

Hagenberg Research

Bruno Buchberger · Michael Affenzeller
Alois Ferscha · Michael Haller · Tudor Jebelean
Erich Peter Klement · Peter Paule
Gustav Pomberger · Wolfgang Schreiner
Robert Stubenrauch · Roland Wagner
Gerhard Weiß · Wolfgang Windsteiger
Editors

Hagenberg Research

123

Editors

Bruno Buchberger, Bruno.Buchberger@risc.jku.at
Michael Affenzeller, michael.affenzeller@fh-hagenberg.at
Alois Ferscha, ferscha@soft.uni-linz.ac.at
Michael Haller, haller@fh-hagenberg.at
Tudor Jebelean, Tudor.Jebelean@risc.jku.at
Erich Peter Klement, ep.klement@jku.at
Peter Paule, Peter.Paule@risc.jku.at
Gustav Pomberger, gustav.pomberger@jku.at
Wolfgang Schreiner, Wolfgang.Schreiner@risc.jku.at
Robert Stubenrauch, stubenrauch@softwarepark-hagenberg.com
Roland Wagner, rwagner@faw.jku.at
Gerhard Weiss, gerhard.weiss@scch.at
Wolfgang Windsteiger, Wolfgang.Windsteiger@risc.jku.at

A-4232 Hagenberg
Austria

ISBN 978-3-642-02126-8 e-ISBN 978-3-642-02127-5
DOI 10.1007/978-3-642-02127-5
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009928635

ACM Computing Classification (1998): D.2, H.3, I.2, C.2, H.5, F.1

c© Springer-Verlag Berlin Heidelberg 2009
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KünkelLopka, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

Hagenberg Research: Introduction . 1
Bruno Buchberger

I Algorithms in Symbolic Computation 5
Peter Paule, Bruno Buchberger, Lena Kartashova,

Manuel Kauers, Carsten Schneider, Franz Winkler

1 The Renaissance of Algorithmic Mathematics 6
2 Gröbner Bases Theory for Nonlinear Polynomial Systems 16
3 Rational Algebraic Curves – Theory and Application 24
4 Computer Generated Progress in Lattice Paths Theory 33
5 Symbolic Summation in Particle Physics 40
6 Nonlinear Resonance Analysis . 49

II Automated Reasoning . 63
Tudor Jebelean, Bruno Buchberger, Temur Kutsia,

Nikolaj Popov, Wolfgang Schreiner, Wolfgang Windsteiger

1 Introduction . 63
2 Theorema: Computer-Supported Mathematical Theory

Exploration . 65
3 Natural Style Proving in Theorema . 74
4 Unification . 83
5 Program Verification . 88
6 Computer-Assisted Interactive Program Reasoning 93

III Metaheuristic Optimization . 103
Michael Affenzeller, Andreas Beham, Monika Kofler,

Gabriel Kronberger, Stefan A. Wagner, Stephan Winkler

1 Introduction . 103
2 Metaheuristic Optimization Techniques . 109
3 Algorithmic Advances Based Upon Genetic Algorithms 118
4 Route Planning . 128

vi

5 Genetic Programming Based System Identification 136
6 Conclusion and Future Perspectives . 148

IV Software Engineering – Processes and Tools 157
Gerhard Weiss, Gustav Pomberger, Wolfgang Beer,

Georg Buchgeher, Bernhard Dorninger, Josef Pichler,

Herbert Prähofer, Rudolf Ramler, Fritz Stallinger,

Rainer Weinreich

1 Introduction . 157
2 Software Process Engineering . 159
3 Software Quality Engineering . 184
4 Software Architecture Engineering . 200
5 Domain-Specific Languages and Modeling 214

V Data-Driven and Knowledge-Based Modeling 237
Erich Peter Klement, Edwin Lughofer,

Johannes Himmelbauer, Bernhard Moser

1 Introduction . 237
2 Fuzzy Logics and Fuzzy Systems . 238
3 Data-Driven Fuzzy Systems . 242
4 Evolving Fuzzy Systems and On-line Modeling 248
5 Creating Comprehensible Fuzzy Regression Models 255
6 Support Vector Machines and Kernel-Based Design 260
7 Applications . 264

VI Information and Semantics in Databases and on the Web 281
Roland Wagner, Josef Küng, Birgit Pröll,

Christina Buttinger, Christina Feilmayr,

Bernhard Freudenthaler, Michael Guttenbrunner,

Christian Hawel, Melanie Himsl, Daniel Jabornig,

Werner Leithner, Stefan Parzer, Reinhard Stumptner,

Stefan Wagner, Wolfram Wöß

1 Introduction . 281
2 Ontologies . 283
3 Semantic Networks . 289
4 Adaptive Modeling . 294
5 Web Information Extraction . 300
6 Similarity Queries and Case Based Reasoning 319
7 Data Warehouses . 326

VII Parallel, Distributed, and Grid Computing 333
Wolfgang Schreiner, Károly Bósa, Andreas Langegger,

Thomas Leitner, Bernhard Moser, Szilárd Páll,

Volkmar Wieser, Wolfram Wöß

1 Introduction . 333
2 Parallel Symbolic Computation . 342

vii

3 Grid Computing . 349
4 GPU Computing for Computational Intelligence 366

VIII Pervasive Computing . 379
Alois Ferscha

1 What is Pervasive Computing? . 380
2 Ensembles of Digital Artifacts . 382
3 Quantitative Space: Zones-of-Influence . 390
4 Qualitative Space: Spatiotemporal Relations 394
5 Middleware for Space Awareness . 402
6 Embodied Interaction . 408
7 Outlook . 421

IX Interactive Displays and Next-Generation Interfaces 433
Michael Haller, Peter Brandl, Christoph Richter,

Jakob Leitner, Thomas Seifried, Adam Gokcezade,

Daniel Leithinger

1 Interactive Surfaces . 435
2 Design Challenges . 441
3 Design and Implementation of a Multi-Display Environment

for Collaboration . 453
4 Conclusions . 468

Index . 473

List of Editors and Authors . 483

viii

Acknowledgement

This book was sponsored by� Austrian Ministry of Science and Research (BMWF),� Austrian Ministry for Transport, Innovation and Technology (BMVIT),� Upper Austrian Government,� Community of Hagenberg,� Raiffeisenbank Pregarten–Hagenberg.

In the preparation of this manuscript, the support in TEX-programming by Manuel Kauers

was very much appreciated.

� Johannes Kepler University Linz (JKU),

Hagenberg Research: Introduction

Bruno Buchberger

This book is a synopsis of basic and applied research done at the various re-
search institutions of the Softwarepark Hagenberg in Austria. Starting with
15 coworkers in my Research Institute for Symbolic Computation (RISC), I
initiated the Softwarepark Hagenberg in 1987 on request of the Upper Aus-
trian Government with the objective of creating a scientific, technological,
and economic impulse for the region and the international community. In the
meantime, in a joint effort, the Softwarepark Hagenberg has grown to the
current (2009) size of over 1000 R&D employees and 1300 students in six
research institutions, 40 companies and 20 academic study programs on the
bachelor, master’s and PhD level.

The goal of the Softwarepark Hagenberg is innovation of economy in one
of the most important current technologies: software. It is the message of this
book that this can only be achieved and guaranteed long-term by “watering
the root”, namely emphasis on research, both basic and applied. In this book,
we summarize what has been achieved in terms of research in the various
research institutions in the Softwarepark Hagenberg and what research vision
we have for the imminent future.

When I founded the Softwarepark Hagenberg, in addition to the “watering
the root” principle, I had the vision that such a technology park can only
prosper if we realize the “magic triangle”, i.e. the close interaction of research,
academic education, and business applications at one site, see Figure 1.

This principle proved to be quite successful: research pulls academic educa-
tion and economic innovation, companies have a motivating and challenging
influence on both research and the contents and implementation of curricula,
and well trained graduates on all levels guarantee fresh energy for research
and competitiveness of companies. In the meantime, this principle has been
adopted widely to the extent that, recently (2008), EU President Barroso
proclaimed the “Magic Triangle” as the building principle for the new “Eu-
ropean Institute for Innovation and Technology” to be founded within the
next few months. It is very fulfilling for me to see that this principle now
receives such a prominent attention.

2 Bruno Buchberger

Research

EconomyEducation

Figure 1 The Magic Triangle.

In this book, Hagenberg Research is summarized in various chapters that
span the wide range of research topics pursued at the following research
institutions in the Softwarepark Hagenberg:� RISC (Research Institute for Symbolic Computation), the founding insti-

tute of the Softwarepark Hagenberg� FAW (Institute for Application Oriented Knowledge Processing)� FLLL (Department of Knowledge-Based Mathematical Systems, Fuzzy
Logic Laboratorium Linz-Hagenberg)� RIPE (Research Institute for Pervasive Computing)� The Software Competence Center Hagenberg� School of Informatics, Communication and Media, Upper Austria Univer-
sity of Applied Sciences, Research Center Hagenberg

The research strategy we pursue at the Softwarepark Hagenberg empha-
sizes the flow from formal logic, algorithmic mathematics, to software (and,
to a lesser extent) hardware science. In my understanding, logic, mathemat-
ics, and software science form a coherent and indistinguishable magma of
knowledge and methods (which I like to call the “thinking technology”) and
this is the strength from which we draw in the Softwarepark Hagenberg.

I am happy and fulfilled to see that this view is providing a solid basis for
such a dynamic and future-oriented construct as the Softwarepark Hagenberg.
This view also guided me as my personal strategy since the time of writing
my PhD thesis in 1965, in which I introduced the theory of Gröbner bases
(see [Buc65, Buc70]), which in the meantime became a powerful algorithmic
tool for a constantly expanding range of applications in all situations where
we have to deal with problems that can be cast in the language of non-linear
polynomial systems. The coherent magma of logic, mathematics, and software

Hagenberg Research: Introduction 3

science can be well demonstrated by the development of the field of Gröbner
bases:� The Gröbner bases method as an algorithmic method is based on a theorem

(see [Buc65]) of pure algebra (the Theorem on the characterization of
Gröbner bases by the zero-reducibility of the so called S-polynomials, see
Section 2 on Gröbner Bases in Chapter I on symbolic computation).� The proof of the main theorem of Gröbner bases theory, which was quite
a challenge at the time of its invention, by recent advances in automated
theorem proving in my Theorema Group can now be produced automati-
cally (see [Buc04] and Chapter II on automated reasoning) to the extent
that even the key idea of the theorem, S-polynomials, can be generated
automatically.� The Gröbner bases method can be applied in a growing number of seem-
ingly quite distinct fields as, for example, coding theory and cryptography,
robotics, systems and control theory, invariant theory, symbolics of com-
binatorial identities etc. (see again Section 2 in Chapter I). Interestingly,
it also can be applied to automated theorem proving (notably geometrical
theorem proving) and theorem invention and, by recent research in the
Theorema Group (see Chapter II), to fundamental questions of software
science like the automated generation of loop invariants of algorithms.

In this example, we see how the logic/mathematics/software science “magma”
reaches out and bends back to itself in a constant movement of expansion
and self-reference conquering higher and higher levels of understanding and
methodology. This process, by what we know from Gödel’s second theorem,
does not have any limitation. Translating this to the “politics” of an institu-
tion like the Softwarepark Hagenberg: As long as we base our expansion and
growth on research, there is no apparent limit to what we can achieve by our
cooperative effort embedded into the international research community.

As the founder of the Research Institute for Symbolic Computation (Jo-
hannes Kepler University) and the founder and head of the Softwarepark
Hagenberg (1987) I am proud to present the results of our joint research ef-
forts in this book and I look forward to the next steps of our joint growth in
intense interaction with the international research community. We will also
be particularly happy to welcome our colleagues from all over the world at
the research and conference facilities which we are currently expanding by
generous grants from the Upper Austrian Government.

I also want to thank my colleagues in the Softwarepark Hagenberg research
institutions for years of joint work and for their contributions to this book.
My sincere thanks go to the Austrian and Upper Austrian Governmental
Institutions and the various Austrian and EU research funding agencies and
programs that made it possible to create the Softwarepark Hagenberg and to
pursue our research.

Bruno Buchberger
Founder and Head of the Softwarepark Hagenberg

4 Bruno Buchberger

Figure 2 The Softwarepark Hagenberg.

References

[Buc65] B. Buchberger. An Algorithm for Finding the Basis Elements in the Residue
Class Ring Modulo a Zero Dimensional Polynomial Ideal. PhD thesis, Univer-
sity Innsbruck, Mathematical Institute, 1965. German, English translation in: J.
of Symbolic Computation, Special Issue on Logic, Mathematics, and Computer

Science: Interactions. Volume 41, Number 3–4, Pages 475–511, 2006.
[Buc70] B. Buchberger. An Algorithmical Criterion for the Solvability of Algebraic Sys-

tems of Equations. Aequationes mathematicae, 4(3):374–383, 1970. German. En-
glish translation in: B. Buchberger, F. Winkler (eds.), Groebner Bases and Appli-
cations, London Mathematical Society Lecture Note Series, Vol. 251, Cambridge
University Press, 1998, pp. 535–545.

[Buc04] B. Buchberger. Towards the Automated Synthesis of a Gröbner Bases Algorithm.
RACSAM (Rev. Acad. Cienc., Spanish Royal Academy of Science), 98(1):65–75,
2004.

Chapter I

Algorithms in Symbolic Computation

Peter Paule

Bruno Buchberger, Lena Kartashova, Manuel Kauers,

Carsten Schneider, Franz Winkler

The development of computer technology has brought forth a renaissance of
algorithmic mathematics which gave rise to the creation of new disciplines
like Computational Mathematics. Symbolic Computation, which constitutes
one of its major branches, is the main research focus of the Research Institute
for Symbolic Computation (RISC).

In Section 1, author P. Paule, one finds an introduction to the theme
together with comments on history as well as on the use of the computer for
mathematical discovery and proving. The remaining sections of the chapter
present more detailed descriptions of hot research topics currently pursued
at RISC.

In Section 2 the inventor of Gröbner Bases, B. Buchberger, describes ba-
sic notions and results, and underlines the principal relevance of Gröbner
bases by surprising recent applications. Section 3, author F. Winkler, gives
an introduction to algebraic curves; a summary of results in theory and appli-
cations (e.g., computer aided design) is given. Section 4, author M. Kauers,
reports on computer generated progress in lattice paths theory finding appli-
cations in combinatorics and physics. Section 5, author C. Schneider, provides
a description of an interdisciplinary research project with DESY (Deutsches
Elektronen-Synchrotron, Berlin/Zeuthen). Section 6, author E. Kartashova,
describes the development of Nonlinear Resonance Analysis, a new branch of
mathematical physics.

6 Peter Paule et al.

1 The Renaissance of Algorithmic Mathematics

“The mathematics of Egypt, of Babylon, and of the ancient Orient was all
of the algorithmic type. Dialectical mathematics—strictly logical, deductive
mathematics—originated with the Greeks. But it did not displace the algo-
rithmic. In Euclid, the role of dialectic is to justify a construction—i.e., an
algorithm. It is only in modern times that we find mathematics with little
or no algorithmic content. [. . .] Recent years seem to show a shift back to a
constructive or algorithmic view point.”

To support their impression the authors of [DH81] continue by citing
P. Henrici: “We never could have put a man on the moon if we had insisted
that the trajectories should be computed with dialectic rigor. [. . .] Dialectic
mathematics generates insight. Algorithmic mathematics generates results.”

Below we comment on various aspects of recent developments, including
topics like numerical analysis versus symbolic computation, and pure versus
applied mathematics. Then we present mathematical snapshots which—from
symbolic computation point of view—shed light on two fundamental mathe-
matical activities, discovery (computer-assisted guessing) and proving (using
computer algebra algorithms).

1.1 A Bit of History

We will high-light only some facets of the recent history of algorithmic math-
ematics. However, we first need to clarify what algorithmic mathematics is
about.

Algorithmic vs. Dialectic Mathematics

About thirty years ago P.J. Davis and R. Hersh in their marvelous book
[DH81] included a short subsection with exactly the same title. We only
make use of their example (finding

√
2) to distinguish between algorithmic

and dialectic (i.e. non-algorithmic) mathematics. But to the interested reader
we recommend the related entries of [DH81] for further reading.

Consider the problem to find a solution, denoted by
√

2, to the equation
x2 = 2.

Solution 1

Consider the sequence (xn)n≥1 defined for n ≥ 1 recursively by

I Algorithms in Symbolic Computation 7

xn+1 =
1

2

(
xn +

2

xn

)
,

with initial value x1 = 1. Then (xn)n≥1 converges to
√

2 with quadratic

rapidity. For example, x4 = 577
408 = 1.414215 . . . is already correct to 5 decimal

places. Note, the algorithm can be carried out with just addition and division,
and without complete theory of the real number system.

Solution 2

Consider the function f(x) = x2 − 2 defined on the interval from 0 to 2.
Observe that f is a continuous function with f(0) = −2 and f(2) = 2.
Therefore, according to the intermediate value theorem, there exists a real
number, let’s call it

√
2, such that f(

√
2) = 0. Note, the details of the

argument are based on properties of the real number system.
Solution 1 is algorithmic mathematics; solution 2 is the dialectic solution.

Note that, in a certain sense, neither solution 1 nor solution 2 is a solution
at all. Solution 1 gives us a better and better approximation, but no xn gives
us an exact solution. Solution 2 tells us that an exact solution exists between
0 and 2, but that is all it has to say.

Numerical Analysis vs. Symbolic Computation

Readers interested in the relatively young history of symbolic computation
are referred to respective entries in the books [GCL92] and [vzGG99]. Con-
cerning the first research journal in this field, [vzGG99] says, “The highly
successful Journal of Symbolic Computation, created in 1985 by Bruno Buch-
berger, is the undisputed leader for research publication.” So in 1981 when
the book [DH81] appeared, symbolic computation was still at a very early
stage of its development. This is reflected by statements like: “Certainly the
algorithmic approach is called for when the problem at hand requires a nu-
merical answer which is of importance for subsequent work either inside or
outside mathematics.”

Meanwhile this situation has changed quite a bit. Nowadays, symbolic com-
putation and numerical analysis can be viewed as two sides of the same medal,
i.e. of algorithmic mathematics. In other words, until today also symbolic
computation has developed into a discipline which provides an extremely
rich tool-box for problem solving outside or inside mathematics. Concerning
the latter aspect, in view of recent applications, including some being de-
scribed in the sections of this chapter, symbolic computation seems to evolve
into a key technology in mathematics.

8 Peter Paule et al.

In fact there are numerous ‘problems at hand’ which for subsequent (e.g.
numerical) work greatly benefit from simplification produced by symbolic
computation algorithms. As a simple example, let us consider the problem of
adding the first n natural numbers, i.e., to compute the sum

xn := 1 + 2 + · · · + n =

n∑

k=1

k.

Solution A

Consider the sequence (xn)n≥1 defined for n ≥ 1 recursively by

xn+1 = xn + n + 1,

with initial value x1 = 1. In other words, this computes the sum xn by
carrying out n − 1 additions. For example, x4 = x3 + 4 = (x2 + 3) + 4 =
((x1 + 2) + 3) + 4 = 10.

Solution B

Apply a symbolic summation algorithm (e.g., Gosper’s algorithm imple-
mented in most of the computer algebra systems) to simplify the sum; i.e.,
which finds that for n ≥ 1,

xn = 1
2n(n + 1).

Instead of carrying out n − 1 additions, this computes the sum xn by one
multiplication and one division by 2. For example, x4 = 1

2 · 4 · 5 = 10. In
other words, symbolic computation reduces the numerical task from n − 1
operations (additions) to 2!

There are many problems for which better solutions would be obtained
by a proper combination of numerical analysis with symbolic computation.
Such kind of research was the main theme of the Special Research Program
SFB F013 Numerical and Symbolic Scientific Computing (1998–2008), an ex-
cellence program of the Austrian Science Funds FWF, pursued by groups at
RISC, from numerical analysis and applied geometry at the Johannes Ke-
pler University (JKU), and at the Johann Radon Institute of Computational
and Applied Mathematics (RICAM) of the Austrian Academy of Sciences.
Starting in October 2008 this initiative has been continued at the JKU in
the form of the Doctoral Program Computational Mathematics , another ex-
cellence program of the FWF.

I Algorithms in Symbolic Computation 9

Pure vs. Applied Mathematics

Efforts in numerical analysis and symbolic computation to combine math-
ematics with the powers of the computer are continuing to revolutionize
mathematical research. For instance, as mentioned above, a relatively young
mathematical field like symbolic computation is growing more and more into
the role of a key technology within mathematics. As a by-product the dis-
tinction between ‘pure’ and ‘applied’ mathematics is taking on a less and less
definite form. This stays quite in contrast to a period of ‘Hardyism’ in the
younger history of mathematics.

G. H. Hardy (1877–1947).
From http://en.wikipedia.org/wiki/File:Ghhardy@72.jpg

Figure 1

The famous mathematician G.H. Hardy (1877–1947) insisted that all of
the mathematics he created during his life time was of no use at all. In
the concluding pages of his remarkable Apology [Har40] he wrote, “I have
never done anything ‘useful’. No discovery of mine has made, or is likely
to make, directly or indirectly, for good or for ill, the least difference to
the amenity of the world. I have helped to train other mathematicians, but
mathematicians of the same kind as myself, and their work has been, so far
at any rate as I have helped them to it, as useless as my own. Judged by all
practical standards, the value of my mathematical life is nil.” During that
time a pervasive unspoken sentiment began to spread, namely that there is
something ugly about applications. To see one of the strongest statements

10 Peter Paule et al.

about purity, let us again cite G.H. Hardy [Har40], “It is undeniable that a
good deal of elementary mathematics [. . .] has considerable practical utility.
These parts of mathematics are, on the whole, rather dull; they are just the
parts which have least aesthetic value. The ‘real’ mathematics of the ‘real’
mathematicians, the mathematics of Fermat and Euler and Gauss and Abel
and Riemann, is almost wholly ‘useless’.”

This attitude, sometimes called Hardyism, was “central to the dominant
ethos of twentieth-century mathematics” [DH81]. Only towards the end of
the seventies this credo began to soften up due to the beginning evolution of
computer technology. Bruno Buchberger has been one of the pioneers in this
development. Since he became JKU Professor in 1974 he has been pushing
and promoting the central role of computer mathematics. With the rapid
dissemination of computer technology such ideas were taken up. Attractive
positions were created, and the reputation of ‘applied’ mathematics was in-
creasing. Starting with this process in the U.S.A., the full wave of this de-
velopment came back to Europe with some delay. Let me cite from a recent
article [Due08] of Gunter Dueck, who in 1987 moved to IBM from his posi-
tion of a mathematics professor at the university of Bielefeld: “Rainer Janssen
(mein damaliger Manager bei IBM und heute CIO der Münchner Rück) und
ich schrieben im Jahre 1991 einen Artikel mit dem Titel ‘Mathematik: Es-
oterik oder Schlüsseltechnologie?’ Dort stand ich noch echt unter meinem
Zorn, als Angewandter Mathematiker ein triviales Nichts zu sein, welches
inexakte Methoden in der Industrie ganz ohne Beweis benutzt und mit Mil-
lioneneinsparungen protzt, obwohl gar nicht bewiesen werden kann, dass die
gewählte Methode die allerbeste gewesen ist.”

Nowadays the situation is about to change fundamentally. Things have
been already moved quite a bit. For example, today ‘Hardyists’ would say
that working in algorithmic mathematics is almost impossible without run-
ning into concrete applications! Concrete examples can be found in the sec-
tions below, in particular, in Section 5 which describes the use of symbolic
summation in particle physics.

To be fair to Hardy one should mention that despite his ‘Hardyistic’ state-
ments, he was following with interest modern developments, for example,
that of computing machines. In particular, he was appreciating the work of
Alan Turing. Thanks to Hardy’s recommendation, the Royal Society awarded
Turing 40 English pounds for the construction of a machine to compute the
zeros of the Riemann zeta function [dS04].

Before coming to the mathematical part of this section, another quote of
G. Dueck [Due08]: “Damals forderten Rainer Janssen und ich, dass Mathe-
matik sich als Schlüsseltechnologie begreifen sollte. [...] Ja, Mathematik ist
eine Schlüsseltechnologie, aber eine unter recht vielen, die alle zusammen
multi-kulturell ein Ganzes erschaffen können. Die Mathematik muss sich mit
freudigem Herzen diesem Ganzen widmen – dem Leben. Sie muss sich nach
außen verpflichtet zeigen, den Menschen und dem Leben etwas Wichtiges zu

I Algorithms in Symbolic Computation 11

sein und zu bringen.” It is exactly this attitude that one can find at a place
like the Softwarepark Hagenberg.

Computer-Assisted Discovery and Proving 1.2

First we comment on computer-assisted guessing in the context of mathe-
matical discovery. Then we turn to the activity of proving, more precisely,
to proving methods where computer algebra algorithms are used. Here we
restrict to this special type of computed-assisted proving; for general mathe-
matical proving machines like the THEOREMA system developed at RISC,
see Chapter II.

I.Q. Tests, Rabbits, and the Golden Section

Let us consider the following problem taken from an I.Q. test [Eys66, Auf-
gabe 13, Denksport I fuer Superintelligente] from the sixties of the last cen-
tury:

Continue the sequence 1, 1, 2, 3, 5, 8, 13, 21.

In the 21st century we let the computer do the problem. To this end we load
the RISC package GeneratingFunctions written by C. Mallinger [Mal96] in
the computer algebra system Mathematica:

In[1]:= ≪GeneratingFunctions.m

In the next step we input a little program that can be used to solve such I.Q.
tests automatically:

In[2]:= GuessNext2Values[Li] := Module[{rec},
rec = GuessRE[Li,c[k],{1,2},{0,3}];
RE2L[rec[[1]],c[k],Length[Li]+1]]

Finally the problem is solved automatically with

In[3]:= GuessNext2Values[{1, 1, 2, 3, 5, 8, 13, 21}]

Out[3]= {1,1,2,3,5,8,13,21,34,55}

To produce additional values is no problem:

In[4]:= GuessNext2Values[{1, 1, 2, 3, 5, 8, 13, 21, 34, 55}]

Out[4]= {1,1,2,3,5,8,13,21,34,55,89,144}

12 Peter Paule et al.

Note. The same automatic guessing can be done in the Maple system;
there B. Salvy and P. Zimmermann [SZ94] developed the poineering pack-
age gfun which has served as a model for the development of Mallinger’s
GeneratingFunctions.

What is the mathematical basis for such automatic guessing? The answer
originates in a simple observation: Many of the sequences (xn)n≥0 arising in
practical applications (and in I.Q. tests!) are produced from a very simple
pattern; namely, linear recurrences of the form

pd(n)xn+d + pd−1(n)xn+d−1 + · · · + p0(n)xn = 0, n ≥ 0,

with coefficients pi(n) being polynomials in n. So packages like Mallinger’s
GeneratingFunctions try to compute-via an ansatz using undetermined
coefficients-a recurrence of exactly this type. For the I.Q. example above
a recurrence is obtained by

In[5]:= GuessRE[{1, 1, 2, 3, 5, 8, 13, 21},f[n]]

Out[5]= {{-f[n]-f[1+n]+f[2+n]==0,f[0]==1,f[1]==1}, ogf}

Since only finitely many values are given as input, the output recurrence
fn+2 = fn+1 +fn (n ≥ 0) can be only a guess about a possible building prin-
ciple of an infinite sequence. However, such kind of automated guessing is
becoming more and more relevant to concrete applications. For instance, an
application from mathematical chemistry can be found in [CGP99] where a
prediction for the total number of benzenoid hydrocarbons was made. Three
years later this predication was confirmed [VGJ02]. Recently, quite sophisti-
cated applications arose in connection with the enumeration of lattice paths,
see Section 4, and also with quantum field theory, see Section 5.

In 1202 Leonard Fibonacci introduced the numbers fn. The fact that
f0 = f1 = 1, and

fn+2 = fn+1 + fn, n ≥ 0,

in Fibonacci’s book was given the following interpretation: If baby rabbits
become adults after one month, and if each pair of adult rabbits produces
one pair of baby rabbits every month, how many pairs of rabbits, starting
with one pair, are present after n months?

A non-recursive representation is the celebrated Euler-Binet formula

fn =
1√
5

(

1 +
√

5

2

)n+1

−
(

1 −
√

5

2

)n+1

 , n ≥ 0.

The number (1 +
√

5)/2 ≈ 1.611803, the golden ratio, is important in many
parts of mathematics as well as in the art world. For instance, Phidias is said
to have used it consciously in his sculpture.

I Algorithms in Symbolic Computation 13

Mathematicians gradually began to discover more and more interesting
things about Fibonacci numbers fn; see e.g. [GKP94]. For example, a typical
sunflower has a large head that contains spirals of tightly packed florets,
usually with f8 = 34 winding in one direction and f9 = 55 in another.

Another observation is this: Define gn as a sum over binomial coefficients
of the form

gn :=

n∑

k=0

(
n − k

k

)
.

From the values g0 = 1, g1 = 1, g2 = 2, g3 = 3, g4 = 5, and g5 = 8 it
is straight-forward to conjecture that the sequence (gn)n≥0 is nothing but
the Fibonacci sequence (fn)n≥0. In the next subsection we shall see that
nowadays such statements can be proved automatically with the computer.

Pi, Inequalities, and Finite Elements

We have seen that linear recurrences can be used as a basis for auto-
mated guessing. Concerning symbolic computation, this is only the begin-
ning. Namely, following D. Zeilberger’s holonomic paradigm [Zei90b], the
description of mathematical sequences in terms of linear recurrences, and
of mathematical functions in terms of linear differential equations, is also of
great importance to the design of computer algebra algorithms for automated
proving.

For example, consider the sequence (gn)n≥0 defined above. To prove the
statement

fn = gn, n ≥ 0,

in completely automatic fashion, we use the RISC package Zb [PS95], an
implementation of D. Zeilberger’s algorithm [Zei90a]:

In[6]:= ≪Zb.m

In[7]:= Zb[Binomial[n-k,k],{k,0,Infinity},n,2]

Out[7]= {SUM[n] + SUM[1 + n]− SUM[2 + n] == 0}

The output tells us that gn = SUM[n] indeed satisfies the same recurrence as
the Fibonacci numbers. A proof for the correctness of the output recurrence
can be obtained automatically, too; just type the command:

In[8]:= Prove[]

For further details concerning the mathematical background of this kind of
proofs, see e.g. Zeilberger’s articles [Zei90b] and [Zei90a] which were the
booster charge for the development of a new subfield of symbolic computa-
tion; namely, the design of computer algebra algorithms for special functions

14 Peter Paule et al.

and sequences. For respective RISC developments the interested reader is
referred to the web page

http://www.risc.uni-linz.ac.at/research/combinat

For various applications researchers are using such algorithms in their daily
research work-sometimes still in combination with tables. However, there are
particular problem classes where symbolic (and numeric) algorithms are going
to replace tables almost completely.

Concerning special sequences the most relevant table is N. Sloane’s hand-
book [Slo73], [Slo94]. Sloane’s home page provides an extended electronic
version of it; also symbolic computation algorithms are used to retrieve in-
formation about sequences .

Concerning special functions one of the most prominent tables is the
‘Handbook’ [AS64] from 1964. Soon it will be replaced by its strongly revised
successor, the NIST Digital Library of Mathematical Functions (DLMF); see
http://dlfm.nist.gov. The author of this section is serving as an associate
editor of this new handbook (and author, together with F. Chyzak, of a new
chapter on computer algebra) that will be freely available via the web.

We expect the development of special provers will intensify quite a bit.
By special provers we mean methods based on computer algebra algorithms
specially tailored for certain families of mathematical objects. Special function
inequalities provide a classical domain that so far has been considered as
being hardly accessible by such methods. To conclude this section we briefly
describe that currently this situation is about to change.

Consider the famous Wallis product formula for π:

π = 2 · 2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· 8

9
· · · · .

This product is an immediate consequence (n → ∞) of the following inequal-
ity (John Wallis, Arithmetica Infinitorum, 1656):

2n

2n + 1
≤ cn

π
≤ 1, n ≥ 0,

where

cn :=
24n+1

2n + 1

(
2n

n

)−2

.

In analysis one meets such inequalities quite frequently. Another example,
similar to that of Wallis, is

1

4n
≤ an ≤ 1

3n + 1
, n ≥ 0,

where

an :=
1

24n

(
2n

n

)2

.

I Algorithms in Symbolic Computation 15

We shall prove the right hand side, i.e. an ≤ 1/(3n + 1), (the left hand
side goes analogously) to exemplify the new Gerhold-Kauers method [GK05]
for proving special function/sequence inequalities. As proof strategy they
use mathematical induction combined with G. Collins’ cylindrical algebraic
decomposition (CAD). First observe that

an+1 = an
(2n + 1)2

(2n + 2)2
≤ 1

3n + 1

(2n + 1)2

(2n + 2)2
,

where for the inequality the induction hypothesis is used. In order to show
that this implies an+1 ≤ 1/(3n + 4), it is sufficient to establish that

1

3n + 1

(2n + 1)2

(2n + 2)2
≤ 1

3n + 4
.

But this step can be carried out automatically with any implementation of
Collins’ CAD; for instance, in Mathematica:

In[9]:= Reduce[1
3n+1

(2n+1)2

(2n+2)2
≤ 1

3n+4
, n]

Out[9]= − 4
3

< n < −1 || −1 < n < − 1
3
|| n ≥ 0

The Gerhold-Kauers method already found quite a number of non-trivial
applications. They range from new refinements of Wallis’ inequality [PP08]
like

32n2 + 32n + 7

4(2n + 1)(4n + 3)
≤ cn

π
≤ 16(n + 1)(2n + 1)

32n2 + 56n + 25
, n ≥ 0,

to a proof of the long-standing log-concavity conjecture of V. Moll [KP07].
Further applications and details about the method are given in [Kau08].

We want to conclude by referring to results that emerged from numerical-
symbolic SFB collaboration in the context of finite element methods (FEM).
In order to set up a new FEM setting, J. Schöberl (RWTH Aachen, formerly
JKU) needed to prove the following special function inequality:

n∑

j=0

(4j + 1)(2n − 2j + 1)P2j(0)P2j(x) ≥ 0

for −1 ≤ x ≤ 1, n ≥ 0, and with P2j(x) being the Legendre polynomials.
Using the Gerhold-Kauers method together with RISC symbolic summation
software, V. Pillwein [Pil07] was able to settle this conjecture. Remarkably,
there is still no human proof available!

Last but not least, we mention a recent collaboration of J. Schöberl with
C. Koutschan (RISC), which led to a new tool for engineering applica-
tions in the context of electromagnetic wave simulation. Formulas derived by
Koutschan’s symbolic package HolonomicFunctions resulted in a significant
speed-up of numerical FEM algorithms e.g. for the construction of antennas
or mobile phones. The method is planned to be registered as a patent.

16 Peter Paule et al.

2 Gröbner Bases Theory for Nonlinear
Polynomial Systems

2.1 The Relevance of Gröbner Bases Theory

To a great extent, Gröbner bases theory was the starting point of the Research
Institute for Symbolic Computation and, hence, the Softwarepark Hagenberg.
Gröbner bases theory was initiated in the PhD thesis [Buc65, Buc70] and
turned out to be one of the first coherent results in the emerging area of what
was later called “computer algebra”. Gröbner bases theory allows to handle
a big variety of fundamental problems connected to systems of multivariate
polynomials, for example the problem of solving such systems (finding all
common roots of such systems) or the problem of deciding whether two given
multivariate polynomials are “equivalent” with respect to a given system of
multivariate polynomials.

Since nonlinear polynomial systems are a mathematical model for a large
class of problems in science and engineering, it is no surprise that a general
algorithmic method like the Gröbner bases method for handling such systems
has an unlimited range of applications. In fact, in many fields of science
and engineering, prior to the advent of Gröbner bases theory only linear
approximations of the actual problems could be studied. In some cases, if we
are satisfied with approximate solutions, linear approximations to the original
models may be good enough. However, there are many areas in which only the
exact treatment of the exact non-linear problems gives meaningful answers.
For example, graph coloring problems can be translated into the problem of
solving certain non-linear polynomial systems, see below, where each solution
corresponds to a possible coloring. Linear approximations to the systems or
approximations to the solutions of the original systems would not make it
possible to distinguish between or identify the various colorings.

Over the years, a many applications of Gröbner bases theory, some of
them quite surprising, have been found. An overview on these applications,
up to 1998, can be found in the proceedings [BW98]. An online-bibliography
has been compiled at the occasion of the Special Semester on Gröbner Bases
at the Radon Institute for Computational and Applied Mathematics (RI-
CAM) in Linz 2006, which contains over 1000 papers on Gröbner bases, see
www.ricam.oeaw.ac.at/specsem/srs/groeb/ (follow link “Bibliography”). A
quick way of getting access to the growing literature on Gröbner bases is to
use the online citation index “citeseer” (at researchindex.org/). If one enters
“Gröbner” or “Buchberger”, one will obtain several thousand citations of
papers containing contributions to the development, extension and improve-
ment of the Gröbner bases method and its many applications. Also, there are

I Algorithms in Symbolic Computation 17

a couple of textbooks available on Gröbner bases, see for example [BW93]
and [KR00]. The latter contains a list of most other textbooks on Gröbner
bases in its introduction.

Applications of Gröbner bases reach from algebraic geometry or polyno-
mial ideal theory (the original field for which Gröbner bases theory was in-
vented in [Buc65, Buc70]) to invariant theory, coding theory, cryptography
and cryptoanalysis, systems theory, control theory, automated geometrical
theorem proving, graph theory, invention and proof of combinatorial identi-
ties, software engineering, integration of differential equations and many oth-
ers. Here are some surprising recent applications of Gröbner bases in quite
distinct areas:

Origami Construction: The Japanese art of Origami aims at constructing
two-dimensional and three-dimensional objects by certain folding opera-
tions starting from a square paper sheet. Six classes of folding operations
are permitted. The mathematical problem consists in deciding whether a
given sequence of operations provenly leads to an object having prescribed
properties. For example, ways were proposed to fold a regular heptagon
from the initial square using only Origami folding operations. In this case,
the question is to prove rigorously that a proposed sequence of operations
results, indeed, in a heptagon. Gröbner bases can be used for proving or
disproving the correctness of arbitrary such sequences of operations for
arbitrary properties (that can be described by multivariate polynomials)
completely automatically. The method consists, roughly, in translating the
sequence of operations into a set of polynomial relations (which is easily
possible) and to check whether or not the polynomial that describes the
desired property is in the “ideal” generated by the polynomial relations,
which is always possible by the Gröbner bases methodology. For details,
see for example [ITBR04].

Solution of Linear Boundary Value Problems: Initial value problems for a
wide class of differential equations can be solved by symbolic methods.
For boundary value problems, there were hardly any symbolic methods
available. A generalization of Gröbner bases theory for non-commutative
polynomials allows now to obtain symbolic solutions also for boundary
value problems. In this new application, the strength of the Gröbner bases
method is demonstrated by the fact that the invention of the Green’s func-
tions, which was deemed to be an ad hoc creative process for each boundary
value problem, is replaced by a completely algorithmic procedure, which
is nothing else than just the reduction (“remaindering”) operation w.r.t. a
(non-commutative) Gröbner basis, which represents the relations between
the fundamental operations of functional analysis for boundary problems,
see [RBE03].

Optimization of Oil Platforms (the “Algebraic Oil Project”): In this surpri-
sing application, the fundamental problem of improved control of the
valves on an oil platform, with unknown geometry of the oil caverns under
the sea, is attacked. In a “learning phase” the quantity of oil produced in

18 Peter Paule et al.

dependence on the position of the valves on the platform is measured. The
assumption is made that this dependence can be described by a system
of multivariate polynomials (whose coefficients are unknown in the learn-
ing phase). With the data collected from sufficiently many measurements,
the Gröbner bases method allows then to determine these coefficients (in
fact, the system of polynomials generated for modelling the flow will be a
Gröbner basis). Now, this multivariate polynomial model of the flow can
be used, in the “application phase”, to optimize the flow w.r.t. various
criteria. This new application of (a numerical variant of) Gröbner bases
was proposed in a cooperation between Shell company and the CoCoA
Group, see [HKPP06]. The results are practically promising.

Automated Synthesis of Loop Invariants for Programs: The proof that pro-
grams meet their specification is one of the fundamental problems in com-
puter science. The method of “loop invariants” for solving this problem
requests that, for certain points in the given program, an assertion (for-
mula), called a “loop invariant” is invented for which one can prove that,
for every moment the program gets to that point the respective assertion
is true for the values of the program variables. The invention of these loop
invariants often needs quite some creativity and this is a major obstacle for
the practical use of the method of loop invariants. In the Theorema Group
at RISC, a method was developed by which, for a wide class of programs,
these loop invariants can be generated by a combination of symbolic ex-
ecution of the program, solution of the resulting recursive equations, see
Section 1 above, and the use of the Gröbner bases method, see Chapter II
on automated reasoning in this book.

Breaking Cryptographic Codes: Gröbner bases are being used both for con-
structing cryptosystems as well as for trying to break such systems (crypto-
analysis). Breaking an (algebraic) crypto-code basically amounts to solving
a system of nonlinear algebraic equations with Boolean coefficients for the
values that constitute the bits of the unknown code, i.e. the number of
unknowns in the system is the number of unknown bits in the code. Typ-
ically, this number is 80 or more. Recently, proposals for algebraic codes
that have been deemed to be sufficiently safe have been broken using the
Gröbner bases method, see [FJ03]. This was one of the most exciting recent
applications of Gröbner bases.

The Determination of Species Relationship in Evolution: In this research
area, the probabilities of one species being closer in the evolution with
some species than with some other species are determined from an analy-
sis of the genetic codes of species. The result of such an analysis is called
the phylogenetic tree of the species. In [CP07] it has recently been shown
how this problem of finding the mutual neighborhood probabilities can be
cast into the language of multivariate polynomial ideals in Gröbner bases
form.

Wavelets: Wavelets are spectra of functions. Each function in a spectrum
is determined by a couple of parameters. By combining the functions in

I Algorithms in Symbolic Computation 19

a spectrum, i.e. by specifying the values of the individual parameters in
a spectrum, (graphical) information can be presented in highly condensed
form (“data compression”). The search for suitable spectra of wavelets is
an important research topic in wavelet theory. This search leads to systems
of algebraic equations that recently have been solved by the Gröbner bases
method, see [CPS+01].

Gröbner bases theory is still a very active research area with focus on gen-
eralizations of the method (e.g. the non-commutative case), specializations
for certain classes of polynomial sets (e.g. toric sets) with higher efficiency,
new approaches to compute Gröbner bases for improving the efficiency, nu-
meric variants of the method, and new applications in a big spectrum of
different areas.

Gröbner Bases: Basic Notions and Results 2.2

Gröbner bases are sets of multivariate polynomials that enjoy certain unique-
ness properties, which make it possible to solve many fundamental problems
on such sets algorithmically. The main result of algorithmic Gröbner bases
theory is that any finite set of multivariate polynomials can be transformed,
by an algorithm, into an equivalent Gröbner basis and that, hence, many
fundamental problems on arbitrary sets of multivariate polynomials can be
solved algorithmically by, first, transforming the sets into Gröbner bases form
and then using the respective algorithms for Gröbner bases. Three examples
of such fundamental problems that can be solved algorithmically by trans-
formation into Gröbner bases form are:� the exact solution of systems of multivariate polynomial equations,� the problem of deciding whether or not two given multivariate polynomials

are equivalent w.r.t. to a given set of multivariate polynomials that define
the equivalence,� the problem of solving “diophantine” equations, i.e. the problem of find-
ing (all) multivariate polynomials that satisfy linear relations whose coef-
ficients are also multivariate polynomials.

We explain here one of the many different, equivalent, ways of defining
the notion of Gröbner bases. For this, consider for example the two quadratic
bivariate polynomials f1 and f2 in the indeterminates x and y:

f1 := −2y + xy f2 := x2 + y2.

If we fix an ordering on the power products (for example, the lexicographic
ordering that ranks y higher than x), each polynomial has a “leading power

20 Peter Paule et al.

product”, in our case xy and y2, respectively. Consider now the following
linear combination g of f1 and f2:

g := (y)f1 + (−x + 2)f2 = 2x2 − x3.

Observation: The leading power product x3 of g is neither a multiple of the
leading power product xy of f1 nor a multiple of the leading power product
y2 of f2. Now, a set F of multivariate polynomials is called a Gröbner basis
(w.r.t. the chosen ordering of power products) iff the above phenomenon
cannot happen, i.e.

for all f1, . . . , fm ∈ F and all (infinitely many possible) polynomials
h1, . . . , hm, the leading power product of h1f1 + . . . + hmfm is a multiple
of the leading power product of at least one of the polynomials in F .

Example 1. The Set F := {f1, f2} is not a Gröbner basis. The equivalent
Gröbner basis is {f1, f2, f3}, where f3 := 2x2−x3, which can only be checked
by the theorem below.

The following theorem is the crucial result on which the algorithmic use-
fulness of Gröbner bases hinges.

Theorem 2 (Buchberger). F is a Gröbner basis iff, for all f1, f2, the
remainder of the S-polynomial of f1 and f2 w.r.t. F is 0.

The remainder of a multivariate polynomial w.r.t. a set of such polynomi-
als is the rest in a generalized polynomial division, which is an algorithmic
process. The S-polynomial of two multivariate polynomials is obtained by
multiplying the two polynomials with the lowest possible power products
that make the leading power products equal and by subtracting the resulting
two polynomials. In the above example, the S-polynomial of f1 and f2 is

y(−2y + xy) − x(x2 + y2) = −x3 − 2y2.

The proof of this theorem is difficult, see [Buc98] for a concise version. The
algorithmic power of the Gröbner bases method is based on this theorem
and its proof because the theorem shows, essentially, that the infinite test
appearing in the definition of Gröbner bases for checking whether or not a
given set F is a Gröbner basis can be replaced by the finite, algorithmic, test
on the right-hand side of the theorem! This theorem can now be transformed
into an algorithm for constructing Gröbner bases, i.e. for the problem to
find, for any given multivariate polynomial set F , a set G such that G is a
Gröbner basis and F and G generate the same set of linear combinations, see
Algorithm 1.

The notion of Gröbner bases, the theorem on the characterization of
Gröbner bases by S-polynomials, and the algorithm for the construction of
Gröbner bases, together with termination proof, first applications and com-
plexity considerations, were introduced in the PhD thesis [Buc65] and the cor-
responding journal publication [Buc70]. Buchberger gave the name “Gröbner”

I Algorithms in Symbolic Computation 21

Algorithm 1. Buchberger’s Algorithm
Start with G← F

for all pairs of polynomials f1, f2 ∈ G do

h← remainder of the S-polynomial of f1 and f2 w.r.t G

if h = 0 then

consider the next pair
else

add h to G and iterate
end if

end for

to his theory for honoring his PhD thesis advisor Wolfgang Gröbner (1899–
1980).

Example 3. Solving the problem of graph coloring by Gröbner bases. This
problem consists in finding all admissible colorings in k colors of a graph with
n vertices and edges E. A coloring of the vertices of a graph is admissible if
no two adjacent vertices obtain the same color. For example, the left picture
in Figure 2 is an admissible coloring in 3 colors of a graph with 4 vertices
and edges {1, 2}, {1, 3}, {2, 3}, {3, 4}, whereas the right picture in Figure 2
is not an admissible coloring in 3 colors of the same graph.

1 2

3 4

�
�

�
�

�
�

1 2

3 4

�
�

�
�

�
�

An admissible and a non-admissible coloring of a graph. Figure 2

It is easy to see that the possible colorings of a graph can be obtained by
considering all solutions of a certain system of polynomial equations (where
the n indeterminates appearing in the polynomials correspond to the colors
a the n vertices). We illustrate the construction of the polynomial system in
the example:

22 Peter Paule et al.

{−1 + x3
1, . . . the color at vertex 1 is a ternary root of 1, i.e. the

three ternary roots of 1 encode the three colors

−1 + x3
2, . . . the color at vertex 2 is a ternary root of 1,

−1 + x3
3,

−1 + x3
4,

x2
1 + x1x2 + x2

2, . . . the colors at 1 and 2 must be different

x2
1 + x1x3 + x2

3,

x2
2 + x2x3 + x2

3,

x2
3 + x3x4 + x2

4}

Now, compute a Gröbner basis of this polynomial set (this can be done by
using for example Mathematica because, nowadays, Buchberger’s algorithm
is routinely available in all mathematical software systems) and compute all
solutions. The corresponding Gröbner basis is:

{
−1 + x3

1, x
2
1 + x1x2 + x2

2,−x1 − x2 − x3,−x1x2 + x1x4 + x2x4 − x2
4

}
.

One sees that the corresponding Gröbner basis is “decoupled” (this is
one of the fundamental properties of Gröbner bases w.r.t. to lexicographic
orderings), i.e. it can be completely solved by determining the values of one
indeterminate after the other, starting with the first polynomial, which is
always a polynomial in the first indeterminate only. In our case, we obtain
the following set of solutions:

{
{x1 → 1, x2 → −(−1)1/3, x3 → −1 + (−1)1/3, x4 → 1},

{x1 → 1, x2 → −(−1)1/3, x3 → −1 + (−1)1/3, x4 → −(−1)1/3},
{x1 → 1, x2 → (−1)2/3, x3 → −1 − (−1)2/3, x4 → 1},
{x1 → 1, x2 → (−1)2/3, x3 → −1 − (−1)2/3, x4 → (−1)2/3},
{x1 → −(−1)1/3, x2 → 1, x3 → −1 + (−1)1/3, x4 → 1},
{x1 → −(−1)1/3, x2 → 1, x3 → −1 + (−1)1/3, x4 → −(−1)1/3},
{x1 → −(−1)1/3, x2 → −1 + (−1)1/3, x3 → 1, x4 → −(−1)1/3},
{x1 → −(−1)1/3, x2 → −1 + (−1)1/3, x3 → 1, x4 → −1 + (−1)1/3},
{x1 → (−1)2/3, x2 → 1, x3 → −1 − (−1)2/3, x4 → 1},
{x1 → (−1)2/3, x2 → 1, x3 → −1 − (−1)2/3, x4 → (−1)2/3},
{x1 → (−1)2/3, x2 → −1 − (−1)2/3, x3 → 1, x4 → (−1)2/3},
{x1 → (−1)2/3, x2 → −1 − (−1)2/3, x3 → 1, x4 → −1 − (−1)2/3}

}

I Algorithms in Symbolic Computation 23

For example, the solution

{x1 → 1, x2 → −(−1)1/3, x3 → −1 + (−1)1/3, x4 → −(−1)1/3} (1)

corresponds to the coloring illustrated in Figure 3.

1 2

3 4

�
�

�
�

�
�

The graph coloring corresponding to the solution (1) of a system of poly-
nomial equations.

Figure 3

Oversimplified, the strategy for solving problems with Gröbner bases consists
of the following steps:

1. Describe the problem (e.g. “coloring”), if possible, by sets of multivariate
polynomials (e.g. polynomials on “roots of unity” instead of “colors”).

2. Transform the occurring sets of polynomials into Gröbner basis form.
3. Solve the problem for the corresponding Gröbner bases (which, typically,

is simpler than for the original sets). (For instance, find all solutions of the
Gröbner basis.)

4. Translate the solutions back to the original sets. (In the case of finding
solutions, the solutions of the Gröbner basis are the same as the solutions
of the original system.)

5. Interpret the results in the language of the original problem (e.g. translate
“roots of unity” into “colors”).

24 Peter Paule et al.

3 Rational Algebraic Curves – Theory
and Application

3.1 What is a Rational Algebraic Curve?

A plane algebraic curve C is the zero locus of a bivariate square-free polyno-
mial f(x, y) defined over a field K; i.e.

C = { (a, b) | f(a, b) = 0 } .

More specifically, we call such a curve an affine curve, and the ambient plane
the affine plane over K, denoted by A2(K). By adding points at infinity
for every direction in the affine plane, we get the projective plane over K,
denoted by P2(K). Points in P2(K) have (non-unique) projective coordinates
(a : b : c) with (a, b, c) 6= (0, 0, 0). In projective space only the ratio of the
coordinates is fixed; i.e. if λ 6= 0 then (a : b : c) and (λa : λb : λc) denote
the same point in P2(K). A projective plane curve Ĉ is the zero locus of a
homogeneous bivariate square-free polynomial F (x, y, z) over K; i.e.

Ĉ = { (a : b : c) |F (a, b, c) = 0 } .

An algebraic curve in higher dimensional affine or projective space is the
image of a birational map from the plane into this higher dimensional space.
In this paper we concentrate on plane algebraic curves. Algebraic curves in
higher dimensional space can be treated by considering a suitable birational
image in the plane.

For more detailled information on the topics treated in this paper we refer
to [SWPD08]. Most of the material for this survey has been developed by the
author together with J.Rafael Sendra.

Some plane algebraic curves can be expressed by means of rational
parametrizations, i.e. pairs of univariate rational functions. For instance, the
tacnode curve (see Figure 4) defined in A2(C) by the polynomial equation

f(x, y) = 2x4 − 3x2y + y2 − 2y3 + y4 = 0

can be represented as

{(
t3 − 6t2 + 9t − 2

2t4 − 16t3 + 40t2 − 32t + 9
,

t2 − 4t + 4

2t4 − 16t3 + 40t2 − 32t + 9

) ∣∣∣∣ t ∈ C

}
.

However, not all plane algebraic curves can be rationally parametrized, for
instance the elliptic curve defined by f(x, y) = x3 + y3 − 1 in A2(C).

I Algorithms in Symbolic Computation 25

–0.5

0

0.5

1

2

2.5

y

–2 –1 1 2
x

The Tacnode curve. Figure 4

Definition 4. The affine curve C in A2(K) defined by the square–free poly-
nomial f(x, y) is rational (or parametrizable) if there are rational functions
χ1(t), χ2(t) ∈ K(t) such that for almost all t0 ∈ K (i.e. for all but a finite
number of exceptions) the point (χ1(t0), χ2(t0)) is on C, and for almost every
point (x0, y0) ∈ C there is a t0 ∈ K such that (x0, y0) = (χ1(t0), χ2(t0)). In
this case (χ1(t), χ2(t)) is called an affine rational parametrization of C.

Analogously we define projective rational curves.

Some Basic Facts 3.2

Fact 1. The notion of rational parametrization can be stated by means of
rational maps. More precisely, let C be a rational affine curve and P(t) ∈
K(t)2 a rational parametrization of C. The parametrization P(t) induces the
rational map

P : A1(K) −→ C
t 7−→ P(t),

and P(A1(K)) is a dense (in the Zariski topology) subset of C. Sometimes, by
abuse of notation, we also call this rational map a rational parametrization
of C.

26 Peter Paule et al.

Fact 2. Every rational parametrization P(t) defines a monomorphism from
the field of rational functions K(C) to K(t) as follows:

ϕ : K(C) −→ K(t)

R(x, y) 7−→ R(P(t)).

Fact 3. Every rational curve is irreducible; i.e. defined by an irreducible poly-
nomial.

Fact 4. Let C be an irreducible affine curve and C∗ its corresponding projec-
tive curve. Then C is rational if and only if C∗ is rational. Furthermore, a
parametrization of C can be computed from a parametrization of C∗ and vice
versa.

Fact 5. Let C be an affine rational curve over K, f(x, y) its the defining
polynomial, and P(t) = (χ1(t), χ2(t)) a rational parametrization of C. Then,
there exists r ∈ N such that rest(H

P
1 (t, x), HP2 (t, y)) = (f(x, y))r.

Fact 6. An irreducible curve C, defined by f(x, y), is rational if and only if
there exist rational functions χ1(t), χ2(t) ∈ K(t), not both constant, such that
f(χ1(t), χ2(t)) = 0. In this case, (χ1(t), χ2(t)) is a rational parametrization
of C.

Fact 7. An irreducible affine curve C is rational if and only if the field of
rational functions on C, i.e. K(C), is isomorphic to K(t) (t a transcendental
element).

Fact 8. An affine algebraic curve C is rational if and only if it is birationally
equivalent to K (i.e. the affine line A1(K)).

Fact 9. If an algebraic curve C is rational then genus(C) = 0.

3.3 Proper Parametrizations

Definition 5. An affine parametrization P(t) of a rational curve C is proper
if the map

P : A1(K) −→ C
t 7−→ P(t)

is birational, or equivalently, if almost every point on C is generated by exactly
one value of the parameter t. We define the inversion of a proper parametriza-
tion P(t) as the inverse rational mapping of P , and we denote it by P−1.

Analogously we define proper projective parametrizations.

I Algorithms in Symbolic Computation 27

Based on Lüroth’s Theorem we can see that every rational curve which
can be parametrized at all, can be properly parametrized.

Fact 10. Every rational curve can be properly parametrized.

Proper parametrizations can be characterized in many ways; we list some
of the more practically usefull characterizations.

Fact 11. Let C be an affine rational curve defined over K with defining poly-
nomial f(x, y) ∈ K[x, y], and let P(t) = (χ1(t), χ2(t)) be a parametrization
of C. Then, the following statements are equivalent:

1. P(t) is proper.
2. The monomorphism ϕP induced by P is an isomorphism.

ϕP : K(C) −→ K(t)

R(x, y) 7−→ R(P(t)).

3. K(P(t)) = K(t).
4. deg(P(t)) = max{degx(f), degy(f)}.

Furthermore, if P(t) is proper and χ1(t) is non-zero, then deg(χ1(t)) =
degy(f); similarly, if χ2(t) is non-zero then deg(χ2(t))=degx(f).

Example 6. We consider the rational quintic curve C defined by the polyno-
mial f(x, y) = y5 + x2y3 − 3 x2y2 + 3 x2y − x2. By the previous theorem, any
proper rational parametrization of C must have a first component of degree
5, and a second component of degree 2. It is easy to check that

P(t) =

(
t5

t2 + 1
,

t2

t2 + 1

)

properly parametrizes C. Note that f(P(t)) = 0.

A Parametrization Algorithm 3.4

We start with the easy case of curves having a singular point of highest
possible multiplicity; i.e. irreducible curves of degree d having a point of
multiplicity d − 1.

Theorem 7 (curves with point of high multiplicity). Let C be an ir-
reducible projective curve of degree d defined by the polynomial F (x, y, z) =
fd(x, y) + fd−1(x, y)z (fi a form of degree i, resp.), i.e. having a (d − 1)–
fold point at (0 : 0 : 1). Then C is rational and a rational parametrization is
P(t) = (−fd−1(1, t),−tfd−1(1, t), fd(1, t)).

28 Peter Paule et al.

Corollary 8. Every irreducible curve of degree d with a (d − 1)-fold point is
rational; in particular, every irreducible conic is rational.

Example 9.

1. Let C be the affine ellipse defined by f(x, y) = x2 + 2x + 2y2 = 0. So, a
parametrization of C is P(t) = (−1 + 2 t2,−2 t, 1 + 2 t2).

2. Let C be the affine quartic curve defined by (see Figure 5)

f(x, y) = 1+x−15 x2−29 y2+30 y3−25 xy2+x3y+35 xy+x4−6 y4+6 x2y = 0 .

C has an affine triple point at (1, 1). By moving this point to the origin,

–4

–2

0

2

4

y

–4 –2 2 4x

Figure 5 Quartic C.

applying the theorem, and inverting the transformation, we get the rational
parametrization of C

P(t) =

(
4 + 6 t3 − 25 t2 + 8 t + 6 t4

−1 + 6 t4 − t
,

4 t + 12 t4 − 25 t3 + 9 t2 − 1

−1 + 6 t4 − t

)
.

So curves with a point of highest possible multiplicity can be easily
parametrized. But now let C will be an arbitrary irreducible projective curve
of degree d > 2 and genus 0.

Definition 10. A linear system of curves H parametrizes C iff

1. dim(H) = 1,

I Algorithms in Symbolic Computation 29

2. the intersection of a generic element in H and C contains a non–constant
point whose coordinates depend rationally on the free parameter in H,

3. C is not a component of any curve in H.

In this case we say that C is parametrizable by H.

Theorem 11. Let F (x, y, z) be the defining polynomial of C, and let H(t, x, y, z)
be the defining polynomial of a linear system H(t) parametrizing C. Then, the
proper parametrization P(t) generated by H(t) is the solution in P2(K(t)) of
the system of algebraic equations

ppt(resy(F, H)) = 0

ppt(resx(F, H)) = 0

}
.

Theorem 12. Let C be a projective curve of degree d and genus 0, let k ∈
{d− 1, d− 2}, and let Sk be a set of kd− (d− 1)(d− 2)− 1 simple points on
C. Then

Ak(C) ∩H(k,
∑

P∈Sk

P)

(i.e. the system of adjoint curves of degree k passing through Sk) parametrizes
the curve C.

Example 13. Let C be the quartic over C (see Figure 6) of equation

F (x, y, z) = −2xy2z − 48x2z2 + 4xyz2 − 2x3z + x3y − 6y4 + 48y2z2 + 6x4.

The singular locus of C is

Sing(C) = {(0 : 0 : 1), (2 : 2 : 1), (−2 : 2 : 1)},

all three points being double points. Therefore, genus(C) = 0, and hence C is
rational.

We proceed to parametrize the curve. The defining polynomial of A2(C)
(adjoint curves of degree 2) is

H(x, y, z) = (−2 a02 − 2 a20) yz + a02y
2 − 2 a11xz + a1,1xy + a20x

2.

We choose a set S ⊂ (C \ Sing(C)) with 1 point, namely S = {(3 : 0 : 1)}. We
compute the defining polynomial of H := A2(C) ∩ H(2, Q), where Q = (3 :
0 : 1). This leads to

H(x, y, z) = (−2 a02 − 2 a20) yz + a02y
2 − 3 a20xz +

3

2
a20xy + a20x

2.

Setting a02 = 1, a20 = t, we get the defining polynomial

H(t, x, y, z) = (−2 − 2 t) yz + y2 − 3 txz +
3

2
txy + tx2

30 Peter Paule et al.

–6

–4

–2

0

2

4

6

y

–6 –4 –2 2 4 6

x

Figure 6 C⋆,z .

of the parametrizing system. Finally, the solution of the system defined by
the resultants provides the following affine parametrization of C

P(t) =

„

12
9 t4 + t3 − 51 t2 + t + 8

126 t4 − 297 t3 + 72 t2 + 8 t − 36
, −2

t(162 t3 − 459 t2 + 145 t + 136)

126 t4 − 297 t3 + 72 t2 + 8 t− 36

«

.

3.5 Applications of Curve Parametrization

Curve parametrizations can be used to solve certain types of Diophantine
equations. For further details on this application we refer to [PV00], [PV02].

Curve parametrizations can also be used to determine general solutions of
first order ordinary differential equations. This is described in [FG04], [FG06].

Many problems in computer aided geometric design (CAGD) can be solved
by parametrization. The widely used Bézier curves and surfaces are typical
examples of rational curves and surfaces. Offsetting and blending of such
geometrical objects lead to interesting problems.

The notion of an offset is directly related to the concept of an envelope.
More precisely, the offset curve, at distance d, to an irreducible plane curve C
is “essentially” the envelope of the system of circles centered at the points of C
with fixed radius d (see Figure 7). Offsets arise in practical applications such

I Algorithms in Symbolic Computation 31

Parabola

Offset

-4 -2 2 4 6

-2

2

4

6

Generation of the offsets to the parabola. Figure 7

as tolerance analysis, geometric control, robot path-planning and numerical-
control machining problems.

In general the rationality of the original curve is not preserved in the
transition to the offset. For instance, while the parabola, the ellipse, and the
hyperbola are rational curves (compare Figure 8), the offset of a parabola is
rational but the offset of an ellipse or a hyperbola is not rational.

Offsets to the parabola (left), to the hyperbola (center), to the ellipse
(right).

Figure 8

Let C be the original rational curve and let

P(t) = (P1(t), P2(t))

32 Peter Paule et al.

be a proper rational parametrization of C.
We determine the normal vector associated to the parametrization P(t),
namely

N (t) := (−P
′

2(t), P
′

1(t)).

Note that the offset at distance d basically consist of the points of the form

P(t) ± d√
P

′

1(t)2 + P
′

2(t)2
N (t).

Now we check whether this parametrization satisfies the “rational Pythagorean
hodograph condition”, i.e. whether

P
′

1(t)2 + P
′

2(t)2,

written in reduced form, is the square of a rational function in t. If the con-
dition holds, then the offset to C has two components, and both components
are rational. In fact, these two components are parametrized as

P(t) +
d

m(t)
N (t), and P(t) − d

m(t)
N (t),

where P
′

1(t)2 + P
′

2(t)2 = a(t)2/b(t)2 and m(t) = a(t)/b(t).
If the rational Pythagorean hodograph condition does not hold, then the
offset is irreducible and we may determine its rationality.

Example 14. We consider as initial curve the parabola of equation y = x2,
and its proper parametrization

P(t) = (t, t2).

The normal vector associated to P(t) is N (t) = (−2t, 1). Now, we check the
rational Pythagorean hodograph condition

P
′

1(t)2 + P
′

2(t)2 = 4t2 + 1,

and we observe that 4t2+1 is not the square of a rational function. Therefore,
the offset to the parabola is irreducible. In fact, the offset to the parabola,
at a generic distance d, can be parametrized as

(
(t2 + 1 − 4dt)(t2 − 1)

4t (t2 + 1)
,
t6 − t4 − t2 + 1 + 32dt3

16t2 (t2 + 1)

)
.

The implicit equation of the offset to the parabola is

−y2 + 32x2d2y2 − 8x2yd2 + d2 + 20x2d2 − 32x2y2 + 8d2y2 + 2yx2 − 8yd2 +
48x4d2−16x4y2−48x2d4 + 40x4y + 32x2y3−16d4y2−32d4y + 32d2y3−x4 +
8d4 + 8y3 − 16x6 + 16d6 − 16y4 = 0.

I Algorithms in Symbolic Computation 33

Computer Generated Progress in Lattice
Paths Theory

4

Modern computer algebra is capable of contributing to contemporary research
in various scientific areas. In this section, we present some striking success of
computer algebra in the context of lattice paths theory, a theory belonging
to the area of combinatorics. A lattice is something like the city map of
Manhattan, a perfect grid where all streets go either north-south or east-west.
A lattice path then corresponds to a possible way a person in Manhattan may
take who wants to get from A to B.

Combinatorics deals with the enumeration (counting) of objects, and enu-
meration questions concerning lattice paths arise naturally: How many ways
are there to get from A to B? How many of them avoid a third point C
or an entire area of the city? How many go more often north than south?
How many avoid visiting the same point twice? How many have an optimal
length? Starting disoriented at A and randomly continuing the way at each
street crossing, what is the probability of eventually reaching B? What is the
expected length of such a random walk?

These and many other questions have been intensively studied already for
several centuries. Some are completely answered since long, others are still
wide open today. Lattice paths are studied not only for supporting tourists
who got lost in the middle of New York, but they are also needed in a great
number of physical applications. For example, the laws governing the diffusion
of small molecules through a crystal grid depend on results from lattice paths
theory.

Paths in the Quarter Plane 4.1

We consider lattice walks confined to a quarter plane. A quarter plane may
be imagined as a chess board which at two of its four sides (say, the right
and the upper side) is prolonged to infinity. The prolongation removes three
of the chess board’s corners, only its lower left corner remains. This corner is
the starting point of our paths.

Let us imagine that there is a chess piece which is able to move a single
step north (N), south (S), west (W), or east (E) at a time. Then, among
all the possible paths that this chess piece can perform, we are interested in
those where the chess piece ends up again at the board’s corner, the starting
point of the journey. The number of these paths depends, of course, on the
number n of steps we are willing to make. With n = 2 steps, there are only

34 Peter Paule et al.

1st
2nd
3rd

4th step

Figure 9 All closed Manhattan walks with four steps.

two possible paths: (0, 0)
E→ (1, 0)

W→ (0, 0) and (0, 0)
N→ (0, 1)

S→ (0, 0). For
n = 3 steps, there are no such paths, and it is easy to see that there are no
such paths whenever n is odd. For n = 4 steps, there are ten paths, they
are depicted in Figure 9. For n = 40 steps, there are exactly as many as
160 599 522 947 154 548 400 different paths.

That last number can obviously not be obtained by simply writing down
all the possible paths. (Not even the fastest computer would be able to finish
this task within our lifetime.) The number for n = 40 was obtained by means
of a formula which produces the number an of paths for any given number n
of steps. According to this formula, we have

a2n =
2

(n + 1)(n + 2)

(
2n

n

)(
2n + 1

n

)
(n ≥ 0).

and an = 0 if n is odd. This is a classical result and it can in fact be proven
by elementary means.

In order to fully understand the combinatorics of our chess piece, it is not
sufficient to know the numbers an. For a complete knowledge, it is also neces-
sary to know the number of paths that the chess piece can take starting from
the corner (0, 0) and ending at an arbitrary field (i, j). We can denote this
number by an,i,j and have, for example, a40,6,4 = 2 482 646 858 370 896 735 656
paths going in n = 40 steps from the corner to the field in the 6th column
and the 4th row.

I Algorithms in Symbolic Computation 35

It cannot be expected that there is a simple formula for an,i,j as there is for
an = an,0,0. In a sense, the numbers an,i,j are “too complicated” to admit a
formula. But among the sequences which do not have a simple formula, some
are still more complicated than others. Combinatorialists have invented a
hierarchy of classes for distinguishing different levels of “complicatedness”.
For a sequence an,i,j , they consider the formal infinite series

f(t, x, y) :=

∞∑

n=0

∞∑

i=0

∞∑

j=0

an,i,jx
iyjtn.

This series is called rational or algebraic or holonomic, depending on whether
it satisfies certain types of equations whose precise form need not concern us
here. The only thing relevant for now is that these notions create a hierarchy

rational series (algebraic series (holonomic series (all series.

A modern research program initiated by Bousquet-Melou and Mishna [BM02,
Mis07, BMM08] is the classification of all the series arising from the lattice
paths in the quarter plane performed by chess pieces with different step sets
than N, S, W, E.

Computer Algebra Support 4.2

Thanks to research undertaken recently by members of RISC (M. Kauers
and C. Koutschan) in collaboration with A. Bostan (France) and D. Zeil-
berger (USA), we are now in the fortunate situation that the combina-
torial analysis of lattice paths is completely automatized: there are com-
puter programs which, given any set S of admissible steps drawn from
{N, S, E, W, NW, NE, SW, SE}, produce a formula for the number of paths
that a chess piece can do, if it starts in the corner, is only allowed to make
steps from S, and wants to return to the corner after exactly n steps. Also
for the more general problem of finding out to which class a series f(t, x, y)
describing the full combinatorial nature of the chess piece belongs, there are
computer programs available.

Unlike a traditional combinatorialist who would try to derive such formulas
from known facts about lattice paths, the computer follows a paradigm that
could be called guess’n’prove. This paradigm, which proves useful in many
other combinatorial applications of computer algebra, can be divided into the
following three steps:

1. Gather. For small values of n, compute the number an of paths with n
steps by a direct calculation. For instance, for the step set N, S, W, E

36 Peter Paule et al.

taken as example above, a computer is able to find without too much
effort that the sequence (a2n) for n = 0, 1, . . . starts with the terms

1, 2, 10, 70, 588, 5544, 56628, 613470, 6952660.

2. Guess. Given the initial terms, the computer can next search for formu-
las matching them. More convenient than a direct search for closed form
expressions is a search for recurrence equations matching the data, since
this can be done by algorithms reminiscent of polynomial interpolation.
Such algorithms are implemented in widely available software packages,
for instance in a package by Mallinger implemented at RISC [Mal96]. For
the data from our example, this package “guesses” the recurrence equation

(n + 2)(n + 3)a2(n+1) − 4(2n + 1)(2n + 3)a2n = 0.

This equation is constructed such as to fit the first nine terms, but there
is a priori no guarantee that it is valid, as we desire, for all n.

3. Prove. Experience says that an automatically guessed formula is always
correct, but experience is not a formal proof. A formal proof can, however,
also be constructed by the computer. We have an algorithm which takes as
input a step set and a conjectured recurrence equation, and which outputs
either a rigorous formal proof of the recurrence equation, or a counter
example. The details of this algorithm are beyond the scope of this text.

There are only two possible reasons for which this guess’n’prove procedure
may fail. The first is that for the particular step set at hand, the corresponding
counting sequence does not satisfy any recurrence. In this case (which may
indeed happen) the computer would indefinitely continue to search for a
recurrence, because it is at present not possible to detect automatically that
no recurrence exists. The second possible case of failure happens when a
counting sequence satisfies only extremely huge recurrence equations (say,
with millions of terms). In this case, although the computer would in principle
be able to discover and to prove this recurrence, it may well be that in
practice it is not, because the necessary computations are too voluminous to
be completed by current computer architectures within a reasonable amount
of time. The fact that such extremely large objects do actually arise induces a
demand for faster algorithms in computer algebra. Such improved algorithms
are therefore a natural subject of ongoing research.

4.3 Gessel’s Conjecture

Let us now turn to a different imaginary chess piece. This new chess piece is
able to move a single step left (E) or right (W), or diagonally a single step

I Algorithms in Symbolic Computation 37

down-left (SE) or up-right (NW). We are interested again in the number of
paths that take this chess piece from the corner of the (infinitely prolonged)
chess board in n steps back to that corner. The counting sequence now starts
as

1, 0, 2, 0, 11, 0, 85, 0, 782, 0, 8004, 0, 88044, 0, 1020162, 0

As an example, the eleven paths consisting of four steps are depicted in
Figure 10.

The lattice paths just described were first considered by Gessel and are
now known as Gessel walks. Gessel observed that there appears to hold the
formula

a2n = 16n (5
6)n(1

2)n

(5
3)n(2)n

(n ≥ 0),

where the notation (x)n stands for the product x(x+1)(x+2) · · · (x+n−1), a
variation of the factorial function introduced by Pochhammer. Neither Ges-
sel himself nor any other combinatorialist was, however, able to provide a
rigorous proof of this formula. It became known as the Gessel conjecture
and circulated as an open problem through the community for several years.
Only in 2008, a proof was found at RISC by Kauers, Koutschan, and Zeil-
berger [KZ08, KKZ08]. Their proof relies on heavy algebraic computations
that follow essentially the guess’n’prove paradigm described before.

1st
2nd
3rd

4th step

All closed Gessel walks with four steps. Figure 10

38 Peter Paule et al.

The proof of Gessel’s conjecture settles the nature of Gessel walks return-
ing to the starting point. The nature of Gessel walks with arbitrary endpoint
(i, j) is more difficult to obtain. This question was addressed by Bostan and
Kauers [BK09a] after the proof of Gessel’s original conjecture. By extensive
algebraic calculations, they were able to prove that the series f(t, x, y) encod-
ing the numbers an,i,j of Gessel walks with n steps ending at (i, j) is algebraic.
For at least two different reasons, this is a surprising result. First, it was not
at all expected that f(t, x, y) is algebraic. Combinatorial intuition seemed to
suggest that f(t, x, y) is perhaps holonomic, or not even that. Second, it was
not to be expected that the intensive computations needed for establishing
the algebraicity of f(t, x, y) were feasible for today’s computers. As they were,
the combinatorial nature of Gessel walks can now be considered as solved.

It is fair to say that the classification of the Gessel walks is the most
difficult classification problem for lattice paths in the quarter plane. Indeed,
all other kinds of paths can be classified by traditional means relying on
group theory [BMM08]. Gessel’s paths are famous partly because they are
the only ones which appear to resist this group theoretic approach. This
is why the clarification of their nature by means of computer algebra, as
previously described, was highly appreciated by the community.

4.4 Lattice Paths in 3D

One of the advantages of a computer algebra approach to lattice paths clas-
sification is that computer programs, once written, can be easily adapted to
related problems. Bostan and Kauers [BK08] applied their programs first de-
veloped for analyzing the Gessel paths to start a classification of lattice paths
in a three dimensional lattice. In analogy to the problem considered before
in 2D, lattice paths were considered which start in the corner of a space that
extends to infinity in now three different directions, that space may be viewed
as a distinguished octant of the usual Cartesian three dimensional space.

In addition to going north (N), south (S), east (E), or west (W), there are
the additional directions up (U) and down (D). Also combined directions such
as NE or SWU are possible. Basic steps are now more conveniently written
as vectors, e.g., (1,−1, 0) for NE or (−1, 1, 1) for SWU. While in 2D, there
were eight basic steps (N, S, E, W, NE, NW, SE, SW), there are now 26 basic
steps in 3D. For any subset S of those, we can imagine a chess piece moving
in 3D that is only allowed to take steps from S, and we may ask how many
paths it can take starting from the corner, making n steps, and ending again
in the corner. For these numbers, call them again an, there may or may not
be a simple formula. (Usually there is none.) If, more generally, the number
of paths consisting of n steps and ending at a point (i, j, k) is denoted an,i,j,k,
we can consider the infinite series

I Algorithms in Symbolic Computation 39

f(t, x, y, z) =
∞∑

n=0

∞∑

i=0

∞∑

j=0

∞∑

k=0

an,i,j,kxiyjzktn

and may ask whether that series is rational, algebraic, holonomic, or non-
holonomic. The answer will depend on the choice S of admissible steps.

In Figure 11, some step sets S are depicted for which the corresponding
series is algebraic, holonomic, or non-holonomic. For example, the first step
set in the top row is

S = {(−1, 1, 1), (0,−1,−1), (0,−1, 0), (1, 0, 0), (1, 0, 1)}.

The distinguished octant to which the paths are restricted is the octant con-
taining (1, 1, 1), which corresponds to the top-right-back corner in the dia-
grams of Figure 11. The counting sequence for paths returning to the corner
with S as above starts

1, 0, 0, 1, 0, 0, 5, 0, 0, 42, 0, 0, 462, 0, 0, 6006, 0, 0, 87516, 0, 0.

For example, the only possible path with three steps is

(0, 0, 0)
(1,0,0)−−−−−−→ (1, 0, 0)

(−1,1,1)−−−−−−−→ (0, 1, 1)
(0,−1,−1)−−−−−−−−→ (0, 0, 0).

The interested reader may wish to determine the five possible paths with six
steps. He or she will find that this is a much more laborious and error prone
task than for planar lattice paths.

Most of the possible step sets S in 3D lead to series which are not holo-
nomic, only a fraction of them is holonomic or even algebraic. Out of those,
the examples depicted in Figure 11 were chosen such as to illustrate that
the position of a step set in the hierarchy is not necessarily related to what
might be expected intuitively from the geometric complexity of the step set.
For example, the first step set in the third row looks rather regular, yet the
corresponding series is not holonomic. On the other hand, the third step set of
the first row looks rather irregular, yet the corresponding series is algebraic.

Computer algebra was used in the discovery of these phenomena. The
next challenging task is to explain them. As we have seen for Gessel’s walks,
computer algebra is ready to contribute also in these investigations. It will,
in general, be of increasing importance the more the theory advances towards
objects that are beyond the capabilities of traditional hand calculations.

40 Peter Paule et al.

Figure 11 Some step sets for lattice walks in 3D whose counting sequences appear
to be algebraic (first row), holonomic but not algebraic (second row), or
not holonomic (third row).

5 Symbolic Summation in Particle Physics

Mathematical algorithms in the area of symbolic summation have been inten-
sively developed at RISC in the last 15 years, see e.g., [PS95, Mal96, Weg97,
PR97, PS03, M06]. Meanwhile they are heavily used by scientists in practical
problem solving.

We present in this section a brand new interdisciplinary project in which
we try to deal with challenging problems in the field of particle physics and
perturbative quantum field theory with the help of our summation technol-
ogy. Generally speaking, the overall goal in particle physics is to study the
basic elements of matter and the forces acting among them. The interaction
of these particles can be described by the so called Feynman diagrams, re-
spectively Feynman integrals. Then the crucial task is the concrete evaluation

I Algorithms in Symbolic Computation 41

of these usually rather difficult integrals. In this way, one tries to obtain ad-
ditional insight how, e.g., the fundamental laws control the physical universe.

In cooperation with the combinatorics group (Peter Paule) at RISC and
the theory group (Johannes Blümlein) at Deutsches Elektronen-Synchrotron
(DESY Zeuthen, a research center of the German Helmholtz association), we
are in the process of developing flexible and efficient summation and special
function algorithms that assist in this task, i.e., simplification, verification and
manipulation of Feynman integrals and sums, and of related expressions. As
it turns out, the software package Sigma [Sch07] plays one of the key roles:
it is able to simplify highly complex summation expressions that typically
arise within the evaluation of such Feynman integrals; see [BBKS07, MS07,
BBKS08, BKKS09a, BKKS09b].

Feynman diagrams

//

Z

Φ(x)dx

Feynman integrals

Reduction

��
0

@

j
X

i=1

1

i

1

A

2

+
N

X

i=1

1

i2

2N(N + 1)!
Simplified sums

∞
X

j=1

j
X

i=1

1

i
+

N
X

i=1

1

i
−

j+N
X

i=1

1

i

jN(j + N + 1)N !
Feynman sums

Sigma
oo

From Feynman diagrams to symbolic summation. Figure 12

After sketching the basic summation tools that are used in such computa-
tions, we present two examples popping up at the scientific front of particle
physics.

The Underlying Summation Principles 5.1

The summation principles of telescoping, creative telescoping and recurrence
solving for hypergeometric terms, see e.g. [PWZ96], can be considered as
the breakthrough in symbolic summation. Recently, these principles have
been generalized in Sigma from single nested summation to multi-summation
by exploiting a summation theory based on difference fields [Kar81, Sch05,

42 Peter Paule et al.

Sch08, Sch09]. As worked out, e.g., in [BBKS07], these methods can help to
solve problems from particle physics.

Specification (Indefinite summation by telescoping). Given an in-
definite sum S(a) =

∑a
k=0 f(k), find g(j) such that

f(j) = g(j + 1) − g(j) (2)

holds within the summation range 0 ≤ j ≤ a. Then by telescoping, one gets

S(a) = g(a + 1) − g(0).

Example. For the sum expression

f(j) =
(2j + k + N + 2)j!k!(j + k + N)!

(j + k + 1)(j + N + 1)(j + k + 1)!(j + N + 1)!(k + N + 1)!

+
j!k!(j + k + N)! (−S1(j) + S1(j + k) + S1(j + N) − S1(j + k + N))

(j + k + 1)!(j + N + 1)!(k + N + 1)!
(3)

involving the single harmonic sums defined by S1(j) :=
∑j

i=1
1
i Sigma com-

putes the solution

g(j) =
(j+k+1)(j+N+1)j!k!(j+k+N)!

(
S1(j)−S1(j+k)−S1(j+N)+S1(j+k+N)

)

kN(j+k+1)!(j+N+1)!(k+N+1)! (4)

of (2); note that the reader can easily verify the correctness of this result by
plugging in (3) and (4) into (2) and carrying out simple polynomial arithmetic
in combination with relations such as S1(j + 1) = S1(j) + 1

j+1 and (j + 1)! =

(j + 1)j!. Therefore summing (2) over j yields (together with a proof)

a∑

j=0

f(j) =S1(k)+S1(N)−S1(k+N)
kN(k+N+1)N ! + (2a+k+N+2)a!k!(a+k+N)!

(a+k+1)(a+N+1)(a+k+1)!(a+N+1)!(k+N+1)!

(a+1)!k!(a+k+N+1)!(S1(a)−S1(a+k)−S1(a+N)+S1(a+k+N))
kN(a+k+1)!(a+N+1)!(k+N+1)! .

In other words, we obtained the following simplification: the double sum∑a
j=0 f(j) with (3) could be simplified to an expression in terms of sin-

gle harmonic sums. Later we shall reuse this result by performing the limit
a → ∞:

∞∑

j=0

f(j) = lim
a→∞

a∑

j=0

f(j) =
S1(k) + S1(N) − S1(k + N)

kN(k + N + 1)N !
. (5)

In most cases this telescoping trick fails, i.e., such a solution g(j) for (2)
does not exist. If the summand f(j) depends on an extra discrete parame-
ter, say N , one can proceed differently with Zeilberger’s creative telescoping
paradigm.

I Algorithms in Symbolic Computation 43

Specification (Deriving recurrences by creative telescoping).
Given an integer d > 0 and given a sum

S(a, N) :=

a∑

j=0

f(N, j) (6)

with an extra parameter N , find constants c0(N), . . . , cd(N), free of j, and
g(N, j) such that for 0 ≤ j ≤ a the following summand recurrence holds:

c0(N)f(N, j) + · · · + cd(N)f(N + d, j) = g(N, j + 1) − g(N, j). (7)

If one succeeds in this task, one gets by telescoping the recurrence relation

c0(N)S(a, N) + · · · + cd(N)S(a, N + d) = g(N, a + 1) − g(N, 0).

Example. For d = 1 and the summand

f(N, j) =
S1(j) + S1(N) − S1(j + N)

jN(j + N + 1)N !

Sigma computes the solution c0(N) = −N(N + 1)2, c1(N)(N + 1)3(N + 2),
and

g(N, j) =
jS(1, j) + (−N − 1)S(1, N) − jS(1, j + N) − 2

(j + N + 1)N !

of (7); again the reader can easily verify the correctness of this computation
by simple polynomial arithmetic. Hence, summing (7) over 1 ≤ j ≤ a gives

− NS(N, a) + (1 + N)(2 + N)S(N + 1, a) =

a(a+1)
(N+1)3(a+N+1)(a+N+2)N ! +

(a + 1) (S1(a) + S1(N) − S1(a + N))

(N + 1)2(a + N + 2)N !
(8)

for the sum (6). Later we need the following additional observation: the limit

S′(N) := lim
a→∞

S(N, a) =

∞∑

j=0

S1(j) + S1(N) − S1(j + N)

jN(j + N + 1)N !
(9)

exists; moreover, it is easy to see that the right hand side of (8) tends in the

limit a → ∞ to (N+1)S1(N)+1
(N+1)3N ! . In other words, the infinite series (9) satisfies

the recurrence

−NS′(N) + (1 + N)(2 + N)S′(N + 1) =
(N + 1)S1(N) + 1

(N + 1)3N !
. (10)

Summarizing, with creative telescoping one can look for a recurrence of the
form

a0(N)S(N) + · · · + a1(N)S(N + d) = q(N). (11)

44 Peter Paule et al.

Finally, Sigma provides the possibility to solve such recurrence relations in
terms of indefinite nested sums and products.

Example. We use Sigma’s recurrence solver and compute the general solution

1

N(N + 1)N !
c +

S1(N)2 + S2(N)

2N(N + 1)N !

for a constant c of the recurrence (10). Checking the initial value S′(1) = 1
2

(this evaluation can be done again by using, e.g., the package Sigma) deter-
mines c = 0, i.e., we arrive at

S′(N) =

∞∑

j=1

S1(j) + S1(N) − S1(j + N)

jN(j + N + 1)N !
=

S1(N)2 + S2(N)

2N(N + 1)!
. (12)

More generally, we can handle with Sigma the following problem.

Specification (Recurrence solving). Given a recurrence of the form
(11), find all solutions in terms of indefinite nested sum and product expres-
sions (also called d’Alembertian solution).

Based on the underlying algorithms, see e.g. [AP94, BKKS09a], the derived
d’Alembertian solutions of (11) are highly nested: in worst case the sums
will reach the nesting depth r − 1. In order to simplify these solutions (e.g.,
reducing the nesting depth), a refined telescoping paradigm is activated. For
an illuminative example see Section 5.3.

One can summarize this interplay of the different summation principles in
the “summation spiral” [Sch04] illustrated in Figure 13.

5.2 Example 1: Simplification of Multi-Sums

The first example is part of the calculation of the so called polarized and
unpolarized massive operator matrix elements for heavy flavor production
[BBK06, BBK07]. Here two-loop Feynman integrals arise which can be re-
formulated in terms of double infinite series by skillful application of Mellin-
Barnes integral representations. One of the challenging sums [BBK06] in this
context is

S(N) =
∞∑

k=0

∞∑

j=0

=: f(N, k, j, ε)
︷ ︸︸ ︷

ε−εγ

Γ (ε + 1)

(
Γ (k+1)

Γ (k+2+N)

Γ (ε
2)Γ (1− ε

2)Γ (j+1− ε
2)Γ (j+1+ ε

2)Γ (k+j+1+N)

Γ (j+1− ε
2)Γ (j+2+N)Γ (k+j+2)

+ Γ (k+1)
Γ (k+2+N)

Γ (− ε
2)Γ (1+ ε

2)Γ (j+1+ε)Γ (j+1− ε
2)Γ (k+j+1+ ε

2+N)

Γ (j+1)Γ (j+2+ ε
2 +N)Γ (k+j+2+ ε

2)

)
;

(13)

I Algorithms in Symbolic Computation 45

The Sigma-summation spiral. Figure 13

here N is an integer variable and Γ (x) denotes the gamma function, see e.g.
[AAR00], which evaluates to Γ (k) = (k − 1)! for positive integers k.

Remark. Usually, Feynman integrals (and sums obtained, e.g., by Mellin
Barnes representations) cannot be formalized at the space-time dimension
D = 4. One overcomes this problem by an analytic continuation of the space-
time D = 4 + ε for a small parameter ε. Then one can extract the needed
information by calculating sufficiently many coefficients of the Laurent-series
expansion about ε = 0.

For instance, in our concrete sum (13) one is interested in the first coeffi-
cients F0(N), F1(N), F2(N), . . . in the expansion

S(N, ε) = F0(N) + F1(N)ε + F2(N)ε2 + . . . (14)

In order to get these components, we proceed as follows. First, we compute,
as much as needed, the coefficients f0(N, k, j), f1(N, k, j), . . . of the series
expansion

f(N, k, j, ε) = f0(N, k, j) + f1(N, k, j)ε + f2(N, k, j)ε2 + . . . (15)

on the summand level. Then, it follows (by convergence arguments) that for
all i ≥ 0,

Fi(N) =
∞∑

k=0

∞∑

j=0

fi(N, k, j).

46 Peter Paule et al.

Remark. The gamma function Γ (x) is analytic everywhere except at the
points x = 0,−1,−2, . . . , and there exist formulas that relate, e.g., the deriva-
tive of the gamma function Γ (x+ k) w.r.t. x with the sums Sa(k) =

∑k
i=1

1
ia

for positive integers a.

Due to such formulas, one can compute straightforwardly the first coef-
ficients fi(N, k, j) in (15) for the explicitly given summand in (13). E.g.,
f0(N, k, j) is nothing else than (3). Thus the constant term F0(N) =∑∞

k=0

∑∞
j=0 f0(N, k, j) in (14) is given by

F0(N) =

∞∑

k=0

∞∑

j=0

((2j+k+N+2)j!k!(j+k+N)!
(j+k+1)(j+N+1)(j+k+1)!(j+N+1)!(k+N+1)!

+ j!k!(j+k+N)!(−S1(j)+S1(j+k)+S1(j+N)−S1(j+k+N))
(j+k+1)!(j+N+1)!(k+N+1)!

)
.

(16)

We are faced now with the problem to simplify (16), so that it can be pro-
cessed further in particle physics. Exactly at that point we are in business
with our summation tools from Section 5.1. First observe that the inner sum
of (16) is equal to the right hand side of (5). Hence with (12) we find that

∞∑

k=1

∞∑

j=0

fi(N, k, j) =
S1(N)2 + S2(N)

2N(N + 1)!
.

Finally, we add the missing term
∑∞

j=0 fi(N, 0, j) = S2(N)
N(N+1)! (derived by the

same methods as above). To sum up, we simplified the expression (16) to

F0(N) =

∞∑

k=0

∞∑

j=0

f0(N, k, j) =
S1(N)2 + 3S2(N)

2N(N + 1)!
.

In [BBK06] the authors derived this constant term and also the linear term

F1(N) =
−S1(N)3 − 3S2(N)S1(N) − 8S3(N)

6N(N + 1)!

in (14) by skillful application of suitable integral representations.
In contrast, our computations can be carried out purely mechanically with

the computer. Essentially, this enables us to compute further coefficients
in (14) by just pressing a button (and having some coffee in the meantime):

F2(N) =
∞

X

k=0

∞
X

j=0

f2(N, k, j) =
1

96N(N + 1)!

“

S1(N)4 + (12ζ2 + 54S2(N))S1(N)2

+ 104S3(N)S1(N) − 48S2,1(N)S1(N) + 51S2(N)2 + 36ζ2S2(N) + 126S4(N)

− 48S3,1(N)− 96S1,1,2(N)
”

,

I Algorithms in Symbolic Computation 47

F3(N) =
∞

X

k=0

∞
X

j=0

f3(N, k, j) =
1

960N(N + 1)!

“

S1(N)5 + (20ζ2 + 130S2(N))S1(N)3

+ (40ζ3 + 380S3(N))S1(N)2 +
`

135S2(N)2 + 60ζ2S2(N) + 510S4(N)
´

S1(N)

− 240S1,1,3(N) − 240S4,1(N) − 240S3,1(N)S1(N)− 240S1,1,2(N)S1(N)

+ 160ζ2S3(N) + S2(N)(120ζ3 + 380S3(N)) + 624S5(N)

+
`

−120S1(N)2 − 120S2(N)
´

S2,1(N) + 240S2,2,1(N)
”

;

here ζr =
∑∞

i=1
1
ir denote the zeta-values at r and the harmonic sums [BK99,

Ver99] for nonzero integers r1, . . . , rn are defined by

Sr1,...,rn
(N) =

N∑

k1=1

sign(r1)k1

k|r1|

k1∑

k2=1

sign(rm−1)k2

k
|r1|
2

· · ·
kr−1∑

kr=1

sign(rn)kr

k
|r1|
r

. (17)

For instance, we find the linear coefficient F1(N) in 30 seconds, the quadratic
coefficient F2(N) in 4 minutes and the cubic coefficient F3(N) in less than
one hour.

Example 2: Solving Large Recurrence Relations 5.3

One of the hardest problem that has been considered in the context of Feyn-
man integrals is the calculation of the symbolic Mellin-moments of the un-
polarized 3-loop splitting functions and Wilson coefficients for deep–inelastic
scattering [MVV04, VMV04, VVM05]: several CPU years were needed for
this job. In order to get these results, specialized and extremely efficient soft-
ware [Ver99] have been developed. Based on deep insight and knowledge of
the underlying physical problem fine tuned ansatzes for the computations
have been used in addition.

In a recent attempt [BKKS09a, BKKS09b] we explored a different, rather
flexible ansatz in order to determine such coefficients. We illustrate this ap-
proach for the CF N2

F -term, say F (N) = Pgq,2(N), of the unpolarized 3-loop
splitting function; see [BKKS09b, Exp. 1]. Namely, we start with the initial
values F (i) for i = 3, . . . , 112 where the first ones are given by

1267
648 , 54731

40500 , 20729
20250 , 2833459

3472875 , 29853949
44452800 , 339184373

600112800 , 207205351
428652000 , 152267426

363862125 , . . .

Then given this data, one can establish (within 7 seconds) by Manuel Kauers’
very efficient recurrence guesser (see also Section 4.2) the following recur-
rence:

48 Peter Paule et al.

(1−N)N(N + 1)(N6 + 15N5 + 109N4 + 485N3 + 1358N2 + 2216N + 1616)F (N)

+N(N +1)(3N7 +48N6+366N5 +1740N4+5527N3 +11576N2 +14652N +8592)F (N +1)

− (N + 1)(3N8 + 54N7 + 457N6 + 2441N5 + 9064N4 + 23613N3

+ 41180N2 + 43172N + 20768)F (N + 2)

+ (N + 4)3(N6 + 9N5 + 49N4 + 179N3 + 422N2 + 588N + 368)F (N + 3) = 0.

We remark that in principle this guess might be wrong, but by rough esti-
mates this unlucky case occurs with probability of about 10−65 (if we do not
trust in this result, we should not trust any computation: e.g., undetectable
hardware errors have a much higher chance to happen).

Given this recurrence, we apply the recurrence solver of Sigma: internally,
one succeeds in factorizing the recurrence into linear right hand factors;
see [BKKS09b, Exp. 1]. As a consequence, Sigma finds (within 3 seconds)
the solution

F (N) = −32

9

N2 + N + 2

(N − 1)N(N + 1)
+

64

9

(
N2 + N + 2

) N∑

i=1

i4+7i2+4i+4
(i+1)(i2−i+2)(i2+i+2)

(N − 1)N(N + 1)

− 8

3

(N2+N+2)

N∑

i=1

(i4+7i2+4i+4)

i∑

j=1

(j2−j+2)(j6−3j5+19j4−13j3+44j2+8j+8)
(j+1)(j4+7j2+4j+4)(j4−4j3+13j2−14j+8)

(i+1)(i2−i+2)(i2+i+2)

(N−1)N(N+1) .

Next, we activate our sum simplifier (based on refined telescoping [Sch08])
and end up at the closed form

F (N) = − 4
(
N2 + N + 2

)

3(N − 1)N(N + 1)
S1(N)2 +

8
(
8N3 + 13N2 + 27N + 16

)

9(N − 1)N(N + 1)2
S1(N)

− 8
(
4N4 + 4N3 + 23N2 + 25N + 8

)

9(N − 1)N(N + 1)3
− 4

(
N2 + N + 2

)

3(N − 1)N(N + 1)
S2(N)

in terms of the harmonic sums given by (17). At this point we make the fol-
lowing remark: we are not aware of the existence of any other software that
can produce this solution of the rather simple recurrence given above. Sum-
marizing, we determined the CF N2

F -term of the unpolarized 3-loop splitting
function F (N) = Pgq,2(N) by using its first 110 initial values without any
additional intrinsic knowledge.

In order to get an impression of the underlying complexity, we summa-
rize the hardest problem. For the most complicated expression (the C3

F -
contribution to the unpolarized 3-loop Wilson coefficient for deeply inelastic
scattering, see [BKKS09b, Exp. 6]) M. Kauers could establish a recurrence
of order 35 within 20 days and 10Gb of memory by using 5022 such initial
values; note that the found recurrence has minimal order and uses 32MB of

I Algorithms in Symbolic Computation 49

memory size. Then Sigma used 3Gb of memory and around 8 days in order
to derive the closed form of the corresponding Wilson coefficient. The output
fills several pages and consists of 30 (algebraically independent) harmonic
sums (17), like e.g.,

S−3,1,1,1, S2,2,1,1, S−2,−2,1,1, S2,−2,1,1, S−2,2,1,1, S−2,1,1,2, S2,1,1,1,1, S−2,1,1,1,1.

In total, we used 4 month of computation time in order to treat all the
problems from [MVV04, VMV04, VVM05].

These results from [BKKS09a, BKKS09b] illustrate that one can solve
3-loop integral problems efficiently by recurrence guessing and recurrence
solving under the assumptions that sufficiently many initial values (in our case
maximally 5022) are known. In order to apply our methods to such problems,
methods at far lower expenses have to be developed that can produce this
huge amount of initial values. This is not possible in the current state of art.

By concluding, in ongoing research we will try to combine the different
ideas presented in Section 5 to find new, flexible and efficient methods that
will take us one step further to evaluate automatically non-trivial Feynman
integrals.

Nonlinear Resonance Analysis 6

In recent years (2004–2009) a new area of mathematical physics—Nonlinear
Resonance Analysis (NRA)—has been developed at RISC. Its theoretical
background was outlined in 1998, see [Kar98]. But the way to real-world ap-
plications was still long. In particular, appropriate calculation techniques
and mathematical model fitting to physical systems had to be worked
out. This has been achieved under the projects SBF-013 (FWF), ALISA
(OeAD, Grant Nr.10/2006-RU), DIRNOW (FWF, P20164000), and CEN-
REC (OeAD, Grant Nr.UA 04/2009). The main points of this work are briefly
presented below.

What is Resonance? 6.1

Physical Examples

The phenomena of resonance has been first described and investigated by
Galileo Galilei in 1638 who was fascinating by the fact that by “simply blow-

50 Peter Paule et al.

ing” one can confer considerable motion upon even a heavy pendulum. A
well-known example with Tacoma Narrows Bridge shows how disastrous res-
onances can be: on the morning of November 7, 1940, at 10:00 the bridge
began to oscillate dangerously up and down, and collapsed in about 40 min-
utes, see Figure 14. The experiments of Tesla [Che93] with vibrations of an
iron column yielded in 1898 sort of a small earthquake in his neighborhood
in Manhattan, with smashed windows, swayed buildings, and panic people in
the streets.

Figure 14 The Tacoma Narrows Bridge. Right picture is taken approximately 40
minutes after the left one.

Nowadays it is well-known fact that resonance is a common thread which
runs through almost every branch of physics and technics, without resonance
we wouldn’t have radio, television, music, etc. Whereas linear resonances
are studied quite well, their nonlinear counterpart was till recently Terra
Incognita, out of the reach of any general theoretical approach. And this
is though nonlinear resonances are ubiquitous in physics. Euler equations,
regarded with various boundary conditions and specific values of some pa-
rameters, describe an enormous number of nonlinear dispersive wave systems
(capillary waves, surface water waves, atmospheric planetary waves, drift
waves in plasma, etc.) all possessing nonlinear resonances [ZLF92]. Non-
linear resonances appear in a great amount of typical mechanical systems
[KM06]. Nonlinear resonance is the dominant mechanism behind outer ion-
ization and energy absorption in near infrared laser-driven rare-gas or metal
clusters [KB05]. Nonlinear resonance jump can cause severe damage to the
mechanical, hydraulic and electrical systems [HMK03]. The characteristic res-
onant frequencies observed in accretion disks allow astronomers to determine
whether the object is a black hole, a neutron star, or a quark star [Klu06].
The variations of the helium dielectric permittivity in superconductors are
due to nonlinear resonances [KLPG04]. Temporal processing in the central
auditory nervous system analyzes sounds using networks of nonlinear neural

I Algorithms in Symbolic Computation 51

resonators [AJLT05]. The nonlinear resonant response of biological tissue to
the action of an electromagnetic field is used to investigate cases of suspected
disease or cancer [VMM05], etc.

Mathematical Formulation

Mathematically, a resonance is an unbounded solution of a differential equa-
tion. The very special role of resonant solutions of nonlinear ordinary differ-
ential equations (ODEs) has been first investigated by Poincaré [Arn83] who
proved that if a nonlinear ODE has no resonances, then it can be linearized
by an invertible change of variables. Otherwise, only resonant terms are im-
portant, all other terms have the next order of smallness and can be ignored.
In the middle of the 20th century, Poincaré’s approach has been generalized
to the case of nonlinear partial differential equations (PDEs) yielding what
is nowadays known as KAM-theory (KAM for Kolmogorov-Arnold-Moser),
[Kuk04]. This theory allows us to transform a nonlinear dispersive PDE into
a Hamiltonian equation of motion in Fourier space [ZLF92],

i ȧk = ∂H/∂a∗
k
, (18)

where ak is the amplitude of the Fourier mode corresponding to the wavevec-
tor k, k = (m, n) or k = (m, n, l) with integer m, n, l. The Hamiltonian H
is represented as an expansion in powers Hj which are proportional to the
product of j amplitudes ak. For the simplicity of presentation, all the meth-
ods and results below are outlined for the case of non-zero cubic Hamiltonian
H3 and 2-dimensional wavevector k = (m, n). A cubic Hamiltonian H3 has
the form

H3 =
∑

k1,k2,k3

V 1
23a
∗
1a2a3δ

1
23 + complex conj.,

where for brevity we introduced the notation aj ≡ akj
and δ1

23 ≡ δ(k1 −
k2 −k3) is the Kronecker symbol. If H3 6= 0, three-wave process is dominant
and the main contribution to the nonlinear evolution comes from the waves
satisfying the following resonance conditions:

ω(k1) + ω(k2) − ω(k3) = 0, k1 + k2 − k3 = 0, (19)

where ω(k) is a dispersion relation for the linear wave frequency. Correspond-
ing dynamical equation yields the three-wave equation:

i
dak

dt
=
∑

k1,k2

[1

2
V k

12a1a2∆
k

12 + V 1 ∗
k2 a1a

∗
2∆

1
k2

]
. (20)

The Hamiltonian formulation allows us to study the problems of various
nature by the same method: all the difference between the problems of climate

52 Peter Paule et al.

variability, cancer diagnostics and broken bridges is hidden in the form of the
coefficients of the Hamiltonian, i.e. V k

12 and V 1 ∗
k2 .

6.2 Kinematics and Dynamics

To compute nonlinear resonances in a PDE with given boundary conditions,
one has to find linear eigenmodes and dispersion function ω = ω(m, n), and
rewrite the PDE in Hamiltonian form by standard methods (e.g. [Arn83],
[ZLF92]). Afterwards two seemingly simple steps have to be performed.

Step 1: Solve the algebraic Sys. (19) in integers and compute the coefficients
V k

12 (they depend on the solutions of the Sys. (19)). This part of the NRA
is called Kinematics .

Step 2: Solve the Sys. (20), consisting of nonlinear ODEs; this part of the
theory is called Dynamics.

In order to show mathematical and computational problems appearing on
this way, let us regard one example. Let dispersion function have the form
ω = 1/

√
m2 + n2 (oceanic planetary waves) and regard a small domain of

wavevectors, say m, n ≤ 50. The first equation of Sys. (19) reads

(m2
1 + n2

1)−1/2 + (m2
2 + n2

2)−1/2 = (m2
3 + n2

3)−1/2, (21)

the only standard way would be to get rid of radicals and solve numerically
the resulting Diophantine equation of degree 8 in 6 variables:

(m2
3 + n2

3)2(m2
1 + n2

1)(m2
2 + n2

2) =
[
(m2

1 + n2
1)(m2

2 + n2
2) −

(m2
2 + n2

2)(m2
3 + n2

3) − (m2
1 + n2

1)(m2
3 + n2

3)
]2

(22)

This means that at Step 1 we will need operate with integers of the order
of (50)8 ∼ 4 · 1013. This means also that in physically relevant domains,
with m, n ≤ 1000, there is no chance to find solutions this way, using the
present computers. At Step 2 we have 50 × 50 = 2500 complex variables
aj , a

∗
j , j = 1, 2, . . . , 50; correspondingly Sys. (20) consists of 2500 intercon-

nected nonlinear ODEs. This being a dead-end, a search for novel computa-
tional methods is unavoidable.

Kinematics

Two main achievements in this part of our research are

1. the q-class method and
2. topological representation of resonance dynamics,

I Algorithms in Symbolic Computation 53

which we briefly present below.
The q-class method. Theoretical results of [Kar98] have been the basis

for the development of a fast computational algorithm to compute non-
linear resonances outlined in [Kar06]. Various modifications of the q-class
method have been implemented numerically ([KK06, KK07]) and symboli-
cally ([KM07, KRF+07]) for a wide class of physically relevant dispersion
functions. The efficiency of our method can be demonstrated by following ex-
ample. Direct computation has been performed in 2005 by the group of Prof.
S. Nazarenko (Warwick Mathematical School, UK) with dispersion function
ω = (m2 + n2)1/4 for the case of 4-term resonance. For spectral domain
m, n ≤ 128, these computations took 3 days with Pentium 4; the same prob-
lem in the spectral domain m, n ≤ 1000, is solved by the q-class method with
Pentium 3 in 4.5 minutes.

We illustrate how the q-class method works, taking again Eq. (21) as
an example. Two simple observations, based on school mathematics, can be
made. First, for arbitrary integers m, n, the presentation

√
m2 + n2 = p

√
q

with integer p and square-free q is unique. Second, Eq. (21) has integer solu-
tions only if in all three presentations

√
m2

1 + n2
1 = p1

√
q1,

√
m2

2 + n2
2 = p2

√
q2,

√
m2

3 + n2
3 = p3

√
q3 (23)

the irrationalities q1, q2, q3 are equal, i.e. q1 = q2 = q3 = q. This is only a
necessary condition, of course. The number q is called index of a q-class, all
pairs of integers (m, n) can be divided into disjoint classes by the index and
search for solutions is performed within each class separately. For each class,
Eq. (21) takes a very simple form, p−1

1 + p−1
2 = p−1

3 , and can be solved in no
time even with a simple calculator.

The general idea of the q-class method is, to use linear independence of
some functions over the field of rational numbers Q and can be generalized
to much more complicated dispersion functions, e.g. ω = m tanh

√
m2

1 + n2
1.

Though this approach does not work with rational dispersion functions, sub-
stantial computational shortcuts have also been found for this case ([KK07]).

Topological representation of resonance dynamics. The classical represen-
tation of resonance dynamics by resonance curves [LHG67] is insufficient for
two reasons. First, one has to fix a certain wavevector (m, n) and therefore this
representation can not be performed generally. Second, no general method
exists for finding integer points on a resonance curve. We have introduced
a novel representation of resonances via a graph with vertices belonging to
a subset of a two-dimensional integer grid. We have also proved that there
exists a one-to-one correspondence between connected components of this
graph and dynamical systems, subsystems of Sys. (20).

54 Peter Paule et al.

H18L

H4L

H1L

H2L

H1L

H1L

H1L

Figure 15 Example of topological structure, spectral domain |ki| ≤ 50, each blue
vertex corresponds to a pair (m, n) and three vertices are connected by
arcs, if they constitute a resonant triad. The number in brackets shows
how many times the corresponding cluster appears in the given spectral
domain.

The topology for the example above is shown in the Figure 15; the dy-
namical system for the graph component (called resonance cluster in physics)
consisting of 4 connected resonant triads (Figure 15, bottom left) reads (in
real variables)

.
a1 = α1a2a9,

.
a2 = α2a1a9,

.
a3 = α4a4a9,

.
a4 = α5a3a9,

.
a5 = α7a8a9,

.
a6 = α10a7a8,

.
a7 = α11a6a8,

.
a8 = α12a6a7 + α8a5a9,

.
a9 = α3a1a2 + α6a3a4 + α9a5a8.

(24)

Already this novel representation, both very simple and very informative, has
attracted the attention of the peers of the Wolfram Demonstrations Project,
and we have been invited to participate in the project1.

Dynamics

Two main achievements in this part of our research are 1) explicit compu-
tation of dynamical invariants, [BK09b]; and 2) realization that dynamical
phase is a parameter of utmost importance in resonance dynamics [BK09c].

Dynamical invariant. In [KL08] it was shown that the dynamics of bigger
clusters often can be reduced to the dynamics of smaller clusters, consisting
of one or two triads only. Integrability of a triad, with dynamical system

ȧ1 = Za∗2a3, ȧ2 = Za∗1a3, ȧ3 = −Za1a2, (25)

is a well known fact ([Whi90, LH04]), and its solution, simplified for the case
of zero dynamical phase, reads

1 http://demonstrations.wolfram.com/NonlinearWaveResonances/

I Algorithms in Symbolic Computation 55

C1(t) = dn((−t + t0) z
√

I13,
I23
I13

)
√

I13

C2(t) = cn((−t + t0) z
√

I13,
I23
I13

)
√

I23

C3(t) = sn((−t + t0) z
√

I13,
I23
I13

)
√

I23

(26)

Here Cj , j = 1, 2, 3 are real amplitudes within the standard representation
aj = Cj exp(iθj), and to, I13, I23 are defined by initial conditions. The novelty
of our approach lies in that we show ([BK09b]) that this system as a whole
can be generally described by one time-dependent dynamical invariant of the
form:

S0 = Z t −
F

(
arcsin

((
R3−v

R3−R2

)1/2
)

,
(

R3−R2

R3−R1

)1/2
)

21/2(R3 − R1)1/2(I2
13 − I13I23 + I2

23)1/4
. (27)

Here F is the elliptic integral of the first kind and R1, R2, R3, v are explicit
functions of the initial variables Bj , j = 1, 2, 3. The same is true for 2-triad
clusters. With the reduction procedure [KL08], this means in particular that
a resonant cluster consisting of, say, 20 or 100 modes, can theoretically be
described by one dynamical invariant.

Dynamical phase. Another important fact established in our research is
the effect of the dynamical phase ϕ = θ1 + θ2 − θ3 on the amplitudes aj .
It was a common belief that for an exact resonance to occur, it is necessary
that ϕ is either zero or constant (e.g. [LHG67, Ped87]). It is evident from the
Figure 16 that this is not true.

Applications

Speaking very generally, there exist two ways of using NRA for practical pur-
poses. Kinematical methods can be used for computing the form of new tech-
nical facilities (laboratory water tank or an airplane wing or whatever else)
such that nonlinear resonances will not appear. Dynamical methods should
be used in case reconstruction of the laboratory facilities is too costly a game,
for instance while studying stable energy states in Tokamak plasma. It costs
hundreds of millions of dollars to construct a new Tokamak. On the other
hand, adjustment of dynamical phases can diminish the amplitudes of reso-
nances (in this case, these are resonantly interacting drift waves) 10 times
and more for the same technical equipment as it is shown in Figure 16.

CENREC

Presently a Web portal for a virtual CEntre for Nonlinear REsonance Com-
putations (CENREC) is being developed at RISC as an international open-
source information resource in the most important and vastly developing area
of modern nonlinear dynamics – nonlinear resonance analysis. CENREC will
contain the following:

56 Peter Paule et al.

0 2 4 6 8 10

0.5

1

1.5

2

2.5

3

0

Π

������

4

Π

������

2

3Π
�����������

4

Π

0 2 4 6 8 10

0.5

1

1.5

2

2.5

3

0

Π

������

4

Π

������

2

3Π
�����������

4

Π

Figure 16 Color on-line. Plots of the modes’ amplitudes and dynamical phase as
functions of time, for a triad with Z = 1. For each frame, the dynamical
phase ϕ(t) is (red) solid, C1(t) is (purple) dotted, C2(t) is (blue) dash-
dotted, C3(t) is (green) dashed. Initial conditions for the amplitudes
are the same for all frames; initial dynamical phase is (from the left
to the right) ϕ = 0.04 and 0.4. Here, the horizontal axis denotes non-
dimensional time; vertical left and right axes denote amplitude and phase
correspondingly.

1. A MediaWiki-based hypertext encyclopedia with references to the elec-
tronic bibliography and to executable software;

2. An electronically indexed and searchable bibliography, with links to elec-
tronic documents (if freely available);

3. A collection of executable symbolic methods accessible via web interfaces
(http://cenrec.risc.uni-linz.ac.at/portal/).

6.3 Highlights of the Research on the NRA

Natural Phenomena

Intraseasonal oscillations (IOs) in the earth’s atmosphere with periods 30-100
days have been discovered in observed atmospheric data in 1960th. They play
an important role for modeling climate variability. All attempts to explain
their origin, including numerical simulations with 120 tunable parameters,
failed [GKLR04]. We developed a model of IOs based on the NRA; this model
explains all known characteristics of IOs and also predicts their appearance,
for suitable initial conditions. The paper on the subject has been published
in the journal Number 1 in general modern physics—Physical Review Letters
(PRL, [KL07]). The model called a lot of attention of the scientific commu-
nity: it has been featured in “Nature Physics” (3(6): 368; 2007), listed in PRL
Highlights by “The Biological Physicist” (7(2): 5; 2007), etc.

I Algorithms in Symbolic Computation 57

Numerics

The NRA should be regarded as a necessary preliminary step before any
numerical simulations with nonlinear evolutionary dispersive PDEs. Instead
of using Galerkin-type numerical methods to compute one system of 2500
interconnected nonlinear ODEs for the example regarded in Section 6.2, we
have 28 small independent systems and among them 18 are integrable analyt-
ically in terms of special functions (e.g. in Jacobian or Weierstrass’s elliptic
functions, see [BK09b]). The largest system to be solved numerically consists
of only 12 equations. These theoretical findings are completely general, and
do not depend on the form of the dispersion function and the chosen spectral
domain, only the form and the number of small subsystems will change (e.g.
[KL08, Kar94, KK07]).

Mathematics

Nonlinear resonance analysis is a natural next step after Fourier analysis
developed for linear PDEs. The necessary apparatus of a new branch of
mathematical physics—definitions, theorems, methods, applications—is al-
ready available. The monograph on the subject, authored by E. Kartashova,
will be published soon by Cambridge University Press. What is still missing,
is an appropriate set of simple basis functions, similar to Fourier harmonics
exp[i(kx + ωt)] for linear PDEs. The form of dynamical invariants gives a
hint that the functional basis of the NRA might be constructed, for instance,
from three Jacobian elliptic functions sn,dn and cn or their combinations.
If this task would be accomplished, the NRA will become a necessary routine
part of any university education in natural sciences as is nowadays Fourier
analysis.

Acknowledgements

The work described in this chapter was partially supported by the following
grants of the Austrian Science Fund (FWF): SFB F1302, SFB F1304, SFB
F1305, P19462-N18, P20162-N18, P20164-N18, P20347-N18.

58 Peter Paule et al.

References

[AAR00] G.E. Andrews, R. Askey, and R. Roy. Special Functions. Number 71 in Ency-
clopedia of Mathematics and its applications. Cambridge UP, 2000.

[AJLT05] F. Almonte, V.K. Jirsa, E.W. Large, and B. Tuller. Integration and segregation
in auditory streaming. Physica D, 212:137–159, 2005.

[AP94] S.A. Abramov and M. Petkovšek. D’Alembertian solutions of linear differential
and difference equations. In J. von zur Gathen, editor, Proc. ISSAC’94, pages
169–174. ACM Press, 1994.

[Arn83] V.I. Arnold. Geometrical methods in the theory of ordinary differential equa-
tions. A Series of Comprehensive Studies in Mathematics. New York Heidel-
berg Berlin: Springer-Verlag, 1983.

[AS64] M. Abramowitz and I. Stegun, editors. Handbook of Mathematical Functions.
United States Government Printing Office, 1964. Reprinted by Dover, 1965.

[BBK06] I. Bierenbaum, J. Blümlein, and S. Klein. Evaluating two-loop massive op-
erator matrix elements with Mellin-Barnes integrals. Nucl. Phys. B (Proc.
Suppl.), 160:85–90, 2006. Proceedings of the 8th DESY Workshop on Elemen-
tary Particle Theory.

[BBK07] I. Bierenbaum, J. Blümlein, and S. Klein. Two-loop massive operator ma-
trix elements and unpolarized heavy flavor production at asymptotic values
Q2 ≫ m2. Nucl. Phys. B, 780:40–75, 2007. [arXiv:hep-ph/0703285].

[BBKS07] I. Bierenbaum, J. Blümlein, S. Klein, and C. Schneider. Difference equa-
tions in massive higher order calculations. In Proc. ACAT 2007, volume
PoS(ACAT)082, 2007. [arXiv:hep-ph/0707.4659].

[BBKS08] I. Bierenbaum, J. Blümlein, S. Klein, and C. Schneider. Two–loop massive
operator matrix elements for unpolarized heavy flavor production to o(ǫ).
Nucl.Phys. B, 803(1-2):1–41, 2008. [arXiv:hep-ph/0803.0273].

[BK99] J. Blümlein and S. Kurth. Harmonic sums and Mellin transforms up to two-
loop order. Phys. Rev., D60, 1999.

[BK08] Alin Bostan and Manuel Kauers. Automatic classification of restricted lattice
walks. arXiv:0811.2899, 2008.

[BK09a] Alin Bostan and Manuel Kauers. The full counting function for Gessel walks
is algebraic, 2009. (in preparation).

[BK09b] M.D. Bustamante and E. Kartashova. Dynamics of nonlinear resonances in
Hamiltonian systems. Europhysics Letters, 85:14004–6, 2009.

[BK09c] M.D. Bustamante and E. Kartashova. Effect of the dynamical phases on the
nonlinear amplitudes’ evolution. Europhysics Letters, 85:34002–5, 2009.

[BKKS09a] J. Blümlein, M. Kauers, S. Klein, and C. Schneider. Determining the
closed forms of the O(a3

s) anomalous dimensions and wilson coefficients from
Mellin moments by means of computer algebra. Technical Report DESY
09-002, SFB/CPP-09-22, Deutsches Elektronen Syncrothron, Zeuthen, 2009.
[arXiv:hep-ph/0902.4091].

[BKKS09b] J. Blümlein, M. Kauers, S. Klein, and C. Schneider. From moments to func-
tions in quantum chromodynamics. In To appear in Proc. ACAT 2008, volume
PoS(ACAT08)106, 2009. [arXiv:hep-ph/0902.4095].

[BM02] Mireille Bousquet-Melou. Counting walks in the quarter plane. In Trends
Math., pages 49–67. Birkhäuser, 2002.

[BMM08] Mireille Bousquet-Mélou and Marni Mishna. Walks with small steps in the
quarter plane. ArXiv 0810.4387, 2008.

[Buc65] B. Buchberger. An Algorithm for Finding the Basis Elements in the Residue
Class Ring Modulo a Zero Dimensional Polynomial Ideal. PhD thesis, Univer-
sity Innsbruck, Mathematical Institute, 1965. German, English translation in:

References 59

J. of Symbolic Computation, Special Issue on Logic, Mathematics, and Com-
puter Science: Interactions. Volume 41, Number 3–4, Pages 475–511, 2006.

[Buc70] B. Buchberger. An Algorithmical Criterion for the Solvability of Algebraic
Systems of Equations. Aequationes mathematicae, 4(3):374–383, 1970. Ger-
man. English translation in: B. Buchberger, F. Winkler (eds.), Groebner Bases
and Applications, London Mathematical Society Lecture Note Series, Vol. 251,
Cambridge University Press, 1998, pp. 535–545.

[Buc98] B. Buchberger. Introduction to Groebner Bases. In B. Buchberger and F. Win-
kler, editors, Groebner Bases and Applications, number 251 in London Mathe-
matical Society Lecture Notes Series, pages 3–31. Cambridge University Press,
1998.

[BW93] T. Becker and V. Weispfenning. Gröbner Bases: A Computational Approach
to Commutative Algebra. Springer, New York, 1993.

[BW98] Bruno Buchberger and Franz Winkler, editors. Gröbner Bases and Applica-
tions. Proc. of the International Conference “33 Years of Groebner Bases”,

volume 251 of London Mathematical Society Lecture Note Series. Cambridge
University Press, 1998. 560 pages.

[CGP99] F. Chyzak, I. Gutman, and P. Paule. Predicting the Number of Hexagonal
Systems with 24 and 25 Hexagons. MATCH, 40:139–151, 1999.

[Che93] M. Cheney. Tesla Man Out Of Time. Barnes & Noble, 1993.
[CP07] J. Chifman and S. Petrovic. Toric Ideals of Phylogenetic Invariants for the

General Group-based Model on Claw Trees K1,n. In H. Anai, K. Horimoto,
and T. Kutsia, editors, Algebraic Biology, Proc. of the Second International
Conference on Algebraic Biology, volume 4545 of Lecture Notes in Computer
Science, pages 307–321, RISC, Hagenberg, Austria, July 2007. Springer.

[CPS+01] F. Chyzak, P. Paule, O. Scherzer, A. Schoisswohl, and B. Zimmermann. The
Construction of Orthonormal Wavelets using Symbolic Methods and a Matrix
Analytical Approach for Wavelets on the Interval. Experiment. Math., 10:67–
86, 2001.

[DH81] P.J. Davis and R. Hersh. The Mathematical Experience. Birkhaeuser, Boston,
1981.

[dS04] Y. du Sautoy. The Music of the Primes. Fourth Estate, London, 2004.
[Due08] G. Dueck. Mathematik und Weltläufigkeit. Mitteilungen der DMV, 16:206–

209, 2008.
[Eys66] Hans J. Eysenck. Check Your Own I.Q. Rowohlt, 1966.
[FG04] R. Feng and X.-S. Gao. Rational General Solutions of Algebraic Ordinary

Differential Equations. In J. Gutierrez, editor, Proc. ISSAC 2004 (Internat.
Symp. on Symbolic and Algebraic Computation), pages 155–162. ACM Press,
New York, 2004.

[FG06] R. Feng and X.-S Gao. A Polynomial Time Algorithm to Find Rational Gen-
eral Solutions for First Order Autonomous ODEs. J. Symbolic Computation,
41:735–762, 2006.

[FJ03] J.C. Faugere and A. Joux. Algebraic Cryptoanalysis of Hidden Field Equation
(HFE) Cryptosystems Using Groebner Bases. In D. Boneh, editor, CRYPTO
2003, volume 2729 of Lecture Notes in Computer Science, pages 44–60, 2003.

[GCL92] K.O. Geddes, S.R. Czapor, and G. Labahn. Algorithms for Computer Algebra.
Kluwer, 1992.

[GK05] S. Gerhold and M. Kauers. A Procedure for Proving Special Function In-
equalities Involving a Discrete Parameter. In Proceedings of ISSAC’05, pages
156–162. ACM Press, 2005.

[GKLR04] M. Ghil, D. Kondrashov, F. Lott, and A.W. Robertson. Intraseasonal os-
cillations in the mid-latitudes: observations, theory, and GCM results. Proc.
ECMWF/CLIVAR Workshop on Simulations and prediction of Intra-Seasonal
Variability with Emphasis on the MJO. November 3-6, 2003., pages 35–53,
2004.

60 Peter Paule et al.

[GKP94] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics.
Addison-Wesley, 2nd edition edition, 1994.

[Har40] G.H. Hardy. A Mathematician’s Apology. Cambridge University Press, 1940.
[HKPP06] D. Heldt, M. Kreuzer, S. Pokutta, and H. Poulisse. Algebraische Modellierung

mit Methoden der approximativen Computeralgebra und Anwendungen in der
Ölindustrie. OR-News, 28, 2006. issn 1437-2045.

[HMK03] K. Horvat, M. Miskovic, and O. Kuljaca. Avoidance of nonlinear resonance
jump in turbine governor positioning system using fuzzy controller. Industrial
Technology, 2:881–886, 2003.

[ITBR04] T. Ida, D. Tepeneu, B. Buchberger, and J. Robu. Proving and Constraint
Solving in Computational Origami. In B. Buchberger and John Campbell,

editors, Proceedings of AISC 2004 (7 th International Conference on Artifi-
cial Intelligence and Symbolic Computation), volume 3249 of Springer Lecture
Notes in Artificial Intelligence, pages 132–142. Copyright: Springer-Berlin, 22-
24 September 2004.

[Kar81] M. Karr. Summation in finite terms. J. ACM, 28:305–350, 1981.
[Kar94] Elena Kartashova. Weakly nonlinear theory in resonators. Physical Review

Letters, 72:2013–2016, 1994.
[Kar98] Elena Kartashova. Wave resonances in systems with discrete spectra. In V.E.

Zakharov, editor, Nonlinear Waves and Weak Turbulence, volume 182 of AMS
Translations 2, pages 95–130. American Mathematical Society, 1998.

[Kar06] E. Kartashova. Fast Computation Algorithm for Discrete Resonances among
Gravity Waves. JLTP (Journal of Low Temperature Physics), 145(1):287–295,
2006.

[Kau08] Manuel Kauers. Computer Algebra for Special Function Inequalities. In
Tewodros Amdeberhan and Victor Moll, editors, Tapas in Experimental Math-
ematics, volume 457 of Contemporary Mathematics, pages 215–235. AMS,
2008.

[KB05] M. Kundu and D. Bauer. Nonlinear Resonance Absorption in the Laser-Cluster
Interaction. Physical Review Letters, 96:123401, 2005.

[KK06] E. Kartashova and A. Kartashov. Laminated wave turbulence: generic algo-
rithms I. IJMPC (International Journal of Modern Physics C), 17(11):1579–
1596, 2006.

[KK07] E. Kartashova and A. Kartashov. Laminated wave turbulence: generic algo-
rithms III. Physica A: Statistical Mechanics and Its Applications, 380:66–74,
2007.

[KKZ08] Manuel Kauers, Christoph Koutschan, and Doron Zeilberger. Proof of Ira Ges-
sel’s lattice path conjecture. Technical Report 2008-08, SFB F013, Johannes
Kepler Universität, 2008. (submitted).

[KL07] E. Kartashova and V. L’vov. A model of intra-seasonal oscillations in the Earth
atmosphere. Physical Review Letters, 98(19):198501, May 2007.

[KL08] E. Kartashova and V. L’vov. Cluster Dynamics of Planetary Waves. Europhys.
Letters, 83:50012–1–50012–6, 2008.

[KLPG04] A.L. Karuzskii, A.N. Lykov, A.V. Perestoronin, and A.I. Golovashkin. Mi-
crowave nonlinear resonance incorporating the helium heating effect in super-
conducting microstrip resonators. Physica C: Superconductivity, 408-410:739–
740, 2004.

[Klu06] W. Kluzniak. Quasi periodic oscillations and the possibility of an abserva-
tional distinction between neutron and quark stars. Acta Physica Polonica B,
37:1361–1366, 2006.

[KM06] D.A. Kovriguine and G.A. Maugin. Multiwave nonlinear couplings in elastic
structures. Mathematical Problems in Engineering, 2006:76041, 2006.

[KM07] E. Kartashova and G. Mayrhofer. Cluster formation in mesoscopic systems.
Physica A: Statistical Mechanics and Its Applications, 385:527–542, 2007.

References 61

[KP07] Manuel Kauers and Peter Paule. A Computer Proof of Moll’s Log-Concavity
Conjecture. Proceedings of the AMS, 135(12):3847–3856, December 2007.

[KR00] M. Kreuzer and L. Robbiano. Computational Commutative Algebra I. Springer
New York–Heidelberg, 2000.

[KRF+07] E. Kartashova, C. Raab, Ch. Feurer, G. Mayrhofer, and W. Schreiner. Symbolic
Computations for Nonlinear Wave Resonances. In Ch. Harif and E. Pelinovsky,
editors, “Extreme Ocean Waves”. Springer, 2007. (submitted).

[Kuk04] B. Kuksin. Fifteen years of KAM for PDE. In AMS Translations 2, volume
212, pages 237–258. American Mathematical Society, 2004.

[KZ08] Manuel Kauers and Doron Zeilberger. The quasi-holonomic ansatz and re-
stricted lattice walks. Journal of Difference Equations and Applications,
14(10):1119–1126, 2008.

[LH04] P. Lynch and C. Houghton. Pulsation and precession of the resonant swinging
spring. Physica D, 190:38–62, 2004.

[LHG67] M.S. Longuet-Higgins and A.E. Gill. Resonant Interactions between Planetary
Waves. Proc. R. Soc. London, Ser. A, 299:120–140, 1967.

[M06] Kauers M. Sum Cracker – A Package for Manipulating Symbolic Sums and
Related Objects. J. Symbolic Computat., 41(9):1039–1057, 2006.

[Mal96] Christian Mallinger. Algorithmic Manipulations and Transformations of Uni-
variate Holonomic Functions and Sequences. Master’s thesis, RISC-Linz, Au-
gust 1996.

[Mis07] Marni Mishna. Classifying lattice walks restricted to the quarter plane. In

Proceedings of FPSAC’07, 2007.
[MS07] S. Moch and C. Schneider. Feynman integrals and difference equations. In

Proc. ACAT 2007, volume PoS(ACAT)083, 2007. [arXiv:hep-ph/0709.1769].
[MVV04] S. Moch, J. A. M. Vermaseren, and A. Vogt. The three-loop splitting functions

in qcd: The non-singlet case. Nucl. Phys. B, 688:101–134, 2004. [arXiv:hep-
ph/0403192].

[Ped87] J. Pedlosky. Geophysical Fluid Dynamics. New York Heidelberg Berlin:
Springer-Verlag, 1987.

[Pil07] V. Pillwein. Positivity of Certain Sums over Jacobi Kernel Polynomials. Ad-
vances Appl. Math., 41:365–377, 2007.

[PP08] P. Paule and V. Pillwein. Automatic Improvements of Wallis’ Inequality. Tech-
nical Report 08–18, RISC Report Series, University of Linz, Austria, 2008.

[PR97] P. Paule and A. Riese. A Mathematica q-analogue of Zeilberger’s algorithm
based on an algebraically motivated aproach to q-hypergeometric telescoping.
In M. Ismail and M. Rahman, editors, Special Functions, q-Series and Related
Topics, volume 14, pages 179–210. Fields Institute Toronto, AMS, 1997.

[PS95] P. Paule and M. Schorn. A Mathematica version of Zeilberger’s Algorithm for
Proving Binomial Coefficient Identities. J. Symbolic Comput., 20(5-6):673–698,
1995.

[PS03] P. Paule and C. Schneider. Computer proofs of a new family of harmonic
number identities. Adv. in Appl. Math., 31(2):359–378, 2003.

[PV00] D. Poulakis and E. Voskos. On the Practical Solutions of Genus Zero Diopan-
tine Equations. J. Symbolic Computation, 30:573–582, 2000.

[PV02] D. Poulakis and E. Voskos. Solving Genus Zero Diopantine Equations with at
Most Two Infinity Valuations. J. Symbolic Computation, 33:479–491, 2002.

[PWZ96] M. Petkovšek, H. S. Wilf, and D. Zeilberger. A = B. A. K. Peters, Wellesley,
MA, 1996.

[RBE03] M. Rosenkranz, B. Buchberger, and H. W. Engl. Solving Linear Boundary
Value Problems Via Non-commutative Groebner Bases. Applicable Analysis,
82(7):655–675, July 2003.

[Sch04] C. Schneider. The summation package Sigma: Underlying principles and a
rhombus tiling application. Discrete Math. Theor. Comput. Sci., 6(2):365–
386, 2004.

62 Peter Paule et al.

[Sch05] C. Schneider. Solving parameterized linear difference equations in terms of
indefinite nested sums and products. J. Differ. Equations Appl., 11(9):799–
821, 2005.

[Sch07] C. Schneider. Symbolic summation assists combinatorics. Sém. Lothar. Com-
bin., 56:1–36, 2007. Article B56b.

[Sch08] C. Schneider. A refined difference field theory for symbolic summation. J.
Symbolic Comput., 43(9):611–644, 2008. [arXiv:0808.2543v1].

[Sch09] C. Schneider. A symbolic summation approach to find optimal nested sum
representations. In Proceedings of the Conference on Motives, Quantum Field
Theory, and Pseudodifferential Operators, To appear in the Mathematics Clay
Proceedings, 2009.

[Slo73] N.J.A. Sloane. A Handbook of Integer Sequences. Academic Press, 1973.
[Slo94] N.J.A. Sloane. The New Book of Integer Sequences. Springer, 1994.
[SWPD08] J.R. Sendra, F. Winkler, and S. Pérez-Dı́az. Rational Algebraic Curves — A

Computer Algebra Approach, volume 22 of Algorithms and Computation in
Mathematics. Springer-Verlag Heidelberg, 2008.

[SZ94] B. Salvy and P. Zimmermann. Gfun: A Package for the Manipulation of Gener-
ating and Holonomic Functions in One Variable. ACM Trans. Math. Software,
20:163–177, 1994.

[Ver99] J.A.M. Vermaseren. Harmonic sums, Mellin transforms and integrals. Int. J.
Mod. Phys. A, 14:2037–2076, 1999.

[VGJ02] Markus Voege, Anthony J. Guttmann, and Iwan Jensen. On the Number of
Benzenoid Hydrocarbons. Journal of Chemical Information and Computer
Sciences, 42(3):456–466, 2002.

[VMM05] C. Vedruccio, E. Mascia, and V. Martines. Ultra High Frequency and Mi-
crowave Non-linear Interaction Device for Cancer Detection and Tissue Char-
acterization, a Military Research approach to prevent Health Diseases. Inter-
national Review of the Armed Forces Medical Services (IRAFMS), 78:120–132,
2005.

[VMV04] A. Vogt, S. Moch, and J. A. M. Vermaseren. The three-loop splitting func-
tions in qcd: The singlet case. Nucl. Phys. B, 691:129–181, 2004. [arXiv:hep-
ph/0404111].

[VVM05] J. A. M. Vermaseren, A. Vogt, and S. Moch. The third-order qcd corrections
to deep-inelastic scattering by photon exchange. Nucl. Phys. B, 724:3–182,
2005. [arXiv:hep-ph/0504242].

[vzGG99] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, 1999.

[Weg97] K. Wegschaider. Computer generated proofs of binomial multi-sum identities.
Diploma thesis, RISC Linz, Johannes Kepler University, 1997.

[Whi90] E.T. Whittaker. A Course in Modern Analysis. Cambridge University Press,
1990.

[Zei90a] D. Zeilberger. A Fast Algorithm for Proving Terminating Hypergeometric
Identities. Discrete Math., 80:207–211, 1990.

[Zei90b] D. Zeilberger. A Holonomic Systems Approach to Special Function Identitites.
J. Comput. Appl. Math., 32:321–368, 1990.

[ZLF92] V.E. Zakharov, V.S. L’vov, and G. Falkovich. Kolmogorov Spectra of Turbu-
lence. Springer, 1992.

Chapter II

Automated Reasoning

Tudor Jebelean

Bruno Buchberger, Temur Kutsia, Nikolaj Popov, Wolfgang Schreiner,

Wolfgang Windsteiger

Introduction 1

Observing is the process of obtaining new knowledge, expressed in language,
by bringing the senses in contact with reality. Reasoning, in contrast, is
the process of obtaining new knowledge from given knowledge, by apply-
ing certain general transformation rules that depend only on the form of
the knowledge and can be done exclusively in the brain without involving
the senses. Observation and reasoning, together, form the basis of the sci-
entific method for explaining reality. Automated reasoning is the science of
establishing methods that allow to replace human step-wise reasoning by pro-
cedures that perform individual reasoning steps mechanically and are able to
find, automatically, suitable sequences of reasoning steps for deriving new
knowledge from given one.

The importance of automatic reasoning originates in the fact that basically
everything relevant to current science and technology can be expressed in the
language of logic on which current automated reasoners work, for example the
description of systems (specification or implementation of hardware and soft-
ware), information provided on the internet, or any other kind of facts or data
produced by the sciences. As the complexity of the knowledge produced by
the observing sciences increases, the methods of automatic reasoning become
more and more important, even indispensable, for mastering and developing
our working and living environment by science and technology. In the same
way as, over the millennia, humans developed tools for enhancing and ampli-
fying their physical power and later developed tools (e.g. devices in physics)
for enhancing the observing power, it is now the natural follow-up to develop
tools for enhancing and amplifying the human reasoning power.

64 Tudor Jebelean et al.

Mathematical Logic as Basis for Automated Reasoning

As Mathematics can be seen as the science of operating in abstract models
of the reality (thinking), Mathematical Logic can be seen as the science of
operating in abstract models of mathematical thinking (thinking about think-
ing). Since abstract models are expressed using statements, and operating
in abstract models is done by transforming and combining these statements,
Mathematical Logic studies their syntax (how do we construct statements),
their semantics (what is the meaning of statements) and their pragmatics
(rules that describe how statements can be transformed in a way that re-
spects semantics). In the era of electronic computing, the importance of au-
tomated reasoning increases tremendously, because computers are devices for
automatic operation in abstract models (thinking tools). Thus, Mathematical
Logic becomes also the theoretical basis for studying the design and the be-
havior of computing devices and programs and, hence, Automated Reasoning
is automated thinking about thinking tools.

Automated Mathematical Theorem Proving

Since logical formulae have been traditionally used for expressing mathemat-
ics, there is a widespread opinion that automated reasoning can be used only
for proving mathematical statements, which is sometimes perceived as either
redundant (in case of already proven theorems) or hopeless (in case of not
yet proven conjectures). First let us emphasize that automated mathemati-
cal theorem proving is only a part of automated reasoning—however crucial
because it develops techniques which are useful in all other areas of science
and technology. Moreover automatic theorem proving is neither redundant
(because proving “known” or “trivial” theorems is absolutely necessary in the
process of [semi]-automatic verification of complex systems—hardware, soft-
ware, or combined hardware/software), nor hopeless (because, on the other
hand, the proofs of highly nontrivial theorems as the Four Color Theorem
[AH77] and the Robbins Conjecture [McC97] were only possible by the use of
automatic theorem proving tools).

Verification and Synthesis

Contemporary technological systems consist of increasingly complex com-
binations of hardware, software, and human agents, whose tasks are very
sophisticated. How do we express these sophisticated tasks, how do we design
and how do we describe these technological systems, and how do we ensure
that the systems always fulfill their tasks? Those who believe that (at least
in some organization with a long technological tradition) these four questions
have been properly answered may take a look at some famous software fail-
ures http://en.wikipedia.org/wiki/List of notable software bugs.

II Automated Reasoning 65

The consequences of design defects in complex technological systems have
become a part of our everyday life: computer viruses, unauthorized access to
sensitive data (e. g. bank accounts and credit cards), and periodic failures
of the programs on our computers and on our mobile phones. The future
brings: automotive software for handling the controls and the airbags in our
automobiles, generalized internet banking, and the inclusion of computers in
most of the objects around us.

Today it is largely accepted that the answer to the above four questions
is: both the description of the complex systems (implementations), as well as
their sophisticated tasks (specifications) can be expressed as logical formulae,
the design of complex systems can be decomposed in successive and control-
lable steps of transformation of such logical formulae, and the verification
of their correct behavior can be performed by checkable inferences on these
formulae.

Semantic Representation of the Information on the Internet

The extraordinary proliferation of the data which is accessible on the internet
offers of course an unprecedented richness of information at our fingertips,
however the limitations of the current syntactic approach are more and more
visible. It is often very difficult for the user to select the relevant information
among the “noise” of irrelevant one, and it is also impossible to find out pieces
of knowledge which require a minimal amount of intelligent processing. These
problems can be solved only by a semantic approach: the information has to
be stored in form of logical statements (probably of very simple structure, but
high quantity), and the search engines have to include Automatic Reasoning
capabilities.

This chapter summarizes the work performed in the Softwarepark Hagen-
berg in the field of Automated Reasoning, in particular the work performed
at RISC and in the Theorema group. Research from other groups in Hagen-
berg are also tangent with Automated Reasoning, and they are mentioned in
the respective chapters.

Theorema : Computer-Supported

Mathematical Theory Exploration

2

At RISC, much of the research on automated reasoning focuses on the The-
orema Project, which aims at developing algorithmic methods and software
tools for supporting the intellectual process of mathematical theory explo-
ration. The emphasis of the Theorema Project is not so much on the auto-
mated proof of yet unknown or difficult theorems but much more on organiz-

66 Tudor Jebelean et al.

ing the overall flow of the many small reasoning steps necessary in building up
mathematical theories or writing proof-checked mathematical textbooks and
lecture notes or developing verified software. The net effect of an exploration,
however, may also be that complicated theorems and nontrivial algorithms
can be proven correct with only very little user-interaction necessary at some
crucial stages in the exploration process, while the individual intermediate
reasoning steps are completely automatic. An example of a non-trivial au-
tomated algorithm synthesis (the synthesis of a Gröbner bases algorithm)
by the Theorema methodology is given later in this chapter. The main con-
tribution of the working mathematician who uses Theorema will then be
the organization of a well structured exploration process that leads from the
initial knowledge base to the full-fledged theory.

This design principle of Theorema is in contrast to the main stream in auto-
mated mathematical theorem proving, which to a great extent has focused on
proving individual theorems from given knowledge bases (containing the ax-
ioms of the theory, definitions, lemmata etc.). Considering the mathematical
theory exploration process (invention of notions, invention and proof/refu-
tation of propositions, invention of problems, invention and verification of
algorithms/methods for solving problems) and the computer-supported doc-
umentation of this process as a coherent process seems to be more natural
and useful for the success of automated theorem proving for the every-day
practice of working mathematicians than considering the proof of isolated
theorems. This point of view has been made explicit, first, in [Buc99] and,
later, in [Buc03, Buc06].

The Theorema Group has strived to contribute, in various ways, to the
computer-support of the mathematical theory exploration process by building� tools for the automated generation of proofs in various general theories

(e.g. elementary analysis, geometry, inductive domains including natural
number theory and tuple theory, and set theory),� and tools for the organization of the theory exploration process and build-
up of mathematical knowledge bases (various viewers for proofs including
the “focus window” approach, proof presentation including natural lan-
guage explanation, logico-graphic symbols, user-defined two-dimensional
syntax, functors for domain building etc.).

The research goals and the basic design principles of the Theorema
project were formulated in a couple of early papers, see [Buc96b, Buc96a,
Buc96c, Buc97]. Summaries of the achievements in the Theorema Project
are [BJK+97, BDJ+00, BCJ+06]. A complete list of the publications of the
Theorema Group can be accessed on-line at www.theorema.org.

II Automated Reasoning 67

The Theorema Language and the User Interface 2.1

The typical user interface of Theorema is the Mathematica notebook fron-
tend, which allows the combination of mathematical formulae and natural
language text (and much more) in a natural way. Figure 1 shows a screen-
shot of a typical Theorema notebook that exhibits the main components of
the Theorema language. An important design principle of the Theorema sys-

Theorema input in a Mathematica notebook. Figure 1

tem is to come as close to conventional mathematics in the appearance of
mathematics in as many aspects as possible, be it in the language in which
mathematics is expressed, be it in the way how proofs are presented, and
many more.

The Theorema language is structured in essentially three layers,

68 Tudor Jebelean et al.� the Theorema formula language,� the Theorema formal text language, and� the Theorema command language.

These three layers correspond to three aspects of mathematical language,
namely the logical part of formulating statements in a concise and correct way,
the organizational part of structuring knowledge into definitions, theorems,
lemmata, etc., or entire theories, and the description of various mathematical
activities like proving or computing.

The Theorema formula language is a version of higher order predicate
logic without extensionality. On this basis, the language offers sets, tuples,
and certain types of numbers as basic language components. As an example,

∀
x∈A

x ∼ x (1)

is a statement in the Theorema formula language. As can be seen in Fig-
ure 1, Theorema allows standard mathematical notation even in input so
that formulae can be written like in conventional mathematical texts. Twodi-
mensional input including also special symbols (like integrals or quantifiers)
is standard technology in Mathematica. In order to facilitate Theorema in-
put, we provide specialized palettes that paste skeletons for frequently used
Theorema expressions into a notebook by just one mouse-click.

For composing and manipulating large formal mathematical texts, how-
ever, we need to be able to combine the expression language with auxiliary
text (labels, key words like “Definition”, “Theorem”, etc.) and to compose,
in a hierarchical way, large mathematical knowledge bases from individual
expressions. In the example, in order to define reflexivity by (1) we would
use a definition environment.

Definition[“reflexivity”, any[A,∼],

reflexiveA[∼] : ⇐⇒ ∀
x∈A

x ∼ x “∼�”]

The field “any[vars]” declares vars as (the free) variables. Each variable
v in vars can carry a type restriction of the form “v ∈ S” or “type[v]”. An
optional field “with[cond]” tells that the variables must satisfy the condition
cond. Logically, the variable declaration and the condition are just a shortcut
for prefixing every formula in the environment with a universal quantifier.
Other examples of formal text are:

Definition[“class”, any[x, A,∼], with[x ∈ A],

classA,∼[x] := {a ∈ A | a ∼ x}]

Lemma[“non-empty class”, any[x ∈ A, A,∼], with[reflexiveA[∼]],

classA,∼[x] 6= ∅]

The effect of entering an environment into the system is that its content
can be referred to later by Keyword [env label]. Knowledge can be grouped

II Automated Reasoning 69

using nested environments, whose structure is identical except that instead
of clauses (formulae with optional labels) there are references to previously
defined environments. Typical keywords used for nested environments are
“Theory” and “KnowledgeBase”, e.g.

Theory[“relations”,

Definition[“reflexivity”]

Definition[“class”]
]

The mathematical activities that are supported in the command language
are computing, proving, and solving. Computations are performed based on
a semantics of the language expressed in the form of computational rules for
the finitary fragment of the formula language, i.e. finite sets, tuples, numbers,
and all sorts of quantifiers as long as they involve a finite range for their
variable(s). In the example,

Compute[class{1,2,3,4},≤[3], using→Definition[“class”],

built-in→ {Built-in[“Sets”], Built-in[“Numbers”]}]

would compute the class of 3 in {1, 2, 3, 4} w.r.t. ≤ using the definition of
class (see above) and built-in semantics of (finite) sets and numbers resulting
in {1, 2, 3} and

Compute[reflexive{1,2,3,4}[≤], using→Definition[“reflexivity”],

built-in→ {Built-in[“Quantifiers”], Built-in[“Numbers”]}]

would decide by a finite computation, whether the relation ≤ is reflexive
on {1, 2, 3, 4} using the definition of reflexivity and the built-in semantics of
quantifiers and numbers resulting in “true”. Consider the lemma about non-
empty classes stated above, which is a statement about relations on arbitrary
not necessarily finite sets. Thus, its validity cannot be verified by computation
but must be proven. In order to prove a statement in Theorema, we use

Prove[Lemma[“non-empty class”], using→Theory[“relations”],

by→SetTheoryPCSProver],

which will try to prove Lemma[“non-empty class”] using Theory[“relations”]
as the knowledge base by SetTheoryPCSProver, a prove method for set theory
described in more detail in Section 3.2. In case of success, the complete proof
is presented in human readable nicely structured format in a separate window,
otherwise the failing proof attempt is displayed. Moreover, Theorema features
a novel approach for displaying proofs based on focus windows [PB02], a proof
simplification tool, and an interactive proof tool [PK05].

70 Tudor Jebelean et al.

2.2 “Lazy Thinking”: Invention by Formulae Schemes and
Failing Proof Analysis

A main point in the Theorema approach to mathematical theory exploration
is that mathematical invention should be supported both “bottom-up”, by
using formulae schemes, and “top-down”, by analyzing failing proofs and
constructing guesses for necessary intermediate lemmata. This combined ap-
proach is called “lazy thinking” and was introduced in [Buc03].

The difficulty of finding proofs for propositions depends, to a large extent,
on the available knowledge. Most mathematical inventions, even simple ones
like the proof of, say, the lemma that the limit of the sum of two sequences
is equal to the sum of the limits, would hardly be possible (even for quite
intelligent humans) if mathematical theories were not built up in small steps.
In each step, only one new concept is introduced (by an axiom or definition)
and all possible simple knowledge is proved first before the proof of any
more important theorem is attacked. With sufficiently much intermediate
knowledge, it often turns out that the proof of the essential theorems then
only needs one single or very few “difficult” ideas that cannot be generated
completely automatically.

It is rewarding to scrutinize on what typically happens in a step in which
propositions for new notions are conjectured: In fact, in most cases, the type
of knowledge conjectured has “rewrite” character: For example, if the notion
of multiplication on natural numbers has been introduced, then all possible
interactions of this new notion with previous notions like ‘zero’, ‘addition’,
‘less’ etc. that can be formulated as “rewrite properties” should be studied
first. For example, distributivity is such a property in rewrite form:

(x + y) ∗ z = x ∗ z + y ∗ z.

It is an important observation that, when sufficiently many rewrite proper-
ties have been proven by using the “fundamental” (sometimes difficult) proof
methods in the theory, subsequent proofs of most other possible properties
then can be done by simple “rewrite proving” (“symbolic computation prov-
ing”, “physicists proving”, “quantifier free proving”, “highschool proving”),
i.e. by applying the proven rewrite properties repeatedly just using substi-
tution and replacement. (In the theory of natural numbers, the “fundamen-
tal” proving method is induction; in elementary analysis, the “fundamental”
proving method is general predicate logic for “alternating” quantifiers ‘∀ ∃’;
etc.). A good theory exploration environment, should support this important
observation. In the Theorema Project, this observation is a guiding strategy.

How can (rewrite and other) knowledge about notions (introduced by def-
initions) be “invented”, i.e. systematically generated? In the “lazy thinking”
approach introduced in [Buc03], two complementary strategies are proposed:

1. The use of “formulae schemes”, a bottom-up approach.
2. The use of “analysis of failing proofs”, a top-down approach.

II Automated Reasoning 71

A synopsis of the lazy thinking approach to the automation of mathemati-
cal theory exploration and some more details can also be found, for example,
in [Buc06].

The lazy thinking strategy can be applied both to the invention and veri-
fication of theorems and the invention and verification of algorithms (“algo-
rithm synthesis”). Here, we illustrate the method by two examples of algo-
rithm synthesis. There is a rich literature on algorithm synthesis methods, see
the survey [BDF+04]. Our method, in the classification given in this survey,
is in the class of “scheme-based” methods but is essentially different from
previously known such methods by its emphasis on the heuristic usefulness
of failing correctness proofs.

The algorithm synthesis problem is the following problem: Given a prob-
lem specification P (i.e. a binary predicate P [x, y] that specifies the relation
between the input values x and the output values y of the problem), find an
algorithm A such that

∀
x

P [x, A[x]].

The lazy thinking approach to algorithm synthesis consists of the following
steps:� Consider known fundamental ideas (“algorithm schemes”) of how to struc-

ture algorithms A in terms of sub-algorithms B, C, Try one scheme
A after the other.� For the chosen scheme A, try to prove ∀

x
P [x, A[x]]. This proof will probably

fail because, at this stage, nothing is known about the sub-algorithms B,
C, From the failing proof, construct specifications Q, R, . . . for the
sub-algorithms B, C, . . . that make the proof work.� Then A together with any sample of algorithms B, C, . . . that satisfy the
specifications Q, R, . . . will be a correct algorithm for the original problem
P .� If such sub-algorithms B, C, . . . are available in the given knowledge base,
then we are done, i.e. an algorithm for problem P has been synthesized. If
no such algorithms are available, we can apply the lazy thinking method,
recursively, for synthesizing algorithms B, C, . . . that satisfy Q, R, . . .
until we arrive at specifications that are met by available algorithms in
the knowledge base.

For the (automated) construction of specifications from failing correctness
proofs we introduced the following simple (but amazingly powerful) rule: In
the failing correctness proof, collect the temporary assumptions

T [x0, . . . , A[. . .], . . .]

(where x0, . . . are the constants resulting from the “arbitrary but fixed” proof
rule) and the temporary goals

G[x0, . . . , B[. . . , A[. . .], . . .]]

72 Tudor Jebelean et al.

and produce the specification for sub-algorithm B:

∀
X,Y,...

T [X, . . . , Y, . . .] =⇒ G[Y, . . . , B[. . . , Y, . . .]].

We illustrate the method in a simple example: We synthesize, completely
automatically, an algorithm for the sorting problem, which is the problem to
find an algorithm A such that

∀
X

is-sorted-version[X, A[X]].

We assume that the binary predicate ‘is-sorted-version’ is defined by a set
of formulae in predicate logic. In the first step of the lazy thinking approach,
we choose one of the many algorithm schemes in our library of algorithm
schemes, for example, the ‘Divide-and-Conquer’ scheme, which can be de-
fined, within predicate logic, by

∀
A,S,M,L,R

Divide-and-Conquer[A, S, M, L, R] ⇐⇒

∀
x

A[x] =

{
S[x] ⇐ is-trivial-tuple[x]

M [A[L[x]], A[R[x]]] ⇐ otherwise

This is a scheme that explains how the unknown algorithm A should be
defined in terms of unknown subalgorithms S, M , L, R. With this knowledge
we try to prove that

∀
X

is-sorted-version[X, A[X]]

using one of our automated provers (for induction over tuples). This proof
will fail because, at this moment, nothing is known about the subalgorithms
S, M , L, R. Analyzing the failing proof for the pending goals and available
temporary knowledge at the time of failure we now use the above rule for
generating, automatically, specifications for S, M , L, R that will make the
proof work. In this example, in approx. 2 minutes on a laptop, the following
specifications are generated automatically:

∀
x

is-trivial-tuple[x] =⇒ S[x] = x,

∀
y,z

is-sorted[y]

is-sorted[z]
=⇒ is-sorted[M [y, z]]

M [y, z] ≈ (y ≍ z)
,

∀
x

L[x] ≍ R[x] ≈ x.

(Here, ‘≍’, and ‘≈’ denote “concatenation” and “equivalence” of tuples.) A
closer look to the formulae reveals the amazing fact that these specifications
on S, M , L, R are not only sufficient for guaranteeing the correctness of A

II Automated Reasoning 73

but are also completely natural and intuitive: They tell us that a suitable
algorithm S must essentially be the identity function, suitable algorithms L
and R must essentially be “pairing functions” (which split a given tuple X
in two parts that, together, preserve the entire information in X) and that
M must be a merging algorithm.

Automated Synthesis of Gröbner Bases Theory

Our expectation was that, with lazy thinking, one may be able to synthesize
only quite simple algorithms. It came as a surprise, see [Buc04], that, in
fact, algorithms for quite non-trivial problems can be synthesized by this
method. The most interesting example so far is the problem of Gröbner bases
construction with the specification: Find an algorithm Gb, such that

∀
is-finite[F]

is-finite[Gb[F]]

is-Gröbner-basis[Gb[F]]

ideal[F] = ideal[Gb[F]]

.

(The quantifier ranges over sets F of multivariate polynomials. ‘ideal[F]’ is
the set of all linear combinations of polynomials from F .) In Chapter I on
symbolic computation it is explained why this problem is non-trivial and
why it is important and interesting. In fact, the problem was open for over
60 years before it was solved in [Buc65]. Thus, it may be philosophically and
practically interesting that now it can be solved automatically, i.e. the key
idea of algorithmic Gröbner bases theory, namely the notion of S-polynomials,
and the algorithm based on this key idea can be generated automatically from
the specification of the problem by the lazy thinking method.

Namely, we start with the following algorithm scheme, called “Pair Com-
pletion”, that tells us that the unknown algorithm Gb should be defined in
terms of two unknown subalgorithms lc and df in the following way:

∀
Gb,lc,df

Pair-Completion[Gb, lc, df] ⇐⇒

∀
F

Gb[F] = Gb[F, pairs[F]]

∀
F

Gb[F, 〈〉] = F

∀
F,g1,g2,p̄

Gb[F, 〈〈g1, g2〉, p̄〉] =

where[f = lc[g1, g2], h1 = trd[rd[f, g1], F], h2 = trd[rd[f, g2], F],

Gb [F, 〈p̄〉] ⇐ h1 = h2

Gb[F ⌢ df[h1, h2], 〈p̄〉 ≍ 〈〈Fk, df[h1, h2]〉 |
k=1,...,|F |

〉] ⇐ otherwise]

74 Tudor Jebelean et al.

(Here, our notation for tuples is ‘〈. . . 〉’ and ’⌢’ is the append function. The
function ‘rd’ is the one-step reduction function and the function ‘trd’ is total
reduction, i.e. the iteration of ‘rd’ until an irreducible element is reached.)
Now we attempt to prove, automatically, that the above specification holds
for the algorithm Gb that is defined in this way from unknown algorithms lc
and df. An automatic prover that is powerful enough for this type of proof
was implemented in [Cra08]. The proof fails because, at this stage, nothing
is known about lc and df. Using the above specification generation rule, one
can generate, completely automatically, the following specification for lc.

∀
p,g1,g2

lp[g1]|p
lp[g2]|p =⇒ lc[g1, g2]|p,

lp[g1]|lc[g1, g2],

lp[g2]|lc[g1, g2],

which shows that a suitable subalgorithm lc is essentially the least common
multiple of the leading power products of the polynomials g1 and g2. Sim-
ilarly one automatically obtains that df must essentially be the difference
of polynomials. These two ideas are the main ingredients of the notion of
S-polynomials, which is in fact the main idea of algorithmic Gröbner bases
theory (see Chapter I on symbolic computation). This idea, together with its
correctness proof, comes out here completely automatically. This is currently
one of the strongest results of the Theorema project which creates quite some
promises for the future of semi-automated mathematical theory exploration.

3 Natural Style Proving in Theorema

The Theorema system contains several provers, which differ both in their
methods and in the domains which are treated. However, all Theorema
provers work in natural style, that is: the proofs are presented in natural
language, and the proof structure and the logical inferences are similar to
the ones used by humans. Moreover, in the context of the Theorema system
one may use provers which have implicit knowledge about the used domain
(e.g. number domains), like for instance the PCS prover. This makes certain
proofs more compact and readable, in contrast to proving in pure predicate
logic with explicit assumptions for such theories.

In this section we summarize shortly the provers of the Theorema system,
and then we focus on two particular provers: the S-decomposition prover and
the set theory prover. All provers are presented in more detail in our survey

II Automated Reasoning 75

papers [BJK+97, BDJ+00, BCJ+06] and in the publications available on our
home page www.theorema.org.

The provers available in Theorema include: a general predicate logic
prover, various induction provers containing a simple rewrite prover as a com-
ponent, a special prover for proving properties of domains generated by func-
tors, the PCS prover for analysis (and similar theories that involve concepts
defined by using alternating quantifiers) [Buc01], a set theory prover (using
the PCS approach as a subpart), a special prover for geometric theorems
using the Gröbner bases method [Rob02], a special prover for combinatorics
using the Zeilberger–Paule approach, the cascade mechanism for inventing
lemmata on the way to proving theorems by induction, an equational prover
based on Knuth-Bendix completion [Kut03], and a basic reasoner [WBR06].

S-Decomposition and the Use of Algebraic Techniques 3.1

Numerous interesting mathematical notions are defined by formulae that con-
tain a sequence of “alternating quantifiers”, i.e., the definitions have the
structure p[x, y] ⇔ ∀

a
∃
b
∀
c

. . . q[x, y, a, b, c]. Many notions introduced, for ex-

ample, in elementary analysis text books (limit, continuity, function growth
order, etc.) fall into this class. Therefore, it is highly desirable that math-
ematical assistant systems support the exploration of theories about such
notions.

The S-decomposition method is particularly suitable both for proving the-
orems (when the auxiliary knowledge is rich enough) as well as conjecturing
propositions (similar to Lazy Thinking) during the exploration of theories
about notions with alternating quantifiers. It can be seen as a further refine-
ment of the Prove-Compute-Solve method implemented in the Theorema PCS
prover [Buc01]. Essentially, the S-decomposition method is a certain strategy
for decomposing the proof into simpler subproofs, based on the structure of
the main definition involved. The method proceeds recursively on a group
of assumptions together with the quantified goal, until the quantifiers are
eliminated, and produces some auxiliary lemmata as subgoals.

We present the method using an example from elementary analysis: limit
of a sum of sequences; see [Jeb01] for a detailed description of the method.
The definition of “f converges to a” is:

(→) f → a ⇔ ∀
ǫ

(
ǫ > 0 ⇒ ∃

m
∀
n

(n ≥ m ⇒ |f [n] − a| < ǫ)
)
.

(For brevity, the type information is not included.)
The proof tree is presented in Figure 2 and Figure 3. Boxes represent

proof situations (with the goal on top), unboxed formulae represent auxil-
iary subgoals, and boxes with double sidebars represent substitutions for the

76 Tudor Jebelean et al.

metavariables. The nodes of the proof tree are labeled in the order they are
produced. (1) (f1 � f2) ! (a1 + a2)f1 ! a1f2 ! a2
(2) 8� (� > 0) 9m 8n (n � m) j(f1 � f2)[n℄� (a1 + a2)j < �))8� (� > 0) 9m 8n (n � m) jf1[n℄� a1j < �))8� (� > 0) 9m 8n (n � m) jf2[n℄� a2j < �))
(3) �0 > 0) 9m 8n (n � m) j(f1 � f2)[n℄� (a1 + a2)j < �0)�� > 0) 9m 8n (n � m) jf1[n℄� a1j < ��)�� > 0) 9m 8n (n � m) jf2[n℄� a2j < ��)(4) �0 > 0) �� > 0(14) �0 > 0) �0=2 > 0(15) 8�0 (�0 > 0) �0=2 > 0) (5) 9m 8n (n � m) j(f1 � f2)[n℄� (a1 + a2)j < �0)9m 8n (n � m) jf1[n℄� a1j < ��)9m 8n (n � m) jf2[n℄� a2j < ��)

(6) 8n (n �m�) j(f1 � f2)[n℄� (a1 + a2)j < �0)8n (n � m1) jf1[n℄� a1j < ��)8n (n � m2) jf2[n℄� a2j < ��)
Figure 2 S-Decomposition: First part of the proof tree.

The first inference expands the definition of “limit”, generating the proof
situation (2). S-decomposition is designed for proof situations in which the
goal and the main assumptions have exactly the same structure. In the exam-
ple they differ only in the instantiations of f and a. S-decomposition proceeds
by modifying these formulae together, such that the similarity of the structure
is preserved, until all the quantifiers and logical connectives are eliminated.
The method is specified as a collection of four transformation rules (infer-

II Automated Reasoning 77(6) 8n (n � m�) j(f1 � f2)[n℄� (a1 + a2)j < �0)8n (n � m1) jf1[n℄� a1j < ��)8n (n � m2) jf2[n℄� a2j < ��)
(7) n0 �m�) j(f1 � f2)[n0℄� (a1 + a2)j < �0n� � m1) jf1[n�℄� a1j < ��n� � m2) jf2[n�℄� a2j < ��(8) n0 � m�)n� � m1 ^ n� � m2(11) m� max [m1;m2℄n� n0 (9) j(f1 � f2)[n0℄� (a1 + a2)j < �0jf1[n�℄� a1j < ��jf2[n�℄� a2j < ��(10) (jf1[n�℄� a1j < �� ^jf2[n�℄� a2j < ��))j(f1[n0℄ + f2[n0℄)� (a1 + a2)j < �0(12) (jf1[n0℄� a1j < �� ^jf2[n0℄� a2j < ��))j((f1[n0℄ + f2[n0℄)� (a1 + a2)j < �0(13) �� �0=2

S-Decomposition: Second part of the proof tree. Figure 3

ences) for proof situations and a rule for composing auxiliary lemmata. The
transformation rules are described below together with their concrete appli-
cation to this particular proof.

The inference that transforms (2) to (3) eliminates the universal quantifier
and has the general formulation below. (Here, for simplicity, we formulate the
inferences for two assumptions only, but extending them to use an arbitrary
number of assumptions is straightforward.)

78 Tudor Jebelean et al.

∀
x

P1[x], ∀
x

P2[x] ⊢ ∀
x

P0[x] 7−→ P1[x∗1], P2[x∗2] ⊢ P0[x0] (∀)

Like the existential rule, specified later in this section, this rule combines the
well-known techniques for introducing Skolem constants and metavariables.
However, S-decomposition comes with a strategy of applying them in a certain
order. The Skolem constant x0 is introduced before the metavariables (names
for yet unknown terms) x∗1, x

∗
2. In the example we use a simplified version

of this rule in which the metavariables do not differ. For other examples
(e.g. quotient of sequences) this will not work.

The inference from (3) to (4) and (5) eliminates the implication, and has
the general formulation:

Q1 ⇒ P1, Q2 ⇒ P2 ⊢ Q0 ⇒ P0 7−→
{

Q0 ⇒ Q1 ∧ Q2

P1, P2 ⊢ P0

(⇒)

In contrast to the previous rule, this one is not an equivalence transforma-
tion (the proof of the right-hand side might fail even if the left-hand side is
provable). This rule is applied in the situations when Qk’s are the “condi-
tions” associated with a universal quantifier (as in the example). The formula
Q0 ⇒ Q1 ∧ Q2 is a candidate for an auxiliary lemma, as is formula (4).

The proof proceeds further with the transformation (5)–(6) (formula (14)
will be produced later in the proof) given by the following rule:

∃
x

P1[x], ∃
x

P2[x] ⊢ ∃
x

P0[x] 7−→ P1[x1], P2[x2] ⊢ P0[x∗] (∃)

where x1 and x2 are Skolem constants introduced before the metavariable
x∗.

Usually, existential quantifiers are associated with conditions upon the
quantified variables. In such a case one would obtain conjunctions (analogous
to the situation in formula (3), where one obtains implications). The rule for
decomposing conjunctions is:

Q1 ∧ P1, Q2 ∧ P2 ⊢ Q0 ∧ P0 7−→
{

Q1 ∧ Q2 ⇒ Q0

P1, P2 ⊢ P0

(∧)

Similarly to the rule (⇒), this rule produces an auxiliary lemma as a “side
effect”, using the Qk’s which are, typically, the conditions associated with an
existential quantifier. In fact, in the implementation of the method, the rules
(∃), (∧) are applied in one step, as are also the rules (∀), (⇒).

However, in this example there is no condition associated to the existential
quantifier, therefore this rule is not used.

The proof proceeds by applying rule (∀) to (6), and then the rule (⇒) to
(7). Note that the transformation rules proceed from the assumptions towards
the goal for existential formulae, and the other way around for universal
formulae. If one would illustrate this process by drawing a line on the formulae

II Automated Reasoning 79

in proof situation (2), one obtains an S-shaped curve—thus the name of the
method.

Finally, S-decomposition transforms a proof situation having no quantifiers
into an implication, thus (9) is transformed into (10), and this finishes the
application of S-decomposition to this example. In this moment the original
proof situation is decomposed into the formulae (4), (8), and (10). (Obtaining
(10) needs an additional inference step, not shown in the figure, which consists
in expanding the subterm (f1 ⊕ f2)[n0] by the definition of ⊕.)

The continuation of the proof is outside the scope of the S-decomposition
method. For completing the proof, one needs to find appropriate substitutions
for the metavariables, such that the Skolem constants used in each binding
are introduced earlier than the corresponding metavariable. For the sake of
completeness, we give here a possible follow up (produced automatically by
Theorema): We assume that the formulae

(21) ∀
k,i,j

(k ≥ max[i, j] ⇒ k ≥ i ∧ k ≥ j),

(22) ∀
x,y,a,b,ǫ

(
|x − a| <

ǫ

2
∧ |y − b| <

ǫ

2
⇒ |(x + y) − (a + b)| < ǫ

)

are present in the available knowledge as auxiliary assumptions. The prover
first tries to “solve” (8), and by matching against (21) obtains the substitu-
tion (11). This substitution is applied to (10) producing (12), and by matching
the latter against (22), the prover obtains the substitution (13). The substi-
tutions are then applied to the formula (4), which is then generalized (by
universal quantification of the Skolem constants) into (15). The latter is pre-
sented to the user as suggestions for auxiliary lemmata needed for completing
the proof. Of course this subgoal would be also solved if the appropriate as-
sumption was available, however the situation described above demonstrates
that the method is also useful for generating conjectures.

The reader may notice that the process of guessing the right order in which
the subgoals (4), (8), and (10) should be solved is nondeterministic and may
involve some backtracking. This search is implemented in Theorema using
the principles described in [KJ00].

Moreover, this method can be used in conjunction with algebraic tech-
niques, in particular with Cylindrical Algebraic Decomposition [Col75]. Name-
ly, the substitutions for the metavariables shown at steps (11) and (13) can be
also obtained by using CAD–based quantifier elimination. First the proof situ-
ations (11) and (12) are transformed into quantified formulae: the metavari-
ables become existential variables, the Skolem constants become universal
variables, and the order of the quantifiers is the order in which the re-
spective metavariables and Skolem constants have been introduced during
S-decomposition. Then, by successive applications of quantifier elimination,
one obtains automatically the witness terms for the existential variables.
The method and its application to several examples are described in detail
in [VJB08].

80 Tudor Jebelean et al.

3.2 The Theorema Set Theory Prover

Many areas of mathematics are typically formulated on the basis of set theory,
in the sense that objects or properties are expressed in terms of language
constructs from set theory. Most prominently, set formations like

{x ∈ A | Px} or {Tx | x ∈ A} (2)

occur routinely in virtually all of mathematics. The Theorema language de-
scribed in Section 2.1 supports all commonly used constructs from set theory,
such as set formation as shown in (2), membership, union, intersection, power
set, and many more. The semantics of the language built into the system im-
mediately allows computations on finite sets including also the computation
of truth values for statements containing finite sets. Reasoning on arbitrary
sets, however, amounts to the application of more powerful techniques. This
was the starting point for the development of a set theory prover, see [Win06]
and [Win01], based on the general principles of “PCS” (Proving–Computing–
Solving) reasoners introduced in [Buc01] in the frame of the Theorema sys-
tem.

Integration of Proving and Computing

One of the design goals of this prover was the smooth integration of proving,
i.e. general reasoning based on inference rules, and computing on numbers,
finite sets, tuples and the like. In order to accomplish this task, the set theory
prover contains a component that allows to apply computational rules defined
in the semantics of the Theorema language to formulae occurring in a proof.
By this mechanism, the user can even choose, which parts of the language
semantics to include in a particular proof.

We demonstrate this in a simple example from a fully mechanized proof of
the irrationality of

√
2 taken from a comparison of automated theorem provers

carried out by Freek Wiedijk in 2006, see [WBR06]. During the formalization
of this proof, one arrives at a formula

2m2
0 = (2m1)2, (3)

which of course simplifies by simple computation on natural numbers to

m2
0 = 2m2

1. (4)

Compared to other systems, where either

II Automated Reasoning 81� additional theorems are required to perform the step from (3) to (4)—and
consequently separate theorems for all situations similar to this—or� the simplification from (3) to (4) is carried out by a lengthy sequence of
transformation steps based on the axioms for natural numbers,

the step simplifying (3) into (4) is only one elementary step based on the
semantics of the natural numbers built-into the Theorema system. The proofs
generated in this way are very elegant and close to how a human would give
the proofs—one of the main credos in the design of the Theorema system.

The Theoretical Foundations of the Prover

One of the first questions when it comes to set theory is always: “How are
the well-known contradictions appearing in naive set theory, e.g. Russell’s
paradox, avoided?” The Theorema set theory prover relies on the Zermelo-
Frankel axiomatization of set theory (ZF), meaning that the prover can deal
with all sorts of sets whose existence is guaranteed by the Zermelo-Frankel
axioms for set theory. This means, in particular, that the Theorema language
does not forbid “sets” like {x | x 6∈ x} =: R nor does it forbid statements like
R ∈ R. Rather, the set theory prover refuses to apply any inference step on
R ∈ R on the grounds that R is not formed by any of the set construction
principles proven to be consistent in ZF—note that ZF requires {x ∈ S | Px}
for some known set S when abstracting a set from a property Px.

In addition to inference rules based directly on some ZF-axiom, e.g. the
inference rule for membership in a set {x ∈ S | Px}, the prover also incor-
porates knowledge derivable in ZF. If the prover was intended to be used
to prove theorems of set theory based on the ZF axiomatization, it would
be cheating if the prover has such knowledge already built in, hence, there
is a mechanism to switch off these special rules in case a user wants to use
the prover for this purpose. The main field of application for the prover is,
however, to prove arbitrary statements whose formalization uses language
constructs from set theory. An example of such a proof is shown in detail in
Figure 4. This is an example of the TPTP library (SET722) of examples for
automated theorem provers, and it says that if the composition of functions
g ◦ f is surjective then also g must be surjective. Note that the knowledge
base for this proof only contains the definition of composition, we need not
give the definition of surjectivity, because this is built into the prover as a
standard concept in set theory. Of course, the proof would also succeed with
one’s own definition of surjectivity in the knowledge base. The important
difference lies in the concise proof produced by this prover because several
elementary logical steps are combined into one step when the built-in rule is
applied. Note also, that the proof generated by the Theorema system comes

82 Tudor Jebelean et al.

out exactly as it is displayed in Figure 4 including all intermediate proof
explanation text.

(SET722) ∀
A,B,C,f,g

f :: A→ B ∧ g ◦ f :: A
surj.
→ C ⇒ g :: B

surj.
→ C ,

under the assumption:

(Definition (Composition)) ∀
f,g,x

(g ◦ f)[x] := g[f [x]] .

We assume

(1) f0 :: A0 → B0 ∧ g0 ◦ f0 :: A0
surj.
→ C0 ,

and show

(2) g0 :: B0
surj.
→ C0 .

In order to show surjectivity of g0 in (2) we assume

(3) x10 ∈ C0 ,

and show

(4) ∃
B1

B1 ∈ B0 ∧ g0[B1] = x10 .

From (1.1) we can infer

(6) ∀
A1

A1 ∈ A0 ⇒ f0[A1] ∈ B0 .

From (1.2) we know by definition of “surjectivity”

(7) ∀
A2

A2 ∈ A0 ⇒ (g0 ◦ f0)[A2] ∈ C0 ,

(8) ∀
x2

x2 ∈ C0 ⇒ ∃
A2

A2 ∈ A0 ∧ (g0 ◦ f0)[A2] = x2 .

By (8), we can take an appropriate Skolem function such that

(9) ∀
x2

x2 ∈ C0 ⇒ A20[x2] ∈ A0 ∧ (g0 ◦ f0)[A20[x2]] = x2 .

Formula (3), by (9), implies:

A20[x10] ∈ A0 ∧ (g0 ◦ f0)[A20[x10]] = x10 ,

which, by (6), implies:

f0[A20[x10]] ∈ B0 ∧ (g0 ◦ f0)[A20[x10]] = x10 ,

which, by (Definition (Composition)), implies:

(10) f0[A20[x10]] ∈ B0 ∧ g0[f0[A20[x10]]] = x10 .

Formula (4) is proven because, with B1 := f0[A20[x10]], (10) is an instance.

Figure 4 A proof generated completely automatically by Theorema.

II Automated Reasoning 83

Unification 4

Unification is a fundamental symbolic computation process. Its goal is to
identify two given symbolic expressions by means of finding suitable instanti-
ations for certain subexpressions (variables). When the term “identify” is
interpreted as syntactic identity, one talks about syntactic unification. If
“identify” means equality modulo some given equalities, then is it called
equational unification. Hence, unification can be seen as solving equations
in abstract algebras, which is used almost everywhere in mathematics and
computer science.

Research on unification at RISC has been motivated by its applications in
automated reasoning, software engineering, and semistructured data process-
ing. The main subject of study was unification in theories with flexible arity
functions and sequence variables, called sequence unification. Such theories
are a subject of growing interest as they have been recognized to be useful in
various areas, such as XML data modeling with unranked ordered trees and
hedges, programming, program transformation, automated reasoning, artifi-
cial intelligence, knowledge representation, etc. It is not a surprise that these
applications, in some form, require solving equations over terms with flexible
arity functions and sequence variables. Hence, sequence unification (and its
special forms) play a fundamental role there. Intensive research undertaken
at RISC on this subject produced important results that shed light on the-
oretical and algorithmic aspects of sequence unification, including proving
its decidability, developing a solving procedure, identifying important special
cases and designing efficient algorithms for them, and finding relations with
other unification problems. Some of these results are briefly reviewed below.

General Sequence Unification 4.1

Sequence unification deals with solving systems of equations (unification
problems) built over flexible arity function symbols and individual and se-
quence variables. An instance of such an equation is f(x, x, y) = f(f(x), x, a, b),
where f, a, b are function symbols, x, y are sequence variables, and x is an
individual variable. It can be solved by a substitution {x 7→ (), x 7→ f, y 7→
(f, a, b)} that maps x to the empty sequence, x to the term f (that is a
shorthand for f()), and y to the sequence (f, a, b). Solving systems of such
equations can be quite a difficult task: It is not straightforward at all to decide
whether a given system has a solution or not. Moreover, some equations may
have infinitely many solutions, like, e.g. f(a, x) = f(x, a) whose solutions are
the substitutions {x 7→ ()}, {x 7→ a}, {x 7→ (a, a)},

84 Tudor Jebelean et al.

When solving unification problems, one is usually interested only in most
general solutions from which any solution can be generated. Unification pro-
cedures try to compute a (preferably minimal) complete set of such most
general unifiers. In the sequence unification case, since for some problems
this set can be infinite, any complete unification procedure can only give an
enumeration of the set. It can not be used as a decision procedure, in general.
Hence, to completely solve sequence unification problems, one needs

1. an algorithm to decide whether a given system of equations is solvable and
2. the procedure that enumerates a minimal complete set of unifiers for solv-

able systems.

In [Kut07], both of these problems have been addressed. Decidability of se-
quence unification has been proved by reducing the problem to a combina-
tion of word equations and Robinson unification, both with linear constant
restrictions. Each of these theories is decidable and the Baader-Schulz com-
bination method [BS96] ensures decidability of the combined theory. Since
the reduction from sequence unification to this combined theory is solubility-
preserving, the reduction together with the combination method and the
decision algorithms for the ingredient theories gives a decision algorithm for
sequence unification.

Furthermore, a sequence unification procedure is formulated as a set of
rules together with a strategy of their application. If a unification problem
is solvable, the procedure nondeterministically selects an equation from the
problem and transforms it by all the rules that are applicable. The process
iterates for each newly obtained unification problem until a solution is com-
puted or a failure is detected. Since each selected equation can be transformed
in finitely many ways, the search tree is finitely branching. However, the tree
can still be infinite because some unification problems have infinitely many
solutions and the procedure goes on to enumerate them. As it is shown in
[Kut07], the procedure generates a minimal and complete set of sequence
unifiers and terminates if this set is finite.

As the decision algorithm is quite expensive, it is interesting to identify
fragments of sequence unification problems for which the unification proce-
dure terminates without applying the decision algorithm. Several such frag-
ments exist: the linear fragment, where each variable occurs at most once;
the linear shallow fragment, which is linear only in sequence variables but
restricts them to occur only on level 1 in terms; the fragment where there is
no restriction in the number of variable occurrences but sequence variables
are allowed to be only the last argument in (sub)terms they occur; sequence
matching, where one of the sides of equations is ground (variable-free); the
quadratic fragment, where each variable can occur at most twice.

These fragments differ on their unification types that is defined by max-
imal possible cardinality of minimal complete sets of unifiers of unification
problems. Unification problems where sequence variables occur only in the
last argument position are of type unitary, which means that if such a prob-

II Automated Reasoning 85

lem is solvable, it has a single most general unifier. It makes this fragment
attractive for automated reasoning and, in fact, the Equational Prover of
Theorema [Kut03] can deal with it. The quadratic fragment is infinitary (like
the general sequence unification itself), which means that there are some solv-
able problems with an infinite minimal complete set of unifiers. The equation
f(a, x) = f(x, a) above is an example of such a quadratic problem. However,
a nice thing is that, for quadratic problems, one can represent these infinite
sets by finite means, in particular, as regular expressions over substitutions.
The quadratic fragment has found an application in collaborative schema de-
velopment in the joint work of T. Kutsia (RISC), M. Florido and J. Coelho
(both from Portugal) [CFK07]. All the other mentioned fragments are fini-
tary: For them, solvable unification problems may have at most finitely many
most general unifiers.

These fragments have interesting properties and applications. Two of them
have already been mentioned above. Among others, the sequence matching
capabilities of the Mathematica system [Wol03] should be noted, which makes
the programming language of Mathematica very flexible.

It should be noted that all the results on sequence unification in [Kut07],
in fact, have been formulated in a more general setting: besides function
symbols and individual and sequence variables, the problems may contain
so called sequence functions. A sequence function abbreviates a finite se-
quence of functions all having the same argument lists. Semantically, they
can be interpreted as multi-valued functions. Bringing sequence functions
into the language allows Skolemization over sequence variables. For instance,
∀x∃y p(x, y)) after Skolemization introduces a sequence function symbol g:
∀x p(x, g(x)). From the unification point of view, a sequence function can
be split between sequence variables. The corresponding rules are part of the
unification procedure described in [Kut07].

Flat Matching 4.2

Sequence matching problems, as already mentioned, are those that have a
ground side in the equations. An instance of such an equation is f(x, y) =
f(a, b, c) which has a single solution (matcher) {x 7→ a, y 7→ (b, c)}. But what
happens if f satisfies the equality f(x, f(y), z) = f(x, y, z), i.e. if one can
flatten out all nested occurrences of f? It turns out that in such a case the
minimal complete set of matchers becomes infinite. The substitutions like
{x 7→ f(), y 7→ (f(), a, b, c)}, {x 7→ f(), y 7→ (a, f(), b, c)}, {x 7→ f(), y 7→
(f(), a, f(), b, c)} and similar others become solutions modulo flatness of f . It
is quite unusual for matching problems to have an infinite minimal complete
set of solutions. It triggered our interest to matching in flat theories, to study

86 Tudor Jebelean et al.

theoretical properties of flat matching, to design a complete procedure to
solve flat matching problems, and to investigate terminating restrictions.

But this was only one side of the problem. On the other side, a flat the-
ory is not a theory that is “cooked artificially” to demonstrate that match-
ing problems can be arbitrarily complex. It has a practical application: Flat
symbols appear in the programming language of the Mathematica system,
by assigning to certain symbols the attribute Flat. This property affects
both evaluation and pattern matching in Mathematica. Obviously, a prac-
tically useful method that solves flat matching equations should be termi-
nating and, therefore, incomplete (unless it provides a finite description of
the infinite complete set of flat matchers). Understanding proper semantics
of programming constructs is very important to program correctly. Hence,
the questions arise: What is the semantics of Mathematica’s incomplete flat
matching algorithm? What are the rules behind it, how it works? How is the
algorithm related to theoretically complete, infinitary flat matching? These
questions have not been formally answered before.

[Kut08] addresses both theoretical and practical sides of the problem. From
the theoretical side, it gives a procedure to solve a system of flat matching
equations and proves its soundness, completeness, and minimality. The mini-
mal complete set of matchers for such a system can be infinite. The procedure
enumerates this set and stops if it is finite. Besides, a class of problems on
which the procedure stops is described. From the practical point of view,
it gives a set of rules to simulate behavior of the flat matching algorithm
implemented in the Mathematica system.

Differences between various flat matching procedures can be demonstrated
on simple examples. For instance, given a problem {f(x) = f(a)} where f
is flat, the minimal complete flat matching procedure enumerates its infinite
minimal complete set of matchers {x 7→ a}, {x 7→ f(a)}, {x 7→ (f(), a)}, {x 7→
(a, f())}, {x 7→ (f(), f(), a)}, Restricting the rules in the procedure so
that f() is not generated in such cases, one obtains a terminating incomplete
algorithm that returns two matchers {x 7→ a}, {x 7→ f(a)}. In order to sim-
ulate Mathematica’s flat matching, further restrictions should be imposed
on the rules to obtain the only matcher {x 7→ a}. It should be noted that
Mathematica’s behavior depends whether one has a sequence variable or an
individual variable under the flat function symbol. Also, Mathematica treats
in a special way function variables (those that can be instantiated with func-
tion symbols). [Kut08] analyzes all those cases and gives a formal description
of the corresponding rules.

II Automated Reasoning 87

Context Sequence Matching 4.3

Flat matching (and, in general, matching modulo equations with sequence
variables) is one generalization of syntactic sequence matching. Another gen-
eralization comes from bringing higher-order variables in the terms. T. Kutsia
(RISC) in collaboration with M. Marin (Japan) studied extension of sequence
matching with function and context variables [KM05, Kut06]. Function vari-
ables have already been mentioned above. Context variables are second-order
variables that can be instantiated with a context—a term with a single oc-
currence of a distinguished constant • (called the hole) in it. A context can
be applied to a term by replacing the hole with that term. An example of
context sequence matching equation is X(f(x)) = g(f(a, b), h(f(a), f), where
X is a context variable and x is a sequence variable. Its minimal complete set
of matchers consists of three elements: {X 7→ g(•, h(f(a), f)), x 7→ (a, b)},
{X 7→ g(f(a, b), h(•, f)), x 7→ a}, and {X 7→ g(f(a, b), h(f(a), •)), x 7→ ()}.

Context sequence matching is a flexible mechanism to extract subterms
from a given ground term via traversing it both in breadth and in depth.
Function variables allow to descend in depth in one step, while with context
variables subterms can be searched in arbitrary depth. Dually, individual
variables and sequence variables allow moves in breadth: individual variables
in one step and sequence variable in arbitrary number of steps. This dual-
ity makes context sequence matching an attractive technique for expressing
subterm retrieval queries in a compact and transparent way.

Context and sequence variables occurring in matching problems can be
constrained by membership atoms. Possible instantiations of context vari-
ables are constrained to belong to a regular tree language, whereas the ones
for sequence variables should be elements of regular hedge languages. This
extension is the main computational mechanism for the experimental rule-
based programming package ρLog [MK06].

Relations between Context and Sequence Unification 4.4

Context unification [Com91, SS94] aims at solving equations for terms built
over fixed arity function symbols and first-order and context variables. It is
one of the most difficult problems in unification theory: Its decidability is
an open problem already for more than 15 years. There have been various
decidable fragments (obtained by restricting the form of the input equations)
and variants (obtained by restricting the form of possible solutions) iden-
tified; see, e.g. [Com98, Lev96, SSS02, LNV05] and for more comprehensive
overview, [Vil04]. Both sequence unification and context unification generalize
the well-known word unification problem [Mak77]. One of them is decidable,

88 Tudor Jebelean et al.

while decidability of the other one is an open problem. Hence, a natural ques-
tion arises: How are these two generalizations of the same problem related
with each other?

T. Kutsia (RISC), J. Levy and M. Villaret (both from Spain) gave a com-
plete answer to this problem in [KLV07]. First, they defined a mapping (called
curryfication) from sequence unification to a fragment of context unification
such that if the original sequence unification problem is solvable, then the cur-
ried context unification problem is also solvable. However, this transformation
does not preserve solubility in the other direction. To deal with this problem,
possible solutions of curried context unification problems have been restricted
to have a certain shape, called left-hole context, which can be characterized by
the property of having holes in the leftmost leaf in their tree representation,
like, for instance, in the context @(@(•, a), b). (In curried problems @ is the
only binary function symbol and all the other function symbols are constants,
but it is not a restriction for solubility, at it was shown in [LV02].) This re-
striction guarantees solubility preservation between sequence unification and
the corresponding fragment of context unification. Next, the left-hole restric-
tion has been extended from the fragment to the whole problem, obtaining
a variant, called left-hole context unification (LHCU). To prove solubility of
LHCU, another transformation has been defined that transforms LHCU into
word equations with regular constraints. The transformation is solubility-
preserving and word unification with regular constraints is decidable, which
implies decidability of LHCU. Finally, transforming LHCU with inverse cur-
ryfication, a decidable extension of sequence unification has been obtained.
This transformation also made it possible to transfer some of the known
complexity results for context matching to extended sequence matching.

Hence, this work can be summarized as follows: A new decidable variant
of context unification has been discovered; A decidable extension of sequence
unification has been found and a complete unification procedure has been
developed; A new proof of decidability of sequence unification has been given;
Complexity results for (some fragments of) extended sequence matching have
been formulated.

5 Program Verification

The activities related to program verification in the Theorema group refer
to various programming styles and to various verification techniques. The
Theorema system allows to describe algorithms directly in predicate logic,
which is sometimes called “pattern based programming”. Using some abbre-
viating constructs (as e. g. if-then-else), in Theorema one can also use the
functional programming style. In both cases the verification benefits from
the fact that the properties of the programs are expressed in the same logical

II Automated Reasoning 89

language, thus a possibly error prone translation is not necessary. Further-
more, in order to experiment with alternative techniques, Theorema provides
additionally a simple language for imperative programming.

In this section we focus on the verification of functional programs, however
the research on verification of imperative programs is also strongly pursued
by our group. For instance, the work on loop invariants lead to a complex
method which uses algebraic and combinatorial techniques for the automatic
generation of polynomial invariants of while loops [KPJ05, Kov07]. A very
novel and interesting aspect of this method is the nontrivial interplay be-
tween logical techniques on one hand, and algebraic techniques on the other
hand, which demonstrates the high value of the approach of combining auto-
mated reasoning with computer algebra into the field of symbolic computa-
tion. Moreover, the recent research on symbolic execution [EJ08] introduces a
novel approach to the generation of verification conditions exclusively in the
theory of the domain of the objects handled by the program—including the
termination condition.

Some Principles of Program Verification 5.1

Before a more detailed presentation of our research, we summarize shortly
some main principles of program verification. Note that we focus here on
the techniques which are based on automated theorem proving, and not, for
instance, on model checking techniques.

Program specification (or formal specification of a program) is the defi-
nition of what a program is expected to do. Normally, it does not describe,
and it should not, how the program is implemented. The specification is usu-
ally provided by logical formulae describing a relationship between input and
output parameters. We consider specifications which are pairs, containing a
precondition (input condition) and a postcondition (output condition).

Formal verification consists in proving mathematically the correctness of
a program with respect to a certain formal specification. Software testing,
in contrast to verification, cannot prove that a system does not contain any
defects or that it has a certain property.

The problem of verifying programs is usually split into two subproblems:
generate verification conditions which are sufficient for the program to be
correct and prove the verification conditions, within the theory of the domain
for which the program is defined. A survey of the techniques based on this
principle, but also of other techniques can be found e. g. in [LS87] and in
[Hoa03].

A Verification Condition Generator (VCG) is a device—normally imple-
mented by a program—which takes a program, actually its source code, and
the specification, and produces verification conditions. These verification con-

90 Tudor Jebelean et al.

ditions do not contain any part of the program text, and are expressed in a
different language, namely they are logical formulae.

Normally, these conditions are given to an automatic or semi-automatic
theorem prover. If all of them hold, then the program is correct with respect
to its specification. The latter statement we call Soundness of the VCG,
namely:

Given a program F and a specification IF (input condition), and OF (out-
put condition), if the verification conditions generated by the VCG hold, then
the program F is correct with respect to the specification 〈IF , OF 〉.

Completing the notion of Soundness of a VCG, we introduce its dual—
Completeness [KPJ06]:

Given a program F and a specification IF (input condition), and OF (out-
put condition), if the program F is correct with respect to the specification
〈IF , OF 〉, then the verification conditions generated by the VCG hold.

The notion of Completeness of a VCG is important for the following two
reasons: theoretically, it is the dual of Soundness and practically, it helps
debugging. Any counterexample for the failing verification condition would
carry over to a counterexample for the program and the specification, and
thus give a hint on “what is wrong”. Indeed, most of the literature on pro-
gram verification presents methods for verifying correct programs. However,
in practical situations, it is the failure which occurs more often until the
program and the specification are completely debugged.

A distinction is to be made between total correctness, which additionally
requires that the program terminates, and partial correctness, which simply
requires that if an answer is returned (that is, the program terminates) it
will be correct. Termination is in general more difficult. On one hand, it is
theoretically proven that termination is not decidable in general (however
this does not mean that we cannot prove termination of specific programs).
On the other hand, the statement “program P terminates” is difficult or
impossible to express in the theory of the domain of the program, but has
to be introduced additionally. Adding a suitable theory of computation will
increase significantly the formalization and the proving effort. Our approach
to this problem is to decompose the total correctness into many simpler for-
mulae (the verification conditions), and to reduce termination of the original
program to the termination of a simplified version of it, as shown in the
sequel.

5.2 Verification of Functional Programs

In the Theorema system we see functional programs as abbreviations of logi-
cal formulae (for instance, an if-then-else clause is an abbreviation of two
implications). Therefore, the programming language is practically identical

II Automated Reasoning 91

to the logical language which is used for the verification conditions. This has
the advantage that we do not need to translate the predicate symbols and
the function symbols occurring in the program: they are already present in
the logical language.

Our work consists in developing the theoretical basis and in implementing
an experimental prototype environment for defining and verifying recursive
functional programs. In contrast to classical books on program verification
[Hoa69], [BL81], [LS87] which expose methods for verifying correct programs,
we also emphasize the detection of incorrect programs. The user may easily
interact with the system in order to correct the program definition or the
specification.

We first perform a check whether the program under consideration is coher-
ent with respect to the specification of its components, that is, each function
is applied to arguments satisfying its input condition. (This principle is also
known as programming by contract.)

The program correctness is then transformed into a set of first-order pred-
icate logic formulae by a Verification Condition Generator (VCG)—a device,
which takes the program (its source code) and the specification (precondi-
tion and postcondition) and produces several verification conditions, which
themselves, do not refer to any theoretical model for program semantics or
program execution, but only to the theory of the domain used in the program.

For coherent programs we are able to define a necessary and sufficient set
of verification conditions, thus our condition generator is not only sound, but
also complete. This distinctive feature of our method is very useful in practice
for program debugging.

Since coherence is enforced, verification can be performed independently
on different programs, thus one avoids the costly process of interprocedural
analysis, which is sometimes used in model checking. Moreover, the correct-
ness of the whole system is preserved even when the implementation of a
function is changed, as long as it still satisfies the specification.

In order to illustrate our approach, we consider powering function P , using
the binary powering algorithm:

P [x, n] = If n = 0 then 1

elseif Even[n] then P [x ∗ x, n/2]

else x ∗ P [x ∗ x, (n − 1)/2].

This program is in the context of the theory of real numbers, and in the
following formulae, all variables are implicitly assumed to be real. Additional
type information (e. g. n ∈ N) may be explicitly included in some formulae.

The specification is:

(∀x, n : n ∈ N) P [x, n] = xn. (5)

92 Tudor Jebelean et al.

The (automatically generated) conditions for coherence are:

(∀x, n : n ∈ N) (n = 0 ⇒ T) (6)

(∀x, n : n ∈ N) (n 6= 0 ∧ Even[n] ⇒ Even[n]) (7)

(∀x, n : n ∈ N) (n 6= 0 ∧ ¬Even[n] ⇒ Odd[n]) (8)

(∀x, n, m : n ∈ N)(n 6= 0 ∧ Even[n] ∧ m = (x ∗ x)n/2 ⇒ T) (9)

(∀x, n, m : n ∈ N)(n 6= 0 ∧ ¬Even[n] ∧ m = (x ∗ x)(n−1)/2 ⇒ T) (10)

(∀x, n : n ∈ N) (n 6= 0 ∧ Even[n] ⇒ n/2 ∈ N) (11)

(∀x, n : n ∈ N) (n 6= 0 ∧ ¬Even[n] ⇒ (n − 1)/2 ∈ N) (12)

One sees that the formulae (6), (9) and (10) are trivially valid, because we
have the logical constant T at the right side of an implication. The origin of
these T come from the preconditions of the 1 constant-function-one and the
∗ multiplication.

The formulae (7), (8), (11) and (12) are easy consequences of the elemen-
tary theory of reals and naturals. For the further check of correctness the
generated conditions are:

(∀x, n : n ∈ N) (n = 0 ⇒ 1 = xn) (13)

(∀x, n, m : n ∈ N)(n 6= 0 ∧ Even[n] ∧ m = (x ∗ x)n/2 ⇒ m = xn) (14)

(∀x, n, m : n ∈ N)(n 6= 0∧¬Even[n]∧m = (x∗x)(n−1)/2 ⇒ x∗m = xn) (15)

(∀x, n : n ∈ N) P ′[x, n] = T, (16)

where

P ′[x, n] = If n = 0 then T

elseif Even[n] then P ′[x ∗ x, n/2]

else P ′[x ∗ x, (n − 1)/2].

The proofs of these verification conditions are straightforward.
Now comes the question: What if the program is not correctly written?

Thus, we introduce now a bug. The program P is now almost the same as
the previous one, but in the base case (when n = 0) the return value is 0.

P [x, n] = If n = 0 then 0

elseif Even[n] then P [x ∗ x, n/2]

else x ∗ P [x ∗ x, (n − 1)/2].

Now, for this buggy version of P we may see that all the respective verifi-
cation conditions remain the same except one, namely, (13) is now:

II Automated Reasoning 93

(∀x, n : n ∈ N) (n = 0 ⇒ 0 = xn) (17)

which itself reduces to:
0 = 1

(because we consider a theory where 00 = 1).
Therefore, according to the completeness of the method, we conclude that

the program P does not satisfy its specification. Moreover, the failed proof
gives a hint for “debugging”: we need to change the return value in the case
n = 0 to 1.

Furthermore, in order to demonstrate how a bug might be located, we
construct one more “buggy” example where in the “Even” branch of the
program we have P [x, n/2] instead of P [x ∗ x, n/2]:

P [x, n] = If n = 0 then 1

elseif Even[n] then P [x, n/2]

else x ∗ P [x ∗ x, (n − 1)/2].

Now, we may see again that all the respective verification conditions re-
main the same as in the original one, except one, namely, (14) is now:

(∀x, n, m : n ∈ N)(n 6= 0 ∧ Even[n] ∧ m = (x)n/2 ⇒ m = xn) (18)

which itself reduces to:

m = xn/2 ⇒ m = xn

From here, we see that the “Even” branch of the program is problematic and
one should satisfy the implication. The most natural candidate would be:

m = (x2)n/2 ⇒ m = xn

which finally leads to the correct version of P .

Computer-Assisted Interactive

Program Reasoning

6

As demonstrated in the other sections of this chapter, much progress has
been made in automated reasoning and its application to the verification
of computer programs and systems. In practice however, for programs of a
certain complexity, fully automatic verifications are not feasible; much more
success is achieved by the use of interactive proving assistants which allow the

94 Tudor Jebelean et al.

user to guide the software towards a semi-automatic construction of a proof
by iteratively applying predefined proof decomposition strategies in alterna-
tion with critical steps that rely on the user’s own creativity. The goal is to
reach proof situations that can be automatically closed by SMT (satisfiability
modulo theories) solvers [SMT06] which decide the truth of unquantified for-
mulas over certain combinations of ground theories (uninterpreted function
symbols, linear integer arithmetic, and others). In a modern computer science
education, it is important to train students in the use of such systems which
can help in formal specifying programs and reasoning about their properties.

The RISC ProofNavigator

While a variety of tools for supporting reasoning are around, many of them
are difficult to learn and/or inconvenient to use, which makes them less suit-
able for classroom scenarios [Fei05]. This was also Schreiner’s experience when
he evaluated from 2004 to 2005 a couple of prominent proving assistants by
a number of use cases derived from the area of program verification. While
he achieved quite good results with PVS [ORS92], he generally encountered
various problems and nuisances, especially with the navigation within proofs,
the presentation of proof states, the treatment of arithmetic, and the gen-
eral interaction of the user with the systems; he frequently found that the
elaboration of proofs was more difficult than should be necessary.

Based on these investigations, Schreiner developed the RISC ProofNavi-
gator [RIS06, Sch08b], a proving assistant which is intended for educational
scenarios but has been also applied to verifications that are already difficult
to handle with other assistants. The software currently applies the Cooperat-
ing Validity Checker Lite (CVCL) [BB04] as the underlying SMT solver. Its
user interface (depicted in Figure 5) was designed to meet various goals:

Maximize Survey: The user should easily keep a general view on proofs with
many states; she should also easily keep control on proof states with large
numbers of potentially large formulas. Every proof state is automatically
simplified before it is presented to the user.

Minimize Options: The number of commands is kept as small as possible
in order to minimize confusion and simplify the learning process (in to-
tal there are about thirty commands, of which only twenty are actually
proving commands; typically, less than ten commands need to be used).

Minimize Efforts: The most important commands can be triggered by but-
tons or by menu entries attached to formula labels. The keyboard only
needs to be used in order to enter terms for specific instantiations of uni-
versal assumptions or existential goals.

The proof of a verification condition is displayed in the form of a tree struc-
ture such as the following proof of a condition arising from the verification
of the linear search algorithm [Sch06]:

II Automated Reasoning 95

The RISC ProofNavigator in action. Figure 5

Here the user expands predicate definitions (command expand), performs
automatic proof decomposition (command scatter), splits a proof situation
based on a disjunctive assumption (command split), performs automatic
instantiation of a quantified formula (command auto), and thus reaches proof
situations that can be automatically closed by CVCL. Each proof situation
is displayed as a list of assumptions from which a particular goal is to be

96 Tudor Jebelean et al.

proved (the formula labels represent active menus from which appropriate
proof commands can be selected):

The software is used since 2007 in regular courses offered to students of
computer science and mathematics at the Johannes Kepler University Linz
and at the Upper Austria University of Applied Sciences Campus Hagenberg;
it is freely available as open source and shipped with a couple of examples:

1. Induction proofs,
2. Quantifier proofs,
3. Proofs based on axiomatization of arrays,
4. Proofs based on constructive definition of arrays,
5. Verification of linear search,
6. Verification of binary search,
7. Verification of a concurrent system of one server and 2 clients,
8. Verification of a concurrent system of one server and N clients.

The last two proofs consist of some hundreds of situations (most of which
are closed automatically, the user has to apply about two dozens commands
only) and were hard/impossible to manage with some other assistants.

The RISC ProgramExplorer

The RISC ProofNavigator is envisioned as a component of a future envi-
ronment for formal program analysis, the RISC ProgramExplorer, which is
currently under development. Unlike program verification environments (such
as KeY [BHS07]) which primarily aim at the automation of the verification
process, the goal of this environment is to exhibit the logical interpretation of
imperative programs and clarify the relationship between reasoning tasks one
one side and program specifications/implementations on the other side, and

II Automated Reasoning 97

thus assist the user in analyzing a program and establishing its properties.
The core features of this environment will be

1. a translation of programs to logical formulas that exhibit the semantic
essence of programs as relations on pairs of (input/output) states [Sch08a],
e.g. the program

{ var i; i = x+1; x = 2*i; }

becomes the formula

∃i, i′ : i′ = x + 1 ∧ x′ = 2 · i′

which can be simplified to x′ = 2x + 2;
2. the association of verification conditions to specific program positions (re-

spectively execution paths in the program) such that failures in verifica-
tions can be more easily related to programming errors.

The environment shall support the following tasks:� Translating programs to formulas which can be subsequently simplified to
exhibit the program’s semantic essence;� Validating specifications by verifying that they satisfy given input/output
examples, that they are not trivial, and they are implementable,� Verifying that the program does not violate the preconditions specified for
program functions and atomic operations,� Verifying that the program ensures the specified postconditions,� Verifying the correctness of (loop/system) invariants,� Verifying termination of loops and recursive functions,� Verifying the correctness of abstract datatype representations.

Particular emphasis is given to a graphical user interface that adequately
exhibits the duality between the operational and the logical interpretation
of programs and the relationship of verification conditions to properties of
particular program parts. A first skeleton prototype of this environment will
become available in 2009.

Acknowledgements

The research described in this chapter has been performed in the frame of
the following research projects at RISC:� Austrian Science Foundation (FWF) under Project SFB F1302 (Theo-

rema).� European Commission Framework 6 Programme for Integrated Infrastruc-
tures Initiatives under the project SCIEnce—Symbolic Computation In-
frastructure for Europe (Contract No. 026133).

98 Tudor Jebelean et al.� European Commission Framework 5 Proj Nr. HPRN-CT-2000-00102 (Cal-
culemus).� INTAS project 05-1000008-8144 “Practical Formal Verification Using Au-
tomated Reasoning and Model Checking”.� Upper Austrian Government project “Technologietransferaktivitäten”.� Project “Institute e-Austria Timisoara”.

References

[AH77] K. Appel and W. Haken. Solution of the four color map problem. Scientific
American, 237:108–121, October 1977.

[BB04] C. Barrett and S. Berezin. CVC Lite: A New Implementation of the Coop-
erating Validity Checker. In Computer Aided Verification: 16th International
Conference, CAV 2004, Boston, MA, USA, July 13–17, 2004, volume 3114 of

LNCS, pages 515–518. Springer, 2004.
[BCJ+06] B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa,

F. Piroi, N. Popov, J. Robu, M. Rosenkranz, and W. Windsteiger. Theorema:
Towards Computer-Aided Mathematical Theory Exploration. Journal of Ap-
plied Logic, 4(4):470–504, 2006.

[BDF+04] D. Basin, Y. Deville, P. Flener, A. Hamfelt, and J. F. Nilsson. Synthesis of
Programs in Computational Logic. In M. Bruynooghe and K. K. Lau, editors,
Program Development in Computational Logic, volume 3049 of Lecture Notes
in Computer Science, pages 30–65. Springer, 2004.

[BDJ+00] B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru,
and W. Windsteiger. The Theorema Project: A Progress Report. In M. Kerber
and M. Kohlhase, editors, Symbolic Computation and Automated Reasoning
(Proceedings of CALCULEMUS 2000, Symposium on the Integration of Sym-
bolic Computation and Mechanized Reasoning), pages 98–113. St. Andrews,
Scotland, Copyright: A.K. Peters, Natick, Massachusetts, 6-7 August 2000.

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification
of Object-Oriented Software: The KeY Approach. Springer, 2007.

[BJK+97] B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru.
A Survey of the Theorema Project. In W. Kuechlin, editor, Proceedings of
ISSAC’97 (International Symposium on Symbolic and Algebraic Computation,
Maui, Hawaii, July 21-23, 1997), pages 384–391. ACM Press, 1997.

[BL81] B. Buchberger and F. Lichtenberger. Mathematics for Computer Science I -
The Method of Mathematics (in German). Springer, 2nd edition, 1981.

[BS96] F. Baader and K. U. Schulz. Unification in the union of disjoint equational
theories: Combining decision procedures. Journal of Symbolic Computation,
21(2):211–244, 1996.

[Buc65] B. Buchberger. An Algorithm for Finding the Basis Elements in the Residue
Class Ring Modulo a Zero Dimensional Polynomial Ideal. PhD thesis, Univer-
sity Innsbruck, Mathematical Institute, 1965. German, English translation in: J.
of Symbolic Computation, Special Issue on Logic, Mathematics, and Computer
Science: Interactions. Volume 41, Number 3–4, Pages 475–511, 2006.

[Buc96a] B. Buchberger. Mathematica as a Rewrite Language. In T. Ida, A. Ohori,
and M. Takeichi, editors, Functional and Logic Programming (Proceedings of
the 2nd Fuji International Workshop on Functional and Logic Programming,

References 99

November 1-4, 1996, Shonan Village Center), pages 1–13. Copyright: World
Scientific, Singapore - New Jersey - London - Hong Kong, 1996.

[Buc96b] B. Buchberger. Symbolic Computation: Computer Algebra and Logic. In
F. Bader and K.U. Schulz, editors, Frontiers of Combining Systems, Proceed-
ings of FROCOS 1996 (1st International Workshop on Frontiers of Combining
Systems), March 26-28, 1996, Munich, volume Vol.3 of Applied Logic Series,
pages 193–220. Kluwer Academic Publisher, Dordrecht - Boston - London, The
Netherlands, 1996.

[Buc96c] B. Buchberger. Using Mathematica for Doing Simple Mathematical Proofs. In
Proceedings of the 4th Mathematica Users’ Conference, Tokyo, November 2,
1996., pages 80–96. Copyright: Wolfram Media Publishing, 1996.

[Buc97] B. Buchberger. Mathematica: Doing Mathematics by Computer? In A. Miola
and M. Temperini, editors, Advances in the Design of Symbolic Computation
Systems, pages 2–20. Springer Vienna, 1997. RISC Book Series on Symbolic
Computation.

[Buc99] Bruno Buchberger. Theory Exploration Versus Theorem Proving. Technical
Report 99-46, RISC Report Series, University of Linz, Austria, July 1999. Also
available as SFB Report No. 99-38, Johannes Kepler University Linz, Spezial-
forschungsbereich F013, December 1999.

[Buc01] B. Buchberger. The PCS Prover in Theorema. In R. Moreno-Diaz, B. Buch-
berger, and J.L. Freire, editors, Proceedings of EUROCAST 2001 (8th Interna-
tional Conference on Computer Aided Systems Theory – Formal Methods and
Tools for Computer Science), Lecture Notes in Computer Science 2178, pages
469–478. Las Palmas de Gran Canaria, Copyright: Springer - Verlag Berlin,
19-23 February 2001.

[Buc03] B. Buchberger. Algorithm Invention and Verification by Lazy Thinking. In
D. Petcu, V. Negru, D. Zaharie, and T. Jebelean, editors, Proceedings of
SYNASC 2003, 5th International Workshop on Symbolic and Numeric Algo-
rithms for Scientific Computing Timisoara, pages 2–26, Timisoara, Romania,
1-4 October 2003. Copyright: Mirton Publisher.

[Buc04] B. Buchberger. Towards the Automated Synthesis of a Gröbner Bases Algo-
rithm. RACSAM (Rev. Acad. Cienc., Spanish Royal Academy of Science),
98(1):65–75, 2004.

[Buc06] B. Buchberger. Mathematical Theory Exploration, August 17-20 2006. Invited
talk at IJCAR, Seattle, USA.

[CFK07] J. Coelho, M. Florido, and T. Kutsia. Sequence disunification and its application
in collaborative schema construction. In M. Weske, M.-S. Hacid, and C. Godart,
editors, Web Information Systems – WISE 2007 Workshops, volume 4832 of
LNCS, pages 91–102. Springer, 2007.

[Col75] G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In Second GI Conference on Authomata Theory and Formal
Languages, volume 33 of LNCS, pages 134–183. Springer, 1975.

[Com91] H. Comon. Completion of rewrite systems with membership constraints. Rap-
port de Recherche 699, L.R.I., Université de Paris-Sud, 1991.

[Com98] H. Comon. Completion of rewrite systems with membership constraints. Part II:
Constraint solving. Journal of Symbolic Computation, 25(4):421–453, 1998.

[Cra08] A. Craciun. Lazy Thinking Algorithm Synthesis in Gröbner Bases Theory. PhD
thesis, RISC, Johannes Kepler University Linz, Austria, April 2008.

[EJ08] M. Erascu and T. Jebelean. Practical Program Verification by Forward Symbolic
Execution: Correctness and Examples. In B. Buchberger, T. Ida, and T. Kut-
sia, editors, Austrian-Japan Workshop on Symbolic Computation in Software
Science, pages 47–56, 2008.

[Fei05] Ingo Feinerer. Formal Program Verification: A Comparison of Selected Tools
and Their Theoretical Foundations. Master’s thesis, Theory and Logic Group,

100 Tudor Jebelean et al.

Institute of Computer Languages, Vienna University of Technology, Vienna,
Austria, January 2005.

[Hoa69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Comm. ACM,
12, 1969.

[Hoa03] C. A. R. Hoare. The verifying compiler: A grand challenge for computing re-
search. Journal of ACM, 50:63–69, 2003.

[Jeb01] T. Jebelean. Natural proofs in elementary analysis by S-Decomposition. Tech-
nical Report 01-33, RISC, Johannes Kepler University, Linz, Austria, 2001.

[KJ00] B. Konev and T. Jebelean. Using meta-variables for natural deduction in theo-
rema. In M. Kerber and M. Kohlhase, editors, Proceedings of the CALCULE-
MUS 2000 8th Symposium on the Integration of Symbolic Computation and

Mechanized Reasoning, pages 160–175, St. Andrews, Scotland, August 6-7 2000.
[KLV07] T. Kutsia, J. Levy, and M. Villaret. Sequence unification through currying. In

Franz Baader, editor, Proc. of the 18th Int. Conference on Rewriting Techniques
and Applications, RTA’07, volume 4533 of Lecture Notes in Computer Science,
pages 288–302. Springer, 2007.

[KM05] T. Kutsia and M. Marin. Matching with regular constraints. In G. Sutcliffe
and A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning. Proceedings of the 12th International Conference, LPAR’05, volume
3835 of LNAI, pages 215–229. Springer, 2005.

[Kov07] L. Kovacs. Automated Invariant Generation by Algebraic Techniques for Im-
perative Program Verification in Theorema. PhD thesis, RISC, Johannes Kepler
University Linz, Austria, October 2007. RISC Technical Report No. 07-16.

[KPJ05] L. Kovacs, N. Popov, and T. Jebelean. Verification Environment in Theorema.
Annals of Mathematics, Computing and Teleinformatics (AMCT), 1(2):27–34,
2005.

[KPJ06] L. Kovacs, N. Popov, and T. Jebelean. Combining Logic and Algebraic Tech-
niques for Program Verification in Theorema. In T. Margaria and B. Steffen,
editors, Proceedings ISOLA 2006, Paphos, Cyprus, November 2006. To appear.

[Kut03] T. Kutsia. Equational prover of Theorema. In R. Nieuwenhuis, editor, Proc. of
the 14th Int. Conference on Rewriting Techniques and Applications, RTA’03,
volume 2706 of LNCS, pages 367–379. Springer, 2003.

[Kut06] T. Kutsia. Context sequence matching for XML. Electronic Notes on Theoret-
ical Computer Science, 157(2):47–65, 2006.

[Kut07] T. Kutsia. Solving equations with sequence variables and sequence functions.
Journal of Symbolic Computation, 42(3):352–388, 2007.

[Kut08] T. Kutsia. Flat matching. Journal of Symbolic Computation, 43(12):858–873,
2008.

[Lev96] J. Levy. Linear second-order unification. In Harald Ganzinger, editor, Proc. of
the 7th Int. Conference Conference on Rewriting Techniques and Applications,
RTA’96, volume 1103 of LNCS, pages 332–346. Springer, 1996.

[LNV05] J. Levy, J. Niehren, and M. Villaret. Well-nested context unification. In
R. Nieuwenhuis, editor, Proc. of the 20th Int. Conference on Automated De-
duction, CADE-20, volume 3632 of LNAI, pages 149–163. Springer, 2005.

[LS87] J. Loeckx and K. Sieber. The Foundations of Program Verification. Teubner,
second edition, 1987.

[LV02] J. Levy and M. Villaret. Currying second-order unification problems. In S. Ti-
son, editor, Proc. of the 13th Int. Conference on Rewriting Techniques and
Applications, RTA’02, volume 2378 of LNCS, pages 326–339, Copenhagen, Den-
mark, 2002. Springer.

[Mak77] G. S. Makanin. The problem of solvability of equations in a free semigroup.
Math. USSR Sbornik, 32(2):129–198, 1977.

[McC97] W. McCune. Solution of the robbins problem. Journal of Automatic Reasoning,
19:263–276, 1997.

References 101

[MK06] M. Marin and T. Kutsia. Foundations of the rule-based system RhoLog. Journal
of Applied Non-Classical Logics, 16(1–2):151–168, 2006.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System.
In Deepak Kapur, editor, 11th International Conference on Automated Deduc-
tion (CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–
752, Saratoga, NY, June 14–18, 1992. Springer.

[PB02] F. Piroi and B. Buchberger. Focus Windows: A New Technique for Proof Pre-
sentation. In H. Kredel and W. Seiler, editors, Proceedings of the 8th Rhine
Workshop on Computer Algebra, Mannheim, Germany, pages 297–313, 2002.

[PK05] Florina Piroi and Temur Kutsia. The Theorema Environment for Interactive
Proof Development, December 3 2005. Contributed talk at 12th International

Conference on Logic for Programming, Artificial Intelligence, and Reasoning,
LPAR’05.

[RIS06] The RISC ProofNavigator, 2006. Research Institute for Symbolic Computa-
tion (RISC), Johannes Kepler University, Linz, Austria, http://www.risc.uni-
linz.ac.at/research/formal/software/ProofNavigator.

[Rob02] Judit Robu. Geometry Theorem Proving in the Frame of the Theorema
Project. Technical Report 02-23, RISC Report Series, University of Linz, Aus-
tria, September 2002. PhD Thesis.

[Sch06] W. Schreiner. The RISC ProofNavigator — Tutorial and Manual. Technical
report, Research Institute for Symbolic Computation (RISC), Johannes Kepler
University, Linz, Austria, July 2006.

[Sch08a] W. Schreiner. A Program Calculus. Technical report, Research Institute
for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria,
September 2008.

[Sch08b] W. Schreiner. The RISC ProofNavigator: A Proving Assistant for Program
Verification in the Classroom. Formal Aspects of Computing, April 2008. DOI
10.1007/s00165-008-0069-4.

[SMT06] SMT-LIB — The Satisfiability Modulo Theories Library, 2006. University of
Iowa, Iowa City, IA, http://combination.cs.uiowa.edu/smtlib.

[SS94] M. Schmidt-Schauß. Unification of stratified second-order terms. Internal Re-
port 12/24, Johann-Wolfgang-Goethe-Universität, Frankfurt, Germany, 1994.

[SSS02] M. Schmidt-Schauß and Klaus U. Schulz. Solvability of context equations with
two context variables is decidable. Journal of Symbolic Computation, 33(1):77–
122, 2002.

[Vil04] M. Villaret. On Some Variants of Second-Order Unification. PhD thesis, Uni-
versitat Politècnica de Catalunya, Barcelona, 2004.

[VJB08] R. Vajda, T. Jebelean, and B. Buchberger. Combining Logical and Algebraic
Techniques for Natural Style Proving in Elementary Analysis. Mathematics and
Computers in Simulation, 2008.

[WBR06] W. Windsteiger, B. Buchberger, and M. Rosenkranz. Theorema. In Freek
Wiedijk, editor, The Seventeen Provers of the World, volume 3600 of LNAI,
pages 96–107. Springer Berlin Heidelberg New York, 2006.

[Win01] W. Windsteiger. A Set Theory Prover in Theorema: Implementation and Prac-
tical Applications. PhD thesis, RISC Institute, May 2001.

[Win06] W. Windsteiger. An Automated Prover for Zermelo-Fraenkel Set Theory in
Theorema. JSC, 41(3-4):435–470, 2006.

[Wol03] S. Wolfram. The Mathematica Book. Wolfram Media, 5th edition, 2003.

Chapter III

Metaheuristic Optimization

Michael Affenzeller

Andreas Beham, Monika Kofler, Gabriel Kronberger, Stefan A. Wagner,

Stephan Winkler

Introduction 1

Motivation and Goal 1.1

Economic success frequently depends on a company’s ability to rapidly iden-
tify market changes and to adapt to them. Making optimal decisions within
tight time constraints and under consideration of influential factors is one of
the most challenging tasks in industry and applied computer science. Gaining
expertise in solving optimization problems can therefore significantly increase
efficiency and profitability of a company and lead to a competitive advantage.

Unfortunately, many real-world optimization problems are notoriously dif-
ficult to solve due to their high complexity. For example, in the context of
combinatorial optimization (where the search space tends to grow exponen-
tially) or in nonlinear system identification (especially if no a-priori knowledge
about the kind of nonlinearity is available) such applications are frequently
found. Exact mathematical methods cannot solve these problems in relevant
dimensions within reasonable time.

Heuristic methods1 provide a reasonable tradeoff between achieved solu-
tion quality and required computing time, as they employ intelligent rules to
scan only a fraction of a highly complex search space.

Typical applications of heuristic methods can be found in production opti-
mization; for example, heuristic algorithms are applied in machine scheduling
and logistics optimization. For efficiently scanning such highly complex and

1 The name “heuristics” is derived from the old Greek word ǫυρισκǫιν which means “to
discover” or “to detect (something)”.

104 Michael Affenzeller et al.

exponentially growing search spaces, only heuristic methods can be consid-
ered for solving problems in dimensions which are relevant for real-world
applications.

The step from heuristics to metaheuristics is an essential one: While heuris-
tics are often designed and tuned for some specific problem, metaheuristics
offer generic strategies for solving arbitrary problems. The implementation of
concrete solution manipulation operators still depends on the problem repre-
sentation, but the optimization strategy itself is problem-independent. The
success of metaheuristics is based on an interplay between phases of diversi-
fication and intensification, but in order to achieve a beneficial equilibrium,
fine-tuning is necessary for each problem instance depending on its fitness
landscape characteristics.

One of the most prominent representatives of metaheuristics is the class
of evolutionary algorithms (EA): New solution candidates (individuals) are
generated by combining attributes of existing solution candidates (crossover)
and afterwards they are slightly modified with a certain probability (muta-
tion); parent individuals are chosen by means of nature inspired selection
techniques. A second well-known example of a rather simple metaheuristic
is simulated annealing (SA): This approach is closely related to local search
strategies such as hill climbing/descending and generates new solutions it-
eratively, starting from a usually randomly initialized solution. In contrast
to simple hill climbing/descending, moves to worse solutions are permitted
with a certain probability which decreases during the heuristic search pro-
cess; by this means the algorithm first performs exploration (diversification),
and later tends to focus on promising regions (intensification).

A multitude of other metaheuristics has been described in the literature,
such as for example ant colony optimization (ACO), tabu search (TS), iter-
ated local search (ILS), and scatter search (SS). The evolution of so many
diverse metaheuristics results from the fact that no single method outper-
forms all others for all possible problems. To be a bit more precise, the so-
called No-Free-Lunch theorem postulates that a general-purpose universal
optimization strategy is impossible and that the only way how one strat-
egy can outperform another is to be more specialized to the structure of the
tackled problem. The No-Free-Lunch theorem basically says that, given two
arbitrary metaheuristics (including random search), there always exist search
spaces for which the first metaheuristic will perform better than the second
and vice versa.

This means that even for the most sophisticated metaheuristic a fitness
landscape can be constructed for which it performs worse than ordinary ran-
dom search. Therefore, it always takes qualified algorithm experts to select,
parametrize and tune a metaheuristic algorithm for a concrete application.

This situation is illustrated in Figure 1 where the lower layer represents the
problem instances with their associated fitness landscape characteristics and
the upper layer shows the metaheuristic methods under certain parametriza-
tion. There exist some rough rules of thumb derived from empirical testing

III Metaheuristic Optimization 105

that indicate which metaheuristics should be chosen for certain problem char-
acteristics.

Schematic representation of the unordered relation between problem in-
stances (lower layer) and potentially well suited metaheuristics (upper
layer).

Figure 1

However, picking an appropriate method for a certain problem instance
is a non-trivial task. On the one hand, fitness landscape characteristics may
change remarkably for different problem dimensions; on the other hand, the
characteristics of a certain metaheuristic may considerably vary for different
parameter settings. Therefore, the following aspects are essential for choosing
a well suited method and beneficial parameter values for a certain problem
instance:

Sensitivity: The importance of good parameter settings for the success-
ful application of metaheuristics cannot be overemphasized. Even a mi-
nor change of one parameter value can drastically alter the convergence
behavior and the achievable solution quality. Moreover, dependencies be-
tween parameters make the analysis and reliable prediction of algorithmic
behavior difficult. The detection of robust parameter settings that can
be applied in a wide range of applications would be a great benefit for
the scientific community. Even more importantly, it would encourage non-
experts (for example biologists or economists) to employ metaheuristics
more frequently, if good results could be obtained with these parameter
settings.

Robustness: Fitness landscape characteristics, such as the distribution of
local optima or the landscape ruggedness, play an important role for se-
lecting an appropriate metaheuristic. It is a well-known fact that certain

106 Michael Affenzeller et al.

metaheuristics are better suited for some categories of fitness landscapes
than others, but a systematic classification or characterization has not
been devised yet. There is a clear need for the development of appropriate
measures to better characterize fitness landscapes and also for the col-
lection of fitness landscape characteristics for concrete problem instances.
Subsequently, the analysis of successful optimization strategies and param-
eter settings with respect to these fitness landscape characteristics could
lead to new insights about problem families and solution spaces.

Scalability: Real-world problems often need to be solved within tight time
constraints which limits the choice of adequate metaheuristics. As a re-
sult, existing methods must be adjusted to achieve minimal runtime while
still yielding the best possible solution quality. For example, this can be
achieved by the integration of parallel concepts and the execution on par-
allel computing systems (see Chapter VII). New algorithmic ideas are also
needed to effectively take advantage of the steadily increasing computing
power by introducing new self-adaptive parallel metaheuristics.

Figure 2 Main fields of research of the Heuristic and Evolutionary Algorithms
Laboratory (HEAL) in Hagenberg.

In order to face these challenges in the engineering of application oriented
metaheuristics, we have developed an environment called HeuristicLab, which
serves as a basis for algorithm development and analysis. Since the beginning
of its development, HeuristicLab has considered the general aspect of meta-
heuristics to encapsulate the generic algorithmic components and the problem
specific aspects of certain problem classes.

III Metaheuristic Optimization 107

Schematic representation of the ordered relation between problem in-
stances (lower layer) and potentially well suited metaheuristics (upper
layer).

Figure 3

Therefore, as illustrated in Figure 2, various different metaheuristic algo-
rithms as well as enhanced hybrid variants denote the core of HeuristicLab by
defining problem independent algorithms as algorithm plugin bundles. This
architecture makes algorithm engineering a lot easier: For attacking a new
problem it is sufficient to implement problem-specific solution manipulation
operators (such as neighborhood operators, crossover and mutation opera-
tors) and the whole variety of standard as well as enhanced metaheuristics is
available in HeuristicLab and can be used. This approach has turned out to be
very well suited for algorithm development and analysis. In this environment
many algorithmic enhancements to the general concept of a genetic algorithm
(as for example offspring selection (OS) [AW05] or the relevant alleles pre-
serving GA (RAPGA) [AWW07]) have been developed and applied to many
theoretical benchmarks as well as real-world problems. A good overview of re-
search activities in the field of theoretical and application oriented algorithm
engineering using HeuristicLab can be found in the book [AWWB09] and
the associated homepage2. Supplementary information about HeuristicLab
including an up-to-date list of publications can be found on the HeuristicLab
homepage3.

Furthermore, by using HeuristicLab it becomes very easy to compare var-
ious algorithms and also to rapidly obtain an overview about which meta-
heuristics and which corresponding parameter settings are suited best for a
certain kind of problem. There are concrete plans within the scope of the

2 http://gagp2009.heuristiclab.com/
3 http://www.heuristiclab.com/

108 Michael Affenzeller et al.

recently started research laboratory Heureka!4 to systematically collect all
test runs that will be performed by different metaheuristics in different ap-
plication domains in a large database. The ultimate goal of this metaheuris-
tic data storage is to systematically analyze which types of metaheuristics
are especially suited for concrete fitness landscape characteristics in order
to dilute the negative aspects of the No-Free-Lunch theorem. As indicated
in Figure 3, this should at least enable us to get some estimate about the
usually unknown interrelationships between the problem layer and the layer
of theoretically applicable metaheuristics. Still, there are problems for which
no suited metaheuristics are known yet and a lot remains to be done also in
the field of algorithm engineering in order to fill up these unexplored regions
on the map of metaheuristic algorithms with new hybrid metaheuristics.

1.2 Structure and Content

The rest of the chapter is organized as follows: In Section 2 a brief in-
troduction to heuristic optimization is given. Several trajectory-based and
population-based metaheuristics are outlined that represent state-of-the-art
algorithms of the domain. Section 3 describes generic hybrid enhancements
to the general concept of a genetic algorithm that have been developed and
applied in various application domains by members of the Heuristic and Evo-
lutionary Algorithms research group in Hagenberg. Two active areas of appli-
cation treated by the research group are discussed in Section 4 and Section 5.
In Section 4 several route planning heuristics are discussed including also
some approaches using metaheuristics such as genetic algorithms and tabu
search have been performed by members of the Heuristic and Evolutionary
Algorithms Laboratory (HEAL). A quite different area of application which
we have entered in the last couple of years is described in Section 5: In the
context of genetic programming based structure identification, the enhanced
algorithmic concepts we have developed are applied to nonlinear structure
identification problems using genetic programming. Finally, Section 6 sum-
marizes the chapter and indicates some aspects for future research which are
considered important by the authors.

4 Josef Ressel-Centre for Heuristic Optimization, http://heureka.heuristiclab.com/.

III Metaheuristic Optimization 109

Bibliographic Remarks 1.3

There are numerous books, journals, and articles available that survey the
field of metaheuristic optimization. In this section we summarize some of the
most important ones as well as a new book of the authors of this chapter.
Representatively, the following books are widely considered very important
sources of information about GAs (in chronological order):� J. H. Holland: Adaptation in Natural and Artificial Systems [Hol75a]� D. E. Goldberg: Genetic Algorithms in Search, Optimization and Machine

Learning [Gol89]� Z. Michalewicz: Genetic Algorithms + Data Structures = Evolution Pro-
grams [Mic92]� D. Dumitrescu et al.: Evolutionary Computation [DLJD00]� Z. Michalewicz and B. Fogel How to Solve It: Modern Metaheuristics
[MF00]� E. Alba Parallel Metaheuristics: A New Class of Algorithms [Alb05]� M. Affenzeller, S. Winkler, S. Wagner, and A. Beham: Genetic Algorithms
and Genetic Programming: Modern concepts and Practical Applications
[AWWB09]

The following journals are dedicated to either theory and applications of
genetic algorithms or evolutionary computation in general:� IEEE Transactions on Evolutionary Computation (IEEE)� Evolutionary Computation (MIT Press)� Journal of Heuristics (Springer)

Moreover, several conference and workshop proceedings include papers re-
lated to genetic and evolutionary algorithms and heuristic optimization. Some
examples are the following ones:� Genetic and Evolutionary Computation Conference (GECCO), a recom-

bination of the International Conference on Genetic Algorithms and the
Genetic Programming Conference� Congress on Evolutionary Computation (CEC)� Parallel Problem Solving from Nature (PPSN)

Metaheuristic Optimization Techniques 2

Frequently, metaheuristics are categorized by the number of solutions they
work on in each iteration. On the one hand, trajectory-based algorithms con-
sider only a single element of the solution space at a time. They jump from

110 Michael Affenzeller et al.

one spot in the solution space to another, usually by sampling a new solution
from the neighborhood of the current one, and try to reach promising regions
in the solution space. The neighborhood of a solution is thereby defined by
a neighborhood structure which is a function N : S → 2S from the solution
space S to the power set of the solution space that assigns a set of neigh-
bors N (s) to every solution s [BRA05]. On the other hand, population-based
heuristics keep a set of solutions in each iteration. By this means, they can
make their decision where to move in the solution space based not only on a
single point but on multiple points.

In the following, several representatives of classical trajectory-based and
population-based metaheuristics are described (see [BRA05]). More details
on metaheuristics and their application to different problems can also be
found in [DGG+07]. Furthermore, the topic of hybrid metaheuristics is also
briefly touched at the end of this section.

2.1 Simulated Annealing

As stated in [BRA05], simulated annealing (SA) is commonly said to be the
oldest among the metaheuristics and one of the first algorithms that con-
tained an explicit strategy to escape from local optima. It was inspired by
the annealing process of metal and glass which assume a low energy configura-
tion when cooled down, and is therefore a representative of a nature-inspired
optimization algorithm. Its origins go back to the field of statistical mechan-
ics and the Metropolis algorithm published in 1953 [MRR+53]. In 1983 Scott
Kirkpatrick, Charles D. Gellart and Mario P. Vecchi generalized this algo-
rithm, introduced the name “simulated annealing” and applied it to problems
of computer design and the traveling salesman problem [KGV83].

SA starts with an initial solution s which can be created randomly or
using some heuristic construction rule. Similar to iterative first-improvement
local search (hill climbing/descending), a solution s′ is sampled randomly
from the neighborhood N of the current solution in each iteration. If the
sampled solution is better, it is accepted and replaces the current solution.
However, if s′ is worse, it is not discarded immediately but is also accepted
with a probability P (s′|Tk, s) = e−|f(s′)−f(s)|/Tk depending on the actual
temperature parameter Tk and the quality difference. Algorithm 1 shows a
pseudo-code representation of the algorithm.

Due to this stochastic acceptance criterion the temperature parameter Tk

can be used to balance diversification and intensification of the search. At the
beginning the temperature should be high to enable the algorithm to easily
escape from local optima. As the algorithm proceeds, the temperature has
to be reduced step by step to focus the search on a promising region of the
solution space such that it will converge eventually. The way how the tem-

III Metaheuristic Optimization 111

perature is decreased over time is defined by the cooling scheme. Frequently
used cooling schemes include linear, geometric or logarithmic cooling. How-
ever, also more complex cooling strategies have been proposed that are not
necessarily monotonous and for example suggest reheating phases to diversify
the search again from time to time [LM86, Osm93]. The choice of an appro-
priate initial temperature and cooling scheme is crucial for the performance
of the algorithm and therefore has to be adapted for each problem instance
to which SA is applied.

Algorithm 1. Simulated annealing
s← generate initial solution
k ← 0
Tk ← initial temperature

while termination criterion not met do

s′ ← choose solution in N (s) randomly
if s′ is better than s then

s← s′

else

s← s′ with probability P (s′|Tk, s) = e
−

|f(s′)−f(s)|
Tk

end if

Tk+1 ← adapt temperature Tk

k ← k + 1
end while

return best solution found

Tabu Search 2.2

In 1986 Fred Glover introduced tabu search (TS) in [Glo86]. In contrast to
SA, TS is a memory-based method that uses the search history to navigate
in the solution space and to prevent stagnation in local optima. Especially
in the field of combinatorial optimization TS is considered to be one of the
most successful metaheuristics. A detailed description of the algorithm and
various applications can be found in [Glo97].

Algorithm 2 outlines a basic TS algorithm. TS can be considered as iter-
ative best-improvement local search with an additional extension to prevent
cycles. Without this modification the algorithm would always jump between
a local optimum and the best solution in the neighborhood of this local
optimum (next best solution). To prevent this behavior and to force the ex-
ploration of new areas of the solution space after reaching an optimum, TS
uses a short term memory also called tabu list which stores solutions visited
in the past in a FIFO list. In each iteration the tabu list is used to generate

112 Michael Affenzeller et al.

the allowed set of neighbors Na(s) by removing all solutions from the neigh-
borhood of the current solution which have been visited in the last iterations.
Then the best solution of the allowed set is chosen as new solution and the
tabu list is updated. As storing complete solutions is too inefficient for many
applications, the tabu list often contains only the solution components in-
volved in a move. Also multiple tabu lists, one for each solution component,
might be used. Finally the algorithm stops, if some termination criterion is
met (execution time, number of evaluated solutions, etc.) or all neighboring
solutions are tabu and the set of allowed solutions is empty.

Algorithm 2. Tabu search
s← generate initial solution
TL← empty tabu list

while termination criterion not met do

Na(s)← {s′ ∈ N (s)|s′ is not tabu or satisfies an aspiration condition}
s′ ← best solution ∈ Na(s)
update TL with s and s′

s← s′

end while

return best solution found

The size of the tabu list (tabu tenure) represents an important parameter
to influence intensification and diversification of the search. A shorter tabu list
leads to a more intensive exploitation of a smaller area of the solution space,
whereas a longer tabu list forces the algorithm to go to other regions of the
solution space more quickly. Selecting an appropriate tabu tenure is a critical
step and determines the success of the search. Therefore, several approaches
have been discussed to adapt the length of the tabu list automatically during
the execution of the algorithm [Glo90, Tai91, BT94]. However, as a longer
tabu list might have the effect that a promising region of the solution space
is not fully explored, additional aspiration criteria are frequently used which
overrule the tabu condition of a solution. For example, if a solution is found
in the neighborhood that is tabu but better than the best solution found so
far, this solution is also included in the allowed set.

Besides the tabu list as a short term memory, additional memories can also
be added in order to control the search process on a higher level. For example,
an intermediate term memory can be used to keep track of promising regions
of the solution space and to restart the algorithm with a shorter tabu list to
perform an intensified search there. Another approach suggests a long term
memory to store the frequency of solutions in order to penalize solutions that
have been considered already. Additional information on these advanced TS
concepts is summarized in [Glo97].

III Metaheuristic Optimization 113

Iterated Local Search 2.3

Iterated local search (ILS) [Stü98, LMS03] is a very general metaheuristic
that offers several degrees of freedom. As shown in Algorithm 3, ILS starts
with an initial solution on which a local search procedure is applied leading
to a (local) optimum ŝ. In each iteration a new starting point s′ is calculated
by perturbating the current optimum ŝ. On that solution local search is
applied again which results in another optimum ŝ′. Finally, the new optimum
replaces the old one depending on some acceptance criterion. As in both steps,
perturbation and acceptance, the history of the search might be used, ILS is
another version of memory-based metaheuristics.

Algorithm 3. Iterated local search
s← generate initial solution
ŝ← perform local search on s

while termination criterion not met do

s′ ← perturbate ŝ

ŝ′ ← perform local search on s′

if acceptance criterion is satisfied then

ŝ← ŝ′

end if

end while

return best solution found

Obviously, ILS follows a trajectory of local optima ŝ1, . . . , ŝn. Thereby the
choice of the perturbation scheme is crucial: On the one hand, the new start-
ing point should be located outside the attraction basin of the current local
optimum; on the other hand, if perturbation is too strong, ILS behaves like a
random multi-start local search. Therefore, the strength of the perturbation
has to be selected according to the tackled problem instance. More sophis-
ticated versions of ILS also suggest a variable perturbation procedure that
adapts its strength dynamically in order to have a good balance of diversifi-
cation and intensification of the search.

Due to its very generic formulation, ILS can be seen as a high level defi-
nition of trajectory-based metaheuristics. Other algorithms such as variable
neighborhood search or simulated annealing can be described as special cases
of ILS.

114 Michael Affenzeller et al.

2.4 Evolutionary Algorithms

All metaheuristic algorithms inspired by the Darwinian principle of “survival
of the fittest” [Dar98] and the process of evolution are denominated as evo-
lutionary algorithms (EAs). In general, EAs mimic the natural process of
species adapting to the environment and simulate this concept to solve com-
binatorial or continuous optimization problems. The foundations of EAs date
back to the 1960s and 1970s. In that time several slightly different algorithms
were proposed, but fundamentally all of them followed similar ideas. The most
prominent variants of EAs are evolution strategies (ES), developed by Ingo
Rechenberg in Germany [Rec73, Rec94], and genetic algorithms (GAs), in-
troduced by John H. Holland and his students in the USA [Hol75b, Gol89].
Although the ES and GA community competed heavily in the early days of
EAs, in the recent years effort can be noticed to unite both approaches and
to develop a unified and general model for evolutionary computation [DeJ06].

Algorithm 4. Evolutionary algorithm
P ← generate initial population
evaluate P

while termination criterion not met do

Pparents ← select solutions from P

Pchildren ← recombine and/or mutate Pparents

evaluate Pchildren

P ← select from P and Pchildren

end while

return best solution found

Algorithm 4 shows the procedure of EAs in a very generalized form. Basi-
cally, an EA works on a set of solutions usually called a population. In analogy
to genetics, solutions are also often referred to as individuals or chromosomes,
the components of a solution are called genes, and the concrete value of a
gene is denoted as an allele. In each iteration three different steps are applied:

Selection: First, a selection method is used to pick solutions from the cur-
rent population that should be modified. If the selection probability of a
solution is proportional to the solution quality, which is usually the case
for GAs, this steps plays an important role for directing the search process.

Modification: Second, the selected solutions are manipulated. In general,
two different modification concepts can be applied either separately or in
a combined way. On the one hand, solution components of two or more
solutions can be combined to create a new valid and hopefully better
solution (crossover). On the other hand, some kind of local modification
can be used to change single solutions (mutation).

Replacement: Third, a set of solutions has to be selected from the modified
solutions and perhaps also from the current population to build a new

III Metaheuristic Optimization 115

generation of parent solutions for the next iteration. Again, if the solution
quality is used as a decision criterion whether a solution should become a
member of the next generation or not, replacement is also an important
factor for navigating the search through the solution space.

The general EA model shown above offers many degrees of freedom to
the algorithm designer. How selection, modification, and replacement are im-
plemented depends on the type of EA (GAs, ES, etc.) as well as on the
tackled problem. This is probably one of the main success factors of EAs, as
they can be easily adapted to particular optimization problems. As a result,
many different EA derivatives have been proposed for multiple optimization
problems and solution representations. In this context genetic programming
(GP) [Koz92b] should also be mentioned as a prominent example which uses
GAs to evolve computer programs represented as tree structures. A compre-
hensive discussion of different EA variants and many application areas can be
found in several publications such as [Bäc96, BFM97, DLJD00, HK00, Fog06].

Scatter Search 2.5

Scatter search (SS) and its generalized form called path relinking were de-
veloped by Fred Glover in the late 1990s [Glo99, GLM00]. As described
in [GLM03b], SS basically consists of five methods:

Diversification Generation Method: The diversification generation method
aims to create a set of solutions as different to an existing set of solutions
as possible.

Improvement Method: The improvement method tries to improve a solution
usually by applying some kind of local search procedure.

Reference Set Update Method: This method is used to build and maintain
the reference set containing the “best” solutions found so far. The notion
of best is thereby not limited to the solution quality. Other quality criteria
such as the diversity of solutions are also taken into account.

Subset Generation Method: The subset generation method operates on the
reference set and selects subsets for creating combined solutions. The most
common method is to generate all pairs of reference solutions.

Solution Combination Method: Finally, the solution combination method
takes the generated subsets of the reference set and combines all solutions
of each subset in order to create new solutions. This method is similar to
the crossover operator used in EAs.

As outlined in Algorithm 5 these methods are used as follows: First, an
initial set of solutions is created using some heuristic method and the ini-
tial reference set is selected. Note that the diversification generation method

116 Michael Affenzeller et al.

might also be used to get a highly diverse set of initial solutions. Then, in
each iteration of the algorithm, an intensification phase and a diversification
phase are executed. The intensification phase (inner loop) is repeated as long
as the reference set changes (i.e., better solutions are found). The subset gen-
eration, combination, and improvement methods are applied to create new
solutions; then the reference set is updated if possible. By this means, the re-
gions of the solution space defined by the reference solutions are exploited as
much as possible. After the reference set has converged, diversification takes
place by applying the diversification generation method on the reference set
and choosing a new reference set again.

Algorithm 5. Scatter search
P ← create initial solutions
Pref ← choose reference set from P

while termination criterion not met do

repeat

Psub ← select subsets from Pref

Pcomb ← apply recombination on Psub

Pcomb ← apply improvement on Pcomb

Pref ← update reference set with Pcomb

until Pref converges

P ← apply diversification generation on Pref

Pref ← choose reference set from P

end while

return best solution found

Originally, SS was designed to optimize solutions encoded as points in
the Euclidean space. However, in the recent years it was also shown how SS
can be applied to other problems such as linear ordering, route planning,
graph coloring, or multi-objective optimization (see for example [GLM03b,
GLM03a, NLA+08]).

2.6 Further Metaheuristics

Apart from the typical representatives of trajectory-based and population-
based metaheuristics presented above, several other algorithms have been
proposed that also belong to either of these two categories. Some of them
are listed in the following, even though this list is not complete as the re-
search community focusing on metaheuristic search is very active and new
algorithms are frequently published. Additional information about these al-
gorithms can be found in the referenced publications.� Greedy Randomized Adaptive Search Procedure (GRASP) [FR95]

III Metaheuristic Optimization 117� Guided Local Search (GLS) [VT99]� Very Large-Scale Neighborhood Search (VLSN) [AEOP02]� Variable Neighborhood Search (VNS) [HM01]� Variable Depth Search (VDS) [LK73]� Estimation of Distribution Algorithms (EDA) [MP96]� Evolutionary Programming (EP) [FOW66]� Ant Colony Optimization (ACO) [DS04]� Particle Swarm Optimization (PSO) [ESK01]� Artificial Immune Systems (AIS) [dCT02]

Hybrid Metaheuristics 2.7

In the last years so-called hybrid metaheuristics have become more and more
popular that do not strictly stick to one specific metaheuristic approach. In
many complex real-world optimization scenarios these algorithms are able to
outperform classical metaheuristics by exploiting the advantages of different
concepts. However, the development of an effective hybrid approach is in gen-
eral a difficult task and highly depends on the tackled optimization problem.
Various ways of hybridization have been discussed in the literature and a
comprehensive overview can be found in [Rai06].

Basically, three different categories of hybrid algorithms can be distin-
guished: Metaheuristics can be hybridized with each other, metaheuristics
can be combined with problem-specific algorithms, or metaheuristics can be
used together with other optimization algorithms as for example exact opti-
mization techniques or neural networks.

A typical strategy that belongs to the first category is embedding meta-
heuristic algorithms in order to improve solutions during the search process
of another metaheuristic. For example, memetic algorithms [Mos99, MC03]
follow this approach: They combine evolutionary algorithms with trajectory-
based metaheuristics to optimize some or all solutions of the population; a
local search algorithm is thereby used to intensify the search and to focus the
surrounding EA on local optima.

Regarding the second category, metaheuristics can be combined with
problem-specific construction heuristics that are used to obtain good start-
ing points for the search (see GRASP) or to transform indirect or incom-
plete representations into complete and feasible solutions (decoder-based al-
gorithms). The latter strategy is frequently found in algorithms solving com-
binatorial optimization problems, if a permutation-based solution encoding
is used [KPP04]. For example, when solving scheduling problems, an order
of jobs can be represented as a permutation; in this case, a schedule builder
such as the Giffler-Thompson algorithm [GT60] has to be applied to create

118 Michael Affenzeller et al.

concrete schedules which can be evaluated with respect to some objective
function [YN97, BWA04].

Last but not least, the combination of metaheuristics with exact optimiza-
tion techniques is a typical example of an approach that belongs to the last
category [DS03, RP08]: On the one hand, exact optimization techniques such
as integer linear programming or constraint programming can be used within
metaheuristics to reduce the solution space, to efficiently search large neigh-
borhoods, to merge solutions, or to gain additional information to guide the
search by solving a relaxation of the tackled problem. On the other hand,
many exact optimization techniques rely on good bounds to restrict the area
of the solution space that has to be examined; therefore, metaheuristics can
be used to quickly obtain good and feasible solutions [Rot07].

3 Algorithmic Advances Based Upon

Genetic Algorithms

This section describes some key aspects of our activities in the field of algo-
rithm development. The enhanced algorithmic concepts discussed here aim to
hybridize the general concept of genetic algorithms in a generic and bionically
inspired way and somehow denoted the beginnings of our research activities
in this field. Due to their generality, the enhanced algorithms could be ap-
plied successfully to benchmark real world problems in the field of combina-
torial optimization, nonlinear structure identification, and simulation-based
optimization. Some of these application oriented aspects of these hybrid al-
gorithms are discussed in Section 4 and Section 5.

Before the main ideas of the enhanced GA concepts will be described, we
state some considerations about the general functioning of genetic algorithms
and their convergence behavior.

3.1 The Unique Selling Points of Genetic Algorithms

Genetic algorithms operate under assumptions that are fundamentally differ-
ent from those of trajectory-based heuristic optimization techniques such as
simulated annealing or tabu search, and also in contrast to population-based
heuristics which perform parallel local search as for example the conventional
variants of evolution strategies (ES without recombination). When discussing
genetic algorithms we also include genetic programming which, from an al-

III Metaheuristic Optimization 119

gorithmic point of view, may be considered as a special case of a genetic
algorithm.

A neighborhood-based method usually scans the search space around a
current solution in a predefined neighborhood in order to move to more
promising directions, and are therefore often confronted with the problem
of getting stuck in a local, but not global, optimum of a multimodal solution
space.

What makes GAs unique compared to neighborhood-based search tech-
niques is the crossover procedure which is able to assemble properties of
solution candidates which may be located in very different regions of the
search space. In this sense, the ultimate goal of any GA is to assemble and
combine the essential genetic information (i.e. the alleles of a globally op-
timal or at least high quality solution) step by step. This information is
initially scattered over many individuals and must be merged to single solu-
tion candidates (chromosomes) by the final stage of the evolutionary search
process. This perspective, which is under certain assumptions stated in the
variants of the well-known schema theory and the according building block
hypothesis [Gol89], should ideally hold for any GA variant. This is exactly
the essential property that has the potential to make GAs much more ro-
bust against premature stagnation in locally optimal solutions than search
algorithms working without crossover.

Schema Theorem and Building Block Hypothesis 3.2

Researchers working in the field of GAs have put a lot of effort into the
analysis of the genetic operators (crossover, mutation, selection). In order
to achieve better analysis and understanding, Holland has introduced a con-
struct called schema [Hol75a]:

Assuming the use of a canonical GA with binary string representation
of individuals, the symbol alphabet {0,1,#} is considered where {#}(don’t
care) is a special wild card symbol that matches both, 0 and 1. A schema is a
string with fixed and variable symbols. For example, the schema [0#11#01]
is a template that matches the following four strings: [0011001], [0011101],
[0111001], and [0111101]. The symbol # is never actually manipulated by the
genetic algorithm; it is just a notational device that makes it easier to talk
about families of strings.

Essentially, Holland’s idea was that every evaluated string actually gives
partial information about the fitness of the set of possible schemata of which
the string is a member. Holland analyzed the influence of selection, crossover
and mutation on the expected number of schemata, when going from one
generation to the next. A detailed discussion of related analysis can be found

120 Michael Affenzeller et al.

in [Gol89]; in the context of the present work we only outline the main results
and their significance.

Assuming fitness proportional replication, the number m of individuals
of the population belonging to a particular schema H at time t + 1 (i.e.,
m(H, t + 1)) can be calculated and depends on the average fitness value of
the string representing schema H and the average fitness value over all strings
within the population. Assuming that a particular schema remains above the
average by a fixed amount for a certain number of generations, m(H, t) can
be calculated directly.

Considering the effect of crossover which breaks apart strings apart (at
least in the case of canonical genetic algorithms) we see that short defining
length schemata are less likely to be disrupted by a single point crossover
operator. The main result is that above average schemata with short defining
lengths will still be sampled at an exponential increasing rate; these schemata
with above average fitness and short defining length are the so-called building
blocks and play an important role in the theory of genetic algorithms.

Using several considerations and proofs given in [Hol75a] one can described
effects of mutation, crossover, and reproduction and up with Holland’s well
known schema theorem:

m(H, t + 1) ≥ m(H, t)
fH(t)

f(t)
[1 − pc

δ(H)

l − 1
− o(H)pm] (1)

where fH(t) is the average fitness value of individuals represented by H ,
f(t) the average fitness of all individuals in the population, δ(H) the defin-
ing length of a schema H (i.e., the distance between the first and the last
fixed string position), o(H) the order of H (i.e., the number of non-wildcard
positions in H), and pc and pm the probabilities of crossover and mutation,
respectively.

This result essentially says that the number of short schemata with low or-
der and above average quality grows exponentially in subsequent generations
of a genetic algorithm.

The major drawback of the building block theory is given by the fact
that the underlying GA (binary encoding, proportional selection, single-point
crossover, strong mutation) is applicable only to very few problems as it re-
quires more sophisticated problem representations and corresponding opera-
tors to tackle challenging real-world problems.

Keeping in mind that the ultimate goal of any heuristic optimization tech-
nique is to approximately and efficiently solve highly complex real-world
problems rather than stating a mathematically provable theory that holds
only under very restricted conditions, our intention for an extended building
block theory is a not so strict formulation that in return can be interpreted
for arbitrary GA applications. At the same time, the enhanced variants of
genetic algorithms and genetic programming proposed in this section aim
to support the algorithms in their intention to operate in the sense of an
extended building block interpretation discussed in the following sections.

III Metaheuristic Optimization 121

Stagnation and Premature Convergence 3.3

The fundamental problem which many meta-heuristic optimization methods
aim to counteract with various algorithmic tricks is the stagnation in a lo-
cally, but not globally, optimal solution. As stated previously, due to their
methodology GAs and GP suffer much less from this problem.

Unfortunately, also users of evolutionary algorithms using crossover fre-
quently encounter a problem which, at least in its effect, is quite similar to
the problem of stagnating in a local, but not global, optimum. This draw-
back, in the terminology of GAs called premature convergence, occurs if the
population of a GA reaches such a suboptimal state that the genetic solu-
tion manipulation operators (crossover and mutation) are no longer able to
produce offspring that outperform their parents (as discussed for example in
[Fog94], [Aff03]). In general, this happens mainly when the genetic informa-
tion stored in the individuals of a population does not contain the genetic
information which is sufficient to further improve the solution quality.

Several methods have been proposed to combat premature convergence in
genetic algorithms (see [LGX97], [Gao03], or [Gol89], e.g.). These include,
for example, the restriction of the selection procedure, the operators and the
according probabilities as well as the modification of the fitness assignment.
However, all these methods are heuristic, and their effects vary with different
problems and even problem instances. A critical problem in studying pre-
mature convergence therefore is the identification of its occurrence and the
characterization of its extent. For example, Srinivas and Patnaik [SP94] use
the difference between the average and maximum fitness as a standard to
measure genetic diversity, and adaptively vary crossover and mutation prob-
abilities according to this measurement.

Classical Measures for Diversity Maintenance

The term “population diversity” has been used in many papers to study pre-
mature convergence (e.g. [SFP93], [YA94]) where the decrease of population
diversity (i.e. a homogeneous population) is considered as the primary reason
for premature convergence.

The basic approaches for avoiding premature convergence discussed in GA
literature aim to maintain genetic diversity. The most common techniques
for this purpose are based upon pre-selection [Cav75], crowding [DeJ75], or
fitness-sharing [Gol89]. The main idea of these techniques is to maintain
genetic diversity by the preferred replacement of similar individuals [Cav75],
[DeJ75] or by the fitness-sharing of individuals which are located in densely
populated regions [Gol89]. While methods based upon those discussed in

122 Michael Affenzeller et al.

[DeJ75] or [Gol89] require some kind of neighborhood measure depending
on the problem representation, the approach given in [Gol89] is additionally
quite restricted to proportional selection.

Limitations of Diversity Maintenance

In natural evolution the maintenance of genetic diversity is of major impor-
tance as a rich gene pool enables a certain species to adapt to changing en-
vironmental conditions. In the case of artificial evolution, the environmental
conditions, for which the chromosomes are to be optimized, are represented
in the fitness function which usually remains unchanged during the run of
an algorithm. Therefore, we do not identify the reasons for premature con-
vergence in the loss of genetic variation in general but more specifically in
the loss of what we call essential genetic information, i.e. in the loss of alleles
which are part of a global optimal solution. Even more specifically, whereas
the alleles of high quality solutions are desired to remain in the gene pool
of the evolutionary process, alleles of poor solutions are desired to disap-
pear from the active gene pool in order to strengthen the goal-directedness
of evolutionary search.

Therefore, in the following we denote the genetic information of the global
optimal solution (which is unknown to the algorithm) as essential genetic
information. If parts of this essential genetic information are missing or get
lost, premature convergence is already predetermined in a certain way as only
mutation (or migration in the case of parallel GAs [Alb05]) is able to regain
this genetic information.

A very essential question about the general performance of a GA is whether
or not good parents are able to produce children of comparable or even bet-
ter fitness—after all, the building block hypothesis implicitly relies on this.
Unfortunately, this property cannot be guaranteed easily for GA applications
in general: The disillusioning fact here is that the user has to take care of an
appropriate encoding in order to make this fundamental property hold.

Reconsidering the basic functionality of a GA, the algorithm selects two
above average parents for recombination and sometimes (with usually rather
low probability) mutates the crossover result. The resulting chromosome is
then considered as a member of the next generation and its alleles are there-
fore part of the gene pool for the ongoing evolutionary process.

Reflecting the basic concepts of GAs, the following questions and associ-
ated problems arise:� Is crossover always able to fulfill the implicit assumption that two above-

average parents can produce even better children?� Which of the available crossover operators is best suited for a certain
problem in a certain representation?

III Metaheuristic Optimization 123� Which of the resulting children are “good” recombinations of their parents
chromosomes?� What makes a child a “good” recombination?� Which parts of the chromosomes of above-average parents are really worth
being preserved?

Conventional GAs are usually not always able to answer these questions
in a satisfactory way, which should ideally hold for any GA application and
not only for a canonical GA in the sense of the schema theorem and the
building block hypothesis. These observations constitute the starting point
for generic algorithmic enhancements as stated in the following chapters.
The preservation of essential genetic information, widely independent of the
actually applied representation and operators plays a main role.

Offspring Selection (OS) 3.4

The ultimate goal of the extended algorithmic concepts described in this
chapter is to support crossover-based evolutionary algorithms, i.e. evolution-
ary algorithms that are ideally designed to function as a building-block assem-
bling machines, in their intention to combine those parts of the chromosomes
that define high quality solutions. In this context we concentrate on selection
and replacement which are the parts of the algorithm that are independent
of the problem representation and the according operators. Thus, the appli-
cation domain of the new algorithms is very wide; in fact, offspring selection
can be applied to any task that can be treated by genetic algorithms (of
course also including genetic programming).

The unifying purpose of the enhanced selection and replacement strategies
is to introduce selection after reproduction in a way that checks whether or
not crossover and mutation were able to produce a new solution candidate
that outperforms its own parents. Offspring selection realizes this by claiming
that a certain ratio of the next generation (pre-defined by the user) has to
consist of children that were able to outperform their own parents (with
respect to their fitness values). OS implies a self-adaptive regulation of the
actual selection pressure that depends on how easy or difficult it is at present
to achieve evolutionary progress. An upper limit for the selection pressure
provides a good termination criterion for single population GAs as well as a
trigger for migration in parallel GAs.

As already discussed at length, the first selection step chooses the parents
for crossover either randomly or in any other well-known way as for example
roulette-wheel, linear-rank, or some kind of tournament selection strategy.
After having performed crossover and mutation with the selected parents,
we introduce a further selection mechanism that considers the success of the

124 Michael Affenzeller et al.

apparently applied reproduction. In order to assure that the progression of
genetic search occurs mainly with successful offspring, this is done in such
a way that the used crossover and mutation operators are able to create a
sufficient number of children that surpass their parents’ fitness. Therefore,
a new parameter called success ratio (SuccRatio ∈ [0, 1]) is introduced. The
success ratio is defined as the quotient of the next population members that
have to be generated by successful mating in relation to the total population
size. Our adaptation of Rechenberg’s success rule ([Rec73], [Sch94]) for ge-
netic algorithms says that a child is successful if its fitness is better than the
fitness of its parents, whereby the meaning of “better” has to be explained
in more detail: Is a child better than its parents, if it surpasses the fitness
of the weaker parent, the better parent, or some kind of weighted average of
both?

In order to answer this question, we have borrowed an aspect from sim-
ulated annealing: The threshold fitness value that has to be outperformed
lies between the worse and the better parent and the user is able to adjust
a lower starting value and a higher end value which are denoted as compari-
son factor bounds; a comparison factor (CompFactor) of 0.0 means that we
consider the fitness of the worse parent, whereas a comparison factor of 1.0
means that we consider the better of the two parents. During the run of the
algorithm, the comparison factor is scaled between the lower and the upper
bound resulting in a broader search at the beginning and ending up with a
more and more directed search at the end; this procedure in fact picks up a
basic idea of simulated annealing.

In the original formulation of the offspring selection we have defined that
in the beginning of the evolutionary process an offspring only has to surpass
the fitness value of the worse parent in order to be considered as “successful”;
as evolution proceeds, the fitness of an offspring has to be better than a fitness
value continuously increasing between the fitness values of the weaker and
the better parent. As in the case of simulated annealing, this strategy gives
a broader search at the beginning, whereas at the end of the search process
this operator acts in a more and more directed way. Having filled up the
claimed ratio (SuccRatio) of the next generation with successful individuals
using the success criterion defined above, the rest of the next generation
((1−SuccRatio)·|POP |)5 is simply filled up with individuals randomly chosen
from the pool of individuals that were also created by crossover, but did not
reach the success criterion. The actual selection pressure ActSelPress at the
end of generation i is defined by the quotient of individuals that had to be
considered until the success ratio was reached and the number of individuals
in the population in the following way:

ActSelPress =
|POP i+1| + |POOLi|

|POP i|
(2)

5 |POP | denotes the number of individuals in a population POP .

III Metaheuristic Optimization 125

yes

no

Population of solutions with size |POP|

POPgeneration i

POPgeneration i+1

SuccRatio ∗ |POP| (1-SuccRatio) ∗ |POP|

|POP|

selection (proportional, tournament,...)

crossover

mutation

POOL

Pool of unsuccessful children with size |POOL|

child ‘better’

than parents?

fill up the rest of the next generation’s

population after enough ‘better’ children

have been created

.

.

.

Embedding offspring selection into a genetic algorithm: Flowchart of the
embedding of offspring selection into a genetic algorithm.

Figure 4

Figure 4 shows the operating sequence of the concepts described above.
An upper limit of selection pressure (MaxSelPress) defines the maximum

number of offspring considered for the next generation (as a multiple of the
actual population size) that may be produced in order to fulfill the success
ratio. With a sufficiently high setting of MaxSelPress , this new model also
functions as a detector for premature convergence:

If it is no longer possible to find a sufficient number (SuccRatio · |POP |)
of offspring outperforming their own parents, even if (MaxSelPress · |POP |)
candidates have been generated, premature convergence has occurred.

As a basic principle of this selection model, higher success ratios cause
higher selection pressures. Nevertheless, higher settings of success ratio, and
therefore also higher selection pressures, do not necessarily cause premature
convergence. The reason for this is mainly that the new selection step does
not accept clones that emanate from two identical parents per definition.
In conventional GAs such clones represent a major reason for premature
convergence of the whole population around a suboptimal value, whereas the
new offspring selection works against this phenomenon [AWWB09].

With all strategies described above, finally a genetic algorithm with the ad-
ditional offspring selection step can be devised as stated in Algorithm 6. The
algorithm is formulated for a maximization problem; in case of minimization
problems the inequalities have to be changed accordingly.

126 Michael Affenzeller et al.

Algorithm 6. Definition of a genetic algorithm with offspring selection
Initialize total number of iterations nrOfIterations ∈ N

Initialize actual number of iterations i = 0
Initialize size of population |POP |
Initialize success ratio SuccRatio ∈ [0, 1]
Initialize maximum selection pressure MaxSelPress ∈]1,∞[
Initialize lower comparison factor bound LowerBound ∈ [0, 1]
Initialize upper comparison factor bound UpperBound ∈ [LowerBound, 1]
Initialize comparison factor CompFactor = LowerBound

Initialize actual selection pressure ActSelPress = 1
Produce an initial population POP0 of size |POP |

while (i < nrOfIterations) ∧ (ActSelPress < MaxSelPress) do

Initialize next population POPi+1

Initialize pool for bad children POOL

while (|POPi+1| < (|POP | · SuccRatio))∧
((|POPi+1| + |POOL|) < (|POP| ·MaxSelPress)) do

Generate a child from the members of POPi based on their fitness
values using crossover and mutation

Compare the fitness of the child c to the fitness of its parents par1 and par2
if fc ≤ (fpar2

+ |fpar1
− fpar2

| · CompFactor) then

Insert child into POOL

else

Insert child into POPi+1

end if

end while

ActSelPress =
|POPi+1|+|POOL|

|POP|

Fill up the rest of POPi+1 with members from POOL

while |POPi+1| ≤ |POP | do

Insert a randomly chosen child from POOL into POPi+1

end while

Adapt CompFactor according to the given strategy
i = i + 1

end while

3.5 Consequences Arising out of Offspring Selection

Typically, GAs operate under the implicit assumption that parent individuals
of above average fitness are able to produce better solutions as stated in
Holland’s schema theorem and the related building block hypothesis. This
general assumption, which ideally holds under the restrictive assumptions of a
canonical GA using binary encoding, is often hard to fulfill for many practical
GA applications. Some crucial question about the general functioning of GA-
based methods shall be phrased and answered here in the context of offspring
selection:

1. Is crossover always able to fulfill the implicit assumption that two above-
average parents can produce even better children?
Unfortunately, the implicit assumption of the schema theorem, namely
that parents of above average fitness are able to produce even better chil-
dren, is not accomplished for a lot of operators in many theoretical as well
as practical applications. This disillusioning fact has several reasons: First,

III Metaheuristic Optimization 127

a lot of operators tend to produce offspring solution candidates that do not
meet the implicit or explicit constraints of certain problem formulations.
Commonly applied repair strategies included in the operators themselves
or applied afterwards have the consequence that alleles of the resulting
offspring are not present in the parents which directly counteracts the
building block aspect. In many problem representations it can easily hap-
pen that a lot of highly unfit child solution candidates arise even from the
same pair of above average parents (think of GP crossover for example,
where a lot of useless offspring solutions may be developed, depending
on the concrete choice of crossover points). Furthermore, some operators
have disruptive characteristics in that sense that the evolvement of longer
building block sequences is not supported.
By using offspring selection (OS) the necessity that almost every trial is
successful concerning the results of reproduction is no more that strict as
only successful offspring become members of the active gene pool for the
ongoing evolutionary process.

2. Which of the available crossover operators is best suited for a certain prob-
lem in a certain representation?
For many problem representations of certain applications a lot of crossover
concepts are available where it is often not clear a priori which of the possi-
ble operators is suited best. Furthermore, it is often also not clear how the
characteristics of operators change with the remaining parameter settings
of the algorithm or how the characteristics of the certain operators change
during the run of the algorithm. So it may easily happen that certain
(maybe more disruptive) operators perform quite well at the beginning
of evolution whereas other crossover strategies succeed rather in the final
(convergence) phase of the algorithm.
In contrast to conventional GAs, for which the choice of usually one certain
crossover strategy has to be done in the beginning, the ability to use
more crossover and also mutation strategies in parallel is an important
characteristic of OS-based GAs as only the successful reproduction results
take part in the ongoing evolutionary process. It is also an implicit feature
of the extended algorithmic concepts that when using more operators in
parallel only the results of those will succeed which are currently able
to produce successful offspring which changes over time. Even the usage
of operator concepts that are considered evidentially weak for a certain
application can be beneficial as long as these operators are able to produce
successful offspring from time to time [Aff05].

3. Which of the resulting children are “good” recombinations of their parents
chromosomes?
Offspring Selection has been basically designed to answer this question in
a problem independent way. In order to retain generality, these algorithms
have to base the decision if and to which extent a given reproduction result
is able to outperform its own parents by comparing the offspring’s fitness

128 Michael Affenzeller et al.

with the fitness values of its own parent chromosomes. By doing so, we
claim that a resulting child is a good recombination (which is a beneficial
building block mixture) worth being part of the active gene pool if the
child chromosome has been able to surpass the fitness of its own parents
in some way.

4. What makes a child a “good” recombination?
Whereas question 3 motivates the way how the decision may be carried out
whether or not a child is a good recombination of its parent chromosomes,
question 4 intuitively asks why this makes sense. Generally speaking, OS
directs the selection focus after reproduction rather than before reproduc-
tion. In our claim this makes sense, as it is the result of reproduction that
will be part of the gene pool and that has to keep the ongoing process
alive. Even parts of chromosomes with below average fitness may play an
important role for the ongoing evolutionary process, if they can be com-
bined beneficially with another parent chromosome which motivates gen-
der specific parents selection [WA05] as is for example applied in our GP
experiments shown in the practical part of the book [AWWB09]. With
this gender specific selection aspect, which typically selects one parent
randomly and the other one corresponding to some established selection
strategy (proportional, linear-rank, or tournament strategies) or even both
parents randomly, we decrease selection pressure originating from parent
selection and balance this by increasing selection pressure after reproduc-
tion which is adjusted self-adaptively depending on how easy or difficult
it is to achieve advancement.

5. Which parts of the chromosomes of parents of above-average fitness are
really worth being preserved?
Ideally speaking, exactly those parts of the chromosomes of above-average
parents should be transferred to the next generation that make these indi-
viduals above average. What may sound like a tautology at the first view
cannot be guaranteed for a lot of problem representations and correspond-
ing operators. In these situations, OS is able to support the algorithm in
this goal which is essential for the building block assembling machines GAs
and GP.

4 Route Planning

There are many combinatorial optimization problems on which heuristic op-
timization methods have been applied so far. In this section we will take a
closer look at route planning as a representative for combinatorial optimiza-
tion problems. We will also briefly show how other problem situations can be
derived from the classical route planning problems described here.

III Metaheuristic Optimization 129

The traveling salesman problem (TSP) is certainly one of the classical as
well as most frequently analyzed representatives of combinatorial optimiza-
tion problems with a lot of solution methodologies and solution manipulation
operators. The problem is that a person has to visit a number of cities start-
ing from and returning to his home city. The goal is to find a tour where
every city is visited exactly once and where the travel distances become min-
imal. While this is the standard definition of the problem, it may not reveal
the bigger amount of applications that are behind the TSP. For example the
same problem exists in the manufacturing of circuit boards or in laser cutting
where the problem is to find on a metal sheet or circuit board a short path
between all locations where the machine has to perform some action; usually
this is done by moving a tool on the surface. Because of mass production the
machine will eventually return to the same position to start with the next
unit. Optimizing the distances allows the machine to increase production
speed.

A generalization of the TSP is known as the vehicle routing problem
(VRP). In addition to the TSP problem of finding the shortest path, this
generalization adds the problem of splitting the cities between multiple sales-
men. Usually, when talking about the VRP, the terminology changes such
that cities are interpreted as customers and each salesman is interpreted as
a vehicle. Figure 5 exemplarily shows two solutions to a VRP problem. Gen-
erally the VRP describes a whole family of problems which requires the han-
dling of implicit and explicit constraints and which makes it in some ways
harder to solve than the TSP. Additionally, there are not many powerful
problem-specific methods available, so that the problem is mostly dominated
by metaheuristic approaches like tabu search, ant colony optimization and
genetic algorithms. These are considered to be among the most powerful
problem solving methods for the VRP.

Two possible solutions to 600 customer CVRPtw problems. Figure 5

130 Michael Affenzeller et al.

4.1 The Vehicle Routing Problem

In principle, the vehicle routing problem (VRP) consists of finding an optimal
set of routes such that a number of customers are served in a most efficient
way. VRP stands for a group of problem variants with different requirements,
complexity and difficulty. A survey of the VRP is for example given in [Gol84].

Probably the simplest variant is the so called capacitated vehicle routing
problem (CVRP) where customers are demanding a number of goods deliv-
ered to them by a vehicle with limited capacity; typically this demand is
smaller than the capacity of a single vehicle. The sum of all demands on a
route cannot exceed the capacity of the vehicle assigned to this route; the
goal is to find the lowest number of routes servicing the customers in the
shortest possible time. If instead of the capacity the vehicles are limited by
the distance or time they are allowed to travel, the problem becomes known
as the “distance constrained vehicle routing problem” (DVRP), not to con-
fuse with the dynamic VRP which is sometimes also shortened to DVRP.
Distance and capacity restrictions can also be combined to form the “vehicle
routing problem with length constraints” (VRPLC or CVRPLC).

These restrictions form the basic model for a number of additional variants:
If customers have to be visited in a certain time slot, the problem becomes
known as the “vehicle routing problem with time windows” (VRPTW or
CVRPTW). A vehicle now has to visit a customer within a certain time
frame given by a ready time and a due date. It is generally allowed that a
vehicle may arrive before the ready time (in this case it simply waits at the
customer’s place), but it is forbidden to arrive after the due date. However,
some models allow early or late servicing but with some form of additional
cost or penalty. These models are denoted “soft” time window models.

If customers are served from several depots, then the CVRP becomes the
“multiple depots vehicle routing problem” (MDVRP); in this variant each
vehicle starts and returns to the same depot. The problem can be solved by
splitting it into several single depot VRP problems if such a split can be done
effectively. Another variant that is often referred to is the pickup and delivery
VRP (PDVRP) where goods have to be picked up at certain locations and
delivered to other locations during the route. The problem can be modeled as
requiring the pickup phase to be finished before the delivery phase or allowing
to interleave these two phases.

Because in the nature of route planning there are also dynamic events that
occur during the execution of a plan, there are also dynamic VRP variants.
Here a new plan has to be computed very quickly for changing problem sit-
uations such as changing demands, travel times, customers canceling their
orders or new customers creating new orders. Additionally, so called, “dial-
a-ride” VRP variants received a lot of attention. These treat the problem of
inter-customer pick-up and delivery in a very dynamic order situation. Con-

III Metaheuristic Optimization 131

ceptually, such a model can be thought of as combining urban taxi and bus
transportation in that the destinations and routes are completely dynamic,
but in part the way and thus the cost is shared among multiple people heading
for similar directions. They are thus often referred to as “taxibus”; there are
already several cities, e.g. London where such a system has already started
operating. It is possible that these systems would be better able to solve the
mass transportation requirements of the future.

Because the VRP is a problem with lots of use for real-world companies,
many more variants may still exist that are tailored to the needs of a spe-
cific problem situation. In this chapter only the most important, and most
mentioned ones have been described.

Optimization Goals

Due to the number of different variants and the real life relevance in logistics
and industry, several different goals have been identified so far. The most
common goals are the minimization of the travel time on the one hand and the
minimization of the number of vehicles on the other hand. Other possibilities
include to reduce the amount of waiting time at a customer location because
of arrival before the customer is ready to be served, or to balance the workload
most equally among the different vehicles.

There are several possibilities on how to deal with such a number of differ-
ent and possibly conflicting goals. The first is to model the solution quality
with respect to one goal (f1) as a fitness value and introduce a feasibility
level (ai) for the other goals (f2, . . . , fn) which has to be satisfied. This can
be written as

f(x) = f1(x), with f2(x) < a1 ∧ f3(x) < a2 ∧ . . . ∧ fn(x) < an−1

In this way one can search for solutions that minimize the travel time,
but for example require a maximum waiting time at a customer location.
Another possibility is to weigh the different goals and aggregate them into a
single objective value, which can be written as:

f(x) = (f1(x), f2(x), . . . , fn(x)) ∗ (α1, α2, . . . , αn), αi ∈ R

In this way it is possible to search for solutions that are optimal with some
degree to each of the fitness functions. Note that the multiplication here de-
notes the scalar product and the resulting fitness is still just single valued.
The third possibility is to apply multi-objective optimization techniques. In
this case the fitness is actually a vector of values, where each dimension repre-
sents the fitness with respect to one goal. Applying multi-object optimization

132 Michael Affenzeller et al.

allows to optimize solutions with conflicting goals by using a concept known
as Pareto dominance. One solution is said to dominate another solution if it
is better with respect to every optimization goal. In the case when all goals
have to be minimized, this can be written as

x dominates y ⇔ ∀i : fi(x) < fi(y).

Two solutions are called non-dominated if they are each better than the
other in at least one of the goals. Similar to above, for minimization in every
objective, this can be written as

x and y are non-dominated ⇔ ∃i, j : fi(x) < fi(y) ∧ fj(x) > fj(y).

Several different optimization algorithms have been developed that are
able to find a set of non-dominated solutions, known as pareto optimal solu-
tions, from which a human expert could choose the best suited one.

The Link between Routing, Assignment and Scheduling

Routing problems such as the TSP and VRP can easily be transformed to an
assignment problem or a scheduling problem, allowing one to solve different
problem scenarios with relatively little application effort.

If e.g. the TSP is modified such that the locations of the cities, or rather
“points”, become flexible, it can be transformed into an assignment problem,
such as the quadratic assignment problem (QAP). Here the goal is not to find
the optimal route, but to minimize the sum of the weighted distances between
the points, by assigning the points to a set of given locations. Each point is
viewed as having a certain connection strength with other points; the further
apart such strongly connected points lie, the worse the solution. Applications
of the QAP include facility layout problems in service environments such as
hospitals or in a manufacturing scenario, see for example [HK01]. The QAP
itself can again be applied to multiple different problem situations, of different
domains such as for example microarray layout [dCJR06].

If the term “vehicle” in a VRP is relaxed, numerous scheduling problems
can also be modeled as CVRPs or CVRPTWs. An example is the following
one: For a single machine we want to schedule a number of jobs for which
we know the flow time and the time to go from one running job to the next
one. This scheduling problem can be regarded as a VRPTW with a single
depot, a single vehicle, and the customers representing the jobs. The cost of
changing from one job to another is equal to the distance between the two
customers, and the time it takes to perform an action is the service time of
the job.

III Metaheuristic Optimization 133

Heuristic algorithms 4.2

The field of inexact algorithms for the CVRP has been very active, far more
active than that of exact algorithms; a long series of papers has been pub-
lished over the recent years. Heuristic algorithms that build a set of routes
from scratch are typically called route-building heuristics, while an algorithm
that tries to produce an improved solution on the basis of an already available
solution is denoted as route-improving.

The Savings Heuristic

At the beginning of the algorithm, each of the n customers (cities) is con-
sidered to be delivered with an own vehicle. For every pair of two cities
a so-called savings value is calculated; this value specifies the reduction of
costs which is achieved when the two routes are combined. Then the routes
are merged in descending order of their saving values if all constraints are
satisfied. According to [Lap92] the time complexity of the savings heuristic
is given as O(n2 log n).

The Sweep Heuristic

The fundamental idea of the sweep heuristic is to perform a radar-like scan-
ning of the customers and assign them to the current route as they would
appear on a radar screen. If a constraint would be violated a new route is
created. Naturally this heuristic works only well when the problem instance is
geographical, meaning that routes are not overlapping each other too much.
For the CVRPTW however such an overlap is possible quite easily. The time
complexity of sweep heuristics is O(n log n), which is equal to the complexity
of a sorting algorithm.

The Push Forward Insertion Heuristic

The insertion heuristic, which Solomon described first and termed I1 per-
formed best in a number of test cases [Sol87]. It extends the savings heuristic
insofar as it takes into account the prolongation of the arrival time at the
next customer and is thus suitable for the CVRPTW as well. This function

134 Michael Affenzeller et al.

evaluates the difference between scheduling a customer directly and servic-
ing it in an existing route between two customers. Mathematically it can be
described as

I1 (i, u, j) = λt0u − (α1(tiu + tuj − µtij) + α2(bju
− bj)) (3)

where tij denotes the travel time from location i to location j, bj is the
arrival at customer j, bju

is the arrival time when traveling to customer j
over customer u. The parameters are restricted such that λ, µ, α1, α2 ≥ 0 and
α1 + α2 = 1.

Solomon concludes that a hybridization of I1 with a sweep heuristic could
achieve good solutions with a reasonable amount of computation. Such an
approach can be found in [TPS96] where three different properties are taken
into account to select the first customer of each route: distance, due date,
and the polar angle.

Remark on Sequential Route Building Heuristics

The problem of building one route at a time, as is done in the heuristics
described above, is usually that the routes generated in the latter part of
the process are of worse quality because the last unrouted customers tend to
be scattered over the geographic area. Potvin and Rousseau [PR93] tried to
overcome this problem of the insertion heuristic by building several routes
simultaneously where the routes are initialized by using Solomon’s insertion
heuristic. Naturally the difficulty of a parallel route building approach is to
define a priori the number of routes to be built. One thus needs to calculate a
feasible number of routes that is close to the optimum, or alternatively apply
a post processing step where it is tried to merge routes again.

4.3 Metaheuristic Approaches

Genetic Algorithms

Applying genetic algorithms to vehicle routing problems with or without time
constraints is a rather young field of research and therefore, even if a lot of
work has been performed, no widely accepted standard representations or
operators have yet been established. In the following we will in short discuss
some of the more popular or promising proposals.

III Metaheuristic Optimization 135

A two phase approach is described in [TOS94]. There a genetic algorithm
that performs the clustering of customers into routes is combined with a
route construction heuristic to find the shortest path within the clusters.
The genetic algorithm of Potvin and Bengio [PB96] has just one phase and
operates on chromosomes of feasible solutions only. The selection of parent
solutions is stochastic and biased towards the best solutions. Two different
crossovers were created specifically for this problem. However, they rarely
produce valid solutions and the results therefore have to undergo a repair
phase. The reduction of the number of vehicles is performed by two mutation
operators, as well as by a local search phase. A cellular genetic algorithm has
been proposed in [AD04]. It uses an encoding with unique trip delimiters such
that the whole solution representation is syntactically equal to a TSP path
encoding. In addition to mutation there is also a local search phase which is
conducted after every generation.

The application of offspring selectionon the VRP is described in [AWWB09].
It builds upon the representation of Potvin and Bengio, except that good so-
lutions can also be obtained without using a repair method. Naturally using
a repair method eases solving the problem, but offspring selection itself im-
plicitly repairs the genes as only those children are successful that would
not require a repair procedure. The GA with offspring selection scaled very
well on the CVRP problem instances and achieved average solution qualities
within 1% to the best known solution on 75, 100, as well as on 150 customer
problem instances. It has also been shown that it is able to exploit the diver-
sity of a population better and thus increases the chance to converge into a
very good fitness region.

Ant Colony Optimization

Ant colony optimization (ACO) has been applied successfully to the vehi-
cle routing problem as well. It is a very well-suited metaheuristic to solve
the VRP as it basically guides a construction heuristic to create a solution.
For the VRP a lot of work has been devoted to build efficient construction
heuristics, which however lag behind in solution quality. ACO is able to build
on these and improve solution quality further through the use of memory in
the form of a pheromone matrix. MACS-VRPTW [GTA99] is a well-known
variant of an ant colony system (ACS) for the optimization of the CVRPTW.
It uses separate colonies for optimizing the number of vehicles and for op-
timizing the total travel time. At the time it was introduced it was able to
improve the best known solutions for several problem instances.

136 Michael Affenzeller et al.

Tabu Search

Tabu search (TS) is another very successful metaheuristic for solving the
VRP. Numerous approaches have been presented to apply TS on the VRP.
For single-objective approaches the application of TS is straight-forward, for
multi-objective definitions it is necessary to adapt TS to include some kind
of archive. Because the way tabu search is designed, namely as metaheuristic
with several memories to guide, restart or intensify the search, adding such an
archive lies well within the definition of TS. A multi-objective approach is for
example described in [Beh07]. Here a number of parallel TS approaches are
presented ranging from synchronous to asynchronous methods and includ-
ing single trajectory searches as well as cooperative approaches. Especially
the cooperative approach was able to cover more of the pareto front than
those with just a single search trajectory. The asynchronous approach per-
formed fastest, though it did not strictly follow the tabu search idea of best
improvement local search. There a master distributes the solutions to be eval-
uated among several slave nodes and uses an acceptance criterion to decide
whether the search should wait for more results of the current neighborhood
or proceed by choosing a solution and build the next neighborhood. In each
iteration all solutions, even from previous neighborhoods are considered. The
algorithm was applied on several benchmark problems on an Origin 3800 and
used up to 12 processors. The described TS also uses a restart strategy for
diversification of the search when no further improvements can be made for
a number of iterations.

5 Genetic Programming Based
System Identification

5.1 Genetic Programming

In the previous sections we have summarized and discussed foundations, ex-
tensions and applications of genetic algorithms; it has been illustrated how
this kind of algorithms is able to produce high quality results for a variety
of problem classes. Still, a GA is by itself not able to handle one of the
most challenging tasks in computer science, namely getting a computer to
solve problems without programming it explicitly. As Arthur Samuel stated
in 1959 [Sam59], this central task can be formulated in the following way:
H ow can computers be made to do what needs to be done, without being
told exactly how to do it?

III Metaheuristic Optimization 137

In this chapter we give a compact description and discussion of an ex-
tension of the genetic algorithm called genetic programming (GP) . Similar
to GAs, genetic programming works on populations of solution candidates
for a given problem and is based on Darwinian principles of survival of the
fittest (selection), recombination (crossover), and mutation; it is a domain-
independent, biologically inspired method that is able to create computer
programs from a high-level problem statement6.

Research activities in the field of genetic programming started in the 1980s;
still, it took some time until GP was widely received by the computer sci-
ence community. Since the beginning of the 1990s GP has been established
as a human-competitive problem solving method. The main factors for its
widely accepted success in the academic world as well as in industries can be
summarized in the following way [Koz92a]: Virtually all problems in artifi-
cial intelligence, machine learning, adaptive systems, and automated learning
can be recast as a search for computer programs, and genetic programming
provides a way to successfully conduct the search in the space of computer
programs.

Similar to the GA, GP is an evolutionary algorithm inspired by biological
evolution to find computer programs that perform a user-defined computa-
tional task. It is therefore a machine learning technique used to optimize a
population of computer programs according to a fitness landscape determined
by a program’s ability to perform the given task; it is a domain-independent,
biologically inspired method that is able to create computer programs from
a high-level problem statement (with computer programs being here defined
as entities that receive inputs, perform computations, and produce output).

As in the context of any GA-based problem solving process, the repre-
sentation of problem instances and solution candidates is a key issue also in
genetic programming. On the one hand, the representation scheme should en-
able the algorithm to find suitable solutions for the given problem class, but
on the other hand the algorithm should be able to directly manipulate the
coded solution representation. The use of fixed-length strings (of bits, charac-
ters or integers, e.g.) enables the conventional GA to solve a huge amount of
problems and also allows the construction of a solid theoretical foundation,
namely the schema theorem. Still, in the context of GP the most natural
representation for a solution is a hierarchical computer program of variable
size [Koz92a].

So, how can hierarchical computer programs be represented? The repre-
sentation that is most common in literature and is used by Koza ([Koz92a],
[Koz94], [KIAK99], [KKS+03]), Langdon and Poli ([LP02]), and many other
authors is the point-labeled structure tree.

As genetic programming is an extension to the genetic algorithm, GP also
uses two main operators for producing new solution candidates in the search
space, namely crossover and mutation: In the case of genetic programming,

6 Please note that we here in general see computer programs as entities that receive inputs,
perform computations, and produce output.

138 Michael Affenzeller et al.

crossover is seen as the exchange of parts of programs resulting in new pro-
gram structures, and mutation is applied by modifying a randomly chosen
node of the respective structure tree: A sub-tree could be deleted or replaced
by a randomly re-initialized sub-tree, or a function node could for example
change its function type or turn into a terminal node. Of course, numerous
other mutation variants are possible, many of them depending on the problem
and chromosome representation chosen. Figure 6 shows exemplary operations
on structure trees representing formulas in GP.

-

+

X2 X3

4.0

Parent2 +

/

-2.4

log

X12 X7

Parent1

+

X2 X3

+

/

-2.4 X7

Crossover

Child1

+

X2 X3

+

*

-2.4 X7

X3

+

/

-2.4 X7

Mutation

Child2

Child3

Figure 6 Exemplary operations on structure trees representing formulas in GP:
The crossover of programs Parent1 and Parent2 can for example lead to
Child1; this model could by mutated be transformed to Child2 or Child3.

Figure 7 illustrates the main components of the GP process as also given
for example in [LP02]; please note that this chart shows an enhanced version
of the GP cycle also including offspring selection as described in Section 3.4.

We are not going to say much about non tree-based GP systems in this
section; still, the reader could be prone to suspect that there might be com-
puter program representations other than the tree-based approach. In fact,
there are two other forms of GP that shall be mentioned here whose program
encoding differs significantly from the approach described before: Linear and
graphical genetic programming. Explanations and examples can be for exam-
ple found in [LP02] and [Pol99].

Of course there is a lot of GP-related information available on the Internet
including theoretical background and practical applications, course slides and
source code. Probably the most comprehensive overview of publications in GP
is the GP bibliography maintained by Langdon, Gustafson, and Koza (which
is available at http://www.cs.bham.ac.uk/∼wbl/biblio/).

III Metaheuristic Optimization 139

Popula�on of
Models (Formulas)

-

x+

xx

*

x *

xx

Selec�on of
Parent Models

-

x+

x *

xx
Genera�on of New

Models (Formulas) by
Crossover, Muta�on, …

Test (Evalua�on)
of Models
(Formulas)

Offspring
Selec�on

The genetic programming cycle including offspring selection. Figure 7

Data Based Modeling and Structure Identification 5.2

In general, data mining is understood as the practice of automatically search-
ing large stores of data for patterns. Nowadays, incredibly large (and quickly
growing) amounts of data are collected in commercial, administrative, and
scientific databases. Several sciences (e.g., molecular biology, genetics, astro-
physics, and many others) produce extreme amounts of information which
are often collected automatically. This is why it is impossible to analyze
and exploit all these data manually; what we need are intelligent computer
systems that can extract useful information (such as general rules or inter-
esting patterns) from large amounts of observations. In short, “data mining
is the non-trivial process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data” [FPSS96].

One of the ways how genetic algorithms and, more precisely, genetic pro-
gramming can be used in data mining is its application in data-based mod-
eling. A given system is to be analyzed and its behavior is to be described
by a mathematical model; the process is therefore (especially in the context
of modeling dynamic physical systems) called system identification. In this
context we use data including a set of variables (features), of which one (or
more) is specified as the target variable(s); target variables are to be de-
scribed using other variables and a mathematical model. Modeling numerical
data consisting of values of a target variable and of one or more independent
variables (also denoted as explanatory variables) is called regression.

In principle, the main goal of regression is to determine the relationship
of a dependent (target) variable t to a set of specified independent (input)
variables x. Thus, what we want to get is a function f that uses x and a set

140 Michael Affenzeller et al.

of coefficients w such that
t = f(x, w) + ǫ (4)

where ǫ represents the error (noise) term.
Applying this procedure we assume that a model can be created with

which it will also be able to predict correct outputs for other data examples
(test samples); from the training data we want to generalize to situations not
known (or allowed to analyze) during the training phase.

When it comes to evaluating a model (i.e., a solution candidate in a GP
based modeling algorithm), the formula has to be evaluated on a certain
set of evaluation (training) data X yielding the estimated values E. These
estimated target values are compared to the original values T , i.e. those
which are known from data retrieval (experiments) or calculated applying
the original formula to X . This comparison is done by calculating the error
between original and calculated target values; there are several ways how to
measure this error, one of the simplest and probably most frequently used
ones is the mean squared error (mse) function.

Accuracy (on training data) is not the only requirement for the result of
the modeling process: Compact and (if possible) minimal models are preferred
as they can be used in other applications easier. One of the major problems
of in data-based modeling is overfitting: It is, of course, not easy to find
that models that ignore unimportant details and capture the behavior of
the system that is analyzed; due to this challenging character of the task of
system identification, modeling has been considered as “an art” [Mor91].

The following two phases in data-based modeling are often distinguished:
Structural identification and parameter optimization.� First, structural identification is hereby seen as the determination of the

structure of the model for the system which is to be analyzed; physical
knowledge, for example, can influence the decision regarding the mathe-
matical structure of the formula. This of course includes the determination
of the functions used, the order of the formula (in the case of polynomial
approaches, e.g.) and, in the case of dynamical models, potential time lags
for the input variables used.� Parameter identification is then the second step: Based on training data,
the parameters of the formula are determined (optimized) which means
that the coefficients and, if used, time lags are fixed.

Using Genetic Programming for data-based modeling has the advantage
that we are able to design an identification process that automatically in-
corporates variables selection, structural identification and parameters opti-
mization in one process.

When applying genetic programming to data-based modeling the function
f , which is searched for, is not of any pre-specified form; low-level functions
are during the GP process combined to more complex formulas. Given a set
of functions f1, . . . , fu, the overall function induced by genetic programming
can take a variety of forms. Usually, standard arithmetical functions such as

III Metaheuristic Optimization 141

addition, subtraction, multiplication, and division are considered, but also
trigonometric, logical, and more complex functions can be included.

Thus, the key feature of this technique is that the object of search is a
symbolic description of a model, not just a set of coefficients in a pre-specified
model. This is in sharp contrast with other methods of regression, including
linear regression, polynomial approaches, or also artificial neural networks,
where a specific structure is assumed and often only the complexity of this
model can be varied.

We have in recent years successfully applied GP-based system identifi-
cation, especially in the context of identifying models for technical, mecha-
tronical systems as well as in the analysis of medical data sets. In the two
following sections we give a compact introduction to these application fields
and some examples; an extensive overview of these application fields, a lot
of application examples and empirical analysis of algorithmic enhancements
of the GP-based system identification process can for example be found in
[Win08].

In particular, enhanced gender specific parents selection [AWWB09] (com-
bining random and proportional selection) has been used in GP very success-
fully, especially in combination with strict offspring selection. This means that
both critical parameters of OS, namely success ratio and comparison factor,
have been set to 1.0 so that only those children that are better than both
parents are selected to become members of the next generation’s population.

Application Example: Time Series Analysis 5.3

Whenever (input or output) data of any kind of system are recorded over
time and compiled in data collections as sequences of data points, these se-
quences are called time series; typically, these data points are recorded at
time intervals which are often, but not always, uniform.

The collection of methods and approaches which are used for trying to
understand the underlying mechanisms that are documented in a time series
is called time series analysis; not only do we want to know what produced
the data, but we are also interested in predicting future values, i.e. we want
to develop models that can be used as predictors for the system at hand.

There is a lot of literature on theory and different approaches to time
series analysis. One of the most famous approaches is the so-called Box-
Jenkins approach, which includes separate model identification, parameter
estimation and model checking steps.

The main principle can be formulated in the following way: For a given tar-
get time series T storing the values T(1), . . . , T(n) and a given set of variables
X1, . . . , XN we search for a model f that describes T as

142 Michael Affenzeller et al.

T(t) = f(X1(t), X1(t−1), . . . , X1(t−tmax),

. . . ,

XN(t), XN(t−1), . . . , XN(t−tmax)) +ǫt

where tmax is the maximum number of past values, and ǫt is an error term.
Of course, the field of applications of time series analysis is huge and

includes for example astronomy, sociology, economics or (as demonstrated
below) the analysis of physical systems. Of course it is not at all natural
that any physical system, may it be technical or not, can be represented by
a simple and easily understandable model.

A lot of research work of members of the Heuristic and Evolutionary Al-
gorithms Laboratory (HEAL) in the area of system identification using GP
was done in cooperation with the Institute for Design and Control of Mecha-
tronical Systems (DesCon) at JKU Linz, Austria. The framework and the
main infrastructure was given by DesCon who maintain a dynamical motor
test bench manufactured by AVL, Graz, Austria; a BMW diesel motor is
installed on this test bench, and a lot of parameters of the ECU (engine con-
trol unit) as well as engine parameters and emissions are measured. During
several years of research on the identification of NOx and soot emissions,
members of DesCon have tried several modeling approaches, some of them
being purely data-based as for example those using artificial neural networks
(ANNs). Due to rather unsatisfactory results obtained using ANNs, the abil-
ity of GP to produce reasonable models was investigated in pilot studies; we
are here once again thankful to Prof. del Re for initiating these studies.

In this context, our goal is to use system identification approaches in order
to create models that are designed to replace or support physical sensors; we
want to have models that can be potentially used instead of these physical
sensors (which can be damageable or simply expensive). This is why we are
here dealing with the design of so-called virtual sensors.

Figure 8 shows a detail of the evaluation of the models produced by GP
and ANN on validation data: As we see clearly, both virtual sensors do not
capture the behavior completely correctly, but the GP model’s fit seems to
be better than the one of the ANN model. A more detailed description of
the algorithms used and a discussion of the obtained results can be found
in [AdRWL05].

A lot of research results in the context of identifying models for diesel
engine emissions have been published in cooperation with the Institute of
Design and Control of Mechatronical Systems, see for example [WAW04],
[dRLF+05], [AdRWL05], [WEA+06] [WAW07b], and [Win08].

III Metaheuristic Optimization 143

0

600 620 640 660 680

o
p

a
city

[%
]

10

20

30

40

50

 me [s]

original

(measurement)

virtual sensor (GP)
virtual sensor (ANN)

Evaluation of models for particulate matter emissions of a diesel engine

(snapshot showing the evaluation of the model on validation/test sam-
ples), as given in [AdRWL05].

Figure 8

Application Example: Solving Classification Problems 5.4

Classification is understood as the act of placing an object into a set of cat-
egories, based on the object’s properties. Objects are classified according to
an (in most cases hierarchical) classification scheme also called taxonomy.
Amongst many other possible applications, examples of taxonomic classifica-
tion are biological classification (the act of categorizing and grouping living
species of organisms), medical classification and security classification (where
it is often necessary to classify objects or persons for deciding whether a prob-
lem might arise from the present situation or not). A statistical classification
algorithm is supposed to take feature representations of objects and map
them to a special, predefined classification label. Such classification algo-
rithms are designed to learn (i.e. to approximate the behavior of) a function
which maps a vector of object features into one of several classes; this is done
by analyzing a set of input-output examples (“training samples”) of the func-
tion. Since statistical classification algorithms are supposed to “learn” such
functions, we are dealing with a specific area of machine learning and, more
generally, artificial intelligence.

In a more formal way, the classification problem can be formulated in the
following way: Let the data consist of a set of samples, each containing k
feature values xi1, . . . , xik and a class value yi. We look for a function f that
maps a sample xi to one of the c classes available:

f : X → C; (5)

∀xi ∈ X : f(xi) = f(xi1, . . . , xik) = zi; zi ∈ {C1, . . . , Cc} (6)

144 Michael Affenzeller et al.

where X denotes the feature vector space, zi the predicted class for a sample
i, and C the set of classes; the better a classification function f is, the more
the original classifications yi and the predicted classifications zi will match
when evaluating f on xi.

There are several approaches which are nowadays used for solving data
mining and, more specifically, classification problems. The most common ones
are decision tree learning, instance-based learning, inductive logic program-
ming (such as for example Prolog) and reinforcement learning.

In recent years we have successfully applied GP to the analysis of medical
data. Concretely, we have used several benchmark data sets from the UCI
machine learning repository7 as well as real world data provided by Prof.
Dr. Michael Binder from the Department of Dermatology at the Medical
University Vienna, Austria. In all these cases a series of features is given
for a set of patients who were potentially suffering from some disease (such
as for example a heart disease, skin cancer or hypo- or hyperthyroidism);
for all patients the final diagnosis is also given, so that for all patients the
classification information (classifying each patient as diseased or healthy)
was available. Thus, the main goal here is to identify models that are able
to formulate the relationship between measured features of the patients and
the eventual medical diagnosis as mathematical equations; such an equation
can then be used for example as a diagnosis support model or for explaining
the relationship between easily measurable health parameters and diseases.

Estimated
Classifi-
cations

(Estimated
Test

Values)

Optimal

Thresholds

Training Samples Test

Samples

3

2

Original
Classifi-
cations
(Target
Values);

Estimated
Classifi-
cations

(Estimated
Training
Values)

1

0 7200
Samples

Figure 9 Graphical representation of the best result we obtained for the Thyroid
data set, CV-partition 9: Comparison of original and estimated class
values.

7 http://www.ics.uci.edu/~mlearn/

III Metaheuristic Optimization 145

Extensive discussions of empirical test in the context of medical data anal-
ysis using GP have been published in [WAW06], [WAW07a], and [Win08], e.g.
In these articles we have also compared the results obtained using enhanced
GP techniques to those produced by other classification approaches (as for
example k-nearest-neighbors, artificial neural networks or support vector ma-
chines as described in Section 4.2) as well as standard GP implementations.

Graphical analysis can often help analyzing results achieved to any kind of
problem; this is of course also the case in machine learning and in data-based
classification. The most common and also simplest way how to illustrate
classification results is to plot the target values and the estimated values
into one chart; Figure 9 shows a graphical representation of the best result
obtained for the Thyroid data set (taken from the UCI repository), cross-
validation set 9.

Analysis of Population Dynamics in
Genetic Programming

5.5

Of course, any modification of the standard GP procedure can have severe
effects on internal genetic processes and population dynamics in GP; espe-
cially the use of strict offspring selection influences the GP process signifi-
cantly. This is why we have used several approaches to describe and analyze
GP population dynamics as for example the following ones:� We have analyzed genetic propagation in GP in order to find out which

individuals of the population are more or less able to pass on their ge-
netic material to the next generation. On the one hand, better individuals
(providing better genetic material) are supposed to pass on their genetic
make-up more than other individuals; still, of course for the sake of genetic
diversity also solutions that are not that good should also be able to con-
tribute to the genetic process. In [WAW08a] and [Win08] we have summa-
rized empirical studies using several data sets for analyzing the differences
in GP population dynamics of different variants of genetic programming.� When analyzing genetic diversity in GP we systematically compare the
structural components of solutions in a GP population and so calculate
how similar the individuals are to each other. Of course, on the one hand
the GP optimization process is supposed to converge so that eventually all
solutions will be more or less similar to each other, but on the other hand
the genetic diversity should be maintained as long as possible (or neces-
sary) in order to keep the genetic process active. In [WAW07c], [WAW08b]
and [Win08] we have explained methods how to measure structural sim-
ilarities in models, and we have also analyzed the respective differences
discovered in various variants of genetic programming.

146 Michael Affenzeller et al.

5.6 Data Mining and Genetic Programming

Data mining is one necessary step in the process of knowledge discovery.
Other equally important steps include the preparation of data for the min-
ing process and interpretation of generated models, see [FPSS96], [HMS01].
The goal of the process is to gain new knowledge about an observed system
which can be utilized to improve aspects of the system for instance to gain a
competitive advantage.

The power of the hypothesis space of GP and the white-box nature of mod-
els generated by GP make GP an interesting algorithm for data mining tasks.
In the previous sections we gave a short description of typical data mining
tasks where GP can be applied successfully. The conventional approach of
data-based modelling with GP, however, has a few drawbacks. Compared to
other well known data mining algorithms like CART, C4.5 or SVM, genetic
programming is relatively time-consuming. This is not a serious issue if only
a few GP runs are necessary, but usually many repetitions are necessary, be-
cause multiple genetic programming runs with identical parameter settings
generate a diverse set of structurally different models with similar predictive
accuracy. One cause for this is the vast and often unrestricted hypothesis
space which allows infinitely many equivalent model representations. Also,
GP is a heuristic method and has no mechanism to select the simplest or
most compact model.

Figure 10 The conventional way of data-based modelling with GP (left side) has
the drawback of a long feedback loop. The CEDMA approach allows
interactive exploration and analysis of models created by GP agents that
continuously analyze the data set and store new models in a central model
store.

For these reasons it is difficult to extract knowledge out of GP results.
The knowledge gained from these experiments is often limited to an insight
into which variables play an important role in models for the target variable.

III Metaheuristic Optimization 147

While this insight is often valuable in itself, statistical methods can also
provide this insight with less effort. One important feature of GP namely its
ability to find a fitting model structure while at the same time optimizing
the model parameters cannot be utilized to its full extent.

An extension of the conventional approach that we call cooperative evolu-
tionary data mining agents (CEDMA) can alleviate this problem and make
it easier to gain new knowledge about an observed system. In this approach,
multiple independent GP processes generate a large number of models for
each possible target variable as well as for all input variables. It is useful to
search for predictive models for input variables as well, because, if the final
model should not include one particular input variable, it can be easily re-
placed with an appropriate model. The GP runs are parallelized globally to
alleviate the problem of time consumption. Figure 10 shows the differences
between the conventional approach and the extended CEDMA approach.

The user can explore the set of identified models and compare and ana-
lyze different models for the data set via a graphical user interface that
visualizes quality and complexity attributes of specific models in an in-
tuitive way.

Figure 11

The CEDMA approach generates a large number of models, however, only
a few of them are actually interesting for the user, while most models rep-
resent trivial or already known relationships. Therefore, it is necessary to
have a user-interface that makes it easy to explore this large set of models.
We implemented a graphical user interface that visualizes multiple attributes
like the complexity and prognostic quality of all models. Figure 11 shows two

148 Michael Affenzeller et al.

screen shots of this model exploration front end. The visualization makes it
easy to analyze and compare different models. The user can find interesting
models and learn about hidden relationships in an intuitive and interactive
manner. The quality of any model can be inspected visually through line
charts of the estimated and of the original value of the target variable, and
through scatter plots showing the correlations of estimated vs. original val-
ues. In this way the user can build up knowledge step by step while drilling
down into the details of the identified models. Another benefit of the front
end is that the user can start to analyze results while the GP processes are
still searching for new models and refining existing models.

In a further step this front end will be extended to make it possible to
compose new models via abstraction and combination of other models.

6 Conclusion and Future Perspectives

In this chapter we have discussed basic principles as well as algorithmic im-
provements and applications of metaheuristics, with a decisive focus on ge-
netic algorithms (GAs) and genetic programming (GP).

New problem independent theoretical concepts have been described and
successfully applied to combinatorial optimization problems as well as struc-
ture identification in time series analysis and classification. In particular, we
have presented enhanced concepts for GAs which enable a self-adaptive in-
terplay of selection and solution manipulation operators. Thereby we delay
the disappearance and facilitate the combination of alleles from the gene
pool that represent solution properties of highly fit individuals (introduced
as relevant genetic information).

Moreover, we proposed future research on fitness landscape characteristics
and the detection of robust parameter settings for a wide range of prob-
lems. The latter is particularly relevant to encourage interdisciplinary use
of metaheuristics. The cumbersome search for good parameter settings for
each application or problem instance has so far posed a barrier for the broad
and successful application of metaheuristics by users who have no solid back-
ground in computer science, as for example biologists, chemists, economists,
or medical scientists.

Regarding algorithm development, we have observed two extremes: On
the one hand, experts in metaheuristics tend to over-engineer and fine-tune
metaheuristics for specific benchmark problems that are not representative
for real-life applications; on the other hand, users who focus on a specific
problem domain frequently lack the necessary programming skills to cus-
tomize and extend standard algorithms and therefore cannot profit from the
multitude of algorithmic improvements which have been introduced since the

III Metaheuristic Optimization 149

standard books about genetic algorithms published in the late eighties and
early nineties.

In order to close this gap between research and application, we believe that
a successive transfer of competence in algorithm development from heuristic
optimization experts to users working on real-world applications is necessary.
In HeuristicLab, all relevant parts of an algorithm (as for example population
initialization, crossover, generational replacement, or offspring selection) can
be easily rearranged or replaced via a graphical user interface. Researchers
working in other domains will thus no longer have to use metaheuristics
as black box techniques (which is frequently the case nowadays), but can
use them as algorithms which can be modified and easily tuned to specific
problem situations.

These results point the way forward and call for renewed endeavor and
scientific curiosity. We will continue to conduct both, fundamental and ap-
plied research, in the rapidly growing discipline of metaheuristics, working
together with companies in the pursuit of common scientific and economic
goals.

Acknowledgements

The research described in this chapter has been performed in the frame of
the following research projects of the Heuristic and Evolutionary Algorithms
Laboratory (HEAL) in Hagenberg funded by the Austrian Research Promo-
tion Agency (FFG), the Austrian Science Fund (FWF), the Upper Austrian
Mechatronics Cluster (MC-cluster) as well as the regional government of Up-
per Austria (UA):� GP based techniques for the design of virtual sensors (FWF)� Cooperative Evolutionary Data Mining (UA)� Production Planning Optimization (MC-cluster)� Intelligent Production Steering (MC-cluster)� Heuristic production fine planning in complex volatile systems (FFG)

Since October 2008 the research activities of the Heuristic and Evolu-
tionary Algorithms Laboratory (HEAL) are consolidated in the Josef Ressel-
Centre for Heuristic optimization (Heureka!)8, which is one of the first three
Josef-Ressel centres funded by the Austrian Research Promotion Agency
(FFG).

8 http://heureka.heuristiclab.com/

150 Michael Affenzeller et al.

References

[AD04] E. Alba and B. Dorronsoro. Solving the vehicle routing problem by using cel-
lular genetic algorithms. In J. Gottlieb and G. R. Raidl, editors, Evolutionary
Computation in Combinatorial Optimization, volume 3004 of Lecture Notes
in Computer Science, pages 11–20, Coimbra, Portugal, 2004. Springer.

[AdRWL05] D. Alberer, L. del Re, S. Winkler, and P. Langthaler. Virtual sensor design of
particulate and nitric oxide emissions in a DI diesel engine. In Proceedings of
the 7th International Conference on Engines for Automobile ICE 2005, 2005.
Document Number: 2005-24-063.

[AEOP02] Ravindra K. Ahuja, Özlem Ergun, James B. Orlin, and Abraham P. Punnen.
A survey of very large-scale neighborhood search techniques. Discrete Applied
Mathematics, 123(1-3):75–102, 2002.

[Aff03] M. Affenzeller. New Hybrid Variants of Genetic Algorithms: Theoretical and
Practical Aspects. Schriften der Johannes Kepler Universität Linz. Univer-
sitätsverlag Rudolf Trauner, 2003.

[Aff05] M. Affenzeller. Population Genetics and Evolutionary Computation: Theo-
retical and Practical Aspects. Trauner Verlag, 2005.

[Alb05] E. Alba. Parallel Metaheuristics: A New Class of Algorithms. Wiley Inter-

science, 2005.
[AW05] M. Affenzeller and S. Wagner. Offspring selection: A new self-adaptive selec-

tion scheme for genetic algorithms. In B. Ribeiro, R. F. Albrecht, A. Dobnikar,
D. W. Pearson, and N. C. Steele, editors, Adaptive and Natural Computing
Algorithms, Springer Computer Science, pages 218–221. Springer, 2005.

[AWW07] M. Affenzeller, S. Wagner, and S. Winkler. Self-adaptive population size
adjustment for genetic algorithms. In Alexis Quesada-Arencibia, José Car-
los Rodŕıguez, Roberto Moreno-Diaz jr., and Roberto Moreno-Diaz, editors,
Proceedings of Computer Aided Systems Theory: EuroCAST 2007, Lecture
Notes in Computer Science, pages 820–828. Springer, 2007.

[AWWB09] M. Affenzeller, S. Winkler, S. Wagner, and A. Beham. Genetic Algorithms
and Genetic Programming Modern Concepts and Practical Applications. CRC
Press, 2009.

[Beh07] Andreas Beham. Parallel tabu search and the multiobjective vehicle routing
problem with time windows. In Proceedings of the 21st IEEE International
Parallel & Distributed Processing Symposium (IPDPS07), 2007.

[BFM97] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary
Computation. Taylor and Francis, 1997.

[BRA05] Christian Blum, Andrea Roli, and Enrique Alba. An introduction to meta-
heuristic techniques. In E. Alba, editor, Parallel Metaheuristics: A New Class
of Algorithms, Wiley Series on Parallel and Distributed Computing, chapter 1,
pages 3–42. Wiley, 2005.

[BT94] Roberto Battiti and Giampietro Tecchiolli. The Reactive Tabu Search. ORSA
Journal on Computing, 6(2):126–140, 1994.

[BWA04] Roland Braune, Stefan Wagner, and Michael Affenzeller. Applying genetic
algorithms to the optimization of production planning in a real-world manu-
facturing environment. In R. Trappl, editor, Cybernetics and Systems 2004,
volume 1, pages 41–46. Austrian Society for Cybernetic Studies, 2004.

[Bäc96] Thomas Bäck. Evolutionary Algorithms in Theory and Practice. Oxford
University Press, 1996.

[Cav75] D. Cavicchio. Adaptive Search Using Simulated Evolution. PhD thesis, Uni-
versity of Michigan, 1975.

[Dar98] Charles Darwin. The Origin of Species. Wordsworth Classics of World Liter-
ature. Wordsworth Editions, 1998.

References 151

[dCJR06] S.A. de Carvalho Jr. and S. Rahmann. Microarray layout as a quadratic as-
signment problem. In D. Hudson et al., editor, Proceedings of the German
Conference on Bioinformatics (GCB), volume P-83 of Lecture Notes in In-
formatics, pages 11–20. Gesellschaft für Informatik, 2006.

[dCT02] Leandro N. de Castro and Jonathan Timmis. Artificial Immune Systems: A
New Computational Intelligence Approach. Springer, 2002.

[DeJ75] K. A. DeJong. An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, University of Michigan, 1975.

[DeJ06] Kenneth A. DeJong. Evolutionary Computation: A Unified Approach. Brad-
ford Books. MIT Press, 2006.

[DGG+07] Karl F. Doerner, Michel Gendreau, Peter Greistorfer, Walter Gutjahr,

Richard F. Hartl, and Marc Reimann, editors. Metaheuristics: Progress in
Complex Systems Optimization. Operations Research/Computer Science In-
terfaces Series. Springer, 2007.

[DLJD00] D. Dumitrescu, B. Lazzerini, L. C. Jain, and A. Dumitrescu. Evolutionary
Computation. The CRC Press International Series on Computational Intelli-
gence. CRC Press, 2000.

[dRLF+05] L. del Re, P. Langthaler, C. Furtmüller, S. Winkler, and M. Affenzeller. NOx

virtual sensor based on structure identification and global optimization. In
Proceedings of the SAE World Congress 2005, 2005. Document Number:
2005-01-0050.

[DS03] Irina Dumitrescu and Thomas Stützle. Combinations of local search and ex-
act algorithms. In G. Raidl, S. Cagnoni, J. J. R. Cardalda, D. W. Corne,
J. Gottlieb, A. Guillot, E. Hart, C. G. Johnson, E. Marchiori, J.-A. Meyer,
and M. Middendorf, editors, Applications of Evolutionary Computing, volume
2611 of Lecture Notes in Computer Science, pages 211–223. Springer, 2003.

[DS04] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. MIT Press,
2004.

[ESK01] Russel C. Eberhardt, Yuhui Shi, and James Kennedy. Swarm Intelligence.
The Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann, 1
edition, 2001.

[Fog94] D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE
Transactions on Neural Networks, 5(1):3–14, 1994.

[Fog06] David B. Fogel. Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. IEEE Press Series on Computational Intelligence. IEEE
Press, 3rd edition, 2006.

[FOW66] Lawrence J. Fogel, Alvin J. Owens, and Michael J. Walsh. Artificial Intelli-
gence through Simulated Evolution. Wiley, 1966.

[FPSS96] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to
knowledge discovery: An overview. Advances in Knowledge Discovery and
Data Mining, 1996.

[FR95] Thomas A. Feo and Mauricio G. C. Resende. Greedy randomized adaptive
search procedures. Journal of Global Optimization, 6:109–133, 1995.

[Gao03] Y. Gao. Population size and sampling complexity in genetic algorithms.
In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO) 2003, 2003.

[GLM00] F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and path
relinking. Control and Cybernetics, 39:653–684, 2000.

[GLM03a] Fred Glover, Manuel Laguna, and Rafael Mart́ı. Scatter search. In A. Ghosh
and S. Tsutsui, editors, Advances in Evolutionary Computing - Theory and
Applications, Natural Computing Series. Springer, 2003.

[GLM03b] Fred Glover, Manuel Laguna, and Rafael Mart́ı. Scatter search and path relink-
ing: Advances and applications. In Fred Glover and Gary A. Kochenberger,
editors, Handbook of Metaheuristics, volume 57 of International Series in

152 Michael Affenzeller et al.

Operations Research & Management Science, chapter 1, pages 1–35. Kluwer,
2003.

[Glo86] F. Glover. Future paths for integer programming and links to artificial intel-
ligence. Computers & Operations Research, 13:533–549, 1986.

[Glo90] Fred Glover. Tabu search – part II. ORSA Journal on Computing, 2(1):4–32,
1990.

[Glo97] F. Glover. Tabu Search and Adaptive Memory Programming – Advances,
Applications, and Challenges. In R. S. Barr, R. V. Helgason, and J. L. Ken-
nington, editors, Advances in Metaheuristics, Optimization and Stochastic
Modeling Technologies, volume 7 of Interfaces in Computer Science and Op-
erations Research, pages 1–75. Springer, Boston, 1997.

[Glo99] Fred Glover. Scatter search and path relinking. In D. Corne, M. Dorigo,
F. Glover, D. Dasgupta, P. Moscato, R. Poli, and K. V. Price, editors, New
Ideas in Optimization, Advanced Topics in Computer Science, pages 297–316.
McGraw-Hill, 1999.

[Gol84] B. L. Golden. Introduction to and recent advances in vehicle routing methods.
Transportation Planning Models, pages 383–418, 1984.

[Gol89] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison Wesley Longman, 1989.

[GT60] B. Giffler and G. L. Thompson. Algorithms for solving production-scheduling
problems. Operations Research, 8(4):487–503, 1960.

[GTA99] Luca Maria Gambardella, Ric Taillard, and Giovanni Agazzi. Macs-vrptw: A
multiple ant colony system for vehicle routing problems with time windows.
In New Ideas in Optimization, pages 63–76. McGraw-Hill, 1999.

[HK00] Alain Hertz and Daniel Kobler. A framework for the description of evolution-

ary algorithms. European Journal of Operational Research, 126:1–12, 2000.
[HK01] Peter M. Hahn and Jakob Krarup. A hospital facility layout problem finally

solved. Journal of Intelligent Manufacturing, 12:487–496, 2001.
[HM01] P. Hansen and N. Mladenović. Variable Neighborhood Search: Principles and

Applications. European Journal of Operational Research, 130:449–467, 2001.
[HMS01] David J. Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data

Mining (Adaptive Computation and Machine Learning). The MIT Press,
August 2001.

[Hol75a] J. H. Holland. Adaption in Natural and Artifical Systems. University of
Michigan Press, 1975.

[Hol75b] J.H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, Michigan, USA, 1975.

[KGV83] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598):671–680, 1983.

[KIAK99] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane. Genetic Pro-
gramming III: Darvinian Invention and Problem Solving. Morgan Kaufmann
Publishers, 1999.

[KKS+03] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and G. Lanza.
Genetic Programming IV: Routine Human-Competitive Machine Learning.
Kluwer Academic Publishers, 2003.

[Koz92a] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. The MIT Press, 1992.

[Koz92b] John R. Koza. The genetic programming paradigm: Genetically breeding
populations of computer programs to solve problems. In Branko Soucek and
the IRIS Group, editors, Dynamic, Genetic, and Chaotic Programming, pages
203–321. John Wiley, New York, 1992.

[Koz94] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. The MIT Press, 1994.

[KPP04] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems.
Springer, 2004.

References 153

[Lap92] G. Laporte. The vehicle routing problem: An overview of exact and approx-
imate algorithms. European Journal of Operational Research, 59:345–358,
1992.

[LGX97] Y. Leung, Y. Gao, and Z. B. Xu. Degree of population diversity - a perspective
on premature convergence in genetic algorithms and its markov chain analysis.
IEEE Transactions on Neural Networks, 8(5):1165–1176, 1997.

[LK73] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations Research, 21:498–516, 1973.

[LM86] M. Lundy and A. Mees. Convergence of an annealing algorithm. Mathematical
Programming, 34(1):111–124, 1986.

[LMS03] Helena R. Lourenço, Olivier C. Martin, and Thomas Stützle. Iterated lo-

cal search. In Fred Glover and Gary A. Kochenberger, editors, Handbook of
Metaheuristics, volume 57 of International Series in Operations Research &
Management Science, chapter 11, pages 321–353. Kluwer, 2003.

[LP02] W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer
Verlag, Berlin Heidelberg New York, 2002.

[MC03] Pablo Moscato and Carlos Cotta. A gentle introduction to memetic algo-
rithms. In Fred Glover and Gary A. Kochenberger, editors, Handbook of
Metaheuristics, volume 57 of International Series in Operations Research &
Management Science, chapter 5, pages 105–144. Kluwer, 2003.

[MF00] Z. Michalewicz and B. Fogel. How to Solve It: Modern Heuristics. Springer,
2000.

[Mic92] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer, 1992.

[Mor91] F. Morrison. The Art of Modeling Dynamic Systems: Forecasting for Chaos,
Randomness, and Determinism. John Wiley & Sons, Inc, 1991.

[Mos99] Pablo Moscato. Memetic algorithms: A short introduction. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, Advanced Top-
ics in Computer Science, pages 219–234. McGraw-Hill, 1999.

[MP96] Heinz Mühlenbein and Gerhard Paaß. From recombination of genes to the
estimation of distributions I. Binary parameters. In H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, editors, Parallel Problem Solving from Na-
ture - PPSN IV, volume 1141 of Lecture Notes in Computer Science, pages
178–187. Springer, 1996.

[MRR+53] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equa-
tion of state calculations by fast computing machines. Journal of Chemical
Physics, 21:1087–1092, 1953.

[NLA+08] Antonio J. Nebro, Francisco Luna, Enrique Alba, Bernabé Dorronsoro, Juan J.
Durillo, and Andreas Beham. AbYSS: Adapting scatter search to multi-
objective optimization. IEEE Transactions on Evolutionary Computation,
12(4):439–457, 2008.

[Osm93] I.H. Osman. Metastrategy simulated annealing and tabu search algorithms for
the vehicle routing problem. Annals of Operations Research, 41(1–4):421–451,
1993.

[PB96] J.-Y. Potvin and S. Bengio. The Vehicle Routing Problem with Time Windows
- Part II: Genetic Search. INFORMS Journal on Computing, 8(2):165–172,
1996.

[Pol99] R. Poli. Parallel distributed genetic programming. In David Corne, Marco
Dorigo, and Fred Glover, editors, New Ideas in Optimization, Advanced Topics
in Computer Science, chapter 27, pages 403–431. McGraw-Hill, Maidenhead,
Berkshire, England, 1999.

[PR93] J. Potvin and J. Rousseau. A parallel route building algorithm for the vehicle
routing and scheduling problem with time windows. European Journal of
Operations Research, 66:331–340, 1993.

154 Michael Affenzeller et al.

[Rai06] Günther R. Raidl. A unified view on hybrid metaheuristics. In Francisco
Almeida, Maria J. Blesa Aguilera, Christian Blum, J. Marcos Moreno-Vega,
Melquiades Perez Perez, Andrea Roli, and Michael Sampels, editors, Proceed-
ings of the Hybrid Metaheuristics Workshop, volume 4030 of Lecture Notes of
Computer Science, pages 1–12. Springer, 2006.

[Rec73] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart,
Germany, 1973.

[Rec94] Ingo Rechenberg. Evolutionsstrategie ’94. Frommann-Holzboog, 1994.
[Rot07] Edward Rothberg. An evolutionary algorithm for polishing mixed integer

programming solutions. INFORMS Journal on Computing, 19(4):534–541,

2007.
[RP08] Günther R. Raidl and Jakob Puchinger. Combining (integer) linear pro-

gramming techniques and metaheuristics for combinatorial optimization. In
C. Blum, M. J. Blesa Aguilera, A. Roli, and M. Sampels, editors, Hybrid Meta-
heuristics - An Emerging Approach to Optimization, volume 114 of Studies
in Computational Intelligence, chapter 2, pages 31–62. Springer, 2008.

[Sam59] A. L. Samuel. Some studies in machine learning using the game of checkers.
In IBM Journal of Research and Development, volume 3, pages 211 – 229,
1959.

[Sch94] H.-P. Schwefel. Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie. Birkhäuser Verlag, Basel, Switzerland, 1994.

[SFP93] R. E. Smith, S. Forrest, and A. S. Perelson. Population diversity in an immune
systems model: Implications for genetic search. In Foundations of Genetic
Algorithms, volume 2, pages 153–166. Morgan Kaufmann Publishers, 1993.

[Sol87] M.M. Solomon. Algorithms for the Vehicle Routing and Scheduling Problem
with Time Window Constraints. Operations Research, 35(2):254–265, 1987.

[SP94] M. Srinivas and L. Patnaik. Adaptive probabilities of crossover and mutation
in genetic algorithms. In IEEE Trans. on Systems, Man, and Cybernetics,
volume 24, pages 656–667, 1994.

[Stü98] Thomas Stützle. Local Search Algorithms for Combinatorial Problems - Anal-
ysis, Algorithms and New Applications. PhD thesis, TU Darmstadt, 1998.

[Tai91] E. Taillard. Robust taboo search for the quadratic assignment problem. Par-
allel computing, 17(4-5):443–455, 1991.

[TOS94] S. Thangiah, I. Osman, and T. Sun. Hybrid genetic algorithm simulated
annealing and tabu search methods for vehicle routing problem with time
windows. Technical report, Computer Science Department, Slippery Rock
University, 1994.

[TPS96] S. R. Thangiah, J.-Y. Potvin, and T. Sun. Heuristic approaches to vehicle
routing with backhauls and time windows. International Journal on Comput-
ers and Operations Research, 23(11):1043–1057, 1996.

[VT99] Christos Voudouris and Edward Tsang. Guided local search and its application
to the traveling salesman problem. European Journal of Operational Research,
113(2):469–499, 1999.

[WA05] S. Wagner and M. Affenzeller. SexualGA: Gender-specific selection for genetic
algorithms. In N. Callaos, W. Lesso, and E. Hansen, editors, Proceedings of
the 9th World Multi-Conference on Systemics, Cybernetics and Informatics
(WMSCI) 2005, volume 4, pages 76–81. International Institute of Informatics
and Systemics, 2005.

[WAW04] S. Winkler, M. Affenzeller, and S. Wagner. New methods for the identification
of nonlinear model structures based upon genetic programming techniques. In
Z. Bubnicki and A. Grzech, editors, Proceedings of the 15thInternational Con-
ference on Systems Science, volume 1, pages 386–393. Oficyna Wydawnicza
Politechniki Wroclawskiej, 2004.

References 155

[WAW06] S. Winkler, M. Affenzeller, and S. Wagner. Using enhanced genetic program-
ming techniques for evolving classifiers in the context of medical diagnosis -
an empirical study. In Proceedings of the GECCO 2006 Workshop on Medi-
cal Applications of Genetic and Evolutionary Computation (MedGEC 2006).
Association for Computing Machinery (ACM), 2006.

[WAW07a] S. Winkler, M. Affenzeller, and S. Wagner. Advanced genetic programming
based machine learning. Journal of Mathematical Modelling and Algorithms,
6(3):455–480, 2007.

[WAW07b] S. Winkler, M. Affenzeller, and S. Wagner. Selection pressure driven slid-
ing window genetic programming. In Alexis Quesada-Arencibia, José Car-
los Rodŕıguez, Roberto Moreno-Diaz jr., and Roberto Moreno-Diaz, editors,

Proceedings of Computer Aided Systems Theory: EuroCAST 2007, Lecture
Notes in Computer Science, pages 272–274. Springer, 2007.

[WAW07c] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Variables diversity
in systems identification based on extended genetic programming. Proceedings
of the 16th International Conference on Systems Science, 2:470–479, 2007.

[WAW08a] S. Winkler, M. Affenzeller, and S. Wagner. Offspring selection and its effects
on genetic propagation in genetic programming based system identification.
In Robert Trappl, editor, Cybernetics and Systems 2008, volume 2, pages
549–554. Austrian Society for Cybernetic Studies, 2008.

[WAW08b] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. On the reliability of
nonlinear modeling using enhanced genetic programming techniques. In Pro-
ceedings of the Chaotic Modeling and Simulation Conference (CHAOS2008),
2008.

[WEA+06] S. Winkler, H. Efendic, M. Affenzeller, L. Del Re, and S. Wagner. On-line
modeling based on genetic programming. International Journal on Intelligent
Systems Technologies and Applications, 2(2/3):255–270, 2006.

[Win08] S. Winkler. Evolutionary System Identification - Modern Concepts and Prac-
tical Applications. PhD thesis, Institute for Formal Models and Verification,
Johannes Kepler University Linz, 2008.

[YA94] Y. Yoshida and N. Adachi. A diploid genetic algorithm for preserving popu-
lation diversity - pseudo-meiosis GA. In Lecture Notes in Computer Science,
volume 866, pages 36–45. Springer, 1994.

[YN97] Takeshi Yamada and Ryohei Nakano. Job shop scheduling. In A. M. Za-
lzala and P. J. Fleming, editors, Genetic Algorithms in Engineering Systems,
volume 55 of Control Engineering Series, chapter 7, pages 134–160. The In-
stitution of Electrical Engineers, 1997.

Chapter IV

Software Engineering – Processes and Tools

Gerhard Weiss, Gustav Pomberger

Wolfgang Beer, Georg Buchgeher, Bernhard Dorninger, Josef Pichler,

Herbert Prähofer, Rudolf Ramler, Fritz Stallinger, Rainer Weinreich

Introduction 1

Software engineering traditionally plays an important role among the differ-
ent research directions located in the Software Park Hagenberg, as it provides
the fundamental concepts, methods and tools for producing reliable and high
quality software. Software engineering as a quite young profession and en-
gineering discipline is not limited to focus on how to create simple software
programs, but in fact introduces a complex and most of the time quite costly
lifecycle of software and derived products. Some efforts have been made to
define software engineering as a profession and to outline the boundaries of
this emerging field of research [PP04, Som04]. Several different definitions of
the term software engineering appeared since its first mentioning on a NATO
Software Engineering Conference1 in 1968. A good example of an early defi-
nition of the term software engineering which is often cited in the literature
is the following:

The practical application of scientific knowledge in the design and construction of
computer programs and the associated documentation required to develop, operate,
and maintain them. [Boe76]

Another generally accepted definition of software engineering was given by
the IEEE Computer Society:

(1) The application of a systematic, disciplined, quantifiable approach to the develop-
ment, operation, and maintenance of software; that is, the application of engineering
to software. (2) The study of approaches as in (1). [IEE90]

1 Proceedings of the famous 1968 and 1969 NATO Software Engineering Workshops are
available at http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html

158 Gerhard Weiss, Gustav Pomberger et al.

In a first, joint effort of a scientific and industrial initiative a commonly
accepted knowledge base had been created with the goal to define the bound-
aries of the modern software engineering profession. This “Software Engineer-
ing Body of Knowledge” (SWEBOK) [ABD+04] introduces the following ten
relevant Knowledge-Areas (KAs):� Software requirements� Software design� Software construction� Software testing� Software maintenance� Software configuration management� Software engineering management� Software engineering process� Software engineering tools and methods� Software quality

In fact, empirical studies show that software products continue to reflect
significantly lower quality than other industrial products and that software
projects fail significantly more often than other projects. This clearly indi-
cates that software production has not yet advanced from a handicraft to
industrial production. As state-of-the art research in the software domain
shows, this raises a very broad spectrum of research issues and themes. Soft-
ware production can not longer be seen as an activity where a single gifted
developer implements an unmated algorithm. Instead, to develop software
products means to follow a clear process composed of a large number of pos-
sibly complex activities which may be spatially and temporally distributed
across multiple development teams. Software continues to grow in size and
complexity, and software is involved in most everyday activities, such as mak-
ing a phone call, making payments and driving a car. An IEEE article titled
“Why software fails” [Cha05] states that a typical mobile phone contains
around two million lines of software code, and according to General Motors
the software used in a car will have 100 million lines of code in 2010. This
article also highlights the fact that failing software and IT projects tend to
seriously hazard the economic activity of companies, as software typically
implements and automates essential business activities. Identified reasons for
this failure are as follows:� Unrealistic or unarticulated project goals� Inaccurate estimates of needed resources� Badly defined system requirements� Poor reporting of the project’s status� Unmanaged risks� Poor communication among customers, developers, and users� Use of immature technology� Inability to handle the project’s complexity

IV Software Engineering – Processes and Tools 159� Sloppy development practices� Poor project management� Stakeholder politics� Commercial pressures

As several of these reasons indicate, a structured and precise defined set of
requirements represents the basis for communication about the development
progress, planned quality or changes within the products features over time.
One of the major responsibilities of a software project manager is to balance
the features and quality of software and the time and costs of development.
Software development projects often fail according to an unbalanced focus
on a specific aspect at the expense of others (e.g., a focus on the number of
demanded software features at the expense of the quality of the software to
be developed). Significant progress has been made over the past decades in
establishing methods and techniques that help to master demands on software
and the software development process. However, as the theory and practice
of software engineering shows, a pressing need remains for improving these
methods and techniques, inventing new ones, and proving their relevance in
an industrial context.

This chapter overviews selected R&D activities conducted in response
to this need at Software Competence Center Hagenberg GmbH (SCCH,
http://www.scch.at) during the previous years. The chapter’s focus is on
four related key topics in software science which are of particular practical
relevance:� the software development process (Section 2)� the quality of software (Section 3)� architectures for software systems (Section 4)� domain-specific languages and modeling (Section 5)

The work described in this chapter has been done in close cooper-
ation with the Institute of Business Informatics – Software Engineering
(Prof. Pomberger) and the Institute of System Software (Prof. Mössenböck)
from Johannes Kepler University (JKU) Linz, which both are long-standing
scientific partners of SCCH, with the intention to bridge the gap between lat-
est scientific know-how in the area of software engineering on the one hand
and software challenges companies are confronted with in their everyday busi-
ness on the other hand.

Software Process Engineering 2

Informally spoken, a software process is the set of activities, methods, and
practices that are used in the production and evolution of software. IEEE de-

160 Gerhard Weiss, Gustav Pomberger et al.

fines a process as “a sequence of steps performed for a given purpose” [IEE90]
and more detailed a software development process as “the process by which
user needs are translated into a software product (. . .)”. For our purposes a
software process can be defined as a set of activities, methods, practices, and
transformations that people use to develop and maintain software and the as-
sociated work products (see [PCCW93]). It is important to note that we use
the term software process intentionally in a broad view referring not only to
an organization’s overall software process, but to any process or sub-process
used by a software project or organization and any identifiable activity that
is undertaken to produce or support a software product or software service.
Besides planning, designing, coding, testing this view thus also includes ac-
tivities like estimating, inspecting, reviewing, measuring, and controlling.

From a business point of view, the processes that software organizations
apply to develop products and services play a critical role in the implemen-
tation of strategies and related plans and objectives. Organizations that are
able to control their processes are able to better predict characteristics of their
products and services as well as costs and schedules and can improve the ef-
fectiveness, efficiency, and—as a consequence—profitability of their business
[FPC97].

From an engineering and scientific point of view, software engineering is
emerging and maturing as an engineering discipline [Sha90, Was96]. Although
it is recognized that due to the great variations among application types
and organizational cultures it is impossible to be prescriptive of the software
process, the concept of software process is seen as one of the pillars of a
foundation for a software engineering discipline (see [Was96]). Software en-
gineering as an engineering discipline also comprises the scientific treatment
of the software engineering process (see e.g. [BD04]) in order to understand
and systematically improve the software engineering process so that software
systems can be built and evolved with high quality, on time and within bud-
get.

Software process management, on the other side, deals with the activi-
ties that are essential for managing the processes associated with developing,
maintaining, and supporting software products in a way, that the produced
products and services adhere to internal and external customer requirements
and that they support the business objectives of the organization producing
them. Key activities identified to be central to software process management
are process definition, process measurement , process control , and process im-
provement [FPC97].

The objectives of software process management are to ensure that defined
processes are followed and performing as expected, and to make improve-
ments to the processes in order to help meeting business objectives. From
an individual’s perspective, the objective of software process management is
to ensure that the processes he/she operates or supervises are predictable,
meet customer needs, and are continually being improved. From the overall

IV Software Engineering – Processes and Tools 161

organizational perspective, the objective is to ensure that the above objective
is fulfilled for every process within the organization (see [FPC97]).

With software becoming more and more important for our daily life at
increasing speed and with faster turnover cycles, in particular the field of
software process improvement as a means to deliver better quality products
and increase efficiency and effectiveness of software development has become
an important part of the software engineering discipline. As a consequence,
the work with software processes has emerged as a field of its own, similarly
to product development, but with the proper software process as the product
that has to be developed, kept up and maintained. As a consequence, it is no
longer appropriate to talk about software process improvement or software
process management, but about software process engineering, indicating that
the same quality models and process improvement and maintenance efforts
applied to software product development should be applied to the proper
software process work and its work products (see [Kin01]). Consequently
the terms software process management and software process engineering are
often used widely synonymously.

SCCH has carried out a series of application-oriented research projects
related to the concepts, models and methods of software process engineering,
namely:� Project HighLight (ongoing): identification of the specific needs of small

and very small enterprises with respect to software process improvement;
development of a lightweight process improvement methodology; applica-
tion of a product line approach to software process modeling.� Project Hephaistos (ongoing): identification of best practices for the inte-
gration of business-driven product lifecycle management and engineering-
focused product development in multi-product and product family con-
texts; current focus on the integration of product management, require-
ments management and architecture management, and change impact
analysis.� Project GDES-Reuse: enhancement of a process reference and process as-
sessment meta-model to integrate the concepts of continuous process ca-
pability and staged organizational reuse maturity; identification of the
relationship of reuse paradigms; development of a process reference model
for reuse and of an organizational reuse maturity model for industrial
engineering; development of methods for reuse assessment and reuse im-
provement measure identification and planning.� Project SISB : development of a methodology for the evaluation of engi-
neering strategies as reference framework for process management; iden-
tification of “strategy objects” for industrial engineering; mapping and
validation of “strategy objects” against best practice process areas.

The remainder of this section shortly provides an overview on relevant con-
cepts related to the field of software process engineering. Based on this, we
present details and results of the above listed projects by identifying se-

162 Gerhard Weiss, Gustav Pomberger et al.

lected research challenges within the field of software process engineering
and demonstrating how the results of the projects contribute to tackling
these challenges.

2.1 Concepts Related to Software Process Engineering

This subsection shortly introduces selected key concepts related to software
process engineering in order to facilitate the understanding of the subse-
quent subsection on software process engineering research challenges. These
key concepts are: levels of models in software process engineering, benefits
and importance of software process engineering, relationship ”process qual-
ity” – “product quality”, best practice software process models and process
model classification, software process capability and maturity frameworks,
and methods for software process evaluation and improvement.

Levels of Models in Software Process Engineering

Figure 1 depicts the four main levels of models involved in software process
engineering and identifies the corresponding software process engineering ac-
tivities associated with model instantiation.

Software Process
Model

Software Process
Meta-model

Software Process

Software Product

Process Modeling

Process Instantiation

Process Execution

Figure 1 Levels of models in software process engineering.

IV Software Engineering – Processes and Tools 163

Software process meta-models define the “conceptual framework for ex-
pressing and composing software process models”[Lon93]. They describe the
relevant software process sub-models, their basic concepts, and their relation-
ships and define the notation and language for expressing software process
models. Software process models are the key result of the process modeling
activity and serve as abstract representations of software processes. They pre-
scribe a software process in terms of the activities to be carried out, the roles
and work product types involved, etc. Software processes on the other side are
the result of a process instantiation for a specific software development en-
deavor. This step often also includes tailoring or customizing of the software
process model to the specific needs and goals of a project. The assignment of
tools or other instruments for supporting the carrying out of activities and
the assignment of resources to roles is typical for this level. The execution of
a specific software process within a specific software development endeavor
finally leads to the creation of the proper software product that in this view
itself is seen as an instantiation of the software process.

Generally, software processes are complex entities comprised of a num-
ber of steps, resources, artifacts, constraints, etc. Depending on the intended
usage, software process models reflect this complexity to a certain degree.
Key motivators for meta-model-based process modeling are process model
reuse, as sharing and composing process models and process model com-
ponents require proper interfaces, and the automation of process execution.
Examples of process meta-models range from simple models that only explain
the basic relationships among activity types and result types (e.g. cascade
model [Chr92]) to fully-fledged meta-models for software and systems engi-
neering claiming to be capable of instantiating any software process model
and method ([Obj08]). [HSSL02] presents a process meta-model and process
model concept for component-based software engineering that incorporate
the concept of process capability assessment (see “Software Process Capabil-
ity and Maturity Frameworks” on page 167) into software process modeling.
Pointers to examples for software process models can be found in “Best Prac-
tice Software Process Models and Process Model Classification” on page 165.

Benefits and Importance of Software Process Engineering

Software process models play an important role in software engineering. They
allow the separation of process aspects from product aspects and provide a
basis for the unification of methods and tools. Further general goals pursued
with the use of software process models encompass the facilitation of the
understanding and communication of the process, the establishment of a basis
for the automation of software engineering activities and the establishment
of a basis for analyzing and improving an organization’s software process (see
e.g. [GJ96]). Moreover, the use of software process models provides a series of

164 Gerhard Weiss, Gustav Pomberger et al.

further, less quantifiable benefits, like better teachability of the process and
easier familiarization of new employees with an organization’s practices and
procedures, increased independence of specific persons and the establishment
of a general basis for professionalism and credibility.

Motivated by the overall goal of enhancing performance, improving an or-
ganization’s software process has become a central topic in software process
engineering. Research shows that improving an organization’s process quality
can lead to substantial gains in productivity, early defect detection, time to
market, and quality, that in total add up to significant returns on the invest-
ment in software process improvement. Further identifiable benefits refer to
improved cost performance, improved estimates and deliveries on schedule,
and increased customer as well as employee satisfaction [HCR+94].

Relationship Process Quality – Product Quality”

Software quality is generally regarded a key to economic success for soft-
ware developing organizations and has been an issue since the early days
of software development. Consequently, a serious of definitions of software
quality from many different viewpoints has emerged. According Garvin five
such major approaches to the definition of quality can be identified, namely:
the transcendent approach of philosophy, the product-based approach of eco-
nomics, the user-based approach of economics, marketing, and operations
management, and the manufacturing-based and the value-based approaches
of operations management [Gar84].

Incorporating these different viewpoints for software engineering, ISO/IEC
9126 [ISO01] and ISO/IEC 25000 [ISO05] provide a quality model for software
that at the top-level decomposes software quality into the aspects of process
quality, product quality, and quality in use (see Figure 2). Product quality,
in this context, is determined by the degree to which the developed software
meets the defined requirements, while quality in use addresses the degree to
which a product is fit for purpose when exposed to a particular context of
use (see Section 3 on “Software Quality Engineering” for more details).

Process quality within this quality model expresses the degree to which
defined processes were followed and completed and assumes that software
processes implement best practices of software engineering within an organi-
zation. The basic assumption that the quality of a software product is largely
influenced by the process used to develop it and that therefore, to improve
the quality of a software product, the quality of the software process needs
to be improved is the underlying principle of a series of software process ca-
pability and maturity frameworks and related methods for software process
evaluation and improvement (see subsections below). It is meanwhile explic-
itly recognized in the international standard on “Software product Qual-
ity Requirements and Evaluation” (SQuaRE) together with the assumption

““

”

IV Software Engineering – Processes and Tools 165

Quality
in use

attributes

External
quality

attributes

Internal
quality

attributes

Process
quality

Software
process

Software
product

Effect of
software product

Contexts
of use

process
measures

quality in use
measures

external
measures

internal
measures

Software quality model according ISO/IEC 25000. Figure 2

that the quality of a software process is the extend to which this process is
explicitly defined, managed, measured and continuously improved [ISO05].
[SDR+02] describes an approach to component based-software engineering,
which explicitly adds process capability information to the quality informa-
tion of software components.

Best Practice Software Process Models and Process
Model Classification

The history and evolution of software process models dates back to the very
beginning of software engineering. While early models suggested a code and
fix cycle, the first major milestone in software process modeling is the wa-
terfall development model [Roy70], that groups activities into major phases
based on the ideal assumption of sequential execution, but does not explicitly
foresee changes or a prototyping oriented development approach. To overcome
these weaknesses the spiral model [Boe88] suggests a cyclical, risk-driven de-
velopment approach, in which - before entering a new cycle - the project risks
are analyzed and appropriate measures taken. More recent examples of in-
dustry driven software process models are iterative and incremental models
like the Rational Unified Process (RUP) [Kru03] or its open source subset
Open Unified Process (OpenUP) [Ope08] that also incorporate principles of
agile development.

Further, standardization plays a major role in software process modeling.
An example of a quasi-standard is the German V-Model, which considers the
development of a software system from the side of the supplier as well as from
the side of the acquirer. It is organized with a focus on work products and
provides work product quality standards and state models and also foresees

166 Gerhard Weiss, Gustav Pomberger et al.

ORGANIZATIONAL Life Cycle
Processes

PRIMARY Life Cycle
Processes

Acquisition Process Group (ACQ)
ACQ.1 Acquisition preparation
ACQ.2 Supplier selection
ACQ.3 Contract agreement
ACQ.4 Supplier monitoring
ACQ.5 Customer acceptance

Supply Process Group (SPL)
SPL.1 Supplier tendering
SPL.2 Product release
SPL.3 Product acceptance support

Engineering Process Group (ENG)
ENG.1 Requirements elicitation
ENG.2 System requirements analysis
ENG.3 System architectural design
ENG.4 Software requirements analysis
ENG.5 Software design
ENG.6 Software construction
ENG.7 Software integration
ENG.8 Software testing
ENG.9 System integration
ENG.10 System testing
ENG.11 Software installation
ENG.12 Software and system maintenance

Management Process Group (MAN)
MAN.1 Organizational alignment
MAN.2 Organizational management
MAN.3 Project management
MAN.4 Quality management
MAN.5 Risk management
MAN.6 Measurement

Operation Process Group (OPE)
OPE.1 Operational use
OPE.2 Customer support

Process Improvement Process Group
(PIM)
PIM.1 Process establishment
PIM.2 Process assessment
PIM.3 Process improvement

Resource and Infrastructure Process
Group (RIN)
RIN.1 Human resource management
RIN.2 Training
RIN.3 Knowledge management
RIN.4 Infrastructure

Reuse Process Group (REU)
REU.1 Asset management
REU.2 Reuse program management
REU.3 Domain engineering

SUPPORTING Life Cycle Processes
Support Process Group (SUP)

SUP.1 Quality assurance SUP.2 Verification
SUP.3 Validation SUP.4 Joint review
SUP.5 Audit SUP.6 Product evaluation
SUP.7 Documentation SUP.8 Configuration management
SUP.9 Problem resolution management SUP.10 Change request management

Figure 3 Software life cycle processes according ISO/IEC 12207.

predefined project execution strategies depending on predefined project types
[V-M06]. At an international level the standard ISO/IEC 12207 [ISO95] on
software life cycle processes provides a best practice software process model
(see Figure 3) that also includes organizational and supporting processes. In
the form presented in AMD1 and AMD2 to the standard this model also
serves as a process reference model for process capability evaluation.

The available software process models vary significantly regarding the level
of detail provided and the project or organizational scope covered by the pro-
cesses defined. Regarding the level of detail, [Hum89] distinguishes between

IV Software Engineering – Processes and Tools 167

universal level models providing general guidelines, principles and policies as
high-level framework, worldly level models providing procedures that imple-
ment policies at working level and practices that guide daily work, and atomic
level models providing detailed refinements like standards, tools, techniques,
etc. that are appropriate for process automation.

A further important distinction of software process models at conceptual
level in the context of software process evaluation and improvement is the
classification into process implementation models, process assessment models,
and process reference models. While process implementation models provide
the necessary details and guidance to be directly instantiated for process ex-
ecution (see Figure 1), process reference models serve for the evaluation of
process capability and benchmarking purposes of the actually implemented
processes and—informally spoken—define the requirements for process im-
plementation models from a best practice perspective. Process assessment
models, finally, break down the requirements of process reference models into
measureable indicators of practices and work products and are used within
a process evaluation.

Software Process Capability and Maturity Frameworks

A promissing means to continuously improve the software development pro-
cess is to regularly evaluate the software process against some kind of best
practice based measurement scale. Also a number of so-called assessment-
based methods for software process improvement and corresponding mea-
surement scales have been developed, there are essentially two types of such
measurement concepts:

Staged models of process maturity: These models define a maturity scale at
organizational level and typically relate each of the levels within the ma-
turity scale to recommended practices necessary for achieving this level.

Continuous models of process capability: These models measure the soft-
ware process at process level along two axes—the process dimension com-
prised of a number of processes subject to measurement and typically
defined in a process reference model, and the generic process capability
dimension (see Table 1) comprised of process attributes and process ca-
pability levels that are applied to characterize each process of the process
dimension.

The Capability Maturity Model (CMM) [Hum95, PCCW93] is a typical
model of the staged type. The approach of continuous process capability
was developed within the SPICE project [Dor93] and has been standard-
ized within the international standard series ISO/IEC 15504 on Information
Technology – Process Assessment [ISO03]. According their underlying meta-
models, staged models typically provide a predefined road map for organi-

168 Gerhard Weiss, Gustav Pomberger et al.

Optimizing Process
Process Innovation Attribute
Process Optimization Attribute

Level 5
PA 5.1
PA 5.2

Predictable Process
Process Measurement Attribute
Process Control Attribute

Level 4
PA 4.1
PA 4.2

Established Process
Process Definition Attribute
Process Deployment Attribute

Level 3
PA 3.1
PA 3.2

Managed Process
Performance Management Attribute
Work Product Management Attribute

Level 2
PA 2.1
PA 2.2

Performed Process
Process Performance Attribute

Level 1
PA 1.1

Optimizing Process
Process Innovation Attribute
Process Optimization Attribute

Level 5
PA 5.1
PA 5.2

Predictable Process
Process Measurement Attribute
Process Control Attribute

Level 4
PA 4.1
PA 4.2

Established Process
Process Definition Attribute
Process Deployment Attribute

Level 3
PA 3.1
PA 3.2

Managed Process
Performance Management Attribute
Work Product Management Attribute

Level 2
PA 2.1
PA 2.2

Performed Process
Process Performance Attribute

Level 1
PA 1.1

Table 1 Process capability levels and attributes according ISO/IEC 15504.

zational improvement by identifying improvement priorities generally true
for most software organizations. Continuous models, on the other hand, do
not prescribe any particular improvement path except the evolution of single
processes, but come up with a customizable process dimension.

Models for Software Process Evaluation and Improvement

Beside the process engineering activities built into software best practice
process models as own processes or activities, two major types of models for
software process evaluation and improvement can be distinguished regarding
the issue of scale of the intended improvement activity [Kin01]:� Software process improvement action life cycle models� Software process improvement program life cycle models.

Software process improvement action life cycle models are primarily meant for
guiding a single improvement action and generally fail to give the necessary
guidelines for a full software process improvement program. As they do not
address improvement program-level issues, they are typically kept relatively
simple. Examples of such models are:� the Plan-Do-Check-Act (PDCA) model [She31]� the Process Improvement Paradigm-cycle [Dio93] (see Figure 4).

IV Software Engineering – Processes and Tools 169

• Document

• Disseminate

• Institutionalize

• Instrument

• Measure

• Analyze

• Adjust
• Confirm

• Automate

Projects

Process stabilization

Pr
oc

es
s

ch
an

ge Process control

Process improvement paradigm cycle. Figure 4

Models of this type are primarily intended for software process staff, pro-
cess owners, and non-process professionals having a role in a software process
improvement action.

Software process improvement program life cycle models on the other side,
put more emphasis on aspects such as initiation, management and coordina-
tion of the overall improvement program and in particular on the coordination
of individual process improvement actions. Examples of such models are:� the IDEAL (Initiating-Diagnosing-Establishing-Acting-Learning) cycle

[McF96] and� the ISO 15504-7 cycle [ISO98] (see Figure 5).

These models are mainly intended for people who have been entrusted the
management of a large scale process initiative. They are important for staging
and managing a successful improvement program and represent a major step
towards an institutionalized software process engineering system.

170 Gerhard Weiss, Gustav Pomberger et al.

Software process
improvement request

Organization’s needs

Initiate
process

improvement

2 Initiate
process

improvement

2

Monitor
performance

8
Monitor

performance

8

Prepare and
conduct process

assessment

3
Prepare and

conduct process
assessment

3
Analyze results
and derive
action plan

4
Analyze results
and derive
action plan

4

Implement
improvements

5
Implement

improvements

5

Confirm
improvements

6
Confirm

improvements

6

Sustain
improvement

gains

7 Sustain
improvement

gains

7Examine
organization‘s

needs

1
Examine

organization‘s
needs

1

Current assessed
capability

Assessment
request

Industrial
benchmarks

Practice descriptions
from assessment

model

Target capability
profiles from capability

determination

Figure 5 ISO/IEC 15504-7 process improvement cycle.

2.2 Software Process Engineering Research Challenges and
Application-oriented Research at SCCH

In this section we present selected challenges within the field of software
process engineering that are tackled by research projects performed at SCCH
together with partner companies. The challenges dealt with are:� Software process improvement for small and very small enterprises� Integration of product engineering and lifecycle management� Integrating process capability and organizational reuse maturity� Alignment of process improvement with strategic goals

Software Process Improvement for Small and Very
Small Enterprises

The project HighLight is an ongoing research project focusing on the specific
needs and requirements of small and medium sized enterprises (SMEs) with
respect to software process improvement. Specific attention is devoted to very
small enterprises as a relevant subset of SMEs.

IV Software Engineering – Processes and Tools 171

SMEs constitute a significant part of the Austrian as well as European
industry. In particular software-oriented SMEs, i.e. either SMEs that develop
software for customers or SMEs for which software developed in-house rep-
resents an essential part of their products or services are confronted with the
need to improve the quality of their products in general and of software in
particular and to react quickly to changing market and customer needs.

From a software engineering perspective such small development compa-
nies have to cope with challenges quite similar to that of large companies,
like the need to manage and improve their software processes, to deal with
rapid technology advances, to maintain their products, to operate in a global
environment, and to sustain their organizations through growth. In the case
of small companies however, different approaches to tackle these challenges
are required because of specific business models and goals, market niche,
size, availability of financial and human resources, process and management
capability, and organizational differences [RvW07].

Over the last twenty years the software engineering community has paid
special interest to the emerging field of software process improvement as a
means to increase software product quality as well as software development
productivity. However, the rise of software process improvement was primar-
ily driven through its successful implementation in large companies and there
is a widespread opinion stressing the point that the success of software pro-
cess improvement is only possible for large companies. Nevertheless, within
the last five years the software engineering community has shown an increas-
ing interest in tackling the software process improvement challenge for small
companies and there is a growing interest of the software engineering com-
munity to adapt the models and methods developed for software process
improvement in the large to the specific needs of SMEs. [PGP08] presents
a systematic review on software process improvement in small and medium
software enterprises through analysis of published case studies. The challenge
to provide systematic support for software process improvement to small and
in particular very small enterprises is meanwhile also subject to international
standardization efforts (see [ISO09]).

The overall goal of HighLight is therefore to research into, improve and
develop innovative concepts, models and methods for the identification and
efficient transfer of software engineering best practices to small and medium
sized software enterprises. The specific goals and pursued results include:� the identification of the specific needs, constraints and expectations of

SMEs with respect to software process and quality improvement;� the investigation into the state of the art in software process and qual-
ity improvement approaches, methods and standards, particularly with
respect to their applicability to SMEs;� the investigation into the reasons for success or failure of software process
and quality improvement initiatives at SMEs and the identification of the
critical success factors for such endeavors;

172 Gerhard Weiss, Gustav Pomberger et al.� the compilation of a comprehensive pool of software engineering best prac-
tices or pointers to those covering the specific contexts of SMEs;� the development of a lightweight software process and product improve-
ment methodology specifically targeted for SMEs and particularly tai-
lorable to their strategic and business needs and project and product con-
texts;� the validation of the developed concepts, models and methods in selected
real-world improvement projects;� the setup of a forum for discussion and exchange for SMEs interested in
software process and quality improvement.

The work within HighLight is explicitly based on and driven by the needs and
constraints of SMEs with respect to software process and quality improve-
ment. The project builds on existing experience and integrates a process,
product and business view on software process and quality management into
a lightweight improvement methodology for SMEs. The project focuses on
identifying selected development phase, paradigm and—where appropriate—
technology-specific software engineering best practices and compiling them
into compact, modular and integrated process reference models particularly
suited for SMEs. The work will also include the development of concepts and
methods for supporting the evolution of an organization’s processes through
changing paradigms and evolving organizational contexts, in particular com-
pany growth and increasing software productization.

As a means to implement such an approach the study of the applicability
of concepts from the software product line area [CN02] to software process
engineering and the creation of a “software process line” for SMEs is envi-
sioned. In such an approach—in analogy to software product features used in
software product line approaches to determine the concrete software product
within a software product line—the characteristics that describe the organi-
zational, project, product and market context of a software organization are
envisioned to determine the software process model out of a software process
model line that is most appropriate for the respective organization. An initial
literature research shows that a similar approach—in a limited scope—has
so far only been applied for the definition of project-specific processes for
hardware/software co-design in an embedded system domain (see [Was06]).

Furthermore, HighLight concentrates on identifying lightweight and effi-
cient methods for transferring the identified best practices into SMEs and will
also seek feedback on and try to empirically validate the developed concepts
and methodologies. HighLight will therefore seek liaison with software devel-
opment projects at SCCH and within SCCH’s partner companies and will
establish links with established communities and institutions in the field of
software process and quality improvement. Particularly SMEs that generally
do not possess any kind of organization development departments will gain
a lightweight, efficient and effective method that supports them in adapt-
ing to high-quality, state-of-the-art, lean and efficient software engineering
processes.

IV Software Engineering – Processes and Tools 173

Integration of Product Engineering and Lifecycle Management

The development of software products today is strongly driven by business
considerations and market forces throughout the whole lifecycle. Traditional
project-focused software development emphasizes distinct project phases and
a functionally separated organization with distinct and specialized roles. As
a consequence, problems emerge from different stakeholder perspectives on
the same underlying product, locally optimized processes, isolated tools, and
redundant, inconsistent and often locally stored product data. In real-world
contexts these problems are additionally increased, as software organizations
often have to manage a number of interrelated and interplaying products
and services or as software is only part of the offered product or service. Key
challenges in the management of software product development are thus to
align the different perspectives to the overall business objectives; to estab-
lish consistent and integrated processes, methods and tools that span the
different groups; to manage the relationship between the development arti-
facts produced by the different groups and processes; and to monitor product
development progress across the whole lifecycle. The ongoing project Hep-
haistos carried out together with two local project partners tackles these
challenges by identifying best practices for the integration of business-driven
product lifecycle management and engineering-focused product development.

In this subsection we report about initial, interim results of Hephaistos
with respect to software process engineering and provide an outlook on fur-
ther research to be carried out in this context. These interim results are:� an identification of key problems related to the integration of product

engineering and lifecycle management,� the identification of solution concepts addressing the identified problems,
and� the development of a conceptual model relating the identified solution
concepts to core software engineering and management activities.

By analyzing the organizational context of one of the partner companies
we identified a number of company-specific problems that were generalized
into key problem areas, that also correspond to and are confirmed through
issues and obstacles observed in many other industrial projects. These key
problem areas related to the integration of product engineering and lifecycle
management are [PRZ09]:� lack of reuse of lifecycle artifacts beyond code, e.g. of requirements, design,� unclear rationale regarding past informal and undocumented decisions,

e.g. regarding requirements or architecture,� intransparent consequences of changes, in particular during software prod-
uct maintenance and enhancement,� imbalance between management oriented lifecycle activities and overem-
phasized core engineering activities,

174 Gerhard Weiss, Gustav Pomberger et al.� heterogeneous tool-infrastructures lacking integration and interoperability
and as a consequence hampering collaboration of roles,� disruption of workflows and processes as a consequence of limited interop-
erability of tools that lead to redundant activities and data and increased
overhead, error-prone work, and inconsistencies,� intransparent status of artifacts and work progress due to heterogeneous
tool landscapes,� inability to reconstruct past states, in particular of non-code lifecycle ar-
tifacts, and� missing integration of product management and project management, in
particular when software products evolve over years and are maintained
and enhanced in a series of ongoing, parallel projects.

Application lifecycle management (ALM) promises to tackle a wide spectrum
of the above challenges and over the last years a large number of ALM solu-
tions have been announced. However, the term is quite new, lacks a common
understanding and is mostly driven by tool vendors in order to emphasize
their move towards integrated tool suites covering the whole application life-
cycle.

In order to help analyze and compare these solutions objectively, we iden-
tified two main goals of ALM by matching the tool vendors’ propositions
with the key problem areas listed above. These goals are:

1. Seamless integration of engineering activities at tool and process level
across the whole lifecycle of an application;

2. Emphasis on management activities to shift the technical perspective of
engineering towards the business perspective of software management.

We then further refined these two main goals into the following solution
concepts for the integration of product engineering and lifecycle management
[PRZ09]:

Traceability: Traceability is defined as “the degree to which a relationship
can be established between two or more products of the development
process, especially products having a predecessor-successor or master-
subordinate relationship to one another” [IEE90].

Version control: Over the lifecycle of an application multiple versions evolve
and require consistent control for managing releases, maintaining defined
states and baselines across different artifacts, as well as allowing reverting
to these defined states.

Measurement: Retrieving information about products, processes and re-
sources as well as their relationships is the basis for establishing trans-
parency, objective evaluation and planning. The role of measurement is
essential for the management of software projects [DeM86] and has to be
expanded to the entire application lifecycle.

Workflow support: Workflows bring together a sequence of operations, re-
sources, roles and information flows to achieve a result. Approaches are

IV Software Engineering – Processes and Tools 175

necessary that provide interoperability of tools and processes to establish
workflows across the entire lifecycle of an application.

Collaboration support: As software development is a team endeavor, con-
cepts and tools for collaboration have found their way into software devel-
opment.

Shared services: In addition to the above solution concepts a number of
further basic services were identified like managing users and access rights,
etc. which are relevant for every activity and tool applied.

The solution concepts identified above have a strong focus on integration in
two directions: firstly, they provide support for the integration of engineer-
ing activities over the whole application lifecycle at tool level as well as at
process level, addressing the first goal; secondly, the same concepts also en-
able the integration of engineering activities with management activities by
establishing the link between the technical and the business perspective, ad-
dressing the second goal. Figure 6 depicts these three dimensions showing the
engineering activities and the management activities according to [BD04] on
the x-axis and the y-axis respectively. The solution concepts identified above
are depicted as third dimension to clearly distinguish them from engineering
and management activities and to highlight their role of tying the different
engineering and management activities together.

The model depicted in Figure 6 by now has been used to support the defi-
nition of a strategy for improving the integration of product engineering and
lifecycle management activities and for process improvement in the analyzed
company. The strategy is subject to implementation, with a current focus on
the integration of product management, requirements management and ar-
chitecture design. Preliminary results confirm the applicability of the model
as guidance for identifying and prioritizing problem areas as well as planning
for a tailored ALM solution.

Integrating Process Capability and Organizational
Reuse Maturity

The goal of the project GDES 2-Reuse that we carried out together with
Siemens Corporate Technology was the development of an assessment-based
methodology for evaluating an industrial engineering organization’s reuse
practices and identifying and exploiting its reuse potential.

While software engineering deals with software only, industrial engineer-
ing has to enable the parallel development of different engineering disciplines,
like mechanical engineering, electrical engineering, and communications and
control system engineering. Industrial engineering projects range from rather

2 Globally Distributed Engineering and Services

176 Gerhard Weiss, Gustav Pomberger et al.

S
of

tw
ar

e
R

eq
ui

re
m

en
ts

Software Engineering Management

Software Process Management

Software Quality Management

S
of

tw
ar

e
D

es
ig

n

S
of

tw
ar

e
T

es
tin

g

S
of

tw
ar

e
C

on
st

ru
ct

io
n

S
of

tw
ar

e
M

ai
nt

en
an

ce

Software Configuration Management

Collaboration

Workflow Support

Measurement

Version Control

Traceability

Shared Services

Concepts (z)

Management (x)

E
ng

in
ee

rin
g

(y
)

Figure 6 Conceptual model for product engineering and lifecycle management in-
tegration.

simple and small projects (e.g. semi-automated assembly line) to large and
highly complex projects (e.g. nuclear power plants). Like software engineer-
ing, industrial engineering today has to cope with increasing demands for
more flexible, more reliable, more productive, faster, and cost optimized plan-
ning and realization of industrial solutions. Simultaneously, industrial engi-
neering has to deal with more demanding customer requirements, increased
complexity of solutions and harder competition in a global market. Increasing
reuse has therefore been identified as one key element for increasing quality
and productivity in industrial engineering (see [LBB+05]). Reuse is one of the
most basic techniques in industrial engineering and pervades all engineering
phases and all engineering artifacts. Although recognized as a fundamental
and indispensable approach, it is hardly systematized and often only applied
in an ad hoc manner. As a consequence the reuse potential in industrial en-
gineering organizations is rarely exploited and in most cases not even known.

On the other side, reuse is well understood in the domain of software en-
gineering (see e.g. [JGJ97, Sam01, MMYA01]) and the distinction between
bottom-up reuse concepts like component-oriented reuse and top-down ap-
proaches like copy-and-modify, reuse of prefabricates (e.g. application frame-
works), the application of platforms, or the system-family or software product

IV Software Engineering – Processes and Tools 177

line approach [CN02] is well established. In the context of industrial engineer-
ing top-down approaches are particularly interesting, as they imply that the
reusing organization has a general understanding of the overall structure of
an engineering solution.

Our core development work for the overall reuse improvement methodology
was preceded by the evaluation of relevant process and product evaluation
approaches and standards and respective models and meta-models as well as
reuse improvement approaches. This resulted in the selection of a process-
centered approach, focusing on the identification of best practices for reuse in
industrial engineering based on an adaption of the meta-model of ISO/IEC
(TR) 15504 for process reference models and process assessment models as
implicitly defined in [ISO03].

The methodology for improvement of reuse in industrial engineering de-
veloped within GDES-Reuse is intended to be applicable to all kinds of or-
ganizations and market segments of industrial engineering and is comprised
of three sub-methodologies that are partly also independently applicable:� a methodology for the evaluation of the actual situation of an engineering

organization with respect to reuse, that allows to assess to what extent the
respective organization fulfills the identified reuse best practices, focused
around three distinct, but interplaying and interrelated models: the process
reference model, the reuse maturity model, the assessment model for reuse
in industrial engineering,� a methodology for potentials analysis that—based on the results of the
evaluation and under consideration of external factors and organizational
goals—supports the identification of an optimal set of reuse practices for
the respective organization, and� a methodology for action planning that—based on the results of the eval-
uation and the potentials analysis—identifies and prioritizes the necessary
measures for introducing or improving reuse.

Table 2 provides an overview of the process reference model. The model defines
the results necessary for successful reuse and organizes these results according
the typical phases of the engineering life cycle which are themselves grouped
into categories. The overall objective is to support the representation of evalu-
ation results and to make them comparable across organizational boundaries.
Further details on the categories and phases can be found in [SPP+06].

The reuse maturity model for industrial engineering defines the results nec-
essary for successful reuse. Based on [PRS00], it organizes these results into
distinct organizational reuse maturity stages that build one upon the other
in order to provide general guidance for the introduction and improvement of
reuse within an engineering organization. The model foresees four maturity
stages that are characterized in Table 3.

The assessment model, finally, breaks down the reuse results into reuse
base practices and input and output artifacts that are used as indicators
during evaluation.

178 Gerhard Weiss, Gustav Pomberger et al.

EWR.1 System Requirements Analysis
EWR.2 Basic Engineering
EWR.3 Detail Engineering:
- EWR.3.1 Detail Eng. - Discipline
- EWR.3.2 Detail Eng. - Integration
EWR.4 Realization and Operational Test
EWR.5 Start of Operation
EWR.6 Maintenance and Servicing

Engineering with Reuse (EWR)

CON.1 Acquisition/Initiation
CON.2 Customer Requirements Analysis
CON.3 Bid Preparation
CON.4 Customer Acceptance

Contracting (CON)

EWR.1 System Requirements Analysis
EWR.2 Basic Engineering
EWR.3 Detail Engineering:
- EWR.3.1 Detail Eng. - Discipline
- EWR.3.2 Detail Eng. - Integration
EWR.4 Realization and Operational Test
EWR.5 Start of Operation
EWR.6 Maintenance and Servicing

Engineering with Reuse (EWR)

CON.1 Acquisition/Initiation
CON.2 Customer Requirements Analysis
CON.3 Bid Preparation
CON.4 Customer Acceptance

Contracting (CON)

OSR.1 Reuse Program Management
OSR.2 Improvement of Reuse
OSR.3 Measurement of Reuse
OSR.4 Asset Management
OSR.5 Quality Assurance
OSR.6 Change Management
OSR.7 Problem Resolution

Organizational Support of Reuse (OSR)

EFR.1 Domain Analysis
EFR.2 Domain Design
EFR.3 Domain Implementation
- EFR.3.1 Domain Impl. - Discipline
- EFR.3.2 Domain Impl. - Integration

Engineering for Reuse (EFR)

OSR.1 Reuse Program Management
OSR.2 Improvement of Reuse
OSR.3 Measurement of Reuse
OSR.4 Asset Management
OSR.5 Quality Assurance
OSR.6 Change Management
OSR.7 Problem Resolution

Organizational Support of Reuse (OSR)

EFR.1 Domain Analysis
EFR.2 Domain Design
EFR.3 Domain Implementation
- EFR.3.1 Domain Impl. - Discipline
- EFR.3.2 Domain Impl. - Integration

Engineering for Reuse (EFR)

Table 2 Structure of the reference model for reuse in industrial engineering.

4 – Strategic: The whole organization is strategically oriented towards reuse.
Reuse is performed systematically and integrated across all phases of the
engineering life cycle. This is reflected in the business strategy and in the
orientation of all business functions towards reuse, including marketing,
sales, acquisition, etc. The portion of reused artifacts is high, as well as the
contribution of reuse to achieving business goals.

3 – Domain-oriented: The domain specific benefits of reuse are exploited.
The business is analyzed and reusable artifacts are defined based on the
analysis of recurring requirements. Reusable artifacts are thus customized to
the business domain. Reuse is supported by organization and processes. An
organization wide infrastructure for reuse is in place and planning,
coordination and controlling of a reuse oriented engineering process is
established. Domain specific reference architectures are typical at this stage.

2 – Systematical: Reuse is pursued systematically. The technical and
organizational measures for structured reuse are in place. Solutions are
designed modular and the reuse of artifacts is supported by in-house
development, purchasing and documentation of artifact usage. Reuse of
artifacts is based on conformance with industry specific standards as well as
definition and compliance with internal standards or interfaces.

1 – Chaotic: Reuse is done ad-hoc only and not systematically. If needed,
artifacts from previous projects are used as starting point for new ones.
Reuse takes place unplanned, uncoordinated, undocumented, informal,
occasional, and local and randomly on a small scale. Form and degree
heavily depend on persons. Its contribution to achieving business goals is
limited.

4 – Strategic: The whole organization is strategically oriented towards reuse.
Reuse is performed systematically and integrated across all phases of the
engineering life cycle. This is reflected in the business strategy and in the
orientation of all business functions towards reuse, including marketing,
sales, acquisition, etc. The portion of reused artifacts is high, as well as the
contribution of reuse to achieving business goals.

3 – Domain-oriented: The domain specific benefits of reuse are exploited.
The business is analyzed and reusable artifacts are defined based on the
analysis of recurring requirements. Reusable artifacts are thus customized to
the business domain. Reuse is supported by organization and processes. An
organization wide infrastructure for reuse is in place and planning,
coordination and controlling of a reuse oriented engineering process is
established. Domain specific reference architectures are typical at this stage.

2 – Systematical: Reuse is pursued systematically. The technical and
organizational measures for structured reuse are in place. Solutions are
designed modular and the reuse of artifacts is supported by in-house
development, purchasing and documentation of artifact usage. Reuse of
artifacts is based on conformance with industry specific standards as well as
definition and compliance with internal standards or interfaces.

1 – Chaotic: Reuse is done ad-hoc only and not systematically. If needed,
artifacts from previous projects are used as starting point for new ones.
Reuse takes place unplanned, uncoordinated, undocumented, informal,
occasional, and local and randomly on a small scale. Form and degree
heavily depend on persons. Its contribution to achieving business goals is
limited.

Table 3 Characteristics of reuse maturity stages.

IV Software Engineering – Processes and Tools 179

The core objective of the potentials analysis methodology is to derive an
optimal reuse-oriented target scenario for the engineering processes within
the assessed organizational unit based on the organizational unit’s business
and organizational goals, evaluation results, and exogenous factors like cus-
tomer or market requirements, available or future technologies, character-
istics of competition, etc. The potentials analysis methodology represents
the link between the evaluation of the current situation regarding reuse and
the method for action planning for improvement of reuse. It serves to iden-
tify highly rewarding and not yet implemented reuse practices for subse-
quent action planning for the implementation of these practices and is rather
strategically and tactically oriented. The identification of improvements for
reuse in industrial engineering is much more complex compared to “tradi-
tional” capability-oriented process improvement. Orthogonal to improving
along the process capability dimension it also involves strategic decisions on
the overall design of the engineering process, the pursued engineering and
reuse paradigms, the desired organizational reuse maturity stages, etc. More
details on the potentials analysis method and the related action planning
method can be found in [SPPV09].

The methodology deliverables briefly described above are based on the es-
tablishment of a conceptual framework through the enhancement of existing
meta-models in order to integrate the concept of organizational reuse matu-
rity with the concept of continuous process capability that itself represents a
significant achievement of the GDES-Reuse project [SPP+06]. All three mod-
els, the process reference model (PRM), the reuse maturity model (RMM),
and the process assessment model (PAM) for reuse in industrial engineering,
capture reuse best practices at different levels of abstraction and organize
and represent them from different points of view (see Figure 7):

The PRM as well as the RMM contain the same set of reuse results in the
sense of ISO/IEC 15504 process outcomes. While the PRM organizes these
reuse results by phases of the engineering life cycle which are themselves
grouped into categories of phases, the RMM organizes these reuse results into
stages of organizational reuse maturity. The PAM on the other hand picks up
the set of reuse results as defined in the PRM and RMM together with the
organization of these reuse results by phases from the PRM and breaks down
these reuse results into reuse base practices and input and output artifacts
as indicators during evaluation. Reuse results represent the core conceptual
element of the GDES-Reuse methodology providing the bridge between the
continuous PRM and the staged RMM and in consequence between the eval-
uation methodology and the methodology for potentials analysis. From a
meta-model point of view the PRM is fully compliant to the requirements of
ISO/IEC 15504 [ISO03] for process reference models. It can be interpreted
as a partial model of the overall engineering life cycle containing and de-
scribing those processes or parts of processes relevant for successful reuse.
Consequently the measurement framework for process capability as defined
in ISO/IEC 15504 can be directly applied to the reuse results of the PRM

180 Gerhard Weiss, Gustav Pomberger et al.

Phase

Purpose

Reuse Purpose

Maturity Stage

Stage Characteristic

Reuse Result

Process Reference Model Reuse Maturity Model

Base Practice

Artifact (I/O)
Assessment Model

Figure 7 Process reference model and reuse maturity model—conceptual frame-
work.

and aggregated towards the phases of the PRM on the one side and towards
the maturity stages of the RMM on the other side.

A major value of the work performed within GDES-Reuse lies in the inte-
gration and systematization of best practices from a series of reuse approaches
in a single model and in the integration of a “staged” reuse maturity model
with a “continuous” process model. The focus of the work was on providing
a best practice framework for the strategic design of engineering processes in
the sense of which paradigm or development approach or combination of those
to use. The approach chosen to resolve this problem is compliant to estab-
lished process assessment and improvement approaches like CMMI [CMM06]
or SPICE [ISO03] but much more focused with respect to modelling depth
and thus rather a complement to those models than a substitution of those.

Furthermore, we regard the project’s results re-transformable and applica-
ble to the domain of software engineering, as the various reuse paradigms and
approaches developed in the field of software engineering represented a start-
ing point for model development. Moreover, the engineering of control and
communication systems, as one of the core industrial engineering disciplines,
typically includes software engineering as a major sub-discipline.

The methodology for the evaluation of an actual reuse situation has so far
been applied in two real world evaluation projects (see [SPV07]).

IV Software Engineering – Processes and Tools 181

Alignment of Processes Improvement with Strategic Goals

Under the umbrella of the project SISB3 together with Siemens Corporate
Technology we carried out research into methods for the evaluation and de-
velopment of engineering strategies for the industrial solutions business. In
this section we highlight results from this research that are relevant for the
area of process engineering. These main results are:� an understanding of the role of engineering strategies in the overall strategy

development context of an organization,� the development of a meta-model for describing engineering strategies,� the identification of the engineering strategy objects relevant for the in-
dustrial solutions business, and� the development of a methodology to support the evaluation and develop-
ment of engineering strategies.

In order to understand strategy development at the engineering level we have
to relate engineering strategies to the overall strategy development efforts in
an organization. Typically a distinction is made between the corporate strat-
egy, various division strategies and various functional strategies [VRM03].
While a corporate strategy deals with determining which market segments
should be addressed with which resources, etc., a division strategy refines
the corporate strategy by addressing the major question how to develop a
long term unique selling proposition compared to the market competitors
and how to develop a unique product or service. Functional strategies on the
other side define the principles for the functional areas of a division in accor-
dance with the division strategy and therefore refine the division strategy in
the distinct functional areas, like marketing, finance, human resources, engi-
neering, or software development. Depending on the size and structure of a
company there might be no explicit distinction between corporate strategies
and division strategies, but nevertheless they are part of the relevant context
for the development of functional strategies.

Figure 8 depicts the conceptual framework (meta-model) developed for the
description of functional strategies. The core elements of such a strategy are
strategic goals, strategy objects and strategic statements. The strategic goals
formulated in the engineering strategy are refinements of strategic goals on
the corporate respectively divisional level, mapped on the functional area.
A strategy object is a topic (e.g. process management) that refines one ore
more strategic goals. As the strategy objects—and therefore also the strate-
gic statements—are targeted towards the functional strategic goals it is also
assured that the divisional or corporate goals are not violated. Although not
necessary on the conceptual level, the grouping of strategy objects facilitates
understanding of strategy objects on a more abstract level and also allows
focusing of the strategy assessment or development process. The approach for

3 Systematic Improvement of the Solutions Business

182 Gerhard Weiss, Gustav Pomberger et al.

grouping strategy objects we finally decided to use, groups strategy objects
simultaneously along three dimensions: strategy key areas like people, process,
products and services, methods and tools; strategy target groups denoting the
typical responsibility for a strategy object, e.g product management, sales,
etc.; and priority.

Strategic
Goal

Strategy
Object

refined by

contributes to

1+
1+

Strategic
Statement

1+

1
described by

Grouping
Dimension

grouped by
3

*

Priority Strategy
Key Area

Strategy
Target Group

Figure 8 Meta-model for describing functional strategies.

Strategy objects in the context of an engineering strategy can be under-
stood as a subject area that needs to be dealt with on a strategic level. In order
to identify the strategy objects relevant for the industrial solutions business,
strategy objects from the software engineering domain were used as a start-
ing point. These were evaluated and adapted for their use in the industrial
solutions business and additional strategy objects were identified. These addi-
tional strategy objects were identified by analyzing existing functional strate-
gies from engineering organizations. Examples of strategy objects include ar-
chitecture management, change management, competence management, do-
main engineering, tool and data integration, process management, quality
management, requirements management, reuse management, and standards
management. The full list of identified strategy objects together with their
definition, identification of typical topics dealt with, examples of strategic
statements and the assignment to the three grouping dimensions is provided
in [PSN08]. Additionally, it has to be noted that a major step during the
strategy development process is to select—and where necessary add—the ap-
propriate strategy objects according to their importance and urgency.

IV Software Engineering – Processes and Tools 183

The general approach of the methodology for the systematic assessment of
existing engineering strategies is to conduct a strategy development process
with an assessment emphasis. The typical strategy development process for
functional engineering strategies is shown in Figure 9, structured into the de-
velopment and prioritization of strategic goals, strategy objects and strategic
statements.

Determination of
General Goals

Determination of
Strategic Goals

Determination of
Strategy Objects

Strategy
Structure

Description of
Strategy Objects

Strategy Review
by Management

Strategy
Tuning

First Strategy
Concept

Second
Strategy Concept

(Reviewed)

Strategy Review
by Staff

Strategy
Tuning

Binding (Final)
Strategy

Determination of
General Goals

Determination of
Strategic Goals

Determination of
Strategy Objects

Strategy
Structure

Description of
Strategy Objects

Strategy Review
by Management

Strategy
Tuning

First Strategy
Concept

Second
Strategy Concept

(Reviewed)

Strategy Review
by Staff

Strategy
Tuning

Binding (Final)
Strategy

Process of engineering strategy development. Figure 9

As the assessment method simulates parts of a strategy development pro-
cess the participation of the management responsible for strategy develop-
ment in a division or company is inevitable. The method itself consists of
four main activities:

Engineering strategy assessment – kickoff: Determination of the strategy
objects relevant for the company or division and identification of infor-
mation sources.

Evaluation of strategy objects: Assignment of existing strategic statements
to the selected strategy objects and assessment of the maturity of each
strategy object and identification of gaps in the engineering strategy.

Consolidation of the evaluation: Adjustment of the assignments of strate-
gic statements as well as of the assessment of the strategy objects together
with the responsible management.

184 Gerhard Weiss, Gustav Pomberger et al.

Finalization and presentation of results: Finalization of the assessment re-
port and management presentation of the results.

The result of this assessment method is a qualitative report indicating the
general maturity of the engineering strategy regarding form and structured-
ness, strategy objects that should have been considered in the engineering
strategy, the completeness and maturity of strategic statements for each im-
portant strategy object, those strategy objects where existing strategic state-
ments are to weak or few with respect to the relevance of the strategy object,
gaps in the engineering strategy in the sense of strategy objects important
for the company or division without coverage by strategic statements.

In order to validate the identified strategy objects regarding completeness
and coverage of relevant organizational processes, the strategy objects have
been mapped against the key process areas of CMMI [CMM06]. As CMMI
is a widespread process improvement maturity model for the development of
products and services that aims at a wide coverage of engineering disciplines,
it was assumed that the process areas described there cover a wide range of
organizational processes. The detailed mapping of strategy objects against
process areas is described in [PSN08].

As in particular the strategy key area “Process” groups all strategy objects
that deal with the management of processes in general, with value chain man-
agement, quality management, etc., this grouping allows a customized view
on strategic objects and strategic statements from the point of view of process
engineering. It thus facilitates capturing and understanding the strategic con-
straints for the process engineering activity as set by the engineering strategy
of an organization.

3 Software Quality Engineering

At about the same rate as software systems have been introduced in our
everyday life, the number of bad news about problems caused by software
failures increased. For example, last year at the opening of Heathrow’s Ter-
minal 5, in March 2008, technical problems with the baggage system caused
23.000 pieces of luggage to be misplaced. Thousands of passengers were left
waiting for their bags. A fifth of the flights had to be cancelled and—due to
theses problems—British Airways lost 16 million pounds. An investigation
revealed that a lack of software testing has to be blamed for the Terminal 5
fiasco (ComputerWeekly.com4, 08 May 2008).

In August 2003 a massive blackout cut off electricity to 50 million peo-
ple in eight US states and Canada. This was the worst outage in North

4 http://www.computerweekly.com/Articles/2008/05/08/230602/lack-of-software-testing-
to-blame-for-terminal-5-fiasco-ba-executive-tells.htm

IV Software Engineering – Processes and Tools 185

American history. USA Today reported: “FirstEnergy, the Ohio energy com-
pany . . . cited faulty computer software as a key factor in cascading problems
that led up to the massive outage.” (USA Today5, 19 Nov 2003).

These and similar reports are only the tip of the iceberg. A study com-
missioned by the National Institute of Standards and Technology found that
software bugs cost the U.S. economy about $59.5 billion per year [Tas02].
The same study indicates that more than a third of these costs (about $22.2
billion) could be eliminated by improving software testing.

The massive economic impact of software quality makes it a foremost con-
cern for any software development endeavor. Software quality is in the focus
of any software project, from the developer’s perspective as much as from
the customer’s. At the same time, the development of concepts, methods,
and tools for engineering software quality involves new demanding challenges
for researchers.

In this chapter we give an overview of research trends and practical impli-
cations in software quality engineering illustrated with examples from past
and present research results achieved at the SCCH. Since its foundation,
SCCH has been active in engineering of high quality software solutions and
in developing concepts, methods, and tools for quality engineering. A num-
ber of contributions have been made to following areas, which are further
elaborated in the subsequent subsections.� Concepts of quality in software engineering and related disciplines.� Economic perspectives of software quality.� Development of tool support for software testing.� Monitoring and predicting software quality.

Concepts and Perspectives in Engineering of
Software Quality

3.1

Definition of Software Quality

Software quality has been an issue since the early days of computer program-
ming [WV02]. Accordingly a large number of definitions of software quality
have emerged. Some of them have been standardized [IEE90]6, but most of
them are perceived imprecise and overly abstract [Voa08]. To some extent,
this perception stems from the different viewpoints of quality inherent in

5 http://www.usatoday.com/tech/news/2003-11-19-blackout-bug x.htm
6 The IEEE Standard 610.12-1990 defines software quality as “(1) The degree to which
a system, component, or process meets specified requirements. (2) The degree to which a
system, component, or process meets customer or user needs or expectations.”

186 Gerhard Weiss, Gustav Pomberger et al.

the diverse definitions. As a consequence, the ISO/IEC Standard 9126:2001
[ISO01] and its successor ISO/IEC Standard 25000:2005 [ISO05] decompose
software quality into process quality, product quality, and quality in use.
The standard recognizes software as product and reflects Garvin’s general
observation about different approaches to define product quality [Gar84].

Process quality: Software processes implement best practices of software
engineering in an organizational context. Process quality expresses the
degree to which defined processes were followed and completed.

Product quality: Software products are the output of software processes.
Product quality is determined by the degree to which the developed soft-
ware meets the defined requirements.

Quality in use: A product that perfectly matches defined requirements does
not guarantee to be useful in the hands of a user when the implemented
requirements do not reflect the intended use. Quality in use addresses the
degree to which a product is fit for purpose when exposed to a particular
context of use.

Quality Models

Measurable elements of software quality, i.e. quality characteristics, have to be
defined in order to assess the quality of a software product and to set quality
objectives. A series of attempts to define attributes of software products by
which quality can be systematically described (see [Mil02]) has been combined
in the ISO/IEC standards 9126:2001 [ISO01] and 25000:2005 [ISO05] respec-
tively. The standards provides a quality model with six quality characteris-
tics, namely functionality, reliability, usability, efficiency, maintainability and
portability, which are further refined in sub-characteristics (see Figure 10).

Bugs, i.e. defects, indicate the deviation of the actual quantity of a quality
characteristic from the expected quantity. Defects are often associated with
deviations in the behavior of a software system, affecting its functionality. The
quality model, however, makes clear that defects concern all quality charac-
teristics of a software system. Hence, a deviation from a defined runtime
performance is therefore as much a defect as a deviation from the expected
usability or a flawed computation.

Quality models are a valuable vehicle for systematically eliciting quality
requirements and for adopting a quality engineering approach covering all
relevant qualities of a software product. For example, in the research project
WebTesting, a guideline for methodical testing of Web-based applications (see
[RWW+02] and [SRA06]) has been derived from a domain-specific quality
model.

IV Software Engineering – Processes and Tools 187

Characteristics and sub-characteristics of software quality. Figure 10

Quality Assurance Measures

Quality must be built into a software product during development and main-
tenance. Software quality engineering [Tia05] ensures that the process of in-
corporating quality into the software is done correctly and adequately, and
that the resulting software product meets the defined quality requirements.

The measures applied in engineering of software quality are constructive
or analytical in their nature. Constructive measures are technical (e.g., appli-
cation of adequate programming languages and tool support), organizational
(e.g., enactment of standardized procedures and workflows), and personnel
measures (e.g., selection and training of personnel) to ensure quality a pri-
ori. These measures aim to prevent defects through eliminating the source
of the error or blocking erroneous human actions. Analytical measures are
used to asses the actual quality of a work product by dynamic checks (e.g.,
testing and simulation) and static checks (e.g., inspection and review). These
measures aim to improve quality through fault detection and removal.

Economic Perspective on Software Quality

Applying quality assurance measures involves costs. The costs of achieving
quality have to be balanced with the benefits expected from software quality,
i.e., reduced failure costs and improved productivity. Engineering of software
quality, thus, is driven by economic considerations, entailing what Garvin
[Gar84] described as “value-based approach” to define quality.

188 Gerhard Weiss, Gustav Pomberger et al.

Value-based software engineering [BAB+05] therefore elaborates on the
question “How much software quality investment is enough?” [HB06]. In
[RBG05] we describe how an analysis of the derived business risks can be
used to answer this question when making the investment decision, which
can be stated as trade-off. Too little investments in quality assurance mea-
sures incur the risk of delivering a defective product that fails to meet the
quality expectations of customers and results in lost sales. This risk has to be
opposed with the risk of missed market opportunities and, thus, lost sales due
to too much quality investments prolonging the time-to-market. Neither too
little nor too much quality investments are economically reasonable. From an
economic perspective a “good enough” approach to software quality [Bac97]
is considered the optimal solution.

Engineering of software quality in practice has to be coherent with eco-
nomic constraints. Hence, in any application-oriented research, the economic
perspective of software quality is a dominant factor. Further examples about
economic considerations will be presented in the next subsections as part of
the discussion about manual versus automated testing and the prioritization
of tests based on the prediction of defect-prone software modules.

3.2 Management and Automation of Software Testing

Software testing is one of the most important and most widely practiced
measures of software quality engineering [LRFL07] used to validate that cus-
tomers have specified the right software solution and to verify that developers
have built the solution right. It is a natural approach to understand a software
system’s behavior by executing representative scenarios within the intended
context of use with the aim to gather information about the software system.
More specifically, software testing means executing a software system with
defined input and observing the produced output, which is compared with the
expected output to determine pass or fail of the test. Accordingly, the IEEE
Standard 610.12-1990 defines testing as “the process of operating a system or
component under specified conditions, observing or recording the results, and
making an evaluation of some aspect of the system or component” [IEE90].

Compared to other approaches to engineer software quality, testing pro-
vides several advantages, such as the relative ease with which many of the
testing activities can be performed, the possibility to execute the program
in its expected environment, the direct link of failed tests to the underlying
defect, or that testing reduces the risk of failures of the software system. In
contrast, however, software testing is a costly measure due to the large num-
ber of execution scenarios required to gather a representative sample of the
real-world usage of the software system. In fact, the total number of possi-
ble execution scenarios for any non-trivial software system is so high that

IV Software Engineering – Processes and Tools 189

complete testing is considered practically impossible [KFN99]. Test design
techniques (e.g., [Bei90, Cop04]) are therefore applied to systematically con-
struct a minimal set of test cases covering a representative fraction of all
execution scenarios. Still, testing can consume up to 50 percent and more of
the cost of software development [HB06].

As a consequence, automation has been proposed as a response to the
costly and labor-intensive manual activities in software testing. Test automa-
tion [FG99] has many faces and concerns a broad variety of aspects of software
testing: The automated execution of tests, the automated setup of the test
environment, the automated recording or generation of tests, the automation
of administrative tasks in testing. In all these cases, tool support promises to
reduce the costs of testing and to speed up the test process.

In the following, we present results from research projects conducted at
SCCH that involved tool-based solutions addressing different aspects of test
automation.� The first example, TEMPPO, outlines the tool support for managing large

test case portfolios and related artifacts such as test data, test results and
execution protocols.� In the second example, a framework for the automation of unit tests in
embedded software development has been used to introduce the paradigm
of test-driven development to a large software project in this domain.� We conclude this subsection with a study about balancing manual and
automated software testing subsuming ongoing observations and lessons
learned from several research and industrial projects. In addition, we
present a tool-based approach (TestSheets) for user interface testing as
an example for blending automated and manual testing.

Tool Support for Test Management

Testing tools are frequently associated with tools for automating the execu-
tion of test cases. Test execution, however, is only one activity in the software
testing process, which also involves test planning, test analysis and design,
test implementation, evaluating exit criteria and reporting, plus the parallel
activity of test management. All of these activities are amenable to automa-
tion and benefit from tool support.

In the following we describe a tool-based approach specifically for test
management and present some results from the research project TEMPPO
(Test Execution Managing Planning and rePorting Organizer) conducted by
Siemens Austria and SCCH. The project results are an excellent example
for the sustaining benefit that can be achieved by linking science and indus-
try. The project fostered a fruitful knowledge exchange in both directions.
Requirements for managing testing in step with actual practice in large soft-

190 Gerhard Weiss, Gustav Pomberger et al.

ware development projects have been elicited by Siemens, and appropriate
solution concepts have been developed by researchers at SCCH. The cooper-
ation led to a prototype implementation of a test management environment
that addressed a number of research issues significant for tool-based test
management in industrial projects.� A light-weight test process for managing the different stages in the genesis

of test cases had to be defined, providing support for the inception of the
initial test ideas based on a software requirements specification, the design
of test cases and their implementation, the manual test execution as well
as the automated execution in subsequent regression testing.� An efficient structure for organizing and maintaining large hierarchical
portfolios of up to several thousand test cases had to be developed.
The high volumes of related data included an extendable set of meta-
information associated to test cases and a range of artifacts such as asso-
ciated test scripts, test results and execution protocols accumulated over
the whole software development and maintenance lifecycle.� Changes of the test structure and test cases are inevitable in any large soft-
ware project once new requirements emerge or test strategies are updated.
To accommodate these changes, an integrated versioning and branching
mechanism became necessary. It makes sure that results from test execu-
tions are linked to the executed version of the test cases even after changes
took place.� Sophisticated query and grouping aids had to be applied for constructing
test suites combining a set of test cases for execution. Results from several
consecutive test executions had to be merged in a coherent test report for
assessing and analyzing the project’s quality status.� Test management as the coordinating function of software testing interacts
with a variety of other development and testing activities such as require-
ments management and change and defect management. For example, the
integration of test management and unit testing is described in [RCS03].
These integrations imply interfaces that realize a synchronization between
the underlying concepts and workflows of test management and the in-
tersecting activities, which go beyond a mere data exchange between the
involved tools.

The prototype developed in the joint research project has been extended with
additional features by Siemens and evolved to an industry-strength test man-
agement solution. SiTEMPPO7 (Figure 11) has been successfully applied in
projects within the Siemens corporation all over the world, and it is licensed
as commercial product for test management on the open market with cus-
tomers from a broad range of industrial sectors and application domains.

7 http://www.pse.siemens.at/SiTEMPPO

IV Software Engineering – Processes and Tools 191

The test management solution SiTEMPPO. Figure 11

Automation of Unit Testing in Embedded Software Development

Test-driven development (TDD) [Bec02] has been one of the outstanding in-
novations over the last years in the field of software testing. In short, the
premise behind TDD is that software is developed in small increments fol-
lowing a test-develop-refactor cycle also known as red-green-refactor pattern
[Bec02].

In the first step (test), tests are implemented that specify the expected
behavior before any code is written. Naturally, as the software to be tested
does not yet exist, these tests fail – often visualized by a red progress bar.
Thereby, however, the tests constitute a set of precisely measurable objectives
for the development of the code in the next step. In the second step (develop),
the goal is to write the code necessary to make the tests pass – visualized
by a green progress bar. Only as much code as necessary to make the bar
turn from red to green should be written and as quickly as possible. Even the
intended design of the software system may be violated if necessary. In the
third step (refactor), any problematic code constructs, design violations, and
duplicate code blocks are refactored. Thereby, the code changes performed
in the course of refactoring are safeguarded by the existing tests. As soon
as change introduces a defect breaking the achieved behavior, a test will fail

192 Gerhard Weiss, Gustav Pomberger et al.

and indicate the defect. After the refactoring has been completed, the cycle
is repeated until all planned requirements have finally been implemented.

Amplified by the paradigm shift towards agile processes and the inception
of extreme programming [BA04], TDD has literally infected the developers
with unit testing [BG00]. This breakthrough is also attributed to the frame-
work JUnit8, the reference implementation of the xUnit family [Ham04] in
Java. The framework provides the basic functionality to swiftly implement
unit tests in the same programming language as the tested code, to combine
related tests to test suites, and to easily run the tests or test suites from the
development environment including a visualization of the test results.

TDD has been successfully applied in the development of server and desk-
top applications, e.g., business software or Web-based systems. The develop-
ment of embedded software systems would also benefit from TDD [Gre07].
However, it has not been widely used in this domain due to a number of
unique challenges making automated unit testing of embedded software sys-
tems difficult at least.� Typical programming languages employed in embedded software develop-

ment have been designed for runtime and memory efficiency and, thus,
show limited support for writing testable code. Examples are limitations
in error and exception handling, lack of comprehensive meta-information,
rigid binding at compile-time, and little encouragement to clearly separate
interfaces and implementation.� The limiting factor is usually the underlying hardware with its harsh re-
source and timing constraints that forces the developers to design for run-
time and memory efficiency instead for testability. When the code is tuned
to produce the smallest possible memory footprint, debugging aids as well
as additional interfaces to control and to introspect the state of the soft-
ware system are intentionally removed.� Cross-platform development with a separation between host development
environments and target execution platforms is a typical approach in build-
ing embedded software systems. The development tools run in a host en-
vironment, usually including a hardware simulator. Larger increments are
cross-compiled and tested on the actual target system once it becomes
available.� In addition, unit testing is concerned with a number of domain-specific
issues causing defects that demand domain-specific test methods and tool
support. In embedded software development, these specific issues include,
for example, real-time requirements, timing problems, and asynchronous
execution due to multi-threaded code or decentralized systems.

The goal of the project was to tackle these challenges and to introduce the
concept of TDD to the development of embedded software for mobile and
handheld devices. Together with the partner company we developed a frame-
work for automated unit testing with the aim to resemble the design of the

8 http://www.junit.org

IV Software Engineering – Processes and Tools 193

xUnit family as closely as possible, so unit tests could be written in the
restricted C++ language variant used for programming embedded devices.
Beyond that, the framework comprises extensions such as to run as applica-
tion directly on the mobile device or to remotely execute unit tests on the
target device via a TCP/IP or a serial connection, while the test results are
reported back to the the development environment on the host (Figure 12).
Many defects only prevalent on the target hardware can so be detected early
in development, before the system integration phase.

Host Development Environment

Development
of Test and Code

Analysis
of Test Results

Exexution
of Tests

Target Environment
Remote Execution

of Tests

trigger remote

test execution

report

test results

cross-compile

and deploy

TCP/IP or

serial connection

Workflow for unit testing in the host development environment as well
as on the target device.

Figure 12

Balancing Manual and Automated Software Testing

Questions like “When should a test be automated?” or “Does test automa-
tion make sense in a specific situation?” fuel an ongoing debate among re-
searchers and practitioners (e.g. [BWK05]). Economic considerations about
automation in software testing led to the conclusion that – due to generally
limited budget and resources available for testing – a trade-off between man-
ual and automated testing exists [RW06]. An investment in automating a test

194 Gerhard Weiss, Gustav Pomberger et al.

reduces the limited budget and, thus, the number of affordable manual tests.
The overly simplistic cost models for automated testing frequently found in
the literature tend to neglect this trade-off and fail to provide the necessary
guidance in selecting an optimally balanced testing strategy taking the value
contribution of testing into account [Ram04].

The problem is made worse by the fact that manual and automated test-
ing cannot be simply traded against each other based on pure cost consid-
erations. Manual testing and automated testing have largely different defect
detection capabilities in terms of what types of defects they are able to reveal.
Automated testing targets regression problems, i.e. defects in modified but
previously working functionality, while manual testing is suitable for explor-
ing new ways in how to break (new) functionality. Hence, for effective manual
testing detailed knowledge about the tested software system and experience
in exploring a software system with the aim to find defects play an important
role [BR08]. In [RW06] we propose an economic model for balancing manual
and automated software testing and we describe influence factors to facili-
tate comprehension and discussion necessary to define a value-based testing
strategy.

Frequently, technical constraints influence the feasibility of automaton ap-
proaches in software testing. In the project Aragon, a visual GUI editor as a
part of an integrated development environment for mobile and multimedia de-
vices, has been developed [PPRL07]. Testing the highly interactive graphical
user interface of the editor, which comprises slightly more than 50 percent of
the application’s total code, involved a number challenges inherent in testing
graphical user interfaces such as specifying exactly what the expected results
are, testing of the aesthetic appearance, or coping with frequent changes.

While we found a manual, exploratory approach the preferable way of
testing the GUI, we also identified a broad range of different tasks that can
effectively be automated. As a consequence we set up the initiative TestSheets
utilizing Eclipse cheat sheets for implementing partial automated test plans
embedded directly in the runtime environment of the tested product [PR08].
This integration enabled active elements in test plans to access the product
under test, e.g., for setting up the test environment, and allows to tap into
the product’s log output. Test plans were managed and deployed together
with the product under test.

We found that partial test automation is an effective way to blend manual
and automated testing amplifying the benefit of each approach. It is primar-
ily targeted at cumbersome and error-prone tasks like setting up the test
environment or collecting test results. Thereby, partial automation enhances
the capability of human testers, first, because it reduces the amount of low-
level routine work and, second, because it provides room for exploring the
product under test from various viewpoints including aspects like usability,
attractiveness and responsiveness, which are typically weakly addressed by
automated tests.

IV Software Engineering – Processes and Tools 195

Monitoring and Predicting Software Quality 3.3

Software quality engineering is an ongoing activity. Beyond measures to
achieve software quality, it requires paying close attention to monitor the
current quality status of software systems and to anticipate future states as
these software systems continue to evolve. In the following we show how a re-
search project integrating software engineering data in a software cockpit can
provide the basis for monitoring and predicting software quality of upcoming
versions of software products.

Software Cockpits

Continuous monitoring and management of software quality throughout the
evolution of a software system [MD08] requires a comprehensive overview
of the development status and means to drill-down on suspicious details to
analyze and understand the underlying root causes. Software cockpits (also
known as dashboards or software project control centers [MH04]) have been
proposed as key to achieve this vision by integrating, visualizing and exploring
measurement data from different perspectives and at various levels of detail.
Typical sources of measurement data are software repositories and corporate
databases such as versioning systems, static code and design analysis tools,
test management solutions, issue tracking systems, build systems, and project
documentation.

Each of these repositories and databases serves a specific purpose and
provides a unique view on the project. For a holistic view on software quality,
the relevant aspects of these individual views have to be integrated. Thereby,
in order to support the analysis of the project situation, it is not enough to
simply present the data from different sources side by side. The integration
requires modeling and establishing the relationships between the different
software repositories and databases at data level [RW08]. The topic of data
integration has been successfully addressed by the concept of data warehouses
with its associated ETL (extract, transform, load) technologies in database
research and practice [KC04].

Data warehouses are the basis for business intelligence solutions, which
support managers in making decisions in a dynamic, time-driven environ-
ment based on information from diverse data sources across an organization.
Test managers and quality engineers operate in a similar environment under
pressure to meet high-quality standards and, at the same time, to deliver in
a tight schedule and budget. Hence, as partner in the competence network

196 Gerhard Weiss, Gustav Pomberger et al.

Softnet Austria9 we investigated and adopted the idea of business intelligence
for software development and quality engineering [LR07].

In a study of existing approaches and solutions offering software cockpits
for testing and quality management, we found an overemphasis of the re-
porting aspect. The main purpose of most of the studied cockpits was to
generate static views of aggregated data, usually retrieved from a single data
source. In contrast, Eckerson [Eck05] illustrates the nature of cockpits as the
intersection between static reporting and interactive analysis. We therefore
implemented a software cockpit with the objective to further explore the re-
quirements and solution concepts for interactive data analysis. We based the
cockpit on an open source data warehouse as platform for integrating project-
specific data sources from development and test tools. The retrieved data was
harnessed in customized software metrics and models [Kan02], which were vi-
sualized and analyzed via the cockpit. Our first prototype implementation of
the software cockpit supported data extraction from open source software
engineering tools such as the issue tracking tool Bugzilla or the versioning
system CVS.

The three main tiers of the cockpit’s architecture are shown in Figure 13
(from bottom to top):

1. Data adapters periodically extract relevant data from different repositories
and databases, e.g., Bugzilla’s issue database or the change log of CVS.
The data is transformed to a standard data structure and stored in the
central data warehouse.

2. The data warehouse organizes the data as cubes amenable for on-line an-
alytical data processing. The data schema supports recording the project
history for analyzing the evolution and forecasting of trends.

3. The user interface of the cockpit visualizes aggregated information and
offers the flexibility to customize views, metrics and models. The Web-
based implementation provides easy access to visual representation of the
integrated data.

The first prototype of the cockpit has been developed in close coopera-
tion with an industrial software project pursuing an iterative development
process. Over a series of rapid prototyping cycles, the Web-based user in-
terface (Figure 14) has evolved including a number of features to visualize
and to analyze quality-related measurement data. Building on these results,
the software cockpit has been successfully adopted in other projects and or-
ganizations, for example, a software product company developing business
software involving a development team of more than 100 persons [LRB09].

We identified a number of features that constitute key success factors
for the successful implementation and application of software cockpits in
practice.

9 http://www.soft-net.at/

IV Software Engineering – Processes and Tools 197

System architecture of the software cockpit. Figure 13

Interface of the software cockpit for developers. Figure 14

198 Gerhard Weiss, Gustav Pomberger et al.� A user-centered design that supports the users’ daily activities keeps the
administrative overhead at a minimum and is in line with personal needs
for feedback and transparency.� A comprehensive overview of all relevant information is presented as a
set of simple graphics on a single screen as the lynchpin of the software
cockpit. It can be personalized in terms of user specific views and filters.� The presented information (i.e. in-process metrics from software develop-
ment and quality engineering) is easy to interpret and can be traced back
to the individual activities in software development. Abstract metrics and
high-level indicators have been avoided. This encourages the users to re-
flect on how their work affects the overall performance of the project and
the quality status of the product.� In addition, the interactive analysis of the measurement data allows drilling
down from aggregated measurements to individual data records and in-
place exploration is supported by mechanisms such as stacked charting of
data along different dimensions, tooltips showing details about the data
points, and filters to zoom in on the most recent information.

Predicting Defect-prone Modules of a Software System

Data about the points in time where defects are introduced, reported, and
resolved, i.e. the lifecycle of defects [Ram08], is gathered in the data ware-
house and can be used to construct the history and current state of defective
modules of a software system. The data about the software system’s past
states can also serve as the basis for predicting future states of a software
system, indicating which modules are likely to contain defects in upcoming
versions.

The rationale for identifying defect-prone modules prior to analytical qual-
ity assurance (QA) measures such as inspection or testing has been sum-
marized by Nagappan et al.: “During software production, software quality
assurance consumes a considerable effort. To raise the effectiveness and effi-
ciency of this effort, it is wise to direct it to those which need it most. We
therefore need to identify those pieces of software which are the most likely
to fail—and therefore require most of our attention.” [NBZ06] As the time
and effort for applying software quality assurance measures is usually limited
due to economic constraints and as complete testing is considered impossible
for any non-trivial software system [KFN99], the information about which
modules are defect-prone can be a valuable aid for defining a focused test
and quality engineering strategy.

The feasibility and practical value of defect prediction has been investi-
gated in an empirical study we conducted as part of the research project
Andromeda, where we applied defect prediction for a large industrial soft-
ware system [RWS+09]. The studied software system encompasses about 700

IV Software Engineering – Processes and Tools 199

KLOC of C++ code in about 160 modules. Before a new version of the system
enters the testing phase, up to almost 60 percent of these modules contain
defects. Our objective was to classify the modules of a new version as poten-
tially defective or defect-free in order to prioritize the modules for testing. We
repeated defect prediction for six consecutive versions of the software system
and compared the prediction results with the actual results obtained from
system and integration testing.

The defect prediction models [KL05] we used in the study have been based
on the data retrieved from previous versions of the software system. For every
module of the software system the data included more than 100 metrics like
the size and complexity of the module, the number of dependencies to other
modules, or the number of changes applied to the module over the last weeks
and months. Data mining techniques such as fuzzy logic-based decision trees,
neural networks, and support vector machines were used to construct the
prediction models. Then, the models were parametrized with the data from
the new versions to predict whether a module is defective or defect-free.

Preliminary results showed that our predictions achieve an accuracy of
78 (highest) to 67 percent (lowest). On average 72 percent of the modules
were accurately classified. Hence, in case testing has to be stopped early and
some modules have to be left untested, a test strategy prioritizing the mod-
ules based on the predicted defectiveness is up to 43 percent more effective
than a strategy using a random prioritization. Even in with the lowest pre-
diction accuracy the gain can be up to 29 percent compared to a random
testing strategy when only 60 percent of all modules are tested. The gain
over time is illustrated in Figure 15. The testing strategy based on average
defect prediction results (blue) is compared to the hypothetical best case—a
strategy ordering the modules to be tested according to their actual defec-
tiveness (green)—and the worst case—a strategy ordering the modules purely
random (red).

The depicted improvements in testing achieved by means of defect pre-
diction are intermediate results from ongoing research. So far, the prediction
models have been based on simple metrics derived from selected data sources.
Combining the data in more sophisticated ways allows including additional
aspects of the software system’s history and, thus, promises to further in-
crease the prediction performance [MGF07]. In a specific context of a project,
the results can be improved even further by tuning of the applied data min-
ing methods. For the future, we plan to extend this work to a larger set of
industrial projects of various sizes and from different domains.

200 Gerhard Weiss, Gustav Pomberger et al.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Total modules tested

D
e

fe
c
ti
v
e

 m
o

d
u

le
s
 c

o
v
e

re
d

Optimal Strategy

Random Strategy

Prediction Strategy

Figure 15 Improvement gain achieved by defect prediction.

4 Software Architecture Engineering

A software system’s architecture is an abstraction of its implementation,
omitting details of implementation, algorithm and data representation, see
[BCK03]. The architecture of a software system is often represented by dif-
ferent models, each consisting of abstract elements and relationships. Each
of these models can be used to describe a particular abstract view of im-
portant structural relationships, facilitating understanding and analysis of
important qualities of a software system. The fact that the abstraction de-
fined by an architecture is not made up by one but by different structures
and views providing different perspectives on a software system is reflected in
a widely accepted definition of software architecture provided by the Bass et
al. [BCK03], where software architecture is defined as “the structure or struc-
tures of the system, which comprise software elements, the externally visible
properties of these elements, and the relationships among them”. Architec-
ture is the result of design. This is reflected in a broader definition provided
by Medvidovic et al. [MDT07] which state that “a software system’s archi-
tecture is the set of principal design decisions about a system”. This includes
design decisions related to structure, behavior, interaction, non-functional
properties, the development process, and to a system’s business position (see
[MDT07]).

IV Software Engineering – Processes and Tools 201

The architecture of a software system is one of the most important con-
cepts during software development. It is among the first artifacts produced in
the development and contains early design decisions [Cle96] that are usually
long lasting and expensive to change later in the development. Fundamental
system qualities like performance, security, or scalability are determined by
a system’s architecture. For developers it is a blueprint [Gar00] of the system
that guides and constrains implementation. For stakeholders it is a means
of communication. Formal architecture representations (architecture models)
can be used for automatic analysis of important system qualities; informal
architecture representations (architecture documentation) are an important
means of communication during and system documentation during all phases
of a software life-cycle.

Superficially, software architecture research can be classified into two main
research areas: general software architecture research and domain-specific
software architecture research. General software architecture research encom-
passes concepts, methods, and tools for creating, describing, and managing
software architectures, ideally independent of a particular domain. Domain-
specific software architecture research focuses on the application and adaption
of general software architecture principles for specific domains and includes
the creation of domain-specific architecture languages, tools, reference archi-
tectures, and patterns.

In this section we describe both basic and applied research projects in the
area of software architectures that are conducted by SCCH with academic
and industrial partners. The remainder of this section is structured as fol-
lows: Subsection 4.1 provides an overview of the field of software architectures
and highlights important research challenges. Subsection 4.2 describes a re-
search cooperation between SCCH and the Software Engineering Group at
the Department of Business Informatics, Johannes Kepler University Linz,
focusing on languages and tools for comprehensive and integrated software
architecture management. Subsection 4.3 describes applied software architec-
ture research for industrial software systems. Finally, Subsection 4.4 describes
architecture-related research activities for enterprise information systems.

General Research Areas and Challenges 4.1

In this subsection we provide an overview of research fields and challenges in
the area of general software architecture research. Important research fields
in this area are architecture design, architecture implementation, architecture
analysis and evaluation and architecture documentation [TvdH07, KOS06].

202 Gerhard Weiss, Gustav Pomberger et al.

Architecture Design

Architecture design is the activity that creates a system’s architecture. While
design is performed in all phases of software development fundamental design
decisions are usually made before the implementation phase [TMD09]. When
creating the initial architecture, a wide range of aspects has to be taken into
consideration. Since it is not possible to fulfill the concerns of all stakeholders
the architecture of a software system represents a tradeoff between stakehold-
ers concerns [RW05]. Architecture design experience is represented by pat-
terns [MKMG97], styles [MKMG97], and reference architectures [TMD09].
Architecture is also implicitly reused through the use of frameworks [SB03]
and middleware [SB03] for a particular domain.

Architecture Implementation

Implementing a defined architecture is in fact the task of mapping the con-
cepts defined during design to implementation artifacts [TMD09]. This pro-
cess can be performed manually and automatically. If the architecture is
implemented manually, a major problem is to ensure that the system imple-
mentation conforms to the intended architecture. This problem is known as
architectural decay [AGM05], architectural drift [PW92], architectural ero-
sion [PW92] and design erosion [vGB02]. If existing libraries, middleware and
frameworks are used, architecture and design is effectively reused and the
possible architectural drift is reduced. Since a framework usually defines the
architecture for a family of applications in a particular domain, architectural
drift is still possible. Approaches for checking architecture conformance like
Lattix [SJSJ05], Sotoarc [Sof07] and SonarJ [Hel07] operate at the level of
programming-language concepts. They lack high-level architecture support
and are not integrated well enough with the development process. Model-
driven development [Sch06] can be used for automatically deriving (parts of)
an implementation from an architecture. Since architecture is an abstraction
of a software system and no specification, only code skeletons can be gen-
erated, which have to be implemented manually. The synchronization of the
manually modified code with the models used for code generation is a central
problem of model-driven software development [HT06].

Architecture Analysis and Evaluation

The purpose of software architecture analysis is to analyze the software ar-
chitecture to identify potential risks and verify that the quality requirements
have been addressed in the design [LH93]. Analysis activities can take place

IV Software Engineering – Processes and Tools 203

before the system has been build, during it is built and after the system has
been built [DN02]. Architecture analysis can be performed manually by using
architecture evaluation methods or automatically using architecture analysis
tools.

Architecture evaluation methods like the Software Architecture Analysis
Method (SAAM) [CKK02] or its successor the Architecture Tradeoff Analysis
Method (ATAM) [CKK02] are scenario-based evaluation methods that have
been developed particularly to validate quality attributes, which are usually
difficult to analyze. Architecture evaluation methods are time-consuming and
resource-intensive processes. They are usually used for evaluating the ini-
tial design of a software system with its stakeholders and for assessing the
architecture of an already implemented system. They are not intended for
continuous architecture analysis.

Architecture Description Languages (ADLs) are formal languages to rep-
resent the architecture of a software system [Cle96]. They allow the automatic
analysis of system properties before it has been built [Cle95]. An ADL de-
scribes a system in terms of components, connectors and their configurations
[MT00]. Usually ADLs have a textual as well as a graphical representation
[Cle96]. A large number of general purpose and domain-specific ADLs ex-
ist [MT00]. Disadvantages of ADLs are lack of tool support [MDT07, MT00],
lack of implementation integration [MT00] and lack of standardization. Some
ADLs allows code generation in the sense of model-driven software develop-
ment, which may lead to problems in synchronizing architecture and code as
mentioned above. While UML is sometimes discussed as a general purpose
ADL, its suitability as an ADL is still subject of study and debate [MDT07].
In most cases UML, is used for architecture documentation as described be-
low.

Architecture Documentation

Since the architecture of a software system is not entirely contained in the
implementation it must be documented separately [Hof05]. Documenting soft-
ware architecture is quite different from architectural descriptions that are
created for analysis [IMP05]. While the latter requires a formal description
that can be processed by tools, architecture descriptions for documentation
purposes are usually described informal using natural language. Researchers
have proposed a view-based approach for describing software architectures
[RW05, Kru95, CBB+02, HNS99]. An architectural view is a representation of
a system from the perspective of an identified set of architecture-related con-
cerns [Int08]. Architecture documentations usually consist of multiple views.
The concepts of view-based architecture documentation are defined in the
ISO/IEC 42010 standard: Systems and Software Engineering – Architectural
Description [Int08].

204 Gerhard Weiss, Gustav Pomberger et al.

The Unified Modeling Language (UML) [Obj07] is the standard model-
ing language in software development. UML is primary a visual notation
[WH05] that consists of over ten different loosely connected individual nota-
tions [MDT07]. UML is often used in architecture documentation. UML 2.0
has adapted many features from ADLs [AGM05].

4.2 Software Architecture Management – Languages
and Tools

While numerous approaches for individual architecture-related activities ex-
ist and have found wide-spread use in practice, architecture is still not sup-
ported well enough during software development. Often it is not explicitly
and entirely documented; system implementation deviates from the intended
architecture; the documented architecture is out-of-date; architecture confor-
mance checking is not performed continuously and can only be performed at
a low level of abstraction; and finally the architecture is usually described
informal and cannot be used for automatic analysis.

The Software Architecture Engineering (SAE) project is a strategic project
that addresses these problems. The main idea is to support software architec-
ture related activities like modeling, changing, and validating software archi-
tectures as an integral part of other activities in software development. This is
achieved by a central integrated and formalized language for describing soft-
ware architectures (LISA) and an unobtrusive set of integrated architecture
tools working on this model (LISA-toolkit).

Integrated Architecture Language

LISA is an architecture description language which can be used for describing
and validating architectural structures and properties. It has no explicit tex-
tual representation, which is intended for manually creating an architectural
description. Instead, LISA-based architecture models are manipulated by the
tools provided by the LISA toolkit.

While LISA has been designed as a general purpose ADL, it has been de-
signed with specific aims promising to solve some of problems of architecture
engineering described above and with the central aim to raise the abstraction
in software development further by extending modeling concepts provided by
general purpose programming languages by architectural concepts.

From a technical perspective LISA is an extensible meta-model based on
XML-Schema and consists of several integrated and connected sub models.
Contrary to other ADLs it puts a special emphasis on linking architecture to

IV Software Engineering – Processes and Tools 205

implementation and on supporting existing component-models and technolo-
gies. The main elements of LISA are shown in Figure 16. The lower layers

Core Model

Language
Element Model

Basic Structure
Model

Common
Component
Model

Configuration
Model

System Model

Language
Bindings

Technology
Bindings

Technology
Bindings

(Q
u
a
lit
y
)
A
tt
ri
b
u
te
 M
o
d
e
ls

Java, C#

EJB, Spring,
OSGi, SCA,
Spring-OSGi

The LISA Model. Figure 16

of the LISA language definition shown in Figure 16 can be used for describ-
ing architectural relationships that are defined statically in code. Model ele-
ments at these lower layers can be partly extracted from or mapped to source
code. Examples are the elements of the Language Element Model, which in-
clude concepts like classes and interfaces. These elements can be organized
by structures in the Basic Structure Model. The Basic Structure Model can
be used for defining elements like functional units, subsystems, deployment
units, and layers. Together the elements of the lower layers of the LISA lan-
guage definition enable functionality provided by architecture management
tools. This includes usage and dependency analysis, synchronizing architec-
ture with code, and defining and checking architectural constraints at the
level of programming language concepts. Although the lower layers of LISA
are aligned with concepts found in concrete programming languages they are
still abstract. Bindings to particular programming languages are provided by
Language Binding definitions as shown in Figure 16.

The upper layers of LISA include the definition of abstract models for
describing components, configurations, and whole systems. Again the bind-
ing to specific component technologies and models is provided by Technology
Binding Models. Currently LISA supports bindings for EJB [EJB06], Spring

206 Gerhard Weiss, Gustav Pomberger et al.

[Spr08b], OSGi [OSG07], Spring Dynamic Modules for OSGi [Spr08a], and
SCA [SCA07]. Examples for elements at the higher layers of LISA are compo-
nent, contract, port, composite, application, location and tier. These elements
can be used for describing and analyzing architectures of component-based
and distributed service-oriented software systems. In such systems architec-
tural relationships are not defined in code but through late composition and
configuration. Finally, (Quality) Attribute Models as shown in Figure 16 can
be used for attaching semantic attributes and policies to architectural ele-
ments at all levels of abstraction. Such attributes can be used for annotating
and validating non-functional attributes of a software system.

Pervasive Architecture Toolkit

LISA is not intended to be used directly by means of a textual representation.
Instead creation, manipulation, visualization, and validation of LISA-based
architectural models are supported by the LISA-toolkit. To provide unob-
trusive and integrated support for architecture related activities during the
whole development process, the toolkit is implemented as a set of Eclipse
plug-ins and designed to be integrated into software analysis and develop-
ment tools. An overview of the general structure of the toolkit is shown in
Figure 17. A screenshot of the LISA-Toolkit is depicted in Figure 18.

User Interface

Application Logic

Model

Architecture
Modeling

Integrated
Architecture

Model

Technology
Submodels
Technology
Submodels
Technology
Submodels

Model
Manipulation

Implementation
Connection

Implementation
Connection

Implementation
Synchronization

ValidationValidation
Validation

Architecture
Visualization

Figure 17 The LISA Toolkit.

IV Software Engineering – Processes and Tools 207

A Screenshot of the LISA Toolkit. Figure 18

As shown in the figure, the toolkit provides an API for editing a LISA-
based architecture model as well as functional components for validating
architectural constraints and for synchronizing an architecture with a system
implementation. In addition, the toolkit provides user interface components
for architecture modeling and visualization. All UI components are working
on the same architectural model and thus support editing and visualization
of different aspects of a system in a consistent way. Violation of architectural
constraints defined in the model are immediately shown in all graphical and
textual representations of the affected elements.

Examples of available visualizations and modeling tools are shown in Fig-
ures 19 and 20. Figure 19 shows usage and dependency relationships of classes
and interfaces organized in different layers in an object-oriented software sys-
tem. The figure shows layer violations (see (1) and (2) in Figure 19) as an
example for the violation of architectural constraints.

Figure 20 shows diagrams for representing and editing the architecture of
a service-oriented software system using the Service Component Architecture
(SCA). Instead of classes and interfaces, the main elements at this layer of
abstraction are components and contracts. The Component Decomposition
Diagram provides on overview of the components of the system. In LISA
components are independent of a particular implementation technology. The

208 Gerhard Weiss, Gustav Pomberger et al.

(1)

(2)

Figure 19 Language Element Diagrams.

diagram can be used to explore component structure and decomposition of
composite components. Component usage relationships are typically not im-
plemented in source code but rather configured during system assembly or
created automatically based on component specifications. The System Rela-
tion Diagram shows the configuration of a system in terms of components
and their relations. Relations and element properties violating architectural
constraints are also indicated at this level of abstraction.

Figure 20 Component Diagrams.

IV Software Engineering – Processes and Tools 209

Addressed Problem Domains and Research Challenges

The approach supports architecture related activities in different areas of
software development and addresses several challenges described above.

Architecture Design: The LISA-toolkit can be used for modeling architec-
tural elements and relationships. A system can be modeled from low level
elements at the level of classes and interfaces to higher level components
at the level of systems. LISA supports in particular component-based and
distributed service-oriented systems.

Architecture Implementation: An architecture model can be used for gener-
ating component implementation skeletons and other application parts in
the sense of model-driven development. However, the central benefit of the
approach in this area is the support for binding architecture to implemen-
tation and for continuous synchronization of architecture and implemen-
tation. This addresses the problems of outdated architecture description
and of architectural drift.

Architecture Analysis and Evaluation: Since the approach is based on a
central formalized architecture model, architectural constraints can be
defined similar to other architectural description languages. Contrary to
other approaches constraints can be defined at the level of the architecture
model as well as the level of the implementation and technology binding.
Since the same model is used during the whole software life-cycle, archi-
tectural constraints can be checked during analysis, implementation and
also during maintenance.

Architecture Documentation: Architecture documentation is best supported
by a view-based approach as described above. LISA supports architecture
documentation by providing diagrams that can be used for describing ar-
chitectural views.

To summarize, the main elements of the architecture management ap-
proach are a central formalized architecture model and set of tools working
on this model. Distinct features are the possibility to integrate the architec-
ture tools with other development tools, close integration and synchroniza-
tion with implementation, the support of component-based systems and the
support of existing component models and technologies. First results of the
approach have been published in [BW08].

210 Gerhard Weiss, Gustav Pomberger et al.

4.3 Software Architectures for Industrial Applications

In the context of this subsection, the term industrial applications refers to
software, which handles tasks related to manufacturing, process control and
-automation. This includes applications for manufacturing operations man-
agement (e.g. product tracking, product resource management, product data
collection) as well as software for basic control of devices and machines. Of
course, industrial applications are not solely restricted to manufacturing in-
dustries, the term also applies to software solving similar tasks in areas like
aviation, the automotive industry, and building automation.

Challenges and Requirements

Industrial applications tend to have stricter requirements concerning relia-
bility and efficiency (in the sense of ISO-9126) than desktop software. This
is particularly the case for software that handles mission- and safety-critical
tasks. Reliability means that such industrial applications must provide high
availability with minimal downtimes, be robust to failure and be able to fully
recover to an operational state in case of faults in underlying or neighbored
systems. Efficiency covers the aspects of time and resource behavior. While
managing resources like memory efficiently should be important to software
applications in general, industrial applications, and especially applications for
process control, often must fulfill hard or soft real-time demands. These re-
quirements demand special considerations when designing and implementing
industrial applications. Designing real-time systems is particularly challeng-
ing [Dou02, Ste00]. Several frameworks aid in designing and developing indus-
trial applications. They range from domain specific control frameworks such
as OROCOS [Bru01] to general purpose component frameworks like OSGi
[OSG07], which can be used equally for industrial and desktop software.

Case Study ProMoRTE

ProMoRTE [Dor09] is an online (i.e. process controlling) OSGi-based runtime
platform for computation algorithms in the steel industry. The following list
of requirements was important for designing the architecture of the platform:� Easy and flexible installation, configuration and operation of computation

algorithms at runtime.� Versioning support for computation algorithms.

IV Software Engineering – Processes and Tools 211� Prescription of unified interfaces for computation algorithms (data access,
behavior control).� Integration with an IDE for developing and maintaining algorithms.� Support of legacy code to allow the reuse of existing algorithms coded in
C/C++.

The pivotal quality requirement addressed the reliability of the platform.
Since it had to be deployed in a 24×7 production environment, a maximum
of stability and a minimum of downtime was demanded. Manipulations on
a certain algorithm (e.g. reconfiguration), failed computations or crashed al-
gorithm executions had not to influence the operation of other algorithms in
the platform. In case of a hardware fault or system crash, a full recovery of
the platform and all installed algorithms was mandatory. Other important
quality demands concerned portability of the system (OpenVMS, Windows,
Linux) and performance. Hard real-time capabilities were not deemed neces-
sary, though.

Of course, these requirements affected the architecture of ProMoRTE. To
achieve portability we opted to base our implementation on Java. OSGi as the
base framework was chosen for its flexible component oriented architecture
allowing hot deployment of components (aka bundles) and providing explicit
versioning support. Besides, OSGi easily integrates with the popular Eclipse
IDE—since Eclipse builds on OSGi, too.

Support of legacy code and the reliability requirement interfered with each
other. Incorporating native libraries in Java applications is done via the Java
Native Interface. However, direct integration bears the risk of reduced stabil-
ity and robustness, because defects in native code can not always be handled
by the JNI code or the Java application code. Thus, we had to consider a dis-
tributed architecture to satisfy the reliability needs, which is shown in Figure
21.

The distribution of process algorithms had in turn an effect on perfor-
mance, since communication of platform and algorithms had to pass process
boundaries. In the end, the negative effects could be coped with. The plat-
form has been operative in the project partner’s productive environment for
over two years.

Software Architectures for Enterprise
Information Systems

4.4

To stay competitive, enterprises need a flexible applications architecture that
permits changes and the quick deployment of new functionality with mini-
mal integration effort. Enterprise applications can be integrated at different
levels: data, business logic, and presentation. Integration of heterogeneous

212 Gerhard Weiss, Gustav Pomberger et al.

Figure 21 Distribution of algorithms with ProMoRTE.

systems both within enterprises (EAI) and between enterprises (B2B) re-
quires standardization. Standardization is a strong trend at all integration
levels. Examples are Web Service standards like SOAP and WSDL as well as
higher-level standards for B2B-integration like ebXML and RosettaNet.

To increase reusability and to flexibly adapt to changing business condi-
tions and processes, enterprise applications are increasingly decomposed into
small reusable and composable elements using standardized interfaces. At
the presentation level such elements are portal components, which can be
composed to web portals and customizable workplaces. At the business logic
layer, the central elements for composition are services. Currently, the term
Service-Oriented Architecture (SOA) is usually used for flexible enterprise
information system architectures based on services using standardized (Web
Service) protocols.

Challenges and Requirements

Central challenges of integrating components at the presentation level are the
integration of the components’ user interfaces into a single consistent aggre-
gated application user interface and the support for data exchange between

IV Software Engineering – Processes and Tools 213

these components. Data exchange at the presentation level is complicated by
two main issues. Presentation level components that are to be integrated may
not only be developed by different parties but also managed and operated by
different providers. This means that data exchange needs to support remote
communication and may cross several different security boundaries. In addi-
tion, standardized composition models are needed for integrating components
without additional development effort. These issues have been addressed by
the Enterprise Portal Project at SCCH, which has been conducted to created
customizable workplace solutions in the financial domain.

Central challenges at the business logic level, i.e., for an Service-Oriented
Architecture, are the support for service evolution, service reuse, and service
management. Similar to the presentation level, services at the business-logic
level may be produced and operated by different providers. This means that
any changes to the architecture of a SOA-based system may potentially affect
not only other departments but even other companies. Equally changes of
services operated by a particular company may affect the whole enterprise
information architecture. Aspects of service evolution and management in an
SOA have been addressed by the IT4S project at SCCH.

Enterprise Portal Project (Enipa)

The main result of the Enipa project is a component model for enhanced
integration of portal components in web portals. The model supports not only
the aggregation of components within one web page, but also the composition
of component navigation into a central navigation area, the communication
between local and remote components, and heterogeneous environments. The
approach is based on existing standards like Portlets and WSRP and uses
XML for describing component navigation and communication capabilities.
It is declarative and may also be used for improving integration capabilities
of already existing portal components (see [WZ05] and [WWZ07]).

SOA Evolution and Management (IT4S)

The results of the IT4S project are an approach for SOA governance and a
versioning approach for service evolution. Notable aspects of the governance
approach are an extensible model for describing service metadata of arbi-
trary service types (not only Web services), support for the process of service
specification and service creation, a service browser for service reuse, and
the support for service evolution through information about service version-
ing, service dependencies and service installations [DW06]. The versioning

214 Gerhard Weiss, Gustav Pomberger et al.

approach consists of a versioning model, of suggestions for release manage-
ment, evolution scenarios, and a versioning scheme for enterprise services
[WZD07]. It also includes compatibility rules for the homogeneous evolution
of heterogeneous services [KWZ09].

5 Domain-Specific Languages and Modeling

A domain-specific language (DSL) is a programming language or executable
specification language that offers, through appropriate notations and abstrac-
tions, expressive power focused on, and usually restricted to, a particular
problem domain [vDKV00]. There is a common perception to distinguish
between horizontal and vertical domains. Horizontal domains cover different
technical software areas as user interface, database, testing, etc. whereas ver-
tical domains are found in business areas like insurance, telephony, or process
automation.

Domain-specific languages play an important role in various software engi-
neering methodologies. In generative software development [CEC00], a given
system can be automatically generated from a specification written in one
or more textual or graphical domain-specific languages [Cza05]. Domain-
specific languages have also been applied for end-user programming [MKB06]
[PHS+08b]. There has also been a trend in model-driven development towards
representing models using appropriate DSLs resulting in the domain-specific
modeling discipline [VS06, KT08].

Domain-specific modeling (DSM) proposes to model a software system
and to fully generate code from these high-level models. Importantly, both
the language used for modeling as well as code generators are specific to
a certain domain, in contrast to other model-driven approaches like model-
driven architecture [KWB03] that proposes standard modeling languages, e.g.
UML.

Domain-specific modeling is about finding concepts from a certain domain
and to specify a domain-specific language from these concepts. Tolvanen and
Kelly [TK05] identified following driving factors for language construct iden-
tification based on an evaluation of 23 case studies:

1. domain expert concepts,
2. developer concepts,
3. generation output,
4. look and feel of the system build, and
5. variability space,

where the combination of the latter two promises most benefits for DSM
solutions [TK05, KT08].

IV Software Engineering – Processes and Tools 215

The key contribution of domain-specific languages and modeling is to sig-
nificantly increase both productivity and quality in software development by
raising the abstraction level from general-purpose programming languages
and modeling notations toward bespoke domains.

For many realistic industrial software systems, a single DSL only solves a
limited part of a problem [KT08, LH09]. An entire system, hence, is typically
build from a single or multiple DSLs together with system parts developed
traditionally by means of general-purpose programming languages.

The Software Competence Center Hagenberg (SCCH) has carried out var-
ious application-oriented research projects together with partner companies
related to concepts and techniques of domain-specific modeling and lan-
guages:

Aragon: development of a graphical-user interface builder for an object-
oriented application framework for mobile devices [PPRL07].

Testbed: development of a software testbed for mobile software frameworks
[HHK+08].

OdcEditor: development of an end-user programming environment for in-
jection molding machines [PP09].

The remainder of this section focuses on an overview of the field of domain-
specific languages and modeling in general and its application to the afore-
mentioned research projects at SCCH.

Overview of the Field 5.1

Domain-specific modeling has two mutual dependent goals [KT08]: First,
raise the level of abstraction beyond programming by specifying the solution
in a language that directly uses concepts and rules from a specific problem
domain. Second, generate final products in a chosen programming language
or other form from these high-level specifications.

To achieve these goals, a domain-specific modeling solution consists of
following parts (see [KT08]): a domain-specific language, code generators,
and a domain framework.

Domain-Specific Language

A domain-specific language (DSL) provides concepts and rules to represent
elements in the problem domain on language level. In that, it allows express-
ing problems of the given domain in a more natural and intuitive way, raises

216 Gerhard Weiss, Gustav Pomberger et al.

the level of abstraction in the given domain, and brings software specification
closer to the domain experts. In distinction to general-purpose programming
languages, which are universally applicable to many domains, domain-specific
languages are created specifically for problems in the domain and are not in-
tended to problems outside it.

As a formal language, a DSL is defined by its concrete syntax, abstract
syntax, and semantics. The concrete syntax (or notation) specifies the con-
crete appearance of a DSL visible to the user. The notation can be one of
various forms—textual, graphical, tabular, etc.—depending on the problem
domain at hand. The concrete syntax usually is of increased importance for
DSLs, as it—to a great extent—determines acceptance by users.

The goal of the abstract syntax (or meta-model in context of model-driven
development) is to describe the structural essence of a language including
elements and relationships between elements like containment and references.
Concrete and abstract syntax of textual languages are often defined in a single
source [KRV07, GBU08] or the concrete syntax defines the abstract syntax
implicitly [LJJ07, PP08].

Whereas the formal definition of both abstract and concrete syntax is well
elaborated, the language semantics is usually given by the code generators.
Formal definition of language semantics is still an open research field, e.g.
[Sad08].

In general, DSLs are either standalone, embedded into a host language,
or used as domain-specific presentation extensions. A standalone DSL pro-
vides full abstraction of the underlying general-purpose programming lan-
guage used for the solution [KT08]. An embedded DSL is one which extends
an existing general-purpose language (e.g. [AMS08]). A domain-specific pre-
sentation extension of a general-purpose programming language (e.g. [EK07])
facilitates readability and closes the gap between problem and solution do-
main. In context of domain-specific modeling, the focus is on standalone
DSLs.

Code Generators

A code generator extracts information from a DSL program and generates
code in a target language. The target code is either in a general-purpose
programming language, which then will be compiled and linked with the
domain framework [KT08], or is in some intermediate representation that is
interpreted by the domain framework [HHK+08].

Code generation works with transformation rules which specify how the
different elements in the DSL program are transformed into target language
constructs. For textual output, the transformation techniques model-to-text
and text-to-text [LJJ07] are used, depending on the representation of the

IV Software Engineering – Processes and Tools 217

DSL program (model or text). For the former one, two main approaches are
available [CH03]: visitor-based and template-based.

Domain Framework

A domain framework provides the interface between the generated code and
the underlying target platform. Domain-specific frameworks [FJ99] are not
specific to the DSM approach but a general approach for software reuse to
increase productivity in a specific domain. However, a domain framework can
support a DSM approach by providing the immutable part of a solution not
visible to users which can be customized and configured by DSL programs.
In general, a domain framework is written in a general-purpose programming
language by and for software experts, whereas a DSM solution puts a domain-
specific language on top of a framework.

Tool Support

The success of a DSM solution largely depends on provided tool support to
create and manipulate software models in a given domain-specific language
[PP08]. Building a DSM solution should be possible without having to man-
ually program the tool support.

Figure 22 shows the tool chain supporting a DSM approach. A powerful
meta-modeling approach is crucial for defining concrete and abstract syntax
of a DSL language. The goal is to generate editors, compilers and other lan-
guage tools from the declarative specification. On the other side, code gener-
ation is facilitated by the specification of code generation rules, which specify
how the language elements defined in the meta-model should be translated
into target code. Today, several powerful DSL frameworks exist which support
language engineering for graphical as well as textual DSLs, e.g., EMF and
GMF tools for Eclipse [SBPM09], DSL Tools in MS Visual Studio [CJKW07],
or the MetaEdit+ environment [KT08]. A comparison of available platforms
for textual languages can be found in [PP08].

218 Gerhard Weiss, Gustav Pomberger et al.

Figure 22 DSM tool chain.

5.2 Modeling and Code Generation

In this subsection, we present results from an application-oriented research
project carried out by SCCH and its partner company Comneon10. The goal
of this project was to develop a platform-independent builder tool for man-
machine interfaces (MMI) for mobile and embedded devices. Tool support
for graphical user interfaces (GUI) or MMIs are recognized as traditional
domains where domain-specific modeling can improve both productivity and
flexibility by removing the gap between source code and the resulting MMI.
In this research project we have developed modeling, meta-modeling, and
code generation concepts and have implemented them in the builder tool
Aragon [PPRL07]. The tool is used together with the object-oriented C++
framework APOXI developed by Comneon for supporting the multi-stage
customization process carried out by domain experts.

As a typical domain framework, APOXI has been designed to meet the spe-
cial requirements of mobile, embedded devices and provides specific, easy to
use and comprehensible APIs for MMI and application development. Applica-
tion development follows the general idea of application frameworks [Joh99],
combined with a strict separation of application behavior and user interface
to ease the MMI customization process. Mobile phone manufacturers (MPM)
develop customized software solutions based on the framework and customize
and adapt their solutions to meet requirements of different mobile phone net-
work operations and market needs resulting in up to 60 different variants of
an MMI. MPM developers are typical domain experts that find it difficult
to work with plain C++ APIs provided by APOXI. Hence, there is a need
for a domain-specific modeling tool to create, adapt, and customize MMIs of
embedded devices.

The main challenge for developing a platform-independent MMI builder
tool in the domain of mobile and embedded devices were to provide accurate

10 www.comneon.com

IV Software Engineering – Processes and Tools 219

feedback of a resulting MMI even in the modeling (design) phase for a large
set of different devices and to provide code generators that transforms MMI
models into platform-specific code that can be used by the APOXI framework.
Figure 23 shows a screen dump of the tool Aragon which has been developed
on top of the Eclipse platform.

Screen dump of the APOXI GUI Editor. Figure 23

Domain Modeling

Domain modeling in the project started by considering the framework code,
i.e., the APOXI framework, the look and feel of resulting MMIs, the require-
ments of the multi-stage configuration process, and constraints and pref-
erences stemming from the different stakeholders involved. In general, for
building MMI solutions of mobile devices a domain expert has to have means
to specify the screens with user interface elements, their individual settings,

220 Gerhard Weiss, Gustav Pomberger et al.

their layout and positioning, containment relations, and how the user inter-
face gestures are connected to application behavior. In distinction to other UI
builder tools, Aragon pursues an approach which is target agnostic, i.e., the
tool itself is not dependent on the target implementation but fully configured
by meta-information which is realized in a target independent and extensible
form.

As result, the meta-model, i.e., the abstract syntax of the modeling lan-
guage, comprises the following concepts:� Meta-information on UI components provided by a framework (e.g. APOXI)

and extensions like windows and menus together with their attributes, and
constraints on their configuration, composition, and layout.� Meta-information on available applications and features provided by ap-
plications. This information is required to connect MMI elements with
application features implemented in a general-purpose programming lan-
guage, e.g., the C++ programming language.

Although, this information can be extracted from source code to a large
extend, domain experts want to define further constraints concerning com-
position of UI components that have to be validated and, hence, must be
included in the meta-model. Aragon therefore supports a dual approach, i.e.,
parts of the meta-information is extracted from source code while additional
information can be provided by the modeller. However, the meta-model is the
sole information Aragon uses for configuring the editor, filling the component
palette with elements, guiding the user actions, and validating domain models
(e.g. window composition).

In a typical DSM solution, only a few domain experts define the meta-
model, whereas users of a DSM solution are not concerned with it. For
Aragon, this is not sufficient because of the multi-stage development pro-
cess including different stakeholders. Besides the framework team that spec-
ify meta-model for the APOXI framework and basic applications, also MPM
developers define meta-models about new applications and extensions to the
APOXI framework. Hence, more powerful tool support to create, maintain,
and validate meta-models by users of the DSM solution is required and
provided by Aragon resulting in more flexibility compared to other meta-
modeling environments [SBPM09, CJKW07, LKT04]. In Aragon therefore, a
flexible meta-modeling scheme based on XML is defined which allows adding
meta-information by simply adding additional XML files.

For graphical DSLs, the concrete syntax, i.e. the visual representation of
the models, is usually defined by specifying the visual representation of the
language elements in the meta-model. In Aragon however, the visual represen-
tation is not part of the tool, but visual feedback is provided directly by the
target framework, e.g. APOXI, as shown in Figure 23. The APOXI instance
accepts a MMI model sent by the Aragon tool, e.g. a screen layout, creates
the corresponding window object with all child objects and sends back the
resulting display image to Aragon. Aragon then merges the resulting image

IV Software Engineering – Processes and Tools 221

with the invisible domain-model. Besides rendering the corresponding visual
representation, some additional information, in particular positioning infor-
mation of UI elements are extracted from the target platform and sent back
to Aragon. This avoids reimplementation of rendering and layout algorithms,
which are provided by the domain framework anyway.

The great advantage of this approach for MMI design is, that any diver-
gence between the visual feedback gained in the design stage and the final
appearance on the target device is eliminated. Aragon guarantees exact visual
feedback according to the target device already in the modeling (or design)
phase. Furthermore, the approach used by the Aragon tools is automatically
extensible because new user interface elements available in a domain frame-
work, e.g. APOXI, can be displayed in the Aragon editors without further
modification of the tools. In addition, by replacing the small interface of
Aragon to the target framework, Aragon can easily be adapted to any target
platform.

Code Generation

According to the DSM architecture, code generators transform models con-
forming to a DSL into target code or an intermediate representation which
then is interpreted on the target. Aragon supports both forms of code gen-
eration, i.e., it allows transforming a window layout alternatively to resource
files or to C++ source code. The former one is used for easier customization
because resource files may be stored on flash memory of a mobile device and
easily replaced. The latter one is more compact and can be loaded fast into
memory, which is required for low-end mobile devices due to limited memory
and CPU resources.

Because of the textual output of both forms, the Aragon code generators
follow the transformation technique model-to-text [LJJ07]. For this technique
two main approaches are available [CH03]: visitor-based and template-based.
However, both approaches hinder extensibility by DSM users as required for
Aragon. The reason is that template languages are often complex and visitors
directly operate on the internal representation of a meta-model, which usually
shall be hidden to DSM users.

As consequence, we have combined both techniques to a two-phase code
generator, which can be extended by DSM users more easily:

1. Domain models given in XML are transformed by means of XSLT into
an intermediate model (model-to-model transformation). The XSLT rules
can be extended by DSM users.

2. A non-extensible visitor transforms the intermediate model into resulting
resource files or C++ source code (model-to-text transformation).

222 Gerhard Weiss, Gustav Pomberger et al.

Besides this, Aragon also provides template-based, non-extensible code gen-
erators that generate and update C++ source code for applications based on
available meta-data of applications. This allows automatic synchronization
of meta-model and C++ source code and increases productivity. In this way,
common application code concerning registration and feature invocation can
be automatically generated from meta-models.

Altogether, the architectural features as described above result in a flex-
ible and extensible tool which, in its core, is independent from the target
framework (which is currently APOXI). Actually, being almost APOXI ag-
nostic and only having a tiny interface, Aragon is readily prepared to be used
together with other frameworks for MMI design.

5.3 Textual Domain-Specific Languages

In this subsection, we present challenges and results from an application-
oriented research project Testbed [HHK+08] aiming the development of
a software testbed for unit/integration/system testing of mobile software
frameworks.

The field of textual domain-specific languages is well elaborated, mainly
from experience over five decades on textual general-purpose programming
languages. This includes language definition (concrete and abstract syntax)
as well as tool support.

Usually, the concrete syntax (CS) is defined in form of a context-free gram-
mar and the abstract syntax (AS) is either explicitly defined and mapped
to concrete syntax, implicitly derived from concrete syntax or concrete and
abstract syntax are defined in single source [PP08]. On contrary, other ap-
proaches [JBK06, MFF+06] allows the description of a textual concrete syn-
tax for a given abstract syntax in form of a meta-model.

Tool support for textual languages includes text-to-model transformation
(parsing), editor support, and code generation. The automatically genera-
tion of compiler frontends including scanner and parser for text-to-model
transformation is an established area and a lot of such tools (e.g. CoCo/R,
LPG, ANTLR) are available. As a consequent further development, actual ap-
proaches as enumerated in [PP08] also automatically generate editor support
from a context-free grammar definition and provide support for template-
based or visitor-based code generation.

For the Testbed project, we followed a DSM approach by providing a tex-
tual domain-specific language to specify test cases that can be executed by a
test environment. Domain-specific language for testing has been applied by
various approaches (e.g. Sinha [SSM03] and Siddhartha [RR99]). In particu-
lar, the usage of DSLs for testing of mobile software frameworks has several
advantages [HHK+08]:

IV Software Engineering – Processes and Tools 223� Testers usually are not familiar with source code of the system under test
(SUT) even are not usually C++ experts.� Languages like C++ cause many programming errors, most notable er-
rors concerning memory management. Using a high-level testing language
prevents many programming errors and facilitates more robust test cases
that cannot harm the SUT.� The use of a separate language (and not the language used to program the
SUT) leads to decoupling of the SUT and test cases. Instead of using the
API of a SUT directly, high-level language constructs defined by a DSL
are more stable with regard of changes of the SUT.� A DSL also facilitates high-level constructs for testing as well as of the
problem domain.

We defined a textual domain-specific language that includes first-class con-
cepts on language level for testing of mobile software frameworks. Besides
general-purpose elements for assignment, loops, conditional statements, etc.,
the language provides following domain-specific elements:� Statements to verify test results.� Statements to control test case execution.� Statements for logging.� Statements to simulate the protocol stack for both sending and receiving

signals of different communication protocols from a test case.

Figure 24 gives an (simplified) example of a test case intended to test a
single function of the system under test. The instruction in line 2 simulates a
function call to the SUT which in turn sends a signal (MN ATTACH REQ)
to the protocol stack. This event is consumed and verified from the statement
in line 3. To simulate the response back from the protocol stack to the SUT,
an SDL signal is created and initialized (lines 4–6) and sent to the SUT in
line 7. Triggered by this event, the SUT will call a callback function. This call
is consumed and verified by the script in line 8. Test scripts written in the
defined language are compiled into an intermediate code that is interpreted
by the test environment which can be considered as domain framework in
context of a DSM solution.

End-User Programming 5.4

In this subsection, we present results from an application-oriented research
project carried out by SCCH and the COMET partner company KEBA AG.
The goal of this project was to develop a tool prototype that supports end
users (e.g. machine operators) without detail software development expertise
to program control programs of injection molding machines. Furthermore,

224 Gerhard Weiss, Gustav Pomberger et al.

Figure 24 Notation and editing support for testing language.

the modification of control programs must be possible on the touch screen
on the machine directly.

In general, end-user programmers (EUP) are people who write programs,
but not as their primary job function [MKB06]. Instead, they must write
programs in support of achieving their main goal, which is something else.
End-users are often experts of a certain domain, like electrical engineering,
robotics, or plastics. Such domain experts have to transfer their domain
knowledge into a representation that can be understood by the computer.

We have chosen a DSM approach for several reasons. As reported in
[PHS+08a], current modeling notations and languages in the automation
domain do not satisfy the requirements of a programming language, which
can be used by domain experts. On contrary, domain-specific languages
are a proven approach to bring programming closer to application domains
[PHS+08a], and hence, to domain experts. By following a DSM approach,
the challenge is to provide a language or notation that can be used by end-
users on the machine directly. In this context, end-users are domain experts
as machine operators and commissioning specialists.

Language for End-User Programming

A domain-specific language for programming machine cycles of injection
molding machines has to incorporate machine aggregates, aggregate actions,
and blocks of sequential or parallel actions. On the meta-model level, individ-
ual aggregate actions of a machine connected together according to sequential
and parallel executions result in the abstract syntax graph for an entire ma-
chine cycle.

To visualize a machine cycle to end users, the graph is not displayed di-
rectly but by means of a notation (concrete syntax) that arranges individual

IV Software Engineering – Processes and Tools 225

nodes and their connections in a two dimensional way, as shown in Figure 25.
Nodes representing aggregate actions are placed in horizontal columns result-
ing in a column for each aggregate. The chosen icons together with the order
of columns corresponding to the aggregate position on the actual machine
give more specific information for domain experts to identify individual ac-
tions of aggregates compared to general-purpose programming languages or
software diagrams. Vertically, the actions are placed according to their de-

Notation, interaction, and tool support to manipulate machine cycles on
touch screens.

Figure 25

pendency starting with the very first action of a machine cycle on the top.
The vertical dimension of a single action and, hence, of the entire graph,
corresponds to the time required to execute an action, or the entire machine
cycle respectively. This technique that maps the property duration of an ac-
tion to a visual dimension facilitates to locate time-consuming actions and
to identify actions along the critical path.

The described incorporation of domain aspects (e.g. aggregates and dura-
tion) as elements of a visual domain-specific language is a typical example
how a DSL can facilitate end-user programming for domain exerts.

Visualization and Interaction

As pointed out earlier, the success of a DSM solution largely depends on
provided tool support to create and manipulate software models, e.g. machine
cycles, in a given domain-specific language. From our experience, tool support

226 Gerhard Weiss, Gustav Pomberger et al.

becomes much more important when interaction is done by end-users on touch
screens compared to interaction on personal computers with keyboard and
mouse pointer devices.

For instance, the modification of a machine cycle by inserting a new action
is a non-trivial action on a touch screen that requires special guidelines on
individual steps as shown in Figure 25. After pressing the insert button (2),
the user has to perform several steps to insert a new action, whereas the
editor gives visual feedback about the next step. First, the user selects the
corresponding aggregate from the column headers and, afterwards, selects
from available actions provided by the selected aggregate (3). Second, the
user selects an already existing action and the relative insertion option (4).

For end-user programming, it is also important to achieve a fault tolerance
for user interaction so that users can cancel operations at any time. The
specification of end-users needs in form of personas [MK08] and usability
evaluations provides valuable feedback for the design of both the notation as
well as the interaction concepts.

Acknowledgements

Research and development described in this chapter has been carried out by
Software Competence Center Hagenberg GmbH (SCCH) in close cooperation
with its scientific partners and its partner companies within the frame of the
Austrian Kplus and COMET competence center programs.

References

[ABD+04] Alain Abran, Pierre Bourque, Robert Dupuis, James W. Moore, and
Leonard L. Tripp. Guide to the Software Engineering Body of Knowledge
- SWEBOK. IEEE Press, Piscataway, NJ, USA, 2004 version edition, 2004.

[AGM05] Paris Avgeriou, Nicolas Guelfi, and Nenad Medvidovic. Software architecture
description and uml. pages 23–32. 2005.

[AMS08] Lennart Augustsson, Howard Mansell, and Ganesh Sittampalam. Paradise:
a two-stage dsl embedded in haskell. In ICFP ’08: Proceeding of the 13th
ACM SIGPLAN international conference on Functional programming, pages
225–228, New York, NY, USA, 2008. ACM.

[BA04] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace

Change (2nd Edition). Addison-Wesley Professional, 2 edition, November
2004.

[BAB+05] Stefan Biffl, Aybüke Aurum, Barry Boehm, Hakan Erdogmus, and Paul
Grünbacher. Value-Based Software Engineering. Springer Verlag, oct 2005.

[Bac97] James Bach. Good enough quality: Beyond the buzzword. Computer, 30(8):96–
98, 1997.

References 227

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice,
Second Edition. Addison-Wesley Professional, April 2003.

[BD04] Pierre Bourque and Robert Dupuis, editors. SWEBOK - Guide to the Software
Engineering Body of Knowledge, 2004 Version. IEEE Computer Society, 2004
version edition, 2004.

[Bec02] Kent Beck. Test Driven Development: By Example. Addison-Wesley Profes-
sional, November 2002.

[Bei90] Boris Beizer. Software Testing Techniques 2E. International Thomson Com-
puter Press, 2nd edition, June 1990.

[BG00] Kent Beck and Erich Gamma. More Java Gems, chapter Test-infected: pro-
grammers love writing tests, pages 357–376. Cambridge University Press, 2000.

[Boe76] B. W. Boehm. Software engineering. Transactions on Computers, C-
25(12):1226–1241, 1976.

[Boe88] B. W. Boehm. A spiral model of software development and enhancement.
Computer, 21(5):61–72, May 1988.

[BR08] Armin Beer and Rudolf Ramler. The role of experience in software testing
practice. In Proceedings of the 34th EUROMICRO Conference on Software
Engineering and Advanced Applications, pages 258–265, Parma, Italy, 2008.
IEEE Computer Society.

[Bru01] H. Bruyninckx. Open robot control software: the OROCOS project. In
Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International
Conference on, volume 3, pages 2523–2528 vol.3, 2001.

[BW08] Georg Buchgeher and Rainer Weinreich. Integrated software architecture man-
agement and validation. In Software Engineering Advances, 2008. ICSEA ’08.
The Third International Conference on, pages 427–436, 2008.

[BWK05] Stefan Berner, Roland Weber, and Rudolf K. Keller. Observations and lessons
learned from automated testing. In Proceedings of the 27th international con-
ference on Software engineering, pages 571–579, St. Louis, MO, USA, 2005.
ACM.

[CBB+02] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed
Little, Robert Nord, and Judith Stafford. Documenting Software Architectures:
Views and Beyond. Addison-Wesley Professional, September 2002.

[CEC00] Krzysztof Czarnecki, Ulrich Eisenecker, and Krzysztof Czarnecki. Genera-
tive Programming: Methods, Tools, and Applications. Addison-Wesley Profes-
sional, June 2000.

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation
approaches. In Proceedings of the 2nd OOPSLA Workshop on Generative
Techniques in the Context of MDA, 2003.

[Cha05] R. N. Charette. Why software fails. IEEE Spectrum, 42(9):42–49, September
2005.

[Chr92] Gerhard Chroust. Modelle der SoftwareEntwicklung. Oldenbourg Verlag
München Wien, 1992. in German.

[CJKW07] Steve Cook, Gareth Jones, Stuart Kent, and Alan C. Wills. Domain Specific
Development with Visual Studio DSL Tools (Microsoft .Net Development).
Addison-Wesley Longman, Amsterdam, May 2007.

[CKK02] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Archi-
tectures: Methods and Case Studies. Addison-Wesley Professional, January
2002.

[Cle95] Paul Clements. Formal methods in describing architectures. In Monterey
Workshop on Formal Methods and Architecture, September 1995.

[Cle96] Paul C. Clements. A survey of architecture description languages. In IWSSD
’96: Proceedings of the 8th International Workshop on Software Specification
and Design, Washington, DC, USA, 1996. IEEE Computer Society.

228 Gerhard Weiss, Gustav Pomberger et al.

[CMM06] CMMI for development, version 1.2. Technical report CMU/SEI-2006-TR-
008, Carnegie Mellon University, Software Engineering Institute, Pittsburgh,
PA 15213-3890, August 2006.

[CN02] P. Clements and L. N. Northrop. Software Product Lines: Practices and Pat-
terns. Addison Wesley Professional Series: The SEI Series in Software Engi-
neering. Addison Wesley, 2002.

[Cop04] Lee Copeland. A Practitioner’s Guide to Software Test Design. Artech House
Publishers, 2004.

[Cza05] Krzysztof Czarnecki. Overview of generative software development. pages
326–341. 2005.

[DeM86] T. DeMarco. Controlling Software Projects: Management, Measurement, and
Estimates. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1986.

[Dio93] R. Dion. Process improvement and the corporate balance sheet. IEEE Soft-
ware, pages 28–35, July 1993.

[DN02] L. Dobrica and E. Niemela. A survey on software architecture analysis meth-
ods. Software Engineering, IEEE Transactions on, 28(7):638–653, 2002.

[Dor93] Alec Dorling. Software Process Improvement and Capability Determination.

Software Quality Journal, 2(4):209–224, December 1993. also in: Information
and Software Technology, vol. 35, no. 6/7, June 1993, p. 404.

[Dor09] Bernhard Dorninger. ProMoRTE: A process model runtime environment based
on OSGi. 2009. accepted for publication at 7th IEEE International Conference
on Industrial Informatics (INDIN 2009).

[Dou02] Bruce Powell Douglass. Real-Time Design Patterns: Robust Scalable Architec-
ture for Real-Time Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[DW06] Patricia Derler and Rainer Weinreich. Models and tools for soa governance. In
International Conference on Trends in Enterprise Application Architecture.
Springer Lecture Notes on Computer Science (LNCS), December 2006.

[Eck05] Wayne W. Eckerson. Performance Dashboards: Measuring, Monitoring, and
Managing Your Business. Wiley, October 2005.

[EJB06] Enterprise javabeans 3.0 specification, 2006.
[EK07] Andrew D. Eisenberg and Gregor Kiczales. Expressive programs through pre-

sentation extension. In AOSD ’07: Proceedings of the 6th international con-
ference on Aspect-oriented software development, pages 73–84, New York, NY,
USA, 2007. ACM.

[FG99] Mark Fewster and Dorothy Graham. Software Test Automation. Addison-
Wesley Professional, September 1999.

[FJ99] Mohamed Fayad and Ralph Johnson. Domain-Specific Application Frame-
works: Frameworks Experience by Industry. John Wiley & Sons, October
1999.

[FPC97] William A. Florac, Robert E. Park, and Anita D. Carleton. Practical software
measurement: Measuring for process management and improvement. Guide-
book CMU/SEI-97-HB-003, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA 15213, April 1997.

[Gar84] David A. Garvin. What does product quality really mean? Sloan Management
Review, 26(1):25–45, Fall 1984.

[Gar00] David Garlan. Software architecture: a roadmap. In ICSE ’00: Proceedings
of the Conference on The Future of Software Engineering, pages 91–101, New
York, NY, USA, 2000. ACM Press.

[GBU08] Thomas Goldschmidt, Steffen Becker, and Axel Uhl. Classification of concrete
textual syntax mapping approaches. pages 169–184. 2008.

[GJ96] Pankaj K. Garg and Mehdi Jazayeri, editors. ProcessCentered Software Engi-
neering Environments. IEEE Computer Society Press, 1996.

[Gre07] J. Grenning. Applying test driven development to embedded software. Instru-
mentation & Measurement Magazine, IEEE, 10(6):20–25, 2007.

References 229

[Ham04] Paul Hamill. Unit Test Frameworks. O’Reilly Media, Inc., October 2004.
[HB06] LiGuo Huang and Barry Boehm. How much software quality investment is

enough: A Value-Based approach. IEEE Software, 23(5):88–95, 2006.
[HCR+94] James Herbsleb, Anita Carleton, James Rozum, Jane Siegel, and David

Zubrow. Benefits of CMM-based software process improvement: Initial re-
sults. Technical Report CMU/SEI-94-TR-013, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, August 1994.

[Hel07] Hello2morro. Sonarj. http://www.hello2morrow.de, 2007.
[HHK+08] Walter Hargassner, Thomas Hofer, Claus Klammer, Josef Pichler, and Gernot

Reisinger. A script-based testbed for mobile software frameworks. In Proceed-
ings of the First International Conference on Software Testing, Verification
and Validation, pages 448–457. IEEE, April 2008.

[HNS99] Christine Hofmeister, Robert Nord, and Dilip Soni. Applied Software Archi-
tecture. Addison-Wesley Professional, November 1999.

[Hof05] Christine Hofmeister. Architecting session report. In WICSA ’05: Proceed-
ings of the 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA’05), pages 209–210, Washington, DC, USA, 2005. IEEE Computer
Society.

[HSSL02] B. Henderson-Sellers, F. Stallinger, and B. Lefever. Bridging the gap from pro-
cess modelling to process assessment: the OOSPICE process specification for
component-based software engineering. In Proceedings of the 28th Euromicro
Conference, pages 324–331. IEEE Computer Society, 2002.

[HT06] Brent Hailpern and Peri Tarr. Model-driven development: The good, the bad,
and the ugly. IBM Systems Journal, 45(3):451–461, July 2006.

[Hum89] W. Humphrey. Managing the Software Process. AddisonWesley Reading
Mass., 1989.

[Hum95] W. Humphrey. A Discipline for Software Engineering. SEI Series in Software
engineering. AddisonWesley, 1995.

[IEE90] IEEE Std 610.12-1990: IEEE standard glossary of software engineering termi-
nology, 1990.

[IMP05] P. Inverardi, H. Muccini, and P. Pelliccione. Dually: Putting in synergy uml
2.0 and adls. In WICSA ’05: Proceedings of the 5th Working IEEE/IFIP
Conference on Software Architecture, pages 251–252, Washington, DC, USA,
2005. IEEE Computer Society.

[Int08] International Organization for Standardization (ISO). Systems and software
engineering - architectural description working draft 3, 2008.

[ISO95] ISO/IEC 12207:1995, Information technology - Software life cycle processes,
1995. Amd.1:2002; Amd.2:2004.

[ISO98] ISO/IEC TR 15504-7:1998(e), Information technology - Software process as-
sessment - Part 7: Guide for use in process improvement, 1998.

[ISO01] ISO/IEC 9126-1:2001, Software engineering - Product quality - Part 1: Quality
model, 2001.

[ISO03] ISO/IEC 15504:2003, Information Technology - Process Assessment, 2003.
[ISO05] ISO/IEC 25000:2005, Software engineering - Software product Quality Re-

quirements and Evaluation (SQuaRE) - Guide to SQuaRE, 2005.
[ISO09] ISO/IEC PDTR 29110:2009, Software Engineering - Lifecycle Profiles for Very

Small Enterprises (VSE), January 2009.
[JBK06] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev. Tcs: a dsl for the specification

of textual concrete syntaxes in model engineering. In GPCE ’06: Proceedings of
the 5th international conference on Generative programming and component
engineering, pages 249–254, New York, NY, USA, 2006. ACM.

[JGJ97] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture, Process
and Organization for Business Success. Addison-Wesley Professional, 1997.

[Joh99] Ralph E. Johnson. Building Application Frameworks: Object-Oriented Foun-
dations of Framework Design. John Wiley & Sons, 1 edition, September 1999.

230 Gerhard Weiss, Gustav Pomberger et al.

[Kan02] Stephen H. Kan. Metrics and Models in Software Quality Engineering.
Addison-Wesley Longman Publishing, 2002.

[KC04] Ralph Kimball and Joe Caserta. The Data Warehouse ETL Toolkit: Practical
Techniques for Extracting, Cleaning, Conforming, and Delivering Data. Wiley,
September 2004.

[KFN99] Cem Kaner, Jack Falk, and Hung Q. Nguyen. Testing Computer Software.
Wiley, 2 edition, April 1999.

[Kin01] Atte Kinnula. Software Process Engineering Systems: Models and Industry
Cases. Oulu University Press, 2001. ISBN 951-42-6508-4.

[KL05] A.G. Koru and H. Liu. Building effective defect-prediction models in practice.
IEEE Software, 22(6):23–29, 2005.

[KOS06] P. Kruchten, H. Obbink, and J. Stafford. The past, present, and future for
software architecture. Software, IEEE, 23(2):22–30, 2006.

[Kru95] Philippe Kruchten. The 4+1 view model of architecture. IEEE Softw.,
12(6):42–50, November 1995.

[Kru03] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-
Wesley, 3rd edition, 2003. ISBN 0321197704, 9780321197702.

[KRV07] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated definition of
abstract and concrete syntax for textual languages. pages 286–300. 2007.

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling
Full Code Generation. John Wiley & Sons, March 2008.

[KWB03] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model
Driven Architecture–Practice and Promise. Addison-Wesley Professional,
April 2003.

[KWZ09] Thomas Kriechbaum, Rainer Weinreich, and Thomas Ziebermayr. Compatibil-
ity rules for the homogeneous evolution of enterprise services. In International
Symposium on Service Science (ISSS), pages 189–200. Logos Verlag Berlin,
March 2009.

[LBB+05] U. Löwen, R. Bertsch, B. Böhm, S. Prummer, and T. Tetzner. Systema-
tisierung des Engineerings von Industrieanlagen. atp - Automatisierungstech-
nische Praxis, Oldenbourg Industrieverlag, (4):54–61, 2005. in German.

[LH93] Wei Li and Sallie Henry. Object-oriented metrics that predict maintainability.
J. Syst. Softw., 23(2):111–122, November 1993.

[LH09] Henrik Lochmann and Anders Hessellund. An integrated view on modeling
with multiple domain-specific languages. In Proceedings of the IASTED In-
ternational Conference Software Engineering (SE 2009), pages 1–10. ACTA
Press, February 2009.

[LJJ07] B. Langlois, C. E. Jitia, and E. Jouenne. Dsl classification. In Proceedings of
the 7th OOPSLA Workshop on Domain-Specific Modeling, 2007.

[LKT04] Janne Luoma, Steven Kelly, and Juha-Pekka Tolvanen. Defining domain-
specific modeling languages: Collected experiences. Proceedings of the 4th
OOPSLA Workshop on Domain-Specific Modeling, 2004.

[Lon93] J. Lonchamp. A structured conceptual and terminological framework for soft-
ware process engineering. In Software Process, 1993. Continuous Software
Process Improvement, Second International Conference on the, pages 41–53,
Feb 1993.

[LR07] Stefan Larndorfer and Rudolf Ramler. TestCockpit: business intelligence for
test management. In Work in Progress Session in conjunction with 33rd EU-
ROMICRO Conf. on Software Engineering and Advanced Applications, 2007.

[LRB09] Stefan Larndorfer, Rudolf Ramler, and Clemens Buchwiser. Experiences and
results from establishing a software cockpit. In upcoming, 2009.

[LRFL07] Stefan Larndorfer, Rudolf Ramler, Christian Federspiel, and Klaus Lehner.
Testing High-Reliability software for continuous casting steel plants - experi-
ences and lessons learned from siemens VAI. In Proceedings of the 33rd EU-
ROMICRO Conference on Software Engineering and Advanced Applications,
pages 255–262, Luebeck, Germany, 2007. IEEE Computer Society.

References 231

[McF96] Bob McFeeley. IDEAL: A user’s guide for software process improvement. Hand-
book CMU/SEI-96-HB-001, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, February 1996.

[MD08] Tom Mens and Serge Demeyer. Software Evolution. Springer Verlag, March
2008.

[MDT07] Nenad Medvidovic, Eric M. Dashofy, and Richard N. Taylor. Moving archi-
tectural description from under the technology lamppost. Information and
Software Technology, 49(1):12–31, January 2007.

[MFF+06] Pierre-Alain Muller, Franck Fleurey, Frédéric Fondement, Michel Hassenforder,
Rémi Schneckenburger, Sébastien Gérard, and Jean-Marc Jézéquel. Model-
Driven Analysis and Synthesis of Concrete Syntax. 2006.

[MGF07] T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to
learn defect predictors. IEEE Transactions on Software Engineering, 33(1):2–
13, 2007.

[MH04] Jürgen Münch and Jens Heidrich. Software project control centers: concepts
and approaches. Journal of Systems and Software, 70(1-2):3–19, February
2004.

[Mil02] Dave Miller. Fundamental Concepts for the Software Quality Engineer, chap-
ter Choice and Application of a Software Quality Model, pages 17–24. ASQ
Quality Press, 2002.

[MK08] Jennifer Mcginn and Nalini Kotamraju. Data-driven persona development. In
CHI ’08: Proceeding of the twenty-sixth annual SIGCHI conference on Human
factors in computing systems, pages 1521–1524, New York, NY, USA, 2008.
ACM.

[MKB06] Brad A. Myers, Andrew J. Ko, and Margaret M. Burnett. Invited research
overview: end-user programming. In CHI ’06: CHI ’06 extended abstracts on
Human factors in computing systems, pages 75–80, New York, NY, USA, 2006.
ACM.

[MKMG97] R. T. Monroe, A. Kompanek, R. Melton, and D. Garlan. Architectural styles,
design patterns, and objects. Software, IEEE, 14(1):43–52, 1997.

[MMYA01] H. Mili, A. Mili, S. Yacoub, and E. Addy. Reuse-Based Software Engineering:
Techniques, Organizations, and Controls. Wiley-Interscience, 2001.

[MT00] Nenad Medvidovic and Richard N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE Trans. Softw.
Eng., 26(1):70–93, January 2000.

[NBZ06] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to
predict component failures. In Proceedings of the 28th international conference
on Software engineering, pages 452–461, Shanghai, China, 2006. ACM.

[Obj07] Object Management Group. Uml superstructure specification v2.1.1.
OMG Document Number formal/07-02-05 http://www.omg.org/cgi-
bin/apps/doc?formal/07-02-05.pdf, 2007.

[Obj08] Object Management Group. Software & systems process engineering meta-
model specification, version 2.0. http://www.omg.org/spec/SPEM/2.0/PDF,
April 2008.

[Ope08] OpenUP - Open Unified Process, 2008. http://epf.eclipse.org/wikis/openup/.
[OSG07] Osgi service platform release 4, 2007.
[PCCW93] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber. Capa-

bility maturity model for software, version 1.1. Technical Report CMU/SEI-93-
TR-02, Software Engineering Institute, Carnegie Mellon University, February
1993.

[PGP08] F. Pino, F. Garcia, and M. Piattini. Software process improvement in small and
medium software enterprises: A systematic review. Software Quality Journal,
16(2):1573–1367, June 2008.

232 Gerhard Weiss, Gustav Pomberger et al.

[PHS+08a] Herbert Prähofer, Dominik Hurnaus, Roland Schatz, Christian Wirth, and
Hanspeter Mössenböck. Monaco: A dsl approach for programming automation
systems. In SE 2008 - Software-Engineering-Konferenz 2008, pages 242–256,
Munic, Germay, February 2008.

[PHS+08b] Herbert Prähofer, Dominik Hurnaus, Roland Schatz, Christian Wirth, and
Hanspeter Mössenböck. Software support for building end-user programming
environments in the automation domain. In WEUSE ’08: Proceedings of the
4th international workshop on End-user software engineering, pages 76–80,
New York, NY, USA, 2008. ACM.

[PP04] Gustav Pomberger and Wolfgang Pree. Software Engineering. Hanser Fach-
buchverlag, October 2004.

[PP08] Michael Pfeiffer and Josef Pichler. A comparison of tool support for textual
domain-specific languages. Proceedings of the 8th OOPSLA Workshop on
Domain-Specific Modeling, pages 1–7, October 2008.

[PP09] Michael Pfeiffer and Josef Pichler. A DSM approach for End-User Program-
ming in the Automation Domain. 2009. accepted for publication at 7th IEEE
International Conference on Industrial Informatics (INDIN 2009).

[PPRL07] Josef Pichler, Herbert Praehofer, Gernot Reisinger, and Gerhard Leonharts-
berger. Aragon: an industrial strength eclipse tool for MMI design for mobile
systems. In Proceedings of the 25th conference on IASTED International
Multi-Conference: Software Engineering, pages 156–163, Innsbruck, Austria,
2007. ACTA Press.

[PR08] Josef Pichler and Rudolf Ramler. How to test the intangible properties of
graphical user interfaces? In Proceedings of the 2008 International Conference
on Software Testing, Verification, and Validation, ICST 08, pages 494–497.
IEEE Computer Society, 2008.

[PRS00] G. Pomberger, M. Rezagholi, and C. Stobbe. Handbuch für Evaluation und
Evaluierungsforschung in der Wirtschaftsinformatik, chapter Evaluation und

Verbesserung wiederverwendungsorientierter Software-Entwicklung. Olden-
bourg Verlag, München/Wien, 2000. in German.

[PRZ09] Guenter Pirklbauer, Rudolf Ramler, and Rene Zeilinger. An integration-
oriented model for application lifecycle management. 2009. accepted for ICEIS
2009, 11th International Conference on Enterprise Information Systems.

[PSN08] R. Plösch, F. Stallinger, and R. Neumann. SISB - systematic improvement of
the solution business: Engineering strategies for the industrial solutions busi-
ness, version 1.0. Technical report, Software Competence Center Hagengerg,
August 2008. (non-public project deliverable).

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of soft-
ware architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52, October 1992.

[Ram04] Rudolf Ramler. Decision support for test management in iterative and evolu-
tionary development. In Proceedings of the 19th IEEE international conference
on Automated software engineering, pages 406–409, Linz, Austria, 2004. IEEE
Computer Society.

[Ram08] Rudolf Ramler. The impact of product development on the lifecycle of defects.
In Proceedings of the DEFECTS 2008 Workshop on Defects in Large Software
Systems, pages 21–25, Seattle, Washington, 2008. ACM.

[RBG05] Rudolf Ramler, Stefan Biffl, and Paul Grünbacher. Value-Based Software Engi-
neering, chapter Value-Based Management of Software Testing, pages 225–244.
Springer Verlag, 2005.

[RCS03] Rudolf Ramler, Gerald Czech, and Dietmar Schlosser. Unit testing beyond
a bar in green and red. In Proceedings of the 4th International Conference
on Extreme Programming and Agile Processes in Software Engineering, XP
2003, pages 10–12, Genova, Italy, 2003. LNCS.

[Roy70] W. W. Royce. Managing the development of large software systems:: Concepts
and techniques. In Proc. IEEE WESCON, pages 1–9. IEEE, August 1970.

References 233

[RR99] Arthur A. Reyes and Debra J. Richardson. Siddhartha: a method for devel-
oping domain-specific test driver generators. In In Proc. 14th Int. Conf. on
Automated Software Engineering, pages 12–15, 1999.

[RvW07] Ita Richardson and Christiane Gresse von Wangenheim. Why are small soft-
ware organizations different? IEEE Software, 24(1):18–22, January/February
2007.

[RW05] Nick Rozanski and Eóin Woods. Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives. Addison-Wesley Pro-
fessional, April 2005.

[RW06] Rudolf Ramler and Klaus Wolfmaier. Economic perspectives in test automa-
tion: balancing automated and manual testing with opportunity cost. In Pro-

ceedings of the 2006 international workshop on Automation of software test,
pages 85–91, Shanghai, China, 2006. ACM.

[RW08] Rudolf Ramler and Klaus Wolfmaier. Issues and effort in integrating data
from heterogeneous software repositories and corporate databases. In Proceed-
ings of the Second ACM-IEEE international symposium on Empirical software
engineering and measurement, pages 330–332, Kaiserslautern, Germany, 2008.
ACM.

[RWS+09] Rudolf Ramler, Klaus Wolfmaier, Erwin Stauder, Felix Kossak, and Thomas
Natschläger. Key questions in building defect prediction models in practice.
In 10th International Conference on Product Focused Software Development
and Process Improvement, PROFES 2009, Oulu, Finnland, 2009.

[RWW+02] Rudolf Ramler, Edgar Weippl, Mario Winterer, Wieland Schwinger, and Josef
Altmann. A quality-driven approach to web testing. In Ibero-american Con-
ference on Web Engineering, ICWE 2002, pages 81–95, Argentina, 2002.

[Sad08] Daniel A. Sadilek. Prototyping domain-specific language semantics. In OOP-
SLA Companion ’08: Companion to the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications, pages 895–
896, New York, NY, USA, 2008. ACM.

[Sam01] J. Sametinger. Software Engineering with Reusable Components. Springer,
2001.

[SB03] Douglas C. Schmidt and Frank Buschmann. Patterns, frameworks, and mid-
dleware: their synergistic relationships. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, pages 694–704, Washing-
ton, DC, USA, 2003. IEEE Computer Society.

[SBPM09] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework (2nd Edition) (Eclipse). Addison-Wesley Long-
man, Amsterdam, 2nd revised edition (rev). edition, January 2009.

[SCA07] Service component architecture specifications, 2007.
[Sch06] D. C. Schmidt. Guest editor’s introduction: Model-driven engineering. Com-

puter, 39(2):25–31, 2006.
[SDR+02] F. Stallinger, A. Dorling, T. Rout, B. Henderson-Sellers, and B. Lefever. Soft-

ware process improvement for component-based software engineering: an in-
troduction to the OOSPICE project. In Proceedings of the 28th Euromicro
Conference, pages 318–323. IEEE Computer Society, 2002.

[Sha90] M. Shaw. Prospects for an engineering discipline of software. Software, IEEE,
7(6):15–24, Nov 1990.

[She31] Walter A. Shewhart. Economic control of quality of manufactured product. D.
Van Nostrand Company, New York, 1931.

[SJSJ05] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using depen-
dency models to manage complex software architecture. SIGPLAN Not.,
40(10):167–176, October 2005.

[Sof07] Software Tomography GmbH. Sotoarc. http://www.software-
tomography.de/index.html, 2007.

234 Gerhard Weiss, Gustav Pomberger et al.

[Som04] Ian Sommerville. Software Engineering. Addison Wesley, seventh edition, May
2004.

[SPP+06] F. Stallinger, R. Plösch, H. Prähofer, S. Prummer, and J. Vollmar. A process
reference model for reuse in industrial engineering: Enhancing the ISO/IEC
15504 framework to cope with organizational reuse maturity. In Proc. SPICE
2006, Luxembourg, May 4-5, 2006, pages 49–56, May 2006.

[SPPV09] Fritz Stallinger, Reinhold Plösch, Gustav Pomberger, and Jan Vollmar. Bridg-
ing the gap between ISO/IEC 15504 conformant process assessment and or-
ganizational reuse enhancement. 2009. (accepted for SPICE Conference 2009,
Software Process Improvement and Capability Determination, 2-4 June 2009,
Turku, Finland).

[Spr08a] Spring dynamic modules for osgi(tm) service platforms, 2008.
[Spr08b] The spring framework - reference documentation, 2008.
[SPV07] F. Stallinger, R. Plösch, and J. Vollmar. A process assessment based approach

for improving organizational reuse maturity in multidisciplinary industrial en-
gineering contexts. In Proceedings of ESEPG 2007, Amsterdam, 14th June
2007, June 2007.

[SRA06] Christoph Steindl, Rudolf Ramler, and Josef Altmann. Web Engineering: The
Discipline of Systematic Development of Web Applications, chapter Testing
Web Applications, pages 133–153. Wiley, 2006.

[SSM03] A. Sinha, C. S. Smidts, and A. Moran. Enhanced testing of domain specific
applications by automatic extraction of axioms from functional specifications.
In Software Reliability Engineering, 2003. ISSRE 2003. 14th International
Symposium on, pages 181–190, 2003.

[Ste00] David B. Stewart. Designing software components for real-time applications.
In in Proceedings of Embedded System Conference, page 428, 2000.

[Tas02] Gregory Tassy. The economic impacts of inadequate infrastructure for software
testing, NIST planning report 02-3, May 2002.

[Tia05] Jeff Tian. Software Quality Engineering: Testing, Quality Assurance, and
Quantifiable Improvement. Wiley & Sons, 1., auflage edition, February 2005.

[TK05] Juha-Pekka Tolvanen and Steven Kelly. Defining domain-specific modeling
languages to automate product derivation: Collected experiences. pages 198–
209. 2005.

[TMD09] R. N. Taylor, Nenad Medvidovi, and Irvine E. Dashofy. Software Architecture:
Foundations, Theory, and Practice. John Wiley & Sons, January 2009.

[TvdH07] Richard N. Taylor and Andre van der Hoek. Software design and architecture
the once and future focus of software engineering. In FOSE ’07: 2007 Future
of Software Engineering, pages 226–243, Washington, DC, USA, 2007. IEEE
Computer Society.

[V-M06] V-Modell XT, part1: Fundamentals of the V-Modell XT, version 1.2.1. Tech-
nical report, 2006. http://www.v-modell-xt.de/.

[vDKV00] Arie v. van Deursen, Paul Klint, and Joost Visser. Domain-specific languages:
An annotated bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

[vGB02] Jilles van Gurp and Jan Bosch. Design erosion: problems and causes. Journal
of Systems and Software, 61(2):105–119, March 2002.

[Voa08] Jeffrey Voas. Software quality unpeeled. STSC CrossTalk, (Jun 2008):27–30,
2008.

[VRM03] M. Venzin, C. Rasner, and V. Mahnke. Der Strategieprozess - Praxishandbuch
zur Umsetzung im Unternehmen. 2003. in German.

[VS06] Markus Völter and Thomas Stahl. Model-Driven Software Development :
Technology, Engineering, Management. John Wiley & Sons, June 2006.

[Was96] A.I. Wasserman. Toward a discipline of software engineering. Software, IEEE,
13(6):23–31, Nov 1996.

References 235

[Was06] Hironori Washizaki. Product-Focused Software Process Improvement, volume
4034 of Lecture Notes in Computer Science, chapter Building Software Pro-
cess Line Architectures from Bottom Up, pages 415–421. Springer Berlin /
Heidelberg, 2006.

[WH05] Eoin Woods and Rich Hilliard. Architecture description languages in practice
session report. In WICSA ’05: Proceedings of the 5th Working IEEE/IFIP
Conference on Software Architecture (WICSA’05), pages 243–246, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[WV02] James A. Whittaker and Jeffrey M. Voas. 50 years of software: Key principles
for quality. IT Professional, 4(6):28–35, 2002.

[WWZ07] Rainer Weinreich, Andeas Wiesauer, and Thomas Ziebermayr. A component

model for integrating remote applications and services via web portals. Journal
of Object Technology (JOT), 6(8), September 2007.

[WZ05] Rainer Weinreich and Thomas Ziebermayr. Enhancing presentation level in-
tegration of remote applications and services in web portals. In 2005 IEEE
International Conference on Services Computing (SCC’05), volume 2, pages
224–236, Los Alamitos, CA, USA, 2005. IEEE Computer Society.

[WZD07] Rainer Weinreich, Thomas Ziebermayr, and Dirk Draheim. A versioning model
for enterprise services. In 21st International Conference on Advanced Informa-
tion Networking and Applications Workshops (AINAW’07), volume 2, pages
570–575, Los Alamitos, CA, USA, 2007. IEEE Computer Society.

Chapter V

Data-Driven and Knowledge-Based

Modeling

Erich Peter Klement

Edwin Lughofer, Johannes Himmelbauer, Bernhard Moser

Introduction 1

This chapter describes some highlights of successful research focusing on
knowledge-based and data-driven models for industrial and decision pro-
cesses. This research has been carried out during the last ten years in a
close cooperation of two research institutions in Hagenberg:� the Fuzzy Logic Laboratorium Linz-Hagenberg (FLLL), a part of the De-

partment of Knowledge-Based Mathematical Systems of the Johannes
Kepler University Linz which is located in the Softwarepark Hagenberg
since 1993,� the Software Competence Center Hagenberg (SCCH), initiated by several
departments of the Johannes Kepler University Linz as a non-academic
research institution under the Kplus Program of the Austrian Government
in 1999 and transformed into a K1 Center within the COMET Program
(also of the Austrian Government) in 2008.

Our goal is to derive mathematical models for applications in economy and,
in particular, in industry even in situations where comprehensive analytical
models (differential or integral equations etc., usually based on physical or
chemical laws) are either not available or, if they exist, impossible or too
expensive to solve. However, in such complex scenarios quite often expert
knowledge (formulated in linguistic terms) or data from past observations
of the process to be modeled are available, allowing in many cases suitable
knowledge-based and/or data-driven models to be constructed.

The main lines of research described in this chapter reflect some core
competencies of the FLLL and the SCCH (especially its area Knowledge-
Based Technology): fuzzy systems on the one hand (Section 2), in particular
data-driven and evolving systems (Sections 3 and 4) where the FLLL was
the leading partner in the cooperation and, on the other hand, the creation

238 Erich Peter Klement et al.

of fuzzy regression models and support vector machines (Sections 5 and 6)
where the SCCH has particular strength.

Both institutions are very active in these fields in all relevant areas: in
the references given at the end many more results of the basic and applied
research of FLLL and SCCH can be found, while Section 7 exemplifies some
successful cooperations with the industry.

2 Fuzzy Logics and Fuzzy Systems

2.1 Motivation

The development of fuzzy logics and fuzzy set theory started in 1965 with
the paper “Fuzzy sets” by L. A. Zadeh [Zad65] where this quotation is taken
from:

“More often than not, the classes of objects encountered in the real physical world
do not have precisely defined criteria of membership. [. . .] Yet, the fact remains
that such imprecisely defined “classes” play an important role in human thinking,
particularly in the domains of pattern recognition, communication of information,
and abstraction.”

Zadeh’s main idea was to generalize the concept of the characteristic func-
tion 1A : X → {0, 1} of a subset A of the universe of discourse X to its
so-called membership function µA : X → [0, 1] which can assume arbitrary
values in the unit interval [0, 1]: the higher the degree µA(x) for some ele-
ment x ∈ X the more x belongs to the set A.

Typically, fuzzy sets (interpreted by their membership functions) are used
in connection with linguistic expressions like small, medium or large which,
in large parts of human thinking, have fuzzy rather than crisp boundaries
and may have a significant overlap rather than forming crisp partitions.

As a consequence, systems using fuzzy sets are particularly well-suited to
model human-like reasoning. This is particularly useful if for the problem to
be solved no (complete) analytical model (usually derived from physical or
chemical laws) is available or if an existing analytical model is too complex
to be dealt with in real time. In such situations, fuzzy systems and other
methods of soft computing such as neural networks, genetic algorithms or
machine learning are able to use additional information existing only in the
form of linguistic if-then-rules or in the form of data.

V Data-Driven and Knowledge-Based Modeling 239

Fuzzy Logics 2.2

Fuzzy logics are many-valued logics where the set {0, 1} of the two truth
values in Boolean logic is replaced by the unit interval [0, 1].

The basic logical operation is the generalized conjunction, usually a trian-
gular norm (t-norm for short). Triangular norms are binary operations on the
unit interval [0, 1], turning it into an ordered, commutative semigroup with
neutral element 1. They originally were studied in the context of probabilistic
metric spaces [Men42, SS83] (generalized metric spaces where the distance
between two objects is measured by a probability distribution rather than by
a real number) where they play a crucial role in formulation of an appropriate
triangle inequality.

Important examples of t-norms are the minimum, the product and the
 Lukasiewicz t-norm TL given by TL(x, y) = max(x+y−1, 0). By using additive
generators and ordinal sums it is possible to construct and to represent all
continuous triangular norms by means of these three prototypical t-norms
(for more information on this subject see the books [SS83, KMP00, KM05,
AFS06]).

Starting with a (left-)continuous t-norm as an interpretation for the (ex-
tended) logical conjunction, implication and negation can be deduced by
means of the residuum, and a disjunction using a De Morgan-type formula.
Depending on whether one starts with the minimum, the Lukasiewicz t-norm
or the product, one obtains the Gödel, the Lukasiewicz and the product fuzzy
logic (see [Háj98, CDM00, Got01]), and their algebraic counterparts are Heyt-
ing, MV-, and product algebras, respectively.

Fuzzy Systems 2.3

The best-known fuzzy systems are fuzzy controllers which are essentially rule-
based systems assigning (with the help of the so-called compositional rule of
inference and a suitable defuzzification) to each input value the correspond-
ing output value, therefore producing an input-output function. The first
described laboratory experiment with a fuzzy controller concerned the con-
trol of a steam engine [MA75], and the first industrial application reported
in the literature concerned the control of a cement kiln [HØ82].

Fuzzy controllers can be understood in the context of fuzzy logics using
T -equivalences [CCH92, Höh92, Bod03a, Bod03b], i.e., generalized equiva-
lence relations which are reflexive, symmetric and T -transitive, the latter
property being a transitivity based on some t-norm T . For a deeper analy-
sis of the relationship between fuzzy logics, fuzzy sets and fuzzy controllers
see, e.g., [BKLM95, NSTY95, Höh98], an early monograph on fuzzy con-

240 Erich Peter Klement et al.

trol is [DHR93]. Here we only mention the two most important and most
widely used fuzzy controllers, the Mamdani [MA75] and the Takagi-Sugeno
controller [TS85].

We start with the Mamdani controller which uses fuzzy sets both for input
and output and, therefore, needs a defuzzification in order to produce an
input-output function as follows:

Let X be an arbitrary input space, let A1, . . . , AK and B1, . . . , BK be
normalized fuzzy subsets of X and R with Borel-measurable membership
functions, respectively, let T be a Borel-measurable t-norm, and consider the
rulebase (k = 1, . . . , K)

if x is Ak then u is Bk.

Then the Mamdani controller defines the input-output function FM : X → R

given by

FM (x) =

∫

R

µR(x, u) · u du
∫

R

µR(x, u) du

, (1)

provided that
∫

R
µR(x, u) du > 0, where the membership function µR : X ×

R → [0, 1] of the fuzzy relation R on X × R is given by

µR(x, u) = max
[
T
(
µA1(x), µB1(u)

)
, . . . , T

(
µAK

(x), µBK
(u)
)]

.

In a strict mathematical sense, the measurability requirements [Hal50] are
necessary for (1) being well-defined; in practical situations, these hypotheses,
however, are usually (assumed to be) satisfied.

In our definition we have implicitly chosen a special defuzzification method,
namely, the so-called center of gravity contained in equation (1). We only
mention that there are also other methods of defuzzification, e.g., the center
of maximum.

In most practical examples, the t-norm used for the Mamdani controller is
either the minimum or the product; in the first case this particular composi-
tional rule of inference is also referred to as max-min-inference, in the latter
case as max-prod-inference or max-dot-inference.

The second important type of fuzzy controllers is the so-called Takagi-
Sugeno controller which uses crisp values in the output space. In a way this
means that the inference has a built-in defuzzification:

Let X be an input space, let A1, . . . , AK be normalized fuzzy subsets of
X with

∑K
k=1 µAk

(x) > 0 for all x ∈ X , and f1, . . . , fK be functions from X
to R, and consider the rulebase (k = 1, . . . , K)

if x is Ak then u = fk(x).

V Data-Driven and Knowledge-Based Modeling 241

Then the Takagi-Sugeno controller defines the following input-output func-
tion FS : X → R

FS(x) =

K∑

k=1

µAk
(x) · fk(x)

K∑

k=1

µAk
(x)

. (2)

In the special situation, when for k = 1, . . . , K the functions fk are con-
stant, i.e., fk(x) = uk, we speak about a Sugeno controller which also can
be considered as a special case of the Mamdani controller in the sense that
it is a limit of suitable Mamdani controllers (a result which holds for other
defuzzification methods too).

These fuzzy controllers have a universal approximation property allowing
to approximate any continuous input-output function with arbitrary precision
with respect to the sup-norm || · ||∞. This result has been published in several
variants (see, e.g., [DGP92, Kos92, NK92, Buc93, Cas95, CD96, Yin98]). The
following version was given in [Wan92]:

If X is a compact subset of Rn and f : X → R a continuous function then,
for each ε > 0, there exist real numbers u1, u2, . . . , uK , fuzzy subsets Ak

i of
R (i = 1, . . . , n; k = 1, . . . , K) having Gaussian membership functions with
parameters ξk

i and σk
i given by

µAk
i
(xi) = e

−
(xi−ξk

i

σk
i

)2
,

and a rule base (k = 1, . . . , K)

if x1 is Ak
1 and . . . and xn is Ak

n then u is uk

such that the input-output function FS : X → R of the corresponding Sugeno
controller given by

FS(x1, . . . , xn) =

K∑
k=1

(
n∏

i=1

µAk
i
(xi)

)
· uk

K∑
k=1

(
n∏

i=1

µAk
i
(xi)

)

satisfies ||FS − f ||∞ < ε.
This approximation theorem is typical for many other universal approxi-

mation statements based on the Bolzano-Weierstraß theorem [Rud76] because
it is indeed universal concerning the type of input-output functions to be ap-
proximated and the precision which can be reached. It is also typical with
respect to its purely existential nature and the lack of an upper bound for
the number of rules necessary to achieve arbitrary precision. It was shown in
[Mos99] that Sugeno controllers using arbitrarily shaped membership func-

242 Erich Peter Klement et al.

tions are nowhere dense (with respect to the sup-norm) in the set of all
continuous real functions on a compact domain as soon as the number of
rules is bounded from above. For a more detailed discussion of the universal
approximation property of fuzzy systems see [KKM99].

3 Data-Driven Fuzzy Systems

3.1 Motivation

Opposed to knowledge-based fuzzy systems, usually built up exclusively
based on expert knowledge or human experience (see previous section), data-
driven fuzzy systems can be fully automatically generated from numerical
or categorical data, which stem from measurements, features extracted from
context-based data (images, signals, music) or data bases recording entries of
customers etc. This is possible without the necessity of having the underly-
ing physical, chemical etc. laws about the system at hand. Even more, from
the view of the data-driven training algorithms the meaning of the system
variables plays no role. In some cases, it is even necessary to use data-driven
models: for instance when the processes are so complex that a determinis-
tic deduction of analytical models (e.g. differential equations) as well as the
collection of expert knowledge is not possible at all.

The big advantage of data-driven fuzzy systems among other data-driven
modeling techniques such as neural networks, genetic programming, splines
and various machine learning methods, is that� they are universal approximators (see previous section) and� at the same time they still allow some insights by providing linguistically

[CCHM03] and visually interpretable rules [NK98].

Interpretable models may serve as important components in supervision
processes in order to understand models responses better and sometimes to
gain some additional insights into the system. For instance, an operator of
an industrial system may want to know why a certain decision of a fuzzy
classification model was made or he/she is interested in some system depen-
dencies under specific operating conditions in order to intensify his knowledge
about the system. Interpretable models may also motivate the operators to
an enhanced user interaction, e.g. bringing their own knowledge about several
system dependencies into the game. For instance, an operator may change
some structural components of the models because he thinks that they are
not correctly placed resp. wrongly parametrized. This would lead to a hy-
brid approach—data on one hand and expert knowledge on the other—and

V Data-Driven and Knowledge-Based Modeling 243

can be essential for maximizing the information flow into the model building
process. Interpretability of the generated fuzzy models is guaranteed by their
nature to divide a problem into local sub-problems: each rule represents a
local model and can be read and understood as an if-then conjunction (see
also Section 2). The functions in the consequents of the rules influence the
behavior resp. importance of certain variables in the various local regions.

Due to these benefits, data-driven fuzzy systems are nowadays applied in
many application fields such as novelty [FT06] and fault detection [LG08], im-
age classification [SNS+08, SDJ99], decision support systems [MLMRJRT00]
or identification models in control systems [Abo03] and serve as important
components in such applications.

Data-Driven Fuzzy Modeling Approaches 3.2

During the last 20 years a lot of data-driven fuzzy systems approaches were
developed and we will describe the most important concepts in these below.

A possibility to obtain the premise structure of a fuzzy system is by ex-
ploiting clustering techniques for finding clusters (local groups) in the data
which are directly associated with the rules. The fuzzy sets for each variable
are obtained by projecting the clusters onto the various (one-dimensional)
axes. In this sense, clustering is applied for a reasonable partitioning of the
input/output space into various local regions (Figure 1). Approaches which
use this concept are the genfis2 method [YF93] (using subtractive clustering
[Chi94] and implemented in MATLAB’s fuzzy logic toolbox) and its successor
genfis3 (using fuzzy c-means, a fuzzification of the well-known k-means al-
gorithm [Bez81]), FMCLUST [Bab98] (using Gustafsson-Kessel [GK79] clus-
tering) or the approach demonstrated in [ABS02] (applying a Gath-Geva
clustering algorithm [HKKR99]). After projection, the (linear) consequent
parameters of Takagi-Sugeno-type fuzzy systems are usually obtained by a
least squares estimation, either by local learning (estimating parameters for
each rule separately) or by global learning (estimating parameters in all rules
in one sweep) [Lug08a].

A big family of design methods uses genetic algorithms [CH99] for� eliciting the optimal number of rules by achieving a reasonable tradeoff
between accuracy and model complexity (see e.g. [RS01]) and� for (fine-)tuning the parameters within an global optimization process.

Also, see Chapter III for more details on genetic algorithms. These are also
called genetic fuzzy systems [CHHM01, CGH+04]. A central issue therein is
an appropriate coding of the fuzzy systems into strings for ensuring dynamic
update of the number of rules, fast convergence and valid individuals in the
population when applying genetic operators.

244 Erich Peter Klement et al.

Figure 1 Horizontal projection of three clusters onto the input axes x1 and x2 to
form fuzzy sets and three rules.

Another possibility is a numerical optimization procedure for non-linear
(antecedent) parameters in the fuzzy systems to minimize the least squares
errors (and variants) between estimated and predicted target values. This
has the advantage that non-linear parameters are optimized in a determin-
istic manner (opposed to genetic fuzzy systems) with a clear mathemati-
cal formulation of an optimization problem behind (opposed to most of the
clustering-based approaches). A well-known method (also integrated in MAT-
LAB’s fuzzy logic toolbox) is the ANFIS approach [Jan93] exploiting a neuro-
fuzzy system architecture and applying an error back-propagation technique
for optimizing non-linear antecedent parameters. Another method developed
at the FLLL [BLK+06] uses the Levenberg-Marquardt algorithm for optimiz-
ing non-linear antecedent parameters in triangular and Gaussian fuzzy sets,
which uses second order information of the optimization function for fast con-
vergence. RENO [BHBE02] exploits a generalized Gauss-Newton like method
[SS95] as a second-order approximation method with (regularized) smooth-
ing constraints. A novel development at the FLLL is the so-called SparseFIS
approach [LK09]. There, rule weights are introduced and optimized in a co-
herent procedure together with the consequent parameters. Rule selection

V Data-Driven and Knowledge-Based Modeling 245

is achieved by deleting rules with a rule weight lower than ε. A final pro-
cedure exploits a semi-smooth Newton method with sparsity constraints on
the consequent parameters in order to achieve a sort of local embedded fea-
ture selection and to decrease the curse of dimensionality effect in case of
high-dimensional data.

Fuzzy classifiers, short for fuzzy classification models, differ from fuzzy
regression models in its response to the system: opposed to a predictive nu-
merical value, the response is usually a classification or decision statement
represented by a class to which a sample belongs. For the widely classical sin-
gle model architecture [Kun00], the antecedent parts of the rules are defined
in the same way as for Takagi-Sugeno fuzzy systems (2); hence, similar tech-
niques as described above can be applied for learning the antecedent parts.
The consequents are singleton class labels instead of fuzzy sets or hyper-
planes and are usually estimated by a winner-takes-it-all approach [Kun00].
Confidence values may be assigned by calculating the relative frequencies
among the classes per rule [RSA03].

In [ALZ08] a new classifier architecture was introduced based on multi
Takagi-Sugeno fuzzy systems. Thereby, one Takagi-Sugeno fuzzy system is
trained for each class based on indicator entries in the output (0 when the
sample does not belong to the current class and 1 otherwise). This forces the
regression surface towards 0 in regions where the corresponding class is not
present and towards 1 where it is present. The classification output of a new
sample to be classified is produced by a one-versus-rest classification scheme,
i.e. by

L = class(x) = argmax
(
f̂1(x), f̂2(x), . . . , f̂K(x)

)

where f̂m(x) is the Takagi-Sugeno fuzzy regression model for the m-th class.
The confidence conf of the overall output value L = m ∈ {1, ..., K} is elicited
by normalizing the maximal output value with the sum of the output values
from all K models:

conf =
max

(
ĝ1(x), ĝ2(x), . . . , ĝK(x)

)

K∑
m=1

ĝm(x)

where ĝm(x) = f̂m(x) +
∣∣min

(
0, f̂1(x), f̂2(x), . . . , f̂K(x)

)∣∣. This assures that
all output values from all Takagi-Sugeno fuzzy systems are forced to be pos-
itive, and hence the confidence value well defined.

The idea of a multi model architecture was originally inspired by the re-
gression by indicator matrix technique [HTF01], which, however, suffers from
the masking problem due to too low flexibility of linear models. This problem
can be solved by the fuzzy regression by indicator matrix approach. For an
illustration, Figure 2 (top) shows the masking effect on a multi-class classi-
fication problem obtained when using linear regression by indicator matrix
(the middle class is completely masked out as nowhere maximal), whereas in

246 Erich Peter Klement et al.

Figure 2 Masking problem when applying linear regression of indicator matrix
(top), masking problem solved by fuzzy regression of indicator matrix
(bottom).

Figure 2 (bottom) the masking effect is solved due to the higher flexibility of
the models (going down to zero more rapidly where the corresponding class
is not present).

V Data-Driven and Knowledge-Based Modeling 247

Regularization and Parameter Selection 3.3

An important issue when learning fuzzy systems from data is to ensure a
proper run through of the learning algorithm. Often, this is guaranteed when
applying conventional approaches as described in the previous section. Some-
times, however, an ill-posed learning problem may arise. For instance, accord-
ing to significant noise or other specific characteristics in the data, it may
happen that a badly conditioned or even singular matrix occurs when esti-
mating the consequent parameters in a (weighted) least squares approach. In
this case, a pseudo-inversion process is unstable or even impossible. Hence,
it is necessary to include a regularization term in the inversion process. A
most common approach for doing so is the so-called Tikhonov regularization
[TA77] by adding αI to the inverse matrix. This leads to the weighted least
squares approach for the linear consequent parameters wi of the i-th rule:

ŵi = (RT
i QiRi)

−1RT
i Qiy

with Ri the data sample matrix including a columns of ones for the intercept,
Qi = diag(Ψi(k)), k = 1, ..., N and y the output vector. A feasible choice of
the regularization parameter α is mentioned in [LK08].

Another important issue is an appropriate selection of the parameters in
the learning method. Too few rules may lead to an under-fitting of the prob-
lem, whereas too many rules may over-fit the training data, approximating
more the noise rather than the real tendency of the relationship (see Fig-
ure 3). This effect is called the bias-variance tradeoff: the bias error is the
error due to too low flexibility of the model and the variance error is due
to the sampling variance of the underlying model (usually caused by noise
in the data). A possible solution to this is the application of N -fold cross-
validation (CV) [Sto74] coupled with a best parameter grid search scenario.
The whole data set is divided into N equal folds and each fold is used as test
data set and the remaining N − 1 folds are used as training data. The errors
on the test data folds are averaged to the whole CV error. This procedure
is repeated for each parameter setting. In this sense, the CV error estimates
the real expected prediction error on new unseen samples quite well, (see also
[HTF01]). The parameters leading to the optimal model in terms of the CV
error are used for the final training of the fuzzy model.

Regarding the interpretability, usually some additional techniques have
to be exploited in order to assure that fuzzy systems generated fully from
data assure readable rules and fuzzy sets. A comprehensive study of these
techniques is demonstrated in [CCHM03]. Section 5 will present a learning
method which is able to extract comprehensible fuzzy regression models.

248 Erich Peter Klement et al.

Figure 3 Under-fitting of a non-linear relationship caused by too few rules (rule
centers marked as big dots)—note the big deviation to the real trend
marked by blue dots (left)—and over-fitting caused by noisy data
(marked by +) and high model complexity (red curve)—note the big
deviation to the real trend (blue dashed line, right).

4 Evolving Fuzzy Systems and On-line Modeling

4.1 Motivation and Solutions

Evolving fuzzy systems are an extension of data-driven fuzzy systems allowing
a fast adaptation of the models during on-line mode. This on-line adaptation
is necessary, as usually not all possible operating conditions can be covered by
off-line simulated or recorded data in advance. Sometimes, a completely new
system behavior may demand a feedback from a model in its extrapolation
space, which is always quite precarious and risky to follow. A large amount
of samples is needed to set up an initial model framework in off-line mode
that should achieve high accuracy and guarantee safe production, requiring
a high effort for collection, cleaning and (in case of classification) labelling of
the data. It is thus a requirement that the models are refined, extended and
evolved on-line during normal production. Hence, in case of fuzzy systems
we speak about evolving fuzzy systems. Now, the amount of data and the
cycle times for such processes usually do not allow a complete rebuilding
of the models from time to time with all the data samples recorded so far.
Consequently, this is an on-line processing task which requires an update
of some components and parameters of the models in form of incremental
learning steps with new data, i.e. the models are evolved sample per sample.
Another motivation for the usage of incremental learning algorithms to evolve
fuzzy systems is the extraction of fuzzy models from huge data bases which

V Data-Driven and Knowledge-Based Modeling 249

are not able to be loaded at once into the virtual memory (see also [Lug08a]).
This requires a sample-wise or at least block-wise loading of the data and
building up the models incrementally.

This also means, that incremental learning can be seen as the engine par
excellence for modeling and simulating adaptive or evolving processes in real-
world. In the supervised case, opposed to reinforcement learning, incremental
learning is fully guided by exact class responses or concrete values on the
newly loaded samples and hence the learning algorithm exactly knows, in
which direction the models need to be updated. In case of small updates, it is
sufficient to update some model parameters (non-linear antecedent or linear
consequent parameters) in order to move the model appropriately. However,
in case of larger updates, such as the inclusion of a new system state, usually
additional rules and fuzzy sets have to be evolved. A central question there
is when to evolve new rules and when to update the antecedent parameters
only in order to find a reasonable tradeoff between stability (convergence to
a solution) and plasticity (including new information into the model). This is
referred to plasticity-stability dilemma and most of the evolving fuzzy system
approaches developed so far tackle this issue.

Pioneering work was done in [Kas01, Kas02] for neuro-fuzzy type systems,
developing the so-called DENFIS approach. The structure learning is carried
out with the help of an evolving clustering method, called ECM, i.e., when-
ever a new cluster is found automatically a new rule is evolved as well. The
antecedent fuzzy sets with fixed width for each dimension are then formed
around the corresponding center coordinates. eTS [AF04] exploits a Takagi-
Sugeno fuzzy model and recursively updates the structure of the model based
on the potential of the input data, i.e., it implements a kind of incremental
version of subtractive clustering, called eClustering [AZ06]. A new rule is
added when the potential of the data is higher than the potential of the ex-
isting rules or a new rule is modified when the potential of the new data is
higher than the potential of the existing rules and the new data are close to
an old rule. SAFIS [RSHS06] as a truly sequential learning algorithm uses
the idea of functional equivalence between an RBF neural network and a
fuzzy inference system by the application of the GAP-RBF neural network.
In on-line SOFNN [LMP05] the learning is divided into a parameter and a
structure learning, where the former exploits a modified version of recursive
least squares [Lju99] and the structure learning includes new adding and
pruning techniques. Participatory evolving fuzzy modeling [LHBG09] com-
bines the concept of participatory learning (PL) introduced in [Yag90] with
the evolving fuzzy modeling approach eTS [AF04]. The PL concept is based
on unsupervised clustering and hence is a natural candidate to find rule base
structures in adaptive fuzzy modeling procedures.

250 Erich Peter Klement et al.

4.2 The FLEXFIS Family

Another approach, developed at FLLL, is the so-called FLEXFIS family,
which comes with a regression variant [Lug08d], called FLEXFIS (short for
FLEXible Fuzzy Inference Systems) and with a classification variant [LAZ07],
called FLEXFIS-Class (short for FLEXible Fuzzy Inference Systems for Clas-
sification). The latter is exploiting both, single-model and the multi-model
architecture as described in Section 3.2 (see also Figure 4). Each newly loaded
buffer or single sample is processed first through the pre-processing compo-
nent (e.g. normalization of the data), then through the antecedent learning
and rule evolution part and finally through learning and adaptation of con-
sequent parameters after incorporating correction terms for balancing out
non-optimal situations. After each cycle, the updated fuzzy model is deliv-
ered and can be used for further predictions.

Figure 4 Processing chain for incremental learning and evolving Takagi-Sugeno
fuzzy models with FLEXFIS.

The incremental learning of the antecedent and the rule evolution is done
in the clustering space (compare with clustering-based approaches in Sec-
tion 3.2) based on an evolving version of quantization (called eVQ [Lug08c]),
extending conventional vector quantization [Gra84] to the on-line mode. This
method in its basic form is characterized by three properties:� Ability to update clusters on a single-pass sample per sample basis without

iterating over a data buffer multiple times.� Ability to evolve clusters in a single-pass incremental manner without the
need of pre-parameterizing the number of clusters.� Calculating the range of influence of clusters in each direction incremen-
tally and synchronously to the cluster centers; these ranges are used as
widths for the fuzzy sets projected onto the axes.

The first property is achieved by a specific handling of the learning gain as it
steers the degree of shifting the centers and is responsible for a convergence of
the rule centers. We do not apply a global learning gain decreasing with the
number of iterations, but we define different learning gains for the different
clusters according to their significance. The significance of a cluster can be
expressed by the number of samples which formed this cluster, i.e. the number

V Data-Driven and Knowledge-Based Modeling 251

of samples for which this cluster was the winning (closest) cluster during the
incremental learning process. The second property is achieved by introducing
a vigilance parameter steering the tradeoff between plasticity (adaptation of
old clusters) and stability (evolution of new clusters) . This also means that
already generated clusters are moved in local areas bounded by the vigilance
parameter and hence no iteration over the data set a multiple times (as done
in the batch off-line variant) is required to force a significant movement of the
clusters. Figure 5 shows the application of eVQ on a data set containing 17
(larger and smaller) clusters and compares the obtained partition (ellipsoids)
with that one when using conventional batch VQ (bottom image). Also note
the movement horizon of a cluster as shown as circle in the left image around
the middle cluster at the bottom. Evolution of a new rule goes then hand in
hand with evolution of a new cluster as this is projected to the axes (Figure 1).

The adaptation of the consequent parameters is carried out with a recur-
sive fuzzy weighted least squares approach [Lug08a], which is able to update
the parameters of each rule separately. This ensures high flexibility when
new rules are evolved or older ones are merged, as it does not disturb the
convergence of the parameters in the other rules. Furthermore, stability and
computational performance are improved as dealing with smaller inverse Hes-
sian matrices to be updated. A specific property of FLEXFIS is that the
connection of antecedent and consequent learning is done in a way that a
convergence to optimality in the least squares sense is achieved (also coming
close to the hypothetical batch solution when feeding all the data at once into
the learning algorithm). The bottom image in Figure 6 present the impact
of FLEXFIS when adapting an initial fuzzy model (dotted line) to new data
samples (marked as pluses) extending the original sample space (marked as
dots) by its range significantly. The top image demonstrates the situation
when adaptation of linear consequent parameters alone is done. As can be
realized from the top image the updated model has not enough flexibility to
follow the new trend. Hence, this circumstance was one of the basic moti-
vations to develop evolving fuzzy systems approaches, which also allow an
evolution of the rule structure, therefore gaining sufficient flexibility.

The classification variant of FLEXFIS, FLEXFIS-Class [LAZ07], comes
with two types of model architectures, single model architecture with single-
ton class labels (FLEXFIS-Class SM) and multi model architecture (FLEX-
FIS-Class MM) as defined in Section 3.2. The latter, which exploits FLEXFIS
for the evolution of K Takagi-Sugeno fuzzy models for K classes, usually has
a higher performance (as will be also shown in Section 7.2) and also has a
higher flexibility for including newly upcoming classes on demand (simply a
new Takagi-Sugeno fuzzy system is opened up).

A spin-off of FLEXFIS-Class was made by building a classifier purely based
on the clusters generated by eVQ, hence denoted as eVQ-Class [Lug08b].
There, clusters are updated, evolved and merged in the same manner as
in eVQ, and a hit matrix is introduced which tracks the relative frequency
counts of each class (column) for each cluster (row). Classifying new samples

252 Erich Peter Klement et al.

Figure 5 Clustering obtained by eVQ (appropriate clustering with 17 clusters, top)
and by conventional VQ when setting the number of clusters to 17 and
the initial centers to a shuffle of the original data samples (bad grouping
effect, bottom).

comes in two variants. Variant A uses the winner-takes-it-all approach by
eliciting the nearest cluster and responding the most frequent class therein.
Variant B performs a weighted classification strategy based on the distance of
the sample to the decision boundary of the two nearest clusters and based on

V Data-Driven and Knowledge-Based Modeling 253

Updated fuzzy model (red curve) based on new samples (marked by
+) using adaptation of consequent parameters only (top), updated fuzzy
model (red curve) based on new samples (marked by +) applying FLEX-
FIS (bottom).

Figure 6

the relative frequencies of the classes in these two clusters. Mostly, variant B
outperforms variant A.

254 Erich Peter Klement et al.

4.3 Handling Drifts and Unlearning Effect in Data Streams

All the evolving fuzzy systems approaches developed so far have a common
feature: they are life-long learning approaches, which means that they incor-
porate all the data samples into the fuzzy models with equal weights in the
same order as they are coming in during the on-line process. Hence, older in-
formation is treated equally to newer one and fuzzy models reflect a compact
information of all the samples seen so far with equal importance. Mostly, this
is a beneficial way to evolve the models, especially when a convergence to
an optimality criterion or stable state of the model structure is achievable
[Lug09]. However, this benefit only applies in case of data streams which
are generated from the same underlying data distribution resp. which do not
show any drift behavior to other parts of the input-output space [Tsy04]. A
drift refers to a gradual evolution of the concept over time. The concept drift
concerns the way the data distribution slides smoothly through the data/fea-
ture space from one region to another. For instance, one may consider a
data cluster moving from one position to another. If not outdating the older
distribution, a large joint cluster would be the case, under-performing on
the new distribution. Hence, it is necessary to gradually out-date previously
learned relationships over time. Graduality is important in order to guarantee
a smooth out-dating rather than discrete jumps. In [LA09] an extension of
the FLEXFIS approach is demonstrated, where appropriate mechanisms for
automatic detection of drifts and appropriate reaction on drifts are described.

Opposed to an intended gradual forgetting in case of drift occurrences
in a data stream, the so-called unlearning effect represents an undesirable
forgetting. Unlearning may be caused in steady state situations when using
fuzzy sets with infinite support (e.g. Gaussian fuzzy sets as often used in
data-driven design of fuzzy systems), where a lot of samples stay at the same
region in the data space. The reason for this effect is that the parameters of
all linear consequent functions are adapted for each incoming data sample, no
matter which firing degree the rules have. In fact, rules with a very low firing
degree (i.e. rules which are far away from the constant region) are always
adjusted very slightly for each sample, however summing up to a significant
contribution with a high amount of data recorded during the steady state.
In [Lug09] a strategy was developed for overcoming the unlearning effect by
updating only those rules which are firing with a significant degree.

V Data-Driven and Knowledge-Based Modeling 255

Creating Comprehensible Fuzzy

Regression Models

5

Motivation 5.1

As already mentioned in Section 3, a main reason to introduce fuzzy logic
to data-driven modeling is the issue of the interpretability of the generated
systems. To achieve easily comprehensible data-driven models with insight
into the underlying relations between features, however, usually goes on the
expense of accuracy.

It turned out that in many cases the simple application of methods for cre-
ating interpretable, computational models from data is not sufficient. There is
often the need for higher accuracy, while preserving the interpretability of the
systems. Consequently, several approaches were developed recently to opti-
mize existing interpretable fuzzy systems [BHBE02]. This, however, often re-
sults again in loss of interpretability. A comprehensive study on various tech-
niques for assuring interpretable data-driven fuzzy systems is demonstrated
in [CCHM03]. For the on-line case (applicable to evolving fuzzy systems, see
Section 4), FLLL developed a specific approach [LHK05], where complexity
reduction mechanisms are carried out on-line after each incremental learning
step.

In the following, we want to present a novel approach to data-driven fuzzy
modeling (in batch off-line mode) developed at SCCH which aims to create
easily comprehensible models while preserving as high accuracy as possible
[DH06]. This is achieved by a three-stage approach which separates the defi-
nition of the underlying fuzzy sets, the learning of the initial fuzzy rule-based
model, and finally a local or global optimization of the resulting model. The
benefit of this approach is that it allows to use a language comprising of com-
prehensible fuzzy predicates and to incorporate expert knowledge by defining
problem specific fuzzy predicates. Furthermore, we achieve highly accurate
results by applying a regularized optimization technique.

The Underlying Language 5.2

To define the underlying language for our fuzzy models, we have to consider
the different types of input attributes that can occur. Fuzzy predicates for
categorical attributes, boolean or fuzzy, can be defined easily in a straight for-
ward manner. To be able to handle numeric attributes in rule-based models,
it is indispensable to define a discrete set of predicates for these kinds of at-

256 Erich Peter Klement et al.

tributes. The simplest approach is to create fuzzy sets which form a partition
for each dimension and which are evenly distributed over the data range or
have the same cardinality (equi-distance-binning, or equi-frequency-binning).
Although this approach is sufficient for basic calculations, it has strong limi-
tations with respect to accuracy as well as the user’s intuition. To overcome
these limitations, several approaches had been proposed which try to fit the
fuzzy sets to the given training data as well as possible [CFM02, KK97]
Alternatively, the fuzzy sets can also be computed ad hoc when creating
the computational models [Jan98, NFI00, ZS96]. Although this leads to very
good numerical results, the drawback of these approaches is again a lack of
linguistic expressions for the resulting fuzzy sets.

In contrast to the approaches mentioned above, we developed a new al-
gorithm called CompFS [Dro04], which creates the fuzzy sets based on the
data set given by considering the semantics of the corresponding linguistic
expressions. To generate k unevenly distributed fuzzy sets according to the
distribution of values in the data set X , first, the centers ci (i = 1, . . . , k) of
the fuzzy sets are initialized according to the data distribution. By initializing
the fuzzy set centers with the according quantiles (qi = i−0.5

k), we create an
equi-frequent binning of the data set. To overcome problems which can occur
when using the quantiles, it is necessary to readjust the fuzzy set centers
by using a simple k-means algorithm. Figure 7 shows some examples of how
the fuzzy sets are computed for different data distributions. In all cases, the
resulting fuzzy sets correspond with the user’s intuition and can be easily
identified with linguistic expressions ranging from very small to very high.

-3 -2 -1 0 1 2 3 0 0.2 0.4 0.6 0.8 1

-2.5 0 2.5 5 7.5 10 0 5 10 15

Figure 7 Fuzzy sets created using CompFS.

V Data-Driven and Knowledge-Based Modeling 257

Although CompFS is capable of computing the fuzzy sets automatically
with respect to a given data distribution, it requires the actual number of
fuzzy sets as an input. In our experiments it has, however, turned out that
the actual choice of this number influences the performance of the resulting
model only slightly as long as a sufficiently large number of fuzzy sets is
created.

After defining the underlying fuzzy sets, it is necessary to define appropri-
ate predicates using these fuzzy sets. At first linguistic labels are to be defined
for each fuzzy set. Depending on the underlying context of the attribute un-
der consideration, these labels can be natural language expressions like very
low, medium, and large. Furthermore, we can define the complement and the
smallest superset with non-decreasing/non-increasing membership function
for these sets. These new fuzzy sets correspond to the linguistic expressions
is not, is at least, and is at most, respectively.

Rule Induction 5.3

To create a decision or regression tree for a specific problem, inductive learn-
ing (i.e. learning from examples) is a widely used approach. Using not only
crisp but also fuzzy predicates, decision trees can be used to model vague
decisions. Several approaches dealing with such fuzzy decision trees focus on
the problem of vague class memberships [PF01, WCQY00]. Viewing decision
trees as a compressed representation of a (fuzzy) rule set enables us to use
decision trees not only for classification, but also for approximation of con-
tinuous output functions. Recent approaches in this direction try to create
large trees that solve the resulting optimization problem [Jan98]. These solu-
tions, however, can no longer be interpreted easily—which is usually one of
the main advantages of regression trees over numerical optimization methods
or artificial neural nets. Using pruning and back-fitting strategies can help
to overcome this shortcoming [OW03]. All these approaches, however, tackle
the problem of finding accurate yet still comprehensible models from an op-
timization point of view and do not pay attention to the underlying language
used.

In our approach to inductive learning of fuzzy regression trees we pay
special attention to comprehensibility. This is achieved by using the general
language defined in Section 5.2 and by creating models which are as compact
as possible. By introducing a novel transformation on the rule consequences
we are able to achieve numerical accuracy without weakening the system’s
comprehensibility.

A general regression tree consists of a root node with a number of child
nodes. Each of these child nodes can either be a leaf node or the root node
of a new subtree. If each inner node has exactly two child nodes, the tree is

258 Erich Peter Klement et al.

called binary. We denote the set of all nodes with N = {n1, . . . , nN}, the set
of all leaf nodes with L = {nl1 , . . . , nlL} ⊂ N and the set of inner nodes with
M = {nM1 , . . . , nMN } ⊂ N where we define the node n1 to be the root node.
To ease notation we will furthermore denote the index set of all leaf nodes
with L = {l1, . . . , lL}.

To each non-leaf node ni ∈ M , a predicate pi is associated which is used to
decide which of the child nodes to process next. For each inner node ni ∈ M
the child nodes are denoted as ni

1 and ni
2, and without restricting to gener-

ality we assume that the left branch (ni
1) is selected when the corresponding

predicate pi is fulfilled and the right one (ni
2) otherwise. The uniquely deter-

mined path from the root node n1 to a sub-node nj ∈ N is called complete
branch of the node and will be denoted as bj. Each leaf node nj ∈ L is asso-
ciated with a constant value cj ∈ R or a local model, i.e., a linear function
cj : X → R.

To ensure comprehensibility of the local linear models, we do not use a
simple linear combination of the input dimensions,

cj(x) = α0 +

n∑

l=1

αlxl,

but of a reformulation with respect to the center of the data under consider-
ation according to

cj(x) = α0 +

n∑

l=1

αl(xl − x̄l). (3)

Then x̄l defines the mean of the samples in the l-th dimension according
to bj

l . This eases interpretation as in contrast to usual Takagi-Sugeno models,
the rule output can be interpreted easily. Actually, we can interpret α0 as
the mean output value of all data points the rule applies to. The x̄l’s then
characterize this mean with respect to the l-th dimension. The αl’s finally
describe the influence of the l-th dimension when xl is below or above x̄l. For
a rough output of the model only α0 might be displayed. If more detailed
information is needed, the k top ranked αl’s can then be displayed.

In the following, we will restrict ourselves to binary regression trees. We
overcome the main problem of binary trees—their increasing size for com-
plex problems—by using the flexible underlying language, especially ordering-
based predicates as defined in Section 5.2. This enables us to determine the
ideal segmentation point automatically and to reduce the overall number of
predicates involved.

The basic idea behind FS-LiRT (Fuzzy Set based Linear Regression
T rees) is to create a tree where the leaves approximate the desired goal
function as well as possible. By associating numerical values (or functions)
with the leaf nodes, we finally obtain a Sugeno- or Takagi-Sugeno-type con-
troller. To decide for each node which predicate to take, we use the mean

V Data-Driven and Knowledge-Based Modeling 259

squared error measure which ensures that the model accuracy increases as
the tree grows.

Post-Optimization of Fuzzy Rule Bases 5.4

In the previous two sections we presented a method for creating easily com-
prehensible fuzzy models. The trade off for obtaining higher comprehensibility
is a lower accuracy, as smaller models have to involve more general rules/n-
odes. In our approach we overcome this drawback by adding more expressive
output functions to the leaf nodes or by performing post-optimization of the
complete fuzzy system. In [BHBE02], a combination of both is presented,
where—besides the coefficients of the affine linear consequences cj—the un-
derlying fuzzy sets themselves are fitted by optimizing the positions of the
fuzzy sets’ interpolation points. This approach results in a nonlinear opti-
mization problem, as the parameters in the fuzzy sets steering the positions
of these are non-linear parameters. We decided to restrict ourselves to the
optimization of the consequences, which leads to a linear least squares prob-
lem which can be solved easier and faster. Moreover, by doing so, we avoid
the danger of ending up in degenerated fuzzy sets which are no longer com-
prehensible.

The linear least squares problem has a unique solution if and only if the
observation matrix of the system has full rank, what cannot be guaranteed
for our application of optimizing a fuzzy rule base. The rank of the matrix
is dependent on the already given and fixed rule conditions and most of all
on the given data set. Therefore, a regularization of the system is needed to
assure unique and stable solutions. We have chosen to apply the Tikhonov
method. In our case, this amounts to simply adding to the cost function of
the given system the squared sum of the regression coefficients αj in (3) as
a penalty term (weighted by a regularization parameter β). This causes the
absolute values of the coefficient to be kept as low as possible. The higher the
regularization parameter β is chosen, the closer to zero are the coefficients
kept and consequently, the more we will achieve a stable, but also less accurate
solution of our problem.

The presented approach has been applied to various problems in various
kinds of application areas, ranging from metallurgy and paper industry to
energy production. In all these applications, we have received very positive
feedback for the comprehensibility of the models and the achieved accuracy. A
comparison of the proposed method with other approaches showed that with
the same requirements to accuracy we can create smaller, highly interpretable
and more expressive models with FS-LiRT. In Figure 8 the visualizations of
a regression tree and an extracted rule base generated by FS-LiRT for the
housing data set from the UCI repository [BM98] are shown.

260 Erich Peter Klement et al.

506

22.53

453

20.55

253

16.74

Mean= 16.74 H+�- 4.857 L

200

25.37

Mean= 25.37 H+�- 6.087 L

if

then

else

LSTAT_IsAtLeast_M

53

39.68

50

40.98

Mean= 40.98 H+�- 6.894 L

3

18.23

Mean= 18.23 H+�- 3.47 L

if

then

else

RAD_IsAtMost_H

if

then

else

RM_IsAtMost_H

Figure 8 Regression tree generated by FS-LiRT and a rule base extracted from a
tree generated by FS-LiRT for the housing data set.

6 Support Vector Machines and
Kernel-Based Design

6.1 Kernels as Similarities: Motivation and
Recent Developments

Kernels are two-placed symmetric functions that can be reproduced as inner
products of points in a Hilbert space. What makes Hilbert spaces special is
that in such spaces one can imagine familiar geometric concepts like hyper-

V Data-Driven and Knowledge-Based Modeling 261

planes, distances or orthogonality which simplifies the formulation and solu-
tion of various optimization problems. Consider for example standard prob-
lems of characterizing a cluster of points or the problem of separating the
points of different classes which are prevailing problems in machine learning.

The attractivity of kernel methods can be explained by two aspects: firstly,
by virtue of the so-called kernel trick (see below) data are mapped implicitly
into a higher dimensional feature space in a way that preserves the geometri-
cal notion of the initial optimization procedure based on linear models while
extending it to non-linear models; secondly, the representer theorem guar-
antees that the non-linear optimum can be represented as a superposition
of kernel functions which allows to design tractable optimization algorithms
[CST01, SS01, Vap95].

As an inner product is a geometric notion, Gram matrices and therefore
kernel functions as their generalization on more general index sets (contin-
uum instead of discrete finite set of indices) often emerge in the context of
optimization procedures motivated by geometric ideas. These methods find
successful applications to classification, regression, density estimation and
clustering problems in computer vision, data mining and machine learning.

While the historical roots of kernel methods can be traced back to the
mid of the last century, see [Par62], the study of positive-definite functions
as kernels of integrals date back to the beginning of the 19th century [Mer09].
It was Mercer who 1909 in [Mer09] characterized kernels in terms of a positive-
definiteness condition as a generalization of the classical result from linear
algebra.

Recently, learning methods based on kernels like support vector machines,
kernel principal component analysis, kernel Gram-Schmidt or Bayes point
machines have received considerable advertency, e.g., [HGC01, SS01].

A positive inner product of normed vectors x and y can also be looked at
as a similarity quantity S for the vectors under consideration. The smaller
the angle between the vectors the higher the degree of similarity. As pointed
out in [Mos06b, Mos06a] this geometrically motivated notion of similarity is
compatible with the notion of fuzzy similarities in terms of T -equivalences
where the so-called T -transitivity plays a crucial role. While for example a
min-transitive equivalence relation always turns out to be positive-definite
this is not true in general for arbitrary T -equivalences.

The interpretation of kernels as similarity measures is quite helpful when
designing kernel-based methods. The question is what is an appropriate sim-
ilarity measure that fits the problem best. Then, based on such a similarity
measure one can turn over to look at the problem from the point of view
of a kernel by embedding the problem in an abstract geometric space which
allows to reason about the problem in geometric terms.

262 Erich Peter Klement et al.

6.2 Support Vector Machines

Support vector machines (SVM) are based on the concept of separating
data of different classes by determining the optimal separating hyper-planes
[Vap98]. The idea behind support vector machines is the method of structural
risk minimization. Instead of optimizing the training error, the attention is
turned to the minimization of an estimate of the test error. Typically, the
SVM is a supervised learning algorithm working on two classes.

Support Vector Machines for Binary Classification

Let us now consider a binary classification problem. We are given empirical
data (x1, y1), . . . , (xm, ym) ∈ X × {−1, 1}, where X is some non-empty set
(domain) from which pattern xi are taken. The yi are the so-called labels,
which determine the affiliation of the pattern to one of the two classes. In
the task of learning we want to generalize to unseen data points. Given a
pattern x ∈ X we want to predict the corresponding y ∈ {−1, 1}, therefore
estimating a function f : X → {−1, 1}. One attempt to solve this problem
is to introduce a hyperplane that optimally separates the two classes. The
SVM approach computes such an optimal separating hyperplane in the form
of a decision surface:

f(x) = sgn

(
m∑

i=1

yiαi 〈xi,x〉 + b

)
,

Only the points closest to maximal margin hyperplane have αi > 0 and these
points are called the support vectors (SVs). All other points have αi = 0.
This means that the evaluation of the decision function depends solely on
the points closest to the hyperplane. They are the most informative patterns
of the data. The coefficients αi and b are determined by solving the quadratic
programming problem (Wolfe dual of a constrained Lagrangian optimization
problem):

maximize W (α) =

m∑

i=1

αi −
1

2

m∑

i,j=1

αiαjyiyj 〈xi,xj〉

subject to the constraints

αi ≥ 0,

m∑

i=1

αiyi = 0.

V Data-Driven and Knowledge-Based Modeling 263

This formulation is just capable to deal with linear separation. For general
pattern recognition problems the hyperplane needs to be adapted. This is
done by mapping the data into another dot product space, where once again
a linear separation can be performed. We perform a substitution with sym-
metric kernels of the shape

k(x, x′) := 〈x,x′〉 = 〈Φ(x), Φ(x′)〉 , (4)

k : X × X → R

(x, x′) 7→ k(x, x′).

and the map Φ, representing the patterns as vectors in the new dot product
space H (feature space), is given by

Φ : X → H
x 7→ x := Φ(x).

We will now give some examples of commonly used kernels, as the Gaussian
radial basis function(RBF) kernel:

k(x, x′) = e−
||x−x′||2

2σ2 ,

where σ > 0, the homogeneous polynomial kernel:

k(x, x′) = 〈x, x′〉d ,

with d ∈ N, and the sigmoid kernel:

k(x, x′) = tanh(κ 〈x, x′〉 + δ),

with κ > 0 and δ < 0.
The substitution with (4) is referred to as kernel trick—one of the most

important steps within SVMs. With such a choice of kernel the data can
become linear separable in feature space despite being non-separable in the
original input space. The new quadratic programming problem differs only
in the replacement of the dot product by the kernel. After the optimal values
of αi and b have been found the final decision function looks as follows:

f(x) = sgn

(
m∑

i=1

yiαik(x,xi) + b

)
.

To deal with outliers (for example noise in the training data) the so-called
soft margin approach is introduced. The only difference to the above formu-
lation is that the constraint αi ≥ 0 of the quadratic programming problem
is replaced by 0 ≤ αi ≤ C, where the parameter C is chosen by the user and

264 Erich Peter Klement et al.

can be seen as regularization parameter. A larger C assigns a higher penalty
to training errors.

7 Applications

7.1 On-Line Fault Detection at Engine Test Benches

In this application, the task was to supervise the state of engine test benches,
basically during the development phase of new engines, in order to prevent
severe system failures at an early stage. The likelihood of appearance of a
failure increases with the complexity of the system. Failures can affect the
system itself, the measuring and monitoring devices, or the control system
(which also modifies the system behavior) and can finally even lead to a
breakdown of components or the whole system. Since failures affect system
performance and system integrity and they become a safety risk for operators,
the task was to develop methodologies for automatic detection of such failures
at an early stage.

The idea was to set up a generic fault detection framework with a purely
data-driven approach, circumventing high efforts in developing analytical
fault models, which are usually dedicated for specific engine and have to be
re-developed for new engines. The basic task was to automatically identify
relationships in form of data-driven approximation models between so-called
measurement channels, numerically recorded during the on-line operation
mode, and to exploit those relationships for comparing newly recorded data
with the confidence bands of the models; this means to examine whether
identified models are violated or not and therefore can be used as a trigger
for a fault alarm. In order to guarantee the detection of as many as possible
faults, each channel is taken as target and from the remaining set of chan-
nels the most important ones together with their time delays are selected in
order to obtain a high-qualitative approximation model for the target. For
this selection, a modified version of forward selection was applied [Mil02].
If for a certain channel no useful approximation exists, which can be seen
from a weak model quality or a wide confidence region around the model, the
model is skipped as it does not deliver any contribution for fault detection
at all. The remaining models (with a high quality) are delivered to the pool
of models and are taken further as input to the fault detection logics.

Figure 9 shows the whole fault detection framework including the afore-
mentioned components. Initial data-driven models are built up in advance
with some pre-collected data, which usually do not cover all operating con-
ditions or system states. Hence, it is necessary to further update the initially

V Data-Driven and Knowledge-Based Modeling 265

Fault detection in an online measurement system with (evolving) data-
driven fuzzy models.

Figure 9

built models with new on-line data for refining their parameters and evolving
new structural components. For achieving this task, evolving fuzzy systems
as described in Section 4 were applied using the FLEXFIS approach (see
Section 4.2), which in its batch version can be also applied for building ini-
tial fuzzy models from an off-line data set. We refer to [AGG+06] for more
detailed information on the framework and its off-line components and to
[LG08] for the on-line extension with dynamic model updates.

Different data sets from various gasoline and diesel engines were collected,
where partially the errors were artificially placed or directly simulated at en-
gine test benches. Finally, detection rates of up to 87% were achieved, mostly
fuzzy models could outperform other modeling techniques such as neural net-
works (based on principal component regression), global and local regression
models. Note that the false detection rate could be kept at a very low level
(which was one of the major goals). Our methods had these properties:� Improved fault detection approach (with specific adaptive local error bars)

is able to outperform basic fault detection approach (with global error
band).� Analytical fault models (deduced from physical knowledge) perform worse
than fuzzy models, especially when the fault level is at least 10%. A reason

266 Erich Peter Klement et al.

Figure 10 ROC curves for genfis2 with consequent adaptation (blue curve) and
FLEXFIS (red curve).

for this effect is that they do not cover all measurement channels and
possible relationships in the system.� For 10% fault levels we still get reasonable results of about 66% detection
rate, while for tiny 5% deviations we meet the bounds of our approach, as
at most 26% of these errors can be detected.

The last two properties show the achievable bounds with our data-driven
approach as denoting detection rates for tiny fault levels.

We also inspected the impact of updating the models with evolving fuzzy
systems approach FLEXFIS, compared to conventional adaptation of pa-
rameters (see Section 4.2) based on real-recorded data from a diesel engine.
Figure 10 represents the ROC (“Receiver Operating Characteristic”) curves
of both approaches, whereas the red line indicates the improved ROC curve
when using FLEXFIS. The ROC curves show the plot of the false detection
rate (x-axis) against the detection rate (y-axis) when varying the threshold
parameter for triggering a fault alarm or not. The larger the area under this
curve is, the better the method performs. This is because when the method
is able to follow closer the left-hand border and then the top border of the
ROC space (hence spanning a larger area under the curve), it produces a
small false detection rate (x near 0%) while achieving a high detection rate
(y near 100%).

V Data-Driven and Knowledge-Based Modeling 267

On-line classification framework for classifying images. Figure 11

On-Line Image Classification in Surface
Inspection Systems

7.2

In this example, the major task was to set up a classification system which
is able to classify images showing surfaces of production items into good and
bad ones, hence to provide a quality control statement about the products.
Already available classification systems were quite application-dependant: for
instance, a manually configured fuzzy system was developed based on expert-
knowledge and specifically dedicated to the characteristics of CD imprints.
Other classification approaches have strong focus on classical image process-
ing and segmentation techniques and were specifically developed for certain
applications. In this sense, it was a big challenge to set up a framework
which is applicable to a wider range of surface inspection systems. This was
achieved by removing application-dependent elements and applying machine
vision and learning approaches based on image descriptors (also called fea-
tures).

The whole framework consisting of the following components is shown in
Figure 11:� Low-level processing on the images for removing the application dependent

elements contrast image: hereby, the assumption is that a fault-free master
image is available; for newly recorded images during the production process
the deviation to this master images (deviation image) is calculated. The
pixels in a deviation image represent potential fault candidates, but need
not indicate necessarily a failure in the production item. This depends on

268 Erich Peter Klement et al.

the structure, density and shape of the distinct pixel clouds (called regions
of interest). An example is presented in Figure 12, where the three different
regions of interest are shown in different colors.

Figure 12 Deviation image at a CD imprint inspection system, the different regions
of interest (objects) marked with different colors (black, red and green).� Recognition of regions of interest (objects) in the contrast image: the devi-

ation pixels belonging to the same regions are grouped together; therefore,
we exploited various clustering techniques which can deal with arbitrary
shape of objects and arbitrary number of objects.� Extraction of features with a fixed and adaptive feature calculation com-
ponent: object features characterizing single objects (potential fault can-
didates) and aggregated features characterizing images as a whole are ex-
tracted. Adaptive techniques were developed [EGHL08] for guiding the
parameters in the feature calculation component to values such that the
between-class spread is maximized for each feature separately, i.e. the sin-
gle features achieve a higher discriminatory power.� Building of high-dimensional classifiers based on the extracted features and
labels on the images (or even single objects) provided by one or more oper-
ators: we exploited several well-known machine learning methods such as
k-nearest neighbor algorithm, CART (Classification and Regression Trees)
[BFSO93], SVMs [SS01], Baysian classifiers, discriminant analysis [DHS00]
or possibilistic neural networks [Was93]. Most of these are recommended
as top-10 data mining methods [WKQ+06] and should be in the reper-
toire of every machine learning scientist. The evaluation was done in a

V Data-Driven and Knowledge-Based Modeling 269

cross-validation procedure coupled with a best parameter grid search sce-
nario in order to find automatically the optimal parameter setting for each
classifier on each data set.� A feedback loop to the classifiers based on the operator’s feedback upon
the classifiers decisions for improving the classifiers performance: this re-
quires incremental learning steps during the on-line operation mode as
a re-building of the classifiers usually does not terminate in real-time.
We used our own developments FLEXFIS-Class and eVQ-Class (see Sec-
tion 4.2) for achieving this goal.� Combining classifiers from different operators for resolving contradictions:
this can be solved by so-called ensemble classifiers [Kun04], which com-
bine the responses of several classifiers to an over-all decision. In order to
resolve contradictions among operators in on-line mode (following the feed-
back strategy mentioned above), incremental ensemble classifiers were de-
veloped in collaboration with the Katholike Universiteit of Leuven, which
are synchronously updated with the base classifiers after each sample.

The on-line classification framework shown in Figure 11 was applied to
three real-world surface inspection scenarios:� Inspection of CD imprints.� Egg inspection.� Inspection of metal rotor parts.

On-line image data were recorded for each of these data sets and processed
through the framework as shown in Figure 11 for feature extraction and
classifier generation; the black images (showing no deviations to the fault-
free master and hence can be automatically classified as good) were not used
for classifier training and evaluation. This means the remaining data set was
always a critical data set on the edge between showing real faults and pseudo-
errors. In all three application scenarios, classification rates of over 95% had
been achieved, in some case even slightly more than 98% on critical image
data sets, for details see [SNS+08]. Taking into account that usually around
96% are non-critical images, which can be easily classified as good, this ends
up in a classification rate of over 99.8%, which was a satisfactory number
for the end-user companies (a major goal in the project was to achieve a
classification rate of at least 99%). A key issue for achieving such a high
accuracy was an adaptive feature pre-processing step, which combines object
feature and aggregated feature information in an appropriate way [EHL+09].

An interesting topic was the examination of an improvement of on-line
incrementally adapted and evolved classifiers over static classifiers, pre-built
in off-line mode and letting fixed during the on-line process (as usually done
in image classification scenarios). Therefore, we collected on-line image data
from CD imprint production, egg inspection and metal rotor parts production
processes and stored them in the same order as they were recorded onto hard
disc. We implemented an on-line simulation framework which was able to load
the features extracted from these images (and stored in feature matrices)

270 Erich Peter Klement et al.

sample per sample into the memory and feed them into the incremental
classification approaches (eVQ-Class and FLEXFIS-Class). Hereby, the first
third of the data was used for generating initial classifiers in off-line mode, the
second third of data for on-line adaptation of the classifiers and the third third
for eliciting accuracy on a new on-line test data set (in fact, this were fresh
on-line test data as stored at the end of the recording session). The results
are shown in Table 1. From these values, it can be clearly seen that an on-line

CD imprints Eggs Rotor

Static Image Classifiers

eVQ-Class variant A 75.69 91.55 66.67

eVQ-Class variant B 88.82 90.11 66.67

FLEXFIS -Class SM 78.82 95.20 66.67

FLEXFIS -Class MM 73.53 95.89 54.67

k-NN 79.61 91.51 53.33

CART 78.82 91.78 52.00

Evolved Image Classifiers

eVQ-Class variant A 89.61 91.12 86.67

eVQ-Class variant B 90.39 93.33 86.67

FLEXFIS -Class SM 78.82 96.21 64.00

FLEXFIS -Class MM 87.65 97.19 78.67

k-NN (re-trained) 90.98 96.06 74.67

CART (re-trained) 90.59 97.02 52.00

Table 1 Comparison of the accuracies (in %) between static image classifiers built
on the first half of the training data and sample-wise evolved image
classifiers with the second half of the training data for the three surface
inspection problems.

evolution of the image classifiers is strongly recommended as increasing the
accuracies of classifiers significantly, sometimes even about 20%.

V Data-Driven and Knowledge-Based Modeling 271

Application of SVMs to Texture Analysis 7.3

Though kernel-based methods are appealing because of the well-developed
theory of statistical learning, the optimal choice of a kernel for a specific
problem is still unsolved.

Recently in [MH08b, Mos09] a novel similarity measure is introduced that
takes also structural spatial information of the intensity distribution of the
textured image into account, which turns out to be advantageous compared
to standard concepts as for example pixel-by-pixel based similarity measures
like cross-correlation or measures based on information theoretical concepts
that rely on the evaluation of histograms. Examples of such measures include
mutual information, Kullback-Leibler distance and the Jensen-Rényi diver-
gence measure. The introduced measure relies on the evaluation of partial
sums which goes back to Hermann Weyl’s concept of discrepancy [Wey16].
It provides a measure for assessing to which extent a given distribution of
pseudo-random numbers deviates from a uniform distribution. It is a cru-
cial property of this discrepancy concept that it is a norm in the geometric
sense. Furthermore, for arbitrary integrable (non-periodic) functions it can be
proven that the auto-correlation based on this measure shows monotonicity
with respect to the amount of spatial translational shift. It is this monotonic-
ity property that makes this discrepancy concept appealing for high-frequent
or chaotic structured textures. Moreover, this discrepancy concept can be
computed in linear time based on integral images. In [MKH08, MH08a] the
discrepancy norm is applied to texture analysis and classification showing
that exponential kernels based on this norm lead to higher in-class and a
lower inter-class similarities. Due to this effect the resulting number of sup-
port vectors can be reduced with the discrepancy norm and, therefore, proves
to be more appropriate for texture analysis at least with highly regular pat-
terns than standard concepts like Gaussian or polynomial kernels.

Based on these techniques SCCH developed a patent-pending method-
ology for texture analysis particularly for quality inspection of woven fab-
rics which distinguishes by its universal conception and its capability to de-
tect even small defects as demonstrated in Figure 15. Standard approaches
usually employ some preprocessing by filter banks, wavelets, or statisti-
cal moments which have the disadvantage of using only partial informa-
tion [TJ93, AKM95]. Various filters and moments are chosen to capture
certain characteristics of textures (e.g. contrast, edginess, spatial frequency,
directionality, and many others), but it is not granted that the essential in-
formation is still available. Classification of different textures usually requires
different features. By using support vector machines the feature extraction is
performed inherently by choosing a certain kernel. For example, a Gaussian
kernel is similar to a radial-basis function network.

Due to the support vector machine approach the system parameters like
the window size w of training image patches, the kernel parameters (e.g., σ

272 Erich Peter Klement et al.

Figure 13 Test image of synthetic mesh for paper industry and the resulting defect
analysis for w = 11, σ = 0.075 and ν = 0.0025.

Figure 14 Airbag hose image containing defects, and the resulting defect analysis
with w = 12, σ = 0.059 and ν = 0.00005.

Figure 15 Airbag hose with very small defect (part of one thread is dirty), and the
result of the SVM with w = 12, σ = 0.059 and ν = 0.00005.

References 273

for a Gaussian kernel), as well as the SVM tolerance parameter ν = 1/C
can be determined by performing cross validation. Figures 13–15 present the
quality analysis results based on this support vector machine approach.

Acknowledgements

The research of the Fuzzy Logic Laboratorium Linz-Hagenberg (FLLL) de-
scribed in this chapter was mainly supported by the Upper Austrian Gov-
ernment and by two European projects:� RTD-Project GRD1-2001-40034 AMPA—Automatic Measurement Plau-

sibility and Quality Assurance (in particular the on-line fault detection
framework for engine test benches demonstrated in Section 7.1) which was
coordinated by AVL List GmbH (Graz), other industrial partners were
DaimlerChrysler AG, Guascor Investigación y Desarrollo S.A., and Leu-
ven Measurement Systems International NV.� STRP-Project STRP016429 DynaVis—Dynamically Reconfigurable Qual-
ity Control for Manufacturing and Production Processes Using Learning
Machine Vision (especially the on-line image classification framework for
surface inspection problems presented in Section 7.2) which was coor-
dinated by Profactor GmbH (Steyr), the industrial partners were Sony
DADC Austria, Asentics GmbH & Co KG and Atlas Copco.

The research of the Software Competence Center Hagenberg (SCCH) was
supported by the Austrian Kplus and COMET Program.

References

[Abo03] J. Abonyi. Fuzzy Model Identification for Control. Birkhäuser, Boston,
2003.

[ABS02] J. Abonyi, R. Babuska, and F. Szeifert. Modified Gath-Geva fuzzy cluster-
ing for identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst.
Man Cybern. B, 32:612–621, 2002.

[AF04] P. Angelov and D. Filev. An approach to online identification of Takagi-
Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. B, 34:484–498,
2004.

[AFS06] C. Alsina, M. J. Frank, and B. Schweizer. Associative Functions: Trian-
gular Norms and Copulas. World Scientific, Singapore, 2006.

[AGG+06] P. Angelov, V. Giglio, C. Guardiola, E. Lughofer, and J. M. Luján. An
approach to model-based fault detection in industrial measurement sys-
tems with application to engine test benches. Measurement Science and
Technology, 17:1809–1818, 2006.

274 Erich Peter Klement et al.

[AKM95] T. Aach, A. Kaup, and R. Mester. On texture analysis: local energy trans-
forms versus quadrature filters. Signal Process., 45:173–181, 1995.

[ALZ08] P. Angelov, E. Lughofer, and X. Zhou. Evolving fuzzy classifiers using
different model architectures. Fuzzy Sets and Systems, 159:3160–3182,
2008.

[AZ06] P. Angelov and X. Zhou. Evolving fuzzy systems from data streams in real-
time. In Proceedings International Symposium on Evolving Fuzzy Systems
2006, pages 29–35, 2006.

[Bab98] R. Babuska. Fuzzy Modeling for Control. Kluwer, Boston, 1998.
[Bez81] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algo-

rithms. Plenum Press, New York, 1981.
[BFSO93] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification

and Regression Trees. Chapman and Hall, Boca Raton, 1993.
[BHBE02] M. Burger, J. Haslinger, U. Bodenhofer, and H. W. Engl. Regularized

data-driven construction of fuzzy controllers. J. Inverse Ill-Posed Probl.,
10:319–344, 2002.

[BKLM95] P. Bauer, E. P. Klement, A. Leikermoser, and B. Moser. Modeling of control

functions by fuzzy controllers. In Nguyen et al. [NSTY95], chapter 5, pages
91–116.

[BLK+06] J. Botzheim, E. Lughofer, E. P. Klement, L. T. Kóczy, and T. D. Gedeon.
Separated antecedent and consequent learning for Takagi-Sugeno fuzzy
systems. In Proceedings FUZZ-IEEE 2006, pages 2263–2269, Vancouver,
2006.

[BM98] C. L. Blake and C. J. Merz. UCI repository of machine learning databases.
Univ. of California, Irvine, Dept. of Information and Computer Sciences,

1998. http://www.ics.uci.edu/∼mlearn/MLRepository.html.
[Bod03a] U. Bodenhofer. A note on approximate equality versus the Poincaré para-

dox. Fuzzy Sets and Systems, 133:155–160, 2003.
[Bod03b] U. Bodenhofer. Representations and constructions of similarity-based fuzzy

orderings. Fuzzy Sets and Systems, 137:113–136, 2003.
[Buc93] J. J. Buckley. Sugeno type controllers are universal controllers. Fuzzy Sets

and Systems, 53:299–303, 1993.
[Cas95] J. L. Castro. Fuzzy logic controllers are universal approximators. IEEE

Trans. Syst. Man Cybernet., 25:629–635, 1995.
[CCH92] J. Coulon, J.-L. Coulon, and U. Höhle. Classification of extremal subob-

jects over SM-SET. In Rodabaugh et al. [RKH92], pages 9–31.
[CCHM03] J. Casillas, O. Cordon, F. Herrera, and L. Magdalena. Interpretability

Issues in Fuzzy Modeling. Springer, Berlin, 2003.
[CD96] J. L. Castro and M. Delgado. Fuzzy systems with defuzzification are uni-

versal approximators. IEEE Trans. Syst. Man Cybern. B, 26:149–152,
1996.

[CDM00] R. Cignoli, I. M. L. D’Ottaviano, and D. Mundici. Algebraic Foundations
of Many-Valued Reasoning. Kluwer, Dordrecht, 2000.

[CFM02] G. Castellano, A. M. Fanelli, and C. Mencar. A double-clustering approach
for interpretable granulation of data. In Proceedings IEEE Int. Conf. on
Syst. Man Cybern. 2002, Hammamet, 2002.

[CGH+04] O. Cordon, F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena. Ten
years of genetic fuzzy systems: current framework and new trends. Fuzzy
Sets and Systems, 141:5–31, 2004.

[CH99] O. Cordon and F. Herrera. A two-stage evolutionary process for designing
TSK fuzzy rule-based systems. IEEE Trans. Syst. Man Cybern. B, 29:703–
715, 1999.

[CHHM01] O. Cordon, F. Herrera, F. Hoffmann, and L. Magdalena. Genetic Fuzzy
Systems—Evolutionary Tuning and Learning of Fuzzy Knowledge Bases.
World Scientific, Singapore, 2001.

References 275

[Chi94] S. Chiu. Fuzzy model identification based on cluster estimation. Journal
of Intelligent and Fuzzy Systems, 2:267–278, 1994.

[CST01] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods. Cambridge Univer-
sity Press, Cambridge, 2001.

[DGP92] D. Dubois, M. Grabisch, and H. Prade. Gradual rules and the approxima-
tion of functions. In Proceedings 2nd International Conference on Fuzzy
Logic and Neural Networks, Iizuka, pages 629–632, 1992.

[DH06] M. Drobics and J. Himmelbauer. Creating comprehensible regression mod-
els: Inductive learning and optimization of fuzzy regression trees using
comprehensible fuzzy predicates. Soft Comput., 11:421–438, 2006.

[DHR93] D. Driankov, H. Hellendoorn, and M. Reinfrank. An Introduction to Fuzzy
Control. Springer, Berlin, 1993.

[DHS00] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley,
Chichester, 2000.

[Dro04] M. Drobics. Choosing the best predicates for data-driven fuzzy modeling.
In Proceedings 13th IEEE Int. Conf. on Fuzzy Systems, pages 245–249,
Budapest, 2004.

[EGHL08] C. Eitzinger, M. Gmainer, W. Heidl, and E. Lughofer. Increasing classifica-
tion performance with adaptive features. In A. Gasteratos, M. Vincze, and
J. K. Tsotsos, editors, Proceedings ICVS 2008, Santorini Island, volume
5008 of LNCS, pages 445–453. Springer, Berlin, 2008.

[EHL+09] C. Eitzinger, W. Heidl, E. Lughofer, S. Raiser, J. E. Smith, M. A. Tahir,
D. Sannen, and H. van Brussel. Assessment of the influence of adaptive
components in trainable surface inspection systems. Machine Vision and
Applications, 2009. To appear.

[FT06] D. P. Filev and F. Tseng. Novelty detection based machine health prog-
nostics. In Proceedings 2006 International Symposium on Evolving Fuzzy
Systems, pages 193–199, Lake District, 2006.

[GK79] D. Gustafson and W. Kessel. Fuzzy clustering with a fuzzy covariance
matrix. In Proceedings IEEE CDC, pages 761–766, San Diego, 1979.

[Got01] S. Gottwald. A Treatise on Many-Valued Logic. Studies in Logic and
Computation. Research Studies Press, Baldock, 2001.

[Gra84] R. M. Gray. Vector quantization. IEEE ASSP Magazine, 1:4–29, 1984.
[Háj98] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
[Hal50] P. R. Halmos. Measure Theory. Van Nostrand Reinhold, New York, 1950.
[HGC01] R. Herbrich, T. Graepel, and C. Campbell. Bayes point machines. Journal

of Machine Learning Research, 1:245–279, 2001.
[HKKR99] F. Höppner, F. Klawonn, R. Kruse, and T. A. Runkler. Fuzzy Cluster

Analysis—Methods for Image Recognition, Classification, and Data Anal-
ysis. John Wiley & Sons, Chichester, 1999.

[HØ82] L. P. Holmblad and J. J. Østergaard. Control of a cement kiln by fuzzy
logic. In M. M. Gupta and E. Sanchez, editors, Fuzzy Information and
Decision Processes, pages 389–399. North-Holland, Amsterdam, 1982.

[Höh92] U. Höhle. M -valued sets and sheaves over integral commutative CL-
monoids. In Rodabaugh et al. [RKH92], pages 33–72.

[Höh98] U. Höhle. Many-valued equalities, singletons and fuzzy partitions. Soft
Computing, 2:134–140, 1998.

[HTF01] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer, New York,
2001.

[Jan93] J.-S. R. Jang. ANFIS: Adaptive-network-based fuzzy inference systems.
IEEE Trans. Syst. Man Cybern., 23:665–685, 1993.

[Jan98] C. Z. Janikow. Fuzzy decision trees: Issues and methods. IEEE Trans.
Syst. Man Cybern. B, 28:1–14, 1998.

276 Erich Peter Klement et al.

[Kas01] N. Kasabov. Evolving fuzzy neural networks for supervised/unsupervised
online knowledge-based learning. IEEE Trans. Syst. Man Cybern. B,
31:902–918, 2001.

[Kas02] N. Kasabov. Evolving Connectionist Systems—Methods and Applications
in Bioinformatics, Brain Study and Intelligent Machines. Springer, Lon-

don, 2002.
[KK97] F. Klawonn and R. Kruse. Constructing a fuzzy controller from data.

Fuzzy Sets and Systems, 85:177–193, 1997.
[KKM99] E. P. Klement, L. T. Kóczy, and B. Moser. Are fuzzy systems universal

approximators? Internat. J. Gen. Systems, 28:259–282, 1999.
[KM05] E. P. Klement and R. Mesiar, editors. Logical, Algebraic, Analytic, and

Probabilistic Aspects of Triangular Norms. Elsevier, Amsterdam, 2005.
[KMP00] E. P. Klement, R. Mesiar, and E. Pap. Triangular Norms. Kluwer, Dor-

drecht, 2000.
[Kos92] B. Kosko. Fuzzy systems as universal approximators. In Proceedings IEEE

International Conference on Fuzzy Systems 1992, San Diego, pages 1153–
1162. IEEE Press, Piscataway, 1992.

[Kun00] L. Kuncheva. Fuzzy Classifier Design. Physica-Verlag, Heidelberg, 2000.
[Kun04] L. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms.

Wiley, Chichester, 2004.
[LA09] E. Lughofer and P. Angelov. Detecting and reacting on drifts and shifts

in on-line data streams with evolving fuzzy systems. In Proceedings IF-
SA/EUSFLAT 2009 Conference, Lisbon, 2009. To appear.

[LAZ07] E. Lughofer, P. Angelov, and X. Zhou. Evolving single- and multi-model
fuzzy classifiers with FLEXFIS-Class. In Proceedings FUZZ-IEEE 2007,
pages 363–368, London, 2007.

[LG08] E. Lughofer and C. Guardiola. On-line fault detection with data-driven
evolving fuzzy models. Journal of Control and Intelligent Systems, 36:307–
317, 2008.

[LHBG09] E. Lima, M. Hell, R. Ballini, and F. Gomide. Evolving fuzzy modeling
using participatory learning. In P. Angelov, D. Filev, and N. Kasabov,
editors, Evolving Intelligent Systems: Methodology and Applications. John
Wiley & Sons, New York, 2009. To appear.

[LHK05] E. Lughofer, E. Hüllermeier, and E. P. Klement. Improving the in-
terpretability of data-driven evolving fuzzy systems. In Proceedings
EUSFLAT 2005, pages 28–33, Barcelona, Spain, 2005.

[Lju99] L. Ljung. System Identification: Theory for the User. Prentice Hall, Upper
Saddle River, 1999.

[LK08] E. Lughofer and S. Kindermann. Improving the robustness of data-driven
fuzzy systems with regularization. In Proceedings IEEE World Congress
on Computational Intelligence (WCCI) 2008, pages 703–709, Hongkong,
2008.

[LK09] E. Lughofer and S. Kindermann. Rule weight optimization and feature
selection in fuzzy systems with sparsity constraints. In Proceedings IF-
SA/EUSFLAT 2009 Conference, Lisbon, Portugal, 2009. To appear.

[LMP05] G. Leng, T. M McGinnity, and G. Prasad. An approach for on-line extrac-
tion of fuzzy rules using a self-organising fuzzy neural network. Fuzzy Sets
and Systems, 150:211–243, 2005.

[Lug08a] E. Lughofer. Evolving Fuzzy Models—Incremental Learning, Inter-
pretability and Stability Issues, Applications. VDM Verlag Dr. Müller,
Saarbrücken, 2008.

[Lug08b] E. Lughofer. Evolving vector quantization for classification of on-line data
streams. In Proceedings Conference on Computational Intelligence for
Modelling, Control and Automation (CIMCA 2008), pages 780–786, Vi-
enna, 2008.

References 277

[Lug08c] E. Lughofer. Extensions of vector quantization for incremental clustering.
Pattern Recognition, 41:995–1011, 2008.

[Lug08d] E. Lughofer. FLEXFIS: A robust incremental learning approach for evolv-
ing TS fuzzy models. IEEE Trans. Fuzzy Syst., 16:1393–1410, 2008.

[Lug09] E. Lughofer. Towards robust evolving fuzzy systems. In P. Angelov,
D. Filev, and N. Kasabov, editors, Evolving Intelligent Systems: Method-
ology and Applications. John Wiley & Sons, New York, 2009. To appear.

[MA75] E. H. Mamdani and S. Assilian. An experiment in linguistic synthesis with
a fuzzy logic controller. Intern. J. Man-Machine Stud., 7:1–13, 1975.

[Men42] K. Menger. Statistical metrics. Proc. Nat. Acad. Sci. U.S.A., 8:535–537,
1942.

[Mer09] J. Mercer. Functions of positive and negative type and their connection
with the theory of integral equations. Philos. Trans. Roy. Soc. London,
209:415–446, 1909.

[MH08a] B. Moser and P. Haslinger. Texture classification with SVM based on
Hermann Weyl’s discrepancy norm. In Proceedings of QCAV09, Wels,
2008. To appear.

[MH08b] B. Moser and T. Hoch. Misalignment measure based on Hermann Weyl’s
discrepancy. In A. Kuijper, B. Heise, and L. Muresan, editors, Proceed-
ings 32nd Workshop of the Austrian Association for Pattern Recognition
(AAPR/OAGM), volume 232, pages 187–197. Austrian Computer Society,
2008.

[Mil02] A. Miller. Subset Selection in Regression Second Edition. Chapman and
Hall/CRC, Boca Raton, 2002.

[MKH08] B. Moser, T. Kazmar, and P. Haslinger. On the potential of Hermann
Weyl’s discrepancy norm for texture analysis. In Proceedings Intern. Conf.
on Computational Intelligence for Modelling, Control and Automation,
2008. To appear.

[MLMRJRT00] H. Maturino-Lozoya, D. Munoz-Rodriguez, F. Jaimes-Romera, and
H. Tawfik. Handoff algorithms based on fuzzy classifiers. IEEE Trans-
actions on Vehicular Technology, 49:2286–2294, 2000.

[Mos99] B. Moser. Sugeno controllers with a bounded number of rules are nowhere
dense. Fuzzy Sets and Systems, 104:269–277, 1999.

[Mos06a] B. Moser. On representing and generating kernels by fuzzy equivalence
relations. J. Machine Learning Research, 7:2603–2620, 2006.

[Mos06b] B. Moser. On the T -transitivity of kernels. Fuzzy Sets and Systems,
157:1787–1796, 2006.

[Mos09] B. Moser. A similarity measure for images and volumetric data based
on Hermann Weyl’s discrepancy. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 2009. To appear.

[NFI00] O. Nelles, A. Fink, and R. Isermann. Local linear model trees (LOLIMOT)
toolbox for nonlinear system identification. In Proceedings 12th IFAC Sym-
posium on System Identification, Santa Barbara, 2000.

[NK92] H. T. Nguyen and V. Kreinovich. On approximations of controls by fuzzy
systems. Technical Report 92–93/302, LIFE Chair of Fuzzy Theory, Tokyo
Institute of Technology, Nagatsuta, Yokohama, 1992.

[NK98] D. Nauck and R. Kruse. NEFCLASS-X—a soft computing tool to build
readable fuzzy classifiers. BT Technology Journal, 16:180–190, 1998.

[NSTY95] H. T. Nguyen, M. Sugeno, R. Tong, and R. R. Yager, editors. Theoretical
Aspects of Fuzzy Control. Wiley, New York, 1995.

[OW03] C. Olaru and L. Wehenkel. A complete fuzzy decision tree technique. Fuzzy
Sets and Systems, 138:221–254, 2003.

[Par62] E. Parzen. Extraction and detection problems and reproducing kernel
hilbert spaces. Journal of the Society for Industrial and Applied Mathe-
matics. Series A, On control, 1:35–62, 1962.

278 Erich Peter Klement et al.

[PF01] Y. Peng and P. A. Flach. Soft discretization to enhance the continuous
decision tree induction. In Proceedings ECML/PKDD01 Workshop In-
tegrating Aspects of Data Mining, Decision Support and Meta-Learning,
pages 109–118, 2001.

[RKH92] S. E. Rodabaugh, E. P. Klement, and U. Höhle, editors. Applications of
Category Theory to Fuzzy Subsets. Kluwer, Dordrecht, 1992.

[RS01] H. Roubos and M. Setnes. Compact and transparent fuzzy models and
classifiers through iterative complexity reduction. IEEE Trans. on Fuzzy
Syst., 9:516–524, 2001.

[RSA03] J. A. Roubos, M. Setnes, and J. Abonyi. Learning fuzzy classification rules
from data. Inform. Sci., 150:77–93, 2003.

[RSHS06] H.-J. Rong, N. Sundararajan, G.-B. Huang, and P. Saratchandran. Sequen-
tial adaptive fuzzy inference system (SAFIS) for nonlinear system identi-
fication and prediction. Fuzzy Sets and Systems, 157:1260–1275, 2006.

[Rud76] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, Düsseldorf,
1976.

[SDJ99] R. Santos, E. R. Dougherty, and J. T. Astola Jaakko. Creating fuzzy rules
for image classification using biased data clustering. In SPIE Proceedings
Series, volume 3646, pages 151–159. Society of Photo-Optical Instrumen-
tation Engineers, Bellingham, 1999.

[SNS+08] D. Sannen, M. Nuttin, J. E. Smith, M. A. Tahir, E. Lughofer, and
C. Eitzinger. An interactive self-adaptive on-line image classification
framework. In A. Gasteratos, M. Vincze, and J.K. Tsotsos, editors, Pro-
ceedings ICVS 2008, Santorini Island, volume 5008 of LNCS, pages 173–
180. Springer, Berlin, 2008.

[SS83] B. Schweizer and A. Sklar. Probabilistic Metric Spaces. North-Holland,
New York, 1983.

[SS95] H. Schwetlick and T. Schuetze. Least squares approximation by splines
with free knots. BIT, 35:361–384, 1995.

[SS01] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond (Adaptive Computation
and Machine Learning). The MIT Press, 2001.

[Sto74] M. Stone. Cross-validatory choice and assessment of statistical predictions.
Journal of the Royal Statistical Society, 36:111–147, 1974.

[TA77] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems. Win-
ston & Sons, Washington, 1977.

[TJ93] M. Tuceryan and A. K. Jain. Texture analysis. In C. H. Chen, L. F.
Pau, and P. S. P. Wang, editors, The Handbook of pattern recognition &
computer vision, pages 235–276. World Scientific, River Edge, 1993.

[TS85] T. Takagi and M. Sugeno. Fuzzy identification of systems and its ap-
plication to modelling and control. IEEE Trans. Syst. Man Cybernet.,
15:116–132, 1985.

[Tsy04] A. Tsymbal. The problem of concept drift: definitions and related work.
Technical Report TCD-CS-2004-15, Department of Computer Science,
Trinity College Dublin, Ireland, 2004.

[Vap95] V. Vapnik. The Nature of Statistical Learning Theory. Springer, New
York, 1995.

[Vap98] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
[Wan92] L. X. Wang. Fuzzy systems are universal approximators. In Proceedings

IEEE International Conference on Fuzzy Systems 1992, San Diego, pages
1163–1169. IEEE, Piscataway, 1992.

[Was93] P. D. Wasserman. Advanced Methods in Neural Computing. Van Nostrand
Reinhold, New York, 1993.

[WCQY00] X. Wang, B. Chen, G. Qian, and F. Ye. On the optimization of fuzzy
decision trees. Fuzzy Sets and Systems, 112:117–125, 2000.

References 279

[Wey16] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann.,
77:313–352, 1916.

[WKQ+06] X. Wu, V. Kumar, J. R. Quinlan, J. Gosh, Q. Yang, H. Motoda, G. J.
MacLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J.
Hand, and D. Steinberg. Top 10 algorithms in data mining. Knowledge
and Information Systems, 14:1–37, 2006.

[Yag90] R. R. Yager. A model of participatory learning. IEEE Trans. Syst. Man
Cybern., 20:1229–1234, 1990.

[YF93] R. R. Yager and D. P. Filev. Learning of fuzzy rules by mountain cluster-
ing. In Proceedings SPIE Conf. on Application of Fuzzy Logic Technology,
volume 2061, pages 246–254. International Society for Optical Engineering,

Boston, 1993.
[Yin98] H. Ying. Sufficient conditions on uniform approximation of multivariate

functions by general Takagi-Sugeno fuzzy systems with linear rule conse-
quents. IEEE Trans. Syst. Man and Cybern. A, 28:515–520, 1998.

[Zad65] L. A. Zadeh. Fuzzy sets. Inform. and Control, 8:338–353, 1965.
[ZS96] J. Zeidler and M. Schlosser. Continuous valued attributes in fuzzy deci-

sion trees. In Proceedings 8th Int. Conf. on Information Processing and
Management of Uncertainty in Knowledge-Based Systems, pages 395–400,
1996.

Chapter VI

Information and Semantics in Databases

and on the Web

Roland Wagner, Josef Küng, Birgit Pröll

Christina Buttinger, Christina Feilmayr, Bernhard Freudenthaler,

Michael Guttenbrunner, Christian Hawel, Melanie Himsl,

Daniel Jabornig, Werner Leithner, Stefan Parzer, Reinhard Stumptner,

Stefan Wagner, Wolfram Wöß

Introduction 1

The world we are living in is predominated by information affecting our
business as well as private lives and thus, the time we are living in is com-
monly referred to as “information age” or “knowledge age”. Information and
knowledge, the latter providing the additional potential to infer new knowl-
edge, are contained in databases , ranging from traditional ones storing struc-
tured data, via, knowledge bases, semantic networks, and ontologies up to
the World Wide Web (WWW), which can be regarded as a huge distributed
database following the hypertext paradigm of linked information, containing
unstructured respectively semi-structured data. Information systems enable
the retrieval of information and knowledge stored in their database compo-
nent, e.g., via search engines for the WWW case. Current research approaches
enable the management of semantics , i.e., the meaning of data, e.g., the Se-
mantic Web aiming at making information on the WWW interpretable for
machines.

The Institute of Application Oriented Knowledge Processing (FAW), lo-
cated in Softwarepark Hagenberg since 1991, is one of the major players in
traditional and advanced information systems, data modelling, information
retrieval & extraction and WWW-based information systems, including Web
Engineering. This reputation shows first, in the fact that FAW is heading
the annual international conference event DEXA (Database and Expert Sys-
tems Application), which was co-founded in 1990 by Roland Wagner [DEXA]
and established a worldwide recognition of database research as conducted
in Softwarepark Hagenberg, second, in the success of numerous industry re-

282 Roland Wagner, Josef Küng, Birgit Pröll et al.

lated projects, e.g., the well known Web-based tourism information system
Tiscover , which was developed at FAW starting 1995, and, third, in the con-
duction of multiple basic national & EU research projects in this domain.

In Softwarepark Hagenberg research in part of these areas is also con-
ducted by, among others, Software Competence Center Hagenberg (SCCH),
contributing to the topic data warehouses in this chapter, and the Research
Institute of Symbolic Computation (RISC).

One primary intention of FAW is to perform application oriented re-
search, thus bridging the gap between current research concepts and research-
oriented industry requirements, as shown in the work presented in this chap-
ter. We present current research topics dealt with at FAW and SCCH by
particular research groups, which adhere to different requirements and cope
with different application areas. The presented topics have in common that
their focus of interest is the management of information and knowledge, i.e.,
on the one hand their proper storage, by means of ontologies or semantic
networks, on the other hand their “intelligent” retrieval based on semantic
aspects, by means of similarity queries respectively case based reasoning as
well as Web information extraction for the case of unstructured data on Web
pages and their analysis and interpretation based on a proper storage in data
warehouses. Thus, the subchapters comprise:� Ontologies (authored by Feilmayr, Pröll, Wöß): Current advanced infor-

mation and knowledge applications often use ontologies as their knowledge
repository, mainly due to their potential to manage semantics. We present
an approach for ontology development and discuss their application for
information extraction purposes.� Semantic Networks (authored by Freudenthaler, Küng, Stumptner): One
of the first approaches to handle semantics was to build up networks in
which the edges were enriched by additional information that represents
the meaning (semantics). A well known and standardized solution is called
topic maps. In this chapter we introduce these concepts and show an ap-
plication example.� Adaptive Modeling (authored by Himsl, Jabornig, Küng, Leithner): De-
veloping information systems contains at least one modelling task in the
early stage of the project. During the last few years the idea of adaptive
modelling (adapting the corresponding meta model during the modelling
process) came up and a sophisticated tool supporting in particular visual
meta- and instance-modelling has been developed.� Web Information Extraction (authored by Buttinger, Feilmayr, Gutten-
brunner, Parzer, Pröll): Web information extraction (IE) is commonly de-
fined as extracting structured data out of unstructured data as it appears
on Web pages. Besides an introduction into the fundamentals of (Web)
information extraction we present three information extraction systems
tackling different application domains and outline selected concepts re-
sulting from their development.

VI Information and Semantics in Databases and on the Web 283� Similarity Queries and Case Based Reasoning (authored by Freudenthaler,
Küng, Stumptner): A recurring challenge in information systems is dealing
with similarity. Often data are not accurate enough that equality is given
or, users want to find the most similar object(s) to a given query. At FAW
a vague query system (VQS) has been developed that enriches traditional
data base systems by similarity queries. The second part in this chapter
is on Case Based Reasoning (CBR) where similarity plays a crucial role,
too.� Data warehouses (authored by Hawel, Wagner S.): Today the huge amount
of data often is stored in so called data warehouses, particular database
systems that are optimized for managing and analyzing this data mass. In
this book we address two selected sub-topics: Regression tests and active
data warehousing.

Ontologies 2

An ontology defines a shared vocabulary, which can be thereupon used to
model a domain. In the following subchapter we first, provide a definition
and introduce some basic concepts of ontologies, second, we propose an on-
tology development methodology, and third, we discuss recent approaches of
applying ontologies for the information extraction purpose. Ontologies and
their usage in the GRID domain are dealt in Chapter VII.

Basics 2.1

The term Ontology derives from philosophy (from the Greek ωυ, genitive
συτoς: of being <part. of ειυαι: to be> and -λoγια: study, theory)1 and
in general it is the study of what kind of things exists, as well as of the
basic categories of being and their relations. In computer science ontologies
are primarily used in applications related to knowledge management, natural
language processing, e-commerce, information retrieval, information integra-
tion and they are the core element in all of the Semantic Web applications.
The Semantic Web and Semantic Web technologies offer a new approach of
managing information and processes, the fundamental principle of which is
the creation and use of semantic metadata.

[Gru93] coined the commonly agreed definition: “An ontology is an ex-
plicit and formal specification of a conceptualization”. The conceptualization

1 Cambridge Encyclopedia Vol. 55

284 Roland Wagner, Josef Küng, Birgit Pröll et al.

is formal and hence permits reasoning by computer; and that a practical on-
tology is designed for some particular domain of interest. Guarino [Gua98]
classified ontologies in different types according to their level of generality.
Upper-level ontologies describe very general concepts such as space or time
and are domain-independent. A domain ontology is a conceptualization that
is specific to a domain.

A more formal definition is to define an ontology as a structure of a 4-tuple

O := (C, R, I, A).

Ontologies consist of concepts C (sometimes called classes), properties
R of each concept (also called relations), describing features and attributes
of the concept, and restrictions on properties. An ontology together with a
set of individual instances I of classes constitutes a knowledge base. A is
a set of axioms. According to Gruber, formal axioms are used to verify the
consistency of the ontology itself and further an automated reasoner can infer
new conclusions from the given knowledge, thus making implicit knowledge
explicit.

The Web Ontology Language OWL2 , which builds on Resource Descrip-
tion Framework RDF 3, provides a mechanism for modelling components of
an ontology.

The example of an ontology statement (also known as triple) in Figure 1
comprises a concept Person, holding a property hasName, which links a per-
son to a string—the person’s name.

Figure 1 Example of Ontology Statement.

An ontology, a formal model, can be used to provide formal semantics
to any sort of information: databases, catalogs, text documents, Web pages,
etc. The association of information with formal models makes the information
more amenable to machine processing and interpretation. Semantic annota-
tion of unstructured content based on ontologies is getting a relevant topic.

Research challenges include algorithms for automatic ontology learn-
ing and -population from text, their evaluation and applications, setting
up proprietary evaluation frameworks for assessment. Content, develop-
ment methodology, automated reasoning aspects, and tool support are all-

2 http://www.w3.org/2004/OWL
3 http://www.w3.org/RDF

VI Information and Semantics in Databases and on the Web 285

important for turning the development and use of ontologies into a true sci-
entific and engineering discipline.

DynamOnt – Dynamic Ontology 2.2

The DynamOnt project aims at developing a methodology and toolset, which
enables domain experts to do rapid prototyping of ontologies while adhering
to best-practice principles of ontology engineering through the use of con-
sistency checks and guided questions. The main objective was to develop a
methodology that allows domain experts who are neither IT-specialists nor
formal ontologists, to create ad-hoc categorizations or segmentations of arbi-
trary “knowledge spaces”, without having to compromise on the quality of the
evolving conceptual model. In order to design interactive guidance for domain
experts to create sensible lower ontologies DynamOnt aims at supporting
the process of evolving existing glossaries or taxonomies into group-specific
ontologies. A main contribution was to converge different traditions within
ontology engineering (foundational approaches, linguistic approaches, com-
puter science, IEEE/W3C standards) as well as approaches from terminol-
ogy management and computational linguistics. The methodology also aims
at supporting conceptualizations at different levels of formality [GWG06].

Figure 2 shows an overview of the DynamOnt components. The central
idea is the dynamic generation and maintenance of the knowledge model
supporting different levels of model rigour ranging from simple project glos-
saries to formal domain ontologies [GBPW05a].

A typical scenario is a group of people working collaboratively on a project.
As part of their work they create knowledge-based output, primarily in the
form of documents. Since the team may consist of experts from different do-
mains, countries and cultures they do not share a common vocabulary, yet.
Therefore, the users will create a glossary, either starting from existing collec-
tions of terminology or by creating new ones. Over time, the glossary increases
in size and complexity and additional structural elements will become neces-
sary to manage the evolving term repository. In DynamOnt, the maintenance
of the knowledge model is based on such a refinement process. DynamOnt
allows users both, to organize the entries of the glossary and to create a
taxonomy. Subsequently, additional relations and attributes can be added.
Guided questions lead the users to a more structured knowledge model. Us-
ing upper level ontologies like DOLCE4 or SUMO5, DynamOnt guides the
user by asking questions (e.g. “Is this attribute constant over time?”) and
automatically detects possible inconsistencies or errors in the ontology.

4 http://www.loa-cnr.it/DOLCE.html
5 http://www.ontologyportal.org/

286 Roland Wagner, Josef Küng, Birgit Pröll et al.

Figure 2 Schematic Overview of DynamOnt.

Furthermore, the refinement process is influenced by linguistic knowledge
bases. Therefore, the newly created ontology is related to existing projects
such as WordNet or GermaNet by automatically adding links whenever possi-
ble and selectively prompting users where required. An adequate visualization
will help the user to better understand the given knowledge model. As a re-
sult, the DynamOnt system will lead to tightly coupled document-, content-,
terminology-, and ontology repositories that will offer large improvements
in productivity to heterogeneous, distributed groups of knowledge workers.
Moreover, it enables individuals to manage their personal knowledge and
content resources.

The DynamOnt project is funded by FIT-IT Semantic Systems program
under FFG 809256/5512 and was a cooperation of Salzburg Research, FAW,
Institute of Software Technologies and Interactive Systems (Technical Uni-
versity Vienna) and factline Webservices GmbH.

VI Information and Semantics in Databases and on the Web 287

Ontologies in Information Extraction 2.3

In the following we will discuss the application of ontologies for the purpose
of information extraction. Refer to Section 5 for an introduction to informa-
tion extraction (IE), its challenges in the Web domain, as well as the use of
ontologies in IE applications.

There are various IE techniques available for analyzing text and extracting
relevant information, which allow for recognition of named entities and even
relations, events and scenarios (see Section 5).

Semantic annotation (aka. semantic tagging) is a lightweight form of IE,
in that it tags semantic models of, e.g., an ontology, to natural language
items, as they appear in a text. Thus, it may also be characterized as the
dynamic creation of interrelationships between ontologies and documents in
a bi-directional manner covering creation, evolution and population of onto-
logical models [RS06]. Semantic annotation realizes named entity recognition
and can be used as a preliminary phase within a more complex IE process. IE
in addition recognizes properties of named entities and interrelations between
named entities, and thus, enables the extraction of events and even scenarios.

Ontologies may support semantic annotations as well as information ex-
traction. The later is referred to as ontology-based information extraction
(OBIE) and comprises two tasks, in that ontologies and IE benefit from each
other [VNCN05]:

An Ontology constitutes the knowledge base of an IE application: The onto-
logy is then primarily used for semantic annotation, but can also be the
basis for, e.g., information verification purposes within the later stages of
the IE process.

Information Extraction is used for ontology population and enhancement:
In this context texts are used as knowledge sources in order to build and
further enrich ontologies.

In our IE related application-oriented research work we base on the advan-
tages of OBIE in the following areas:

1. Usage of prototypical ontology excerpts as knowledge base for proof-of-
concept IE prototypes, e.g., JobOlize (refer to Section 5.2).

2. Development of real-world domain ontologies for IE purposes, e.g., MAR-
LIES ontology, (refer to Section 5.4), and tourism ontology cDOTT, see
below.

3. Usage of ontologies for verification of IE results, as applied in MARLIES
(refer to Section 5.2).

4. Development and application of extraction domain ontologies, as described
below.

5. Ontology Population, as described below.

288 Roland Wagner, Josef Küng, Birgit Pröll et al.

cDOTT – a Core Domain Ontology for Tourism and Travel

Based on our longtime experience in the development of information systems
and mobile applications in the tourism domain [GWP+08, PR00], we are cur-
rently developing an ontology for the tourism and travel domain, which can be
used for, e.g., IE systems, recommender systems and mobile event handling
systems. The domain of tourism is commonly known as a knowledge-intensive
domain, where online information plays a crucial role for the whole life-cycle
of a journey, comprising pre-trip, on-trip and post-trip phases. In this light,
there is an urgent need for an ontology with a strict teleological orientation.
For the tourism domain, this means to have a core domain ontology com-
prising the most important concepts (such as accommodation, gastronomy,
event, attraction, transportation), while enabling its extension enhancement
with other related ontologies for the purpose of concept expansion and reason-
ing. This approach leads to a loose-coupling of ontologies. The benefit of our
solution is the possibility to reuse existing concepts of different application
contexts, e.g., a time ontology [FGP+09] (see also Sections 5.4 and 5.3).

Development and Application of Ontology-driven Extraction
(ODIE) and Ontology Population

Previous and current research work demonstrate that ontologies are consid-
ered as key technology for IE, where they can assist in a variety of ways. For
the future, ontologies will even get a higher significance with respect to the
IE field. Ontology-driven extraction (ODIE) constitutes a new approach of
OBIE and introduces among others extraction domain ontologies storing IE
rules besides the domain content and thus, allowing for a rapid start of an ex-
traction process. Even when using only a simple domain ontology, which only
covers part of target data, satisfactory results can be achieved, and meaning-
ful feedback for ontology enhancement or redesign can be generated [SN07].
We are on the way to develop an ODIE system, where ontologies enhanced
knowledge is automatically processed in order to build the required IE rules
according to a specified IE task. Thus, the domain experts get enabled to
develop and maintain a (Web) IE system without or only marginal involve-
ment of software engineers. A corrective feedback component, which is based
on the results of an IE assessment component, facilitates a semi automatic
ontology population so as to further alleviate the system’s maintenance.

VI Information and Semantics in Databases and on the Web 289

Semantic Networks 3

Every network (consisting of vertices and edges) in which the edges repre-
sent the semantic relation between the vertices (concepts, objects) is called a
semantic network. These networks were one of the first approaches for knowl-
edge representation in the 1950s and early 1960s. Today several standardized
representation forms for semantic networks are in usage, among others RDF
(resource description format), RDF-schema, OWL (Web Ontology Language)
and, Topic Maps.

Semantic Networks and Decision Support 3.1

In the 1960s the wish for a system was raising which could support experts
of various fields in decision taking. A Decision Support System (DSS) can be
defined as:

“A computer program that provides information in a given domain of
application by means of analytical decision models and access to databases,
in order to support a decision maker in marketing decisions effectively in
complex and ill-structured (non-programmable) tasks.” [KM95]

Whenever there is a fixed goal but no algorithmic solution or when there
are numerous and user-dependant solutions, it is useful to provide support
to an expert by a Decision Support System. The goal of DSS is to improve
decisions by better understanding and preparation of the tasks which lead to-
wards evaluation and choosing. Usually it is not possible to fully automatize
information processing to reach the conclusion. Only if an information pro-
cessing task can be started as an algorithm then the decision making process
is structured, it can be implemented in a computer program and the solution
to the problem is automated.

Structured problems are routine because they are unambiguous, this means
that there is a single solution method. If a certain problem is less structured
then there exist more alternative solution methods and solutions may not be
equivalent. Mainly in management there are many situations where decisions
have to be taken in non-programmable problems.

Classification of DSS

Due to a great user-need for nearly each domain there were implementations
of Decision Support Systems. To make this abundance of systems manageable

290 Roland Wagner, Josef Küng, Birgit Pröll et al.

more easily, it is useful to classify them. Taking the categorization below
in consideration it should become clear that most systems are hybrid and
not driven by a single DSS component. Decision Support Systems can be
categorized the following way:

1. Data-Driven Decision Support Systems: This type of Decision Support
Systems provides the possibility of access and manipulation of well-
structured data. Business Intelligence Systems are good examples for data-
driven DSS.

2. Model-Driven Decision Support Systems: Model-driven DSS offer access
and manipulation functionality for models like financial models, represen-
tation models or optimization models. These systems use data (parame-
ters) which usually are provided by a user to analyze a certain situation.
These systems mainly are not data-intensive.

3. Knowledge-Driven Decision Support Systems: Knowledge-driven DSS nor-
mally are considered to support users in management positions. Problem-
solving and analysis functionality are important components of such sys-
tems.

4. Document-Driven Decision Support Systems: A relatively new category
of DSS are document-driven Decision Support Systems, frequently called
“Knowledge Management Systems”. The aim of these systems generally
is provide support for the management of un-structured documents or
web pages. A well designed and well adapted (full-text) search engine
is a powerful tool in connection with document-driven Decision Support
Systems.

Topic Maps

“Topic Maps have their roots in the first years of the 1990s. The so called
‘Davenport Group’ was discussing the problem of interchanging computer
documentation. The basic concepts Topic, Association and Occurrence (TAO),
discussed in this manner, became the Topic Map standard some years later.
A Topic describes or rather represents any subject from real world, e.g., con-
cepts and entities These Topics need to be categorized made possible by
Topic Types. For instance a Topic ‘Austria’ would be of type ‘Country’. To
define relations between topics there is the association-concept. An Associ-
ation has a type, e.g., ‘written by’ and two or more members. An example
for an association between a document and a person could be ‘p23234.pdf
written by Reinhard Stumptner’. The type of the Association is ‘written by’.
Furthermore it has two members: the document ‘p23234.pdf’ and the person
‘Reinhard Stumptner’. The third main concept is the Occurrence. Occur-
rences are used for linking a topic to information sources of any type. Such
information sources in general are outside of the topic map.” [FSFK07]

VI Information and Semantics in Databases and on the Web 291

Generally speaking, Topic Maps provide techniques to make connections
between pieces of information.

VCDECIS

As described in [FSFK07], the term Decision Support System (DSS), Knowl-
edge Management System (KMS) and Knowledgebase (KB) designate an
approach to improving organizational outcomes and organizational learning
by introducing a range of specific processes and practices for identifying and
capturing knowledge, know-how, expertise and other intellectual capital and
for making such knowledge assets available for transfer and reuse across the
organization. While knowledge transfer (an aspect of Knowledge Manage-
ment) has always existed in a certain form, for example through on-the-job
discussions with peers, formally through apprenticeship, professional training
and mentoring programs—since the late twentieth century—technologically
through knowledge bases, expert systems and other knowledge repositories,
knowledge management programs seek to consciously evaluate and manage
the process of accumulation and application of intellectual capital. A key
distinction made by Knowledge Management practitioners is between tacit
and explicit knowledge. The former is often subconscious and internalized,
and individuals may or may not be aware of what they know and how they
accomplish particular results. At the opposite end of the spectrum is explicit
knowledge—this refers to knowledge that individuals hold explicitly and con-
sciously in mental focus, and may communicate to others, and especially
to such knowledge when codified into written or another permanent form.
These two opposite characteristics of knowledge require different approaches
in Knowledge Management:

Tacit knowledge requires systems which can access knowledge resources to
learn best practice, enables the communication between people and indicates
context between knowledge and its sources; And explicit knowledge which
can be codified in documents requires a person-to-document-approach such
as Document Management Systems and Databases combined with search
tools.

Ikujiro Nonaka and Hirotaka Takeuchi (“The Knowledge Creating Com-
pany”) argued that on the one hand, a successful knowledge management
program needs to convert internalized tacit knowledge into explicit codified
knowledge in order to share it, but on the other hand, individuals and groups
must also internalize and make personally meaningful explicit knowledge once
they retrieve it from its codified form. The amount of data and documents
in intranets of enterprises or web appearances of the enterprises increases,
at present ever more strongly. However, the content in these documents for
enterprises is essential for commercial success. In this great quantity of infor-
mation important knowledge can be lost easily.

292 Roland Wagner, Josef Küng, Birgit Pröll et al.

The idea of VCDECIS is a content- and knowledge management system,
which is able to provide important information generally stored in the form of
documents. It is designed to serve as a knowledge-based system and meets all
requirements specified in the sense of knowledge management. The Concept
of VCDECIS is tied to organizational objectives, as improved performance
and quality, competitive advantage and a higher level of innovation.

The development is based on the following Taxonomy of Decision Support
Systems (DSS):

Communication-driven DSS: supports more than one person or institution
working on shared tasks.

Document-driven DSS: manages, retrieves and manipulates unstructured
information in a variety of electronic formats.

Data-driven DSS: emphasizes on access and interpretation of data (time-
series, statistics, databases, . . .).

Knowledge-driven DSS: provides specialized problem solving expertise stored
as facts, rules, procedures, or in similar structures.

In VCDECIS each aspect can be found, communication-, document-, data-
and knowledge driven DSS. Therefore the system has an integrated design of
independent elements and well defined interfaces. The support of collabora-
tive work as enabled by a so-called communication-driven DSS was decisive
for the implementation of VCDECIS as web application. The whole content
is stored on a web server and satisfies all necessity of Knowledge Sharing.
The system’s goal is a proper management of literature in the meaning of
document-driven DSS is actualized with tools such as a semantic network
for the machine-readable content context, search engines and a navigator for
content browsing and publishing. On the highest level a knowledge-based
system acts as knowledge-driven DSS.

Topic Map

“VCDECIS is a specialized knowledge-based system for the field of Structural
Health Monitoring. It can be termed a knowledge-based Content Manage-
ment System (CMS) whose main components are a Topic Map for knowledge
representation, an easy to use web portal and an integrated search engine for
full-text search within the content. To improve runtime-performance of the
Topic Map it is stored not in its original XML structure but in a rational
database. Attributes (facets) of topics are kept separately in a database of the
same kind. Full-text search functionality is provided by the open-source soft-
ware package Lucene. The search engine and the Topic Map navigation are
integrated into VCDECIS web portal whereby search results can be “opened”
for navigation in the Topic Map. The core of the VCDECIS content man-
agement uses a topic map as a form of semantic network for the knowledge
representation. It allows the integration of heterogeneous information such

VI Information and Semantics in Databases and on the Web 293

as any kind of addressable data (documents, links, . . .) and concepts from
projects, institutions, scientific issues . . . to datasets from databases.

In many fields of Computer Science there exists a need to represent knowl-
edge and meaning in order to make communication between humans and
computers possible or rather make it more efficient.

Thus a separation into two layers, Topics and their Occurrences, is reached.
As already mentioned a topic map can represent information using topics (to
represent any concept), associations (to represent the relationships between
topics) and occurrences (which represent relationships between topics and
information resources relevant to them). The topic map of VCDECIS distin-
guishes between two types of topics—topics and content topics. While topics
are created to hold information of concepts and define context among them,
content topics represent metadata of occurrences. Content topics are charac-
terized by the possibility of having associations to topics only, not to other
content topics. Due to the fact that VCDECIS’ content is in the center of
attention, the ability to aggregate content/occurrences using content topics
turned out to be advantageous.” [FSFK07]

Topics and content topics. Figure 3

Application and Utilization

As explained in [FSFK07], VCDECIS’ document upload platform is an easy
to use web-based user interface to manage any kind of documents or files in
the and link them with topics of a Topic Map. In a first step of an upload pro-
cess, information like name, keywords and so on are specified and in a second
step it is associated with topics like person, institution et cetera. Further-
more, administrators of the system have the possibility to create new topics.
Topic and association types generally are static and cannot be expanded by
the user.

294 Roland Wagner, Josef Küng, Birgit Pröll et al.

Add content: The user is assisted by an upload tool running on a web
browser while uploading documents on the web server. The upload tool of-
fers a simple graphical user interface and is extensively self-explanatory for
convenient filing. The procedure of adding content is done within three steps,
namely upload files, create topics and “content topics” (aggregation of oc-
currences) and finally the definition of associations. Within this procedure
content is stored to the web server, indexed by the full-text search engine and
linked to relevant topics of the semantic network. The document is placed
within this knowledge network with the advantage that the user does not
need to remember complicated hierarchies or other form of organization of a
file system.

Content search: The retrieval of documents and topics within VCDECIS
is supported by sophisticated search tools. The content search can be applied
either in the scope of all entries of the topic map or in the documents by
means of a full text search.

Content browsing: Based on associations and semantic links the user can
navigate to “neighboring” documents (same project, same author, identical
scientific issue . . .). The so-called Navigator is besides the search engine an
essential tool for the retrieval of knowledge and information.

Content publishing: As VCDECIS is a web application and access by “ex-
ternal” users such as project partners, the publication scope are intended to
be defined by clients, which is an elementary property of all topics and con-
tent topics. The system offers three level of authority—internal, private and
public. While public topics do not need any user-login for access via internet,
a topic defined as private or internal only grants access to a certain group of
users or company members.

4 Adaptive Modeling

In successful business and IT projects of today’s enterprises there are model-
ing activities in business reengineering, logistics, supply chain management,
industrial manufacturing and so on. Models foster the communication be-
tween stakeholders, because they enforce a certain standardization of the
respective domain language. Therefore, they speed up requirement elicita-
tion and then serve as a long-time documentation of system analysis efforts.
Modeling is here to stay even if models are not intended as blueprints in
Software development projects they add value. For example, there are huge
business process redocumentation projects in major enterprises. Research in
model-driven engineering is important. In these efforts there exists a differ-
ent focus on modeling than model-driven engineering. We have a look at the
working domain expert. Often, it is necessary to adapt the modeling method
and, in particular, to adapt the used modeling language to the current needs

VI Information and Semantics in Databases and on the Web 295

of the domain. It may become necessary to introduce new modeling elements,
to deprecate an existing model element, to add properties to an existing mod-
eling element, to detail the semantics or to change the appearance of a model
element.

Over the last three years we have been anxious to get an overview of the
current research in the domains of metamodeling, domain specific model-
ing and model transformation, including the most recent developments like
Eclipse GMF [GMF09] and Microsoft DSL [CJKW07], in order to survey the
suitability of concepts for the business modeling domain. As a result it came
up that the concepts could not be directly applied. To provide metamodel-
ing features for the business domain and directly to end-users the first order
principles are intuitivity and usability. Rather complex methods like MOF
[omg06] or most proprietary methods implemented by, e.g., (Meta)-CASE
tools [Met01, KP02, REN01, Kel97, LMB+01], are hardly accepted by users
in this domain. Nevertheless, metamodeling features would add substantial
value when applied to the business domain in a user-friendly intuitive style.

The result was a visualization-oriented metamodeling concept that has
been implemented in a Modeling-Platform called AMMI. The concept as
well as the platform allows the intuitive visualization-oriented creation of
metamodels and to use them as a schema for (instance-)modeling. Further
a central feature of the concept is the support for an “Iterative Modeling
Process”. Presumption to this was that our experiences showed that it is
not applicable to create the perfect fitting metamodels in advance. Well, for
some basic tasks snapshot modeling will be sufficient but often the domain
evolution has to result in an evolution of the modeling language. Initially
basic metamodels will be created and used to model the domain. Over sev-
eral building cycles the metamodel can be changed and the already existing
instances will be adapted automatically to create a more fitting domain repre-
sentation. However, the building cycles are not limited in respect to dynamic
changes in the domain.

Iterative Modeling Process 4.1

As mentioned, unlike most of the research that has been done in Do-
main Specific Modeling, Metamodeling and Model Transformation we can
place the origin of this work in the area of corporate modeling. In nu-
merous projects from business process reengineering to enterprise-wide IT-
Architectures, modeling is an essential prerequisite for success. Moreover, it is
hardly possible to achieve sustainable improvements without an appropriate
abstraction of the real corporate structures and processes. This is where mod-
eling has to take place. But on the other hand modeling must not become an
end in itself. It has to be strongly focused on that what needs to be analyzed.

296 Roland Wagner, Josef Küng, Birgit Pröll et al.

Otherwise it will be nearly impossible to maintain the results, considering
that corporate structures and processes are frequently subject of changes. As
consequence of organizational changes the model repository and even mod-
eling methods may have to be adapted to keep them valid. This adaptation
process is more than a tool function; it is moreover an organizational process
that has to be implemented.

This is one major area where we see a huge deficit in the current research.
Tool vendors highlight their features to support metamodeling and praise
their solution as flexible and adaptive. The organizational aspects that come
up with adaptiveness are not considered sufficiently. Metamodeling and in
particular an iterative modeling process can lead to unintended situations
when they are implemented in an inappropriate way within an organiza-
tional structure. As a metamodel defines a common language that is used,
e.g., company-wide, any changes on metamodel have to be planed carefully.
Standardized and predefined change- and authorization processes must be
implemented. Modeling is used across different companies, company depart-
ments and over different areas of application. Providing the service of model-
ing and modeling tools to users is nowadays the task of the service-oriented
IT-Management. A de-facto standard for service-oriented IT-Management is
the IT-Infrastructure-Library (ITIL). The idea is to use this de-facto stan-
dard, especially the area of “Service Support” (SSP) as basis for a “Model-
ing Support Process” (MSP). Moreover the MSP is an instance of the SSP
and describes how a “Modeling Service” can be supported and continuously
improved in organizations. See [HJL+07] for an in-depth discussion of this
organizational integration.

4.2 Visual Reification

As highlighted earlier we see intuitivity as a key feature to apply metamod-
eling successfully to the business domain. As a tribute to this we discuss our
tool against the background of a design rationale that we have coined “visual
reification”. Visual reification is the principle that the visual representation
of the metamodel is at the same time also a visual representation of a model
that adheres to the meta model. Or to say it differently, in painting a meta-
model the user also paints a correct and in particular a visually correct model.
With visual reification metamodeling is no longer an abstract visualization
independent task, it is now intuitive WYSIWYG modeling.

This design rationale is at the core of end-user oriented meta modeling that
is targeted by our efforts. The basic argument is that metamodeling becomes
more intuitive and less complex if the model specification mechanism, i.e., the
meta modeling capability, is oriented towards the appearance of the model.
In our tool we make the visual reification principle a first class citizen. We

VI Information and Semantics in Databases and on the Web 297

are not biased in favor of the visual reification principle. We rather want to
understand under which circumstances and for which features it adds value.
Therefore we make it available in our tool and in order to make it available to
sophisticated investigation and empirical evaluation in particular. We think
that the visual reification principle is a contribution in its own right, because
it helps to start a systematic discussion of the pragmatics of metamodeling
features and their alternatives.

Furthermore, we will see that the principle is an ideal that we are some-
times tempted to violate in order to have the appropriate expressive meta-
modeling power and pragmatics at hand. A couple of available metamodeling
tools use the principle in some way as a design rationale, however, they use
it only implicitly. With our tool the design rationale becomes explicit.

AMMI – The adaptive Meta- and Instance
Modeling Platform

4.3

All this concepts are implemented in a modeling platform called AMMI. The
platform’s core components are open source technologies, in particular the
Eclipse Rich Client Platform and the Hibernate Persistence Framework. The
metamodel definition language defined here [DHJ+08, Jab06] was integrated
to allow either conceptual or visual-true graphical definition of metamodels
and to support the iterative modeling process. The tool integrates a model
adaptation engine for the adaptation of instances after metamodel changes
and to enable model evolution. A meta-layer is implemented for textual or
graphical definition of metamodels and to enable the creation of metamodel
instances an instance-layer has been developed on top of the meta-layer. For
metamodel-based analysis on the repository of meta- and instance models
an analysis and reporting module is available on a vertical analysis-layer. All
layers are integrated as modules within the platform and can be optionally
removed to create either only a metamodeling- or instance modeling or anal-
ysis tool. Beside this the access to each module is role dependent and can be
restricted by an administration module that manages roles, users and user
groups. The role specific access to modules and the central metamodel repos-
itory prevent from the decentralized definition or adaptation of metamodels
by unauthorized users. Right from the start it was always an issue to sup-
port a simple integration into a company’s IT-infrastructure. This was the
main reason to develop platform independent and to use JAVA technologies.
Moreover relational databases are still de-facto standard in today’s enter-
prises. To take this into account the persistence layer was designed generic
to support different data stores. At the current state of development the im-
plementation for relational databases using the object relational framework

298 Roland Wagner, Josef Küng, Birgit Pröll et al.

Hibernate is integrated. Nevertheless, other implementations like XMI flat-
files are possible. At this time the tool is used in several Austrian companies
including Voestalpine Europlatinen1 to completely support their modeling
requirements with a predefined metamodel repository called ITSAM (IT Ser-
vice and Architecture Management). ITSAM includes metamodels to visual-
ize and analyze business processes as well as business architectures compliant
to ITIL [iti06] and CobiT [cob07].

Figure 4 shows a screenshot of the tool’s meta layer where metamodels
can be created. As example, an organizational metamodel (organigram) is
defined. The first (left) editor shows the metamodel in the conceptual style.
The second editor visualizes the same metamodel but here the visual reifi-
cation principle is applied. It is obvious that both metamodeling styles are
structurally equal. In the first editor the MetaConnection “has Skill” is se-
lected. You can see that there are two visual representations, created as ref-
erence copies. Instances of “has Skill” can now be drawn between instances
of “Actor” and “Skill” as well as between instances of “Role” and “Skill”.
Multiplicities are defined for both reference copies and will be interpreted for
each separately.

Figure 4 Conceptual style vs. visual reification.

Figure 5 demonstrates the use of MetaObjects to specify visual compart-
ments (or container, compositions). The MetaObject acts as a container for
child MetaObjects. For example we assume that an “Actor” can now be vi-
sually a child of an “Organizational Unit”. Moreover we introduce the new
MetaObject “Facility” and define that an “Actor” can be a child of a “Facil-
ity”. The left editor once again shows the conceptual notation. You can see

VI Information and Semantics in Databases and on the Web 299

that it is possible to define that a MetaObject can be a child of several parent
MetaObjects by the use of reference copies. The visual reification principle
is applied in the second editor. Both visualizations are structurally equal.
For the container layout the xy-layout is used, which allows to place child
figures free inside its parent figure’s bounds. Nevertheless, also stack layout,
border layout and toolbar layout algorithms are available. The latter one can
be used, e.g., to define UML compartments like “Classes”, “Attributes” and
“Methods”.

Visual reification with compartments. Figure 5

In Figure 6 you can see a screenshot of the tool’s instance layer where
instance models based on metamodels are created. The editor visualizes a
minimal process for an incoming order. For every selected element available
attributes are shown in a property view. You can find the property view for
the selected element “Calculate Capacity” in the lower part of the screen.
Values and references to other model elements can be defined here. In this
example references to incoming/outgoing information objects and documents
have been created.

300 Roland Wagner, Josef Küng, Birgit Pröll et al.

Figure 6 Instance of a process model.

5 Web Information Extraction

Information extraction (IE) is commonly defined as extracting structured data
out of unstructured data, as it is provided, e.g., in textual documents. During
the last decade IE heavily gained in importance not least to the massive and
permanently growing amount of unstructured data, which is available online
[Bro07]. There is a wide range of techniques to cope with this challenging task,
which is partly based on information retrieval methods and techniques and,
due to its addiction to the natural language, subject to linguistic research.

Web information extraction (Web IE) takes as input Web pages instead
of local textual documents and addresses the given peculiarities of this do-
main, e.g., semi-structured data, distributed text sources, and design issues.
Techniques range from screen scrapping tools, relying on structural and lay-
out tags of Web pages, to Natural Language Processing (NLP) based and
machine learning approaches. Even if some general approaches exist, e.g.,
text engineering frameworks, the majority of application systems are domain
dependent, relying on a domain specific vocabulary and grammar.

This subchapter provides a short introduction into the fundamentals of IE
respectively Web IE, presents available tools and identifies current challenges
in the field. Thereafter, three IE systems tackling different application do-
mains are presented and selected concepts resulting from their development
are outlined.

VI Information and Semantics in Databases and on the Web 301

Information Extraction in a Nutshell 5.1

IE is a technology, which analyzes natural language text in order to ex-
tract information of interest. The process takes text as input and produces
fixed-formated data according to a given specification [Cun06]. IE results can
thereupon be used for semantic tagging of text, semantically enriched search
engines, recommender systems etc.

Information Extraction Process

The traditional IE process comprises four major steps [AI99]:

1. the system identifies individual tokens, i.e. words, from the text of a doc-
ument.

2. these tokens are annotated on basis of a vocabulary.
3. the tokens are then assembled and set into relation in order to produce

new facts according to a set of rules.
4. the facts are translated into the required output format.

The facts to be extracted are also called information extraction tem-
plates , where each template commonly consists of several slots in the form of
attribute-value-pairs. For example, a template contact might consist of slots
name, street, street number, zip-code, country, and email address.

Information Extraction as Compared to Information Retrieval

IE is often compared to information retrieval (IR), as they share some basic
concepts for text processing. However, they clearly differ in their intention
and task processing. IR is initiated by a user posing his or her current in-
formation need in form of a query, e.g., a number of terms, to the system.
The system thereon searches for text documents respectively Web pages that
might be relevant for the user and presents surrogates, e.g., URLs, of the
original sources to the user (see search engines like Google).

Whereas IE analyzes a text according to a specified template and presents
the information extracted from several sources itself to the user. E.g., a user
might want to get a list of contact data of high category hotels in Vienna
providing a swimming pool facility to be extracted from the Web. However,
IE takes over numerous concepts of IR, among them:

Tokenization: splitting a text into tokens (words).

302 Roland Wagner, Josef Küng, Birgit Pröll et al.

Stemming: reducing the tokens to their stemmed form, to allow a proper
matching of word derivations, e.g., the plural form “hotels” is stemmed to
“hotel”.

Application of a thesaurus: replacing tokens by their synonym, to allow the
semantically identity of words, e.g., “automobile” gets replaced by “car”.

Part-of-speech (POS)-tagging: identifying essential parts of the text accord-
ing to the language’s grammar as prominent NLP concept.

Similarity concepts: dealing with string similarities for the purpose of, e.g.,
error correction by applying diverse algorithms, e.g., Damerau Levenshtein
metric and phonetic algorithms.

Term weighting: assigning of terms the importance of a token within the
text by, e.g., applying tf ∗ idf weighting.

Performance evaluation: reapplying recall and precision as performance
measures.

MUC Conferences

IE grew out of work performed in the realm of the Message Understand-
ing Conferences (MUC) in the late 1980s and 1990s. The Conference was
initiated and financed by DARPA to encourage the development of IE meth-
ods in form of a competition. The task was to fill specified templates in
a predetermined domain, comprising among others military, terror attacks,
joint-ventures, microelectronics, and astronomy. The results achieved by the
competing IE systems were measured against human-annotated data in a
controlled test environment.

The MUC program arrived at a definition of IE split into five tasks [Cun06].

Named Entity recognition (NE): finds and classifies information items of in-
terest in text, e.g., names, places, etc.

Co-reference resolution (CO): identifies identity relations between NEs.
Template Element construction (TE): adds descriptive information to NE

results (using CO).
Template Relation construction (TR): finds relations between TE entities.
Scenario Template production (ST): fits TE and TR results into specified

event scenarios.

Most current IE applications focus on NE and TE. Complexity of TR and
ST is much higher, thus, hardening proper extraction quality.

VI Information and Semantics in Databases and on the Web 303

Information Extraction Assessment

Extraction quality is evaluated by taking as basis the traditional IR perfor-
mance measures precision, i.e., the number of slots it filled correctly, divided
by the number of fills it attempted, and recall, i.e. the number of slots it
filled correctly divided by the number of possibly correct fills, as taken from
the manual extraction. Beyond, F-measure or balanced F-score is a popular
measure that combines precision and recall as their weighted harmonic mean.

[MKSW99] proposes a more specific view on the involved parameters in
that the type of incorrectness, i.e. substitution (incorrect slot), deletion (miss-
ing slot), and insertion (spurious slot) is considered. Precision and recall are
then defined by:

P =
C

M
=

C

C + S + I

R =
C

N
=

C

C + S + D

N: total number of slots in the reference.
M: total number of slots in the hypothesis.
C: number of correct slots—those slots in the hypothesis that align with

slots in the reference and are scored as correct.
S: number of substitutions (incorrect slots)—slots in the hypothesis that

align with slots in the reference and are scored as incorrect.
D: number of deletions (missing slots or false rejections)—slots in the ref-

erence that do not align with any slots in the hypothesis.
I: number of insertions (spurious slots or false acceptances)—slots in the

hypothesis that do not align with any slots in the reference.

In addition a slot error rate (SER) calculating the ratio of the total number
of different types of slot errors divided by the total number of slots in the
reference, which is fixed for a given test is proposed.

SER =
S + D + I

N
=

S + D + I

C + S + D
=

Total number of slot errors

Total number of slots in reference
.

Web Peculiarities

Web IE takes as input Web pages instead of local textual documents and
addresses the given peculiarities of this domain, some of them representing the
core characteristics of Web applications in contrast to software applications
[KPRR06]:

304 Roland Wagner, Josef Küng, Birgit Pröll et al.

Composition and navigation aspects: Web sites are hypertexts, i.e. a com-
position of a varying number of Web pages, which are linked to each other.
For most applications IE must deal with the entire set of Web pages, thus,
a Web crawler has to be incorporated into the IE system’s architecture,
which collects the Web pages and stores them in a document corpus build-
ing the source for the further extraction process.

Structuredness of information on a Web page: Web pages typically contain
a mixture of structured, semi-structured, and unstructured data. Struc-
tured means, that the content is produced out of a database and presented
in a way, that the schema behind can easily be inferred. Semi-structured
is attributed to the description language HTML, which is used for the
greater part of Web pages. HTML proposes layout tags and a small set
of semantically tags, thus, enabling meta-tagging of tokens or parts of the
text. Unstructured means the presence of natural language phrases, that
require the application of NLP techniques as traditional text documents
do.

Heterogeneity aspects: A mayor characteristics of Web applications is the
importance of their look and feel. Competitors want to differ from each
other and therefore, design their Web sites in a very heterogeneous way,
concerning the content, e.g., with respect to its granularity as well as the
structure and the look and feel.

Web site evolution: Web sites tend to be permanently changed, due to
evolving Web technologies and mostly forced by competitive reasons.
These changes do not only address the content, but also the design and
overall structure of the Web site. The architecture of Web sites evolved
from linked static HTML pages to highly interactive Web applications
based on client-side scripting and AJAX technology at the present time.
The later still being a tough nut to crack.

Improper use of technology: Web standards with regard to HTML validity
or Web accessibility exist. However, the greater part of Web designers and
Web application developers do not adhere to them. Invalid HTML pages,
e.g., the use of tables just for the look & feel purpose, harden IE in real
world environments.

Information Extraction Tools

Techniques and tools to cope with the Web peculiarities identified above
have been developed. They range from screen scrapping tools, via rule based
approaches to machine learning approaches.� Screen Scrapping tools (also referred to as wrappers) rely on structural and

layout tags of Web pages. Wrappers are procedures in order to extract a
defined information item by specifying its occurrence on a Web page, e.g.,
with respect to its location in the Web page’s domain object model (DOM)

VI Information and Semantics in Databases and on the Web 305

or with respect to a certain layout tag. Thus, screen scrapping is adequate
for extracting data from homogeneously structured Web pages, but bears
deficiencies for the case of heterogeneously designed Web pages, as there
is a proprietary wrapper needed for each Web page, and for the case of
evolution of the Web site. Exemplary tools are:

– Solvent [Sol] is part of the SIMILE project operated by MIT. It gener-
ates wrappers, in the form of XPath statements, for information items
identified on an exemplary Web page by a user, which are further on
used by the Piggy Bank Application [Pig].

– Lixto [BEG+05], realizes a visual approach for wrapper generation and
is robust against minor structural changes in the code of the source
page.� Rule-based IE approaches rely on a (domain dependent) knowledge base

consisting of lists and rules. A current approach is to enrich the knowledge
base by incorporating a (domain) ontology, which is capable to store data
and their relations (see Section 2) and thus, allow for an improved analysis
of semantic aspects in documents respectively on Web pages. Most rule-
based IE systems are proprietary developments, however, some text engi-
neering frameworks exist, e.g., GATE (Generalized Architecture for Text
Engineering, see below) and UIMA (Unstructured Information Manage-
ment Application) a former IBM development, now operated by Apache.� Machine learning approaches, which relieve from manual rule development
in that rules representing extraction patterns are derived from a learning
set of Web pages and can thereupon be applied to new Web pages.

GATE is applied for the IE scenarios discussed in the next section. This is
why we take a somewhat more detailed view on this framework at this point.

GATE (Generalized Architecture for Text Engineering)

GATE [CMBT02] provides a GNU-licensed open source framework compris-
ing a pipeline architecture and a graphical development environment. GATE
proposes a grammar, called JAPE6 (a version of CPSL – Common Pattern
Specification Language), which enables finite state transduction over annota-
tions based on regular expressions. The GATE pipeline allows for the defini-
tion of cascading components (processing resources) and passes a document or
Web page from one resource to the next. Available components comprise: To-
kenizer, Gazetteers, which match lists of domain dependent terms against the
document, Sentence Splitter, which performs, e.g., POS-tagging, and Trans-
ducers, which execute implemented JAPE rules.

6 a Java Annotation Patterns Engine

306 Roland Wagner, Josef Küng, Birgit Pröll et al.

IE Scenarios and Applied Concepts

In the following we present information extraction systems as applied in three
different domains. We will discuss their architecture and some innovative
concepts that have been developed in order to cope with the given domain
requirements: JobOlize, performing information extraction from job offers as
presented on the Web, affords improved extraction quality through the in-
corporation of structural Web page segmentation aspects; TourIE, extracting
essential tourism data out of heterogeneously designed accommodation Web
sites, includes an SVM supported crawler for the collection and classification
of Web pages and implements nested rules for the purpose of template re-
lation (TR) extraction, and MARLIES, aiming at the recognition of entities
and their relations in the manufacturing domain.

5.2 JobOlize – Headhunting by Information Extraction in
the era of Web 2.0

E-recruitment is one of the most successful e-business applications supporting
both, headhunters and job seekers. In the EU in 2007, 70% of all job offers
were published online, and more than 56% of employments were results of
online offers [WKE+07]. The explosive growth of online job offers makes the
usage of information extraction techniques to build up job portals and allow
matchmaking between offers and job profiles of job seekers at least in a semi-
automatic way a necessity. Existing approaches like Monster or Stepstone,
however, hardly cope with the heterogeneous and semi-structured nature of
job offers as they appear on the Web.

The information extraction system “JobOlize” [BPP+08] is targeted on
arbitrarily structured IT job offers on the Web with one job offer being pre-
sented on a single Web page (see right hand side of Figure 8). The infor-
mation to be extracted comprises IT skills, language skills, operation areas
and graduations. Even more demanding, the templates IT skill and language
skill require information on an appropriate skill level of the applicant, e.g.,
mother tongue for language skill. The prototype developed by FAW has been
partly funded by the Austrian Research Promotion Agency FFG under grant
813202 and has been used for further development of the Austrian online job
portal www.joinvision.com.

In the following we will focus on two significant issues arising from the
requirements for JobOlize. First, we will discuss the extraction approach,
combining existing NLP-techniques with a new form of context-driven ex-
traction incorporating Web page segmentation aspects and thus, improving
extraction quality. Second, we will describe functionality and implementation
aspects of the annotation manipulation user interface. This component allows

VI Information and Semantics in Databases and on the Web 307

users a proper adaptation of the extraction results while preserving the look
and feel of the original Web page in that it is realized as a rich client interface
on basis of Web 2.0 techniques.

Context-Driven Information Extraction Incorporating Web
Page Segmentation

The architecture of JobOlize, depicted in Figure 7, is divided into two core
components, a knowledge base providing a domain ontology as well as an
extraction rule base and a pipeline consisting of different extraction com-
ponents. Parts of the system are realized on basis of the text engineering
framework GATE (see Section 5.1).

Overall Architecture of JobOlize. Figure 7

e-Recruitment Domain Ontology. For representing the annotation vocab-
ulary used by JobOlize, a light-weight domain ontology has been developed
containing 15 core concepts of job offers which should be extracted. A design
goal in this respect was to build on reasonable concepts of existing ontologies
in the area of e-recruitment and human resource (HR) management, backed
up by our experience in developing ontologies [GBPW05b]. Our ontology also
considers specialization hierarchies of IT skills (e.g., “Oracle” and “MySQL”
are specializations of “DBS”) and equivalence relationships (e.g., “DB” is
semantically equivalent to “DBS”), which are of particular interest for the

308 Roland Wagner, Josef Küng, Birgit Pröll et al.

extraction process. Finally, to consider also job offers in different languages,
each concept contains a language property.

Extraction Rule Base. The second part of our knowledge base contains
about 50 extraction rules ranging from very simple ones, responsible, e.g., for
matching input tokens with ontology concepts to rather complex ones for,
e.g., job title detection, using the rule language JAPE (see Section 5.1).

Pipeline of Extraction Components. On basis of the second core part of
our architecture, the pipeline, annotations of web pages are incrementally
built up by streaming input pages through the different components of the
pipeline, each of them being responsible for a certain annotation task, thereby
adding new or modifying already existing annotations. Thus, JobOlize reuses
existing NLP-based components for tokenizing and stemming as provided
by the GATE framework and furthermore realizes customized components
on basis of Java for pre-processing the input Web pages (e.g., eliminating
JavaScript code), for post-processing (e.g., exporting annotated Web pages
as XML documents) and for the core task of identifying those tokens of the
input Web page, which are relevant for our purposes, e.g., IT-skill with an
associated skill-level like “basic knowledge in Java programming”. The iden-
tification of relevant tokens is performed on basis of four different customized
components, as described in the following, which are making use of the above
mentioned knowledge base.

Initial Annotation. The first component is responsible for an initial annota-
tion of the tokens of the input Web page with appropriate concepts defined by
our domain ontology. For most of the tokens, this task is straightforward, but
considering the domain concepts IT-skill and language skill, context-driven
processing is required in order to determine their corresponding levels. In
particular, not only the position of the skill level with respect to the skill
type itself is taken into account by means of appropriate JAPE rules, but
also, e.g., if it is located within the same sentence or not.

Page Segmentation. The remaining three components promote the basic
idea of context-driven extraction even further, with the ultimate goal to im-
prove the quality of the extraction results. For this, the Web page is first
segmented into three parts, a top part, a content part and a bottom part,
simply taking the content itself into account. This is done by identifying com-
mon text fragments between two job offers of the same Web site on basis of
the well-known Longest-Common-Subsequence algorithm (LCS). These com-
mon text fragments represent the top and bottom parts of a page and contain
tokens which are most probably irrelevant for further processing. For exam-
ple, the occurrence of “powered by Typo3” within the bottom page would
lead to an IT-skill annotation of “Typo3” during the initial annotation phase,
being refined by page segmentation, i.e., classified as irrelevant.

Block Identification. The content part of the Web page identified before,
is further divided into so-called blocks, representing a couple of tokens which
“visually” belong together and are normally grouped under a header title. For
the identification of such blocks, first, context in terms of layout information

VI Information and Semantics in Databases and on the Web 309

(e.g., a -tag) and structural information (e.g., a -tag) is considered
by appropriate JAPE rules. In a second step, context in form of content in-
formation is used to categorize the identified blocks. In particular, on basis
of their header title and the corresponding domain concepts defined by our
ontology, blocks are categorized and annotated as requirements, responsibili-
ties, offer characteristics and contact details, i.e., those chunks of information
most commonly found in job offers.

Relevance Assignment. The final component of our extraction process as-
signs pre-defined relevance values, ranging from 0 to 1, to the initial annota-
tions, depending on the block category, the annotated token is contained in.
E.g., in case that a token annotated as IT-skill is part of the requirements
block it gets a relevance of 1, whereas if it is part of the bottom part, it gets
a relevance of 0.25, only. During post-processing, annotated IT-skills with a
relevance lower than a certain threshold, are eliminated from the result.

Evaluation results. An evaluation of the prototype showed that the context-
driven extraction process incorporating Web page segmentation outperforms
a conventional extraction, as expected. E.g., for IT-skills precision and f-
measure increased by 30% and 20%, respectively. For more details on the
evaluation see [BPP+08]

Annotation Manipulation via a Rich Client Interface

For ensuring an acceptable quality of the extraction results, information ex-
traction out of arbitrarily structured and heterogeneous job offers is reason-
able in a semi-automatic way only. Thus, the annotation results generated
automatically by the extraction system have to be assessed by a user and
potentially corrected accordingly. For this task, we provide a rich client in-
terface which allows the user to visualize the results of the extraction process
in terms of the annotated Web pages and the possibility to manipulate ex-
isting annotations or to add additional ones directly in a Web browser. The
screenshot in Figure 8 depicts on the left hand side a menu sidebar and on
the right hand side the original Web page.

Annotation Highlighting. Within the sidebar, the user can choose from an
annotation list (see Figure 8 (1)), representing the concepts of our domain
ontology, which of the automatically generated annotations should be indi-
cated within the Web page on the right hand side. To preserve the look and
feel of the original Web page, annotations are indicated by marking the con-
cerned parts of the Web page with corresponding colours and highlighting
those, being currently focused on, by means of a flash effect.

Annotation Details. The details of annotations (e.g., the relevance values
assigned) are shown for each annotation, both, within the sidebar (see Fig-
ure 8 (2)) and directly within the Web page, activated by a mouse over effect.

310 Roland Wagner, Josef Küng, Birgit Pröll et al.

Figure 8 Rich Client Interface of JobOlize.

This functionality also serves as a simple form of explanation component,
which allows tracing back the genesis of a certain annotation.

Annotation Manipulation. Finally, the details of each of the automatically
generated annotations can be manipulated in accordance with the underlying
job ontology, the annotation can be completely deleted or new ones can be
added. Thus, e.g., a language skill can be modified from German to English
(see Figure 8 (3)). Manipulations are immediately propagated to the Web
page at the right hand side.

Implementation Aspects. Concerning implementation aspects, the rich
client interface is realized as a Firefox extension using XUL (XML User Inter-
face Language [XUL], allowing for portability of the application, JavaScript
and CSS. The primary reason to favor the Firefox extension mechanisms
instead of alternatives like Apache’s MyFaces [MyF], was the rather easy
realization of a rich client interface experience as in native desktop applica-
tions, considerably reducing programming effort. Annotation highlighting as
well as manipulation is based on DOM. As a pre-requisite for asynchronously
initiating the extraction process (executed on the server) directly from within
the rich client interface, the underlying extraction system had to be ported
to the used Tomcat Web server.

VI Information and Semantics in Databases and on the Web 311

TourIE – Ontology-based Information Extraction from
Tourism Web Sites

5.3

Since the beginning of the World Wide Web, tourism industry, i.e., airlines,
car rental companies, and accommodation owners, takes advantage of this
medium to bring its products to the living room of the prospective tourist.
During the last decade the required data storage was commonly done in local
databases and, for the majority of tourism Web sites, maintained manually.
Currently, the enlarging amount of semi-structured and unstructured data
on heterogeneously designed tourism Web sites demands for information ex-
traction (IE) mechanisms for semi-automatic acquisition of structured data
in order to build up, e.g., tourism Web portals or tourism recommender sys-
tems.

The TourIE prototype, which has been developed by FAW [Fei07, Par08]
in cooperation with the tourism portal provider Tiscover AG7, focuses on
accommodation Web sites aiming at the extraction of some of the most
prominent information specified in a search for accommodations by a tourist
[DO01]: accommodation’s name, available facilities, room price, location,
swimming, accommodation category, images, etc. [FGP+09]. This particular
sub-domain of the travel and tourism industry bears a number of challenges
for the purpose of information extraction primarily caused by the immateri-
ality of the accommodation’s products at the time of the booking decision.
Rooms, holiday packages, etc. demand for comprehensive information fea-
turing varying complexity and structure [WK99], which is reflected in open
variants for their presentation on Web pages. Even if a large number of ac-
commodation owners decide to subscribe to a Web portal and thus, present
their products in a more structured and better comparable way, resulting in
a homogeneous presentation of the accommodations, a considerable number
of accommodation Web sites are maintained individually and, thus, feature
a number of heterogeneity aspects.

Heterogeneity of Tourism Web Sites

Figure 9 shows Web pages of three individually maintained accommodation
Web sites together with the exemplary TourIE extraction templates accom-
modation’s name, facilities, and price and demonstrates some of the hetero-
geneities discussed in the following.

Heterogeneity of content model. The content model contains the extent of
information provided, ranging from basic data only, e.g., accommodation’s
name, short textual description, and contact data, to all-encompassing infor-

7 www.tiscover.com

312 Roland Wagner, Josef Küng, Birgit Pröll et al.

Figure 9 Heterogeneously designed accommodation Web sites.

mation including sensitive price information per person or room/apartment
on a seasonal basis together with diverse price reductions, thus, establishing
the basis for an electronic booking process.

Heterogeneity of structure model. The representation of tourism informa-
tion ranges from structured to unstructured data. E.g., facilities can be either
presented in form of a list or separated by commas within a textual para-
graph. Also multimedia data, e.g., a pool facility represented as icon or as
image, is subject to the information extraction purpose.

Heterogeneity of composition and navigation model. Different to other ap-
plications, e.g., job offer extraction, in the majority of cases accommodation
Web sites comprise several Web pages (see Section 5.1), requiring an addi-
tional crawler component.

Heterogeneity of presentation model demands for the inspection of layout
tags, which provoke that, e.g., a textual item is presented in bold or un-
derlined and, thus, e.g., raising the relevance of a text item for being the
accommodation’s name.

These heterogeneities imply that simple screen scrapping methods (see
Section 5.1) are unfeasible for TourIE, and demand for a rule based approach
employing a domain specific ontology and domain specific rules incorporating
structural and NLP related aspects.

VI Information and Semantics in Databases and on the Web 313

Employment of a Rule/Ontology Based Approach

Overview of TourIE Architecture

Figure 10 shows the overall architecture of TourIE. The extraction process
comprises three intertwined processing phases, first, a pre-processing phase,
which integrates a Web crawler as predominant component, second, an in-
formation extraction phase, which incorporates a GATE pipeline (see Sec-
tion 5.1) basing upon the tourism specific knowledge base, and third, a post-
processing phase, assigning relevance judgments to potential template can-
didates, which are thereafter used for their ranking within a specified XML
document.

Rule/ontology-based IE prototype based on GATE. Figure 10

The GATE pipeline employed for TourIE (see Figure 10) cascades for the
most part available processing resources adapted to the tourism domain, i.e.

1. a tokenizer,
2. gazetteer lists, responsible for the token matching in order to identify

NLP-related co-reference aspects,
3. a sentence splitter,
4. the ontology plugin, which constitutes a self-developed component en-

abling the access to the tourism domain ontology, and
5. a transducer, interpreting tourism specific Jape rules and thus, resolving

more complex template relations like contact data or room price.

314 Roland Wagner, Josef Küng, Birgit Pröll et al.

Annotation via Tourism Domain Ontology and Ontology-Plugin

At this stage, the TourIE domain ontology represents a simplified excerpt
of the tourism domain comprising concepts and relations focusing on the
specified templates of the TourIE prototype. However, the development of a
comprehensive tourism domain ontology is on its way (see Section 2). The
ontology plugin constitutes the Java-developed interface to the tourism pro-
totype ontology. Thus, the tokens on an accommodation Web page can be
matched with labels of concepts and individuals of the ontology and can
thereupon be annotated with appropriate label names and property values.
E.g., a token “double” gets annotated with a corresponding room type level.
Furthermore, the ontology is used in the post-processing phase to verify some
parts of the extracted templates, e.g., correspondence of zip code and city
name. In order to cope with typing or translation errors referring to the to-
kens on the Web page, similarity matching is implemented, in that a token
can be matched with differing ontology-labels. According to that, amongst
others, a Porter stemmer is used in order to reduce tokens to their base form
and Damerau-Levenshtein-Metric is employed as similarity measure.

Extraction of Template Relations via Jape Rules

The complexity of templates in TourIE ranges from simple extraction of
named entities to rather complex extraction of template relations. Price ex-
traction is an example for the latter one and is often encompassing a table
data extraction task (see Section 5.4). Even if price extraction is also ad-
dressed by researchers dealing with different application domains, tourism
prices hold a major challenge due to their complex data structure. The ex-
emplary Web pages in Figure 9 include price information, which is dependent
on room category (superior, standard) and room type (single, double). The
code excerpt below shows a simplification of the rule “price”, which in case
of determined consecutive annotations “RoomCategory”, “RoomType”, and
“Money” on a Web page, sets them into relation in order to fill the template
“room price”.

Rule: price

(

({RoomCategoryLabel})?

{RoomTypeLabel}

({Split})?

({RoomCategoryAnnotation})?

({Split})?

(

({Split})*

{MoneyAnnotation})

)+

):price

-->

:price.Price={}

VI Information and Semantics in Databases and on the Web 315

Crawling and SVM Supported Classification of Web Pages

The inclusion of a Web crawler is a necessity for accommodation Web sites,
which are composed of a more than a single Web page and thus, have their
entire information about the accommodation split over several linked Web
pages. WebSPHINX [MB98], an easy extendable crawler, was chosen and
extended in a way to limit search to a given depth and a maximal number of
Web pages in order to reduce crawling time. The TourIE crawler is respon-
sible for first, the collection of the entire set of Web pages belonging to the
accommodation Web site and second, the classification of Web pages accord-
ing to specified types, e.g., price related Web pages, providing information
for further improving extraction quality in the post-processing phase.

Web page classification is realized by applying a support vector machine
(SVM), which is based on supervised learning methods and learns its model
from a set of manually classified examples. By hand of the learned model it is
possible to classify unknown examples. Basically an SVM is able to categorize
linear separable data of a binary class problem; a kernel extension enables its
application for non-linear separable data. Moreover, the implementations of
SVM provide multi class classification, realized by reducing the multi class
problem to a binary problem. There are two different strategies to imple-
ment this reduction: one-versus-one or one-versus-all. Training samples are
given in the form {(x1, y1), . . . , (xm, ym)}, xi ∈ X, yi ∈ {−1, 1} where every
sample xi is labeled with -1 or 1. With this examples an hyperplane consist-
ing of a normal vector w a bias b and a training example xi is calculated
yi = sgn(〈w, xi〉 + b). In the scope of text classification SVMs provide some
advantages like the use of different kernels or the ability to handle large, spare
feature vectors svm1.

The SVM supported classification realized in TourIE uses a bag-of-words
as features. Together with adapted concepts for stemming, term frequency
normalization and stop word elimination classification quality resulted in
recall and precision values of approximately 0.84 for both on the test data.
Evaluation of the overall TourIE prototype showed satisfying results with
recall up to 0.76, precision up to 0.62, and a corresponding F-measure value
of 0.73 for template relations.

MARLIES – Supply of Demands in Manufacturing 5.4

Sourcing and procurement are mayor tasks of supply chain management ,
which increasingly benefit from Web technologies in that producers respec-
tively service suppliers make information on their services retrievable online
for the prospective consumers. Thus, especially for small and medium enter-
prises, the Web acts as an intermediary to attract new consumers from all

316 Roland Wagner, Josef Küng, Birgit Pröll et al.

over the world. The wide range of branches, the degree of specialization, as
well as the size and resources of service supplying companies provoke, that
their Web sites promoting their services highly vary in extent, detail and
trendiness. In spite of the improved accessibility of information these hetero-
geneities and the mere number of existing Web sites entail that a search for
manufacturers, offering exactly the service the consumer is in demand for,
turns out to be a very tricky and time consuming task. Information extraction
technologies constitute the prerequisite to enable the semi-automatic support
for finding the best fitting service supplier.

MARLIES is an information extraction system targeted at extracting con-
tact data and detailed data on services offered by companies in the manufac-
turing industry via their Web sites. The system constitutes one component of
the intermediary system www.tech2select.com, which is operated by the Aus-
trian company Tech2select GmbH. Its development by FAW is partly funded
by the Austrian Research Promotion Agency FFG under grant FFG 817789.
Services as treated by MARLIES are machines or manufacturing processes
promoted by a supplier. In order to build the base for a business assign-
ment the services must be specified in sufficient detail, including information
on the processable material and dimension, which are further described by
measurements, units and values.

On account of the given requirements an ontology and rule based approach
was implemented. The major challenges of MARLIES are on the one hand
the proper ontological modelling of highly structured and complexly related
technical data, which constitutes the basis for the realized approach of an
ontology aware annotation, on the other hand, the extraction of relations
between the data units while tackling structural provocations, as related data
on a service might be spread over several Web pages and is often concealed
in nested tables.

MARLIES Architecture

Figure 11 illustrates the components of MARLIES. A crawler collects Web
pages of a service supplier’s Web site and classifies them into Web pages con-
taining contact data and data on proposed services by use of an SVM (see
SVM Supported Classification of Web Pages of TourIE). Due to the men-
tioned complexity of the domain the MARLIES pipeline, which is again based
on GATE, comprises a number of specialized processing resources, which are
partly intended for structural analysis, e.g., a transducer responsible for the
analysis of fonts. The interface to the MARLIES ontology, which contains
among others machines (production units), processes, materials, dimensions,
and relations in between, is based on the OntoRoot Gazetteer, a plug-in pro-
vided by GATE, thus, allowing ontology aware annotation of Web pages. The
post-processing component prepares the extraction results for delivery to the

VI Information and Semantics in Databases and on the Web 317

customer database, in that the best fitting result is determined according to
some relevance assessment, which incorporates classification and verification
results. The customer database establishes the base of the intermediary Web
application, which further on matches service supplies and service demands.

Overall Architecture of MARLIES. Figure 11

Enabling Ontology Aware Annotations

One major challenge in MARLIES is to identify the relations between pro-
duction units, their dimensions and the materials they are able to process.
Thus, beyond a syntactical extraction, a more semantic interpretation of re-
lations between tokens is needed. Hence, rules matching annotations against
ontology properties had to be employed, which are capable of producing
ontology-aware annotations, meaning that the annotations are assigned to
and enriched by the concepts of the MARLIES ontology at processing time.
As a prerequisite, the ontology resources, i.e., classes and instances, have to
be pre-processed using an adapted tokenizer and a sentence splitter. Figure 12
shows an example, which demonstrates, that the token “vertical” is assigned
to “turnings centers” instead of “furnances” by interpreting the correspond-
ing ontology properties at processing time.

318 Roland Wagner, Josef Küng, Birgit Pröll et al.

Figure 12 Example of Ontology Aware Annotation Process.

Employing Table Data Extraction Concepts

A large part of production unit related data is presented in tables. These
tables are heterogeneously designed as the service supplier respectively the
Web page designer sees its best fit. Moreover, HTML tables are often not used
in their intended way and, thus, adhering to the HTML validity demands,
but they are misused for design purposes. As shown in Figure 13 diameter
denoting a measure and mm denoting a unit appear in the column heading.
The machines and their corresponding attributes are listed in one or several
table rows. The appropriate data items have to be set into relation and the
dimension value has to be split into its minimum and maximum value. One
extraction result in the example is a hobbing machine of type Pfauter P 400,
with a min. diameter of 15 mm and a max. diameter of 400 mm.

Figure 13 Example of Table Data Extraction.

The table data extraction process employed in MARLIES cascades several
components, among them the preparatory grammar and font components.

VI Information and Semantics in Databases and on the Web 319

The grammar component analyzes the underlying text and identifies, whether
it is a continuous text or some table content. It comprises a gazetteer, an
annotation set transfer and a transducer (see Figure 11). The font component
identifies different formatting styles, e.g., font and font size, and thereby helps
finding headers and relevant tokens. It comprises an annotation set transfer
and a font transducer, which is responsible for the execution of JAPE-rules.

The development of MARLIES is still in progress at the publishing time
of this book, why evaluation results cannot be provided at this stage.

Similarity Queries and Case Based Reasoning 6

Identity, Equality and Similarity have been studied at least since the age of
the Greek philosophers. In general, Similarity between two objects is given
when one object has partially the same attribute values as the other, or one
object can be easily transformed into the other. Unfortunately, similarity is
not an objective concept. For different persons—even for the same person in
different circumstances—the same two objects can be various similar.

Exploring concepts of similarity has been a research issue in Hagenberg,
in particular at FAW, since its foundation in 1990. First we concentrated on
similarity of objects in Databases. Later on, investigating similarity questions
geometric models [AKW06, AKWP06] and in Case Based Reasoning became
an additional topic of interest.

Similarity Queries in Databases 6.1

Database management systems (DBMS) represent the de facto standard for
managing data in real world applications. The applied technology is optimized
for the efficient retrieval of records that are meeting the specified query con-
ditions exactly. If there is no record fitting the specified query conditions,
the system returns an empty result set. In many cases this is useful and even
desirable. If the query “The data of employee Scott” fails, obviously no data
is available for this person and it makes sense, if the database system returns
an empty result set. But, in many other cases the user would be helped a
lot when the system provides him the most the objects most similar to the
query condition.

320 Roland Wagner, Josef Küng, Birgit Pröll et al.

VQS – Vague Query System

The main goal was to develop an application domain independent system
which is able to enhance already existing data bases with the functionality of
similarity searching. This means that even if a database is quite old and at
the time of its creation nobody thought about similarity searching VQS can
be taken and customized and vague queries are working. Figure 14 shows the
architecture of the system.

For carrying out vague queries a system requires additional knowledge
behind the attribute values. Something like similarity functions or other con-
cepts for measuring similarity are needed. Beside simple similarity functions
for numeric and date values VQS attribute values can be mapped to points
in a multidimensional space. Hence, similarity is defined through distances
in this space. This solution seems to be very problem adequate. In many
cases numeric co-ordinates for nonnumeric attribute values are given. For in-
stance: Geographic co-ordinates for villages, RGB-values for colours, and so
on. [KP97]

Figure 14 VQS.

An extra query language (VQL-Vague Query Language) is defined as an
extension of SQL. Its most important concept is the operator ‘IS’ (‘is similar
to’) which forces the vague query system to take objects which are ‘near’ to
this query condition into the result set in the case that no object matches
exactly to the query condition. Also an interpreter (Vague Query Language
Interpreter) and the corresponding processing unit is introduced which trans-
fers these more user friendly VQL-statements into SQL-statements consider-
ing the semantic background information held in additional metadata.

In VQL tables and views of a relational database can be used as data
sources. Views can base on other views and so on. VQS is able to look for

VI Information and Semantics in Databases and on the Web 321

assigned semantic background information along this view definitions, down
until to basing table attributes are reached. The implementation of this fea-
ture is very sophisticated. It considers renaming of attributes and joins in
the view definition. On the other hand, with this solution we can support
different similarity measures for the same objects within one system.

The similarity operator of the basic vague query system could not be
used in the join-condition. Therefore the first extension of VQS was a vague
join capability [KP98, KP99]. Then a corresponding multidimensional index
structure has been developed [DKW01] and fuzzy ’greater than’ and ’less
than’ operators have been introduced [BK04].

Case-based Reasoning 6.2

This chapter introduces the methodology “Case-based Reasoning” (CBR). As
described in [FGSK08], [FGSK09] and [FSFK08], Case-based Reasoning is a
cyclic problem solving process whereby already known knowledge is stored
in form of cases. A case consists of a problem and an appropriate solution.
These cases are stored in a so-called case base. CBR is “a recent approach to
problem solving and learning (. . .) [AP94]”.

The objectives of Case-based Reasoning are: no development of new solu-
tions for new problems, reutilization of solutions from similar problems, no
new problem solving process and rapid and cost-efficient solutions.

One of the most important fundamentals of Case-based Reasoning is the
CBR-Cycle according to [AP94]. This cycle consists of four main phases which
a new problem has to pass: Retrieve, Reuse, Revise and Retain.

The following description of the four main phases of CBR relies on
[FGSK08], [FGSK09] and [FSFK08]. If a new problem appears, a new case
is formulated and no new problem solving process should be started. In the
phase “Retrieve” this new case is compared to cases in the case base where al-
ready known cases and general knowledge are stored. Matching cases relying
on similarity calculation are selected.

In the phase “Reuse” the most similar case from the case base is combined
with the new problem/case. The CBR-System can now suggest a solution
by reusing the solution of an already known case and adapt it to the new
problem.

In the phase “Revise” the retrieved solution is checked whether it can be
applied to the current problem without changes. If the retrieved solution is
faulty in the scope of the new case, it has to be adapted to the new problem.

Finally, in the phase “Retain” the new problem/case with a retrieved and
perhaps adapted solution creates a new case which is stored in the case base
again. The case base has learned and consequently can solve future problems
more probably. If the current problem could not be solved with the CBR-

322 Roland Wagner, Josef Küng, Birgit Pröll et al.

System (e.g. no similar case could be found in the case base), a human expert
can deal with it and find the appropriate solution. If this expert can solve the
problem, the human solution should be combined with the current problem
and form a new case for integration into the case base. So, similar future
problems can also be solved with the CBR-System.

6.3 Similarity Measures

As described in [FGSK09], similarity measures play a great role for CBR.
These measures are essential to be able to compare new problems/cases with
the cases in the case base. It is fundamental to choose the right similarity
measure for given data. A very short selection of a few possible similarity
measures could be:� Similarity measure by Hamming: for bivalent attributes (true-false, yes-no,

man-woman, 0-1, . . .)� Assessed similarity measure by Hamming:

– Some attributes can be more important than others
– One has to give priority to attributes through different assessments� Generalized similarity measure: Not only binary attributes but also at-
tributes with any values can be compared.� Other similarity measures:

– Tversky-contrast-model
– Similarity measure by Rosch
– Similarity measures for graph representation
– Etc.

The following example shows how the similarity between cases can be cal-
culated [FGSK09]. Therefore, the Generalized Similarity Measure by Ham-
ming is used defined by the following formula:

sim(x, y) =

∑n
i=1 wisimi(xi, yi)∑n

i=1 wi

Figure 15 shows a very small case base with only five cases (only for illus-
tration). The attributes are “Global Frequency”, “Piping Element”, “Sensor”,
“Pipe Temperature” and “Capacity Utilization”. Each case x1, . . . , x5 has its
individual parameter values.

VI Information and Semantics in Databases and on the Web 323

Similarity Measures – Case Base. Figure 15

If a new case y appears, one want to know, which case in the case base is
the most similar one to the new case y, see Figure 16 [FGSK09].

Similarity Measures – New Case y. Figure 16

To be able to use the Generalized Similarity Measure by Hamming, for
each attribute functions have to be defined, e.g. how similar is 58.6 ◦C to
63.9 ◦C or how similar is an Accelerometer 15a to an Accelerometer 18b. An
example to define functions is shown in the following listing:� “Global Frequency = simGF (xGF , yGF) = For each hertz (Hz), which

differs from case xi to case y, the similarity value is reduced by 0,01� Piping Element = simPE(xPE , yPE) =

– Plug Flow Reactor: Similarity value of 1
– Branch Connection: Similarity value of 0� Sensor = simS(xS , yS) =

– Accelerometer 18b: Similarity value of 1
– Accelerometer 15a: Similarity value of 0.75
– Accelerometer 21a: Similarity value of 0.85
– Accelerometer 24c: Similarity value of 0.5� Pipe Temperature = simPT (xPT , yPT) = For each degree Celsius (◦C),
which differs from case xi to case y, the similarity value is reduced by 0.01

324 Roland Wagner, Josef Küng, Birgit Pröll et al.� Capacity Utilization = simCU (xCU , yCU) = For each percentage point
(%), which differs from case xi to case y, the similarity value is reduced
by 0.01. [FGSK09]”

Now, a new table with the similarities between the cases of the case base
and the new case y can be generated. Attributes can be more important than
others, so one can define so-called weighting coefficients (wi) for calculating
the similarity (see the last line in Figure 17 [FGSK09]).

Figure 17 Similarity Measures – Similarities and Weighting Coefficients.

An example to calculate the similarity between a case in the case base and
the new case y is shown in the following calculation:

sim(x, y) =
(1 ∗ 1 + 0, 8 ∗ 1 + 0, 2 ∗ 0, 75 + 0, 75 ∗ 0, 95 + 0, 5 ∗ 0, 7)

3, 25
≈ 0, 93

Using this formula for the other cases x2 . . . x5, the following similarities
can be calculated: x1: 0,93, x2: 0,89, x3: 0,94, x4: 0,62 and x5: 0,67.

As one can see, the case x3 is the most similar case to the new case y. If
there would be a new problem, the case x3 would be used to retrieve a similar
solution [FGSK09].

VI Information and Semantics in Databases and on the Web 325

Applications of Case-based Reasoning for Structural
Health Monitoring

6.4

Simple Structures

“Due to aging and corrosion, structures, which are part of the traffic infras-
tructure, have to be inspected regularly. In the case of lamp posts Austrian
Codes require an inspection interval of 6 years. The onsite inspection con-
sists of measurements and visual inspection whereupon the latter is partly
subjective. As the conservative way of assessment involves experts who com-
bine measurement analysis and visual inspection to conduct a classification
of thousands of lamp posts a year it is obvious that a certain amount of sub-
jectivity influences the result. Moreover, time between contract award and
delivering results is short. Increased objectivity hand in hand with less time
will also increase result-quality. In order to reach higher result-objectivity
paired with less time-effort, automated processes become a must. (. . .) Con-
sequently, beside cost reduction and time saving, comparably simple knowl-
edge gathering processes are main benefits of the system. (. . .) Therewith, the
similarity between the cases’ attributes can be expressed and for a new case
the most similar cases can be provided. The system currently is in the state
of a “research prototype” whereby the results of first experiments were quite
promising. The results of lamp post assessment done by an expert and done
by the Case-based Reasoning system were equal with a 90% probability. The
error rate of 10% generally results from the experts’ subjectivity, from short-
comings (from CBR’s point of view) in the inspection process and of course
from matters of fine tuning of the system. In addition to gaining objectivity
CBR helps to save time. Normally it takes an expert around 15–20 days to
classify around thousand lamp posts. With CBR this is possible within a
few minutes plus around one day of experts’ review. (. . .) The application of
systems for automated classification of measurements of simple structures,
e.g. of lamp posts promises good results and even offers the possibility of a
fully automated process. [FFSK09]”

Piping Systems

This chapter shows possible opportunities of CBR in the field of Structural
Health Monitoring for the EU-project SafePipes.

Three possible approaches are introduced in the following paragraphs:
The first approach is the interpretation of measuring data for periodic

measurements. Hereby, one can rely on measuring data of similar structures

326 Roland Wagner, Josef Küng, Birgit Pröll et al.

whereby the geometric data of a new structure is uploaded. With this given
data the system can provide similar structures and distance information. The
system could classify states of a structure, provide characteristics like “risk
level” for example and suggest essential actions.

Another approach is the provision of information to support structure
design. Weak points of buildings should be pointed out and improve structure
design.

Finally Case-based Reasoning could be used for an integrated alert system
for permanent monitoring. For the domain of SafePipes this aspect might be
the most interesting one. Relying on historic measuring data of a structure
the system could point out changes of its dynamics to detect impacts or dam-
ages. The alert system for permanently monitored structures should detect
damages at a very early point of time to allow counteractive measures.

7 Data Warehouses

A Data warehouse (DWH) is a systems that is able to manage a huge amount
of data and supports efficient complex analysis tasks to support decisions. In
this chapter we want to give a small insight into DWH research in Hagen-
berg. Among others FAW is working on the ETL (Extract Transfer Load)
process and SCCH on active data warehousing. Besides, FLLL is success-
fully researching in gaining knowledge from data warehouses, see Section 5
in Chapter V.

7.1 Automated Regression Tests of ETL Modules

Goal of this work was—as software regression test in general do—to ensure
correctness of new versions of ETL module. The implemented test system acts
as an extension of common ETL software. It bases on the following Idea (like
several other black box test frameworks do but, until now not for a DWH ETL
process): There is a predefined input data set and the corresponding output
given. Whenever a (new) ETL version is to be tested the system takes the
test set and checks the correctness of the result.

Since the structure of input data changes quiet often during the life of a
DWH this guarantee of correctness is a vitally important in particular when
bugs in a new version do not cause a program abort (They just produce
wrong data in the DWH.) and crucial decisions are derived from this DWH.

VI Information and Semantics in Databases and on the Web 327

Adaptive Data Warehousing using Workflow Engines 7.2

A major goal of active data warehouses (ADW) is to automatically perform
complex analysis tasks. However, this goal is only insufficiently implemented
in current active data warehousing architectures, which generally focuses on
more frequent updates to the DWH. Traditionally, data warehouses are used
to support non-routine decision making tasks within the strategic decision
making. Routine decision tasks, on the other hand, are more likely to be
found at the tactical and operational level of an organization. Although these
routine decision tasks are well structured, they can be complex and may
require detailed domain knowledge. A characteristic of routine decision tasks
is that the same analyzes are repeated rather frequently. In conjunction with
the clear scope that routine decision tasks encompass, these tasks are ideal
candidates for automated analysis.

Once automated analyses are established, the results can be used to au-
tomatically trigger actions in the operational systems. This implements the
closed loop that brings business intelligence to the operational systems. A
complex analysis can be perceived as a directed graph where each vertex
represents a partial analysis and each edge a condition which connects sub-
sequent analyses. Such a graph exhibits all properties that can be found in
a workflow. Thus, we propose an ADW architecture for automated analysis
based on workflow technology.

Prototype architecture. Figure 18

328 Roland Wagner, Josef Küng, Birgit Pröll et al.

Architecture

The proposed active data warehouse architecture extends the general ADW
architecture with analysis rules [ZLH06] as shown in Figure 18.

The Analysis Graph Manager (AGM) is the glue that brings together
DWH and business activity monitoring (BAM). It manages analysis graphs,
which are recorded interactively by analysts using ad-hoc reporting tools or
directly modelled with the Analysis Graph Manager.

For each vertex in the analysis graph, the Rule Engine performs its cor-
responding analysis. Based on the results, the Rule Engine determines the
next vertex in the analysis graph or triggers a predefined action.

Advantages

Besides releasing the analyst routine decision tasks, workflows make the an-
alysts domain knowledge explicit and well documented. The workflow steps
of an analysis graph can be augmented with additional explanations for non-
domain experts and analysis graphs can be specified in the same way manual
decision making takes place; the business problem does not have to be trans-
formed into a declarative statement.

Considering the tremendous amount of data that will be generated in
the future, we believe automated analysis will become a key technology to
integrate data warehousing into the operational business.

Acknowledgements

The projects described in this chapter have been partially funded by the
European Union FP6-NMP 13898, Fit-IT FFG 809256/5512, FFG 813202,
FFG 817789, Austrian Kplus and COMET competence center programs, the
Upper Austrian Government (OÖ2010), Tiscover AG, Tech2select GmbH,
JoinVision E-Services GmbH and VCE (Vienna Consulting Engineers).

References 329

References

[AI99] Douglas E. Appelt and David J. Israel. Introduction to information extraction
technology. A tutorial prepared for IJCAI-99, Stockholm, Schweden, 1999.

[AKW06] Saiful Akbar, Josef Küng, and Roland Wagner. Multi-feature integration on
3d model similarity retrieval. In ICDIM, pages 151–156. IEEE, 2006.

[AKWP06] Saiful Akbar, Josef Küng, Roland Wagner, and Ary Setijadi Prihatmanto.
Multi-feature integration with relevance feedback on 3d model similarity re-
trieval. In Gabriele Kotsis, David Taniar, Eric Pardede, and Ismail Khalil
Ibrahim, editors, iiWAS, volume 214 of books@ocg.at, pages 77–86. Austrian
Computer Society, 2006.

[AP94] Agnar Aamodt and Enric Plaza. Case-based reasoning: foundational issues,

methodological variations, and system approaches. In AI Commun., pages
39–59. IOS Press, March 1994.

[BEG+05] Robert Baumgartner, Thomas Eiter, Georg Gottlob, Marcus Herzog, and
Christoph Koch. Information extraction for the semantic web. In Reason-
ing Web, pages 275–289, 2005.

[BK04] Ulrich Bodenhofer and Josef Küng. Fuzzy orderings in flexible query answer-
ing systems. Soft Comput., 8(7):512–522, 2004.

[BPP+08] Christina Buttinger, Birgit Pröll, Jürgen Palkoska, Werner Retschitzegger,
Manfred Schauer, and Reinhold Immler. Jobolize - headhunting by informa-
tion extraction in the era of web 2.0. In Proceedings of the 7th International
Workshop on Web-Oriented Software Technologies (IWWOST 2008), York-
town Heights, New York, July 2008.

[Bro07] Michael L. Brodie. Computer science 2.0: A new world of data management.
In Christoph Koch, Johannes Gehrke, Minos N. Garofalakis, Divesh Srivas-
tava, Karl Aberer, Anand Deshpande, Daniela Florescu, Chee Yong Chan,
Venkatesh Ganti, Carl-Christian Kanne, Wolfgang Klas, and Erich J. Neuhold,
editors, VLDB, page 1161. ACM, 2007.

[CJKW07] Steve Cook, Gareth Jones, Stuart Kent, and Alan Wills. Domain-specific
development with visual studio dsl tools. Addison-Wesley Professional, 2007.

[CMBT02] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. Gate: A frame-
work and graphical development environment for robust nlp tools and appli-
cations. In Proceedings of the 40th Annual Meeting of the ACL, 2002.

[cob07] COBIT, Control Objectives for Information and related Technology, Version
4.1, 2007. http://www.itgi.org.

[Cun06] Hamish Cunningham. Information Extraction, Automatic. Preprint, 18th
November 2004, at http://gate.ac.uk/sale/ell2/ie/main.pdf. Encyclopedia of
Language and Linguistics, 2nd Edition, Elsevier, 5:665–677, November 2006.

[DHJ+08] Dirk Draheim, Melanie Himsl, Daniel Jabornig, Josef Küng, Werner Leithner,
Peter Regner, and Thomas Wiesinger. Concept and pragmatics of an intuitive
visualization-oriented metamodeling tool (accepted with minor revisions). In
Journal of Visual Languages and Computing (JVLC). Elsevier, 2008.

[DKW01] Tran Khanh Dang, Josef Küng, and Roland Wagner. The sh-tree: A super
hybrid index structure for multidimensional data. In Heinrich C. Mayr, Jiŕı
Lazanský, Gerald Quirchmayr, and Pavel Vogel, editors, DEXA, volume 2113
of Lecture Notes in Computer Science, pages 340–349. Springer, 2001.

[DO01] S. Dolcinar and R. Otter. Marktforschung für die österreichische Hotelklas-
sifizierung. Austrian Chamber of Commerce, Vienna, 2001.

[Fei07] Christina Feilmayr. Ontologiebasierte informationsextraktion in web-
basierten tourismusinformationssystemen. Master’s thesis, Johannes Kepler
University, Linz, December 2007.

330 Roland Wagner, Josef Küng, Birgit Pröll et al.

[FFSK09] Bernhard Freudenthaler, Martin Fritz, Reinhard Stumptner, and Josef Küng.
Case-based Reasoning for the Automated Assessment of Simple Structures in
Terms of Structural Health Monitoring (Submitted for publication). In 7th
International Workshop on Structural Health Monitoring 2009, 2009.

[FGP+09] Christina Feilmayr, Christoph Grün, Birgit Pröll, Hannes Werthner, and
Robert Barta. Covering the semantic space of tourism - an approach based
on modularized ontologies. In Workshop on Context, Information And On-
tologies. ESWC2009, March 2009. Accepted for publication.

[FGSK08] Bernhard Freudenthaler, Georg Gutenbrunner, Reinhard Stumptner, and
Josef Küng. Case-based Decision Support for Bridge Monitoring. In Third In-
ternational Multi-Conference on Computing in the Global Information Tech-

nology 2008, 2008.
[FGSK09] Bernhard Freudenthaler, Georg Gutenbrunner, Reinhard Stumptner, and

Josef Küng. Case-Based Decision Support for Bridge Monitoring (Submit-
ted for publication). In International Journal On Advances in Intelligent
Systems, 2009.

[FSFK07] Ernst Forstner, Reinhard Stumptner, Bernhard Freudenthaler, and Josef
Küng. VCDECIS–knowledge online advanced content management using a
semantic network. In DEXA Workshops, pages 312–316. IEEE Computer
Society, 2007.

[FSFK08] Bernhard Freudenthaler, Reinhard Stumptner, Ernst Forstner, and Josef
Küng. Case-based Reasoning for Structural Health Monitoring. In Fourth
European Workshop on Structural Health Monitoring 2008, 2008.

[GBPW05a] Eva Gahleitner, Wernher Behrendt, Jürgen Palkoska, and Edgar Weippl. On
cooperatively creating dynamic ontologies. In HYPERTEXT ’05: Proceedings
of the sixteenth ACM conference on Hypertext and hypermedia, pages 208–
210, New York, NY, USA, 2005. ACM Press.

[GBPW05b] Eva Gahleitner, Wernher Behrendt, Jürgen Palkoska, and Edgar Weippl. On
cooperatively creating dynamic ontologies. In HYPERTEXT ’05: Proceedings
of the sixteenth ACM conference on Hypertext and hypermedia, pages 208–
210, New York, NY, USA, 2005. ACM Press.

[GMF09] Eclipse graphical modeling framework (gmf), 2009.
http://www.eclipse.org/gmf/.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology specifica-
tions. Knowl. Acquis., 5(2):199–220, June 1993.

[Gua98] Nicola Guarino. Formal ontology and information systems, 1998.
[GWG06] Andreas Gruber, Rupert Westenthaler, and Eva Gahleitner. Supporting do-

main experts in creating formal knowledge models (ontologies), 2006.
[GWP+08] Christoph Grün, Hannes Werthner, Birgit Pröll, Werner Retschitzegger, and

Wieland Schwinger. Assisting tourists on the move- an evaluation of mo-
bile tourist guides. In ICMB ’08: Proceedings of the 2008 7th International
Conference on Mobile Business, pages 171–180, Washington, DC, USA, 2008.
IEEE Computer Society.

[HJL+07] Melanie Himsl, Daniel Jabornig, Werner Leithner, Peter Regner, Thomas
Wiesinger, Josef Küng, and Dirk Draheim. An iterative process for adap-
tive meta- and instance modeling. In Roland Wagner, Norman Revell, and
Günther Pernul, editors, DEXA, volume 4653 of Lecture Notes in Computer
Science, pages 519–528. Springer, 2007.

[iti06] ITIL, IT Infrastructure Library, Version 3, 2006. http://www.ogc.gov.uk.
[Jab06] Daniel Jabornig. An adaptive tool for meta and instance modeling. Master’s

thesis, Johannes Kepler University, Linz, 2006.
[Kel97] S. Kelly. GOPRR Description (Appendix 1). PhD thesis, 1997.
[KM95] Michael Klein and Leif Methlie. Knowledge based decision support systems,

1995.

References 331

[KP97] Josef Küng and Jürgen Palkoska. Vqs - a vague query system prototype. In
DEXA Workshop, pages 614–618, 1997.

[KP98] Josef Küng and Jürgen Palkoska. Vague joins - an extention of the vague
query system vqs. In DEXA Workshop, pages 997–1001, 1998.

[KP99] Josef Küng and Jürgen Palkoska. An incremental hypercube approach for
finding best matches for vague queries. In Trevor J. M. Bench-Capon, Gio-
vanni Soda, and A. Min Tjoa, editors, DEXA, volume 1677 of Lecture Notes
in Computer Science, pages 238–249. Springer, 1999.

[KP02] S Kent and O Patrasciu. Kent Modelling Framework Version - Tutorial
(Draft). Computing Laboratory, Canterbury, UK, December 2002.

[KPRR06] G. Kappel, B. Pröll, S. Reich, and W. Retschitzegger. Web Engineering -
Systematic Development of Web Appplications. Wiley, 2006.

[LMB+01] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason,
G. Nordstrom, J. Sprinkle, and P. Volgyesi. The Generic Modeling Envi-
ronment. In Workshop on Intelligent Signal Processing, Budapest, Hungary,
volume 17, May 2001.

[MB98] Robert C. Miller and Krishna Bharat. Sphinx: a framework for creating per-
sonal, site-specific web crawlers. Comput. Netw. ISDN Syst., 30(1-7):119–130,

1998.
[Met01] MetaCase. Domain-Specific Modelling: 10 Times Faster Than UML (White

Paper). MetaCase Consulting, Finland, 2001.
[MKSW99] John Makhoul, Francis Kubala, Richard Schwartz, and Ralph Weischedel.

Performance measures for information extraction. In In Proceedings of
DARPA Broadcast News Workshop, pages 249–252, 1999.

[MyF] Myfaces (accessed may 2008). http://www.myfaces.org.
[omg06] omg. Meta Object Facility (MOF) Core Specification Version 2.0, 2006.
[Par08] Stefan Parzer. Klassifizierung und informationsextraktion aus touristischen

webseiten unter anwendung einer support vector machine und regelbasierter
methoden. Master’s thesis, Johannes Kepler University, Linz, Januar 2008.

[Pig] Piggy bank (accessed februar 2009). http://simile.mit.edu/wiki/Piggy Bank.
[PR00] Birgit Pröll and Werner Retschitzegger. Discovering next generation tourism

information systems: A tour on tiscover. Journal of Travel Research, 39:182–
191, 2000.

[REN01] J. Janneck R. Essar and M. Naedele. The Moses Tool Suite - A Tutorial.
Version 1.2. Computer, Engineering and Networks Laboratory, ETH Zurich,
2001.

[RS06] P. Warren R. Studer, J. Davies. Semantic Web Technologies -Trends and
Research in Ontology-Based Systems. John Wiley and Sons, 2006.

[SN07] Vojtech Svatek and Marek Nekvasil. The ex project: Web information extrac-
tion using extraction ontologies, 2007.

[Sol] Solvent (accessed februar 2009). http://simile.mit.edu/wiki/Solvent.
[VNCN05] Paola Velardi, Roberto Navigl, Alessandro Cucchiarelli, and Francesca Neri.

Ontology Learning from Text: Methods, Evaluation and Applications, volume
123, chapter Evaluation of OntoLearn, a Methodology for Automatic Learning
ofDomain Ontologies. Frontiers in Artificial Intelligence and Applications, ios
press edition, July 2005.

[WK99] Hannes Werthner and Stefan Klein. Information Technology and Tourism -
A Challenging Relationship. Spinger, Vienna, 1999.

[WKE+07] Tim Weizel, Wolfgang König, Andreas Eckhardt, Sven Laumer, and Jens Lip-
pert. Recruting Trends 2007 - European Union - An empirical survey with
the top 1.000-enterp. in the EU. Number 2007-798. 2007.

[XUL] Xul (accessed may 2008). http://developer.mozilla.org/.
[ZLH06] Michael Zwick, Christian Lettner, and Christian Hawel. Implementing au-

tomated analyses in an active data warehouse environment using workflow
technology. In Dirk Draheim and Gerald Weber, editors, TEAA, volume 4473
of Lecture Notes in Computer Science, pages 341–354. Springer, 2006.

Chapter VII

Parallel, Distributed, and Grid Computing

Wolfgang Schreiner

Károly Bósa, Andreas Langegger, Thomas Leitner, Bernhard Moser,

Szilárd Páll, Volkmar Wieser, Wolfram Wöß

Introduction 1

The core goal of parallel computing is to speedup computations by execut-
ing independent computational tasks concurrently (“in parallel”) on multiple
units in a processor, on multiple processors in a computer, or on multiple net-
worked computers which may be even spread across large geographical scales
(distributed and grid computing); it is the dominant principle behind “su-
percomputing” respectively “high performance computing”.

For several decades, the density of transistors on a computer chip has
doubled every 18–24 months (“Moore’s Law”); until recently, this rate could
be directly transformed into a corresponding increase of a processor’s clock
frequency and thus into an automatic performance gain for sequential pro-
grams. However, since also a processor’s power consumption increases with
its clock frequency, this strategy of “frequency scaling” became ultimately
unsustainable: since 2004 clock frequencies have remained essentially stable
and additional transistors have been primarily used to build multiple pro-
cessors on a single chip (multi-core processors). Today therefore every kind
of software (not only “scientific” one) must be written in a parallel style to
profit from newer computer hardware.

Hagenberg Research

In Hagenberg, research on parallel, distributed, and grid computing is primar-
ily pursued by the Research Institute for Symbolic Computation (RISC), the
Institute for Application Oriented Knowledge Processing (FAW), the Soft-
ware Competence Center Hagenberg (SCCH), and the Heuristic and Evolu-
tionary Algorithms Laboratory (HEAL) of the Upper Austria University of

334 Wolfgang Schreiner et al.

Applied Sciences in the Campus Hagenberg. In fact, RISC has been one of
the first institutes to recognize the importance of parallel computation and
has worked in this area since the early 1980s (see Section 2). RISC has also
initiated the Austrian Center for Parallel Computation (ACPC) [ACP] and
the Austrian Grid initiative [Aus] in which among other institutes RISC and
FAW are collaborating (see Section 3). Also the industrial relevance of the
area is not neglected: the SCCH pursues application-oriented research with
economic partners (see Section 4) and the RISC Software Company operates
the Austrian Grid Development Center (AGEZ) which fosters cooperations
between the Austrian Grid and industry.

A common theme of the parallel/grid computing activities in Hagenberg
is that they are not pursued for their own sake but are driven by the concrete
needs of particular application areas that are in our center of expertise:

Symbolic Computation: RISC has developed parallel hardware, software,
and algorithms for symbolic computation (see Section 2).

Medical Informatics: RISC has in collaboration with the Upper Austrian
Research (UAR) department for MI and the FAW developed a grid variant
for the medical simulation software SEE++ (see Section 3.1).

Data Systems: FAW has worked on providing uniform access to heteroge-
neous data sources distributed over large-scale networks (see Section 3.3).

Computational Intelligence: SCCH has implemented on Graphics Process-
ing Units data-parallel algorithms for machine learning (see Section 4).

Metaheuristic Optimization: HEAL has worked on parallel implementa-
tions of heuristic optimization strategies (see Chapter III).

This combination of expertise, as well in parallel and grid computing
as in several application areas, and the strong contact among the research
groups and other (academic and industrial) partners in Hagenberg represents
a unique strength that characterizes our activities in this research area. Via
the Austrian Grid initiative and the Austrian Grid Development Center lo-
cated in Hagenberg, these links also extend to other Austrian groups working
in this area. The research competence also translates in corresponding edu-
cational activities (as well the Johannes Kepler University Linz as the School
of Informatics, Communications and Media of the Upper Austria University
of Applied Sciences offer courses in parallel and grid computing) from which
qualified staff in corresponding research activities can be drawn.

Outline

In the remainder of the introduction, we give a survey on parallel comput-
ing theory, hardware architectures, programming languages, software, algo-
rithms, and formal models; state of the art reports on the field are provided
e.g. by the European conference series Euro-Par [Eur] or the American SC
(former “Supercomputing”) series [Sup]. The rest of the chapter is mainly
dedicated to our own activities in this area.

VII Parallel, Distributed, and Grid Computing 335

Maximum speedup depending on sequential fraction f . Figure 1

Performance 1.1

The central performance measure in parallel computing [HP06] is the (abso-
lute) speedup Sp = T/Tp where T is the time for the solution of a problem by
the best sequential program and Tp is the time for the solution by a parallel
program executed with p processors. We expect 0 < Sp ≤ p; with Sp ≃ p we
have the best case of a program with “linear” speedup. Nevertheless anoma-
lies yielding a “super-linear” speedup Sp > p may arise, typically because
multiple processors have more (fast) cache memory available.

While the speedup only accounts for the gain of parallel computing, the
(absolute) efficiency Ep = Sp/p is a measure for the “return of investment”:
we expect 0 < Ep ≤ 1; if Ep is significantly smaller than 1, we have paid
a disproportionally high price for the speedup gained. In practice, therefore
the goal is to achieve high speedup with a reasonable level of efficiency.

If a fraction f of a problem can be only solved by sequential computation,
Amdahl’s Law (Sp ≤ 1/f) states that the speedup Sp of a parallel solution to
the problem is (independently of p) limited by the inverse of f , i.e. a problem
with only 1% inherently sequential computation content cannot achieve a
speedup higher than 100! This negative result puts therefore an absolute
bound on the gain of parallel computation for a problem of fixed size.

However, for many problems an increase in the problem size s lets the size
of its “parallel part” grow in proportion with s while the size of the “sequential
part” remains unchanged. If we increase in such problems the parallel part
in proportion with p, Gustafson’s Law (Sp ≤ f + p · (1 − f)) states that also
the speedup grows correspondingly; the program is then called “scalable”.
This positive result therefore establishes that parallel computation can be
effectively applied to solving problems of ever growing size (see Figure 1).

336 Wolfgang Schreiner et al.

Due to these results, the focus of the analysis of parallel programs has
turned from a mere speedup analysis to scalability analysis: here we investi-
gate how much the problem size s must grow with an increasing processor
number p such that the speedup Sp of a parallel program grows in proportion
with p or, in other words, its efficiency Ep remains constant (isoefficiency).

1.2 Architectures

Flynn’s taxonomy classifies parallel hardware architectures in two categories:

Single instruction, multiple data (SIMD): units are tightly synchronized:
at any time, all units execute the same instruction (on different data);

Multiple instructions, multiple data (MIMD): units are loosely synchronized:
at any time, different units may execute different instructions.

Due to its greater flexibility, today most architectures are of the MIMD type;
nevertheless they may exhibit SIMD features for special purposes (e.g. nu-
merical computations or graphics processing).

Instruction Level Parallelism

Since long, parallelism is exploited inside processors to speed-up program ex-
ecution [HP06]. Instructions are split into sequences of small steps that are
fed into instruction pipelines such that the execution of multiple instructions
may overlap. Superscalar processors provide redundant functional units to
which multiple instructions are simultaneously dispatched. To simplify the
scheduling of multiple units, Intel’s IA-64 (Itanium) architecture has intro-
duced explicitly parallel instruction computing (EPIC) where a parallelizing
compiler has to generate a program with parallel machine instructions.

Multi-Core Computing

Today a single processor (CPU) encompasses multiple cores; dual-core and
quad-core processors are typical, but processors with 128 cores and more
have already been announced. The technology is widely used, not only for
general purpose CPUs, but also for embedded processors and graphics proces-
sors (GPUs). In essence, each core represents a full processor; multiple cores
typically share a (level 2) cache and bus interface. From the usage point of
view, multi-core processors can be essentially considered as SMP systems.

VII Parallel, Distributed, and Grid Computing 337

Symmetric Multiprocessing (SMP)

In SMP systems (also called shared memory multiprocessors), multiple pro-
cessors are connected to a single shared main memory, usually via a bus
through which all memory requests are serialized; each processor can access
each memory location in the same way and at the same speed (uniform mem-
ory access, short UMA). SMP personal computers, workstations, and servers
are commercially available with 2, 4, or 8 (multi-core) processors. SMP sys-
tems are controlled by a single operating system (OS) instance that schedules
processes to processors and thus automatically balances the workload of mul-
tiple applications, multiple users, and/or multiple tasks.

Massively Parallel Processing (MPP)

MPP systems (also called distributed memory multiprocessors) scale to a
large number of processors (in June 2008 the world’s fastest computer [Top]
was the IBM Roadrunner MPP with 6480 Opteron dual-core processors and
12240 PowerXCell processors with 9 cores each). Therefore an MPP system
is composed in a modular way from nodes that comprise processors and local
memory and that are connected via a scalable network. A processor has only
direct access to the local memory; for interaction among processors on dif-
ferent nodes, messages are exchanged over the network. Typically each node
runs a local OS instance; processes are placed on nodes by the programmer.

A special class of MPPs are virtual (or distributed) shared memory systems
where, by a combination of hardware and software mechanisms, a shared
memory is implemented on top of MPP hardware. To users and programs
these systems look like SMPs (with an operating system that automatically
maps processes to processors); however, access to memory on remote nodes
is significantly more costly (non-uniform memory access, short NUMA).

Cluster Computing

Computer clusters [Buy99] (also called Beowulf systems after a project that
pioneered this approach) are essentially MPPs whose computing nodes are
plain computers (e.g. multi-core PCs) which are connected either by common
networks (e.g. Ethernet) or by special high performance links (e.g. Myrinet).
Clusters have become very popular because, for suitable applications, they
may provide good performance at comparatively low costs. Consequently the
June 2008 “Top 500” supercomputer list [Top] counts 400 clusters but only
98 specially designed MPPs (these however lead the list w.r.t. performance).

Grid Computing

A (computational) grid [FK98] is a networked infrastructure consisting of
computing nodes, storage elements, and special devices that are geographi-

338 Wolfgang Schreiner et al.

cally widely distributed but accessible from any node connected to the grid
(the term “grid” was introduced as a metaphor for making computational
resources as easily accessible as electricity in the power grid). In contrast
to a computer cluster that is owned and administrated by a single insti-
tution, a grid is composed of resources that belong to multiple institutions
(administrative domains) without central control and global knowledge. A
main challenge in grid computing is thus to provide services for the lookup
of resources and for their secure and efficient use by remote users. One of
the largest grid activities is the European project Enabling Grids for E-
SciencE (EGEE) [EGE] which provides the computational infrastructure for
the Large Hadron Collider (LHC) experiment at the CERN laboratory.

1.3 Programming

Writing programs for parallel computers is a difficult and error-prone task;
in the ideal case therefore a parallelizing compiler automatically generates a
parallel program from a program written in a conventional sequential lan-
guage. However, it has turned out to be very difficult to automatically ex-
tract efficiently exploitable parallelism from a sequential program (apart from
limited instruction-level parallelism). Therefore most approaches to parallel
programming rely on explicit parallel programming constructs, paralleliza-
tion annotations, and/or parallel programming libraries.

Parallel Language Extensions

Various dialects of conventional programing languages with explicit parallel
programming constructs have been proposed. For example, High-Performance
Fortran (HPF) [HPF] pioneered a data-parallel programming model with
a parallel FORALL construct which was taken over into the Fortran 95
standard. Unified Parallel C (UPC) [UPC] provides a uniform programming
model for both shared and distributed memory hardware: shared variables are
physically associated to particular processors but can be read and written by
all processors; synchronization constructs coordinate the parallel execution.

Parallel Declarative Languages

Declarative languages are based on abstract concepts like mathematical func-
tions (functional languages) or logic relations (logic languages) whose oper-
ational interpretation gives rise to parallel execution. Nevertheless, parallel
constructs or annotations are used for exhibiting the efficiently exploitable
parallelism. Glasgow Parallel Haskell (GPH) [GPH] and Eden [Ede] are ex-

VII Parallel, Distributed, and Grid Computing 339

tensions of the functional programming language Haskell by annotations for
parallel execution. Also the concurrent language Erlang [Erl] developed by
Ericsson for programming telecommunication systems has a functional core.

Multithreaded and Socket Programming

Modern operating systems support the concept of threads, i.e. light-weight
processes that operate in a shared memory and that can be efficiently sched-
uled among multiple cores or multiple processors of an SMP system. POSIX
threads (PThreads) [But97] is a widely supported standard for multi-threaded
programming in C/C++: by library calls threads can be created, synchro-
nized, and terminated. The language Java developed by Sun and Microsoft’s
C# language embed threads into an object-oriented language framework.

Furthermore, most operating systems support Internet sockets [SFR03] for
network communication; corresponding programming libraries are available
in C/C++, Java, C#, and other languages. The combination of threads and
sockets is a low-level but nevertheless powerful workhorse for parallel com-
puting: it allows to write parallel/distributed programs that utilize multi-core
processors, SMPs, and computer clusters.

OpenMP

OpenMP [Ope] is a standard for shared memory parallel programming in
C/C++, Fortran, and other languages. The core of OpenMP is a set of “prag-
mas”, i.e. program annotations by which the programmer directs the compiler
to generate parallel threads (for the parallel execution of loops or for the par-
allel execution of program sections) and to appropriately synchronize them.
OpenMP operates on a considerably higher level than a plain multi-threading
API: it leaves the sequential program structure essentially unchanged and
takes care of low level issues of data organization; nevertheless, by library
routines also explicit multi-threaded programming is possible. OpenMP is
widely supported and OpenMP programs are portable among most multi-
core/SMP architectures (but not MPP systems or computer clusters).

Message Passing Interface (MPI)

MPI [MPIa] is a standard for distributed memory parallel programming in
C/C++, Fortran, and other languages. The core of MPI is an application
programming interface for writing parallel programs in which processes in-
teract only by exchanging messages; each process may be therefore placed on
a separate computing node of an MPP or on a separate computer in a cluster
(nevertheless MPI programs may use multi-threading libraries for exploiting
shared memory parallelism within a node). Besides operations for point-to-
point communication, MPI supports a large set of collective operations, e.g.

340 Wolfgang Schreiner et al.

for broadcasting a message to a group of processes, or for collecting their
results; a specific implementation of MPI may execute these operations in a
more efficient way than by point-to-point messages, if it exploits the specific
features of the underlying communication infrastructure. MPI is supported
by practically every vendor and for all parallel computing architectures, i.e.
SMP systems, MPP systems, and computer clusters; MPI can be therefore
considered as the most portable standard for parallel programming today.

Grid Middleware

On top of grid hardware, the layer of grid middleware implements services and
tools for deploying and executing grid applications. The Open Grid Software
Architecture (OGSA) [OGS] provides a reference model for service-oriented
grid computing; OGSA can be seen as an adaptation of the concept of web
services to support the requirements of the grid. Today one of the most pop-
ular grid middleware products is the Globus Toolkit [Glo] which implements
OGSA-compliant services supporting security, information infrastructure, re-
source management, data management, communication, fault detection, and
portability. While Globus is powerful but complex, the gLite [gLi] middle-
ware developed and used by the European grid project EGEE implements a
somewhat more light-weight approach to service-oriented grid computing. All
these middleware products do not provide a parallel programming model but
rather support the concepts of “batch jobs” as the units of grid execution.

1.4 Algorithms

A fundamental classification of parallel algorithms and applications is based
on the core target of parallelization:� Data parallel algorithms focus on the distribution of data among multiple

processors each of which processes some part of the data;� Task parallel algorithms focus on the distribution of activities among mul-
tiple processors each of which performs some of these activities.

In one case, the distribution of data determines how activities are mapped
to processors while in the other one the distribution of activities determines
which data have to be transferred to each processor; in practice, real programs
exhibit features of both principles.

Another important classification is based on the ratio between the com-
munication/synchronization and the computation required for executing a
parallel program. In fine-grained parallel algorithms, the ratio is high, i.e. pro-
cesses have to communicate a lot to perform their tasks; algorithms of this
kind can be implemented efficiently only on multi-core/SMP architectures

VII Parallel, Distributed, and Grid Computing 341

with shared memory communication. In coarse-grained parallel algorithms,
the ratio is low, i.e. only little communication is necessary, which makes this
type of algorithms suitable also for MPP systems and computer clusters with
network communication. In embarrassingly parallel algorithms, the ratio is
essentially zero i.e. the processors can operate in an independent way; such
applications can be easily executed also on grids (examples of this kind are
“parameter studies” where the same computation must be performed for a
range of different input parameters).

A parallel program can be systematically developed from an algorithmic
idea in four phases [Fos95]: partitioning the problem solution into indepen-
dent tasks, determining the communication required between tasks, agglom-
erating tasks to bigger processes to reduce the communication requirements,
and mapping processes to processors. In practice, however, not every parallel
program has to be designed from scratch: various widely applicable parallel
program “patterns”, “skeletons”, or “frameworks” [Pat] have emerged.

One of these patterns is the manager/worker model with one manager
process and a set of worker processes (see Figure 2). The manager maintains
a pool of tasks to be performed and records the status of each task (“open”,
“active”, “closed”). Initially, the manager sends one open task to each worker
(marking it as “active”) and then waits for results. Whenever a worker has
completed its task, it sends the result back to the manager who sets the
status of the task to “closed” and assigns, if there are still open tasks left, a
new one to the worker. When all tasks are closed, the program terminates.

Manager

Task Pool

Workers

The manager/worker model. Figure 2

342 Wolfgang Schreiner et al.

The main advantage of this model is that it automatically balances the
workload among processors: even if some tasks turn out to be “bigger” than
others, all workers remain fully occupied as long as there remain open tasks
to be performed. The scheme can also be generalized in that workers may
generate new (sub-)tasks that are sent to the manager. Manager/worker al-
gorithms can be efficiently executed on MPP systems and clusters with a
moderate number of processors. However, if the number of workers is too
high, the central manager becomes a bottleneck. In this case, the scheme can
be generalized to multiple layers of (sub-)managers.

1.5 Modeling and Reasoning

A core problem of parallel programs is that their behavior is in general non-
deterministic: unlike sequential programs, two subsequent runs of a parallel
program with the same inputs may exhibit different behaviors and produce
different outputs. This is a consequence of the MIMD principle where dif-
ferent processors execute without a central control; consequently, in different
executions events at different processing units may happen in different orders.
Traditional strategies for ensuring program correctness by systematic testing
have therefore only limited value; more and more they are complemented by
formal methods to verify correctness properties of parallel programs.

For this purpose, a formal model of a parallel system is constructed, e.g.
as a finite state machine which can be analyzed by a model checker [CGP99].
A desired correctness property is formally specified (typically in some variant
of temporal logic [Lam02]) and then automatically verified with respect to all
possible behaviors of the model. If there exists any behavior that violates the
property, it is detected and returned as a counterexample. Model checkers
such as Spin [Spi] have been successfully applied to the verification of hard-
ware systems and communication protocols; they also play an increasingly
important role in the verification of (sequential and concurrent) software. To
verify infinite state models, systems for computer-assisted proving such as
PVS [PVS] or RISC’s Theorema (see Chapter II) may be applied.

2 Parallel Symbolic Computation

For three decades the Research Institute for Symbolic Computation (RISC)
has pursued research on parallel and distributed computing, in particular on
parallel languages, software, and algorithms for symbolic computation (com-
puter algebra and theorem proving, see Chapters I and II); a survey of the

VII Parallel, Distributed, and Grid Computing 343

field is provided by the PASCO conference series [PAS]. RISC is also member
of the European SCIEnce project (Symbolic Computation Infrastructure for
Europe) that develops a grid infrastructure for symbolic computation [SCI09].
Our research has for example produced the following results:� the L-machine, the first parallel computer built in Austria [Buc78, Buc85],� systolic algorithms for multiprecision arithmetic [BJ91, RJ07],� work on parallel logic programming and the development of ‖Maple‖ (par-

allel Maple) for the implementation of parallel variants of the Gröbner
bases algorithm invented by Bruno Buchberger [Sie93, Sie94],� work on dataflow computing [Sch91, Loi92] and parallel functional pro-
gramming for computer algebra [Sch95, Sch96],� the development of PACLIB, a parallel (shared memory multiprocessor)
variant of the computer algebra library SACLIB [HNS95, Sch94],� the development of the MathBroker framework for executing, describing,
and querying mathematical web services [CS02, BCS05, BS06],� the development of Distributed Maple, a system for distributed program-
ming in the computer algebra system Maple [Dis, SMB03, BS05].

The remainder of this section focuses on the last item, the development of
Distributed Maple and its application to parallel computer algebra.

Distributed Maple 2.1

Commercial computer algebra systems such as Maple or Mathematica pro-
vide large software libraries that already implement a lot of mathematical
functionality; consequently most computer algebra researchers prefer to im-
plement their code in the scripting languages of these systems rather than
writing it from scratch in some compiled programming language. The goal of
“Distributed Maple” [Dis, SMB03] is to write parallel computer algebra code
in the Maple language and have it executed on multiple processors respec-
tively on multiple computers of a network.

User Interface

The user interacts with Distributed Maple via a conventional Maple frontend
by executing Maple commands that establish the distributed session in which
tasks are created for execution on any connected machine:

> dist[initialize]([[compute,linux], [speedy,solaris]]);

connecting compute...

connecting speedy...

okay

> t1 := dist[start](int, x^n, x):

344 Wolfgang Schreiner et al.

> t2 := dist[start](int, x^n, n);

> dist[wait](t1) + dist[wait](t2);

(n + 1) n

x x

-------- + -----

n + 1 ln(x)

> dist[terminate]();

okay

First we load a file dist.maple which represents the interface to the dis-
tributed backend by a Maple package dist. By dist[initialize], we ask
the system to start the backend and create two new Maple kernels on machine
compute of type linux and on machine speedy of type solaris, respectively.
The machine types are used to lookup the specific startup information which
is located in a configuration file dist.systems.

After the session has been successfully established, two calls of the com-
mand dist[start] start two tasks that evaluate the Maple expressions
int(x^n, x) and int(x^n, n), respectively. The corresponding calls of
dist[wait] block the current execution until the tasks have terminated and
return the corresponding task results. Finally, the session is stopped and
resources are freed by calling dist[terminate].

Architecture

Since the Maple kernel is closed source, we have developed a Java-based par-
allel execution framework which is independent of Maple, i.e. it can embed
any kind of computational kernel. The overall structure of a distributed pro-
gram session is depicted in Figure 3; each computational node connected to
the session is composed of two components:

Scheduler: The program dist.Scheduler implements the distributed sched-
uler which coordinates the node interaction. The initial scheduler process
(created by the Maple kernel attached to the user interface) reads all sys-
tem information from file dist.systems; it then starts instances of the
scheduler on other machines.

Maple Interface: The program dist.maple executed by every Maple kernel
implements the interface between kernel and scheduler. Unix pipes are used
to exchange messages (which embed Maple objects in a linear format).

When the session is established, every instance of the scheduler accepts
tasks from the attached computation kernel and distributes these tasks among
all kernels connected to the session. During the execution, dynamic connec-
tions between remote scheduler instances are created on demand.

VII Parallel, Distributed, and Grid Computing 345

dist.Scheduler

dist.maple

Maple

dist.Scheduler

dist.maple

Maple

connections

.....

user interface

dist.Scheduler

dist.maple

Maple

dynamic

dist.systems

Distributed Maple software architecture. Figure 3

Programming Model

In contrast to many other software systems based on the message passing
model of parallelism, the parallel programming model of Distributed Maple
is based on the functional model of parallelism: a program creates concurrent
tasks that eventually deliver a result; tasks are first order objects that can be
handled as any other Maple values. The core of the programming interface
consists of two functions:

dist[start](f, a, ...): This call creates a task that evaluates the ex-
pression f(a, . . .); the call immediately returns a reference t to this task.

dist[wait](t): This call blocks the execution of the current task until the
task represented by t has terminated; the call then returns the result of t.
Multiple tasks may independently wait for the result of the same task.

On which computational kernel a task is scheduled for execution is entirely
in the responsibility of the runtime system. Tasks may create other tasks;
arbitrary kinds of Maple objects (including task references) may be passed
as task arguments and returned as task results.

Sometimes the performance of a parallel program is improved by process-
ing the results of a set of tasks not in a fixed order but in that order in which
the results happen to arrive. This can be achieved by using the following
non-deterministic form of task synchronization.

346 Wolfgang Schreiner et al.

dist[select](tlist): This call blocks the current task until any task in
the list of task handles tlist has terminated. The call then returns a list r
where r [1] is the result of this task and r [2] is its index in tlist.

Furthermore, if a parallel program processes large data in multiple phases
separated by task interactions, it may be more efficient to let tasks preserve
their states across the phases rather than creating for every phase new tasks
to which the data have to be passed. For this purpose, Distributed Maple
supports the concept of “shared objects” that may implements various forms
of inter-task communication such as communication channels.

Fault Tolerance

Since the software is intended for execution in distributed environments
with potentially faulty behavior, it incorporates extensive support for fault-
tolerance which is novel in this application area [BS05]. This allows to write
programs that take many days without risking to lose computations by the
failure of a computing node or of a communication link.

The mechanisms that ensure fault tolerance are essentially as follows:� task descriptions and task results are permanently logged on stable storage
such that they can be recovered whenever necessary;� connectivity between every pair of nodes is constantly monitored; if a node
becomes unreachable, appropriate measures are taken.

Fault recovery is “on the fly” (i.e. the user does not notice any disruptions of
the software): computations do not fail if some node fails, if a connection to a
node fails, or if the software running on a node crashes. Furthermore, if nodes
or connections fail only temporarily, they are automatically reconnected to
the session when they become operational again. The processes on a node
terminate their execution properly, if the node becomes disconnected from
the session such that no “hang-over” processes are left. Only if many nodes
fail or become unreachable in a short time period, the session fails but can be
restarted (with all previously computed results still available from the stable
storage). By the functional model of parallelism, the overhead of the fault
tolerance framework is very small (compared to message passing software
that ensures fault tolerance by checkpointing complete system states).

2.2 Parallel Computer Algebra Algorithms

A major motivation for the development of Distributed Maple was the paral-
lelization of parts of CASA, a Maple library developed by various researchers
at RISC for solving problems in algebraic geometry [CAS, MW96]. The basic

VII Parallel, Distributed, and Grid Computing 347

objects of CASA are algebraic sets represented e.g. as systems of polyno-
mial equations. Algebraic sets represented by bivariate polynomials model
plane curves. Algebraic sets represented by trivariate polynomials model sur-
faces in space; intersections of such surfaces define space curves. With the
help of Distributed Maple, we have developed parallel variants of various
CASA algorithms, e.g. for the reliable plotting of algebraic plane or space
curves [MSW00, SMW00c, SMW00a, SMW00b].

Maple’s implicitplot versus CASA’s pacPlot. Figure 4

Conventional methods for plotting algebraic curves often yield qualita-
tively wrong solutions, i.e., plots where some “critical points” (e.g. singular-
ities) are missing. For instance, the left diagram in Figure 4 shows a plot of
the plane curve 2x4 − 3x2y + y4 − 2y3 + y2 generated by Maple’s command
implicitplot. The numerical approximation fails to capture two singulari-
ties; even if we improve the quality of the diagram by refining the underly-
ing grid, only one of the missing singularities emerges. On the other hand,
CASA’s algorithm pacPlot produces the correct diagram shown to the right.
This is achieved by a hybrid combination of exact symbolic algorithms for
the computation of all critical points and of fast numerical methods for com-
puting the interconnections between the points. Since the algorithm spends
virtually all of its time in the computation of the critical points, this step is
the target of parallelization. In more detail, the problem solved by this step is
to find for an algebraic curve a(x, y) every real solution (“root”) 〈x, y〉 of the
system {a = 0, ∂a

∂x = 0}. Since exact real arithmetic is not possible, each root
is actually “isolated” by a pair of intervals 〈[x′, x′′], [y′, y′′]〉 whose bounds
x′, x′′, y′, y′′ are rational numbers with x′ ≤ x ≤ x′′ and y′ ≤ y ≤ y′′.

The algorithm computing the set of all intervals that isolate the critical
points is sketched in Algorithm 1. We have parallelized this algorithm on
various levels (underlined in Algorithm 1): parallel resultant computation,

348 Wolfgang Schreiner et al.

Algorithm 1. Computation of critical points
function criticalPointSet(a(x, y))

P ← ∅
S ← {〈p(y), q(x, y)〉 | ∃p′(y) :

〈p′(y), q(x, y)〉 ∈ triangulize(a(x, y), ∂a(x,y)
∂x

), p(y) ∈ factorize(p′(y))}
for 〈p(y), q(x, y)〉 ∈ S do

r(x)← resultantx(p(y), q(x, y))

X ← realroot(r(x))

Y ← realroot(p(y))

for x ∈ X do

q′(y)← squarefree(q(x,y), x.0, p(y))
q′′(y)← squarefree(q(x,y), x.1, p(y))
for y ∈ Y do

if test(q′(y), q′′(y), y, p(y)) then

P ← P ∪ {〈x, y〉}
end if

end for

end for

end for

for p ∈ P do

refine(p)
end for

return P

end function

parallel real root isolation, parallel solution test, and parallel interval refine-
ment.

Real Root Resultant RR Test Refinement

Figure 5 Plotting of algebraic plane curves.

Figure 5 illustrates the trace of an execution of the parallel version of
pacPlot in a cluster with 16 processors listed on the vertical axis; each hor-
izontal line denotes a task executed on a particular machine. We can clearly
distinguish the real root isolation phase followed by the phases for resultant
computation, the second real root isolation, the solution tests and the solu-
tion refinements. With this parallelization, we achieved a speedup of 14 in
a heterogeneous local cluster of 16 workstations and a speedup of 13 in a
combination of local workstations and a remote multiprocessor.

VII Parallel, Distributed, and Grid Computing 349

Grid Computing 3

In Hagenberg, research on grid computing is mainly pursued in the context of
the Austrian Grid [Aus], a national initiative that is funded by the Austrian
Ministry for Science and Research and whose main goal is to support and to
coordinate grid research in Austria. Another important purpose is to stim-
ulate cooperations among the relevant scientific areas and the various grid
research groups in Austria. Numerous universities in Austria participate in
the Austrian Grid (among others, the Johannes Kepler University Linz, the
University of Innsbruck, and the University of Vienna).

First Phase 2004–2006: The project started in 2004 with 24 participating
partner institutions and with 137 people involved. In the first phase, 34
research projects were funded (24 dedicated to middleware research and
10 to application development). Until the end of 2006, around 2,7 Million
Euro were invested into the project.

Second Phase 2007–2009: By the end of 2007, 22 partners take part and
95 people are employed. Furthermore, 28 research projects are funded (14
related to basic grid research, 9 to application development, 3 to infras-
tructure research, 1 to public relations, and 1 to project coordination).

To achieve the goals of the initiative, an appropriate hardware and software
infrastructure is established and maintained (see Figure 6). In the first phase
of the project, the backbone of the grid was an Altix 350 machine with 96
Intel Itanium2 1.4 GHz CPUs organized into three grid nodes (64 CPUs in
Linz, 16 CPUs in Innsbruck, and 16 CPUs in Salzburg). This machine has a
performance of 550 Gigaflop/s and provides more than 1 TB storage space.
In 2008, the backbone was expanded by an SGI 4700 comprising 128 Intel
Itanium2 1.6 GHz CPUs and 7 TB storage space; the overall performance of
this machine is 1.6 Teraflop/s. There is no network dedicated exclusively to
the Austrian Grid; rather the grid nodes are connected to each other via the
Austrian Academic Computer Network (ACOnet) that provides 10 Gigabit
Ethernet connections among the major academic institutions; the partners
in Hagenberg (RISC and FAW) are connected to this infrastructure via the
Johannes Kepler University Linz by a 1 Gigabit Ethernet connection.

In the second phase of the initiative the Austrian Grid Development Cen-
ter (AGEZ) was established. The main goal of this unit is to transfer the
results of the Austrian Grid research to the Austrian industry and to raise
the public awareness about the potential and possibilities of grid comput-
ing. The AGEZ realizes projects together with Austrian companies and is in
charge of dissemination, consulting, and training activities. It is directed by
Prof. Buchberger and operated by the RISC Software Company in Hagen-
berg; the overall goal is to establish it as a persistent entity which serves as
the main contact for the Austrian industry regarding grid computing.

350 Wolfgang Schreiner et al.

Figure 6 Hardware resources of the austrian grid by the end of 2008.

3.1 Grid-Enabled SEE++

This section presents research carried out by RISC in the frame of both
the Austrian Grid Phase 1 [Aus] and the “Enabling Grids for E-sciencE 2”
(EGEE2) [EGE] project. The goal of this activity was the development of
a grid-enabled variant of the medical software system SEE++ [Buc04, SEE]
which was originally developed by the former Upper Austria Research (UAR)
department for medical informatics (MI) in Hagenberg (now a unit of the
RISC Software Company) for the biomechanical 3D simulation of the human

VII Parallel, Distributed, and Grid Computing 351

Output of the “SEE++ to Grid Bridge” and the SEE++ GUI. Figure 7

eye and its muscles (see Figure 7); the work was performed by a collaboration
of RISC and UAR MI with support by FAW.

SEE++ supports the diagnosis and treatment of strabismus, a usually per-
sistent or regularly occurring misalignment of the eyes where eyes point in
different directions such that a person may see double images. SEE++ sim-
ulates a typical medical examination called Hess-Lancaster test, from which
the reason for the pathological situation of the patient can be estimated. The
outcome of such an examination consists of two gaze patterns of blue points
and of red points respectively (see the diagram in the middle of Figure 7).

The blue points represent the image seen by one eye and the red points the
image seen by the simulated other eye; in a pathological situation there is a
deviation between the blue and the red points. The default gaze pattern that
is calculated from the patient’s eye data by SEE++ contains 9 points. Bigger
gaze patterns with 21 and 45 are possible and provide more precise results for
the decision support in case of some pathologies, but their calculations are
more time consuming. It is also possible to give the measured gaze pattern of
a patient as input. In this case, SEE++ takes some default or estimated eye
data and modifies a subset of them until the calculated gaze pattern of the

352 Wolfgang Schreiner et al.

simulated eye (red points) matches the measured gaze pattern (green points).
This procedure is called pathology fitting.

Strabismus can be rarely corrected sufficiently after the first surgical treat-
ment. One of the main goals of the SEE++ software system is to give support
to make the treatment of strabismus easier and more efficient. Still the doctors
have to spend lots of time with changing the eye parameters by a manual trial
and error method and waiting for the results. The current pathology fitting
algorithm is time consuming (it runs several minutes) and gives only a more
or less precise estimation for the pathology of the patient. Doctors want to
see quickly the results from such a decision support system, but for reaching
adequate response times it is not sufficient to use only local computational
power. For this, a large scale distributed resource would be appropriate that
provides the ability to perform higher throughput by taking advantage of
many networked computers.

The goal of “Grid-Enabled SEE++” is to adapt and to extend SEE++
in several steps and to develop an efficient grid-based tool for “Evidence
Based Medicine”, which supports the surgeons in choosing optimal surgery
techniques for the treatments of different syndromes of strabismus. For
this purpose, we have developed a parallel version of the Hess-Lancaster
test [BSBK05, BSBK07] executed in the grid and have prototyped (in col-
laboration with FAW) a grid-enabled medical database [BSBK05]. Since we
met with some limitation of the Globus Toolkit 4 [BSBK07], we also imple-
mented another SEE++ version for the gLite grid middleware [BS08b]. In
the following, we describe these activities in more detail.

Parallel Hess-Lancaster Test

To develop “Grid-Enabled SEE++”, we combined the SEE++ software with
the Globus Toolkit [Glo] (applying both the older pre-Web Service and the
newer Web Service framework of this grid middleware) to develop a parallel
version of the simulation of the Hess-Lancaster test.

The core component of our development is a “SEE++ to Grid Bridge”
[BSBK05], via which the unchanged SEE++ client can get access to the in-
frastructure of the Austrian Grid. The bridge acts as a SEE++ server to the
SEE++ clients and as a Globus client to the Grid. The usage of grid resources
is completely transparent to the clients. Before the bridge accepts the com-
putational requests from the SEE++ clients, it starts grid-enabled SEE++
servers in the grid. These processes behave as some kind of “executer” pro-
grams for the computation tasks such that the remarkable latencies of the
job submissions for the computational requests can be avoided.

This “SEE++ to Grid Bridge” splits gaze pattern calculation requests of
clients into subtasks (which contain only some points of the pattern) and
distributes them among the servers (data parallelism, see Section 1.4). Since
the calculations of each gaze points is completely independent from each
other, there is no communication among the server processes. By this, we

VII Parallel, Distributed, and Grid Computing 353

speeded up this simulation by a factor of 12–14 with 30–45 processors which
demonstrates how a the computational power of the Austrian Grid can be
effectively exploited for a real-world application.

A Grid-Enabled Medical Database

Next, we developed (in collaboration with FAW) the prototype of a grid vari-
ant of a medical database component for SEE++ [Mit05], which stores med-
ical data and eye model parameters. These pathological cases can be utilized
as initial estimations of a grid-based pathology fitting algorithm [BSBK05].

Since this database is designed for storing patient records, security is a very
important aspect. The security implementation ensures that every database
access is secured appropriately by checking the caller’s identity. Furthermore,
the access layer employs many techniques to maximize security (such as sup-
porting username/password based authentication and applying strong en-
cryption of stored user passwords with a SHA-512 salted hash code).

The overall goal is to develop a distributed grid-enabled database system
that allows “Grid-Enabled SEE++” to give efficient support to ”Evidence
Based Medicine”. To establish such a grid-based database without a major
modification in the existing data access layer, an abstraction layer has to
be introduced as provided by the Grid Semantic Data Access Middleware
(G-SDAM) developed by FAW (see Section 3.3).

Design of Grid-Based Pathology Fitting

Pathology Fitting is a non-linear optimization problem in a multidimensional
parameter space where some of the patient’s eye model parameters are modi-
fied until the calculated gaze pattern matches the measured one. In this way,
the pathological reason of strabismus can be determined automatically.

Unfortunately, a gaze pattern does not uniquely determine the values of
eye model parameters. Furthermore, the gaze patterns can in practice not be
measured with perfect precision, hence the simulated gaze patterns cannot
be completely the same as the measured one. At the moment, SEE++ uses a
heuristic that is able to exclude most of the pathologically irrelevant solutions
(solutions which are possible in the mathematical model, but cannot occur
in a real human eye) and give an approximation of the correct solution.

As a first step on speeding up pathology fitting, we extended the pathology
fitting component of SEE++ by parallel gaze pattern calculation, since a
single pathology fitting process often requires the calculation of 60–100 gaze
patterns. However, the speedup achieved by this implementation was limited
to a factor of two, because the gaze pattern calculations are triggered by
consecutive optimization steps.

Another attempt at speeding up the fitting process may be based on the
fact that a gaze pattern does not uniquely determine a simulation model

354 Wolfgang Schreiner et al.

and the current algorithm may not find always the best solution (despite of
the introduced heuristics, the quality of outcome still depends on the ini-
tial estimation for the current pathological case), we can exploit the grid
infrastructure to attempt to find better solutions:

1. by searching in the database concurrently for similar cases as the one
presented to the pathology fitter and

2. by starting concurrent pathology fitting processes with these cases as the
starting points of the optimizations (parameter study).

Initial work on improving the optimization process is reported in [Wat08].

Comparison of Globus and gLite

In the frame of the EGEE-2 project [EGE], we have developed an alternative
to the original Globus-based version of “Grid-Enabled SEE++” by applying
the grid middleware gLite [gLi]. In some benchmarks, we have compared the
effectiveness of both solutions in different situations where 1, 3, 9, 25, 30 or 45
processors were used on the grid. The basis for this experimental comparison
was the parallel grid-enabled simulation of Hess-Lancaster test.

The test cases based on Globus 4 were executed on the Austrian Grid
site altix1.jku.austriangrid.at, which contains 64 Intel Itanium processors
(1.4GHz) and resides at the Johannes Kepler University (JKU) in Linz. The
“SEE++ to Grid Bridge” and SEE++ clients were always executed at the
RISC institute located in Hagenberg which has a one Gigabit/sec connection
to the JKU. In case of 25 or more processors, we used some processes on
the grid site altix1.uibk.ac.at in Innsbruck that comprises 16 CPUs of the
same type. The test cases based on gLite were performed on some clusters
of the architecture of the Int.EU.Grid Project [Int]. The server jobs were
randomly disseminated among some clusters in Germany (122 CPUs), Poland
(32 CPUs), Slovakia (32 CPUs) and Spain (20 CPUs).

In these tests, we speeded up the simulation by a factor of 12–14 in Globus
and by a factor 9–13 in gLite (see Figure 8). Apparently the results achieved
with Globus look better, but the measured values do not reflect the whole
picture: in the tests based on Globus we employed homogeneous hardware and
there were fast connections between the bridge and the servers with relatively
consistent quality. In the gLite tests, the environment was heterogeneous and
communication latencies were higher with large variations. These facts may
imply that the differences between the values concerning to Globus and gLite
on Figure 8 are caused more by the disparity of the hardware architectures
of the two testbeds than by the applied middleware.

VII Parallel, Distributed, and Grid Computing 355

Number of
Processors

Number of
Processors

5

10

15

20

25

1 3 9 25 30 45 1 25 30 453 9

30

35

EfficiencySpeedup

40 1

0,5

0,75

0.25

Globus Compatible SEE++
gLite Compatible SEE++

Speedup and efficiency diagrams in Globus and gLite. Figure 8

Parallel Supercomputing in the Grid 3.2

In this section, we outline an ongoing research activity of RISC in the frame of
the Austrian Grid Phase 2 with the goal of developing a distributed program-
ming software framework and a corresponding programming interface (API)
for grid computing. This work shall assist applications whose algorithmic
structures do not lend themselves to a decomposition into big sequential
components whose only interactions occur at the begin and the end of the
execution of a component (such that they can be scheduled by a meta-level
grid workflow language that implements communication between components
by file-based mechanisms). Our solution shall empower applications to per-
form scheduling decisions on their own by utilizing the information provided
by an API about the grid environment at hand in order to adapt the algo-
rithmic structure to the particular runtime situation.

In the grid no application can execute efficiently, if it is not aware of the
fact that it does not run in a homogeneous cluster environment (with low
latency and high bandwidth between all nodes) but in an environment with
heterogeneous nodes and connections that dramatically vary between three
different levels: the processors within a grid node, the grid nodes within the
same network, and grid nodes in different networks linked by wide-area con-
nections. Thus the API shall not hide this fact from the application but rather
reflect the information provided by the grid management and execution envi-
ronment to the programming language level so that the application can utilize
this information and adapt its behavior to it, e.g., by mapping closely inter-
acting activities to nodes within a network and minimizing communication
between activities executing on nodes in different networks.

356 Wolfgang Schreiner et al.

The API shall however hide low-level execution details from the application
by providing an abstract execution model that in particular allows to initiate
activities and communicate between them independently of their physical
location. The execution engine has to map these abstract model features to
the appropriate underlying mechanisms: to initiate an activity on a local
machine or on a machine within the same administrative authority, simply
a process may be started; to initiate an activity on a remote node means
to contact a corresponding service on that machine, provide the appropriate
credentials, and ask the service to start the activity.

Software Framework

In our approach [BS08a], we adapt the algorithmic structure of a parallel
program to particular grid resources by assigning to a parallel program an
appropriate schema that describes a generalized communication structure
and that is especially designed for heterogeneous network environments (the
schema classifies connections among the processes as often used respectively
rarely used links). The schema can be specialized by some parameters accord-
ing to some characteristics of the program. The outcome of this procedure is a
specification of the preferred communication structure of the program in het-
erogeneous networks. We map this specification to a predicted performance
model of an available physical network architecture in order to decrease the
communication overhead during the execution as much as possible.

Figure 9 depicts the overall framework which consists of three major com-
ponents (components denoted by ellipses represent third party software prod-
ucts which we may substitute in a later phase):

Scheduling Mechanism: This mechanism employs the performance predic-
tion tool Network Weather Service (NWS) [WSH99] which is used by many
middleware products to gather qualitative information about the current
state of the execution infrastructure (network and CPUs) and to predict
its short-term performance. Before each execution of a parallel program
on the grid, the scheduling mechanism maps the specified communication
structure of the program to the topological hierarchy of the physical grid
architecture such that it minimizes the assessed execution time. The out-
put is a mapping description called execution plan.

Deployment Mechanism: This mechanism is based on the startup mech-
anism of MPICH-G2 [MPIc, KTF03], a grid-enabled implementation of
the MPI standard based on the library MPICH [MPIb]. The Deployment
Mechanism takes the generated execution plan and starts the processes of
the program on the corresponding grid nodes according to the plan.

Topology-Aware API: It is not enough to discover the characteristic of an
available physical grid architecture, but a topology-aware programming
environment must exploit this information. The main purpose of this API

VII Parallel, Distributed, and Grid Computing 357

TA−API

MPI Program

MPI Program MPI Program MPI Program

Program Structure

Specification

Mechanism
Scheduling

NWS
Measured Latency and

Bandwith Values

RSL file

Deployment Mechanism

Mapping Description

Program Structure

Topology and

between Network

...

node nnode 1 node 2

GLOBUS

Legend:
TA−API = Topology−Aware API

TA−API TA−API TA−API

MPICH−G2

Overview of the Software Framework. Figure 9

is to inform a parallel program how its processes are assigned to some
physical grid resources and which roles are assigned to these processes.

Application

The framework can be e.g. used to efficiently execute in the grid a program
based on a hierarchical variant of the manager/worker model (see Section 1.4)
with a tree of processes organized in three levels: the root process acts as the
global manager, the processes on the second level represent local managers,
and the leaf processes are the workers that perform the actual computations.

With the help of NWS, the scheduling mechanism determines an adequate
distribution of the processes to grid nodes such that the workers on the third
level are organized as big local groups (preferring clusters and LANs) and the
point-to-point communications between the processes on the second level and
the corresponding workers are as efficient as possible. Based on this execution
plan, the deployment mechanism allocates the chosen group of grid nodes
and starts the processes on them. Finally, the topology-aware API informs
the processes at runtime how they are distributed on the allocated pool of

358 Wolfgang Schreiner et al.

grid nodes and maps them to the predefined roles in the specified hierarchical
schema (global manager, local manager and worker) such that the program
is executed with minimal communication overhead.

Advantages of the Approach

The major advantages of our approach (against other topology-aware soft-
ware frameworks, like MPICH-G2) are the following:� It takes the point-to-point structure of a parallel program into considera-

tion and tries to fit it to a heterogeneous grid network architecture.� It leverages existing topology-aware software frameworks: in particular,
the efficient collective operations of MPICH-G2 can be still used.� It eliminates the algorithmic challenges of topology-aware programming,
i.e. a programmer deals only with the computational problem at hand.� The users need not be aware of the grid or manually provide the informa-
tion about the physical topology structure of the network/grid.� The distribution of the processes is always conformed to the actual loading
of the network resources.

A prototype of the framework will become operational by the middle of 2009.

3.3 Data Grids

In a changing world with a steadily increasing amount of electronic data,
systems which are able to easily manage and access these data become more
and more important. As the grid is an immense infrastructure enabling ac-
cess to autonomous systems spread at different places, it is best suited for
the maintenance of distributed data sources. If the requirement of managing
large amounts of data is joined with the possibility of connecting numerous
computer systems as the grid does, a system emerges that has the capabil-
ity to organize remote data in a way such that users can easily access it and
data-intensive applications can use it efficiently. Such an architecture is called
Data Grid [FKT01].

Because there are many ways to implement such a system (as will be shown
in the section Application Areas below), there are different approaches on how
to define it. Chervenak et al. [CFK+01] proposed that data grids mainly sup-
port two two basic functionalities. Firstly, they have to enable high-speed and
reliable data transfer; secondly, scalable replica discovery and management
mechanisms have to be provided. Additionally, services are needed that pro-
vide the management of replica. There are many other requirements that a
data grid has to fulfill for specific application areas. For instance, the goal of
the G-SDAM project (described later in Section Semantic Data Integration)

VII Parallel, Distributed, and Grid Computing 359

is to semantically integrate distributed and heterogeneous information into
a single virtual information space. This will enable scientists to share data
more easily and with less manual pre-processing.

In order to provide these mechanisms, metadata (i.e. data about the data
themselves) are required, e.g. attributes such as time of creation, time of last
modification, size on disk, as well as data semantics. With these metadata it
is possible to create unique and persistent identifiers with the aim of distin-
guishing between different objects such as users and entities. To classify and
organize these identifiers, so called logical namespaces are created. With these
it becomes possible to control access, enable discovery, and manage wide area
latencies. Another crucial characteristic of data grids is the functionality to
restrict access. Since information is an important good, users might want to
restrict the distribution of their data. So authentication and authorization
mechanisms are realized to control coarse- to fine-grained access.

Application Areas

This section gives an overview of some applications in heterogeneous research
fields to demonstrate the universal need and application areas of data grids.
Most of the applications use data grids to integrate distributed data sets
which provide and store large amounts of data.

BIRN (Biomedical Informatics Research Network): This research network1

in the application field of biomedical informatics is a geographically dis-
tributed knowledge base with the goal to advance the diagnosis and treat-
ment of diseases. The main contributors are clinical and biomedical sci-
entists who use this grid by enhancing and processing the data. One of
the main features which is very important for this purpose is the data
integration aspect. The model of federation (see below) is used for feder-
ating data sources. The difficulty this community has to deal with is not
only that a large amount of data is generated but also that existing data
sets and storage systems are highly heterogeneous (ranging from relational
databases over ontologies to spatial atlases).

GriPhyN (Grid Physics Network): This petabyte-scale data grid2 is mainly
used and administrated by experimental physicists and information tech-
nology researchers; it will provide an information and data management
system for the data intensive science of the 21st century. Mainly three
science projects profit from this grid. The first one is in the field of as-
tronomy, the The Sloan Digital Sky Survey. This project is about measur-
ing the universe by recording the sky and determining distances between
celestial objects and galaxies. Another project is LIGO, which is about
Detecting Einstein’s Gravitational Waves. Because of the accuracy of the

1 http://www.nbirn.net
2 http://www.griphyn.org

360 Wolfgang Schreiner et al.

measurements and the demand of very close examination, large amounts of
peripheral data are generated and have to be stored. The third project is
called High-Energy Particle Physics and is about the Large Hadron Col-
lider (LHC) which is generating an astronomical amount of data. Even
if the prime data of the CERN CMS detector is divided by a factor of
ten, still more than a petabyte of data per year is generated. This huge
amount of data is federated to different locations across Europe; it needs
the functionalities of a data grid in order to be managed and processed in
an automated way.

NEES (Network for Earthquake Engineering Simulation): The NEES net-
work3 is operating from 2004 to 2014; it consists of 15 large-scale, experi-
mental sites that provide special functions like shake tables and earthquake
effect simulations. To provide the needed computational power and data
management/storage, NEESgrid was developed. As the researchers are lo-
cated throughout the USA, it is important to distribute data to them as
well as to provide and manage the necessary metadata. To gain access to
the repository and to the environment, users can access the grid via a web-
based user interface. The management of rights is also a very important
feature of this data grid application.

NVO (National Virtual Observatory): The research area of this applica-
tion4 is similar to that of the Sloan digital sky survey of the GriPhyN
network. This is an area where huge amounts of data are generated which
have to be stored, managed, and processed. Therefore, also in this project,
a data grid is in use which is called TeraGrid5. The main objectives are the
exposure of massive data to massive computing and to run applications to
visualize and explore these data. In the future, additional projects will be
able to use the TeraGrid and the protocols and infrastructure of NVO.

Model Classification of Data Grids

This section outlines the various characteristics of data grids. Depending on
the application scenario, they more or less differ in their architectures. While
some implementations have a single source, others integrate existing data
sources that interact with each other. Figure 10 shows the most common
models found in data grids.

The first model is called monadic. All the information gathered is stored
in a central repository which answers the queries submitted by users and
systems and provides the data. It is obvious that this central system is the
single point of failure. Therefore, a backup system is often provided to support
the central system but this does not improve the locality of data. This model
does not integrate replica management and hence minimizes the architectural

3 http://www.nsf.gov/news/special reports/nees/about.jsp
4 http://www.us-vo.org/
5 http://www.teragrid.org/

VII Parallel, Distributed, and Grid Computing 361

Different models for data grids in practice [VBR06]. Figure 10

overhead. One disadvantage, however, is that all the traffic has to be delivered
to the central node. The performance of the system heavily depends on the
network bandwidth. The NEES project, which has already been mentioned,
uses such a model for its data grid.

The second model shown is the hierarchical model. It is organized like
a tree, so there is a single source that distributes data to other systems.
An example therefore is the CERN grid as shown in Figure 10 (b). CERN
produces data that are delivered to regional centers such as the US Centre
or the Asian Centre. The Regional Centre itself provides these data to the
national centers which deliver them to the institutions that are connected
with the users. It can be seen that the information flow is top-down only;
each connection has a particular bandwidth associated.

The characteristics of the third model called federation is that existing sys-
tems can be easily integrated into the data grid. The figure shows that every
institution provides its data stored in its database to the other institutions.
Therefore it is important that an appropriate authentication mechanism guar-
antees optimized security features. This model is for example implemented
in the BIRN project discussed above. When using the federation model, it is

362 Wolfgang Schreiner et al.

possible to use data replication in order to fetch the data needed, such that a
copy is stored on the own system. Thus a replica discovery and management
mechanism is needed in order to keep the whole system consistent.

The last model is the hybrid one. Hybrid models are actually not different
models, but rather combinations of one or more other models. In practice,
it is sometimes necessary that information has to be provided mainly by a
single source (like in the hierarchical model), but in the bottom-most tier the
institutions also have to be connected and have to provide data for each other
similar to the federation models. Hence, it is not always possible to use a single
model, because the possibilities and benefits of more are desirable [VBR06].

Semantic Data Integration for E-Science Grids

The research focus of the Institute for Application Oriented Knowledge Pro-
cessing (FAW) in the Austrian Grid project is semantic data integration. A
data integration middleware is implemented which enables transparent ac-
cess to distributed and heterogeneous information systems based on ontolo-
gies. The Resource Description Framework (RDF) and the Web Ontology
Language (OWL) are used as global data model and the declarative query
language SPARQL (SPARQL) (an recursive acronym for SPARQL Proto-
col and RDF Query Language) is used as declarative query language. The
grid middleware is called Grid-enabled Semantic Data Access Middleware
(G-SDAM)6; its core component is developed as an independent sub-project
called Semantic Web Integrator and Query Engine (SemWIQ)7. While until
2008 the development was focused around SemWIQ, the grid integration and
release of G-SDAM is scheduled for the last project year at the end of 2009.

As explained earlier, data integration is one of the base requirements in
many scientific applications. Many grid computations require large amounts
of input data to be analyzed. If data from different independent sources are
used, a dedicated data integration middleware may provide a transparent
view without the demand to map and align the existing data to a common
structure whenever data has to be retrieved.

The G-SDAM/SemWIQ approach is based on the following assumptions:� data sources are already existing or have been created independently and
are therefore fully autonomous,� data sources are geographically distributed,� data are stored in various information systems (e.g. relational database
systems, file systems, accessible via Webservices only),� data structures and semantics are heterogeneous because they are devel-
oped and maintained autonomously,� the semantics of data is usually difficult to interpret without human com-
munication and interaction (this also applies to metadata).

6 http://gsdam.sourceforge.net
7 http://semwiq.faw.uni-linz.ac.at

VII Parallel, Distributed, and Grid Computing 363

Within the middleware developed for the Austrian Grid, the heterogeneous
data models and structures are aligned to common domain ontologies when
data sources are registered at so-called mediators. Each Global Repository
Node (GRN) within G-SDAM is providing a SemWIQ mediator instance.
The required transformation of data representations is done on-the-fly dur-
ing data retrieval. This enables large-scale data mining across geographically
distributed and heterogeneous data sources because all data are represented
in the same common data model.

Within G-SDAM, data can be retrieved by executing SPARQL queries
against a SemWIQ mediator running on a GRN. Any data source to be
integrated has to provide a SPARQL end-point and can then be registered
by one or more GRNs8. Because usually a data source does not provide
a SPARQL endpoint by default (only native RDF stores do), a wrapper
is placed on top of the data source. This mediator-wrapper architecture is
depicted in Figure 11.

Architecture of SemWIQ. Figure 11

8 Note: G-SDAM actually uses SemWIQ for data processing and retrieval. It integrates
the Grid Security Infrastructure and OGSA-compliant Web services. An OGSA-DAI Data-
Source implementation will also be provided.

364 Wolfgang Schreiner et al.

Clients establish a connection to the mediator and request data by submit-
ting SPARQL queries (1). Patterns in such global queries adhere to a virtual
data graph which refers to classes and properties from arbitrary RDFS or
OWL vocabularies. The parser (2) calculates a canonical query plan which
is modified by the federator/optimizer component (3). The federator decom-
poses the global query, scans the registry and statistics for relevant registered
data sources and produces a federated query plan. The optimizer uses several
rules based on heuristics as well as statistics collected periodically from the
registered data sources to generate an optimized global query execution plan.
The query execution engine (4) processes this global plan which includes re-
mote sub-plans executed at remote endpoints (5). The SPARQL protocol is
used between mediator and wrapper endpoints and sub-plans are therefore
serialized back into lexical queries. In [LWB08] the query processing pipeline
is presented in detail.

The registry catalog (7) stores descriptions and statistics about each reg-
istered data source [BLW06] and a local RDF cache (8) will be used in future
to cache triples for global join operations and frequently recurring queries.
The registration component (9) is responsible for the (de-)registration of data
sources via Web services. Finally, the monitoring component (10) is periodi-
cally fetching statistics from registered data sources. In October 2008 the new
sub-project RDFStats9 was integrated into the data source monitor. Now it
also includes histograms for the data distributions which significantly aids
the optimization of global queries.

Global Domain Ontologies and Vocabularies

Aligning data from heterogeneous data models (the relational model, XML,
CSV, etc.) and schemes (e.g. different database schemes for the same domain)
is a difficult task. The semantic information required to interpret existing
data is usually available as metadata and documentation intended for human
readers. However, this information is often not sufficient; it requires human
communication and manual alignment when transforming various data sets
into a common format before data can be analyzed systematically.

If it is possible to define formal mappings from several source data models
to a single common data model, the transformation can be done automati-
cally during data retrieval. However, this requires a very expressive common
data model, since it has to cover various individual semantics of each source
model. The Resource Description Framework is able to fulfill this require-
ments. The RDF-based data model is mathematically described as sets of
triples forming an RDF graph; most important, the semantics of RDF data
can be extended on the basis of RDF itself. Further important features are
globally unique data identifiers (specified as URIs) and the open world as-
sumption which allows to merge globally distributed RDF graphs to extend

9 http://semwiq.faw.uni-linz.ac.at/rdfstats

VII Parallel, Distributed, and Grid Computing 365

locally incomplete information. RDF data may be described by RDF Schema
or OWL, which additionally allows to use description logic constraints in
order to automatically classify instances based on deductive reasoning.

Based on the W3C standards, several vocabularies (terminological ontolo-
gies, i.e. without instances also known as the A-box) may be used to describe
data (see Figure 12). During the past years of Semantic Web research, many
vocabularies have already been published and may be reused. Together with
the Kanzelhöhe Solar Observatory (partner of the Austrian Grid project),
further vocabularies have been developed to describe observations in general
and solar observations in particular.

SemWIQ mediator and local data linked to common Semantic Web vo-
cabularies (RDF Schema/OWL) published on the Web—each G-SDAM
Global Repository Node (GRN) is equipped with a SemWIQ Mediator
instance. A SemWIQ endpoint may be part of the grid or not.

Figure 12

Often the argument is raised that finding integrated data models or domain
ontologies is a difficult task which requires expert support. This is absolutely
true: the effort is even required within G-SDAM/SemWIQ. However, this
task can be done by a core community who may develop and maintain the
vocabularies with collaboration tools developed exactly for that purpose (e.g.
OntoWiki10). The mapping of a data source has to be done only once upon
data source registration. During the mapping process it is possible to add
semantic links to other data sources on the Web.

10 http://ontowiki.net/

366 Wolfgang Schreiner et al.

Future Research Directions

Currently, the Semantic Web Integrator and Query Engine used for G-SDAM
supports the semantic aspect fulfilling the requirements for virtually sharing
scientific data from heterogeneous data repositories. However, it does not yet
include typical data grid aspects like replica management or fine-grained au-
thorization. After the full integration of SemWIQ into the Grid (G-SDAM
release), which mainly includes GSI (Grid Security Infrastructure) integra-
tion and publishing OGSA-compliant (Open Grid Services Architecture) Web
services, future research will investigate the integration of G-SDAM into
the existing data grid middleware. To integrate G-SDAM into OGSA-DAI
(OGSA Data Access and Integration), a special G-SDAM DataSource type
will be implemented. The OGSA-DQP middleware, which is a sub-project of
OGSA-DAI enables parallel, distributed query processing by utilizing com-
putational Grid resources. In future work, the applicability of OGSA-DQP
for query federation and optimization in SemWIQ will be investigated.

4 GPU Computing for
Computational Intelligence

Since 1999 the Software Competence Center Hagenberg (SCCH) pursues
application-oriented research in the field of computational intelligence in co-
operation with international scientific and economic partners. Computational
intelligence is an active field of research comprising machine learning like
supervised and unsupervised learning, fuzzy logics, and automated reason-
ing. Beside the methodological aspects regarding recognition capabilities for
e.g. computer vision problems, it is a major goal to design and implement
the methods in way that makes them adequate for real-time in-line process
control as they are e.g. encountered in industrial quality inspection problems.

Many of these methods are characterized by the high dimensionality of
data on which they operate and the high arithmetic intensity caused by com-
putationally intensive mathematical models. These are often limiting factors
for the applicability in time-critical applications. Parallelization represents
the only viable solution for breaking the usability boundaries of the existing
algorithms of which many exhibit inherent data-parallelism (see Section 1.4).
This suggests that GPU (graphics processing unit) computing, an emerging
technology which uses the massive data-parallel and floating point arith-
metical capabilities of graphics hardware is a good candidate to deal with
application speed problems.

VII Parallel, Distributed, and Grid Computing 367

Evolution of Intel CPU and NVIDIA GPU peak performance. Figure 13

General Purpose Computing on GPUs 4.1

The landscape of parallel computing has substantially changed in the last
years. It has not only become clear that “the future is parallel” [FR96], but
current trends also show that computing power through parallelism will be
provided by many-core (massively parallel multi-core) architectures [ABC+06].
The success of on-chip parallelism is best reflected in the evolution of the
graphics processing units. During the last six years, GPUs went through a
set of substantial changes, which turned these initially explicitly graphics ori-
ented devices into massively parallel, general purpose computing tools. Driven
by the needs and pressure of the multi-billion dollar computer gaming mar-
ket, the race of graphics hardware manufacturers resulted in the increase of
floating point arithmetic performance with remarkable leaps. This has led to
a quickly growing, substantial gap between the raw performance of CPUs and
GPUs. The significant floating point performance superiority of the graphics
hardware (see Figure 13) lies in the fundamental architectural differences.

The introduction of fully programmable commodity GPUs that provide
high computational speed for graphics applications was also an important
event in the scientific computing world. Current GPU-based solutions pro-
vide affordable and compact supercomputing power with performance in the

368 Wolfgang Schreiner et al.

teraflop range11 [NVI08c]. Researchers in the field of scientific and high per-
formance computing, motivated by the potential, affordability, and increasing
programmability of graphics hardware became interested in harnessing GPUs
for general purpose computing. This collective initiative has became known
as General Purpose computation on GPUs (GPGPU) [GPG].

GPU Architecture

GPUs were originally designed for computer graphics and visualization. How-
ever, from a fixed function processing unit GPUs have evolved into massively
parallel many-core processors, exceeding by far the capabilities of current
CPUs. Optimized for sequential code execution, a great amount of CPU
transistors is devoted to control and instruction level parallelism. In con-
trast, GPUs are designed for highly parallel execution with less transistors
reserved for control and more devoted to computation. Beside using the tran-
sistors in a more efficient way, the GPU architecture has a less complex design
which facilitates to increase the number of transistors. Also, the importance
of throughput rather than latency allows higher arithmetic intensity for the
same number of transistors [OLG+07]. Knowing that latency will lag band-
width in the near future [Pat04], the GPU architecture (centered around the
importance of throughput) has a start-line advantage compared to CPUs.

Based on the stream architectural concept [KRD+03, Owe05], the pro-
cessing units of GPUs contain several streaming multiprocessors, each being
a multi-core stream processor. Modern GPUs have an extensive set of special
features, e.g. hardware support for multi-threading, floating point units ca-
pable of executing per clock cycle a multiply-add, multiply, and “superfunc”
operation (i.e. rsqrt, sin or cos), special function instructions (e.g. exponen-
tial function, reciprocal instructions, trigonometric functions). Tailored for
floating point arithmetic for 3D graphics, the GPU hardware is not intended
for general use (i.e. can not replace the CPU). As a conclusion, GPUs are
considered floating point coprocessors or arithmetic accelerators (like FPGAs
or ClearSpeed FPU boards) and require control by the CPU (i.e. host).

GPUs are centered around the graphics pipeline: different tasks executed
concurrently on a large set of data. The pipeline is divided in space rather
than time (as is the case for CPUs), different stages execute different tasks in
parallel and feed their results to the consequent stage. Initially, to each stage
a different hardware element corresponded, i.e. a special purpose compute
unit tailored to the specific operations of the respective stage. The vertex
and pixel shader units are traditionally the programmable parts.

The initial fixed-function nature of GPUs ensured the simplicity of the
design which resulted in highly efficient task-parallel execution. However, the

11 The NVIDIA Tesla deskside supercomputer consists of a standard desktop PC equipped
with 3-4 Tesla C1060 boards with up to 960 processing cores and 933 GFlops peak arith-
metic performance per board.

VII Parallel, Distributed, and Grid Computing 369

varying arithmetical intensity of the executed operations on different units
causes load balancing issues in such a pipeline architecture, as the speed of
execution depends on the slowest stage of the pipeline. On the other hand, the
necessity for more flexible programmability of the vertex and pixel-fragment
stages resulted in their feature-wise convergence. These two factors led to the
design concept of the modern GPUs, the unified shader architecture. As these
stages are the most computation-intensive and highly parallel stages of the
pipeline, by unifying (physically and function-wise as well) the programmable
parts of the GPU, the computational power gets concentrated in a single
unit. This facilitates load balancing and opened up the possibility of the
previously limited general purpose use. From a parallel computing point of
view, the unification is a step toward a more general stream architecture.
Both leading graphics hardware manufacturers, NVIDIA and AMD12 have
been using unified architecture in their GPUs on the G80 (GeForce 8 family)
platform since 2006 [LNOM08, NBGS08] respectively R500/Xenos platform
since 2005 [AB06]. NVIDIA provides the Tesla, AMD the FireStream [AMD]
specialized GPGPU platforms for high performance and scientific computing.

GPU Computing

The architecture of the graphics hardware (designed to support both task-
and data-parallelism) requires a special programming approach. Therefore
traditional graphics programming is inherently data- and task-parallel. With
the unified architecture, the data-parallel nature of the many-core GPUs gets
accentuated, creating a favorable platform for general purpose programming.
The programmable unit of GPUs are SIMD, therefore a general purpose code
must exhibit data-parallelism in order to exploit the massive hardware con-
currency capabilities. GPUs are characterized by fine-grain parallel execution,
thousands of lightweight threads need to be executed concurrently in order
to keep the GPU busy. The efficiency of an algorithm is strongly influenced
by the degree of concurrency which is dependent on the dimensionality of
the input data. A fine partitioning of the computational domain is necessary
in order to provide sufficient concurrency for efficient execution. Concurrent
thread execution is able to hide the latency of the main memory by switching
from threads groups blocked by ongoing memory operations to other threads.

General purpose programming of GPUs is carried out in a SPMD (single
program multiple data) fashion: multiple data elements are concurrently pro-
cessed by the same program. The data elements are typically 32bit floating
point or integer values, but the latest architectures13 already support 64bit,
double precision floating point arithmetic (although at lower speed). While
the general SPMD model allows simultaneous execution of the program on

12 The former graphics hardware manufacturer ATI was acquired by AMD in 2006.
13 The AMD platform with the ATI RV670/RV770 and the NVIDIA platform with the
GT200 introduced double precision support.

370 Wolfgang Schreiner et al.

different instruction points by different cores, for efficiency reasons GPUs
necessitate restrictions. Allowing different execution paths over all threads
would require substantial amount of control hardware. Instead, a block of
threads is executed in SIMD manner on a single multiprocessor. Threads from
different blocks can take different execution paths, but if divergent branching
occurs in threads running on the same core, all branches need to be evaluated,
leading to inefficiency. From a programming point of view, this limits the use
of branching (i.e. usage of conditional statements). However, coherent thread
grouping (i.e. threads from the same group executing the same branch) can
be achieved by carefully structuring the data-parallel execution.

The stream programming model [Owe05] represents the basis of the mod-
ern GPGPU languages and programming environments. This approach con-
centrates on expressing parallelism, modelling communication patterns and
memory use in the application. It formulates the computation as arithmetic
kernels that operate on data, structured into data streams [OHL+08]. A
key difference compared to a general stream programming approach which
executes an arbitrary Turing machine is that on GPUs a single function pro-
cesses the data stream [Ven03]. The Sh [Sh] shading language offering stream
programming abstractions and BrookGPU [Bro], a compiler and runtime en-
vironment implementation of the Brook stream programming language were
the first to be successfully abstracting the GPU as a stream processor. A
commercial platform for GPU computing is NVIDIA’s CUDA [CUD] which
consists of GPGPU language extensions for C, the CUDA compiler, and
runtime library. NVIDIA also offers implementation of the BLAS and FFT
numerical libraries with CUBLAS [NVI08a] and CUFFT [NVI08b].

Graphics oriented GPUs have been becoming more and more capable
of solving general computing problems. Specifically those problem classes
that are suitable to be expressed using the data-parallel paradigm are good
candidates. The problem size as well as the arithmetic intensity of the re-
spective algorithm is crucial to keep the GPU busy. Typically, applications
which operate on large data sets are eligible to be implemented on GPUs.
The stream memory architecture is very powerful. Even memory bound
GPGPU algorithms, having preponderant memory access operations, and
therefore low arithmetic intensity, can outpace the CPU version which suffers
from the memory bottleneck of the traditional Von Neumann style architec-
tures [Ven03]. Arithmetically intensive operations often take significantly less
cycles on GPUs, as an extensive set of special function instructions is sup-
ported (e.g. trigonometric and logarithmic functions in CUDA). As a result
of all these advantages, GPU-based solutions are gaining recognition with the
numerous real-life applications ranging from fluid dynamics to N-body prob-
lems, computer vision and many more (see [AMD, OHL+08, CUD, GPG]).
Typical speedups range from 10 to 100, but speedups as high as 270 (sum
products) and 470 (k nearest neighbor search) exist [AMD, CUD].

Nonetheless, the graphics oriented hardware design still carries its limi-
tations. Beside the inherently non GPU-parallelizable algorithms (e.g. not

VII Parallel, Distributed, and Grid Computing 371

data-parallel or exhibiting communication patterns not suitable for GPUs)
there are several limitations of current GPGPU tools and platforms:� There exists no fully IEEE 754 compliant floating point arithmetic (e.g.

deviations in rounding, no NaN support).� Double precision arithmetic is less efficient; it achieves below half of the
advertised single precision speed.� Full 32bit arithmetic is inefficient.� There is no support for recursion.� Global synchronization is inefficient.� PCI-X bandwidth and latency represent a bottleneck; moving data be-
tween host and global memory can represent a serious bottleneck.� There is no single tool which supports the efficient, flexible and easy pro-
gramming of both of the two major graphics hardware platforms.

A GPU-based SVM Classifier 4.2

As an introductory step for GPU computing at SCCH, we developed a GPU-
based parallelization of the support vector machines classifier algorithm [P0́8].

Support vector machines (SVMs) are currently considered one of the most
powerful learning methods and provide state-of-the art solution for various
application areas, e.g. text categorization, texture analysis, gene classifica-
tion and many more. The SVM concept is heavily used in several industrial
applications at SCCH. Consult [SS01] for a detailed explanation on SVMs.

The SVM algorithms exhibit data-parallelism suggested by the dominance
of vector-oriented operations. In several time-critical industrial applications
(e.g. classification of textures), a limiting factor is represented by the high
data dimensionality which on the other hand is a source of concurrency in a
data-parallel implementation. At the same time, kernel functions with high
arithmetic intensity (e.g. Gaussian RBF) are also a source of speed concerns
in traditional implementations. This suggests that a GPGPU implementation
can provide means to increase the usability of SVM-based algorithms which
are limited by sequential execution.

Our work aimed to provide a parallel SVM classifier algorithm for GPU, to
implement the algorithm using the NVIDIA CUDA platform and to compare
its performance and behavior with the library LIBSVM [CBM+08], an estab-
lished CPU-based implementation. The binary SVM classification problem
corresponds to the evaluation of the decision function

f(x) = sgn

(
m∑

i=1

αiyiK(x,xi) + b

)

372 Wolfgang Schreiner et al.

Figure 14 SVM decision function evaluation with stream programming.

where αi, yi are weight coefficients, K(x,xi) is a kernel function, xi are the
support vectors, b the bias, and x is the data instance to be classified (for a
detailed explanation see [SS01]).

Identifying the parallelizable parts of the decision function represents
the first step. These are then mapped to the data-parallel computational
primitives map and reduce (i.e. parallel computing idioms, see [OLG+07,
OHL+08]), respectively the data-parallel matrix-vector product. This map-
ping ensures that the algorithm fits smoothly in the stream programming
model. The evaluation of the decision function is represented by the conse-
quent application of data-parallel operations (kernels) on the data stream in
their order of application in the decision function. The initial data-stream
consisting of the support vectors and the data instance vector is reduced to
a single value, the decision value. The scheme is illustrated in Figure 14.

An initialization step setting up the GPU environment precedes the actual
classification phase. This step consists of CUDA library initialization and
copying trained classifier data (support vectors, coefficients and parameters)
to the GPU—these remain constant through the classification phase. This
step represents an overhead compared to a CPU implementation. Based on
the presented data-parallel scheme, the classifier implementation consists of
CUDA kernels for each step of the evaluation of the decision function. As most
of the computation is offloaded to the GPU, expensive communication with
the host is limited to the transfer of input/output. The dot-product based
kernel function makes use of the CUBLAS library provided with CUDA.

The benchmark results support the initial expectations: significant speedup
is achievable while the classifier performance is not affected by the single pre-
cision arithmetic. We measured speedups up to 26.8 compared to the CPU
implementation. Considering the application areas this can be quite signif-
icant, e.g. in object tracking it could substantially increase the frequency
of frame processing which yields smoother and more precise tracking. The
average deviation of decision values14 computed on GPU from the CPU re-
sults are in the range of 10−4–10−7. This can be considered very low, did in
our tests not cause misclassification, and does probably not influence typical

14 While this is not a strict measure of the misclassification risk caused by the loss of
computational accuracy, we use these empirical observations to characterize the general

behavior of the GPU classifier.

VII Parallel, Distributed, and Grid Computing 373

SVM classifiers. The benchmarking was conducted on a GeForce 8800 Ultra
GPU and a single core of an Intel Xeon 5060 3.2Ghz CPU.

We were able to draw some important conclusions from benchmarking
and profiling results. In the following we summarize these and point out the
strengths and weaknesses of our GPU-based SVM classifier implementation:� Arithmetically more complex kernel functions yield increased speedup.

This opens up the possibility for using specialized kernels without the
risk of application slowdown.� Low data dimensionality (i.e. a small number of support vectors or a low
dimension vector space) strongly affects the algorithm, as this limits the
level of thread concurrency. We propose two possible workarounds: either
a hybrid implementation by moving the inefficient steps back to the CPU,
or, if the application allows, grouped execution on several data instances.� “Padding” the data vectors to dimensions which are multiples of 32 (the
block size of the shared memory) yields significant speedup.� The GPU overhead does not represent a significant drawback in situa-
tions where the initialization time is negligible, e.g. in real-time classifiers
where many data instances are consequently fed to the classifier. However,
when only a small number of data instances are classified at once (i.e. the
initialization time is proportionately high), it becomes a limiting factor.

Note that our approach intends to deal with a large range of problems
defined by widely varying data dimensions. Such an approach might not be
able to produce the highest possible performance in every situation (various
hardware capabilities, various problems sizes). As data-parallelism is crucial,
ideally, a CUDA algorithm should be able to adapt its execution scheme to
keep the GPU occupancy as high as possible. This “self tuning” capability is
hard to realize. However, in specific applications, where the problem size is
previously known, tuning of the execution parameters for the actual problem
size requires less effort and it is less error-prone.

Acknowledgements

The research described in this chapter has been performed in the frame of the
Austrian Grid project funded by the Austrian BMBWK (Federal Ministry for
Education, Science and Culture) under the contracts GZ 4003/2-VI/4c/2004
and GZ BMWF-10.220/0002-II/10/2007, in the frame of the Enabling Grids
for E-sciencE (EGEE-2) project sponsored by the European Commission, and
in the frame of the Special Research Program (SFB) “Numerical and Sym-
bolic Scientific Computing” project SFB F013/F1304 “Symbolic Differential
Computation” funded by the Austrian Science Fund (FWF).

374 Wolfgang Schreiner et al.

References

[AB06] Jeff Andrews and Nick Baker. Xbox 360 System Architecture. IEEE Micro,
26(2):25–37, March–April 2006.

[ABC+06] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, et al. The Land-
scape of Parallel Computing Research: A View from Berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University of California, Berkeley, De-
cember 2006.

[ACP] ACPC – Austrian Center for Parallel Computation. http://www.gup.jku.at/
information/acpc/acpc.php.

[AMD] AMD. ATI Stream Technology. http : / / ati . amd . com / technology /
streamcomputing/index.html.

[Aus] Austrian Grid Project. http://www.austriangrid.at.
[BCS05] Rebhi Baraka, Olga Caprotti, and Wolfgang Schreiner. A Web Registry for

Publishing and Discovering Mathematical Services. In IEEE International Con-
ference on e-Technology, e-Commerce, and e-Service (EEE-05), pages 190–193,

Hong Kong, April 29–March 1, 2005. IEEE Computer Society Press.
[BJ91] B. Buchberger and T. Jebelean. Systolic Algorithms in Computer Algebra.

In NATO ASI on Parallel Processing on Distributed Memory Multiprocessors,
Ankara, Turkey, 1991.

[BLW06] Martin Blöchl, Andreas Langegger, and Wolfram Wöß. Registration of Hetero-
geneous Data Sources in the Case of the Grid Semantic Data Access Middleware
(G-SDAM). In Proceedings of the Austrian Grid Symposium (AGS’06). OCG,
2006.

[Bro] BrookGPU. http://graphics.stanford.edu/projects/brookgpu/.
[BS05] Karoly Bosa and Wolfgang Schreiner. Tolerating Stop Failures in Distributed

Maple. Scalable Computing: Practice and Experience, 6(2):59–70, July 2005.
[BS06] Rebhi Baraka and Wolfgang Schreiner. Semantic Querying of Mathematical

Web Service Descriptions. In Mario Bravetti et al, editor, Third International
Workshop on Web Services and Formal Methods (WS-FM 2006), volume 4184
of Lecture Notes in Computer Science, pages 73–87, Vienna, Austria, September
8–9, 2006. Springer.

[BS08a] Karoly Bosa and Wolfgang Schreiner. Initial Design of a Distributed Super-
computing API for the Grid. Technical report, Research Institute for Symbolic
Computation (RISC), Johannes Kepler University Linz, Austria., 2008.

[BS08b] Karoly Bosa and Wolfgang Schreiner. The Porting of a Medical Grid Applica-
tion from Globus 4 to the gLite Middleware. In Peter Kacsuk at al., editor,
Proceedings of DAPSYS 2008, pages 51–61. Springer, September 2008.

[BSBK05] Karoly Bosa, Wolfgang Schreiner, Michael Buchberger, and Thomas Kaltofen.
SEE-GRID, A Grid-Based Medical Decision Support System for Eye Muscle
Surgery. In Jens Volkert et al., editor, Proceedings of 1st Austrian Grid Sympo-
sium 2005, pages 61–74, Hagenberg, Austria, December 01 - 02 2005. Austrian
Computer Society (OCG).

[BSBK07] Karoly Bosa, Wolfgang Schreiner, Michael Buchberger, and Thomas Kaltofen.
A Grid Software for Virtual Eye Surgery Based on Globus 4 and gLite. In
Proceedings of ISPDC 2007, pages 151–158. IEEE Computer Society, 2007.

[Buc78] Bruno Buchberger. Computer-Trees and Their Programming. In 4th Colloquium
“Les arbres en algebre et en programmation”, pages 1–18, University of Lille,
France, February 16–18, 1978.

[Buc85] Bruno Buchberger. The L-Machine: An Attempt at Parallel Hardware for Sym-
bolic Computation. In Symposium on Applied algebra, Algebraic algorithms, and
Error Correcting Codes (AAECC), volume 229 of Lecture Notes in Computer
Science, pages 333–347. Springer, 1985.

References 375

[Buc04] Michael Buchberger. Biomechanical Modelling of the Human Eye. PhD thesis,
Johannes Kepler University, Linz, Austria, March 2004.

[But97] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 1997.
[Buy99] Rajkumar Buyya. High Performance Cluster Computing. Prentice Hall, 1999.
[CAS] CASA — Computer Algebra System for Algebraic Geometry. http://www.risc.

uni-linz.ac.at/software/casa.
[CBM+08] Shuai Che, Michael Boyer, Jiayuan Meng, et al. A Performance Study of

General-Purpose Applications on Graphics Processors Using CUDA. Journal of
Parallel and Distributed Computing, 68:1370–1380, 2008.

[CFK+01] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The Data
Grid: Towards an Architecture for the Distributed Management and Analysis
of Large Scientific Datasets. Journal of Network and Computer Applications,
23(3):187–200, 2001.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press, 1999.

[CS02] Olga Caprotti and Wolfgang Schreiner. Towards a Mathematical Service Descrip-
tion Language. In International Congress on Mathematical Software (ICMS),

Bejing, China, August 20–28, 2002. World Scientific Publishers.
[CUD] CUDA Zone. http://www.nvidia.com/object/cuda home.html.
[Dis] Distributed Maple. http://www.risc.uni-linz.ac.at/software/distmaple.
[Ede] Eden: Parallel Functional Programming. http://www.mathematik.uni-marburg.

de/∼eden.
[EGE] Enabling Grids for E-sciencE (EGEE). http://www.eu-egee.org.
[Erl] Erlang. http://www.erlang.org.
[Eur] Euro-Par Conference Series — European Conference on Parallel and Distributed

Computing. http://www.europar.org.
[FK98] Ian Foster and Carl Kesselmann. The Grid 2: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann, 2nd edition, 1998.
[FKT01] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. Lecture Notes in Computer Science, 2150, 2001.
[Fos95] Ian Foster. Designing and Building Parallel Programs: Concepts and Tools for

Parallel Software Engineering. Addison-Wesley, 1995.
[FR96] M. J. Flynn and K. W. Rudd. Parallel Architectures. ACM Computing Surveys,

28(1):67–70, 1996.
[gLi] gLite — Lightweight Middleware for Grid Computing. http://glite.web.cern.ch.
[Glo] The Globus Toolkit. http://www.globus.org/toolkit.
[GPG] General-Purpose Computation Using Graphics Hardware. http://www.gpgpu.

org.
[GPH] Glasgow Parallel Haskell (GPH). http://www.macs.hw.ac.uk/˜dsg/gph.
[HNS95] Hoon Hong, Andreas Neubacher, and Wolfgang Schreiner. The Design of the

SACLIB/PACLIB Kernels. Journal of Symbolic Computation, 19:111–132, 1995.
[HP06] John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti-

tative Approach. Academic Press, 4th edition, 2006.
[HPF] High Performance Fortran (HPF). http://hpff.rice.edu.
[Int] Int.EU.Grid Project. http://www.interactive-grid.eu/.
[KRD+03] Ujval J. Kapasi, Scott Rixner, William J. Dally, et al. Programmable Stream

Processors. IEEE Computer, 36(8):54–62, August 2003.
[KTF03] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-Enabled Implemen-

tation of the Message Passing Interface. Journal of Parallel and Distributed
Computing (JPDC), 63(5):551–563, May 2003.

[Lam02] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison Wesley, 2002.

[LNOM08] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA
Tesla: A Unified Graphics and Computing Architecture. IEEE Micro, 28(2):39–
55, March–April 2008.

376 Wolfgang Schreiner et al.

[Loi92] Hans-Wolfgang Loidl. A Parallelizing Compiler for the Functional Programming
Language EVE. In Austrian-Hungarian Workshop on Transputer Applications,
pages 1–10, Sopron, Hungary, October 8–10, 1992. Hungarian Academy of Sci-
encesTechnical Report KFKI-1992-34/M,N.

[LWB08] A. Langegger, W. Wöß, and M. Blöchl. A Semantic Web Middleware for Virtual
Data Integration on the Web. In Proceedings of the European Semantic Web
Conference 2008, Tenerife, pages 493–507. Springer, 2008.

[Mit05] Daniel Mitterdorfer. Grid-Capable Persistance Based on a Metamodel for Med-
ical Decision Support. Master’s thesis, Upper Austria University of Applied
Sciences, Hagenberg, Austria, July 2005.

[MPIa] MPI (Message Passing Interface) Forum. http://www.mpi-forum.org.

[MPIb] MPICH Project. http://www-unix.mcs.anl.gov/mpi/mpich1/.
[MPIc] MPICH-G2 Project. http://www.hpclab.niu.edu/mpi/.
[MSW00] Christian Mittermaier, Wolfgang Schreiner, and Franz Winkler. A Parallel

Symbolic-Numerical Approach to Algebraic Curve Plotting. In Vladimir Gerdt
and Ernst W. Mayr, editors, CASC-2000, Third International Workshop on
Computer Algebra in Scientific Computing, pages 301–314, Samarkand, Uzbek-
istan, October 5–9, 2000. Springer, Berlin.

[MW96] Michael Mnuk and Franz Winkler. CASA - A System for Computer Aided Con-
structive Algebraic Geometry. In J. Calmet and C. Limongelli, editors, Interna-
tional Symposium on the Design and Implementation of Symbolic Computation
Systems (DISCO’96), volume 1128 of Lecture Notes in Computer Science, pages
297–307, Karsruhe, Germany, 1996. Springer.

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable Parallel
Programming with CUDA. Queue, 6(2):40–53, March–April 2008.

[NVI08a] NVIDIA. CUDA CUBLAS Library Documentation, March 2008. http://
developer.download.nvidia.com/compute/cuda/2 0/docs/CUBLAS Library 2.0.
pdf.

[NVI08b] NVIDIA. CUDA CUFFT Library Documentation, March 2008. http : //
developer.download.nvidia.com/compute/cuda/2 0/docs/CUFFT Library 2.
0.pdf.

[NVI08c] NVIDIA. NVIDIA Tesla Personal Supercomputer, 2008. http://www.nvidia.
com/object/personal supercomputing.html.

[OGS] Open Grid Services Architecture WG (OGSA-WG). http://forge.gridforum.
org/sf/projects/ogsa-wg.

[OHL+08] John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone,
and James C. Phillips. GPU Computing. Proceedings of the IEEE, 96(5):879–
899, May 2008.

[OLG+07] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger,
Aaron E. Lefohn, and Timothy J. Purcell. A Survey of General–Purpose Compu-
tation on Graphics Hardware. Computer Graphics Forum, 26(1):80–113, March
2007.

[Ope] The OpenMP API Specification for Parallel Programming. http://openmp.org.
[Owe05] John Owens. Streaming Architectures and Technology Trends. In Matt Pharr,

editor, GPU Gems 2, chapter 29, pages 457–470. Addison Wesley, 2005.
[P0́8] Szilárd Páll. GPU Computing Approach for Parallelizing Support Vector Ma-

chine Classification. Master’s thesis, Johannes Kepler University Linz, July 2008.
[PAS] Parallel Symbolic Computation (PASCO) ’07. http : //www.orcca . on . ca/

conferences/pasco2007/site/index.html.
[Pat] Parallel Programming Patterns. http://www.cs.uiuc.edu/homes/snir/PPP.
[Pat04] David A. Patterson. Latency Lags Bandwith. Communications of the ACM,

47(10):71–75, October 2004.
[PVS] PVS Specification and Verification System. http://pvs.csl.sri.com.

References 377

[RJ07] L. Ruff and T. Jebelean. Functional Based Synthesis of a Systolic Array for GCD
Computation. In V. Zsok Z. Horvath, editor, Implementation and Application
of Functional Languages, volume 4449 of LNCS, pages 37–54. Springer, 2007.

[Sch91] Wolfgang Schreiner. ADAM – An Abstract Dataflow Machine and its Transputer
Implementation. In Arndt Bode, editor, Second European Conference on Dis-
tributed Memory Computing (EDMCC2), volume 487 of Lecture Notes in Com-
puter Science, pages 392–401, Munich, Germany, April 22–24, 1991. Springer.

[Sch94] Wolfgang Schreiner. Virtual Tasks for the PACLIB Kernel. In Parallel Process-
ing: CONPAR 94 - VAPP VI Third Joint International Conference on Vector
and Parallel Processing, volume 854 of Lecture Notes in Computer Science, pages
533–544, Linz, Austria, September 6–8, 1994. Springer.

[Sch95] Wolfgang Schreiner. Application of a Para-Functional Language to Problems
in Computer Algebra. In A. P. Wim Böhm and John T. Feo, editors, High
Performance Functional Computing, pages 10–24, Denver, Colorado, April 9–
11, 1995. Lawrence Livermore National Laboratory Report CONF-9504126.

[Sch96] Wolfgang Schreiner. A Para-Functional Programming Interface for a Parallel
Computer Algebra Package. Journal of Symbolic Computation, 21:593–614, 1996.

[SCI09] The SCIEnce Project (Symbolic Computation Infrastructure for Europe), 2009.
http://www.medicis.polytechnique.fr/science.

[SEE] SEE-KID. http://www.see-kid.at.
[SFR03] W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff. Unix Network Pro-

gramming: The Sockets Networking API, 2003.
[Sh] Sh High Level Metaprogramming Language. http://libsh.org.
[Sie93] Kurt Siegl. Parallelizing Algorithms for Symbolic Computation Using ‖MAPLE‖.

In ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 179–186, San Diego, CA, May 19–22, 1993. ACM Press.

[Sie94] Kurt Siegl. A Parallel Factorization Tree Gröbner Basis Algorithm. In
Hoon Hong, editor, International Symposium on Parallel Symbolic Computa-
tion (PASCO), volume 5 of Lecture Notes Series in Computing, pages 356–362,
Hagenberg, Austria, September 26–28, 1994. World Scientific.

[SMB03] Wolfgang Schreiner, Christian Mittermaier, and Karoly Bosa. Distributed Maple:
Parallel Computer Algebra in Networked Environments. Journal of Symbolic
Computation, 35:305–347, 2003.

[SMW00a] Wolfgang Schreiner, Christian Mittermaier, and Franz Winkler. Analyzing Al-
gebraic Curves by Cluster Computing. In Peter Kacsuk and Gabriele Kotsis, edi-
tors, Distributed and Parallel Systems – From Instruction Parallelism to Cluster
Computing, DAPSYS’2000, 3rd Austrian-Hungarian Workshop on Distributed
and Parallel Systems, pages 175–184, Balatonfüred, Hungary, September 10–13,
2000. Kluwer, Boston.

[SMW00b] Wolfgang Schreiner, Christian Mittermaier, and Franz Winkler. On Solving a
Problem in Algebraic Geometry by Cluster Computing. In Arndt Bode, Thomas
Ludwig, Wolfgang Karl, and Roland Wismüller, editors, 6th International Con-
ference on Parallel Computing (Euro-Par 2000), volume 1900 of Lecture Notes in
Computer Science, pages 1196–1200, Munich, Germany, August 29 – September
1, 2000. Springer.

[SMW00c] Wolfgang Schreiner, Christian Mittermaier, and Franz Winkler. Plotting Alge-
braic Space Curves by Cluster Computing. In X.-S. Gao and D. Wang, editors,

4th Asian Symposium on Computer Mathematics, pages 49–58, Chiang Mai,
Thailand, December 17-21, 2000. World Scientific Publishers, Singapore.

[Spi] On-the-Fly, LTL Model Checking with Spin. http://spinroot.com.
[SS01] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support

Vector Machines, Regularization, Optimization, and Beyond (Adaptive Compu-
tation and Machine Learning). The MIT Press, 2001.

[Sup] SCXY Conference Series — The International Conference for High Performance
Computing, Networking, Storage, and Analysis. http://supercomputing.org.

378 Wolfgang Schreiner et al.

[Top] Top 500 Supercomputing Sites. http://www.top500.org.
[UPC] Berkeley UPC — Unified Parallel C. http://upc.lbl.gov.
[VBR06] Srikumar Venugopal, Rajkumar Buyya, and Kotagiri Ramamohanarao. A Tax-

onomy of Data Grids for Distributed Data Sharing, Management, and Processing.
ACM Comput. Surv., 38(1):3, 2006.

[Ven03] Suresh Venkatasubramanian. The Graphics Card as a Streaming Computer.
CoRR, cs.GR/0310002, 2003.

[Wat08] Johannes Watzl. Investigations on Improving the SEE-GRID Optimization Al-
gorithm. Diploma thesis, Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria, June 2008.

[WSH99] Rich Wolski, Neil T. Spring, and Jim Hayes. The Network Weather Service: a

Distributed Resource Performance Forecasting Service for Metacomputing. Fu-
ture Generation Computer Systems, 15(5–6):757–768, 1999.

Chapter VIII

Pervasive Computing

Alois Ferscha

Pervasive Computing has developed a vision where the “computer” is no
longer associated with the concept of a single device or a network of devices,
but rather the entirety of situative services originating in a digital world,
which are perceived through the physical world. It is expected that services
with explicit user input and output will be replaced by a computing landscape
sensing the physical world via a huge variety of sensors, and controlling it via
a plethora of actuators. The nature and appearance of computing devices will
change to be hidden in the fabric of everyday life, invisibly networked, and
omnipresent. Applications and services will have to be greatly based on the
notions of context and knowledge, and will have to cope with highly dynamic
environments and changing resources. “Context” refers to any information
describing the situation of an entity, like a person, a thing or a place. Inter-
action with such computing landscapes will presumably be more implicit, at
the periphery of human attention, rather than explicit, i.e. at the focus of
attention.

In this chapter we will address some of the Pervasive Computing research
challenges and emerging issues of interaction in Pervasive Computing environ-
ments. After computing devices pervade into objects of everyday life, comput-
ers will be “invisible”, but physical interfaces will be “omnipresent”—hidden
in literally “every thing”. It will contrast implicit and explicit interaction
approaches at the frontiers of pervasive, integrated and thus “hidden” tech-
nology. In the outlook, we will give a more systematic prospect of emerging
lines of research.

380 Alois Ferscha

1 What is Pervasive Computing?

Computer science nowadays appears to be challenged (and driven) by techno-
logical progress and quantitative growth. Among the technological progress
challenges are advances in sub-micron and system-on-a-chip designs, novel
communication technologies, microelectromechanical systems, nano and ma-
terials sciences. The vast pervasion of global networks over the past years,
the growing availability of wireless communication technologies in the wide,
local and personal area, and the evolving ubiquitous use of mobile and em-
bedded information and communication technologies are examples of chal-
lenges posed by quantitative growth. A shift is currently perceived from the
“one person with one computer” paradigm, which is based on explicit human
computer interaction, towards a ubiquitous and pervasive computing land-
scape, in which implicit interaction and cooperation is the primary mode of
computer supported activity. This change—popularly referred to as “Perva-
sive Computing”—poses serious challenges to the conceptual architectures of
computing, and the related engineering disciplines in computer science.

Historically, Pervasive Computing has its roots in ideas first coined by
the term Ubiquitous Computing. “The most profound technologies are those
that disappear. They weave themselves into the fabric of everyday life until
they are indistinguishable from it” was Mark Weiser’s central statement in
his seminal paper in Scientific American in 1991 (Weiser 1991). The conjec-
ture that “we are trying to conceive a new way of thinking about computers
in the world, one that takes into account the natural human environment
and allows the computers themselves to vanish into the background” has fer-
tilized the embedding of ubiquitous computing technology into a physical
environment which responds to people’s needs and actions. Most of the ser-
vices delivered through such a “technology-rich” environment are adapted to
the context, particularly to the person, the time and the place of their use.
Along Weiser’s vision, it is expected that context-aware services will evolve,
enabled by wirelessly ad-hoc networked, mobile, autonomous special purpose
computing devices (i.e. “information appliances”), providing largely invisi-
ble support for tasks performed by users. It is expected that services with
explicit user input will be replaced by a computing landscape sensing the
physical world via a huge variety of sensors, and controlling it via a manifold
of actuators in such a way that it becomes merged with the virtual world.
This interaction principle is referred to as implicit interaction, since input to
such a system does not necessarily need to be given explicitly or attentively.
Applications and services will have to be greatly based on the notion of con-
text and knowledge, will have to cope with highly dynamic environments and
changing resources, and will thus need to evolve towards a more implicit and
proactive interaction with users.

VIII Pervasive Computing 381

A second historical vision impacting the evolution of pervasive computing
claimed for an intuitive, unobtrusive and distraction free interaction with
technology-rich environments. In an attempt of bringing interaction “back to
the real world” after an era of keyboard and screen interaction, computers
started to be understood as secondary artifacts, embedded and operating in
the background, whereas the set of all physical objects present in the environ-
ment started to be understood as the primary artifacts, i.e., the “interface”.
Instead of interacting with digital data via keyboard and screen, physical
interaction with digital data, i.e., interaction by manipulating physical arti-
facts via “graspable” or “tangible” interfaces, was proposed. Inspired by the
early approaches of coupling abstract data entities with everyday physical
objects and surfaces like Bishop’s Marble Answering Machine, Jeremijenko’s
Live Wire and Wellner’s Digital Desk, tangible interface research has evolved,
where physical artifacts are considered as both representations and controls
for digital information. A physical object thus represents information, while
at the same time acting as a control for directly manipulating that informa-
tion or underlying associations. With this seamless integration of represen-
tation and control into a physical artifact also input and output device fall
together. In this view, artifacts can exploit physical affordances suggesting
and guiding user actions, while not compromising existing artifact use and
habits of the user. Recent examples for “embodied interaction”, where input
and output are fused into physical object manipulation, include architecture
and landscape design and analysis, object shape modeling interfaces using
brick like blocks or triangular tiles. Although the first attempts towards real-
izing the ubiquitous and pervasive computing vision in the early nineties fell
short due to the lack of enabling hard- and software technologies, now, about
ten years later, new approaches are viable due to technological progress and
quantitative growth.

While the first attempts of the pervasive computing vision in the mid
nineties fell short due to the non-availability of enabling hard- and software
technologies, are now, about fifteen years later, viable. Pervasive computing
initiatives and projects have emerged at major universities worldwide, and na-
tional and international research funding authorities (IST Future and Emerg-
ing Technologies programme of the EU, DARPA, NSF, many national Science
Foundations in Asia, etc.) have accelerated the efforts of a rapidly growing,
vibrant research community. Preliminarily suffering from a plethora of unspe-
cific terms like “Calm Computing”, “Hidden or Invisible Computing”, “Ambi-
ent Intelligence”, “Sentient Computing”, “Post-PC Computing”, “Universal
Computing”, “Autonomous Computing”, “Everyday Computing”, etc., the
research field is has now consolidated from its origins in distributed systems
and embedded systems, and has started to codify its scientific concerns in
technical journals, conferences, workshops and textbooks (e.g. the Journals
on Personal and Ubiquitous Computing (Springer Verlag), Pervasive and Mo-
bile Computing (Elsevier), IEEE Pervasive, IEEE Internet Computing, Int.
Journal of Pervasive Computing and Communications (Emerald), or the an-

382 Alois Ferscha

nual conferences PERVASIVE (International Conference on Pervasive Com-
puting), UBICOMP (International Conference on Ubiquitous Computing),
MobiHoc (ACM International Symposium on Mobile Ad Hoc Networking
and Computing), PerComp (IEEE Conference on Pervasive Computing and
Communications), ISWC (International Symposium on Wearable Comput-
ing), IWSAC (International Workshop on Smart Appliances and Wearable
Computing), MOBIQUITOUS (Conference on Mobile and Ubiquitous Sys-
tems), WMCSA (IEEE Workshop on Mobile Computing Systems and Ap-
plications), AmI (European Conference on Ambient Intelligence)—and an
explosive growth in the number of related conferences in Asia.

This process of “consolidation” is by far not settled today, so that even the
term “Pervasive Computing” must be regarded verdant. A clear research fo-
cus, however, that has crystallized over the past 12 to 24 months is addressing
the very fundamental issue of cooperation in networked embedded systems.
While the Institute for Pervasive Computing at the Johannes Kepler Uni-
versity of Linz and RIPE (Research Institute of Pervasive Computing at the
Softwarepark Hagenberg) has been working over the past eight years along
the paradigm shift of distributed and mobile systems towards (wirelessly)
networked embedded systems (under the umbrella “Pervasive Computing”),
this epoch of paradigms, architectures, methods, algorithms, protocols and
hardware-software systems for “communicating devices” appears to be de-
clining. A new generation of research challenges going way beyond the as-
pect of mere communication or connectivity (among devices) has evolved,
now addressing the principles of “spontaneous, yet meaningful interaction
in context”—among not only “devices’, but more generally among “digital
artifacts”. For this reason, and for this report we therefore select just two
aspects of this next generation of pervasive computing challenges (and give
a more consolidated perspective in the outlook of this chapter):

1. ensembles of (context) Aware Digital Artifacts, and
2. embodied Interaction (i.e., interfaces embedded into artifacts, subject to

physical interaction).

2 Ensembles of Digital Artifacts

As we observe an increasing number of real-world objects with embedded
computing capabilities like vehicles, tools and appliances, computers, mo-
bile phones and portable music players (we refer to such technology-enriched
physical objects as Digital Artifacts, or just artifacts), the issue of their in-
teraction becomes a dominant issue of HCI research. Technology integrated
into everyday objects like tools and appliances, and environments like offices,
homes and cars, etc. turns these artifacts into entities subject to human-

VIII Pervasive Computing 383

artifact interaction whenever humans use those appliances or become active
in those environments. Moreover, built with networked embedded systems
technology, they become increasingly interconnected, diverse and heteroge-
neous entities subject to artifact-artifact interaction, raising the challenge of
an operative, and semantically meaningful interplay among each other (see
Figure 1).

Context Aware Digital Artefacts. Figure 1

One approach to address this challenge is to design and implement sys-
tems able to manage themselves in a more or less autonomous way. While
self-management stands for the ability of a single artifact to describe itself,
to select and use adequate sensors to capture information describing its con-
text, self-organizing stands for the ability of a group of possibly heterogeneous
peers to establish a spontaneous network based on interest, purpose or goal,
and to negotiating and fulfilling a group goal. A way of implementing artifacts
is based on miniaturized stick-on embedded computing systems, integrating
sensor, actuator and wireless communication facilities. Such stick-on solutions
can then be attached or built into everyday objects, and executing software
stacks that implement selforganization in a totally distributed style. Interac-
tion at the application level is invoked based on the analysis of self-describing
profile data exchanged among nearby artifacts. Self-management builds up
the basis for the self-organization of artifact ensembles, which stands for their
ability to establish a spontaneous network based on individual interest, pur-
pose or goal, and to negotiate and fulfill a group goal through cooperation.
Research on self-managing and -organizing systems has attracted much in-
terest in the computer science community [HKH+04, IU97, MS01, Zig].

384 Alois Ferscha

2.1 Context Awareness

Context awareness refers to the ability of the system to recognize and localize
objects as well as people and their intentions. The context of an application is
understood as “any information that can be used to characterize the situation
of an entity”, an entity being “a person, place or object that is considered rel-
evant to the interaction between a user and an application, including the user
and applications themselves”. A key architecture design principle for context-
aware applications is to decouple mechanism for collecting or sensing context
information and its interpretation, from the provision and exploitation of this
information to build and run context-aware applications. To support build-
ing context-aware applications, software developers should not be concerned
with how, when and where context information is sensed. Sensing context
must happen in an application independent way, and context representation
must be generic for all possible applications.

The ability to describe itself is an important aspect of an autonomous
digital artifact, which allows for expressing all kinds of context information.
The use of a self-description is twofold: it provides local applications with
an awareness of the artifact’s context on the one hand, and it serves as a
basis for achieving awareness about other artifacts by exchanging the self-
descriptions on the other hand. We agree with the definition of awareness
given in [FHR+06a], where it is defined as “an understanding of the activi-
ties of others, which provides a context for your own activities”. We consider
the concept of self-describing artifacts as a promising approach of imple-
menting implicit interaction among autonomous systems, particularly with
regard to an open-world assumption (i.e. interacting artifacts do not know
each other in advance) where an ad-hoc exchange of self-descriptions upon
encountering other artifacts in required in order to get an awareness of their
context. We therefore follow the approach of autonomous digital artifacts
able to exchange the self-description upon becoming aware of the existence
of another artifact in a direct “peer-to-peer” manner. Further interaction can
then be parametrized and contextualized considering the provided context
information of the interaction counterpart. In [FR07], we have presented a
context-aware profile for self-description and its exchange for arbitrary ar-
tifacts, and surveyed work regarding self-description and profiles. Examples
of the integration and miniaturization of sensor and wireless communication
hardware is given in Figure 2.

A second examples of one of our successful digital artifact designs is
the SPECTACLES system Figure 3. It represents a modular, autonomous,
lightweight, wirelessly communicating wearable display device, that can be in-
tegrated into the physical structure of an eyeglasses frame. As an autonomous,
wearable display system it is enabled to communicate with its environment
wirelessly (technologies like BT and WiFi are integrated), sense different en-
vironmental parameters, and display different kinds of media (video, audio,
image, text). Besides the output facilities, the computational platform of

VIII Pervasive Computing 385

The Integration Process for a context aware digital artifact: identifica-
tion, authentication, positioning and tracking technologies are combined
with multi-sensor systems, wireless communication, storage and compu-
tational resources, to be invisibly embedded into an everyday object like
a car key, giving an “aware” digital artifact.

Figure 2

SPECTACLES is designed to be flexible enough to support the integration
of input devices like cameras, accelerometers and other sensor units that can
act as a means for natural human-computer-interaction and as a source for
recognizing the context.

Spatial Abstraction 2.2

Clearly, the traditional approach of instructive systems [Wan04] with their
passive, deterministic, context-free and pre-programmed nature appears less
appropriate as an architecture for service ensembles as conglomerates of indi-
vidual devices. A more autonomous system architecture [Hor01] is demanded,
coordinating the activities within service ensembles in a self-organized or goal-
oriented style. Towards such an autonomous system quality we identify two
aspects of system properties, the first relating to the individual devices, the
second to spontaneous configurations (or ensembles) of such devices:

1. self-management, which stands for the ability of a single device to acquire
information that can help to understand its situation or context [Dey01],
and to adapt to changing contexts at runtime, and

2. self-organization, i.e. the ability of devices to spontaneously (upon service
requests) join into ad-hoc service ensembles to e.g. negotiate and achieve
ensemble goals through coordinated actions.

386 Alois Ferscha

Figure 3 SPECTACLES: A wearable computer system comprising a PXA270 XS-
cale CPU on a gumstix verdex motherboard (400MHz 16 MB FLASH,
64 MB RAM), an optics subsystem with display adapter board and mi-
cro camera unit (Kopin K230LV AMLCD – 320×240 PixelSymbol), ac-
celerometer and digital compass (ADXL 330 and HMC6352), a global po-
sitioning system (USGlobalSat EM-408 SiRF III GPS receiver), wireless
communication units (LAN9117 Ethernet controller, Marvell 88W8385
Modul – 802.11(b) and 802.11(g), BT 2.0) and an autonomous power
management system.

Our focus here is on devices which are equipped with sensors, actuators, as
well as with computing and wireless communication technology to support
ad-hoc networking. Since these devices can have various different kinds of
appearance (like shape, size, mobility, etc.) and digital technology embedding
(e.g. mobile phones, smart appliances, smart rooms, etc.), we refer to them as
“digital artifacts”. Common to our notion of a smart artifact is its ability to
collect information from sensor data to understand their context, to represent
and reason about its perception of the environment, to share this perception
with and to collaboratively adjust with other digital artifacts within certain
zones influence, and to autonomously act in order to achieve ensemble goals.

Both self-management and self-organization have received much research
attention in computer science over the past years [HMG05, JBL+06, KC03,
MMTZ06, SFH+03a]. Particularly have self-organization principles as in-
spired by nature attracted the attention of computer scientists [HG03, KE01,
MMTZ06, SFH+03a, ZGMT04]. In the respective literature, self-organization
is defined as a process in which “patterns at the global level of a system
emerge solely from interactions among lower-level components” [CFS+01],

VIII Pervasive Computing 387

where pattern refers to structure and organization in both space and time.
Self-organization hence is way beyond centralized coordination, and complex
collective behavior results from contextual local interactions between compo-
nents [SFH+03a]. Local interactions in turn are based on individual goals and
the perception of the respective environment. The essence of self-organization
is that system structure, and thus collective behavior, often appears without
explicit trigger or pressure from outside the system, but is inertial to the sys-
tem and results from interactions within the system. System structure can
evolve in time and in space, may maintain stable form or exhibit transient
phenomena, or may grow or shrink in size, number or feature.

As digital artifacts are situated in physical space, it is ultimately impor-
tant to consider their spatial properties and in particular spatial relation-
ships between them. We therefore address spatial abstractions as essential
for the self-organization of digital artifact ensembles. Actually, most of the
known phenomena of self-organization and -adaptation in nature are phenom-
ena of self-organization in space [MZ05], and [ZM04] identifies the concept
of space and the awareness of distributed components of their surrounding
to play an important role for mechanisms of self-organization. However, as
self-organization is based on (direct or indirect) contextual local interactions
between the components of a system, both the inference of high-level con-
textual information from spatial relationships, as well as standardized means
for exchanging spatial information between the components through so-called
self-descriptions are issues of research (see [HE03, SFH+03b]). With regard
to spatial information about an artifact’s environment, challenges we observe
are the maintenance of a spatial model of the environment as well as the pro-
vision of a spatial programming model for defining spatially-aware behavior.

Components of a Digital Artifact 2.3

To technology-enriched physical objects we refer to as digital artifacts. One
way of implementing such artefacts is based on miniaturized computer sys-
tems to be attached to or embedded in everyday objects, which integrate
sensors (for acquiring context information from the environment), actuators
(for reacting to the environment), communication facilities (for communicat-
ing with other artifacts and IT-systems), a runtime system (for storing and
processing sensed data or data received from other artifacts), and provide
external services to their surroundings (see Figure 4). It is typically a mo-
bile device with a small form factor, constrained processing capabilities and
limited energy resources due to battery operation, it is context-aware due
to its sensors and operates autonomously (i.e. without any centralized con-
trol), and it acts according to certain defined goals (which may be achieved
cooperatively by interacting with other artifacts).

388 Alois Ferscha

Figure 4 Components of a digital artifact.

We are convinced that in an environment with numerous autonomous en-
tities, interaction has to be achieved in a distributed, non-centralized way,
and we thus think that peer-to-peer concepts are more suitable for the coop-
eration among artifacts than client-server architectures. In order to support
interaction, we suggest using some kind of self-description that is exchanged
among entities upon coming within communication range. It contains context
information that is relevant for the interaction (e.g. physical properties like
an artifact’s size, weight or color, its spatial contexts like position and direc-
tion, or its capabilities in terms of provided services), and is extensible with
regard to supporting a variety of application scenarios. However, an artifact
need not comprise the full functionality shown in Figure 4, and thus may
not be able to interact with other artifacts on its own, but only on behalf
of another artifact serving as a “proxy” [FHdSR+07]. The focus of this work
is on two particular properties of an artifact, namely autonomy and context-
awareness. As artifacts are by nature distributed throughout physical space,
we consider their inherent spatial properties, in particular their position, di-
rection and shape, as well as spatial relationships between them, as valuable
context information for a variety of applications, and propose a model for
building spatially-aware applications.

VIII Pervasive Computing 389

Self-Description 2.4

The ability to describe itself is an important aspect of an autonomous dig-
ital artifact, which allows for expressing all kinds of context information.
The use of a self-description is twofold: it provides local applications with
an awareness of the artifact’s context on the one hand, and it serves as a
basis for achieving awareness about other artifacts by exchanging the self-
descriptions on the other hand. We agree with the definition of awareness
given in [DB92], where it is defined as “an understanding of the activities of
others, which provides a context for your own activities”. We consider the
concept of self-describing artifacts valuable for interacting autonomous sys-
tems, particularly with regard to an open-world assumption (i.e. interacting
artifacts do not know each other in advance) where an ad-hoc exchange of
self-descriptions upon encountering other artifacts is required in order to get
an awareness of their context. In [FHdSR+07, FHR+08] we propose a Digital
Artifact Service which is responsible for exchanging the self-description upon
becoming aware of the existence of another artifact. Further interaction can
then be parametrized and contextualized considering the provided context
information of the interaction counterpart.

Zones of Influence of Digital Artifacts and Potential Areas of Applica-
tion (upper row). Multiple and Dynamic Zones of Influence in Car2Car
Scenarios (lower row).

Figure 5

390 Alois Ferscha

2.5 Spatial Awareness

With spatial awareness we refer to the knowledge an artifact has about its
own and other artifacts’ spatial properties (e.g. position), as well as about
spatial relations to or between other artifacts (e.g. distance). To spatial prop-
erties and relations we refer to as spatial context. Several categories for rep-
resenting spatial context information can be distinguished:� quantitative (i.e. using numerical values) vs. qualitative (i.e. using abstract

symbols),� absolute (i.e. with respect to an extrinsic frame of reference) vs. relative
(i.e. with respect to the spatial context of another artifact),� static (i.e. at a certain point in time) vs. dynamic (i.e. the degree of change
at a point in time), and� point in time (i.e. a snapshot at a certain time) vs. time series (i.e. a
trajectory of context values over a sequence of points in time).

Our approach for representing spatial properties is the use of so-called
Zones-of-Influence (ZoI), which typically contain absolute quantitative static
values given at a point in time. They are a means for explicitly defining geo-
graphical areas (referred to as shapes in the following) of an artifact that are
relevant for applications, as well as their positions and directions in space.
Moreover, by relating ZoIs of artifacts with respect to certain spatial proper-
ties, spatial relations among them such as “intersects” and “on the left hand
side” can be defined, as well as dynamic relations such as “moving away” or
“growing”. Besides the representations of spatial properties and relations at
certain points in time, time series of spatial contexts can be considered too.

3 Quantitative Space: Zones-of-Influence

In order to deal with space computationally, it has to be represented in a
standardized way such that it can be processed by a computer. In this re-
gard, we distinguish two types of space: quantitative space and qualitative
space. Quantitative space deals with numerical values of spatial characteris-
tics, which are represented with Zones-of-Influence as discussed in this sec-
tion. The second type is qualitative space, which is based on symbolic abstrac-
tions (i.e. symbols are used for representation rather than numeric values) of
quantitative spatial information (as provided by sensors for example).

The implementation of space awareness based on the exploitation of spatial
properties (e.g. position) and relations (e.g. distance) among physical objects
in the real world, we associate XML-based self-descriptions with each and
every artifact (or object) subject to a space awareness service. As an example,
in our software framework for an autonomous computing platform (Peer-It)

VIII Pervasive Computing 391

[FHR+08], a descriptive model for the space surrounding an object has been
developed. Basically, the ZoI of an object refers to the spatial outreach to
which an object can perceive the presence of another object, or be perceived
by others. ZoIs, as geometrical descriptions of the vicinity of an object, hence,
describe the extent of the subspace within which an object can interact with
another object (it is possible to define arbitrary three-dimensional shaped
ZoI’s). The ZoI concept builds on technological sensors for distance (like mi-
crowave, ultrasound or radio based sensors), and orientation (like compasses,
accelerometers or gyroscopes) embedded into a digital artifact, to be able
to scan its vicinity for other objects. Interaction with another object can be
initiated by� overlapping or intersecting ZoI-geometries or� by relating position, orientation, size, or any other item of information in

the self-description of an object to the self-description of another object.

Digital artifacts hence can become “spatially aware” about each other. They
can build up knowledge about where other artifacts are, how far or close they
are, and reason about their orientation.

A single artifact can be associated with multiple simultaneous ZoIs, see
e.g. multiple ZoIs for a car, e.g. to support� a car theft application (red),� a pedestrian safety application (yellow),� a drive-by-wire application (green), or� a obstacle avoidance application (purple) in Figure 5.

The spatial properties of an object encoded into its ZoI can either be static
(i.e. not changing over time) or dynamic (i.e. dependent on a respective
context—see e.g. the Car2Car speed dependent interactions in a drive-by-
wire situation in Figure 5, bottom).

The position of a ZoI is referred to as anchor point, and its shape and size
are specified relative to the anchor point. Applications now that implement
space awareness usually make use of the ZoI geometry of an artifact, and its
respective anchor point. Basically, when an object artifact the ZoI of another
artifact, their self-descriptions are exchanged via wireless communication, and
related to each other wrt. orientation and distance of their anchor points. The
so generated “spatial information” can then be used to control the behavior
of an artifact.

Spatial properties such as position and direction are usually acquired from
corresponding sensors. Every sensor provides readings which are given for
two- or three-dimensional space, and with respect to its specific reference
system. In the following, common representations for position and direction
are presented, and the representation of Zones-of-Influence is explained in
detail.

For the property position, an indoor location sensor (see [HSK04, HB01,
Leo98]) may provide three-dimensional Cartesian coordinates relative to a

392 Alois Ferscha

certain point in the building, and a GPS receiver provides spherical polar co-
ordinates in a reference frame for the whole earth. A comprehensive overview
of coordinate systems can be found in [Dan]. As mentioned already, the fo-
cus of this work is on multiple interacting artifacts which may use different
spatial sensor. In order to recognize relations by comparing their sensor read-
ings, a common coordinate system is required. The most common coordinate
system, which is used by GPS, is the World Geodic System WGS84 [IoD]. In
this system, points are typically represented as spherical polar coordinates
in longitude, latitude and altitude. However, it is possible to convert these
polar into Cartesian coordinates using the earth centered (i.e. its origin is
the center of the earth) and earth fixed (i.e. coordinates of a point on the
earth’s surface do not change). In such a Cartesian ECEF system, positional
relations between two points on the surface of the earth require special treat-
ment; for example, the shortest Euclidean distance between them differs from
the actual distance on the surface.

There are also different reference systems for the property direction (in
literature often referred to as orientation). A common direction system is the
North-East-Down (NED) system defined by the x-axis pointing to the north,
the y-axis pointing to the east and the z-axis heading towards the center of
the earth. For the representation of directions, different systems are used, for
example Euler angles or orientation Quaternions. The former is usually used
for navigation applications, where a sequence of rotations around the axes is
given by the following values: yaw (i.e. a rotation around the z-axis in a NED
system), pitch (i.e. a rotation around the y-axis in a NED system) and roll
(i.e. a rotation around the x-axis in a NED system). It should be noted that,
if multiple different reference systems are to be used together, there must be
means for either transforming values among them or in a common system.

A precondition for using spatial properties with digital artifacts is to
embed them into the artifacts’ self descriptions. There are many ways for
representing spatial properties like position, direction and shape. A virtu-
ally unmanageable huge number of markup languages, partially developed
for specific application domains, exists by now. Prominent examples are
the Keyhole Markup Language (KML)1 which is used for describing three-
dimensional geospatial data in Google Earth, and the Geography Markup
Language (GML)2 which serves as a modeling language and interchange for-
mat for geographic systems. Due to the complexity of these standards, we
decided to develop markup elements tailored to the description of spatial
properties and qualitative relations. However, as the architecture allows to
exchange the components which are responsible for parsing the spatial con-
text contained in self-descriptions (see Section 5), it is easily possible to use
other means for their representation.

1 http://code.google.com/apis/kml/
2 http://www.opengeospatial.org/standards/gml

VIII Pervasive Computing 393

In order to cope with the characteristics of space-aware digital artifacts we
define a Zones-of-Influence definition to be contained in the top-level struc-
turing element DADescriptionElement of an artifact’s self-description. The
XML description of the respective ZoI element consists of the following items:

Name: Serves as an identification of the zone as well as a semantic identifier
for applications. The name must be unique per artifact.

Position: Defines the position of the so-called anchor point of the zone (e.g.
using WGS84 ECEF coordinates), defining a reference point for recogniz-
ing relations like distance and orientation to other zones. It is typically
the value sensed by some position sensor; however, it can also be deter-
mined by other static or dynamic contexts. It should be noted that this
point need not be the physical position of the artifact nor the center of the
zone’s shape. In order to be able to compare sensor values from different
sensors using different reference systems, the used reference system has to
be specified using the XML attribute refSystem.

Direction: Defines the direction of the anchor point in space, which deter-
mines how the overall zone is oriented in space (e.g. using Euler angles).
As for position, the direction can be static or dynamic and the reference
system has to be specified using the attribute refSystem.

Shapes: Each ZoI consists of one or more shapes defining the spatial ex-
tension of the zone. A shape can be a predefined basic shape like a
sphere or a cube, or an arbitrary freeform shape. Each shape requires
specific parameters describing its characteristics (e.g. width, height and
depth for cuboids). The position and direction of a single shape are given
relative (and according to the respective reference system) to the an-
chor point’s position and direction of the overall zone (with the elements
Position and Direction) using the XML elements RelativePosition

and RelativeDirection, respectively.

An important aspect of a zone is that its spatial properties (i.e. posi-
tion, direction and shape) can be dynamic, since the properties of moving
artifacts are subjects to change. A ZoI is called dynamic if at least one spa-
tial property depends on a dynamic context as for example determined by
a physical sensor. In order to allow for modelling dynamic zones, references
to sensor data sources are introduced. It specifies both where the data can
be acquired from, and how the values are to be interpreted for their use
in an artifact’s self-description. A SensorData element can provide either a
primitive or a complex type (as known from programming languages). The
accessor component defined by the attribute accessor is responsible for fetch-
ing the corresponding value whenever it is referenced. We have defined an
OSGiSensorDataService that provides sensor data using an interface with a
single method which returns a String containing a potentially complex data-
type, which is parsed using the semicolon as delimiter. An example for the
usage of this service is depicted in the XML fragment below:

394 Alois Ferscha

<DADescriptionElement type=" SensorData" name=" Position "
accessor ="OSGiSensorDataService">

<SvcName > at.jku.pervasive.fact.IsenseTracker </SvcName >
<Param > COM1 </Param >
<UpdateInterval > 10 </UpdateInterval > <!-- in [Hz] -->

<Values > <!-- service provides CSV value -->
<x type="token" token =";" nrToken ="0"/>

<y type="token" token =";" nrToken ="1"/>
<z type="token" token =";" nrToken ="2"/>

</Values >
</DADescriptionElement>

A dynamic Zone-of-Influence references such a SensorData element, whereas
primitive elements are referenced by their name and a prefix @ (e.g. @Position),
and complex types are referenced using a “dot notation” (e.g. @Position.x)
as the following example shows. Mathematical calculations can be specified
using the @Eval definition containing mathematical expressions as parame-
ters.

<DADescriptionElement type="ZoI">

<Name > CurrentRadioRange </Name >
<Position refSystem=" WGS84ECEF">

<X> @Position.x </X>
<Y> @Position.y </Y>
<Z> @Position.z </Z>

</Position >
<Shape type="sphere">

<Radius > @Eval(@SNR/10) </Radius >
</Shape >

</DADescriptionElement>

Aside the quantitative abstractions of space expressed with ZoIs above,
there is, however, also need and potential to express and exploit more quan-
titative expressions of space to control the behavior of digital arefacts. We
look into more details of these possibilities in the sequel.

4 Qualitative Space: Spatiotemporal Relations

Qualitative abstractions of space represent spatial information with abstract
symbols such as “inside”, “left”, “far away” or “towards” instead of numeric
values such as “3.52m away”. Qualitative space abstractions do have sev-
eral advantages. First, qualitative models allow for dealing with coarse and
imprecise spatial information, which is an important property whenever ex-
act sensor information is not available or precise answers are not required
[CFH97, HN02, MDF05]. Second, processing quantitative knowledge is more
complex and thus computationally more expensive [Fre92], which is of partic-
ular relevance for embedded systems with constrained resources such as pro-
cessing power, storage capacity or limited communication bandwidth. Third,
and of great importance with regard to human computer interaction, is the

VIII Pervasive Computing 395

similarity of qualitative representations to their expression in natural lan-
guages [RM04]. Not all inferences need the precision of quantitative methods
[For97, FR93]. Often qualitative predicates are sufficient.

A considerable amount of research is dedicated to qualitative spatial rep-
resentation and reasoning, which is concerned with abstracting continuous
spatial properties and relations of the physical world, and inferring knowl-
edge from the respective qualitative representations. Research in this field
is driven by the observation that spatial reasoning in our everyday life is
mostly driven by qualitative abstractions than a-priori quantitative knowl-
edge, and it has led to an increasing interest in the investigation of spatial
concepts from a cognitive viewpoint [CH01]. Today, though, qualitative spa-
tial reasoning has mainly been studied in the context of artificial intelligence
(e.g. for robot navigation of high-level computer vision) and geographic in-
formation systems (GIS). Comprehensive overviews of this topic are given in
[CH01, Her94, HN02], among others. Detailed discussions on linguistic and
cognitive aspects can be found in [BF04, CFH97, Her94, Ten05]. The main
challenge was to allow machines to represent and reason about space and
spatial relations without using quantitative techniques.

In the following subsections, we will describe how different types of rela-
tions can be recognized by comparing zone descriptions and represented in
a qualitative way (see Section 4.1), and which high-level contexts can be
inferred by means of closure and composition operations on the one hand,
and logical or temporal combinations of relationships on the other hand (see
Section 4.2). Finally, a rule-based approach for inferring relations as well as
for maintaining and querying a repository of relationships is discussed in
Section 4.3.

Relationship Recognition and Representation 4.1

The recognition of spatial relationships is based on a pairwise comparison of
zone descriptions, namely their quantitative spatial data (as provided e.g. by
sensors). However, qualitative relations may also be recognized by dedicated
sensors such as the ultrasonic peer-to-peer sensor presented in [HKG+05], or
using a location tracking system (e.g. [Eka]) which allows to assign symbols to
location areas and thus provides some qualitative topological relations. This
means that, as soon as an artifact receives the self-description of another one,
it compares the absolute quantitative information of zones contained therein
(e.g. the shape which is a-priori known, or the position provided by a GPS
module) with its own zones and calculates binary relations from it. The latter
artifact is often referred to as primary object in literature [CH01], the former
one—i.e. the artifact which recognized the spatial relation—is referred to as
reference object. As we relate zones, we refer to them as primary zone p and

396 Alois Ferscha

reference zone r, respectively. Note that an artifact can have multiple zones,
and zones of a single artifact can also be related with respect to each other.

A binary relation in general is defined as an association between two sets.
We just consider spatial relations over a single set of zones Z, in which each
zone x ∈ Z is associated with another zone y ∈ Z to which a spatial rela-
tion R exists; in this case, it holds that (x, y) ∈ R. Such a relation is often
denoted as R(x, y), and it is read as “x is in relation R to y”. Taking for
example the distance relation, and assuming that two artifacts a and b are
aware of their two-dimensional location from e.g. an indoor tracking system,
they could exchange their position information and compute the Euclidean
distance among each other—which is a quantitative distance relation between
their physical zones.

Qualitative spatial reasoning is commonly realized in form of calculi over
sets of jointly exhaustive and pairwise disjoint spatial relations (i.e. non-
overlapping relations covering the whole space, also referred to as base rela-
tions), which are in turn defined over sets of spatial entities. Thus, in order
to represent spatial relations in a qualitative way, it is necessary to decide
on a certain kind of spatial entity first among which the binary relations are
defined. With regard to positional and directional relations, mainly points
[Fre92, Mor04] and line segments [AEG94, MRW00] have been used for rep-
resenting physical objects in space; the representation of extended objects
is discussed in [CBGG97, Ege89, RCC92], among others. We decided to use
points for positional and directional relations between disjoint zones (i.e. each
zone is represented by its anchor point), and their extension for topological
relations (i.e. the zones’ shapes are related). However, it should be noted that
points may no longer be a suitable abstraction for positional and direction
relations in the case that two zones are nearby or even overlap; instead, it
will be necessary to incorporate the artifacts’ extensions in order to recognize
meaningful relations (see [Her94]).

Qualitative spatial relations can be classified in two categories, namely
static and dynamic ones. First, qualitative static spatial relations represent
spatial relations between zones at a certain point in time. We distinguish four
types which are shown in Figure 6, whereas two zones p (the primary zone)
and r (the reference zone) are placed in two-dimensional Euclidean space;
however, the relations are defined correspondingly in three dimensions. For
topological relations, five relations between regions are defined according to
the RCC-5 calculus; a more detailed qualitative representation distinguishing
eight relations is provided by the RCC-8 calculus [CBGG97, Ege89]. For
orientation and direction relations, a cone-based qualitative representation
which partitions the space in a 360◦ range in four equally sized sectors is
used. In this regard, orientation relations describe where the primary zone
is placed relative to the reference zone [CH01, Her94], wherefore the space
around the reference zone is partitioned and the relation is denoted by the
region in which the primary zone is located. Similarly, directional relations
relate the direction of the primary zone (as given by its intrinsic direction

VIII Pervasive Computing 397

axis) with that of the reference zone, wherefore the space around the primary
zone is partitioned according to the direction axis of the reference zone and
the region in which the direction axis of the primary zone points denotes
the directional relation. Distance relations partition the space around the
reference zone r in circular ranges, where the range of an outer distance
relation is bigger than that of an inner one [CFH97, IHM03].

Static and dynamic relations expressing qualitative spatial interrelation-
ship (among digital artifacts in 2-D).

Figure 6

Correspondingly, four types of qualitative dynamic spatial relations rep-
resent how a zone’s spatial relation is changing in terms of metric values at
a certain point in time. However, such changes need not result in changes
of the corresponding static spatial relations; for example, two zones may be
“moving away” from each other at a certain point in time, but the static spa-
tial relation “near” may still exist. Dynamic topological relations represent
a change in the scale of the primary with respect to the reference zone, as
for example that it is growing. For dynamic orientation relations, the space
is partitioned in the same way as for static ones, but around the primary
zone; the region in which the thick arrow points denotes the dynamic rela-
tion. Dynamic spatial relations can be recognized either by comparing the

398 Alois Ferscha

corresponding spatial relations at least two successive points in time, or by
using spatial sensors already providing quantitative relations (see [KKG05]).

There are some important things to consider. First, the presented spatial
relations—both their existence and meanings—depend on the application do-
main in which they are used. Our approach to cope with this challenge is that
the developed middleware (see Section 5) supports different spatial relations
with varying meanings for one or more application domains. This specifically
concerns the meaning of the spatial abstractions, namely how the space is
partitioned for a certain relation. A related issue is the granularity of po-
sitional and directional relations, which can be changed by partitioning the
space in a bigger number of intervals. Third, for dynamic relations, there
must be means for representing the absence of relative motion, wherefore
four additional relations—“stable-size” (for topology), “stable-orient” (for
orientation), “stable-dist” (for distance) and “stable-dir” (for direction)—are
introduced.

These relations build up a powerful basis for qualitative spatial reasoning,
but can be extended with further relations in order to increase their granular-
ity, cover other types of spatial context or be conform to certain application
needs. Once a relation has been recognized at a certain point in time, it is
inserted in the relations repository.

Another important thing to consider are frames of reference, as they in-
fluence the semantics of spatial relations ; common classifications of refer-
ence frames can be found in [Fra98, MTBF03, MSER99, Ten05]. A further
classification distinguishing three types of reference frames can be found in
[AEG94, CFH97, HCF95], where the focus of this work is on the first two of
them:

Intrinsic: relations are given by inherent properties of the reference zone
(e.g. it fixes the front side of the reference zone r according to its direction
axis for orientation relations, or the zone’s size interests distance relations)

Extrinsic: relations are determined by external factors (e.g. the North Pole
serves as a reference direction for orientation relations, and the earth ref-
erence frame’s scale defines distances)

Deictic: relations are represented from an external viewpoint

As mention, a self-description may not only contain quantitative descrip-
tions of Zones-of-Influence, but also qualitative relations between them. This
allows artifacts to exchange relations they are aware of among each other,
which is a precondition for inferring relations to artifacts out of communi-
cation range. We define the XML element DADescriptionElement with the
attribute type = "QualitativeRelation" for their representation in self-
descriptions, as shown in the following example. Both the reference and pri-
mary zone are addressed using the schema <artifact identification> :

<name of the zone>, whereas @local is used for the artifact which contains
this relation in its self-description.

VIII Pervasive Computing 399

<DADescriptioneElement type=" QualitativeRelation">
<Name > front </Name > <!-- unique relation name -->

<ReferenceZoI > @local:PhyicalBoundaryZoI </ReferenceZoI >
<PrimaryZoI > 00-00-00-70-05-75-67-1B:PhysicalBoundaryZoI </PrimaryZoI >

</DADescriptionElement>

Relationship Inference 4.2

The previous sections described how spatial relations are recognized by com-
paring zone descriptions, and represented in a qualitative way. In this section,
we deal with the issue of how conclusions can be drawn from such qualitative
representations of relations. This is subject of the field of qualitative spatial
reasoning. A huge number of calculi have been developed so far, which fo-
cus on different spatial properties such as orientation and direction, and use
different kinds of spatial entities; a state-of-the-art overview of qualitative
spatial and temporal calculi can be found in [DFWW06, WFDW07].

Our approach is to infer relations from one or more other relations by
means of logical rules as discussed in Section 4.3, making knowledge explicit
which is implicitly available in the relationship repository. The qualitative
relations stored in the repository are not only relations recognized by a com-
parison of ZoIs, but also such which are included in other artifacts’ self-
descriptions. An inferred relation need not be of the same type like the ones
from which it is inferred, as it is the case for operations provided by qualita-
tive spatial calculi; instead, new relations at a higher semantic level can be
inferred from relationship combinations.

A precondition for inferring relations is that they are stored in a relation-
ship repository, each one with the following information:� name of the relation (e.g. “left”),� type of the relation (e.g. “orientation”),� identification of the reference and primary zone between the relation exists,

and� time interval in which the relation exists.

We distinguish between two types of relationship inference. The first type is
based on a composition of relations between zones. Compositional reasoning
has received much attention in the research community [CH01, Fre92, Her94,
Hol07a]. It deals with the following question: “given the relation between two
entities x and y, as well as y and z, what is the relation between x and z?”
Formally, a composition operation is modeled as follows:

R ◦ S = {(x, z)|∃y ∈ Z : (x, y) ∈ R ∧ (y, z) ∈ S},

400 Alois Ferscha

where R and S are qualitative relations and Z is the set of known Zones-of-
Influence. The result of a composition operation depends on the meaning of
the relation [MDF05], and it is often a compound relation (i.e. a set of alter-
natively possible base relations). A related technique for inferring qualitative
relations from existing ones is the utilization of the relation property transi-
tivity [HF07], which correspond to a composition of relations where all three
relations—the two composed ones as well as the resulting relation—are the
same. Although this approach is universal in the sense that it can be applied
to arbitrary relations without the need for considering their meaning, it is
quite limited as many relations like distance and intrinsic orientation are not
transitive.

The second type is the inference of new high-level relations by a logical
and temporal combination of existing ones. For the temporal combination,
a representation of the dimension time is required. A discrete time model
with constant time difference ∆t between two successive points in time is
used therefore, which is motivated by the fact that relations which occur at
“nearly” the same point in time—which again depends on the application
domain and thus must be adjustable by the application—should have the
same discrete point in time. The temporal entities among which relationships
can be defined are time intervals in the discrete time T . An interval [s, e] is
defined by an ordered pair of a start-point s and an end-point e, and it
equals a set of successive points in time: [s, e] = {t ∈ T |s ≤ t ≤ e}. We
follow the argumentations in [All83] and [For97], that the use of intervals
corresponds to our intuitive notion of time. Moreover, as with qualitative
spatial relations, this discretization of time allows for qualitative abstractions
of temporal relations such as “a occurred before b”, which is helpful whenever
exact temporal relationships are not of relevance or unavailable. With this
definition of intervals, it is also possible to represent points in time as time
intervals, where the start- and end-point are equal.

According to [All83], 13 qualitative temporal relations between intervals
can be distinguished at a time, like for example “before”, “equals” and
“during”. As we have proposed in [Hol07b], time intervals in which certain
relations exist can be temporally related therewith, like for example that
near(y, x)[t,t+5∆t] overlaps with the relation left(z, x)[t+2∆t,t+11∆t], where x,
y and z denote Zones-of-Influence and the subscript intervals represent the
discrete time intervals in which the respective relations exist.

4.3 Rule-Based Qualitative Reasoning

We use a declarative, rule-based approach for combining relations and in-
ferring new ones, as well as for querying and maintaining the repository of
existing relationships. The JBoss Drools rule-engine [JBo] is used therefore,

VIII Pervasive Computing 401

which serves as a layer of abstraction between the application programming
layer and the low-level relationship recognition which provides information
about qualitative spatial relations at certain points in time. Rules can be
constructed by a human expert in a natural manner, be it with mappings
of rules to natural language sentences (as supported by [JBo]) or by using
a graphical user interface that facilitates the process of selecting and com-
bining relations to rules. Rules are constructed by a human domain expert
and stored in a rule base, and an inference engine matches them against
facts in the relations repository. Rules fire upon changes in the repository,
whereas a rule is executed for each combination of facts for which it is ful-
filled. A so-called agenda is responsible for resolving conflicts and executing
the rules in an appropriate order, as their execution may have an impact on
the repository and thus may cause some rules to be removed from the agenda
for example. Both rules and facts can be added and removed at runtime.

Rules are defined using first-order-logic, and they consist of a conditional
part as well as a consequence part which specifies one or more actions which
are executed in the case of fulfilled conditions (see below). The former specifies
patterns on relations in the working memory, while the main purpose of the
latter is to insert new facts and remove or modify existing ones. An important
feature is that inserted facts can be used in the conditions of other rules.

We distinguish three types of rules:

maintenance rules: perform maintenance operations on the repository,
inference rules: infer relationships from existing ones, and
query rules: query the history of relationships.

A relation that is recognized at time t is inserted with the interval [t, t] in
the repository. Every time a new relation is inserted, or the time-interval of
an existing one changes, all rules are executed by the rule engine. Amongst
others, there are two maintenance rules for managing the relationships stored
in the repository. The first one limits the length of the history, which may
cause relations to be removed from the repository or their intervals’ starting
points to be adapted. The second one merges relations belonging together ; it
therefore checks the repository for pairs of relations with the same name and
zone identification, whose intervals are not in an “after” or “before” relation
to each other as shown in Figure 6. For each such pair, it replaces the interval
of one relation with the union of the two intervals, and removes the other
relation from the repository. Merging relations is also necessary for logical
or and not combinations, in contrast to logical and combinations where an
intersection of the respective intervals is processed.

The second type are the actual inference rules, which are used for infer-
ring new relations from existing ones. They can—logically and temporally—
combine relations like in the “leaving” example of Section 4.2, and insert a
new relation with the respective interval in the repository upon recognition.
The following JBoss Drools code fragment shows the rule for the relation
“leaving”, which is a temporal combination of the spatial relations “near”,

402 Alois Ferscha

“medium-dist” and “far”. Another rule may then combine the relation “leav-
ing”, which is generated by the first rule, with the spatial relation “right”
using a logical and.

rule "leaving "

when
Relation (name=="near", $rZ1:rZone , $pZ1:pZone , $i1:interval)
Relation (name=="medium -dist", rZone==$rZ1 , pZone==$pZ1 , $i2:interval)
Relation (name=="far", rZone==$rZ1 , pZone ==$pZ1 , $i3:interval)
eval($i1.meets($i2) && $i2.meets($i3)) <!-- temporal relations -->

then
Relation $r1 = new Relation ("leaving ", $rZ1 , $pZ1 ,$i1.merge($i2.merge($i3))); <!-- outer bounds of intervals -->
insertLogical($r1, true);

The third type of rules are query rules. During the application execution,
newly recognized relationships are inserted in the repository, and others are
removed or their intervals changed. At any time, it is possible to query the
repository for certain relationships or combinations of them, where conditions
on their names, zone identifications and intervals can be defined. The rule
engine we use supports queries with dedicated rules having a conditional part
only, and their results can be iterated at application level by referring to the
name of the query. However, other ways for spatiotemporal queries are can
be found in literature [HKBT05, VL07], whereas SQL-like queries also seem
to be a suitable alternative.

5 Middleware for Space Awareness

We propose a service-oriented architecture for the implementation of the run-
time system of spatially aware digital artifacts. Such a service-oriented design
provides exchangeability of components by defined interfaces, and facilitates
the reuse of already existing blocks of functionality. Our implementation
builds upon the Equinox OSGi framework3. The basis component of the
middleware is the Digital Artifact Service, whose central responsibility is the
exchange of self-descriptions among artifacts. On top of it, there are services
for the maintenance and visualization of received ZoI-descriptions as well as
for recognizing and inferring spatial relations among them. An overview of the
architecture, which consists of six services described in Sections 5.2 and 5.1,
can be seen in Figure 7.

3 http://www.eclipse.org/equinox

VIII Pervasive Computing 403

Overview of the architecture. Figure 7

The Digital Artifact Service 5.1

The Digital Artifact Service provides means for discovering other artifacts
and exchanging self-descriptions among them. It builds up an interface for
interacting with artifacts that are within communication range, and has to
provide the following functionality:� Notification about available and no-longer available artifacts as well as

about changed self-descriptions.

404 Alois Ferscha� Retrieval of the self-descriptions of artifacts which have been notified to
be available.� Management of self-description elements of the local artifact at runtime
(e.g. adding and removing ZoIs).

Due to the use of OSGi, the implementation of a Digital Artifact Service
that wraps and utilizes existing services can be achieved without modify-
ing existing code. For instance, a Digital Artifact Service can be composed
of existing services for the discovery, communication and exchange of self-
descriptions as shown in Figure 8. In addition to discovering artifacts and
exchanging self-descriptions, it is also possible to utilize simulation-input of
e.g. the Java-based J-Sim4 simulation environment, which allows for pro-
gramming artifacts as individual Java components that communicate with
others via ports, whereas the composition is done in the Tcl script language.

Figure 8 Exemplary compositions of a Digital Artifact Service.

For a prototypical implementation of the Digital Artifact Service, we have
utilized UPnP since it already provides means for discovery of as well as for
communication between devices.

5.2 Services for Spatial Relationship Awareness

On top of this Digital Artifact Service, several services for achieving spatial
relationship awareness have been implemented as shown in Figure 7. A short
overview of their functionality and responsibilities is given in the following:

Zones-of-Influence (ZoI) Service: The major responsibility of the ZoI Ser-
vice is to provide an up-to-date model of the current spatial situations (i.e.
the spatial contexts) of artifacts by maintaining a ZoI object for every zone

4 http://www.j-sim.org

VIII Pervasive Computing 405

included in the self-descriptions of artifacts that are known to be available.
Particularly for dynamic zones, namely those for which the spatial prop-
erties (e.g. the position, orientation and shape) are determined by sensor
values, the ZoI Service has to fetch them using the corresponding Sensor
Data Provider. To maintain such an up-to-date model, the ZoI Service
registers itself as a listener at the Digital Artifact Service and creates new
ZoI objects, removes no-longer available ZoIs and adjusts the properties of
existing ones according to the availability of ZoI descriptions of reachable
artifacts and corresponding changes of them.

Visualization Service: The Visualization Service can be used for visualizing
ZoI objects currently maintained by the ZoI Service. It allows to plug in
different scenes, in order to parametrize which ZoIs are visualized (e.g. by
their position or shape type) and how they are visualized. This service is
mainly intended to be used for the visualization of application scenarios
and for evaluation purposes.

Relations Service: The Relations Service accesses the ZoI Service in order
to retrieve Java objects of currently maintained zones, and it provides a
repository of spatial relations between them. For the recognition of rela-
tions, it utilizes pluggable relation recognizers which operate on ZoI objects
and/or the results of other recognizers. Therefore, a recognizer typically
registers itself as a listener of the ZoI Service to get notified about changes
of zones as well as their spatial properties. With this mechanism, it is pos-
sible to use domain-specific relations by simply plugging in corresponding
recognizers as required. We basically distinguish between quantitative and
qualitative relation recognizers, whereas qualitative ones typically utilize
(the results of) quantitative ones. Recognized relations are inserted in the
repository, in order to be used by applications or other recognizers as well
as for the inference of further relations with rules provided by the Rules
Service (see Section 4.3). The insertion takes place at discrete points in
time as discussed in Section 4.2, whereas the time interval—with that
point in time as start- and end-time—is added to the relation object.

Rules Service: The Rules Service is an interface to the rules repository
containing maintenance-, inference- and query-rules by providing means
for removing, modifying and adding them at runtime. Rules are typically
stored in rule files, either in XML or in a form specific to the rule engine.
While the first one is useful when the generation of rules has to be done
programmatically or visually supported using a graphical user interface for
example, the latter is the first choice whenever humans have to edit the
rules manually. For the chosen rules engine [JBo], a conversion between
XML and the engine-specific format is always possible.

Query Service: Finally, the Query Service is the actual main interface to the
application layer. However, due to the OSGi-based architecture, applica-
tions can also access the services underneath. The Query Service accesses
both the Rules Service and the Relations Service in order to deploy query
rules and get the respective results.

406 Alois Ferscha

The development process of a spatially aware application is now exem-
plified for the case of a vibro-tactile notification and directional guidance
device, LifeBelt. With LifeBelt we have developed a device intended to act as
a notification and guidance system based on sense of vibration. The system
addresses the challenge of overseeing and overhearing in situations when there
is abundance of visual and auditory stimulations, like in situations of danger
or panic. In such scenarios it is important to notify the user with informa-
tion about a potential threat in an un-obstructive yet demanding manner, so
that his attention is not diverted. Intended as a wayfinding guide in emer-
gency evacuation scenarios, LifeBelt generates notifications about distance
and orientation to the nearest exit, as shown in Figure 9. The notification
is generated via eight embedded tactor elements, lined up in the fabric of a
wrist belt and are connected to the belt micro-controller. Selectively vibrating
tactors indicate direction, the intensity of vibration represents the respective
distance.

Figure 9 Qualitative abstractions of space implemented in the LifeBelt.

The development process involves (i) the identification of spatial relations
between objects which are relevant for the application, along with their type
(e.g. static orientation), the possible values (e.g. front, right, back and left),
their semantics (i.e. how the space is partitioned), dimensionality, etc. In a
LifeBelt scenario we would identify individuals, obstacles in the scene and the
location of exits as artifacts, and relate them to each other spatially. (ii), sec-

VIII Pervasive Computing 407

ond, the ZoIs needed for recognizing the relations identified in the first step
are modelled for each artifact. As for the individuals, radial zones of influence
could be assumed, whereas the shape of obstacles could be expressed by ZoIs
with congruent geometry. In step (iii), the respective sensors for determining
the spatial properties position, direction and spatial extension are identified
and integrated. Here, positioning and distance sensors (ultrasonic, microwave
scanners, SNR based wireless communication systems etc.) appear appropri-
ate. Sensors and their interfaces are encoded into the self-description of the
respective artifacts. (iv), relation recognizers are implemented according to
the identified relations and ZoIs, so that finally (v), a rule-based modeling
of the application behavior can be coded by mapping spatial relations or
combinations to the triggering of actions. The inferencing of new high-level
relations and the triggering of application-level actions are well supported by
the framework.

Qualitative abstractions of space implemented in the LifeBelt. Figure 10

Particularly for the explanation of the latter consider a person with a
certain field of view moving towards a point of interest (exit) in Figure 10.
The person is represented by a moving point-shaped ZoI w, and a masonry
with a certain point of interest (emergency exit) which is represented by a
static freeform ZoI p representing the region from which the exit can be seen.
The individual and masonry are equipped with digital artifacts which au-
tonomously exchange their self-descriptions upon coming within reach. Two
types of relations are of interest, namely if the masonry’s ZoI p (i.e. its an-
chor point) is in front of the individual’s ZoI w, and if p also contains w.
The former is a static orientation (with a 35◦ angle for the relation front in
our example) and the latter a static topological relation. If and only if both
spatial conditions are fulfilled (as it is the case for w at time t3 in Figure 10),
the person has presumably looked at the exit. Position and direction of w

408 Alois Ferscha

are acquired from the location tracking system, whereas ZoI p is fixed (i.e.
no sensors are required therefore) as the assumed masonry cannot move.

The following XML fragment shows the representation of ZoI p in the
masonry’s self-description. In order to be able to compare sensor values from
different sensors using different reference systems, the used reference system
is specified using the XML attribute refSystem. Direction and position are
acquired from respective Sensor Data Providers, and the shape of the ZoI is
represented using a polygon.

<DADescriptionElement type="ZoI">
<Name > Masonry </Name >
<Position refSystem=" WGS84ECEF2D">

<X> @Position.x </X>
<Y> @Position.y </Y>

</Position >
<Direction refSystem=" NEDEuler2D">

<Yaw > @Direction.yaw </Yaw >

</Direction >
<Shape type="Freeform2D">

<Point x="0.0" y="0.0"/>
<Point x="-36.0" y=" -52.0"/ >

<Point x=" -9.0" y=" -52.0"/ >
<Point x=" -9.0" y=" -84.0"/ >
<Point x="-22.0" y="-118.0"/>

<Point x="108.0" y="-118.0"/>
</Shape >

</DADescriptionElement>

The rule is pretty simple. It checks for the concurrent existence of the
two relations front and contains within the same time interval (which is
checked with the function isCurrent()), and inserts a new relation $r in
the repository whose interval is the intersection of those two relations. The
existence of this interval can be queried from the application; in addition, a
certain action such as a vibro impulse can be executed in the consequence
part of the rule as a feedback for the person.

rule "TowardsExit"
when

Relation (name=="Orientation",value =="front",$p:pZoI ,$r:rZoI ,$i1:interval)
Relation (name=="Topology ",value=="contains ",

pZoI==$p,rZoI==$r,$i2:interval)
eval($i1.isCurrent() && $i2.isCurrent())

then
/* trigger action at application level , e.g. vibration on LifeBelt */

end

6 Embodied Interaction

Extending the notion of a digital artifact, a physical object can represent in-
formation while at the same time acts as a control for directly manipulating
that information or underlying associations. With this seamless integration

VIII Pervasive Computing 409

of representation and control into a physical artifact also input and output
device fall together. Placed meaningfully, such artifacts can exploit physi-
cal affordances suggesting and guiding user actions, while not compromising
existing artifact use and habits of the user. More recent examples for “em-
bedded interaction”, where input and output are fused into physical object
manipulation, include architecture and landscape design and analysis, object
shape modeling interfaces using brick like blocks or triangular tiles.

Brygg Ullmer and Hiroshi Ishii introduced “Tangible User Interfaces”
(TUIs) [IU97] and related them to “Graspable Interfaces” [Fit96], as both
involving physical artifacts as (i) representations and (ii) controls for digi-
tal information. A central characteristic of tangible interfaces is the seamless
integration of representation and control within physical objects. Manipulat-
ing physical controls hence stands for directly manipulating their underlying
associations (digital information). Input and Output devices fall together.

According to their definition, TUIs are interfaces that “give physical form
to digital information, employing physical artifacts both as representations
and controls for computational media”. Four characteristics concerning rep-
resentation and control can be formulated:� Physical representations are computationally coupled to underlying digital

information.� Physical representations embody mechanisms for interactive control.� Physical representations are perceptually coupled to actively mediated dig-
ital representations. (visual augmentation via projection, sound . . .)� Physical state of tangibles embodies key aspects of the digital state of a
system. (TUIs are persistent: turn off the electrical power and there is still
something meaningful here that can be interpreted)

In addition to their definition, tangible interfaces rely on a balance between
physical and digital representations, and digital representations are needed to
mediate dynamic information. There have been many research efforts devoted
to tangible user interfaces, but it has proven difficult to create a definition
or taxonomy that allows to compare and contrast disparate research efforts,
integrate TUIs with conventional interfaces, or suggest design principles for
future efforts. Kenneth Fishkin addressed this problem, presenting a taxon-
omy [Fis04] which uses (i) metaphor and (ii) embodiment as its two axes of
the TUI design space.

Fishkin’s taxonomy [Fis04] uses the concepts of embodiment and metaphor
to classify TUI’s. The rationale behind this is that TUI research has evolved
so broadly, that a simple binary definition to decide whether an interface is
tangible or not is just not sufficient. The proposed solution is to create a two
dimensional taxonomy that allows for a scale of tangibility, weighted along
the two axes of embodiment and metaphor. The definition of embodiment
is effectively a measure of how close the digital output is to the input, and
also to what extent the user thinks that the states of the system are inside
the device. The scale is defined as ranging from “Distant” (the output is

410 Alois Ferscha

removed from the input) through “Environmental” (output is around the
user) to “Nearby” (the output is near to the input), ending up with “Full”
embodiment (the output device is the input device).

Key characteristics of TUIs can hence be summarized as follows:� By coupling digital information to everyday physical objects and environ-
ments, physical representations link to digital information both computa-
tionally and perceptually.� The interfaces are a physical objects rather than abstract entities.� The physical representation incorporates the control process.� A tangible interface is persistent and carries the physical state.� TUIs exploit physical affordances and suggest (and guide) action.� TUIs distributed interaction across a range of objects.� Interaction is thus spread throughout a space.� Interaction beyond enforced sequentiality (avoids WIMP “click-after-click”
interaction).

As TUIs are devices that give physical form to digital information, em-
ploying physical artifacts as representations and controls of the computational
data, the physical/digital mapping raises an important design challenge. To
be successful, the spatial mapping relationship of the TUI’s objects and their
use must be (i) spatially congruent (e.g. computer-mouse, mapped to cursor
movement), or at least well learned (e.g. QWERTY-keyboard mapped to al-
phabet), (ii) must unify the input space and the output space (as opposed
to the decoupling of action space and perception space when working with
WIMP metaphor interfaces), and (iii) should enable trial-and-error activity,
since in a natural world, human activity is goal-related and exploratory (the
costs of speculative exploration of the task space should be low). Good TUIs
offer a one-to-one coupling of physical and digital objects, and each digital
object has a representation in the real world.

TUIs [UI00] or “embodied interaction” [Dou01] [FMH98] aim at interact-
ing with applications executing in the background by providing natural and
intuitive means of interaction, claiming to be more efficient and powerful
compared with traditional interaction methods in specific cases. TUIs couple
physical representations (e.g. spatially manipulable physical artifacts) with
digital representation (e.g. graphics and sounds), making bits directly ma-
nipulable and perceptible by people [Fit96] [HKSSR97]. In general, tangible
interfaces are related to the use of physical artifacts as representations and
controls for digital information [UI00]. An important class of applications
is defined by the use of TUIs a remote control. Typically, home electronic
devices are equipped and controlled with button based remote controls. At-
tempting to complement the traditional remote control (RC) by a TUI raises
a variety of design issues (see the previous section of this report), but also
carries potential to improve on the usability of remote controlled device.
Since the process of designing TUIs in many cases starts with a problem
analysis of an existing interface paradigm or technology (to be improved or

VIII Pervasive Computing 411

replaced), we take the analysis of an RC as an example of reference. Take as
TUI development challenge a universal RC, able to control not only one, but
a whole set of devices or appliances. With such an RC, in order to control
a certain device, the user needs to perform the following general sequence of
operations:

1. Device discovery. Device discovery is necessary when the user is situated
in a non-familiar space, as the user must know whether the desired device
is available or not.

2. Device selection. The user must select, out of a whole ensemble of devices,
which one to control. Alternatively, a certain device can be implicitly se-
lected based on the user’s context (i.e. information about his situation),
preferences, and history.

3. Connection. The RC must be able to connect to the selected device. Thus,
a communication channel must be established between the control artifact
and the device such that control commands from the artifact can be relayed
to the device.

4. Device control. A device offers a set of services, and the user manipulates
the control artifact to set up input values for the services. To do so, the
following steps are performed:� Service discovery. If the user is not already familiar with the device, then

it needs to know the services provided by the device. In many cases,
the user already knows which service it needs to control. For example,
it is common knowledge that air conditioning devices have at least two
services: temperature and fan power.� Service selection. The user chooses one of the services to control. For
example, in the air conditioner case, it chooses temperature.� Control parameter steering. The user sets up values for the controllable
parameters of the service.

Considerable research and development efforts have been devoted to step 1
([Upn], [Wal99], [Blu], [VZT05]), step 2 ([VKP+03], [Nfc], [KLH02]), step 3
([Blu], [Wif], [Zig]), and step 4a ([VKP+03], [Blu]). As for steps 4b and 4c,
a combined approach for controlling the environment with physical artifacts,
which allows to browse and select both devices and their services as well
as to steer the input values of a selected service with simple gestures, is
described in [HRLF06]. The study explains how only two types of gestural
manipulations with a cube-shaped TUI that can be intuitively associated
to service selection and to steering, respectively: Flip and Turn. In general,
the geometry of objects suggests manipulation affordances in a TUI. The
geometry of a physical object defines a number of stable mechanical equilibria
of the object placed on a planar horizontal surface. A flip-gesture now moves
the object from one stable equilibrium to another, by changing the object’s
orientation wrt. the surface. Thus, a flip-manipulation triggers a change of the
selected service. A box can hence be used to select from up to six services. A

412 Alois Ferscha

turn-gesture is a rotation of an object along a defined axis. This can be used to
steer the parameter value of the selected service. Both gestures are geometric
rotations of objects, which can be traced by integrated accelerometers and
gyroscopes. Flipping and turning hence reveals to be a universal approach to
implement a RC TUI.

As for the more general case of RC TUIs, considerable research efforts have
targeted the realization of a “universal interaction device”. One approach are
mobile computing platforms (usually PDAs or smartphones) that can be used
for interacting with multiple services. Examples are the “Universal Informa-
tion Appliance” [ELM+99], the “Universal Interactor” [HKSSR97], or the
“Personal Universal Controller” in [KS03]. The main issues are discovery of
devices and services [VKP+03] and composition of user interfaces [PLF+01],
[KS03]. Discovery is supported by service oriented frameworks, communica-
tion protocols and standards such as UPnP [Upn], Jini [Wal99], Bluetooth
[Blu] and URC [VZT05]. Proposed approaches for device selection include
browsing, pointing and touching [VKP+03], [Nfc], or automatic selection
based on context clues and user history [KLH02]. Connection is supported
by wireless technologies such as Bluetooth, Zigbee [Zig], and WiFi [Wif]. In
general, the universality of the control device means the ability to control
multiple services, with as little a priori information as possible about the ser-
vices. Such a handheld control device suffers from some of the shortcomings of
today’s remote controls: the device is complicated and therefore hard to use,
it offers non-intuitive control means, it requires to be available at all times.
Furthermore, more than a single TUI could be used to control the same ser-
vice. The redundancy of physical objects in the user’s environment together
with a dynamic mapping of objects and movements to services and parame-
ters can ensure that a control object is always handy for any device that the
user decides to control. Tangible User Interface (TUI) research has studied
the capabilities of physical objects as rich input devices. Specific movements
of objects were considered for control. Tilting user interfaces [Rek96] use the
tilt of a portable device as input for the device. In [FRHR05], various arti-
facts and associated gestures are used for device control. Some publications
present TUIs where multiple faces are associated to different functions and
flipping is used to select a function. In [Fit96], flipbricks are described as
part of graspable user interfaces. Different commands, such as “cut”, “copy”,
“paste”, are associated to each face of a flipbrick, and one of them can be ac-
tivated by flipping the brick. The ToolStone device described in [RS00] uses
also the rotation of the device, in addition to flipping, to further increase
the selectable functionalities. With respect to the involved gestures, flipping
and turning have turned out to be manipulations TUIs that can be gener-
ically mapped to abstract control actions. An approach for using physical
objects for home device control is reported in [KS03], where everyday objects
and an augmented table are employed for configuring and using interfaces
to applications. More recently, Bennet and O’Modhrian proposed the term
“Enactive Interfaces” as a classification of interfaces that allow the expres-

VIII Pervasive Computing 413

sion and transmission of “enactive knowledge”. I refers to enactive knowledge
(as opposed to symbolic or iconic knowledge) as a form of knowledge that is
stored in bodily sensori-motor responses. Similar ideas have been articulated
in phenomenology (Daseins-Theorie), claiming that we “know” things well
only if we engage with them. Enactive knowledge can hence be built up by
direct engagement with the things in our environment. Assuming those things
representing the input interfaces to computer systems, then an enactive in-
terface can be understood as a particularly direct means of communication
between humans and computers. It is argued that “Enactive interfaces are
desirable because they allow the user to utilize their pre-conceived knowledge
of interacting with the world when using the interface.”

Enactive interfaces (EIs) build on the theory for Enactive Instruments,
which has developed criteria for embodied interaction, i.e. the embodiment
of services in physical artifacts. These are:� Embodied activity is situated. The agent is situated in an environment.� Embodied activity is timely. Real-world activity requires real-time con-

straints.� Embodied activity is multimodal. Concurrent use of multiple sensory
modalities with the possibility of cross coupling between the modalities.� Embodied activity is engaging. The agent is required by the system and
is actively engaged with it.� The sense of embodiment is an emergent phenomenon. It may and will
change over time.

TUI’s differ from EI’s in two main aspects: timeliness and engagement.
Bennet and O’Modhrian consider them as not simple binary states, but con-
tinua both (i) from nonengaging through to fully engaging and (ii) from
non-timely through to very timely. They build a two dimensional design
space along the two axis ‘engagement’ and ‘timeliness’, within which it is
possible to place any TUI, with the result that it will be possible to plot
how “enactive” a TUI is: “The utility of this graph is that designers of TUI’s
can gauge the enactive potential of the system they are designing, and modify
their design so as to achieve the desired position within the tangible-enactive
space.”

Grasping Digital Information 6.1

The idea of understanding the touching and grasping of things as an act of
computer input goes back to George Fitzmaurice, who in his PhD thesis on
“Graspable UIs” attempted for a first definition: A Graspable UI design pro-
vides users concurrent access to multiple, specialized input devices which can
serve as dedicated physical interface widgets, affording physical manipulation

414 Alois Ferscha

and spatial arrangements. Hence input control can be “space-multiplexed”.
That is, different devices can be attached to different functions, each in-
dependently (but possibly simultaneously) accessible. This, then affords the
capability to take advantage of the shape, size and position of the physical
controller to increase functionality and decrease complexity. It also means
that the potential persistence of attachment of a device to a function can be
increased. By using physical objects, we not only allow users to employ a
larger expressive range of gestures and grasping behaviors but also to lever-
age off of a user’s innate spatial reasoning skills and everyday knowledge
of object manipulations. These physical artifacts are essentially “graspable
functions”—input devices which can be tightly coupled or ‘attached’ to virtual
objects for manipulation, or for expressing actions. These artifacts need to
have spatially-aware computational devices.”

Human gesticulation as a modality of human-machine interaction has been
widely studied in the field of Human-Computer Interaction. With the up-
coming Pervasive and Ubiquitous Computing research field, the explicit in-
teraction with computers with mouse, keyboard and screen in the WIMP
metaphor has given way to a more implicit interaction involving all human
senses. As an important part of this tendency, gestures and movements of the
human body represent a natural and intuitive way to interact with physical
objects in the environment. Thus, manipulation of objects can be regarded
as a means of intuitive interaction with the digital world. This paradigm
underlies the research on Tangible User Interfaces (TUIs) or “Embodied In-
teraction”. It aims at facilitating “remote control” applications by providing
natural and intuitive means of interaction, which are often more efficient and
powerful compared with traditional interaction methods. TUIs couple physi-
cal representations (e.g. spatially manipulable physical artifacts) with digital
representation (e.g. graphics and sounds), making bits directly manipulable
and perceptible by people. In general, tangible interfaces are related to the
use of physical artifacts as representations and controls for digital informa-
tion. We witness the advent of applications, appliances and machinery that
are richer and richer in information technology, providing large palettes of
services to end users. This richness brings up many challenges to the user in-
terface designer, which must face the task of offering the user simple, natural,
and intuitive interfaces to systems and services.

Interaction with digital information based on physical “things” that we
touch or grasp, shake or toss, flip or turn, can be understood as “remote
controls” in an abstract sense. Input commands can be expressed via the
delivery of a certain gesture, exposed to a certain artifact. To develop an
example of a graspable or tangible interface, we consider the challenge of
designing concepts of remote media controls, like a TV remote control.

The number and usability of remote controls for home entertainment sys-
tems like TV sets, set-top boxes, satellite receivers and home entertainment
centers has reached overstraining complexity: about eight to ten remote con-
trols with about sixty to eighty push-buttons each are typical for a home

VIII Pervasive Computing 415

entertainment system setting today. To be able to harness the ever grow-
ing remote control interaction complexity, we propose physical shortcuts to
express the most frequently used control commands.

Contemporary remote controls for home entertainment systems, such as
television sets, sound systems and set-top boxes, are designed according to
a one button per function paradigm. Function overload of modern entertain-
ment systems hence makes button based remote controls a rather confusing
user interface. While some of the buttons are not used at all and some are
used occasionally, there are usually a few functions that are used frequently:
hopping channels/stations (TV or radio), controlling the volume and switch-
ing on/off. Recent television platforms like IPTV set-top boxes, additionally
provide a graphical user interface in order to navigate through a hierarchical
menu structure, demanding even more buttons or yet another remote control.

The kinematics and capabilities of the human hand when grasping and
holding physical objects: power grip (above) and precision grip (below).
From: J. R. Napier: “The Prehensile Movement of the Human Hand”,
The Journal of Bone and Joint Surgery, 38-B (4), pp 902–913, London,
1956.

Figure 11

Inspired by the observed inadequacy of the button-based remote control
designs with respect to frequently invoked control commands, alternative
control designs are recommended. As one such alternative, in some of our
work we have proposed physical shortcuts, allowing to issue control com-
mands with gestures natural to the human hand. These physical shortcuts
are implemented as gestures for tangible artifacts, requiring a convincing af-
fordance and a simple but sufficiently versatile gesture set. Operating tradi-

416 Alois Ferscha

tional remote controls follows a certain pattern, illustrated with the example
of watching TV:� grabbing the remote control to switch on the TV,� pushing some buttons while watching TV,� putting away the remote control when done.

Analyzing this informal interaction protocol reveals that the human hand
already undertakes a lot of actions prior to the intended launching of a com-
mand, like grasping, holding or turning it to a faceup position. These hand
gestures, are already expressing intent for a command launch, which could al-
ready be used to invoke the command itself. This observation and the design
motivation of making command invocation easier and quicker, encourages the
use of tangible artifacts that can be manipulated using one’s hands and that
support a “grab-to-switch-on” functionality. An important essential in the
design process for a tangible remote control is the functioning of the human
hand when it comes to grip and control: a human hand can fundamentally
execute two different kinds of grip: a power grip and a precision grip (see
Figure 11).

TUIs to serve as media remote controls have some coverage in the HCI lit-
erature. While tangible objects such as augmented toys incorporate both form
and function and therefore clarify the interaction style [HL07], it is appar-
ently harder to design tangible artifacts for abstract tasks such as controlling
a media center. In [ClDJG02], for instance, so called “navigational blocks”
(wooden cubes containing a micro-processor and labeled with a unique ID)
are proposed to be flipped to one of their six sides in order to query infor-
mation about certain elements in a virtual gallery. In [SG07] a commercial
mobile phone is enhanced with near field communication capabilities and an
accelerometer in order to control a personal computer using simple gestures.
A cylindrical tangible user interface with embedded displays and sensors,
TUISTER, is presented in [BGK04]: upper and lower half of the cylinder
can be twisted against each other, enabling interaction with respect to the
absolute space orientation in order to infer which one of the two halfs was
twisted (to differentiate between fine grained and coarse browsing in hierar-
chical structures). [FHR06b] gives an example on how to control a PC’s media
player using a tangible artifact incorporating accelerometers, magnetometers
and gyroscopes, with respect to a pairing mechanism (the artifact allowed
to sequentially control more than one actuator using RFID tags). A tangible
media control system is also presented in [PAW07], allowing to control ob-
jects (such as a cube that can be flipped to each of its sides) augmented with
RFID tags and a tracking system to control e.g. a software midi synthesizer.
[BSKH05] shows the results towards remote control in a living room through
tangible user interfaces. One of the projects, Flip’n’Twist, uses a cube and a
dial for media control by flipping the cube to its different sides and turning
the dial. Each side of the cube sets the media control system in a distinct
state (such as play, seek and volume control) and lets the user utilize the

VIII Pervasive Computing 417

dial for fine grained operations. [SG07] classifies 13 different computational
toys that can be considered tangible user interfaces. The five cube shaped
artifacts allow various interaction styles, such as stacking, shaking, turning,
flipping and touching, regarding adjacency, sequence and network topology
of multiple devices if applicable. Cube shaped TUIs have been proposed,
comprising accelerometers and a proximity sensor is presented that can de-
termine which side is facing up, whether one of three predefined gestures was
performed and if the side facing up has changed (transition). The cube pre-
sented in this report can distinguish more then these states and transitions
as it incorporates an additional gyroscope in order to track rotations around
the vertical axis. To keep power consumption low, the gyroscope is powered
only when it is needed. Accelerometer technology can at the same time be
used to distinguish which side of a cube shaped tangible user interface was
facing up. Cubes that comprise a display on each side and a speaker have
been proposed, addressing applications such as quizzes, a math/vocabulary
trainer and a letter matching game. Observations of our previous prototypes
for media control using a cube (amongst others, see Figure 12) as the tangible
artifact [FR07], we have realized that a system relying on a cube that can be
flipped to its sides to distinguish among different modes of operation requires
the user� to be very skilled in the usage of the cube� or to have a look at the cube each time interaction occurs in order to find

out where to flip it, if the cube has corresponding annotations.

It is easy to get confused and to lose track of the current state, and hence
to act appropriate in the respective state. Additionally, it is hard to find a
certain side of the cube if it is currently facing down or away from the user.
By turning or flipping the cube to find the corresponding side, unintentional
interaction could occur, leading to disaffection and desperation. Thus it ap-
pears useful to use other gestures for cube interaction than flipping. That
way, the cube has a base orientation with the button facing up and the label
being readable by the user. The possible gestures include tilting the cube to
the front/back/left/right, pressing the button and turning the cube around
the z-axis (the one heading upwards “through” the button). Each gesture
leads back to the base orientation thus providing the user a known situation
to start from. In [BGK04] an accelerometer based gesture control for a de-
sign environment is presented that allows users to map arbitrary gestures to
certain functions (personalization). Besides controlling a VCR by supporting
commands such as on, off, play, stop, forward and many more the gesture
control system is also suited to navigate in a 3D design software. A respec-
tive user study shows that different users use different gestures for a certain
command—for instance at least 20 gestures were mapped to the VCR record
task by the test persons. While personalization is an important issue, a fixed
set of gestures is a wise choice for simplicity’s sake: users can execute the

418 Alois Ferscha

tasks they want to accomplish (controlling a TV set) instead of personalizing
their tangible user interface.

Figure 12 The possible alphabets based on gestures expressed with TUIs are related
to their geometrical shape: (a) cube, (b) can, (c) hexagon.

As now for the design of a TUI based media remote control, simplicity
should be the guiding element of the process. Aside the analysis of the kine-
matics of the human hand (Figure 11), also the observation of well trained
human hand gestures can deliver important information on how to design the
artifact. Taking for example the hand gestures people are expressing with ar-
tifacts of their daily life, e.g. a soft drink can or a cigarette box, it is easy
to see, how form determines handling (Figure 13). It is well known, that,
for example in a coffeehouse situation, people tend to grasp available objects
and play with them in predictable styles: while the can is being turned and
rolled, the box is rather flipped, turned, rotated, tossed, or swapped along
its main axes. We can assume, that this playful handling of objects comes
naturally, and hence has high potential for tangible remote controls, since
movements and hand gestures do not have to be trained, but are already well
conditioned.

Above the “experienced” handling of objects, suggesting to design TUIs
by mapping well learned hand gestures to command alphabets, also the shape
and form of the artifact can lead to intuitive acceptance, or uninspired mis-
designs. Efficient mapping of gestures to commands, i.e. the design of gesture
alphabets is already rooted in the basic form of the TUI. Figure 12 (a) shows
an equilateral cube with rounded edges and corners. The cube can be flipped
to every face as discrete motion and turned about every axis as continuous
motion. Figure 12 (b) depicts a cylindric shape like a can which can be con-
tinuously rotated about the x- and z-axis. It is also possible to flip it over
the horizontal edge as a discrete movement. The hexagon, as illustrated in
Figure 12 (c), has an arched bottom with six faces. The user topples the
interface by tipping it on the top as discrete move limited to six states. A
rotation about the z-axis is possible, but the edgy form forces a gradual ro-

VIII Pervasive Computing 419

Hand gestures that “come naturally”: everyday objects based on their
shape, size, geometry and weight “invite” for playful handling.

Figure 13

tation and not a continuous one. Empirical user testing with the cube, the
can and the hexagon reveals that the cube is the best shape if a combination
of discrete (flip) and continuous (turn) gestural expressions are desired.

Besides form, also the overall appearance of a TUI has critical impact onto
its “intuitive” use. The “affordance” [Nor99] of an object, i.e. its ability to ex-
press just those action possibilities an actor can perform with that object (or
in other words: the ability of an object or product to use it in the right way)
can significantly contribute to an easy use design. Figure 14 shows different
designs of TUIs with obviously different affordances. Experiments for exam-
ple involving adults and children with the objects in Figure 14 demonstrated
which shapes are suggestive for which gestures: The cube has a pleasant size
for a hand and encourages the user to grab, flip and rotate it. Moreover,
people tend to press their fingertips into the holes at the cube’s edges. The
two red knobs animate the user to turn it and drag it over flat surface, like a
table or board. The two knobs distinguish only in the way they were touched:
knob (b) is preferably touched and moved with forefinger and thumb, while
knob (d) is picked with the whole hand. The green cuboid “invites” to touch
or finger press the cavity on its top side, to rotate it around vertical edges or
flip it alongside faces.

Having in mind a tangible remote control that is supplementary to a ven-
dor provided remote control control, with the aim to quickly invoke the most
frequently demanded commands, an analysis of a minimum meaningful set
of commands suggests to focus on changing volume, switching the channel
or navigating the menu, switching ON and OFF and bring the system to

420 Alois Ferscha

Figure 14 TUI designs with different “affordance”, i.e. the ability to express by its
form how it should be properly used.

its origin state. These functions can be mapped to gestures which can be
expressed by the cube TUI (Figure 15 (a)): Flipping up and down, turning
left and right, shaking and resting (Figure 15). As additional function and
orientation support the cube is equipped with a button to switch between
the set-up mode and the operation mode of the set-top box. Operating mode
functions are volume and channel change which are activated by pressing the
mode button. To change the volume the user has to rotate the cube hori-
zontally. A clockwise rotation increases the volume, an anticlockwise reduces
it. Switching the channel is caused by flipping the cube up and down. These
gestures are also used in the set-up mode without pressing the button to
navigate through the menu. To set the TV set in standby mode, the cube
must be placed into the cradle. A fast shaking of the cube from left to right
sight and back navigates back to into the home state.

The cube platform itself is based on an AT-Mega168 micro-controller, with
additional electronics involving 3 axis acceleration sensors and a gyroscope,
together with IEEE 802.15.4 wireless communication components. A finite
state machine based software architecture is deployed for artifact based hand
gesture recognition, which are converted into standardized IR remote control
commands (Figure 16).

Figure 15 Mapping of command alphabets to TUI hand gestures.

VIII Pervasive Computing 421

The cube TUI prototype: Built upon the Atmel AT-Mega168 CPU and
equipped with accelerometer, gyroscope, push-button and IEEE 802.15.4
wirelss communication electronics (a), the hardware board together with
power supply is embedded into the cube cabinet (b). The cube cradle (c)
serves as a “switch off/switch on” interface (c), while gestures expressed
with the cube in hand are interpreted and converted into standardized
remote control commands.

Figure 16

Outlook 7

At the Johannes Kepler University of Linz (JKU), since the year 2000 the
Institut für Pervasive Computing (IPC) has developed its own “Pervasive
Computing Research Agenda”, based on its core competencies in architecture
and software for networked embedded systems (see Figure 17).

Settling around middleware solutions and service architectures, the re-
search lines of focus strive “awareness”, as the means for semantic interac-
tions, “intelligence”, as the technological backing for systems able to perceive,
learn, plan and act, “natural interfaces”, as a search for a confluence among
man and machines and their mutual interplay, and “appliances”, as the phys-
ical appearance of an “ambient intelligence”. Translating the findings in the
focused research lines into industrial applications, ultimately implement a
pipeline of innovations from research to industry in a compelling way.

IPC and RIPE have its stranding in the international scientific commu-
nity. It is frequently asked for consultancies for the EU, and hosts interna-
tional conferences and events in the field, like PERVASIVE 2004, the worlds
most renowned scientific conference in Pervasive Computing, or ISWC’09,
the leading conference in Wearable Computing. IPC/RIPE are engaged in
a number of (international) research projects with industrial partners and
in competitive funding programs like EU FP6, FP7 and national programs
like FIT-IT. In the recent FP7 project PANORAMA, for example, it is re-

422 Alois Ferscha

Figure 17 The Role of RIPE in the Pervasive Computing Research Agenda at the
University of Linz.

sponsible for the WP Research Agenda. Some of the recent involvements
in projects are InterLink (funded by IST FET), BEYOND THE HORIZON
(funded by IST FET), CRUISE NoE – Creating Ubiquitos Intelligent Sensing
Environments (IST FP6), BISANTE, EU/IST, Broadband Integrated Satel-
lite Network Traffic Evaluation, or SPECTACLES (Autonomous Wearable
Display Systems) in cooperation with Silhouette International. Application
oriented research, for which IPC/RIPE seeks the Research Studio platform,
is manifested in successful cooperation projects like INSTAR (Information
and Navigation Systems Through Augmented Reality) (Siemens AG, Mu-
nich, CT-SE-1), Peer-to-Peer Coordination (Siemens AG, Munich, CT-SE-
2), Context Framework for Mobile User Applications (Siemens AG, Munich,
CT-SE-2), WebWall, Communication via Public Community Displays, Con-
nect Austria, or VRIO, Virtual Reality I/O, with GUP JKU, IBM Upper
Austria, to name a few.

IPC/RIPE is already successfully engaged in the Research Studio “Perva-
sive Computing Applications” (PCA) inside the Research Studios division of
the Austrian Research Centers GmbH – ARC from 2005 to 2008, now part of
the Research Studios Austria Forschungsgesellschaft mbH. PCA actively com-
mits to and shapes the change of information and communication technologies
(ICT) by a focused research agenda. The availability and fast experimental
turn-around time of cutting edge research infrastructure makes the studio a
very attractive partner for near-industrial research. PCA supports three re-

VIII Pervasive Computing 423

search areas: Context and Sensors (e.g. a Wireless Motion Tracking board),
Smart Appliances and Environments (e.g. Virtual Machines for Embedded
Environments) and Intuitive Interfaces (e.g. Tangible Remote Controls). In
2007, the Telekom Austria presented the Telekom Austria Cube, a design
study for the navigation within IPTV portals of the near future—a promi-
nent example for the capabilities of the studio concerning custom electronic
design (integration of multiple sensor data and processing with wireless com-
munication technology) and miniaturization. PCA is currently involved in
the FIT-IT research program SPECTACLES, developing space constrained
electronics for a wearable display, or DISPLAYS, developing architectures for
interactive display landscapes, amongst others.

In the consulting work for the European Commission (DG Information
Society and Media) IPC/RIPE when preparing for the Research Programme
of FET in FP7, and while heading the TC “Pervasive Computing and Com-
munications” (2005–2007), we created the term “Networked Societies of Ar-
tifacts”, to refer to the research agenda raised by the evolution of technology-
rich artifacts (devices, services, objects of everyday use, appliances, etc.) co-
operatively attempting goals with society-like behavior. Such self-managed
“digital artifacts”, going beyond their capability to localize and recognize
other artifacts, are attempting to spontaneously form “goal tribes”, i.e. con-
figure ensembles of possibly complementing competencies, to act in a sensi-
tive, proactive, and responsive, but most of all cooperative and coordinated
way. Understanding such networked societies of artifacts implemented as per-
vasive computing systems (embedded, miniaturized, sensor-rich, actuator-
enabled, wirelessly communicating, context-aware and adaptive to context,
self-configuring, self-managing and self-organizing, remembering and learn-
ing, etc.), but enhanced with societal principles of behavior (cooperation,
coordination), leads to Pervasive Cooperative Systems.

Evidently, such systems raise the need for radically new (formal) mod-
els, architectures, operational principles, methods and algorithms, software
and hardware systems for social, cooperative system behavior, cooperative
management and cooperative organization (on top of “self-management” and
“self-organization”), cooperative goal-orientedness, cooperative sensing, co-
operative learning, cooperative memorizing, cooperative reasoning and re-
trieval, cooperative service delivery, to name a few. It appears worthwhile to
look into those research challenges with “cooperation” being the (induced!)
principle of system design, rather than a concept or feature, implemented
in hard-/software. In our contribution in very recent EU FP7 research pro-
posals we have already expressed aspects of related research issues. In the
EASE (Eternally Adaptive Service Ecosystems) project proposal the princi-
ple of cooperation is manifested in a system framework for the decentralized
deployment and execution of long-lived, highly-adaptive and context-aware
services—taking inspiration on cooperation from natural ecosystems. The
project will investigate and experiment with the modelling and deployment
of services as “cooperative” individuals in an ecosystems of other services. In

424 Alois Ferscha

the SOCIONICAL project (FP7 FET)—which has just started—, by looking
at three types of interactions and cooperation among individual entities “in
the small”,

1. among humans,
2. among humans and digital artifacts, and
3. among digital artifacts themselves,

we will ask for (and make attempts to predict) the effects and consequences
of massive, seemingly unpredictable occurrences and mutual causal inter-
relationships among such local interactions and cooperation on the global
properties of the system as a whole (“in the large”). In the (FP7 FET)—also
just launched—project OPPORTUNITY (Activity and Context Recognition
with Opportunistic Sensor Configurations) we have raised the issue of coop-
erative sensing, i.e. the spontaneous, goal-oriented, cooperative configuration
of sensor ensembles to opportunistically collect data about the user and his
environment in a scalable way. Even at the level of applications, in the DIS-
PLAYS project, the principle of cooperation will be addressed with a software
architecture that configures fragmented, dispersed or tiled display hardware
(like e.g. screens), to “cooperatively” deliver complex multimedia content to
the user in a situated, context controlled way.

Based on our previous contributions in the field of Pervasive Computing,
ranging from cooperative embedded sensor-actuator systems (e.g. P2P Co-
ordination Framework, DigitalAura), autonomous systems (e.g. Cooperative
Digital Artifacts, Peer-It), identity management (e.g. 2D Barcode, RFID,
ZigBee, BT or WiFi based solutions), software architectures for context and
activity recognition and prediction (e.g. Context Framework), and “uncon-
ventional user interfaces”, like tangible interaction (TA Cube, SpaceSwitch,
VibraBelt, SmartCase, etc.), implicit interaction (PowerSaver, Smart Living,
SensorChair, Driver Identification, etc.) or display systems (e.g. SPECAT-
CLES, WebWall, SmartShopwindow, SmartMovieposter, Ambient Facades,
AR Car Navigation, Digital Graffiti, etc.), we will consider to address (i) Co-
operative Computing Frameworks and Architectures, (ii) Principles of Co-
operative Management and Cooperative Organization of Networked Embed-
ded Systems as well as (iii) Strategic Application Domains (like e.g. Energy
Efficiency, Green-IT, Smart Material, Wearable Computing or Cooperative
Displays Systems).

Acknowledgements

This survey of Pervasive Computing research activities reflects the work of
many ambitious and gifted people, currently or formerly engaged in the
IPC and RIPE research institutes. The work on spatially aware digital arti-
facts was mostly done by Clemens Holzmann (qualitative spatial relations)

References 425

and Manfred Hechinger (middleware), and was well supported by the whole
FACT project team. The work on embodied interaction was mostly done
by Stefan Resmerita (Gestural Interaction) and Simon Vogl (TA Cube). I
gratefully acknowledge the work, contribution and support by my partners,
co-investigators and co-workers—they all deserve the credits for the founda-
tional findings behind this write-up: P. Aumayr, P. Baumgartner, W. Beer,
V. Christian, B. Emsenhuber, H. Dobler, J. Doppler, M. dos Santos Rocha,
M. Franz, St. Gusenbauer, M. Hechinger, D. Hochreiter, G. Holl, C. Holz-
mann, E. Kashofer, M. Keller, C. Klein, M. Lenger, M. Leitner, P. Lukowicz,
M. Matscheko, R. Mayrhofer, L. Mehrmann, J. Mitic, W. Narzt, R. Ober-
hauser, T. Obermüller, St. Oppl, G. Pomberger, St. Resmerita, A. Riener, H.
Schmitzberger, M. Steinbauer, P. Thon, S. Vogl, B. Wally, D. Zachhuber, A.
Zeidler and K. Zia.

References

[AEG94] Alia I. Abdelmoty and B.A. El-Geresy. An intersection-based formalism for
representing orientation relations in a geographic database. In 2nd ACM
Workshop on Advances In Geographic Information Systems, Workshop at
CIKM 1995, Gaitherburg, MD, USA, December 1-2, 1994, pages 44–51. ACM
Press, December 1994.

[All83] James F. Allen. Maintaining knowledge about temporal intervals. Commu-
nications of the ACM, 26(11):832–843, 1983.

[BF04] John A. Bateman and Scott Farrar. Towards a generic foundation for spatial
ontology. In 3rd International Conference on Formal Ontology in Informa-
tion Systems, FOIS 2004, Torino, Italy, November 4-6, 2004, pages 237–248,
Amsterdam, 2004. IOS Press.

[BGK04] A Butz, M Groß, and A Krüger. Tuister: a tangible ui for hierarchical struc-
tures. In in Proceedings of PI03: Workshop on Real World User Interfaces,
held at Mobile HCI 2003, pages 223–225. ACM Press, 2004.

[Blu] The bluetooth specification. http://www.bluetooth.org.
[BSKH05] Andreas Butz, Michael Schmitz, Antonio Krüger, and Harald Hullmann. Tan-

gible uis for media control: probes into the design space. In CHI ’05: CHI ’05
extended abstracts on Human factors in computing systems, pages 957–971,
New York, NY, USA, 2005. ACM.

[CBGG97] Anthony G. Cohn, Brandon Bennett, John Gooday, and Nicholas M. Gotts.
Representing and reasoning with qualitative spatial relations about regions.
In Spatial and Temporal Reasoning, pages 97–134. Kluwer Academic Pub-
lishers, 1997.

[CFH97] Eliseo Clementini, Paolino Di Felice, and Daniel Hernández. Qualitative rep-
resentation of positional information. Artificial Intelligence, 95(2):317–356,
1997.

[CFS+01] Scott Camazine, Nigel R. Franks, James Sneyd, Eric Bonabeau, Jean-Louis
Deneubourg, and Guy Theraula. Self-Organization in Biological Systems.
Princeton University Press, Princeton, NJ, USA, 2001.

[CH01] Anthony G. Cohn and Shyamanta M. Hazarika. Qualitative spatial represen-
tation and reasoning: An overview. Fundamenta Informaticae, 46(1-2):1–29,
2001.

426 Alois Ferscha

[ClDJG02] Ken Camarata, Ehen Yi luen Do, Brian R Johnson, and Mark D Gross.
Navigational blocks: navigating information space with tangible media. In In
Proceedings of the 7th international conference on Intelligent user interfaces,
pages 31–38. ACM Press, 2002.

[Dan] Peter H. Dana. Coordinate systems overview. http://www.colorado.edu/
geography/gcraft/notes/coordsys/coordsys.html, last visited on December
12th, 2007.

[DB92] Paul Dourish and Victoria Bellotti. Awareness and coordination in shared
workspaces. In Proceedings of the ACM Conference on Computer-Supported
Cooperative Work, CSCW’92, Toronto, USA, November 1-4, 1992, The
Power of Simple Shared Workspaces, pages 107–114, 1992.

[Dey01] Anind Dey. Understanding and using context. Personal and Ubiquitous
Computing, 5(1):4–7, 2001.

[DFWW06] Frank Dylla, Lutz Frommberger, Jan O. Wallgrün, and Diedrich Wolter.
SparQ: A toolbox for qualitative spatial representation and reasoning. In
Qualitative Constraint Calculi: Application and Integration, Workshop at
KI 2006, Bremen, Germany, June 14, 2006, pages 79–90, 2006.

[Dou01] Dourish, Paul. Where the Action Is: The Foundations of Embodied Interac-
tion. MIT Press, 2001.

[Ege89] Max J. Egenhofer. A formal definition of binary topological relationships. In
FODO, volume 367 of LNCS, pages 457–472. Springer, 1989.

[Eka] Ekahau Inc. Positioning engine. http://www.ekahau.com, last visited on
December 12th, 2007.

[ELM+99] K. F. Eustice, T. J. Lehman, A. Morales, M. C. Munson, S. Edlund, and
M. Guillen. A universal information appliance. IBM Systems Journal,
38(4):575–601, 1999.

[FHdSR+07] Alois Ferscha, Manfred Hechinger, Marcos dos Santos Rocha, Rene
Mayrhofer, Andreas Zeidler, Andreas Riener, and Marquart Franz. Build-
ing flexible manufacturing systems based on peer-its. EURASIP Journal on
Embedded Systems, October 2007.

[FHR+06a] Alois Ferscha, Manfred Hechinger, Andreas Riener, Heinrich Schmitzberger,
Marquart Franz, Marcos dos Santos Rocha, and Andreas Zeidler. Context-
aware profiles. In Proceedings of the 2nd International Conference on Auto-
nomic and Autonomous Systems (ICAS 2006), page 48, Los Alamitos, CA,
USA, April 2006. IEEE CS Press.

[FHR06b] Alois Ferscha, Clemens Holzmann, and Stefan Resmerita. The key knob.
In Proceedings of the 26th IEEE International Conference on Distributed
Computing Systems Workshops (ICDCSW’06), page 62, Los Alamitos, CA,
USA, July 2006. IEEE CS Press.

[FHR+08] Alois Ferscha, Manfred Hechinger, Andreas Riener, Marcos dos Santos Rocha,
Andreas Zeidler, Marquart Franz, and Rene Mayrhofer. Peer-it: Stick-on
solutions for networks of things. Pervasive and Mobile Computing Journal,
4(3):448–479, June 2008.

[Fis04] Kenneth P. Fishkin. A taxonomy for and analysis of tangible interfaces.
Personal and Ubiquitous Computing, 8(5):347–358, 2004.

[Fit96] George W. Fitzmaurice. Graspable User Interfaces. PhD thesis, Computer
Science Dept., Univ. of Toronto, 1996.

[FMH98] Kenneth P. Fishkin, Thomas P. Moran, and Beverly L. Harrison. Embodied
user interfaces: Towards invisible user interfaces. In Stéphane Chatty and
Prasun Dewan, editors, EHCI, volume 150 of IFIP Conference Proceedings,
pages 1–18. Kluwer, 1998.

[For97] Kenneth D. Forbus. Qualitative reasoning. In The Computer Science and
Engineering Handbook, pages 715–733. 1997.

References 427

[FR93] C. Freksa and R. Röhrig. Dimensions of qualitative spatial reasoning. In
N. Piera Carreté and M. G. Singh, editors, 3rd IMACS Workshop on Qual-
itative Reasoning and Decision Technologies, QUARDET 1993, Catalunya,
Spain, June 16-18, 1993, pages 483–492, 1993.

[FR07] A. Ferscha and S. Resmerita. Gestural interaction in the pervasive computing
landscape. 2007.

[Fra98] Andrew U. Frank. Formal models for cognition - taxonomy of spatial loca-
tion description and frames of reference. In Spatial Cognition, An Interdisci-
plinary Approach to Representing and Processing Spatial Knowledge, volume
1404 of LNCS, pages 293–312. Springer, 1998.

[Fre92] Christian Freksa. Using orientation information for qualitative spatial reason-
ing. In International Conference GIS - From Space to Territory: Theories
and Methods of Spatio-Temporal Reasoning, Pisa, Italy, September 21-23,
1992, volume 639 of LNCS, pages 162–178. Springer, 1992.

[FRHR05] Alois Ferscha, Stefan Resmerita, Clemens Holzmann, and Martin Reichör.
Orientation sensing for gesture-based interaction with smart artifacts. Jour-
nal of Computer Communications, 28(13):1552–1563, August 2005.

[HB01] J. Hightower and G. Borriello. A survey and taxonomy of location systems
for ubiquitous computing. Technical report, Seattle, WA, USA, August 2001.
Extended paper from Computer, 34(8) p57-66, August 2001.

[HCF95] Daniel Hernández, Eliseo Clementini, and Paolino Di Felice. Qualitative dis-
tances. In Spatial Information Theory: A Theoretical Basis for GIS, Inter-
national Conference COSIT 1995, Semmering, Austria, September 21-23,
1995, volume 988 of LNCS, pages 45–57. Springer, 1995.

[HE03] David Hales and Bruce Edmonds. Evolving social rationality for MAS using
“tags”. In 2nd International Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS 2003, Melbourne, Australia, July 14-18, 2003,
pages 497–503, New York, NY, USA, 2003. ACM Press.

[Her94] Daniel Hernández. Qualitative Representation of Spatial Knowledge, volume
804 of LNCS. Springer, 1994.

[HF07] Clemens Holzmann and Alois Ferscha. Towards collective spatial aware-
ness using binary relations. In 3rd International Conference on Autonomic
and Autonomous Systems, ICAS 2007, Athens, Greece, June 19-25, 2007,
page 36. IEEE CS Press, 2007.

[HG03] Francis Heylighen and Carlos Gershenson. The meaning of self-organization
in computing. IEEE Intelligent Systems, 18(4):72–75, 2003.

[HKBT05] Marios Hadjieleftheriou, George Kollios, Petko Bakalov, and Vassilis J. Tso-
tras. Complex spatio-temporal pattern queries. In 31st International Con-
ference on Very Large Data Bases, VLDB, Trondheim, Norway, August 30
- September 2, 2005, pages 877–888. ACM, 2005.

[HKG+05] Mike Hazas, Christian Kray, Hans-Werner Gellersen, Henoc Agbota, Gerd
Kortuem, and Albert Krohn. A relative positioning system for co-located
mobile devices. In 3rd International Conference on Mobile Systems, Appli-
cations, and Services, MobiSys 2005, Seattle, Washington, USA, June 6-8,
2005, pages 177–190. ACM, 2005.

[HKH+04] David Holstius, John Kembel, Amy Hurst, Wan, Peng-Hui, and Jodi Forlizzi.
Infotropism: living and robotic plants as interactive displays. In Proceedings
of DIS’04: Designing Interactive Systems: Processes, Practices, Methods, &
Techniques, Museums and public displays, pages 215–221, 2004.

[HKSSR97] Todd D. Hodes, Randy H. Katz, Edouard Servan-Schreiber, and Lawrence A.
Rowe. Composable ad-hoc mobile services for universal interaction. In MO-
BICOM, pages 1–12, 1997.

[HL07] Steve Hinske and Matthias Lampe. Semantic mapping of augmented toys
between the physical and virtual world. In Workshop on Tangible User In-
terfaces in Context and Theory at CHI 2007, 2007.

428 Alois Ferscha

[HMG05] Klaus Herrmann, Gero Muhl, and Kurt Geihs. Self-management: The solution
to complexity or just another problem? IEEE Distributed Systems Online,
6(1), 2005.

[HN02] Jerry R. Hobbs and Srini Narayanan. Spatial representation and reasoning.
In Encyclopedia of Cognitive Science. MacMillan, London, UK, 2002.

[Hol07a] Clemens Holzmann. Inferring and distributing spatial context. In 2nd Eu-
ropean Conference on Smart Sensing and Context, EuroSSC 2007, Kendal,
England, October 23-25, 2007, volume 4793 of LNCS, pages 77–92. Springer,
2007.

[Hol07b] Clemens Holzmann. Rule-based reasoning about qualitative spatiotemporal
relations. In 5th International Workshop on Middleware for Pervasive and

Ad-Hoc Computing, MPAC 2007, Newport Beach, CA, USA, November 26-
30, 2007, pages 49–54. ACM Press, 2007.

[Hor01] Paul Horn. Autonomic computing: Ibm’s perspective on the state of informa-
tion technology. Technical report, International Business Machines Corpora-
tion (IBM), New Orchard Road, Armonk, NY 10504, USA, October 2001.

[HRLF06] Clemens Holzmann, Stefan Resmerita, Michael H. Leitner, and Alois Ferscha.
A paradigm for orientation-based universal remote control. In Proceedings
of the 3rd International Workshop on the Tangible Space Initiative (TSI
2006), in conjunction with Pervasive 2006, pages 425–432, Dublin, Ireland,
May 2006.

[HSK04] Mike Hazas, James Scott, and John Krumm. Location-aware computing
comes of age. IEEE Computer, 37(3):95–97, 2004.

[IHM03] Amar Isli, Volker Haarslev, and Ralf Möller. Combining cardinal direction
relations and relative orientation relations in qualitative spatial reasoning.
CoRR, cs.AI/0307048, 2003.

[IoD] National Imagery and Mapping Agency: Department of Defense. World
geodetic system 1984, its definition and relationships with local geodetic
systems, third edition, national geospatial-intelligence agency. http://earth-
info.nga.mil/GandG/publications/tr8350.2/ wgs84fin.pdf, last visited on De-
cember 12th, 2007.

[IU97] Hiroshi Ishii and Brygg Ullmer. Tangible bits: Towards seamless interfaces
between people, bits and atoms. In Proceedings of ACM CHI 97 Conference
on Human Factors in Computing Systems, volume 1 of PAPERS: Beyond
the Desktop, pages 234–241, 1997.

[JBL+06] Márk Jelasity, Özalp Babaoglu, Robert Laddaga, Radhika Nagpal, Franco
Zambonelli, Emin Gün Sirer, Hakima Chaouchi, and Mikhail I. Smirnov.
Interdisciplinary research: Roles for self-organization. IEEE Intelligent Sys-
tems, 21(2):50–58, 2006.

[JBo] JBoss.org. Drools 4.0 rules engine. http://labs.jboss.com, 2007.
[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.

IEEE Computer, 36(1):41–50, 2003.
[KE01] James Kennedy and Russell C. Eberhart. Swarm Intelligence. The Mor-

gan Kaufmann Series in Evolutionary Computation. Morgan Kaufmann, San
Francisco, CA, USA, March 2001.

[KKG05] Gerd Kortuem, Christian Kray, and Hans Gellersen. Sensing and visualizing
spatial relations of mobile devices. In 18th annual ACM Symposium on User
Interface Software and Technology, UIST 2005, Seattle, WA, USA, pages
93–102, New York, NY, USA, 2005. ACM Press.

[KLH02] Khomkrit Kaowthumrong, John Lebsack, and Richard Han. Automated se-
lection of the active device in interactive multi-device smart spaces. In In
Workshop at UbiComp’02: Supporting Spontaneous Interaction in Ubiquitous
Computing Settings, 2002.

References 429

[KS03] Christian Kray and Martin Strohbach. Gesture-based interface reconfigura-
tion. In Workshop ”AI in mobile systems” (AIMS 2003) at Ubicomp’03,
2003.

[Leo98] Ulf Leonhardt. Supporting Location-Awareness in Open Distributed Systems.
PhD thesis, Department of Computing, Imperial College, London, UK, may
1998.

[MDF05] Reinhard Moratz, Frank Dylla, and Lutz Frommberger. A relative orientation
algebra with adjustable granularity. In Workshop on Agents in Real-Time
and Dynamic Environments at IJCAI 2005, Edinburgh, Scotland, 2005.

[MMTZ06] Marco Mamei, Ronaldo Menezes, Robert Tolksdorf, and Franco Zambonelli.
Case studies for self-organization in computer science. Journal of Systems

Architecture, 2006. in press.
[Mor04] Reinhard Moratz. Qualitative spatial reasoning about oriented points. Tech-

nical Report SFB/TR 8 Report No. 003-10/2004, University of Bremen, Bre-
men, Germany, October 2004.

[MRW00] Reinhard Moratz, Jochen Renz, and Diedrich Wolter. Qualitative spatial rea-
soning about line segments. In Werner Horn, editor, 14th European Confer-
ence on Artificial Intelligence, ECAI 2000, Berlin, Germany, August 20-25,
2000, pages 234–238. IOS Press, 2000.

[MS01] Todd Miller and John Stasko. The infocanvas: information conveyance
through personalized, expressive art. In Proceedings of ACM CHI 2001
Conference on Human Factors in Computing Systems, volume 2 of Short
talks: expressing emotion through art, music, and technology (expressing
emotions), pages 305–306, 2001.

[MSER99] Alexandra Musto, Klaus Stein, Andreas Eisenkolb, and Thomas Röfer. Quali-
tative and quantitative representations of locomotion and their application in
robot navigation. In Thomas Dean, editor, IJCAI, pages 1067–1073. Morgan
Kaufmann, 1999.

[MTBF03] Reinhard Moratz, Thora Tenbrink, John A. Bateman, and Kerstin Fischer.
Spatial knowledge representation for human-robot interaction. In Spatial
Cognition III, Routes and Navigation, Human Memory and Learning, Spatial
Representation and Spatial Learning, volume 2685 of LNCS, pages 263–286.
Springer, 2003.

[MZ05] Marco Mamei and Franco Zambonelli. Spatial computing: the TOTA ap-
proach. In Özalp Babaoglu, Márk Jelasity, Alberto Montresor, Christof Fet-
zer, Stefano Leonardi, Aad P. A. van Moorsel, and Maarten van Steen, editors,
Self-star Properties in Complex Information Systems, volume 3460 of LNCS,
pages 307–324. Springer, 2005.

[Nfc] The near field communication forum. http://www.nfc-forum.org.
[Nor99] Donald A. Norman. Affordance, conventions, and design. Interactions,

6(3):38–43, 1999.
[PAW07] Trevor Pering, Yaw Anokwa, and Roy Want. Gesture connect: facilitating

tangible interaction with a flick of the wrist. In Brygg Ullmer and Albrecht
Schmidt, editors, Proceedings of the 1st International Conference on Tangible
and Embedded Interaction 2007, Baton Rouge, Louisiana, USA, pages 259–
262. ACM, 2007.

[PLF+01] Shankar Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan, and Terry
Winograd. ICrafter: A service framework for ubiquitous computing environ-
ments. In Gregory D. Abowd, Barry Brumitt, and Steven A. Shafer, editors,
Ubicomp, volume 2201 of Lecture Notes in Computer Science, pages 56–75.
Springer, 2001.

[RCC92] David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic based
on regions and connection. In Bernhard Nebel, Charles Rich, and William
Swartout, editors, 3rd International Conference on Principles of Knowledge

430 Alois Ferscha

Representation and Reasoning, KR 1992, Cambridge, Massachusetts, USA,
October 25-29, 1992, pages 165–176. Morgan Kaufmann, 1992.

[Rek96] Jun Rekimoto. Tilting operations for small screen interfaces. In Proceedings
of the ACM Symposium on User Interface Software and Technology, Papers:
Interaction Techniques (TechNote), pages 167–168, 1996.

[RM04] Jochen Renz and Debasis Mitra. Qualitative direction calculi with arbitrary
granularity. In 8th Pacific Rim International Conference on Artificial Intel-
ligence, PRICAI 2004, Auckland, New Zealand, August 9-13, 2004, volume
3157 of LNCS, pages 65–74. Springer, 2004.

[RS00] Jun Rekimoto and Eduardo Sciammarella. Toolstone: Effective use of the
physical manipulation vocabularies of input devices. In Proceedings of the

ACM Symposium on User Interface Software and Technology, Sensing User
Activity, pages 109–117, 2000.

[SFH+03a] Giovanna Di Marzo Serugendo, Noria Foukia, Salima Hassas, Anthony Kara-
georgos, Soraya Kouadri Mostéfaoui, Omer F. Rana, Mihaela Ulieru, Paul
Valckenaers, and Chris van Aart. Self-organisation: Paradigms and applica-
tions. In Engineering Self-Organising Systems, volume 2977 of LNCS, pages
1–19. Springer, 2003.

[SFH+03b] Giovanna Di Marzo Serugendo, Noria Foukia, Salima Hassas, Anthony Kara-
georgos, Soraya Kouadri Mostéfaoui, Omer F. Rana, Mihaela Ulieru, Paul
Valckenaers, and Chris van Aart. Self-organisation: Paradigms and applica-
tions. In 1st International Workshop on Engineering Self-Organising Ap-
plications, ESOA 2003, Workshop at AAMAS 2003, Melbourne, Australia,
July 15, 2003, volume 2977 of LNCS, pages 1–19. Springer, 2003.

[SG07] Eric Schweikardt and Mark D. Gross. A brief survey of distributed computa-
tional toys. In Tak-Wai Chan, Ana Paiva, David Williamson Shaffer, Kinshuk,
and Jie-Chi Yang, editors, DIGITEL, pages 57–64. IEEE Computer Society,
2007.

[Ten05] Thora Tenbrink. Semantics and application of spatial dimensional terms in
english and german. Technical Report SFB/TR 8 Report No. 004-03/2005,
University of Bremen, Bremen, Germany, March 2005.

[UI00] Brygg Ullmer and Hiroshi Ishii. Emerging frameworks for tangible user in-
terfaces. IBM Systems Journal, 39(3&4):915, 2000.

[Upn] Universal plug and play. http://www.upnp.org.
[VKP+03] Pasi Välkkynen, Ilkka Korhonen, Johan Plomp, Timo Tuomisto, Luc

Cluimans, Heikki Ailisto, and Heikki Seppä. A user interaction paradigm
for physical browsing and near-object control based on tags. In Proceedings
of Physical Interaction Workshop on Real World User Interfaces, in the Mo-
bile HCI Conference 2003, Udine, IT, pages 31–34, 2003.

[VL07] Jose Ramon Rios Viqueira and Nikos A. Lorentzos. SQL extension for spatio-
temporal data. International Journal on Very Large Data Bases (VLDB),
16(2):179–200, 2007.

[VZT05] Gregg Vanderheiden, Gottfried Zimmermann, and Shari Trewin. Interface
sockets, remote consoles, and natural language agents: A v2 urc standards
whitepaper. White paper, URC Consortium, February 2005.

[Wal99] J. Waldo. The jini architecture for network-centric computing. Communica-
tions of the ACM, 42(7):76–82, July 1999.

[Wan04] Yingxu Wang. On autonomous computing and cognitive processes. In 3rd

International Conference on Cognitive Informatics, ICCI’04, August 16-17,
2004, pages 3–4. Theoretical and Empirical Software Engineering Research
Center, Dept. of Electrical & Computer Engineering, University of Calgary,
2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4, IEEE CS
Press, 2004.

References 431

[WFDW07] Jan Oliver Wallgrün, Lutz Frommberger, Frank Dylla, and Diedrich Wolter.
SparQ user manual v0.7. Technical report, University of Bremen, Bremen,
Germany, July 2007.

[Wif] The wireless fidelity alliance. http://www.wi-fi.org.
[ZGMT04] Franco Zambonelli, Marie Pierre Gleizes, Marco Mamei, and Robert Tolks-

dorf. Spray computers: Frontiers of self-organization for pervasive computing.
In 13th IEEE International Workshops on Enabling Technologies, WETICE
2004, Modena, Italy, June 14-16, 2004, pages 403–408. IEEE CS Press, 2004.

[Zig] The zigbee alliance. http://www.zigbee.org.
[ZM04] Franco Zambonelli and Marco Mamei. Spatial computing: An emerging

paradigm for autonomic computing and communication. In 1st International

IFIP Workshop on Autonomic Communication, WAC 2004, Berlin, Ger-
many, October 18-19, 2004, volume 3457 of LNCS, pages 44–57. Springer,
2004.

Chapter IX

Interactive Displays and Next-Generation

Interfaces

Michael Haller

Peter Brandl, Christoph Richter, Jakob Leitner, Thomas Seifried,

Adam Gokcezade, Daniel Leithinger

Until recently, the limitations of display and interface technologies have re-
stricted the potential for human interaction and collaboration with comput-
ers. For example, desktop computer style interfaces have not translated well
to mobile devices and static display technologies tend to leave the user one
step removed from interacting with content. However, the emergence of inter-
active whiteboards has pointed to new possibilities for using display technol-
ogy for interaction and collaboration. A range of emerging technologies and
applications could enable more natural and human centred interfaces so that
interacting with computers and content becomes more intuitive. This will be
important as computing moves from the desktop to be embedded in objects,
devices and locations around us and as our desktop and data are no longer
device dependent but follow us across multiple platforms and locations.

In face-to-face meetings, people share a wide range of verbal and non-
verbal cues in an attempt to communicate clearly. In a business meeting, for
example, people often collaborate around a table. The space between them
is typically used for sharing communication cues such as gaze, gesture and
non-verbal behaviors, and sometimes for interacting with real objects on the
table, such as papers and models. There is free and easy interchange of ideas
and natural communication. As displays become available in our everyday
surroundings, co-located collaborators will more easily be able to access their
digital information and media during their social and work exchanges. Fur-
thermore, as our local and remote devices become increasingly able to com-
municate amongst each other, collaborators can more readily share personal
data, or include remote colleagues in their discussions.

A key activity that often occurs during these collaborative exchanges, and
one that is not well supported with current computing environments, is brain-
storming. Technology is often abandoned for traditional media (e.g. notepads,
whiteboards, flipcharts, and napkins) during collaborative brainstorming ses-

434 Michael Haller et al.

 !"#$%& !"#'&

()*+& ,$-.).'&

(%/01.21/!&&

34$/5$/2&

6$01.21/!&

34$/5$/2&

7%.5$/2&$/&

2.%"8&

7%.5$/2&&

)9%/1&

:.)$/;

<!%.=$/2&

Figure 1 Brainstorming happens in many different environments. Thus, we need
tools that are embedded in convenient, everyday furniture such as tables,
walls, armrests etc.

sions. While this practice is not ideal in co-located environments (as someone
often must later translate the results into digital format), using traditional
media also restricts contributions from remote colleagues. Future collabora-
tion environments will provide opportunities to access and manipulate data
both locally and remotely, enabling substantive contributions from even ge-
ographically distributed team members (see Figure 1).

The increasing number of videos of multi-touch surfaces available on
YouTube, show that users’ expectations about using these devices in their
daily lives have increased. The reaction to these natural interface implemen-
tations has been very positive. This is because people are still interested in a
simpler way of navigating information and content where the computer inter-
face is not a barrier, but enables them to accomplish tasks more quickly and
easily. Multiple metaphors and interaction paradigms using pen, touch, and
visual recognition are coming together with the other elements to create a
new experience. In education, intuitive interfaces lower the barriers to using
IT, allow for a better understanding of complex content and enhance oppor-
tunities for collaboration. In the near future it is likely that emerging display

IX Interactive Displays and Next-Generation Interfaces 435

technologies such as electronic paper and OLED (Organic Light-Emitting
Diode) screens will be delivered on flexible substrates. This will enable bend-
able/rollable displays that can be made larger than the dimension of the
mobile device they are used with. E-paper could also enable inexpensive,
very large digital displays to be incorporated into walls and other surfaces
more widely. Speech recognition, gesture recognition, haptics, machine vision
and even brain control are all improving rapidly to support more natural
interactions with these new display technologies. This article concentrates
on developments in different multi-touch surfaces and related applications. It
also describes particular challenges and solutions for the design of tabletop
and interactive wall environments and presents possible solutions for class-
rooms.

With the increasing development of interactive walls, interactive tables,
and multi-touch devices, both companies and academics are evaluating their
potential for wider use. We see that display technology is not just improving
in quality, but also in the way that we interact with large surfaces. These
newly emerging form factors require novel human-computer interaction tech-
niques. Although movies such as Minority Report and The Island popularized
the idea of futuristic, off-the-desktop gesture-based human-computer inter-
action and direct manipulation-based interfaces, in reality, making these in-
terfaces is still a challenge. Conventional metaphors and underlying interface
infrastructures for single-user desktop systems have been traditionally geared
towards single mouse and keyboard-based WIMP (Windows, Icons, Menus
and Pointing) interface design. However, a table/wall setting provides a large
interactive visual surface for groups to interact together. It encourages col-
laboration and coordination, as well as simultaneous and parallel problem
solving among multiple users and therefore needs new kinds of interface.

Interactive Surfaces 1

In late 1988, Xerox PARC developed the Live-Board, the first blackboard-
sized touch-sensitive screen capable of displaying an image. Many in educa-
tion will now be familiar with the interactive whiteboard. SMART Technolo-
gies Inc.1 introduced its first interactive whiteboard SMARTBoard in 1991.
The tracking is based on the DViT (Digital Vision Touch) technology and
uses small cameras mounted in each of the four corners of the panel to track
the user input. The system is mainly designed to be used with pens, but it
can also track finger touches. A great number of digital whiteboards have
also been sold to universities and educational institutions.

1 http://www.smarttech.com

436 Michael Haller et al.

A similar technology is the touch frame provided by NextWindow2. Again,
embedded cameras track up to two points at the same time. The MIMIO3

and eBeam4 ultrasonic tracking devices, where participants use special styli,
are a good and cheap alternative tracking surface. However, they are limited
in their range, and line-of-sight restrictions reduce the tracking performance.

More recently, touch interfaces have been able to respond to multiple
touches and gestures, increasing the possibilities for interaction and for mul-
tiple users to collaborate. Interactive tables, for example, have begun to move
from prototype to product and combine the benefits of a traditional table with
all the functionalities of a digital computer. Although interactive tabletop
environments are becoming increasingly common (see for example Diamond-
Touch from Mitsubishi Electric Research Laboratories (MERL), Surface from
Microsoft), there are few applications which fully show their potential. One
area where they could be expected to be very useful is in supporting creative
collaboration. In the creative process, people often sketch their ideas on large
tables. A digital tabletop set-up could therefore provide an ideal interface
for supporting computer-based collaboration. To better understand the de-
sign requirements for interactive displays in a business setting, we carried out
an exploratory field study at Voestalpine, an Austrian steel company, which
wants to use a tabletop surface for brainstorming sessions. We found the fol-
lowing design recommendations for an interactive, large vertical/horizontal
display:� multi-point interaction and identification,� robust tracking under non-optimal conditions,� hardware robustness,� physical objects should not interfere,� user can interact directly with the system,� reasonable latency, and� inexpensive to manufacture.

Related projects have demonstrated the possibilities of digital tabletops
in different scenarios. These approaches vary in the enabling technologies as
well as the applications that are implemented for these surfaces.

1.1 DiamondTouch

Up to four users can sit on special chairs around the DiamondTouch table
interface developed at MERL [DL01]. The sensing technology behind Dia-
mondTouch is an XY pair of antenna arrays embedded in the surface of the

2 http://www.nextwindow.com
3 http://www.mimio.com
4 http://www.e-beam.com

IX Interactive Displays and Next-Generation Interfaces 437

table. Each user sits in a wired chair that broadcasts a unique radio signal.
These signals are capacitively coupled through the user’s body and into the
antenna array whenever touches occur. Since each user sits in a different
chair, the table is able to distinguish touches among the users.

The DiamondTouch Table. Based on an array of antennas embedded in
the touch surface, the DiamondTouch can detect up to four different
users simultaneously.

Figure 2

The DiamondTouch is not only able to track multiple touches, but also able
to identify different users (we can therefore call the system a multi-person
system). The digital content is always projected onto the table’s surface.
Another advantage of this table is the fact that additional objects placed on
the surface do not interfere with the system. The interpolated resolution of
the DiamondTouch is 2736×2048 points (with a physical screen size of 42
inches) and the table can read out tracking information with a refresh rate of
30Hz. A similar set-up is presented by Rekimoto with the SmartSkin project,
where he uses a mesh-shaped sensor grid to determine the hand position.

438 Michael Haller et al.

Figure 3 The Microsoft Surface. All pictures are sent to the table’s surface, once
the Wi-Fi-based camera is put on the table. Alternatively, RFID tags on
the devices can help for tracking devices on an interactive large surface.

1.2 Microsoft’s Surface

More recently, Microsoft presented the Surface table5. The system enables in-
teraction with digital content through natural gestures, touches and physical
objects. The Surface can track up to 40 simultaneous touches. In contrast to
the DiamondTouch, the Surface is based on an optical tracking set-up, where
five embedded infra-red cameras track the entire table (the current proto-
types have a screen size of 30 inches). A special rear-projection surface and
an embedded projector allow an optimal image. With the special projector,
the engineers developed a relative low-sized table with a maximum height
of 56cm. The Microsoft team demonstrates the table’s advantages with ef-
fective demonstrations developed for Sheraton Hotels, Harrah’s Casinos, and
T-Mobile. In the photo-sharing application, for instance, friends can put their
WiFi digital camera on the table and share their photos in a very natural
way.

An alternative is to recognize and pair a device with RFID (Radio-
Frequency Identification) tags or NFC (Near Field Communication). In this
case, the table includes RFID readers which in combination with RFID tagged
objects can be used to save and load different content. NFC allows devices

5 http://www.surface.com

IX Interactive Displays and Next-Generation Interfaces 439

to set up a link when brought together in close proximity. It is primarily
designed to be used on mobile phones. The content, however, has still to be
sent over Bluetooth or another suitable link), since the NFC technology is
not designed to transfer large amounts of data. RFID/NFC is likely to be
included in increasing numbers of mobile phones and other devices, so in the
future it may be possible for a user to have content from a mobile device
appear on a large screen just by bringing their device within close range of
the display.

Other Interactive Tables 1.3

Similar to the Microsoft Surface, the LumiSight table captures the objects on
the table using cameras and a projector mounted inside the table [MIO+04].
The InteracTable, a single-user system, allows interaction using a stylus. In
contrast to related research, this system is based on a plasma display. The
DViT cameras mounted in each of the four corners of the table track the
users’ input. The lens of each camera has an approximately 90◦ field of view.
The current version allows two simultaneous touches. Similar to the Microsoft
Surface, people cannot place any physical objects (a coffee mug, for exam-
ple) on the surface without achieving un-wanted touches. Stanford’s iRoom
table, an interface mainly designed for brainstorming discussion in schools,
is another example, which is also based on the DViT tracking with multiple
DViT frames.

One of the first larger tabletop setups has been presented by Ullmer and
Ishii [UI97]. In their installation, they implemented a set-up for engineers dis-
cussing urban planning. The system supports multi-layering of 2D sketches,
drawings and maps in combination with 3D physical (tangible) objects, and is
primarily designed for group sizes up to 10 people. The setup consists of two
projectors hanging from the ceiling. Two cameras (also mounted above the
setup) capture all the users’ activities. Finally, Han [Han05] demonstrated
an impressive scalable multi-touch interaction surface that takes advantage
of frustrated total internal reflection (FTIR), a technique used in biometric
applications such as fingerprint scanning. When light encounters the inter-
face to a medium with a lower index of refraction, the light becomes refracted
and beyond a certain angle, it undergoes total internal reflection. In contrast,
another object (such as a finger) at the interface can frustrate this total in-
ternal reflection, causing a visible blob on the backface of the surface. This
tracking system is highly scalable and very accurate—even under different
lighting conditions.

As seen in this section, many companies and research laboratories are
working on interactive tables, since they combine the advantages of a tradi-

440 Michael Haller et al.

tional table (face-to-face communication) with the advantages of a computer
(easy archiving of data, and sharing of content for example).

1.4 Digital Pens

Pens have been used as tools for interacting with horizontal as well as vertical
digital surfaces in various research projects. The affordances of a pen make
it a suitable input device for tasks like writing or sketching. Users are well
practiced with traditional pen use, and can easily translate their knowledge
to the digital surface with minimal cognitive impact. Moreover, pens provide
a precise tool for pointing and can further include extensions like buttons or
pressure sensors.

Figure 4 The Anoto digital pen.

The Swedish company Anoto6 developed the Digital Pen and Paper tech-
nology. The main tool for interaction is a pen with a small infrared camera in-
tegrated in the tip that derives the pen’s position on a unique high-resolution
dot pattern. Figure 4 depicts the components of the Anoto digital pen. The
Anoto pattern consists of tiny dots that are slightly displaced from a regu-
lar grid. By setting the dots with offsets in horizontal and vertical position
from the grid, each dot encodes two bit of information. The combination of

6 www.anoto.com

IX Interactive Displays and Next-Generation Interfaces 441

several dots makes a unique sequence that defines the position on the paper.
To enable stable tracking, the digital pen has to see at least an collection of
six by six dots. In practice, the camera in the pen’s tip manages to see this
minimum 36 points with a high frequency (70Hz). Once the dots are recog-
nized, the pen not only sends its coordinates, but also additional information
about the current page ID and a pressure level.

(a) (b)

Anoto pens are available in two versions: a USB only version (a) and a
Bluetooth streaming version (b).

Figure 5

The Anoto digital pens are available in two different types: a USB and a
Bluetooth streaming version. Figure 5 shows the two different versions of data
transfer from the Anoto pen to the PC. The USB pen, which is commonly
used for storing a digital copy of ones handwriting, can only be synchronized
with the PC when placed in a docking station. Once the pen is connected to
the PC via the docking station, all stored data from the pen is transmitted
in a single step. Afterwards, the memory in the pen is emptied. The second
version of Anoto pen not only stores handwriting in the pen, but also allow
one to stream data in real-time over Bluetooth to the PC. With this streaming
input, the user can get feedback from the PC in real-time. Moreover, this real-
time streaming makes the Anoto technology suitable for direct interaction on
large digital surfaces. Currently, three commercial pens with Bluetooth are
available from Nokia (SU-1B), Logitech (io-2), and Anoto (PenIT).

Design Challenges 2

In order to gain a better understanding of the requirements and potentials
for interactive workspaces that arise from real meeting and workshop situ-
ations, an explorative field study at a big Austrian steel company has been

442 Michael Haller et al.

carried out in fall 2005. The field study has been focused on the collabora-
tive interactions between the participants and how these are mediated by the
documents and tools used as well as the physical setup of the meeting room
itself. The field study included six meetings and workshops of the company’s
IT-service division with internal and external customers. The meetings took
between 1 and 3 hours and covered topics such as business process modeling,
requirements specification, evaluation of mock-ups, and project coordination.
Both participants and locations varied across the meetings. Data collection
included the notes taken manually during non-participant observation in the
meetings as well as qualitative interviews with the chairs before and after the
meetings. In order to structure the data collection and allow for comparison
across the meetings a self-devised protocol was used. The protocol draws on
cultural-historical activity theory (e.g. [Eng99, BCT95]) and provides a set
of questions aimed to identify

1. core activities addressed in the meeting,
2. relevant stakeholders and communities as well as
3. actors involved,
4. rules and values guiding the interaction,
5. specific actions performed,
6. the artifacts and tools used,
7. physical properties of the meeting venue as well as
8. problems and breakdowns occurring in the meeting.

Based on the data collected a set of preliminary design challenges was formu-
lated. Afterwards the outcomes were validated against the judgment of the
meeting chairs as well as prior research on synchronous collaboration.

The following section provides a synopsis of the design challenges that
emerged from our analysis. A brief description of the design challenge itself
is given, and the resulting requirements for the design of interactive spaces
and collaborative tabletop devices are outlined.

2.1 Interactive Spaces

Interactive rooms incorporate different digital surfaces such as tabletops, dig-
ital walls and portable devices in a single space to facilitate work processes
[SGH+99, JFW02]. However, the design of such a room and the according
applications can hardly accommodate the requirements posed by the huge
variety of collaborative work activities. For instance, a workspace for pre-
sentations and customer meetings will pose different demands on the system
than a creative brainstorming session. Considerations about the room design
must involve various situation specific aspects such as work group size, group
characteristics, required tools or used media during the meeting.

IX Interactive Displays and Next-Generation Interfaces 443

Multiplicity and Heterogeneity of Tasks

Even though workshops and meetings are usually focused on a limited set of
topics, they regularly encompass a multiplicity of heterogeneous tasks. For
example one and the same session might entail phases of presenting, brain-
storming, decision-making, collaborative modeling, and planning. As each of
these tasks requires different types of collaborative behavior, a meeting room
has to be adaptable according to the changing needs. While during a presen-
tation it might be useful that the presenter can guide the participants through
a set of documents other tasks such as collaborative modeling might require
active contribution to the development of a shared artifact by all participants.
The change from one task to another often occurs spontaneously based on
the situational demands emerging in the meeting. Consequently, interactive
spaces and collaborative tabletop devices for meetings and workshops have
to account for the diversity of tasks at hand. Input and output devices should
be selectable on demand and there need to be seamless mechanisms for floor
and access control. Furthermore, it has to be possible to switch between dif-
ferent tasks, and to save the current system status to come back to a task
later on.

Integration of Individual and Shared Spaces

Most collaborative tasks also include subtasks to be carried out by the differ-
ent participants in parallel [JK01]. Accordingly, all participants have to have
access not only to a shared but also to an individual workspace where they
can create and store their own documents. In order to integrate individual
and collective activities a smooth transition between individual and shared
spaces has to be ensured while the integrity of the personal workspace must
be ensured. For example, the notes taken might not be intended for the eyes
of the other participants. The use of multiple documents renders the coordi-
nation of activities more difficult. In order to prevent misunderstandings it
is important to support natural pointing gestures and direct manipulation of
objects [WCFB06].

Fostering the Creation of Shared Documents

Shared documents play a fundamental role in collaborative working environ-
ments as they foster the creation of a shared understanding, support the coor-
dination of activities and provide a shared memory for the group [Sch01]. The

444 Michael Haller et al.

creation of shared documents also fosters the objectification of thoughts and
ideas, a process highly relevant for creative and constructional tasks [Hac02].
Therefore, an interactive workspace also has also to provide means to create
and manipulate shared documents collectively. In order to foster the joint
creation of documents concurrent document manipulation should be enabled
and documents should be readable by all attendees simultaneously.

Multiple and Interrelated Documents

The set of documents used in professional workshops and meetings are often
quite extensive and heterogeneous in nature. For example software mock-
ups, requirements specifications and business process models might be used
in parallel. In addition these documents are often highly interrelated and
relevant information is often spread across the various resources. The use of
multiple and interrelated documents requires interaction metaphors that al-
low for easy navigation across documents. Furthermore, the relation between
documents should also be visible to ease orientation [WCFB06].

Integration into Overarching Activities

Meetings and workshops usually do not constitute an end in itself, but are
part of more overarching activities such as project work, or other ongoing
work processes. Hence, it is important that meeting attendees can easily
access previous information and store the results of the meeting for further
processing. The access to one’s own information is especially relevant when
different organizations are attending a meeting.

2.2 Interactive Tabletops

The horizontal layout of a table along with the possibility of multi-user in-
teraction requires new concepts that have been researched under a variety of
different perspectives. Assuming that the hardware supports interaction with
the table’s surface, the main attention has been focused on the application
design for digital tabletops. The following summary shall provide an overview
of the most important features and related published approaches.

IX Interactive Displays and Next-Generation Interfaces 445

Shared Input and Display Surface

As related work on interactive tabletops has shown, it is possible to use
standard Windows applications on a horizontal surface [ER06]. But such an
approach will never explore the full functionality of a tabletop, since the in-
put is restricted to a single cursor and the output is tailored for viewing from
only one distinct orientation. In an interactive tabletop setup, multiple users
expect to interact simultaneously without restricting their workflow to turn
taking. Studies about traditional tables and the interaction of groups around
them have shown that table surfaces encourage people to use physical objects
simultaneously [Tan91, Sco05, KCSG03]. This behavior must be supported by
the design of a digital tabletop by providing mechanisms that allow for con-
current input. With a horizontal surface, people tend to develop new forms
of collaboration and communication when working with applications that are
tailored for this kind of surface [RHBL04]. The DiamondSpin tabletop group-
ware [SVFR04], for example, supports the development of such applications
for tabletops. Among others, it provides a feature to replicate the system
menu for each user at the table and place it at an appropriate position on
the surface. Projects like the Personal Digital Historian [VLS02, SLM+01]
and the UbiTable [SER03] show implementations based on the DiamondSpin
toolkit with different duplicated personal menu layouts. The menus provide
the tools for multiple users to interact with the table. This process also in-
volves the digital artifacts that are manipulated by the group. Since multiple
users work simultaneously, the concurrent access of objects must be handled.
The DiamondSpin groupware allows for this collaborative interaction so that
users can manipulate objects and enlarge them to gain shared access. A differ-
ent approach has been explored for the InteracTable within the i-Land project
[SGH+99]. Their table is based on the BEACH software [Tan04, SPMT+02],
which allows for the making of copies of an object for each user and further
manipulating the object through these references.

In contrast to the collaborative manipulation of objects on the shared
surface, hand-over techniques have been investigated for tabletops. In such
applications, only one user has the right to work with an object. To grant
access for other users, the object must be passed on. Four different hand-over
strategies have been explored with the release, relocate, resize, and reorient
techniques [RRS+04]. All four techniques suffer from the strong dependency
of the hand-over action on the user currently owning the object. Without the
action initiated by the owner, any other user that hinders a fluid interaction
in a group cannot access the object.

446 Michael Haller et al.

Use of Space and Accessibility

The use of space during collaborative sessions is shaped by several partially
competing factors. The access to and manipulation of objects requires them
to be in reach of the meeting attendees [TT06]. Accordingly, collaboration
around a tabletop device requires the attendees to be relatively close to each
other. At the same time, this vicinity is at least partially at odds with so-
cial norms in professional settings where distance can demonstrate respect
for each other’s privacy and interests. Furthermore, having direct access to
a document or input device often provides an essential prerequisite for ac-
tive participation but also for control over the situation. As a consequence,
the meeting attendees should be able to regulate their distance but also the
access to documents and input devices on demand. As Scott’s studies on
territoriality in collaborative tabletop workspaces suggest, the management
of data on the table leads to the effect of partitioning in the user’s personal
space [Sco05]. This observation has influenced the implementation of sepa-
rated workspaces for digital tabletops. DiamondSpin, for example, allows for
the creation of personal and public spaces that are visually demarcated in the
application. But Scott noticed that visible boundaries of the workspace might
have a negative effect on the territorial behavior on a tabletop. Moreover, our
field study revealed, that in traditional meeting-rooms a significant propor-
tion of the tabletop is covered by objects irrelevant to the task at hand, such
as additional documents, beverages, day-timers or mobile phones. In order to
reduce the amount of unused documents on the tabletop attendees should be
able to easily store, search, and retrieve the digital artifacts currently unused.

Orientation of User Interface Elements

With a table setup, people will naturally sit or stand around the table. Once
people sit at different sides around the table, individual views onto the surface
vary, creating the problem of orientation of visuals on the table’s surface. This
is the reason why traditional Windows interfaces cannot be simply ported
onto the table, because they rely on a distinct orientation. A lot of research
into the field of tabletops has been invested on this issue already [KCSG03,
Sco05, WB05, FSWB06, SVFR04, FS05, HCV+06].

Privacy

With a single large display that is visible to all users in the room, a lack
of privacy exists. There are possibilities to arrange the space of the surface
in a way that each user has at least a visual boundary of his workplace

IX Interactive Displays and Next-Generation Interfaces 447

[Mor06, Sco05]. But there are only a few prototypes that allow for real privacy.
The LumiSight table uses orientation dependent views on the surface, for
example [MIO+04]. On the other hand there is a natural constraint to work
in the proximity space of another user. This is supported by the work of
Scott [Sco05] who noticed that users avoid reaching into the personal space
of others.

Shadow and Occlusion Problems

Front-projected tabletop systems suffer from shadow and occlusion prob-
lems once a user reaches with his hand over the surface. But interestingly,
the assumed problems are not affirmed in practical tests. Consistent with
Ashdown’s observations of the Escritoire setup [Ash04], we found out that
shadow and occlusion problems turn out to have less effect than expected.
This is due to the fact that people are used to cast shadows in illuminated
rooms. They are not surprised if the same happens while interacting with a
front-projected table. Moreover, if they occlude information on the surface
with their hands, it is again a familiar effect that also appears with physical
objects.

Table Size and Group Size

When building a table for collaborative work, the physical size is of course an
important factor. The size of the table is related to the size of the group that
is expected to use the table for their work. Ryall et al. [RFSM04] conducted
an interesting experiment that gives valuable insights about the correlation of
table and group sizes. They identified three main effects: first, the table size
had no effect on the speed a task could be completed. Second, the group size
effected collaboration; smaller groups collaborated more strongly than larger
groups. Finally, they noticed that other users respected personal spaces so
that they did not reach into their proximity. This is in tune with the findings
reported from Scott [Sco05].

448 Michael Haller et al.

2.3 Digital Whiteboards

Due to the different physical orientation of horizontal and vertical surfaces,
the user’s perception of the workspace will vary. Hence the design parameters
from digital tabletops cannot be directly applied to wall displays.

Vertical vs. Horizontal Display

Rogers and Lindley [RL04] report about the effect of physical affordances of
an interactive workspace on the social interactions and collaborations. On
the tabletop, they observed that users would switch more roles, explore more
ideas and have a stronger perception of the other user’s actions. In contrast,
horizontal displays tend to disturb the collaboration aspect in groups as the
physical distance between the person at the whiteboard and the rest of the
group becomes larger. To compensate for this effect, we included a close
connection between the digital whiteboard and the digital tabletop in our
room design. For example, interaction with the digital whiteboard should be
possible while being seated at the table without the need to physically walk
to the whiteboard. To support this feature, the applications running on both
displays must have a technical connection on a protocol layer as well as tools
for the user to allow the transfer of data between them.

One Person as Presenter Role

Through the changes in collaboration between horizontal and vertical dis-
plays, the role of the users during a work session is altered. The fluid role
changing that Rogers and Lindley [RL04] observed on tabletops changed to
a “one person as presenter” situation when they used a digital whiteboard.
The same behavior of one person taking the lead and the others stepping
back was noticed by Russel et al. [RDS02].

Turn-Taking Behavior

Since most interactive whiteboard solutions are still designed for single person
usage [SMA03], turn taking is required in these environments. But looking at
the way people work with traditional whiteboards [Tan91] suggests that this
turn-taking behavior would not change even if the technology would support
multi-user interaction. This is again in tune with the findings of Rogers and
Lindley [RL04] who observed that it is generally difficult to notice what

IX Interactive Displays and Next-Generation Interfaces 449

other people are doing at the wall without stepping back. Moreover, people
felt uncomfortable working too close together at the wall display.

Tasks on the Whiteboard

A vertical display is well suited for presentation tasks as all viewers have
the same view on the displays. In contrast to a tabletop setup, there are
no rotational problems with a vertical display. Although the exact task will
depend on the context of the work group, there is a tendency towards using
the digital whiteboard for displaying information that is relevant for everyone
in the room. This is coherent with the role of a single person taking control
over the display instead of multiple persons working simultaneously. This
person is normally the presenter, which is also communicated through his
standing position in contrast to the sitting position of the users at the table.
If the whiteboard is used in a creative task together with an interactive table,
Rogers and Lindley [RL04] noticed that the connection of the person at the
whiteboard to the table group was disturbed. The whiteboard requires the
user to turn his back at the others while his body occludes parts of the display,
making it harder to follow his actions. To re-establish the connection to the
group, a specific effort was necessary. In a presentation situation, this might
be less of a problem, because everyone is paying attention to the presenter
instead of working on a different task simultaneously.

Design of the Whiteboard

Guimbretière [Gui02] describes in his work about large interactive walls that
they faced three major challenges when building a wall for brainstorming
sessions: First they had to find a command mechanism that allows for work-
ing with the wall with a minimum distraction from the task. Moreover, they
describe the need for a novel space management to support creative sessions
without the limitations of a conventional analogue whiteboard. And finally, a
digital whiteboard will only be accepted when the latency is minimized and
the user can experience fluid interaction. We found similar expectations from
our users in the partner company when we discussed the requirements for
the digital whiteboard. Since traditional whiteboards and flipcharts are fre-
quently used during meetings and discussions in this company, the standard
of a digital whiteboard should at least meet the known quality. Therefore,
ease-of-use and fast input processing were basic features for a successful im-
plementation of the whiteboard.

450 Michael Haller et al.

UI design

In contrast to the digital table, UI elements on the digital whiteboard are
closer to the traditional WIMP paradigm. With the vertical setup, there
is one specific orientation for the elements, so users face the display like
in a desktop computer situation. This is the reason why products like the
SMARTBoard7 offer WIMP style applications for their digital whiteboard.
Although rotation is not an issue for a vertical display, the placement of
UI elements is a key factor for the design. Unfortunately, the commercial
software solutions for interactive whiteboards are following a too traditional
WIMP implementation, which leads to obvious problems on large surfaces.
The top located task bar, for example, is hard to reach on a SMARTBoard,
and for smaller persons it may be even impossible to reach. The user interface
design has to account for the large size of the digital whiteboard, especially
in terms of reachability.

2.4 Input Devices

Digital Pens

To complement the design of the interactive room that includes a digital
tabletop and a digital whiteboard, we explored the potential of several input
devices. The aim was to incorporate a selection of input devices that enable
convenient interaction directly with the table and whiteboard as well as the
transfer of data between them. Our research focused on digital pens as the
primary input device for the tabletop and the whiteboard. In addition to the
pens we thought of direct touch as ancillary input for the interactive surfaces.

Tangible Palettes

Other types of input devices are tangible objects. Previous studies suggest
that tangible objects can enhance collaboration among groups, as the per-
ception of the others’ actions is naturally supported [RLH06]. Although these
studies have been based on tabletop setups, we thought of an extension to
our interactive room concept. As demonstrated by Streitz et al. [SGH+99] in
the i-Land project, tangible objects can also be used to transfer data between

7 http://www2.smarttech.com/st/de-DE/Products/SMART+Boards/

IX Interactive Displays and Next-Generation Interfaces 451

surfaces. They used wood blocks that could be recognized by every surface
and linked data to the blocks. Consequently, they could transfer data through
the physical placement of these blocks. In our concept, we designed tangible
palettes as control interfaces for the digital surfaces in the room. The func-
tionalities assigned to the palettes are shortcuts for frequently used actions
or tools that allow for a fluid interaction with the system. By defining the
number of available palettes, different parameters of the collaboration can be
influenced. First, if options are only available on a unique palette, a group
has to share that object which again leads to stronger collaboration. Second,
multiple palettes with the same function will require a distribution across the
table or the whole room with respect to the screen estate and reachability.
Compared to a digital menu, a hardware palette is a very natural control
object. It can be easily accessed and also removed on demand. Moreover, the
tangible aspect makes it easy to share and hand over.

Interactive Paper

A special kind of tangible device is paper. Despite the predictions of the
paperless office, we still see paper as part of many activities in office envi-
ronments. Sellen and Harper have explored the reason why paper has not
been replaced by digital systems until today in their book The Myth of the
Paperless Office [SH01]. They report about the concept of affordances, which
describes the activities that an object allows or affords. Using this concept,
they compare the affordances of paper to the digital world. Paper is tangi-
ble; it is easy to pick up and flip through the pages while getting a sense
of the length of a document. While navigating in a paper document, the
reader gets feedback about his location from the amount of pages already
seen and the ones still to be read. Paper can be tailored; it is easy to an-
notate a paper document, which can be done simultaneously to reading it.
It is a common practice to use a notebook for taking notes while reading in
another paper document [SGP98]. Furthermore, paper is spatially flexible;
it can be spread out and organized in a structure that suits our needs for a
specific task. We are able to read across multiple pages at the same time and
can further structure them to define a new order. Finally, paper has its own
affordances in collaborating groups. Because paper is a tangible object, the
actions performed with the paper are visible to the other group members.
The exact content of a user’s note on the paper may not be recognizable by
the others, but the action of taking a note is clearly visible. This affordance
especially makes paper a highly interesting tangible device in an interactive
room context. Referring to the proximities and orientations that people used
to establish personal and group spaces on tables [Tan91, KCSG03], paper
provides an ideal device through its affordances. The transition from per-
sonal to group space, for example, can be easily accomplished by putting a

452 Michael Haller et al.

paper document on the table’s surface. The action with the paper document
already informs the group about the intention and the social context.

Switching of Devices

Input devices like digital pens, tangible palettes and real paper serve as the
connection between the single digital surfaces in the room. One key factor
for the successful integration of the input devices is the fluidity of interaction
and consequently the effect on the work flows. A common approach is to asso-
ciate different input devices with different activities, like wireless keyboards
for text input and pointing devices for selecting and manipulating digital
objects [FJHW00, SLV+02, SGS+02]. However, switching between a variety
of different devices distracts the natural work flow because the attention is
focused on the handling of the devices instead of the process itself. Therefore,
a consistent integration of devices with a minimum of necessary switches is
desired. In our observations of work processes with our partner company, we
noticed that digital pen interaction allows for a great variety of different ac-
tions. Handwriting and free sketching are tasks that are well suited for the
affordances of digital pens. Moreover, a pen offers a highly accurate device
for precise pointing and selection tasks. User interfaces for digital pens can
be generally smaller than for direct touch, for example.

2.5 Discussion

The design challenges outlined before are not dissimilar from the guidelines
for interactive spaces and collaborative tabletop devices that can be found in
the literature. In fact, the design challenges can be mapped quite easily to
the guidelines put forward by [SGM03]. According to this guidelines, tabletop
displays for co-located collaborative work must support:

1. natural interpersonal interaction,
2. transitions between activities,
3. transitions between personal and group work,
4. transitions between tabletop collaboration and external work,
5. the use of physical objects,
6. accessing shared physical and digital objects,
7. flexible user arrangements, and
8. simultaneous user interactions.

The design challenges described here, nevertheless go beyond the existing
guidelines in that they put emphasis on the requirements that arise in pro-

IX Interactive Displays and Next-Generation Interfaces 453

fessional meeting and workshop situations. Towards that end the following
points appear to be particular noteworthy:� The development of interactive spaces and collaborative tabletop systems

cannot be reduced to the question of the most appropriate interface tech-
nology or interaction design, but inevitably has to take into account the
dynamics of the social activities to be supported. For example, moving
between activities is not only a question of the appropriate input device,
but also about the assignment of roles and the internal division of labor.� Collaborative activities are not always consensus oriented nor can it be
assumed that participants work towards the same objectives. Questions of
territory, access, and control over documents or input-devices, therefore
have direct bearing on the scope of actions of the various participants.� Finally, when used in support of professional meetings and workshops mul-
tiple types of mediation have to be taken into account simultaneously (see
[BR00]). This is to say that the creation and work with knowledge arti-
facts, the organization and coordination of the collaborative effort as well
as the shaping of the social relations among participants cannot be treated
in isolation. For example to allow for concurrent document manipulation
does not only affect the content of the document created, but also the work
processes as well as the relation among those involved in this exercise.

Design and Implementation of a Multi-Display
Environment for Collaboration

3

To gain a better understanding of how present meetings are held and how
our vision of an interactive room could improve collaboration, we observed
several meetings in one of our partner’s companies (see Section 2). Through
this approach, we collected valuable insights about the current situation and
further iteratively refine our designs and implications. Once we collected data
from the observations, we designed a prototype that addressed potential as-
pects of the workflows which were then tested in the company again. The
first setup of our interactive room is shown in Figure 6.

The interaction with the surfaces in this room is enabled through Anoto
technology (see Section 1.4). Since the pen tracking is relying on the special
dot pattern, a surface can be made interactive by overlaying it with a print-
out of this pattern. Our first demonstration, the Shared Design Space, was
accurate, fast, and highly scalable [HLL+06].

Figure 7 (a) depicts the top-projection table in combination with the Anoto
pen. The middle layer consists of the pattern, which is protected by a scratch
resistant Plexiglas, placed on the top of the surface. For the Plexiglas, a
maximum thickness of 3mm is recommended, since thicker layers on top of

454 Michael Haller et al.

Figure 6 The interactive room consisting of a digital tabletop, a digital whiteboard
and a presentation display.

the pattern interfere with the tracking. To prevent ink traces from the pens
on the Plexiglas, we exchanged the ballpoint pens with plastic stylus tips.

Alternatively, we also implemented a rear-projection solution for digital
tables and walls, see Figure 7 (b). Since the Anoto pen tracking technology is
designed to be used in combination with a special dot pattern that is printed
on traditional paper, materials that allow for rear-projections are not initially
supported. We faced this problem when we tried to print the dot pattern on
different surfaces such as transparent foils. The optimal base-material should
reflect the IR light that is emitted from the pen’s integrated IR-LED. For
the camera in the pen’s tip, the area appears as a bright surface with a high
contrast pattern on it. If the material is too transparent or too glossy, the
contrast between background material and dot pattern is not high enough to
ensure stable pen tracking. A transparent surface would not reflect enough
infrared light and therefore appear as a dark background with nearly invisible
black dots on it.

We found a solution that allows to apply Anoto pen tracking to large rear-
projected surfaces. The tracking is realized by using a large Anoto pattern
printed on a special rear-projection foil. This foil diffuses the illumination
from the rear LCD projector resulting in an image with no visible hotspots
at the front of the screen. Backlit foil is used in order to produce an image
with sufficient contrast for the embedded Anoto pen camera to recognize the
dot pattern. This provides translucency for projection while being opaque

IX Interactive Displays and Next-Generation Interfaces 455

(a) (b)

(c) (d)

The front-projected layer composition (a). Anoto pattern for a rear-
projected interactive surface (b). The three layers needed to track the
finger touches (c). In the final layer composition only the top layer is
relevant for the Anoto tracking (d).

Figure 7

enough to enable the Anoto IR-tracking. Figure 7 (top right) depicts the
final layer composition that provides good results for the pen tracking. The
dot pattern on the backlit foil is placed between two acrylic panels. The panel
in the back has a width of 6mm and guarantees a stable and robust surface
while the panel in the front has a width of only 0.8mm to protect the pattern
from scratches.

To augment the Anoto input tracking with the advantages of direct, multi-
touch interaction, we further extended the rear-projection layer composition.
For the touch tracking, we used an approach based on FTIR. Unfortunately,
a user must press hard on the surface to trigger the FTIR effect. The fric-
tion caused by dragging a finger on the surface, such as to perform a motion
gesture, can also decrease the FTIR effect. Therefore, we used an additional
layer (compliant surface layer) on top of the polycarbonate material to im-
prove the sensitivity of the surface. We use a thin layer of latex to provide
a soft, transparent compliant layer. Figures 7 (c, d) highlight the relevant

456 Michael Haller et al.

layers of our final composition. When pressure is applied on the surface, the
coupling of the diffuse top layer and the bottom polycarbonate surface trig-
gers the FTIR effect; this effect is intensified by the middle compliant surface
layer (c). The latex must be combined with the projection layer with an air
gap between the latex and the polycarbonate base plate. As shown in Fig-
ure 7 (d), the digital pen tracking is enabled through the dot pattern printed
on the top projection layer.

3.1 Design of an Interactive Table

Our goal was to integrate a table into the room in a way that traditional work
flows are supported with the possibility to use the additional features of a
digital system. The table should provide space for four people and it must
allow to place additional objects on the surface without interfering with the
application. It should be possible to turn the digital tabletop off and use it
like a normal table.

There are basically two different display-based hardware solutions that can
be used to build an interactive table: a front projected or a rear-projected
setup. LCD or plasma screen-based solutions as used by Streitz et al. for the
InteracTable [SGH+99] were not relevant in our case, because they were too
limiting in size and shape factors. Compared to a front-projected solution,
rear-projected setups are normally more restrictive in terms of materials that
can be used for the table’s surface. This is due to the fact that the surface must
be suitable for a projection with sufficient contrast and brightness qualities
while minimizing the effect of a visible hotspot. Moreover, a rear-projected
setup restricts the possible size of the table because the stability of the surface
is only guaranteed through the surrounding edges of the table’s frame. In a
front-projected setup, the projection surface can be placed on top of the
table, thus supporting the sturdiness over the whole surface area. The choice
of possible materials for a front-projected setup is broader compared to rear-
projected solutions; for example, a simple white surface already fulfills the
requirements. These considerations led us to the design of a front-projected
setup for our interactive table.

Through an additional requirements analysis with our company partner,
we identified another important feature that the table design had to address.
As the domain was focused on meetings, people would sit most of the time
around the table, with occasionally exceptions when someone walks to the
whiteboard or joins the side of another person. For a sitting position, however,
appropriate space for the feet under the table is very important, as staying
in an awkward position at the table for an extended period of time has a
negative impact on the user’s comfort. These ergonomic issues are supported

IX Interactive Displays and Next-Generation Interfaces 457

by a front projected setup, but they are hard to satisfy with a rear-projected
setup if users should be able to sit around the table.

The table is a modified product provided by the company Team 78, featur-
ing a 170×90cm large surface with digital pen interaction as primary input
technology. In order to allow users to interact with the table, we extended
the surface with a large Anoto pattern printout. This modification provides
a high accurate input solution for the tabletop with the additional advantage
of robustness and independence of environmental conditions. Moreover, the
digital pen solution offers an input device that is tailored for fast sketching
input and annotations. The modification of the table still allows to use it like
a traditional table, as there are no electronic parts integrated into the table.
Finally, the top projected setup enables users to sit in a comfortable position
with enough space for their feet under the table. To achieve a high resolution
projection on the tabletop, three projectors are mounted above the table.

Personal workspaces on top of a common shared space. Figure 8

In our interactive room context we implemented two different versions of
tabletop GUIs, one based on separated personal workspaces and another one
with a common shared space. For the first version the whole table served as
public space that was overlaid with multiple personal workspaces (see Fig-
ure 8). Each user could manipulate the layout of his personal workspace. By
clicking on an empty spot on the surface the workspace would appear at this

8 http://www.team7.at

458 Michael Haller et al.

position. Each workspace was uniquely assigned to a digital pen, thus each
user could configure his workspace independently. Options for manipulating
the workspace included resizing, rotating and showing/hiding. The workspace
was automatically rotated towards the nearest edge of the table seen from the
activation position. To exchange data between workspaces, the object had to
be placed in the public space where the other user could pick a copy of it.

Figure 9 Tabletop with one large common shared space.

Our second approach was based on a common shared space concept. With-
out the visible boundaries of personal workspaces, each user has the same
rights to work on the surface, to create, manipulate and share data. Without
the need to actively grant access to objects for other users, we expected the
workflows to be more fluid compared to the separated workspace version.
Figure 9 shows the tabletop with the shared public space across the whole
surface. Since the tabletop is equally shared by all users, the interaction is
influenced by the social protocol of the group. But previous studies showed
that the social protocol among users is not always sufficient on multi-user
tabletops [MRS+04]. Actions that effect the whole workspace, like changing
the view or clearing it for example, are critical if controls are replicated and
each user has the right to perform them. In this context we experimented
with tangible palettes that can physically restrict controls to a single user, if
there is only one palette available for a certain task. With this one copy it is
assured that only one person takes over the control. Moreover it is visible for
the group who is in charge of it and when it is used.

IX Interactive Displays and Next-Generation Interfaces 459

Tangible Palettes 3.2

The tangible palettes were also used to change the properties of the digital
pens for interacting with the tabletop [HBL+07].

Tangible palettes are used for changing pen properties such as color and
stroke width.

Figure 10

The palettes are based on the same Anoto technology that is integrated
into the table’s surface. The single color and stroke width areas of the palette
include the Anoto pattern in the background of the printout. The overlaid
graphics are the visible hint for the user to distinguish between different
functions that are invoked by the area. There is no interference of the graphics
with the tracking. Figure 10 shows the two palettes for picking different colors
and stroke widths on the tabletop.

460 Michael Haller et al.

3.3 An Adaptable Rear-Projection Digital Whiteboard

The digital whiteboard is installed as a replacement for the traditional paper
flip chart. The activities that are assigned to the digital whiteboard include
presenting and brainstorming. As shown in Figure 11, our display features a
novel combination of digital pen technology from Anoto with a rear-projected
setup [BHH+07]. Using the Anoto pen tracking, not only multi-user function-
ality is possible, but also the identification of each user.

Figure 11 The digital whiteboard combines Anoto pen tracking with a rear-
projected setup.

In our setup we used HP Colorlucent Backlit UV foil to generate the
pattern. The Backlit foil is mainly designed for rear illuminated signs so it
generates a diffuse light. Thus, no spotlights from the projectors are visible
at the front of the screen. Moreover, the rendering and the brightness of
the projected image is still of high quality. In our setup, we used one A0
sized pattern sheet (118.0cm×84.1cm). The pattern is clamped in-between
two acrylic panels. The panel in the back has a width of 6mm and guarantees
a stable and robust surface while the panel in the front has a width of only
0.8mm to protect the pattern from scratches. The front panel is made of a
special scratch resistant acrylic. We noticed that the acrylic cover in the front
does not diffract the Anoto pattern at all. However, using thicker front panels
(e.g. 4mm) produced bad tracking results.

IX Interactive Displays and Next-Generation Interfaces 461

Application for Collaborative Tasks 3.4

The room application is designed to support typical activities during a meet-
ing. The application features one large workspace that is organized in pages
across a session. A page represents the current work area that is accessible
for all users. Each page is treated as an infinite large work space which can
be controlled through the two functions Move() and Zoom(). With these con-
trols, the current view on the page can be either translated or scaled. As
shown in Figure 12, these functionalities provide the flexibility to create new
space if needed and to spatially organize data within the workspace. Since
the control of the current view changes the whole workspace, it affects all
users in a multi-user session. Therefore, the control over the view locks the
current workspace and can only be used by a single person exclusively. The
same exclusive control is used when when skipping pages or changing to the
page overview.

Controlling the view on the session. Original view (left), and zoomed in
view (right).

Figure 12

The main session control functions can be either used through the appro-
priate item in the user menu or by performing a simple gesture. The gesture
area inside the user menu allows for these shortcut navigation. Possible ges-
tures include stroke up (new page), stroke down (page overview), stroke left
(previous page) and stroke right (next page). The page overview provides a
collection of all pages of a current session. By clicking on a specific page the
session manager appropriately sets the view on it.

During a session, multiple users can work on the current page simulta-
neously. Each user has a menu that can be used to set custom parameters
for the interaction. Different colors and stroke widths are available to cus-
tomize the input. In addition to the tangible palettes, selections can be made
through the projected menu. The palettes provide shortcuts (as there is no

462 Michael Haller et al.

navigation in a menu necessary), but the same parameters can also be set
through the digital menu.

3.5 Occlusion-Aware Menu Design

Interaction with large direct digital surfaces is strongly influenced by physi-
cal restrictions. Reachability of items or occlusions through the user’s body
require novel design considerations for appropriate interfaces. As Apitz et al.
noticed for example, traditional menus are not very well adapted to direct
pen interaction. Menus that appear on the location where they are activated
seem to be a better choice for large interactive surfaces, where the input is
normally done with a pen or a direct finger touch. Circular context (or pie)
menus are a convenient solution, as they fulfill most of the requirements of
direct input on large displays. As described by Hopkins, pie menus pop up at
the users’ click location and due to their circular layout, the motion required
to make a selection is minimized.

Direct input on digital tabletops is strongly affected by the handedness
and the position of the user. Hancock et al. [HBS04] studied selection times
for pop-up menus with pen input and noticed that adapting to the user’s
handedness is necessary. Otherwise, either a left or right-handed user will be
discriminated, depending on the application settings. In their study, the au-
thors noticed a slower performance for occluded areas. These are mirrored for
left and right-handed users. This observation shows that occlusion is strongly
related to handedness and hand posture. Moreover, the study showed that
not occluded menus are better accepted by the users and can enhance per-
formance.

Based on these results, we designed a menu for direct input surfaces with
the key design criteria to avoid occlusions and to adapt the menu placement to
the user’s handedness and position on the tabletop. To address the occlusion
problem, we observed several users and noticed that the visibility of the menu
is mainly influenced by the occlusion caused by the user’s hand. Figure 13
shows the results of our observation. The mirror effect of occlusions for left
and right-handed participants is clearly visible.

Referring to a full 360◦ circle of possible item placements around an in-
vocation point, we found that 92◦ of the circle are occluded on average.
According to this result, we designed a menu with items placed only in areas
that are not occluded by the hand. Our design is inspired by the layout of
circular menus [Hop91]. The position of the menu is centered at the point of
activation (see Figure 14).

We propose to use the occluded area as part of an interactive area for
gesture input inside the menu. Our observations showed that occlusions are
not a problem in this case if the area can be recognized and the user knows

IX Interactive Displays and Next-Generation Interfaces 463

The visibility of each segment for left-handed and right-handed users
shows a mirror effect.

Figure 13

where he can start a gesture and which gestures he can use. The outer region
of the menu should be used for the items which can be accessed with a simple
point-and-click.

Users can perform gestures on the circular gesture area inside the menu. Figure 14

464 Michael Haller et al.

3.6 Bridging the Gap Between Real Printouts and
Digital Surfaces

Sketching ideas and taking notes is a basic task that is performed frequently
in the phase of preparing or during a meeting or presentation. For this reason,
tablet PCs have been used as a good alternative to notebooks, because they
allow an easy-to-use interface for sketching ideas. However, they are currently
too heavy and too big to be used in different environments (e.g. people still do
not like to use a tablet PC during a flight for making a quick note - instead,
they still prefer pencil and paper).

This is the reason why paper still has a lot of advantages: it is light-
weight, easy to navigate, people get a fast overview, it is easy to annotate,
it is socially well accepted, and it does not need any power. The usage of
real paper and digital information combines the advantages of paper and
additionally enhances them through the possibilities of the digital world.

The integration of real paper into our interactive room concept is support-
ing the rule to avoid frequent switching of input devices. Based on the Anoto
tracking technology, we could use the same digital pens to interact with our
digital surfaces as well as the paper interfaces. This allows for a very fluid
work process even with the integration of such different input sources as paper
and digital surfaces.

The benefits of paper for interaction in the room context are plentiful.
Firstly, paper supports the storage of written information on a page automat-
ically, with the additional advantage to easily archive pages. Secondly, paper
is lightweight and can be moved around the room and spread out to access an
overview of the content. It can be handled in different working positions like
sitting or standing. Depending on the placement of paper in relation to the
group, it can be used to define workspaces that support private, personal and
public boundaries. Previous research on tabletop setups has shown that users
are frequently transitioning between their private space and the group space
[EKHH+90, MO94]. With paper, this continual transition between the spaces
is a very natural process that happens by simply changing the arrangement
of paper documents. To transfer a document from a public position on the
table to a private view, the document can be simply picked up from the table,
restricting the group further seeing its content. Another advantage of paper
is the immediate feedback of written content without latency or resolution
problems. Digital systems that capture handwriting are commonly facing the
problem of input latency, which hampers the experience of fluid interaction.

Moreover, digital systems require switching between tools to support dif-
ferent activities such as writing, sketching or manipulating digital object,
whereas studies that focused on traditional tabletop work sessions showed
that people are frequently transitioning between writing and drawing with-
out making a distinction of their activities [Bly88, Tan91]. Sketching and
writing on paper is naturally supporting this work practice, as there is no

IX Interactive Displays and Next-Generation Interfaces 465

difference in the type of input. A sketch or a note is treated equally on a
sheet of paper. With paper as the input surface, interaction is not effected
by additional technology imposed overhead.

Motivated by the opportunities and challenges that paper could offer to-
gether with a digital environment, we investigated the potential of this com-
bination. We present a new paper-based interaction device which enables a
seamless usage of a digital pen for manipulating real printouts and for con-
trolling digital surfaces [BHOS08].

Pick-and-Drop

Similar to Rekimoto’s Pick-and-Drop metaphor with mobile devices [Rek97],
users can pick up data from a printed document and drop it on the inter-
active surface. Once in selection mode, each item of the printout becomes a
selectable content and can be transferred without losing quality - since we
transfer the raw data. In our scenario, users have to click with the pen on
the corresponding data of the real printout. By using the digital pen, we can
calculate the exact position and we can identify the according item. The data
gets transferred when clicking again on the digital surface (see Figure 15).

(a) (b)

Users can pick up content from the real printout (a) and drop it on the
digital surface (b).

Figure 15

466 Michael Haller et al.

Remote Control

Influenced by the ideas of PaperPoint [SN07], the real printout can also be
used as an alternative input device, where all sketched notes are sent to the
digital whiteboard in real-time over Bluetooth.

(a) (b)

Figure 16 Different possibilities for the additional interaction. We either support a
unique palette (a) or special ID cards where the additional functions are
printed on the backside of each card (b).

In addition, special printed control elements on the paper allow further
operation with the digital wall (e.g. adding a new page/changing the ink
color of the digital flipchart etc.). In our demonstration, we implemented
different possibilities for changing the ink properties (see Figure 16).

We tested our application by using a tangible tool palette, which was either
embedded in an acrylic palette (a), or by adding the functions on the back
of an ID card (b). In each scenario, we simply had to put the Anoto pattern
on the corresponding surface (e.g. embed it into acrylic, or to put it on the
backside of the ID card). Therefore, our solution is really cheap and does not
require any additional electronic sensors.

Sketch-and-Send

The first method allows to send a group of strokes on demand. The strokes are
transferred to the system in a single step and appear on the digital surface.
In this mode, the user has the control over the moment when the sketches
should be sent. The alternative way to send sketches to the system is via a
real-time streaming paper. In this case, the strokes show up on the digital
surface immediately. For example, this mode is useful for explanations that
require to develop a sketch in front of the group step by step. The group can

IX Interactive Displays and Next-Generation Interfaces 467

watch the digital representation of the sketches that the presenter draws on
his paper.

Our system supports additional annotations on the real printout that can
be performed with the real ink of the pen. The digital version of the ink can
be either visualized in real-time on the digital surface or stored on the pen’s
integrated memory. In both variations, all data that is entered with the pen
while in inking mode is processed in one or the other way.

Real-time streaming is useful for explanations that require to develop a
sketch in front of the group step by step, for example. The group can watch
the digital representation of the sketches that the presenter draws on his
paper. The data transfer is accomplished through Bluetooth streaming from
the Anoto pen to the server PC. Figure 17 shows an example where a user is
annotating with real ink on the paper document.

Annotations on the real printout are immediately visible on the digital
whiteboard.

Figure 17

Offering remote sketching in our system allows the participants of a meet-
ing to keep seated around a table and share their ideas by sketching with real
ink directly on a paper while the digital whiteboard acts as presentation area.
This means that the users have two possibilities: they can either sit at the
table and work on the digital whiteboard from their place; or they can stand
up, go to the flipchart but still make their comments on the paper, which
also automatically get transferred to the digital whiteboard. In both cases,
all sketched information is sent to the whiteboard in real-time, regardless of
the user’s location. In our system, multiple people (we tested the scenario

468 Michael Haller et al.

with 7 participants) can interact simultaneously - independently if they are
sitting or standing.

Working in offline mode, the sketched notes can be stored in the pen’s
integrated memory in advance and moved seamlessly to the whiteboard dur-
ing a presentation. People can sketch offline on the real paper, come to the
meeting and send all sketched data to the digital whiteboard. In this case,
the pen allows to store up to 70 full-written pages. This whole functionality
can of course also be used during a meeting to prepare sketches on the paper
without displaying them in real-time on the whiteboard; presenting it to the
audience can be done at any time later during the meeting.

4 Conclusions

Multi-touch and interactive surfaces are becoming more interesting, because
they allow a natural and intuitive interaction with the computer system.
These more intuitive and natural interfaces could help users to be more ac-
tively involved in working together with content and could also help improve
brainstorming activities. As these technologies develop, the barrier of having
to learn and work with traditional computer interfaces may diminish. It is
still unclear how fast these interfaces will become part of our daily life and
how long it will take for them to be used in workplaces and classrooms. We
also have sill only quite vague understanding of how these technologies will
change the way we work and learn together and which practices will actually
emerge. However, we strongly believe that the more intuitive the interface is,
the faster it will be accepted and used. There is a huge potential in these de-
vices, because they allow us to use digital technologies in a more human way.
We are just at the beginning of a new decade, where books can be displayed
on e-paper devices such as the Sony Reader.

On the other hand, we will still work with traditional interfaces including
paper. The integration of real notes, for example, in a digital environment
seems to be a very important motivation for people using these new tech-
nologies, since it combines the affordances of a traditional medium such as
paper with the capabilities of digital content and displays.

Acknowledgements

The presented projects are sponsored by the Austrian Science Fund FFG
(FHplus, contract no. 811407), voestalpine group-IT, Team 7, AMS Engi-
neering, and Nortel. The authors would like to express their gratitude to the

References 469

users who tested the implementation and all the team of the Media Interac-
tion Lab.

References

[Ash04] Mark S. D. Ashdown. Personal projected displays. Technical Report UCAM-
CL-TR-585, University of Cambridge, Computer Laboratory, March 2004.

[BCT95] S. Boedker, E. Christiansen, and M. Thüring. A conceptual toolbox for design-
ing cscw applications. In COOP ’95, International Workshop on the Design
of Cooperative Systems, pages 266–284, Juan-les-Pins, January 1995.

[BHH+07] Peter Brandl, Michael Haller, Michael Hurnaus, Verena Lugmayr, Juergen
Oberngruber, Claudia Oster, Christian Schafleitner, and Mark Billinghurst.
An adaptable rear-projection screen using digital pens and hand gestures. In
IEEE ICAT ‘07: Proceedings of the 17th International Conference on Artifi-
cial Reality and Telexistence, page 49–54, Washington, DC, USA, 2007. IEEE
Computer Society.

[BHOS08] Peter Brandl, Michael Haller, Juergen Oberngruber, and Christian Schafleit-
ner. Bridging the gap between real printouts and digital whiteboard. In AVI
‘08: Proceedings of the working conference on Advanced Visual Interfaces,

page 31–38, New York, NY, USA, 2008. ACM.
[Bly88] Sara A. Bly. A use of drawing surfaces in different collaborative settings. In

CSCW ’88: Proceedings of the 1988 ACM conference on Computer-supported
cooperative work, pages 250–256, New York, NY, USA, 1988. ACM.

[BR00] P. Beguin and P. Rabardel. Designing for instrument-mediated activity. Scan-
dinavian Journal of Information Systems, 12:173–190, 2000.

[DL01] Paul Dietz and Darren Leigh. Diamondtouch: a multi-user touch technology.
In UIST ’01: Proceedings of the 14th annual ACM symposium on User in-
terface software and technology, pages 219–226, New York, NY, USA, 2001.
ACM.

[EKHH+90] Mary Elwart-Keys, David Halonen, Marjorie Horton, Robert Kass, and Paul
Scott. User interface requirements for face to face groupware. In CHI ’90: Pro-
ceedings of the SIGCHI conference on Human factors in computing systems,
pages 295–301, New York, NY, USA, 1990. ACM.

[Eng99] Y. Engeström. Activity theory and individual and social transformation. In
Y. Engeström and R. Miettinen, editors, Perspectives on Activity Theory,
pages 19–38. Cambridge University Press, Cambridge, 1999.

[ER06] Alan Esenther and Kathy Ryall. Fluid dtmouse: better mouse support for
touch-based interactions. In AVI ’06: Proceedings of the working conference
on Advanced visual interfaces, pages 112–115, New York, NY, USA, 2006.
ACM.

[FJHW00] Armando Fox, Brad Johanson, Pat Hanrahan, and Terry Winograd. Inte-
grating information appliances into an interactive workspace. IEEE Comput.
Graph. Appl., 20(3):54–65, 2000.

[FS05] Clifton Forlines and Chia Shen. Dtlens: multi-user tabletop spatial data ex-
ploration. In UIST ’05: Proceedings of the 18th annual ACM symposium on
User interface software and technology, pages 119–122, New York, NY, USA,
2005. ACM.

[FSWB06] Clifton Forlines, Chia Shen, Daniel Wigdor, and Ravin Balakrishnan. Explor-
ing the effects of group size and display configuration on visual search. In

470 Michael Haller et al.

CSCW ’06: Proceedings of the 2006 20th anniversary conference on Com-
puter supported cooperative work, pages 11–20, New York, NY, USA, 2006.
ACM.

[Gui02] Francois Victor Guimbretière. Fluid interaction for high resolution wall-size
displays. PhD thesis, Stanford, CA, USA, 2002. Adviser-Terry Winograd.

[Hac02] W. Hacker. Konstruktives entwickeln: Psychologische grundlagen. In
W. Hacker, editor, Denken in der Produktentwicklung: Psychologische Un-
terstützung der frühen Phasen, pages 11–26. VDF, Zürich, 2002.

[Han05] Jefferson Y. Han. Low-cost multi-touch sensing through frustrated total inter-
nal reflection. In UIST ’05: Proceedings of the 18th annual ACM symposium
on User interface software and technology, pages 115–118, New York, NY,

USA, 2005. ACM.
[HBL+07] Michael Haller, Peter Brandl, Daniel Leithinger, Jakob Leitner, and Thomas

Seifried. Large interactive surfaces based on digital pens. In 10th Inter-
antional Conference on Humans and Computers, HC-2007, pages 172–177,
2007. [INVITED PAPER].

[HBS04] Mark S. Hancock, Booth, and Kellogg S. Improving menu placement strategies
for pen input. In GI ’04: Proceedings of Graphics Interface 2004, pages 221–
230, School of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 2004. Canadian Human-Computer Communications Society.

[HCV+06] Mark S. Hancock, Sheelagh Carpendale, Frederic D. Vernier, Daniel Wigdor,
and Chia Shen. Rotation and translation mechanisms for tabletop interaction.
In TABLETOP ’06: Proceedings of the First IEEE International Workshop
on Horizontal Interactive Human-Computer Systems, pages 79–88, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[HLL+06] Michael Haller, Daniel Leithinger, Jakob Leitner, Thomas Seifried, Peter
Brandl, Jürgen Zauner, and Mark Billinghurst. The shared design space.
In SIGGRAPH ‘06: ACM SIGGRAPH 2006 Emerging technologies, page 29,
New York, NY, USA, 2006. ACM.

[Hop91] Don Hopkins. The design and implementation of pie menus. Dr. Dobb’s J.,
16(12):16–26, 1991.

[JFW02] Brad Johanson, Armando Fox, and Terry Winograd. The interactive
workspaces project: Experiences with ubiquitous computing rooms. IEEE
Pervasive Computing, 1(2):67–74, 2002.

[JK01] A. Johannsen and H. Krcmar. Parallelität. In G. Schwabe, N. Streitz, and
R. Unland, editors, CSCW-Kompendium: Lehr- und Handbuch zum com-
puterunterstützten kooperativen Arbeiten, pages 438–446. Springer, Berlin,
2001.

[KCSG03] Russell Kruger, Sheelagh Carpendale, Stacey D. Scott, and Saul Greenberg.
How people use orientation on tables: comprehension, coordination and com-
munication. In GROUP ’03: Proceedings of the 2003 international ACM
SIGGROUP conference on Supporting group work, pages 369–378, New York,
NY, USA, 2003. ACM.

[MIO+04] Mitsunori Matsushita, Makoto Iida, Takeshi Ohguro, Yoshinari Shirai, Ya-
suaki Kakehi, and Takeshi Naemura. Lumisight table: a face-to-face collab-
oration support system that optimizes direction of projected information to
each stakeholder. In CSCW ’04: Proceedings of the 2004 ACM conference on
Computer supported cooperative work, pages 274–283, New York, NY, USA,
2004. ACM.

[MO94] Munir Mandviwalla and Lorne Olfman. What do groups need? a proposed
set of generic groupware requirements. ACM Trans. Comput.-Hum. Interact.,
1(3):245–268, 1994.

[Mor06] Meredith June Morris. Supporting effective interaction with tabletop group-
ware. PhD thesis, Stanford, CA, USA, 2006. Adviser-Terry Winograd.

References 471

[MRS+04] Meredith Ringel Morris, Kathy Ryall, Chia Shen, Clifton Forlines, and Fred-
eric Vernier. Beyond ”social protocols”: multi-user coordination policies for
co-located groupware. In CSCW ’04: Proceedings of the 2004 ACM confer-
ence on Computer supported cooperative work, pages 262–265, New York, NY,
USA, 2004. ACM.

[RDS02] Daniel M. Russell, Clemens Drews, and Alison Sue. Social aspects of us-
ing large public interactive displays for collaboration. In UbiComp ’02: Pro-
ceedings of the 4th international conference on Ubiquitous Computing, pages
229–236, London, UK, 2002. Springer-Verlag.

[Rek97] Jun Rekimoto. Pick-and-drop: a direct manipulation technique for multiple
computer environments. In UIST ’97: Proceedings of the 10th annual ACM

symposium on User interface software and technology, pages 31–39, New York,
NY, USA, 1997. ACM Press.

[RFSM04] Kathy Ryall, Clifton Forlines, Chia Shen, and Meredith Ringel Morris. Ex-
ploring the effects of group size and table size on interactions with tabletop
shared-display groupware. In CSCW ’04: Proceedings of the 2004 ACM con-
ference on Computer supported cooperative work, pages 284–293, New York,
NY, USA, 2004. ACM.

[RHBL04] Yvonne Rogers, William Hazlewood, Eli Blevis, and Youn-Kyung Lim. Finger
talk: collaborative decision-making using talk and fingertip interaction around
a tabletop display. In CHI ’04: CHI ’04 extended abstracts on Human factors
in computing systems, pages 1271–1274, New York, NY, USA, 2004. ACM.

[RL04] Yvonne Rogers and Siân E. Lindley. Collaborating around vertical and hori-
zontal large interactive displays: which way is best? volume 16, pages 1133–
1152, 2004.

[RLH06] Yvonne Rogers, Youn-Kyung Lim, and William R. Hazlewood. Extending
tabletops to support flexible collaborative interactions. In TABLETOP ’06:
Proceedings of the First IEEE International Workshop on Horizontal Inter-
active Human-Computer Systems, pages 71–78, Washington, DC, USA, 2006.
IEEE Computer Society.

[RRS+04] Meredith Ringel, Kathy Ryall, Chia Shen, Clifton Forlines, and Frederic
Vernier. Release, relocate, reorient, resize: fluid techniques for document shar-
ing on multi-user interactive tables. In CHI ’04: CHI ’04 extended abstracts
on Human factors in computing systems, pages 1441–1444, New York, NY,
USA, 2004. ACM.

[Sch01] G. Schwabe. Gemeinsames materia und gruppengedächtnis. In G. Schwabe,
N. Streitz, and R. Unland, editors, CSCW-Kompendium: Lehr- und Handbuch
zum computerunterstützten kooperativen Arbeiten, pages 447–454. Springer,
Berlin, 2001.

[Sco05] Stacey D. Scott. Territoriality in collaborative tabletop workspaces. PhD
thesis, Calgary, Alta., Canada, Canada, 2005.

[SER03] Chia Shen, Katherine Everitt, and Kathleen Ryall. Ubitable: Impromptu face-
to-face collaboration on horizontal interactive surfaces. In In Proc. UbiComp
2003, pages 281–288, 2003.

[SGH+99] Norbert A. Streitz, Jörg Geißler, Torsten Holmer, Christian Müller-tomfelde,
Wolfgang Reischl, Petra Rexroth, Peter Seitz, and Ralf Steinmetz. i-land:
An interactive landscape for creativity and innovation. pages 120–127. ACM
Press, 1999.

[SGM03] S.D. Scott, K.D. Grant, and R.L. Mandryk. System guidelines for co-located,
collaborative work on a tabletop display. In Proceedings of ECSCW’03, pages
159–178, 2003.

[SGP98] Bill N. Schilit, Gene Golovchinsky, and Morgan N. Price. Beyond paper:
supporting active reading with free form digital ink annotations. In CHI
’98: Proceedings of the SIGCHI conference on Human factors in computing

472 Michael Haller et al.

systems, pages 249–256, New York, NY, USA, 1998. ACM Press/Addison-
Wesley Publishing Co.

[SGS+02] Stacey D. Scott, Karen Grant, M. Sheelagh, T. Carpendale, Kori M. Inkpen,
Regan L, and Terry Winograd. Co-located tabletop collaboration: Technolo-
gies and directions, November 16-20 2002.

[SH01] Abigail J. Sellen and Richard H. R. Harper. The Myth of the Paperless Office.
MIT Press, Cambridge, MA, USA, 2001.

[SLM+01] Chia Shen, Neal Lesh, Baback Moghaddam, Paul Beardsley, and Ryan Scott
Bardsley. Personal digital historian: user interface design. In CHI ’01: CHI
’01 extended abstracts on Human factors in computing systems, pages 29–30,
New York, NY, USA, 2001. ACM.

[SLV+02] Chia Shen, Neal B. Lesh, Frederic Vernier, Clifton Forlines, and Jeana Frost.
Sharing and building digital group histories. In CSCW ’02: Proceedings of
the 2002 ACM conference on Computer supported cooperative work, pages
324–333, New York, NY, USA, 2002. ACM.

[SMA03] SMARTTech. Digital vision touch technology. Technical report,
http://www.smarttech.com/dvit/, 2003.

[SN07] Beat Signer and Moira C. Norrie. Paperpoint: a paper-based presentation
and interactive paper prototyping tool. In TEI ’07: Proceedings of the 1st
international conference on Tangible and embedded interaction, pages 57–64,
New York, NY, USA, 2007. ACM.

[SPMT+02] Norbert Streitz, Thorsten Prante, Christian Müller-Tomfelde, Peter Tandler,
and Carsten Magerkurth. Roomware: The second generation. In CHI ’02:
CHI ’02 extended abstracts on Human factors in computing systems, pages
506–507, New York, NY, USA, 2002. ACM.

[SVFR04] Chia Shen, Frédéric D. Vernier, Clifton Forlines, and Meredith Ringel. Di-
amondspin: an extensible toolkit for around-the-table interaction. In CHI
’04: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 167–174, New York, NY, USA, 2004. ACM.

[Tan91] J. C. Tang. Findings from observational studies of collaborative work. pages
11–28, 1991.

[Tan04] Peter Tandler. The beach application model and software framework for syn-
chronous collaboration in ubiquitous computing environments. J. Syst. Softw.,
69(3):267–296, 2004.

[TT06] A. Toney and B. Thomas. Considering reach in tangible and table top design.
In Tabletop 2006, pages 57–58, 2006.

[UI97] Brygg Ullmer and Hiroshi Ishii. The metadesk: Models and prototypes for
tangible user interfaces. pages 223–232. ACM Press, 1997.

[VLS02] Frederic Vernier, Neal Lesh, and Chia Shen. Visualization techniques for
circular tabletop interfaces. pages 257–263, 2002.

[WB05] Daniel Wigdor and Ravin Balakrishnan. Empirical investigation into the effect
of orientation on text readability in tabletop displays. In ECSCW’05: Proceed-
ings of the ninth conference on European Conference on Computer Supported
Cooperative Work, pages 205–224, New York, NY, USA, 2005. Springer-Verlag
New York, Inc.

[WCFB06] D. Wigdor, C. Chen, C. Forlines, and R. Balakrishnan. Table-centric inter-
active spaces for real-time collaboration. In Proceedings of the working con-
ference on advanced visual interfaces, AVI 2006, May 23-26, pages 103–107,
Venezia, 2006.

Index

active data warehouses (ADW), 327

adaptive

data warehousing, 327

feature, 269

modeling, 282, 294

additive generator, 239

algebra

Heyting ∼, 239

MV-, 239

product ∼, 239

algebraic

curve, 24

geometry, 17, 346

series, 35

Algebraic Oil Project, 17

algorithm

development, 148

synthesis, 71

alternating quantifiers, 75

Amdahl’s law, 335

AMMI, 297

analysis, elementary, 75

analytical fault model, 265

ant colony optimization, 135

antennas, 15

application

lifecycle management (ALM), 174

oriented research, 282

architecture

analysis, 202

description language, 203, 204

design, 202

documentation, 203

evaluation, 202

implementation, 202

service-oriented, 212

software ∼, 200

unified shader ∼, 369
artificial intelligence, 83
assessment-based software process

improvement, 167
atomic level process model, 167
Austrian Grid, 334, 349
automated

reasoning, 63, 65, 83, 342, 366
theorem proving, 17, 63, 64, 89

Barroso, Manuel, 1
benzenoid hydrocarbons, 12
Beowulf systems, 337
best parameter grid search, 247
best practice software process model, 165
bias

-variance tradeoff, 247
error, 247

binary
powering, 91
regression tree, 258

BIRN, 359
bluetooth, 439, 441
Bostan, Alin, 35, 38
bottom-up reuse, 176
Bousquet-Melou, Mireille, 35
Buchberger

algorithm, 21
theorem, 20

Buchberger, Bruno, 7, 10
building block hypothesis, 119, 122
business process reengineering, 295

CAD, 15, 79
capability

dimension, 167
maturity model (CMM), 167

CASA, 346

474 Index

case based reasoning (CBR), 283, 321, 325,
326

cellular genetic algorithm, 135
center

of gravity, 240

of maximum, 240
CERN, 338, 361

chromosome, 137
classification, 143

graphical classifier analysis, 145

medical data analysis, 144
of lattice walk, 33–39

rate, 269
cluster computing, 337, 343, 348

co-located environment, 433
coarse-grained parallelism, 340, 355

code generation, 221

coding theory, 3, 17
coherence, 91, 92

collaboration support, 175
combinatorial

identity, 3, 17

optimization, 103, 128
machine scheduling problem, 132

quadratic assignment problem, 132
traveling salesman problem, 129

vehicle routing problem, 130
comparison factor, 124

CompFS, 256

compositional rule of inference, 239
comprehensible model, 255

computation, 69
computational

intelligence, 334, 366

mathematics, 5, 8
computer

-assisted guessing, 6
algebra, 6, 16

parallel, 342, 346
mathematics, 10

concept drift, 254

concurrency, 333, 369
confidence of classifier response, 245

construction heuristic, 133, 135
content management system, 292

context

sequence matching, 87
unification, 87

variable, 87
continuous software process improvement,

167

control theory, 3, 17
controller

Mamdani, 240

Sugeno, 241

Takagi-Sugeno, 240
convergence to optimality, 251

Cooperating Validity Checker Lite, 94
cooperative tabu search, 136
copy-and-modify, 176

correctness, 92
partial, 90

total, 90
creative telescoping, 43

cross-validation, N-fold, 247
crossover, 119, 127, 135

cryptoanalysis, 17
cryptographic code, 18
cryptography, 3, 17

CUDA, 370, 371
curve

offset ∼, 30
parametrizable, 25, 29

rational, 25
cylindrical algebraic decomposition, 15

dashboard, 195

data
-based modeling

classification, 143
genetic programming, 140

virtual sensor, 142
-driven fuzzy system, 242

grid, 334, 358
mining, 199
mining agents, 146

parallelism, 340, 352, 369, 371
stream, 370

warehouse (DWH), 195, 283, 326
database, 281, 319

decision
support, 289
support system, 289–292

tree, 257
defect, 186, 198

definite summation, 43
defuzzification, 239

DESY, 41
detection rate, 266

Deutsches Elektronen Synchrotron, 41
development

cost, 160

effectiveness, 160
efficiency, 160

schedule, 160
DEXA, 281

DiamondTouch, 436
differential equation, 17

Index 475

digital

pen, 441, 450
surface, 464

whiteboard, 448, 460
diophantine equation, 19, 30
discrepancy norm, 271

distributed
computing, 333, 343, 355

maple, 343
divide and conquer, 72

DLMF, 14
document management, 291

domain
-specific language, 214, 215

-specific modeling, 214, 215, 295
framework, 217
horizontal, 214

modeling, 219
ontology, 283, 287, 288

vertical, 214
DSM

platform, 217
tool chain, 217

Dueck, Gunter, 10
dynamics, 54
DynamOnt, 285, 286

E-paper, 435
E-recruitment, 306

efficiency, 335, 354, 369
electromagnetic wave simulation, 15

elementary analysis, 75
embedded feature selection, 245

enabling grids for E-sciencE (EGEE), 338,
350

end-user programming, 223
engineering

discipline, 175
strategy, 161, 181

assessment, 183
development, 183

ensemble classifier, 269
enterprise application integration, 211

environment, co-located, 433
equation, diophantine, 19, 30

error
bias ∼, 247
variance ∼, 247

evolution, 18
evolutionary algorithms, 114

evolving fuzzy system, 248
eVQ, 250

-class, 251
expansion, Laurent series, 45

extensionality, 68

extract transfer load (ETL), 326
extraction domain ontology, 287, 288

face-to-face meeting, 433
facility layout problem, 132

failing proof, 70
false detection rate, 266
fault

level, 266
tolerance, 346

FAW, 2, 281, 333, 334, 349, 351, 362
feature extraction, 268
federation model, 362

FEM, 15
Feynman

diagram, 40

integral, 40, 44, 47
Fibonacci, Leonard, 12
fine-grained parallelism, 340, 369

finite element method, 15
first order ordinary differential equation

general solution, 30
fitness landscape characteristics, 105, 148
flat

matching, 85
theory, 86

FLEXFIS, 250

FLLL, 2, 237, 244, 250, 255, 273
Flynn’s taxonomy, 336
focus windows, 69

formal
program analysis, 96

verification, 89
formula scheme, 70
FS-LiRT, 258

FTIR, 439, 456
full-text search, 292
function variable, 86

functional programming, 88
fuzzy

regression, by indicator matrix, 245

classifier, 245
logic, 199, 238, 366
predicate, 255

regression model, 245
regression tree, 257

set, 238
system, data driven, 242
system, evolving, 248

system, genetic, 243
fuzzy set based linear regression tree, 258

Galilei, Galileo, 49

476 Index

GATE, 305, 307, 308, 313, 316

GDES-Reuse (project), 161, 175
general purpose computing on GPUs, 367

genetic
algorithm, 114, 118, 134, 135
diversity, 121, 122, 145

fuzzy system, 243
programming, 136, 137

bibliography, 138
chromosome representation, 137

data-based modeling, 140
structure tree, 137

German V-Model, 165
Gessel conjecture, 36–38

Gessel, Ira, 37
gLite, 352, 354
global learning, 243

Globus toolkit, 340, 352, 354
Gödel

logic, 239
second theorem, 3

golden ratio, 12
Gosper algorithm, 8

Gröbner bases, 3
method, 3
special semester, 16

strategy, 23
theory, 2, 3, 16

Gröbner, Wolfgang, 21
gradual forgetting, 254

graph
coloring, 21

theory, 17
graphics

pipeline, 368

processing unit (GPU), 336, 366
grid

-enabled SEE++, 350
-enabled semantic data access

middleware (G-SDAM), 353, 362

computing, 333, 337, 349
middleware, 340, 354, 355

GriPhyN, 359
guess’n’prove paradigm, 35
Gustafson’s law, 335

Hardy, G.H., 9
harmonic sum, 47

Hephaistos (project), 161, 173
Hess-Lancaster test, 351

heuristic optimization, 334
HeuristicLab, 106, 149

Heyting algebra, 239
hierarchical model, 361

high-performance computing, 333

higher order predicate logic, 68
HighLight (project), 161, 170

holonomic
paradigm, 13
series, 35

horizontal display, 448
hybrid

metaheuristics, 117
model, 362

hypergeometric term, 41

I1 heuristic, 133

IDEAL cycle, 169
ill-posed learning problem, 247

image
classification system, 267
classifier, 268

imperative programming, 89
improved fault detection, 265

improvement heuristic, 133
incremental learning, 249, 250, 269

indefinite summation, 42
indicator matrix

fuzzy regression by, 245
linear regression by, 245

inductive learning, 257

industrial
application, 210

engineering, 161, 175
solutions business, 181

inequality, special function, 14
information, 281

extraction, 287, 300, 301
extraction templates, 301
extraction tools, 304

retrieval, 301
system, 281

infrared (IR), 454
input-output

function, 240
space clustering, 243

instruction level parallelism, 336, 368
integration of product engineering and

lifecycle management, 173

interactive
proving assistant, 93
tabletop, 444

interpretable model, 242, 247, 255
invariant theory, 3, 17

inversion of a proper parametrization, 26
I.Q. test, 11

ISO 15504-7 cycle, 169
ISO/IEC 12207, 166

Index 477

isoefficiency concept, 335

IT
architectures, 295
infrastructure-library, 296

iterated local search, 113
iterative modeling process, 295

Janssen, Rainer, 10
Journal of Symbolic Computation (JSC),

7

kernel
-based method, 261
trick, 263

kinematics, 52
knowledge, 281

base, 68, 69, 281, 287
management system, 290–292

representation, 83
Koutschan, Christoph, 15, 35, 37

Lagrangian optimization problem, 262

lattice path, 33–39
Gessel, 36–38
in 3D, 38–39

Manhatten, 33
Laurent series expansion, 45
law

Amdahl’s, 335
Gustafson’s, 335
Moore’s, 333

lazy thinking, 70

learning
gain, 250
global, 243

ill-posed learning problem, 247
incremental, 249, 250, 269
inductive, 257

life-long, 254
local, 243

left-hole context unification, 88

life-long learning, 254
lightweight software process improvement,

172
linear

approximation, 16
boundary value problem, 17
regression by indicator matrix, 245

linguistic label, 257

local learning, 243
logic

 Lukasiewicz, 239

fuzzy, 238
Gödel, 239

mathematical, 64

product ∼, 239
loop invariant, 18, 89

 Lukasiewicz
logic, 239
t-norm, 239

machine
learning, 366

scheduling problem, 132
magic triangle, 1

Mallinger, Christian, 36
Mamdani controller, 240

manager/worker model, 341, 357
many-core processor, 367–369
Maple, 12

distributed, 343
masking effect, 246

massively parallel processing, 337, 367–369
Mathematica, 11, 15, 67, 85, 86

mathematical
chemistry, 12
discovery, 5

logic, 64
theory exploration, 65

max-dot-inference, 240
max-min-inference, 240

max-prod-inference, 240
measurement, 174

analysis, 325
mediator, 365
medical informatics, 334, 351

membership function, 238
message passing interface (MPI), 339, 356

metadata, 359
metaheuristics, 104, 107, 109

ant colony optimization, 135
evolutionary algorithms, 114
genetic algorithm, 114, 118, 134, 135

hybrid metaheuristics, 117
iterated local search, 113

population-based, 109
scatter search, 115

simulated annealing, 110, 124
tabu search, 111, 136

trajectory-based, 109
metamodel, 216
metamodeling, 295

Mishna, Marni, 35
mobile

device, 433
phone, 15

model
analytical fault ∼, 265

478 Index

atomic level process ∼, 167

checking, 342
classification of data grids, 360

comprehensible, 255
defect prediction ∼, 199
federation, 362

hierarchical, 361
hybrid, 362

interpretable, 242, 247, 255
monadic, 360

plan-do-check-act (PDCA) ∼, 168
process assessment ∼, 167

process implementation ∼, 167
process reference ∼, 167

quality ∼, 186
software quality ∼, 164
transformation, 295

universal level process ∼, 167
waterfall development ∼, 165

worldly level process ∼, 167
modeling support process, 296

monadic model, 360
Moore’s law, 333

MPICH-G2, 356
MUC conferences, 302
multi

-core processor, 333, 336, 367–369
-objective optimization, 131, 136

-product development, 161
-sums, 44

-threading, 339, 368, 369
-touch, 439

-user, 461
-variate polynomial, 16

common roots, 16

model architecture, 245, 251
multiple instruction multiple data, 336,

342

MV-algebra, 239

N-fold cross-validation, 247

named entity recognition (NE), 302
natural language processing (NLP), 300

NEES, 360
network weather service (NWS), 356

NFC, 439
non

-determinism, 342

-dominated solutions, 132
-linear polynomial systems, 16

norm
discrepancy ∼, 271

triangular, 239
NVO, 360

object recognition, 268

occlusion problem, 447
offset curve, 30

offspring selection, 107, 123, 125, 135
oil platform, 17

OLED, 435
on-line

fault detection framework, 264

simulation framework, 269
one-versus-rest classification, 245

ontology, 282, 283, 362, 364
-aware annotation, 317

-based information extraction (OBIE),
287

-driven extraction (ODIE), 288

domain ∼, 283, 287, 288
engineering methodology, 285

extraction domain ∼, 288
population, 287
upper-level ∼, 283

open grid service architecture (OGSA),
340, 363, 366

OpenMP, 339

operator’s feedback, 269
optimization

combinatorial, 103
heuristic, 334

multi-objective, 131, 136
post-, 259

ordinal sum, 239
orientation, 446
origami, 17

over-fitting, 247

pair completion, 73

parallel
computer algebra, 342, 346

computing, 333
computing in the grid, 355

functional programming, 338, 342, 345
programming, 338

symbolic computation, 342
parallelism

coarse-grained, 340, 355
data ∼, 340, 352, 369, 371
fine-grained, 340, 369

task ∼, 340, 369
parametrizable curve, 25

parametrization
algorithm, 27

proper, 26
rational, 25

parent selection, 141
pareto dominance, 132

Index 479

particle physics, 40

pathology fitting, 353
pattern, 441

based programming, 88

PCS reasoner, 75, 80
performance, 335, 367

Phidias, 12
pick-and-drop, 465

Pillwein, Veronika, 15
pipelining, 336, 368

piping system, 325
plan-do-check-act (PDCA) model, 168

planning, route ∼, 128

plasticity-stability dilemma, 249, 251
platform, 176

polynomial
ideal theory, 17

invariant, 89
population, 137

post-optimization, 259

predicate logic
higher order, 68

predicate, fuzzy ∼, 255
prefabricates, 176

premature convergence, 121
process, 160

assessment model, 167
capability, 161, 175

capability (continuous), 167

control, 160, 210
definition, 160

dimension, 167
evolution, 172

execution, 163
implementation model, 167

improvement, 160

improvement paradigm-cycle, 168
instantiation, 163

maturity (staged), 167
measurement, 160

modeling, 163
quality, 164

reference model, 167, 172
processor

many-core, 368, 369

multi-core, 368, 369
product

algebra, 239
characteristics prediction, 160

development, 173
family development, 161

lifecycle management, 161, 173

logic, 239
quality, 164

profitability, 160

program
definition, 91
formal analysis, 96

specification, 89, 91
transformation, 83

ProgramExplorer, 96

programming
by contract, 91

functional, 88
genetic, 136
imperative, 89

parallel functional, 338, 345
pattern based, 88

proof

failing ∼, 70
situation, 95

ProofNavigator, 94

proper parametrization, 26
inversion of, 26

Prove-Compute-Solve method, 75
proving, 5

assistant, 93

highschool ∼, 70
quantifier free ∼, 70
rewrite ∼, 70

push forward insertion heuristic, 133

q-class method, 53
quadratic assignment problem, 132
quality

assurance, 187
in use, 164

inspection, 271
quantifier

alternating ∼, 75

elimination, 79
quarter plane, 33–39

rational
curve, 25

parametrization, 24, 25
series, 35

reasoning, 63

automated, 63, 65, 83, 366
recurrence

relation, 47
solving, 44

recursive fuzzy weighted least squares, 251

regression
model, fuzzy, 245
test, 326

regularization, 259
parameter, 247

480 Index

Tikhonov ∼, 247

relation, 69
representation, 127, 134, 135, 137

knowledge-, 83
semantic, 65

residuum, 239
resonance, 49

nonlinear, 50, 52, 55

topological structure, 53
resource description framework, 362, 364,

365

reuse, 176
assessment, 161

best practice, 177
concepts, 176

improvement, 161, 177
maturity, 161, 175

paradigm, 161
top-down, 176

rewrite proving, 70
RFID, 439
RICAM, 8, 16

rich client interface (web 2.0), 309
RIPE, 2, 382, 422, 424

RISC, 1, 2, 5, 8, 11, 13–16, 18, 35–37, 40,
41, 49, 55, 65, 83, 85, 87, 94–97, 282,
333, 334, 342, 346, 349, 350, 354, 355

robotics, 3

ROC curve, 266
route planning, 128

routine decision tasks, 327
rule

-based information extraction, 305
evolution, 249

selection, 244

S-polynomials, 3

satisfiability modulo theories, 94
savings heuristic, 133

scalability, 335, 358
scatter search, 115

SCCH, 2, 159, 161, 237, 255, 282, 333, 366
schema theorem, 119, 126
scheme, formula ∼, 70

screen scrapper, 304
search engines, 301

SEE++, 350
selection

offspring ∼, 107, 123, 125, 135
parent ∼, 128, 141

semantic, 281
annotation, 287

data integration, 359, 362
network, 282, 289, 290, 292

representation, 65

web, 283
SemWIQ architecture, 362

sequence

unification, 83, 85
variable, 83

series
algebraic, 35

holonomic, 35
rational, 35

set theory prover in Theorema, 81
SFB F013, 8, 57

shared space, 443

Sigma, summation package, 41
significance of a cluster, 250

similarity
measure, 322–324

query, 283, 319
simulated annealing, 110, 124

single

instruction multiple data, 336, 369
model architecture, 245, 251

program multiple data, 369
SISB (project), 161, 181

Sloane, Neil, 14
small and medium enterprise, 161, 170

SOA governance, 213
soft margin, 263

software

-oriented SMEs, 171
architecture, 200

management, 204
tools, 204

cockpit, 195
development process, 160

development, spiral model, 165

embedded, 191
engineering, 17, 160

engineering best practices, 172
engineering discipline, 160

life cycle processes, 166
process, 159, 160, 163

automation, 163
business view, 160

capability, 167

engineering, 159, 161
engineering activities, 162

engineering benefit, 163
engineering key concepts, 162

engineering research challenge, 170
engineering research projects, 161

engineering system, 169

engineering view, 160
evaluation, 168

Index 481

improvement, 168, 170

improvement action life cycle models,
168

improvement benefit, 164
improvement program life cycle

models, 168

line, 161, 172
management, 160

maturity, 167

meta-models, 163
model, 163

model benefit, 163
model classification, 166

model line, 172

model reuse, 163
quality, 164

standardization, 165
product, 160, 163

development management challenge,
173

lifecycle, 173
line, 172

line approach, 161, 177
quality, 161, 164

quality requirements and evaluation,
164

productization, 172
quality, 185

model, 164

service, 160
testing, 188

work products, 160
Softwarepark Hagenberg, 1–3, 11, 16

solutions, non-dominated, 132

sorting, 72
SPARQL, 362

SparseFIS, 244
special function, 13

Special Semester on Gröbner Bases, 16

speedup, 335, 348, 353, 354, 372
SPICE project, 167

strabismus, 351
strategy, 160

corporate, 181

division, 181
functional, 181

object, 161, 181
stream programming, 370, 372

streaming, 467

multiprocessors, 368
structural

health monitoring, 325
risk minimization, 262

structure tree, 137

sub-process, 160

Sugeno controller, 241
summation

definite, 43
indefinite, 42
principle, 41

supercomputing, 333
supply chain management, 315

support vector machine, 262, 315, 371
surface inspection, 269

symbolic
computation, 5, 334

parallel, 342
execution, 89
summation, 40

symmetric multiprocessing (SMP), 336
syntax

abstract, 216
concrete, 216

synthesis, 64
algorithm ∼, 71

system

-family approach, 176
identification, 140, 264

parameter identification, 140
structural identification, 140

theory, 3, 17

T -equivalence, 239, 261

t-norm, 239
table data extraction, 318
tabu search, 111, 136

Takagi-Sugeno controller, 240
tangible

object, 439
palette, 451

task parallelism, 340, 345, 369
taxibus, 131
telescoping, 42

termination, 90
termination condition, 89

test
-driven development, 191

automation, 189
management, 189

texture analysis, 271, 371
theorem proving

automated, 17, 63, 64, 89

Theorema, 3, 11, 18, 65, 80, 342
command language, 68

formal text language, 68
formula language, 68

language, 67
user interface, 67

482 Index

theory exploration, mathematical, 65
thread, 339, 368, 369
Tikhonov regularization, 247
time series analysis

Box-Jenkins approach, 141
Tiscover, 282
topic map, 290, 292, 293
topology-aware parallel programming, 356
tourism web sites, 311
traceability, 174
traveling salesman problem, 129

circuit boards, 129
laser cutting, 129

tree
binary regression ∼, 258
decision ∼, 257
fuzzy regression ∼, 257
fuzzy set based linear regression ∼, 258
structure ∼, 137

triangular norm, 239
Turing, Alan, 10

under-fitting, 247
unification, 83

left-hole context, 88
Robinson ∼, 84
sequence ∼, 83, 85
syntactic, 83
word ∼, 87

unified shader architecture, 369
unit testing, 191
universal level process model, 167
unlearning effect, 254
unstructured data, 300
upper-level ontology, 283

vague query language (VQL), 320
vague query system (VQS), 320

variance error, 247
VCDECIS, 291
vehicle routing problem, 129, 130, 134

variants, 130

verification, 64, 89, 342

condition, 89, 94

condition generator, 89, 91

completeness, 90
soundness, 90

of functional programs, 90

version control, 174

vertical display, 448

very small enterprise (VSE), 161, 170
vigilance parameter, 251

virtual

sensor, 142

shared memory, 337
visual reification, 296

vocabulary, 364

Wallis, John, 14

waterfall development model, 165
wavelet, 18

web, 281, 300, 303, 311, 315

engineering, 281

information extraction, 282, 300

ontology language, 284, 362, 364, 365
page classification, 315

services, 212

structure analysis, 307, 316, 318

weighted least squares, 247
while loop, 89

whiteboard, digital, 460

WIMP, 435

word unification, 87

workflow support, 174
world wide web, 281, 300, 303, 311, 315

worldly level process model, 167

WWW, 281, 300, 303, 311, 315

WYSIWYG, 296

XML data modeling, 83

Zeilberger, Doron, 13, 35, 37

ZF set theory, 81

List of Editors and Authors

Michael Affenzeller

Heuristic and Evolutionary Algorithms Laboratory
Upper Austria University of Applied Sciences
michael.affenzeller@fh-hagenberg.at

Wolfgang Beer

Software Competence Center Hagenberg (SCCH)
wolfgang.beer@scch.at

Andreas Beham

Heuristic and Evolutionary Algorithms Laboratory
Upper Austria University of Applied Sciences
andreas.beham@fh-hagenberg.at

Peter Brandl

Media Interaction Lab
Upper Austria University of Applied Sciences

peter.brandl@fh-hagenberg.at

Bruno Buchberger

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz (JKU)
bruno.buchberger@risc.jku.at

Georg Buchgeher

Software Competence Center Hagenberg (SCCH)
georg.buchgeher@scch.at

Christina Buttinger

Institute for Application Oriented Knowledge Processing (FAW)
Johannes Kepler University Linz (JKU)
cbuttinger@faw.jku.at

Károly Bósa

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz (JKU)

Karoly.Bosa@risc.jku.at

484 List of Editors and Authors

Bernhard Dorninger

Software Competence Center Hagenberg (SCCH)
bernhard.dorninger@scch.at

Christina Feilmayr

Institute for Application Oriented Knowledge Processing (FAW)
Johannes Kepler University Linz (JKU)

cfeilmayr@faw.jku.at

Alois Ferscha

Department of Pervasive Computing
Johannes Kepler University Linz (JKU)
ferscha@soft.uni-linz.ac.at

Bernhard Freudenthaler

Institute for Application Oriented Knowledge Processing (FAW)
Johannes Kepler University Linz (JKU)

bfreudenthaler@faw.jku.at

Adam Gokcezade

Media Interaction Lab
Upper Austria University of Applied Sciences
adam.gokcezade@fh-hagenberg.at

Michael Guttenbrunner

Institute for Application Oriented Knowledge Processing (FAW)
Johannes Kepler University Linz (JKU)

mguttenbrunner@faw.jku.at

Michael Haller

Media Interaction Lab
Upper Austria University of Applied Sciences
haller@fh-hagenberg.at

Christian Hawel

Software Competence Center Hagenberg (SCCH)
christian.hawel@scch.at

Johannes Himmelbauer

Software Competence Center Hagenberg (SCCH)
johannes.himmelbauer@scch.at

Melanie Himsl

Institute for Application Oriented Knowledge Processing (FAW)
Johannes Kepler University Linz (JKU)

mhimsl@faw.at

Daniel Jabornig

Institute for Application Oriented Knowledge Processing (FAW)
Johannes Kepler University Linz (JKU)
djabornig@faw.at

List of Editors and Authors 485

Tudor Jebelean

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz (JKU)

Tudor.Jebelean@risc.jku.at

Lena Kartashova

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz (JKU)
Lena.Kartashova@risc.uni-linz.ac.at

Manuel Kauers

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz (JKU)
Manuel.Kauers@risc.uni-linz.ac.at

Erich Peter Klement

Dept. of Knowledge-Based Mathematical Systems, Fuzzy Logic Lab-
oratorium Linz-Hagenberg (FLLL), Johannes Kepler University (JKU)
ep.klement@jku.at

Monika Kofler

Heuristic and Evolutionary Algorithms Laboratory
Upper Austria University of Applied Sciences

monika.kofler@fh-hagenberg.at

Gabriel Kronberger

Heuristic and Evolutionary Algorithms Laboratory
Upper Austria University of Applied Sciences
gabriel.kronberger@fh-hagenberg.at

Temur Kutsia

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz (JKU)

Temur.Kutsia@risc.jku.at

Josef Küng

Institute for Application Oriented Knowledge Processing (FAW)
Johannes Kepler University Linz (JKU)
jkueng@faw.jku.at

Andreas Langegger

Institute for Application Oriented Knowledge Processing (FAW)
Johannes Kepler University Linz (JKU)

Andreas.Langegger@jku.at

Daniel Leithinger

Media Lab
Massachusetts Institute of Technology (MIT), USA
daniell@mit.edu

Werner Leithner

Institute for Application Oriented Knowledge Processing (FAW)
Johannes Kepler University Linz (JKU)

wleithner@faw.at

486 List of Editors and Authors

Jakob Leitner

Media Interaction Lab
Upper Austria University of Applied Sciences
jakob.leitner@fh-hagenberg.at

Thomas Leitner

Institute for Application Oriented Knowledge Processing (FAW)
Johannes Kepler University Linz (JKU)

Thomas.Leitner@jku.at

Edwin Lughofer

Dept. of Knowledge-Based Mathematical Systems, Fuzzy Logic Lab-
oratorium Linz-Hagenberg (FLLL), Johannes Kepler University (JKU)
edwin.lughofer@jku.at

Bernhard Moser

Software Competence Center Hagenberg (SCCH)
Bernhard.Moser@scch.at

Stefan Parzer

Institute for Application Oriented Knowledge Processing (FAW)
Johannes Kepler University Linz (JKU)
sparzer@faw.jku.at

Peter Paule

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz (JKU)

Peter.Paule@risc.uni-linz.ac.at

Josef Pichler

Software Competence Center Hagenberg (SCCH)
josef.pichler@scch.at

Gustav Pomberger

Institute of Business Informatics – Software Engineering
Johannes Kepler University Linz (JKU)

gustav.pomberger@jku.at

Nikolaj Popov

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz (JKU)
Nikolaj.Popov@risc.jku.at

Herbert Prähofer

Institute for System Software
Johannes Kepler University Linz (JKU)

herbert.praehofer@jku.at

Birgit Pröll

Institute for Application Oriented Knowledge Processing (FAW)
Johannes Kepler University Linz (JKU)
bproell@faw.jku.at

List of Editors and Authors 487

Szilárd Páll

Software Competence Center Hagenberg (SCCH)
Pall.Szilard@gmail.com

Rudolf Ramler

Software Competence Center Hagenberg (SCCH)
rudolf.ramler@scch.at

Christoph Richter

Research Group Knowledge Media
Upper Austria University of Applied Sciences

christoph.richter@fh-hagenberg.at

Carsten Schneider

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz (JKU)
Carsten.Schneider@risc.uni-linz.ac.at

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz (JKU)

Wolfgang.Schreiner@risc.jku.at

Thomas Seifried

Media Interaction Lab
Upper Austria University of Applied Sciences
thomas.seifried@fh-hagenberg.at

Fritz Stallinger

Software Competence Center Hagenberg (SCCH)
fritz.stallinger@scch.at

Robert Stubenrauch

Softwarepark Hagenberg
stubenrauch@softwarepark-hagenberg.com

Reinhard Stumptner

Institute for Application Oriented Knowledge Processing (FAW)
Johannes Kepler University Linz (JKU)

rstumptner@faw.jku.at

Roland Wagner

Institute for Application Oriented Knowledge Processing (FAW)
Johannes Kepler University Linz (JKU)

rwagner@faw.jku.at

Stefan A. Wagner

Heuristic and Evolutionary Algorithms Laboratory
Upper Austria University of Applied Sciences

stefan.wagner@fh-hagenberg.at

488 List of Editors and Authors

Stefan Wagner

Institute for Application Oriented Knowledge Processing (FAW)
Johannes Kepler University Linz (JKU)
swagner@faw.at

Rainer Weinreich

Institute of Business Informatics – Software Engineering
Johannes Kepler University Linz (JKU)

rainer.weinreich@jku.at

Gerhard Weiss

Software Competence Center Hagenberg (SCCH)
gerhard.weiss@scch.at

Volkmar Wieser

Software Competence Center Hagenberg (SCCH)
Volkmar.Wieser@scch.at

Wolfgang Windsteiger

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz (JKU)
Wolfgang.Windsteiger@risc.jku.at

Franz Winkler

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz (JKU)
Franz.Winkler@risc.uni-linz.ac.at

Stephan Winkler

Heuristic and Evolutionary Algorithms Laboratory
Upper Austria University of Applied Sciences
stephan.winkler@fh-hagenberg.at

Wolfram Wöß

Institute for Application Oriented Knowledge Processing (FAW)
Johannes Kepler University Linz (JKU)

Wolfram.Woess@jku.at

	cover-large.JPG
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	back-matter.pdf

