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ETH Zentrum
Department of Computer Science
Swiss Federal Institute of Technology
8092 Zürich, Switzerland
juraj.hromkovic@inf.ethz.ch

Prof. Dr. Arto Salomaa
Turku Centre of Computer Science
Lemminkäisenkatu 14 A
20520 Turku, Finland
asalomaa@utu.fi

ISSN 1431-2654
ISBN 978-3-642-14902-3 e-ISBN 978-3-642-14903-0
DOI 10.1007/978-3-642-14903-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010936098

ACM Computing Classification (1998): F.1, F.2, G.2, G.3

c© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KuenkelLopka GmbH, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Roughly speaking, a deterministic extractor is a function that ‘extracts’ al-
most perfect random bits from a ‘weak random source’ - a distribution that
contains some entropy but is far from being truly random. In this book we
explicitly construct deterministic extractors and related objects for various
types of sources. A basic theme in this book is a methodology of recycling
randomness that enables increasing the output length of deterministic ex-
tractors to near-optimal length. Our results are as follows.

Deterministic Extractors for Bit-Fixing Sources An (n, k)-bit-fixing
source is a distribution X over {0, 1}n such that there is a subset of k
variables in X1, . . . , Xn that are uniformly distributed and independent of
each other, and the remaining n − k variables are fixed in advance to some
(unknown) constants. We give constructions of deterministic bit-fixing source
extractors that extract (1−o(1))k bits whenever k > (log n)c for some univer-
sal constant c > 0. Thus, our constructions extract almost all the randomness
from bit-fixing sources and work even when k is small. Our technique gives
a general method to transform deterministic bit-fixing source extractors that
extract few bits into extractors which extract almost all the bits.

Deterministic Extractors for Affine Sources over Large Fields An (n, k)-
affine source over a finite field F is a random variable X = (X1, ...,Xn) ∈ F

n,
that is uniformly distributed over an (unknown) k-dimensional affine sub-
space of F

n. There has been much interest lately in extractors for affine
sources over F2. It can be shown that a random function D : {0, 1}n �→ {0, 1}
is with high probability an extractor for (n, k)-affine sources over F2 when-
ever k ≥ 3 · log n. The best explicit construction due to Bourgain [10] works
when k = δ · n for constant δ.

We focus on the case of a large field, specifically, a field of size nc for
constant c > 0, i.e., a field size that is polynomially large in the dimension of
the space. When working with a field of size larger than n20 we show how to
deterministically extract practically all the randomness from an (n, k)-affine
source for any k ≥ 2.

Extractors and Rank Extractors for Polynomial Sources We construct
explicit deterministic extractors from polynomial sources, namely from dis-
tributions sampled by low degree multivariate polynomials over finite fields.
This naturally generalizes previous work on extraction from affine sources
(which are degree 1 polynomials).

The first step in our construction is a construction of rank extractors,
which are polynomial mappings that “extract” the algebraic rank from any
system of low-degree polynomials. More precisely, for any n polynomials, k of
which are algebraically independent, a rank extractor outputs k algebraically
independent polynomials of slightly higher degree.
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We then use theorems of Wooley and Bombieri from algebraic geometry,
which enable us to extract a constant fraction of the randomness from ‘full
rank’ polynomial sources when the field is exponentially large in the degrees
of the defining polynomials.

Increasing the Output Length of Zero-Error Dispersers A zero-error dis-
perser for a family of weak random sources is a function that guarantees the
output distribution will have full support for any source in the family. We
develop a general method of increasing the output length of zero-error dis-
persers. We use this method to significantly improve previous constructions.
More specifically, we obtain zero-error dispersers for 2-independent sources,
bit-fixing sources and affine sources over large fields with output length Ω(k)
where k is the min-entropy of the source.

April 2010 Ariel Gabizon
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Chapter 1

Introduction

1.1 Organization of This Book

This monograph is concerned with the explicit construction of deterministic
extractors and related objects. The current chapter gives an introduction
to extractors and a sketch of the techniques and results of this work. We
begin in Section 1.2 with what may be called the ‘classical motivation’ for
extractors. Section 1.3 describes other motivations for deterministic extrac-
tors. In Section 1.4 we describe some of the main techniques used in this
book. The subsequent chapters describe our results in detail. Each chapter
is self-contained, perhaps with the exception of some basic background given
in this introductory chapter. For a concise statement of all results, see the
summary in the preface.

1.2 The Classical Story

Randomness is an important resource. For example, many algorithms and
cryptographic applications require random bits in order to be executed. Out-
side of computer science, other scientists, from archaeologists to biologists to
physicists, need random numbers to simulate physical processes and survey
large groups in experiments. A poet has recognized the power of randomness
in the following verse:

Oh, many a shaft at random sent
Finds mark the archer little meant!
And many a word at random spoken
May soothe, or wound, a heart that’s broken! - Sir Walter Scott

This raises the question of how to obtain random bits. In the beginning
of the last century, scientists who needed random numbers actually tossed

A. Gabizon, Deterministic Extraction from Weak Random Sources,
Monographs in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-642-14903-0 1, c© Springer-Verlag Berlin Heidelberg 2011
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2 1 Introduction

coins or threw cubes. Here are a few methods used today by Web sites that
offer free random numbers:

• In www.fourmilab.ch/hotbits, the decay time of radioactive particles is
used (visit the site for a very readable and fascinating explanation of
the physics behind how it works).

• In www.random.org, a radio is tuned to a frequency at which no one is
broadcasting and the atmospheric noise is recorded and then processed
to remove some correlations.

• In www.stat.fsu.edu/∼geo/diehard.html, Dr. George Marsaglia has com-
bined white noise from classical music and rap CDs (together with some
other stuff).

A question that arises is: How can we be sure that these methods produce
truly random bits? By truly random bits we mean that each bit is 1 with
probability 1/2 and is independent of all the other bits in the sequence gen-
erated. The first method, assuming the validity of quantum mechanics, is
theoretically guaranteed to produce truly random bits. The other two meth-
ods described, and most methods used, offer no such guarantee. The quality
of the numbers produced by these methods is checked empirically by statis-
tical tests but there is no reason to assume that these methods produce truly
random bits. To summarize, it seems that while it is possible to get truly
random bits from nature, we have an abundance of very cheap and accessible
“weak random sources” and it would be very convenient to be able to use
these sources.
Suppose, then, that we only want to make a weak assumption about the
quality of randomness in our source. Specifically, we assume that it belongs
to some class C of “weak random sources”. A deterministic extractor is a
function that enables us to “extract” (almost) truly random bits from such
a “weak random source”. Formally

Definition 1.1 (deterministic extractor). Let C be a class of distributions on
{0, 1}n. A function E : {0, 1}n → {0, 1}m is a deterministic ε-extractor for C
if for every distribution X ∈ C the distribution E(X) (obtained by sampling
x from X and computing E(x)) is ε-close to the uniform distribution on m
bit strings.1

What Class C of “weak random sources” should we consider? The largest
class we can hope to extract randomness from is the class of high min-entropy
sources originally defined in [14]. A high min-entropy source is guaranteed not
to output any particular string with large probability. No further assumption
is made about the structure of the source.

1Two distributions P and Q over {0, 1}m are ε-close (denoted by P
ε
∼ Q) if for every

event A ⊆ {0, 1}m, |P (A) − Q(A)| ≤ ε.
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Definition 1.2. The min-entropy of a distribution X over {0, 1}n is

H∞(X) = minx∈{0,1}n log(1/Pr(x)).

X is called a k-source if it has min-entropy k.

1.2.1 Seeded Extractors

We would like to have a deterministic extractor for the class of all k-sources.
Unfortunately, this isn’t possible even when k = n − 1. This leads to the
notion of a seeded extractor (see the surveys [62, 46]). A seeded extractor
(sometimes simply called extractor) uses a short random ‘seed’ that ‘helps
it’ extract the randomness out of the source. In contrast to a deterministic
extractor, a seeded extractor can extract randomness from any k-source.

Definition 1.3 (seeded extractors for high min-entropy sources). A function
E : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-extractor if for any k-source X the
distribution E(X,Ud) is ε-close to Um.

It should be noted that in addition to its original motivation for extracting
randomness, the notion of a seeded extractor has turned out to be a very
natural and useful one. For example, seeded extractors have been used in
constructions of expander graphs and pseudorandom generators and have
been shown to be equivalent in some sense to certain types of error correcting
codes and samplers (again, see the surveys [62, 46] for more details).

1.2.2 Deterministic Extraction for Restricted Classes

As mentioned above, there are no deterministic extractors for high min-
entropy sources. However, we can construct deterministic extractors for more
restricted classes of distributions. Here are some examples of such classes.

• A sequence of independent tosses of a biased coin [71].

• Bit-fixing sources [15, 16, 37].

• Sources consisting of few independent blocks [14, 19, 3, 4, 53, 50, 9, 5].

• Sources samplable by small circuits [67].

1.3 Other Motivations

We now describe motivations for deterministic extractors in the context of
theoretical computer science.



4 1 Introduction

Deterministic extractors in derandomization and pseudorandom-
ness The field of derandomization deals with taking computational tasks
that currently require the use of randomness, and trying to achieve them
using less randomness, or ideally, none at all. A useful tool in derandomiza-
tion is constructing pseudorandom objects, i.e., objects that have properties
that a random object would have with high probability. Deterministically
constructing a pseudorandom object is also a derandomization problem in
itself — it derandomizes the procedure that simply chooses a random object.
Maybe the most basic motivation for extractors comes from this setting.
Given any ‘not too large’ family of weak random sources, it is easy to see
that a random function is with high probability a deterministic extractor for
this family — simply take a union bound over all events of the form ‘not
being a good extractor for X’ for a distribution X in the family.

Thus, deterministic extractors can be thought of as pseudorandom objects
and explicitly constructing them can be thought of as a derandomization
problem.

We note that proving lower bounds for functions — perhaps the central
goal of complexity theory — can be viewed as a problem of explicitly con-
structing pseudorandom objects: For example, a random function with high
probability does not have polynomial size circuits. Finding a function in NP
with this property would show NP � P/poly, and in particular P �= NP.
Thus, it may be hoped that understanding better how to construct functions
with ‘simple’ pseudorandom properties — e.g., the property of being an ex-
tractor for a certain family of sources, will eventually help in understanding
how to construct functions with the ‘ultimate’ pseudorandom property, i.e.,
having high circuit complexity.

Useful pseudorandom properties of deterministic extractors Let’s
try to see what specific properties deterministic extractors have that are
useful and natural. Assume our class C of weak random sources consists of
uniform distributions over subsets X of {0, 1}n. Suppose E is a deterministic
extractor for C that extracts one bit. E is a coloring of {0, 1}n (with two
colors) such that every subset X is colored in a balanced way. In particular,
no subset X is monochromatic. For example, our extractors for affine sources,
described in Chapter 3, give explicit colorings of vector spaces such that each
line is colored in a balanced way. From another point of view, a deterministic
extractor can be seen as a function that gets a (completely) random input
and produces an output that looks random even to an adversary who has
learned something about the input. For example, our extractors for bit-
fixing sources[26], described in Chapter 2, are functions that output almost
k bits that look random to an adversary who knows n − k bits out of the
n-bit input. Such functions are useful in “exposure resilient cryptography”
[57, 11, 12, 20, 18]2.

2 The parameters of our construction are not good enough for some of the applications
in this book.
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The power of weak randomness A central issue in complexity theory
is discovering what effect the availability of randomness has on the compu-
tational power. One specific question is what happens to the computational
power when we have access to a weak random source instead of truly ran-
dom bits. Explicit constructions of seeded extractors with logarithmic seed
length show us that probabilistic algorithms can be run using any high min-
entropy source by iterating over all seeds and taking the majority answer.
However, this approach obviously won’t work in cryptographic settings. In
fact, a result of Dodis et al. [74] shows that many cryptographic protocols
cannot be executed using an SV source (SV sources [58] are a sub-class of
high min-entropy sources). Constructing an explicit deterministic extractor
(that extracts enough bits) for a certain weak random source shows us that
access to this type of weak randomness gives as much computational power
as truly random bits (in any scenario where the parties are powerful enough
to compute the extractor).

1.4 Techniques — the Recycling Paradigm

A central technique in this thesis is a general methodology of ‘recycling ran-
domness’. More specifically, we show that in certain instances we can use
randomness deterministically extracted from a source as a seed for a seeded
function that is applied on the same source, and get almost the same out-
put distribution we would have gotten by applying the seeded function with a
seed that is independent of the source. In this section we explain the recycling
paradigm and on the way sketch the results we obtain using it.

1.4.1 A Simple Example

We give a simple example of the recycling paradigm using the following toy
problem. Suppose you are given two independent bit-strings XA and XB

each of length k. You are guaranteed that one of the strings is completely
random, and that the other string contains one random bit and all other
bits in that string are fixed to some constants (some may be fixed to 0 and
some to 1). You have no additional randomness of your own. Your goal is to
choose the random string with probability (at least) one half without ‘ruining
it’. That is, the random string has to stay random when conditioning on the
event that you chose it.

Solution Compute Z = the XOR (i.e. sum mod 2) of all bits in XA and
XB . If Z = 1 return XA. If Z = 0 return XB .

Proof. Note that Z is obviously a random bit, as it is the XOR of random
bits and constant bits. So, with probability 1/2 we choose the random string.
Assume w.l.o.g. that XA is the random string. The question is whether XA

is still random conditioned on the event that we chose it, i.e., conditioned on
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Z = 1. Let’s fix a possible value b ∈ {0, 1}k for XA. The first thing to notice
is that conditioning on XA = b does not affect Z. That is,

Pr(Z = 1|XA = b) =
1
2

= Pr(Z = 1).

This is because after this conditioning Z is still the XOR of random bits (the
random bit from XB) and constant bits, and thus still random. Using the
Bayes formula for conditional probabilities we can ‘reverse the conditoning’
and get that conditioning on Z does not affect XA:

Pr(XA = b|Z = 1) =
Pr(XA = b ∧ Z = 1)

Pr(Z = 1)

=
Pr(Z = 1|XA = b) · Pr(XA = b)

Pr(Z = 1)
=

Pr(Z = 1) · Pr(XA = b)
Pr(Z = 1)

= Pr(XA = b).

Thus XA is still uniformly distributed when conditioning on Z = 1.

Let X � XA ◦XB . We saw that we were able to use a random bit that
was a function of X as a seed for a function applied on X itself — namely,
the function that chooses which half of the bits to output — and get the
same output distribution we would have gotten when using a random seed
that is independent of X.

1.4.2 The General Principle and the Application
for Affine Sources

Let us put the above example in the context of bit-fixing sources.

Definition 1.4 (bit-fixing sources). A distribution X over {0, 1}n is an
(n, k)-bit-fixing source if there exists a subset S = {i1, · · · , ik} ⊆ {1, . . . , n}
such that Xi1 ,Xi2 , · · · ,Xik

is uniformly distributed over {0, 1}k and for every
i �∈ S, Xi is constant.

Note that we can think of X = XA ◦ XB as a bit-fixing source with
k + 1 random bits. Think of the function that chooses either XA or XB

according to a one-bit seed as a function E : {0, 1}2k × {0, 1} �→ {0, 1}k.
Denote the function that computes the parity of all bits by D : {0, 1}2k

�→ {0, 1}. In this notation, in the example above our solution was to compute
E(X,D(X)). The property that we used was that for any b ∈ {0, 1}k, given
XA = b, which is equivalent to E(X, 1) = b, X was still a bit-fixing source,
and therefore D(X|E(X, 1) = b) was uniform. This allowed us to conclude
that the distribution E(X, 1)|D(X) = 1 was identical to E(X, 1).

In the next subsection we will see how in a similar spirit one can use the
recycling paradigm for extracting randomness from general bit-fixing sources.

Using this logic we can deduce a general theorem for settings in which we
can use correlated randomness.
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Theorem 1.5 (composition theorem). Let C be a class of weak random
sources3 on {0, 1}n and let X ∈ C. Let

• D : {0, 1}n �→ {0, 1}d be a deterministic extractor for C with error
ε = 0.

• E : {0, 1}n × {0, 1}d �→ {0, 1}m be a function such that for every a ∈
{0, 1}d, b ∈ {0, 1}m

(X|E(X, a) = b) ∈ C.

Then,
E(X,D(X)) ∼ E(X,Ud).

Remark 1.1. We note that

• The actual theorem used works under more relaxed conditions: The
error of D does not have to be 0, and in the condition on E, ‘for
every a ∈ {0, 1}d’, can be replaced by “for most’ a ∈ {0, 1}d’. In this
introduction we intentionally give a simpler version to explain the idea.

• Again, to simplify the presentation, in the coming examples we make
(unrealistic) simplifying assumptions to enable working with the condi-
tion ‘for every a ∈ {0, 1}d’ rather than “for most’ a ∈ {0, 1}d’.

Here is a nice application of this theorem used in [25]. Let Fq be some
finite field and n be some integer. For the sake of this discussion, by an affine
source of dimension k we mean a uniform distribution over an affine subspace
X ⊆ F

n
q of dimension k. Let C be the class of affine sources of dimension at

least 1. Let D : F
n
q �→ {0, 1}d be a deterministic extractor for C with error

ε = 0. Let E : F
n
q × {0, 1}d �→ F

k−1
q be a seeded extractor for affine sources

of dimension k with error ε that is linear for any fixed seed. That is, for any
a ∈ {0, 1}d, T (x) � E(x, a) is a linear function of x. Then, we have

Theorem 1.6. The function F : F
n
q �→ F

k−1
q defined by

F (x) � E(x,D(x))

is a deterministic extractor for affine sources of dimension k with error ε.

Proof. Let X be an affine source of dimension k. Fix any a ∈ {0, 1}d and
b ∈ F

k−1
q . Then the condition E(X, a) = b imposes k− 1 affine conditions on

3The theorem’s logic originated from [26]. However, the theorem for a general class C
as presented here was explicitly written only by Shaltiel in [63].
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the support of X. Hence, (X|E(X, a) = b) is still an affine source and has
dimension at least 1.4 Using the Composition Theorem we have

F (X) = E(X,D(X)) ∼ E(X,Ud)

and the later distribution is ε-close to uniform.

In Chapter 3, we construct a deterministic extractor for affine sources
that extracts a few bits, and a seeded extractor for affine sources, which is
linear for any fixed seed, that extracts many bits. We can then use the above
theorem to construct a deterministic extractor for affine sources that extracts
many bits.

1.4.3 The Recycling Paradigm in Bit-Fixing Sources

The recycling paradigm was first used in [26] to increase the output length
of deterministic extractors for bit-fixing sources. Very briefly, the idea is as
follows: We use a sampler to choose a subset of the source bits that contains
(with high probability) ‘most but not all’ of the random source bits. We then
apply a seeded extractor on this subset of bits. Theorem 1.5 implies that we
can use the sampler and extractor with a seed extracted from the source, and
get the same distribution as when using a seed independent from the source.
Here is a more detailed informal sketch: Let X be an (n, k)-bit-fixing source.
What functions T have the property that (X|T (X) = b) is still a bit-fixing
source?

Let us refer to the indices i ∈ [n] such that Xi is random as the good
indices of X. Let I ⊆ [n] be a subset of indices that contains 3k/4 of the
good indices of X. For x ∈ {0, 1}n denote by xI the restriction of x to the
indices in I. Let T be the function T (x) � xI . Then (X|T (X) = b) is
an (n, k/4)-bit-fixing source, as conditioning on T (X) = b simply ‘fixes’ 3k/4
random bits. Similarly, if T (x) was some function of xI then (X|E(X, a) = b)
is either an (n, k/4)-bit-fixing source or a convex combination of such sources,
but for simplicity let’s ignore the second option.

When constructing an extractor that should work for all (n, k)-bit-fixing
sources we do not know in advance which indices of X are good. However,
we can use a sampler S to choose a subset I ⊆ [n] that with high probability
contains about 3k/4 good indices of X. We could then apply a seeded ex-
tractor E′ on XI . Let E be the function resulting from choosing I by S and
then applying E′ on XI . Formally,

E(x, a = (a1, a2)) � E′(xS(a1), a2).

4For simplicity, we are ignoring the alternative case were (X|E(X, a) = b) has empty
support. In [25] we use a function E for which we show this does not happen for most
a ∈ {0, 1}d.
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For simplicity, let’s assume that S always returns a subset I containing ex-
actly 3k/4 good indices of X. So, we have that for any a ∈ {0, 1}d and
b ∈ {0, 1}m, (X|E(X, a) = b) is an (n, k/4)-bit-fixing source. Thus, if D
is a deterministic extractor for (n, k/4)-bit-fixing sources it follows from the
Composition Theorem that

E(X,D(X)) ∼ E(X,Ud)

and the latter distribution is close to uniform. Thus, by defining F (x) �
E(x,D(x)) we get a deterministic extractor with E’s output length. See
Chapter 2 for the full details.

1.4.4 The Recycling Paradigm for Zero-Error Dispersers

A zero-error disperser for a class C of distributions over {0, 1}n is a function
D : {0, 1}n �→ {0, 1}m such that for any X ∈ C

D(X) = {0, 1}m.

Zero-error dispersers are natural objects when viewed as colorings: Assume
our class C consists of uniform distributions over subsets of {0, 1}n. A zero-
error disperser D : {0, 1}n �→ {0, 1}m for C is a coloring of {0, 1}n such
that any such subset contains all 2m colors. A deterministic extractor D :
{0, 1}n �→ {0, 1}m is a zero-error disperser when it has error ε < 2−m. Al-
ternatively, we can truncate the output length of D to m = log(1/ε) to
get a zero-error disperser. We would like to use the recycling method to
get zero-error dispersers with longer output length. This does not work di-
rectly. One reason is the following. When using the Composition Theorem
for extractors with a deterministic extractor D : {0, 1}n �→ {0, 1}d with er-
ror ε1 and a seeded extractor E : {0, 1}n × {0, 1}d �→ {0, 1}m with error ε2,
the new deterministic extractor F (x) � E(x,D(x)) will have error at least
ε1 + ε2.5 Thus, for F to be a zero-error disperser it is necessary that both
ε1 < 2−m and ε2 < 2−m. However, seeded extractors typically6 have seed
length d ≥ log(1/ε2) ≥ m. which means D’s output length needs to be at
least m. As ε1 < 2−m D is already a zero-error disperser with output length
m. Thus, we have not gained anything by this transformation.
In Chapter 5, based on [27], we use a different composition theorem that
basically argues about ‘sets rather than distributions’ and enables showing
the composed function will have full support without showing it is close to
uniform.

5Note that we have not actually stated such a theorem in this exposition; as in Theorem
1.5, we assume for simplicity that D has error ε1 = 0.

6Seeded extractors for general sources must have seed length at least log(1/ε). In this
thesis we also use seeded extractors for restricted sources, e.g., affine sources and bit-fixing
sources. For such sources obviously there is no such lower bound on seed length as we have
seedless extractors in these cases. However, the examples we have come up with, and it
seems any ‘natural’ seeded extractor for these sources, have seed length ≥ log(1/ε).
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Here is a simplified version. For a distribution X we denote its support
by Supp(X).

Theorem 1.7 (composition theorem for zero-error dispersers). Let C be a
class of weak random sources on {0, 1}n and let X ∈ C. Let

• D : {0, 1}n �→ {0, 1}d be a zero-error disperser for C.

• E : {0, 1}n × {0, 1}d �→ {0, 1}m be a function such that for every b ∈
{0, 1}m, there exists a ∈ {0, 1}d and a subset S ⊆ Supp(X) such that

– S is the support of a distribution in C.
– For all x ∈ S, E(x, a) = b.

Then,
F (X) = {0, 1}m.

We call the function E a subsource hitter - for every possible output
b ∈ {0, 1}m there is a ‘subsource’ of X with the support of a distribution in
C, namely (X|X ∈ S), that ‘hits’ b.

Proof. Given any b ∈ {0, 1}m we need to show there is an x ∈ Supp(X) such
that F (x) = E(x,D(x)) = b. From the guarantee of E we know there is
a ∈ {0, 1}d and S ⊆ Supp(X) such that for every x ∈ S, E(x, a) = b. Since
S is a support of a distribution in C, from the guarantee of D there must be
x ∈ S such that D(x) = a. For this x,

F (x) = E(x,D(x)) = E(x, a) = b.

In Chapter 2 we construct a subsource hitter for 2-independent sources of
min-entropy k with output length Ω(k). Using the Composition Theorem for
zero-error dispersers, this enables increasing the output length of the zero-
error disperser of [4] for 2-independent sources of min-entropy k = δ · n for
constant δ from a constant number of bits to Ω(k).

We get similar improvements for zero-error dispersers for bit-fixing sources
and affine sources over large fields.

1.4.5 What Else Is There in This Book?

In this introduction we chose to concentrate on the recycling paradigm and
showed the composition theorems based on it. A large part of this book,
which we did not address here, is devoted to constructing the components
that are ‘plugged into’ the composition theorems. The one work which we did
not address in this introduction is described in Chapter 4, where we construct
deterministic extractors for ‘low-degree polynomial sources’. In that work we
do not use the recycling paradigm.



Chapter 2

Deterministic Extractors for
Bit-Fixing Sources by Obtaining
an Independent Seed

Summary

An (n, k)-bit-fixing source is a distribution X over {0, 1}n such
that there is a subset of k variables in X1, . . . , Xn which are uni-
formly distributed and independent of each other, and the remain-
ing n−k variables are fixed. A deterministic bit-fixing source ex-
tractor is a function E : {0, 1}n → {0, 1}m which on an arbitrary
(n, k)-bit-fixing source outputs m bits that are statistically-close
to uniform. Prior to our work, Kamp and Zuckerman [44th FOCS,
2003] gave a construction of a deterministic bit-fixing source ex-
tractor that extracts Ω(k2/n) bits and requires k >

√
n.

In this chapter we give constructions of deterministic bit-fixing
source extractors that extract (1 − o(1))k bits whenever k >
(log n)c for some universal constant c > 0. Thus, our construc-
tions extract almost all the randomness from bit-fixing sources
and work even when k is small. For k � √n the extracted bits
have statistical distance 2−nΩ(1)

from uniform, and for k ≤ √n
the extracted bits have statistical distance k−Ω(1) from uniform.

Our technique gives a general method to transform determin-
istic bit-fixing source extractors that extract few bits into extrac-
tors which extract almost all the bits. This work is the first to use
the ‘recycling paradigm’ as described in the introduction. The de-
scription of it here is different and perhaps more cumbersome, as
the one given in the introduction was only realized in hindsight.

This chapter is based on [26].

A. Gabizon, Deterministic Extraction from Weak Random Sources,
Monographs in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-642-14903-0 2, c© Springer-Verlag Berlin Heidelberg 2011

11
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2.1 Introduction

2.1.1 Bit-Fixing Sources

In this chapter we concentrate on the family of “bit-fixing sources” introduced
by Chor et al. [15]. A distribution X over {0, 1}n is a bit-fixing source if
there is a subset S ⊆ {1, . . . , n} of “good indices” such that the bits Xi for
i ∈ S are independent fair coins and the rest of the bits are fixed.1

Definition 2.1 (bit-fixing sources and extractors). A distribution X over
{0, 1}n is an (n, k)-bit-fixing source if there exists a subset S = {i1, . . . , ik} ⊆
{1, . . . , n} such that Xi1 ,Xi2 , . . . , Xik

is uniformly distributed over {0, 1}k
and for every i �∈ S, Xi is constant.

A function E : {0, 1}n → {0, 1}m is a deterministic (k, ε)-bit-fixing source
extractor if it is a deterministic ε-extractor (as defined in the first chapter)
for all (n, k)-bit-fixing sources.

One of the motivations given in the literature for studying deterministic
bit-fixing source extractors is that they are helpful in cryptographic scenarios
in which an adversary learns (or alters) n− k bits of an n-bit long secret key
[15]. Loosely speaking, one wants cryptographic protocols to remain secure
even in the presence of such adversaries. Various models for such “exposure
resilient cryptography” were studied [57, 11, 12, 20]. The reader is referred
to [18] for a comprehensive treatment of “exposure resilient cryptography”
and its relation to deterministic bit-fixing source extractors.

Every (n, k)-bit-fixing source “contains” k “bits of randomness”. It fol-
lows that any deterministic (k, ε)-bit-fixing source extractor with ε < 1/2
can extract at most k bits. The function E(x) = ⊕1≤i≤nxi is a deterministic
(k, 0)-bit-fixing source extractor which extracts one bit for any k ≥ 1. Chor
et al. [15] concentrated on deterministic “errorless” extractors (that is, deter-
ministic extractors in which ε = 0). They show that such extractors cannot
extract even two bits when k < n/3. They also give some constructions of
deterministic errorless extractors for large k.

Our focus is on extractors with error ε > 0 (which allows extracting many
bits for many choices of k). A probabilistic argument shows the existence
of a deterministic (k, ε)-bit-fixing source extractor that extracts m = k −
O(log(n/ε)) bits for any choice of k and ε. Thus, it is natural to try and
achieve such parameters by explicit constructions.

In a previous work, Kamp and Zuckerman [37] constructed explicit de-
terministic (k, ε)-bit-fixing source extractors that extract m = ηk2/n bits for
some constant 0 < η < 1 with ε = 2−Ω(k2/n). They pose the open problem to

1We remark that such sources are often referred to as “oblivious bit-fixing sources” to
differentiate them from other types of “non-oblivious” bit-fixing sources in which the bits
outside of S may depend on the bits in S (cf. [7]). In this chapter we are only concerned
with the “oblivious case”.
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extract more bits from such sources. Note that the extractor of Kamp and
Zuckerman is inferior to the nonexplicit extractor in two respects:

• It only works when k >
√

n.

• Even when k >
√

n the extractor may extract only a small fraction of
the randomness. For example, if k = n1/2+α for some 0 < α < 1/2 the
extractor only extracts m = ηn2α bits.

2.1.2 Our Results

We give two constructions of deterministic bit-fixing source extractors that
extract m = (1 − o(1))k bits from (n, k)-bit-fixing sources. Our first con-
struction is for the case of k � √n.

Theorem 2.1. For every constant 0 < γ < 1/2 there exists an integer n′

(depending on γ) such that for any n > n′ and any k, there is an explicit
deterministic (k, ε)-bit-fixing source extractor E : {0, 1}n → {0, 1}m where
m = k − n1/2+γ and ε = 2−Ω(nγ).

Consider k = n1/2+α for some constant 0 < α < 1/2. We can choose
any γ < α and extract m = n1/2+α − n1/2+γ bits whereas the construction
of [37] only extracts m = O(n2α) bits. For this choice of parameters we
achieve error ε = 2−Ω(nγ) whereas [37] achieves a slightly smaller error ε =
2−Ω(n2α). We remark that this comes close to the parameters achieved by the
nonexplicit construction, which can extract m = n1/2+α − n1/2+γ with error
ε = 2−Ω(n1/2+γ).

Our second construction works for any k > (log n)c for some universal
constant c. However, the error in this construction is larger.

Theorem 2.2. There exist constants c > 0 and 0 < μ, ν < 1 such that for
any large enough n and any k ≥ logc n, there is an explicit deterministic
(k, ε)-bit-fixing source extractor E : {0, 1}n → {0, 1}m where m = k −O(kν)
and ε = O(k−μ).

We remark that using the technique of [37] one can achieve much smaller
error (ε = 2−

√
k) at the cost of extracting very few bits (m = Ω(log k)). The

precise details are given in Theorem 2.5.

2.1.3 Overview of Techniques

We develop a general technique that transforms any deterministic bit-fixing
source extractor that extracts only very few bits into one that extracts almost
all of the randomness in the source. This transformation makes use of “seeded
extractors”.
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Seeded randomness extractors

A seeded randomness extractor is a function which receives two inputs: In
addition to a sample from a source X, a seeded extractor also receives a short
“seed” Y of few uniformly distributed bits. Loosely speaking, the extractor is
required to output many more random bits than the number of bits “invested”
as a seed.

Definition 2.2 (seeded extractors). Let C be a class of distributions on
{0, 1}n. A function E : {0, 1}n×{0, 1}d → {0, 1}m is a seeded ε-extractor for
C if for every source X in C the distribution E(X,Y ) (obtained by sampling
x from X and a uniform y ∈ {0, 1}d and computing E(x, y)) is ε-close to the
uniform distribution on m bit strings.

A long line of research focuses on constructing such seeded extractors with
as short as possible seed length that extract as many as possible bits from
the most general family of sources that allow randomness extraction: The
class of sources with high min-entropy.

Definition 2.3 (seeded extractors for high min-entropy sources). The min-
entropy of a distribution X over {0, 1}n is H∞(X) = minx∈{0,1}n log2

(1/Pr(x)). A function E : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor if
it is a seeded ε-extractor for the class of all sources X with H∞(X) ≥ k.

There are explicit constructions of (k, ε)-extractors that use a seed of
length polylog(n/ε) to extract k random bits. The reader is referred to [62]
for a detailed survey on various constructions of seeded extractors.

Our goal is to construct deterministic bit-fixing source extractors. Never-
theless, in the next definition we introduce the concept of a seeded bit-fixing
source extractor. We use such extractors as a component in our construction
of deterministic bit-fixing source extractors.

Definition 2.4 (seeded extractors for bit-fixing sources). A function E :
{0, 1}n ×{0, 1}d → {0, 1}m is a seeded (k, ε)-bit-fixing source extractor if it is
a seeded ε-extractor for the class of all (n, k)-bit-fixing sources.

Seed obtainers

There is a very natural way to try to transform a deterministic bit-fixing
source extractor that extracts few (say polylog(n)) bits into one that extracts
many bits: First, run the deterministic bit-fixing source extractor to extract
a few bits from the source, and then use these bits as a seed to a seeded ex-
tractor that extracts all the bits from the source. The obvious difficulty with
this approach is that typically the output of the first extractor is correlated
with the imperfect random source. Seeded extractors are only guaranteed to
work when their seed is independent from the random source. To overcome
this difficulty we introduce a new object we call a “seed obtainer”.



2.1 Introduction 15

Loosely speaking, a seed obtainer is a function F that, given an (n, k)-bit-
fixing source X, outputs two strings X ′ and Y with the following properties:

• X ′ is an (n, k′)-bit-fixing source with k′ ≈ k good bits.

• Y is a short string that is almost uniformly distributed.

• X ′ and Y are almost independent.

The precise definition is slightly more technical and is given in Definition
2.11. Note that a seed obtainer reduces the task of constructing deterministic
extractors to that of constructing seeded extractors: Given a bit-fixing source
X, one first runs the seed obtainer to obtain X ′ and a short Y , and then
uses Y as a seed to a seeded extractor that extracts all the randomness from
X ′. (In fact, it is even sufficient to construct seeded extractors for bit-fixing
sources.)

Constructing seed obtainers

Note that every seed obtainer F (X) = (X ′, Y ) “contains” a deterministic
bit-fixing source extractor by setting E(X) = Y . We show how to transform
any deterministic bit-fixing source extractor into a seed obtainer. In this
transformation the length of the “generated seed” Y is roughly the length of
the output of the original extractor.

It is helpful to explain the intuition behind this transformation when
applied to a specific deterministic bit-fixing source extractor. Consider the
“xor-extractor” E(x) = ⊕1≤i≤nxi. Let X be some (n, k)-bit-fixing source,
and let Z = E(X). Note that the output bit Z is indeed very correlated with
the input X. Nevertheless, suppose that we somehow obtain a random small
subset of the indices of X. It is expected that the set contains a small frac-
tion of the good bits. Let X ′ be the string that remains after “removing”
the indices in the sampled set. The important observation is that X ′ is a
bit-fixing source that is independent from the output Z. It turns out that
the same phenomenon happens for every deterministic bit-fixing source ex-
tractor E(X). However, it is not clear how to use this idea as we don’t have
additional random bits to perform the aforementioned sampling of a random
set. Surprisingly, we show how to use the bits extracted by the extractor E
to perform this sampling.

Following this intuition, given an extractor E(X) which extracts an m
bit string Z, we partition Z into two parts Y and W . We then use W as
a seed to a randomness efficient method of “sampling” a small subset T of
{1, . . . , n}. The first output of the seed obtainer X ′ is given by “removing”
the sampled indices from X. More formally, X ′ is the string X restricted
to the indices outside of T . The second output is Y (the other part of the
output of the extractor E).

The intuition is that if T was a size n/r uniformly distributed subset of
{1, . . . , n} then it is expected to hit approximately k/r good bits from the
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source. Thus, k − k/r good bits remain in X ′. We will require that the
extractor E extracts randomness from (n, k/r)-bit-fixing sources. Loosely
speaking, we can hope that E will extract its output from XT (the string
obtained by restricting X to the indices of T ). Thus, its output will be
independent from X ′ (the string obtained by removing XT ).

Note that the intuition above is far from being precise. The set T is
sampled using random bits W that are extracted from the source X, and
thus T depends on X, whereas, the intuition corresponds to the case where
T is independent from X. The precise argument appears in Section 2.3. We
remark that the analysis requires that the extractor E have error ε that is
smaller than 2−|W | (where |W | is the number of bits used by the sampling
method).

A deterministic extractor for large k (i.e., k � √n)

Our first construction builds on the deterministic bit-fixing source extractor
of Kamp and Zuckerman [37] that works for k >

√
n and extracts at least

Ω(k2/n) bits from the source. We first transform this extractor into a seed
obtainer F . Next, we run the seed obtainer F on the input source to generate
a bit-fixing source X ′ and a seed Y . Finally, we extract all the randomness
in X ′ by running a seeded extractor on X ′ using Y as seed.

A deterministic extractor for small k (i.e., k <
√

n)

In order to use our technique for k <
√

n we need to start with some deter-
ministic bit-fixing source extractor that works when k <

√
n and extracts a

small number of bits. Our first observation is that methods similar to the
ones of Kamp and Zuckerman [37] can be applied when k <

√
n but only

give deterministic bit-fixing source extractors that extract very few bits (i.e.,
Ω(log k) bits)2.

Deterministic extractors that extract Ω(log k) bits Kamp and Zuck-
erman [37] consider the distribution obtained by using a bit-fixing source
X = (X1, . . . , Xn) to perform a random walk on a d-regular graph. (They
consider a more general model of bit-fixing sources in which every symbol Xi

ranges over an alphabet of size d). The walk starts from some fixed vertex in
the graph, and at step i Xi is used to select a neighbor of the current vertex.
They show that the distribution over the vertices converges to the uniform
distribution at a rate which depends on k and the “spectral gap” of the graph.
It is known that 2-regular graphs cannot have a small “spectral gap”. Indeed,
this is why Kamp and Zuckerman consider alphabet size d > 2, which allows
using d-regular expander graphs that have small spectral gap. Nevertheless,

2This was observed independently by Lipton and Vishnoi [40].



2.1 Introduction 17

using their technique choosing the graph to be a short cycle of length k1/4

produces an extractor construction which extracts log(k1/4) = Ω(log k) bits.3

A seeded extractor for bit-fixing sources with seed length O(log log n)
Converting the deterministic bit-fixing source extractor above into a seed ob-
tainer we “obtain” an Ω(log k) bit seed. This allows us to use a seeded
extractor with seed length d = Ω(log k). However, d < log n and by a lower
bound of [48, 49] the class of high min-entropy sources does not have seeded
extractors with seed d < log n. To bypass this problem we construct a seeded
extractor for bit-fixing sources with seed length O(log log n). Note that the
aforementioned deterministic extractor extracts these many bits as long as
k > logc n for some constant c (when Ω(log k) ≥ O(log log n)).

The seeded extractor uses its seed to randomly partition the indices
{1, . . . , n} into r sets T1, . . . , Tr (for r equal, say to log4 n), with the property
that with high probability each one of these sets contains at least one good
bit. We elaborate on this partitioning method later on. We then output r
bits, where the i’th bit is given by ⊕j∈Ti

xj .
By combining the seed obtainer with the seeded bit-fixing source extractor

we obtain a deterministic bit-fixing source extractor which extracts r = log4 n
bits. To extract more bits, we convert this deterministic extractor into a seed
obtainer. At this point we obtain a seed of length log4 n and can afford using
a seeded extractor which extracts all the remaining randomness.

Sampling and partitioning with only O(log log n) random bits We
now explain how to use O(log log n) random bits to partition the indices
{1, . . . , n} into r = poly log n sets T1, . . . , Tr such that for any set S ⊆
{1, . . . , n} of size k, with high probability (probability at least 1−O(1/ log n))
all sets T1, . . . , Tr contain approximately k/r indices from S.

Suppose we could afford using many random bits. A natural solution is
to choose n random variables V1, . . . , Vn ∈ {1, . . . , r} and have Tj be the set
of indices i such that Vi = j. We expect k/r bits to fall in each Tj and by a
union bound one can show that with high probability all sets T1, . . . , Tr have
a number of indices from S that is close to the expected value.

To reduce the number of random bits we derandomize the construction
above and use random variables Vi which are ε-close to being pairwise in-
dependent (for ε = 1/ loga n for some sufficiently large constant a). Such
variables can be constructed using only O(log log n) random bits [44, 2, 23]
and suffice to guarantee the required properties.

The same technique also gives us a method for sampling a set T of indices
in {1, . . . , n} (which we require in our construction of seed obtainers). We
simply take the first set T1. This sampling method uses only O(log log n)
random bits and thus we can afford it when transforming our deterministic

3In fact, a similar idea is used in [37] in order to reduce the case of large d to the case
of d = 2.
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extractor into a seed obtainer. (Recall that our transformation uses part of
the output of the deterministic extractor for sampling a subset of the indices).
We remark that this sampling technique was used previously by Reingold
et al. [56] as a component in a construction of seeded extractors.

2.1.4 Outline

In Section 2.2 we define the notations used in this chapter. In Section 2.3
we introduce the concept of seed obtainers and show how to construct them
from deterministic bit-fixing source extractors and “averaging samplers”. In
Section 2.4 we observe that the technique of [37] can be used to extract
a few bits even when k is small. In Section 2.5 we give constructions for
averaging samplers. In Section 2.6 we give a construction of a seeded bit-
fixing source extractor that makes use of the sampling techniques of Section
2.5. In Section 2.7 we plug all the components together and prove our main
theorems. Finally, in Section 2.8 we give some open problems.

2.2 Preliminaries

Notations We use [n] to denote the set {1, . . . , n}. We use P (S) to de-
note the set of subsets of a given set S. We use Un to denote the uniform
distribution over n bits. Given a distribution A we use w ← A to denote the
experiment in which w is chosen randomly according to A. Given a string
x ∈ {0, 1}n and a set S ⊆ [n] we use xS to denote the string obtained by
restricting x to the indices in S. We denote the length of a string x by |x|.
Logarithms will always be taken with base 2.

Asymptotic notation As this chapter has many parameters, we now ex-
plain exactly what we mean when using O(·) and Ω(·) in a statement involv-
ing many parameters. We use the Ω and O signs only to denote absolute
constants (i.e., constants not dependent on any parameters even if these pa-
rameters are considered constants). Furthermore, when writing, for example,
f(n) = O(g(n)), we always explicitly mention the conditions on n (and maybe
other parameters) for which the statement holds.

2.2.1 Averaging Samplers

A sampler is a procedure which, given a short seed, generates a subset T ⊆ [n]
such that for every set S ⊆ [n], |S ∩ T | is with high probability “close to the
expected size”.

Definition 2.5. An (n, k, kmin, kmax, δ)-sampler Samp : {0, 1}t → P ([n]) is
a function such that for any S ⊆ [n] such that |S| = k,

Pr
w←Ut

(kmin ≤ |Samp(w) ∩ S| ≤ kmax) ≥ 1− δ.
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The definition above is nonstandard in several respects. In the more
common definition (c.f. [30]), a sampler is required to work for sets of
arbitrary size. In the definition above (which is similar in spirit to the one
in [69]), the sampler is only required to work against sets of size k and the
bounds kmin, kmax are allowed to depend on k. Furthermore, we require that
the sampler have “distinct samples” as we do not allow T to be a multi-set.4

We will use samplers to “partition” bit-fixing sources. Note that in the
case of an (n, k)-bit-fixing source, Samp returns a subset of indices such that,
with high probability, the number of good bits in the subset is between kmin

and kmax.

2.2.2 Probability Distributions

Some of the proofs in this chapter require careful manipulations of probability
distributions. We use the following notation. We use Um to denote the
uniform distribution on m bit strings. We denote the probability of an event
B under a probability distribution P by PrP [B]. A random variable R that
takes values in U is a function R : Ω→ U (where Ω is a probability space). We
sometimes refer to R as a probability distribution over U (the distribution of
the output of R). For example, given a random variable R and a distribution
P we sometimes write “R = P”, and this means that the distribution of
the output of R is equal to P . Given two random variables R1, R2 over the
same probability space Ω we use (R1, R2) to denote the random variable
induced by the function (R1, R2)(ω) = (R1(ω), R2(ω)). Given two probability
distributions P1, P2 over domains Ω1,Ω2, we define P1⊗P2 to be the product
distribution of P1 and P2, defined over the domain Ω1 × Ω2.

Definition 2.6 (conditioning distributions and random variables). Given a
probability distribution P over some domain U and an event A ⊆ U such that
PrP [A] > 0 we define a distribution (P |A) over U as follows: Given an event
B ⊆ U , Pr(P |A)(B) = PrP [B|A] = PrP [A∩B]

PrP [A] .
We extend this definition to random variables R : Ω→ U . Given an event

A ⊆ Ω we define (R|A) to be the probability distribution over U given by
Pr(R|A)[B] = PrR[R ∈ B|A].

We also need the notion of convex combination of distributions.

Definition 2.7 (convex combination of distributions). Given distributions
P1, . . . , Pt over U and coefficients α1, . . . , αt ≥ 0 such that

∑
1≤i≤t αi = 1, we

4We remark that some of the “standard techniques” for constructing averaging samplers
(such as taking a walk on an expander graph or using a randomness extractor) perform
poorly in this setup, and do not work when k <

√
n (even if T is allowed to be a multi-

set). This happens because in order to even hit a set S of size k, these techniques require
sampling a (multi-)set T of size larger than (n/k)2, which is larger than n for k <

√
n. In

contrast, note that a completely random set of size roughly n/k will hit a fixed set S of
small size with high probability.
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define the distribution P =
∑

1≤i≤t αiPi as follows: Given an event B ⊆ U ,
PrP [B] =

∑
1≤i≤t αi PrPi

[B].

We also need the following technical lemmas.

Lemma 2.8. Let X,Y and V be distributions over {0, 1}n such that X is
ε-close to Un and Y = δ · V + (1− δ) ·X. Then Y is (2δ + ε)-close to Un.

Proof. Let B ⊆ {0, 1}n be some event.

|Pr
Y

(B)− Pr
Un

(B)| = |δ Pr
V

(B) + (1− δ) Pr
X

(B)− Pr
Un

(B)|

≤ 2δ + |Pr
X

(B)− Pr
Un

(B)| ≤ 2δ + ε.

Lemma 2.9. Let (A,B) be a random variable that takes values in {0, 1}u ×
{0, 1}v and suppose that there exists some distribution P over {0, 1}v such
that for every a ∈ {0, 1}u with Pr[A = a] > 0 the distribution (B|A = a) is
ε-close to P . Then (A,B) is ε-close to (A⊗ P ).

Proof.
1
2
·
∑

a,b

|Pr[(A,B) = (a, b)]− Pr
A⊗P

[a, b]|

=
1
2
·
∑

a,b

|Pr[A = a] Pr[B = b|A = a]− Pr[A = a] Pr
P

[b]|

≤ 1
2
·
∑

a

Pr[A = a]
∑

b

|Pr[B = b|A = a]− Pr
P

[b]| ≤ ε/2.

Lemma 2.10. Let (A,B) be a random variable that takes values in {0, 1}u×
{0, 1}v which is ε-close to (A′⊗Uv); then, for every b ∈ {0, 1}v the distribution
(A|B = b) is (ε · 2v+1)-close to A′.

Proof. Assume for the purpose of contradiction that there exists some b∗ ∈
{0, 1}v such that the distribution (A|B = b∗) is not α-close to A′ for α =
ε · 2v+1. Then there is an event D such that

| Pr
(A|B=b∗)

[D]− Pr
A′

[D]| > α.

By complementing D if necessary, we can w.l.o.g. remove the absolute value
from the inequality above. We define an event D′ over {0, 1}u×{0, 1}v. The
event D′ = {(a, b)|b = b∗, a ∈ D}. We have that

Pr
(A′,Uv)

[D′] = Pr
A′

[D] · 2−v.
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And similarly,
Pr

(A,B)
[D′] = Pr

(A|B=b∗)
[D] Pr

B
[B = b∗].

We know that B is ε-close to Uv, and therefore PrB [B = b∗] ≥ 2−v−ε. Thus,

Pr
(A,B)

[D′]− Pr
(A′,Uv)

[D′] = Pr
(A|B=b∗)

[D] Pr
B

[B = b∗]− Pr
A′

[D] · 2−v

≥ Pr
(A|B=b∗)

[D](2−v − ε)− Pr
A′

[D] · 2−v ≥ 2−v[ Pr
(A|B=b∗)

[D]− Pr
A′

[D]]− ε.

By our assumption the expression in square brackets is at least α, and thus,

> 2−vα− ε = ε.

Thus, we get a contradiction.

2.3 Obtaining an Independent Seed

2.3.1 Seed Obtainers and Their Application

One of the natural ways to try and extract many bits from imperfect random
sources is to first run a “weak extractor” which extracts few bits from the
input distribution and then use these few bits as a seed to a second extractor
which extracts more bits. The obvious difficulty with this approach is that
typically the output of the first extractor is correlated with the imperfect
random source and it is not clear how to use it. (Seeded extractors are only
guaranteed to work when the seed is independent from the random source).
In the next definition we introduce the concept of a “seed obtainer” that
overcomes this difficulty. Loosely speaking, a seed obtainer is a deterministic
function which given a bit-fixing source X outputs a new bit-fixing source X ′

(with roughly the same randomness) together with a short random seed Y
which is independent from X ′. Thus, the seed Y can later be used to extract
randomness from X ′ using a seeded extractor.

Definition 2.11 (seed obtainer). A function F : {0, 1}n → {0, 1}n ×{0, 1}d
is a (k, k′, ρ)-seed obtainer if for every (n, k)-bit-fixing source X, the distri-
bution R = F (X) can be expressed as a convex combination of distributions
R = ηQ +

∑
a αaRa (here the coefficients η and αa are nonnegative and

η +
∑

a αa = 1) such that η ≤ ρ and for every a there exists an (n, k′)-bit-
fixing source Za such that Ra is ρ-close to Za ⊗ Ud.

It follows that given a seed obtainer one can use a seeded extractor for
bit-fixing sources to construct a deterministic (i.e., seedless) extractor for
bit-fixing sources.

Theorem 2.3. Let F : {0, 1}n → {0, 1}n × {0, 1}d be a (k, k′, ρ)-seed ob-
tainer. Let E1 : {0, 1}n × {0, 1}d → {0, 1}m be a seeded (k′, ε)-bit-fixing
source extractor. Then E : {0, 1}n → {0, 1}m defined by E(x) = E1(F (x)) is
a deterministic (k, ε + 3ρ)-bit-fixing source extractor
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Proof. By the definition of a seed obtainer we have that E(X) = ηE1(Q) +∑
a αaE1(Ra) for some η ≤ ρ. For each a we have that E1(Ra) is (ε + ρ)-

close to Um. It follows that E(X) is (ε+ ρ)-close to ηE1(Q)+ (1− η)Um and
therefore by Lemma 2.8 we have that E(X) is (2η + ε + ρ)-close to uniform.
The lemma follows because 2η + ε + ρ ≤ ε + 3ρ.

2.3.2 Constructing Seed Obtainers

Note that every seed obtainer “contains” a deterministic extractor for bit-
fixing sources. More precisely, given a seed obtainer F (x) = (x′, y) the func-
tion E(x) = y is a deterministic extractor for bit-fixing sources. We now show
how to convert any deterministic bit-fixing source extractor with sufficiently
small error into a seed obtainer.

Our construction appears in Figure 2.1. In words, given x, the seed
obtainer first computes E(x). It uses a part of E(x) as the second output y
and another part to sample a substring of x. It obtains the first output x′

by erasing the sampled substring from x. We now state the main theorem of
this section.

Theorem 2.4 (construction of seed obtainers). For every n and k < n,
Let Samp and E be as in Figure 2.1 (that is, Samp : {0, 1}t → P ([n]) is

Figure 2.1: A seed obtainer for (n, k)-bit-fixing sources

Ingredients:

• An (n, k, kmin, kmax, δ)-sampler Samp : {0, 1}t → P ([n]).

• A deterministic (kmin, ε)-bit-fixing source extractor E :
{0, 1}n → {0, 1}m with m > t.

Result: A (k, k′, ρ)-seed obtainer F : {0, 1}n → {0, 1}n × {0, 1}m−t

with k′ = k − kmax and ρ = max(ε + δ, ε · 2t+1).

The construction of F :

• Given x ∈ {0, 1}n compute E(x) and let E1(x) denote
the first t bits of E(x) and E2(x) denote the remaining
m− t bits.

• Let T = Samp(E1(x)).

• Let x′ = x[n]\T . If |x′| < n we pad it with zeroes to get
an n-bit long string.

• Let y = E2(x), Output x′, y.
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an (n, k, kmin, kmax, δ)-sampler and E : {0, 1}n → {0, 1}m is a deterministic
(kmin, ε)-bit-fixing source extractor). Then, F : {0, 1}n → {0, 1}n × {0, 1}d
defined in Figure 2.1 is a (k, k′, ρ)-seed obtainer for d = m− t, k′ = k−kmax

and ρ = max(ε + δ, ε · 2t+1).

Proof of Theorem 2.4

In this section we prove Theorem 2.4. Let E be a bit-fixing source extractor
and Samp be a sampler which satisfy the requirements in Theorem 2.4. Let
X be some (n, k)-bit-fixing source and let S ⊆ [n] be the set of k good indices
for X. We will use capital letters to denote the random variables which come
up in the construction. We split E(X) into two parts (E1(X), E2(X)) ∈
{0, 1}t × {0, 1}m−t. For a string a ∈ {0, 1}t we use Ta to denote Samp(a)
and T ′

a to denote [n] \ Samp(a). Given a string x ∈ {0, 1}n, we use xa to
denote xTa

and x′
a to denote the n bit string obtained by padding xT ′

a
to

length n. Let X ′ = X ′
E1(X) and Y = E2(X). Our goal is to show that the

pair (X ′, Y ) is close to a convex combination of pairs of distributions where
the first component is a bit-fixing source and the second is independent and
uniformly distributed.

Definition 2.12. We say that a string a ∈ {0, 1}t correctly splits X if
kmin ≤ |S ∩ Ta| ≤ kmax.

Note that by the properties of the sampler, almost all strings a correctly split
X. We start by showing that for every fixed a which correctly splits X the
variables X ′

a and E(X) are essentially independent. Loosely speaking this
happens because we can argue that there are enough good bits in Xa and
therefore the extractor can extract randomness from Xa which is independent
of the randomness in X ′

a.

Lemma 2.13. For every fixed a ∈ {0, 1}t which correctly splits X the pair
of random variables (X ′

a, E(X)) is ε-close to the pair (X ′
a ⊗ Um).

Proof. Let � = |Samp(a)|. Given a string σ ∈ {0, 1}� and a string σ′ ∈
{0, 1}n−� we define [σ;σ′] to be the n bit string obtained by placing σ in
the indices of Ta and σ′ in the indices of T ′

a. More formally, we denote
the � indices of Ta by i1 < i2 < · · · < i� and the n − � indices of T ′

a by
i′1 < i′2 < · · · < i′n−�. Given an i ∈ Ta we define index(i) to be the index j
such that ij = i, and equivalently given i ∈ T ′

a we define index′(i) to be the
index j such that i′j = i. The string [σ;σ′] ∈ {0, 1}n is defined as follows:

[σ;σ′]i =
{

σindex(i) i ∈ Ta

σ′
index′(i) i ∈ T ′

a

Note that in this notation X = [Xa;X ′
a]. We are interested in the distri-

bution of the random variable (X ′
a, E(X)) = (X ′

a, E([Xa;X ′
a])). For every
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b ∈ {0, 1}n−� we consider the event {X ′
a = b}. Fix some b ∈ {0, 1}n−� such

that Pr[X ′
a = b] > 0. The distribution

(E(X)|X ′
a = b) = (E([Xa;X ′

a])|X ′
a = b) = E([Xa; b])

where the last equality follows because Xa and X ′
a are independent and

therefore Xa is not affected by fixing X ′
a. Note that as a correctly splits X,

the distribution [Xa; b] is a bit-fixing source with at least kmin “good” bits.
We conclude that for every b ∈ {0, 1}n−� such that Pr[X ′

a = b] > 0 the
distribution (E(X)|X ′

a = b) is ε-close to uniform. We now apply Lemma 2.9
with A = X ′

a and B = E(X) and conclude that the pair (X ′
a, E(X)) is ε-close

to (X ′
a ⊗ Um).

We now argue that if ε is small enough then the pair (X ′
a, E2(X)) is

essentially independent even when conditioning the probability space on the
event {E1(X) = a}.

Lemma 2.14. For every fixed a ∈ {0, 1}t that correctly splits X, the distri-
bution ((X ′

a, E2(X))|E1(X) = a) is ε · 2t+1-close to (X ′
a ⊗ Um−t).

Proof. First note that the statement is meaningless unless ε < 2−t we will
assume w.l.o.g. that this is the case and then for every fixed a ∈ {0, 1}t the
event {E1(X) = a} occurs with nonzero probability as E1(X) is ε-close to
uniform over {0, 1}t. The lemma will follow as a straightforward application
of Lemma 2.10. We set A = (X ′

a, E2(X)), B = E1(X) and A′ = (X ′
a, Um−t).

We indeed have that (A,B) is ε-close to (A′, Ut) and the lemma follows.

We are now ready to prove Theorem 2.4.

Proof. (of Theorem 2.4) By the properties of the extractor we have that
E1(X) is ε-close to uniform. It follows (by the properties of the sampler) that
the probability that E1(X) correctly splits X is 1− η for some η which satis-
fies η ≤ ε+δ. We now consider the output random variable R = (X ′, E2(X)).
We need to express this random variable as a convex combination of inde-
pendent distributions and a small error term. We set Q to be the distribu-
tion (R|“E1(X) doesn’t correctly split X”). For every correctly splitting a
we set Ra to be the distribution (R|E1(X) = a) and αa = Pr[E1(X) = a].
By our definition we have that indeed R = ηQ +

∑
a αaRa. For every a

that correctly splits X we have that Ra = ((X ′, E2(X))|E1(X) = a) =
((X ′

E1(X), E2(X))|E1(X) = a) = ((X ′
a, E2(X))|E1(X) = a). By Lemma 2.14

we have that Ra is ε · 2t+1-close to (X ′
a ⊗ Um−t). As a correctly splits X we

have that X ′
a is an (n, k−kmax)-bit-fixing source as required. Thus, we have

shown that the distribution Ra is close to a convex combination of pairs of
essentially independent distributions where the first is a bit-fixing source and
the second is uniform.
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2.4 Extracting a Few Bits for Any k

The deterministic bit-fixing source extractor of Kamp and Zuckerman [37]
only works for k >

√
n. However, their technique easily gives a deterministic

bit-fixing source extractor that extracts very few bits (Ω(log k) bits) from a
bit-fixing source with arbitrarily small k. We will later use this extractor to
construct a seed obtainer that will enable us to extract many more bits.

Theorem 2.5. For every n > k ≥ 100 there is an explicit deterministic
(k, 2−

√
k)-bit-fixing source extractor E : {0, 1}n → {0, 1}(log k)/4.

For the proof, we need the following result, which is a very special case
of Lemma 3.3 in [37].

Lemma 2.15. ([37, Lemma 3.3] for ε = 0 and d = 2). Let the graph G be
an odd cycle with M vertices and second eigenvalue λ. Suppose we take a
walk on G for n steps, starting from some fixed vertex v with the steps taken
according to the symbols from an (n, k)-bit-fixing source X. Let Z be the
distribution on the vertices at the end of the walk; then Z is

(
1
2λk
√

M
)
-close

to the uniform distribution on [M ].

To extract a few bits from a bit-fixing source X, we will use the bits of
X to conduct a random walk on a small cycle.

Proof. (of Theorem 2.5) We use the source-string to take a walk on a cycle
of size 4

√
k from a fixed vertex. The second eigenvalue of a d-cycle is cos(π

d )

([41, Ex. 11.1]). Using Lemma 2.15, we reach distance
(
cos

(
π
4√

k

))k

k1/8

from uniform. By the Taylor expansion of cos, for 0 < x < 1

cos(x) < 1− x2

2
+

x4

24
< 1− x2

4
Therefore (

cos
(

π
4
√

k

))k

<

(

1− π2

4
√

k

)k

<
(
e−

π2
4

)√
k

< 4−
√

k

where the second to last inequality holds because (1−x) < e−x for 0 < x < 1.
Therefore, we reach distance 4−

√
kk1/8 ≤ 2−

√
k. By outputting the final

vertex’s name we get log(k)
4 bits with the same distance from uniform.

2.5 Sampling and Partitioning
with a Short Seed

Let S ⊆ [n] be some subset of size k. In this section we show how to use few
random bits in order perform two related tasks.
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Sampling: Generate a subset T ⊆ [n] such that |S ∩ T | is in a prespecified
interval [kmin, kmax] (see Definition 2.5).

Partitioning: Partition [n] into r distinct subsets T1, . . . , Tr such that for
every 1 ≤ i ≤ r, |S ∩ Ti| is in a prespecified interval [kmin, kmax].
Needless to say, a partitioning scheme immediately implies a sampling
scheme by concentrating on a single Ti.

In this section we present two constructions of such schemes. The first
construction is used in our deterministic bit-fixing source extractor for k >√

n. In this setup we can allow the sampler to use many random bits (say
nΩ(1) bits) and can have error 2−nΩ(1)

.

Lemma 2.16 (sampling with low error). Fix any constants 0 < γ ≤ 1/2
and α > 0. There exists a constant n′ depending on α and γ such that for
any integers n, k satisfying n > n′ and n1/2+γ ≤ k ≤ n, there exists an
(n, k, (n1/2+γ)/6, n1/2+γ , 2−Ω(α·nγ))-sampler Samp : {0, 1}t → P ([n]) where
t = α · n2γ .

The second construction is used in our deterministic bit-fixing source
extractor for small k. For that construction we require schemes that use only
α log k bits for some small constant α > 0. The construction of Lemma 2.16
requires at least log n > log k bits, which is too much. Instead, we use a
different construction which has much larger error (e.g., k−Ω(1)).

Lemma 2.17 (sampling with O(log k) bits). Fix any constant 0 < α < 1.
There exist constants c > 0, 0 < b < 1 and 1/2 < e < 1 (all depending on
α) such that for any n ≥ 16 and k ≥ logc n, we obtain an explicit (n, k, ke/
2, 3 · ke, O(k−b))-sampler Samp : {0, 1}t → P ([n]) where t = α · log k.

Lemma 2.18 (partitioning with O(log k) bits). Fix any constant 0 < α < 1.
There exist constants c > 0, 0 < b < 1 and 1/2 < e < 1 (all depending on α)
such that for any n ≥ 16 and k ≥ logc n, we can use α · log k random bits
to explicitly partition [n] into m = Ω(kb) sets T1, . . . , Tm such that for any
S ⊆ [n] where |S| = k

Pr(∀i, ke/2 ≤ |Ti ∩ S| ≤ 3 · ke) ≥ 1−O(k−b).

The first construction is based on “�-wise independence”, and the second
is based on “almost 2-wise dependence” [44, 2, 23]. Sampling techniques
based on �-wise independence were first suggested by Bellare and Rompel
[6]. However, this technique is not good enough in our setting and we use a
different approach (which was also used in [56] with slightly different param-
eters). In Appendix A we explain the approach in detail, compare it to the
approach of [6] and give full proofs of the lemmas above.
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2.6 A Seeded Bit-Fixing Source Extractor
with a Short Seed

In this section we give a construction of a seeded bit-fixing source extractor
that uses seed length O(log k) to extract kΩ(1) bits as long as k is not too
small. This seeded extractor is used as a component in our construction of
deterministic extractors for bit-fixing sources.

Theorem 2.6. Fix any constant 0 < α < 1. There exist constants c > 0 and
0 < b < 1 (both depending on α) such that for any n ≥ 16 and k ≥ logc n,
there exists an explicit seeded (k, ε)-bit-fixing source extractor E : {0, 1}n ×
{0, 1}d → {0, 1}m with d = α · log k, m = Ω(kb) and ε = O(k−b).

Proof. Let X be an (n, k)-bit-fixing source. Let x = x1, . . . , xn be a string
sampled by X. The extractor E works as follows: We use the extractor seed
y to construct a partition of the bits of x into m sets. Then we output the
xor of the bits in each set. With high probability, each set will contain a
good bit and therefore, with high probability, the output will be uniformly
distributed.

More formally, let b and c be the constants from Lemma 2.18 when using
the lemma with the parameter α.

E(x,y)

• We use the seed y to obtain a partition of [n] into m = Ω(kb) sets
T1, . . . , Tm using Lemma 2.18 with the parameter α.

• For 1 ≤ i ≤ m, compute zi = ⊕j∈Ti
xj .

• Output z = z1, . . . , zm.

We give a detailed correctness proof although it is very straightforward: Let
S ⊆ [n] be the set of good indices and let Z be the distribution of the output
string z. We need to prove that Z is close to uniform. Let A be the event
{∀i Ti ∩ S �= ∅}. That is, A is the ”good” event in which all sets contain a
random bit (and therefore in this case the output is uniform). Let Ac be the
complement event, i.e., Ac is the event {∃i Ti ∩ S = ∅}. We decompose Z
according to A and Ac:

Z = Pr(Ac) · (Z|Ac) + Pr(A) · (Z|A)

(Z|A) is uniformly distributed. From Lemma 2.18, when k ≥ logc n, Pr(A) ≥
1−O(k−b). Therefore, by Lemma 2.8

Z
O(k−b)

∼ Um.
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2.7 Deterministic Extractors for Bit-Fixing
Sources

In this section, we compose the ingredients from previous sections to prove
Theorems 2.1 and 2.2. Namely, given choices for a deterministic bit-fixing
source extractor, a sampler and a seeded bit-fixing source extractor, we use
Theorems 2.3 and 2.4 to get a new deterministic bit-fixing source extractor.
This works as follows: We “plug in” a deterministic extractor that extracts
a little randomness and a sampler into Theorem 2.4 to get a seed obtainer.
We then “plug in” this seed obtainer and a seeded extractor into Theorem
2.3 to get a new deterministic extractor which extracts almost all of the
randomness. It is convenient to express this composition as follows:

Theorem 2.7. Assume we have the following ingredients:

• An (n, k, kmin, kmax, δ)-sampler Samp : {0, 1}t → P ([n]),

• a deterministic (kmin, ε∗)-bit-fixing source extractor E∗ : {0, 1}n →
{0, 1}m′

and

• a seeded (k−kmax, ε1)-bit-fixing source extractor E1 : {0, 1}n×{0, 1}d →
{0, 1}m

where m′ ≥ d + t. Then we construct a deterministic (k, ε)-bit-fixing source
extractor E : {0, 1}n → {0, 1}m where ε = ε1 + 3 ·max(ε∗ + δ, ε∗ · 2t+1).

Proof. We use Samp and E∗ in Theorem 2.4 to get a (k, k− kmax,max(ε∗ +
δ, ε∗ ·2t+1))-seed obtainer F : {0, 1}n → {0, 1}n×{0, 1}m′−t. Since m′−t ≥ d,
we can use F and E1 in Theorem 2.3 to obtain a deterministic (k, ε)-bit-fixing
source extractor E : {0, 1}n → {0, 1}m where ε = ε1 + 3 · max(ε∗ + δ, ε∗ ·
2t+1).

We also require the following construction of a seeded extractor (which is
in particular a seeded bit-fixing source extractor).

Theorem 2.8 ([55]). For any n, k and ε > 0, there exists a (k, ε)-extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m where m = k and d = O(log2 n · log(1/ε) ·
log k)

2.7.1 An Extractor for Large k (Proof of Theorem 2.1)

To prove Theorem 2.1, we first state results about the required ingredients
and then use the ingredients in Theorem 2.7.

We use the deterministic bit-fixing source extractor of Kamp and Zuck-
erman [37]. Loosely speaking, the following theorem states that when k >>√

n, we can deterministically extract a polynomial fraction of the randomness
with an exponentially small error.
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Theorem 2.9 ([37]). Fix any integers n, k such that k = b ·n1/2+γ for some
b > 0 and 0 < γ ≤ 1/2. There exists a constant c > 0 (not depending on
any of the parameters) such that there exists an explicit deterministic (k, ε∗)-
bit-fixing source extractor E∗ : {0, 1}n → {0, 1}m where m = cb2 · n2γ and
ε∗ = 2−m.

Using the theorem above we can obtain a seed of length O(n2γ). This
means that we can afford these many bits for our sampler and seeded bit-
fixing source extractor. We use the sampler based on �-wise independence
from Lemma 2.16. We use the seeded extractor of [55] (Theorem 2.8), which
we now restate in the following form:

Corollary 2.10. Fix any constants 0 < γ ≤ 1/2 and α > 0. There exists a
constant n′ depending on γ such that for any integers n, k satisfying n > n′

and k ≤ n there exists a (k, ε1)-extractor E1 : {0, 1}n × {0, 1}d → {0, 1}m
where m = k, d = α · n2γ and ε1 = 2−Ω(α·nγ).

Proof. We use the extractor of Theorem 2.8. We need d = c1 · (log3 n ·
log(1/ε1)) random bits for some constant c1 > 0. We want to use at most
α · n2γ random bits. We get the inequality α · n2γ ≥ c1 · log3 n · log(1/ε1).

Equivalently, ε1 ≥ 2−
α·n2γ

c1·log3 n . So for a large enough n (depending on γ), we

can take ε1 = 2−
α·nγ

c1 = 2−Ω(α·nγ).

We now compose the ingredients from Theorem 2.9, Lemma 2.16 and
Corollary 2.10 to prove Theorem 2.1. The composition is a bit cumbersome
in terms of the different parameters. The main issue is that when k = n1/2+γ ,
the deterministic extractor of Kamp and Zuckerman extracts Ω(n2γ) random
bits; and this is enough to use as a seed for a sampler and seeded extractor
(that extracts all the randomness) with error 2−Ω(nγ).

Proof. (of Theorem 2.1) Let c be the constant in Theorem 2.9. We use
Theorem 2.7 with the following ingredients:

• The (n, k, (n1/2+γ)/6, n1/2+γ , δ = 2−Ω(nγ))-sampler Samp : {0, 1}t →
P ([n]) from Lemma 2.16 where t = (c/72)n2γ .

• The deterministic ((n1/2+γ)/6, ε∗ = 2−m′
)-bit-fixing source extractor

E∗ : {0, 1}n → {0, 1}m′
from Theorem 2.9 where m′ = (c/36)n2γ .

• The (k − n1/2+γ , ε1 = 2−Ω(nγ))-extractor E1 : {0, 1}n × {0, 1}d →
{0, 1}m from Corollary 2.10 with d ≤ (c/72)n2γ and m = k − n1/2+γ .

Note that all three objects exist for a large enough n depending only on γ (c is
a universal constant). Note that m′ ≥ t+d. Therefore, applying Theorem 2.7,
we get a deterministic (k, ε)-bit-fixing source extractor E : {0, 1}n → {0, 1}m
where m = k − n1/2+γ and

ε = ε1 + 3 ·max(ε∗ + δ, ε∗ · 2t+1)
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= 2−Ω(nγ) + 3 ·max
(
2−(c/36)n2γ

+ 2−Ω(nγ), 2−(c/36)n2γ · 2(c/72)n2γ+1
)

= 2−Ω(nγ) + 3 ·max
(
2−Ω(nγ), 2−(c/72)n2γ+1

)
= 2−Ω(nγ)

(for a large enough n depending on γ).

2.7.2 An Extractor for Small k (Proof of Theorem 2.2)

To prove Theorem 2.2 we need a deterministic bit-fixing source extractor
for k <

√
n. We use the extractor of Theorem 2.5. We prove the theorem

in two steps. First, we use Theorem 2.7 to convert the initial extractor into
a deterministic bit-fixing source extractor that extracts more bits. We then
apply Theorem 2.7 again to obtain a deterministic bit-fixing source extractor
that extracts almost all bits.

The following lemma implements the first step and shows how to extract
a polynomial fraction of the randomness with a polynomially small error
whenever k ≥ logc n for some constant c.

Lemma 2.19. There exist constants c, b > 0 such that for any k ≥ logc n
and large enough n, there exists an explicit deterministic (k, k−b)-bit-fixing
source extractor E : {0, 1}n → {0, 1}m where m = kΩ(1).

Proof. Roughly speaking, the main issue is that we can get Ω(log k) ran-
dom bits using the deterministic extractor of Theorem 2.5. We will need
c1 · log log n random bits to use the sampler of Lemma 2.17 and the seeded
extractor of Theorem 2.6 (for some constant c1). Thus, when k ≥ logc n for
large enough c, we will have enough bits.

Formally, we use Theorem 2.7 with the following ingredients:

• The (n, k, ke/2, 3 · ke, δ = k−Ω(1))-sampler Samp : {0, 1}t → P ([n])
from Lemma 2.17 where t = log k/32 and e > 1/2 is the constant from
that lemma.

• The deterministic (ke/2, ε∗ = 2−
√

ke/2)-bit-fixing source extractor E∗ :
{0, 1}n → {0, 1}m′

from Theorem 2.5 where m′ = log(ke/2)/4.

• The seeded (k− 3 · ke, ε1 = (k− 3 · ke)−Ω(1))-bit-fixing source extractor
E1 : {0, 1}n × {0, 1}d → {0, 1}m from Theorem 2.6 with d = log k/32
and m = (k − 3 · ke)Ω(1) .

Note that all three objects exist for k ≥ logc n for some constant c and large
enough n. Assume that n is large enough so that k ≥ logc n ≥ 2. To use
Theorem 2.7 we need to check that m′ ≥ t + d: Indeed, m′ = log(ke/2)/4 ≥
log k/16 = t+d (where we used e > 1/2, as stated in Lemma 2.17). Applying
Theorem 2.7, we get a deterministic (k, ε)-bit-fixing source extractor E :
{0, 1}n → {0, 1}m. Notice that for large enough n, ε1 = k−Ω(1); therefore

ε = ε1 + 3 ·max(ε∗ + δ, ε∗ · 2t+1)
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= k−Ω(1) + 3 ·max
(
2−
√

ke/2 + k−Ω(1), 2−
√

ke/2 · 2log k/32+1
)

= k−Ω(1)

(for a large enough n). Also, m = (k− 3 · ke)Ω(1) = kΩ(1) (for a large enough
n) so we get the required parameters.

We now compose the ingredients from Lemmas 2.17 and 2.19 and Theorem
2.8 to prove Theorem 2.2. The composition is a bit cumbersome in terms of
the different parameters. The main issue is that we can extract kΩ(1) random
bits using the deterministic extractor of Lemma 2.19. We want log5 n random
bits to use the seeded extractor of Theorem 2.8. Thus, when k ≥ logc n for
large enough c, we will have enough bits.

Proof. (of Theorem 2.2) Let b be the constant in Lemma 2.19. We use The-
orem 2.7 with the following ingredients:

• The (n, k, ke/2, 3 · ke, δ = k−Ω(1))-sampler Samp : {0, 1}t → P ([n])
from Lemma 2.17 where t = (b/2) log k and e > 1/2 is the constant
from that lemma.

• The deterministic (ke/2, ε∗ = (ke/2)−b)-bit-fixing source extractor E∗ :
{0, 1}n → {0, 1}m′

from Lemma 2.19 where m′ = (ke/2)Ω(1).

• The (k − 3 · ke, ε1 = 1/n)-extractor E1 : {0, 1}n × {0, 1}d → {0, 1}m
from Theorem 2.8 with d ≤ log5 n and m = (k − 3 · ke) .

Note that all three objects exist for k ≥ logc n for some constant c and for
large enough n. To use Theorem 2.7 we need to check that m′ ≥ t + d;
note that m′ = kΩ(1). We take c large enough so that for large enough n
m′/2 > log5 n and m′/2 > (b/2)/ log k. So for such n

m′ ≥ log5 n + (b/2) log k ≥ d + t.

Applying Theorem 2.7, we get a deterministic (k, ε)-bit-fixing source ex-
tractor E : {0, 1}n → {0, 1}m, where

ε = ε1 + 3 ·max(ε∗ + δ, ε∗ · 2t+1)

= 1/n + 3 ·max
(
(ke/2)−b + k−Ω(1), 2 · (ke/2)−b · kb/2

)
= k−Ω(1)

(for large enough n). Since m = k − O(ke) where 1/2 < e < 1 we are
done.

2.8 Discussion and Open Problems

We give explicit constructions of deterministic bit-fixing source extractors
that extract almost all the randomness. However, we achieve rather large
error ε = k−Ω(1) in the case where k <

√
n. We now explain why this
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happens and suggest how to reduce the error. Recall that in this case our
final extractor is based on an initial extractor that extracts only m = O(log k)
bits. When transforming the initial extractor into the final extractor we use
the output bits of the initial extractor as a seed for an averaging sampler.
The error parameter δ of an averaging sampler has to be larger than 2−m, and
as this error is “inherited” by the final extractor we can only get error about
1/k. A natural way to improve our result is to find a better construction for
the initial extractor.

Some applications of deterministic bit-fixing source extractors in adaptive
settings of exposure-resilient cryptography require extractors with ε� 2−m.
We do not achieve this goal (even in our first construction that has rela-
tively small error (unless we artificially shorten the output)). Suppose one
wants to extract m = k − u bits (for some parameter u). It is interesting
to investigate how small the error can be as a function of u? We point out
that the existential nonexplicit result achieves error ε ≥ 2−u and thus cannot
achieve ε < 2−m when m ≥ k/2. We remark that for bit-fixing sources we
have examples of settings where the nonexplicit result is not optimal. For
example, when m = 1 the xor-extractor is errorless (see also [15]). Given the
discussion above we find it interesting to achieve m = Ω(k) with ε = 2−Ω(k)

for every choice of k.



Chapter 3

Deterministic Extractors for Affine
Sources over Large Fields

Summary

An (n, k)-affine source over a finite field F is a random variable
X = (X1, ...,Xn) ∈ F

n, which is uniformly distributed over an
(unknown) k-dimensional affine subspace of F

n. We show how
to (deterministically) extract practically all the randomness from
affine sources, for any field of size larger than nc (where c is a
large enough constant). This chapter is based on [25].

3.1 Introduction

Let F be a finite field of size q and let n be an integer. The famous Hales-
Jewett theorem [35] implies that if n is large enough compared to q then in
any two-coloring of the vector space F

n there exists a monochromatic line1.
On the other hand, if q is significantly larger than n (say, q ≥ 3n log2 n) then
a random two-coloring of the vector space F

n doesn’t have monochromatic
lines (with high probability). Assume that q is large enough (say, q ≥ n20).
Can one give an explicit two-coloring of F

n that doesn’t have monochromatic
lines ? More generally, can one give an explicit coloring D : F

n → {0, 1} such
that every line will have roughly the same number of 0s and 1 ?

The problem of extracting randomness from affine sources is a more gen-
eral problem. Fix n, k and F. Assume that X is uniformly distributed over
an unknown k-dimensional affine subspace of F

n. The goal is to give an ex-
plicit example for a function D : F

n → Ω (for some finite set Ω) such that
the distribution of D(X) is ε-close to uniform. Naturally, we would like Ω to
be as large as possible and ε to be as small as possible.

1A line is a 1-dimensional affine subspace of F

n.

A. Gabizon, Deterministic Extraction from Weak Random Sources,
Monographs in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-642-14903-0 3, c© Springer-Verlag Berlin Heidelberg 2011
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3.1.1 Affine Source Extractors

Denote by Fq the finite field with q elements. Denote by F
n
q the n-dimensional

vector space over Fq.

Definition 3.1 (affine source). A distribution X over F
n
q is an (n, k)q-affine

source if it is uniformly distributed over an affine subspace of dimension k.
That is, X is sampled by choosing t1, . . . , tk uniformly and independently in
Fq and calculating

k∑

j=1

tj · a(j) + b

for some a(1), . . . , a(k), b ∈ F
n
q such that a(1), . . . , a(k) are linearly indepen-

dent.

For a finite set Ω, we denote by UΩ the uniform distribution on Ω. We
recall that two distributions P and Q over Ω are ε-close (denoted by P

ε
∼ Q)

if for every event A ⊆ Ω, |PrP (A)− PrQ(A)| ≤ ε.

Definition 3.2 (deterministic affine source extractor). A function D : F
n
q →

Ω is a deterministic (k, ε)-affine source extractor if for every (n, k)q-affine
source X the distribution D(X) is ε-close to uniform. That is,2

D(X) ε
∼ UΩ.

3.1.2 Our Results

We construct deterministic extractors for affine sources over large fields.
Specifically, we work with a field size that is polynomially large in n. We
give constructions that extract practically all the randomness in all cases.
We have two main constructions. The first is designed for k ≥ 2 and the
second for k = 1.

Our first construction gives a deterministic affine source extractor that
extracts k−1 random elements3 in Fq from any (n, k)q-affine source, provided
q is a large enough polynomial in n. Note that we didn’t make any attempt
to optimize the constants 20 and 21 in the following theorem (as they depend
on each other).

Theorem 3.1. There exists a constant q0 such that for any field Fq and
integers n, k with q > max[q0, n

20], there is an explicit deterministic (k, ρ)-
affine source extractor D : F

n
q → F

k−1
q with ρ ≤ q−1/21.

2Our extractors will sometimes output bits and sometimes output field elements. There-
fore, the definition here uses a general output domain.

3Actually, we can construct a deterministic (k, ε)-affine source extractor that outputs
k − 1 random elements in Fq and �(1 − δ) · log q	 random bits for any constant 0 < δ < 1.
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Our second result is for k = 1. It gives a deterministic affine source
extractor that extracts all the randomness except for an entropy loss of
2 log2(n/ε) + o(log2 q) bits.

Theorem 3.2. For any field Fq, integer n and ε > 0, there is an explicit
deterministic (1, ε)-affine source extractor D : F

n
q → {0, 1}d with d = �log2 q−

2 log2(n/ε)− 2 log2 log2 q − 4�.
We note the following possible instantiations of the theorem.

• Assuming q > nc, we can extract a (1−δ) fraction of the source random-
ness, where δ > 0 is an arbitrarily small constant, and c is a constant4

depending on δ.

• Using any q ≥ n2 · log3
2 n and ε = 1/4 with a one-bit output, we get an

explicit two-coloring of Fq such that no line is monochromatic.

The main drawback of Theorem 3.1 is the large error. The error that we
achieve is polynomially small in q. However, the error ρ does not decrease
as k increases. (We might have hoped to have error exponentially small
in k.) This is because, as will be explained in Section 3.2, the first stage
of our construction extracts randomness from an (n, 1)q-affine source. The
error of the entire construction is bounded from below by the error of this
stage.

3.1.3 Previous Work

Previous works studied the problem over the field F2 (i.e., GF [2]). In [4],
Barak, Kindler, Shaltiel, Sudakov and Wigderson show how to extract one
non-constant bit for k slightly sub-linear in n. In other words, their result
gives a two-coloring of F

n
2 in which no affine subspace of linear dimension (or

slightly sub-linear dimension) is monochromatic. More recently, Bourgain[10]
showed how to extract Ω(k) bits that are exponentially close to uniform when
k is linear in n.

3.2 Overview of Techniques

The basic scheme of our construction is as follows: We construct a determin-
istic affine source extractor that extracts a few bits. We then use these bits
to run a “seeded extractor” that extracts almost all the randomness from the
source. (Usually, seeded extractors require a seed that is independent of the
source. We will construct a “special kind” of seeded extractor that can work
well even with a seed that is correlated with the affine source). The proof
that this composition of extractors works is based on the recycling paradigm
described in the introductory chapter. We now elaborate on the components
in this scheme.

4See Lemma 3.10 for an exact formulation of such an instantiation.
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3.2.1 Extracting Many Bits from Lines

As described above, the first step of our construction is to extract a few bits
deterministically. We do this by showing a method to extract any constant
fraction of the randomness from an (n, 1)q-affine source, assuming q > nc for
large enough c. We first describe how to extract one bit when q is slightly
more than quadratic in n.

Extracting a single bit: We want to extract one random bit from an
(n, 1)q-affine source, assuming q = n2+γ for some γ > 0. Consider first the
easier task of outputting a non-constant bit or even a non-constant value over
a larger domain, say Fq. This can be achieved by the following method: Given
input x = (x1, . . . , xn) = (a1 ·t+b1, . . . , an ·t+bn) ∈ F

n
q (where ai, bi ∈ Fq are

constant and t is chosen uniformly at random in Fq), we compute the expres-
sion

∑n
i=1 xi

i =
∑n

i=1(ai · t + bi)i. We know that ai �= 0 for some i. Assume
for simplicity that an �= 0. The nth summand is a polynomial of degree n
in the variable t. Since the other summands do not contain nth powers, the
entire expression is a non-constant polynomial in t (the large field size comes
in here). Since t is chosen uniformly in Fq, our output will be non-constant.
Actually, by computing this expression we have “converted” our distribution
into a “low-degree distribution” of the form f(U

Fq
), that is, a distribution

sampled by choosing t uniformly in Fq and computing f(t) for some low-
degree polynomial f (low-degree in relation to the field size). Noticing this,
the way to a random bit becomes easy using well-known theorems of Weil
[72] about character sums.5 The characters of a finite field Fq are functions
from Fq to the complex numbers that preserve the field addition or multi-
plication (see subsection 3.3.2 for definitions). Weil’s theorems show that
field characters of order 2 are actually “deterministic extractors” for such
“low-degree distributions” (unless the polynomial is of a certain restricted
form). Thus, our extractor works by “converting” the source distribution
into a “low-degree distribution”6 f(U

Fq
), and then applying a character of

order 2.

Extracting many bits: As explained in subsection 3.3.2, we will need to
work a bit differently for fields of even and odd characteristic. For simplicity,
let us consider now the case of an even-sized field. As described in subsection
3.3.2, when q is even, we use Weil’s theorems to show that the trace function
Tr : Fq → F2 (defined in subsection 3.3.2) outputs an almost unbiased bit
when given a sample from a “low-degree distribution” f(U

Fq
), where f is a

polynomial of odd degree. Furthermore, Tr is an additive function; that is,
Tr(a + b) = Tr(a) + Tr(b). Our extractor works as follows: In a way similar

5These theorems have already been very fruitful in computer science, e.g., in explicit
constructions of ε-biased spaces [2], tournaments [33, 1] and pseudorandom graphs [45].

6We use a slightly different expression than the one given here to ensure that f will not
be of a certain restricted form on which Weil’s theorems don’t apply.
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to the one bit case, we use our source to produce samples from several “low-
degree distributions” of the form U(f ′

j) where the f ′
js have odd degree. We

then apply Tr on each sample. This gives us several bits that are each
individually close to uniform. We want to ensure that their joint distribution
is also close to uniform. For this purpose, we make sure the f ′

js have the
property that the sum of any subset of them is also a polynomial of odd
degree. We use this property together with the additivity of Tr to show that
the parity of any subset of the output bits is close to uniform. We then use
the Vazirani Xor Lemma (see, for example, [22]) to conclude that the output
distribution is close to uniform. The case of an odd-sized field is similar but
requires a bit more work.

3.2.2 Linear Seeded Affine Source Extractors

Our goal is to construct deterministic affine source extractors. As a compo-
nent in our construction, we use linear seeded extractors for affine sources,
i.e., seeded extractors that work only on affine sources (and not on general
high min-entropy sources). Furthermore, the extractors are linear, meaning
that for any fixed seed, the extractor is a linear function of the source.

Definition 3.3 (linear seeded affine source extractor). A function E : F
n
q ×

{0, 1}d → F
m
q is a linear seeded (k, ε)-affine source extractor if

1. For every (n, k)q-affine source X, the distribution E(X,Ud) is ε-close
to uniform. That is,

E(X,Ud)
ε
∼ U

F
m
q

.

2. For a fixed seed, E is a linear function. That is, for any a(1), a(2) ∈
F

n
q , t1, t2 ∈ Fq and y ∈ {0, 1}d, we have

E(t1 · a(1) + t2 · a(2), y) = t1 · E(a(1), y) + t2 · E(a(2), y).

We now sketch our construction of linear seeded affine source extractors
(see Section 3.6 for full details). Fix any affine subspace A ⊆ F

n
q of dimension

k. It is not hard to show that a random linear mapping T : F
n
q → F

k
q ,

or equivalently, a random k × n matrix over Fq, will map A (uniformly)
onto F

k
q with probability at least 1− 1

q−1 . Our construction of linear seeded
affine source extractors can be viewed as a derandomization of this property.
Assuming q > n3, we construct a set of less than q matrices with a similar
property. That is, for any affine subspace A ⊆ F

n
q of dimension k, most of

the matrices in this set will map A onto F
k
q . The construction is very simple:

Pick any subset U ⊆ Fq with |U | > n3. The set of matrices will be the
“power matrices” of the elements of U . That is, for each u ∈ U we will have
a k × n matrix Tu where (Tu)j,i = uji (where ji is the product of j and i as
integers).
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For general high min-entropy sources, it is known that encoding the source
string with an error correcting code and outputting random locations of the
encoding make a good extractor. Some extractor constructions for general
high min-entropy sources, specifically the breakthrough construction of Tre-
visan [66], and its improvement by Raz, Reingold and Vadhan [55] and also
the very elegant constructions of Ta-Shma, Zuckerman and Safra [65] and
Shaltiel and Umans[64], can be viewed as using the random seed to select
locations from an encoding of the source in a derandomized way. From this
angle, our construction may be viewed as selecting locations from the Reed-
Solomon encoding7 of the (affine) source in a derandomized way. Specifically,
we choose the first location u randomly from a large enough subset U ⊆ Fq.
The other locations are simply the powers of u, i.e., u2, u3, . . . , uk.

Remark 3.1. We note that some extractor constructions for general high
min-entropy sources, for example, the constructions of [55, 64, 65, 66] dis-
cussed above, are already linear seeded affine source extractors. They are
designed to work over the binary field but seem to be easily adaptable to large
fields. Why not use one of these constructions? This is a possibility. How-
ever, our construction is considerably simpler and achieves better parameters
for the case of affine sources. In particular, using one of the above-mentioned
constructions would not have enabled us to extract almost all the randomness
(as we will need an affine source extractor that can do so with a seed of length
O(log n)).

3.2.3 Using the Correlated Randomness as a Seed

As stated earlier, we wish to use the few bits extracted by the deterministic
affine source extractor D (described in subsection 3.2.1) as a seed for the
linear seeded affine source extractor E described in subsection 3.2.2. In prin-
ciple, this is problematic as a seeded extractor is only guaranteed to work
when its seed is independent of the source. We want to use a seed that is
a function of the source. However, using the recycling paradigm, we show
that when the seeded extractor is linear this does work. Let us sketch the
argument: Given a fixed seed u, E is a linear mapping. Therefore, if X is
an affine source, then given a possible output value a, the distribution X
conditioned on E(x, u) = a is also an affine source (as we have just added an-
other linear constraint on the support of X). Hence, the distribution D(X),
even when conditioned on E(x, u) = a, is still close to uniform. Using simple
manipulations of probability distributions, this can be used to show that the
distribution E(X,D(X)) is close to the distribution E(X,Ud) (and therefore
close to uniform). See also the description of the recycling paradigm in the
first chapter.

7 The Reed-Solomon encoding of x = (x1, . . . , xn) ∈ F

n
q at location u ∈ Fq is defined as

∑n
i=1 xi · ui.
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3.3 Preliminaries

Notation: We use [n] to denote the set {1, . . . , n}. Let Ω,Π be some finite
sets. For x ∈ Ωn and i ∈ [n], we denote by xi the ith coordinate of x.
Similarly, for a function D : Π → Ωn and i ∈ [n], we denote by Di the
function D restricted to the ith output coordinate. Logarithms will always
be taken to base 2. We denote by Fq the finite field of q elements. We denote
by Fq the algebraic closure of Fq and by Fq[t] the ring of formal polynomials
over Fq. We denote by F

n
q the vector space of dimension n over Fq. Given

a k × n matrix T over Fq, we also view T as a mapping from F
n
q to F

k
q and

denote T (x) � T · x for x ∈ F
n
q .

3.3.1 Probability Distributions

Notation for probability distributions: Let Ω be some finite set. Let
P be a distribution on Ω. For B ⊆ Ω, we denote the probability of B
according to P by PrP (B) or Pr(P ⊆ B); When B ∈ Ω, we will also use
the notation Pr(P = B). Given a function A : Ω → U , we denote by A(P )
or by [A(t)]t←P the distribution induced on U when sampling t by P and
calculating A(t). We will use the same notation for expressions not explicitly
named as functions. For example, for a distribution P on Fq we will denote by
P +1 or by [t+1]t←P the distribution induced on Fq by sampling t by P and
adding 1. When we write t1, . . . , tk ← P , we mean that t1, . . . , tk are chosen
independently according to P . We denote by UΩ the uniform distribution on
Ω. For an integer n, we denote by Un the uniform distribution on {0, 1}n.
We abuse notation and denote by Uq the uniform distribution on Fq. In any
expression involving UΩ or Un and other distributions, the instance of Un

or UΩ is independent of the other distributions. For a distribution P on Ωd

and j ∈ [d], we denote by Pj the restriction of P to the jth coordinate. We
denote by Supp(P ) the support of P . The statistical distance between two
distributions P and Q on Ω, denoted by |P −Q|, is defined as

|P −Q| � max
S⊆Ω

∣
∣
∣
∣Pr

P
(S)− Pr

Q
(S)

∣
∣
∣
∣ =

1
2

∑

w∈Ω

∣
∣
∣
∣Pr

P
(w)− Pr

Q
(w)

∣
∣
∣
∣ .

We say that P is ε-close to Q, denoted by P
ε
∼ Q, if |P −Q| ≤ ε. We denote

the fact that P and Q are identically distributed by P ∼ Q.
We define conditional distributions.

Definition 3.4 (conditional distributions). Let P be a distribution on Ω.
Let C ⊆ Ω be an event such that PrP (C) > 0. We define the distribution
(P |C) by

Pr
(P |C)

(B) =
PrP (B ∩ C)

PrP (C)

for any B ⊆ Ω. Given a function A : Ω → U , we denote by (A(P )|C) the
distribution A((P |C)).



40 3 Deterministic Extractors for Affine Sources over Large Fields

We will need the notion of a convex combination of distributions.

Definition 3.5 (convex combination of distributions). Given distributions
P1, . . . , Pt on a set Ω and coefficients μ1, . . . , μt ≥ 0 such that

∑t
i=1 μi = 1,

we define the distribution P �
∑t

i=1 μi · Pi by

Pr
P

(B) =
t∑

i=1

μi · Pr
Pi

(B)

for any B ⊆ Ω.

We will need a few technical lemmas on probability distributions.
The following lemma shows that convex combinations of similar distribu-

tions with similar coefficients are statistically close.

Lemma 3.2. Let t be any integer. Let P1, . . . , Pt and Q1, . . . , Qt be sequences
of distributions on a set Ω such that for every i ∈ [t], Pi

ε
∼ Qi. Let μ and

ν be distributions on [t] with |μ − ν| ≤ δ. Let P �
∑t

i=1 Pr(μ = i) · Pi,

Q �
∑t

i=1 Pr(ν = i) ·Qi. Then P
2·δ+ε
∼ Q.

Proof. Denote μi = Pr(μ = i) and νi = Pr(ν = i). Given B ⊆ Ω, we have

∣
∣
∣
∣Pr

P
(B)− Pr

Q
(B)

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

t∑

i=1

μi · Pr
Pi

(B)−
t∑

i=1

νi · Pr
Qi

(B)

∣
∣
∣
∣
∣

≤
t∑

i=1

∣
∣
∣
∣μi ·Pr

Pi

(B)−νi ·Pr
Qi

(B)
∣
∣
∣
∣≤

t∑

i=1

∣
∣
∣
∣μi ·Pr

Pi

(B)−νi · Pr
Pi

(B)+νi ·Pr
Pi

(B)−νi · Pr
Qi

(B)
∣
∣
∣
∣

≤
t∑

i=1

|μi − νi|+νi

∣
∣
∣
∣Pr
Pi

(B)− Pr
Qi

(B)
∣
∣
∣
∣ ≤ 2 ·δ+

t∑

i=1

νi

∣
∣
∣
∣Pr
Pi

(B)− Pr
Qi

(B)
∣
∣
∣
∣ ≤ 2 ·δ+ε.

Lemma 3.3. Let P1, . . . , Pt be a sequence of distributions on a set Ω. Let μ be
a distribution on [t]. Let P �

∑t
i=1 Pr(μ = i)·Pi. Assume that the probability

given by μ to the non-uniform Pis is at most ε, i.e., Pri←μ(Pi � UΩ) ≤ ε.
Then

P
ε
∼ UΩ.

Proof. By the assumption of the lemma, P = (1 − δ) · UΩ + δ · V for some
δ ≤ ε and distribution V on Ω. Let B ⊆ Ω be some event.
∣
∣
∣
∣Pr

P
(B)−Pr

UΩ
(B)

∣
∣
∣
∣=

∣
∣
∣
∣δ ·Pr

V
(B)+(1−δ) ·Pr

UΩ
(B)−Pr

UΩ
(B)

∣
∣
∣
∣≤δ·

∣
∣
∣
∣Pr

V
(B)−Pr

UΩ
(B)

∣
∣
∣
∣≤δ≤ε.
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3.3.2 Characters of Finite Fields

Given an abelian group G, a character on G is a map from G to complex
roots of unity that preserves the group action. The characters of a finite field
are the characters of the additive and multiplicative8 groups of the field.

Definition 3.6 (additive character). A function ψ : Fq → C is an additive
character of Fq if ψ(0) = 1 and

ψ(a + b) = ψ(a)ψ(b)

for every a, b ∈ Fq. The order of ψ is the smallest integer d such that
(ψ(a))d = 1 for every a ∈ Fq.

Definition 3.7 (multiplicative character). A function χ : Fq → C is a
multiplicative character of Fq if χ(1) = 1, χ(0) = 0 and

χ(ab) = χ(a)χ(b)

for every a, b ∈ Fq. The order of χ is the smallest integer d such that
(χ(a))d = 1 for every a ∈ F

∗
q .

We will concentrate on characters of order 2. Even-sized fields have addi-
tive characters of order 2 and odd-sized fields have a multiplicative character
of order 2. We define a character of order 2 for each case and also a “boolean
version” of the character (i.e., a function with range {0, 1}) that we will use
in our extractor construction.

Definition 3.8 (additive character of order 2). Let q = 2l for some integer l.
The function Tr : Fq → F2 is defined to be the trace of Fq over F2. That is,9

Tr(a) = a + a2 + a22
+ . . . + a2l−1

.

We define the additive character ψ1 : Fq → {1,−1} by10 ψ1(a) = −1Tr(a).

Definition 3.9 (Multiplicative character of order 2). Let q = pl for some
integer l and odd prime p. We define the multiplicative character χ1 : Fq →
{−1, 0, 1} to be 1 for a nonzero quadratic residue, −1 for a quadratic non-
residue, and 0 on 0. More concisely,

χ1(a) = a
q−1
2 .

We define the function QR : Fq → {0, 1} by QR(a) = 1 if χ1(a) = −1, and
QR(a) = 0 otherwise. That is, QR(a) = 1 for quadratic non-residues and 0
otherwise.

8A character χ of F

∗
q is extended to 0 by χ(0) = 0.

9It is known that Tr(a) ∈ F2 for every a ∈ Fq .
10 We interpret the field elements 0 and 1 as the corresponding integers.
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It is obvious that χ1 and ψ1 have order at most 2. It can be shown that
their order is exactly 2.

Very useful theorems of Weil [72] state that for any low-degree polynomial
f that is not of a certain restricted form, the values of a field character “cancel
out” over the range of f (when viewed as a multi-set). We state two special
cases of these theorems. The theorems can be found in [59]. The first theorem
deals with additive characters.

Theorem 3.3. [59][Theorem 2E, page 44] Let ψ be a nontrivial additive
character of Fq (that is, not identically 1). Let f(t) be a polynomial in Fq[t]
of degree m. Suppose that gcd(m, q) = 1. Then

∣
∣
∣
∣
∣
∣

∑

t∈Fq

ψ(f(t))

∣
∣
∣
∣
∣
∣
≤ mq1/2.

The second theorem deals with multiplicative characters.

Theorem 3.4. [59][Theorem 2C ′, page 43] Let χ be a multiplicative character
of Fq of order d > 1. Let f(t) be a polynomial in Fq[t] of degree m. Suppose
that f(t) is not of the form c · g(t)d for any c ∈ Fq and g(t) ∈ Fq[t]. Then

∣
∣
∣
∣
∣
∣

∑

t∈Fq

χ(f(t))

∣
∣
∣
∣
∣
∣
≤ mq1/2.

For the case of a field character of order 2, Weil’s theorems actually show
that the character is a “deterministic extractor”11 for distributions of the
form f(Uq) for almost any low-degree polynomial f . We formalize this in the
following corollaries of Theorems 3.3 and 3.4 stated for the boolean versions
of the characters ψ1 and χ1.

Corollary 3.5. Let q be a power of 2. Let f ∈ Fq[t] be a polynomial of odd
degree m. Then

Tr(f(Uq))
m

2
√

q

∼ U1.

Proof. ∣
∣
∣
∣
∣
∣

∑

t∈Fq

ψ1(f(t))

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∑

t∈Fq,ψ1(f(t))=1

1 −
∑

t∈Fq,ψ1(f(t))=−1

1

∣
∣
∣
∣
∣
∣

= q·
∣
∣
∣
∣ Pr
t←Uq

(ψ1(f(t))=1)− Pr
t←Uq

(ψ1(f(t)) =−1)

∣
∣
∣
∣= q·

∣
∣
∣
∣ Pr
t←Uq

(Tr(f(t))=0)− Pr
t←Uq

(Tr(f(t))=1)

∣
∣
∣
∣

= q ·
∣
∣
∣
∣2 · Pr

t←Uq

(Tr(f(t)) = 0) − 1

∣
∣
∣
∣ = 2q ·

∣
∣
∣
∣ Pr
t←Uq

(Tr(f(t)) = 0) − 1/2

∣
∣
∣
∣ = 2q ·|Tr(f(Uq)) − U1| .

11Characters of higher order are also extractors, but with larger error.
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Since gcd(m, q) = 1, using Theorem 3.3 we have

|Tr(f(Uq))− U1| =
1
2q
·

∣
∣
∣
∣
∣
∣

∑

t∈Fq

ψ1(f(t))

∣
∣
∣
∣
∣
∣
≤ 1

2q
·mq1/2 =

m

2
√

q
.

The proof of the analogous claim for χ1 is a bit more cumbersome as we
have to deal with the artificial extension of χ1 to Fq by χ1(0) = 0. We will
use the following definition.

Definition 3.10 (square multiple). We say that a polynomial f(t) in Fq[t] is
a square multiple in Fq[t] if f(t) = c · g(t)2 for some c ∈ Fq and g(t) ∈ Fq[t].

Corollary 3.6. Let q = pl for some integer l and odd prime p. Let f(t) ∈
Fq[t] be a polynomial of degree m that is not a square multiple in Fq[t]. Then

QR(f(Uq))
m√

q

∼ U1.

Proof. We have

∑

t∈Fq

χ1(f(t)) =

⎡

⎣
∑

t∈Fq,χ1(f(t))=1

1 −
∑

t∈Fq,χ1(f(t))=−1

1

⎤

⎦

= q ·
[

Pr
t←Uq

(χ1(f(t)) = 1) − Pr
t←Uq

(χ1(f(t)) = −1)

]

= q ·
[

Pr
t←Uq

(QR(f(t)) = 0) − Pr
t←Uq

(f(t) = 0) − Pr
t←Uq

(QR(f(t)) = 1)

]

= q ·
[

2 · Pr
t←Uq

(QR(f(t)) = 0) − 1

]

− q · Pr
t←Uq

(f(t) = 0)

=2q·
[

Pr
t←Uq

(QR(f(t))=0) −1/2

]

−q· Pr
t←Uq

(f(t)=0)=2q·|QR(f(Uq))−U1|−q· Pr
t←Uq

(f(t)=0)

where in the last equality we assumed without loss of generality that

Pr
t←Uq

(QR(f(t)) = 0) ≥ 1/2.

Since χ1 is of order 2 and f(t) is not of the form c · g(t)2 for any c ∈ Fq and
g(t) ∈ Fq[t], using Theorem 3.4 we have

|QR(f(Uq))− U1| =
1
2q
·
∑

t∈Fq

χ1(f(t)) + (1/2) · Pr
t←Uq

(f(t) = 0)

≤ 1
2q
·mq1/2 +

m

2q
≤ m

2
√

q
+

m

2
√

q
=

m
√

q
.
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3.4 Extracting One Bit from Lines

In the next section we show how to extract any constant fraction of the
randomness from an (n, 1)q-affine source, provided q is a large enough poly-
nomial in n. For simplicity of the presentation, we first show how to extract
one bit from an (n, 1)q-affine source when q is slightly more than quadratic
in n.

As explained in Section 3.2, we first “convert” a uniform distribution on a
one-dimensional affine subspace into a distribution of the form f ′(Uq), where
f ′ is a low-degree polynomial; we then apply a (boolean version of a) field
character of order 2. Weil’s theorems guarantee that our output will be close
to uniform. As explained in subsection 3.3.2, since we want a field character
of order 2 we need to use an additive character for even-sized fields and a
multiplicative character for odd-sized fields.

The following lemma shows how to extract one bit when the field size is
even.

Lemma 3.4. Let q be a power of 2. Fix any integer n <
√

q. Define the
multivariate polynomial f : F

n
q → Fq by f(x) =

∑n
i=1 x2i−1

i . The function
D0 : F

n
q → {0, 1} defined by D0(x) = Tr(f(x)) is a deterministic (1, ε)-affine

source extractor, where ε = n/
√

q.

Proof. Fix an (n, 1)q-affine source X. Recall that X ∼ [t · a + b]t←Uq
for

some a, b ∈ F
n
q such that a �= 0. We have

D0(X) ∼ Tr(f(X)) ∼ [Tr(f(t · a1 + b1, . . . , t · an + bn))]t←Uq

∼
[

Tr

(
n∑

i=1

(t · ai + bi)2i−1

)]

t←Uq

.

Denote f ′(t) =
∑n

i=1(t · ai + bi)2i−1. Note that f ′ is a polynomial of odd
degree m, where m ≤ 2n. Therefore, using Corollary 3.5 we have

D0(X) ∼ Tr(f ′(Uq))
n√
q

∼ U1.

The following lemma shows how to extract one bit when the field size is
odd.

Lemma 3.5. Let q = pl for some integer l and odd prime p. Fix any integer
n <

√
q/2. Define the multivariate polynomial f : F

n
q → Fq by f(x) =

∑n
i=1 x2i−1

i . The function D0 : F
n
q → {0, 1} defined by D0(x) = QR(f(x)) is

a deterministic (1, ε)-affine source extractor, where ε = 2n/
√

q.
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Proof. Fix an (n, 1)q-affine source X ∼ [t · a + b]t←Uq
. We have

D0(X) ∼ QR(f(X)) ∼ [QR(f(t · a1 + b1, . . . , t · an + bn))]t←Uq

∼
[

QR

(
n∑

i=1

(t · ai + bi)2i−1

)]

t←Uq

.

Denote f ′(t) =
∑n

i=1(t · ai + bi)2i−1. Note that f ′(t) is a polynomial of
odd degree m (and therefore not a square multiple in Fq[t]) where m ≤ 2n.
Therefore, using Corollary 3.6 we have

D0(X) ∼ QR(f ′(Uq))
2n√

q

∼ U1.

3.5 Extracting Many Bits from Lines

In this section we prove Theorem 3.2. In particular, we show how to extract
any constant fraction of the randomness from an (n, 1)q-affine source provided
q is a large enough polynomial in n. We will prove the correctness of our
construction by showing that the parity of any subset of the output bits is
almost unbiased. The following “Xor Lemma” due to Vazirani states that
this indeed implies that the output is close to uniform. The lemma follows
from elementary Fourier analysis. For a proof see [22].

Lemma 3.6. Let X be a distribution on {0, 1}d. Assume that for every
nonempty subset S ⊆ [d] ⊕

j∈S

Xj
ε
∼ U1

(where
⊕

denotes addition mod 2). Then

|X − Ud| ≤ ε · 2d/2.

We first deal with fields of even size. As explained in Section 3.2, we
use the source distribution to produce samples from several “low-degree dis-
tributions” of the form f ′

j(Uq), where the f ′
js are low-degree polynomials of

odd degree. We then apply the function Tr on each sample. We make sure
that the (f ′

j)s have the property that the sum of any subset of them is also
a polynomial f ′ of odd degree. We use this property together with the addi-
tivity of Tr to show that the parity of any subset of the output bits is close
to uniform. We then conclude using Lemma 3.6.

Lemma 3.7. Let q be a power of 2. Fix any integers d and n. For ev-
ery j ∈ [d], define the multivariate polynomial fj : F

n
q → Fq by fj(x) =

∑n
i=1 x

2j+(2i−1)
i . The function D : F

n
q → {0, 1}d defined by Dj(x) = Tr(fj(x))

is a deterministic (1, ε)-affine source extractor, where ε = (d+n)·2d/2
√

q .
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Proof. Fix an (n, 1)q-affine source X ∼ [t · a + b]t←Uq
. Fix a nonempty

subset S ⊆ [d]. We have
⊕

j∈S

Dj(X) ∼
⊕

j∈S

Tr(fj(X))

∼ Tr

⎛

⎝
∑

j∈S

fj(X)

⎞

⎠

∼

⎡

⎣Tr

⎛

⎝
∑

j∈S

n∑

i=1

(t · ai + bi)2j+(2i−1)

⎞

⎠

⎤

⎦

t←Uq

.

Denote f ′(t) =
∑

j∈S

∑n
i=1(t · ai + bi)2j+(2i−1). Note that f ′ is a polynomial

of odd degree m where m ≤ 2d + 2n. Therefore, using Corollary 3.5 we have

⊕

j∈S

Dj(X) ∼ Tr(f ′(Uq))
d+n√

q

∼ U1.

Using Lemma 3.6 we get

|D(X)− Ud| ≤
(d + n) · 2d/2

√
q

.

We now deal with fields of odd size. The proof is roughly analogous to
the case of even-sized fields but requires a bit more work.

We will need the following special case of a lemma from [59].

Lemma 3.8. [59][Lemma 4B, page 51] Let q = pl for some integer l and
odd prime p. Let f(t) be a polynomial in Fq[t]. The following are equivalent.

• f(t) is a square multiple in Fq[t].

• f(t) = c · (t − ν1)e1 · · · (t − νs)es for some ν1, . . . , νs ∈ Fq and c ∈ Fq,
where ei is even for all i ∈ [s].

Lemma 3.9. Let q = pl for some integer l and odd prime p. Fix any integers
d and n such that d ≤ q. Let c1, . . . , cd be distinct elements in Fq. Define the
multivariate polynomial f0 : F

n
q → Fq by f0(x) =

∑n
i=1 x2i−1

i . For j ∈ [d],
define the multivariate polynomial fj : F

n
q → Fq by fj(x) = f0(x) + cj. The

function D : F
n
q → {0, 1}d defined by Dj(x) = QR(fj(x)) is a deterministic

(1, ε)-affine source extractor, where ε = 4dn·2d/2
√

q .

Proof. Fix an (n, 1)q-affine source X ∼ [t · a + b]t←Uq
. Fix a nonempty

subset S ⊆ [d]. For any x = t · a + b in Supp(X), we have
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⊕

j∈S

Dj(x) =
⊕

j∈S

QR(fj(x))

=
⊕

j∈S

QR

((
n∑

i=1

(t · ai + bi)2i−1

)

+ cj

)

For j ∈ S, denote f ′
j(t) =

(∑n
i=1(t · ai + bi)2i−1

)
+ cj . For x = t · a + b, we

call x good if f ′
j(t) �= 0 for every j ∈ S. For any good x = t · a + b, we have

⊕

j∈S

Dj(x) =
⊕

j∈S

QR(f ′
j(t)) = QR

⎛

⎝
∏

j∈S

f ′
j(t)

⎞

⎠

Since there are at most d · 2n bad xs, we get
∣
∣
∣
∣
∣
∣

⊕

j∈S

Dj(X)−QR

⎛

⎝
∏

j∈S

f ′
j(Uq)

⎞

⎠

∣
∣
∣
∣
∣
∣
≤ d · 2n/q.

Denote f ′(t) =
∏

j∈S f ′
j(t). We will show that f ′(t) is not a square multiple in

Fq[t]. Fix some j0 ∈ S. Since f ′
j0

has odd degree it is not a square multiple
in Fq[t]. Therefore, by Lemma 3.8 (and by the fact that any polynomial
decomposes into linear factors in Fq), f ′

j0
(t) = c · (t− ν1)e1 · · · (t− νs)es for

distinct ν1, . . . , νs ∈ Fq, where ek is odd for some k ∈ [s]. Assuming that |S| ≥
2, fix any j1 ∈ S where j1 �= j0. For any t ∈ Fq, f ′

j0
(t)−f ′

j1
(t) = cj0−cj1 �= 0.

Therefore, f ′
j0

and f ′
j1

do not have a common linear factor in Fq. Hence,
the factor (t − νk) appears an odd number of times in f ′(t) =

∏
j∈S f ′

j(t).
Therefore, by Lemma 3.8 f ′(t) is not a square multiple in Fq. Thus, using
Corollary 3.6 we have

∣
∣
∣
∣
∣
∣

⊕

j∈S

Dj(X)− U1

∣
∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣
∣

⊕

j∈S

Dj(X)−QR (f ′(Uq))

∣
∣
∣
∣
∣
∣
+ |QR (f ′(Uq))− U1|

≤ d · 2n

q
+

2dn
√

q
≤ 4dn
√

q
.

Therefore, using Lemma 3.6 we have

|D(X)− Ud| ≤
4dn · 2d/2

√
q

.

We restate and prove Theorem 3.2
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Theorem 3.2 For any field Fq, integer n and ε > 0, there is an explicit
deterministic (1, ε)-affine source extractor D : F

n
q → {0, 1}d, with d = �log q−

2 log(n/ε)− 2 log log q − 4�.

Proof. Using Lemmas 3.7 and 3.9, we can get an explicit deterministic (1, ε)-
affine source extractor D : F

n
q → {0, 1}d such that

ε ≤ 4dn · 2d/2

√
q

.

Squaring, we get

ε2 ≤ 16d2n2 · 2d

q
.

Taking the logarithm on both sides, we get

2 log(ε) ≤ 4 + 2 log d + 2 log n + d− log q.

Rearranging and using d ≤ log q, we get

d ≥ log q − 2 log(n/ε)− 2 log log q − 4.

We also prove the following instantiation of Lemmas 3.7 and 3.9, which
we will use in the proof of Theorem 3.1. The following lemma states that
we can extract any constant fraction of the randomness from an (n, 1)q-affine
source, provided q is a large enough polynomial in n.

Lemma 3.10. Fix any constant 0 < δ < 1. There exists a constant q0

(depending on δ) such that for any prime power q and integer n with q > q0

and q ≥ n7/δ, there is an explicit deterministic (1, ε)-affine source extractor
D : F

n
q → {0, 1}d where ε ≤ q−δ/3 and d = �(1− δ) log q�.

Proof. According to whether q is even or odd we use Lemma 3.7 or 3.9 with
d and n as stated in the lemma. We get an explicit deterministic (1, ε)-affine
source extractor D : F

n
q → {0, 1}d where

ε ≤ 4dn · 2d/2

√
q

≤ 4 · (1− δ) log q · qδ/7 · q 1−δ
2

√
q

.

We take q large enough so that qδ/42 ≥ 4 · (1− δ) log q. For such q, we have

ε ≤ qδ/42+δ/7+1/2−δ/2

q1/2
= q−δ/3.
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3.6 A Linear Seeded Extractor
for Affine Sources

In this section we describe our construction of linear seeded affine source
extractors. As described in Section 3.2, this seeded extractor will be used as
a component in our construction of deterministic affine source extractors.

Given u ∈ Fq and an integer k, we define a k×n matrix Tu,k by (Tu,k)j,i =
uji (where ji is an integer product). That is,

Tu,k(x) =

(
n∑

i=1

xi · ui,
n∑

i=1

xi · u2i, . . . ,
n∑

i=1

xi · uki

)

for x ∈ F
n
q .

The following theorem shows how to extract all the randomness from an
(n, k)q-affine source using a seed of length �log n+2 log k+log(1/ε)� whenever
q > 2n · k2/ε.

Theorem 3.7. Fix any field Fq, integers n, k, and ε > 0 such that q ≥ 2n·k2

ε .
Let s be the smallest power of 2 such that s ≥ n·k2

ε . Let U = {u1, . . . , us} be
a set of distinct elements in Fq. Let d = log s. We identify [s] with {0, 1}d.
The function E : F

n
q × {0, 1}d → F

k
q defined by

E(x, y) = Tuy,k(x) =

(
n∑

i=1

xi · ui
y,

n∑

i=1

xi · u2i
y , . . . ,

n∑

i=1

xi · uki
y

)

is a linear seeded (k, ε)-affine source extractor.

The theorem will be derived easily from the following lemma.

Lemma 3.11. Fix any field Fq and integers n, k such that q ≥ n · k2. Fix
any affine subspace A ⊆ F

n
q of dimension k. There are at most n ·k2 elements

u ∈ Fq such that Tu,k(A) � F
k
q .

Proof. We denote Tu = Tu,k. First note that if A = A1 + b where b ∈ F
n
q and

A1 is a linear subspace of dimension k, then (Tu(A1) = F
k
q )↔ (Tu(A) = F

k
q ).

Therefore, we assume A is a linear subspace with basis {a(1), a(2), . . . , a(k)}
where a(j) ∈ F

n
q . Denote by B the n× k matrix

B =
(
a(1), a(2), . . . , a(k)

)
.

We have
Tu(A) = Tu ·B(Fk

q )

where · denotes the matrix product.
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Denote by Cu the k × k matrix Tu ·B. That is,

(Cu)j,l =
n∑

i=1

a(l)
i · uji.

Cu =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑n
i=1 a(1)

i · ui
∑n

i=1 a(2)
i · ui . . .

∑n
i=1 a(k)

i · ui
∑n

i=1 a(1)
i · u2i

∑n
i=1 a(2)

i · u2i . . .
∑n

i=1 a(k)
i · u2i

. . . . . .

. . . . . .

. . . . . .∑n
i=1 a(1)

i · uki
∑n

i=1 a(2)
i · uki . . .

∑n
i=1 a(k)

i · uki

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Recall that (Cu(Fk
q ) = F

k
q )↔ (Det(Cu) �= 0).

Let f(u) = Det(Cu). We will show that f(u) is a nonzero polynomial of
degree at most n · k2. It follows that Det(Cu) = 0 for at most n · k2 us and
the lemma follows.

f(u) = Det(Cu) =
∑

σ∈Sk

sgn(σ) · fσ(u)

where

fσ(u) =
k∏

j=1

(Cu)j,σ(j).

For j ∈ [k], we define jmax to be the maximal i ∈ [n] such that a(j)
i

is nonzero. Note that, using Gaussian elimination, we can find a basis
a(1), . . . , a(k) of A such that,

0 < 1max < 2max < . . . < kmax.

We assume without loss of generality that this is the case. Let Id ∈ Sk

be the identity permutation. We will show that for every σ �= Id in Sk,
deg(fσ) < deg(fId).

Assume for contradiction that there exists σ �= Id in Sk with deg(fσ) ≥
deg(fId). Fix such a permutation σ that maximizes deg(fσ). (That is,
deg(fσ) ≥ deg(fσ′) for every σ′ ∈ Sk). (Cu)j,σ(j) is a polynomial in u of
degree j · σ(j)max. Therefore, fσ(u) has degree

∑k
j=1 j · σ(j)max. Since

σ �= Id, there exist j1 < j2 such that σ(j1) > σ(j2). Let τ = (σ(j1)σ(j2)) · σ,
i.e., the permutation τ consists of applying σ and then “switching” between
σ(j1) and σ(j2).

We have

deg(fτ )− deg(fσ) = j2(σ(j1)max − σ(j2)max) + j1(σ(j2)max − σ(j1)max)

= j2(σ(j1)max − σ(j2)max)− j1(σ(j1)max − σ(j2)max)

= (j2 − j1)(σ(j1)max − σ(j2)max) > 0,

which contradicts the maximality of deg(fσ).
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Therefore, for any σ �= Id, we have deg(fId) > deg(fσ). Thus, fId cannot
be “canceled out” by the other summands in f(u), and f(u) is a nonzero
polynomial of degree deg(fId) =

∑k
j=1 j · jmax ≤ n ·

∑k
j=1 j = n · k(k+1)

2 ≤
n · k2.

We can now easily prove the theorem.

Proof. (of Theorem 3.7) Fix any (n, k)q-affine source X. Using Lemma 3.11
we get

Pr
y←Ud

(E(X, y) � U
F

k
q
) ≤ n · k2

|U | ≤ ε.

Therefore, by Lemma 3.3

E(X,Ud)
ε
∼ U

F
k
q
.

Remark 3.12. Actually, Lemma 3.11 implies that the extractor E from The-
orem 3.7 is strong. That is, the distribution (Ud, E(X,Ud)) is also close to
uniform.

3.7 Composing Extractors

Let E be a linear seeded affine source extractor. In this section, we show
that we can use E with a correlated seed that we have extracted determinis-
tically from our affine source. The argument we use is based on the recycling
paradigm described in the first chapter.

Our starting point will be the following lemma, which is a combination
of Lemmas 2.5 and 2.6 in [26].12 Fix a distribution X on F

n
q and functions T

and D. Roughly speaking, the lemma states that if D(X) is close to uniform
even when conditioning on a certain output value of T , then the output
distribution T (X) is “almost not affected” by conditioning on a value of D.

Lemma 3.13 ([26]). Let X be a distribution on F
n
q . Let T : F

n
q → F

m
q and

D : F
n
q → {0, 1}d be any functions. Assume that for every a ∈ Supp(T (X))

we have |(D(X)|T (x) = a) − Ud| ≤ ε. Then for every y ∈ Supp(D(X)) we
have

(T (X)|D(x) = y) ε·2d+1

∼ T (X).

The following corollary of Lemma 3.13 shows that, for a fixed linear map-
ping T , the output distribution of T on an affine source X is “almost not
affected” by conditioning on an output value of a deterministic affine source
extractor D.

12In [26] the authors assume all distributions are over binary strings, but it is easy to
see that the proof follows in the case stated here.
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Corollary 3.8. Fix any field Fq, integers n, k,m, d, and ε > 0 such that
k > m and ε < 2−(d+1) . Let D : F

n
q → {0, 1}d be a deterministic (1, ε)-affine

source extractor. Let X be an (n, k)q-affine source. Then for any linear
mapping T : F

n
q → F

m
q and y ∈ {0, 1}d, we have

|(T (X)|D(x) = y)− T (X)| ≤ ε · 2d+1.

Proof. Fix any a ∈ Supp(T (X)). It is easy to see that (X|T (x) = a) is an
(n, k′)q-affine source for some k′ ≥ 1 (since k > m). Therefore,

(D(X)|T (x) = a) ε
∼ Ud.

Fix any y ∈ {0, 1}d. Since ε < 2−d, we know that y ∈ Supp(D(X)). Thus,
using lemma 3.13, we have

|(T (X)|D(x) = y)− T (X)| ≤ ε · 2d+1.

Corollary 3.8 works for any output value y and linear mapping T . In
particular, as observed in [26], it will work for an output value y and linear
mapping Ty that is determined by y. We use this fact to compose a deter-
ministic affine source extractor with a linear seeded affine source extractor,
and get a new deterministic affine source extractor that extracts more ran-
domness.

Theorem 3.9. Fix any field Fq, integers n, k,m, d, and ε, ε′ > 0, such that
k > m and ε′ < 2−(d+1). Let D′ : F

n
q → {0, 1}d be a deterministic (1, ε′)-

affine source extractor. Let E : F
n
q × {0, 1}d → F

m
q be a linear seeded (k, ε)-

affine source extractor. Then D : F
n
q → F

m
q defined by

D(x) = E(x,D′(x))

is a deterministic (k, ρ)-affine source extractor, where ρ = 4ε′ · 2d + ε.

Proof. Fix an (n, k)q-affine source X. Note that,

D(X) ∼ E(X,D′(X)) ∼
∑

y∈{0,1}d

Pr(D′(X) = y) · (E(X, y)|D′(x) = y),

and
E(X,Ud) ∼

∑

y∈{0,1}d

Pr(Ud = y) · E(X, y).

We know that |D′(X) − Ud| ≤ ε′. Fix any y ∈ {0, 1}d. Ty(x) � E(x, y) is a
linear mapping from F

n
q to F

m
q , where m < k. Therefore, by Corollary 3.8,

we have
|(E(X, y)|D′(x) = y)− E(X, y)| ≤ ε′ · 2d+1.
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By Lemma 3.2, we have

|D(X)− E(X,Ud)| ≤ 2ε′ + ε′ · 2d+1.

Therefore,

|D(X)− U
F

m
q
| ≤ 2ε′ + ε′ · 2d+1 + ε ≤ 4ε′ · 2d + ε.

3.8 Putting It All Together

In this section we present our main extractor construction.
Using Theorem 3.9, we compose the deterministic extractor of Lemma

3.10 and the seeded extractor of Theorem 3.7 to get a deterministic extractor
that extracts almost all the randomness from an (n, k)q-affine source assum-
ing q is a large enough polynomial in n. We restate and prove Theorem
3.1.

Theorem 3.1 There exists a constant q0 such that for any field Fq and
integers n, k with q > max[q0, n

20], there is an explicit deterministic (k, ρ)-
affine source extractor D : F

n
q → F

k−1
q , with ρ ≤ q−1/21.

Proof. We use Lemma 3.10 with δ = 4/5. For large enough q and any
n ≤ qδ/7, we get an explicit deterministic (1, ε′)-affine source extractor D′ :
F

n
q → {0, 1}d′

, where d′ = �(1/5) log q� and ε′ ≤ q−4/15. We use Theorem 3.7
with parameters q, n, k − 1 and ε = 8n3

q1/5 . Note that,

2n · k2

ε
≤ 2n3 · q1/5

8n3
≤ q,

as required in Theorem 3.7. We get a linear seeded (k, ε)-affine source extrac-
tor E : F

n
q ×{0, 1}d → F

k−1
q , where 2d ≤ 2n·k2

ε ≤ q1/5/4 ≤ 2d′
. Since d ≤ d′,

we can use Theorem 3.9 with D′ and E and get an explicit deterministic
(k, ρ)-affine source extractor D : F

n
q → F

k−1
q , where

ρ = 4ε′ · 2d + ε ≤ 4q−4/15 · q1/5/4 +
8n3

q1/5

≤ q−1/15 + 8 · q3/20−1/5 ≤ 9 · q−1/20 ≤ q−1/21

for large enough q.





Chapter 4

Extractors and Rank Extractors
for Polynomial Sources

Summary

In this chapter we construct explicit deterministic extractors
from polynomial sources, namely from distributions sampled by
low-degree multivariate polynomials over finite fields. This natu-
rally generalizes previous work on extraction from affine sources
(which are degree 1 polynomials). A direct consequence is a de-
terministic extractor for distributions sampled by polynomial-size
arithmetic circuits over exponentially large fields.

The steps in our extractor construction, and the tools (mainly
from algebraic geometry) that we use for them, are of independent
interest.

The first step is a construction of rank extractors, which are
polynomial mappings that “extract” the algebraic rank from any
system of low-degree polynomials. More precisely, for any n poly-
nomials, k of which are algebraically independent, a rank extrac-
tor outputs k algebraically independent polynomials of slightly
higher degree. The rank extractors we construct are applicable
not only over finite fields but also over fields of characteristic zero.

The next step is relating algebraic independence to min-
entropy. We use a theorem of Wooley to show that these param-
eters are tightly connected. This allows replacing the algebraic
assumption on the source (above) by the natural information-
theoretic one. It also shows that a rank extractor is already a
high-quality condenser for polynomial sources over polynomially
large fields.

A. Gabizon, Deterministic Extraction from Weak Random Sources,
Monographs in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-642-14903-0 4, c© Springer-Verlag Berlin Heidelberg 2011
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Finally, to turn the condensers into extractors, we employ a
theorem of Bombieri, giving a character sum estimate for polyno-
mials defined over curves. It allows extracting all the randomness
(up to a multiplicative constant) from polynomial sources over
exponentially large fields.

4.1 Introduction

A natural generalization of affine sources is allowing sources that can be
sampled by low-degree multivariate polynomials. Let F be a field (finite or
infinite). For integers k ≤ n and d we consider the family of all mappings
x : F

k → F
n that are defined by polynomials of total degree at most d (we

denote our mapping by x since this will represent our source). That is,

x(t) = (x1(t1, . . . , tk), . . . , xn(t1, . . . , tk)),

where for each 1 ≤ i ≤ n the coordinate xi of the mapping is a k-variate
polynomial of total degree at most d. We denote this set of mappings by
M(Fk → F

n, d). We will focus on the case where the field F is much larger
than d and will specify in each result how large the field has to be. This will
allow us to refer to the elements of M(Fk → F

n, d) as low-degree mappings.
It is important to note that any weak source can be represented as the image
of some polynomial mapping over a finite field F. However, in general, the
polynomials representing the source will have very high degrees (this can be
seen by a simple counting argument). Since it is known [47] that deterministic
extraction from arbitrary sources is impossible, we see that restricting our
attention to low-degree mappings is essential.

For affine sources we have the requirement that the affine mapping defin-
ing the source be non-degenerate. This ensures that the source sampled by
this mapping has “enough” entropy. We would like to extend this require-
ment also to the case of low-degree mappings inM(Fk → F

n, d). The way to
generalize this notion is via the partial derivative matrix (sometimes called
the Jacobian) of a mapping x ∈ M(Fk → F

n, d). This is an n × k matrix
denoted by ∂x

∂t , defined as follows:

∂x

∂t
�

⎛

⎜
⎝

∂x1
∂t1

. . . ∂x1
∂tk

...
. . .

...
∂xn

∂t1
. . . ∂xn

∂tk

⎞

⎟
⎠

where the partial derivatives are defined in the standard way, as formal deriva-
tives of polynomials. Let us define the rank of x ∈M(Fk → F

n, d) to be the
rank of the matrix ∂x

∂t when considered as a matrix over the field of rational
functions in variables t1, . . . , tk. We say that x ∈ M(Fk → F

n, d) is non-
degenerate if its rank is k (obviously, x cannot have rank larger than k).
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Definition 4.1 (polynomial source). Let F be a finite field. A distribution
X over F

n is an (n, k, d)-polynomial source over F if there exists a non-
degenerate mapping x ∈ M(Fk → F

n, d) such that X is sampled by choosing
t uniformly at random in F

k and outputting x(t).

It is easy to see that the above definition of a polynomial source is indeed
a generalization of the affine case, since the partial derivative matrix of an
affine mapping is simply its coefficient matrix (in some basis). We note that
while low-degree polynomials play an essential role in complexity theory,
extraction from sources defined by such polynomials has apparently not been
studied before.

Rank and min-entropy: One reason for using the rank of the partial
derivative matrix is that, over sufficiently large prime fields, it allows us
to prove a lower-bound on the entropy of an (n, k, d)-polynomial source.
This lower bound follows from a theorem of Wooley [73] (see Theorem 4.1).
Roughly speaking, Wooley’s theorem implies that a distribution sampled by
a non-degenerate mapping x ∈ M(Fk → F

n, d) is close (in statistical dis-
tance) to a distribution with min-entropy at least k · log

(
|F|
2d

)
. Rewriting

this quantity as
(

1− log(2d)
log(|F|)

)

· k · log(|F|),

we see the way in which, as |F| grows, this bound “approaches” the entropy
bound of k · log(|F|) we have for affine sources of the same rank.

Rank and algebraic independence: Over fields of exponential charac-
teristic (or of characteristic zero) we will see that the above notion of the
rank of a mapping coincides with the more intuitive notion of algebraic in-
dependence (see Section 4.2 for the relevant definitions). Roughly speaking,
over such fields, a mapping x = (x1, . . . , xn) ∈ M(Fk → F

n, d) has rank k
iff the set of polynomials {x1(t), . . . , xn(t)} contains k algebraically indepen-
dent polynomials (we should note that the direction “rank k → algebraic
independence” is true over any field, regardless of its characteristic). Since
we want some of our results to hold also over fields of polynomial size we opt
to use the rank of the partial derivative matrix in our definition of a poly-
nomial source. In Section 4.3 we give a detailed discussion of the connection
between algebraic independence and rank. Our proofs are direct extensions
of the treatment appearing in [21] and [43], where the equivalence between
the two notions is shown over the complex numbers.

4.1.1 Rank Extractors

The above discussion of polynomial sources raises the following natural ques-
tion: Can we “extract” the rank of these sources without destroying their
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structure? In other words, can we construct a fixed polynomial mapping
y : F

n → F
k such that for any non-degenerate x ∈ M(Fk → F

n, d) the com-
position of y with x is a non-degenerate mapping from F

k to F
k? We call a

non-degenerate mapping z : F
k → F

k a full rank mapping and a mapping y
satisfying the above condition a rank extractor.

Definition 4.2 (rank extractor). Let F be some field. Let y : F
n → F

k be a
polynomial mapping defined by

y(x) = (y1(x1, . . . , xn), . . . , yk(x1, . . . , xn)),

where each yi is a multivariate polynomial over F. We say that y is an
(n, k, d)-rank extractor over F if for every non-degenerate mapping x ∈
M(Fk → F

n, d) the composition y ◦ x : F
k → F

k has rank k. We will call
such a mapping y explicit if it can be computed in polynomial time.

Clearly, a construction of a rank extractor will bring us closer to con-
structing an extractor for low-degree polynomial sources. Using an explicit
rank extractor reduces the problem of constructing an extractor for arbitrary
polynomial sources into the problem of constructing an extractor for poly-
nomial sources of full rank. Surprisingly enough, the problem of extraction
from full rank sources is not so easy and requires the use of deep results from
algebraic geometry.

Our first main result is a construction of an explicit (n, k, d)-rank extractor
over F , where F can be any field of characteristic zero or of characteristic at
least poly(n, d). It is natural to require that the degree of the rank extractor
be as small as possible. Clearly the degree has to be larger than 1 since an
affine mapping cannot be a rank extractor (because we can always “hide”
a polynomial source in the kernel of such a mapping). The rank extractors
we construct have degree that is bounded by a polynomial in n and d. In
Section 4.4 we prove the following theorem:

Theorem 4.1. Let k ≤ n and d be integers. Let F be a field of characteristic
zero or of characteristic larger than 8k2d3n. Then there exists an explicit
(n, k, d)-rank extractor over F whose degree is bounded by 8k2d2n. Moreover,
this rank extractor can be computed in time poly(n, log(d)).

We note that our construction of rank extractors does not depend on the
underlying field. We give a single construction, defined using integers, that
is a rank extractor over any field satisfying the conditions of Theorem 4.1.

4.1.2 Extractors and Condensers for Polynomial Sources

As was mentioned in the previous section, applying the rank extractor given
by Theorem 4.1 reduces the problem of constructing an extractor for (n, k, d)-
polynomials sources into the problem of constructing an extractor for (k, k, d′)-
polynomial sources, where d′ is the degree of the source obtained after applying



4.1 Introduction 59

the rank extractor (since Theorem 4.1 implies that d′ is polynomial in n and
d). Our second main result is a construction of such an extractor. Before
stating our result we give a formal definition of an extractor for polynomial
sources.

Definition 4.3 (extractor). Let k ≤ n and d be integers. Let F be a finite
field. A function E : F

n → {0, 1}m is a (k, d, ε)-extractor for polynomial
sources if for every (n, k, d)-polynomial source X over F

n, the random vari-
able E(X) is ε-close to the uniform distribution on {0, 1}m. We say that E
is explicit if it can be computed in poly(n, log(d)) time.

The following theorem, proved in Section 4.5, asserts the existence of an
explicit extractor for full-rank polynomial sources over sufficiently large prime
fields. The output length of this extractor is Ω(k · log(|F|)), which is within
a multiplicative constant of the maximal length possible. The main tool in
the proof of our theorem is a theorem of Bombieri [8] giving exponential sum
estimates for polynomials defined over low-degree curves.

Theorem 4.2. There exist absolute constants C and c such that the following
holds: Let k and d > 1 be integers and let F be a field of prime cardinality
p > dCk. Then, there exists a function E : F

k → {0, 1}m that is an explicit
(k, d, ε)-extractor for polynomial sources over F

k with m = �c · k · log(p)� and
ε = p−Ω(1).

Combining Theorem 4.2 with Theorem 4.1 gives an extractor for general
polynomial sources. This extractor, whose existence is stated in the following
corollary, also has output length which is within a multiplicative constant of
optimal.

Corollary 4.1. There exist absolute constants C and c such that the fol-
lowing holds: Let k ≤ n and d > 1 be integers and let d′ = 8k2d3n. Let
F be a field of prime cardinality p > (d′)Ck. Then, there exists a function
E : F

k → {0, 1}m that is an explicit (k, d, ε)-extractor for polynomial sources
over F

n with m = �c · k · log(p)� and ε = p−Ω(1).

It is possible to improve the output length of our extractors so that it is
equal to a (1−α)-fraction of the source min entropy, for any constant α > 0.
This improvement, which was suggested to us by Salil Vadhan, is described
in Section 4.6.

We note that both in the last corollary and in Theorem 4.2, the bound
on the field size does not pose a computational problem. Over a finite field
F, arithmetic operations can be performed in time polynomial in log(|F|),
and hence all computations required by the extractor can be performed in
polynomial time. However, it remains an interesting open problem whether
extraction can be performed over smaller fields, say of size polynomial in n
and d.
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Condensers over polynomially large fields: We note that over
polynomially large fields, our techniques give a deterministic condenser for
polynomial sources. A condenser is a relaxation of an extractor and is
required to output a distribution with “high” min-entropy rather than a
uniform distribution. The word “condenser” implies that the length of the
output should be smaller than the length of the input. That is, the aim of a
condenser is to “compress” the source while keeping as much of the entropy
as possible. For convenience we define condensers as mappings over alphabet
F rather than by the standard definition using binary alphabet.

Definition 4.4 (condenser). Let D be a family of distributions over F
n. A

function C : F
n → F

m is an (ε, k′)-condenser for D if for every X in D the
distribution C(X) is ε-close to having min-entropy at least k′. A condenser
is explicit if it can be computed in polynomial time.

From Wooley’s theorem [73], mentioned earlier, it follows that if we apply
a rank extractor to a polynomial source we get a source which is close to hav-
ing high min-entropy. The next theorem follows immediately by combining
Theorem 4.1 and Wooley’s theorem (Corollary 4.3).

Theorem 4.3. Let k ≤ n and d, d′ be integers. Let F be a field of prime
cardinality larger than d · d′. Let y : F

n → F
k
q an (n, k, d)-rank extractor such

that deg(y) ≤ d′. Then y is an (ε, k′)-condenser for the family of (n, k, d)-
polynomial sources over F, where ε = d·d′·k

|F| and k′ = k · log(|F|/2dd′).

It should be noted that this condenser is “almost” the best one could
hope for (without building an extractor, of course). To see this, suppose that
|F| ≈ (2d′)c for some constant c > 1. We get that the output of the condenser
is close to having min-entropy

k′ = k · log(|F|/2d′) ≈
(

1− 1
c

)

· k · log(|F|),

and so the ratio between the length of the output (in bits) and its min-entropy
can be made arbitrarily close to 1 by choosing c to be large enough.

Dispersers over the complex field. A disperser is a relaxation of an ex-
tractor in which the output is only required to have large support (instead of
being close to uniform). Dispersers are usually considered only for distribu-
tions over finite sets. However, for polynomial sources we can extend our view
also for infinite sets (namely infinite fields). It is shown in [21] that the image
of a full-rank mapping x ∈ M(Ck → C

k, d) contains all of C
k except for the

zero set of some polynomial. This shows that our rank extractors can be
viewed as deterministic dispersers for polynomial sources over C. That is, a
rank extractor is a fixed polynomial transformation mapping any polynomial
source into almost all of C

k. We discuss this observation in Section 4.8.



4.1 Introduction 61

4.1.3 Rank Versus Entropy — Weak Polynomial Sources

So far we focused on extraction from sources which were defined algebraically
— we were given a bound on the algebraic rank of the set of polynomials we
extract from. We now switch to the more standard definition (from the
extractor literature standpoint) of extraction from sources with given min-
entropy. These will be called Weak Polynomial Sources.

Definition 4.5 (weak polynomial source). A distribution X over F
n is an

(n, k, d)-weak polynomial source (WPS) if

• There exists a polynomial mapping x ∈M(Fn → F
n, d) such that X is

sampled by choosing t uniformly in F
n and outputting x(t).

• X has min-entropy at least k · log(|F|).

Notice in the definition that the min-entropy threshold is k · log(|F|) (in-
stead of just k). This is to hint at the connection (which we prove later)
between the rank of the source and its entropy. Intuitively, a distribution
sampled by a rank r mapping x : F

n → F
n “should” have entropy roughly

r · log(|F|), and indeed, for affine sources, this is exactly the case.
The following theorem, whose proof can be found in Section 4.7, shows

the existence of an explicit deterministic extractor for the class of weak poly-
nomial sources.

Theorem 4.4. There exist absolute constants C and c such that the following
holds: Let k ≤ n and d > 1 be integers and let d′ = 8k2d3n. Let F be a field of
prime cardinality p > (d′)Ck. Then, there exists a function E : F

n → {0, 1}m
that is an explicit (k, d, ε)-extractor for weak polynomial sources over F

n with
m = �c · k · log(p)� and ε = p−Ω(1).

The parameters of the extractor given by the theorem can be seen to be
roughly the same as those of the extractor for regular polynomial sources
(Corollary 4.1). In fact, the extractor we use for weak polynomial sources is
the same one we used for polynomial sources. The proof of Theorem 4.4 will
follow by showing that any (n, k, d)-WPS is close (in statistical distance) to a
convex combination of (n, k, d)-polynomial sources. This implies that any ex-
tractor that works for polynomial sources will work also for weak polynomial
sources.

The entropy of a polynomial mapping. We can use the methods em-
ployed in the proof of Theorem 4.4 to show that over sufficiently large fields,
the entropy of the output of a low-degree polynomial mapping x ∈M(Fn →
F

n, d) is always “close” to rank(x) · log(|F|). This can be viewed as a general-
ization of the simple fact that for an affine mapping x, the entropy is always
equal to rank(x) · log(|F|). (See Section 4.7.2 for the formal statement of this
result.)
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Extractors for poly-size arithmetic circuits. An interesting corollary
of Theorem 4.4 is the existence of deterministic extractors for the class of dis-
tributions sampled by polynomial-size arithmetic circuits over exponentially
large fields. This follows from the fact that the degrees of the polynomials
computed by poly-size circuits are exponential, and the construction of an
(n, k, d)-rank extractor is efficient even when d is exponential.

We say that a distribution X on F
n is sampled by a size s arithmetic

circuit if there exists an arithmetic circuit A of size s with n inputs and n
outputs such that the fan-in of each gate is at most 2 and such that X is the
distribution of the output of A on a random input chosen uniformly from F

n.
We say that X is an (n, k, s)-arithmetic source if X is sampled by a size s
arithmetic circuit and its min-entropy is at least k · log(|F|).

Corollary 4.2. There exist absolute constants C and c such that the follow-
ing holds: Let k ≤ n and s > 1 be integers. Let d = 2s and let d′ = 8k2d3n.
Let F be a field of prime cardinality p > (d′)Ck. Then, there exists an
explicit function E : F

n → {0, 1}m such that for every (n, k, s)-arithmetic
source X over F, the distribution of E(X) is ε-close to uniform, where
m = �c · k · log(p)� and ε = p−Ω(1). That is, E is an extractor for the
class of (n, k, s)-arithmetic sources.

It is interesting to contrast this result with the extractors of [68] from
polynomial-size boolean circuits. Their extractors rely on complexity assump-
tions, and they prove that such assumptions are necessary. It is interesting
that over large fields no such assumptions, nor lower bounds, are necessary.

4.1.4 Organization

Section 4.2 contains general preliminaries on probability distributions and
finite field algebra. Section 4.3 contains a detailed discussion on the connec-
tion between algebraic independence and rank. In Section 4.4 we describe
our construction of a rank extractor and prove Theorem 4.1. In Section 4.5
we construct and analyze an extractor for full-rank polynomial sources and
prove Theorem 4.2. In Section 4.6 we show how to increase the output length
of our extractors. In Section 4.7 we discuss extractors for weak polynomial
sources and prove Theorem 4.4. In Section 4.8 we discuss rank extractors
over the complex numbers. Appendix B contains background from algebraic
geometry required for the proof of Theorem 4.2.

4.2 General Preliminaries

4.2.1 Probability Distributions

Let Ω be some finite set. Let P be a distribution on Ω. For B ⊆ Ω, we denote
P (B), i.e., the probability of B according to P , by PrP (B) or Pr(P ⊆ B);
When B ∈ Ω, we will also use the notation Pr(P = B).
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Given a function A : Ω→ U , we denote by A(P ) the distribution induced
on U when sampling t by P and calculating A(t). When we write t1, . . . , tk ←
P , we mean that t1, . . . , tk are chosen independently according to P . We
denote by UΩ the uniform distribution on Ω. Given a function x : F

m → F,
we denote by x(Um) the distribution x(U

F
m). For a distribution P on Ωd and

j ∈ [d], we denote by Pj the restriction of P to the jth coordinate.
The statistical distance between two distributions P and Q on Ω, denoted

by |P −Q|, is defined as

|P −Q| � max
S⊆Ω

∣
∣
∣
∣Pr

P
(S)− Pr

Q
(S)

∣
∣
∣
∣ =

1
2

∑

w∈Ω

∣
∣
∣
∣Pr

P
(w)− Pr

Q
(w)

∣
∣
∣
∣ .

We say that P is ε-close to Q, denoted by P
ε
∼ Q, if |P −Q| ≤ ε. We denote

the fact that P and Q are identically distributed by P ∼ Q. The following
Lemma is trivial:

Lemma 4.1. Let P, V be distributions on a set Ω. Suppose, P = δ · R +
(1− δ) · V for two distributions R and V and 0 < δ < 1. Then P

δ
∼ V .

We use min-entropy to measure the amount of randomness in a given
distribution:

Definition 4.6 (min-entropy). Let X be a distribution over a finite set Γ.
The min-entropy of X is defined as

H∞ (X) � min
x∈supp(X)

log
(

1
Pr[X = x]

)

Another useful measure of entropy is collision probability.

Definition 4.7 (collision probability). Let X be a distribution over a finite
set Γ. The collision probability of X is defined as

cp(X) �
∑

x∈supp(X)

Pr[X = x]2 = Prx1,x2←X [x1 = x2].

The following lemma gives us a quantitative translation between the two
quantities of min-entropy and collision probability.

Lemma 4.2 (Lemma 3.6 in [3]). Let X be a distribution over a finite set Γ.
Suppose that cp(X) ≤ 1

a·b . Then X is 1√
a
-close to a distribution with min-

entropy at least log(b).

4.2.2 Polynomials over Finite Fields

We review some basic notions regarding polynomials defined over finite fields.
Readers not familiar with the subject can find a more comprehensive treat-
ment in [39]. For a field F we denote by F[t1, . . . , tk] the ring of polynomials
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in k-variables t1, . . . , tk with coefficients in F. We denote by F(t1, . . . , tk) the
field of rational functions in variables t1, . . . , tk. We denote by deg(f) the
total degree of f and by degtj

(f) the degree of f as a polynomial in tj . We
write f ≡ 0 or f(t) ≡ 0 if f is the zero polynomial (all coefficients of f are
zero). Note that over the finite field F of prime cardinality p, the polynomial
f(t) = tp − t is not the zero polynomial even though f(a) = 0 for all a ∈ F.

We say that the polynomials f1, . . . , fm ∈ F[t1, . . . , tk] are algebraically
dependent if there exists a nonzero polynomial h ∈ F[z1, . . . , zm] such that
h(f1(t), . . . , fm(t)) ≡ 0. We sometimes refer to this polynomial h as the
annihilating polynomial of f1, . . . , fm. We say that f1, . . . , fm are algebraically
independent if such a polynomial h does not exist.

For a polynomial f ∈ F[t1, . . . , tk] we denote by ∂f
∂tj
∈ F[t1, . . . , tk] the

formal partial derivative of f with respect to the variable tj . When using
derivatives over a finite field we should be careful of ’strange’ behavior of
the derivative. For example, the derivative of tp over a field of characteristic
p is equal to zero. This is “strange” since tp is not a constant function (in
fact, it is a permutation). The following claim, which we use implicitly in
many of our proofs, describes the exact conditions under which this “strange”
behavior happens.

Claim 4.7.1. Let F be a field of characteristic p and let f ∈ F[t1, . . . , tk]
and j ∈ [k] be such that ∂f

∂tj
≡ 0. Then all degrees of tj appearing in f are

multiples of p. In particular, if degtj
(f) < p, then ∂f

∂tj
≡ 0 iff degtj

(f) = 0.

For a vector of polynomials f̄ = (f1, . . . , fm) ∈ (F[t1, . . . , tk])m we can
define the partial derivative matrix of f̄ as

∂f̄

∂t
�

⎛

⎜
⎝

∂f1
∂t1

. . . ∂f1
∂tk

...
. . .

...
∂fm

∂t1
. . . ∂fm

∂tk

⎞

⎟
⎠

We denote by rank(f̄) the rank over F(t1, . . . , tk) of the matrix ∂f̄
∂t .

Another useful property of polynomials, which we will use often, is the
bound on the number of roots they can have. This generalization of the
fundamental theorem of algebra is due to Schwartz and Zippel [60, 76].

Lemma 4.3 (Schwartz-Zippel). Let F be a field and let f ∈ F[t1, . . . , tk] be
a nonzero polynomial with deg(f) ≤ d. Then, for any finite subset S ⊂ F we
have

∣
∣
{
c ∈ Sk : f(c) = 0

}∣
∣ ≤ d · |S|k−1.

A simple corollary of the Schartz-Zippel Lemma is the following claim:

Claim 4.7.2. Let F be a finite field and let f ∈ F[t1, . . . , tk] be a polynomial
of total degree at most d. Fix any 1 < i ≤ k. For c = (ci, . . . , ck) ∈ F

k−i+1

define
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fc(t1, . . . , ti−1) � f(t1, . . . , ti−1, ci, . . . , ck).

Then
Pr

c←F
k−i+1

(fc ≡ 0) ≤ d

|F| .

4.2.3 The Number of Solutions to a System
of Polynomial Equations

We will use a version of Bezout’s Theorem proved by Wooley [73]. This
theorem, mentioned informally in the Introduction, will give us a connection
between algebraic rank and min-entropy. We note that the formulation of
Wooley’s theorem stated here is weaker than the original formulation appear-
ing in [73] (the original form of the theorem speaks of congruences modulo
ps for any s).

Theorem 4.1 (rephrased from Theorem 1 in [73]). Let F be a field of prime
cardinality p. Let k and d be integers. Let x = (x1, . . . , xk) ∈M(Fk → F

k, d)
be such that rank(x) = k and let J(t) � det

(
∂x
∂t

)
(t). For a ∈ F

k let

Na �
∣
∣
{
c ∈ F

k : x(c) = a and J(c) �= 0
}∣
∣ .

Then for every a ∈ F
k , Na ≤ dk.

We can interpret this theorem as saying that a distribution X sampled
by a non-degenerate mapping x ∈ M(Fk → F

k, d) is close to a distribution
with high min-entropy, where the closeness is related to the number of zeros
of the determinant of ∂x

∂t . Since this determinant is a nonzero low-degree
polynomial, we get that the distance from the high min-entropy distribution
is small. This is stated more precisely by the following corollary, which also
extends our view to mappings inM(Fk → F

n, d) for k ≤ n.

Corollary 4.3. Let F be a field of prime cardinality. Let k ≤ n and d be
integers such that |F| > 2dk. Let X be an (n, k, d)-polynomial source over
F. Then X is ε-close to a distribution with min-entropy at least k · log

(
|F|
2d

)
,

where ε = d·k
|F| .

Proof. X is the distribution x(Uk) for a non-degenerate mapping x ∈
M(Fk → F

n, d). Since x has rank k, the matrix ∂x
∂t has a nonsingular square

submatrix. W.l.o.g assume that this matrix is composed of the first k rows
of ∂x

∂t . Let us also denote the determinant of this submatrix by J(t).
Denote by C the event that J(t) = 0 and let δ = Prt←F

k(C). Write X as
a convex combination of conditional distributions as follows:

X = δ · (X|C) + (1− δ) · (X|¬C).



66 4 Extractors and Rank Extractors for Polynomial Sources

Note that, since J(t) is a nonzero polynomial of degree at most d ·k, we have
that δ ≤ d·k

|F| .
We claim that the distribution (X|¬C) has min-entropy at least k · log

(|F|/2d): For any a ∈ F
n, using Theorem 4.1

Pr(X = a|¬C) =
Pr(X = a ∧ ¬C)

1− δ
≤ dk

|F|k · (1− δ)

≤ dk

|F|k · (1− dk/|F|) ≤
2dk

|F|k =
(

2d

|F|

)k

,

where we used the assumption about |F| in the last inequality. Thus, (X|¬C)
has min-entropy at least k·log(|F|/2d), and using Lemma 4.1 we are done.

4.3 Algebraic Independence and Rank

In [21] it is shown that, over the complex numbers, the two notions of
rank and algebraic independence are equivalent. That is, the polynomials
x1, . . . , xr ∈ F[t1, . . . , tk] are algebraically independent iff the matrix ∂x

∂t has
maximal rank. In this section we prove two theorems showing that this con-
nection is also valid over finite fields, provided the characteristic of the field is
sufficiently large. We start by showing that maximal rank implies algebraic
independence. This direction does not require the field characteristic to be
large.

Theorem 4.2. Let F be a field of characteristic p. Let x = (x1, . . . , xr) ∈
M(Fk → F

r, d) for some d, where r ≤ k. If x has rank r then x1, . . . , xr are
algebraically independent.

Proof. Assume for contradiction that x1, . . . , xr are algebraically dependent.
Let g(z1, . . . , zr) be a nonzero polynomial of minimal degree such that
g(x1(t), . . . , xr(t)) ≡ 0. Denote gi = ∂g

∂zi
.

Claim 4.7.3. For some 1 ≤ i ≤ k, gi is nonzero.

Proof. Fix some 1 ≤ i ≤ k. Assume that gi ≡ 0. Then, by Claim 4.7.1, all
nonzero powers of zi in g are multiples of p. Assume for contradiction that
for all i, gi ≡ 0. Then g = hp for some h(z1, . . . , zr), and

(h(x1(t), . . . , xr(t)))
p ≡ 0⇒ h(x1(t), . . . , xr(t)) ≡ 0,

and this is a contradiction to the minimality of g.

We will go on to show that the derivatives of g form a nontrivial vector
which is orthogonal to all the columns of ∂x

∂t , contradicting our assumption
that ∂x

∂t has maximal rank. Using the above claim, fix an i such that gi is
nonzero. By the minimality of the degree of g we know that gi(x1(t), . . . , xr(t))
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is nonzero as a polynomial in t (the degree of the derivative is always smaller
than that of the original polynomial). Define g(t) � g(x1(t), . . . xr(t)). Note
that g(t) ≡ 0. Using the chain rule, for 1 ≤ j ≤ k we have

0 =
∂g

∂tj
=

r∑

l=1

gl(x(t)) · ∂xl

∂tj
.

Note that the rightmost expression is the inner product of the nonzero
vector

u = (g1(x(t)), . . . , gr(x(t)))

and the jth column of the matrix ∂x
∂t . Thus, we have

u · ∂x

∂t
= 0

for u �= 0, and so the rank of ∂x
∂t is at most r − 1, a contradiction.

We now turn to prove the other direction, which states that algebraic
independence implies maximal rank. In order to prove this direction we re-
quire the field characteristic to be larger than (k+1)dk where k is the number
of variables and d is the total degree of the polynomials. This requirement
stems from the degree of the annihilating polynomial we find in the proof.
Our proof is based on the same ideas appearing in [21, 43, 73]. We are not
aware how tight the degree bound we get in the proof is. Another approach
is to use Gröbner Bases, which often leads to double exponential degrees.

Theorem 4.3. Let F be a field of characteristic p. Let d, k and n be integers
such that p > D, where D = (k + 1) · dk. Let x ∈ M(Fk → F

n, d) have rank
smaller than n. Then, there exists a nonzero polynomial h ∈ F[z1, . . . , zn] of
total degree at most D such that

h(x1(t), . . . , xn(t)) ≡ 0.

Proof. Fix any d and k. We first prove the theorem for n ≥ k + 1. Assume
w.l.g. that n = k + 1 (if n > k +1 we can use this case to find an h that uses
only the first k + 1 variables). In this case, the coefficients of the required
h can be found by showing that a certain system of linear equations has
more degrees of freedom than constraints. More precisely, we want a nonzero
polynomial h of degree at most D such that h(t) � h(x1(t), . . . , xn(t)) ≡ 0.
The number of constraints is the number of coefficients of h. Since deg(h) ≤
d · D, this is at most

(
d·D+k

k

)
. The number of variables is the number of

coefficients of h, which is
(
D+n

n

)
=
(
D+k+1

k+1

)
. We show that the number of

variables is larger than the number of constraints:
(

D + k + 1
k + 1

)/(d ·D + k

k

)

=
(D + k + 1)!
D!(k + 1)!

· k!(d ·D)!
(d ·D + k)!
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=
(D + 1) · · · (D + k + 1)

(k + 1) · (d ·D + 1) · · · (d ·D + k)
≥
(

D

d ·D

)k

· D + k + 1
k + 1

=
D + k + 1
dk · (k + 1)

> 1.

We now prove the claim for n ≤ k by backwards induction on n. We as-
sume the claim for n + 1 and prove it for n. Assume for contradiction that
there is no nonzero polynomial h(z1, . . . , zn) of degree at most D such that
h(x1(t), . . . , xn(t)) ≡ 0. Using the induction hypothesis, for each 1 ≤ i ≤ k
we have a nonzero polynomial hi(z1, . . . , zn, w) of degree at most D with

hi(x1(t), . . . , xn(t), ti) ≡ 0. (4.1)

We will go on to show that the partial derivatives of the polynomials hi form
a matrix which is the ‘inverse’ of ∂x

∂t , contradicting our assumption about the
rank of ∂x

∂t . W.l.o.g assume that hi is a minimal degree polynomial satisfying
(4.1). For 1 ≤ j ≤ n denote hi,j =∂hi

∂zj
and let hi,0 =∂hi

∂w . By our contradiction
assumption, hi must contain nonzero powers of w, and since deg(hi) < p
this implies that hi,0 is nonzero. By the minimality of the degree of hi, we
have that hi,0(x1(t), . . . , xn(t), ti) is a nonzero polynomial in t. Taking the
derivative of (4.1) for each 1 ≤ l ≤ k, we have

0 =
n∑

j=1

hi,j ·
∂xj

∂tl
+ δi,l · hi,0.

Since we can divide by the nonzero hi,0 we get

−1
hi,0

n∑

j=1

hi,j ·
∂xj

∂tl
= δi,l

for every 1 ≤ i ≤ k and 1 ≤ l ≤ k. Therefore, we have H · ∂x
∂t = I, where H

is the k × n matrix with Hi,j = −hi,j

hi,0
, contradicting the assumption that ∂x

∂t

has rank smaller than n.

4.4 An Explicit Rank Extractor

In this section we describe our construction of a rank extractor and prove
Theorem 4.1.

Construction 1. Let k ≤ n and d be integers. Let s2 = dk + 1 and s1 =
(2dn + 1) · s2. Let lij = i · (s1 + j · s2). Define for each 1 ≤ i ≤ k

yi(x) = yi(x1, . . . , xn) �
n∑

j=1

1
lij + 1

· xlij+1
j .
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Let y = (y1, . . . , yk) be the output of the construction. Notice that y(x) is
defined in such a way that the partial derivative ∂yi

∂xj
is exactly x

lij

j .

We prove the following theorem, which directly implies Theorem 4.1.

Theorem 4.4. Let F be a field of characteristic zero or of characteristic
larger than d′ = 8k2d3n. Let x ∈ M(Fk → F

n, d) be of rank k. Let y :
F

n → F
k be as in Construction 1. Then the composition (y ◦ x)(t) is in

M(Fk → F
k, d′) and has rank k.

4.4.1 Preliminaries for the Proof of Theorem 4.4

Sums of powers of polynomials

The following lemma shows how to pick integers c1, . . . , cn in such a way
that for any set of n polynomials x1(t), . . . , xn(t) of bounded degree, the
polynomials x1(t)c1 , . . . , xn(t)cn will have degrees that are different by at
least some fixed number.

Lemma 4.4. Let x1(t), . . . , xn(t) be k-variate non-constant polynomials over
some field F. Denote by di > 0 the degree of the polynomial xi. Let d ≥
maxi{di}. Let A and B be two positive integers such that A ≥ (2dn + 1) ·B
and let ci � A + Bi for i ∈ [n]. Then, for every 1 ≤ i < j ≤ n, we have

|deg(xi(t)ci)− deg(xj(t)cj )| = |di · ci − dj · cj | ≥ B.

Proof. Let 1 ≤ i < j ≤ n. First, suppose that di = dj . In this case we have

dj · cj − di · ci = dj(A + Bj)− di(A + Bi) = dj ·B · (j − i) ≥ B.

Next, suppose dj �= di. In this case we have

|dj · cj − di · ci| = |dj(A + Bj)− di(A + Bi)|
= |(dj − di)A + djBj − diBi|
≥ |dj − di|A− |djBj| − |diBi|
≥ A− 2dnB ≥ B.

The Cauchy-Binet formula

The Cauchy-Binet formula gives the determinant of the product of a k × n
matrix with an n×k matrix (for k ≤ n). Let k ≤ n. Let A be a k×n matrix
and B be an n × k matrix. For a set I ⊂ [n] of size k we denote by AI the
k × k submatrix of A composed of the columns of A whose indices appear
in I. Similarly, we denote by BI the submatrix of B composed of the rows
of B whose indices are in I. The proof of the following formula can be found
in [28].
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Lemma 4.5 (Cauchy-Binet). Let k ≤ n. Let A be a k× n matrix and B an
n× k matrix over a field F. Using the above notations we have

det(A ·B) =
∑

I⊂[n]
|I|=k

det(AI) · det(BI).

4.4.2 Proof of Theorem 4.4

Let k ≤ n, d be integers. Let F be a field of characteristic zero or of charac-
teristic larger than d′ = 8k2d3n. Let x = (x1, . . . , xn) ∈ M(Fk → F

n, d) be
such that rank(x) = k . Let y : F

n → F
k be defined as in Construction 1,

that is,

yi(x) = yi(x1, . . . , xn) �
n∑

j=1

1
lij + 1

· xlij+1
j , (4.2)

where

lij = i · (s1 + j · s2)

s1 = (2dn + 1) · s2 , s2 = dk + 1.

It is easy to verify that the degree of the mapping y is bounded by 8k2d2n.
Therefore, the degree of the composition (y◦x)(t) is bounded by d′ = 8k2d3n.
Therefore, since the characteristic of F is larger than d′ (or is zero), for the
rest of the proof we don’t need to worry about non-constant polynomials
becoming zero after we take their derivative (see Claim 4.7.1).

Our goal is to show that the composition y ◦ x has rank k. In order to
prove this we need to show that the determinant of the partial derivatives
matrix of the composition is nonzero. Write y(t) to denote y(x(t)) and let
∂y
∂t denote the k× k partial derivative matrix of the mapping y(t). Using the
chain rule we have that

∂y

∂t
=

∂y

∂x
· ∂x

∂t
,

where ∂y
∂x is a k × n matrix and ∂x

∂t is an n × k matrix. All the elements in
these two matrices are polynomials in t, since we evaluate ∂y

∂x at x = x(t).
Consider the element at position (i, j) in the matrix ∂y

∂x . Taking the
derivative of (4.2) with respect to xj we get that

∂yi

∂xj
= xj(t)lij = xj(t)i·(s1+js2).

The Vandermonde structure of ∂y
∂x becomes more apparent by letting rj(t) �

xj(t)s1+js2 . We now have that the (i, j)th element of ∂y
∂x is rj(t)i. That is,
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∂y

∂x
=

⎛

⎜
⎜
⎜
⎜
⎝

r1(t) r2(t) · · · · · · rn(t)

r1(t)2 r2(t)2
. . . rn(t)2

...
...

. . .
...

r1(t)k r2(t)k · · · · · · rn(t)k

⎞

⎟
⎟
⎟
⎟
⎠

To facilitate presentation, let R � ∂y
∂x and D � ∂x

∂t . We can also assume
w.l.o.g that

deg(r1(t)) ≤ . . . ≤ deg(rn(t)) (4.3)

(we let deg(0) = 0) since applying the same permutation on the rows of R
and on the columns of D will not change the determinant of R · D. Now,
from Lemma 4.5 (Cauchy-Binet) and using the notations of Section 4.4.1, we
have that

det
(

∂y

∂t

)

= det(R ·D) =
∑

I⊂[n]
|I|=k

det(RI) · det(DI .) (4.4)

Notice that if ri(t) is constant, then xi(t) is also constant and so the
ith row of the matrix D is zero. Therefore, det(DI) = 0 for every I that
contains an index i such that ri(t) is constant. In view of (4.4) and this last
observation, we can assume w.l.o.g that for all i ∈ [n], ri(t) is non-constant.
(Notice that since D has maximal rank, we have at least k indices in [n] for
which xi(t) is non-constant, and so the condition n ≥ k is maintained).

The next three claims will show that there exist a unique set I in the above
sum for which the degree of det(RI) ·det(DI) is maximal. This will conclude
the proof, since then we will have that det

(
∂y
∂t

)
is nonzero, as required.

We start with a simple claim showing that the degrees of the polynomials
ri(t) have large gaps between them.

Claim 4.7.4. Let r1(t), . . . , rn(t) be the polynomials defined above. Then for
every i ∈ [n− 1] we have

deg(ri+1(t)) > deg(ri(t)) + dk.

Proof. Recall that ri(t) = xi(t)s1+j·s2 and that s1 ≥ (2dn + 1) · s2. Using
Lemma 4.4 we get that

|deg(ri+1(t))− deg(ri(t))| ≥ s2 > dk.

Using (4.3) the claim follows.

Let I ⊂ [n] be such that |I| = k. We let by

dI � deg (det(RI))

The next claim gives a convenient formula for dI .
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Claim 4.7.5. Let I ⊂ [n], I = {i1 < . . . < ik}. Then

dI = deg(RI) =
k∑

j=1

j · deg
(
rij

(t)
)

Proof. Using the Vandermonde structure of the matrix RI we get that

det(RI) =
k∏

j=1

rij
(t)

∏

1≤j1<j2≤k

(
rij1

(t)− rij2
(t)
)
.

In view of (4.3), the degree of the highest monomial in det(RI) is obtained
my multiplying k copies of rik

(t) with k − 1 copies of rik−1(t), and so on.
This will give a monomial with degree

∑k
j=1 j · deg(rj(t)).

Define
Γ � {I ⊂ [n] | |I| = k , det(DI) �= 0} .

The next and final claim shows that there exists a unique I ∈ Γ with maximal
dI . The proof uses standard techniques from matroid theory.

Claim 4.7.6. Let dmax � maxI∈Γ{dI}. Then there exists a unique I∗ ∈ Γ
such that dI∗ = dmax. Moreover, for every I �= I∗ we have that dI < dI∗−dk.

Proof. Let v1, . . . , vn denote the rows of D. We can treat v1, . . . , vn as vectors
in a k-dimensional vector space over the field of rational functions in variables
t1, . . . , tk.

We are going to construct the set I∗ using the following greedy algorithm:
Start with I∗ = ∅ and at each step add to I∗ the largest i ∈ [n] for which the
set { vj | j ∈ I∗ ∪ {i} } is linearly independent. Since we assumed that D has
maximal rank, this process will end after precisely k steps, yielding a set I∗

of size k and such that det (DI∗) �= 0. Denote by I∗ = {i∗1 < . . . < i∗k}.
Observing the formula for dI given by Claim 4.7.5 and recalling that the

degrees of the polynomials ri are strictly increasing, we see that the greedy
construction of I∗ ensures that dI∗ = dmax. Assume in contradiction that
there exists a set I ′ �= I in Γ such that dI′ = dmax and let I ′ = {i′1 < . . . < i′k}.
From the monotonicity of deg(ri(t)) it follows that there must be an index
j ∈ [k] such that i′j > i∗j (otherwise we would have dI′ < dI∗). Let j′ ∈ [k]
be the largest index such that i′j′ > i∗j′ . Since I ′ ∈ Γ we have that the set
{

vi′
j′

, vi′
j′+1

, . . . , vi′k

}
is linearly independent. Therefore there must be an

index 0 ≤ α ≤ k − j′ such that the vector vi′
j′+α

is not spanned by the set of

vectors
{

vi∗
j′+1

, vi∗
j′+2

, . . . , vi∗k

}
. This contradicts the greedy construction of

I∗ since, by construction, all the vectors vi∗
j′+1, vi∗

j′+2, . . . , vn are spanned by
{

vi∗
j′+1

, vi∗
j′+2

, . . . , vi∗k

}
.
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To prove the “moreover” part of the claim we use Claim 4.7.4. Let I =
{i1 < . . . < ik} be such that I �= I∗ and I ∈ Γ. Using the same logic as
above we can deduce that for all j ∈ [k], ij ≤ i∗j and that for some j′ ∈ [k],
ij′ < i∗j′ . Plugging this information into the formula for dI we get that

dI∗ − dI′ =
k∑

j=1

j ·
(
deg

(
ri∗j

(t)
)
− deg

(
rij

(t)
))

≥ deg
(
ri∗

j′
(t)
)
− deg

(
rij′ (t)

)

> dk,

where the last inequality follows from Claim 4.7.4.

We can now use Claim 4.7.6 to show that the sum in (4.4) is not zero. Let
I∗ ∈ Γ be the set with unique maximal dI∗ given by Claim 4.7.6. Rewrite
(4.4) in the following form

det(R ·D) =
∑

I⊂[n]
|I|=k

det(RI) · det(DI)

=
∑

I∈Γ

det(RI) · det(DI)

= det(RI∗) · det(DI∗) +
∑

I∈Γ
I 
=I∗

det(RI) · det(DI). (4.5)

The degree of the first summand in (4.5) is at least

deg ( det(RI∗) · det(DI∗) ) = dI∗ + deg (det(DI∗)) ≥ dI∗ .

Using Claim 4.7.6 we can upper bound the degrees of the other summands
in (4.5). That is, for all I ∈ Γ different from I∗ we have

deg ( det(RI) · det(DI) ) = dI + deg (det(DI)) ≤ dI + dk < dI∗

(we use the fact that all the entries of D are polynomials of degree at most
d). Therefore, the sum in (4.5) cannot be zero. This concludes the proof of
Theorem 4.4.

4.5 Extractors for Polynomial Sources

In this section we describe our construction of an extractor for full-rank
polynomial sources and prove Theorem 4.2. As was mentioned in the intro-
duction, this construction, together with the rank extractor constructed in
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previous sections, will give an extractor for polynomial sources of any rank.
In order to describe our construction we require some additional notations.
Let F be a field of prime cardinality p. For an integer M ≤ p, we denote by
modM : F→ {0, . . . , M −1} the modulo-M function. For a vector x ∈ F

n we
apply the function modM (x) coordinate-wise. The following theorem directly
implies Theorem 4.2.

Theorem 4.5. There exist absolute constants C > 0 and c > 0 such that the
following holds. Let k, d be integers and let F be a field of prime cardinality
p > dCk. Let m > 0 be an integer such that m < c · log(p), let M = 2m

and define the function E : F
k → {0, 1}km as E(y) � modM (y). Then for

every (k, k, d)-polynomial source Y over F, the distribution E(Y ) is ε-close
to uniform with ε = p−Ω(1).

Notice that the construction of the extractor is very simple— taking a
module in each coordinate. Proving that this is an extractor is much more
complicated. The main tool in the proof of Theorem 4.5 will be a theorem
of Bombieri [8] giving an exponential sum estimate for low degree polyno-
mials defined over curves (one-dimensional varieties). We refer the reader to
Appendix B for a discussion of the basic notions of algebraic geometry used
in the proof.

4.5.1 Preliminaries for the Proof of Theorem 4.5

Block distributions

Our proof will rely on the following standard lemmas concerning block dis-
tributions.

Lemma 4.6. Let A be some finite set and let X = (X1, . . . , Xk) be a dis-
tribution on Ak. Let 0 < ε < 1 and suppose that X1 is ε-close to uniform.
Suppose also that for each 2 ≤ i ≤ k there exists a set Si ⊂ Ai−1 such that

1. Pr[(X1, . . . , Xi−1) ∈ Si] ≥ 1− ε and

2. For each s ∈ Si, the conditional distribution (Xi|(X1, . . . , Xi−1) = s)
is ε-close to uniform.

Then X is O(k · ε)-close to uniform.

Proof. We will prove the lemma for k = 2 (the general case will follow by a
straightforward induction). Let T ⊂ A2 be some non empty set. It suffices
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to show that
∣
∣Pr[(X1,X2) ∈ T ]− |T |/|A|2

∣
∣ ≤ O(ε). For each a ∈ A let Ta =

T ∩ ({a} ×A). Let S = S2 ⊂ A be the set from the lemma. We have that

Pr[(X1,X2) ∈ T ] =
∑

a∈A

Pr[X1 = a] · Pr[X2 ∈ Ta|X1 = a]

≤ ε +
∑

a∈S

Pr[X1 = a] · Pr[X2 ∈ Ta|X1 = a]

≤ 2ε +
∑

a∈S

Pr[X1 = a] · |Ta|
|A|

≤ 3ε +
∑

a∈A

|Ta|
|A|2 = 3ε +

|T |
|A|2 .

Similarly, we can show an inequality in the opposite direction and so we
conclude that (X1,X2) is 3ε-close to uniform.

For our proof we require a modified version of this last lemma. In the mod-
ified version we fix not only the prefix of the distribution, but rather all indices
except the ith one. We recall our notation that for a vector v = (v1, . . . , vn)
and for an index i ∈ [n] we have v(−i) = (v1, . . . , vi−1, vi+1, . . . , vn). In some
places we will define a new vector of length n−1 by writing u = u(−i) ∈ An−1.
This means that the indices of u go from 1 to n, skipping the ith index. That
is, u = (u1, . . . , ui−1, ui+1, . . . , un) ∈ An−1.

Lemma 4.7. Let A be some finite set and let X = (X1, . . . , Xk) be a distri-
bution on Ak. Let 0 < ε < 1 and suppose that for each 1 ≤ i ≤ k there exists
a set Si ⊂ Ak−1 such that

1. Pr[X(−i) ∈ Si] ≥ 1− ε and

2. For each s(−i) ∈ Si, the conditional distribution (Xi|X(−i) = s(−i)) is
ε-close to uniform.

Then X is O(k · √ε)-close to uniform.

Proof. The lemma will follow by showing that X satisfies the conditions of
Lemma 4.6 with ε replaced by O(

√
ε). The first block X1 (and indeed, every

other block) is easily seen to be 2ε close to uniform by breaking it into a
convex combination over all fixings of the other blocks, and throwing away
those fixings not in S1.

Now, let i > 1. For a prefix (a1, . . . , ai−1) ∈ Ai−1 we define P (a1, . . . , ai−1)
to be the probability that a(−i) = (a1, . . . , ai−1, ai+1, . . . , ak) is in Si when
the additional elements (ai+1, . . . , ak) are chosen according the the distribu-
tion (Xi+1, . . . , Xk|X1 = a1, . . . , Xi−1 = ai−1). A simple averaging argument
shows that the set S′

i = {(a1, . . . , ai−1) |P (a1, . . . , ai−1) ≥ 1−√ε} has proba-
bility at least 1−√ε in the distribution of (X1, . . . , Xi−1). We can thus, apply
Lemma 4.6 with the sets S′

i and with ε replaced by 2ε +
√

ε = O(
√

ε).
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Distributions with small Fourier coefficients

The following lemma is an extension of the now folklore Vazirani XOR Lemma
[29] and is used [10, 5] to extract randomness from distributions with bounded
Fourier coefficients. What the lemma says is that if we have a distribution
X with a bound of p−Ω(1) on all of its Fourier coefficients then we can deter-
ministically extract from X (using the modulo function) Ω(log(p)) bits that
are p−Ω(1)-close to uniform. The following formulation of the lemma follows
from the version proved in [51].

Lemma 4.8. Let p be a prime number and let 0 < α < 1 be such that
log(p) < pα/2. Let X be a distribution on F, the field of p elements. Suppose
that for every nontrivial additive character χ : F → C

∗ we have the bound
E[χ(X)] ≤ p−α. Let m = �(α/2) · log(p)�, let M = 2m and let Y = modM (X)
be an m-bit random variable. Then Y is p−α/4-close to uniform.

Intersections of hypersurfaces

Consider a system of n − 1 polynomial equations in n variables. The next
lemma gives a bound on the number of ’shifts’ of the system for which the set
of solutions has dimension larger than one (for the precise meaning of ’shift’
see the lemma).

Lemma 4.9. Let F be a finite field of size p and let F̄ denote its algebraic
closure. Let f1, . . . , fn−1 ∈ F[x1, . . . , xn] be polynomials of degree ≤ d. For
every a = (a1, . . . , an−1) ∈ F

n−1 let V̂a = {x ∈ F̄
n | fi(x) = ai , i ∈ [n − 1]}

and let A = {a ∈ F
n−1 | V̂a �= ∅ and dim(V̂a) �= 1}. Then |A| ≤ ndnpn−2.

Proof. In order to bound |A| we will describe an injective mapping from A
to some small set. Fix some a = (a1, . . . , an−1) ∈ A. For i ∈ [n − 1] let
Hi = {x ∈ F̄

n | fi(x) = ai} be the hypersurface defined by the ith restriction
and let Ui = H1∩ . . .∩Hi so that Un−1 = V̂a. Using Lemma B.10 we see that
if V̂a is not empty and dim(V̂a) �= 1 then there must be some 2 ≤ i ≤ n − 1
such that Hi contains one of the irreducible components of Ui−1. Let i′ be
the smallest i satisfying this condition and let 0 < L ≤ dn be the index
of the corresponding irreducible component of Ui′−1 (using some arbitrary
ordering of the components of Ui′−1), where the bound of dn on L follows
from Lemma B.12. Observe that if we are given the set of values {a(−i′), i′, L}
we can determine ai′ and so recover a. Therefore, there exists an injective
mapping from A into the set F

n−2×[n]×[dn]. Therefore |A| ≤ ndn ·pn−2.

A theorem of Bombieri

The final ingredient we require for the proof of Theorem 4.5 is an exponential
sum estimate due to Bombieri [8]. We quote here a weak version of Bombieri’s
theorem which is sufficient for our needs (see Appendix B for more details
on this result).
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Theorem 4.6 (Theorem 6 in [8]). Let p be a prime and let 1 < d be an integer
such that dn < p. Let F be the field of p elements and let F̄ be its algebraic
closure. Let f1, . . . , fn−1 ∈ F[x1, . . . , xn] be n − 1 polynomials of degree ≤ d
such that the set V̂ = {x ∈ F̄

n|f1(x) = . . . = fn−1(x) = 0} is a curve. Let
g ∈ F[x1, . . . , xn] be a polynomial of degree ≤ d that is non-constant on at
least one of the irreducible components of V̂ . Let V̂ = V̂1 ∪ . . . ∪ V̂L be the
decomposition of V̂ into irreducible components. Let Û be the union of those
irreducible components of V̂ on which g(x) is non-constant and let U = Û∩F.
Let χ : F→ C

∗ be a nontrivial additive character of F. Then
∣
∣
∣
∣
∣

∑

x∈U

χ(g(x))

∣
∣
∣
∣
∣
≤ 4d2n · p1/2.

4.5.2 Proof of Theorem 4.5

Let Y : F
k → F

k be a (k, k, d)-polynomial source and let f = (f1, . . . , fk) ∈
F[x1, . . . , xk] be a vector of polynomials of degree at most d such that Y (x) =
f(x) = (f1(x), . . . , fk(x)). For i ∈ [k] and a = a(−i) ∈ F

k−1, we let
Va =

{
x ∈ F

k | f (−i)(x) = a
}

and also V̂a =
{
x ∈ F̄

k | f (−i)(x) = a
}
, where

F̄ denotes the algebraic closure of F. For a nontrivial additive character
χ : F→ C

∗, such that Va �= ∅ we define the exponential sum

Υχ(a) =
1
|Va|

∑

x∈Va

χ(fi(x)).

In view of Lemma 4.7 and 4.8 the theorem will follow from the following
lemma.

Lemma 4.10. Using the above notations, there exists 0 < α < 1 such that
for every i ∈ [k] there exists a set Si ⊂ F

k−1 such that

1. f (−i)(x) lands in Si with probability at least 1− p−α when x is chosen
uniformly in F

k.

2. For every a = a(−i) ∈ Si and for every nontrivial χ, |Υχ(a)| ≤ p−α.

Before proving the lemma we proceed to show how it is used to complete
the proof of Theorem 4.5. Let us denote by

Zi = modM (fi(x))

the random variable representing the ith block of E(Y ). Let 0 < α < 1
be the constant given by Lemma 4.10. Let i ∈ [k] and let Si ⊂ F

k−1 be
the set given by Lemma 4.10. We define the set S′

i = modM (Si) to be the
image of Si under the function modM (·). From part (1) of Lemma 4.10 we
get that Z(−i) lands in S′

i with probability at least 1 − p−Ω(1). For b =
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b(−i) ∈ [M ]k−1 let Zi(b) be the random variable distributed according to
the conditional distribution (Zi|Z(−i) = b). The random variable Zi(b) is a
convex combination of distributions Wi(a) = (Zi|f (−i)(x) = a) taken over all
a = a(−i) such that modM (a) = b. Since, by the definition of S′

i, these as
are all in Si, we can use part (2) of Lemma 4.10 together with Lemma 4.8
to get that each Wi(a) in the convex combination of Zi(b) is p−Ω(1)-close to
uniform. This, of course, holds then also for Zi(b). We finish the proof by
observing that Z = (Z1, . . . , Zk) satisfies all the conditions of Lemma 4.7
with ε = p−Ω(1), and so we are done, since O(k ·

√
p−Ω(1)) = p−Ω(1) when

p > dCk and C is sufficiently large.

Proof of Lemma 4.10

Let i ∈ [k]. We would like to distinguish between “good” and “bad” fixings
of f (−i)(x). The “good” fixings will be those values a = a(−i) ∈ F

k−1 for
which we can bound the exponential sum Υχ(a). Before proving the Lemma
formally let us describe briefly the intuition behind the proof. Each fixing
f (−i)(x) = a(−i) defines a variety V . We would like to apply Bombieri’s the-
orem to bound the exponential sum of fi(x) over this variety. In order to
do so we need to make sure that V is a curve and that fi(x) is not constant
on “enough” of the components of the curve V (where the word “enough”
takes into account the number of points in F in each component). The fact
that most fixings satisfy the first condition, that V is a curve, will follow
from a counting argument, based on a version of Bezout’s theorem. The sec-
ond condition will follow from Wooley’s theorem (Theorem 4.1). Intuitively,
Wooley’s theorem tells us that the image of f is close to having high min-
entropy. Clearly, this should allow us to bound the size of those components
on which fi(x) is constant (for “most” fixings of f (−i)(x)).

In order to be able to define these “good” fixings of f (−i)(x) we need
to consider the singular points of the mapping f(x), namely the zeros of
its Jacobian. Let J(x) = det

(
∂f
∂x

)
be the determinant of the Jacobian of

f(x), which is a nonzero polynomial since the source Y has full rank. Let
Sing = {x ∈ F

k |J(x) = 0} be the set of singular points and for each a =
a(−i) ∈ F

k−1 let Singa = Sing ∩ Va.

Definition 4.8. We say that a = a(−i) ∈ F
k−1 is “good” if it satisfies the

following three conditions:

1. |Va| ≥ p5/6.

2. |Singa| ≤ p1/6.

3. V̂a is a curve. That is, dim(V̂a) = 1.

We define the set Si ⊂ F
k−1 to be the set of all “good” as.
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The next claim shows that most as are “good”. Thus proving part (1) of
Lemma 4.10.

Claim 4.8.1. Let Si be as above. Then Pr[f (−i) ∈ Si] ≥ 1 − p−Ω(1), where
the probability is over uniformly chosen x ∈ F

k.

Proof. Let a = a(−i) ∈ F
k−1 be the random variable sampled by a = f (−i)(x),

x uniform. For 1 ≤ j ≤ 3 let Ej denote the event that a satisfies condition j
in Definition 4.8. We can write

Pr[a is “bad”] ≤ Pr[Ec
1] + Pr[Ec

2] + Pr[E1 ∧ E2 ∧ Ec
3]. (4.6)

We will bound each of these three probabilities independently by p−Ω(1),
which will prove the claim. The first probability can be seen to be bounded
by p−1/6 by a simple union bound on all as with small |Va|.

To bound the second probability we first observe that |Sing| ≤ deg(J(x)) ·
pk−1 ≤ dk · pk−1. Therefore, the number of different as not satisfying con-
dition (2) is at most dk · pk−7/6. From Theorem 4.1 we have that for every
a = a(−i) ∈ F

k−1 the set Va contains at most dk · p non-singular points.
Therefore, the size of the union of all Vas for which condition (2) is not
satisfied is bounded by

kd · pk−1 + (kd · pk−7/6)(dk · p) ≤ pk−Ω(1)

(the first term counts all singular points and the second term counts all
nonsingular points), where the inequality holds for p > dCk for sufficiently
large constant C. Therefore the second probability in Eq. 4.6 is also bounded
by p−Ω(1).

We now bound the third probability in Eq. 4.6. Let A ⊂ F
k−1 be the set

of as satisfying conditions (1) and (2) but not (3) in the definition of a “good”
a. We first observe that Lemma 4.9 gives us the bound |A| ≤ kdk · pk−2 on
the size of A. Now, for each a ∈ A the size of Va is bounded by p1/6 + dk · p
(Va does not contain many singular points since a satisfies condition (2)).
Therefore, we have that

∑

a∈A

|Va| ≤ |A| · (p1/6 + dk · p) ≤ kdk · pk−2 · (p1/6 + dk · p) ≤ pk−Ω(1)

(when p > dCk and C is sufficiently large). This completes the proof of the
claim.

We now move to proving part (2) of Lemma 4.10. We will show that for
every a = a(−i) ∈ Si and for every nontrivial character χ the sum |Υχ(a)| is
bounded by p−Ω(1).

Claim 4.8.2. Let a = a(−i) ∈ Si. Then we have the bound |Υχ(a)| ≤ p−Ω(1).
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Proof. Let V̂a = Ĉ1 ∪ . . . ∪ ĈL be the decomposition of the curve V̂a into
irreducible components and let Cj = Ĉj ∩ F

k for j ∈ [L]. From Lemma B.12
we have that L ≤ dk. We wish to use Theorem 4.6 to bound |Υχ(a)|. Our
first step will be to show that the polynomial fi(x) can be constant only
on those irreducible components Ĉj that have few points in Fp. To show
this, notice that if the polynomial fi(x) is constant on one of the irreducible
components Ĉj then, using Theorem 4.1 and part (2) of the definition of
“good” as, we get that |Cj | ≤ p1/6 + dk.

We now consider the modified curve Ûa constructed by taking the union
of those components Ĉj of V̂a for which |Cj | > p1/6+dk and let Ua = Ûa∩F

k.
We can now use Theorem 4.6 to get the bound

∣
∣
∣
∣
∣

∑

x∈Ua

χ(fi(x))

∣
∣
∣
∣
∣
≤ 4d2k · p1/2,

which translates into the bound
∣
∣
∣
∣
∣

∑

x∈Va

χ(fi(x))

∣
∣
∣
∣
∣
≤ dk · (p1/6 + dk) + 4d2kp1/2 ≤ p2/3

(separating the sum into points in the small components and in the large
components) where the inequality hold when p > dCk, C sufficiently large.
Dividing this sum by |Va| > p5/6 we get the required bound of p−Ω(1) on
|Υχ(a)|.

Combining the above two claims concludes the proof of Lemma 4.10.

4.6 Improving the Output Length

The extractor constructed in Section 4.5 can extract a constant fraction of
the min-entropy of the source. It was suggested to us by Salil Vadhan that
we can extract almost all of the min-entropy by using special properties of
the source. This indeed works, and in this section we explain how.

We recall the notations of the last section: let Y : F
k → F

k be a (k, k, d)-
polynomial source. Before describing the improved construction we need to
define seeded extractors. For this section only we denote by Us the uniform
distribution on s bits.

Definition 4.9. A function E : {0, 1}n×{0, 1}s → {0, 1}m is an (r, ε)-seeded
extractor if for every distribution X such that H∞ (X) ≥ r the distribution
E(X,Us) is ε-close to uniform. E is said to be explicit if it can be computed
in polynomial time.

Roughly speaking the method to extract many bits from Y is as follows:
Let E1 : F → {0, 1}m1 be the extractor for distributions with small Fourier
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coefficients given by Lemma 4.8 (namely the mod 2m1 function) and let
E2 : F

k−1 × {0, 1}s → {0, 1}m2 be any seeded extractor with seed length
s and output length m2. Consider the composition of these two extractors
given by E(Y ) = E2(Y (−k), E1(Yk)) (recall that Y (−k) = (Y1, . . . , Yk−1)), in
which the role of the uniform seed is taken by E1(Yk). We would like to
claim that E(Y ) is close to uniform. The first thing to observe is that m1

has to be larger than s. This requirement will be easy to satisfy since in our
setting, when p ≥ dO(k), the output of E1 will be larger than the seed length
of standard seeded extractors. The more important thing to justify is the
fact that we can replace the uniform seed of E2 with a seed that is correlated
with the source, Y (−k). This can be done since for ’most’ fixings of Y (−k),
the random variable E1(Yk) is close to uniform (this follows from Bombieri’s
Theorem and the analysis of Section 4.5). We formalize this intuition in the
following theorem:

Theorem 4.7. Let k, d be integers and let F be a prime field of size p > dΩ(k).
Let m1 = c · log(p) for some small absolute constant c. Let E1 : F→ {0, 1}m1

be the function computing E1(j) = mod 2m1 (j) and let E2 : F
k−1×{0, 1}s →

{0, 1}m2 be an (r, ε)-seeded extractor.1 Suppose that m1 ≥ s and r ≤ (k− 1) ·
log

(
p
2d

)
. Then, for any (k, k, d)-polynomial source Y : F

k → F
k we have that

E2(Y (−k), E1(Yk)) is ε′-close to uniform, with ε′ = ε + p−Ω(1) (we will use
the convention that if m1 > s then E2 uses only the first s bits of E1(Yk)).

Proof. Assume w.l.o.g that m1 = s. Using Lemma 4.10 together with
Lemma 4.8 we get that with probability at least 1 − p−Ω(1) over a random
fixing Y (−k) = b(−k), the distribution

(
E1(Yk)|Y (−k) = b(−k)

)
is p−Ω(1)-close

to uniform. This means that the joint distribution (Y (−k), E1(Yk)) is p−Ω(1)-
close to (Y (−k), Us). Therefore, we have that E2(Y (−k), E1(Yk)) is p−Ω(1)-
close to E2(Y (−k), Us), which is ε+p−Ω(1) close to uniform by the properties of
E2. Here we use the fact that r ≤ (k−1) · log

(
p
2d

)
and that, from Lemma 4.3,

Y (−k) is p−Ω(1)-close to having min-entropy at least (k − 1) · log
(

p
2d

)
.

Applying the last theorem with an appropriate seeded extractor enables
us to construct a deterministic extractor for polynomial sources that extracts
any constant fraction of the entropy of the source. It is possible to increase
further the output length by using different seeded extractors. However,
using current state-of-the-art seeded extractors, this would cost in terms of
the error of the final construction. In order to avoid these complications we
concentrate on extracting only a constant fraction (arbitrarily close to 1) of
the min-entropy.

Theorem 4.8. Let k and d > 1 be integers and let F be a field of prime
cardinality p > dΩ(k). Let 0 < α < 1. Then, there exists a function E : F

k →
{0, 1}m that is an explicit (k, d, ε)-extractor for polynomial sources over F

k

with m = (1− α) · k · log
(

p
2d

)
and ε = p−Ω(1).

1We can safely ignore the technicality that pk−1 is not a power of 2.
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Proof. We use the seeded extractors of [54] in conjunction with Theorem 4.7.
In [54] it is shown that there exists an explicit (r, ε)-seeded extractor E2 :
F

k−1 × {0, 1}s → {0, 1}m2 with the following parameters:

r = �(k − 1) · log
( p

2d

)
�,

ε = p−Ω(1),

m2 ≥ (1− α/2) · r,
s = O(log2(k · log(p)) + log(1/ε)) = O(log(p)).

Plugging E2 into the setting described in Theorem 4.7 we get an extractor
with output length m2 ≥ (1 − α/2)(k − 1) · log

(
p
2d

)
, which is larger than

(1− α) · k · log
(

p
2d

)
.

4.7 Extractors for Weak Polynomial Sources

In this section we discuss the more general class of sources defined in the
introduction as (n, k, d)-weak polynomial sources. Our final goal will be to
prove Theorem 4.4, which we restate here for convenience:

Theorem 4.4. There exist absolute constants C and c such that the following
holds: Let k ≤ n and d > 1 be integers and let d′ = 8k2d3n. Let F be a field of
prime cardinality p > (d′)Ck. Then, there exists a function E : F

n → {0, 1}m
that is an explicit (k, d, ε)-extractor for weak polynomial sources over F

n with
m = �c · k · log(p)� and ε = p−Ω(1).

Theorem 4.4 will be a simple corollary of the following theorem, which
shows that any (n, k, d)-WPS is close to a convex combination of (n, k, d)-
polynomial sources.

Theorem 4.9. Let F be a field of prime cardinality p. Let k ≤ n and d
be integers such that p > max{4D2, 210}, where D = (2k + 1)d2k. Let X
be an (n, k, d)-WPS over F. Then X is δ-close to a convex combination of
(n, k, d)-polynomial sources over F, with δ = d·k

p .

Before proving Theorem 4.9 we show how it can be used to prove
Theorem 4.4.

Proof of Theorem 4.4. Let X be an (n, k, d)-WPS. We take the extractor
E : F

k → {0, 1}m to be the one given by Corollary 4.1 (namely, the extractor
for polynomial sources). Using Theorem 4.9 we get that X is δ-close to a
convex combination of (n, k, d)-polynomial sources, with δ = d·k

p = p−Ω(1)

(when p > (d′)Ck and C is sufficiently large). We know from Corollary 4.1
that E is a (k, d, ε)-extractor for polynomial sources over F

n, with ε = p−Ω(1).
Therefore, E(X) is δ-close to a convex combination of distributions, each of
which is ε-close to uniform. It follows, using standard probability theory,
that E(X) is (δ + ε) = p−Ω(1)-close to uniform.
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4.7.1 Proof of Theorem 4.9

The proof of the theorem will be in two steps. The first step will be to show
that every (n, k, d)-WPS is sampled by a mapping x : F

n → F
n such that

rank(x) ≥ k. The second step will be to show that a distribution sampled
by such a mapping is close to a convex combination of (n, k, d)-polynomial
sources. The first step of the proof of Theorem 4.9 is given by the following
lemma.

Lemma 4.11. Let F be a field of prime cardinality p. Let k ≤ n and d be
integers such that p ≥ max{4D2, 210}, where D = (2k +1) · d2k. Let X be an
(n, k, d)-WPS over F. Then there exists a mapping x ∈ M(Fn → F

n) with
rank ≥ k such that X = x(Un).

The main thing that is needed in order to prove Lemma 4.11 is to show
that if a polynomially sampled distribution has high entropy, then its rank is
also high. In other words, we need to show that if the rank is low, so is the
entropy. We achieve this kind of bound in two parts. The first part bounds
the entropy of the output distribution of k dependent polynomials, that is,
of k polynomials with rank at most k − 1. This can be viewed as the “base
case” for the proof of Lemma 4.11.

Lemma 4.12. Let F be a field of prime cardinality p. Let k, n and d be
integers such that p > D, where D = (n+1)dn. Let f1, . . . , fk ∈ F[x1, . . . , xn]
be k algebraically dependent polynomials of total degree at most d. Let P
denote the distribution of the mapping f = (f1, . . . , fk) : F

n → F
k on a

uniformly chosen input in F
n. Then P has support size at most D · pk−1.

Proof. From Theorem 4.3 we know that there exists a nonzero polynomial
h ∈ F[z1, . . . , zk] of degree ≤ D such that h(f1(x), . . . , fk(x)) ≡ 0 (notice
that we use Theorem 4.3 with the roles of k and n reversed). Therefore,
the support of P is contained in the zero set of h, whose size is bounded by
D · pk−1 by Schwartz-Zippel (Lemma 4.3).

The second auxiliary lemma we will need in the proof of Lemma 4.11 is
the following lemma, which will enable us to reduce the number of variables of
a mapping (assuming the number of variables is considerably larger than the
number of outputs) while maintaining both the rank and the overall entropy
of the mapping.

Lemma 4.13. Let F be a finite field of cardinality q. Let d, k, n,m be integers
such that 2k ≤ n. Let x ∈ M(Fn → F

m, d) be such that H∞ (x(Un)) ≥
k · log(q). Then, there exists an affine subspace V ⊂ F

n of dimension 2k
such that the restriction of x to V has min-entropy at least k · log(q) − 2.
That is, if we denote by UV the uniform distribution on V , then we have
H∞ (x(UV )) ≥ k · log(q)− 2.
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Proof. Take V to be a random affine subspace of dimension 2k. For each
y ∈ F

m let Sy � {t ∈ F
n |x(t) = y} and let ry � |Sy| · q−n = Pr[x(Un) = y].

Fix some y ∈ F
m. The expectation, over the choice of V, of |Sy∩V | is q2k ·ry.

We can also bound the variance of |Sy ∩ V | (using pairwise independence of
the points on V) by |Sy|q2k−n(1 − q2k−n) ≤ q2k · ry. Applying Chebyshev’s
inequality, and using the fact that for all y ∈ Fm we have ry ≤ q−k, one can
show that

Pr
V

[ |Sy ∩ V | > 4qk ] ≤ ry

9
. (4.7)

Using the union bound we get that the probability that there exists a y for
which the event in (4.7) happens is bounded by 1/9, and so there exists V
such that for all y ∈ Fm we have |Sy ∩ V | ≤ 4qk. This completes the proof
of the lemma since

Pr[x(UV ) = y] =
|Sy ∩ V |

q2k
≤ 4q−k.

The third auxiliary lemma we will use in the proof of Lemma 4.11 is the
following one, which enables us to reduce the number of polynomials from n
to k while maintaining most of the entropy.

Lemma 4.14. Let F be a finite field of cardinality q. Let k ≤ n be integers
and let 0 < s ≤ k be a real number. Let X be a distribution over F

n such that
H∞ (X) ≥ s · log(q). Then there exists a linear mapping l : F

n → F
k such

that for every α > 0 the distribution l(X) is ε-close to having min-entropy
≥ (s− α) · log(q), where ε =

√
2 · q−α/2.

Proof. Let L denote the set of all linear mappings from F
n to F

k and let L be
a random variable uniformly distributed over L. Let us observe the average
collision probability of l(X) when we average over all l ∈ L.

1
|L|

∑

l∈L
cp(l(X)) =

∑

l∈L
Pr[L = l] · Pr

x1,x2←X
[L(x1) = L(x2) |L = l]

= Pr
x1,x2←X

[L(x1) = L(x2)]

≤ Pr
x1,x2←X

[x1 = x2] + Pr
x1,x2←X

[L(x1) = L(x2) |x1 �= x2]

≤ q−s + q−k ≤ 2q−s,

where in the last inequality we used the fact that the min-entropy of X is
at least log(qs) and so cp(X) ≤ q−s. Therefore, there exists l ∈ L such that
cp(l(X)) ≤ 2q−s. Let α > 0 and let us use Lemma 4.2 with a = qα

2 and
b = qs−α. We therefore have cp(l(X)) ≤ 1

ab and so, by the lemma, l(X) is
(1/
√

a)-close to having min-entropy at least log(b) = (s− α) · log(q).
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One more simple auxiliary claim we will require is the following claim.

Claim 4.9.1. Let 0 < ε < 1/4. Let X be some distribution on some finite set
Γ. Suppose that X is ε-close to a distribution with support size at most M .
Then X is (1/4)-far from any distribution with min-entropy at least log(2M).

Proof. Assume towards a contradiction that there exists a distribution Y

on Γ such that H∞ (Y ) ≥ log(2M) and X
δ
∼ Y with δ ≤ 1/4. From the

assumption on X we know that there exists a set A ⊂ Γ with |A| ≤M such
that Pr[X ∈ A] ≥ 1− ε. We therefore have that Pr[Y ∈ A] ≥ 1− ε− δ > 1/2.
Therefore, since Pr[Y = a] ≤ 2− log H∞(Y ) ≤ 1

2M , we get that Pr[Y ∈ A] ≤
|A| · 1

2M ≤ 1/2, a contradiction.

We are now ready to prove Lemma 4.11.

Proof of Lemma 4.11 Let x = x(t) ∈ M(Fn → F
n, d) be a mapping

such that X = x(Un). We will show that rank(x) ≥ k. Assume towards a
contradiction that rank(x) < k. Using Lemma 4.13 we can replace x with
a new polynomial mapping x̃ ∈ M(Fm → F

n, d), with m = min(n, 2k), and
such that (a) rank(x̃) ≤ rank(x) < k and (b) H∞ (x̃(Um)) ≥ (k−1/4) log(q).
Let X̃ denote the output distribution of x̃.

Next, we use Lemma 4.14 with parameters α = 1/4 and s = k− 1/4. We
get that there exists a linear mapping l : F

n → F
k such that l(X̃) is ε-close

to having min-entropy at least (k − 1/2) · log(p), where

ε =
√

2 · p1/8 < 1/4,

where the last inequality uses the fact that p > 210.
Notice that the distribution l(X̃) is the output distribution of k depen-

dent polynomials. To see this write D = ∂x
∂t and let Al be a k × n matrix

representing l. The partial derivative matrix of l ◦ x is simply Al ·D and the
rank of this matrix is at most the rank of D, which we assumed is bounded
by k − 1. Theorem 4.3 now implies that the polynomials sampling l(X̃) are
dependent.

We can now use Lemma 4.12 to get that l(X̃) has support size at most
D · pk−1, where D = (m + 1)dm. Therefore, by Claim 4.9.1, l(X̃) is (1/4)-far
from any distribution with min-entropy at least log(2D · pk−1). This implies

pk−1/2 < 2D · pk−1,

which gives p < 4D2, a contradiction.
The second step in the proof of Theorem 4.9 is the following lemma.

Lemma 4.15. Let F be a finite field. Let k ≤ n and d be integers. Let
x ∈ M(Fn → F

n, d) be a mapping with rank k. Let X be the distribution
x(Un). Then X is ε-close to a convex combination of (n, k, d)-polynomial
sources over F, where ε = d·k

|F| .
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Proof. Denote by D the submatrix of the first k rows and k columns of ∂x
∂t ,

i.e.,

D =

⎛

⎜
⎝

∂x1
∂t1

. . . ∂x1
∂tk

...
. . .

...
∂xk

∂t1
. . . ∂xk

∂tk

⎞

⎟
⎠ .

We can assume w.l.o.g that D is non singular (this can be obtained by rela-
belling the ts and xs). Let f : F

n → F be defined as f(t) � det(D)(t). By
assumption, f is nonzero and deg(f) ≤ d · k. For c = (ck+1, . . . , cn) ∈ F

n−k

define the mapping xc : F
k → F

n as x restricted to c, that is, xc(t1, . . . , tk) �
x(t1, . . . , tk, cr+1, . . . , cn). Note that, the first k rows of ∂xc

∂t are exactly D

under the restriction tk+1 = ck+1, . . . , tn = cn. Thus ∂xc

∂t has full rank when-
ever fc(t1, . . . , tk) � f(t1, . . . , tk, ck+1, . . . , cn) is nonzero. Using Claim 4.7.2,
fc ≡ 0 with probability at most d·k

|F| (for uniformly chosen c). Let Xc be the
distribution xc(Uk). Then X is a convex combination of the Xcs. Moreover,
using Lemma 4.1, X is d·k

|F| -close to a convex combination of the Xcs for which
fc is nonzero, and these Xcs are (n, k, d)-polynomial sources over F.

Proof of Theorem 4.9 We first apply Lemma 4.11 to get that X is sam-
pled by a rank k mapping x : F

n → F
n. Then we use Lemma 4.15 to show

that X = x(Un) is δ-close to a convex combination of (n, k, d)-polynomial
sources with δ = d·k

p .

4.7.2 The Entropy of a Polynomial Mapping

We can use the results of the last section to show that, over sufficiently
large fields, the entropy of a distribution sampled by a low-degree mapping
x ∈ M(Fn → F

n, d) is always “close” to k · log(p), where k is equal to the
rank of x. This is a generalization of the affine case, where the entropy is
exactly k · log(p). This is stated formally by the following theorem.

Theorem 4.10. Let k ≤ n and d be integers. Let D = (2k + 1)d2k and let
0 < δ < 1 be a real number. Let F be a field of prime cardinality p such that
p > max{(2d)

k
δ , 2

10
δ , (2D)

2
δ }. Let x ∈ M(Fn → F

n, d) be of rank k and let
X = x(Un) be the distribution sampled by x. Then

1. X has min-entropy ≤ (k + δ) · log(p).

2. X is ε-close to having min-entropy ≥ (k − δ) · log(p), where ε = 2·d·k
p .

Proof. We start with a proof of part 2, which is easier. We apply Lemma 4.15
to get that X is d·k

p -close to a convex combination of (n, k, d)-polynomial
sources. From Theorem 4.3 we have that every distribution in this convex
combination is d·k

p -close to having min-entropy ≥ k · log
(

p
2d

)
. It follows that
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X is 2·d·k
p -close to having min-entropy at least

k · log
( p

2d

)
≥ (k − δ) · log(p),

where the inequality follows from the bound p ≥ (2d)
k
δ .

We proceed to prove part 1 of the theorem. We can assume w.l.o.g that
k < n, for otherwise an entropy upper bound of n · log(p) would be trivial.
Suppose for contradiction that H∞ (x) > (k + δ) · log(p). Using Lemma 4.13
we can replace x with a new polynomial mapping x̃ ∈ M(Fm → F

n, d),
with m = min(n, 2k), and such that (a) rank(x̃) ≤ rank(x) = k and (b)
H∞ (x̃(Um)) ≥ (k + 3

4δ) log(p), where we need to use the following inequality

(k +
3
4
δ) log(p) ≤ (k + δ) log(p)− 2,

which holds for p > 2
10
δ .

Let X̃ denote the output distribution of x̃. We apply Lemma 4.14 with
α = δ/4 to find a linear mapping l : F

n → F
k+1 such that l(X̃) is ε′-close

to having min-entropy at least (k + δ/2) · log(p) with ε′ =
√

2 · p−δ/8 < 1/4
(here we use again the bound p > 2

10
δ ).

We proceed in a similar manner as in the proof of Lemma 4.11: We first
use Lemma 4.12 to claim that l(X̃) has support size at most D · pk, where
D = (m+1)dm (again, using the fact that l◦x̃ has rank at most rank(x̃) ≤ k).
From this fact and from Claim 4.9.1 we deduce that

(k + δ/2) · log(p) ≤ log(2D · pk),

which is a contradiction since p > (2D)
2
δ .

4.8 Rank Extractors over the Complex
Numbers

In this section we discuss the interpretation of rank extractors over the com-
plex numbers. This interpretation will follow from the results appearing in
[21] on algebraic independence and full-rank mappings over C. The follow-
ing theorem shows that over the complex numbers algebraic independence is
equivalent to full rank.

Theorem 4.11 (Theorem 2.3 in [21]). Let x ∈M(Ck → C
r, d) where r ≤ k.

The mapping x has full rank, that is, rank r, if and only if x1, . . . , xr are
algebraically independent.

The next theorem shows that for a mapping x ∈ M(Ck → C
k, d), full

rank is equivalent to having an image that is “essentially all” of C
k, more

precisely, all of C
k except for a set of measure zero. The theorem follows

immediately from Theorem 2.4 in [21].
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Theorem 4.12. Fix any integers d, k and any x ∈ M(Ck → C
k, d). The

mapping x has full rank if and only if the image x(Ck) of x contains all of
C

k except a set Z ⊆ C
k of measure zero in C

k.

Proof. Assume that x has full rank. In the proof of Theorem 2.4 in [21],
it is shown that x(Ck) contains all of C

k except the set Z of zeros of some
polynomial H : C

k → C. Such a set Z has measure zero. Now assume x(Ck)
contains all of C

k except for a set of measure zero in C
k. Then x(Ck) is dense

in C
k and it follows from Theorem 2.4 in [21] that x1, . . . , xn are algebraically

independent, and therefore by Theorem 4.11, x has full rank.

It follows that our constructions of rank extractors can be viewed as
“dispersers” for low-degree sources over C. That is, they are fixed mappings
that map every k-dimensional low-degree source over C

n into almost all of C
k.

Corollary 4.4. Fix any integers d, k and n with n ≥ k. Let y : C
n → C

k be
the mapping from Theorem 4.1. Then, for any x ∈M(Ck → C

n, d) with full
rank, y(x(Ck)) contains all of C

k except for a set of measure zero.

As far as we know, this kind of generalized dispersers was not considered
before, and it will be interesting to find applications for it.

4.9 Discussion and Open Problems

Our chapter invites further work in several directions.2

• The extractors we give in this chapter work when the field size is dΩ(k).
Extending our results to the case where the field size is polynomial in k
is an interesting open problem. Building on the results of this chapter
it is enough to construct such an extractor for polynomial sources of
full rank.

• An affine source may be viewed in two dual ways: as the image of
an affine map, or as the kernel of one. Our extension here to low-
degree sources takes the first view. An interesting problem is extending
the second view: extracting from low-degree algebraic varieties. We
note that the case of one dimensional varieties is already covered by
Bombieri’s theorem (see Section 4.5).

• We prove an exponential upper bound of (n+1)dn on the degree of the
annihilating polynomial for a set of degree d dependent polynomials in
n variables. Can this bound be improved in general? Are there lower
bounds? This seems to be open even over the complex numbers. An
improvement on the upper bound above will yield a tighter connection
between min-entropy and algebraic rank for smaller field sizes. How-
ever, it is possible that the latter can be obtained without the former.

2A recent work of Kayal [38] makes progress on several of these issues.
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• What is the computational complexity of testing algebraic indepen-
dence? When the field size affords the equivalence to the rank of the
Jacobian, there is a simple RP algorithm. Can one do it for smaller
fields?

• What is the complexity of finding an annihilating polynomial when the
polynomials are dependent? Our degree bound guarantees a PSPACE
algorithm. Is there a better one, or can this problem be complete for
this class?





Chapter 5

Increasing the Output Length
of Zero-Error Dispersers

Summary

Let C be a class of probability distributions over a finite set Ω.
A function D : Ω �→ {0, 1}m is a disperser for C with entropy
threshold k and error ε if for any distribution X in C such that X
gives positive probability to at least 2k elements we have that the
distribution D(X) gives positive probability to at least (1− ε)2m

elements. A long line of research is devoted to giving explicit (that
is, polynomial-time computable) dispersers (and related objects
called “extractors”) for various classes of distributions while try-
ing to maximize m as a function of k.

In this chapter we are interested in explicitly constructing
zero-error dispersers (that is, dispersers with error ε = 0). For
several interesting classes of distributions there are explicit con-
structions in the literature of zero-error dispersers with “small”
output length m, and we give improved constructions that achieve
“large” output length, namely m = Ω(k).

We achieve this by developing a general technique to improve
the output length of zero-error dispersers (namely, to transform
a disperser with short output length into one with large output
length). This strategy works for several classes of sources and is
inspired by the transformation that improves the output length of
extractors used in previous chapters. However, we stress that this
technique is different, and in particular gives nontrivial results in
the errorless case.

Using our approach we construct improved zero-error disper-
sers for the class of 2-sources. More precisely, we show that
for any constant δ > 0 there is a constant η > 0 such that

A. Gabizon, Deterministic Extraction from Weak Random Sources,
Monographs in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-642-14903-0 5, c© Springer-Verlag Berlin Heidelberg 2011
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for sufficiently large n there is a poly-time computable function
D : {0, 1}n × {0, 1}n �→ {0, 1}ηn such that for any two indepen-
dent distributions X1,X2 over {0, 1}n such that both of them
support at least 2δn elements we get that the output distribution
D(X1,X2) has full support. This improves the output length
of previous constructions by [4] and has applications in Ramsey
Theory and in constructing certain data structures [24].

We also use our techniques to give explicit constructions of
zero-error dispersers for bit-fixing sources and affine sources over
polynomially large fields. These constructions improve the best
known explicit constructions due to [52, 25] and achieve m = Ω(k)
for bit-fixing sources and m = k − o(k) for affine sources.
This chapter is based on [27]

5.1 Introduction

5.1.1 Randomness Extractors and Dispersers

We start with formal definitions of extractors and dispersers, as they are used
in this chapter

Definition 5.1 (min-entropy and statistical distance). Let Ω be a finite set.
Recall that the min-entropy of a distribution X on Ω is defined by H∞ (X) =
minx∈Ω log2

1
Pr[X=x] . For a class C of distributions on Ω we use Ck to denote

the class of all distributions X ∈ C such that H∞ (X) ≥ k. We say that two
distributions X,Y on Ω are ε-close if 1

2

∑
w∈Ω |Pr[X = w]− Pr[Y = w]| ≤ ε.

When given a class C of distributions (which we call “sources”) the goal
is to design one function that refines the randomness of any distribution X
in C. An extractor produces a distribution that is (close to) uniform whereas
a disperser produces a distribution with (almost) full support. A precise
definition follows.

Definition 5.2 (extractors and dispersers). Let C be a class of distributions
on a finite set Ω.

• A function E : Ω �→ {0, 1}m is an extractor for C with entropy thresh-
old k and error ε > 0 if for every X ∈ Ck, E(X) is ε-close to the
uniform distribution on {0, 1}m.

• A function D : Ω �→ {0, 1}m is a disperser for C with entropy threshold
k and error ε > 0 if for every X ∈ Ck, |Supp(D(X))| ≥ (1−ε)2m (where
Supp(Z) denotes the support of the random variable Z).

We remark that every extractor is in particular a disperser and that the
notion of dispersers only depends on the support of the distributions in C. A
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long line of research is concerned with designing extractors and dispersers for
various classes of sources. For a given class C we are interested in designing
extractors and dispersers with as small as possible entropy threshold k, as
large as possible output length m and as small as possible error ε. (We remark
that it easily follows that m ≤ k whenever ε < 1/2.)

It is often the case that the probabilistic method gives that a randomly
chosen function E is an excellent extractor. (This is in particular true when-
ever the class C contains “not too many” sources.) However, most appli-
cations of extractors and dispersers require explicit constructions, namely
functions that can be computed in time polynomial in their input length.
Much of the work done in this area can be described as an attempt to match
the parameters obtained by existential results using explicit constructions.

5.1.2 Zero-Error Dispersers

In this work we are interested in zero-error dispersers. These are dispersers
where the output distribution has full support. That is, for every source X
in the class C,

{D(x) : x ∈ Supp(X)} = {0, 1}m.

We also consider a stronger variant which we call strongly-hitting disperser,
in which every output element z ∈ {0, 1}m is obtained with “not too small”
probability. A precise definition follows.

Definition 5.3 (Zero-error dispersers and strongly hitting dispersers). Let
C be a class of distributions on a finite set Ω.

• A function D is a zero-error disperser for C with entropy threshold k
if it is a disperser for C with entropy threshold k and error ε = 0.

• A function D : Ω �→ {0, 1}m is a μ-strongly hitting disperser for C with
entropy threshold k if for every X ∈ Ck and for every z ∈ {0, 1}m,
Pr[D(X) = z] ≥ μ.

Note that a μ-strongly hitting disperser with μ > 0 is in particular a
zero-error disperser and that any μ-strongly hitting disperser has μ ≤ 2−m.
The following facts immediately follow:

Fact 5.1. Let f : Ω �→ {0, 1}m be a function and let ε ≤ 2−(m+1).

• If f is a disperser with error ε then f is a zero-error disperser (for the
same class C and entropy threshold k).

• If f is an extractor with error ε then f is a 2−(m+1)-strongly hitting
disperser (for the same class C and entropy threshold k).

It follows that extractors and dispersers with small ε immediately trans-
late into zero-error dispersers (as one can truncate the output length to
m′ = log(1/ε) − 1 bits, and such a truncation preserves the output guar-
antees of extractors and dispersers).
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5.1.3 Increasing the Output Length of Zero-Error
Dispersers

For several interesting classes of sources there are explicit constructions of
dispersers with “large” error (which by Fact 5.1 give zero-error dispersers with
“short” output length). In this chapter we develop techniques to construct
zero-error dispersers with large output length.

The composition approach

The following methodology for increasing the output length of extractors was
suggested in [26, 63]: When given an extractor E′ with “small” output length
t (for some class C), consider the function E(x) = F (x,E′(x)) where F is
a seeded extractor. Shaltiel [63] (building on earlier work by Gabizon et al.
[26]) shows that if E′ and F fulfill certain requirements then this construction
yields an extractor for C with large output length. The high-level idea is that
if certain conditions are fulfilled, then the distribution F (X,E(X)) (in which
the two inputs of F are dependent) is close to the distribution F (X,Y ) (where
Y is an independent uniformly distributed variable); note that the latter
distribution is close to uniform by the definition of seeded extractors. This
technique proved useful for several interesting classes of sources.

We would like to apply an analogous idea to obtain zero-error dispersers.
However, by the lower bounds of [48, 49], if F is a seeded extractor (or seeded
disperser) then its seed length is at least log(1/ε). This means that if we want
F (X,Y ) to output m bits with error ε < 1/2m, we need seed length larger
than m. This in turn means that we want E′ to have output length t > m,
which makes the transformation useless.

There are also additional problems. The argument in [63] requires the
“original function” E′ to be an extractor (and it does not go through if E′ is
a disperser), and furthermore the error of the “target function” E is at least
as large as that of the “original function” E′ (and once again we don’t gain
when shooting for zero-error dispersers).

Summing up we note that if we want to improve the output length of a
zero-error disperser D′ by a composition of the form D(x) = F (x,D′(x)),
we need to use a function F with different properties (a seeded extractor or
disperser will not do) and we need to use a different kind of analysis.

Composing zero-error dispersers

In this chapter we imitate the method of [63] and give a general method to
increase the output length of zero-error dispersers. That is, when given:

• a zero-error disperser D′ : Ω �→ {0, 1}t for a class C and “small” output
length t and

• a function F : Ω× {0, 1}t �→ {0, 1}m for “large” output length m,
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we identify properties of F that are sufficient so that the construction

D(x) = F (x,D′(x))

gives a zero-error disperser. (The argument is more general and transforms
2−(t+O(1))-strongly hitting dispersers into 2−(m+O(1))-strongly hitting dis-
persers.) We then use this technique to give new constructions of zero-error
dispersers and strongly-hitting dispersers.

Subsource hitters

As explained earlier we cannot choose F to be a seeded extractor. Instead,
we introduce a new object which we call a subsource hitter. The definition of
subsource hitters is somewhat technical and is tailored so that the construc-
tion D(x) = F (x,D′(x)) indeed produces a disperser.

Definition 5.4 (subsource hitter). A distribution X ′ on Ω is a subsource of
a distribution X on Ω if there exist α > 0 and a distribution X ′′ on Ω such
that X can be expressed as a convex combination X = αX ′ + (1− α)X ′′.

Let C be a class of distributions on Ω. A function F : Ω × {0, 1}t �→
{0, 1}m is a subsource hitter for C with entropy threshold k and subsource
entropy k − v if for any X ∈ Ck and z ∈ {0, 1}m there exist a y ∈ {0, 1}t
and a distribution X ′ ∈ Ck−v that is a subsource of X such that for every
x ∈ Supp(X ′) we have that F (x, y) = z.

A subsource hitter has the property that for any z ∈ {0, 1}m there exist
y ∈ {0, 1}t and x ∈ Supp(X) such that F (x, y) = z and in particular

{
F (x, y) : x ∈ Supp(X), y ∈ {0, 1}t

}
= {0, 1}m.

In addition, a subsource hitter has the stronger property that there exists
a subsource X ′ of X (which is itself a source in C) such that for any z ∈
{0, 1}m there exists y ∈ {0, 1}t such that for any x ∈ Supp(X ′) ⊆ Supp(X),
F (x, y) = z.

This property allows us to show that D(x) = F (x,D′(x)) is a zero-error
disperser with entropy threshold k whenever D′ is a zero-error disperser with
entropy threshold k − v. This is because when given a source X ∈ Ck and
z ∈ {0, 1}m we can consider the seed y ∈ {0, 1}t and subsource X ′ guaranteed
in the definition. We have that D′ is a zero-error disperser and that X ′ meets
the entropy threshold of D′. It follows that there exists x ∈ Supp(X ′) ⊆
Supp(X) such that D′(x) = y. It follows that

D(x) = F (x,D′(x)) = F (x, y) = z,

and this means that D indeed outputs z. (We remark that a more compli-
cated version of this argument shows that the composition applies to strongly
hitting dispersers). The exact details are given in Section 5.3.
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It is interesting to note that this argument is significantly simpler than
that of [63]. Indeed, the definition of subsource hitters is specifically tailored
to make the composition argument go through and the more complicated task
is to design subsource hitters. This is in contrast to [63] in which the function
F is in most cases an “off-the-shelf” seeded extractor and the difficulty is to
show that the composition succeeds.

5.1.4 Applications

We use the new composition technique to construct zero-error dispersers with
large output length for various classes of sources. We discuss these construc-
tions and some applications below.

Zero-error 2-source dispersers

The class of 2-sources is the class of distributions X = (X1,X2) on Ω =
{0, 1}n×{0, 1}n such that X1,X2 are independent. It is common to consider
the case where each of the two distributions X1,X2 has min-entropy at least
some threshold k.

Definition 5.5 (2-source extractors and dispersers). A function f : {0, 1}n×
{0, 1}n �→ {0, 1}m is a 2-source extractor (or disperser) with entropy threshold
2 · k and error ε ≥ 0 if for every two independent distributions X1,X2 on
{0, 1}n both having min-entropy at least k, f(X1,X2) is ε-close to the uniform
distribution on {0, 1}m (or |Supp(f(X1,X2))| ≥ (1 − ε)2m). We say that f
is a zero-error disperser if it is a disperser with error ε = 0. We say that
f is a μ-strongly hitting disperser if for every X1,X2 as above and every
z ∈ {0, 1}m, Pr[f(X1,X2) = z] ≥ μ.

Background. The probabilistic method gives 2-source extractors with m =
2 ·k−O(log(1/ε)) for any k ≥ Ω(log n). However, until 2005 the best explicit
constructions [14, 70] only achieved k > n/2. The current best extractor
construction [9] achieves entropy threshold k = (1/2−α)n for some constant
α > 0. Improved constructions of dispersers for entropy threshold k = δn (for
an arbitrary constant δ > 0) were given in [4]. These dispersers can output
any constant number of bits with zero error (and are μ-strongly hitting for
some constant μ > 0).1 Subsequent work by [5] achieved entropy threshold
to k = no(1) and gives zero-error dispersers that output one bit.

Our results. We use our composition techniques to improve the output
length in the construction of [4]. We show that:

1In [50] it is pointed out that by enhancing the technique of [4] using ideas from [5] and
replacing some of the components used in the construction with improved components that
are constructed in [50] it is possible to increase the output length and achieve a zero-error
disperser with output length m = kΩ(1) for the same entropy threshold k.



5.1 Introduction 97

Theorem 5.6 (2-source zero-error disperser). For every δ > 0 there exists
a ν > 0 and an η > 0 such that for sufficiently large n there is a poly(n)-
time computable (ν2−m)-strongly hitting 2-source disperser D : ({0, 1}n)2 �→
{0, 1}m with entropy threshold 2 · δn and m = ηn.

Note that our construction achieves an output length that is optimal up
to constant factors for this entropy threshold. For lower entropy threshold
our technique gives that any explicit construction of a zero-error 2-source
disperser D′ with entropy threshold k and output length t = Ω(log n) can be
transformed into an explicit construction of a zero-error 2-source disperser D
with entropy threshold 2 ·k and output length m = Ω(k). (See Section 5.4 for
a precise formulation that also considers strongly hitting dispersers.) This
cannot be applied on the construction of [5] that achieves entropy threshold
k = no(1) as this construction only outputs one bit. Nevertheless, this means
that it suffices to extend the construction of [5] so that it outputs Θ(log n) bits
in order to obtain an output length of m = Ω(k) for low entropy threshold k.

We prove Theorem 5.6 by designing a subsource hitter for 2-sources and
using our composition technique. The details are given in Section 5.4 and a
high-level outline appears next.

Outline of the argument. We want to design a function F : {0, 1}n ×
{0, 1}n × {0, 1}t �→ {0, 1}m such that for any 2-source X = (X1,X2) with
sufficient min-entropy and for any z ∈ {0, 1}m there exist a “seed” y ∈ {0, 1}t
and a subsource X ′ of X such that X ′ = (X ′

1,X
′
2) is a 2-source with roughly

the same min-entropy as X and Pr[F (X ′
1,X

′
2, y) = z] = 1. We will be

shooting for m = Ω(n) and t = O(log n).
We construct the seed obtainer F using ideas from [4, 5]. Let E be a

seeded extractor with seed length t = O(log n), output length v = Ω(k)
and error εE = 1/100 (such extractors were constructed in [42, 34]). When
given inputs x1, x2, y we consider r1 = E(x1, y) and r2 = E(x2, y). By using
a stronger variant of seeded extractors called “strong extractors” it follows
that there exists a “good seed” y ∈ {0, 1}t such that R1 = E(X1, y) and
R2 = E(X2, y) are εE-close to uniform. We then use a 2-source extractor
H : {0, 1}v × {0, 1}v �→ {0, 1}m for very high entropy threshold (say entropy
threshold 2 · 0.9v) and very low error (say error 2−(m+1) for output length
m = Ω(v) = Ω(k)). Such extractors were constructed in [70]. Our final
output is given by

F (x1, x2, y) = H(E(x1, y), E(x2, y)).

This seems strange at first sight as it is not clear why running H on
inputs R1, R2 that are already close to uniform helps. Furthermore, the
straightforward analysis only gives that H(R1, R2) is ε-close to uniform for
large error ε ≥ εE = 1/100 and this means that the output of F may miss a
large fraction of strings in {0, 1}m.
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The point to notice is that both R1, R2 are close to uniform and therefore
have large support (1 − εE)2v ≥ 20.9v. Using Fact 5.1 we can think of H
as a zero-error disperser. Recall that dispersers are oblivious to the precise
probability distribution of R1, R2 and it is sufficient that R1, R2 have large
support. It follows that indeed every string z ∈ {0, 1}m is hit by H(R1, R2).

This does not suffice for our purposes as we need that any string z is
hit with probability 1 on a subsource X ′ = (X ′

1,X
′
2) of X in which the

two distributions X ′
1 and X ′

2 are independent. For any output string z ∈
{0, 1}m we consider a pair of values (r1, r2) for R1, R2 on which H(r1, r2) = z
(we have just seen that such a pair exists) and set X ′

1 = (X1|E(X1, y) =
r1) and X ′

2 = (X2|E(X2, y) = r2). Note that these two distributions are
indeed independent (as each depends only on one of the original distributions
X1,X2) and that on every x′

1 ∈ Supp(X ′
1) and x′

2 ∈ Supp(X ′
2) we have that

F (x′
1, x

′
2, y) = H(E(x′

1, y), E(x′
2, y)) = H(r1, r2) = z.

Furthermore, for a typical choice of (r1, r2) we can show that both X ′
1,X

′
2

have min-entropy roughly k − v. Thus, setting v appropriately, X ′ is a sub-
source of X with the required properties. (A more careful version of this
argument can be used to preserve the “strongly hitting” property.)

Interpretation in Ramsey theory

A famous theorem in Ramsey Theory (see [32]) states that for sufficiently
large N and any 2-coloring of the edges of the complete graph on N vertices
there is an induced subgraph on K = Θ(log N) vertices which is “monochro-
matic” (that is, all edges are of the same color).

Zero-error 2-source dispersers (with output length m = 1) can be seen
as providing counterexamples to this statement for larger values of K in the
following way: When given a zero-error 2-source disperser D : {0, 1}n ×
{0, 1}n �→ {0, 1}m with entropy threshold 2 · k we can consider coloring the
edges of the full graph on N = 2n vertices with 2m colors by coloring an edge
(v1, v2) by D(v1, v2). (A technicality is that D(v1, v2) may be different from
D(v2, v1), and to avoid this problem the coloring is defined by ordering the
vertices according to some order and coloring the edge (v1, v2) where v1 ≤ v2

by D(v1, v2)). The disperser guarantee can be used to show that any induced
subgraph with K = 2k+1 vertices contains edges of all 2m colors.2

Note that dispersers with m > 1 translate into colorings with more colors
and that in this context of Ramsey Theory the notion of a zero-error disperser
seems more natural than one that allows error. Our constructions achieve
m = Ω(k) and thus the number of colors in the coloring approaches the size
of the induced subgraph.

2In fact, dispersers translate into a significantly stronger guarantee that discusses col-
orings of the edges of the complete N by N bipartite graph such that any induced K by
K subgraph has all colors.
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Generalizing this relation between dispersers and Ramsey theory we can
view any zero-error disperser for a class C as a coloring of all x ∈ Ω such that
any set S that is obtained as the support of a distribution in C is colored by
all possible 2m colors.

Rainbows and implicit O(1)-probe search

As we now explain, explicit constructions of zero-error 2-source dispersers
can be used to construct certain data structures (this connection is due to
[24]).

Consider the following problem. We are given a set S ⊆ {0, 1}n of size 2k.
We want to store the elements of S in a table T of the same size, where every
entry in the table contains a single element of S (and so the only freedom
is in ordering the elements of S in the table T ). We say that T supports
q-queries if given x ∈ {0, 1}n we can determine whether x ∈ S using q queries
to T (note for example that ordered tables and binary search support q = k
queries). Yao [75] and Fiat and Naor [24] showed that it is impossible to
achieve q = O(1) when n is large enough relative to k. (This result can be
seen as a kind of Ramsey Theorem.)

Fiat and Naor [24] gave explicit constructions of tables that support
q = O(1) queries when k = δ · n for any constant δ > 0. This was achieved
by reducing the implicit probe search problem to the task of explicitly con-
structing a certain combinatorial object that they call a “rainbow”.

Loosely speaking, a rainbow is a zero-error disperser for the class of distri-
butions X that are composed of q independent copies of a high min-entropy
distribution. We stress that for this application one needs (strongly hit-
ting) dispersers with large output length. More precisely, in order to support
q = O(1) queries one requires such dispersers that have output length m that
is a constant fraction of the entropy threshold.

Our techniques can be used to explicitly construct rainbows which in
turn allow implicit probe schemes that support q = O(1) queries for smaller
values of k than previously known. More precisely, for any constant δ > 0
and k = nδ there is a constant q and a scheme that supports q queries.
The precise details are given in Section 5.4.5. (We remark that one can also
achieve the same results by using the technique of [24] and plugging in recent
constructions of seeded dispersers.)

Zero-error dispersers for bit-fixing sources

The class of bit-fixing sources is the class of distributions X on Ω = {0, 1}n
such that there exists a set S ⊆ [n] such that XS (that is, X restricted
to the indices in S) is uniformly distributed and X[n]\S is constant. Note
that for such a source X, H∞ (X) = |S|. (We remark that these sources
are sometimes called “oblivious bit-fixing sources” to differentiate them from
“non-oblivious bit-fixing sources” in which X[n]\S is allowed to be a function
of XS .)
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Background. The function Parity(x) (that is, the exclusive-or of the bits
of x) is obviously an extractor for bit-fixing sources with entropy threshold
k = 1, error ε = 0 and output length m = 1. It turns out that there are no
errorless extractors for m = 2. More precisely, [15] showed that for k < n/3
there are no extractors for bit-fixing sources with ε = 0 and m = 2. For
larger values of k, [15] gives constructions with m > 1 and ε = 0. For general
entropy threshold k, the current best explicit construction of extractors for
bit-fixing sources is due to [52] (in fact, this extractor works for a more
general class of “low-weight affine sources”). These extractors work for any
entropy threshold k ≥ (log n)c for some constant c, and achieve output length
m = (1− o(1))k for error ε = 2−kΩ(1)

. Using Fact 5.1 this gives a zero-error
disperser with output length m = kΩ(1).

Our results. We use our composition techniques to construct zero-error
dispersers for bit-fixing sources with output length m = Ω(k). We show that:

Theorem 5.7 (Zero-error disperser for bit-fixing sources). There exist c > 1
and η > 0 such that for sufficiently large n and k ≥ (log n)c there is a
poly(n)-time computable zero-error disperser D : {0, 1}n �→ {0, 1}m for bit-
fixing sources with entropy threshold k and output length m = ηk.

Note that our construction achieves an output length that is optimal up
to constant factors. We prove Theorem 5.7 by designing a subsource hitter
for bit-fixing sources and using our composition technique. The details are
given in Section 5.5 and a high-level outline appears next.

Outline of the argument. Our goal is to design a subsource hitter G :
{0, 1}n × {0, 1}t �→ {0, 1}m for bit-fixing sources with entropy threshold k,
output length m = Ω(k) and “seed length” t = O(log n). We make use of the
subsource hitter for 2-sources F : {0, 1}n × {0, 1}n × {0, 1}O(log n) �→ {0, 1}m
that we designed earlier. We apply it for entropy threshold k′ = k/8 and
recall that it has output length m = Ω(k′) = Ω(k).

When given a seed y ∈ {0, 1}t for G we think about it as a pair of strings
(y′, y′′) where y′ is a seed for F and y′′ is a seed for an explicit construction
of pairwise independent variables Z1, . . . , Zn where for each i, Zi takes values
in {1, 2, 3} (indeed there are such constructions with seed length O(log n)).
When given such a seed y′′ we can use the values Z1, . . . , Zn to partition the
set [n] into three disjoint sets T1, T2, T3 by having each index i ∈ [n] belong
to TZi

. We construct G as follows:

G(x, (y′, y′′)) = F (xT1 , xT2 , y
′).

In words, we use y′′ to partition the given n-bit string into three strings
and we run F on the first two strings (padding each of them to length n)
using the seed y′.
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We need to show that for any bit-fixing source X of min-entropy k and
for any z ∈ {0, 1}m there exist a seed y = (y′, y′′) and a subsource X ′ of X
such that X ′ is a bit-fixing source with roughly the same min-entropy as X
and Pr[G(X ′, (y′, y′′)) = z] = 1.

We have that X is a bit-fixing source and we let S ⊆ [n] be the set
of its “good indices”. Note that |S| ≥ k. By the “sampling properties”
of pairwise independent distributions (see [31] for a survey on “averaging
samplers”) it follows that there exists a y′′ such that for every i ∈ [3], |S∩Ti| ≥
k/8. It follows that XT1 ,XT2 ,XT3 are bit-fixing sources with min-entropy at
least k/8 (and note that these three distributions are independent). Thus,
by the properties of the subsource hitter F there exist x1, x2, y

′ such that
F (x1, x2, y

′) = z (note that here we’re only using the property that F “hits
z” and do not use the stronger property that F “hits z on a subsource”).
Consider the distribution

X ′ = (X|XT1 = x1 ∧XT2 = x2).

This is a subsource of X which is a bit-fixing source with min-entropy at
least k/8 (as we have not fixed the k/8 good bits in T3). It follows that for
every x ∈ Supp(X ′)

G(x, (y′, y′′)) = F (x1, x2, y
′) = z

and G is indeed a subsource hitter for bit-fixing sources.

Affine sources

The class of affine sources is the class of distributions X on Ω = F
n
q (where

Fq is the finite field of q elements) such that X is uniformly distributed over
an affine subspace V in F

n
q . Note that such a source X has min-entropy

log q · dim(V ). Furthermore, any bit-fixing source is an affine source over F2.

Background. For F2 the best explicit construction of extractors for affine
sources was given in [10]. This construction works for entropy threshold
k = δn (for any fixed δ > 0) and achieves output length m = Ω(k) with error
ε < 2−m.

Extractors for lower entropy thresholds were given by [25] in the case
where q = nΘ(1). For any entropy threshold k > log q, these extractors can
output m = (1− o(1))k bits with error ε = n−Θ(1). Using Fact 5.1 this gives
zero-error dispersers with output length m = Θ(log n).

Our results. Our composition techniques can be applied on affine sources.
We focus on the case of large fields (as in that case we can improve the results
of [25]). We remark that our techniques also apply when q is small (however,
at the moment we do not gain by applying them on the existing explicit
constructions). We prove the following theorem:
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Theorem 5.8. Fix any prime power q and integers n, k such that q ≥ n18

and 2 ≤ k < n. There is a poly(n, log q)-time computable zero-error disperser
D : F

n
q �→ {0, 1}m for affine sources with entropy threshold k · log q and

m = (k − 1) · log q.

Outline of the argument. We use our composition techniques to give
a different analysis of the construction of [25] which shows that this con-
struction also gives a zero-error disperser. The construction of [25] works
by first constructing an affine source extractor D′ with small output length
m = Θ(log n) and then composing it with some function F to obtain an
extractor D(x) = F (x,D′(x)) that extracts many bits (with rather large
error). We observe that the function F designed in [25] is in fact a subsource
hitter for affine sources and therefore our composition technique gives that
the final construction is a zero-error disperser.

5.1.5 Outline

In Section 5.2 we define the notations used in this chapter. In Section 5.3
we present our main composition theorem. In Section 5.4 we present our
results for multiple independent sources. In Section 5.5 we give our results
on bit-fixing sources. In Section 5.6 we give our results on affine sources.
Finally, in Section 5.7 we give some open problems.

5.2 Preliminaries

In this section we explain the notation used in this chapter. Note that some
definitions from the introduction are repeated in more precise form.

General notation: We use [n] to denote the set {1, . . . , n}. We use P(S)
to denote the set of subsets of a given set S. Given a string x ∈ {0, 1}n and
a set S ⊆ [n] we use xS to denote the string obtained by restricting x to
the indices in S. We denote the length of a string x by |x|. Logarithms will
always be taken with base 2.

Asymptotic conventions: When stating formal statements in theorems
and lemmas, we use the Ω and O signs only to denote absolute constants,
i.e., not depending on any parameters even if these parameters are considered
constants.

Notation for probability distributions: Let Ω be some finite set and
let P be a distribution on Ω. (All the probability distributions considered in
this chapter are on finite sets). For B ⊆ Ω, we denote the probability of B
according to P by PrP [B] or Pr[P ⊆ B]; When B ∈ Ω, we will also use the
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notation Pr(P = B). Given a function A : Ω → U , we denote by A(P ) the
distribution induced on U when sampling t by P and calculating A(t). We
denote by UΩ the uniform distribution on Ω. For an integer n, we denote
by Un the uniform distribution on {0, 1}n. For a distribution P on Ωd and
j ∈ [d], we denote by Pj the restriction of P to the jth coordinate. We denote
by Supp(P ) the support of P . A distribution P is flat if it assigns the same
probability to all the elements in Supp(P ).

The statistical distance between two distributions P and Q on Ω, is
defined as

max
S⊆Ω
|PrP [S]− PrQ[S]| = 1

2

∑

w∈Ω

|PrP [w]− PrQ[w]| .

We say that P is ε-close to Q if the statistical distance between P and Q is
at most ε.

Definition 5.9 (conditional distributions). Let P be a distribution on Ω.
Let C ⊆ Ω be an event such that PrP (C) > 0. We define the distribution
(P |C) by

Pr(P |C)[B] =
PrP [B ∩ C]

PrP [C]
for any B ⊆ Ω. Given a function A : Ω → U , we denote by (A(P )|C) the
distribution A((P |C)).

We need the notion of a convex combination of distributions.

Definition 5.10 (convex combination of distributions). Given distributions
P1, . . . , Pt on a set Ω and coefficients μ1, . . . , μt ≥ 0 such that

∑t
i=1 μi = 1,

we define the distribution P �
∑t

i=1 μi · Pi by

PrP [B] =
t∑

i=1

μi · PrPi
[B]

for any B ⊆ Ω.

Min-entropy. Recall that the min-entropy of a distribution X on Ω is
defined as

H∞ (X) � min
x∈Ω

log2

1
Pr[X = x]

.

For a class of distributions C on Ω, we denote by Ck the set of distributions
in C that have min-entropy at least k. We need the following standard fact:

Fact 5.2. Let k′ ≥ k and let X be a distribution with min-entropy at least
k′, then, X is a convex combination of flat distributions with min-entropy
exactly k.

We also need the following easy lemma.

Lemma 5.3. Let X be a distribution on Ω that is ε-close to a distribution
with min-entropy k. Let B =

{
x ∈ Ω : Pr[X = x] ≥ 2−(k−1)

}
then Pr[X ∈

B] ≤ 2ε.
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Subsources: We also use the following definition of a subsource.

Definition 5.11. Let X be a distribution on a set Ω. A distribution X ′ on Ω
is a subsource of X with measure δ if X = δ ·X ′ +(1−δ) ·X ′′ for some δ > 0
and distribution X ′′. If X ′ is a subsource of X with measure δ ≥ 2−v > 0,
we say that X ′ is a subsource of X with deficiency v.

We note that this definition is more general than the one considered in
[4, 5]. We use it as it is more convenient to do so in this chapter.3

We also need the following easy lemma:

Lemma 5.4. Let X be a distribution on Ω such that H∞ (X) ≥ k and let X ′

be a subsource of X with deficiency v; then, H∞ (X ′) ≥ k − v.

Proof. We know that X = δ ·X ′ + (1− δ) ·X ′′ for some δ ≥ 2−v > 0. Thus,
for any x ∈ Supp(X ′)

2−k ≥ Pr[X = x] ≥ 2−v · Pr[X ′ = x]⇒ Pr[X ′ = x] ≥ 2−(k−v).

Thus, H∞ (X ′) ≥ k − v.

Extractors, dispersers and related objects:

Definition 5.12 (extractors and dispersers). Let C be a class of distributions
on Ω.

• A function E : Ω �→ {0, 1}m is an extractor for C with entropy thresh-
old k and error ε > 0 if for every X ∈ Ck, E(X) is ε-close to Um.

• A function D : Ω �→ {0, 1}m is a disperser for C with entropy threshold
k and error ε > 0 if for every X ∈ Ck, |Supp(D(X))| ≥ (1− ε)2m.

• A disperser D for C with entropy threshold k is a zero-error disperser
with entropy threshold k if it has error ε = 0.

• A function D : Ω �→ {0, 1}m is a μ-strongly hitting disperser for C with
entropy threshold k if for every X ∈ Ck and for every z ∈ {0, 1}m,
Pr[D(X) = z] ≥ μ.

Note that a zero-error disperser is always a μ-strongly hitting disperser
for some μ > 0.

We note that all the objects above allow the source X to be a convex
combination of distributions in C:
Fact 5.5. Let C be a class of distributions on Ω. Let X be a distribution on
Ω that is a convex combination of distributions from Ck. Let f be an extrac-
tor/disperser/strongly hitting disperser with entropy threshold k. Applying f
on X gives the same output guarantee as applying f on distributions in Ck.

3The definition in [4, 5] has the additional requirement that there exists a function
f : Ω 
→ {0, 1} such that X′ = (X|f(X) = 1).
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Seeded extractors, dispersers and condensers: We need the notion of
seeded extractors. We use the following terminology.

Definition 5.13 (seeded objects).

• A function E : {0, 1}n×{0, 1}t �→ {0, 1}m is a strong seeded extractor
with entropy threshold k and error ε if for every distribution X on
{0, 1}n with H∞ (X) ≥ k, a (1 − ε) fraction of y ∈ {0, 1}t has that
E(X, y) is ε-close to uniform.

• A function D : {0, 1}n × {0, 1}t �→ {0, 1}m is a seeded disperser with
entropy threshold k and error ε if for every distribution X on {0, 1}n
with H∞ (X) ≥ k,
| {D(x, y) : x ∈ Supp(X), y ∈ {0, 1}t} | ≥ (1− ε)2m.

• A function C : {0, 1}n × {0, 1}t �→ {0, 1}m is a strong seeded con-
denser with entropy threshold k, entropy guarantee k′ and error ε if
for every distribution X on {0, 1}n with H∞ (X) ≥ k, a (1 − ε) frac-
tion of y ∈ {0, 1}t has that C(X, y) is ε-close to some distribution with
min-entropy k′.

5.3 A Composition Theorem

In this section we present a general method for increasing the output length
of zero-error dispersers. This is achieved by composing a zero-error disperser
with a type of seeded function we call a subsource hitter. Our composition
applies to both zero-error dispersers and strongly hitting dispersers. We start
with the case of zero-error dispersers.

5.3.1 Zero-Error Dispersers

The key component in our composition theorem is the following new ob-
ject, which we call a “subsource hitter”. In the next definition we rephrase
Definition 5.4.

Definition 5.14 (subsource hitters). Let C be a class of distributions on Ω.
A function F : Ω×{0, 1}t �→ {0, 1}m is a subsource hitter for C with entropy
threshold k and subsource entropy k − v if for every X ∈ Ck and every
z ∈ {0, 1}m there exists a y ∈ {0, 1}t and a subsource X ′ of X such that
X ′ ∈ Ck−v and Pr[F (X ′, y) = z] = 1.

The following theorem shows that subsource hitters are tailored to in-
crease the output length of zero-error dispersers.

Theorem 5.15. Let C be a class of distributions on Ω.

• Let D′ : Ω �→ {0, 1}t be a zero-error disperser for C with entropy thresh-
old k − v.
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• Let F : Ω×{0, 1}t �→ {0, 1}m be a subsource hitter with entropy thresh-
old k and subsource entropy k − v.

Define D : Ω �→ {0, 1}m by D(x) � F (x,D′(x)). Then D is a zero-error
disperser for C with entropy threshold k.

Proof. Let X be a distribution in Ck and z ∈ {0, 1}m. By the guarantee
on F we have that there exists a y ∈ {0, 1}t and a subsource X ′ of X such
that Pr[F (X ′, y) = z] = 1 and X ′ ∈ Ck−v. Note that X ′ meets the entropy
threshold of D′ and therefore there exists x ∈ Supp(X ′) ⊆ Supp(X) such
that D′(x) = y. It follows that

D(x) = F (x,D′(x)) = F (x, y) = z.

5.3.2 Strongly Hitting Dispersers

In this section we generalize the composition argument so that it preserves the
strongly hitting property. We start by generalizing the notion of subsource
hitters:

Definition 5.16 (generalized subsource hitters). Let C be a class of distribu-
tions on Ω. A function F : Ω× {0, 1}t �→ {0, 1}m is a generalized subsource
hitter for C with entropy threshold k, subsource entropy k − v, measure α
and error ε if for every X ∈ Ck and z ∈ {0, 1}m at least a (1 − ε) fraction
of y ∈ {0, 1}t has the property that there exists a subsource X ′ of X of mea-
sure α such that X ′ is a convex combination of distributions in Ck−v and
Pr[F (X ′, y) = z] = 1.

The generalized version differs from the original version in two respects:

• We require that there are many seeds y that hit z rather than requiring
that there exists one seed y that hits z.

• We allow X ′ to be a convex combination of sources in Ck−v rather than
requiring that X ′ itself be in Ck−v. This allows X ′ to have a larger
measure in the original source X.

Note that any generalized subsource hitter is a subsource hitter with the
same entropy threshold and subsource entropy. (This is because we can re-
place the subsource X ′ with one of the components in the convex combination
and this component is a subsource of X that meets the requirements of Def-
inition 5.14). The following theorem is analogous to Theorem 5.15 for the
case of strongly hitting dispersers.

Theorem 5.17. Let C be a class of distributions on Ω.

• Let D′ : Ω �→ {0, 1}t be a μ-strongly hitting disperser for C with entropy
threshold k − v.
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• Let F : Ω×{0, 1}t �→ {0, 1}m be a subsource hitter with entropy thresh-
old k, subsource entropy k − v, measure α and error ε.

Define D : Ω �→ {0, 1}m by D(x) � F (x,D′(x)). Then D is a ((1− ε)2tαμ)-
strongly hitting disperser for C with entropy threshold k.

Before proving the theorem, let us discuss some of the parameters. Note
that any μ-strongly hitting disperser with output length m has μ ≤ 2−m. Let
us suppose that D′, which has output length t, comes close to this bound (say
that D′ is μ-strongly hitting for μ = 2−t−O(1)). If F is also close to optimal
in the sense that it has measure close to 2−m (say α = 2−m−O(1)), then the
“new disperser” D is ν-strongly hitting for ν = ((1 − ε)2tαμ) = 2−m−O(1).
This means that when composing a “near optimal” strongly hitting disperser
using a “near-optimal” generalized subsource hitter we indeed obtain a “near-
optimal” strongly hitting disperser with large output length. We now give
the proof of the theorem.

Proof. (of Theorem 5.17) We prove the second item. Let X be a distribution
in Ck and z ∈ {0, 1}m. By the guarantee on F we have that there exists a
set G ⊆ {0, 1}t of size (1 − ε)2t such that for every y ∈ {0, 1}t there exists
a subsource X ′

y of X with measure α such that Pr[F (X ′
y, y) = z] = 1 and

X ′
y is a convex combination of distributions from Ck−v. For every y ∈ G

we consider applying D′ on X ′
y (note that X ′

y is a convex combination of
distributions in Ck−v which meet the entropy threshold of D′). By Fact 5.5
we have that Pr[D′(X ′

y) = y] ≥ μ. Let

Ey = {x : D′(x) = y ∧ F (x, y) = z} .

We can rephrase the former statement and conclude that for every y ∈ G,
Pr[X ′

y ∈ Ey] ≥ μ.
Note that for x ∈ Ey we have that D(x) = z. Summing up, we have that:

Pr[D(X) = z] ≥
∑

y∈G Pr[D(X) = z|X ∈ Ey] · Pr[X ∈ Ey]

=
∑

y∈G Pr[X ∈ Ey]

≥
∑

y∈G α · Pr[X ′
y ∈ Ey]

≥
∑

y∈G α · μ

≥ (1− ε) · 2t · α · μ.
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5.4 Zero-Error Dispersers for Multiple
Independent Sources

In this section we apply our composition techniques for the class of “multiple
independent sources”.

5.4.1 Formal Definition of Multiple Independent Sources

We now give a formal definition of the class of “multiple independent sources”.
We stress that the terminology used here is slightly different than that used in
the introduction (which uses the “standard” terminology in the area). This
new terminology is chosen to allow such sources to be handled by theorems
that apply to general classes C (e.g., the composition theorems in Section
5.3).

We consider sources that are composed of � independent high min-entropy
distributions. We use the following notation.

Definition 5.18 (�-sources). A distribution X = (X1, . . . , X�) on Ω =
({0, 1}n)� is an �-source if the � distributions X1, . . . , X� are independent.
An �-source X is a balanced �-source if

H∞ (X1) = H∞ (X2) = . . . = H∞ (X�).

We say that an �-source X has block entropy at least k if for every 1 ≤ i ≤ �,
H∞ (Xi) ≥ k. We say that an �-source X has block entropy exactly k if for
every 1 ≤ i ≤ �, H∞ (Xi) = k.

Note that a balanced �-source X has min-entropy k · � if and only if X
has block entropy exactly k. The following lemma is an immediate corollary
of Fact 5.2

Lemma 5.6. Every �-source X with block entropy at least k is a convex
combination of �-sources with block entropy exactly k.

By Fact 5.5 we can restrict our attention to designing dispersers for
�-sources with block entropy exactly k (or equivalently to balanced �-sources
with min-entropy � · k), and these dispersers can also be applied on �-sources
with block entropy at least k.

5.4.2 A Subsource Hitter for 2-Sources

In this section we construct a subsource hitter for balanced 2-sources. We
make use of the “Hadamard extractor” constructed by [70, 14] (see also [19]).

Theorem 5.19. There exists a constant c0 > 0 such that for sufficently large
p there is a poly(p)-time computable extractor H : ({0, 1}p)2 �→ {0, 1}m for
balanced 2-sources with entropy threshold 2·0.8p and error 2−2m for m = c0p.
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Our construction of subsource hitters also uses a strong seeded condenser
(see Definition 5.13). For different settings of parameters we use different
choices of off-the-shelf condensers. We elaborate on these choices later. We
now present our construction.

Theorem 5.20. Let n, k, p be integers such that n ≥ k ≥ p ≥ 100. Let c0 be
the constant from Theorem 5.19 and let m = c0p.

• Let C : {0, 1}n × {0, 1}t → {0, 1}p be a strong condenser for gen-
eral sources with entropy threshold k, entropy guarantee 0.9p and error
1/100.

• Let H : ({0, 1}p)2 → {0, 1}m be the 2-source extractor from Theorem
5.19. (This extractor has entropy threshold 2 · 0.8p and error 2−2m).

Define the function F : ({0, 1}n)2×{0, 1}t → {0, 1}m by F (x, y) = H(C(x1, y),
C(x2, y)); then,

• F is a subsource hitter for balanced 2-sources with entropy threshold
2 · k and subsource entropy 2 · (k − 3p).

• F is a generalized subsource hitter for balanced 2-sources with entropy
threshold 2 ·k, subsource entropy 2 ·(k−3p), measure 2−(m+1) and error
1/10.

Proof. Let X be a balanced 2-source on ({0, 1}n)2 with min-entropy at least
2k. Note that this means that X1,X2 are independent distributions with min-
entropy k. We have that C is a strong condenser with this entropy threshold
and therefore for any distribution V with min-entropy k a (1−1/100) fraction
of y ∈ {0, 1}t is good in the sense that C(V, y) is (1/100)-close to having
min-entropy 0.9p. By a union bound it follows that a 1 − 2/100 fraction of
y ∈ {0, 1}t satisfies this property for both X1,X2 simultaneously, namely
that: both C(X1, y) and C(X2, y) are (1/100)-close to having min-entropy
0.9p. We call such y ∈ {0, 1}t “good seeds”. Fix some good seed y and let
R1 = C(X1, y) and R2 = C(X2, y). We define

B′
1 =

{
r ∈ {0, 1}p : Pr[R1 = r] < 2−(p+10)

}
.

Note that

Pr[R1 ∈ B′
1] ≤

∑

r∈B′
1

Pr[R1 = r] ≤ 2p · 2−(p+10) ≤ 2−10.

We define
B′′

1 =
{

r ∈ {0, 1}p : Pr[R1 = r] > 2−(0.9p−1)
}

.

By Lemma 5.3 we have that Pr[R1 ∈ B′′
1 ] ≤ 2/100. Let B1 = B′

1 ∪ B′′
1 and

note that Pr[R1 ∈ B1] ≤ 2/100 + 2−10 ≤ 1/10.
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We can repeat the same argument for R2 and define subsets B2, B
′
2, B

′′
2

in an analogous way and conclude that Pr[R2 ∈ B2] ≤ 1/10. Let us consider
the events E1 = {R1 �∈ B1}, E2 = {R2 �∈ B2} and E = E1 ∩ E2 (note that
we think about these events as events over the original distribution X). Let
V = (X|E). Note that V1 ∼ (X1|E1) and V2 ∼ (X2|E2) and that the two
distributions V1, V2 are independent. Let us estimate the min-entropy of the
distribution C(V1, y): For any r in the support of C(V1, y) we have that

Pr[C(V1, y) = r] = Pr[C(X1, y) = r|E1] = Pr[R1 = r|E1]

≤ Pr[R1 = r]
Pr[E1]

≤ 2−(0.9p−1)

9/10
≤ 2−(0.9p−2).

Thus, we conclude that C(V1, y) has min-entropy at least 0.9p − 2 ≥ 0.8p.
We can use the same argument for C(V2, y). We have that the two distri-
butions C(V1, y), C(V2, y) are independent and meet the entropy threshold
of the extractor H. We conclude that H(C(V1, y), C(V2, y)) is 2−2m-close to
uniform. Fix some string z ∈ {0, 1}m. It follows that

Pr[H(C(V1, y), C(V2, y)) = z] ≥ 2−m − 2−2m.

It follows that

Pr[E ∧H(R1, R2) = z] = Pr[E] · Pr[H(R1, R2) = z|E]

= Pr[E1] · Pr[E2] · Pr[H(C(V1, y), C(V2, y)) = z]

≥ (9/10)2 · (2−m − 2−2m)

≥ 2−(m+1).

We say that a pair (r1, r2) ∈ ({0, 1}p)2 is useful (with respect to a good
seed y ∈ {0, 1}t and a z ∈ {0, 1}m) if r1 �∈ B1, r2 �∈ B2 and H(r1, r2) = z.
Summing up what we did so far we have that a (1 − 2/100) fraction of y ∈
{0, 1}t are good seeds, and for any such good seed y ∈ {0, 1}t and z ∈ {0, 1}m
we have that with probability 2−(m+1) the pair (C(X1, y), C(X2, y)) is useful.
For any useful pair (r1, r2) we define a subsource X(r1,r2) of X by

X(r1,r2) = (X|C(X1, y) = r1 ∧ C(X2, y) = r2).

We claim that:

Claim 5.0.2. For every (r1, r2) ∈ ({0, 1}p)2 useful with respect to a good
seed y and z ∈ {0, 1}m we have that

• Pr[F (X(r1,r2), y) = z] = 1.

• X(r1,r2) is a convex combination of balanced 2-sources with min-entropy
exactly 2 · (k − 3p).
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Proof. (of Claim 5.0.2) The first item follows because for every x ∈
Supp(X(r1,r2)) we have that

F (x, y) = H(C(x1, y), C(x2, y)) = H(r1, r2) = z.

For the second item, note that the two distributions X
(r1,r2)
1 and X

(r1,r2)
2 are

independent. Furthermore:

Pr[C(X1, y)=r1∧C(X2, y)=r2]=Pr[C(X1, y) = r1]·Pr[C(X2, y)=r2]≥(2−(p+10))2≥2−3p

It follows that X(r1,r2) is a deficiency 3p subsource of X. By Lemma 5.4
we have that H∞

(
X(r1,r2)

)
≥ 2k − 3p. It follows that X(r1,r2) has block en-

tropy at least k−3p and by Lemma 5.6 it is a convex combination of balanced
2-sources with block entropy exactly k − 3p (or equivalently balanced
2-sources with min-entropy 2 · (k − 3p)).

We are now ready to prove Theorem 5.20.
Let us first prove the first item, which says that F is a subsource hitter.

Fix some good seed y ∈ {0, 1}t and z ∈ {0, 1}m. Let (r1, r2) be a useful pair
with respect to y and z. By the first item of Claim 5.0.2 we have that X(r1,r2)

is a convex combination of balanced 2-source with min-entropy exactly 2·(k−
3p). Let X ′ be one of the components in this convex combination that appears
with a positive coefficient. We have that X ′ is a subsource of X(r1,r2) which
is in turn a subsource of X. Furthermore, by the second item of Claim 5.0.2
and as Supp(X ′) ⊆ Supp(X(r1,r2)) we have that Pr[F (X ′, y) = z] = 1.

We now prove the second item, that is, that F is a generalized subsource
hitter. We have that a (1− 1/10) fraction of y ∈ {0, 1}t are good seeds. Fix
some good seed y and z ∈ {0, 1}m. We define

X ′ = (X|(C(X1, y), C(X2, y)) are a useful pair).

We have already seen before that that X ′ has measure 2−(m+1) as a subsource
of X. Furthermore, X ′ is a convex combination of the sources X(r1,r2) for
useful pairs (r1, r2). By Claim 5.0.2 each one of the latter sources is a convex
combination of balanced 2-sources with min-entropy 2·(k−3p). Thus, overall
X ′ is a convex combination of balanced 2-sources with min-entropy 2 · (k −
3p). For every x ∈ Supp(X ′) there exists a useful pair (r1, r2) such that
x ∈ Supp(Xr1,r2), and we already showed that for such x we have that
F (x, y) = z.

5.4.3 Zero-Error Dispersers for 2-Sources

We now plug in specific choices of strong seeded condensers to obtain specific
results.
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High entropy threshold

Our first choice is a condenser by Raz [53]. This condenser has the advantage
that it has a constant-length seed. However, it only works when the entropy
threshold is a constant fraction of the length.

Theorem 5.21. [53] For every δ > 0 there is a β > 0 and integer t such
that for sufficiently large n there is a poly(n)-time computable strong seeded
condenser C : {0, 1}n × {0, 1}t �→ {0, 1}p with p = βn entropy threshold δn,
entropy guarantee 0.9p and error 1/100.

Plugging Theorem 5.21 into Theorem 5.20 we obtain the following Corollary.

Corollary 5.1. For every δ > 0 there is an η > 0 and an integer t such that
for sufficiently large n and m = ηn:

• There is a poly(n)-time computable generalized subsource hitter F :
({0, 1}n)2×{0, 1}t �→ {0, 1}m for balanced 2-sources with entropy thresh-
old 2 · δn, subsource entropy δn, measure 2−(m+1) and error 1/10.

• Any poly(n)-time computable μ-strongly hitting disperser D′ : ({0, 1}n)2

�→ {0, 1}t for balanced 2-sources with entropy threshold δn can be trans-
formed into a poly(n)-time computable (μ2t−m−2)-strongly hitting dis-
perser D : ({0, 1}n)2 �→ {0, 1}m for balanced 2-sources with entropy
threshold 2δn.

We can apply the second item in the corollary above on the strongly hitting
disperser of Barak et al. [4].

Theorem 5.22 ([4]). For every δ > 0 and integer t there exists a μ > 0
such that for sufficiently large n there is a poly(n)-time computable μ-strongly
hitting disperser D : ({0, 1}n)2 �→ {0, 1}t with entropy threshold δn.

Applying the aforementioned transformation we get that:

Theorem 5.23. For every δ > 0 there exist a ν > 0 and an η > 0 such that
for sufficiently large n there is a poly(n)-time computable (ν2−m)-strongly
hitting disperser D : ({0, 1}n)2 �→ {0, 1}m with entropy threshold δn and
m = ηn.

Arbitrary entropy threshold

In order to handle lower entropy thresholds we use a strong seeded extractor
(which is in particular a strong seeded condenser).

Theorem 5.24 ([42, 34]). There exists a number c such that for every suf-
ficiently large k, n there is a poly(n)-time computable strong seeded extractor
E : {0, 1}n × {0, 1}c log n �→ {0, 1}m for entropy threshold k, error 1/100 and
m = k/2.



5.4 Zero-Error Dispersers for Multiple Independent Sources 113

Plugging Theorem 5.24 into Theorem 5.20 we obtain the following corollary.

Corollary 5.2. There exist η > 0 and c such that for every sufficiently large
k, n and m = ηk:

• There is a poly(n)-time computable generalized subsource hitter F :
({0, 1}n)2×{0, 1}t=c log n �→ {0, 1}m for balanced 2-sources with entropy
threshold 2 · k, subsource entropy k, measure 2−(m+1) and error 1/10.

• Any poly(n)-time computable μ-strongly hitting disperser D′ : ({0, 1}n)2

�→ {0, 1}c log n for balanced 2-sources with entropy threshold k can be
transformed into a poly(n)-time computable (μ2t−m−2)-strongly hitting
disperser D : ({0, 1}n)2 �→ {0, 1}m for balanced 2-sources with entropy
threshold 2 · k.

Barak et al. [5] construct zero-error dispersers for entropy threshold k =
no(1). One can hope to apply Corollary 5.2 to increase the output length
of these dispersers. However, the construction of [5] only achieves output
length m = 1. We note that by Corollary 5.2 improving the output length to
m = c log n will immediately give further improvement to m = Ω(k).

5.4.4 Zero-Error Dispersers for O(1)-Sources

In the previous section we constructed zero-error dispersers for balanced
2-sources with entropy threshold k = δn for any constant δ > 0. We now
give constructions that have the disadvantage that they require � > 2 sources
for � = O(1). However, they achieve lower entropy thresholds.

We use an �-source extractor constructed by Rao [50]. The version we
use here has better analysis that provides low error and is due to Barak
et al. [5].

Theorem 5.25 ([50, 5]). There is a γ > 0 such that for every sufficiently
large k ≤ n there are integers � = O( log n

log k ), m = kγ and a poly(n)-time
computable extractor E : ({0, 1}n)� �→ {0, 1}m for balanced �-sources with
entropy threshold � · k and error ε < 2−m+1.

Note that by Fact 5.1 such an extractor is in particular a μ-strongly hitting
disperser for μ = 2−(m+1). We now show how to improve the output length
to m = Ω(k) while preserving this property.

Theorem 5.26. There are numbers c′, η > 0 such that for every sufficiently
large k, n such that k ≥ (log n)c′ there are integers � = O( log n

log k ), m = ηk and a
poly(n)-time computable 2−(m+3)-strongly hitting disperser D : ({0, 1}n)� �→
{0, 1}m for balanced �-sources with entropy threshold � · k.

Proof. By Corollary 5.2 there exist η > 0 and c such that for sufficiently large
k ≤ n and m = ηk there is a poly(n)-time computable generalized subsource
hitter F : ({0, 1}n)2 × {0, 1}c log n �→ {0, 1}m for balanced 2-sources with
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entropy threshold 2 · k, subsource entropy k, measure 2−(m+1) and error
1/10. Let t = c log n.

Let E be the extractor from Theorem 5.25 (for the same k, n) and let
γ, �,m be the parameters associated with it. The extractor E has output
length kγ ; by choosing c′ to be a sufficiently large constant as a function of
the constants c, γ we have that k ≥ (log n)c′ and so kγ ≥ c log n. We can thus
chop the output of E to length t = c log n. Note that E is a 2−(t+1)-strongly
hitting disperser. Let �′ = � + 2. We construct a zero-error disperser D for
balanced �′-sources with entropy threshold �′ · k by

D(x1, . . . , x�′) = F (x�+1, x�+2, E(x1, . . . , x�)).

Indeed, let X = (X1, . . . , X�′) be a balanced �′-source with min-entropy at
least �′·k. We consider the balanced 2-source (X�+1,X�+2). By the properties
of F we have that for every z ∈ {0, 1}m a 9/10 fraction of y ∈ {0, 1}t (which
we call good seeds) has

Pr[F (X�+1,X�+2, y) = z] ≥ 2−(m+1). (5.1)

(Note that here we’re not even using the property that F hits z on a well-
structured subsource. We’re only using the fact that F hits z with positive
probability.) We also consider the balanced �-source (X1, . . . , X�). As E is a
2−(t+1)-strongly hitting disperser we have that for every y ∈ {0, 1}t

Pr[E(X1, . . . , X�) = y] > 2−(t+1). (5.2)

For every good seed y ∈ {0, 1}t we have that if the two events in (5.1)
and (5.2) are independent, and therefore the probability that they occur
simultaneously is at least 2−(t+1) · 2−(m+1). Whenever this happens we have
that D(X1, . . . , X�′) = z. Summing up over the 9

10 · 2t good seeds y we have
that

Pr[D(X1, . . . , X�′) = z] ≥ 9
10
· 2t · 2−(t+1) · 2−(m+1) ≥ 2−(m+3).

5.4.5 Rainbows and Implicit O(1) Probe Search

In this section we discuss an application of zero-error dispersers to the prob-
lem of implicit probe search. Loosely speaking, this is the problem of searching
for an element in a table with few probes, when no additional information
other than the elements themselves is stored.

Definition 5.27 (implicit probe search scheme). For integer parameters
n, k, q, the implicit probe search problem is as follows: Store a subset S ⊆
{0, 1}n of size 2k in a table T of size 2k (where every table entry holds only
a single element of S) such that given x ∈ {0, 1}n we can determine whether
x ∈ S using q queries on T . A solution to this problem is called an implicit
q-probe scheme with table size 2k and domain size 2n.
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Fiat and Naor [24] investigated implicit O(1)-probe schemes, i.e., schemes
where the number of queries is a constant not depending on n and k. They
showed that this problem is unsolvable when n is large enough relative to k
(this improves a previous bound by Yao [75]). They also gave an efficient
implicit O(1)-probe scheme whenever k = δ · n for any constant δ > 0. They
did this by reducing the problem to the task of constructing a combinatorial
object called a rainbow.

Definition 5.28. [24]

• A t-sequence over a set U is a sequence of length t, without repetitions,
of elements in U .

• An (n, k, t)-rainbow is a coloring of all t-sequences over {0, 1}n with 2k

colors such that for any S ⊆ {0, 1}n of size 2k, the t-sequences over S
are colored in all colors.

Fiat and Naor showed that rainbows imply implicit probe schemes.

Theorem 5.29. [24] Fix any integers n, k with log n ≤ k ≤ n. Given
a poly(n)-time computable (n, k, t)-rainbow we can construct a poly(n)-time
computable implicit O(t)-probe scheme with table size 2k and domain size 2n.
In particular, when t is constant we get an implicit O(1)-probe scheme.

The following theorem shows that we can construct rainbows from zero-
error dispersers for multiple independent sources.

Theorem 5.30.4 Let 0 < η < 1 be any constant, and let n, k and t be
integers with log n ≤ k ≤ n. Let G : {0, 1}t·n �→ {0, 1}m be a 2 · t2/2k-
strongly hitting disperser for balanced t-sources with entropy threshold t · k,
where m = η · k. Let l = �1/η�, and define Ḡ : ({0, 1}t·n)l by

Ḡ(X1, . . . , Xl) � G(X1) ◦ . . . ◦G(Xl).

Then Ḡ is an (n, k, t · l)-rainbow.

Proof. Fix a subset S ⊆ {0, 1}n with |S| = 2k. Let X be the uniform
distribution on S ⊆ {0, 1}n. Thus X has min-entropy k. Let X∗t denote the
distribution made of t independent copies of X. X∗t is a t-source with block
entropy exactly k. Therefore for any z ∈ {0, 1}m,

Pr[G(X∗t) = z] ≥ 2 · t2/2k.

On the other hand, the probability that X∗t outputs a string (x1, . . . , xt), xi ∈
{0, 1}n with xi = xj for some 1 ≤ i �= j ≤ t is at most t2/2k < 2 · t2/2k.
Therefore there must be (x1, . . . , xt) ∈ Supp(X∗t) ‘without repetitions’, i.e.,

4An error in the proof of this Theorem was recently discovered. See the paper
‘Increasing the Output Length of Zero-Error Dispersers’ on the author’s website
https://sites.google.com/site/arielgabizon1/ for a corrected version.
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xi �= xj for all i �= j, such that G(x1, . . . , xt) = z. Note that this exactly
means there is a t-sequence of elements of S that G ‘colors’ z. Concatenating
l copies of G we get an output of length �1/η� · ηk ≥ k which gives us 2k

colors (of course we can truncate the output if it is larger than k). This shows
that Ḡ is an (n, k, t · l)-rainbow.

Plugging in our strongly hitting disperser for multiple independent sources
we get the following implicit probe scheme.

Corollary 5.3. Fix any constant 0 < δ < 1. For every sufficiently large n
and k = nδ there is a poly(n)-time computable implicit O(1/δ)-probe scheme
with table size 2k and domain size 2n.

Proof. Fix k and n with k = nδ for some constant δ > 0. Using Theorem
5.26, we get a 2−m+3-strongly hitting disperser D : ({0, 1}n)� �→ {0, 1}m for
balanced �-sources with entropy threshold k · � where � = O( log n

log k ) = O(1/δ)
and m = η · k for some constant 0 < η < 1 (not depending on δ). Applying
Theorem 5.30 we get an (n, k,O(1/δ))-rainbow, and therefore, by Theorem
5.29, an implicit O(1/δ)-probe scheme with table size 2k and domain size
2n.

5.5 Zero-Error Dispersers for Bit-Fixing
Sources

In this section we construct dispersers for the family of bit-fixing sources
introduced by Chor et al. [15]. A distribution X over {0, 1}n is a bit-fixing
source if there is a subset S ⊆ [n] of “good indices” such that the bits Xi for
i ∈ S are independent fair coins and the rest of the bits are fixed.

Definition 5.31 (bit-fixing sources). A distribution X over {0, 1}n is an
(n, k)-bit-fixing source if there exists a subset S = {i1, . . . , ik} ⊆ [n] such that
Xi1 ,Xi2 , . . . , Xik

is uniformly distributed over {0, 1}k and for every i �∈ S,
Xi is constant. The class of bit-fixing sources over {0, 1}n is the class of all
(n, k)-bit-fixing sources for some 1 ≤ k ≤ n.

Our construction of zero-error dispersers for bit-fixing sources works by
reducing to the case of independent sources. More specifically, we show that
a subsource hitter for independent sources implies a subsource hitter for bit-
fixing sources. This is done by sampling two blocks from the source such
that each block contains a linear fraction of the entropy, and so does the
remaining part of the source.

We will do this using the following partitioning lemma based on pairwise
independence.

Lemma 5.7. For any integers k and n with 64 < k ≤ n, there is a poly(n)-
time computable function P : {0, 1}2 log n �→ (P([n]))4 returning a partition
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of [n] into four disjoint sets P (y)1 ∪ P (y)2 ∪ P (y)3 ∪ P (y)4 = [n] such that
for any (n, k)-bit-fixing source X, there exists a y ∈ {0, 1}2 log n such that
for every i ∈ [4], XP (y)i

is an (n′, k′)-bit-fixing source for some n′ ≤ n and
k′ ≥ k/8.

Proof. We use y as a random seed to generate pairwise independent variables
Z1, . . . , Zn ∈ [4] (there are constructions which use 2 log n bits to generate
such variables [13]). For i = 1, . . . , 4 define the subset P (y)i ⊆ [n] by P (y)i �
{j : Zj = i}. Assume without loss of generality that the ‘good indices’ of
X are {1, . . . , k}. Fix any i ∈ [4]. For j ∈ [n] define the random variable
Xj by Xj = 1 if Zj = i, and 0 otherwise. Then, for j ∈ [n], E(Xj) = 1/4
and V ar(Xj) ≤ 1/4. Furthermore, for j �= l Xj and Xl are independent
and cov(Xj ,Xl) = 0. Define Y =

∑k
j=1 Xj . We have E(Y ) = k/4 and

V ar(Y ) =
∑k

j=1 V ar(Xj) ≤ k/4. Therefore, by Chebychev’s inequality

Pr[|Y − k/4| ≥ k/8] ≤ k/4 · (8/k)2 ≤ 16/k.

Note that Y is exactly the number of good indices in P (Y )i. Thus, using
the union bound, with probability 1 − 64/k over y, for every i ∈ [4], P (Y )i

contains at least k/8 good indices of X. In particular, when k > 64 there
exists a y such that for every i ∈ [4], XP (y)i

is an (n′, k′)-bit-fixing source for
some n′ ≤ n and k′ ≥ k/8.

Using the above lemma, we show how to construct a subsource hitter for
bit-fixing sources from a subsource hitter for 2-sources.

Lemma 5.8. Fix any integers k and n with 64 < k ≤ n.

• Let G : ({0, 1}n × {0, 1}n)× {0, 1}t �→ {0, 1}m be a subsource hitter for
balanced 2-sources with entropy threshold 2·k/8 and subsource entropy l.

• Let P : {0, 1}2 log n �→ (P([n]))4 be the partitioning function from Lemma
5.7.

Define the function F : {0, 1}n × {0, 1}2 log n+t �→ {0, 1}m by

F (x, (y, y′)) � G((xP (y)1 , xP (y)2), y
′)

(we pad xP (y)1 and xP (y)2 with zeros to make them n-bit strings). Then F is
a subsource hitter for bit-fixing sources with entropy threshold k and subsource
entropy k/4.

Proof. Let X be an (n, k)-bit-fixing source. Using Lemma 5.7, we can fix a
y ∈ {0, 1}2 log n such that for every i ∈ [4], Xi � XP (y)i

is an (n′, k′)-bit-fixing
source for some n′ ≤ n and k′ ≥ k/8. Note that (X1,X2) is a 2-source with
block entropy at least k/8. Fix any z ∈ {0, 1}m, and fix y′ ∈ {0, 1}t such that
there is a subsource (X ′

1,X
′
2) of (X1,X2) with min-entropy at least l such

that Pr[G((X ′
1,X

′
2), y

′) = z] = 1. (Such a subsource exists, as by Lemma
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5.6, (X1,X2) has a subsource (X∗
1 ,X∗

2 ), which is a balanced 2-source with
entropy threshold 2 · k/8. (X∗

1 ,X∗
2 ) contains such a subsource (X ′

1,X
′
2) by

the guarantee of G and (X ′
1,X

′
2) is also a subsource of (X1,X2)). Fix an

arbitrary x′ ∈ Supp(X ′
1,X

′
2) and let X ′ � (X|(X1,X2) = x′). Note that X ′

is an (n, k′)-bit-fixing source for some k′ ≥ k/4 as P (y)3 ∪ P (y)4 contains at
least k/4 good indices. For any x ∈ X ′, we have

F (x, (y, y′)) = G(x′, y′) = z

and thus Pr[F (X ′, (y, y′)) = z] = 1. As X ′ is a subsource of X with min-
entropy at least k/4 this proves that F is a subsource hitter for bit-fixing
sources with entropy threshold k and subsource entropy k/4.

Plugging in the subsource hitter for 2-sources from Corollary 5.2 we get
the following.

Corollary 5.4. There exist constants c > 0 and 0 < η < 1 such that for
every sufficiently large k ≤ n there is a poly(n)-time computable subsource
hitter F : {0, 1}n × {0, 1}c log n �→ {0, 1}m for bit-fixing sources with entropy
threshold k and subsource entropy k/4, where m = η · k.

We will use as a component the following result of Rao [52].

Theorem 5.32. There exist constants c > 0 and 0 < d < 1 such that for
every k ≤ n with k ≥ logcn, there is a poly(n)-time computable zero-error
disperser D : {0, 1}n �→ {0, 1}t for bit-fixing sources with entropy threshold
k, where t = kd.

Remark 5.1. Actually, the result above of [52] applies to ‘low-weight affine
sources’, which are much more general than bit-fixing sources.

We can now prove our main result for bit-fixing sources.

Theorem 5.33. There exist constants c > 0 and 0 < η < 1 such that
for every sufficiently large k ≤ n with k ≥ logc n there is a poly(n)-time
computable zero-error disperser D : {0, 1}n �→ {0, 1}m for bit-fixing sources
with entropy threshold k, where m = η · k.

Proof. Using Theorem 5.32 and Corollary 5.4 we can choose a large enough
constant c′ such that for some constants 0 < d, η < 1, for any k ≥ logc′ n, we
have the following explicit components:

• A zero-error disperser D′ : {0, 1}n �→ {0, 1}(k/4)d

for bit-fixing sources
with entropy threshold k/4.

• A subsource hitter F : {0, 1}n × {0, 1}c′ log n �→ {0, 1}η·k for bit-fixing
sources with entropy threshold k and subsource entropy k/4.
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To use Theorem 5.15, we need to make sure D′’s output is as long as F ’s
seed. Assuming k ≥ log2/d n we have

(k/4)d ≥ (log2/d n/4)d ≥ (log2 n)/4d ≥ c′ · log n

for large enough n. Thus, using Theorem 5.15, we get a zero-error disperser
D : {0, 1}n �→ {0, 1}η·k for bit-fixing sources with entropy threshold k. Taking
c = max{c′, 2/d} we are done.

5.6 Zero-Error Dispersers for Affine Sources

Denote by Fq the finite field with q elements. Denote by F
n
q the n-dimensional

vector space over Fq.
We formally define affine sources.

Definition 5.34 (affine source). A distribution X over F
n
q is an (n, k)q-affine

source if it is uniformly distributed over an affine subspace of dimension k.
That is, X is sampled by choosing t1, . . . , tk uniformly and independently in
Fq and calculating

k∑

j=1

tj · a(j) + b

for some a(1), . . . , a(k), b ∈ F
n
q such that a(1), . . . , a(k) are linearly indepen-

dent. The class of affine sources over F
n
q is the class of all (n, k)q-affine

sources for some 1 ≤ k ≤ n.

Note that an (n, k)q-affine source has min-entropy k · log q. We will use
affine source extractors (though we just use the fact that they are zero-error
dispersers when their error is small enough), which we now formally define.

Definition 5.35 (deterministic affine source extractor). A function D :
F

n
q → {0, 1}t is a deterministic (k, ε)-affine source extractor if for every

(n, k)q-affine source X the distribution D(X) is ε-close to uniform.

In our construction of a zero-error disperser for affine sources, we use two
components from [25]. The first is an extractor for (n, 1)q-affine sources with
error exponentially small in the output length. The second is a small set of
linear mappings Tu : F

n
q → F

k
q such that for any affine subspace A ⊆ F

n
q

of dimension k, one of (actually, most of) the mappings in the set maps A
onto F

k
q .

Remark 5.2. Our construction will turn out to be identical to the affine
source extractor construction of [25]. Thus we prove that the extractor of
[25], while having large error in relation to the output length, still outputs all
elements with positive probability.
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We will use the following instantiation of a lemma from [25].

Lemma 5.9 (Lemma 5.5 from [25] with δ = 4/5). For every sufficiently large
prime power q and integer n with q ≥ n9, there is a poly(n)-time computable
deterministic (1, ε)-affine source extractor D : F

n
q → {0, 1}t where ε ≤ q−1/5

and t = �(1/6) log q�.

Since the error in the above lemma is exponentially small in the output
length, D is a also a zero-error disperser.

Corollary 5.5. Fix any sufficiently large prime power q and any integer n
such that q ≥ n9. There is a poly(n)-time computable zero-error disperser
D : F

n
q �→ {0, 1}t for affine sources with entropy threshold log q, where t =

�(1/6) log q�.

Proof. D : F
n
q → {0, 1}t will simply be the function from Lemma 5.9. Fix

an (n, 1)q-affine source X and an element z ∈ {0, 1}t. From Lemma 5.9, we
know that

Pr[D(X) = z] ≥ 1
2t
− q−1/5 ≥ 1

2
· q−1/6 − q−1/5 > 0

(for large enough q).

Our subsource hitter will be based on the following construction of a set
of matrices from [25]. Given u ∈ Fq and an integer k, we define a k × n
matrix Tu,k by (Tu,k)j,i = uji (where ji is an integer product). That is,

Tu,k(x) =

(
n∑

i=1

xi · ui,

n∑

i=1

xi · u2i, . . . ,

n∑

i=1

xi · uki

)

for x ∈ F
n
q .

Lemma 5.10 (Lemma 6.1 in [25]). Fix any field Fq and integers n, k such
that q ≥ n · k2. Fix any affine subspace A ⊆ F

n
q of dimension at least k.

There are at most n · k2 elements u ∈ Fq such that Tu,k(A) � F
k
q .

Corollary 5.6. Fix any sufficiently large prime power q and any integers
n, k such that q ≥ n18 and 2 ≤ k < n. Let s = 2t where t = �(1/6) log q�.
Let U = {u1, . . . , us} be a set of distinct elements in Fq. We identify U with
{0, 1}t. The function F : F

n
q × {0, 1}t → F

k−1
q defined by

F (x, u) � Tu,k−1(x)

is a subsource hitter for affine sources with entropy threshold k · log q and
deficiency log q.
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Proof. X is uniformly distributed on an affine subspace A of dimension k,
i.e., Supp(X) = A. Since |U | = s ≥ q1/6 > n·(k−1)2, by Lemma 5.10 there is
u ∈ U such that Tu,k−1(A) = F

k−1
q . Fix such a u. Given any z ∈ F

k−1
q , define

X ′ = (X|F (X,u) = z). Supp(X ′) is not empty by our choice of u. Moreover,
since the conditioning F (X,u) = z simply adds k − 1 affine constraints on
Supp(X), Supp(X ′) is an affine subspace of dimension at least 1. Thus, X ′

is a subsource of X that is also an affine source with min-entropy at least
log q. Since Pr[F (X ′, u) = z) = 1], this proves the claim.

Theorem 5.36. Fix any sufficiently large prime power q and any inte-
gers n, k such that q ≥ n18 and 2 ≤ k < n. There is a poly(n, log q)-
time computable zero-error disperser for (n, k)q-affine sources D : F

n
q �→

{0, 1}(k−1)·log q.5

Proof. Use Theorem 5.15 with D from Corollary 5.5 as D′, and F from
Corollary 5.6.

5.7 Open Problems

2-sources. One of the most important open problems in this area is giving
constructions of extractors for entropy threshold k = o(n). Such construc-
tions are not known even for m = 1 and large error ε.

There are explicit constructions of zero-error dispersers with k = no(1) [5].
However, these dispersers only output one bit. A consequence of Corollary
5.2 is that improving the output length in these constructions to Θ(log n) bits
will allow our composition techniques to achieve output length m = Ω(k).

Another intriguing problem is that for the case of zero-error (or strongly
hitting) dispersers we do not know whether the existential results proven
via the probabilistic method achieve the best possible parameters. More
precisely, a straightforward application of the probabilistic method gives zero-
error 2-source dispersers which on entropy threshold 2 · k output m = k −
log(n−k)−O(1) bits. On the other hand the lower bounds of [48, 49] can be
used to show that any zero-error 2-source disperser with entropy threshold
2 · k has m ≤ k + O(1).6

5When we say that D is poly(n, log q)-time computable we mean that computing D
requires poly(n) field operations in Fq . Thus, assuming we have a representation of Fq in
which addition and multiplication can be done in poly(log q) time (which is true for all
standard representations), we get that D is poly(n, log q)-time computable.

6Radhakrishnan and Ta-Shma [49] show that any seeded disperser D : {0, 1}n ×
{0, 1}t → {0, 1}m that is nontrivial in the sense that m ≥ t +1 has t ≥ log(1/ε)−O(1). A
zero-error 2-source disperser D′ with entropy threshold k can be easily transformed into a
seeded disperser with seed length t = k by setting D(x, y) = D′(x, y′) where y′ is obtained
by padding the k-bit-long “seed” y with n − k zeroes. The bound follows as D′ has error
smaller than 2−m.
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O(1)-sources, rainbows and implicit probe search. When allowing
�-sources for � = O(1) we give constructions of zero-error dispersers which on
entropy threshold k = nΩ(1) achieve output length m = Ω(k). An interesting
open problem is to try to improve the entropy threshold. As explained in
Subsection 5.4.5, this immediately implies improved implicit probe search
schemes.

Bit-fixing sources. We give constructions of zero-error dispersers which
on entropy threshold k achieve m = Ω(k). A straightforward application of
the probabilistic method gives zero-error dispersers with m = k − log n −
o(log n). We do not know how to match these parameters with explicit con-
structions.

Affine sources. We constructed a subsource hitter for affine sources over
relatively large fields (that is, q = nΘ(1)). It is interesting to try and construct
subsource hitters for smaller fields.

Finally, it is also natural to ask whether our composition approach applies
to other classes of sources.



Appendix A

Sampling and Partitioning

In this appendix we give constructions of samplers and prove Lemmas 2.16,
2.17 and 2.18.

A.1 Sampling Using �-wise Independence

Bellare and Rompel [6] gave a sampler construction based on �-wise indepen-
dent variables. We use a twist on their method: Suppose we are aiming to
hit k/r bits when given a subset S of size k. We generate �-wise independent
variables Z1, . . . , Zn ∈ [r] and define T = {i|Zi = 1}. It follows that with
high probability S ∩ T is of size approximately k/r. This is stated formally
in the following lemma. (We explain the difference between this method and
that of [6] in Remark A.2.)

Lemma A.1. For every integers n, k, r, t such that r ≤ k ≤ n and 6 log n ≤
t ≤ k log n

20r there is an explicit (n, k, 1
2 ·

k
r , 3 · kr , 2−Ω(t/ log n))-sampler which uses

a seed of t random bits.

Before proving this lemma we show that Lemma 2.16 is a special case.

Proof. (of Lemma 2.16) We use Lemma A.1 with the parameters n, k and
r = 3k

n1/2+γ , t = α · n2γ . We need to check that 6 log n ≤ t ≤ k log n
20r . Clearly,

t ≥ 6 log n (for a large enough n depending on α and γ). On the other hand,

k log n

20r
=

n1/2+γ log n

60
≥ α · n2γ = t

(for a large enough n depending on α and γ). Thus, applying Lemma A.1,
we get an (n, k, k/2r, 3k/r, δ)-sampler Samp : {0, 1}t → P ([n]) where

δ = 2−Ω(t/ log n) = 2−Ω(α·n2γ/ log n) = 2−Ω(α·nγ)

(for a large enough n depending on α and γ).

A. Gabizon, Deterministic Extraction from Weak Random Sources,
Monographs in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-642-14903-0, c© Springer-Verlag Berlin Heidelberg 2011
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We need the following tail inequality for �-wise independent variables due to
Bellare and Rompel [6].

Theorem A.1 ([6]). Let � ≥ 6 be an even integer. Suppose that X1, . . . , Xn

are �-wise independent random variables taking values in [0, 1]. Let X =∑
1≤i≤n Xi and μ = E(X), and let A > 0. Then

Pr[|X − μ| ≥ A] ≤ 8
(

�μ + �2

A2

)�/2

.

We now prove Lemma A.1.

Proof. (of Lemma A.1) Let � be the largest even integer such that � log n ≤ t
and let q = �log r� ≤ log n. There are constructions which use � log n ≤ t
random bits to generate n random variables Z1 . . . , Zn ∈ {0, 1}q that are
�-wise independent [13]. The sampler generates such random variables. Let
a ∈ {0, 1}q be some fixed value. We define a random variable T = {i|Zi = a}.
Let S ⊆ [n] be some subset of size k. For 1 ≤ i ≤ n we define a boolean
random variable Xi such that Xi = 1 if Zi = a. Let X = |S ∩T | =

∑
i∈S Xi.

Note that μ = E(X) = k/2q and that the random variables X1, . . . , Xn are
�-wise independent. Applying Theorem A.1 with A = k/2r we get that

Pr[|X − μ| ≥ A] ≤ 8
(

�k/2q + �2

A2

)�/2

.

Note that

{|X − μ| < A} ⊆
{

k

2q
−A < X <

k

2q
+ A

}

⊆
{

k

r
−A < X <

2k

r
+ A

}

⊆ {kmin ≤ X ≤ kmax}
for kmin = k/2r and kmax = 3k/r. Note that � ≤ t

log n ≤
k

20r . We conclude
that

Pr[kmin ≤ |S∩T | ≤ kmax] ≥ 1−8

(
� k
2q + �2

( k
2r )2

)�/2

≥ 1−8

(
4r2( 2�k

r + �k
20r )

k2

)�/2

≥ 1− 8
(

10�r

k

)�/2

≥ 1− 2−(�/2+3) ≥ 1− 2−Ω(t/ log n).

Remark A.2. We remark that this construction is different from the com-
mon way of using �-wise independence for sampling [6]. The more common
way is to take n/r random variables V1, . . . , Vn/r ∈ [n] which are �-wise in-
dependent and sample the multi-set T =

{
V1, . . . , Vn/r

}
. The expected size

of the multi-set |S ∩ T | is k/r and one gets the same probability of success
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δ = 2−Ω(�) by the tail inequality of [6]. The two methods require roughly the
same number of random bits. Nevertheless, the method of Lemma A.1 has
the following advantages:

• It can also be used for partitioning.

• The method used in Lemma A.1 guarantees that T is a set whereas the
standard method may produce a multi-set.

• The method used in Lemma A.1 can be derandomized and use much
fewer bits (at least for small r and large δ). More precisely, suppose
that r ≤ log n and say � = 2. In this range of parameters, one can use
O(log log n) random bits to generate n variables Z1, . . . , Zn ∈ {0, 1}log r

which are (1/ log n)-close to being pairwise independent. Thus, the
same technique can be used to construct more randomness efficient sam-
plers (at the cost of having a larger error parameter δ.) We use this
idea in Section A.2. We remark that in the case of the standard method
no savings can be made as it requires variables Zi over {0, 1}log n and
even sampling one such variable requires log n random bits.

A.2 Sampling and Partitioning Using
Fewer Bits

We now derandomize the construction of Lemma A.1 to give schemes which
use only O(log k) bits and prove Lemmas 2.17 and 2.18. These two lemmas
follow from the following more general lemma.

Lemma A.3. Fix any integer n ≥ 16. Let k be an integer such that k ≤ n.
Let r satisfy r ≤ k. Let r′ be the power of 2 that satisfies (1/2)r < r′ ≤ r.
Let ε > 0 satisfy 1/kr ≤ ε ≤ 1/8r. We can use 7 log r+3(log log n+log(1/ε))
random bits to explicitly partition [n] into r′ sets T1, . . . , Tr′ such that for any
S ⊆ [n] where |S| = k

Pr(∀i, k/2r ≤ |Ti ∩ S| ≤ 3k/r) ≥ 1−O(ε · r3).

We prove Lemma A.3 in the next section. We now explain how the two
lemmas follow from Lemma A.3.

Proof. (of Lemma 2.18) Set b = α/38. Use Lemma A.3 with the parameters
r = kb and ε = k−4b to obtain a partition T1, . . . , Tr′ of [n] where (1/2)r <
r′ ≤ r is a power of 2.

To use Lemma A.3 with these parameters we need 7 log r + 3(log log n +
log(1/ε)) = 7 log kb + 3(log log n + log k4b) random bits. We want to use at
most α · log k bits.
Set c = 6/α. Since we assume that k ≥ logc n,

(α/2) log k ≥ (α/2)(6/α) log log n = 3 log log n.



126 A Sampling and Partitioning

So now we need

(α/2) log k ≥ 7 log kb + 3 log k4b = b(7 + 12) log k.

Or, equivalently,
b ≤ α/38.

Set e = 1 − b. So k/2r = ke/2 and 3k/r = 3 · ke. Note that e > 1/2 as
required.
Using Lemma A.3,

Pr(∀i, ke/2 ≤ |Ti ∩ S| ≤ 3 · ke) ≥ 1−O(ε · r3) = 1−O(k−b).

Lemma 2.17 easily follows from Lemma 2.18.

Proof. (of Lemma 2.17) Use Lemma 2.18 with the parameters n, k and α to
obtain a partition of [n] T1, . . . , Tm and take T1 as the sample. It is immediate
that the required parameters are achieved.

Proof of Lemma A.3

The sampler construction in Lemma A.1 relied on random variables Z1, . . . , Zn

∈ [r], which are �-wise independent. We now show that we can derandomize
this construction and get a (weaker) sampler by using Z1, . . . , Zn which are
only pairwise ε-dependent. Naor and Naor [44] (and later Alon et al.[2]) gave
constructions of such variables using very few random bits. This allows us to
reduce the number of random bits required for sampling and partitioning.

The following definition formalizes a notion of limited independence,
slightly more general than the one discussed above:

Definition A.4 (�-wise ε-dependent variables). Let D be a distribution. We
say that the random variables Z1, . . . , Zn are �-wise ε-dependent according to
D if for every M ⊆ [n] such that |M | ≤ �, the distribution ZM (that is, the
joint distribution of the Zis such that i ∈ M) is ε-close to the distribution
D⊗|M |, i.e., the distribution of |M | independent random variables chosen
according to D. We sometimes omit D when it is the uniform distribution.
Random bit variables B1, . . . , Bn are �-wise ε-dependent with mean p if they
are �-wise ε-dependent according to the distribution D = (1− p, p) on {0, 1}.

We need two properties about �-wise ε-dependent variables: That they
can be generated using very few random bits and that their sum is concen-
trated around the expectation. The first property is proven in Lemma A.5
and the second in Lemma A.6.

The following theorem states that �-wise ε-dependent bit variables can be
generated by very few random bits.
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Theorem A.2 ([2]). 1For any n ≥ 16, � ≥ 1 and 0 < ε < 1/2, �-wise
ε-dependent bits B1, . . . , Bn can be generated using 3(� + log log n + log(1/ε))
truly random bits.

We can generate pairwise ε-dependent variables in larger domains using
�-wise ε-dependent bit variables.2

Lemma A.5. Let r < n be a power of 2. For any n ≥ 16 and 0 < ε <
1/2, we can generate pairwise ε-dependent variables Z1, . . . , Zn ∈ [r] using
7 log r + 3(log log n + log(1/ε)) truly random bits.

Proof. Using Theorem A.2, we generate 2 log r-wise ε-dependent bit vari-
ables B1, . . . , Bn log r using 3(2 log r + log log(n log r) + log(1/ε)) ≤ 7 log r +
3(log log n + log(1/ε)) bits. We partition the Bis into n blocks of size log r
and interpret the ith block as a value Zi ∈ [r].

The joint distribution of the bits in any block or 2 blocks is ε-close to
uniform. Therefore, the Zis are pairwise ε-dependent.

In the following lemma, we use Chebychev’s inequality to show that the sum
of pairwise ε-dependent bit variables is close to its expectation with high
probability.

Lemma A.6. Let p satisfy 0 < p < 1. Let ε > 0 satisfy p/k ≤ ε ≤ p/4.
Let B1, . . . , Bk be pairwise ε-dependent bit variables with mean p. Let B =∑k

i=1 Bi.
Then

Pr(|B − pk| > pk/2) = O(ε/p2).

Proof. Using linearity of expectation we get |E(B)− pk| ≤ εk.
Therefore,

Pr(|B − pk| > pk/2) ≤ Pr(|B − E(B)| > pk/2− εk).

So it’s enough to bound

Pr(|B − E(B)| > pk/2− εk).

Fix any i, j ∈ [k] where i �= j. The covariance of Bi and Bj will be small
since they are almost independent:

cov(Bi, Bj) = E(Bi ·Bj)− E(Bi)E(Bj)

= Pr(Bi = 1;Bj = 1)− Pr(Bi = 1)Pr(Bj = 1)

1The theorem is stated a bit differently and only for odd � in ([2]), but this form is
easily deduced from Theorem 3 in that paper by observing that (� + 1)-wise ε-dependence
implies �-wise ε-dependence.

2Actually, a construction of such (and more general types of) variables already appears
in [23].
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≤ (p2 + ε)− (p− ε)2 = (1 + 2p− ε)ε ≤ 3ε

(where the second equality is because Bi and Bj are bit variables)

Therefore, the variance of B won’t be too large:

V ar(B) =
∑

i

V ar(Bi) +
∑

i
=j

cov(Bi, Bj) ≤ (p + ε)k + 3εk2 ≤ pk + 4εk2.

Therefore, by Chebychev’s inequality,

Pr(|B − E(B)| > pk/2− εk) <
pk + 4εk2

(pk/2− εk)2
.

We required that ε ≤ p/4, and therefore

≤ pk + 4εk2

(pk/4)2
= O(1/pk) + O(ε/p2) = O(ε/p2)

(where the last equality follows by the requirement that ε ≥ p/k).

Now we can easily prove Lemma A.3.

Proof. (of Lemma A.3) Let r′ be the power of 2 in the statement of the lemma.
Using Lemma A.5, we generate pairwise ε-dependent Z1, . . . , Zn ∈ [r′]. For
1 ≤ i ≤ r′, we define Ti = {j|Zj = i}.

Assume, w.l.o.g., that S = {1, . . . , k}. Given i ∈ [r′], define the bit
variables B1, . . . , Bk by Bj = 1 ⇔ Zj = i. It is easy to see that the Bjs are
pairwise 2ε-dependent with mean 1/r′. Define Ci =

∑k
j=1 Bj .

Note that Ci = |Ti ∩ S|. Notice that 1/r′ and 2ε satisfy the requirements
in Lemma A.6.

Using Lemma A.6,

Pr(|Ci − k/r′| > k/2r′) = O(ε · (r′)2) = O(ε · r2).

Using the union bound,

Pr(∃i s.t |Ci − k/r′| > k/2r′) = O(ε · r3).

Thus, we can obtain a partition T1, . . . , Tr′ of [n] such that, with probability
at least 1−O(ε · r3),

∀i k/2r′ ≤ |Ti ∩ S| ≤ 3k/2r′,

which implies that with at least the same probability,

∀i k/2r ≤ |Ti ∩ S| ≤ 3k/r.



Appendix B

Basic Notions from Algebraic
Geometry

In Section 4.5 we use a theorem of Bombieri [8] regarding character sums over
curves. The very statement, let alone the applicability of Bombieri’s theorem,
requires some basic notions from algebraic geometry. In this appendix, we
give some basic background necessary for stating the theorem and applying
it as done in Section 4.5. The main issue in Section 4.5 is to show that
the varieties that come up there are suitable for the theorem. Specifically,
we need to show that these varieties are indeed curves, i.e., have dimension
1, and that their ‘degree’ is not too large. (All these terms will be defined
formally). For this purpose, we need some lemmas regarding the dimension
and degree of intersections of varieties. Another issue is that Bombieri’s
theorem is stated for projective curves while we want to apply it on affine
curves. For this purpose, we need some lemmas on the relations between
affine and projective varieties. We note that all these issues are standard.
We stress that this section is far from a full introduction to basic algebraic
geometry. For a very accessible introduction we recommend [17], of which
most the definitions and notations in this section follow.
Throughout this section F will always denote an algebraically closed field.

B.1 Affine and Projective Varieties

The basic objects of study in algebraic geometry are the sets of solutions to
a system of polynomial equations. Such a set is called a variety. We now
formally define affine space and affine varieties.

Definition B.1 (affine space). We define n-dimensional affine space over F

as1

F
n � {(a1, . . . , an) | ai ∈ F}.

1In most textbooks in algebraic geometry the notation A

n is used rather than F

n.
However, in [17], which we are following, F

n is used.
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Definition B.2 (affine variety). Let f1, . . . , fs be polynomials in F[x1, . . . , xn].
We set

V(f1, . . . , fs) = {(a1, . . . , an) ∈ F
n | ∀ 1 ≤ i ≤ s fi(a1, . . . , an) = 0}.

We call V(f1, . . . , fs) the affine variety defined by f1, . . . , fs. A subset V ⊆
F

n is an affine variety if V = V(f1, . . . , fs) for some set of polynomials
f1, . . . , fs ∈ F[x1, . . . , xn]. We say that V is reducible if it can be written
as V = V1 ∪ V2 where the Vis are affine varieties such that V �= V1, V2.
Otherwise, we say that V is irreducible.2

As a simple example of an affine variety, take V = V(x1 · x2) ⊆ F
2.

Note that V is reducible as it is the union of the varieties V1 = V(x1) and
V2 = V(x2), i.e., the sets {(0, x2)|x2 ∈ F}, {(x1, 0)|x1 ∈ F} ⊆ F

2. It can be
shown that V1 and V2 are irreducible. Note that this is not a disjoint union
as V1 ∩ V2 = (0, 0).

Though affine space and affine varieties seem to be the natural objects
we want to investigate, it turns out to be very useful to work in projective
space. Intuitively, projective space is affine space extended with additional
‘extra points’. This intuition may not be clear from the following definition
but will become clearer later on.

Definition B.3 (projective space). We define an equivalence relation ∼ over
F

n+1\{0} by setting
(x0, . . . , xn) ∼ (y0, . . . , yn)

if and only if there exists a nonzero λ ∈ F such that (x0, . . . , xn) = (λ ·
y0, . . . , λ · yn). We define n-dimensional projective space P

n over F to be the
set of all equivalence classes of ∼. Thus,

P
n = (Fn+1 − {0})/ ∼ .

Each non-zero (n + 1)-tuple (x0, . . . , xn) ∈ F
n defines a point p ∈ P

n. We
say that (x0, . . . , xn) are homogenous coordinates of p.

We say that a polynomial f ∈ F[x0, . . . , xn] is homogenous if all of its
monomials have the same total degree. It is easy to see that for a homogenous
polynomial f of total degree d and any nonzero λ ∈ F

f(λ · a0, . . . , λ · an) = λdf(a0, . . . , an).

In particular, f(λ · a0, . . . , λ · an) = 0 if and only if f(a0, . . . , an) = 0. Thus,
the set of ‘zeros’ of f is a well-defined object in P

n.
This leads to the following definition.

2In many textbooks, the term variety always means an irreducible variety and general
varieties are called algebraic sets.
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Definition B.4 (projective variety). Let f1, . . . , fs ∈ F[x0, . . . , xn] be ho-
mogenous polynomials. We set

V(f1, . . . , fs) = {(a0, . . . , an) ∈ P
n | ∀ 1 ≤ i ≤ s fi(a0, . . . , an) = 0}.

A subset V ⊆ P
n is a projective variety if V = V(f1, . . . , fs) for some set

of homogenous polynomials f1, . . . , fs ∈ F[x0, . . . , xn]. We say that V is
reducible if it can be written as V = V1 ∪ V2, where the Vis are projective
varieties such that V �= V1, V2. Otherwise, we say that V is irreducible.

An important basic property of (affine and projective) varieties is that
they decompose into irreducible varieties in a unique way. Thus, we can
speak unambiguously about the irreducible components of a variety.

Proposition B.1. -[[17], Chapter 4, §6, Theorem 4, and Chapter 8, §3,
Theorem 6] We say that V = V1 ∪ . . .∪ Vm is a minimal decomposition of V
if Vi � Vj for every i �= j. Let V be an affine (projective) variety. Then V
has a minimal decomposition

V = V1 ∪ . . . ∪ Vm

where the Vis are irreducible affine (projective) varieties. Furthermore, this
minimal decomposition is unique up to the order in which V1, . . . , Vm are
written.

B.2 Varieties and Ideals

An affine variety is essentially a geometric object — a set of points in the
space F

n. A fundamental idea in algebraic geometry is to relate a variety to
an algebraic object. This algebraic object will be the set of all polynomials
that vanish on the variety. It is easy to see that this set of polynomials
forms an ideal in the ring F[x1, . . . , xn]. First we recall some basic facts and
notation regarding ideals in F[x1, . . . , xn]. For f1, . . . , fs ∈ F[x1, . . . , xn] we
denote by < f1, . . . , fs > the ideal generated by f1, . . . , fs. That is,

< f1, . . . , fs >�
{

s∑

i=1

gi · fi | ∀ 1 ≤ i ≤ s gi ∈ F[x1, . . . , xn]

}

.

By the Hilbert Basis Theorem (see [17], Chapter 2, §5) every ideal I ⊂
F[x1, . . . , xn] is finitely generated, i.e., I = < f1, . . . , fs > for some f1, . . . , fs ∈
F[x1, . . . , xn]. For an ideal I = < f1, . . . , fs >, it is easy to see that a point
(a1, . . . , an) ∈ F

n is a zero of every f ∈ I if and only if it is a zero of f1, . . . , fs.

Definition B.5 (affine varieties and ideals). For an affine variety V ⊆ F
n we

define I(V ) to be the ideal of all polynomials f such that f(a1, . . . , an) = 0 for
every (a1, . . . , an) ∈ V . For an ideal I = < f1, . . . , fs > ⊆ F[x1, . . . , xn] we
define V(I) ⊆ F

n to be the affine variety V(I) = {(a1, . . . , an) | f(a1, . . . , an)
= 0, ∀f ∈ I} = V(f1, . . . , fs).
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Before making the corresponding definitions for projective varieties we
will need some terminology. We remarked above that it makes sense to ask
whether a homogenous polynomial f ∈ F[x0, . . . , xn] vanishes at a point
p ∈ P

n. For a non-homogenous polynomial f ∈ F[x0, . . . , xn] we say that
f(p) = 0 for p ∈ P

n if f(a0, . . . , an) = 0 for all representatives (a0, . . . , an)
of p.

We say that an ideal I ⊆ F[x0, . . . , xn] is homogenous if it is generated
by a set of homogenous polynomials, i.e., I =< f1, . . . , fs > where f1, . . . , fs

are homogenous. We can now make the following definitions.

Definition B.6 (projective varieties and homogenous ideals). For a projec-
tive variety X ⊆ P

n we define I(X) to be the ideal of all polynomials f with
f(p) = 0 for every p ∈ X. It can be shown that I(X) is always a homogenous
ideal. For a homogenous ideal I ⊆ F[x0, . . . , xn] we define V(I) ⊆ P

n to be
the projective variety of all points p ∈ P

n that are zeros of all polynomials
f ∈ I. If I = < f1, . . . , fs > for homogenous polynomials f1, . . . , fs then it
can be shown that V(I) = V(f1, . . . , fs).

One reason the correspondence between ideals and varieties is useful is
that operations on ideals have simple corollaries in terms of the corresponding
varieties. We need the following fact about intersections of ideals.

Proposition B.2 ([17], Chapter 4, §3, Theorem 15, and Chapter 8, §3,
Exercise 7). Let I1, I2 be ideals in F[x1, . . . , xn] or homogenous ideals in
F[x0, . . . , xn]. Then

V(I1 ∩ I2) = V(I1) ∪V(I2).

B.3 The Dimension and Degree of a Variety

There are several equivalent definitions of the dimension and degree of a
variety (degree is defined only for projective varieties). Here we define di-
mension and degree in terms of the Hilbert polynomial of a variety. First we
need to define the Hilbert function and Hilbert polynomial of an ideal. The
definitions are taken from [17].

We say that an ideal I is a monomial ideal if it is generated by a set of
monomials.3. For example, I = < x1, x

2
2 > is a monomial ideal. We first

define the Hilbert function for monomial ideals.

Definition B.7 (Hilbert function of a monomial ideal). Let I be a monomial
ideal in F[x1, . . . , xn]. The affine Hilbert function of I, denoted by aHFI(s),
is a function on non-negative integers defined by aHFI(s) = number of monic
monomials in F[x1, . . . , xn] of degree at most s not contained in I. Similarly,
let I be a homogenous monomial ideal in F[x0, . . . , xn]. The Hilbert function

3By Dickson’s Lemma ([17], Chapter 2, §4, Theorem 5), if I is a monomial ideal it can
always be generated by a finite set of monomials.
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of I, denoted by HFI(s), is a function on non-negative integers defined by
HFI(s) = number of monic monomials in F[x0, . . . , xn] of degree exactly s
not contained in I.

Roughly speaking, for a monomial ideal I the monomials not in I are
a basis for the space of polynomials that are ‘different modulo I’. Thus,
aHFI(s) is the dimension of the space of such polynomials of degree at most s.
This is the idea behind the definition of the Hilbert function for general ideals.
First we need some notation. For a subset of polynomials V ⊆ F[x1, . . . , xn]
and a non-negative integer s, we denote by V≤s ⊆ F[x1, . . . , xn] the set of
polynomials in V of (total) degree at most s. For example, F[x1, . . . , xn]≤s

is the set of all polynomials of degree at most s. Similarly, for a subset
V ⊆ F[x0, . . . , xn] we denote by Vs ⊆ F[x0, . . . , xn] the set of all polynomials
in V of degree exactly s. Note that if V ⊆ F[x1, . . . , xn] is a linear subspace,
then so are V≤s and Vs. In particular if I ⊆ F[x1, . . . , xn] is an ideal, then
it is also a linear subspace, and so is V≤s. We recall a basic notion for
linear algebra: For subspaces W ⊆ V ⊆ F[x1, . . . , xn] we denote by V/W
the quotient space of equivalence classes of V over W . That is, we define an
equivalence relation ∼ over V by v ∼ v′ ↔ v − v′ ∈ W and let V/W be the
space of these equivalence classes. We can now make the following definition.

Definition B.8 (Hilbert function of a general ideal). Let I be an ideal in
F[x1, . . . , xn]. The affine Hilbert function of I, denoted by aHFI(s), is de-
fined as
aHFI(s) � dim (F[x1, . . . , xn]≤s/I≤s).
Let I be a homogenous ideal in F[x0, . . . , xn]; the Hilbert function of I, de-
noted HFI(s), is defined as HFI(s) � dim (F[x0, . . . , xn]s/Is).

It can be shown that for large enough input s, the Hilbert Function coin-
cides with a polynomial.

Theorem B.1 (see [17] Chapter 9, §3).

1. Let I be an ideal in F[x1, . . . , xn]. There exists a polynomial aHPI(s)
such that for large enough s, aHPI(s) = aHFI(s). We call aHPI(s)
the affine Hilbert polynomial of I.

2. Let I be a homogenous ideal in F[x0, . . . , xn]. There exists a polyno-
mial HPI(s) such that for large enough s, HPI(s) = HFI(s). We call
HPI(s) the Hilbert polynomial of I.

Let V ⊆ F
n be an affine variety with I = I(V ). Let’s try to see why it

could make sense to define the dimension of a variety in terms of the affine
Hilbert polynomial of I. Since I is exactly the set of polynomials that van-
ish on V , polynomials f, g ∈ F[x1, . . . , xn] are identical on V if and only if
f − g ∈ I. It follows that F[x1, . . . , xn]/I is exactly the space of polynomial
functions from V to F. Now recall that for a linear subspace A ⊆ F

n, the
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dimension of A can be defined as the dimension of the space of linear func-
tions from A to F. Similarly, we could try to define the dimension of V as the
dimension of the space of polynomial functions from V to F, i.e., the dimen-
sion of F[x1, . . . , xn]/I. However, since the polynomials in this space have
unbounded degree, F[x1, . . . , xn]/I has infinite dimension. Instead, we can
take an ‘asymptotic’ approach and define the dimension of V by how fast this
space grows as we increase the degree of the polynomials. More accurately, we
can define dim(V ) by how fast aHPI(s) = dim(F[x1, . . . , xn]≤s/I≤s) grows
as s increases. This corresponds to the degree of aHPI(s).

Definition B.9 (dimension of a variety). Let V ⊆ F
n be an affine variety

and let I = I(V ). The dimension of V , denoted dim(V ), is defined to be the
degree of aHPI(s). Let V ⊆ P

n be a projective variety and let I = I(V ). The
dimension of V is defined to be the degree of HPI(s).

To gain intuition on the above definition, it is helpful to see how it coin-
cides with the definition of dimension for a linear subspace. Take for example
the subspace V ⊆ F

n defined by the constraints {x1 = 0, x2 = 0}. Then
I � I(V ) =< x1, x2 > and the monomials not in I are exactly the monomi-
als xa3

3 · · · xan
n , where a3, . . . , an are non-negative integers. In particular, the

number of such monomials of degree at most s is
(
n−2+s

n−2

)
, which is a degree

n−2 polynomial in s. Therefore, since I is a monomial ideal by the definition
above, dim(V ) = deg(HPI(s)) = n− 2.

The following property of the dimension of a variety will be very useful
for us later on.

Proposition B.3 ([17], Chapter 9, §4 Corollary 9). Let V be an affine or
projective variety. The dimension of V is equal to the maximum of the di-
mensions of its irreducible components.

We now define the degree of a projective variety (degree is not defined for
affine varieties).

Definition B.10 (degree of a variety). The degree of V , denoted by deg(V ),
is defined to be the leading coefficient of HPI(s) multiplied by dim(V )!.

Though not immediate from the definition, it can be shown that the
degree is always a non-negative integer. To gain intuition on the above defi-
nition, let us see how it coincides with the definition of degree for a univariate
polynomial. For simplicity of the example we’ll assume degree is defined for
an affine variety V in a similar way to projective varieties. That is, deg(V ) is
the leading coefficient of the affine Hilbert polynomial of I(V ) times dim(V )!.
Let I ⊆ F[x1] be the ideal < x3

1 − 1 >. It can be shown that I = I(V ) where
V = V(x3

1 − 1) ∈ F, i.e., V is simply the roots of x3
1 − 1 and |V | = 3 (since

F is algebraically closed). Furthermore, it can be seen that {1, x1, x
2
1} is a

basis for k[x1]/I. Hence, HPI(s) is simply the constant 3, and therefore
dim(V ) = deg(HPI(s)) = 0 and deg(V ) = 3 · 0! = 3. Thus deg(V ) bounds
the size of V . It can be shown that deg(V ) always bounds |V | when V is a
projective variety of finite size.
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B.4 The Projective Closure of an Affine
Variety

We call an affine (projective) variety of dimension 1 an affine (projective)
curve. As mentioned above, in Section 4.5 we use a theorem of Bombieri[8]
for affine curves while in [8] the theorem is stated for projective curves. The
transition between the cases, presented in subsection B.7, is completely stan-
dard. For this purpose, the following definitions enable us to relate an affine
variety with its ‘corresponding’ projective variety. First we need the following
definitions.

Definition B.11 (homogenization).

• For a polynomial f ∈ F[x1, . . . , xn] of degree d, we define the homoge-
nized version fh ∈ F[x0, . . . , xn] by

fh(x0, x1, . . . , xn) = xd
0 · f(x1/x0, . . . , xn/x0).

• Similarly, for an ideal I = < f1, . . . , fs > we define the ideal Ih = <
fh|f ∈ I >. Note that Ih is always a homogenous. In particular, it is
easy to see that Ih =< fh

1 , . . . , fh
s >.

We can now define the projective closure of an affine variety.

Definition B.12 (projective closure). Let V ⊆ F
n be an affine variety with

ideal I = I(V ). We define the projective closure V ⊆ P
n to be the projective

variety V(Ih). Let U0 ⊆ P
n be defined as U0 ={(a0, a1, . . . , an)∈P

n|a0 =1}.
Note that U0 can be identified with F

n. Thus, we can think of an affine variety
V ⊆ F

n as being contained in U0. For a projective variety V ⊆ P
n, we denote

V a � V ∩ U0. Intuitively, this is “the affine part of V ”.

The following propositions show various connections between an affine
variety and its projective closure.

Proposition B.4 ([17] Chapter 8, §4, Proposition 7 and Exercise 9). Let
V ⊆ F

n be an affine variety. Then

1. V ∩ U0 = V.

2. V is irreducible if and only if V is irreducible.

Proposition B.5 ([17] Chapter 9, §3, Theorem 12). Let V ⊆ F
n be an affine

variety. Then
dim(V ) = dim(V ).

Proposition B.6 ([17] Chapter 8, §4, Theorem 8). Let f1, . . . , fr ∈ F[x1, . . . ,
xn] be polynomials such that V = V(f1, . . . , fr) ⊆ F

n is non-empty. Then

V = V(fh
1 , . . . , fh

r ).
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Claim B.12.1. Let V1, . . . , Vr ⊆ F
n be affine varieties. Then V1 ∪ . . . ∪ Vr =

V 1 ∪ . . . ∪ V r.

Proof. We prove the claim for r = 2. The statement for general r follows by
induction.

Let I1, I2 be the ideals I(V1), I(V2) respectively. It can be shown that
V(Ih

1 ∩ Ih
2 ) = V((I1 ∩ I2)h). We have

V1 ∪ V2 = V((I1 ∩ I2)h) = V(Ih
1 ∩ Ih

2 ) = V(Ih
1 ) ∪V(Ih

2 ) = V 1 ∪ V 2,

where we used Proposition B.2 in the first and second to last equalities.

Corollary B.1. Let V ⊆ F
n be an affine variety with irreducible components

V1, . . . , Vr. Then, the irreducible components of V ⊆ P
n are V 1, . . . , V r.

Proof. Follows from Proposition B.4 and Claim B.12.1.

Claim B.12.2. Let V ⊆ F
n be an affine variety. If f ∈ F[x1, . . . , xn] does

not vanish identically on V then fh does not vanish identically on V ⊆ P
n.

Proof. For any a ∈ F
n, f(a) = fh(1, a). Therefore, if f(a) �= 0 for a ∈ V ,

then fh(1, a) �= 0, where (1, a) ∈ V by Proposition B.4.

B.5 The Dimension of Intersections
of Hypersurfaces

We say that an affine (projective) variety V is a hypersurface if V = V(f)
for a (homogenous) polynomial f . In this subsection we state and prove
standard results regarding the dimension of intersections of hypersurfaces.
The following definition will be important.

Definition B.13. We say that an affine or projective variety V has pure
dimension if all its irreducible components have the same dimension.

We need the following propositions about the intersection of a hypersur-
face with a variety.

Proposition B.7 ([17] Chapter 9, §4, Proposition 7). Let V ⊆ P
n be a

projective variety with dim(V ) ≥ 1. Then for any non-constant homogenous
polynomial f ∈ F[x0, . . . , xn], V ∩V(f) �= ∅.

Proposition B.8 ([61], Chapter I, §6, Corollary 1 of Theorem 5). Let V ⊆
P

n be an irreducible projective variety. Let f ∈ F[x0, . . . , xn] be a homogenous
polynomial that does not vanish identically on V and denote H = V(f). If
V ∩H �= ∅, then V ∩H has pure dimension dim(V )− 1.
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Claim B.13.1. Let V ⊆P
n be a projective variety of pure dimension dim(V )≥

1. Let f ∈ F[x0, . . . , xn] be a non-constant homogenous polynomial and let
H = V(f) ⊆ P

n. Assume that f does not vanish identically on any of the
irreducible components of V . Then V ∩H has pure dimension dim(V )− 1.

Proof. Let V = Z1 ∪ . . . ∪ Zk be the decomposition of V into irreducible
components. Fix any j ∈ [k]. By Proposition B.7, Zj ∩H is non-empty, and
since f does not vanish on Zj , by Proposition B.8 all irreducible components
of Zj ∩ H have dimension dim(V ) − 1. To conclude, note that the union
of the irreducible components of Zj ∩ H over all j ∈ [k] is V ∩ H, and
therefore the irreducible components of V ∩ H are just a subset of these
components (excluding any component that is contained in another). Hence,
all irreducible components of V ∩H have dimension dim(V )−1 and the claim
follows.

As a special case we get the following.

Corollary B.2. Let f ∈ F[x0, . . . , xn] be a non-constant homogenous poly-
nomial. Then the hypersurface H = V(f) ⊆ P

n has pure dimension n− 1.

Proof. P
n can be shown to be irreducible and in particular has pure dimen-

sion. Thus, using Claim B.13.1 with V = P
n we get the desired result.

We can now state and prove the main lemma we use regarding the di-
mension of intersections of hypersurfaces.

Lemma B.9. Let 0 < r < n be integers and let f1, . . . , fr ∈ F[x0, . . . , xn] be
non-constant homogenous polynomials. For each i ∈ [r], let Hi = V(fi) ⊆ P

n

and Vi = V(f1, . . . , fi) = H1 ∩ . . . ∩Hi. Then

1. All irreducible components of the projective variety Vr have dimension
at least n− r.

2. Suppose furthermore that for each 2 ≤ i ≤ r, fi does not vanish iden-
tically on any of the irreducible components of Vi−1. Then Vr is a
projective variety of pure dimension n− r.

Proof. We prove the first item by induction on r. For r = 1 this follows from
Corollary B.2. Assume the claim for r − 1. Let Vr−1 = Z1 ∪ . . . ∪ Zk be the
decomposition of Vr−1 into irreducible components. Fix any j ∈ [k]. Similarly
to the proof of Claim B.13.1, we will show that all the irreducible components
of Zj∩Hr have dimension at least n−r, and since the irreducible components
of Vr are a subset of these, the claim follows. From the induction hypothesis
we have dim(Zj) ≥ n − (r − 1). If fr vanishes on Zj then Zj ∩ Hr = Zj

(which is the only irreducible component) and we are done. Otherwise, by
Claim B.13.1 all components of Zj ∩Hr have dimension at least n− r.
We now prove the second item by induction on r. For r = 1 this is exactly
Corollary B.2. Assume the claim for r−1. Then by the induction hypothesis,
Vr−1 has pure dimension n−r+1. Therefore, by Claim B.13.1 Vr = Vr−1∩Hr

has pure dimension n− r.

We also need the corresponding lemma in affine space.
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Lemma B.10. Let 0 < r < n be integers and let f1, . . . , fr ∈ F[x1, . . . , xn]
be non-constant polynomials. For each i ∈ [r], let Hi = V(fi) ⊆ F

n and
let Vi = V(f1, . . . , fi) = H1 ∩ . . . ∩ Hi. Suppose that for each 2 ≤ i ≤ r,
fi does not vanish identically on any of the irreducible components of the
affine variety Vi−1. Then, if Vr is non-empty it is an affine variety of pure
dimension n− r.

Proof. For 1 ≤ i ≤ r, let Xi = V(fh
1 , . . . , fh

i ). By Proposition B.6, for every
1 ≤ i ≤ r Xi = V i. Therefore, by Corollary B.1 the irreducible components
of Xi−1 are simply the projective closures of the irreducible components of
Vi−1. By Claim B.12.2 it follows that fh

i does not vanish identically on any
of the irreducible components of Xi−1. Hence, we can use Lemma B.9, and
Xr is a projective variety of pure dimension n− r; and since Xr = V r, using
Proposition B.5 Vr is an affine variety of pure dimension n− r.

B.6 The Degree of Intersections
of Hypersurfaces

We now discuss degree. The main result we prove is the following corollary
of Bezout’s theorem.

Lemma B.11. Let f1, . . . , fr ∈ F[x0, . . . , xn] be non-constant homogenous
polynomials of degrees d1, . . . , dr respectively, and let D = d1 · · · dr. Let
X = V(f1, . . . , fr) ⊆ P

n. Assume that dim(X) = n− r. Then

1. deg(X) ≤ D.

2. The number of irreducible components of X is at most D.

Using this Lemma, we immediately get a bound on the number of irre-
ducible components of an affine variety.

Lemma B.12. Let f1, . . . , fr ∈ F[x1, . . . , xn] be non-constant polynomials of
degrees d1, . . . , dr, respectively, and let D = d1 ···dr. Let V = V(f1, . . . , fr) ⊆
F

n. Assume that V is non-empty and dim(V ) = n− r. Then the number of
irreducible components of V is at most D.

Proof. Let X = V . By Proposition B.6, X = V(fh
1 , . . . , fh

r ). Therefore, by
Lemma B.11, X has at most D irreducible components, and by Corollary B.1
V has at most D irreducible components.

The following proposition states that a degree of a hypersurface is at most
the degree of any polynomial defining it.

Proposition B.13 ([17], Chapter 9, §4, Exercise 12). Let f be a non-
constant homogenous polynomial. Let H = V(f1). Then deg(H) ≤ deg(f).

We will need the following definitions taken from [36].
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Definition B.14. Let X,Y ⊆ P
n be projective varieties. We say that X and

Y intersect properly if

dim(X ∩ Y ) = dim(X) + dim(Y )− n.

We quote (a corollary of) Bezout’s theorem.

Theorem B.2 (Bezout-[36] Chapter 18, Theorem 18.4 and Corollary 18.5).
Let X,Y ⊆ P

n be projective varieties of pure dimension intersecting properly.
Then

1. deg(X ∩ Y ) ≤ deg(X) · deg(Y ).

2. The number of irreducible components of X ∩ Y is at most deg(X) ·
deg(Y ).

Claim B.14.1. Let X = V(f1, . . . , fr) ⊆ P
n where f1, . . . , fr ∈ F[x0, . . . , xn]

are non-constant homogenous polynomials. Assume that dim(X) = n−r. For
i = 1, . . . , r let Hi = V(fi) and Xi = V(f1, . . . , fi) = H1 ∩ . . . ∩ Hi. Then
for all i ∈ [r], Xi has pure dimension n− i.

Proof. By Lemma B.9, all irreducible components of V(f1, . . . , fi) have di-
mension at least n−i. Thus, it is enough to prove that V(f1, . . . , fi) has (not
necessarily pure) dimension n− i. We prove this by backwards induction on
i. For i = r it is already given that dim(X) = dim(Xr) = n − r. Assume
the claim for i + 1 holds and assume for contradiction that dim(Xi) �= n− i.
Using Lemma B.9 it follows that dim(Xi) > n − i. Therefore, by Claim
B.13.1 dim(Xi+1) = dim(Xi ∩V(fi+1)) > n − (i + 1), and this contradicts
the induction hypothesis.

We can now prove Lemma B.11.

Proof. (of Lemma B.11). We prove the claim by induction on r. For r = 1,
it follows from Proposition B.13 that deg(X) ≤ deg(f1) = d1. Assume the
claim for r − 1. For i = 1, . . . , r denote Hi = V(fi). Given H1, . . . , Hr, let
Xr−1 = H1 ∩ . . . ∩Hr−1. We know from the induction hypothesis that

deg(Xr−1) ≤ d1 · · · dr−1.

From Claim B.14.1, Xr−1 has pure dimension n− (r− 1) and it follows that
Xr−1 and Hr intersect properly. Therefore, we can use Theorem B.2 and get

deg(X) = deg(Xr−1 ∩Hr) ≤ deg(Xr−1) · deg(Hr) ≤ d1 · · · dr = D.

Similarly, from Theorem B.2 we get that the number of irreducible compo-
nents of X is at most deg(Xr−1) · deg(Hr) ≤ D.
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B.7 Bombieri’s Theorem

We quote an estimate of Bombieri [8] for character sums over projective curves
and show that the estimate can be used also for affine curves. (Recall that
a curve is a variety of dimension 1.) First we introduce some notation. Let
X ⊆ P

n be a projective curve of degree D. Let F denote the algebraic closure
of Fp for some prime p. Let R ∈ Fp(x0, . . . , xn) be a homogenous rational
function whose numerator and denominator both have degree d. Then, for
any x ∈ F

n+1 and non-zero λ ∈ F we have

R(λ · x) =
p(λ · x)
q(λ · x)

=
λdp(x)
λdq(x)

=
p(x)
q(x)

= R(x).

Therefore R is a well-defined function on points of P
n that are not poles of

R, i.e., points x ∈ P
n such that q(x) �= 0. We define

Sm(R,X) �
∑

x∈Xm,q(x)
=0

ep(σR(x))

where Xm is the set of points of X with coordinates in Fpm , σ denotes the
trace4 from Fpm to Fp and ep(x) is the function e2πix/p. Note that we sum
only over non-poles of R.

Theorem B.3 (Theorem 6 in [8]). Let R and X be as above. Let Γ1, . . . ,ΓL

be the irreducible components of X. Assume R is non-constant on Γi for
i = 1, . . . , L. If d ·D < p then

|Sm(R,X)| ≤ 4dD2 · pm/2.

For an affine curve C ⊆ F
n and a polynomial g ∈ Fp[x1, . . . , xn] we define

Sm(g, C) �
∑

(a1,...,am)∈Cm

ep(σg(a1, . . . , am))

where Cm denotes the set of points of C with coordinates in Fpm . We also
denote S(g, C) � S1(g, C). We can now state and prove a version of Theorem
B.3 for affine curves.

Theorem B.4. Let V ⊆ F
n be an affine curve such that V = V(f1, . . . , fn−1)

for polynomials fi ∈ F[x1, . . . , xn]. Let D = deg(f1) · · · deg(fn−1). Let
V1, . . . , VL be the irreducible components of V . Let g ∈ Fp[x1, . . . , xn] be a
polynomial of degree d that is non-constant on some Vi. Let C be the union

4See [39] for a definition of the trace function. For the case m = 1, which is the only
one we will use, the trace is simply the identity function.
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of the irreducible components Vi such that g is non-constant on Vi. Assume
that d ·D < p. We have

Sm(g, C) ≤ 4dD2 · pm/2.

In particular,
S(g, C) ≤ 4dD2 · p1/2.

Proof. We identify g with a homogenous rational function R defined as

R(x0, x) =
gh(x0, x)

xd
0

.

Note that for every a ∈ F
n R(1, a) = g(a).

Denote X = C.

Claim B.14.2.
Sm(g, C) = Sm(R,X).

Proof. Using Proposition B.4 X consists precisely of the points (1, a) where
a ∈ C and, possibly, some ‘points at infinity’, i.e., points of the form (0, a) for
a ∈ F

n. Since R has poles on all points of the form (0, a) and R(1, a) = g(a)
for all x ∈ F

n, we get that summing R over all non-poles in X is exactly the
same as summing g over all of C. In particular, summing R over all non-poles
in Xm is exactly the same as summing g over all of Cm. That is,

Sm(g, C) = Sm(R,X).

We now want to bound Sm(R,X) using Theorem B.3. Note that both
the numerator and the denominator of R are homogenous of degree exactly
d, so R is suitable for the theorem. We need to show that X is a projective
variety of dimension 1 such that R is non-constant on any of its irreducible
components: Recall that the irreducible components of C are simply a subset
of V1, . . . , VL. Assume w.l.o.g. that C = V1 ∪ . . . ∪ Vr. Using Corollary B.1,
it is clear that if g is non-constant on the irreducible components V1, . . . , Vr

of C, then R is non-constant on the irreducible components V 1, . . . , V r of
X. By Proposition B.5 and Corollary B.1 dim(V ) = 1 and V 1, . . . , V L are
the irreducible components of V . By Proposition B.6, V = V(fh

1 , . . . , fh
n−1),

and therefore by Claim B.14.1 for every i V i has dimension 1. It follows that
X = V 1 ∪ . . . ∪ V r has dimension 1.

Finally, we need to bound the degree of X. By Lemma B.11 deg(V ) ≤ D.
Since the degree of a projective variety is the sum of degrees of its irreducible
components (see [36], Chapter 18), deg(X) ≤ D.

Therefore, we can use Theorem B.3. We get

|Sm(g, C)| = |Sm(R,X)| ≤ 4dD2 · pm/2.
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