOZ SHIRAZI

Search and Retrieval of Compressed Text

AMAR MUKHERJEE, NAN ZHANG, TAO TAO, RAVI VIJAYA SATYA, AND WEIFENG SUN

Volume 64

Automatic Evaluation of Web Search Services

ABDUR CHOWDHURY

Web Services

SANG SHIN

A Protocol Layer Survey of Network Security

JOHN V. HARRISON AND HAL BERGHEL

E-Service: The Revenue Expansion Path to E-Commerce Profitability

ROLAND T. RUST, P. K. KANNAN, AND ANUPAMA D. RAMACHANDRAN

Pervasive Computing: A Vision to Realize

DEBASHIS SAHA

Open Source Software Development: Structural Tension in the American Experiment
COSKUN BAYRAK AND CHAD DAVIS

Disability and Technology: Building Barriers or Creating Opportunities?

PETER GREGOR, DAVID SLOAN, AND ALAN F. NEWELL

Volume 65

The State of Artificial Intelligence

ADRIAN A. HOPGOOD

Software Model Checking with SPIN

GERARD J. HOLZMANN

CONTENTS OF VOLUMES IN THIS SERIES 325
Early Cognitive Computer Vision

JAN-MARK GEUSEBROEK

Verification and Validation and Artificial Intelligence

TIM MENZIES AND CHARLES PECHEUR

Indexing, Learning and Content-Based Retrieval for Special Purpose Image Databases

MARK J. HUISKES AND ERIC J. PAUWELS

Defect Analysis: Basic Techniques for Management and Learning

DAVID N. CARD

Function Points

CHRISTOPHER J. LOKAN

The Role of Mathematics in Computer Science and Software Engineering Education

PETER B. HENDERSON

Volume 66

Calculating Software Process Improvement’s Return on Investment

RINI VAN SOLINGEN AND DAVID F. RICO

Quality Problem in Software Measurement Data

PIERRE REBOURS AND TAGHI M. KHOSHGOFTAAR

Requirements Management for Dependable Software Systems

WILLIAM G. BAIL

Mechanics of Managing Software Risk

WILLIAM G. BAIL

The PERFECT Approach to Experience-Based Process Evolution

BRIAN A. NEJMEH AND WILLIAM E. RIDDLE

The Opportunities, Challenges, and Risks of High Performance Computing in Computational Science and

Engineering

DOUGLASS E. POST, RICHARD P. KENDALL, AND ROBERT F. LUCAS

Volume 67

Broadcasting a Means to Disseminate Public Data in a Wireless Environment—Issues and Solutions

A. R. HURSON, Y. JIAO, AND B. A. SHIRAZI

Programming Models and Synchronization Techniques for Disconnected Business Applications

AVRAHAM LEFF AND JAMES T. RAYFIELD

Academic Electronic Journals: Past, Present, and Future

ANAT HOVAV AND PAUL GRAY

Web Testing for Reliability Improvement

JEFF TIAN AND LI MA

Wireless Insecurities

MICHAEL STHULTZ, JACOB UECKER, AND HAL BERGHEL

The State of the Art in Digital Forensics

DARIO FORTE

326 CONTENTS OF VOLUMES IN THIS SERIES
Volume 68

Exposing Phylogenetic Relationships by Genome Rearrangement

YING CHIH LIN AND CHUAN YI TANG

Models and Methods in Comparative Genomics

GUILLAUME BOURQUE AND LOUXIN ZHANG

Translocation Distance: Algorithms and Complexity

LUSHENG WANG

Computational Grand Challenges in Assembling the Tree of Life: Problems and Solutions

DAVID A. BADER, USMAN ROSHAN, AND ALEXANDROS STAMATAKIS

Local Structure Comparison of Proteins

JUN HUAN, JAN PRINS, AND WEI WANG

Peptide Identification via Tandem Mass Spectrometry

XUE WU, NATHAN EDWARDS, AND CHAU-WEN TSENG

Volume 69

The Architecture of Efficient Multi-Core Processors: A Holistic Approach

RAKESH KUMAR AND DEAN M. TULLSEN

Designing Computational Clusters for Performance and Power

KIRK W. CAMERON, RONG GE, AND XIZHOU FENG

Compiler-Assisted Leakage Energy Reduction for Cache Memories

WEI ZHANG

Mobile Games: Challenges and Opportunities

PAUL COULTON, WILL BAMFORD, FADI CHEHIMI, REUBEN EDWARDS, PAUL GILBERTSON, AND

OMER RASHID

Free/Open Source Software Development: Recent Research Results and Methods

WALT SCACCHI

Volume 70

Designing Networked Handheld Devices to Enhance School Learning

JEREMY ROSCHELLE, CHARLES PATTON, AND DEBORAH TATAR

Interactive Explanatory and Descriptive Natural-Language Based Dialogue for Intelligent Information

Filtering

JOHN ATKINSON AND ANITA FERREIRA

A Tour of Language Customization Concepts

COLIN ATKINSON AND THOMAS KÜHNE

Advances in Business Transformation Technologies

JUHNYOUNG LEE

Phish Phactors: Offensive and Defensive Strategies

HAL BERGHEL, JAMES CARPINTER, AND JU-YEON JO

Reflections on System Trustworthiness

PETER G. NEUMANN

CONTENTS OF VOLUMES IN THIS SERIES 327
Volume 71

Programming Nanotechnology: Learning from Nature

BOONSERM KAEWKAMNERDPONG, PETER J. BENTLEY, AND NAVNEET BHALLA

Nanobiotechnology: An Engineer’s Foray into Biology

YI ZHAO AND XIN ZHANG

Toward Nanometer-Scale Sensing Systems: Natural and Artificial Noses as Models for Ultra-Small,

Ultra-Dense Sensing Systems

BRIGITTE M. ROLFE

Simulation of Nanoscale Electronic Systems

UMBERTO RAVAIOLI

Identifying Nanotechnology in Society

CHARLES TAHAN

The Convergence of Nanotechnology, Policy, and Ethics

ERIK FISHER

Volume 72

DARPA’s HPCS Program: History, Models, Tools, Languages

JACK DONGARRA, ROBERT GRAYBILL, WILLIAM HARROD, ROBERT LUCAS, EWING LUSK, PIOTR LUSZCZEK,

JANICE MCMAHON, ALLAN SNAVELY, JEFFERY VETTER, KATHERINE YELICK, SADAF ALAM, ROY

CAMPBELL, LAURA CARRINGTON, TZU-YI CHEN, OMID KHALILI, JEREMY MEREDITH, AND

MUSTAFA TIKIR

Productivity in High-Performance Computing

THOMAS STERLING AND CHIRAG DEKATE

Performance Prediction and Ranking of Supercomputers

TZU-YI CHEN, OMID KHALILI, ROY L. CAMPBELL, JR., LAURA CARRINGTON, MUSTAFA M. TIKIR, AND

ALLAN SNAVELY

Sampled Processor Simulation: A Survey

LIEVEN EECKHOUT

Distributed Sparse Matrices for Very High Level Languages

JOHN R. GILBERT, STEVE REINHARDT, AND VIRAL B. SHAH

Bibliographic Snapshots of High-Performance/High-Productivity Computing

MYRON GINSBERG

Volume 73

History of Computers, Electronic Commerce, and Agile Methods

DAVID F. RICO, HASAN H. SAYANI, AND RALPH F. FIELD

Testing with Software Designs

ALIREZA MAHDIAN AND ANNELIESE A. ANDREWS

Balancing Transparency, Efficiency, AND Security in Pervasive Systems

MARK WENSTROM, ELOISA BENTIVEGNA, AND ALI R. HURSON

Computing with RFID: Drivers, Technology and Implications

GEORGE ROUSSOS

Medical Robotics and Computer-Integrated Interventional Medicine

RUSSELL H. TAYLOR AND PETER KAZANZIDES

328 CONTENTS OF VOLUMES IN THIS SERIES
Volume 74

Data Hiding Tactics for Windows and Unix File Systems

HAL BERGHEL, DAVID HOELZER, AND MICHAEL STHULTZ

Multimedia and Sensor Security

ANNA HAĆ

Email Spam Filtering

ENRIQUE PUERTAS SANZ, JOSÉ MARÍA GÓMEZ HIDALGO, AND JOSÉ CARLOS CORTIZO PÉREZ

The Use of Simulation Techniques for Hybrid Software Cost Estimation and Risk Analysis

MICHAEL KLÄS, ADAM TRENDOWICZ, AXEL WICKENKAMP, JÜRGEN MÜNCH,

NAHOMI KIKUCHI, AND YASUSHI ISHIGAI

An Environment for Conducting Families of Software Engineering Experiments

LORIN HOCHSTEIN, TAIGA NAKAMURA, FORREST SHULL, NICO ZAZWORKA,

VICTOR R. BASILI, AND MARVIN V. ZELKOWITZ

Global Software Development: Origins, Practices, and Directions

JAMES J. CUSICK, ALPANA PRASAD, AND WILLIAM M. TEPFENHART

Volume 75

The UK HPC Integration Market: Commodity-Based Clusters

CHRISTINE A. KITCHEN ANDMARTYN F. GUEST

Elements of High-Performance Reconfigurable Computing

TOM VANCOURT ANDMARTIN C. HERBORDT

Models and Metrics for Energy-Efficient Computing

PARTHASARATHY RANGANATHAN, SUZANNE RIVOIRE, AND JUSTIN MOORE

The Emerging Landscape of Computer Performance Evaluation

JOANN M. PAUL, MWAFFAQ OTOOM, MARC SOMERS, SEAN PIEPER, AND MICHAEL J. SCHULTE

Advances in Web Testing

CYNTRICA EATON AND ATIF M. MEMON

Volume 76

Information Sharing and Social Computing: Why, What, and Where?

ODED NOV

Social Network Sites: Users and Uses

MIKE THELWALL

Highly Interactive Scalable Online Worlds

GRAHAM MORGAN

The Future of Social Web Sites: Sharing Data and Trusted Applications with Semantics

SHEILA KINSELLA, ALEXANDRE PASSANT, JOHN G. BRESLIN, STEFAN DECKER,

AND AJIT JAOKAR

Semantic Web Services Architecture with Lightweight Descriptions of Services

TOMAS VITVAR, JACEK KOPECKY, JANA VISKOVA, ADRIANMOCAN, MICK KERRIGAN, AND DIETER FENSEL

Issues and Approaches for Web 2.0 Client Access to Enterprise Data

AVRAHAM LEFF AND JAMES T. RAYFIELD

Web Content Filtering

JOSÉMARÍA GÓMEZ HIDALGO, ENRIQUE PUERTAS SANZ, FRANCISCO CARRERO GARCÍA, AND MANUEL DE

BUENAGA RODRÍGUEZ

CONTENTS OF VOLUMES IN THIS SERIES 329
Volume 77

Photo Fakery and Forensics

HANY FARID

Advances in Computer Displays

JASON LEIGH, ANDREW JOHNSON, AND LUC RENAMBOT

Playing with All Senses: Human–Computer Interface Devices for Games

JÖRN LOVISCACH

A Status Report on the P Versus NP Question

ERIC ALLENDER

Dynamically Typed Languages

LAURENCE TRATT

Factors Influencing Software Development Productivity—State-of-the-Art and Industrial Experiences

ADAM TRENDOWICZ AND JÜRGEN MÜNCH

Evaluating the Modifiability of Software Architectural Designs

M. OMOLADE SALIU, GÜNTHER RUHE, MIKAEL LINDVALL, AND CHRISTOPHER ACKERMANN

The Common Law and Its Impact on the Internet

ROBERT AALBERTS, DAVID HAMES, PERCY POON, AND PAUL D. THISTLE

Volume 78

Search Engine Optimization—Black and White Hat Approaches

ROSS A. MALAGA

Web Searching and Browsing: A Multilingual Perspective

WINGYAN CHUNG

Features for Content-Based Audio Retrieval

DALIBOR MITROVIĆ, MATTHIAS ZEPPELZAUER, AND CHRISTIAN BREITENEDER

Multimedia Services over Wireless Metropolitan Area Networks

KOSTAS PENTIKOUSIS, JARNO PINOLA, ESA PIRI, PEDRO NEVES, AND SUSANA SARGENTO

An Overview of Web Effort Estimation

EMILIA MENDES

Communication Media Selection for Remote Interaction of Ad Hoc Groups
FABIO CALEFATO AND FILIPPO LANUBILE

	Applications in Data-Intensive Computing
	Introduction
	What Is Data-Intensive Computing?
	Hardware Architectures
	Graphics Processing Units
	Reconfigurable Computing Devices: Field-Programmable Gate Arrays
	Multithreaded Systems
	Cray MTA-2 and XMT

	2.1.4 Active-Storage Systems

	2.1.5 Solid-State Storage

	2.2 Data-Intensive Data Analytics

	2.2.1 Objectives and Approach

	2.3 Software Infrastructures for Data-Intensive Applications

	2.3.1 Data Processing Pipelines

	Data Warehouses
	Cloud Computing

	2.3.2 MeDICi-The Middleware for Data-Intensive Computing

	Applications in Data-Intensive Computing at PNNL
	Applications in Biological Sciences
	Biological Sequence Analysis
	The Challenge
	ScalaBLAST: A Parallel-Processing Algorithm for High-Performance BLAST
	Scientific Impact
	Visualizing Biological Networks
	Closing the Loop Between High-Performance Computing, Analysis Tools, and Visualization

	3.1.2 High-Throughput Proteomics Analysis

	The Tandem Mass Spectrometry Challenge
	Increasing Throughput Through Smart Instrument Control
	Scientific Impact

	3.1.3 Inverse Hadamard Transform for Ion Mobility Separation Coupled with Mass Spectrometry

	Hadamard Transform
	Real-Time Processing with Hybrid High-Performance Computing Hardware Architectures

	3.2 Data-Intensive Cyber Analytics

	3.2.1 The Cyber-Security Analytics Challenge

	3.2.2 Data-Intensive Analysis Tools

	StatsView
	NUANCE
	CLIQUE
	Partial Dimensions Tree
	Future Needs

	3.3 Applications in Atmospheric Radiation Measurement Program

	3.3.1 Data-Flow Architecture

	3.3.2 Computing Challenges

	Cloud Radar Spectra Processing
	QCRad: A Data Quality Analysis Scheme for Radiation Measurements
	Rapid Development with Service-Oriented Scientific Workflow Frameworks
	Metadata and Data Provenance

	3.3.3 ARM Value-Added Products

	Conclusions
	Acknowledments
	References

	Pitfalls and Issues of Manycore Programming
	Introduction
	The Missing Parallel Computation Model
	The Portability Problem
	The Scalability Challenge
	A Simple Example-Portability and Scalability

	Parallel Hardware Obstacles
	The Multiarchitecture Problem
	The Cache Coherence Problem
	The False-Sharing Problem
	A Simple Example-Cache Coherency and False Sharing

	Parallel Software Issues
	Data Dependency
	Memory Consistency Model
	Data Race Conditions
	Locks and Deadlocks

	The Human Factor
	Teaching Parallel Programming Today
	A Wish List

	Conclusions
	References

	Illusion of Wireless Security
	Introduction
	Awareness Level of Users
	Organization of This Chapter

	Wireless Routers
	Functions of Wireless Routers
	Overview of IEEE802 Standards

	The Myths
	The Truths
	Stealing Bandwidth
	Eavesdropping

	The Consequences
	Countermeasures
	The Corporation's Responsibilities
	The Manufacturer's Responsibilities
	User Responsibilities

	Smart Phones
	Overview of Bluetooth Technology
	Improper Implementation
	Proof-of-Concept Viruses and Tools

	Illusions
	Reasons for the Misunderstandings
	Possible Attacks
	Consequences
	Phone Virus Development
	Countermeasures
	Manufacturer Responsibilities
	Corporation Responsibilities
	User Responsibilities

	Threats of Public Wireless Networks
	War Driving
	Tools for Performing War Driving
	Survey Results

	Possible Attacks
	Bogus Access Point
	Jamming
	Man-in-the-Middle Attack

	Illusions of Encryptions
	Basic Concept of Encryption
	Single Key Encryptions
	Two Keys (Public Key) Encryptions

	Other Applications of Encryption
	Illusions
	Encryption in Routers
	Web Server with Secure Socket Layer
	Virtual Public Network
	Digital Certificate

	Conclusion
	Acknowledments
	Appendix A
	Appendix B
	References

	Brain-Computer Interfaces for the Operation of Robotic and Prosthetic Devices
	Introduction
	Brain-Computer Interface Research and Development
	BCI Movement Control
	BCI Operation of Robotic and Prosthetic Devices
	Current and Future Developments in BCI Movement Control
	Conclusion
	Acknowledments
	References

	The Tools Perspective on Software Reverse Engineering: Requirements, Construction,
and Evaluation

	Introduction and Background
	Techniques, Processes, and Tools
	Tool Components
	Repository
	Extractors
	Analyzers
	Visualizers

	Exploring Tools Through a Set of Lenses

	Tool Requirements Lens
	Scalability
	Repositories
	Extractors
	Analyses
	Visualizers
	Discussion

	Interoperability
	Techniques
	Schema
	API
	Discussion

	Customizability
	Repositories
	Extractors
	Analyzers
	Visualizers
	Discussion

	Usability
	Product-Oriented Usability
	Process-Oriented Usability
	Usability in TkSee
	Discussion

	Adoptability
	Tool Adoption Research
	Adoption Factors
	Discussion

	Requirements of Exchange Formats
	Schema
	Other Domains

	Discussion

	Tool Construction Lens
	Tool Architecture
	Component-Based Tool Development
	Model-Driven Tool Development
	Discussion

	Tool Evaluation Lens
	Evaluation-Driven Tool Building
	Theory-Grounded Tool Building
	Discussion

	Conclusions
	References

