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Planning Algorithms

Planning algorithms are impacting technical disciplines and industries around the world,
including robotics, computer-aided design, manufacturing, computer graphics, aerospace ap-
plications, drug design, and protein folding. This coherent and comprehensive book unifies
material from several sources, including robotics, control theory, artificial intelligence, and
algorithms. The treatment is centered on robot motion planning but integrates material on
planning in discrete spaces. A major part of the book is devoted to planning under uncertainty,
including decision theory, Markov decision processes, and information spaces, which are the
“configuration spaces” of all sensor-based planning problems. The last part of the book delves
into planning under differential constraints that arise when automating the motions of virtually
any mechanical system.

Developed from courses taught by the author, the book is intended for students, engineers,
and researchers in robotics, artificial intelligence, and control theory as well as computer
graphics, algorithms, and computational biology.

Steven M. LaValle is Associate Professor of Computer Science at the University of Illinois at
Urbana-Champaign. He has worked in motion planning and robotics for more than a decade
and has published dozens of articles in the field. He is the main developer of the rapidly
exploring random tree (RRT) algorithm, which has been used in numerous research labs and
industrial products around the world. He has taught material on which the book is based at
Stanford University, Iowa State University, the Tec de Monterrey, and the University of Illinois.
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Preface

What is meant by “planning algorithms”?

Due to many exciting developments in the fields of robotics, artificial intelligence, and
control theory, three topics that were once quite distinct are presently on a collision course.
In robotics, motion planning was originally concerned with problems such as how to move
a piano from one room to another in a house without hitting anything. The field has grown,
however, to include complications such as uncertainties, multiple bodies, and dynamics.
In artificial intelligence, planning originally meant a search for a sequence of logical
operators or actions that transform an initial world state into a desired goal state. Presently,
planning extends beyond this to include many decision-theoretic ideas such as Markov
decision processes, imperfect state information, and game-theoretic equilibria. Although
control theory has traditionally been concerned with issues such as stability, feedback, and
optimality, there has been growing interest in designing algorithms that find feasible open-
loop trajectories for nonlinear systems. In some of this work, the term “motion planning”
has been applied, with a different interpretation from its use in robotics. Thus, even though
each originally considered different problems, the fields of robotics, artificial intelligence,
and control theory have expanded their scope to share an interesting common ground.

In this text, I use the term planning in a broad sense that encompasses this common
ground. This does not, however, imply that the term is meant to cover everything important
in the fields of robotics, artificial intelligence, and control theory. The presentation focuses
on algorithm issues relating to planning. Within robotics, the focus is on designing
algorithms that generate useful motions by processing complicated geometric models.
Within artificial intelligence, the focus is on designing systems that use decision-theoretic
models to compute appropriate actions. Within control theory, the focus is on algorithms
that compute feasible trajectories for systems, with some additional coverage of feedback
and optimality. Analytical techniques, which account for the majority of control theory
literature, are not the main focus here.

The phrase “planning and control” is often used to identify complementary issues in
developing a system. Planning is often considered as a higher level process than control.
In this text, I make no such distinctions. Ignoring historical connotations that come with
the terms, “planning” and “control” can be used interchangeably. Either refers to some
kind of decision making in this text, with no associated notion of “high” or “low” level.
A hierarchical approach can be developed, and either level could be called “planning” or
“control” without any difference in meaning.

Who is the intended audience?

The text is written primarily for computer science and engineering students at the
advanced-undergraduate or beginning-graduate level. It is also intended as an introduction

xi
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to recent techniques for researchers and developers in robotics, artificial intelligence, and
control theory. It is expected that the presentation here would be of interest to those
working in other areas such as computational biology (drug design, protein folding),
virtual prototyping, manufacturing, video game development, and computer graphics.
Furthermore, this book is intended for those working in industry who want to design and
implement planning approaches to solve their problems.

I have attempted to make the book as self-contained and readable as possible. Ad-
vanced mathematical concepts (beyond concepts typically learned by undergraduates in
computer science and engineering) are introduced and explained. For readers with deeper
mathematical interests, directions for further study are given.

Where does this book fit?

Here is where this book fits with respect to other well-known subjects:

Robotics

This book addresses the planning part of robotics, which includes motion planning,
trajectory planning, and planning under uncertainty. This is only one part of the big
picture in robotics, which includes issues not directly covered here, such as mechanism
design, dynamical system modeling, feedback control, sensor design, computer vision,
inverse kinematics, and humanoid robotics.

Artificial intelligence

Machine learning is currently one of the largest and most successful divisions of artificial
intelligence. This book (perhaps along with [384]) represents the important complement
to machine learning, which can be thought of as “machine planning.” Subjects such as
reinforcement learning and decision theory lie in the boundary between the two and
are covered in this book. Once learning is being successfully performed, what decisions
should be made? This enters into planning.

Control theory

Historically, control theory has addressed what may be considered here as planning in
continuous spaces under differential constraints. Dynamics, optimality, and feedback have
been paramount in control theory. This book is complementary in that most of the focus
is on open-loop control laws, feasibility as opposed to optimality, and dynamics may
or may not be important. Nevertheless, feedback, optimality, and dynamics concepts
appear in many places throughout the book. However, the techniques in this book are
mostly algorithmic, as opposed to the analytical techniques that are typically developed
in control theory.

Computer graphics

Animation has been a hot area in computer graphics in recent years. Many techniques in
this book have either been applied or can be applied to animate video game characters,
virtual humans, or mechanical systems. Planning algorithms allow users to specify tasks
at a high level, which avoids having to perform tedious specifications of low-level motions
(e.g., key framing).
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Figure 1: The dependencies between the four main parts of the book.

Algorithms

As the title suggests, this book may fit under algorithms, which is a discipline within
computer science. Throughout the book, typical issues from combinatorics and complexity
arise. In some places, techniques from computational geometry and computational real
algebraic geometry, which are also divisions of algorithms, become important. On the
other hand, this is not a pure algorithms book in that much of the material is concerned
with characterizing various decision processes that arise in applications. This book does
not focus purely on complexity and combinatorics.

Other fields

At the periphery, many other fields are touched by planning algorithms. For example,
motion planning algorithms, which form a major part of this book, have had a substantial
impact on such diverse fields as computational biology, virtual prototyping in manufac-
turing, architectural design, aerospace engineering, and computational geography.

Suggested use

The ideas should flow naturally from chapter to chapter, but at the same time, the text has
been designed to make it easy to skip chapters. The dependencies between the four main
parts are illustrated in Figure 1.

If you are only interested in robot motion planning, it is only necessary to read Chapters
3–8, possibly with the inclusion of some discrete planning algorithms from Chapter 2
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Motion planning
Core: 2.1–2.2, 3.1–3.3, 4.1–4.3, 5.1–5.6, 6.1–6.3
Optional: 3.4–3.5, 4.4, 6.4–6.5, 7.1–7.7, 8.1–8.5
Planning under uncertainty
Core: 2.1–2.3, 9.1–9.2, 10.1–10.4, 11.1–11.6, 12.1–12.3
Optional: 9.3–9.5, 10.5–10.6, 11.7, 12.4–12.5
Planning under differential constraints
Core: 8.3, 13.1–13.3, 14.1–14.4, 15.1, 15.3–15.4
Optional: 13.4–13.5, 14.5–14.7, 15.2, 15.5

Figure 2: Based on Parts II, III, and IV, there are three themes of core material and optional topics.

because they arise in motion planning. Chapters 3 and 4 provide the foundations needed to
understand basic robot motion planning. Chapters 5 and 6 present algorithmic techniques
to solve this problem. Chapters 7 and 8 consider extensions of the basic problem. If you
are additionally interested in nonholonomic planning and other problems that involve
differential constraints, then it is safe to jump ahead to Chapters 13–15, after completing
Part II.

Chapters 11 and 12 cover problems in which there is sensing uncertainty. These prob-
lems live in an information space, which is detailed in Chapter 11. Chapter 12 covers
algorithms that plan in the information space.

If you are interested mainly in decision-theoretic planning, then you can read Chapter
2 and then jump straight to Chapters 9–12. The material in these later chapters does
not depend much on Chapters 3–8, which cover motion planning. Thus, if you are not
interested in motion planning, the chapters may be easily skipped.

There are many ways to design a semester or quarter course from the book material.
Figure 2 may help in deciding between core material and some optional topics. For an
advanced undergraduate-level course, I recommend covering one core and some optional
topics. For a graduate-level course, it may be possible to cover a couple of cores and some
optional topics, depending on the initial background of the students. A two-semester
sequence can also be developed by drawing material from all three cores and including
some optional topics. Also, two independent courses can be made in a number of different
ways. If you want to avoid continuous spaces, a course on discrete planning can be offered
from Sections 2.1–2.5, 9.1–9.5, 10.1–10.5, 11.1–11.3, 11.7, and 12.1–12.3. If you are
interested in teaching some game theory, there is roughly a chapter’s worth of material in
Sections 9.3–9.4, 10.5, 11.7, and 13.5. Material that contains the most prospects for future
research appears in Chapters 7, 8, 11, 12, and 14. In particular, research on information
spaces is still in its infancy.

To facilitate teaching, there are more than 500 examples and exercises throughout the
book. The exercises in each chapter are divided into written problems and implementa-
tion projects. For motion planning projects, students often become bogged down with
low-level implementation details. One possibility is to use the Motion Strategy Library
(MSL):

http://msl.cs.uiuc.edu/msl/

as an object-oriented software base on which to develop projects. I have had great success
with this for both graduate and undergraduate students.
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For additional material, updates, and errata, see the Web page associated with this
book:

http://planning.cs.uiuc.edu/

You may also download a free electronic copy of this book for your own personal use.
For further reading, consult the numerous references given at the end of chapters and

throughout the text. Most can be found with a quick search of the Internet, but I did not
give too many locations because these tend to be unstable over time. Unfortunately, the
literature surveys are shorter than I had originally planned; thus, in some places, only a list
of papers is given, which is often incomplete. I have tried to make the survey of material
in this book as impartial as possible, but there is undoubtedly a bias in some places toward
my own work. This was difficult to avoid because my research efforts have been closely
intertwined with the development of this book.
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Introductory Material
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1

Introduction

1.1 Planning to plan

Planning is a term that means different things to different groups of people. Robotics ad-
dresses the automation of mechanical systems that have sensing, actuation, and computa-
tion capabilities (similar terms, such as autonomous systems are also used). A fundamental
need in robotics is to have algorithms that convert high-level specifications of tasks from
humans into low-level descriptions of how to move. The terms motion planning and tra-
jectory planning are often used for these kinds of problems. A classical version of motion
planning is sometimes referred to as the Piano Mover’s Problem. Imagine giving a precise
computer-aided design (CAD) model of a house and a piano as input to an algorithm. The
algorithm must determine how to move the piano from one room to another in the house
without hitting anything. Most of us have encountered similar problems when moving
a sofa or mattress up a set of stairs. Robot motion planning usually ignores dynamics
and other differential constraints and focuses primarily on the translations and rotations
required to move the piano. Recent work, however, does consider other aspects, such as
uncertainties, differential constraints, modeling uncertainties, and optimality. Trajectory
planning usually refers to the problem of taking the solution from a robot motion planning
algorithm and determining how to move along the solution in a way that respects the
mechanical limitations of the robot.

Control theory has historically been concerned with designing inputs to physical sys-
tems described by differential equations. These could include mechanical systems such as
cars or aircraft, electrical systems such as noise filters, or even systems arising in areas as
diverse as chemistry, economics, and sociology. Classically, control theory has developed
feedback policies, which enable an adaptive response during execution, and has focused
on stability, which ensures that the dynamics do not cause the system to become wildly
out of control. A large emphasis is also placed on optimizing criteria to minimize resource
consumption, such as energy or time. In recent control theory literature, motion planning
sometimes refers to the construction of inputs to a nonlinear dynamical system that drives
it from an initial state to a specified goal state. For example, imagine trying to operate a
remote-controlled hovercraft that glides over the surface of a frozen pond. Suppose we
would like the hovercraft to leave its current resting location and come to rest at another
specified location. Can an algorithm be designed that computes the desired inputs, even
in an ideal simulator that neglects uncertainties that arise from model inaccuracies? It
is possible to add other considerations, such as uncertainties, feedback, and optimality;
however, the problem is already challenging enough without these.

In artificial intelligence, the terms planning and AI planning take on a more discrete
flavor. Instead of moving a piano through a continuous space, as in the robot motion
planning problem, the task might be to solve a puzzle, such as the Rubik’s cube or a
sliding-tile puzzle, or to achieve a task that is modeled discretely, such as building a

3
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stack of blocks. Although such problems could be modeled with continuous spaces, it
seems natural to define a finite set of actions that can be applied to a discrete set of states
and to construct a solution by giving the appropriate sequence of actions. Historically,
planning has been considered different from problem solving; however, the distinction
seems to have faded away in recent years. In this book, we do not attempt to make a
distinction between the two. Also, substantial effort has been devoted to representation
language issues in planning. Although some of this will be covered, it is mainly outside
of our focus. Many decision-theoretic ideas have recently been incorporated into the AI
planning problem, to model uncertainties, adversarial scenarios, and optimization. These
issues are important and are considered in detail in Part III.

Given the broad range of problems to which the term planning has been applied in
the artificial intelligence, control theory, and robotics communities, you might wonder
whether it has a specific meaning. Otherwise, just about anything could be considered as
an instance of planning. Some common elements for planning problems will be discussed
shortly, but first we consider planning as a branch of algorithms. Hence, this book is
entitled Planning Algorithms. The primary focus is on algorithmic and computational
issues of planning problems that have arisen in several disciplines. On the other hand, this
does not mean that planning algorithms refers to an existing community of researchers
within the general algorithms community. This book it not limited to combinatorics and
asymptotic complexity analysis, which is the main focus in pure algorithms. The focus
here includes numerous concepts that are not necessarily algorithmic but aid in modeling,
solving, and analyzing planning problems.

Natural questions at this point are, What is a plan? How is a plan represented? How is it
computed? What is it supposed to achieve? How is its quality evaluated? Who or what is
going to use it? This chapter provides general answers to these questions. Regarding the
user of the plan, it clearly depends on the application. In most applications, an algorithm
executes the plan; however, the user could even be a human. Imagine, for example, that
the planning algorithm provides you with an investment strategy.

In this book, the user of the plan will frequently be referred to as a robot or a decision
maker. In artificial intelligence and related areas, it has become popular in recent years
to use the term agent, possibly with adjectives to yield an intelligent agent or software
agent. Control theory usually refers to the decision maker as a controller. The plan in this
context is sometimes referred to as a policy or control law. In a game-theoretic context, it
might make sense to refer to decision makers as players. Regardless of the terminology
used in a particular discipline, this book is concerned with planning algorithms that find a
strategy for one or more decision makers. Therefore, remember that terms such as robot,
agent, and controller are interchangeable.

1.2 Motivational examples and applications

Planning problems abound. This section surveys several examples and applications to
inspire you to read further.

Why study planning algorithms? There are at least two good reasons. First, it is fun
to try to get machines to solve problems for which even humans have great difficulty.
This involves exciting challenges in modeling planning problems, designing efficient
algorithms, and developing robust implementations. Second, planning algorithms have
achieved widespread successes in several industries and academic disciplines, including
robotics, manufacturing, drug design, and aerospace applications. The rapid growth in
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Figure 1.1: The Rubik’s cube (a), sliding-tile puzzle (b), and other related puzzles are examples of discrete
planning problems.

Figure 1.2: Remember puzzles like this? Imagine trying to solve one with an algorithm. The goal is to
pull the two bars apart. This example is called the Alpha 1.0 Puzzle. It was created by Boris Yamrom and
posted as a research benchmark by Nancy Amato at Texas A&M University. This solution and animation
were made by James Kuffner (see [561] for the full movie).

recent years indicates that many more fascinating applications may be on the horizon.
These are exciting times to study planning algorithms and contribute to their development
and use.

Discrete puzzles, operations, and scheduling

Chapter 2 covers discrete planning, which can be applied to solve familiar puzzles, such
as those shown in Figure 1.1. They are also good at games such as chess or bridge [899].
Discrete planning techniques have been used in space applications, including a rover that
traveled on Mars and the Earth Observing One satellite [209, 384, 897]. When combined
with methods for planning in continuous spaces, they can solve complicated tasks such
as determining how to bend sheet metal into complicated objects [422]; see Section 7.5
for the related problem of folding cartons.

A motion planning puzzle

The puzzles in Figure 1.1 can be easily discretized because of the regularity and symme-
tries involved in moving the parts. Figure 1.2 shows a problem that lacks these properties
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Figure 1.3: An automotive assembly task that involves inserting or removing a windshield wiper motor
from a car body cavity. This problem was solved for clients using the motion planning software of Kineo
CAM (courtesy of Kineo CAM).

and requires planning in a continuous space. Such problems are solved by using the mo-
tion planning techniques of Part II. This puzzle was designed to frustrate both humans
and motion planning algorithms. It can be solved in a few minutes on a standard per-
sonal computer (PC) using the techniques in Section 5.5. Many other puzzles have been
developed as benchmarks for evaluating planning algorithms.

An automotive assembly puzzle

Although the problem in Figure 1.2 may appear to be pure fun and games, similar problems
arise in important applications. For example, Figure 1.3 shows an automotive assembly
problem for which software is needed to determine whether a wiper motor can be inserted
(and removed) from the car body cavity. Traditionally, such a problem is solved by
constructing physical models. This costly and time-consuming part of the design process
can be virtually eliminated in software by directly manipulating the CAD models.

The wiper example is just one of many. The most widespread impact on industry comes
from motion planning software developed at Kineo CAM. It has been integrated into
Robcad (eM-Workplace) from Tecnomatix, which is a leading tool for designing robotic
workcells in numerous factories around the world. Their software has also been applied to
assembly problems by Renault, Ford, Airbus, Optivus, and many other major corporations.
Other companies and institutions are also heavily involved in developing and delivering
motion planning tools for industry (many are secret projects, which unfortunately cannot
be described here). One of the first instances of motion planning applied to real assembly
problems is documented in [188].

Sealing cracks in automotive assembly

Figure 1.4 shows a simulation of robots performing sealing at the Volvo Cars assembly
plant in Torslanda, Sweden. Sealing is the process of using robots to spray a sticky
substance along the seams of a car body to prevent dirt and water from entering and causing
corrosion. The entire robot workcell is designed using CAD tools, which automatically
provide the necessary geometric models for motion planning software. The solution shown
in Figure 1.4 is one of many problems solved for Volvo Cars and others using motion
planning software developed by the Fraunhofer Chalmers Centre (FCC). Using motion
planning software, engineers need only specify the high-level task of performing the
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Figure 1.4: An application of motion planning to the sealing process in automotive manufacturing. Planning
software developed by the Fraunhofer Chalmers Centre (FCC) is used at the Volvo Cars plant in Sweden
(courtesy of Volvo Cars and FCC).

sealing, and the robot motions are computed automatically. This saves enormous time and
expense in the manufacturing process.

Moving furniture

Returning to pure entertainment, the problem shown in Figure 1.5 involves moving a grand
piano across a room using three mobile robots with manipulation arms mounted on them.
The problem is humorously inspired by the phrase Piano Mover’s Problem. Collisions
between robots and with other pieces of furniture must be avoided. The problem is further
complicated because the robots, piano, and floor form closed kinematic chains, which are
covered in Sections 4.4 and 7.4.

Navigating mobile robots

A more common task for mobile robots is to request them to navigate in an indoor
environment, as shown in Figure 1.6a. A robot might be asked to perform tasks such
as building a map of the environment, determining its precise location within a map, or
arriving at a particular place. Acquiring and manipulating information from sensors is
quite challenging and is covered in Chapters 11 and 12. Most robots operate in spite of
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Figure 1.5: Using mobile robots to move a piano [246].

5

4

1

3

2

(a) (b)

Figure 1.6: (a) Several mobile robots attempt to successfully navigate in an indoor environment while
avoiding collisions with the walls and each other. (b) Imagine using a lantern to search a cave for missing
people.

large uncertainties. At one extreme, it may appear that having many sensors is beneficial
because it could allow precise estimation of the environment and the robot position
and orientation. This is the premise of many existing systems, as shown for the robot
system in Figure 1.7, which constructs a map of its environment. It may alternatively be
preferable to develop low-cost and reliable robots that achieve specific tasks with little
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(a) (b) (c)

(d) (e) (f)

Figure 1.7: A mobile robot can reliably construct a good map of its environment (here, the Intel Re-
search Lab) while simultaneously localizing itself. This is accomplished using laser scanning sensors and
performing ef�cient Bayesian computations on the information space [353].

or no sensing. These trade-offs are carefully considered in Chapters 11 and 12. Planning
under uncertainty is the focus of Part III.

If there are multiple robots, then many additional issues arise. How can the robots
communicate? How can their information be integrated? Should their coordination be
centralized or distributed? How can collisions between them be avoided? Do they each
achieve independent tasks, or are they required to collaborate in some way? If they are
competing in some way, then concepts from game theory may apply. Therefore, some
game theory appears in Sections 9.3, 9.4, 10.5, 11.7, and 13.5.

Playing hide and seek

One important task for a mobile robot is playing the game of hide and seek. Imagine
entering a cave in complete darkness. You are given a lantern and asked to search for any
people who might be moving about, as shown in Figure 1.6b. Several questions might
come to mind. Does a strategy even exist that guarantees I will find everyone? If not,
then how many other searchers are needed before this task can be completed? Where
should I move next? Can I keep from exploring the same places multiple times? This
scenario arises in many robotics applications. The robots can be embedded in surveil-
lance systems that use mobile robots with various types of sensors (motion, thermal,
cameras, etc.). In scenarios that involve multiple robots with little or no communication,
the strategy could help one robot locate others. One robot could even try to locate another
that is malfunctioning. Outside of robotics, software tools can be developed that assist
people in systematically searching or covering complicated environments, for applica-
tions such as law enforcement, search and rescue, toxic cleanup, and in the architectural
design of secure buildings. The problem is extremely difficult because the status of the
pursuit must be carefully computed to avoid unnecessarily allowing the evader to sneak
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Figure 1.8: Across the top, a motion computed by a planning algorithm, for a digital actor to reach into a
refrigerator [502]. In the lower left, a digital actor plays chess with a virtual robot [547]. In the lower right, a
planning algorithm computes the motions of 100 digital actors moving across terrain with obstacles [594].

back to places already searched. The information-space concepts of Chapter 11 become
critical in solving the problem. For an algorithmic solution to the hide-and-seek game,
see Section 12.4.

Making smart video game characters

The problem in Figure 1.6b might remind you of a video game. In the arcade classic
Pacman, the ghosts are programmed to seek the player. Modern video games involve
human-like characters that exhibit much more sophisticated behavior. Planning algorithms
can enable game developers to program character behaviors at a higher level, with the
expectation that the character can determine on its own how to move in an intelligent way.

At present there is a large separation between the planning-algorithm and video-game
communities. Some developers of planning algorithms are recently considering more of
the particular concerns that are important in video games. Video-game developers have
to invest too much energy at present to adapt existing techniques to their problems. For
recent books that are geared for game developers, see [154, 373].

Virtual humans and humanoid robots

Beyond video games, there is broader interest in developing virtual humans. See Fig-
ure 1.8. In the field of computer graphics, computer-generated animations are a primary
focus. Animators would like to develop digital actors that maintain many elusive style
characteristics of human actors while at the same time being able to design motions for
them from high-level descriptions. It is extremely tedious and time consuming to specify
all motions frame-by-frame. The development of planning algorithms in this context is
rapidly expanding.
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(a) (b)

Figure 1.9: (a) This is a picture of the H7 humanoid robot and one of its developers, S. Kagami. It was
developed in the JSK Laboratory at the University of Tokyo. (b) Bringing virtual reality and physical reality
together. A planning algorithm computes stable motions for a humanoid to grab an obstructed object on
the � oor [564].

(a) (b)

Figure 1.10: Humanoid robots from the Japanese automotive industry: (a) The latest Asimo robot from
Honda can run at 3 km/hr (courtesy of Honda); (b) planning is incorporated with vision in the Toyota
humanoid so that it plans to grasp objects [451].

Why stop at virtual humans? The Japanese robotics community has inspired the world
with its development of advanced humanoid robots. In 1997, Honda shocked the world by
unveiling an impressive humanoid that could walk up stairs and recover from lost balance.
Since that time, numerous corporations and institutions have improved humanoid designs.
Although most of the mechanical issues have been worked out, two principle difficulties
that remain are sensing and planning. What good is a humanoid robot if it cannot be
programmed to accept high-level commands and execute them autonomously? Figure 1.9
shows work from the University of Tokyo for which a plan computed in simulation for
a humanoid robot is actually applied on a real humanoid. Figure 1.10 shows humanoid
projects from the Japanese automotive industry.
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(a) (b)

Figure 1.11: Some parking illustrations from government manuals for driver testing: (a) parking a car (from
the 2005 Missouri Driver Guide); (b) parking a tractor trailer (published by the Pennsylvania Division of
Motor Vehicles). Both humans and planning algorithms can solve these problems.

(a) (b)

Figure 1.12: (a) Having a little fun with differential constraints. An obstacle-avoiding path is shown for a
car that must move forward and can only turn left. Could you have found such a solution on your own?
This is an easy problem for several planning algorithms. (b) This gigantic truck was designed to transport
portions of the Airbus A380 across France. Kineo CAM developed nonholonomic planning software that
plans routes through villages that avoid obstacles and satisfy differential constraints imposed by 20 steering
axles. Jean-Paul Laumond, a pioneer of nonholonomic planning, is also pictured.

Parking cars and trailers

The planning problems discussed so far have not involved differential constraints, which
are the main focus in Part IV. Consider the problem of parking slow-moving vehicles,
as shown in Figure 1.11. Most people have a little difficulty with parallel parking a car
and much greater difficulty parking a truck with a trailer. Imagine the difficulty of par-
allel parking an airport baggage train! See Chapter 13 for many related examples. What
makes these problems so challenging? A car is constrained to move in the direction that
the rear wheels are pointing. Maneuvering the car around obstacles therefore becomes
challenging. If all four wheels could turn to any orientation, this problem would van-
ish. The term nonholonomic planning encompasses parking problems and many others.
Figure 1.12a shows a humorous driving problem. Figure 1.12b shows an extremely compli-
cated vehicle for which nonholonomic planning algorithms were developed and applied in
industry.
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(a) (b)

Figure 1.13: Reckless driving: (a) Using a planning algorithm to drive a car quickly through an obstacle
course [201]. (b) A contender developed by the Red Team from Carnegie Mellon University in the DARPA
Grand Challenge for autonomous vehicles driving at high speeds over rugged terrain (courtesy of the Red
Team).

“Wreckless” driving

Now consider driving the car at high speeds. As the speed increases, the car must be treated
as a dynamical system due to momentum. The car is no longer able to instantaneously
start and stop, which was reasonable for parking problems. Although there exist planning
algorithms that address such issues, there are still many unsolved research problems. The
impact on industry has not yet reached the level achieved by ordinary motion planning, as
shown in Figures 1.3 and 1.4. By considering dynamics in the design process, performance
and safety evaluations can be performed before constructing the vehicle. Figure 1.13 shows
a solution computed by a planning algorithm that determines how to steer a car at high
speeds through a town while avoiding collisions with buildings. A planning algorithm
could even be used to assess whether a sports utility vehicle tumbles sideways when
stopping too quickly. Tremendous time and costs can be spared by determining design
flaws early in the development process via simulations and planning. One related problem
is verification, in which a mechanical system design must be thoroughly tested to make
sure that it performs as expected in spite of all possible problems that could go wrong
during its use. Planning algorithms can also help in this process. For example, the algorithm
can try to violently crash a vehicle, thereby establishing that a better design is needed.

Aside from aiding in the design process, planning algorithms that consider dynamics
can be directly embedded into robotic systems. Figure 1.13b shows an application that
involves a difficult combination of most of the issues mentioned so far. Driving across
rugged, unknown terrain at high speeds involves dynamics, uncertainties, and obstacle
avoidance. Numerous unsolved research problems remain in this context.

Flying through the air or in space

Driving naturally leads to flying. Planning algorithms can help to navigate autonomous
helicopters through obstacles. They can also compute thrusts for a spacecraft so that colli-
sions are avoided around a complicated structure, such as a space station. In Section 14.1.3,
the problem of designing entry trajectories for a reusable spacecraft is described. Mission
planning for interplanetary spacecraft, including solar sails, can even be performed using
planning algorithms [439].



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

14 INTRODUCTORY MATERIAL

Caffeine Ibuprofen AutoDock

Nicotine THC AutoDock

Figure 1.14: On the left, several familiar drugs are pictured as ball-and-stick models (courtesy of the New
York University MathMol Library [737]). On the right, 3D models of protein-ligand docking are shown from
the AutoDock software package (courtesy of the Scripps Research Institute).

Designing better drugs

Planning algorithms are even impacting fields as far away from robotics as computational
biology. Two major problems are protein folding and drug design. In both cases, scientists
attempt to explain behaviors in organisms by the way large organic molecules interact.
Such molecules are generally flexible. Drug molecules are small (see Figure 1.14), and
proteins usually have thousands of atoms. The docking problem involves determining
whether a flexible molecule can insert itself into a protein cavity, as shown in Figure 1.14,
while satisfying other constraints, such as maintaining low energy. Once geometric models
are applied to molecules, the problem looks very similar to the assembly problem in
Figure 1.3 and can be solved by motion planning algorithms. See Section 7.5 and the
literature at the end of Chapter 7.

Perspective

Planning algorithms have been applied to many more problems than those shown here.
In some cases, the work has progressed from modeling, to theoretical algorithms, to
practical software that is used in industry. In other cases, substantial research remains to
bring planning methods to their full potential. The future holds tremendous excitement
for those who participate in the development and application of planning algorithms.

1.3 Basic ingredients of planning

Although the subject of this book spans a broad class of models and problems, there are
several basic ingredients that arise throughout virtually all of the topics covered as part of
planning.

State

Planning problems involve a state space that captures all possible situations that could
arise. The state could, for example, represent the position and orientation of a robot, the
locations of tiles in a puzzle, or the position and velocity of a helicopter. Both discrete
(finite, or countably infinite) and continuous (uncountably infinite) state spaces will be
allowed. One recurring theme is that the state space is usually represented implicitly by a
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planning algorithm. In most applications, the size of the state space (in terms of number
of states or combinatorial complexity) is much too large to be explicitly represented.
Nevertheless, the definition of the state space is an important component in the formulation
of a planning problem and in the design and analysis of algorithms that solve it.

Time

All planning problems involve a sequence of decisions that must be applied over time. Time
might be explicitly modeled, as in a problem such as driving a car as quickly as possible
through an obstacle course. Alternatively, time may be implicit, by simply reflecting the
fact that actions must follow in succession, as in the case of solving the Rubik’s cube.
The particular time is unimportant, but the proper sequence must be maintained. Another
example of implicit time is a solution to the Piano Mover’s Problem; the solution to
moving the piano may be converted into an animation over time, but the particular speed
is not specified in the plan. As in the case of state spaces, time may be either discrete or
continuous. In the latter case, imagine that a continuum of decisions is being made by a
plan.

Actions

A plan generates actions that manipulate the state. The terms actions and operators are
common in artificial intelligence; in control theory and robotics, the related terms are
inputs and controls. Somewhere in the planning formulation, it must be specified how the
state changes when actions are applied. This may be expressed as a state-valued function
for the case of discrete time or as an ordinary differential equation for continuous time.
For most motion planning problems, explicit reference to time is avoided by directly
specifying a path through a continuous state space. Such paths could be obtained as the
integral of differential equations, but this is not necessary. For some problems, actions
could be chosen by nature, which interfere with the outcome and are not under the control
of the decision maker. This enables uncertainty in predictability to be introduced into the
planning problem; see Chapter 10.

Initial and goal states

A planning problem usually involves starting in some initial state and trying to arrive at a
specified goal state or any state in a set of goal states. The actions are selected in a way
that tries to make this happen.

A criterion

This encodes the desired outcome of a plan in terms of the state and actions that are
executed. There are generally two different kinds of planning concerns based on the type
of criterion:

1. Feasibility: Find a plan that causes arrival at a goal state, regardless of its efficiency.

2. Optimality: Find a feasible plan that optimizes performance in some carefully specified
manner, in addition to arriving in a goal state.

For most of the problems considered in this book, feasibility is already challenging enough;
achieving optimality is considerably harder for most problems. Therefore, much of the
focus is on finding feasible solutions to problems, as opposed to optimal solutions. The
majority of literature in robotics, control theory, and related fields focuses on optimality,
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Figure 1.15: According to the Church-Turing thesis, the notion of an algorithm is equivalent to the notion
of a Turing machine.

but this is not necessarily important for many problems of interest. In many applications, it
is difficult to even formulate the right criterion to optimize. Even if a desirable criterion can
be formulated, it may be impossible to obtain a practical algorithm that computes optimal
plans. In such cases, feasible solutions are certainly preferable to having no solutions
at all. Fortunately, for many algorithms the solutions produced are not too far from
optimal in practice. This reduces some of the motivation for finding optimal solutions.
For problems that involve probabilistic uncertainty, however, optimization arises more
frequently. The probabilities are often utilized to obtain the best performance in terms of
expected costs. Feasibility is often associated with performing a worst-case analysis of
uncertainties.

A plan

In general, a plan imposes a specific strategy or behavior on a decision maker. A plan may
simply specify a sequence of actions to be taken; however, it could be more complicated.
If it is impossible to predict future states, then the plan can specify actions as a function
of state. In this case, regardless of the future states, the appropriate action is determined.
Using terminology from other fields, this enables feedback or reactive plans. It might
even be the case that the state cannot be measured. In this case, the appropriate action
must be determined from whatever information is available up to the current time. This
will generally be referred to as an information state, on which the actions of a plan are
conditioned.

1.4 Algorithms, planners, and plans

1.4.1 Algorithms

What is a planning algorithm? This is a difficult question, and a precise mathematical
definition will not be given in this book. Instead, the general idea will be explained,
along with many examples of planning algorithms. A more basic question is, What
is an algorithm? One answer is the classical Turing machine model, which is used to
define an algorithm in theoretical computer science. A Turing machine is a finite state
machine with a special head that can read and write along an infinite piece of tape, as
depicted in Figure 1.15. The Church-Turing thesis states that an algorithm is a Turing
machine (see [465, 892] for more details). The input to the algorithm is encoded as a
string of symbols (usually a binary string) and then is written to the tape. The Turing
machine reads the string, performs computations, and then decides whether to accept
or reject the string. This version of the Turing machine only solves decision problems;
however, there are straightforward extensions that can yield other desired outputs, such as a
plan.
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Machine

Sensing
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(a) (b)

Figure 1.16: (a) The boundary between machine and environment is considered as an arbitrary line that
may be drawn in many ways depending on the context. (b) Once the boundary has been drawn, it is
assumed that the machine, M, interacts with the environment, E, through sensing and actuation.

Infinite Row of Switches

Turing
Robot

Figure 1.17: A robot and an in�nite sequence of switches could be used to simulate a Turing machine.
Through manipulation, however, many other kinds of behavior could be obtained that fall outside of the
Turing model.

The Turing model is reasonable for many of the algorithms in this book; however,
others may not exactly fit. The trouble with using the Turing machine in some situations is
that plans often interact with the physical world. As indicated in Figure 1.16, the boundary
between the machine and the environment is an arbitrary line that varies from problem to
problem. Once drawn, sensors provide information about the environment; this provides
input to the machine during execution. The machine then executes actions, which provides
actuation to the environment. The actuation may alter the environment in some way that
is later measured by sensors. Therefore, the machine and its environment are closely
coupled during execution. This is fundamental to robotics and many other fields in which
planning is used.

Using the Turing machine as a foundation for algorithms usually implies that the
physical world must be first carefully modeled and written on the tape before the algorithm
can make decisions. If changes occur in the world during execution of the algorithm, then
it is not clear what should happen. For example, a mobile robot could be moving in a
cluttered environment in which people are walking around. As another example, a robot
might throw an object onto a table without being able to precisely predict how the object
will come to rest. It can take measurements of the results with sensors, but it again
becomes a difficult task to determine how much information should be explicitly modeled
and written on the tape. The on-line algorithm model is more appropriate for these kinds
of problems [513, 771, 893]; however, it still does not capture a notion of algorithms that
is broad enough for all of the topics of this book.

Processes that occur in a physical world are more complicated than the interaction
between a state machine and a piece of tape filled with symbols. It is even possible to
simulate the tape by imagining a robot that interacts with a long row of switches as
depicted in Figure 1.17. The switches serve the same purpose as the tape, and the robot
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Figure 1.18: (a) A planner produces a plan that may be executed by the machine. The planner may either
be a machine itself or even a human. (b) Alternatively, the planner may design the entire machine.

carries a computer that can simulate the finite state machine.1 The complicated interaction
allowed between a robot and its environment could give rise to many other models of
computation.2 Thus, the term algorithm will be used somewhat less formally than in the
theory of computation. Both planners and plans are considered as algorithms in this book.

1.4.2 Planners

A planner simply constructs a plan and may be a machine or a human. If the planner is a
machine, it will generally be considered as a planning algorithm. In many circumstances
it is an algorithm in the strict Turing sense; however, this is not necessary. In some cases,
humans become planners by developing a plan that works in all situations. For example,
it is perfectly acceptable for a human to design a state machine that is connected to the
environment (see Section 12.3.1). There are no additional inputs in this case because
the human fulfills the role of the algorithm. The planning model is given as input to the
human, and the human “computes” a plan.

1.4.3 Plans

Once a plan is determined, there are three ways to use it:

1. Execution: Execute it either in simulation or in a mechanical device (robot) connected to
the physical world.

2. Refinement: Refine it into a better plan.

3. Hierarchical Inclusion: Package it as an action in a higher level plan.

Each of these will be explained in succession.

Execution

A plan is usually executed by a machine. A human could alternatively execute it; however,
the case of machine execution is the primary focus of this book. There are two general
types of machine execution. The first is depicted in Figure 1.18a, in which the planner

1 Of course, having infinitely long tape seems impossible in the physical world. Other versions of Turing machines
exist in which the tape is finite but as long as necessary to process the given input. This may be more appropriate
for the discussion.

2 Performing computations with mechanical systems is discussed in [818]. Computation models over the reals are
covered in [120].
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Figure 1.19: A re�nement approach that has been used for decades in robotics.

produces a plan, which is encoded in some way and given as input to the machine. In
this case, the machine is considered programmable and can accept possible plans from
a planner before execution. It will generally be assumed that once the plan is given, the
machine becomes autonomous and can no longer interact with the planner. Of course,
this model could be extended to allow machines to be improved over time by receiving
better plans; however, we want a strict notion of autonomy for the discussion of planning
in this book. This approach does not prohibit the updating of plans in practice; however,
this is not preferred because plans should already be designed to take into account new
information during execution.

The second type of machine execution of a plan is depicted in Figure 1.18b. In this case,
the plan produced by the planner encodes an entire machine. The plan is a special-purpose
machine that is designed to solve the specific tasks given originally to the planner. Under
this interpretation, one may be a minimalist and design the simplest machine possible that
sufficiently solves the desired tasks. If the plan is encoded as a finite state machine, then it
can sometimes be considered as an algorithm in the Turing sense (depending on whether
connecting the machine to a tape preserves its operation).

Refinement

If a plan is used for refinement, then a planner accepts it as input and determines a new
plan that is hopefully an improvement. The new plan may take more problem aspects into
account, or it may simply be more efficient. Refinement may be applied repeatedly, to
produce a sequence of improved plans, until the final one is executed. Figure 1.19 shows
a refinement approach used in robotics. Consider, for example, moving an indoor mobile
robot. The first plan yields a collision-free path through the building. The second plan
transforms the route into one that satisfies differential constraints based on wheel motions
(recall Figure 1.11). The third plan considers how to move the robot along the path at
various speeds while satisfying momentum considerations. The fourth plan incorporates
feedback to ensure that the robot stays as close as possible to the planned path in spite of
unpredictable behavior. Further elaboration on this approach and its trade-offs appears in
Section 14.6.1.

Hierarchical inclusion

Under hierarchical inclusion, a plan is incorporated as an action in a larger plan. The
original plan can be imagined as a subroutine in the larger plan. For this to succeed, it
is important for the original plan to guarantee termination, so that the larger plan can
execute more actions as needed. Hierarchical inclusion can be performed any number of
times, resulting in a rooted tree of plans. This leads to a general model of hierarchical
planning. Each vertex in the tree is a plan. The root vertex represents the master plan.
The children of any vertex are plans that are incorporated as actions in the plan of the
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Figure 1.20: In a hierarchical model, the environment of one machine may itself contain a machine.

vertex. There is no limit to the tree depth or number of children per vertex. In hierarchical
planning, the line between machine and environment is drawn in multiple places. For
example, the environment, E1, with respect to a machine, M1, might actually include
another machine, M2, that interacts with its environment, E2, as depicted in Figure 1.20.
Examples of hierarchical planning appear in Sections 7.3.2 and 12.5.1.

1.5 Organization of the book

Here is a brief overview of the book. See also the overviews at the beginning of
Parts II–IV.

PART I: Introductory Material
This provides very basic background for the rest of the book.

• Chapter 1: Introductory Material
This chapter offers some general perspective and includes some motivational examples
and applications of planning algorithms.

• Chapter 2: Discrete Planning
This chapter covers the simplest form of planning and can be considered as a springboard
for entering into the rest of the book. From here, you can continue to Part II, or even head
straight to Part III. Sections 2.1 and 2.2 are most important for heading into Part II. For
Part III, Section 2.3 is additionally useful.

PART II: Motion Planning
The main source of inspiration for the problems and algorithms covered in this part is
robotics. The methods, however, are general enough for use in other applications in other
areas, such as computational biology, computer-aided design, and computer graphics. An
alternative title that more accurately reflects the kind of planning that occurs is “Planning
in Continuous State Spaces.”

• Chapter 3: Geometric Representations and Transformations
The chapter gives important background for expressing a motion planning problem.
Section 3.1 describes how to construct geometric models, and the remaining sections
indicate how to transform them. Sections 3.1 and 3.2 are important for later chapters.

• Chapter 4: The Configuration Space
This chapter introduces concepts from topology and uses them to formulate the configu-
ration space, which is the state space that arises in motion planning. Sections 4.1, 4.2, and
4.3.1 are important for understanding most of the material in later chapters. In addition to
the previously mentioned sections, all of Section 4.3 provides useful background for the
combinatorial methods of Chapter 6.

• Chapter 5: Sampling-Based Motion Planning
This chapter introduces motion planning algorithms that have dominated the literature in
recent years and have been applied in fields both in and out of robotics. If you understand
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the basic idea that the configuration space represents a continuous state space, most of
the concepts should be understandable. They even apply to other problems in which
continuous state spaces emerge, in addition to motion planning and robotics. Chapter 14
revisits sampling-based planning, but under differential constraints.

• Chapter 6: Combinatorial Motion Planning
The algorithms covered in this section are sometimes called exact algorithms because
they build discrete representations without losing any information. They are complete,
which means that they must find a solution if one exists; otherwise, they report failure.
The sampling-based algorithms have been more useful in practice, but they only achieve
weaker notions of completeness.

• Chapter 7: Extensions of Basic Motion Planning
This chapter introduces many problems and algorithms that are extensions of the methods
from Chapters 5 and 6. Most can be followed with basic understanding of the material
from these chapters. Section 7.4 covers planning for closed kinematic chains; this requires
an understanding of the additional material, from Section 4.4

• Chapter 8: Feedback Motion Planning
This is a transitional chapter that introduces feedback into the motion planning problem
but still does not introduce differential constraints, which are deferred until Part IV.
The previous chapters of Part II focused on computing open-loop plans, which means
that any errors that might occur during execution of the plan are ignored, yet the plan
will be executed as planned. Using feedback yields a closed-loop plan that responds to
unpredictable events during execution.

PART III: Decision-Theoretic Planning
An alternative title to Part III is “Planning Under Uncertainty.” Most of Part III addresses
discrete state spaces, which can be studied immediately following Part I. However, some
sections cover extensions to continuous spaces; to understand these parts, it will be helpful
to have read some of Part II.

• Chapter 9: Basic Decision Theory
The main idea in this chapter is to design the best decision for a decision maker that
is confronted with interference from other decision makers. The others may be true
opponents in a game or may be fictitious in order to model uncertainties. The chapter
focuses on making a decision in a single step and provides a building block for Part III
because planning under uncertainty can be considered as multi-step decision making.

• Chapter 10: Sequential Decision Theory
This chapter takes the concepts from Chapter 9 and extends them by chaining together
a sequence of basic decision-making problems. Dynamic programming concepts from
Section 2.3 become important here. For all of the problems in this chapter, it is assumed
that the current state is always known. All uncertainties that exist are with respect to
prediction of future states, as opposed to measuring the current state.

• Chapter 11: Sensors and Information Spaces
The chapter extends the formulations of Chapter 10 into a framework for planning when
the current state is unknown during execution. Information regarding the state is obtained
from sensor observations and the memory of actions that were previously applied. The
information space serves a similar purpose for problems with sensing uncertainty as the
configuration space has for motion planning.

• Chapter 12: Planning Under Sensing Uncertainty
This chapter covers several planning problems and algorithms that involve sensing un-
certainty. This includes problems such as localization, map building, pursuit-evasion, and
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manipulation. All of these problems are unified under the idea of planning in information
spaces, which follows from Chapter 11.

PART IV: Planning Under Differential Constraints
This can be considered as a continuation of Part II. Here there can be both global (obstacles)
and local (differential) constraints on the continuous state spaces that arise in motion
planning. Dynamical systems are also considered, which yields state spaces that include
both position and velocity information (this coincides with the notion of a state space in
control theory or a phase space in physics and differential equations).

• Chapter 13: Differential Models
This chapter serves as an introduction to Part IV by introducing numerous models that
involve differential constraints. This includes constraints that arise from wheels rolling as
well as some that arise from the dynamics of mechanical systems.

• Chapter 14: Sampling-Based Planning Under Differential Constraints
Algorithms for solving planning problems under the models of Chapter 13 are presented.
Many algorithms are extensions of methods from Chapter 5. All methods are sampling-
based because very little can be accomplished with combinatorial techniques in the context
of differential constraints.

• Chapter 15: System Theory and Analytical Techniques
This chapter provides an overview of the concepts and tools developed mainly in control
theory literature. They are complementary to the algorithms of Chapter 14 and often
provide important insights or components in the development of planning algorithms
under differential constraints.
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Discrete Planning

This chapter provides introductory concepts that serve as an entry point into other parts of
the book. The planning problems considered here are the simplest to describe because the
state space will be finite in most cases. When it is not finite, it will at least be countably infi-
nite (i.e., a unique integer may be assigned to every state). Therefore, no geometric models
or differential equations will be needed to characterize the discrete planning problems.
Furthermore, no forms of uncertainty will be considered, which avoids complications
such as probability theory. All models are completely known and predictable.

There are three main parts to this chapter. Sections 2.1 and 2.2 define and present search
methods for feasible planning, in which the only concern is to reach a goal state. The search
methods will be used throughout the book in numerous other contexts, including motion
planning in continuous state spaces. Following feasible planning, Section 2.3 addresses
the problem of optimal planning. The principle of optimality, or the dynamic programming
principle, [86] provides a key insight that greatly reduces the computation effort in many
planning algorithms. The value-iteration method of dynamic programming is the main
focus of Section 2.3. The relationship between Dijkstra’s algorithm and value iteration
is also discussed. Finally, Sections 2.4 and 2.5 describe logic-based representations of
planning and methods that exploit these representations to make the problem easier to
solve; material from these sections is not needed in later chapters.

Although this chapter addresses a form of planning, it encompasses what is sometimes
referred to as problem solving. Throughout the history of artificial intelligence research,
the distinction between problem solving [738] and planning has been rather elusive. The
widely used textbook by Russell and Norvig [842] provides a representative, modern
survey of the field of artificial intelligence. Two of its six main parts are termed “problem-
solving” and “planning”; however, their definitions are quite similar. The problem-solving
part begins by stating, “Problem solving agents decide what to do by finding sequences
of actions that lead to desirable states” ([842], p. 59). The planning part begins with, “The
task of coming up with a sequence of actions that will achieve a goal is called planning”
([842], p. 375). Also, the STRIPS system [339] is widely considered as a seminal planning
algorithm, and the “PS” part of its name stands for “Problem Solver.” Thus, problem
solving and planning appear to be synonymous. Perhaps the term “planning” carries
connotations of future time, whereas “problem solving” sounds somewhat more general.
A problem-solving task might be to take evidence from a crime scene and piece together
the actions taken by suspects. It might seem odd to call this a “plan” because it occurred
in the past.

Since it is difficult to make clear distinctions between problem solving and planning,
we will simply refer to both as planning. This also helps to keep with the theme of this
book. Note, however, that some of the concepts apply to a broader set of problems than
what is often meant by planning.

23
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2.1 Introduction to discrete feasible planning

2.1.1 Problem formulation

The discrete feasible planning model will be defined using state-space models, which will
appear repeatedly throughout this book. Most of these will be natural extensions of the
model presented in this section. The basic idea is that each distinct situation for the world
is called a state, denoted by x, and the set of all possible states is called a state space, X.
For discrete planning, it will be important that this set is countable; in most cases it will be
finite. In a given application, the state space should be defined carefully so that irrelevant
information is not encoded into a state (e.g., a planning problem that involves moving a
robot in France should not encode information about whether certain light bulbs are on
in China). The inclusion of irrelevant information can easily convert a problem that is
amenable to efficient algorithmic solutions into one that is intractable. On the other hand,
it is important that X is large enough to include all information that is relevant to solve
the task.

The world may be transformed through the application of actions that are chosen by
the planner. Each action, u, when applied from the current state, x, produces a new state,
x ′, as specified by a state transition function, f . It is convenient to use f to express a state
transition equation,

x ′ = f (x, u). (2.1)

Let U (x) denote the action space for each state x, which represents the set of all actions
that could be applied from x. For distinct x, x ′ ∈ X, U (x) and U (x ′) are not necessarily
disjoint; the same action may be applicable in multiple states. Therefore, it is convenient
to define the set U of all possible actions over all states:

U =
⋃

x∈X

U (x). (2.2)

As part of the planning problem, a set XG ⊂ X of goal states is defined. The task of
a planning algorithm is to find a finite sequence of actions that when applied, transforms
the initial state xI to some state in XG. The model is summarized as:

Formulation 2.1 (Discrete feasible planning)

1. A nonempty state space X, which is a finite or countably infinite set of states.

2. For each state x ∈ X, a finite action space U (x).

3. A state transition function f that produces a state f (x, u) ∈ X for every x ∈ X and
u ∈ U (x). The state transition equation is derived from f as x ′ = f (x, u).

4. An initial state xI ∈ X.

5. A goal set XG ⊂ X.

It is often convenient to express Formulation 2.1 as a directed state transition graph.
The set of vertices is the state space X. A directed edge from x ∈ X to x ′ ∈ X exists in
the graph if and only if there exists an action u ∈ U (x) such that x ′ = f (x, u). The initial
state and goal set are designated as special vertices in the graph, which completes the
representation of Formulation 2.1 in graph form.
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Figure 2.1: The state transition graph for an example problem that involves walking around on an in�nite
tile �oor .

Figure 2.2: Interesting planning problems that involve exploring a labyrinth can be made by shading in
tiles.

2.1.2 Examples of discrete planning

Example 2.1 (Moving on a 2D Grid) Suppose that a robot moves on a grid in which
each grid point has integer coordinates of the form (i, j ). The robot takes discrete steps
in one of four directions (up, down, left, right), each of which increments or decre-
ments one coordinate. The motions and corresponding state transition graph are shown
in Figure 2.1, which can be imagined as stepping from tile to tile on an infinite tile
floor.

This will be expressed using Formulation 2.1. Let X be the set of all integer
pairs of the form (i, j ), in which i, j ∈ Z (Z denotes the set of all integers). Let
U = {(0, 1), (0,−1), (1, 0), (−1, 0)}. Let U (x) = U for all x ∈ X. The state transi-
tion equation is f (x, u) = x + u, in which x ∈ X and u ∈ U are treated as two-
dimensional vectors for the purpose of addition. For example, if x = (3, 4) and u = (0, 1),
then f (x, u) = (3, 5). Suppose for convenience that the initial state is xI = (0, 0). Many
interesting goal sets are possible. Suppose, for example, that XG = {(100, 100)}. It
is easy to find a sequence of inputs that transforms the state from (0, 0) to (100,

100).
The problem can be made more interesting by shading in some of the square tiles to

represent obstacles that the robot must avoid, as shown in Figure 2.2. In this case, any tile
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that is shaded has its corresponding vertex and associated edges deleted from the state
transition graph. An outer boundary can be made to fence in a bounded region so that X

becomes finite. Very complicated labyrinths can be constructed. �

Example 2.2 (Rubik’s Cube Puzzle) Many puzzles can be expressed as discrete plan-
ning problems. For example, the Rubik’s cube is a puzzle that looks like an array of
3 × 3 × 3 little cubes, which together form a larger cube as shown in Figure 1.1a (Section
1.2). Each face of the larger cube is painted one of six colors. An action may be applied
to the cube by rotating a 3 × 3 sheet of cubes by 90 degrees. After applying many actions
to the Rubik’s cube, each face will generally be a jumble of colors. The state space is
the set of configurations for the cube (the orientation of the entire cube is irrelevant).
For each state there are 12 possible actions. For some arbitrarily chosen configuration of
the Rubik’s cube, the planning task is to find a sequence of actions that returns it to the
configuration in which each one of its six faces is a single color. �

It is important to note that a planning problem is usually specified without explicitly
representing the entire state transition graph. Instead, it is revealed incrementally in the
planning process. In Example 2.1, very little information actually needs to be given to
specify a graph that is infinite in size. If a planning problem is given as input to an
algorithm, close attention must be paid to the encoding when performing a complexity
analysis. For a problem in which X is infinite, the input length must still be finite. For
some interesting classes of problems it may be possible to compactly specify a model that
is equivalent to Formulation 2.1. Such representation issues have been the basis of much
research in artificial intelligence over the past decades as different representation logics
have been proposed; see Section 2.4 and [384]. In a sense, these representations can be
viewed as input compression schemes.

Readers experienced in computer engineering might recognize that when X is finite,
Formulation 2.1 appears almost identical to the definition of a finite state machine or
Mealy/Moore machines. Relating the two models, the actions can be interpreted as inputs
to the state machine, and the output of the machine simply reports its state. Therefore,
the feasible planning problem (if X is finite) may be interpreted as determining whether
there exists a sequence of inputs that makes a finite state machine eventually report a
desired output. From a planning perspective, it is assumed that the planning algorithm has
a complete specification of the machine transitions and is able to read its current state at
any time.

Readers experienced with theoretical computer science may observe similar connec-
tions to a deterministic finite automaton (DFA), which is a special kind of finite state
machine that reads an input string and makes a decision about whether to accept or
reject the string. The input string is just a finite sequence of inputs, in the same sense
as for a finite state machine. A DFA definition includes a set of accept states, which in
the planning context can be renamed to the goal set. This makes the feasible planning
problem (if X is finite) equivalent to determining whether there exists an input string that
is accepted by a given DFA. Usually, a language is associated with a DFA, which is the
set of all strings it accepts. DFAs are important in the theory of computation because their
languages correspond precisely to regular expressions. The planning problem amounts to
determining whether the empty language is associated with the DFA.

Thus, there are several ways to represent and interpret the discrete feasible planning
problem that sometimes lead to a very compact, implicit encoding of the problem. This
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(a) (b)

Figure 2.3: (a) Many search algorithms focus too much on one direction, which may prevent them from
being systematic on in�nite graphs. (b) If, for example, the search carefully expands in wavefronts, then
it becomes systematic. The requirement to be systematic is that, in the limit, as the number of iterations
tends to in�nity , all reachable vertices are reached.

issue will be revisited in Section 2.4. Until then, basic planning algorithms are introduced
in Section 2.2, and discrete optimal planning is covered in Section 2.3.

2.2 Searching for feasible plans

The methods presented in this section are just graph search algorithms, but with the under-
standing that the state transition graph is revealed incrementally through the application
of actions, instead of being fully specified in advance. The presentation in this section can
therefore be considered as visiting graph search algorithms from a planning perspective.
An important requirement for these or any search algorithms is to be systematic. If the
graph is finite, this means that the algorithm will visit every reachable state, which enables
it to correctly declare in finite time whether or not a solution exists. To be systematic,
the algorithm should keep track of states already visited; otherwise, the search may run
forever by cycling through the same states. Ensuring that no redundant exploration occurs
is sufficient to make the search systematic.

If the graph is infinite, then we are willing to tolerate a weaker definition for being
systematic. If a solution exists, then the search algorithm still must report it in finite time;
however, if a solution does not exist, it is acceptable for the algorithm to search forever.
This systematic requirement is achieved by ensuring that, in the limit, as the number of
search iterations tends to infinity, every reachable vertex in the graph is explored. Since
the number of vertices is assumed to be countable, this must always be possible.

As an example of this requirement, consider Example 2.1 on an infinite tile floor
with no obstacles. If the search algorithm explores in only one direction, as depicted in
Figure 2.3a, then in the limit most of the space will be left uncovered, even though no
states are revisited. If instead the search proceeds outward from the origin in wavefronts,
as depicted in Figure 2.3b, then it may be systematic. In practice, each search algorithm
has to be carefully analyzed. A search algorithm could expand in multiple directions,
or even in wavefronts, but still not be systematic. If the graph is finite, then it is much
simpler: Virtually any search algorithm is systematic, provided that it marks visited states
to avoid revisiting the same states indefinitely.
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FORWARD SEARCH
1 Q.Insert(xI ) and mark xI as visited
2 while Q not empty do
3 x ← Q.GetF irst()
4 if x ∈ XG

5 return SUCCESS
6 forall u ∈ U (x)
7 x ′ ← f (x, u)
8 if x ′ not visited
9 Mark x ′ as visited
10 Q.Insert(x ′)
11 else
12 Resolve duplicate x ′

13 return FAILURE

Figure 2.4: A general template for forward search.

2.2.1 General forward search

Figure 2.4 gives a general template of search algorithms, expressed using the state-space
representation. At any point during the search, there will be three kinds of states:

1. Unvisited: States that have not been visited yet. Initially, this is every state except xI .

2. Dead: States that have been visited, and for which every possible next state has also
been visited. A next state of x is a state x ′ for which there exists a u ∈ U (x) such that
x ′ = f (x, u). In a sense, these states are dead because there is nothing more that they can
contribute to the search; there are no new leads that could help in finding a feasible plan.
Section 2.3.3 discusses a variant in which dead states can become alive again in an effort
to obtain optimal plans.

3. Alive: States that have been encountered and possibly some adjacent states that have not
been visited. These are considered alive. Initially, the only alive state is xI .

The set of alive states is stored in a priority queue, Q, for which a priority function
must be specified. The only significant difference between various search algorithms is
the particular function used to sort Q. Many variations will be described later, but for
the time being, it might be helpful to pick one. Therefore, assume for now that Q is a
common FIFO (First-In First-Out) queue; whichever state has been waiting the longest
will be chosen when Q.GetF irst() is called. The rest of the general search algorithm
is quite simple. Initially, Q contains the initial state xI . A while loop is then executed,
which terminates only when Q is empty. This will only occur when the entire graph has
been explored without finding any goal states, which results in a FAILURE (unless the
reachable portion of X is infinite, in which case the algorithm should never terminate).
In each while iteration, the highest ranked element, x, of Q is removed. If x lies in XG,
then it reports SUCCESS and terminates; otherwise, the algorithm tries applying every
possible action, u ∈ U (x). For each next state, x ′ = f (x, u), it must determine whether
x ′ is being encountered for the first time. If it is unvisited, then it is inserted into Q;
otherwise, there is no need to consider it because it must be either dead or already in Q.

The algorithm description in Figure 2.4 omits several details that often become im-
portant in practice. For example, how efficient is the test to determine whether x ∈ XG

in line 4? This depends, of course, on the size of the state space and on the particular
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representations chosen for x and XG. At this level, we do not specify a particular method
because the representations are not given.

One important detail is that the existing algorithm only indicates whether a solution
exists, but does not seem to produce a plan, which is a sequence of actions that achieves
the goal. This can be fixed by inserting a line after line 7 that associates with x ′ its parent,
x. If this is performed each time, one can simply trace the pointers from the final state to
the initial state to recover the plan. For convenience, one might also store which action
was taken, in addition to the pointer from x ′ to x.

Lines 8 and 9 are conceptually simple, but how can one tell whether x ′ has been visited?
For some problems the state transition graph might actually be a tree, which means that
there are no repeated states. Although this does not occur frequently, it is wonderful
when it does because there is no need to check whether states have been visited. If the
states in X all lie on a grid, one can simply make a lookup table that can be accessed in
constant time to determine whether a state has been visited. In general, however, it might
be quite difficult because the state x ′ must be compared with every other state in Q and
with all of the dead states. If the representation of each state is long, as is sometimes the
case, this will be very costly. A good hashing scheme or another clever data structure can
greatly alleviate this cost, but in many applications the computation time will remain high.
One alternative is to simply allow repeated states, but this could lead to an increase in
computational cost that far outweighs the benefits. Even if the graph is very small, search
algorithms could run in time exponential in the size of the state transition graph, or the
search may not terminate at all, even if the graph is finite.

One final detail is that some search algorithms will require a cost to be computed and
associated with every state. If the same state is reached multiple times, the cost may have
to be updated, which is performed in line 12, if the particular search algorithm requires
it. Such costs may be used in some way to sort the priority queue, or they may enable
the recovery of the plan on completion of the algorithm. Instead of storing pointers, as
mentioned previously, the optimal cost to return to the initial state could be stored with
each state. This cost alone is sufficient to determine the action sequence that leads to any
visited state. Starting at a visited state, the path back to xI can be obtained by traversing the
state transition graph backward in a way that decreases the cost as quickly as possible in
each step. For this to succeed, the costs must have a certain monotonicity property, which
is obtained by Dijkstra’s algorithm and A∗ search, and will be introduced in Section 2.2.2.
More generally, the costs must form a navigation function, which is considered in Section
8.2.2 as feedback is incorporated into discrete planning.

2.2.2 Particular forward search methods

This section presents several search algorithms, each of which constructs a search tree.
Each search algorithm is a special case of the algorithm in Figure 2.4, obtained by defining
a different sorting function for Q. Most of these are just classical graph search algorithms
[245].

Breadth first

The method given in Section 2.2.1 specifies Q as a First-In First-Out (FIFO) queue, which
selects states using the first-come, first-serve principle. This causes the search frontier to
grow uniformly and is therefore referred to as breadth-first search. All plans that have
k steps are exhausted before plans with k + 1 steps are investigated. Therefore, breadth
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first guarantees that the first solution found will use the smallest number of steps. On
detection that a state has been revisited, there is no work to do in line 12. Since the search
progresses in a series of wavefronts, breadth-first search is systematic. In fact, it even
remains systematic if it does not keep track of repeated states (however, it will waste time
considering irrelevant cycles).

The asymptotic running time of breadth-first search is O(|V | + |E|), in which |V | and
|E| are the numbers of vertices and edges, respectively, in the state transition graph (recall,
however, that the graph is usually not the input; for example, the input may be the rules
of the Rubik’s cube). This assumes that all basic operations, such as determining whether
a state has been visited, are performed in constant time. In practice, these operations will
typically require more time and must be counted as part of the algorithm’s complexity.
The running time can be expressed in terms of the other representations. Recall that
|V | = |X| is the number of states. If the same actions U are available from every state,
then |E| = |U ||X|. If the action sets U (x1) and U (x2) are pairwise disjoint for any
x1, x2 ∈ X, then |E| = |U |.

Depth first

By making Q a stack (Last-In, First-Out; or LIFO), aggressive exploration of the state
transition graph occurs, as opposed to the uniform expansion of breadth-first search.
The resulting variant is called depth-first search because the search dives quickly into
the graph. The preference is toward investigating longer plans very early. Although this
aggressive behavior might seem desirable, note that the particular choice of longer plans
is arbitrary. Actions are applied in the forall loop in whatever order they happen to be
defined. Once again, if a state is revisited, there is no work to do in line 12. Depth-first
search is systematic for any finite X but not for an infinite X because it could behave like
Figure 2.3a. The search could easily focus on one “direction” and completely miss large
portions of the search space as the number of iterations tends to infinity. The running time
of depth first search is also O(|V | + |E|).

Dijkstra’s algorithm

Up to this point, there has been no reason to prefer one action over any other in the search.
Section 2.3 will formalize optimal discrete planning and will present several algorithms
that find optimal plans. Before going into that, we present a systematic search algorithm
that finds optimal plans because it is also useful for finding feasible plans. The result is the
well-known Dijkstra’s algorithm for finding single-source shortest paths in a graph [275],
which is a special form of dynamic programming. More general dynamic programming
computations appear in Section 2.3 and throughout the book.

Suppose that every edge, e ∈ E, in the graph representation of a discrete planning
problem has an associated nonnegative cost l(e), which is the cost to apply the action. The
cost l(e) could be written using the state-space representation as l(x, u), indicating that it
costs l(x, u) to apply action u from state x. The total cost of a plan is just the sum of the
edge costs over the path from the initial state to a goal state.

The priority queue, Q, will be sorted according to a function C : X → [0,∞], called
the cost-to-come. For each state x, the value C∗(x) is called the optimal1 cost-to-come
from the initial state xI . This optimal cost is obtained by summing edge costs, l(e), over

1 As in optimization literature, we will use ∗ to mean optimal.
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all possible paths from xI to x and using the path that produces the least cumulative cost.
If the cost is not known to be optimal, then it is written as C(x).

The cost-to-come is computed incrementally during the execution of the search algo-
rithm in Figure 2.4. Initially, C∗(xI ) = 0. Each time the state x ′ is generated, a cost is
computed as C(x ′) = C∗(x) + l(e), in which e is the edge from x to x ′ (equivalently, we
may write C(x ′) = C∗(x) + l(x, u)). Here, C(x ′) represents the best cost-to-come that is
known so far, but we do not write C∗ because it is not yet known whether x ′ was reached
optimally. Due to this, some work is required in line 12. If x ′ already exists in Q, then it is
possible that the newly discovered path to x ′ is more efficient. If so, then the cost-to-come
value C(x ′) must be lowered for x ′, and Q must be reordered accordingly.

When does C(x) finally become C∗(x) for some state x? Once x is removed from Q

using Q.GetF irst(), the state becomes dead, and it is known that x cannot be reached
with a lower cost. This can be argued by induction. For the initial state, C∗(xI ) is known,
and this serves as the base case. Now assume that every dead state has its optimal cost-
to-come correctly determined. This means that their cost-to-come values can no longer
change. For the first element, x, of Q, the value must be optimal because any path that has
a lower total cost would have to travel through another state in Q, but these states already
have higher costs. All paths that pass only through dead states were already considered in
producing C(x). Once all edges leaving x are explored, then x can be declared as dead, and
the induction continues. This is not enough detail to constitute a proof of optimality; more
arguments appear in Section 2.3.3 and in [245]. The running time is O(|V | lg |V | + |E|),
in which |V | and |E| are the numbers of edges and vertices, respectively, in the graph
representation of the discrete planning problem. This assumes that the priority queue is
implemented with a Fibonacci heap, and that all other operations, such as determining
whether a state has been visited, are performed in constant time. If other data structures
are used to implement the priority queue, then higher running times may be obtained.

A-star

The A∗ (pronounced “ay star”) search algorithm is an extension of Dijkstra’s algorithm
that tries to reduce the total number of states explored by incorporating a heuristic estimate
of the cost to get to the goal from a given state. Let C(x) denote the cost-to-come from xI

to x, and let G(x) denote the cost-to-go from x to some state in XG. It is convenient that
C∗(x) can be computed incrementally by dynamic programming; however, there is no way
to know the true optimal cost-to-go, G∗, in advance. Fortunately, in many applications
it is possible to construct a reasonable underestimate of this cost. As an example of a
typical underestimate, consider planning in the labyrinth depicted in Figure 2.2. Suppose
that the cost is the total number of steps in the plan. If one state has coordinates (i, j ) and
another has (i ′, j ′), then |i ′ − i| + |j ′ − j | is an underestimate because this is the length
of a straightforward plan that ignores obstacles. Once obstacles are included, the cost can
only increase as the robot tries to get around them (which may not even be possible). Of
course, zero could also serve as an underestimate, but that would not provide any helpful
information to the algorithm. The aim is to compute an estimate that is as close as possible
to the optimal cost-to-go and is also guaranteed to be no greater. Let Ĝ∗(x) denote such
an estimate.

The A∗ search algorithm works in exactly the same way as Dijkstra’s algorithm. The
only difference is the function used to sort Q. In the A∗ algorithm, the sum C∗(x ′) + Ĝ∗(x ′)
is used, implying that the priority queue is sorted by estimates of the optimal cost from
xI to XG. If Ĝ∗(x) is an underestimate of the true optimal cost-to-go for all x ∈ X, the
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xI

xG

Figure 2.5: Here is a troublesome example for best-�rst search. Imagine trying to reach a state that is
directly below the spiral tube. If the initial state starts inside of the opening at the top of the tube, the search
will progress around the spiral instead of leaving the tube and heading straight for the goal.

A∗ algorithm is guaranteed to find optimal plans [339, 780]. As Ĝ∗ becomes closer to G∗,
fewer vertices tend to be explored in comparison with Dijkstra’s algorithm. This would
always seem advantageous, but in some problems it is difficult or impossible to find a
heuristic that is both efficient to evaluate and provides good search guidance. Note that
when Ĝ∗(x) = 0 for all x ∈ X, then A∗ degenerates to Dijkstra’s algorithm. In any case,
the search will always be systematic.

Best first

For best-first search, the priority queue is sorted according to an estimate of the optimal
cost-to-go. The solutions obtained in this way are not necessarily optimal; therefore, it does
not matter whether the estimate exceeds the true optimal cost-to-go, which was important
to maintain optimality for A∗ search. Although optimal solutions are not found, in many
cases, far fewer vertices are explored, which results in much faster running times. There
is no guarantee, however, that this will happen. The worst-case performance of best-first
search is worse than that of A∗ search and dynamic programming. The algorithm is often
too greedy because it prefers states that “look good” very early in the search. Sometimes
the price must be paid for being greedy! Figure 2.5 shows a contrived example in which
the planning problem involves taking small steps in a 3D world. For any specified number,
k, of steps, it is easy to construct a spiral example that wastes at least k steps in comparison
to Dijkstra’s algorithm. Note that best-first search is not systematic.

Iterative deepening

The iterative deepening approach is usually preferable if the search tree has a large
branching factor (i.e., there are many more vertices in the next level than in the current
level). This could occur if there are many actions per state and only a few states are
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revisited. The idea is to use depth-first search and find all states that are distance i or less
from xI . If the goal is not found, then the previous work is discarded, and depth first is
applied to find all states of distance i + 1 or less from xI . This generally iterates from
i = 1 and proceeds indefinitely until the goal is found. Iterative deepening can be viewed
as a way of converting depth-first search into a systematic search method. The motivation
for discarding the work of previous iterations is that the number of states reached for i + 1
is expected to far exceed (e.g., by a factor of 10) the number reached for i. Therefore, once
the commitment has been made to reach level i + 1, the cost of all previous iterations is
negligible.

The iterative deepening method has better worst-case performance than breadth-first
search for many problems. Furthermore, the space requirements are reduced because the
queue in breadth-first search is usually much larger than for depth-first search. If the
nearest goal state is i steps from xI , breadth-first search in the worst case might reach
nearly all states of distance i + 1 before terminating successfully. This occurs each time
a state x 	∈ XG of distance i from xI is reached because all new states that can be reached
in one step are placed onto Q. The A∗ idea can be combined with iterative depending to
yield IDA∗, in which i is replaced by C∗(x ′) + Ĝ∗(x ′). In each iteration of IDA∗, the
allowed total cost gradually increases [780].

2.2.3 Other general search schemes

This section covers two other general templates for search algorithms. The first one is
simply a “backward” version of the tree search algorithm in Figure 2.4. The second one
is a bidirectional approach that grows two search trees, one from the initial state and one
from a goal state.

Backward search

Backward versions of any of the forward search algorithms of Section 2.2.2 can be made.
For example, a backward version of Dijkstra’s algorithm can be made by starting from
xG. To create backward search algorithms, suppose that there is a single goal state, xG.
For many planning problems, it might be the case that the branching factor is large when
starting from xI . In this case, it might be more efficient to start the search at a goal state and
work backward until the initial state is encountered. A general template for this approach
is given in Figure 2.6. For forward search, recall that an action u ∈ U (x) is applied from
x ∈ X to obtain a new state, x ′ = f (x, u). For backward search, a frequent computation
will be to determine for some x ′, the preceding state x ∈ X, and action u ∈ U (x) such
that x ′ = f (x, u). The template in Figure 2.6 can be extended to handle a goal region,
XG, by inserting all xG ∈ XG into Q in line 1 and marking them as visited.

For most problems, it may be preferable to precompute a representation of the state
transition function, f , that is “backward” to be consistent with the search algorithm.
Some convenient notation will now be constructed for the backward version of f . Let
U−1 = {(x, u) ∈ X × U | x ∈ X, u ∈ U (x)}, which represents the set of all state-action
pairs and can also be considered as the domain of f . Imagine from a given state x ′ ∈ X,
the set of all (x, u) ∈ U−1 that map to x ′ using f . This can be considered as a backward
action space, defined formally for any x ′ ∈ X as

U−1(x ′) = {(x, u) ∈ U−1 | x ′ = f (x, u)}. (2.3)
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BACKWARD SEARCH
1 Q.Insert(xG) and mark xG as visited
2 while Q not empty do
3 x ′ ← Q.GetF irst()
4 if x = xI

5 return SUCCESS
6 forall u−1 ∈ U−1(x)
7 x ← f −1(x ′, u−1)
8 if x not visited
9 Mark x as visited
10 Q.Insert(x)
11 else
12 Resolve duplicate x

13 return FAILURE

Figure 2.6: A general template for backward search.

For convenience, let u−1 denote a state-action pair (x, u) that belongs to some U−1(x ′).
From any u−1 ∈ U−1(x ′), there is a unique x ∈ X. Thus, let f −1 denote a backward state
transition function that yields x from x ′ and u−1 ∈ U−1(x ′). This defines a backward state
transition equation, x = f −1(x ′, u−1), which looks very similar to the forward version,
x ′ = f (x, u).

The interpretation of f −1 is easy to capture in terms of the state transition graph:
reverse the direction of every edge. This makes finding a plan in the reversed graph using
backward search equivalent to finding one in the original graph using forward search.
The backward state transition function is the variant of f that is obtained after reversing
all of the edges. Each u−1 is a reversed edge. Since there is a perfect symmetry with
respect to the forward search of Section 2.2.1, any of the search algorithm variants from
Section 2.2.2 can be adapted to the template in Figure 2.6, provided that f −1 has been
defined.

Bidirectional search

Now that forward and backward search have been covered, the next reasonable idea is to
conduct a bidirectional search. The general search template given in Figure 2.7 can be
considered as a combination of the two in Figures 2.4 and 2.6. One tree is grown from
the initial state, and the other is grown from the goal state (assume again that XG is a
singleton, {xG}). The search terminates with success when the two trees meet. Failure
occurs if either priority queue has been exhausted. For many problems, bidirectional
search can dramatically reduce the amount of required exploration. There are Dijkstra
and A∗ variants of bidirectional search, which lead to optimal solutions. For best-first and
other variants, it may be challenging to ensure that the two trees meet quickly. They might
come very close to each other and then fail to connect. Additional heuristics may help
in some settings to guide the trees into each other. One can even extend this framework
to allow any number of search trees. This may be desirable in some applications, but
connecting the trees becomes even more complicated and expensive.
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BIDIRECTIONAL SEARCH
1 QI .Insert(xI ) and mark xI as visited
2 QG.Insert(xG) and mark xG as visited
3 while QI not empty and QG not empty do
4 if QI not empty
5 x ← QI .GetF irst()
6 if x = xG or x ∈ QG

7 return SUCCESS
8 forall u ∈ U (x)
9 x ′ ← f (x, u)
10 if x ′ not visited
11 Mark x ′ as visited
12 QI .Insert(x ′)
13 else
14 Resolve duplicate x ′

15 if QG not empty
16 x ′ ← QG.GetF irst()
17 if x ′ = xI or x ′ ∈ QI

18 return SUCCESS
19 forall u−1 ∈ U−1(x ′)
20 x ← f −1(x ′, u−1)
21 if x not visited
22 Mark x as visited
23 QG.Insert(x)
24 else
25 Resolve duplicate x

26 return FAILURE

Figure 2.7: A general template for bidirectional search.

2.2.4 A unified view of the search methods

It is convenient to summarize the behavior of all search methods in terms of several basic
steps. Variations of these steps will appear later for more complicated planning problems.
For example, in Section 5.4, a large family of sampling-based motion planning algorithms
can be viewed as an extension of the steps presented here. The extension in this case
is made from a discrete state space to a continuous state space (called the configuration
space). Each method incrementally constructs a search graph, G(V, E), which is the
subgraph of the state transition graph that has been explored so far.

All of the planning methods from this section followed the same basic template:

1. Initialization: Let the search graph, G(V,E), be initialized with E empty and V contain-
ing some starting states. For forward search, V = {xI }; for backward search, V = {xG}. If
bidirectional search is used, then V = {xI , xG}. It is possible to grow more than two trees
and merge them during the search process. In this case, more states can be initialized in V .
The search graph will incrementally grow to reveal more and more of the state transition
graph.
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2. Select Vertex: Choose a vertex ncur ∈ V for expansion; this is usually accomplished by
maintaining a priority queue. Let xcur denote the state associated with ncur .

3. Apply an Action: In either a forward or backward direction, a new state, xnew, is obtained.
This may arise from xnew = f (x, u) for some u ∈ U (x) (forward) or x = f (xnew, u) for
some u ∈ U (xnew) (backward).

4. Insert a Directed Edge into the Graph: If certain algorithm-specific tests are passed,
then generate an edge from x to xnew for the forward case, or an edge from xnew to x for
the backward case. If xnew is not yet in V , it will be inserted into V .2

5. Check for Solution: Determine whether G encodes a path from xI to xG. If there is a
single search tree, then this is trivial. If there are two or more search trees, then this step
could be expensive.

6. Return to Step 2: Iterate unless a solution has been found or an early termination condition
is satisfied, in which case the algorithm reports failure.

Note that in this summary, several iterations may have to be made to generate one
iteration in the previous formulations. The forward search algorithm in Figure 2.4 tries all
actions for the first element of Q. If there are k actions, this corresponds to k iterations in
the template above.

2.3 Discrete optimal planning

This section extends Formulation 2.1 to allow optimal planning problems to be defined.
Rather than being satisfied with any sequence of actions that leads to the goal set, suppose
we would like a solution that optimizes some criterion, such as time, distance, or energy
consumed. Three important extensions will be made: 1) A stage index will be used
to conveniently indicate the current plan step; 2) a cost functional will be introduced,
which behaves like a taxi meter by indicating how much cost accumulates during the
plan execution; and 3) a termination action will be introduced, which intuitively indicates
when it is time to stop the plan and fix the total cost.

The presentation involves three phases. First, the problem of finding optimal paths of
a fixed length is covered in Section 2.3.1. The approach, called value iteration, involves
iteratively computing optimal cost-to-go functions over the state space. Although this
case is not very useful by itself, it is much easier to understand than the general case of
variable-length plans. Once the concepts from this section are understood, their extension
to variable-length plans will be much clearer and is covered in Section 2.3.2. Finally, Sec-
tion 2.3.3 explains the close relationship between value iteration and Dijkstra’s algorithm,
which was covered in Section 2.2.1.

With nearly all optimization problems, there is the arbitrary, symmetric choice of
whether to define a criterion to minimize or maximize. If the cost is a kind of energy or
expense, then minimization seems sensible, as is typical in robotics and control theory.
If the cost is a kind of reward, as in investment planning or in most AI books, then
maximization is preferred. Although this issue remains throughout the book, we will
choose to minimize everything. If maximization is instead preferred, then multiplying the
costs by −1 and swapping minimizations with maximizations should suffice.

2 In some variations, the vertex could be added without a corresponding edge. This would start another tree in a
multiple-tree approach
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The fixed-length optimal planning formulation will be given shortly, but first we intro-
duce some new notation. Let πK denote a K-step plan, which is a sequence (u1, u2, . . .,
uK ) of K actions. If πK and xI are given, then a sequence of states, (x1, x2, . . . , xK+1), can
be derived using the state transition function, f . Initially, x1 = xI , and each subsequent
state is obtained by xk+1 = f (xk, uk).

The model is now given; the most important addition with respect to Formulation 2.1
is L, the cost functional.

Formulation 2.2 (Discrete Fixed-Length Optimal Planning)

1. All of the components from Formulation 2.1 are inherited directly: X, U (x), f , xI , and
XG, except here it is assumed that X is finite (some algorithms may easily extend to the
case in which X is countably infinite, but this will not be considered here).

2. A number, K , of stages, which is the exact length of a plan (measured as the number of
actions, u1, u2, . . . , uK ). States may also obtain a stage index. For example, xk+1 denotes
the state obtained after uk is applied.

3. Let L denote a stage-additive cost (or loss) functional, which is applied to a K-step
plan, πK . This means that the sequence (u1, . . . , uK ) of actions and the sequence
(x1, . . . , xK+1) of states may appear in an expression of L. For convenience, let F

denote the final stage, F = K + 1 (the application of uK advances the stage to K + 1).
The cost functional is

L(πK ) =
K∑

k=1

l(xk, uk) + lF (xF ). (2.4)

The cost term l(xk, uk) yields a real value for every xk ∈ X and uk ∈ U (xk). The final term
lF (xF ) is outside of the sum and is defined as lF (xF ) = 0 if xF ∈ XG, and lF (xF ) = ∞
otherwise.

An important comment must be made regarding lF . Including lF in (2.4) is actually
unnecessary if it is agreed in advance that L will only be applied to evaluate plans that reach
XG. It would then be undefined for all other plans. The algorithms to be presented shortly
will also function nicely under this assumption; however, the notation and explanation
can become more cumbersome because the action space must always be restricted to
ensure that successful plans are produced. Instead of this, the domain of L is extended to
include all plans, and those that do not reach XG are penalized with infinite cost so that
they are eliminated automatically in any optimization steps. At some point, the role of
lF may become confusing, and it is helpful to remember that it is just a trick to convert
feasibility constraints into a straightforward optimization (L(πK ) = ∞means not feasible
and L(πK ) < ∞ means feasible with cost L(πK )).

Now the task is to find a plan that minimizes L. To obtain a feasible planning problem
like Formulation 2.1 but restricted to K-step plans, let l(x, u) ≡ 0. To obtain a planning
problem that requires minimizing the number of stages, let l(x, u) ≡ 1. The possibility
also exists of having goals that are less “crisp” by letting lF (x) vary for different x ∈ XG,
as opposed to lF (x) = 0. This is much more general than what was allowed with feasible
planning because now states may take on any value, as opposed to being classified as
inside or outside of XG.
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2.3.1 Optimal fixed-length plans

Consider computing an optimal plan under Formulation 2.2. One could naively generate
all length-K sequences of actions and select the sequence that produces the best cost,
but this would require O(|U |K ) running time (imagine K nested loops, one for each
stage), which is clearly prohibitive. Luckily, the dynamic programming principle helps.
We first say in words what will appear later in equations. The main observation is that
portions of optimal plans are themselves optimal. It would be absurd to be able to replace
a portion of an optimal plan with a portion that produces lower total cost; this contradicts
the optimality of the original plan.

The principle of optimality leads directly to an iterative algorithm, called value itera-
tion,3 that can solve a vast collection of optimal planning problems, including those that
involve variable-length plans, stochastic uncertainties, imperfect state measurements, and
many other complications. The idea is to iteratively compute optimal cost-to-go (or cost-
to-come) functions over the state space. In some cases, the approach can be reduced to
Dijkstra’s algorithm; however, this only occurs under some special conditions. The value-
iteration algorithm will be presented next, and Section 2.3.3 discusses its connection to
Dijkstra’s algorithm.

2.3.1.1 Backward value iteration

As for the search methods, there are both forward and backward versions of the approach.
The backward case will be covered first. Even though it may appear superficially to be
easier to progress from xI , it turns out that progressing backward from XG is notationally
simpler. The forward case will then be covered once some additional notation is introduced.

The key to deriving long optimal plans from shorter ones lies in the construction of
optimal cost-to-go functions over X. For k from 1 to F , let G∗

k denote the cost that
accumulates from stage k to F under the execution of the optimal plan:

G∗
k(xk) = min

uk,...,uK

{
K∑

i=k

l(xi, ui) + lF (xF )

}
. (2.5)

Inside of the min of (2.5) are the last F − k terms of the cost functional, (2.4). The optimal
cost-to-go for the boundary condition of k = F reduces to

G∗
F (xF ) = lF (xF ). (2.6)

This makes intuitive sense: Since there are no stages in which an action can be applied,
the final stage cost is immediately received.

Now consider an algorithm that makes K passes over X, each time computing G∗
k from

G∗
k+1, as k ranges from F down to 1. In the first iteration, G∗

F is copied from lF without
significant effort. In the second iteration, G∗

K is computed for each xK ∈ X as

G∗
K (xK ) = min

uK

{
l(xK, uK ) + lF (xF )

}
. (2.7)

Since lF = G∗
F and xF = f (xK, uK ), substitutions can be made into (2.7) to obtain

G∗
K (xK ) = min

uK

{
l(xK, uK ) +G∗

F (f (xK, uK ))
}
, (2.8)

3 The “value” here refers to the optimal cost-to-go or cost-to-come. Therefore, an alternative name could be cost-to-go
iteration.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 39

which is straightforward to compute for each xK ∈ X. This computes the costs of all
optimal one-step plans from stage K to stage F = K + 1.

It will be shown next that G∗
k can be computed similarly once G∗

k+1 is given. Carefully
study (2.5) and note that it can be written as

G∗
k(xk) = min

uk

{
min

uk+1,...,uK

{
l(xk, uk) +

K∑

i=k+1

l(xi, ui) + lF (xF )

}}
(2.9)

by pulling the first term out of the sum and by separating the minimization over uk from
the rest, which range from uk+1 to uK . The second min does not affect the l(xk, uk) term;
thus, l(xk, uk) can be pulled outside to obtain

G∗
k(xk) = min

uk

{
l(xk, uk) + min

uk+1,...,uK

{
K∑

i=k+1

l(xi, ui) + l(xF )

}}
. (2.10)

The inner min is exactly the definition of the optimal cost-to-go function G∗
k+1. Upon

substitution, this yields the recurrence

G∗
k(xk) = min

uk

{
l(xk, uk) +G∗

k+1(xk+1)
}
, (2.11)

in which xk+1 = f (xk, uk). Now that the right side of (2.11) depends only on xk , uk , and
G∗

k+1, the computation of G∗
k easily proceeds in O(|X||U |) time. This computation is

called a value iteration. Note that in each value iteration, some states receive an infinite
value only because they are not reachable; a (K − k)-step plan from xk to XG does not
exist. This means that there are no actions, uk ∈ U (xk), that bring xk to a state xk+1 ∈ X

from which a (K − k − 1)-step plan exists that terminates in XG.
Summarizing, the value iterations proceed as follows:

G∗
F → G∗

K → G∗
K−1 · · · G∗

k → G∗
k−1 · · · G∗

2 → G∗
1 (2.12)

until finally G∗
1 is determined after O(K|X||U |) time. The resulting G∗

1 may be applied
to yield G∗

1(xI ), the optimal cost to go to the goal from xI . It also conveniently gives the
optimal cost-to-go from any other initial state. This cost is infinity for states from which
XG cannot be reached in K stages.

It seems convenient that the cost of the optimal plan can be computed so easily, but
how is the actual plan extracted? One possibility is to store the action that satisfied the
min in (2.11) from every state, and at every stage. Unfortunately, this requires O(K|X|)
storage, but it can be reduced to O(|X|) using the tricks to come in Section 2.3.2 for the
more general case of variable-length plans.

Example 2.3 (A Five-State Optimal Planning Problem) Figure 2.8 shows a graph
representation of a planning problem in which X = {a, c, b, d, e}. Suppose that K = 4,
xI = a, and XG = {d}. There will hence be four value iterations, which construct G∗

4, G∗
3,

G∗
2, and G∗

1, once the final-stage cost-to-go, G∗
5, is given.

The cost-to-go functions are shown in Figure 2.9. Figures 2.10 and 2.11 illustrate the
computations. For computing G∗

4, only b and c receive finite values because only they can
reach d in one stage. For computing G∗

3, only the values G∗
4(b) = 4 and G∗

4(c) = 1 are
important. Only paths that reach b or c can possibly lead to d in stage k = 5. Note that
the minimization in (2.11) always chooses the action that produces the lowest total cost
when arriving at a vertex in the next stage. �
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1 112
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1 1

b ca2 d e

Figure 2.8: A � ve-state example. Each vertex represents a state, and each edge represents an input that
can be applied to the state transition equation to change the state. The weights on the edges represent
l(xk, uk) (xk is the originating vertex of the edge).

a b c d e

G∗
5 ∞ ∞ ∞ 0 ∞

G∗
4 ∞ 4 1 ∞ ∞

G∗
3 6 2 ∞ 2 ∞

G∗
2 4 6 3 ∞ ∞

G∗
1 6 4 5 4 ∞

Figure 2.9: The optimal cost-to-go functions computed by backward value iteration.

ba c d e

ba c d e

2 2 1

1

1 1

14

Figure 2.10: The possibilities for advancing forward one stage. This is obtained by making two copies of
the states from Figure 2.8, one copy for the current state and one for the potential next state.

2.3.1.2 Forward value iteration

The ideas from Section 2.3.1.1 may be recycled to yield a symmetrically equivalent method
that computes optimal cost-to-come functions from the initial stage. Whereas backward
value iterations were able to find optimal plans from all initial states simultaneously,
forward value iterations can be used to find optimal plans to all states in X. In the
backward case, XG must be fixed, and in the forward case, xI must be fixed.

The issue of maintaining feasible solutions appears again. In the forward direction, the
role of lF is not important. It may be applied in the last iteration, or it can be dropped
altogether for problems that do not have a predetermined XG. However, one must force
all plans considered by forward value iteration to originate from xI . We again have the
choice of either making notation that imposes constraints on the action spaces or simply
adding a term that forces infeasible plans to have infinite cost. Once again, the latter will
be chosen here.

Let C∗
k denote the optimal cost-to-come from stage 1 to stage k, optimized over all

(k − 1)-step plans. To preclude plans that do not start at xI , the definition of C∗
1 is given

by

C∗
1 (x1) = lI (x1), (2.13)

in which lI is a new function that yields lI (xI ) = 0, and lI (x) = ∞ for all x 	= xI . Thus,
any plans that try to start from a state other than xI will immediately receive infinite cost.
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Figure 2.11: By turning Figure 2.10 sideways and copying it K times, a graph can be drawn that easily
shows all of the ways to arrive at a �nal state from an initial state by � owing from left to right. The
computations automatically select the optimal route.

For an intermediate stage, k ∈ {2, . . . , K}, the following represents the optimal cost-
to-come:

C∗
k (xk) = min

u1,...,uk−1

{
lI (x1) +

k−1∑

i=1

l(xi, ui)

}
. (2.14)

Note that the sum refers to a sequence of states, x1, . . . , xk−1, which is the result of
applying the action sequence (u1, . . . , uk−2). The last state, xk , is not included because its
cost term, l(xk, uk), requires the application of an action, uk , which has not been chosen.
If it is possible to write the cost additively, as l(xk, uk) = l1(xk) + l2(uk), then the l1(xk)
part could be included in the cost-to-come definition, if desired. This detail will not be
considered further.

As in (2.5), it is assumed in (2.14) that ui ∈ U (xi) for every i ∈ {1, . . . , k − 1}. The
resulting xk , obtained after applying uk−1, must be the same xk that is named in the
argument on the left side of (2.14). It might appear odd that x1 appears inside of the min
above; however, this is not a problem. The state x1 can be completely determined once
u1, . . . , uk−1 and xk are given.

The final forward value iteration is the arrival at the final stage, F . The cost-to-come
in this case is

C∗
K (xF ) = min

u1,...,uK

{
lI (x1) +

K∑

i=1

l(xi, ui)

}
. (2.15)

This equation looks the same as (2.8), but lI is used instead of lF . This has the effect of
filtering the plans that are considered to include only those that start at xI . The forward
value iterations find optimal plans to any reachable final state from xI . This behavior
is complementary to that of backward value iteration. In that case, XG was fixed, and
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a b c d e

C∗
1 0 ∞ ∞ ∞ ∞

C∗
2 2 2 ∞ ∞ ∞

C∗
3 4 4 3 6 ∞

C∗
4 4 6 5 4 7

C∗
5 6 6 5 6 5

Figure 2.12: The optimal cost-to-come functions computed by forward value iteration.

optimal plans from any initial state were found. For forward value iteration, this is
reversed.

To express the dynamic-programming recurrence, one further issue remains. Suppose
that C∗

k−1 is known by induction, and we want to compute C∗
k (xk) for a particular xk . This

means that we must start at some state xk−1 and arrive in state xk by applying some action.
Once again, the backward state transition equation from Section 2.2.3 is useful. Using the
stage indices, it is written here as xk−1 = f −1(xk, u

−1
k ).

The recurrence is

C∗
k (xk) = min

u−1∈U−1(xk )

{
C∗

k−1(xk−1) + l(xk−1, uk−1)
}
, (2.16)

in which xk−1 = f −1(xk, u
−1
k ) and uk−1 ∈ U (xk−1) is the input to which u−1

k ∈ U−1(xk)
corresponds. Using (2.16), the final cost-to-come is iteratively computed in O(K|X||U |)
time, as in the case of computing the first-stage cost-to-go in the backward value-iteration
method.

Example 2.4 (Forward Value Iteration) Example 2.3 is revisited for the case of forward
value iterations with a fixed plan length of K = 4. The cost-to-come functions shown in
Figure 2.12 are obtained by direct application of (2.16). It will be helpful to refer to
Figures 2.10 and 2.11 once again. The first row corresponds to the immediate application
of lI . In the second row, finite values are obtained for a and b, which are reachable in
one stage from xI = a. The iterations continue until k = 5, at which point that optimal
cost-to-come is determined for every state. �

2.3.2 Optimal plans of unspecified lengths

The value-iteration method for fixed-length plans can be generalized nicely to the case
in which plans of different lengths are allowed. There will be no bound on the maximal
length of a plan; therefore, the current case is truly a generalization of Formulation 2.1
because arbitrarily long plans may be attempted in efforts to reach XG. The model for
the general case does not require the specification of K but instead introduces a special
action, uT .

Formulation 2.3 (Discrete Optimal Planning)

1. All of the components from Formulation 2.1 are inherited directly: X, U (x), f , xI , and
XG. Also, the notion of stages from Formulation 2.2 is used.
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2. Let L denote a stage-additive cost functional, which may be applied to any K-step plan,
πK , to yield

L(πK ) =
K∑

k=1

l(xk, uk) + lF (xF ). (2.17)

In comparison with L from Formulation 2.2, the present expression does not consider K

as a predetermined constant. It will now vary, depending on the length of the plan. Thus,
the domain of L is much larger.

3. Each U (x) contains the special termination action, uT . If uT is applied at xk , then the action
is repeatedly applied forever, the state remains unchanged, and no more cost accumulates.
Thus, for all i ≥ k, ui = uT , xi = xk , and l(xi, uT ) = 0.

The termination action is the key to allowing plans of different lengths. It will appear
throughout this book. Suppose that value iterations are performed up to K = 5, and for
the problem there exists a two-step solution plan, (u1, u2), that arrives in XG from xI . This
plan is equivalent to the five-step plan (u1, u2, uT , uT , uT ) because the termination action
does not change the state, nor does it accumulate cost. The resulting five-step plan reaches
XG and costs the same as (u1, u2). With this simple extension, the forward and backward
value iteration methods of Section 2.3.1 may be applied for any fixed K to optimize over
all plans of length K or less (instead of fixing K).

The next step is to remove the dependency on K . Consider running backward value
iterations indefinitely. At some point, G∗

1 will be computed, but there is no reason why the
process cannot be continued onward to G∗

0, G∗
−1, and so on. Recall that xI is not utilized in

the backward value-iteration method; therefore, there is no concern regarding the starting
initial state of the plans. Suppose that backward value iteration was applied for K = 16
and was executed down to G∗

−8. This considers all plans of length 25 or less. Note that it
is harmless to add 9 to all stage indices to shift all of the cost-to-go functions. Instead of
running from G∗

−8 to G∗
16, they can run from G∗

1 to G∗
25 without affecting their values. The

index shifting is allowed because none of the costs depend on the particular index that is
given to the stage. The only important aspect of the value iterations is that they proceed
backward and consecutively from stage to stage.

Eventually, enough iterations will have been executed so that an optimal plan is known
from every state that can reach XG. From that stage, say k, onward, the cost-to-go
values from one value iteration to the next will be stationary, meaning that for all i ≤ k,
G∗

i−1(x) = G∗
i (x) for all x ∈ X. Once the stationary condition is reached, the cost-to-go

function no longer depends on a particular stage k. In this case, the stage index may be
dropped, and the recurrence becomes

G∗(x) = min
u

{
l(x, u) +G∗(f (x, u))

}
. (2.18)

Are there any conditions under which backward value iterations could be executed
forever, with each iteration producing a cost-to-go function for which some values are
different from the previous iteration? If l(x, u) is nonnegative for all x ∈ X and u ∈ U (x),
then this could never happen. It could certainly be true that, for any fixed K , longer
plans will exist, but this cannot be said of optimal plans. From every x ∈ X, there either
exists a plan that reaches XG with finite cost or there is no solution. For each state from
which there exists a plan that reaches XG, consider the number of stages in the optimal
plan. Consider the maximum number of stages taken from all states that can reach XG.
This serves as an upper bound on the number of value iterations before the cost-to-go
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becomes stationary. Any further iterations will just consider solutions that are worse than
the ones already considered (some may be equivalent due to the termination action and
shifting of stages). Some trouble might occur if l(x, u) contains negative values. If the
state transition graph contains a cycle for which total cost is negative, then it is preferable
to execute a plan that travels around the cycle forever, thereby reducing the total cost to
−∞. Therefore, we will assume that the cost functional is defined in a sensible way so
that negative cycles do not exist. Otherwise, the optimization model itself appears flawed.
Some negative values for l(x, u), however, are allowed as long as there are no negative
cycles. (It is straightforward to detect and report negative cycles before running the value
iterations.)

Since the particular stage index is unimportant, let k = 0 be the index of the final stage,
which is the stage at which the backward value iterations begin. Hence, G∗

0 is the final
stage cost, which is obtained directly from lF . Let −K denote the stage index at which
the cost-to-go values all become stationary. At this stage, the optimal cost-to-go function,
G∗ : X → R ∪ {∞}, is expressed by assigning G∗ = G∗

−K . In other words, the particular
stage index no longer matters. The value G∗(x) gives the optimal cost to go from state
x ∈ X to the specific goal state xG.

If the optimal actions are not stored during the value iterations, the optimal cost-to-go,
G∗, can be used to efficiently recover them. Consider starting from some x ∈ X. What is
the optimal next action? This is given by

u∗ = argmin
u∈U (x)

{
l(x, u) +G∗(f (x, u))

}
, (2.19)

in which argmin denotes the argument that achieves the minimum value of the expression.
The action minimizes an expression that is very similar to (2.11). The only differences
between (2.19) and (2.11) are that the stage indices are dropped in (2.19) because the
cost-to-go values no longer depend on them, and argmin is used so that u∗ is selected.
After applying u∗, the state transition equation is used to obtain x ′ = f (x, u∗), and (2.19)
may be applied again on x ′. This process continues until a state in XG is reached. This
procedure is based directly on the dynamic programming recurrence; therefore, it recovers
the optimal plan. The function G∗ serves as a kind of guide that leads the system from
any initial state into the goal set optimally. This can be considered as a special case of a
navigation function, which will be covered in Section 8.2.2.

As in the case of fixed-length plans, the direction of the value iterations can be reversed
to obtain a forward value-iteration method for the variable-length planning problem.
In this case, the backward state transition equation, f −1, is used once again. Also, the
initial cost term lI is used instead of lF , as in (2.14). The forward value-iteration method
starts at k = 1, and then iterates until the cost-to-come becomes stationary. Once again,
the termination action, uT , preserves the cost of plans that arrived at a state in earlier
iterations. Note that it is not required to specify XG. A counterpart to G∗ may be obtained,
from which optimal actions can be recovered. When the cost-to-come values become
stationary, an optimal cost-to-come function, C∗ : X → R ∪ {∞}, may be expressed by
assigning C∗ = C∗

F , in which F is the final stage reached when the algorithm terminates.
The value C∗(x) gives the cost of an optimal plan that starts from xI and reaches x. The
optimal action sequence for any specified goal xG ∈ X can be obtained using

argmin
u−1∈U−1

{
C∗(f −1(x, u−1)) + l(f −1(x, u−1), u′)

}
, (2.20)
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Figure 2.13: Compare this � gure to Figure 2.11, for which K was � xed at 4. The effect of the termination
action is depicted as dashed-line edges that yield 0 cost when traversed. This enables plans of all � nite
lengths to be considered. Also, the stages extend inde�nitely to the left (for the case of backward value
iteration).

a b c d e

G∗
0 ∞ ∞ ∞ 0 ∞

G∗
−1 ∞ 4 1 0 ∞

G∗
−2 6 2 1 0 ∞

G∗
−3 4 2 1 0 ∞

G∗
−4 4 2 1 0 ∞

G∗ 4 2 1 0 ∞
Figure 2.14: The optimal cost-to-go functions computed by backward value iteration applied in the case
of variable-length plans.

which is the forward counterpart of (2.19). The u′ is the action in U (f −1(x, u−1)) that
yields x when the state transition function, f , is applied. The iterations proceed backward
from xG and terminate when xI is reached.

Example 2.5 (Value Iteration for Variable-Length Plans) Once again, Example 2.3
is revisited; however, this time the plan length is not fixed due to the termination action.
Its effect is depicted in Figure 2.13 by the superposition of new edges that have zero cost.
It might appear at first that there is no incentive to choose nontermination actions, but
remember that any plan that does not terminate in state xG = d will receive infinite cost.

See Figure 2.14. After a few backward value iterations, the cost-to-go values become
stationary. After this point, the termination action is being applied from all reachable
states and no further cost accumulates. The final cost-to-go function is defined to be G∗.
Since d is not reachable from e, G∗(e) = ∞.
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a b c d e

C∗
1 ∞ 0 ∞ ∞ ∞

C∗
2 ∞ 0 1 4 ∞

C∗
3 2 0 1 2 5

C∗
4 2 0 1 2 3

C∗ 2 0 1 2 3

Figure 2.15: The optimal cost-to-come functions computed by forward value iteration applied in the case
of variable-length plans.

As an example of using (2.19) to recover optimal actions, consider starting from state
a. The action that leads to b is chosen next because the total cost 2 +G∗(b) = 4 is better
than 2 +G∗(a) = 6 (the 2 comes from the action cost). From state b, the optimal action
leads to c, which produces total cost 1 +G∗(c) = 1. Similarly, the next action leads to
d ∈ XG, which terminates the plan.

Using forward value iteration, suppose that xI = b. The following cost-to-come func-
tions shown in Figure 2.15 are obtained. For any finite value that remains constant from
one iteration to the next, the termination action was applied. Note that the last value
iteration is useless in this example. Once C∗

3 is computed, the optimal cost-to-come to
every possible state from xI is determined, and future cost-to-come functions are identical.
Therefore, the final cost-to-come is renamed C∗. �

2.3.3 Dijkstra revisited

So far two different kinds of dynamic programming have been covered. The value-
iteration method of Section 2.3.2 involves repeated computations over the entire state
space. Dijkstra’s algorithm from Section 2.2.2 flows only once through the state space,
but with the additional overhead of maintaining which states are alive.

Dijkstra’s algorithm can be derived by focusing on the forward value iterations, as in
Example 2.5, and identifying exactly where the “interesting” changes occur. Recall that
for Dijkstra’s algorithm, it was assumed that all costs are nonnegative. For any states that
are not reachable, their values remain at infinity. They are precisely the unvisited states.
States for which the optimal cost-to-come has already become stationary are dead. For
the remaining states, an initial cost is obtained, but this cost may be lowered one or more
times until the optimal cost is obtained. All states for which the cost is finite, but possibly
not optimal, are in the queue, Q.

After understanding value iteration, it is easier to understand why Dijkstra’s form of
dynamic programming correctly computes optimal solutions. It is clear that the unvisited
states will remain at infinity in both algorithms because no plan has reached them. It
is helpful to consider the forward value iterations in Example 2.5 for comparison. In a
sense, Dijkstra’s algorithm is very much like the value iteration, except that it efficiently
maintains the set of states within which cost-to-go values can change. It correctly inserts
any states that are reached for the first time, changing their cost-to-come from infinity
to a finite value. The values are changed in the same manner as in the value iterations.
At the end of both algorithms, the resulting values correspond to the stationary, optimal
cost-to-come, C∗.
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FORWARD LABEL CORRECTING(xG)
1 Set C(x) = ∞ for all x 	= xI , and set C(xI ) = 0
2 Q.Insert(xI )
3 while Q not empty do
4 x ← Q.GetF irst()
5 forall u ∈ U (x)
6 x ′ ← f (x, u)
7 if C(x) + l(x, u) < min{C(x ′), C(xG)} then
8 C(x ′) ← C(x) + l(x, u)
9 if x ′ 	= xG then
10 Q.Insert(x ′)

Figure 2.16: A generalization of Dijkstra’s algorithm, which upon termination produces an optimal plan (if
one exists) for any prioritization of Q, as long as X is �nite . Compare this to Figure 2.4.

If Dijkstra’s algorithm seems so clever, then why have we spent time covering the
value-iteration method? For some problems it may become too expensive to maintain
the sorted queue, and value iteration could provide a more efficient alternative. A more
important reason is that value iteration extends easily to a much broader class of problems.
Examples include optimal planning over continuous state spaces (Sections 8.5.2 and
14.5), stochastic optimal planning (Section 10.2), and computing dynamic game equilibria
(Section 10.5). In some cases, it is still possible to obtain a Dijkstra-like algorithm by
focusing the computation on the “interesting” region; however, as the model becomes
more complicated, it may be inefficient or impossible in practice to maintain this region.
Therefore, it is important to have a good understanding of both algorithms to determine
which is most appropriate for a given problem.

Dijkstra’s algorithm belongs to a broader family of label-correcting algorithms, which
all produce optimal plans by making small modifications to the general forward-search
algorithm in Figure 2.4. Figure 2.16 shows the resulting algorithm. The main difference
is to allow states to become alive again if a better cost-to-come is found. This enables
other cost-to-come values to be improved accordingly. This is not important for Dijkstra’s
algorithm and A∗ search because they only need to visit each state once. Thus, the
algorithms in Figures 2.4 and 2.16 are essentially the same in this case. However, the
label-correcting algorithm produces optimal solutions for any sorting of Q, including
FIFO (breadth first) and LIFO (depth first), as long as X is finite. If X is not finite, then the
issue of systematic search dominates because one must guarantee that states are revisited
sufficiently many times to guarantee that optimal solutions will eventually be found.

Another important difference between label-correcting algorithms and the standard
forward-search model is that the label-correcting approach uses the cost at the goal state
to prune away many candidate paths; this is shown in line 7. Thus, it is only formulated
to work for a single goal state; it can be adapted to work for multiple goal states, but
performance degrades. The motivation for including C(xG) in line 7 is that there is no
need to worry about improving costs at some state, x ′, if its new cost-to-come would be
higher than C(xG); there is no way it could be along a path that improves the cost to go to
xG. Similarly, xG is not inserted in line 10 because there is no need to consider plans that
have xG as an intermediate state. To recover the plan, either pointers can be stored from
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x to x ′ each time an update is made in line 7, or the final, optimal cost-to-come, C∗, can
be used to recover the actions using (2.20).

2.4 Using logic to formulate discrete planning

For many discrete planning problems that we would like a computer to solve, the state
space is enormous (e.g., 10100 states). Therefore, substantial effort has been invested in
constructing implicit encodings of problems in hopes that the entire state space does not
have to be explored by the algorithm to solve the problem. This will be a recurring theme
throughout this book; therefore, it is important to pay close attention to representations.
Many planning problems can appear trivial once everything has been explicitly given.

Logic-based representations have been popular for constructing such implicit repre-
sentations of discrete planning. One historical reason is that such representations were the
basis of the majority of artificial intelligence research during the 1950s–1980s. Another
reason is that they have been useful for representing certain kinds of planning prob-
lems very compactly. It may be helpful to think of these representations as compression
schemes. A string such as 010101010101... may compress very nicely, but it is impossible
to substantially compress a random string of bits. Similar principles are true for discrete
planning. Some problems contain a kind of regularity that enables them to be expressed
compactly, whereas for others it may be impossible to find such representations. This
is why there has been a variety of representation logics proposed through decades of
planning research.

Another reason for using logic-based representations is that many discrete planning
algorithms are implemented in large software systems. At some point, when these systems
solve a problem, they must provide the complete plan to a user, who may not care about the
internals of planning. Logic-based representations have seemed convenient for producing
output that logically explains the steps involved to arrive at some goal. Other possibilities
may exist, but logic has been a first choice due to its historical popularity.

In spite of these advantages, one shortcoming with logic-based representations is that
they are difficult to generalize. It is important in many applications to enable concepts such
as continuous spaces, unpredictability, sensing uncertainty, and multiple decision makers
to be incorporated into planning. This is the main reason why the state-space represen-
tation has been used so far: It will be easy to extend and adapt to the problems covered
throughout this book. Nevertheless, it is important to study logic-based representations to
understand the relationship between the vast majority of discrete planning research and
other problems considered in this book, such as motion planning and planning under dif-
ferential constraints. There are many recurring themes throughout these different kinds of
problems, even though historically they have been investigated by separate research com-
munities. Understanding these connections well provides powerful insights into planning
issues across all of these areas.

2.4.1 A STRIPS-like representation

STRIPS-like representations have been the most common logic-based representations
for discrete planning problems. This refers to the STRIPS system, which is considered
one of the first planning algorithms and representations [339]; its name is derived from
the STanford Research Institute Problem Solver. The original representation used first-
order logic, which had great expressive power but many technical difficulties. Therefore,



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 49

the representation was later restricted to only propositional logic use [746], which is
similar to the form introduced in this section. There are many variations of STRIPS-like
representations. Here is one formulation:

Formulation 2.4 (STRIPS-Like Planning)

1. A finite, nonempty set I of instances.

2. A finite, nonempty set P of predicates, which are binary-valued (partial) functions of one
of more instances. Each application of a predicate to a specific set of instances is called a
positive literal. A logically negated positive literal is called a negative literal.

3. A finite, nonempty set O of operators, each of which has: 1) preconditions, which are
positive or negative literals that must hold for the operator to apply, and 2) effects, which
are positive or negative literals that are the result of applying the operator.

4. An initial set S which is expressed as a set of positive literals. Negative literals are
implied. For any positive literal that does not appear in S, its corresponding negative
literal is assumed to hold initially.

5. A goal set G which is expressed as a set of both positive and negative literals.

Formulation 2.4.1 provides a definition of discrete feasible planning expressed in a
STRIPS-like representation. The three most important components are the sets of instances
I , predicates P , and operators O. Informally, the instances characterize the complete set
of distinct things that exist in the world. They could, for example, be books, cars, trees,
and so on. The predicates correspond to basic properties or statements that can be formed
regarding the instances. For example, a predicate called Under might be used to indicate
things like Under(Book, T able) (the book is under the table) or Under(Dirt, Rug).
A predicate can be interpreted as a kind of function that yields true or false values;
however, it is important to note that it is only a partial function because it might not be
desirable to allow any instance to be inserted as an argument to the predicate.

If a predicate is evaluated on an instance, for example, Under(Dirt, Rug), the ex-
pression is called a positive literal. The set of all possible positive literals can be formed
by applying all possible instances to the domains over which the predicates are defined.
Every positive literal has a corresponding negative literal, which is formed by negating the
positive literal. For example, ¬Under(Dirt, Rug) is the negative literal that corresponds
to the positive literal Under(Dirt, Rug), and ¬ denotes negation. Let a complementary
pair refer to a positive literal together with its counterpart negative literal. The various
components of the planning problem are expressed in terms of positive and negative
literals.

The role of an operator is to change the world. To be applicable, a set of preconditions
must all be satisfied. Each element of this set is a positive or negative literal that must
hold true for the operator to be applicable. Any complementary pairs that can be formed
from the predicates, but are not mentioned in the preconditions, may assume any value
without affecting the applicability of the operator. If the operator is applied, then the world
is updated in a manner precisely specified by the set of effects, which indicates positive
and negative literals that result from the application of the operator. It is assumed that the
truth values of all unmentioned complementary pairs are not affected.

Multiple operators are often defined in a single statement by using variables. For
example, Insert(i) may allow any instance i ∈ I to be inserted. In some cases, this
dramatically reduces the space required to express the problem.
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Figure 2.17: An example that involves putting batteries into a � ashlight.

The planning problem is expressed in terms of an initial set S of positive literals and
a goal set G of positive and negative literals. A state can be defined by selecting either
the positive or negative literal for every possible complementary pair. The initial set S

specifies such a state by giving the positive literals only. For all possible positive literals
that do not appear in S, it is assumed that their negative counterparts hold in the initial
state. The goal set G actually refers to a set of states because, for any unmentioned
complementary pair, the positive or negative literal may be chosen, and the goal is still
achieved. The task is to find a sequence of operators that when applied in succession will
transform the world from the initial state into one in which all literals of G are true.
For each operator, the preconditions must also be satisfied before it can be applied. The
following example illustrates Formulation 2.4.

Example 2.6 (Putting Batteries into a Flashlight) Imagine a planning problem that
involves putting two batteries into a flashlight, as shown in Figure 2.17. The set of instances
are

I = {Battery1, Battery2, Cap, F lashlight}. (2.21)

Two different predicates will be defined, On and In, each of which is a partial function
on I . The predicate On may only be applied to evaluate whether the Cap is On the
F lashlight and is written as On(Cap, F lashlight). The predicate In may be applied
in the following two ways: In(Battery1, F lashlight), In(Battery2, F lashlight), to
indicate whether either battery is in the flashlight. Recall that predicates are only partial
functions in general. For the predicate In, it is not desirable to apply any instance to
any argument. For example, it is meaningless to define In(Battery1, Battery1) and
In(F lashlight, Battery2) (they could be included in the model, always retaining a
negative value, but it is inefficient).

The initial set is

S = {On(Cap, F lashlight)}. (2.22)

Based on S, both ¬In(Battery1, F lashlight) and ¬In(Battery2, F lashlight) are as-
sumed to hold. Thus, S indicates that the cap is on the flashlight, but the batteries are
outside.
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Name Preconditions Effects
P laceCap {¬On(Cap, F lashlight)} {On(Cap, F lashlight)}
RemoveCap {On(Cap, F lashlight)} {¬On(Cap, F lashlight)}
Insert(i) {¬On(Cap, F lashlight),¬In(i, F lashlight)} {In(i, F lashlight)}

Figure 2.18: Three operators for the � ashlight problem. Note that an operator can be expressed with
variable argument(s) for which different instances could be substituted.

The goal state is

G = {On(Cap, F lashlight), In(Battery1, F lashlight),

In(Battery2, F lashlight)}, (2.23)

which means that both batteries must be in the flashlight, and the cap must be on.
The set O consists of the four operators, which are shown in Figure 2.18. Here is a

plan that reaches the goal state in the smallest number of steps:

(RemoveCap, Insert(Battery1), Insert(Battery2), P laceCap). (2.24)

In words, the plan simply says to take the cap off, put the batteries in, and place the cap
back on.

This example appears quite simple, and one would expect a planning algorithm to easily
find such a solution. It can be made more challenging by adding many more instances to
I , such as more batteries, more flashlights, and a bunch of objects that are irrelevant to
achieving the goal. Also, many other predicates and operators can be added so that the
different combinations of operators become overwhelming. �

A large number of complexity results exist for planning expressed using logic. The
graph search problem is solved efficiently in polynomial time; however, a state transition
graph is not given as the input. An input that is expressed using Formulation 2.4 may
describe an enormous state transition graph using very few instances, predicates, and
operators. In a sense, the model is highly compressed when using some logic-based
formulations. This brings it closer to the Kolmogorov complexity [250, 633] of the state
transition graph, which is the shortest bit size to which it can possibly be compressed
and then fully recovered by a Turing machine. This has the effect of making the planning
problem appear more difficult. Concise inputs may encode very challenging planning
problems. Most of the known hardness results are surveyed in Chapter 3 of [384]. Under
most formulations, logic-based planning is NP-hard. The particular level of hardness (NP,
PSPACE, EXPTIME, etc.) depends on the precise problem conditions. For example, the
complexity depends on whether the operators are fixed in advance or included in the input.
The latter case is much harder. Separate complexities are also obtained based on whether
negative literals are allowed in the operator effects and also whether they are allowed in
preconditions. The problem is generally harder if both positive and negative literals are
allowed in these cases.

2.4.2 Converting to the state-space representation

It is useful to characterize the relationship between Formulation 2.4 and the original
formulation of discrete feasible planning, Formulation 2.1. One benefit is that it imme-
diately shows how to adapt the search methods of Section 2.2 to work for logic-based
representations. It is also helpful to understand the relationships between the algorithmic
complexities of the two representations.
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Up to now, the notion of “state” has been only vaguely mentioned in the context of
the STRIPS-like representation. Now consider making this more concrete. Suppose that
every predicate has k arguments, and any instance could appear in each argument. This
means that there are |P | |I |k complementary pairs, which corresponds to all of the ways
to substitute instances into all arguments of all predicates. To express the state, a positive
or negative literal must be selected from every complementary pair. For convenience, this
selection can be encoded as a binary string by imposing a linear ordering on the instances
and predicates. Using Example 2.6, the state might be specified in order as

(On(Cap, F lashlight),¬In(Battery1, F lashlight1), In(Battery2, F lashlight)).
(2.25)

Using a binary string, each element can be “0” to denote a negative literal or “1” to denote
positive literal. The encoded state is x = 101 for (2.25). If any instance can appear in the
argument of any predicate, then the length of the string is |P | |I |k . The total number of
possible states of the world that could possibly be distinguished corresponds to the set of
all possible bit strings. This set has size

2|P | |I |
k

. (2.26)

The implication is that with a very small number of instances and predicates, an enor-
mous state space can be generated. Even though the search algorithms of Section 2.2
may appear efficient with respect to the size of the search graph (or the number of
states), the algorithms appear horribly inefficient with respect to the sizes of P and I .
This has motivated substantial efforts on the development of techniques to help guide
the search by exploiting the structure of specific representations. This is the subject of
Section 2.5.

The next step in converting to a state-space representation is to encode the initial state
xI as a string. The goal set, XG, is the set of all strings that are consistent with the positive
and negative goal literals. This can be compressed by extending the string alphabet to
include a “don’t care” symbol, δ. A single string that has a “0” for each negative literal, a
“1” for each positive literal, and a “δ” for all others would suffice in representing any XG

that is expressed with positive and negative literals.
Now convert the operators. For each state, x ∈ X, the set U (x) represents the set of

operators with preconditions that are satisfied by x. To apply the search techniques of
Section 2.2, note that it is not necessary to determine U (x) explicitly in advance for all
x ∈ X. Instead, U (x) can be computed whenever each x is encountered for the first time
in the search. The effects of the operator are encoded by the state transition equation.
From a given x ∈ X, the next state, f (x, u), is obtained by flipping the bits as prescribed
by the effects part of the operator.

All of the components of Formulation 2.1 have been derived from the components of
Formulation 2.4. Adapting the search techniques of Section 2.2 is straightforward. It is
also straightforward to extend Formulation 2.4 to represent optimal planning. A cost can
be associated with each operator and set of literals that capture the current state. This
would express l(x, u) of the cost functional, L, from Section 2.3. Thus, it is even possible
to adapt the value-iteration method to work under the logic-based representation, yielding
optimal plans.
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2.5 Logic-based planning methods

A huge body of research has been developed over the last few decades for planning using
logic-based representations [384, 842]. These methods usually exploit some structure that
is particular to the representation. Furthermore, numerous heuristics for accelerating per-
formance have been developed from implementation studies. The main ideas behind some
of the most influential approaches are described in this section, but without presenting
particular heuristics.

Rather than survey all logic-based planning methods, this section focuses on some
of the main approaches that exploit logic-based representations. Keep in mind that the
searching methods of Section 2.2 also apply. Once a problem is given using Formulation
2.4, the state transition graph is incrementally revealed during the search. In practice,
the search graph may be huge relative to the size of the problem description. One early
attempt to reduce the size of this graph was the STRIPS planning algorithm [339, 746];
it dramatically reduced the branching factor but unfortunately was not complete. The
methods presented in this section represent other attempts to reduce search complexity in
practice while maintaining completeness. For each method, there are some applications
in which the method may be more efficient, and others for which performance may be
worse. Thus, there is no clear choice of method that is independent of its particular use.

2.5.1 Searching in a space of partial plans

One alternative to searching directly in X is to construct partial plans without reference to
particular states. By using the operator representation, partial plans can be incrementally
constructed. The idea is to iteratively achieve required subgoals in a partial plan while
ensuring that no conflicts arise that could destroy the solution developed so far.

A partial plan σ is defined as

1. A set Oσ of operators that need to be applied. If the operators contain variables, these may
be filled in by specific values or left as variables. The same operator may appear multiple
times in Oσ , possibly with different values for the variables.

2. A partial ordering relation ≺σ on Oσ , which indicates for some pairs o1, o2 ∈ Oσ that
one must appear before other: o1 ≺σ o2.

3. A set Bσ of binding constraints, in which each indicates that some variables across
operators must take on the same value.

4. A set Cσ of causal links, in which each is of the form (o1, l, o2) and indicates that o1

achieves the literal l for the purpose of satisfying a precondition of o2.

Example 2.7 (A Partial Plan) Each partial plan encodes a set of possible plans. Recall
the model from Example 2.6. Suppose

Oσ = {RemoveCap, Insert(Battery1)}. (2.27)

A sensible ordering constraint is that

RemoveCap ≺σ Insert(Battery1). (2.28)

A causal link,

(RemoveCap,¬On(Cap, F lashlight), Insert(Battery1)), (2.29)
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PLAN-SPACE PLANNING

1. Start with any initial partial plan, σ .

2. Find a flaw in σ , which may be 1) an operator precondition that has not achieved, or 2)
an operator in Oσ that threatens a causal constraint in Cσ .

3. If there is no flaw, then report that σ is a complete solution and compute a linear ordering
of Oσ that satisfies all constraints.

4. If the flaw is an unachieved precondition, l, for some operator o2, then find an operator,
o1, that achieves it and record a new causal constraint, (o1, l, o2).

5. If the flaw is a threat on a causal link, then the threat must be removed by updating ≺σ

to induce an appropriate operator ordering, or by updating Bσ to bind the operators in a
way that resolves the threat.

6. Return to Step 2.

Figure 2.19: Planning in the plan space is achieved by iteratively �nding a � aw in the plan and �xing it.

indicates that the RemoveCap operator achieves the literal ¬On(Cap, F lashlight),
which is a precondition of Insert(Battery1). There are no binding constraints for this
example. The partial plan implicitly represents the set of all plans for which RemoveCap

appears before Insert(Battery1), under the constraint that the causal link is not
violated. �

Several algorithms have been developed to search in the space of partial plans. To
obtain some intuition about the partial-plan approach, a planning algorithm is described
in Figure 2.19. A vertex in the partial-plan search graph is a partial plan, and an edge is
constructed by extending one partial plan to obtain another partial plan that is closer to
completion. Although the general template is simple, the algorithm performance depends
critically on the choice of initial plan and the particular flaw that is resolved in each
iteration. One straightforward generalization is to develop multiple partial plans and
decide which one to refine in each iteration.

In early works, methods based on partial plans seemed to offer substantial benefits;
however, they are currently considered to be not “competitive enough” in comparison
to methods that search the state space [384]. One problem is that it becomes more
difficult to develop application-specific heuristics without explicit references to states.
Also, the vertices in the partial-plan search graph are costly to maintain and manipulate
in comparison to ordinary states.

2.5.2 Building a planning graph

Blum and Furst introduced the notion of a planning graph, which is a powerful data
structure that encodes information about which states may be reachable [119]. For the
logic-based problem expressed in Formulation 2.4, consider performing reachability anal-
ysis. Breadth-first search can be used from the initial state to expand the state transition
graph. In terms of the input representation, the resulting graph may be of exponential size
in the number of stages. This gives precise reachability information and is guaranteed to
find the goal state.

The idea of Blum and Furst is to construct a graph that is much smaller than the
state transition graph and instead contains only partial information about reachability.
The resulting planning graph is polynomial in size and can be efficiently constructed
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for some challenging problems. The trade-off is that the planning graph indicates states
that can possibly be reached. The true reachable set is overapproximated, by eliminating
many impossible states from consideration. This enables quick elimination of impossible
alternatives in the search process. Planning algorithms have been developed that extract a
plan from the planning graph. In the worst case, this may take exponential time, which is
not surprising because the problem in Formulation 2.4 is NP-hard in general. Neverthe-
less, dramatic performance improvements were obtained on some well-known planning
benchmarks. Another way to use the planning graph is as a source of information for
developing search heuristics for a particular problem.

Planning graph definition

A layered graph is a graph that has its vertices partitioned into a sequence of layers, and
its edges are only permitted to connect vertices between successive layers. The planning
graph is a layered graph in which the layers of vertices form an alternating sequence of
literals and operators:

(L1,O1, L2,O2, L3,O3, . . . , Lk,Ok, Lk+1). (2.30)

The edges are defined as follows. To each operator oi ∈ Oi , a directed edge is made from
each li ∈ Li that is a precondition of oi . To each literal li ∈ Li , an edge is made from each
operator oi−1 ∈ Oi−1 that has li as an effect.

One important requirement is that no variables are allowed in the operators. Any
operator from Formulation 2.4 that contains variables must be converted into a set that
contains a distinct copy of the operator for every possible substitution of values for the
variables.

Layer-by-layer construction

The planning graph is constructed layer by layer, starting from L1. In the first stage, L1

represents the initial state. Every positive literal in S is placed into L1, along with the
negation of every positive literal not in S. Now consider stage i. The set Oi is the set of
all operators for which their preconditions are a subset of Li . The set Li+1 is the union
of the effects of all operators in Oi . The iterations continue until the planning graph
stabilizes, which means that Oi+1 = Oi and Li+1 = Li . This situation is very similar to
the stabilization of value iterations in Section 2.3.2. A trick similar to the termination
action, uT , is needed even here so that plans of various lengths are properly handled.
In Section 2.3.2, one job of the termination action was to prevent state transitions from
occurring. The same idea is needed here. For each possible literal, l, a trivial operator
is constructed for which l is the only precondition and effect. The introduction of trivial
operators ensures that once a literal is reached, it is maintained in the planning graph for
every subsequent layer of literals. Thus, each Oi may contain some trivial operators, in
addition to operators from the initially given set O. These are required to ensure that the
planning graph expansion reaches a steady state, in which the planning graph is identical
for all future expansions.

Mutex conditions

During the construction of the planning graph, information about the conflict between
operators and literals within a layer is maintained. A conflict is called a mutex condition,
which means that a pair of literals4 or pair of operators is mutually exclusive. Both cannot

4 The pair of literals need not be a complementary pair, as defined in Section 2.4.1.
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Figure 2.20: The planning graph for the �ashlight example. The unlabeled operator vertices correspond
to trivial operators. For clarity, the operator and literal names are abbreviated.

be chosen simultaneously without leading to some kind of conflict. A pair in conflict is
called mutex. For each layer, a mutex relation is defined that indicates which pairs satisfy
the mutex condition. A pair, o, o′ ∈ Oi , of operators is defined to be mutex if any of these
conditions is met:

1. Inconsistent effects: An effect of o is the negated literal of an effect of o′.
2. Interference: An effect of o is the negated literal of a precondition of o′.
3. Competing needs: A pair of preconditions, one from each of o and o′, are mutex in Li .

The last condition relies on the definition of mutex for literals, which is presented next.
Any pair, l, l′ ∈ Li , of literals is defined to be mutex if at least one of the two conditions
is met:

1. Negated literals: l and l′ form a complementary pair.

2. Inconsistent support: Every pair of operators, o, o′ ∈ Oi−1, that achieve l and l′ is mutex.
In this case, one operator must achieve l, and the other must achieve l′. If there exists an
operator that achieves both, then this condition is false, regardless of the other pairs of
operators.

The mutex definition depends on the layers; therefore, it is computed layer by layer during
the planning graph construction.

Example 2.8 (The Planning Graph for the Flashlight) Figure 2.20 shows the planning
graph for Example 2.6. In the first layer, L1 expresses the initial state. The only appli-
cable operator is RemoveCap. The operator layer O1 contains RemoveCap and three
trivial operators, which are needed to maintain the literals from L1. The appearance of
¬On(Cap, F lashlight) enables the battery-insertion operator to apply. Since variables
are not allowed in operator definitions in a planning graph, two different operators (labeled
as I1 and I2) appear, one for each battery. Notice the edges drawn to I1 and I2 from
their preconditions. The cap may also be replaced; hence, P laceCap is included in O2.
At the L3 layer, all possible literals have been obtained. At O3, all possible operators,
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including the trivial ones, are included. Finally, L4 = L3, and O4 will be the same as O3.
This implies that the planning graph has stabilized. �

Plan extraction

Suppose that the planning graph has been constructed up to Li . At this point, the planning
graph can be searched for a solution. If no solution is found and the planning graph has
stabilized, then no solution exists to the problem in general (this was shown in [119];
see also [384]). If the planning graph has not stabilized, then it can be extended further
by adding Oi and Li+1. The extended graph can then be searched for a solution plan. A
planning algorithm derived from the planning graph interleaves the graph extensions and
the searches for solutions. Either a solution is reported at some point or the algorithm
correctly reports that no solution exists after the planning graph stabilizes. The resulting
algorithm is complete. One of the key observations in establishing completeness is that
the literal and operator layers each increase monotonically as i increases. Furthermore,
the sets of pairs that are mutex decrease monotonically, until all possible conflicts are
resolved.

Rather than obtaining a fully specified plan, the planning graph yields a layered plan,
which is a special form of partial plan. All of the necessary operators are included, and
the layered plan is specified as

(A1, A2, . . . , Ak), (2.31)

in which each Ai is a set of operators. Within any Ai , the operators are nonmutex and may
be applied in any order without altering the state obtained by the layered plan. The only
constraint is that for each i from 1 to k, every operator in Ai must be applied before any
operators in Ai+1 can be applied. For the flashlight example, a layered plan that would be
constructed from the planning graph in Figure 2.20 is

({RemoveCap}, {Insert(Battery1), Insert(Battery2)}, {P laceCap}). (2.32)

To obtain a fully specified plan, the layered plan needs to be linearized by specifying a
linear ordering for the operators that is consistent with the layer constraints. For (2.32), this
results in (2.24). The actual plan execution usually involves more stages than the number
in the planning graph. For complicated planning problems, this difference is expected to
be huge. With a small number of stages, the planning graph can consider very long plans
because it can apply several nonmutex operators in a single layer.

At each level, the search for a plan could be quite costly. The idea is to start from Li and
perform a backward and/or search. To even begin the search, the goal literals G must be a
subset of Li , and no pairs are allowed to be mutex; otherwise, immediate failure is declared.
From each literal l ∈ G, an “or” part of the search tries possible operators that produce l

as an effect. The “and” part of the search must achieve all literals in the precondition of an
operator chosen at the previous “or” level. Each of these preconditions must be achieved,
which leads to another “or” level in the search. The idea is applied recursively until
the initial set L1 of literals is obtained. During the and/or search, the computed mutex
relations provide information that immediately eliminates some branches. Frequently,
triples and higher order tuples are checked for being mutex together, even though they are
not pairwise mutex. A hash table is constructed to efficiently retrieve this information as
it is considered multiple times in the search. Although the plan extraction is quite costly,
superior performance was shown in [119] on several important benchmarks. In the worst
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case, the search could require exponential time (otherwise, a polynomial-time algorithm
would have been found to an NP-hard problem).

2.5.3 Planning as satisfiability

Another interesting approach is to convert the planning problem into an enormous Boolean
satisfiability problem. This means that the planning problem of Formulation 2.4 can be
solved by determining whether some assignment of variables is possible for a Boolean
expression that leads to a true value. Generic methods for determining satisfiability can be
directly applied to the Boolean expression that encodes the planning problem. The Davis-
Putnam procedure is one of the most widely known algorithms for satisfiability. It performs
a depth-first search by iteratively trying assignments for variables and backtracking when
assignments fail. During the search, large parts of the expression can be eliminated due
to the current assignments. The algorithm is complete and reasonably efficient. Its use
in solving planning problems is surveyed in [384]. In practice, stochastic local search
methods provide a reasonable alternative to the Davis-Putnam procedure [462].

Suppose a planning problem has been given in terms of Formulation 2.4. All literals
and operators will be tagged with a stage index. For example, a literal that appears in two
different stages will be considered distinct. This kind of tagging is similar to situation
calculus [380]; however, in that case, variables are allowed for the tags. To obtain a finite,
Boolean expression the total number of stages must be declared. Let K denote the number
of stages at which operators can be applied. As usual, the fist stage is k = 1 and the final
stage is k = F = K + 1. Setting a stage limit is a significant drawback of the approach
because this is usually not known before the problem is solved. A planning algorithm can
assume a small value for F and then gradually increase it each time the resulting Boolean
expression is not satisfied. If the problem is not solvable, however, this approach iterates
forever.

Let ∨ denote logical OR, and let ∧ denote logical AND. The Boolean expression is
written as a conjunction5 of many terms, which arise from five different sources:

1. Initial state: A conjunction of all literals in S is formed, along with the negation of all
positive literals not in S. These are all tagged with 1, the initial stage index.

2. Goal state: A conjunction of all literals in G, tagged with the final stage index, F = K + 1.

3. Operator encodings: Each operator must be copied over the stages. For each o ∈ O, let
ok denote the operator applied at stage k. A conjunction is formed over all operators at all
stages. For each ok , the expression is

¬ok ∨ (p1 ∧ p2 ∧ · · · ∧ pm ∧ e1 ∧ e2 ∧ · · · ∧ en) , (2.33)

in which p1, . . . , pm are the preconditions of ok , and e1, . . . , en are the effects of ok .

4. Frame axioms: The next part is to encode the implicit assumption that every literal that
is not an effect of the applied operator remains unchanged in the next stage. This can
alternatively be stated as follows: If a literal l becomes negated to ¬l, then an operator
that includes ¬l as an effect must have been executed. (If l was already a negative literal,
then ¬l is a positive literal.) For each stage and literal, an expression is needed. Suppose

5 Conjunction means logical AND.
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that lk and lk+1 are the same literal but are tagged for different stages. The expression is

(lk ∨ ¬lk+1) ∨ (ok,1 ∨ ok,2 ∨ · · · ∨ ok,j ), (2.34)

in which ok,1, . . . , ok,j are the operators, tagged for stage k, that contain lk+1 as an effect.
This ensures that if ¬lk appears, followed by lk+1, then some operator must have caused
the change.

5. Complete exclusion axiom: This indicates that only one operator applies at every stage.
For every stage k, and any pair of stage-tagged operators ok and o′k , the expression is

¬ok ∨ ¬o′k, (2.35)

which is logically equivalent to ¬(ok ∧ o′k) (meaning, “not both at the same stage”).

It is shown in [515] that a solution plan exists if and only if the resulting Boolean expression
is satisfiable.

The following example illustrates the construction.

Example 2.9 (The Flashlight Problem as a Boolean Expression) A Boolean expres-
sion will be constructed for Example 2.6. Each of the expressions given below is joined
into one large expression by connecting them with ∧’s.

The expression for the initial state is

O(C,F, 1) ∧ ¬I (B1, F, 1) ∧ ¬I (B2, F, 1), (2.36)

which uses the abbreviated names, and the stage tag has been added as an argument to the
predicates. The expression for the goal state is

O(C,F, 5) ∧ I (B1, F, 5) ∧ I (B2, F, 5), (2.37)

which indicates that the goal must be achieved at stage k = 5. This value was determined
because we already know the solution plan from (2.24). The method will also work
correctly for a larger value of k. The expressions for the operators are

¬PCk ∨ (¬O(C,F, k) ∧O(C,F, k + 1))

¬RCk ∨ (O(C,F, k) ∧ ¬O(C,F, k + 1))

¬I1k ∨ (¬O(C,F, k) ∧ ¬I (B1, F, k) ∧ I (B1, F, k + 1))

¬I2k ∨ (¬O(C,F, k) ∧ ¬I (B2, F, k) ∧ I (B2, F, k + 1))

(2.38)

for each k from 1 to 4.
The frame axioms yield the expressions

(O(C,F, k) ∨ ¬O(C,F, k + 1)) ∨ (PCk)

(¬O(C,F, k) ∨O(C,F, k + 1)) ∨ (RCk)

(I (B1, F, k) ∨ ¬I (B1, F, k + 1)) ∨ (I1k)

(¬I (B1, F, k) ∨ I (B1, F, k + 1))

(I (B2, F, k) ∨ ¬I (B2, F, k + 1)) ∨ (I2k)

(¬I (B2, F, k) ∨ I (B2, F, k + 1)),

(2.39)

for each k from 1 to 4. No operators remove batteries from the flashlight. Hence, two of
the expressions list no operators.
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Finally, the complete exclusion axiom yields the expressions

¬RCk ∨ ¬PCk ¬RCk ∨ ¬O1k ¬RCk ∨ ¬O2k (2.40)

¬PCk ∨ ¬O1k ¬PCk ∨ ¬O2k ¬O1k ∨ ¬O2k,

for each k from 1 to 4. The full problem is encoded by combining all of the given expres-
sions into an enormous conjunction. The expression is satisfied by assigning true values
to RC1, IB12, IB23, and PC4. An alternative solution is RC1, IB22, IB13, and PC4.
The stage index tags indicate the order that the actions are applied in the recovered
plan. �

Further reading

Most of the ideas and methods in this chapter have been known for decades. Most of the search algorithms
of Section 2.2 are covered in algorithms literature as graph search [245, 406, 695, 859] and in AI literature
as planning or search methods [554, 746, 747, 780, 842, 975]. Many historical references to search in
AI appear in [842]. Bidirectional search was introduced in [800, 801] and is closely related to means-
end analysis [738]; more discussion of bidirectional search appears in [187, 186, 500, 572, 842]. The
development of good search heuristics is critical to many applications of discrete planning. For substantial
material on this topic, see [384, 553, 780]. For the relationship between planning and scheduling, see
[268, 384, 897].

The dynamic programming principle forms the basis of optimal control theory and many algorithms
in computer science. The main ideas follow from Bellman’s principle of optimality [86, 87]. These classic
works led directly to the value-iteration methods of Section 2.3. For more recent material on this topic,
see [97], which includes Dijkstra’s algorithm and its generalization to label-correcting algorithms. An
important special version of Dijkstra’s algorithm is Dial’s algorithm [274] (see [946] and Section 8.2.3).
Throughout this book, there are close connections between planning methods and control theory. One
step in this direction was taken earlier in [269].

The foundations of logic-based planning emerged from early work of Nilsson [339, 746], which
contains most of the concepts introduced in Section 2.4. Over the last few decades, an enormous
body of literature has been developed. Section 2.5 briefly surveyed some of the highlights; however,
several more chapters would be needed to do this subject justice. For a comprehensive, recent treatment
of logic-based planning, see [384]; topics beyond those covered here include constraint-satisfaction
planning, scheduling, and temporal logic. Other sources for logic-based planning include [380, 842,
963, 984]. A critique of benchmarks used for comparisons of logic-based planning algorithms appears
in [467].

Too add uncertainty or multiple decision makers to the problems covered in this chapter, jump ahead
to Chapter 10 (this may require some background from Chapter 9). To move from searching in discrete
to continuous spaces, try Chapters 5 and 6 (some background from Chapters 3 and 4 is required).

Exercises

1. Consider the planning problem shown in Figure 2.21. Let a be the initial state, and let e be
the goal state.

(a) Use backward value iteration to determine the stationary cost-to-go.

(b) Do the same but instead use forward value iteration.

2. Try to construct a worst-case example for best-�rst search that has properties similar to
that shown in Figure 2.5, but instead involves moving in a 2D world with obstacles, as
introduced in Example 2.1.
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Figure 2.21: Another �v e-state discrete planning problem.

3. It turns out that value iteration can be generalized to a cost functional of the form

L(πK ) =
K∑

k=1

l(xk, uk, xk+1) + lF (xF ), (2.41)

in which l(xk, uk) in (2.4) has been replaced by l(xk, uk, xk+1).

(a) Show that the dynamic programming principle can be applied in this more general setting
to obtain forward and backward value iteration methods that solve the �x ed-length optimal
planning problem.

(b) Do the same but for the more general problem of variable-length plans, which uses termi-
nation conditions.

4. The cost functional can be generalized to being stage-dependent, which means that the
cost might depend on the particular stage k in addition to the state, xk and the action
uk. Extend the forward and backward value iteration methods of Section 2.3.1 to work for
this case, and show that they give optimal solutions. Each term of the more general cost
functional should be denoted as l(xk, uk, k).

5. Recall from Section 2.3.2 the method of de�ning a termination action uT to make the value
iterations work correctly for variable-length planning. Instead of requiring that one remains
at the same state, it is also possible to formulate the problem by creating a special state,
called the terminal state, xT . Whenever uT is applied, the state becomes xT . Describe in
detail how to modify the cost functional, state transition equation, and any other necessary
components so that the value iterations correctly compute shortest plans.

6. Dijkstra’s algorithm was presented as a kind of forward search in Section 2.2.1.

(a) Develop a backward version of Dijkstra’s algorithm that starts from the goal. Show that it
always yields optimal plans.

(b) Describe the relationship between the algorithm from part (a) and the backward value
iterations from Section 2.3.2.

(c) Derive a backward version of the A∗ algorithm and show that it yields optimal plans.

7. Reformulate the general forward search algorithm of Section 2.2.1 so that it is expressed
in terms of the STRIPS-like representation. Carefully consider what needs to be explicitly
constructed by a planning algorithm and what is considered only implicitly.

8. Rather than using bit strings, develop a set-based formulation of the logic-based planning
problem. A state in this case can be expressed as a set of positive literals.

9. Extend Formulation 2.4 to allow disjunctive goal sets (there are alternative sets of literals
that must be satis�ed). How does this affect the binary string representation?

10. Make a Remove operator for Example 2.17 that takes a battery away from the � ashlight.
For this operator to apply, the battery must be in the � ashlight and must not be blocked by
another battery. Extend the model to allow enough information for the Remove operator to
function properly.

11. Model the operation of the sliding-tile puzzle in Figure 1.1b using the STRIPS-like repre-
sentation. You may use variables in the operator de�nitions .

12. Find the complete set of plans that are implicitly encoded by Example 2.7.
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13. Explain why, in Formulation 2.4, G needs to include both positive and negative literals,
whereas S only needs positive literals. As an alternative de�nition, could S have contained
only negative literals? Explain.

14. Using Formulation 2.4, model a problem in which a robot checks to determine whether
a room is dark, moves to a light switch, and �ips on the light. Predicates should indicate
whether the robot is at the light switch and whether the light is on. Operators that move the
robot and �ip the switch are needed.

15. Construct a planning graph for the model developed in Exercise 14.

16. Express the model in Exercise 14 as a Boolean satis�ability problem.

17. In the worst case, how many terms are needed for the Boolean expression for planning as
satis�ability? Express your answer in terms of |I |, |P |, |O|, |S |, and |G|.

Implementations

18. Using A∗ search, the performance degrades substantially when there are many alternative
solutions that are all optimal, or at least close to optimal. Implement A∗ search and evaluate
it on various grid-based problems, based on Example 2.1. Compare the performance for
two different cases:

(a) Using |i ′ − i| + | j ′ − j | as the heuristic, as suggested in Section 2.2.2.

(b) Using
√

(i ′ − i)2 + ( j ′ − j )2 as the heuristic.

Which heuristic seems superior? Explain your answer.

19. Implement A∗, breadth-�rst, and best-�rst search for grid-based problems. For each search
algorithm, design and demonstrate examples for which one is clearly better than the other
two.

20. Experiment with bidirectional search for grid-based planning. Try to understand and explain
the trade-off between exploring the state space and the cost of connecting the trees.

21. Try to improve the method used to solve Exercise 18 by detecting when the search might
be caught in a local minimum and performing random walks to try to escape. Try using
best-�rst search instead of A∗. There is great �e xibility in possible approaches. Can you
obtain better performance on average for any particular examples?

22. Implement backward value iteration and verify its correctness by reconstructing the costs
obtained in Example 2.5. Test the implementation on some complicated examples.

23. For a planning problem under Formulation 2.3, implement both Dijkstra’s algorithm and
forward value iteration. Verify that these � nd the same plans. Comment on their differences
in performance.

24. Consider grid-based problems for which there are mostly large, open rooms. Attempt to
develop a multi-resolution search algorithm that �rst attempts to take larger steps, and
only takes smaller steps as larger steps fail. Implement your ideas, conduct experiments
on examples, and re�ne your approach accordingly.
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Overview of Part II: Motion planning

Planning in continuous spaces

Part II makes the transition from discrete to continuous state spaces. Two alternative titles
are appropriate for this part: 1) motion planning, or 2) planning in continuous state spaces.
Chapters 3–8 are based on research from the field of motion planning, which has been
building since the 1970s; therefore, the name motion planning is widely known to refer
to the collection of models and algorithms that will be covered. On the other hand, it is
convenient to also think of Part II as planning in continuous spaces because this is the
primary distinction with respect to most other forms of planning.

In addition, motion planning will frequently refer to motions of a robot in a 2D or
3D world that contains obstacles. The robot could model an actual robot, or any other
collection of moving bodies, such as humans or flexible molecules. A motion plan involves
determining what motions are appropriate for the robot so that it reaches a goal state
without colliding into obstacles. Recall the examples from Section 1.2.

Many issues that arose in Chapter 2 appear once again in motion planning. Two themes
that may help to see the connection are as follows.

1. Implicit representations

A familiar theme from Chapter 2 is that planning algorithms must deal with implicit rep-
resentations of the state space. In motion planning, this will become even more important
because the state space is uncountably infinite. Furthermore, a complicated transforma-
tion exists between the world in which the models are defined and the space in which
the planning occurs. Chapter 3 covers ways to model motion planning problems, which
includes defining 2D and 3D geometric models and transforming them. Chapter 4 intro-
duces the state space that arises for these problems. Following motion planning literature
[660, 591], we will refer to this state space as the configuration space. The dimension of
the configuration space corresponds to the number of degrees of freedom of the robot.
Using the configuration space, motion planning will be viewed as a kind of search in a
high-dimensional configuration space that contains implicitly represented obstacles. One
additional complication is that configuration spaces have unusual topological structure
that must be correctly characterized to ensure correct operation of planning algorithms.
A motion plan will then be defined as a continuous path in the configuration space.

2. Continuous → discrete

A central theme throughout motion planning is to transform the continuous model into a
discrete one. Due to this transformation, many algorithms from Chapter 2 are embedded in
motion planning algorithms. There are two alternatives to achieving this transformation,
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which are covered in Chapters 5 and 6, respectively. Chapter 6 covers combinatorial
motion planning, which means that from the input model the algorithms build a discrete
representation that exactly represents the original problem. This leads to complete planning
approaches, which are guaranteed to find a solution when it exists, or correctly report
failure if one does not exist. Chapter 5 covers sampling-based motion planning, which
refers to algorithms that use collision detection methods to sample the configuration
space and conduct discrete searches that utilize these samples. In this case, completeness
is sacrificed, but it is often replaced with a weaker notion, such as resolution completeness
or probabilistic completeness. It is important to study both Chapters 5 and 6 because each
methodology has its strengths and weaknesses. Combinatorial methods can solve virtually
any motion planning problem, and in some restricted cases, very elegant solutions may be
efficiently constructed in practice. However, for the majority of “industrial-grade” motion
planning problems, the running times and implementation difficulties of these algorithms
make them unappealing. Sampling-based algorithms have fulfilled much of this need
in recent years by solving challenging problems in several settings, such as automobile
assembly, humanoid robot planning, and conformational analysis in drug design. Although
the completeness guarantees are weaker, the efficiency and ease of implementation of these
methods have bolstered interest in applying motion planning algorithms to a wide variety
of applications.

Two additional chapters appear in Part II. Chapter 7 covers several extensions of the ba-
sic motion planning problem from the earlier chapters. These extensions include avoiding
moving obstacles, multiple robot coordination, manipulation planning, and planning with
closed kinematic chains. Algorithms that solve these problems build on the principles of
earlier chapters, but each extension involves new challenges.

Chapter 8 is a transitional chapter that involves many elements of motion planning
but is additionally concerned with gracefully recovering from unexpected deviations
during execution. Although uncertainty in predicting the future is not explicitly modeled
until Part III, Chapter 8 redefines the notion of a plan to be a function over state space, as
opposed to being a path through it. The function gives the appropriate actions to take during
exection, regardless of what configuration is entered. This allows the true configuration
to drift away from the commanded configuration. In Part III such uncertainties will be
explicitly modeled, but this comes at greater modeling and computational costs. It is
worthwhile to develop effective ways to avoid this.
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3

Geometric Representations
and Transformations

This chapter provides important background material that will be needed for Part II.
Formulating and solving motion planning problems require defining and manipulating
complicated geometric models of a system of bodies in space. Section 3.1 introduces
geometric modeling, which focuses mainly on semi-algebraic modeling because it is an
important part of Chapter 6. If your interest is mainly in Chapter 5, then understanding
semi-algebraic models is not critical. Sections 3.2 and 3.3 describe how to transform a
single body and a chain of bodies, respectively. This will enable the robot to “move.”
These sections are essential for understanding all of Part II and many sections beyond. It
is expected that many readers will already have some or all of this background (especially
Section 3.2, but it is included for completeness). Section 3.4 extends the framework for
transforming chains of bodies to transforming trees of bodies, which allows modeling of
complicated systems, such as humanoid robots and flexible organic molecules. Finally,
Section 3.5 briefly covers transformations that do not assume each body is rigid.

3.1 Geometric modeling

A wide variety of approaches and techniques for geometric modeling exist, and the
particular choice usually depends on the application and the difficulty of the prob-
lem. In most cases, there are generally two alternatives: 1) a boundary representation,
and 2) a solid representation. Suppose we would like to define a model of a planet. Using
a boundary representation, we might write the equation of a sphere that roughly coincides
with the planet’s surface. Using a solid representation, we would describe the set of all
points that are contained in the sphere. Both alternatives will be considered in this section.

The first step is to define the world W for which there are two possible choices: 1)
a 2D world, in which W = R

2, and 2) a 3D world, in which W = R
3. These choices

should be sufficient for most problems; however, one might also want to allow more
complicated worlds, such as the surface of a sphere or even a higher dimensional space.
Such generalities are avoided in this book because their current applications are limited.
Unless otherwise stated, the world generally contains two kinds of entities:

1. Obstacles: Portions of the world that are “permanently” occupied, for example, as in the
walls of a building.

2. Robots: Bodies that are modeled geometrically and are controllable via a motion plan.

Based on the terminology, one obvious application is to model a robot that moves around
in a building; however, many other possibilities exist. For example, the robot could be a
flexible molecule, and the obstacles could be a folded protein. As another example, the
robot could be a virtual human in a graphical simulation that involves obstacles (imagine
the family of Doom-like video games).
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This section presents a method for systematically constructing representations of ob-
stacles and robots using a collection of primitives. Both obstacles and robots will be
considered as (closed) subsets of W . Let the obstacle region O denote the set of all points
in W that lie in one or more obstacles; hence, O ⊆W . The next step is to define a system-
atic way of representing O that has great expressive power while being computationally
efficient. Robots will be defined in a similar way; however, this will be deferred until
Section 3.2, where transformations of geometric bodies are defined.

3.1.1 Polygonal and polyhedral models

In this and the next subsection, a solid representation of O will be developed in terms of
a combination of primitives. Each primitive Hi represents a subset of W that is easy to
represent and manipulate in a computer. A complicated obstacle region will be represented
by taking finite, Boolean combinations of primitives. Using set theory, this implies that O
can also be defined in terms of a finite number of unions, intersections, and set differences
of primitives.

Convex polygons

First consider O for the case in which the obstacle region is a convex, polygonal subset
of a 2D world, W = R

2. A subset X ⊂ R
n is called convex if and only if, for any pair

of points in X, all points along the line segment that connects them are contained in X.
More precisely, this means that for any x1, x2 ∈ X and λ ∈ [0, 1],

λx1 + (1 − λ)x2 ∈ X. (3.1)

Thus, interpolation between x1 and x2 always yields points in X. Intuitively, X contains
no pockets or indentations. A set that is not convex is called nonconvex (as opposed to
concave, which seems better suited for lenses).

A boundary representation of O is an m-sided polygon, which can be described using
two kinds of features: vertices and edges. Every vertex corresponds to a “corner” of the
polygon, and every edge corresponds to a line segment between a pair of vertices. The
polygon can be specified by a sequence, (x1, y1), (x2, y2), . . . , (xm, ym), of m points in
R

2, given in counterclockwise order.
A solid representation of O can be expressed as the intersection of m half-planes. Each

half-plane corresponds to the set of all points that lie to one side of a line that is common
to a polygon edge. Figure 3.1 shows an example of an octagon that is represented as the
intersection of eight half-planes.

An edge of the polygon is specified by two points, such as (x1, y1) and (x2, y2).
Consider the equation of a line that passes through (x1, y1) and (x2, y2). An equation
can be determined of the form ax + by + c = 0, in which a, b, c ∈ R are constants
that are determined from x1, y1, x2, and y2. Let f : R

2 → R be the function given by
f (x, y) = ax + by + c. Note that f (x, y) < 0 on one side of the line, and f (x, y) > 0 on
the other. (In fact, f may be interpreted as a signed Euclidean distance from (x, y) to the
line.) The sign of f (x, y) indicates a half-plane that is bounded by the line, as depicted in
Figure 3.2. Without loss of generality, assume that f (x, y) is defined so that f (x, y) < 0
for all points to the left of the edge from (x1, y1) to (x2, y2) (if it is not, then multiply
f (x, y) by −1).

Let fi(x, y) denote the f function derived from the line that corresponds to the edge
from (xi, yi) to (xi+1, yi+1) for 1 ≤ i < m. Let fm(x, y) denote the line equation that
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Figure 3.1: A convex polygonal region can be identi�ed by the intersection of half-planes.
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Figure 3.2: The sign of the f (x, y) partitions R
2 into three regions: two half-planes given by f (x, y) < 0

and f (x, y) > 0, and the line f (x, y) = 0.

corresponds to the edge from (xm, ym) to (x1, y1). Let a half-plane Hi for 1 ≤ i ≤ m be
defined as a subset of W:

Hi = {(x, y) ∈W | fi(x, y) ≤ 0}. (3.2)

Above, Hi is a primitive that describes the set of all points on one side of the line
fi(x, y) = 0 (including the points on the line). A convex, m-sided, polygonal obstacle
region O is expressed as

O = H1 ∩H2 ∩ · · · ∩Hm. (3.3)

Nonconvex polygons

The assumption that O is convex is too limited for most applications. Now suppose that
O is a nonconvex, polygonal subset of W . In this case O can be expressed as

O = O1 ∪O2 ∪ · · · ∪On, (3.4)

in which each Oi is a convex, polygonal set that is expressed in terms of half-planes using
(3.3). Note that Oi and Oj for i 	= j need not be disjoint. Using this representation, very
complicated obstacle regions in W can be defined. Although these regions may contain
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multiple components and holes, if O is bounded (i.e., O will fit inside of a big enough
rectangular box), its boundary will consist of linear segments.

In general, more complicated representations of O can be defined in terms of any
finite combination of unions, intersections, and set differences of primitives; however, it
is always possible to simplify the representation into the form given by (3.3) and (3.4).
A set difference can be avoided by redefining the primitive. Suppose the model requires
removing a set defined by a primitive Hi that contains1 fi(x, y) < 0. This is equivalent
to keeping all points such that fi(x, y) ≥ 0, which is equivalent to −fi(x, y) ≤ 0. This
can be used to define a new primitive H ′

i , which when taken in union with other sets,
is equivalent to the removal of Hi . Given a complicated combination of primitives, once
set differences are removed, the expression can be simplified into a finite union of finite
intersections by applying Boolean algebra laws.

Note that the representation of a nonconvex polygon is not unique. There are many
ways to decompose O into convex components. The decomposition should be care-
fully selected to optimize computational performance in whatever algorithms that model
will be used. In most cases, the components may even be allowed to overlap. Ideally,
it seems that it would be nice to represent O with the minimum number of primi-
tives, but automating such a decomposition may lead to an NP-hard problem (see Sec-
tion 6.5.1 for a brief overview of NP-hardness). One efficient, practical way to decom-
pose O is to apply the vertical cell decomposition algorithm, which will be presented
in Section 6.2.2

Defining a logical predicate

What is the value of the previous representation? As a simple example, we can define
a logical predicate that serves as a collision detector. Recall from Section 2.4.1 that
a predicate is a Boolean-valued function. Let φ be a predicate defined as φ : W →
{true, false}, which returns true for a point in W that lies in O, and false otherwise.
For a line given by f (x, y) = 0, let e(x, y) denote a logical predicate that returns true if
f (x, y) ≤ 0, and false otherwise.

A predicate that corresponds to a convex polygonal region is represented by a logical
conjunction,

α(x, y) = e1(x, y) ∧ e2(x, y) ∧ · · · ∧ em(x, y). (3.5)

The predicate α(x, y) returns true if the point (x, y) lies in the convex polygonal region,
and false otherwise. An obstacle region that consists of n convex polygons is represented
by a logical disjunction of conjuncts,

φ(x, y) = α1(x, y) ∨ α2(x, y) ∨ · · · ∨ αn(x, y). (3.6)

Although more efficient methods exist, φ can check whether a point (x, y) lies in O in
time O(n), in which n is the number of primitives that appear in the representation of O
(each primitive is evaluated in constant time).

Note the convenient connection between a logical predicate representation and a set-
theoretic representation. Using the logical predicate, the unions and intersections of the
set-theoretic representation are replaced by logical ORs and ANDs. It is well known from

1 In this section, we want the resulting set to include all of the points along the boundary. Therefore, < is used to
model a set for removal, as opposed to ≤.
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(a) (b)

Figure 3.3: (a) A polyhedron can be described in terms of faces, edges, and vertices. (b) The edges of
each face can be stored in a circular list that is traversed in counterclockwise order with respect to the
outward normal vector of the face.

Boolean algebra that any complicated logical sentence can be reduced to a logical dis-
junction of conjunctions (this is often called “sum of products” in computer engineering).
This is equivalent to our previous statement that O can always be represented as a union
of intersections of primitives.

Polyhedral models

For a 3D world, W = R
3, and the previous concepts can be nicely generalized from the

2D case by replacing polygons with polyhedra and replacing half-plane primitives with
half-space primitives. A boundary representation can be defined in terms of three features:
vertices, edges, and faces. Every face is a “flat” polygon embedded in R

3. Every edge
forms a boundary between two faces. Every vertex forms a boundary between three or
more edges.

Several data structures have been proposed that allow one to conveniently “walk”
around the polyhedral features. For example, the doubly connected edge list [266] data
structure contains three types of records: faces, half-edges, and vertices. Intuitively, a
half-edge is a directed edge. Each vertex record holds the point coordinates and a pointer
to an arbitrary half-edge that touches the vertex. Each face record contains a pointer to an
arbitrary half-edge on its boundary. Each face is bounded by a circular list of half-edges.
There is a pair of directed half-edge records for each edge of the polyhedon. Each half-
edge is shown as an arrow in Figure 3.3b. Each half-edge record contains pointers to five
other records: 1) the vertex from which the half-edge originates; 2) the “twin” half-edge,
which bounds the neighboring face, and has the opposite direction; 3) the face that is
bounded by the half-edge; 4) the next element in the circular list of edges that bound the
face; and 5) the previous element in the circular list of edges that bound the face. Once
all of these records have been defined, one can conveniently traverse the structure of the
polyhedron.

Now consider a solid representation of a polyhedron. Suppose that O is a convex
polyhedron, as shown in Figure 3.3. A solid representation can be constructed from the
vertices. Each face of O has at least three vertices along its boundary. Assuming these
vertices are not collinear, an equation of the plane that passes through them can be
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determined of the form

ax + by + cz+ d = 0, (3.7)

in which a, b, c, d ∈ R are constants.
Once again, f can be constructed, except now f : R

3 → R and

f (x, y, z) = ax + by + cz+ d. (3.8)

Let m be the number of faces. For each face of O, a half-space Hi is defined as a subset
of W:

Hi = {(x, y, z) ∈W | fi(x, y, z) ≤ 0}. (3.9)

It is important to choose fi so that it takes on negative values inside of the polyhedron. In
the case of a polygonal model, it was possible to consistently define fi by proceeding in
counterclockwise order around the boundary. In the case of a polyhedron, the half-edge
data structure can be used to obtain for each face the list of edges that form its boundary
in counterclockwise order. Figure 3.3b shows the edge ordering for each face. For every
edge, the arrows point in opposite directions, as required by the half-edge data structure.
The equation for each face can be consistently determined as follows. Choose three
consecutive vertices, p1, p2, p3 (they must not be collinear) in counterclockwise order on
the boundary of the face. Let v12 denote the vector from p1 to p2, and let v23 denote the
vector from p2 to p3. The cross product v = v12 × v23 always yields a vector that points
out of the polyhedron and is normal to the face. Recall that the vector [a b c] is parallel to
the normal to the plane. If its components are chosen as a = v[1], b = v[2], and c = v[3],
then f (x, y, z) ≤ 0 for all points in the half-space that contains the polyhedron.

As in the case of a polygonal model, a convex polyhedron can be defined as the
intersection of a finite number of half-spaces, one for each face. A nonconvex polyhedron
can be defined as the union of a finite number of convex polyhedra. The predicate φ(x, y, z)
can be defined in a similar manner, in this case yielding true if (x, y, z) ∈ O, and
false otherwise.

3.1.2 Semi-algebraic models

In both the polygonal and polyhedral models, f was a linear function. In the case of a semi-
algebraic model for a 2D world, f can be any polynomial with real-valued coefficients
and variables x and y. For a 3D world, f is a polynomial with variables x, y, and z. The
class of semi-algebraic models includes both polygonal and polyhedral models, which
use first-degree polynomials. A point set determined by a single polynomial primitive is
called an algebraic set; a point set that can be obtained by a finite number of unions and
intersections of algebraic sets is called a semi-algebraic set.

Consider the case of a 2D world. A solid representation can be defined using algebraic
primitives of the form

H = {(x, y) ∈W | f (x, y) ≤ 0}. (3.10)

As an example, let f = x2 + y2 − 4. In this case, H represents a disc of radius 2 that is
centered at the origin. This corresponds to the set of points (x, y) for which f (x, y) ≤ 0,
as depicted in Figure 3.4a.
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Figure 3.4: (a) Once again, f is used to partition R
2 into two regions. In this case, the algebraic primitive

represents a disc-shaped region. (b) The shaded “face” can be exactly modeled using only four algebraic
primitives.

Example 3.1 (Gingerbread Face) Consider constructing a model of the shaded region
shown in Figure 3.4b. Let the center of the outer circle have radius r1 and be centered at
the origin. Suppose that the “eyes” have radius r2 and r3 and are centered at (x2, y2) and
(x3, y3), respectively. Let the “mouth” be an ellipse with major axis a and minor axis b

and is centered at (0, y4). The functions are defined as

f1 = x2 + y2 − r2
1 ,

f2 = −((x − x2)2 + (y − y2)2 − r2
2

)
,

f3 = −((x − x3)2 + (y − y3)2 − r2
3

)
,

f4 = −(x2/a2 + (y − y4)2/b2 − 1
)
.

(3.11)

For f2, f3, and f4, the familiar circle and ellipse equations were multiplied by−1 to yield
algebraic primitives for all points outside of the circle or ellipse. The shaded region O is
represented as

O = H1 ∩H2 ∩H3 ∩H4. (3.12)

�
In the case of semi-algebraic models, the intersection of primitives does not necessarily

result in a convex subset of W . In general, however, it might be necessary to form O by
taking unions and intersections of algebraic primitives.

A logical predicate, φ(x, y), can once again be formed, and collision checking is still
performed in time that is linear in the number of primitives. Note that it is still very
efficient to evaluate every primitive; f is just a polynomial that is evaluated on the point
(x, y, z).

The semi-algebraic formulation generalizes easily to the case of a 3D world. This
results in algebraic primitives of the form

H = {(x, y, z) ∈W | f (x, y, z) ≤ 0}, (3.13)

which can be used to define a solid representation of a 3D obstacle O and a logical
predicate φ.

Equations (3.10) and (3.13) are sufficient to express any model of interest. One
may define many other primitives based on different relations, such as f (x, y, z) ≥ 0,
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f (x, y, z) = 0, f (x, y, z) < 0, f (x, y, z) = 0, and f (x, y, z) 	= 0; however, most of them
do not enhance the set of models that can be expressed. They might, however, be more
convenient in certain contexts. To see that some primitives do not allow new models to be
expressed, consider the primitive

H = {(x, y, z) ∈W | f (x, y, z) ≥ 0}. (3.14)

The right part may be alternatively represented as −f (x, y, z) ≤ 0, and −f may be
considered as a new polynomial function of x, y, and z. For an example that involves the
= relation, consider the primitive

H = {(x, y, z) ∈W | f (x, y, z) = 0}. (3.15)

It can instead be constructed as H = H1 ∩H2, in which

H1 = {(x, y, z) ∈W | f (x, y, z) ≤ 0} (3.16)

and

H2 = {(x, y, z) ∈W | − f (x, y, z) ≤ 0}. (3.17)

The relation < does add some expressive power if it is used to construct primitives.2 It is
needed to construct models that do not include the outer boundary (for example, the set
of all points inside of a sphere, which does not include points on the sphere). These are
generally called open sets and are defined Chapter 4.

3.1.3 Other models

The choice of a model often depends on the types of operations that will be performed
by the planning algorithm. For combinatorial motion planning methods, to be covered in
Chapter 6, the particular representation is critical. On the other hand, for sampling-based
planning methods, to be covered in Chapter 5, the particular representation is important
only to the collision detection algorithm, which is treated as a “black box” as far as planning
is concerned. Therefore, the models given in the remainder of this section are more likely
to appear in sampling-based approaches and may be invisible to the designer of a planning
algorithm (although it is never wise to forget completely about the representation).

Nonconvex polygons and polyhedra

The method in Section 3.1.1 required nonconvex polygons to be represented as a union
of convex polygons. Instead, a boundary representation of a nonconvex polygon may
be directly encoded by listing vertices in a specific order; assume that counterclock-
wise order is used. Each polygon of m vertices may be encoded by a list of the form
(x1, y1), (x2, y2), . . . , (xm, ym). It is assumed that there is an edge between each (xi, yi)
and (xi+1, yi+1) for each i from 1 to m− 1, and also an edge between (xm, ym) and (x1, y1).
Ordinarily, the vertices should be chosen in a way that makes the polygon simple, meaning
that no edges intersect. In this case, there is a well-defined interior of the polygon, which
is to the left of every edge, if the vertices are listed in counterclockwise order.

What if a polygon has a hole in it? In this case, the boundary of the hole can be
expressed as a polygon, but with its vertices appearing in the clockwise direction. To the

2 An alternative that yields the same expressive power is to still use ≤, but allow set complements, in addition to
unions and intersections.
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Figure 3.5: A polygon with holes can be expressed by using different orientations: counterclockwise for
the outer boundary and clockwise for the hole boundaries. Note that the shaded part is always to the left
when following the arrows.

Figure 3.6: Triangle strips and triangle fans can reduce the number of redundant points.

left of each edge is the interior of the outer polygon, and to the right is the hole, as shown
in Figure 3.5.

Although the data structures are a little more complicated for three dimensions, bound-
ary representations of nonconvex polyhedra may be expressed in a similar manner. In this
case, instead of an edge list, one must specify faces, edges, and vertices, with pointers that
indicate their incidence relations. Consistent orientations must also be chosen, and holes
may be modeled once again by selecting opposite orientations.

3D triangles

Suppose W = R
3. One of the most convenient geometric models to express is a set of

triangles, each of which is specified by three points, (x1, y1, z1), (x2, y2, z2), (x3, y3, z3).
This model has been popular in computer graphics because graphics acceleration hardware
primarily uses triangle primitives. It is assumed that the interior of the triangle is part of the
model. Thus, two triangles are considered as “colliding” if one pokes into the interior of
another. This model offers great flexibility because there are no constraints on the way in
which triangles must be expressed; however, this is also one of the drawbacks. There is no
coherency that can be exploited to easily declare whether a point is “inside” or “outside”
of a 3D obstacle. If there is at least some coherency, then it is sometimes preferable to
reduce redundancy in the specification of triangle coordinates (many triangles will share
the same corners). Representations that remove this redundancy are called a triangle strip,
which is a sequence of triangles such that each adjacent pair shares a common edge, and
a triangle fan, which is a triangle strip in which all triangles share a common vertex. See
Figure 3.6.

Nonuniform rational B-splines (NURBS)

These are used in many engineering design systems to allow convenient design and
adjustment of curved surfaces, in applications such as aircraft or automobile body design.
In contrast to semi-algebraic models, which are implicit equations, NURBS and other
splines are parametric equations. This makes computations such as rendering easier;
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however, others, such as collision detection, become more difficult. These models may be
defined in any dimension. A brief 2D formulation is given here.

A curve can be expressed as

C(u) =

n∑

i=0

wiPiNi,k(u)

n∑

i=0

wiNi,k(u)

, (3.18)

in which wi ∈ R are weights and Pi are control points. The Ni,k are normalized basis
functions of degree k, which can be expressed recursively as

Ni,k(u) =
(

u− ti

ti+k − ti

)
Ni,k−1(u) +

(
ti+k+1 − u

ti+k+1 − ti+1

)
Ni+1,k−1(u). (3.19)

The basis of the recursion is Ni,0(u) = 1 if ti ≤ u < ti+1, and Ni,0(u) = 0 otherwise. A
knot vector is a nondecreasing sequence of real values, {t0, t1, . . . , tm}, that controls the
intervals over which certain basic functions take effect.

Bitmaps

For either W = R
2 or W = R

3, it is possible to discretize a bounded portion of the world
into rectangular cells that may or may not be occupied. The resulting model looks very
similar to Example 2.1. The resolution of this discretization determines the number of
cells per axis and the quality of the approximation. The representation may be considered
as a binary image in which each “1” in the image corresponds to a rectangular region
that contains at least one point of O, and “0” represents those that do not contain any of
O. Although bitmaps do not have the elegance of the other models, they often arise in
applications. One example is a digital map constructed by a mobile robot that explores
an environment with its sensors. One generalization of bitmaps is a gray-scale map or
occupancy grid. In this case, a numerical value may be assigned to each cell, indicating
quantities such as “the probability that an obstacle exists” or the “expected difficulty of
traversing the cell.” The latter interpretation is often used in terrain maps for navigating
planetary rovers.

Superquadrics

Instead of using polynomials to define fi , many generalizations can be constructed. One
popular primitive is a superquadric, which generalizes quadric surfaces. One example is
a superellipsoid, which is given for W = R

3 by
(|x/a|n1 + |y/b|n2

)n1/n2 + |z/c|n1 − 1 ≤ 0, (3.20)

in which n1 ≥ 2 and n2 ≥ 2. If n1 = n2 = 2, an ellipse is generated. As n1 and n2 increase,
the superellipsoid becomes shaped like a box with rounded corners.

Generalized cylinders

A generalized cylinder is a generalization of an ordinary cylinder. Instead of being limited
to a line, the center axis is a continuous spine curve, (x(s), y(s), z(s)), for some parameter
s ∈ [0, 1]. Instead of a constant radius, a radius function r(s) is defined along the spine.
The value r(s) is the radius of the circle obtained as the cross section of the generalized
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cylinder at the point (x(s), y(s), z(s)). The normal to the cross-section plane is the tangent
to the spine curve at s.

3.2 Rigid-body transformations

Any of the techniques from Section 3.1 can be used to define both the obstacle region and
the robot. Let O refer to the obstacle region, which is a subset of W . Let A refer to the
robot, which is a subset of R

2 or R
3, matching the dimension of W . Although O remains

fixed in the world, W , motion planning problems will require “moving” the robot, A.

3.2.1 General concepts

Before giving specific transformations, it will be helpful to define them in general to
avoid confusion in later parts when intuitive notions might fall apart. Suppose that a rigid
robot, A, is defined as a subset of R

2 or R
3. A rigid-body transformation is a function,

h : A→W , that maps every point of A into W with two requirements: 1) The distance
between any pair of points of A must be preserved, and 2) the orientation of A must be
preserved (no “mirror images”).

Using standard function notation, h(a) for some a ∈ A refers to the point in W that is
“occupied” by a. Let

h(A) = {h(a) ∈W | a ∈ A}, (3.21)

which is the image of h and indicates all points in W occupied by the transformed robot.

Transforming the robot model

Consider transforming a robot model. If A is expressed by naming specific points in R
2,

as in a boundary representation of a polygon, then each point is simply transformed from
a to h(a) ∈W . In this case, it is straightforward to transform the entire model using h.
However, there is a slight complication if the robot model is expressed using primitives,
such as

Hi = {a ∈ R
2 | fi(a) ≤ 0}. (3.22)

This differs slightly from (3.2) because the robot is defined in R
2 (which is not necessarily

W), and also a is used to denote a point (x, y) ∈ A. Under a transformation h, the primitive
is transformed as

h(Hi) = {h(a) ∈W | fi(a) ≤ 0}. (3.23)

To transform the primitive completely, however, it is better to directly name points in
w ∈W , as opposed to h(a) ∈W . Using the fact that a = h−1(w), this becomes

h(Hi) = {w ∈W | fi(h
−1(w)) ≤ 0}, (3.24)

in which the inverse of h appears in the right side because the original point a ∈ A needs
to be recovered to evaluate fi . Therefore, it is important to be careful because either h

or h−1 may be required to transform the model. This will be observed in more specific
contexts in some coming examples.
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A parameterized family of transformations

It will become important to study families of transformations, in which some parame-
ters are used to select the particular transformation. Therefore, it makes sense to gen-
eralize h to accept two variables: a parameter vector, q ∈ R

n, along with a ∈ A. The
resulting transformed point a is denoted by h(q, a), and the entire robot is transformed
to h(q,A) ⊂W .

The coming material will use the following shorthand notation, which requires the
specific h to be inferred from the context. Let h(q, a) be shortened to a(q), and let h(q,A)
be shortened to A(q). This notation makes it appear that by adjusting the parameter
q, the robot A travels around in W as different transformations are selected from the
predetermined family. This is slightly abusive notation, but it is convenient. The expression
A(q) can be considered as a set-valued function that yields the set of points in W that
are occupied by A when it is transformed by q. Most of the time the notation does not
cause trouble, but when it does, it is helpful to remember the definitions from this section,
especially when trying to determine whether h or h−1 is needed.

Defining frames

It was assumed so far that A is defined in R
2 or R

3, but before it is transformed, it is
not considered to be a subset of W . The transformation h places the robot in W . In the
coming material, it will be convenient to indicate this distinction using coordinate frames.
The origin and coordinate basis vectors of W will be referred to as the world frame.3

Thus, any point w ∈W is expressed in terms of the world frame.
The coordinates used to define A are initially expressed in the body frame, which

represents the origin and coordinate basis vectors of R
2 or R

3. In the case of A ⊂ R
2,

it can be imagined that the body frame is painted on the robot. Transforming the robot
is equivalent to converting its model from the body frame to the world frame. This has
the effect of placing4 A into W at some position and orientation. When multiple bodies
are covered in Section 3.3, each body will have its own body frame, and transformations
require expressing all bodies with respect to the world frame.

3.2.2 2D transformations

Translation

A rigid robot A ⊂ R
2 is translated by using two parameters, xt , yt ∈ R. Using definitions

from Section 3.2.1, q = (xt , yt ), and h is defined as

h(x, y) = (x + xt , y + yt ). (3.25)

A boundary representation of A can be translated by transforming each vertex in the
sequence of polygon vertices using (3.25). Each point, (xi, yi), in the sequence is replaced
by (xi + xt , yi + yt ).

Now consider a solid representation ofA, defined in terms of primitives. Each primitive
of the form

Hi = {(x, y) ∈ R
2 | f (x, y) ≤ 0} (3.26)

3 The world frame serves the same purpose as an inertial frame in Newtonian mechanics. Intuitively, it is a frame that
remains fixed and from which all measurements are taken. See Section 13.3.1.

4 Technically, this placement is a function called an orientation-preserving isometric embedding.
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Moving
the Robot

Moving the
Coordinate
Frame

(a) Translation of the robot (b) Translation of the frame

Figure 3.7: Every transformation has two interpretations.

is transformed to

h(Hi) = {(x, y) ∈W | f (x − xt , y − yt ) ≤ 0}. (3.27)

Example 3.2 (Translating a Disc) For example, suppose the robot is a disc of unit
radius, centered at the origin. It is modeled by a single primitive,

Hi = {(x, y) ∈ R
2 | x2 + y2 − 1 ≤ 0}. (3.28)

Suppose A = Hi is translated xt units in the x direction and yt units in the y direction.
The transformed primitive is

h(Hi) = {(x, y) ∈W | (x − xt )
2 + (y − yt )

2 − 1 ≤ 0}, (3.29)

which is the familiar equation for a disc centered at (xt , yt ). In this example, the inverse,
h−1 is used, as described in Section 3.2.1. �

The translated robot is denoted as A(xt , yt ). Translation by (0, 0) is the identity trans-
formation, which results in A(0, 0) = A, if it is assumed that A ⊂W (recall that A does
not necessarily have to be initially embedded in W). It will be convenient to use the term
degrees of freedom to refer to the maximum number of independent parameters that are
needed to completely characterize the transformation applied to the robot. If the set of
allowable values for xt and yt forms a two-dimensional subset of R

2, then the degrees of
freedom is two.

Suppose that A is defined directly in W with translation. As shown in Figure 3.7,
there are two interpretations of a rigid-body transformation applied to A: 1) The world
frame remains fixed and the robot is transformed; 2) the robot remains fixed and the world
frame is translated. The first one characterizes the effect of the transformation from a fixed
world frame, and the second one indicates how the transformation appears from the robot’s
perspective. Unless stated otherwise, the first interpretation will be used when we refer to
motion planning problems because it often models a robot moving in a physical world.
Numerous books cover coordinate transformations under the second interpretation. This
has been known to cause confusion because the transformations may sometimes appear
“backward” from what is desired in motion planning.

Rotation

The robot, A, can be rotated counterclockwise by some angle θ ∈ [0, 2π) by mapping
every (x, y) ∈ A as

(x, y) �→ (x cos θ − y sin θ, x sin θ + y cos θ ). (3.30)
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Using a 2 × 2 rotation matrix,

R(θ ) =
(

cos θ − sin θ

sin θ cos θ

)
, (3.31)

the transformation can be written as
(

x cos θ − y sin θ

x sin θ + y cos θ

)
= R(θ )

(
x

y

)
. (3.32)

Using the notation of Section 3.2.1, R(θ) becomes h(q), for which q = θ . For linear
transformations, such as the one defined by (3.32), recall that the column vectors represent
the basis vectors of the new coordinate frame. The column vectors of R(θ) are unit vectors,
and their inner product (or dot product) is zero, indicating that they are orthogonal. Suppose
that the x and y coordinate axes, which represent the body frame, are “painted” on A.
The columns of R(θ) can be derived by considering the resulting directions of the x- and
y-axes, respectively, after performing a counterclockwise rotation by the angle θ . This
interpretation generalizes nicely for higher dimensional rotation matrices.

Note that the rotation is performed about the origin. Thus, when defining the model of
A, the origin should be placed at the intended axis of rotation. Using the semi-algebraic
model, the entire robot model can be rotated by transforming each primitive, yielding
A(θ). The inverse rotation, R(−θ), must be applied to each primitive.

Combining translation and rotation

Suppose a rotation by θ is performed, followed by a translation by xt , yt . This can be
used to place the robot in any desired position and orientation. Note that translations and
rotations do not commute! If the operations are applied successively, each (x, y) ∈ A is
transformed to

(
x cos θ − y sin θ + xt

x sin θ + y cos θ + yt

)
. (3.33)

The following matrix multiplication yields the same result for the first two vector compo-
nents:




cos θ − sin θ xt

sin θ cos θ yt

0 0 1








x

y

1



 =



x cos θ − y sin θ + xt

x sin θ + y cos θ + yt

1



 . (3.34)

This implies that the 3 × 3 matrix,

T =



cos θ − sin θ xt

sin θ cos θ yt

0 0 1



 , (3.35)

represents a rotation followed by a translation. The matrix T will be referred to as a
homogeneous transformation matrix. It is important to remember that T represents a
rotation followed by a translation (not the other way around). Each primitive can be
transformed using the inverse of T , resulting in a transformed solid model of the robot.
The transformed robot is denoted by A(xt , yt , θ), and in this case there are three degrees
of freedom. The homogeneous transformation matrix is a convenient representation of
the combined transformations; therefore, it is frequently used in robotics, mechanics,
computer graphics, and elsewhere. It is called homogeneous because over R

3 it is just a
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Yaw
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Figure 3.8: Any three-dimensional rotation can be described as a sequence of yaw, pitch, and roll rotations.

linear transformation without any translation. The trick of increasing the dimension by
one to absorb the translational part is common in projective geometry [807].

3.2.3 3D transformations

Rigid-body transformations for the 3D case are conceptually similar to the 2D case;
however, the 3D case appears more difficult because rotations are significantly more
complicated.

3D translation

The robot, A, is translated by some xt , yt , zt ∈ R using

(x, y, z) �→ (x + xt , y + yt , z+ zt ). (3.36)

A primitive of the form

Hi = {(x, y, z) ∈W | fi(x, y, z) ≤ 0} (3.37)

is transformed to

{(x, y, z) ∈W | fi(x − xt , y − yt , z− zt ) ≤ 0}. (3.38)

The translated robot is denoted as A(xt , yt , zt ).

Yaw, pitch, and roll rotations

A 3D body can be rotated about three orthogonal axes, as shown in Figure 3.8. Borrowing
aviation terminology, these rotations will be referred to as yaw, pitch, and roll:

1. A yaw is a counterclockwise rotation of α about the z-axis. The rotation matrix is given
by

Rz(α) =



cos α − sin α 0
sin α cos α 0

0 0 1



 . (3.39)

Note that the upper left entries of Rz(α) form a 2D rotation applied to the x and y

coordinates, whereas the z coordinate remains constant.
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2. A pitch is a counterclockwise rotation of β about the y-axis. The rotation matrix is given
by

Ry(β) =



cos β 0 sin β

0 1 0
− sin β 0 cos β



 . (3.40)

3. A roll is a counterclockwise rotation of γ about the x-axis. The rotation matrix is given
by

Rx(γ ) =



1 0 0
0 cos γ − sin γ

0 sin γ cos γ



 . (3.41)

Each rotation matrix is a simple extension of the 2D rotation matrix, (3.31). For example,
the yaw matrix, Rz(α), essentially performs a 2D rotation with respect to the x and y

coordinates while leaving the z coordinate unchanged. Thus, the third row and third
column of Rz(α) look like part of the identity matrix, while the upper right portion of
Rz(α) looks like the 2D rotation matrix.

The yaw, pitch, and roll rotations can be used to place a 3D body in any orientation.
A single rotation matrix can be formed by multiplying the yaw, pitch, and roll rotation
matrices to obtain

R(α,β, γ ) = Rz(α) Ry(β) Rx(γ ) =



cos α cos β cos α sin β sin γ − sin α cos γ cos α sin β cos γ + sin α sin γ

sin α cos β sin α sin β sin γ + cos α cos γ sin α sin β cos γ − cos α sin γ

− sin β cos β sin γ cos β cos γ



 .

(3.42)

It is important to note that R(α, β, γ ) performs the roll first, then the pitch, and finally
the yaw. If the order of these operations is changed, a different rotation matrix would
result. Be careful when interpreting the rotations. Consider the final rotation, a yaw by
α. Imagine sitting inside of a robot A that looks like an aircraft. If β = γ = 0, then the
yaw turns the plane in a way that feels like turning a car to the left. However, for arbitrary
values of β and γ , the final rotation axis will not be vertically aligned with the aircraft
because the aircraft is left in an unusual orientation before α is applied. The yaw rotation
occurs about the z-axis of the world frame, not the body frame of A. Each time a new
rotation matrix is introduced from the left, it has no concern for original body frame of
A. It simply rotates every point in R

3 in terms of the world frame. Note that 3D rotations
depend on three parameters, α, β, and γ , whereas 2D rotations depend only on a single
parameter, θ . The primitives of the model can be transformed using R(α, β, γ ), resulting
in A(α, β, γ ).

Determining yaw, pitch, and roll from a rotation matrix

It is often convenient to determine the α, β, and γ parameters directly from a given
rotation matrix. Suppose an arbitrary rotation matrix




r11 r12 r13

r21 r22 r23

r31 r32 r33



 (3.43)
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is given. By setting each entry equal to its corresponding entry in (3.42), equations are
obtained that must be solved for α, β, and γ . Note that r21/r11 = tan α and r32/r33 = tan γ .

Also, r31 = − sin β and
√

r2
32 + r2

33 = cos β. Solving for each angle yields

α = tan−1(r11/r21), (3.44)

β = tan−1
(√

r2
32 + r2

33

/− r31

)
, (3.45)

and

γ = tan−1(r32/r33). (3.46)

There is a choice of four quadrants for the inverse tangent functions. How can the
correct quadrant be determined? Each quadrant should be chosen by using the signs of
the numerator and denominator of the argument. The numerator sign selects whether the
direction will be to the left or right of the y-axis, and the denominator selects whether
the direction will be above or below the x-axis. This is the same as the atan2 function in
the C programming language, which nicely expands the range of the arctangent to [0, 2π).
This can be applied to express (3.44), (3.45), and (3.46) as

α = atan2(r11, r21), (3.47)

β = atan2
(√

r2
32 + r2

33,−r31

)
, (3.48)

and

γ = atan2(r32, r33). (3.49)

Note that this method assumes r21 	= 0 and r33 	= 0.

The homogeneous transformation matrix for 3D bodies

As in the 2D case, a homogeneous transformation matrix can be defined. For the 3D case,
a 4 × 4 matrix is obtained that performs the rotation given by R(α, β, γ ), followed by a
translation given by xt , yt , zt . The result is

T =





cos α cos β cos α sin β sin γ − sin α cos γ cos α sin β cos γ + sin α sin γ xt

sin α cos β sin α sin β sin γ + cos α cos γ sin α sin β cos γ − cos α sin γ yt

− sin β cos β sin γ cos β cos γ zt

0 0 0 1



 .

(3.50)

Once again, the order of operations is critical. The matrix T in (3.50) represents the
following sequence of transformations:

1. Roll by γ 3. Yaw by α

2. Pitch by β 4. Translate by (xt , yt , zt ).

The robot primitives can be transformed to yield A(xt , yt , zt , α, β, γ ). A 3D rigid body
that is capable of translation and rotation therefore has six degrees of freedom.
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Figure 3.9: Two types of 2D joints: a revolute joint allows one link to rotate with respect to the other, and
a prismatic joint allows one link to translate with respect to the other.

3.3 Transforming kinematic chains of bodies

The transformations become more complicated for a chain of attached rigid bodies. For
convenience, each rigid body is referred to as a link. Let A1, A2, . . . ,Am denote a set of
m links. For each i such that 1 ≤ i < m, link Ai is “attached” to link Ai+1 in a way that
allows Ai+1 some constrained motion with respect to Ai . The motion constraint must be
explicitly given, and will be discussed shortly. As an example, imagine a trailer that is
attached to the back of a car by a hitch that allows the trailer to rotate with respect to
the car. In general, a set of attached bodies will be referred to as a linkage. This section
considers bodies that are attached in a single chain. This leads to a particular linkage
called a kinematic chain.

3.3.1 A 2D kinematic chain

Before considering a kinematic chain, suppose A1 and A2 are unattached rigid bodies,
each of which is capable of translating and rotating in W = R

2. Since each body has three
degrees of freedom, there is a combined total of six degrees of freedom; the independent
parameters are x1, y1, θ1, x2, y2, and θ2.

Attaching bodies

When bodies are attached in a kinematic chain, degrees of freedom are removed. Figure 3.9
shows two different ways in which a pair of 2D links can be attached. The place at which
the links are attached is called a joint. For a revolute joint, one link is capable only of
rotation with respect to the other. For a prismatic joint is shown, one link slides along the
other. Each type of joint removes two degrees of freedom from the pair of bodies. For
example, consider a revolute joint that connects A1 to A2. Assume that the point (0, 0) in
the body frame of A2 is permanently fixed to a point (xa, ya) in the body frame of A1.
This implies that the translation of A2 is completely determined once xa and ya are given.
Note that xa and ya depend on x1, y1, and θ1. This implies that A1 and A2 have a total
of four degrees of freedom when attached. The independent parameters are x1, y1, θ1,
and θ2. The task in the remainder of this section is to determine exactly how the models
of A1, A2, . . . ,Am are transformed when they are attached in a chain, and to give the
expressions in terms of the independent parameters.

Consider the case of a kinematic chain in which each pair of links is attached by a
revolute joint. The first task is to specify the geometric model for each link, Ai . Recall
that for a single rigid body, the origin of the body frame determines the axis of rotation.
When defining the model for a link in a kinematic chain, excessive complications can
be avoided by carefully placing the body frame. Since rotation occurs about a revolute
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Figure 3.10: The body frame of each Ai , for 1 < i < m, is based on the joints that connect Ai to Ai−1 and
Ai+1.

joint, a natural choice for the origin is the joint between Ai and Ai−1 for each i > 1. For
convenience that will soon become evident, the xi-axis for the body frame of Ai is defined
as the line through the two joints that lie in Ai , as shown in Figure 3.10. For the last link,
Am, the xm-axis can be placed arbitrarily, assuming that the origin is placed at the joint
that connects Am to Am−1. The body frame for the first link, A1, can be placed using the
same considerations as for a single rigid body.

Homogeneous transformation matrices for 2D chains

We are now prepared to determine the location of each link. The location in W of a point
in (x, y) ∈ A1 is determined by applying the 2D homogeneous transformation matrix
(3.35),

T1 =



cos θ1 − sin θ1 xt

sin θ1 cos θ1 yt

0 0 1



 . (3.51)

As shown in Figure 3.10, let ai−1 be the distance between the joints inAi−1. The orientation
difference between Ai and Ai−1 is denoted by the angle θi . Let Ti represent a 3 × 3
homogeneous transformation matrix (3.35), specialized for link Ai for 1 < i ≤ m,

Ti =



cos θi − sin θi ai−1

sin θi cos θi 0
0 0 1



 . (3.52)

This generates the following sequence of transformations:

1. Rotate counterclockwise by θi .

2. Translate by ai−1 along the x-axis.

The transformation Ti expresses the difference between the body frame ofAi and the body
frame of Ai−1. The application of Ti moves Ai from its body frame to the body frame of
Ai−1. The application of Ti−1Ti moves both Ai and Ai−1 to the body frame of Ai−2. By
following this procedure, the location in W of any point (x, y) ∈ Am is determined by
multiplying the transformation matrices to obtain

T1T2 · · · Tm




x

y

1



 . (3.53)
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Figure 3.11: Applying the transformation T2T3 to the model of A3. If T1 is the identity matrix, then this
yields the location in W of points in A3.

Example 3.3 (A 2D Chain of Three Links) To gain an intuitive understanding of
these transformations, consider determining the configuration for link A3, as shown in
Figure 3.11. Figure 3.11a shows a three-link chain in whichA1 is at its initial configuration
and the other links are each offset by π/4 from the previous link. Figure 3.11b shows the
frame in which the model forA3 is initially defined. The application of T3 causes a rotation
of θ3 and a translation by a2. As shown in Figure 3.11c, this places A3 in its appropriate
configuration. Note thatA2 can be placed in its initial configuration, and it will be attached
correctly to A3. The application of T2 to the previous result places both A3 and A2

in their proper configurations, and A1 can be placed in its initial configuration. �
For revolute joints, the ai parameters are constants, and the θi parameters are variables.

The transformed mth link is represented as Am(xt , yt , θ1, . . . , θm). In some cases, the first
link might have a fixed location in the world. In this case, the revolute joints account for
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Figure 3.12: Types of 3D joints arising from the 2D surface contact between two bodies.

all degrees of freedom, yielding Am(θ1, . . . , θm). For prismatic joints, the ai parameters
are variables, instead of the θi parameters. It is straightforward to include both types of
joints in the same kinematic chain.

3.3.2 A 3D kinematic chain

As for a single rigid body, the 3D case is significantly more complicated than the 2D case
due to 3D rotations. Also, several more types of joints are possible, as shown in Figure 3.12.
Nevertheless, the main ideas from the transformations of 2D kinematic chains extend to
the 3D case. The following steps from Section 3.3.1 will be recycled here:

1. The body frame must be carefully placed for each Ai .

2. Based on joint relationships, several parameters are measured.

3. The parameters define a homogeneous transformation matrix, Ti .

4. The location in W of any point in Am is given by applying the matrix T1T2 · · · Tm.

Consider a kinematic chain of m links in W = R
3, in which each Ai for 1 ≤ i < m

is attached to Ai+1 by a revolute joint. Each link can be a complicated, rigid body as
shown in Figure 3.13. For the 2D problem, the coordinate frames were based on the points
of attachment. For the 3D problem, it is convenient to use the axis of rotation of each
revolute joint (this is equivalent to the point of attachment for the 2D case). The axes of
rotation will generally be skew lines in R

3, as shown in Figure 3.14. Let the zi-axis be
the axis of rotation for the revolute joint that holds Ai to Ai−1. Between each pair of axes
in succession, let the xi-axis join the closest pair of points between the zi- and zi+1-axes,
with the origin on the zi-axis and the direction pointing towards the nearest point of
the zi+1-axis. This axis is uniquely defined if the zi- and zi+1-axes are not parallel. The
recommended body frame for each Ai will be given with respect to the zi- and xi-axes,
which are shown in Figure 3.14. Assuming a right-handed coordinate system, the yi-axis
points away from us in Figure 3.14. In the transformations that will appear shortly, the
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Figure 3.13: The rotation axes for a generic link attached by revolute joints.

Figure 3.14: The rotation axes of the generic links are skew lines in R
3.

coordinate frame given by xi , yi , and zi will be most convenient for defining the model
for Ai . It might not always appear convenient because the origin of the frame may even
lie outside of Ai , but the resulting transformation matrices will be easy to understand.

In Section 3.3.1, each Ti was defined in terms of two parameters, ai−1 and θi . For the
3D case, four parameters will be defined: di , θi , ai−1, and αi−1. These are referred to as
Denavit-Hartenberg (DH) parameters [437]. The definition of each parameter is indicated
in Figure 3.15. Figure 3.15a shows the definition of di . Note that the xi−1- and xi-axes
contact the zi-axis at two different places. Let di denote signed distance between these
points of contact. If the xi-axis is above the xi−1-axis along the zi-axis, then di is positive;
otherwise, di is negative. The parameter θi is the angle between the xi- and xi−1-axes,
which corresponds to the rotation about the zi-axis that moves the xi−1-axis to coincide
with the xi-axis. The parameter ai is the distance between the zi- and zi−1-axes; recall
these are generally skew lines in R

3. The parameter αi−1 is the angle between the zi- and
zi−1-axes.
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xi

xi−1

di

zi

θi
xi

zi xi−1

(a) (b)

ai−1

zi−1 zi

xi−1

αi− 1

xi− 1

zi− 1zi

(c) (d)

Figure 3.15: De�nitions of the four DH parameters: di , θi , ai−1, αi−1. The zi - and xi−1-axes in (b) and (d),
respectively, are pointing outward. Any parameter may be positive, zero, or negative.

Two screws

The homogeneous transformation matrix Ti will be constructed by combining two simpler
transformations. The transformation

Ri =





cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 di

0 0 0 1



 (3.54)

causes a rotation of θi about the zi-axis, and a translation of di along the zi-axis. Notice
that the rotation by θi and translation by di commute because both operations occur with
respect to the same axis, zi . The combined operation of a translation and rotation with
respect to the same axis is referred to as a screw (as in the motion of a screw through a
nut). The effect of Ri can thus be considered as a screw about the zi-axis. The second
transformation is

Qi−1 =





1 0 0 ai−1

0 cos αi−1 − sin αi−1 0
0 sin αi−1 cos αi−1 0
0 0 0 1



 , (3.55)

which can be considered as a screw about the xi−1-axis. A rotation of αi−1 about the
xi−1-axis and a translation of ai−1 are performed.
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The homogeneous transformation matrix

The transformation Ti , for each i such that 1 < i ≤ m, is

Ti = Qi−1Ri =





cos θi − sin θi 0 ai−1

sin θi cos αi−1 cos θi cos αi−1 − sin αi−1 − sin αi−1di

sin θi sin αi−1 cos θi sin αi−1 cos αi−1 cos αi−1di

0 0 0 1



 . (3.56)

This can be considered as the 3D counterpart to the 2D transformation matrix, (3.52). The
following four operations are performed in succession:

1. Translate by di along the zi-axis.

2. Rotate counterclockwise by θi about the zi-axis.

3. Translate by ai−1 along the xi−1-axis.

4. Rotate counterclockwise by αi−1 about the xi−1-axis.

As in the 2D case, the first matrix, T1, is special. To represent any position and
orientation of A1, it could be defined as a general rigid-body homogeneous transformation
matrix, (3.50). If the first body is only capable of rotation via a revolute joint, then a simple
convention is usually followed. Let the a0, α0 parameters of T1 be assigned as a0 = α0 = 0
(there is no z0-axis). This implies that Q0 from (3.55) is the identity matrix, which makes
T1 = R1.

The transformation Ti for i > 1 gives the relationship between the body frame of Ai

and the body frame of Ai−1. The position of a point (x, y, z) on Am is given by

T1T2 · · · Tm





x

y

z

1



 . (3.57)

For each revolute joint, θi is treated as the only variable in Ti . Prismatic joints can be
modeled by allowing ai to vary. More complicated joints can be modeled as a sequence of
degenerate joints. For example, a spherical joint can be considered as a sequence of three
zero-length revolute joints; the joints perform a roll, a pitch, and a yaw. Another option
for more complicated joints is to abandon the DH representation and directly develop
the homogeneous transformation matrix. This might be needed to preserve topological
properties that become important in Chapter 4.

Example 3.4 (Puma 560) This example demonstrates the 3D chain kinematics on a
classic robot manipulator, the PUMA 560, shown in Figure 3.16. The current parameteri-
zation here is based on [37, 558]. The procedure is to determine appropriate body frames
to represent each of the links. The first three links allow the hand (called an end-effector)
to make large movements in W , and the last three enable the hand to achieve a desired
orientation. There are six degrees of freedom, each of which arises from a revolute joint.
The body frames are shown in Figure 3.16, and the corresponding DH parameters are
given in Figure 3.17. Each transformation matrix Ti is a function of θi ; hence, it is written
Ti(θi). The other parameters are fixed for this example. Only θ1, θ2, . . . , θ6 are allowed to
vary.
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Figure 3.16: The Puma 560 is shown along with the DH parameters and body frames for each link in the
chain. This �gure is borrowed from [558] by courtesy of the authors.

Matrix αi−1 ai−1 θi di

T1(θ1) 0 0 θ1 0
T2(θ2) −π/2 0 θ2 d2

T3(θ3) 0 a2 θ3 d3

T4(θ4) π/2 a3 θ4 d4

T5(θ5) −π/2 0 θ5 0
T6(θ6) π/2 0 θ6 0

Figure 3.17: The DH parameters are shown for substitution into each homogeneous transformation matrix
(3.56). Note that a3 and d3 are negative in this example (they are signed displacements, not distances).

The parameters from Figure 3.17 may be substituted into the homogeneous transfor-
mation matrices to obtain

T1(θ1) =





cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0

0 0 1 0
0 0 0 1



 , (3.58)

T2(θ2) =





cos θ2 − sin θ2 0 0
0 0 1 d2

− sin θ2 − cos θ2 0 0
0 0 0 1



 , (3.59)

T3(θ3) =





cos θ3 − sin θ3 0 a2

sin θ3 cos θ3 0 0
0 0 1 d3

0 0 0 1



 , (3.60)
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Figure 3.18: A hydrocarbon (octane) molecule with 8 carbon atoms and 18 hydrogen atoms (courtesy of
the New York University MathMol Library).

T4(θ4) =





cos θ4 − sin θ4 0 a3

0 0 −1 −d4

sin θ4 cos θ4 0 0
0 0 0 1



 , (3.61)

T5(θ5) =





cos θ5 − sin θ5 0 0
0 0 1 0

− sin θ5 − cos θ5 0 0
0 0 0 1



 , (3.62)

and

T6(θ6) =





cos θ6 − sin θ6 0 0
0 0 −1 0

sin θ6 cos θ6 0 0
0 0 0 1



 . (3.63)

A point (x, y, z) in the body frame of the last link A6 appears in W as

T1(θ1)T2(θ2)T3(θ3)T4(θ4)T5(θ5)T6(θ6)





x

y

z

1



 . (3.64)

Example 3.5 (Transforming Octane) Figure 3.18 shows a ball-and-stick model of an
octane molecule. Each “ball” is an atom, and each “stick” represents a bond between a
pair of atoms. There is a linear chain of eight carbon atoms, and a bond exists between
each consecutive pair of carbons in the chain. There are also numerous hydrogen atoms,
but we will ignore them. Each bond between a pair of carbons is capable of twisting, as
shown in Figure 3.19. Studying the configurations (called conformations) of molecules is
an important part of computational biology. It is assumed that there are seven degrees of
freedom, each of which arises from twisting a bond. The techniques from this section can
be applied to represent these transformations.

Note that the bonds correspond exactly to the axes of rotation. This suggests that the
zi axes should be chosen to coincide with the bonds. Since consecutive bonds meet at
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C

C

C

C

C

C

C

C

Figure 3.19: Consider transforming the spine of octane by ignoring the hydrogen atoms and allowing the
bonds between carbons to rotate. This can be easily constructed with balls and sticks (e.g., Tinkertoys). If
the � rst link is held � xed, then there are six degrees of freedom. The rotation of the last link is ignored.

zi+1

zi

zi−1

di

Ai

xi

xi−1

Figure 3.20: Each bond may be interpreted as a “link” of length di that is aligned with the zi -axis. Note
that most of Ai appears in the −zi direction.

atoms, there is no distance between them. From Figure 3.15c, observe that this makes
ai = 0 for all i. From Figure 3.15a, it can be seen that each di corresponds to a bond
length, the distance between consecutive carbon atoms. See Figure 3.20. This leaves two
angular parameters, θi and αi . Since the only possible motion of the links is via rotation
of the zi-axes, the angle between two consecutive axes, as shown in Figure 3.15d, must
remain constant. In chemistry, this is referred to as the bond angle and is represented in the
DH parameterization as αi . The remaining θi parameters are the variables that represent
the degrees of freedom. However, looking at Figure 3.15b, observe that the example is
degenerate because each xi-axis has no frame of reference because each ai = 0. This does
not, however, cause any problems. For visualization purposes, it may be helpful to replace
xi−1 and xi by zi−1 and zi+1, respectively. This way it is easy to see that as the bond for
the zi-axis is twisted, the observed angle changes accordingly. Each bond is interpreted
as a link, Ai . The origin of each Ai must be chosen to coincide with the intersection point
of the zi- and zi+1-axes. Thus, most of the points in Ai will lie in the −zi direction; see
Figure 3.20.

The next task is to write down the matrices. Attach a world frame to the first bond,
with the second atom at the origin and the bond aligned with the z-axis, in the negative
direction; see Figure 3.20. To define T1, recall that T1 = R1 from (3.54) because Q0 is
dropped. The parameter d1 represents the distance between the intersection points of the
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(a) (b)

Figure 3.21: General linkages: (a) Instead of a chain of rigid bodies, a “tree” of rigid bodies can be
considered. (b) If there are loops, then parameters must be carefully assigned to ensure that the loops are
closed.

x0- and x1-axes along the z1 axis. Since there is no x0-axis, there is freedom to choose d1;
hence, let d1 = 0 to obtain

T1(θ1) = R1(θ1) =





cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0

0 0 1 0
0 0 0 1



 . (3.65)

The application of T1 to points in A1 causes them to rotate around the z1-axis, which
appears correct.

The matrices for the remaining six bonds are

Ti(θi) =





cos θi − sin θi 0 0
sin θi cos αi−1 cos θi cos αi−1 − sin αi−1 − sin αi−1di

sin θi sin αi−1 cos θi sin αi−1 cos αi−1 cos αi−1di

0 0 0 1



 , (3.66)

for i ∈ {2, . . . , 7}. The position of any point, (x, y, z) ∈ A7, is given by

T1(θ1)T2(θ2)T3(θ3)T4(θ4)T5(θ5)T6(θ6)T7(θ7)





x

y

z

1



 . (3.67)

�

3.4 Transforming kinematic trees

Motivation

For many interesting problems, the linkage is arranged in a “tree” as shown in Figure 3.21a.
Assume here that the links are not attached in ways that form loops (i.e., Figure 3.21b);
that case is deferred until Section 4.4, although some comments are also made at the end
of this section. The human body, with its joints and limbs attached to the torso, is an
example that can be modeled as a tree of rigid links. Joints such as knees and elbows are
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A6 A7

A13

A8

A9

A12

A5

Figure 3.22: Now it is possible for a link to have more than two joints, as in A7.

considered as revolute joints. A shoulder joint is an example of a spherical joint, although
it cannot achieve any orientation (without a visit to the emergency room!). As mentioned
in Section 1.4, there is widespread interest in animating humans in virtual environments
and also in developing humanoid robots. Both of these cases rely on formulations of
kinematics that mimic the human body.

Another problem that involves kinematic trees is the conformational analysis of
molecules. Example 3.5 involved a single chain; however, most organic molecules are
more complicated, as in the familiar drugs shown in Figure 1.14a (Section 1.2). The
bonds may twist to give degrees of freedom to the molecule. Moving through the space of
conformations requires the formulation of a kinematic tree. Studying these conformations
is important because scientists need to determine for some candidate drug whether the
molecule can twist the right way so that it docks nicely (i.e., requires low energy) with a
protein cavity; this induces a pharmacological effect, which hopefully is the desired one.
Another important problem is determining how complicated protein molecules fold into
certain configurations. These molecules are orders of magnitude larger (in terms of num-
bers of atoms and degrees of freedom) than typical drug molecules. For more information,
see Section 7.5.

Common joints for W = R
2

First consider the simplest case in which there is a 2D tree of links for which every link has
only two points at which revolute joints may be attached. This corresponds to Figure 3.21a.
A single link is designated as the root, A1, of the tree. To determine the transformation
of a body, Ai , in the tree, the tools from Section 3.3.1 are directly applied to the chain
of bodies that connects Ai to A1 while ignoring all other bodies. Each link contributes
a θi to the total degrees of freedom of the tree. This case seems quite straightforward;
unfortunately, it is not this easy in general.

Junctions with more than two rotation axes

Now consider modeling a more complicated collection of attached links. The main novelty
is that one link may have joints attached to it in more than two locations, as in A7 in Figure
3.22. A link with more than two joints will be referred to as a junction.

If there is only one junction, then most of the complications arising from junctions
can be avoided by choosing the junction as the root. For example, for a simple humanoid
model, the torso would be a junction. It would be sensible to make this the root of the tree,
as opposed to the right foot. The legs, arms, and head could all be modeled as independent
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A7

y7
y
7

x7

x
7

Figure 3.23: The junction is assigned two different frames, depending on which chain was followed. The
solid axes were obtained from transforming A9, and the dashed axes were obtained from transforming
A13.

chains. In each chain, the only concern is that the first link of each chain does not attach
to the same point on the torso. This can be solved by inserting a fixed, fictitious link that
connects from the origin of the torso to the attachment point of the limb.

The situation is more interesting if there are multiple junctions. Suppose that Figure 3.22
represents part of a 2D system of links for which the root, A1, is attached via a chain of
links to A5. To transform link A9, the tools from Section 3.3.1 may be directly applied to
yield a sequence of transformations,

T1 · · · T5T6T7T8T9




x

y

1



 , (3.68)

for a point (x, y) ∈ A9. Likewise, to transform T13, the sequence

T1 · · · T5T6T7T12T13




x

y

1



 (3.69)

can be used by ignoring the chain formed by A8 and A9. So far everything seems to work
well, but take a close look at A7. As shown in Figure 3.23, its body frame was defined in
two different ways, one for each chain. If both are forced to use the same frame, then at
least one must abandon the nice conventions of Section 3.3.1 for choosing frames. This
situation becomes worse for 3D trees because this would suggest abandoning the DH
parameterization. The Khalil-Kleinfinger parameterization is an elegant extension of the
DH parameterization and solves these frame assignment issues [527].

Constraining parameters

Fortunately, it is fine to use different frames when following different chains; however, one
extra piece of information is needed. Imagine transforming the whole tree. The variable
θ7 will appear twice, once from each of the upper and lower chains. Let θ7u and θ7l denote
these θ’s. Can θ really be chosen two different ways? This would imply that the tree is
instead as pictured in Figure 3.24, in which there are two independently moving links,
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A6

A13

A8

A9

A12

A5

A7u

A7l

Figure 3.24: Choosing each θ7 independently would result in a tree that ignores that fact that A7 is rigid.

(0,0) (1,0) (3,0) (4,0)

(0,--1)
A1

A2

A3

A6

A5

A4

Figure 3.25: A tree of bodies in which the joints are attached in different places.

A7u and A7l . To fix this problem, a constraint must be imposed. Suppose that θ7l is treated
as an independent variable. The parameter θ7u must then be chosen as θ7l + φ, in which
φ is as shown in Figure 3.23.

Example 3.6 (A 2D Tree of Bodies) Figure 3.25 shows a 2D example that involves six
links. To transform (x, y) ∈ A6, the only relevant links are A5, A2, and A1. The chain of
transformations is

T1T2lT5T6




x

y

1



 , (3.70)

in which

T1 =



cos θ1 − sin θ1 xt

sin θ1 cos θ1 yt

0 0 1



 =



cos θ1 − sin θ1 0
sin θ1 cos θ1 0

0 0 1



 , (3.71)

T2l =



cos θ2l − sin θ2l a1

sin θ2l cos θ2l 0
0 0 1



 =



cos θ2 − sin θ2 1
sin θ2 cos θ2 0

0 0 1



 , (3.72)
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T5 =



cos θ5 − sin θ5 a2

sin θ5 cos θ5 0
0 0 1



 =



cos θ5 − sin θ5

√
2

sin θ5 cos θ5 0
0 0 1



 , (3.73)

and

T6 =



cos θ6 − sin θ6 a5

sin θ6 cos θ6 0
0 0 1



 =



cos θ6 − sin θ6 1
sin θ6 cos θ6 0

0 0 1



 . (3.74)

The matrix T2l in (3.72) denotes the fact that the lower chain was followed. The transfor-
mation for points in A4 is

T1T2uT4T5




x

y

1



 , (3.75)

in which T1 is the same as in (3.71), and

T3 =



cos θ3 − sin θ3 a2

sin θ3 cos θ3 0
0 0 1



 =



cos θ3 − sin θ3

√
2

sin θ3 cos θ3 0
0 0 1



 , (3.76)

and

T4 =



cos θ4 − sin θ4 a4

sin θ4 cos θ4 0
0 0 1



 =



cos θ4 − sin θ4 0
sin θ4 cos θ4 0

0 0 1



 . (3.77)

The interesting case is

T2u =



cos θ2u − sin θ2u a1

sin θ2u cos θ2u 0
0 0 1



 =



cos(θ2l + π/4) − sin(θ2l + π/4) a1

sin(θ2l + π/4) cos(θ2l + π/4) 0
0 0 1



 , (3.78)

in which the constraint θ2u = θ2l + π/4 is imposed to enforce the fact that A2 is a
junction. �

For a 3D tree of bodies the same general principles may be followed. In some cases,
there will not be any complications that involve special considerations of junctions and
constraints. One example of this is the transformation of flexible molecules because all
consecutive rotation axes intersect, and junctions occur directly at these points of inter-
section. In general, however, the DH parameter technique may be applied for each chain,
and then the appropriate constraints have to be determined and applied to represent the
true degrees of freedom of the tree. The Khalil-Kleinfinger parameterization conveniently
captures the resulting solution [527].

What if there are loops?

The most general case includes links that are connected in loops, as shown in Figure 3.26.
These are generally referred to as closed kinematic chains. This arises in many appli-
cations. For example, with humanoid robotics or digital actors, a loop is formed when
both feet touch the ground. As another example, suppose that two robot manipulators,
such as the Puma 560 from Example 3.4, cooperate together to carry an object. If each
robot grasps the same object with its hand, then a loop will be formed. A complicated
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A2
A3

A4

A5

A7

A10

A9

A1

A8

A6

Figure 3.26: There are ten links and ten revolute joints arranged in a loop. This is an example of a closed
kinematic chain.

A7

A10

A9
A8

A6

A1

A2

A5

A4

A3

Figure 3.27: Loops may be opened to enable tree-based transformations to be applied; however, a closure
constraint must still be satis�ed.

example of this was shown in Figure 1.5, in which mobile robots moved a piano. Outside
of robotics, a large fraction of organic molecules have flexible loops. Exploring the space
of their conformations requires careful consideration of the difficulties imposed by these
loops.

The main difficulty of working with closed kinematic chains is that it is hard to
determine which parameter values are within an acceptable range to ensure closure. If
these values are given, then the transformations are handled in the same way as the case
of trees. For example, the links in Figure 3.26 may be transformed by breaking the loop
into two different chains. Suppose we forget that the joint between A5 and A6 exists, as
shown in Figure 3.27. Consider two different kinematic chains that start at the joint on the
extreme left. There is an upper chain from A1 to A5 and a lower chain from A10 to A6.
The transformations for any of these bodies can be obtained directly from the techniques
of Section 3.3.1. Thus, it is easy to transform the bodies, but how do we choose parameter
values that ensure A5 and A6 are connected at their common joint? Using the upper chain,
the position of this joint may be expressed as

T1(θ1)T2(θ2)T3(θ3)T4(θ4)T5(θ5)




a5

0
1



 , (3.79)
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in which (a5, 0) ∈ A5 is the location of the joint of A5 that is supposed to connect to A6.
The position of this joint may also be expressed using the lower chain as

T10(θ10)T9(θ9)T8(θ8)T7(θ7)T6(θ6)




a6

0
1



 , (3.80)

with (a6, 0) representing the position of the joint in the body frame of A6. If the loop does
not have to be maintained, then any values for θ1, . . . , θ10 may be selected, resulting in
ten degrees of freedom. However, if a loop must maintained, then (3.79) and (3.80) must
be equal,

T1(θ1)T2(θ2)T3(θ3)T4(θ4)T5(θ5)




a5

0
1



 = T10(θ10)T9(θ9)T8(θ8)T7(θ7)T6(θ6)




a6

0
1



 , (3.81)

which is quite a mess of nonlinear, trigonometric equations that must be solved. The set of
solutions to (3.81) could be very complicated. For the example, the true degrees of freedom
is eight because two were removed by making the joint common. Since the common joint
allows the links to rotate, exactly two degrees of freedom are lost. If A5 and A6 had to be
rigidly attached, then the total degrees of freedom would be only seven. For most problems
that involve loops, it will not be possible to obtain a nice parameterization of the set of
solutions. This a form of the well-known inverse kinematics problem [254, 696, 778, 994].

In general, a complicated arrangement of links can be imagined in which there are many
loops. Each time a joint along a loop is “ignored,” as in the procedure just described, then
one less loop exists. This process can be repeated iteratively until there are no more
loops in the graph. The resulting arrangement of links will be a tree for which the
previous techniques of this section may be applied. However, for each joint that was
“ignored” an equation similar to (3.81) must be introduced. All of these equations must
be satisfied simultaneously to respect the original loop constraints. Suppose that a set of
value parameters is already given. This could happen, for example, using motion capture
technology to measure the position and orientation of every part of a human body in
contact with the ground. From this the solution parameters could be computed, and all
of the transformations are easy to represent. However, as soon as the model moves, it is
difficult to ensure that the new transformations respect the closure constraints. The foot
of the digital actor may push through the floor, for example. Further information on this
problem appears in Section 4.4.

3.5 Nonrigid transformations

One can easily imagine motion planning for nonrigid bodies. This falls outside of the
families of transformations studied so far in this chapter. Several kinds of nonrigid trans-
formations are briefly surveyed here.

Linear transformations

A rotation is a special case of a linear transformation, which is generally expressed by
an n× n matrix, M , assuming the transformations are performed over R

n. Consider
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Figure 3.28: Shearing transformations may be performed.

transforming a point (x, y) in a 2D robot, A, as
(

m11 m12

m21 m22

)(
x

y

)
. (3.82)

If M is a rotation matrix, then the size and shape of A will remain the same. In some
applications, however, it may be desirable to distort these. The robot can be scaled by m11

along the x-axis and m22 along the y-axis by applying
(

m11 0
0 m22

)(
x

y

)
, (3.83)

for positive real values m11 and m22. If one of them is negated, then a mirror image of A
is obtained. In addition to scaling, A can be sheared by applying

(
1 m12

0 1

)(
x

y

)
(3.84)

for m12 	= 0. The case of m12 = 1 is shown in Figure 3.28.
The scaling, shearing, and rotation matrices may be multiplied together to yield a

general transformation matrix that explicitly parameterizes each effect. It is also possible
to extend the M from n× n to (n+ 1) × (n+ 1) to obtain a homogeneous transformation
matrix that includes translation. Also, the concepts extend in a straightforward way to R

3

and beyond. This enables the additional effects of scaling and shearing to be incorporated
directly into the concepts from Sections 3.2-3.4.

Flexible materials

In some applications there is motivation to move beyond linear transformations. Imagine
trying to warp a flexible material, such as a mattress, through a doorway. The mattress
could be approximated by a 2D array of links; however, the complexity and degrees
of freedom would be too cumbersome. For another example, suppose that a snake-like
robot is designed by connecting 100 revolute joints together in a chain. The tools from
Section 3.3 may be used to transform it with 100 rotation parameters, θ1, . . . , θ100, but this
may become unwieldy for use in a planning algorithm. An alternative is to approximate
the snake with a deformable curve or shape.

For problems such as these, it is desirable to use a parameterized family of curves or
surfaces. Spline models are often most appropriate because they are designed to provide
easy control over the shape of a curve through the adjustment of a small number of
parameters. Other possibilities include the generalized-cylinder and superquadric models
that were mentioned in Section 3.1.3.

One complication is that complicated constraints may be imposed on the space of al-
lowable parameters. For example, each joint of a snake-like robot could have a small range
of rotation. This would be easy to model using a kinematic chain; however, determining
which splines from a spline family satisfy this extra constraint may be difficult. Likewise,
for manipulating flexible materials, there are usually complicated constraints based on
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the elasticity of the material. Even determining its correct shape under the application of
some forces requires integration of an elastic energy function over the material [580].

Further reading

Section 3.1 barely scratches the surface of geometric modeling. Most literature focuses on parametric
curves and surfaces [378, 721, 791]. These models are not as popular for motion planning because
obtaining efficient collision detection is most important in practice, and processing implicit algebraic
surfaces is most important in theoretical methods. A thorough coverage of solid and boundary represen-
tations, including semi-algebraic models, can be found in [457]. Theoretical algorithm issues regarding
semi-algebraic models are covered in [707, 708]. For a comparison of the doubly connected edge list to
its variants, see [525].

The material of Section 3.2 appears in virtually any book on robotics, computer vision, or computer
graphics. Consulting linear algebra texts may be helpful to gain more insight into rotations. There are
many ways to parameterize the set of all 3D rotation matrices. The yaw-pitch-roll formulation was
selected because it is the easiest to understand. There are generally 12 different variants of the yaw-
pitch-roll formulation (also called Euler angles) based on different rotation orderings and axis selections.
This formulation, however, it not well suited for the development of motion planning algorithms. It is
easy (and safe) to use for making quick 3D animations of motion planning output, but it incorrectly
captures the structure of the state space for planning algorithms. Section 4.2 introduces the quaternion
parameterization, which correctly captures this state space; however, it is harder to interpret when
constructing examples. Therefore, it is helpful to understand both. In addition to Euler angles and
quaternions, there is still motivation for using many other parameterizations of rotations, such as spherical
coordinates, Cayley-Rodrigues parameters, and stereographic projection. Chapter 5 of [212] provides
extensive coverage of 3D rotations and different parameterizations.

The coverage in Section 3.3 of transformations of chains of bodies was heavily influenced by two
classic robotics texts [254, 778]. The DH parameters were introduced in [437] and later extended to trees
and loops in [527]. An alternative to DH parameters is exponential coordinates [728], which simplify
some computations; however, determining the parameters in the modeling stage may be less intuitive. A
fascinating history of mechanisms appears in [438]. Other texts on kinematics include [29, 312, 534, 692].
The standard approach in many robotics books [368, 858, 908, 994] is to introduce the kinematic chain
formulations and DH parameters in the first couple of chapters, and then move on to topics that are
crucial for controlling robot manipulators, including dynamics modeling, singularities, manipulability,
and control. Since this book is concerned instead with planning algorithms, we depart at the point
where dynamics would usually be covered and move into a careful study of the configuration space in
Chapter 4.

Exercises

1. De�ne a semi-algebraic model that removes a triangular “nose” from the region shown in
Figure 3.4.

2. For distinct values of yaw, pitch, and roll, it is possible to generate the same rotation. In
other words, R(α, β, γ ) = R(α′, β ′, γ ′) for some cases in which at least α 	= α, β 	= β ′, or
γ 	= γ ′. Characterize the sets of angles for which this occurs.

3. Using rotation matrices, prove that 2D rotation is commutative but 3D rotation is not.

4. An alternative to the yaw-pitch-roll formulation from Section 3.2.3 is considered here. Con-
sider the following Euler angle representation of rotation (there are many other variants).
The � rst rotation is Rz(γ ), which is just (3.39) with α replaced by γ . The next two rotations
are identical to the yaw-pitch-roll formulation: Ry(β) is applied, followed by Rz(α). This
yields Reuler (α, β, γ ) = Rz(α)Ry(β)Rz(γ ).
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(0,0)

2

10

a

b

c

12

A1
A2

A3

Figure 3.29: A chain of three bodies.

(a) Determine the matrix Reuler .

(b) Show that Reuler (α, β, γ ) = Reuler (α − π,−β, γ − π ).

(c) Suppose that a rotation matrix is given as shown in (3.43). Show that the Euler angles are

α = atan2(r23, r13), (3.85)

β = atan2(
√

1 − r2
33, r33), (3.86)

and

γ = atan2(r32,−r31). (3.87)

5. There are 12 different variants of yaw-pitch-roll (or Euler angles), depending on which axes
are used and the order of these axes. Determine all of the possibilities, using only notation
such as Rz(α)Ry(β)Rz(γ ) for each one. Give brief arguments that support why or why not
speci�c combinations of rotations are included in your list of 12.

6. Let A be a unit disc, centered at the origin, and W = R
2. Assume that A is represented by

a single, algebraic primitive, H = {(x, y) | x2 + y2 ≤ 1}. Show that the transformed primitive
is unchanged after any rotation is applied.

7. Consider the articulated chain of bodies shown in Figure 3.29. There are three identical
rectangular bars in the plane, called A1,A2,A3. Each bar has width 2 and length 12. The
distance between the two points of attachment is 10. The � rst bar, A1, is attached to the
origin. The second bar, A2, is attached to A1, and A3 is attached to A2. Each bar is allowed
to rotate about its point of attachment. The con�gur ation of the chain can be expressed
with three angles, (θ1, θ2, θ3). The �rst angle, θ1, represents the angle between the segment
drawn between the two points of attachment of A1 and the x-axis. The second angle, θ2,
represents the angle between A2 and A1 (θ2 = 0 when they are parallel). The third angle, θ3,
represents the angle between A3 and A2. Suppose the con�gur ation is (π/4, π/2,−π/4).

(a) Use the homogeneous transformation matrices to determine the locations of points a, b,
and c.

(b) Characterize the set of all con�gur ations for which the � nal point of attachment (near the
end of A3) is at (0, 0) (you should be able to � gure this out without using the matrices).

8. A three-link chain of bodies that moves in a 2D world is shown Figure 3.30. The � rst link,
A1, is attached at (0, 0) but can rotate. Each remaining link is attached to another link with
a revolute joint. The second link, A2, is a rigid ring, and the other two links are rectangular
bars.
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Figure 3.30: Another exercise involving a chain of bodies.

Assume that the structure is shown in the zero con�gur ation. Suppose that the linkage
is moved to the con�gur ation (θ1, θ2, θ3) = ( π

4 , π

2 , π

4 ), in which θ1 is the angle of A1, θ2

is the angle of A2 with respect to A1, and θ3 is the angle of A3 with respect to A2.
Using homogeneous transformation matrices, compute the position of the point at (4, 0) in
Figure 3.30, when the linkage is at con�gur ation ( π

4 , π

2 , π

4 ) (the point is attached to A3).

9. Approximate a spherical joint as a chain of three short, perpendicular links that are attached
by revolute joints and give the sequence of transformation matrices. Show that as the link
lengths approach zero, the resulting sequence of transformation matrices converges to
exactly representing the freedom of a spherical joint. Compare this approach to directly
using a full rotation matrix, (3.42), to represent the joint in the homogeneous transformation
matrix.

10. Figure 3.12 showed six different ways in which 2D surfaces can slide with respect to each
other to produce a joint.

(a) Suppose that two bodies contact each other along a one-dimensional curve. Characterize
as many different kinds of “joints” as possible, and indicate the degrees of freedom of each.

(b) Suppose that the two bodies contact each other at a point. Indicate the types of rolling and
sliding that are possible, and their corresponding degrees of freedom.

11. Suppose that two bodies form a screw joint in which the axis of the central axis of the
screw aligns with the x-axis of the �rst body. Determine an appropriate homogeneous
transformation matrix to use in place of the DH matrix. De�ne the matrix with the screw
radius, r, and displacement-per-revolution, d, as parameters.

12. Recall Example 3.6. How should the transformations be modi�ed so that the links are in
the positions shown in Figure 3.25 at the zero con�gur ation (θi = 0 for every revolute joint
whose angle can be independently chosen)?

13. Generalize the shearing transformation of (3.84) to enable shearing of 3D models.

Implementations

14. Develop and implement a kinematic model for 2D linkages. Enable the user to display the
arrangement of links in the plane.

15. Implement the kinematics of molecules that do not have loops and show them graphically
as a “ball and stick” model. The user should be able to input the atomic radii, bond
connections, bond lengths, and rotation ranges for each bond.

16. Design and implement a software system in which the user can interactively attach various
links to make linkages that resemble those possible from using Tinkertoys (or another popu-
lar construction set that allows pieces to move). There are several rods of various lengths,
which � t into holes in the center and around the edge of several coin-shaped pieces.
Assume that all joints are revolute. The user should be allowed to change parameters and
see the resulting positions of all of the links.
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17. Construct a model of the human body as a tree of links in a 3D world. For simplicity, the
geometric model may be limited to spheres and cylinders. Design and implement a system
that displays the virtual human and allows the user to click on joints of the body to enable
them to rotate.

18. Develop a simulator with 3D graphics for the Puma 560 model shown in Figure 3.4.
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The Configuration Space

Chapter 3 only covered how to model and transform a collection of bodies; however,
for the purposes of planning it is important to define the state space. The state space for
motion planning is a set of possible transformations that could be applied to the robot.
This will be referred to as the configuration space, based on Lagrangian mechanics and
the seminal work of Lozano-Pérez [659, 663, 660], who extensively utilized this notion
in the context of planning (the idea was also used in early collision avoidance work by
Udupa [947]). The motion planning literature was further unified around this concept by
Latombe’s book [591]. Once the configuration space is clearly understood, many motion
planning problems that appear different in terms of geometry and kinematics can be solved
by the same planning algorithms. This level of abstraction is therefore very important.

This chapter provides important foundational material that will be very useful in Chap-
ters 5 to 8 and other places where planning over continuous state spaces occurs. Many of the
concepts introduced in this chapter come directly from mathematics, particularly from
topology. Therefore, Section 4.1 gives a basic overview of topological concepts. Sec-
tion 4.2 uses the concepts from Chapter 3 to define the configuration space. After reading
this, you should be able to precisely characterize the configuration space of a robot and un-
derstand its structure. In Section 4.3, obstacles in the world are transformed into obstacles
in the configuration space, but it is important to understand that this transformation may
not be explicitly constructed. The implicit representation of the state space is a recurring
theme throughout planning. Section 4.4 covers the important case of kinematic chains
that have loops, which was mentioned in Section 3.4. This case is so difficult that even the
space of transformations usually cannot be explicitly characterized (i.e., parameterized).

4.1 Basic topological concepts

This section introduces basic topological concepts that are helpful in understanding con-
figuration spaces. Topology is a challenging subject to understand in depth. The brief
treatment given here provides only a brief overview and is designed to stimulate further
study (see the literature overview at the end of the chapter). To advance further in this
chapter, it is not necessary to understand all of the material of this section; however,
the more you understand, the deeper will be your understanding of motion planning in
general.

4.1.1 Topological spaces

Recall the concepts of open and closed intervals in the set of real numbers R. The open
interval (0, 1) includes all real numbers between 0 and 1, except 0 and 1. However, for
either endpoint, an infinite sequence may be defined that converges to it. For example,
the sequence 1/2, 1/4, . . . , 1/2i converges to 0 as i tends to infinity. This means that we

105
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can choose a point in (0, 1) within any small, positive distance from 0 or 1, but we cannot
pick one exactly on the boundary of the interval. For a closed interval, such as [0, 1], the
boundary points are included.

The notion of an open set lies at the heart of topology. The open set definition that will
appear here is a substantial generalization of the concept of an open interval. The concept
applies to a very general collection of subsets of some larger space. It is general enough
to easily include any kind of configuration space that may be encountered in planning.

A set X is called a topological space if there is a collection of subsets of X called open
sets for which the following axioms hold:

1. The union of a countable number of open sets is an open set.

2. The intersection of a finite number of open sets is an open set.

3. Both X and ∅ are open sets.

Note that in the first axiom, the union of an infinite number of open sets may be taken, and
the result must remain an open set. Intersecting an infinite number of open sets, however,
does not necessarily lead to an open set.

For the special case of X = R, the open sets include open intervals, as expected. Many
sets that are not intervals are open sets because taking unions and intersections of open
intervals yields other open sets. For example, the set

∞⋃

i=1

(
1

3i
,

2

3i

)
, (4.1)

which is an infinite union of pairwise-disjoint intervals, is an open set.

Closed sets

Open sets appear directly in the definition of a topological space. It next seems that closed
sets are needed. Suppose X is a topological space. A subset C ⊂ X is defined to be a
closed set if and only if X \ C is an open set. Thus, the complement of any open set is
closed, and the complement of any closed set is open. Any closed interval, such as [0, 1],
is a closed set because its complement, (−∞, 0) ∪ (1,∞), is an open set. For another
example, (0, 1) is an open set; therefore, R \ (0, 1) = (−∞, 0] ∪ [1,∞) is a closed set.
The use of “(” may seem wrong in the last expression, but “[” cannot be used because
−∞ and ∞ do not belong to R. Thus, the use of “(” is just a notational quirk.

Are all subsets of X either closed or open? Although it appears that open sets and
closed sets are opposites in some sense, the answer is no. For X = R, the interval [0, 2π)
is neither open nor closed (consider its complement: [2π,∞) is closed, and (−∞, 0) is
open). Note that for any topological space, X and ∅ are both open and closed!

Special points

From the definitions and examples so far, it should seem that points on the “edge” or
“border” of a set are important. There are several terms that capture where points are
relative to the border. Let X be a topological space, and let U be any subset of X.
Furthermore, let x be any point in X. The following terms capture the position of point x

relative to U (see Figure 4.1):

• If there exists an open set O1 such that x ∈ O1 and O1 ⊆ U , then x is called an interior
point of U . The set of all interior points in U is called the interior of U and is denoted by
int(U ).
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x1

U

x3

x2

O2

O1

Figure 4.1: An illustration of the boundary de�nition. Suppose X = R
2, and U is a subset as shown. Three

kinds of points appear: 1) x1 is a boundary point, 2) x2 is an interior point, and 3) x3 is an exterior point.
Both x1 and x2 are limit points of U.

• If there exists an open set O2 such that x ∈ O2 and O2 ⊆ X \ U , then x is called an
exterior point with respect to U .

• If x is neither an interior point nor an exterior point, then it is called a boundary point of
U . The set of all boundary points in X is called the boundary of U and is denoted by ∂U .

• All points in x ∈ X must be one of the three above; however, another term is often used,
even though it is redundant given the other three. If x is either an interior point or a
boundary point, then it is called a limit point (or accumulation point) of U . The set of all
limit points of U is a closed set called the closure of U , and it is denoted by cl(U ). Note
that cl(U ) = int(U ) ∪ ∂U .

For the case of X = R, the boundary points are the endpoints of intervals. For example,
0 and 1 are boundary points of intervals, (0, 1), [0, 1], [0, 0), and (0, 1]. Thus, U may or
may not include its boundary points. All of the points in (0, 1) are interior points, and all
of the points in [0, 1] are limit points. The motivation of the name “limit point” comes
from the fact that such a point might be the limit of an infinite sequence of points in U .
For example, 0 is the limit point of the sequence generated by 1/2i for each i ∈ N, the
natural numbers.

There are several convenient consequences of the definitions. A closed set C contains
the limit point of any sequence that is a subset of C. This implies that it contains all
of its boundary points. The closure, cl, always results in a closed set because it adds all
of the boundary points to the set. On the other hand, an open set contains none of its
boundary points. These interpretations will come in handy when considering obstacles in
the configuration space for motion planning.

Some examples

The definition of a topological space is so general that an incredible variety of topological
spaces can be constructed.

Example 4.1 (The Topology of R
n) We should expect that X = R

n for any integer n is
a topological space. This requires characterizing the open sets. An open ball B(x, ρ) is
the set of points in the interior of a sphere of radius ρ, centered at x. Thus,

B(x, ρ) = {x ′ ∈ R
n | ‖x ′ − x‖ < ρ}, (4.2)

in which ‖ · ‖ denotes the Euclidean norm (or magnitude) of its argument. The open balls
are open sets in R

n. Furthermore, all other open sets can be expressed as a countable union
of open balls.1 For the case of R, this reduces to representing any open set as a union of
intervals, which was done so far.

1 Such a collection of balls is often referred to as a basis.
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Even though it is possible to express open sets of R
n as unions of balls, we prefer to

use other representations, with the understanding that one could revert to open balls if
necessary. The primitives of Section 3.1 can be used to generate many interesting open
and closed sets. For example, any algebraic primitive expressed in the form H = {x ∈
R

n | f (x) ≤ 0} produces a closed set. Taking finite unions and intersections of these
primitives will produce more closed sets. Therefore, all of the models from Sections 3.1.1
and 3.1.2 produce an obstacle region O that is a closed set. As mentioned in Section 3.1.2,
sets constructed only from primitives that use the < relation are open. �

Example 4.2 (Subspace Topology) A new topological space can easily be constructed
from a subset of a topological space. Let X be a topological space, and let Y ⊂ X be
a subset. The subspace topology on Y is obtained by defining the open sets to be every
subset of Y that can be represented as U ∩ Y for some open set U ⊆ X. Thus, the open
sets for Y are almost the same as for X, except that the points that do not lie in Y are
trimmed away. New subspaces can be constructed by intersecting open sets of R

n with
a complicated region defined by semi-algebraic models. This leads to many interesting
topological spaces, some of which will appear later in this chapter. �

Example 4.3 (The Trivial Topology) For any set X, there is always one trivial example
of a topological space that can be constructed from it. Declare that X and ∅ are the only
open sets. Note that all of the axioms are satisfied. �

Example 4.4 (A Strange Topology) It is important to keep in mind the almost absurd
level of generality that is allowed by the definition of a topological space. A topological
space can be defined for any set, as long as the declared open sets obey the axioms.
Suppose a four-element set is defined as

X = {cat, dog, tree, house}. (4.3)

In addition to ∅ and X, suppose that {cat} and {dog} are open sets. Using the axioms,
{cat, dog} must also be an open set. Closed sets and boundary points can be derived for
this topology once the open sets are defined. �

After the last example, it seems that topological spaces are so general that not much
can be said about them. Most spaces that are considered in topology and analysis satisfy
more axioms. For R

n and any configuration spaces that arise in this book, the following
is satisfied:

Hausdorff axiom: For any distinct x1, x2 ∈ X, there exist open sets O1 and O2 such
that x1 ∈ O1, x2 ∈ O2, and O1 ∩O2 = ∅.

In other words, it is possible to separate x1 and x2 into nonoverlapping open sets. Think
about how to do this for R

n by selecting small enough open balls. Any topological space
X that satisfies the Hausdorff axiom is referred to as a Hausdorff space. Section 4.1.2
will introduce manifolds, which happen to be Hausdorff spaces and are general enough to
capture the vast majority of configuration spaces that arise. We will have no need in this
book to consider topological spaces that are not Hausdorff spaces.

Continuous functions

A very simple definition of continuity exists for topological spaces. It nicely generalizes the
definition from standard calculus. Let f : X → Y denote a function between topological
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spaces X and Y . For any set B ⊆ Y , let the preimage of B be denoted and defined by

f −1(B) = {x ∈ X | f (x) ∈ B}. (4.4)

Note that this definition does not require f to have an inverse.
The function f is called continuous if f −1(O) is an open set for every open set O ⊆ Y .

Analysis is greatly simplified by this definition of continuity. For example, to show that
any composition of continuous functions is continuous requires only a one-line argument
that the preimage of the preimage of any open set always yields an open set. Compare this
to the cumbersome classical proof that requires a mess of δ’s and ε’s. The notion is also
so general that continuous functions can even be defined on the absurd topological space
from Example 4.4.

Homeomorphism: Making a donut into a coffee cup

You might have heard the expression that to a topologist, a donut and a coffee cup appear
the same. In many branches of mathematics, it is important to define when two basic
objects are equivalent. In graph theory (and group theory), this equivalence relation is
called an isomorphism. In topology, the most basic equivalence is a homeomorphism,
which allows spaces that appear quite different in most other subjects to be declared
equivalent in topology. The surfaces of a donut and a coffee cup (with one handle) are
considered equivalent because both have a single hole. This notion needs to be made more
precise!

Suppose f : X → Y is a bijective (one-to-one and onto) function between topological
spaces X and Y . Since f is bijective, the inverse f −1 exists. If both f and f −1 are
continuous, then f is called a homeomorphism. Two topological spaces X and Y are
said to be homeomorphic, denoted by X ∼= Y , if there exists a homeomorphism between
them. This implies an equivalence relation on the set of topological spaces (verify that the
reflexive, symmetric, and transitive properties are implied by the homeomorphism).

Example 4.5 (Interval Homeomorphisms) Any open interval of R is homeomorphic
to any other open interval. For example, (0, 1) can be mapped to (0, 5) by the continuous
mapping x �→ 5x. Note that (0, 1) and (0, 5) are each being interpreted here as topological
subspaces of R. This kind of homeomorphism can be generalized substantially using
linear algebra. If a subset, X ⊂ R

n, can be mapped to another, Y ⊂ R
n, via a nonsingular

linear transformation, then X and Y are homeomorphic. For example, the rigid-body
transformations of the previous chapter were examples of homeomorphisms applied to
the robot. Thus, the topology of the robot does not change when it is translated or rotated.
(In this example, note that the robot itself is the topological space. This will not be the
case for the rest of the chapter.)

Be careful when mixing closed and open sets. The space [0, 1] is not homeomorphic
to (0, 1), and neither is homeomorphic to [0, 1). The endpoints cause trouble when try-
ing to make a bijective, continuous function. Surprisingly, a bounded and unbounded
set may be homeomorphic. A subset X of R

n is called bounded if there exists a ball
B ⊂ R

n such that X ⊂ B. The mapping x �→ 1/x establishes that (0, 1) and (1,∞) are
homeomorphic. The mapping x �→ tan−1(πx/2) establishes that (−1, 1) and all of R are
homeomorphic! �

Example 4.6 (Topological Graphs) Let X be a topological space. The previous example
can be extended nicely to make homeomorphisms look like graph isomorphisms. Let a
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Figure 4.2: Even though the graphs are not isomorphic, the corresponding topological spaces may be
homeomorphic due to useless vertices. The example graphs map into R

2, and are all homeomorphic to a
circle.

Figure 4.3: These topological graphs map into subsets of R
2 that are not homeomorphic to each other.

topological graph2 be a graph for which every vertex corresponds to a point in X and
every edge corresponds to a continuous, injective (one-to-one) function, τ : [0, 1] → X.
The image of τ connects the points in X that correspond to the endpoints (vertices) of
the edge. The images of different edge functions are not allowed to intersect, except at
vertices. Recall from graph theory that two graphs, G1(V1, E1) and G2(V2, E2), are called
isomorphic if there exists a bijective mapping, f : V1 → V2 such that there is an edge
between v1 and v′1 in G1, if and only if there exists an edge between f (v1) and f (v′1) in
G2.

The bijective mapping used in the graph isomorphism can be extended to produce a
homeomorphism. Each edge in E1 is mapped continuously to its corresponding edge in
E2. The mappings nicely coincide at the vertices. Now you should see that two topological
graphs are homeomorphic if they are isomorphic under the standard definition from graph
theory.3 What if the graphs are not isomorphic? There is still a chance that the topological
graphs may be homeomorphic, as shown in Figure 4.2. The problem is that there appear
to be “useless” vertices in the graph. By removing vertices of degree two that can be
deleted without affecting the connectivity of the graph, the problem is fixed. In this case,
graphs that are not isomorphic produce topological graphs that are not homeomorphic.
This allows many distinct, interesting topological spaces to be constructed. A few are
shown in Figure 4.3. �

4.1.2 Manifolds

In motion planning, efforts are made to ensure that the resulting configuration space has
nice properties that reflect the true structure of the space of transformations. One important
kind of topological space, which is general enough to include most of the configuration
spaces considered in Part II, is called a manifold. Intuitively, a manifold can be considered
as a “nice” topological space that behaves at every point like our intuitive notion of a
surface.

2 In topology this is called a 1-complex [442].
3 Technically, the images of the topological graphs, as subspaces of X, are homeomorphic, not the graphs themselves.
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Figure 4.4: Some open subsets of R
2 that may or may not be manifolds. For the three that are not, the

point that prevents them from being manifolds is indicated.

Manifold definition

A topological space M ⊆ R
m is a manifold4 if for every x ∈ M , an open set O ⊂ M

exists such that: 1) x ∈ O, 2) O is homeomorphic to R
n, and 3) n is fixed for all x ∈ M .

The fixed n is referred to as the dimension of the manifold, M . The second condition is
the most important. It states that in the vicinity of any point, x ∈ M , the space behaves
just like it would in the vicinity of any point y ∈ R

n; intuitively, the set of directions that
one can move appears the same in either case. Several simple examples that may or may
not be manifolds are shown in Figure 4.4.

One natural consequence of the definitions is that m ≥ n. According to Whitney’s
embedding theorem [452], m ≤ 2n+ 1. In other words, R

2n+1 is “big enough” to hold
any n-dimensional manifold.5 Technically, it is said that the n-dimensional manifold M

is embedded in R
m, which means that an injective mapping exists from M to R

m (if it is
not injective, then the topology of M could change).

As it stands, it is impossible for a manifold to include its boundary points because
they are not contained in open sets. A manifold with boundary can be defined requiring
that the neighborhood of each boundary point of M is homeomorphic to a half-space of
dimension n (which was defined for n = 2 and n = 3 in Section 3.1) and that the interior
points must be homeomorphic to R

n.
The presentation now turns to ways of constructing some manifolds that frequently

appear in motion planning. It is important to keep in mind that two manifolds will be
considered equivalent if they are homeomorphic (recall the donut and coffee cup).

Cartesian products

There is a convenient way to construct new topological spaces from existing ones. Suppose
that X and Y are topological spaces. The Cartesian product, X × Y , defines a new
topological space as follows. Every x ∈ X and y ∈ Y generates a point (x, y) in X × Y .

4 Manifolds that are not subsets of R
m may also be defined. This requires that M is a Hausdorff space and is

second countable, which means that there is a countable number of open sets from which any other open set can
be constructed by taking a union of some of them. These conditions are automatically satisfied when assuming
M ⊆ R

m; thus, it avoids these extra complications and is still general enough for our purposes. Some authors
use the term manifold to refer to a smooth manifold. This requires the definition of a smooth structure, and the
homeomorphism is replaced by diffeomorphism. This extra structure is not needed here but will be introduced when
it is needed in Section 8.3.

5 One variant of the theorem is that for smooth manifolds, R
2n is sufficient. This bound is tight because RP

n

(n-dimensional projective space, which will be introduced later in this section), cannot be embedded in R
2n−1.
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Each open set in X × Y is formed by taking the Cartesian product of one open set from X

and one from Y . Exactly one open set exists in X × Y for every pair of open sets that can
be formed by taking one from X and one from Y . No other open sets appear in X × Y ;
therefore, its open sets are automatically determined.

A familiar example of a Cartesian product is R×R, which is equivalent to R
2. In

general, R
n is equivalent to R×R

n−1. The Cartesian product can be taken over many
spaces at once. For example, R×R× · · · ×R = R

n. In the coming text, many important
manifolds will be constructed via Cartesian products.

1D manifolds

The set R of reals is the most obvious example of a 1D manifold because R certainly looks
like (via homeomorphism) R in the vicinity of every point. The range can be restricted
to the unit interval to yield the manifold (0, 1) because they are homeomorphic (recall
Example 4.5).

Another 1D manifold, which is not homeomorphic to (0, 1), is a circle, S
1. In this case

R
m = R

2, and let

S
1 = {(x, y) ∈ R

2 | x2 + y2 = 1}. (4.5)

If you are thinking like a topologist, it should appear that this particular circle is not
important because there are numerous ways to define manifolds that are homeomorphic
to S

1. For any manifold that is homeomorphic to S
1, we will sometimes say that the

manifold is S
1, just represented in a different way. Also, S

1 will be called a circle, but this
is meant only in the topological sense; it only needs to be homeomorphic to the circle that
we learned about in high school geometry. Also, when referring to R, we might instead
substitute (0, 1) without any trouble. The alternative representations of a manifold can be
considered as changing parameterizations, which are formally introduced in Section 8.3.2.

Identifications

A convenient way to represent S
1 is obtained by identification, which is a general method

of declaring that some points of a space are identical, even though they originally were
distinct.6 For a topological space X, let X/ ∼ denote that X has been redefined through
some form of identification. The open sets of X become redefined. Using identification, S1

can be defined as [0, 1]/ ∼, in which the identification declares that 0 and 1 are equivalent,
denoted as 0 ∼ 1. This has the effect of “gluing” the ends of the interval together, forming
a closed loop. To see the homeomorphism that makes this possible, use polar coordinates
to obtain θ �→ (cos 2πθ, sin 2πθ). You should already be familiar with 0 and 2π leading
to the same point in polar coordinates; here they are just normalized to 0 and 1. Letting θ

run from 0 up to 1, and then “wrapping around” to 0 is a convenient way to represent S
1

because it does not need to be curved as in (4.5).
It might appear that identifications are cheating because the definition of a manifold

requires it to be a subset of R
m. This is not a problem because Whitney’s theorem, as

mentioned previously, states that any n-dimensional manifold can be embedded in R
2n+1.

The identifications just reduce the number of dimensions needed for visualization. They
are also convenient in the implementation of motion planning algorithms.

6 This is usually defined more formally and called a quotient topology.
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Plane, R
2 Cylinder, R × S

1

Mȯ̇bius band Torus, T
2

Klein bottle Projective plane, RP
2

Two-sphere, S
2 Double torus

Figure 4.5: Some 2D manifolds that can be obtained by identifying pairs of points along the boundary of
a square region.

2D manifolds

Many important, 2D manifolds can be defined by applying the Cartesian product to 1D
manifolds. The 2D manifold R

2 is formed by R×R. The product R× S
1 defines a

manifold that is equivalent to an infinite cylinder. The product S
1 × S

1 is a manifold that
is equivalent to a torus (the surface of a donut).

Can any other 2D manifolds be defined? See Figure 4.5. The identification idea can be
applied to generate several new manifolds. Start with an open square M = (0, 1) × (0, 1),
which is homeomorphic to R

2. Let (x, y) denote a point in the plane. A flat cylinder
is obtained by making the identification (0, y) ∼ (1, y) for all y ∈ (0, 1) and adding all
of these points to M . The result is depicted in Figure 4.5 by drawing arrows where the
identification occurs.

A Möbius band can be constructed by taking a strip of paper and connecting the
ends after making a 180-degree twist. This result is not homeomorphic to the cylinder.
The Möbius band can also be constructed by putting the twist into the identification,
as (0, y) ∼ (1, 1 − y) for all y ∈ (0, 1). In this case, the arrows are drawn in opposite
directions. The Möbius band has the famous properties that it has only one side (trace
along the paper strip with a pencil, and you will visit both sides of the paper) and is
nonorientable (if you try to draw it in the plane, without using identification tricks, it will
always have a twist).

For all of the cases so far, there has been a boundary to the set. The next few manifolds
will not even have a boundary, even though they may be bounded. If you were to live in one
of them, it means that you could walk forever along any trajectory and never encounter the
edge of your universe. It might seem like our physical universe is unbounded, but it would
only be an illusion. Furthermore, there are several distinct possibilities for the universe
that are not homeomorphic to each other. In higher dimensions, such possibilities are the
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subject of cosmology, which is a branch of astrophysics that uses topology to characterize
the structure of our universe.

A torus can be constructed by performing identifications of the form (0, y) ∼ (1, y),
which was done for the cylinder, and also (x, 0) ∼ (x, 1), which identifies the top and
bottom. Note that the point (0, 0) must be included and is identified with three other
points. Double arrows are used in Figure 4.5 to indicate the top and bottom identification.
All of the identification points must be added to M . Note that there are no twists. A
funny interpretation of the resulting flat torus is as the universe appears for a spacecraft
in some 1980s-style Asteroids-like video games. The spaceship flies off of the screen in
one direction and appears somewhere else, as prescribed by the identification.

Two interesting manifolds can be made by adding twists. Consider performing all of the
identifications that were made for the torus, except put a twist in the side identification,
as was done for the Möbius band. This yields a fascinating manifold called the Klein
bottle, which can be embedded in R

4 as a closed 2D surface in which the inside and the
outside are the same! (This is in a sense similar to that of the Möbius band.) Now suppose
there are twists in both the sides and the top and bottom. This results in the most bizarre
manifold yet: the real projective plane, RP

2. This space is equivalent to the set of all lines
in R

3 that pass through the origin. The 3D version, RP
3, happens to be one of the most

important manifolds for motion planning!
Let S

2 denote the unit sphere, which is defined as

S
2 = {(x, y, z) ∈ R

3 | x2 + y2 + z2 = 1}. (4.6)

Another way to represent S
2 is by making the identifications shown in the last row of

Figure 4.5. A dashed line is indicated where the equator might appear, if we wanted to
make a distorted wall map of the earth. The poles would be at the upper left and lower
right corners. The final example shown in Figure 4.5 is a double torus, which is the surface
of a two-holed donut.

Higher dimensional manifolds

The construction techniques used for the 2D manifolds generalize nicely to higher dimen-
sions. Of course, R

n, is an n-dimensional manifold. An n-dimensional torus, T
n, can be

made by taking a Cartesian product of n copies of S
1. Note that S

1 × S
1 	= S

2. Therefore,
the notation T

n is used for (S1)n. Different kinds of n-dimensional cylinders can be made
by forming a Cartesian product R

i × T
j for positive integers i and j such that i + j = n.

Higher dimensional spheres are defined as

S
n = {x ∈ R

n+1 | ‖x‖ = 1}, (4.7)

in which ‖x‖ denotes the Euclidean norm of x, and n is a positive integer. Many interesting
spaces can be made by identifying faces of the cube (0, 1)n (or even faces of a polyhedron or
polytope), especially if different kinds of twists are allowed. An n-dimensional projective
space can be defined in this way, for example. Lens spaces are a family of manifolds that
can be constructed by identification of polyhedral faces [837].

Due to its coming importance in motion planning, more details are given on projective
spaces. The standard definition of an n-dimensional real projective space RP

n is the set
of all lines in R

n+1 that pass through the origin. Each line is considered as a point in
RP

n. Using the definition of S
n in (4.7), note that each of these lines in R

n+1 intersects
S

n ⊂ R
n+1 in exactly two places. These intersection points are called antipodal, which

means that they are as far from each other as possible on S
n. The pair is also unique
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for each line. If we identify all pairs of antipodal points of S
n, a homeomorphism can

be defined between each line through the origin of R
n+1 and each antipodal pair on the

sphere. This means that the resulting manifold, S
n/ ∼, is homeomorphic to RP

n.
Another way to interpret the identification is that RP

n is just the upper half of S
n,

but with every equatorial point identified with its antipodal point. Thus, if you try to
walk into the southern hemisphere, you will find yourself on the other side of the world
walking north. It is helpful to visualize the special case of RP

2 and the upper half of S
2.

Imagine warping the picture of RP
2 from Figure 4.5 from a square into a circular disc,

with opposite points identified. The result still represents RP
2. The center of the disc can

now be lifted out of the plane to form the upper half of S
2.

4.1.3 Paths and connectivity

Central to motion planning is determining whether one part of a space is reachable
from another. In Chapter 2, one state was reached from another by applying a sequence of
actions. For motion planning, the analog to this is connecting one point in the configuration
space to another by a continuous path. Graph connectivity is important in the discrete
planning case. An analog to this for topological spaces is presented in this section.

Paths

Let X be a topological space, which for our purposes will also be a manifold. A path is a
continuous function, τ : [0, 1] → X. Alternatively, R may be used for the domain of τ .
Keep in mind that a path is a function, not a set of points. Each point along the path is given
by τ (s) for some s ∈ [0, 1]. This makes it appear as a nice generalization to the sequence
of states visited when a plan from Chapter 2 is applied. Recall that there, a countable
set of stages was defined, and the states visited could be represented as x1, x2, . . . .
In the current setting τ (s) is used, in which s replaces the stage index. To make the
connection clearer, we could use x instead of τ to obtain x(s) for each s ∈ [0, 1].

Connected vs. path connected

A topological space X is said to be connected if it cannot be represented as the union of
two disjoint, nonempty, open sets. While this definition is rather elegant and general, if X

is connected, it does not imply that a path exists between any pair of points in X thanks
to crazy examples like the topologist’s sine curve:

X = {(x, y) ∈ R
2 | x = 0 or y = sin(1/x)}. (4.8)

Consider plotting X. The sin(1/x) part creates oscillations near the y-axis in which the
frequency tends to infinity. After union is taken with the y-axis, this space is connected,
but there is no path that reaches the y-axis from the sine curve.

How can we avoid such problems? The standard way to fix this is to use the path
definition directly in the definition of connectedness. A topological space X is said to
be path connected if for all x1, x2 ∈ X, there exists a path τ such that τ (0) = x1 and
τ (1) = x2. It can be shown that if X is path connected, then it is also connected in the
sense defined previously.

Another way to fix it is to make restrictions on the kinds of topological spaces that will
be considered. This approach will be taken here by assuming that all topological spaces
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t = 0

t = 1

t = 1/3

t = 2/3

t = 0

t = 1

(a) (b)

Figure 4.6: (a) Homotopy continuously warps one path into another. (b) The image of the path cannot be
continuously warped over a hole in R

2 because it causes a discontinuity. In this case, the two paths are not
homotopic.

are manifolds. In this case, no strange things like (4.8) can happen,7 and the definitions
of connected and path connected coincide [454]. Therefore, we will just say a space
is connected. However, it is important to remember that this definition of connected is
sometimes inadequate, and one should really say that X is path connected.

Simply connected

Now that the notion of connectedness has been established, the next step is to express
different kinds of connectivity. This may be done by using the notion of homotopy, which
can intuitively be considered as a way to continuously “warp” or “morph” one path into
another, as depicted in Figure 4.6a.

Two paths τ1 and τ2 are called homotopic (with endpoints fixed) if there exists a
continuous function h : [0, 1] × [0, 1] → X for which the following four conditions are
met:

1. (Start with first path) h(s, 0) = τ1(s) for all s ∈ [0, 1] .

2. (End with second path) h(s, 1) = τ2(s) for all s ∈ [0, 1] .

3. (Hold starting point fixed) h(0, t) = h(0, 0) for all t ∈ [0, 1] .

4. (Hold ending point fixed) h(1, t) = h(1, 0) for all t ∈ [0, 1] .

The parameter t can be interpreted as a knob that is turned to gradually deform the path
from τ1 into τ2. The first two conditions indicate that t = 0 yields τ1 and t = 1 yields τ2,
respectively. The remaining two conditions indicate that the path endpoints are held fixed.

During the warping process, the path image cannot make a discontinuous jump. In R
2,

this prevents it from moving over holes, such as the one shown in Figure 4.6b. The key
to preventing homotopy from jumping over some holes is that h must be continuous. In
higher dimensions, however, there are many different kinds of holes. For the case of R

3,
for example, suppose the space is like a block of Swiss cheese that contains air bubbles.
Homotopy can go around the air bubbles, but it cannot pass through a hole that is drilled
through the entire block of cheese. Air bubbles and other kinds of holes that appear
in higher dimensions can be characterized by generalizing homotopy to the warping of
higher dimensional surfaces, as opposed to paths [442].

7 The topologist’s sine curve is not a manifold because all open sets that contain the point (0, 0) contain some of the
points from the sine curve. These open sets are not homeomorphic to R.
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It is straightforward to show that homotopy defines an equivalence relation on the set
of all paths from some x1 ∈ X to some x2 ∈ X. The resulting notion of “equivalent paths”
appears frequently in motion planning, control theory, and many other contexts. Suppose
that X is path connected. If all paths fall into the same equivalence class, then X is called
simply connected; otherwise, X is called multiply connected.

Groups

The equivalence relation induced by homotopy starts to enter the realm of algebraic
topology, which is a branch of mathematics that characterizes the structure of topological
spaces in terms of algebraic objects, such as groups. These resulting groups have important
implications for motion planning. Therefore, we give a brief overview. First, the notion of
a group must be precisely defined. A group is a set, G, together with a binary operation,
◦, such that the following group axioms are satisfied:

1. (Closure) For any a, b ∈ G, the product a ◦ b ∈ G.

2. (Associativity) For all a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c). Hence, parentheses are not
needed, and the product may be written as a ◦ b ◦ c.

3. (Identity) There is an element e ∈ G, called the identity, such that for all a ∈ G, e ◦ a = a

and a ◦ e = a.

4. (Inverse) For every element a ∈ G, there is an element a−1, called the inverse of a, for
which a ◦ a−1 = e and a−1 ◦ a = e.

Here are some examples.

Example 4.7 (Simple Examples of Groups) The set of integers Z is a group with
respect to addition. The identity is 0, and the inverse of each i is −i. The set Q \ 0 of
rational numbers with 0 removed is a group with respect to multiplication. The identity
is 1, and the inverse of every element, q, is 1/q (0 was removed to avoid division
by zero). �

An important property, which only some groups possess, is commutativity: a ◦ b =
b ◦ a for any a, b ∈ G. The group in this case is called commutative or Abelian. We will
encounter examples of both kinds of groups, both commutative and noncommutative. An
example of a commutative group is vector addition over R

n. The set of all 3D rotations is
an example of a noncommutative group.

The fundamental group

Now an interesting group will be constructed from the space of paths and the equivalence
relation obtained by homotopy. The fundamental group, π1(X) (or first homotopy group),
is associated with any topological space, X. Let a (continuous) path for which f (0) = f (1)
be called a loop. Let some xb ∈ X be designated as a base point. For some arbitrary but
fixed base point, xb, consider the set of all loops such that f (0) = f (1) = xb. This can
be made into a group by defining the following binary operation. Let τ1 : [0, 1] → X and
τ2 : [0, 1] → X be two loop paths with the same base point. Their product τ = τ1 ◦ τ2 is
defined as

τ (t) =
{

τ1(2t) if t ∈ [0, 1/2)
τ2(2t − 1) if t ∈ [1/2, 1].

(4.9)

This results in a continuous loop path because τ1 terminates at xb, and τ2 begins at xb. In
a sense, the two paths are concatenated end-to-end.
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Suppose now that the equivalence relation induced by homotopy is applied to the set
of all loop paths through a fixed point, xb. It will no longer be important which particular
path was chosen from a class; any representative may be used. The equivalence relation
also applies when the set of loops is interpreted as a group. The group operation actually
occurs over the set of equivalences of paths.

Consider what happens when two paths from different equivalence classes are concate-
nated using ◦. Is the resulting path homotopic to either of the first two? Is the resulting
path homotopic if the original two are from the same homotopy class? The answers in
general are no and no, respectively. The fundamental group describes how the equivalence
classes of paths are related and characterizes the connectivity of X. Since fundamental
groups are based on paths, there is a nice connection to motion planning.

Example 4.8 (A Simply Connected Space) Suppose that a topological space X is simply
connected. In this case, all loop paths from a base point xb are homotopic, resulting in
one equivalence class. The result is π1(X) = 1G, which is the group that consists of only
the identity element. �

Example 4.9 (The Fundamental Group of S
1) Suppose X = S

1. In this case, there is
an equivalence class of paths for each i ∈ Z, the set of integers. If i > 0, then it means
that the path winds i times around S

1 in the counterclockwise direction and then returns to
xb. If i < 0, then the path winds around i times in the clockwise direction. If i = 0, then
the path is equivalent to one that remains at xb. The fundamental group is Z, with respect
to the operation of addition. If τ1 travels i1 times counterclockwise, and τ2 travels i2 times
counterclockwise, then τ = τ1 ◦ τ2 belongs to the class of loops that travel around i1 + i2

times counterclockwise. Consider additive inverses. If a path travels seven times around
S

1, and it is combined with a path that travels seven times in the opposite direction, the
result is homotopic to a path that remains at xb. Thus, π1(S1) = Z. �

Example 4.10 (The Fundamental Group of T
n) For the torus, π1(Tn) = Z

n, in which
the ith component of Z

n corresponds to the number of times a loop path wraps around
the ith component of T

n. This makes intuitive sense because T
n is just the Cartesian

product of n circles. The fundamental group Z
n is obtained by starting with a simply

connected subset of the plane and drilling out n disjoint, bounded holes. This situation
arises frequently when a mobile robot must avoid collision with n disjoint obstacles in the
plane. �

By now it seems that the fundamental group simply keeps track of how many times a
path travels around holes. This next example yields some very bizarre behavior that helps
to illustrate some of the interesting structure that arises in algebraic topology.

Example 4.11 (The Fundamental Group of RP
2) Suppose X = RP

2, the projective
plane. In this case, there are only two equivalence classes on the space of loop paths.
All paths that “wrap around” an even number of times are homotopic. Likewise, all
paths that wrap around an odd number of times are homotopic. This strange behavior is
illustrated in Figure 4.7. The resulting fundamental group therefore has only two elements:
π1(RP

2) = Z2, the cyclic group of order 2, which corresponds to addition mod 2. This
makes intuitive sense because the group keeps track of whether a sum of integers is odd
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1

1
1

1

2

2

1

12

2

(a) (b) (c)

Figure 4.7: An illustration of why π1(RP
2) = Z2. The integers 1 and 2 indicate precisely where a path

continues when it reaches the boundary. (a) Two paths are shown that are not equivalent. (b) A path
that winds around twice is shown. (c) This is homotopic to a loop path that does not wind around at all.
Eventually, the part of the path that appears at the bottom is pulled through the top. It � nally shrinks into
an arbitrarily small loop.

or even, which in this application corresponds to the total number of traversals over the
square representation of RP

2. The fundamental group is the same for RP
3, which arises

in Section 4.2.2 because it is homeomorphic to the set of 3D rotations. Thus, there are
surprisingly only two path classes for the set of 3D rotations. �

Unfortunately, two topological spaces may have the same fundamental group even if
the spaces are not homeomorphic. For example, Z is the fundamental group of S

1, the
cylinder, R× S

1, and the Möbius band. In the last case, the fundamental group does not
indicate that there is a “twist” in the space. Another problem is that spaces with interesting
connectivity may be declared as simply connected. The fundamental group of the sphere
S

2 is just 1G, the same as for R
2. Try envisioning loop paths on the sphere; it can be

seen that they all fall into one equivalence class. Hence, S
2 is simply connected. The

fundamental group also neglects bubbles in R
3 because the homotopy can warp paths

around them. Some of these troubles can be fixed by defining second-order homotopy
groups. For example, a continuous function, [0, 1] × [0, 1] → X, of two variables can be
used instead of a path. The resulting homotopy generates a kind of sheet or surface that can
be warped through the space, to yield a homotopy group π2(X) that wraps around bubbles
in R

3. This idea can be extended beyond two dimensions to detect many different kinds
of holes in higher dimensional spaces. This leads to the higher order homotopy groups.
A stronger concept than simply connected for a space is that its homotopy groups of all
orders are equal to the identity group. This prevents all kinds of holes from occurring
and implies that a space, X, is contractible, which means a kind of homotopy can be
constructed that shrinks X to a point [442]. In the plane, the notions of contractible and
simply connected are equivalent; however, in higher dimensional spaces, such as those
arising in motion planning, the term contractible should be used to indicate that the space
has no interior obstacles (holes).

An alternative to basing groups on homotopy is to derive them using homology, which
is based on the structure of cell complexes instead of homotopy mappings. This subject
is much more complicated to present, but it is more powerful for proving theorems in
topology. See the literature overview at the end of the chapter for suggested further reading
on algebraic topology.
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4.2 Defining the configuration space

This section defines the manifolds that arise from the transformations of Chapter 3. If
the robot has n degrees of freedom, the set of transformations is usually a manifold of
dimension n. This manifold is called the configuration space of the robot, and its name
is often shortened to C-space. In this book, the C-space may be considered as a special
state space. To solve a motion planning problem, algorithms must conduct a search in
the C-space. The C-space provides a powerful abstraction that converts the complicated
models and transformations of Chapter 3 into the general problem of computing a path
that traverses a manifold. By developing algorithms directly for this purpose, they apply to
a wide variety of different kinds of robots and transformations. In Section 4.3 the problem
will be complicated by bringing obstacles into the configuration space, but in Section 4.2
there will be no obstacles.

4.2.1 2D rigid bodies: SE(2)

Section 3.2.2 expressed how to transform a rigid body in R
2 by a homogeneous transfor-

mation matrix, T , given by (3.35). The task in this chapter is to characterize the set of all
possible rigid-body transformations. Which manifold will this be? Here is the answer and
brief explanation. Since any xt , yt ∈ R can be selected for translation, this alone yields
a manifold M1 = R

2. Independently, any rotation, θ ∈ [0, 2π), can be applied. Since 2π

yields the same rotation as 0, they can be identified, which makes the set of 2D rota-
tions into a manifold, M2 = S

1. To obtain the manifold that corresponds to all rigid-body
motions, simply take C = M1 ×M2 = R

2 × S
1. The answer to the question is that the

C-space is a kind of cylinder.
Now we give a more detailed technical argument. The main purpose is that such a

simple, intuitive argument will not work for the 3D case. Our approach is to introduce
some of the technical machinery here for the 2D case, which is easier to understand, and
then extend it to the 3D case in Section 4.2.2.

Matrix groups

The first step is to consider the set of transformations as a group, in addition to a topological
space.8 We now derive several important groups from sets of matrices, ultimately leading to
SO(n), the group of n× n rotation matrices, which is very important for motion planning.
The set of all nonsingular n× n real-valued matrices is called the general linear group,
denoted by GL(n), with respect to matrix multiplication. Each matrix A ∈ GL(n) has an
inverse A−1 ∈ GL(n), which when multiplied yields the identity matrix, AA−1 = I . The
matrices must be nonsingular for the same reason that 0 was removed from Q. The analog
of division by zero for matrix algebra is the inability to invert a singular matrix.

Many interesting groups can be formed from one group, G1, by removing some ele-
ments to obtain a subgroup, G2. To be a subgroup, G2 must be a subset of G1 and satisfy
the group axioms. We will arrive at the set of rotation matrices by constructing subgroups.
One important subgroup of GL(n) is the orthogonal group, O(n), which is the set of all

8 The groups considered in this section are actually Lie groups because they are smooth manifolds [64]. We will not
use that name here, however, because the notion of a smooth structure has not yet been defined. Readers familiar
with Lie groups, however, will recognize most of the coming concepts. Some details on Lie groups appear later in
Sections 15.4.3 and 15.5.1.
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matrices A ∈ GL(n) for which AAT = I , in which AT denotes the matrix transpose of
A. These matrices have orthogonal columns (the inner product of any pair is zero) and
the determinant is always 1 or −1. Thus, note that AAT takes the inner product of every
pair of columns. If the columns are different, the result must be 0; if they are the same,
the result is 1 because AAT = I . The special orthogonal group, SO(n), is the subgroup
of O(n) in which every matrix has determinant 1. Another name for SO(n) is the group
of n-dimensional rotation matrices.

A chain of groups, SO(n) ≤ O(n) ≤ GL(n), has been described in which≤ denotes “a
subgroup of.” Each group can also be considered as a topological space. The set of all n× n

matrices (which is not a group with respect to multiplication) with real-valued entries is
homeomorphic to R

n2
because n2 entries in the matrix can be independently chosen. For

GL(n), singular matrices are removed, but an n2-dimensional manifold is nevertheless
obtained. For O(n), the expression AAT = I corresponds to n2 algebraic equations that
have to be satisfied. This should substantially drop the dimension. Note, however, that
many of the equations are redundant (pick your favorite value for n, multiply the matrices,
and see what happens). There are only (n2) ways (pairwise combinations) to take the inner
product of pairs of columns, and there are n equations that require the magnitude of each
column to be 1. This yields a total of n(n+ 1)/2 independent equations. Each independent
equation drops the manifold dimension by one, and the resulting dimension of O(n) is
n2 − n(n+ 1)/2 = n(n− 1)/2, which is easily remembered as (n2). To obtain SO(n), the
constraint det A = 1 is added, which eliminates exactly half of the elements of O(n) but
keeps the dimension the same.

Example 4.12 (Matrix Subgroups) It is helpful to illustrate the concepts for n = 2.
The set of all 2 × 2 matrices is

{(
a b

c d

) ∣∣∣∣ a, b, c, d ∈ R

}
, (4.10)

which is homeomorphic to R
4. The group GL(2) is formed from the set of all nonsingular

2 × 2 matrices, which introduces the constraint that ad − bc 	= 0. The set of singular
matrices forms a 3D manifold with boundary in R

4, but all other elements of R
4 are in

GL(2); therefore, GL(2) is a 4D manifold.
Next, the constraint AAT = I is enforced to obtain O(2). This becomes

(
a b

c d

)(
a c

b d

)
=
(

1 0
0 1

)
, (4.11)

which directly yields four algebraic equations:

a2 + b2 = 1 (4.12)

ac + bd = 0 (4.13)

ca + db = 0 (4.14)

c2 + d2 = 1. (4.15)

Note that (4.14) is redundant. There are two kinds of equations. One equation, given by
(4.13), forces the inner product of the columns to be 0. There is only one because (n2) = 1
for n = 2. Two other constraints, (4.12) and (4.15), force the rows to be unit vectors.
There are two because n = 2. The resulting dimension of the manifold is (n2) = 1 because
we started with R

4 and lost three dimensions from (4.12), (4.13), and (4.15). What does
this manifold look like? Imagine that there are two different two-dimensional unit vectors,
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(a, b) and (c, d). Any value can be chosen for (a, b) as long as a2 + b2 = 1. This looks
like S

1, but the inner product of (a, b) and (c, d) must also be 0. Therefore, for each value
of (a, b), there are two choices for c and d: 1) c = b and d = −a, or 2) c = −b and
d = a. It appears that there are two circles! The manifold is S

1 � S
1, in which � denotes

the union of disjoint sets. Note that this manifold is not connected because no path exists
from one circle to the other.

The final step is to require that det A = ad − bc = 1, to obtain SO(2), the set
of all 2D rotation matrices. Without this condition, there would be matrices that
produce a rotated mirror image of the rigid body. The constraint simply forces the
choice for c and d to be c = −b and a = d. This throws away one of the circles
from O(2), to obtain a single circle for SO(2). We have finally obtained what you
already knew: SO(2) is homeomorphic to S

1. The circle can be parameterized using po-
lar coordinates to obtain the standard 2D rotation matrix, (3.31), given in Section 3.2.2. �

Special Euclidean group

Now that the group of rotations, SO(n), is characterized, the next step is to allow both rota-
tions and translations. This corresponds to the set of all (n+ 1) × (n+ 1) transformation
matrices of the form

{(
R v

0 1

) ∣∣∣∣ R ∈ SO(n) and v ∈ R
n

}
. (4.16)

This should look like a generalization of (3.52) and (3.56), which were for n = 2 and
n = 3, respectively. The R part of the matrix achieves rotation of an n-dimensional
body in R

n, and the v part achieves translation of the same body. The result is a group,
SE(n), which is called the special Euclidean group. As a topological space, SE(n) is
homeomorphic to R

n × SO(n), because the rotation matrix and translation vectors may
be chosen independently. In the case of n = 2, this means SE(2) is homeomorphic to
R

2 × S
1, which verifies what was stated at the beginning of this section. Thus, the C-

space of a 2D rigid body that can translate and rotate in the plane is

C = R
2 × S

1. (4.17)

To be more precise, ∼= should be used in the place of = to indicate that C could be any
space homeomorphic to R

2 × S
1; however, this notation will mostly be avoided.

Interpreting the C-space

It is important to consider the topological implications ofC. Since S
1 is multiply connected,

R× S
1 and R

2 × S
1 are multiply connected. It is difficult to visualize C because it is a 3D

manifold; however, there is a nice interpretation using identification. Start with the open
unit cube, (0, 1)3 ⊂ R

3. Include the boundary points of the form (x, y, 0) and (x, y, 1),
and make the identification (x, y, 0) ∼ (x, y, 1) for all x, y ∈ (0, 1). This means that when
traveling in the x and y directions, there is a “frontier” to the C-space; however, traveling
in the z direction causes a wraparound.

It is very important for a motion planning algorithm to understand that this wraparound
exists. For example, consider R× S

1 because it is easier to visualize. Imagine a path
planning problem for which C = R× S

1, as depicted in Figure 4.8. Suppose the top
and bottom are identified to make a cylinder, and there is an obstacle across the middle.
Suppose the task is to find a path from qI to qG. If the top and bottom were not identified,
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qI

qG

Figure 4.8: A planning algorithm may have to cross the identi�cation boundary to � nd a solution path.

then it would not be possible to connect qI to qG; however, if the algorithm realizes it was
given a cylinder, the task is straightforward. In general, it is very important to understand
the topology of C; otherwise, potential solutions will be lost.

The next section addresses SE(n) for n = 3. The main difficulty is determining the
topology of SO(3). At least we do not have to consider n > 3 in this book.

4.2.2 3D rigid bodies: SE(3)

One might expect that defining C for a 3D rigid body is an obvious extension of the 2D
case; however, 3D rotations are significantly more complicated. The resulting C-space will
be a six-dimensional manifold, C = R

3 ×RP
3. Three dimensions come from translation

and three more come from rotation.
The main quest in this section is to determine the topology of SO(3). In Section 3.2.3,

yaw, pitch, and roll were used to generate rotation matrices. These angles are convenient
for visualization, performing transformations in software, and also for deriving the DH
parameters. However, these were concerned with applying a single rotation, whereas the
current problem is to characterize the set of all rotations. It is possible to use α, β, and
γ to parameterize the set of rotations, but it causes serious troubles. There are some
cases in which nonzero angles yield the identity rotation matrix, which is equivalent to
α = β = γ = 0. There are also cases in which a continuum of values for yaw, pitch, and
roll angles yield the same rotation matrix. These problems destroy the topology, which
causes both theoretical and practical difficulties in motion planning.

Consider applying the matrix group concepts from Section 4.2.1. The general linear
group GL(3) is homeomorphic to R

9. The orthogonal group, O(3), is determined by
imposing the constraint AAT = I . There are (3

2) = 3 independent equations that require
distinct columns to be orthogonal, and three independent equations that force the magni-
tude of each column to be 1. This means that O(3) has three dimensions, which matches
our intuition since there were three rotation parameters in Section 3.2.3. To obtain SO(3),
the last constraint, det A = 1, is added. Recall from Example 4.12 that SO(2) consists of
two circles, and the constraint det A = 1 selects one of them. In the case of O(3), there
are two three-spheres, S

3 � S
3, and det A = 1 selects one of them. However, there is one

additional complication: Antipodal points on these spheres generate the same rotation
matrix. This will be seen shortly when quaternions are used to parameterize SO(3).

Using complex numbers to represent SO(2)

Before introducing quaternions to parameterize 3D rotations, consider using complex
numbers to parameterize 2D rotations. Let the term unit complex number refer to any
complex number, a + bi, for which a2 + b2 = 1.
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The set of all unit complex numbers forms a group under multiplication. It will be seen
that it is “the same” group as SO(2). This idea needs to be made more precise. Two groups,
G and H , are considered “the same” if they are isomorphic, which means that there exists
a bijective function f : G → H such that for all a, b ∈ G, f (a) ◦ f (b) = f (a ◦ b). This
means that we can perform some calculations in G, map the result to H , perform more
calculations, and map back to G without any trouble. The sets G and H are just two
alternative ways to express the same group.

The unit complex numbers and SO(2) are isomorphic. To see this clearly, recall that
complex numbers can be represented in polar form as reiθ ; a unit complex number is
simply eiθ . A bijective mapping can be made between 2D rotation matrices and unit
complex numbers by letting eiθ correspond to the rotation matrix (3.31).

If complex numbers are used to represent rotations, it is important that they behave
algebraically in the same way. If two rotations are combined, the matrices are multiplied.
The equivalent operation is multiplication of complex numbers. Suppose that a 2D robot
is rotated by θ1, followed by θ2. In polar form, the complex numbers are multiplied to
yield eiθ1eiθ2 = ei(θ1+θ2), which clearly represents a rotation of θ1 + θ2. If the unit complex
number is represented in Cartesian form, then the rotations corresponding to a1 + b1i and
a2 + b2i are combined to obtain (a1a2 − b1b2) + (a1b2 + a2b1)i. Note that here we have
not used complex numbers to express the solution to a polynomial equation, which is
their more popular use; we simply borrowed their nice algebraic properties. At any time,
a complex number a + bi can be converted into the equivalent rotation matrix

R(a, b) =
(

a −b

b a

)
. (4.18)

Recall that only one independent parameter needs to be specified because a2 + b2 = 1.
Hence, it appears that the set of unit complex numbers is the same manifold as SO(2),
which is the circle S

1 (recall, that “same” means in the sense of homeomorphism).

Quaternions

The manner in which complex numbers were used to represent 2D rotations will now
be adapted to using quaternions to represent 3D rotations. Let H represent the set of
quaternions, in which each quaternion, h ∈ H, is represented as h = a + bi + cj + dk,
and a, b, c, d ∈ R. A quaternion can be considered as a four-dimensional vector. The
symbols i, j , and k are used to denote three “imaginary” components of the quaternion.
The following relationships are defined: i2 = j 2 = k2 = ijk = −1, from which it follows
that ij = k, jk = i, and ki = j . Using these, multiplication of two quaternions, h1 =
a1 + b1i + c1j + d1k and h2 = a2 + b2i + c2j + d2k, can be derived to obtain h1 · h2 =
a3 + b3i + c3j + d3k, in which

a3 = a1a2 − b1b2 − c1c2 − d1d2

b3 = a1b2 + a2b1 + c1d2 − c2d1

c3 = a1c2 + a2c1 + b2d1 − b1d2

d3 = a1d2 + a2d1 + b1c2 − b2c1.

(4.19)

Using this operation, it can be shown that H is a group with respect to quaternion
multiplication. Note, however, that the multiplication is not commutative! This is also
true of 3D rotations; there must be a good reason.
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v

θ

Figure 4.9: Any 3D rotation can be considered as a rotation by an angle θ about the axis given by the unit
direction vector v = [v1 v2 v3].

v

θ
2π − θ

−v

Figure 4.10: There are two ways to encode the same rotation.

For convenience, quaternion multiplication can be expressed in terms of vector mul-
tiplications, a dot product, and a cross product. Let v = [b c d] be a three-dimensional
vector that represents the final three quaternion components. The first component of h1 · h2

is a1a2 − v1 · v2. The final three components are given by the three-dimensional vector
a1v2 + a2v1 − v1 × v2.

In the same way that unit complex numbers were needed for SO(2), unit quaternions
are needed for SO(3), which means that H is restricted to quaternions for which a2 +
b2 + c2 + d2 = 1. Note that this forms a subgroup because the multiplication of unit
quaternions yields a unit quaternion, and the other group axioms hold.

The next step is to describe a mapping from unit quaternions to SO(3). Let the unit
quaternion h = a + bi + cj + dk map to the matrix

R(h) =



2(a2 + b2) − 1 2(bc − ad) 2(bd + ac)

2(bc + ad) 2(a2 + c2) − 1 2(cd − ab)
2(bd − ac) 2(cd + ab) 2(a2 + d2) − 1



 , (4.20)

which can be verified as orthogonal and det R(h) = 1. Therefore, it belongs to SO(3). It
is not shown here, but it conveniently turns out that h represents the rotation shown in
Figure 4.9, by making the assignment

h = cos
θ

2
+
(

v1 sin
θ

2

)
i +

(
v2 sin

θ

2

)
j +

(
v3 sin

θ

2

)
k. (4.21)

Unfortunately, this representation is not unique. It can be verified in (4.20) that R(h) =
R(−h). A nice geometric interpretation is given in Figure 4.10. The quaternions h and
−h represent the same rotation because a rotation of θ about the direction v is equivalent
to a rotation of 2π − θ about the direction −v. Consider the quaternion representation of
the second expression of rotation with respect to the first. The real part is

cos

(
2π − θ

2

)
= cos

(
π − θ

2

)
= − cos

(
θ

2

)
= −a. (4.22)

The i, j , and k components are

− v sin

(
2π − θ

2

)
= −v sin

(
π − θ

2

)
= −v sin

(
θ

2

)
= [−b − c − d]. (4.23)
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The quaternion −h has been constructed. Thus, h and −h represent the same rotation.
Luckily, this is the only problem, and the mapping given by (4.20) is two-to-one from the
set of unit quaternions to SO(3).

This can be fixed by the identification trick. Note that the set of unit quaternions
is homeomorphic to S

3 because of the constraint a2 + b2 + c2 + d2 = 1. The algebraic
properties of quaternions are not relevant at this point. Just imagine each h as an element
of R

4, and the constraint a2 + b2 + c2 + d2 = 1 forces the points to lie on S
3. Using

identification, declare h ∼ −h for all unit quaternions. This means that the antipodal
points of S

3 are identified. Recall from the end of Section 4.1.2 that when antipodal points
are identified, RP

n ∼= S
n/ ∼. Hence, SO(3) ∼= RP

3, which can be considered as the set of
all lines through the origin of R

4, but this is hard to visualize. The representation of RP
2

in Figure 4.5 can be extended to RP
3. Start with (0, 1)3 ⊂ R

3, and make three different
kinds of identifications, one for each pair of opposite cube faces, and add all of the points
to the manifold. For each kind of identification a twist needs to be made (without the twist,
T

3 would be obtained). For example, in the z direction, let (x, y, 0) ∼ (1 − x, 1 − y, 1)
for all x, y ∈ [0, 1].

One way to force uniqueness of rotations is to require staying in the “upper half” of
S

3. For example, require that a ≥ 0, as long as the boundary case of a = 0 is handled
properly because of antipodal points at the equator of S

3. If a = 0, then require that b ≥ 0.
However, if a = b = 0, then require that c ≥ 0 because points such as (0, 0,−1, 0) and
(0, 0, 1, 0) are the same rotation. Finally, if a = b = c = 0, then only d = 1 is allowed. If
such restrictions are made, it is important, however, to remember the connectivity of RP

3.
If a path travels across the equator of S

3, it must be mapped to the appropriate place in
the “northern hemisphere.” At the instant it hits the equator, it must move to the antipodal
point. These concepts are much easier to visualize if you remove a dimension and imagine
them for S

2 ⊂ R
3, as described at the end of Section 4.1.2.

Using quaternion multiplication

The representation of rotations boiled down to picking points on S
3 and respecting the

fact that antipodal points give the same element of SO(3). In a sense, this has nothing
to do with the algebraic properties of quaternions. It merely means that SO(3) can be
parameterized by picking points in S

3, just like SO(2) was parameterized by picking
points in S

1 (ignoring the antipodal identification problem for SO(3)).
However, one important reason why the quaternion arithmetic was introduced is that

the group of unit quaternions is also isomorphic to SO(3). This means that a sequence
of rotations can be multiplied together using quaternion multiplication instead of matrix
multiplication. This is important because fewer operations are required for quaternion
multiplication in comparison to matrix multiplication. At any point, (4.20) can be used
to convert the result back into a matrix; however, this is not even necessary. It turns out
that a point in the world, (x, y, z) ∈ R

3, can be transformed by directly using quaternion
arithmetic. An analog to the complex conjugate from complex numbers is needed. For
any h = a + bi + cj + dk ∈ H, let h∗ = a − bi − cj − dk be its conjugate. For any point
(x, y, z) ∈ R

3, let p ∈ H be the quaternion 0 + xi + yj + zk. It can be shown (with a lot
of algebra) that the rotated point (x, y, z) is given by h · p · h∗. The i, j , k components of
the resulting quaternion are new coordinates for the transformed point. It is equivalent to
having transformed (x, y, z) with the matrix R(h).
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Finding quaternion parameters from a rotation matrix

Recall from Section 3.2.3 that given a rotation matrix (3.43), the yaw, pitch, and roll
parameters could be directly determined using the atan2 function. It turns out that the
quaternion representation can also be determined directly from the matrix. This is the
inverse of the function in (4.20).9

For a given rotation matrix (3.43), the quaternion parameters h = a + bi + cj + dk

can be computed as follows [212]. The first component is

a = 1
2

√
r11 + r22 + r33 + 1, (4.24)

and if a 	= 0, then

b = r32 − r23

4a
, (4.25)

c = r13 − r31

4a
, (4.26)

and

d = r21 − r12

4a
. (4.27)

If a = 0, then the previously mentioned equator problem occurs. In this case,

b = r13r12√
r2

12r
2
13 + r2

12r
2
23 + r2

13r
2
23

, (4.28)

c = r12r23√
r2

12r
2
13 + r2

12r
2
23 + r2

13r
2
23

, (4.29)

and

d = r13r23√
r2

12r
2
13 + r2

12r
2
23 + r2

13r
2
23

. (4.30)

This method fails if r12 = r23 = 0 or r13 = r23 = 0 or r12 = r23 = 0. These correspond
precisely to the cases in which the rotation matrix is a yaw, (3.39), pitch, (3.40), or roll,
(3.41), which can be detected in advance.

Special Euclidean group

Now that the complicated part of representing SO(3) has been handled, the representation
of SE(3) is straightforward. The general form of a matrix in SE(3) is given by (4.16),
in which R ∈ SO(3) and v ∈ R

3. Since SO(3) ∼= RP
3, and translations can be chosen

independently, the resulting C-space for a rigid body that rotates and translates in R
3 is

C = R
3 × RP

3, (4.31)

which is a six-dimensional manifold. As expected, the dimension of C is exactly the
number of degrees of freedom of a free-floating body in space.

9 Since that function was two-to-one, it is technically not an inverse until the quaternions are restricted to the upper
hemisphere, as described previously.
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4.2.3 Chains and trees of bodies

If there are multiple bodies that are allowed to move independently, then their C-spaces
can be combined using Cartesian products. Let Ci denote the C-space of Ai . If there are
n free-floating bodies in W = R

2 or W = R
3, then

C = C1 × C2 × · · · × Cn. (4.32)

If the bodies are attached to form a kinematic chain or kinematic tree, then each C-space
must be considered on a case-by-case basis. There is no general rule that simplifies the
process. One thing to generally be careful about is that the full range of motion might not
be possible for typical joints. For example, a revolute joint might not be able to swing
all of the way around to enable any θ ∈ [0, 2π). If θ cannot wind around S

1, then the
C-space for this joint is homeomorphic to R instead of S

1. A similar situation occurs
for a spherical joint. A typical ball joint cannot achieve any orientation in SO(3) due to
mechanical obstructions. In this case, the C-space is not RP

3 because part of SO(3) is
missing.

Another complication is that the DH parameterization of Section 3.3.2 is designed to
facilitate the assignment of coordinate frames and computation of transformations, but
it neglects considerations of topology. For example, a common approach to representing
a spherical robot wrist is to make three zero-length links that each behave as a revolute
joint. If the range of motion is limited, this might not cause problems, but in general the
problems would be similar to using yaw, pitch, and roll to represent SO(3). There may be
multiple ways to express the same arm configuration.

Several examples are given below to help in determining C-spaces for chains and trees
of bodies. Suppose W = R

2, and there is a chain of n bodies that are attached by revolute
joints. Suppose that the first joint is capable of rotation only about a fixed point (e.g., it
spins around a nail). If each joint has the full range of motion θi ∈ [0, 2π), the C-space is

C = S
1 × S

1 × · · · × S
1 = T

n. (4.33)

However, if each joint is restricted to θi ∈ (−π/2, π/2), then C = R
n. If any transfor-

mation in SE(2) can be applied to A1, then an additional R
2 is needed. In the case of

restricted joint motions, this yields R
n+2. If the joints can achieve any orientation, then

C = R
2 × T

n. If there are prismatic joints, then each joint contributes R to the C-space.
Recall from Figure 3.12 that for W = R

3 there are six different kinds of joints. The
cases of revolute and prismatic joints behave the same as for W = R

2. Each screw
joint contributes R. A cylindrical joint contributes R× S

1, unless its rotational motion
is restricted. A planar joint contributes R

2 × S
1 because any transformation in SE(2) is

possible. If its rotational motions are restricted, then it contributes R
3. Finally, a spherical

joint can theoretically contribute RP
3. In practice, however, this rarely occurs. It is more

likely to contribute R
2 × S

1 or R
3 after restrictions are imposed. Note that if the first joint

is a free-floating body, then it contributes R
3 ×RP

3.
Kinematic trees can be handled in the same way as kinematic chains. One issue that

has not been mentioned is that there might be collisions between the links. This has
been ignored up to this point, but obviously this imposes very complicated restrictions.
The concepts from Section 4.3 can be applied to handle this case and the placement
of additional obstacles in W . Reasoning about these kinds of restrictions and the path
connectivity of the resulting space is indeed the main point of motion planning.
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4.3 Configuration space obstacles

Section 4.2 defined C, the manifold of robot transformations in the absence of any collision
constraints. The current section removes from C the configurations that either cause the
robot to collide with obstacles or cause some specified links of the robot to collide with
each other. The removed part of C is referred to as the obstacle region. The leftover space
is precisely what a solution path must traverse. A motion planning algorithm must find
a path in the leftover space from an initial configuration to a goal configuration. Finally,
after the models of Chapter 3 and the previous sections of this chapter, the motion planning
problem can be precisely described.

4.3.1 Definition of the basic motion planning problem

Obstacle region for a rigid body

Suppose that the world, W = R
2 or W = R

3, contains an obstacle region, O ⊂W .
Assume here that a rigid robot, A ⊂W , is defined; the case of multiple links will be
handled shortly. Assume that both A and O are expressed as semi-algebraic models
(which includes polygonal and polyhedral models) from Section 3.1. Let q ∈ C denote
the configuration of A, in which q = (xt , yt , θ) for W = R

2 and q = (xt , yt , zt , h) for
W = R

3 (h represents the unit quaternion).
The obstacle region, Cobs ⊆ C, is defined as

Cobs = {q ∈ C | A(q) ∩O 	= ∅}, (4.34)

which is the set of all configurations, q, at which A(q), the transformed robot, intersects
the obstacle region, O. Since O and A(q) are closed sets in W , the obstacle region is a
closed set in C.

The leftover configurations are called the free space, which is defined and denoted as
Cfree = C \ Cobs. Since C is a topological space and Cobs is closed, Cfree must be an open set.
This implies that the robot can come arbitrarily close to the obstacles while remaining in
Cfree. If A “touches” O,

int(O) ∩ int(A(q)) = ∅ and O ∩A(q) 	= ∅, (4.35)

then q ∈ Cobs (recall that int means the interior). The condition above indicates that only
their boundaries intersect.

The idea of getting arbitrarily close may be nonsense in practical robotics, but it
makes a clean formulation of the motion planning problem. Since Cfree is open, it be-
comes impossible to formulate some optimization problems, such as finding the short-
est path. In this case, the closure, cl(Cfree), should instead be used, as described in
Section 7.7.

Obstacle region for multiple bodies

If the robot consists of multiple bodies, the situation is more complicated. The definition in
(4.34) only implies that the robot does not collide with the obstacles; however, if the robot
consists of multiple bodies, then it might also be appropriate to avoid collisions between
different links of the robot. Let the robot be modeled as a collection, {A1,A2, . . . ,Am},
of m links, which may or may not be attached together by joints. A single configuration
vector q is given for the entire collection of links. We will write Ai(q) for each link, i,
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Cobs

qI

qG
Cfree

Cobs

Cobs

Figure 4.11: The basic motion planning problem is conceptually very simple using C-space ideas. The
task is to �nd a path from qI to qG in Cfree. The entire blob represents C = Cfree ∪ Cobs.

even though some of the parameters of q may be irrelevant for moving link Ai . For
example, in a kinematic chain, the configuration of the second body does not depend on
the angle between the ninth and tenth bodies.

Let P denote the set of collision pairs, in which each collision pair, (i, j ) ∈ P , rep-
resents a pair of link indices i, j ∈ {1, 2, . . . , m}, such that i 	= j . If (i, j ) appears in
P , it means that Ai and Aj are not allowed to be in a configuration, q, for which
Ai(q) ∩Aj (q) 	= ∅. Usually, P does not represent all pairs because consecutive links are
in contact all of the time due to the joint that connects them. One common definition for
P is that each link must avoid collisions with any links to which it is not attached by a
joint. For m bodies, P is generally of size O(m2); however, in practice it is often possible
to eliminate many pairs by some geometric analysis of the linkage. Collisions between
some pairs of links may be impossible over all of C, in which case they do not need to
appear in P .

Using P , the consideration of robot self-collisions is added to the definition of Cobs to
obtain

Cobs =
( m⋃

i=1

{q ∈ C | Ai(q) ∩O 	= ∅}
)⋃( ⋃

[i,j ]∈P

{q ∈ C | Ai(q) ∩Aj (q) 	= ∅}
)

. (4.36)

Thus, a configuration q ∈ C is in Cobs if at least one link collides with O or a pair of links
indicated by P collide with each other.

Definition of basic motion planning

Finally, enough tools have been introduced to precisely define the motion planning
problem. The problem is conceptually illustrated in Figure 4.11. The main difficulty
is that it is neither straightforward nor efficient to construct an explicit boundary or solid
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representation of either Cfree or Cobs. The components are as follows:

Formulation 4.1 (The Piano Mover’s Problem)

1. A world W in which either W = R
2 or W = R

3.

2. A semi-algebraic obstacle region O ⊂W in the world.

3. A semi-algebraic robot is defined in W . It may be a rigid robot A or a collection of m

links, A1,A2, . . . ,Am.

4. The configuration space C determined by specifying the set of all possible transformations
that may be applied to the robot. From this, Cobs and Cfree are derived.

5. A configuration qI ∈ Cfree designated as the initial configuration.

6. A configuration qG ∈ Cfree designated as the goal configuration. The initial and goal
configurations together are often called a query pair (or query) and designated as (qI , qG).

7. A complete algorithm must compute a (continuous) path, τ : [0, 1] → Cfree, such that
τ (0) = qI and τ (1) = qG, or correctly report that such a path does not exist.

It was shown by Reif [820] that this problem is PSPACE-hard, which implies NP-hard.
The main problem is that the dimension of C is unbounded.

4.3.2 Explicitly modeling Cobs: The translational case

It is important to understand how to construct a representation of Cobs. In some algorithms,
especially the combinatorial methods of Chapter 6, this represents an important first step
to solving the problem. In other algorithms, especially the sampling-based planning
algorithms of Chapter 5, it helps to understand why such constructions are avoided due
to their complexity.

The simplest case for characterizing Cobs is when C = R
n for n = 1, 2, and 3, and the

robot is a rigid body that is restricted to translation only. Under these conditions, Cobs can
be expressed as a type of convolution. For any two sets X, Y ⊂ R

n, let their Minkowski
difference10 be defined as

X � Y = {x − y ∈ R
n | x ∈ X and y ∈ Y }, (4.37)

in which x − y is just vector subtraction on R
n. The Minkowski difference between X

and Y can also be considered as the Minkowski sum of X and −Y . The Minkowski sum ⊕
is obtained by simply adding elements of X and Y in (4.37), as opposed to subtracting
them. The set −Y is obtained by replacing each y ∈ Y by −y.

In terms of the Minkowski difference, Cobs = O �A(0). To see this, it is helpful to
consider a one-dimensional example.

Example 4.13 (One-Dimensional C-Space Obstacle) In Figure 4.12, both the robot
A = [−1, 2] and obstacle region O = [0, 4] are intervals in a one-dimensional world,
W = R. The negation, −A, of the robot is shown as the interval [−2, 1]. Finally, by
applying the Minkowski sum to O and −A, the C-space obstacle, Cobs = [−2, 5], is
obtained. �

10 In some contexts, which include mathematics and image processing, the Minkowski difference or Minkowski
subtraction is defined differently (instead, it is a kind of “erosion”). For this reason, some authors prefer to define
all operations in terms of the Minkowski sum, ⊕, which is consistently defined in all contexts. Following this
convention, we would define X ⊕ (−Y ), which is equivalent to X � Y .



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

132 MOTION PLANNING

-4 -3 -2 -1

A
O

Cobs
−A

6543210

Figure 4.12: A one-dimensional C-space obstacle.

OA

Figure 4.13: A triangular robot and a rectangular obstacle.

The Minkowski difference is often considered as a convolution. It can even be defined
to appear the same as studied in differential equations and system theory. For a one-
dimensional example, let f : R → {0, 1} be a function such that f (x) = 1 if and only if
x ∈ O. Similarly, let g : R → {0, 1} be a function such that g(x) = 1 if and only if x ∈ A.
The convolution

h(x) =
∫ ∞

−∞
f (τ )g(x − τ )dτ, (4.38)

yields a function h, for which h(x) = 1 if x ∈ Cobs, and h(x) = 0 otherwise.

A polygonal C-space obstacle

A simple algorithm for computing Cobs exists in the case of a 2D world that contains a
convex polygonal obstacle O and a convex polygonal robot A [660]. This is often called
the star algorithm. For this problem, Cobs is also a convex polygon. Recall that nonconvex
obstacles and robots can be modeled as the union of convex parts. The concepts discussed
below can also be applied in the nonconvex case by considering Cobs as the union of
convex components, each of which corresponds to a convex component of A colliding
with a convex component of O.

The method is based on sorting normals to the edges of the polygons on the basis of
angles. The key observation is that every edge of Cobs is a translated edge from either A
or O. In fact, every edge from O and A is used exactly once in the construction of Cobs.
The only problem is to determine the ordering of these edges of Cobs. Let α1, α2, . . . , αn

denote the angles of the inward edge normals in counterclockwise order around A. Let
β1, β2, . . . , βn denote the outward edge normals to O. After sorting both sets of angles
in circular order around S

1, Cobs can be constructed incrementally by using the edges that
correspond to the sorted normals, in the order in which they are encountered.

Example 4.14 (A Triangular Robot and Rectangular Obstacle) To gain an under-
standing of the method, consider the case of a triangular robot and a rectangular obstacle,
as shown in Figure 4.13. The black dot on A denotes the origin of its body frame. Consider
sliding the robot around the obstacle in such a way that they are always in contact, as
shown in Figure 4.14a. This corresponds to the traversal of all of the configurations in
∂Cobs (the boundary of Cobs). The origin of A traces out the edges of Cobs, as shown in
Figure 4.14b. There are seven edges, and each edge corresponds to either an edge of A or
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Cobs O

(a) (b)

Figure 4.14: (a) Slide the robot around the obstacle while keeping them both in contact. (b) The edges
traced out by the origin of A form Cobs.

β1

β2

α1

α3

β4

β3
α2

β4

β1β3

β2

α1

α2

β3

(a) (b)

Figure 4.15: (a) Take the inward edge normals of A and the outward edge normals of O. (b) Sort the edge
normals around S

1. This gives the order of edges in Cobs.

an edge of O. The directions of the normals are defined as shown in Figure 4.15a. When
sorted as shown in Figure 4.15b, the edges of Cobs can be incrementally constructed. �

The running time of the algorithm is O(n+m), in which n is the number of edges
defining A, and m is the number of edges defining O. Note that the angles can be sorted in
linear time because they already appear in counterclockwise order around A and O; they
only need to be merged. If two edges are collinear, then they can be placed end-to-end as
a single edge of Cobs.

Computing the boundary of Cobs

So far, the method quickly identifies each edge that contributes to Cobs. It can also construct
a solid representation of Cobs in terms of half-planes. This requires defining n+m linear
equations (assuming there are no collinear edges).

There are two different ways in which an edge of Cobs is generated, as shown in
Figure 4.16 [284, 660]. Type EV contact refers to the case in which an edge of A is in
contact with a vertex of O. Type EV contacts contribute to n edges of Cobs, once for
each edge of A. Type VE contact refers to the case in which a vertex of A is in contact
with an edge of O. This contributes to m edges of Cobs. The relationships between the
edge normals are also shown in Figure 4.16. For Type EV, the inward edge normal points
between the outward edge normals of the obstacle edges that share the contact vertex.
Likewise for Type VE, the outward edge normal of O points between the inward edge
normals of A.

Using the ordering shown in Figure 4.15b, Type EV contacts occur precisely when an
edge normal of A is encountered, and Type VE contacts occur when an edge normal of O
is encountered. The task is to determine the line equation for each occurrence. Consider
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A O OA

Type EV Type VE

Figure 4.16: Two different types of contact, each of which generates a different kind of Cobs edge [282, 660].

OA

p

v

n

Figure 4.17: Contact occurs when n and v are perpendicular.

the case of a Type EV contact; the Type VE contact can be handled in a similar manner.
In addition to the constraint on the directions of the edge normals, the contact vertex of
O must lie on the contact edge of A. Recall that convex obstacles were constructed by
the intersection of half-planes. Each edge of Cobs can be defined in terms of a supporting
half-plane; hence, it is only necessary to determine whether the vertex of O lies on
the line through the contact edge of A. This condition occurs precisely as n and v are
perpendicular, as shown in Figure 4.17, and yields the constraint n · v = 0.

Note that the normal vector n does not depend on the configuration of A because the
robot cannot rotate. The vector v, however, depends on the translation q = (xt , yt ) of
the point p. Therefore, it is more appropriate to write the condition as n · v(xt , yt ) = 0.
The transformation equations are linear for translation; hence, n · v(xt , yt ) = 0 is the
equation of a line in C. For example, if the coordinates of p are (1, 2) for A(0, 0), then the
expression for p at configuration (xt , yt ) is (1 + xt , 2 + yt ). Let f (xt , yt ) = n · v(xt , yt ).
Let H = {(xt , yt ) ∈ C | f (xt , yt ) ≤ 0}. Observe that any configurations not in H must lie
in Cfree. The half-plane H is used to define one edge of Cobs. The obstacle region Cobs can
be completely characterized by intersecting the resulting half-planes for each of the Type
EV and Type VE contacts. This yields a convex polygon in C that has n+m sides, as
expected.

Example 4.15 (The Boundary of Cobs) Consider building a geometric model of Cobs

for the robot and obstacle shown in Figure 4.18. Suppose that the orientation of A is
fixed as shown, and C = R

2. In this case, Cobs will be a convex polygon with seven sides.
The contact conditions that occur are shown in Figure 4.19. The ordering as the normals
appear around S

1 (using inward edge normals for A and outward edge normals for O).
The Cobs edges and their corresponding contact types are shown in Figure 4.19. �
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a1

a2

A

(−1,−1)
a3

(1, 0)

(0, 1)
b1b2

b3 b4

(1, 1)(−1, 1)

(1,−1)(−1,−1)

O

Figure 4.18: Consider constructing the obstacle region for this example.

Type Vtx. Edge n v Half-Plane

VE a3 b4-b1 [1, 0] [xt − 2, yt ] {q ∈ C | xt − 2 ≤ 0}
VE a3 b1-b2 [0, 1] [xt − 2, yt − 2] {q ∈ C | yt − 2 ≤ 0}
EV b2 a3-a1 [1,-2] [−xt , 2 − yt ] {q ∈ C | − xt + 2yt − 4 ≤ 0}
VE a1 b2-b3 [−1, 0] [2 + xt , yt − 1] {q ∈ C | − xt − 2 ≤ 0}
EV b3 a1-a2 [1, 1] [−1 − xt ,−yt ] {q ∈ C | − xt − yt − 1 ≤ 0}
VE a2 b3-b4 [0,−1] [xt + 1, yt + 2] {q ∈ C | − yt − 2 ≤ 0}
EV b4 a2-a3 [−2, 1] [2 − xt ,−yt ] {q ∈ C | 2xt − yt − 4 ≤ 0}

Figure 4.19: The various contact conditions are shown in the order as the edge normals appear around
S

1 (using inward normals for A and outward normals for O).

O
A

A
O

A
O

Type FV Type VF Type EE

Figure 4.20: Three different types of contact, each of which generates a different kind of Cobs face.

A polyhedral C-space obstacle

Most of the previous ideas generalize nicely for the case of a polyhedral robot that is
capable of translation only in a 3D world that contains polyhedral obstacles. If A and O
are convex polyhedra, the resulting Cobs is a convex polyhedron.

There are three different kinds of contacts that each lead to half-spaces in C:

1. Type FV: A face of A and a vertex of O
2. Type VF: A vertex of A and a face of O
3. Type EE: An edge of A and an edge of O .

These are shown in Figure 4.20. Each half-space defines a face of the polyhedron, Cobs.
The representation of Cobs can be constructed in O(n+m+ k) time, in which n is the
number of faces of A, m is the number of faces of O, and k is the number of faces of Cobs,
which is at most nm [414].
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OA
v

n
v1

v2

p

Figure 4.21: An illustration to help in constructing Cobs when rotation is allowed.

4.3.3 Explicitly modeling Cobs: The general case

Unfortunately, the cases in which Cobs is polygonal or polyhedral are quite limited. Most
problems yield extremely complicated C-space obstacles. One good point is that Cobs can
be expressed using semi-algebraic models, for any robots and obstacles defined using
semi-algebraic models, even after applying any of the transformations from Sections 3.2
to 3.4. It might not be true, however, for other kinds of transformations, such as warping
a flexible material [32, 580].

Consider the case of a convex polygonal robot and a convex polygonal obstacle in a 2D
world. Assume that any transformation in SE(2) may be applied to A; thus, C = R

2 × S
1

and q = (xt , yt , θ). The task is to define a set of algebraic primitives that can be combined
to define Cobs. Once again, it is important to distinguish between Type EV and Type VE
contacts. Consider how to construct the algebraic primitives for the Type EV contacts;
Type VE can be handled in a similar manner.

For the translation-only case, we were able to determine all of the Type EV contacts by
sorting the edge normals. With rotation, the ordering of edge normals depends on θ . This
implies that the applicability of a Type EV contact depends on θ , the robot orientation.
Recall the constraint that the inward normal of A must point between the outward normals
of the edges ofO that contain the vertex of contact, as shown in Figure 4.21. This constraint
can be expressed in terms of inner products using the vectors v1 and v2. The statement
regarding the directions of the normals can equivalently be formulated as the statement
that the angle between n and v1, and between n and v2, must each be less than π/2. Using
inner products, this implies that n · v1 ≥ 0 and n · v2 ≥ 0. As in the translation case, the
condition n · v = 0 is required for contact. Observe that n now depends on θ . For any
q ∈ C, if n(θ) · v1 ≥ 0, n(θ) · v2 ≥ 0, and n(θ) · v(q) > 0, then q ∈ Cfree. Let Hf denote
the set of configurations that satisfy these conditions. These conditions imply that a point
is in Cfree. Furthermore, any other Type EV and Type VE contacts could imply that more
points are in Cfree. Ordinarily, Hf ⊂ Cfree, which implies that the complement, C \Hf , is
a superset of Cobs (thus, Cobs ⊂ C \Hf ). Let HA = C \Hf . Using the primitives

H1 = {q ∈ C | n(θ ) · v1 ≤ 0}, (4.39)

H2 = {q ∈ C | n(θ ) · v2 ≤ 0}, (4.40)

and

H3 = {q ∈ C | n(θ ) · v(q) ≤ 0}, (4.41)

let HA = H1 ∪H2 ∪H3.
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It is known that Cobs ⊆ HA, but HA may contain points in Cfree. The situation is similar
to what was explained in Section 3.1.1 for building a model of a convex polygon from
half-planes. In the current setting, it is only known that any configuration outside of HA

must be in Cfree. If HA is intersected with all other corresponding sets for each possible
Type EV and Type VE contact, then the result is Cobs. Each contact has the opportunity
to remove a portion of Cfree from consideration. Eventually, enough pieces of Cfree are
removed so that the only configurations remaining must lie in Cobs. For any Type EV
contact, (H1 ∪H2) \H3 ⊆ Cfree. A similar statement can be made for Type VE contacts.
A logical predicate, similar to that defined in Section 3.1.1, can be constructed to determine
whether q ∈ Cobs in time that is linear in the number of Cobs primitives.

One important issue remains. The expression n(θ) is not a polynomial because of the
cos θ and sin θ terms in the rotation matrix of SO(2). If polynomials could be substituted
for these expressions, then everything would be fixed because the expression of the nor-
mal vector (not a unit normal) and the inner product are both linear functions, thereby
transforming polynomials into polynomials. Such a substitution can be made using stere-
ographic projection (see [591]); however, a simpler approach is to use complex numbers
to represent rotation. Recall that when a + bi is used to represent rotation, each rotation
matrix in SO(2) is represented as (4.18), and the 3 × 3 homogeneous transformation
matrix becomes

T (a, b, xt , yt ) =



a −b xt

b a yt

0 0 1



 . (4.42)

Using this matrix to transform a point [x y 1] results in the point coordinates (ax − by +
xt , bx + ay + yt ). Thus, any transformed point on A is a linear function of a, b, xt , and
yt .

This was a simple trick to make a nice, linear function, but what was the cost? The
dependency is now on a and b instead of θ . This appears to increase the dimension of C
from 3 to 4, and C = R

4. However, an algebraic primitive must be added that constrains
a and b to lie on the unit circle.

By using complex numbers, primitives in R
4 are obtained for each Type EV and Type

VE contact. By defining C = R
4, the following algebraic primitives are obtained for a

Type EV contact:

H1 = {(xt , yt , a, b) ∈ C | n(xt , yt , a, b) · v1 ≤ 0}, (4.43)

H2 = {(xt , yt , a, b) ∈ C | n(xt , yt , a, b) · v2 ≤ 0}, (4.44)

and

H3 = {(xt , yt , a, b) ∈ C | n(xt , yt , a, b) · v(xt , yt , a, b) ≤ 0}. (4.45)

This yields HA = H1 ∪H2 ∪H3. To preserve the correct R
2 × S

1 topology of C, the set

Hs = {(xt , yt , a, b) ∈ C | a2 + b2 − 1 = 0} (4.46)

is intersected with HA. The set Hs remains fixed over all Type EV and Type VE contacts;
therefore, it only needs to be considered once.

Example 4.16 (A Nonlinear Boundary for Cobs) Consider adding rotation to the model
described in Example 4.15. In this case, all possible contacts between pairs of edges
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must be considered. For this example, there are 12 Type EV contacts and 12 Type VE
contacts. Each contact produces 3 algebraic primitives. With the inclusion of Hs , this
simple example produces 73 primitives! Rather than construct all of these, we derive
the primitives for a single contact. Consider the Type VE contact between a3 and b4-
b1. The outward edge normal n remains fixed at n = [1, 0]. The vectors v1 and v2 are
derived from the edges adjacent to a3, which are a3-a2 and a3-a1. Note that each of
a1, a2, and a3 depend on the configuration. Using the 2D homogeneous transformation
(3.35), a1 at configuration (xt , yt , θ) is (cos θ + xt , sin θ + yt ). Using a + bi to represent
rotation, the expression of a1 becomes (a + xt , b + yt ). The expressions of a2 and a3

are (−b + xt , a + yt ) and (−a + b + xt ,−b − a + yt ), respectively. It follows that v1 =
a2 − a3 = [a − 2b, 2a + b] and v2 = a1 − a3 = [2a − b, a + 2b]. Note that v1 and v2

depend only on the orientation of A, as expected. Assume that v is drawn from b4 to
a3. This yields v = a3 − b4 = [−a + b + xt − 1,−a − b + yt + 1]. The inner products
v1 · n, v2 · n, and v · n can easily be computed to form H1, H2, and H3 as algebraic
primitives.

One interesting observation can be made here. The only nonlinear primitive is a2 +
b2 = 1. Therefore, Cobs can be considered as a linear polytope (like a polyhedron, but one
dimension higher) in R

4 that is intersected with a cylinder. �

3D rigid bodies

For the case of a 3D rigid body to which any transformation in SE(3) may be applied,
the same general principles apply. The quaternion parameterization once again becomes
the right way to represent SO(3) because using (4.20) avoids all trigonometric functions
in the same way that (4.18) avoided them for SO(2). Unfortunately, (4.20) is not linear in
the configuration variables, as it was for (4.18), but it is at least polynomial. This enables
semi-algebraic models to be formed for Cobs. Type FV, VF, and EE contacts arise for
the SE(3) case. From all of the contact conditions, polynomials that correspond to each
patch of Cobs can be made. These patches are polynomials in seven variables: xt , yt , zt ,
a, b, c, and d. Once again, a special primitive must be intersected with all others; here, it
enforces the constraint that unit quaternions are used. This reduces the dimension from
7 back down to 6. Also, constraints should be added to throw away half of S

3, which is
redundant because of the identification of antipodal points on S

3.

Chains and trees of bodies

For chains and trees of bodies, the ideas are conceptually the same, but the algebra
becomes more cumbersome. Recall that the transformation for each link is obtained by a
product of homogeneous transformation matrices, as given in (3.53) and (3.57) for the 2D
and 3D cases, respectively. If the rotation part is parameterized using complex numbers
for SO(2) or quaternions for SO(3), then each matrix consists of polynomial entries.
After the matrix product is formed, polynomial expressions in terms of the configuration
variables are obtained. Therefore, a semi-algebraic model can be constructed. For each
link, all of the contact types need to be considered. Extrapolating from Examples 4.15
and 4.16, you can imagine that no human would ever want to do all of that by hand, but it
can at least be automated. The ability to construct this representation automatically is also
very important for the existence of theoretical algorithms that solve the motion planning
problem combinatorially; see Section 6.4.

If the kinematic chains were formulated for W = R
3 using the DH parameterization,

it may be inconvenient to convert to the quaternion representation. One way to avoid
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this is to use complex numbers to represent each of the θi and αi variables that appear
as configuration variables. This can be accomplished because only cos and sin functions
appear in the transformation matrices. They can be replaced by the real and imaginary
parts, respectively, of a complex number. The dimension will be increased, but this will
be appropriately reduced after imposing the constraints that all complex numbers must
have unit magnitude.

4.4 Closed kinematic chains

This section continues the discussion from Section 3.4. Suppose that a collection of links
is arranged in a way that forms loops. In this case, the C-space becomes much more
complicated because the joint angles must be chosen to ensure that the loops remain
closed. This leads to constraints such as that shown in (3.80) and Figure 3.26, in which
some links must maintain specified positions relative to each other. Consider the set of all
configurations that satisfy such constraints. Is this a manifold? It turns out, unfortunately,
that the answer is generally no. However, the C-space belongs to a nice family of spaces
from algebraic geometry called varieties. Algebraic geometry deals with characterizing
the solution sets of polynomials. As seen so far in this chapter, all of the kinematics
can be expressed as polynomials. Therefore, it may not be surprising that the resulting
constraints are a system of polynomials whose solution set represents the C-space for
closed kinematic linkages. Although the algebraic varieties considered here need not be
manifolds, they can be decomposed into a finite collection of manifolds that fit together
nicely.11

Unfortunately, a parameterization of the variety that arises from closed chains is avail-
able in only a few simple cases. Even the topology of the variety is extremely difficult to
characterize. To make matters worse, it was proved in [492] that for every closed, bounded
real algebraic variety that can be embedded in R

n, there exists a linkage whose C-space
is homeomorphic to it. These troubles imply that most of the time, motion planning al-
gorithms need to work directly with implicit polynomials. For the algebraic methods of
Section 6.4.2, this does not pose any conceptual difficulty because the methods already
work directly with polynomials. Sampling-based methods usually rely on the ability to
efficiently sample configurations, which cannot be easily adapted to a variety without a
parameterization. Section 7.4 covers recent methods that extend sampling-based planning
algorithms to work for varieties that arise from closed chains.

4.4.1 Mathematical concepts

To understand varieties, it will be helpful to have definitions of polynomials and their
solutions that are more formal than the presentation in Chapter 3.

Fields

Polynomials are usually defined over a field, which is another object from algebra. A field
is similar to a group, but it has more operations and axioms. The definition is given below,
and while reading it, keep in mind several familiar examples of fields: the rationals, Q; the

11 This is called a Whitney stratification [175, 968].
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reals, R; and the complex plane, C. You may verify that these fields satisfy the following
six axioms.

A field is a set F that has two binary operations, · : F× F → F (called multiplication)
and + : F× F → F (called addition), for which the following axioms are satisfied:

1. (Associativity) For all a, b, c ∈ F, (a + b) + c = a + (b + c) and (a · b) · c = a · (b · c).

2. (Commutativity) For all a, b ∈ F, a + b = b + a and a · b = b · a.

3. (Distributivity) For all a, b, c ∈ F, a · (b + c) = a · b + a · c.

4. (Identities) There exist 0, 1 ∈ F, such that a + 0 = a · 1 = a for all a ∈ F.

5. (Additive Inverses) For every a ∈ F, there exists some b ∈ F such that a + b = 0.

6. (Multiplicative Inverses) For every a ∈ F , except a = 0, there exists some c ∈ F such
that a · c = 1.

Compare these axioms to the group definition from Section 4.2.1. Note that a field can
be considered as two different kinds of groups, one with respect to multiplication and
the other with respect to addition. Fields additionally require commutativity; hence, we
cannot, for example, build a field from quaternions. The distributivity axiom appears
because there is now an interaction between two different operations, which was not
possible with groups.

Polynomials

Suppose there are n variables, x1, x2, . . . , xn. A monomial over a field F is a product of
the form

x
d1
1 · xd2

2 · · · · xdn

n , (4.47)

in which all of the exponents d1, d2, . . . , dn are positive integers. The total degree of the
monomial is d1 + · · · + dn.

A polynomial f in variables x1, . . . , xn with coefficients in F is a finite linear combi-
nation of monomials that have coefficients in F. A polynomial can be expressed as

m∑

i=1

cimi, (4.48)

in which mi is a monomial as shown in (4.47), and ci ∈ F is a coefficient. If ci 	= 0, then
each cimi is called a term. Note that the exponents di may be different for every term
of f . The total degree of f is the maximum total degree among the monomials of the
terms of f . The set of all polynomials in x1, . . . , xn with coefficients in F is denoted by
F[x1, . . . , xn].

Example 4.17 (Polynomials) The definitions correspond exactly to our intuitive no-
tion of a polynomial. For example, suppose F = Q. An example of a polynomial in
Q[x1, x2, x3] is

x4
1 − 1

2x1x2x
3
3 + x2

1x
2
2 + 4. (4.49)

Note that 1 is a valid monomial; hence, any element of F may appear alone as a term, such
as the 4 ∈ Q in the polynomial above. The total degree of (4.49) is 5 due to the second
term. An equivalent polynomial may be written using nicer variables. Using x, y, and z

as variables yields

x4 − 1
2xyz3 + x2y2 + 4, (4.50)

which belongs to Q[x, y, z]. �
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The set F[x1, . . . , xn] of polynomials is actually a group with respect to addition;
however, it is not a field. Even though polynomials can be multiplied, some polynomials
do not have a multiplicative inverse. Therefore, the set F[x1, . . . , xn] is often referred to
as a commutative ring of polynomials. A commutative ring is a set with two operations
for which every axiom for fields is satisfied except the last one, which would require a
multiplicative inverse.

Varieties

For a given field F and positive integer n, the n-dimensional affine space over F is the set

F
n = {(c1, . . . , cn) | c1, . . . , cn ∈ F}. (4.51)

For our purposes in this section, an affine space can be considered as a vector space (for an
exact definition, see [441]). Thus, F

n is like a vector version of the scalar field F. Familiar
examples of this are Q

n, R
n, and C

n.
A polynomial in f ∈ F[x1, . . . , xn] can be converted into a function,

f : F
n → F, (4.52)

by substituting elements of F for each variable and evaluating the expression using the
field operations. This can be written as f (a1, . . . , an) ∈ F, in which each ai denotes an
element of F that is substituted for the variable xi .

We now arrive at an interesting question. For a given f , what are the elements of F
n

such that f (a1, . . . , an) = 0? We could also ask the question for some nonzero element,
but notice that this is not necessary because the polynomial may be redefined to formulate
the question using 0. For example, what are the elements of R

2 such that x2 + y2 = 1?
This familiar equation for S

1 can be reformulated to yield: What are the elements of R
2

such that x2 + y2 − 1 = 0?
Let F be a field and let {f1, . . . , fk} be a set of polynomials in F[x1, . . . , xn]. The set

V (f1, . . . , fk) = {(a1, . . . , an) ∈ F | fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ k} (4.53)

is called the (affine) variety defined by f1, . . . , fk . One interesting fact is that unions and
intersections of varieties are varieties. Therefore, they behave like the semi-algebraic sets
from Section 3.1.2, but for varieties only equality constraints are allowed. Consider the
varieties V (f1, . . . , fk) and V (g1, . . . , gl). Their intersection is given by

V (f1, . . . , fk) ∩ V (g1, . . . , gl) = V (f1, . . . , fk, g1, . . . , gl), (4.54)

because each element of F
n must produce a 0 value for each of the polynomials in

{f1, . . . , fk, g1, . . . , gl}.
To obtain unions, the polynomials simply need to be multiplied. For example, consider

the varieties V1, V2 ⊂ F defined as

V1 = {(a1, . . . , an) ∈ F | f1(a1, . . . , an) = 0} (4.55)

and

V2 = {(a1, . . . , an) ∈ F | f2(a1, . . . , an) = 0}. (4.56)

The set V1 ∪ V2 ⊂ F is obtained by forming the polynomial f = f1f2. Note that
f (a1, . . . , an) = 0 if either f1(a1, . . . , an) = 0 or f2(a1, . . . , an) = 0. Therefore, V1 ∪ V2
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is a variety. The varieties V1 and V2 were defined using a single polynomial, but the same
idea applies to any variety. All pairs of the form figj must appear in the argument of V (·)
if there are multiple polynomials.

4.4.2 Kinematic chains in R
2

To illustrate the concepts it will be helpful to study a simple case in detail. Let W = R
2,

and suppose there is a chain of links, A1, . . . ,An, as considered in Example 3.3 for n = 3.
Suppose that the first link is attached at the origin of W by a revolute joint, and every
other link, Ai is attached to Ai−1 by a revolute joint. This yields the C-space

C = S
1 × S

1 × · · · × S
1 = T

n, (4.57)

which is the n-dimensional torus.

Two links

If there are three links, A1 and A2, then the C-space can be nicely visualized as a 3D cube
with opposite faces identified. Each coordinate, θ1 and θ2, ranges from 0 to 2π , for which
0 ∼ 2π . Suppose that each link has length 1. This yields a1 = 1. A point (x, y) ∈ A2 is
transformed as




cos θ1 − sin θ1 0
sin θ1 cos θ1 0

0 0 1








cos θ2 − sin θ2 1
sin θ2 cos θ2 0

0 0 1








x

y

1



 . (4.58)

To obtain polynomials, the technique from Section 4.2.2 is applied to replace the trigono-
metric functions using ai = cos θi and bi = sin θi , subject to the constraint a2

i + b2
i = 1.

This results in




a1 −b1 0
b1 a1 0
0 0 1








a2 −b2 1
b2 a2 0
0 0 1








x

y

1



 , (4.59)

for which the constraints a2
i + b2

i = 1 for i = 1, 2 must be satisfied. This preserves the
torus topology of C, but now the C-space is embedded in R

4. The coordinates of each
point are (a1, b1, a2, b2) ∈ R

4; however, there are only two degrees of freedom because
each ai, bi pair must lie on a unit circle.

Multiplying the matrices in (4.59) yields the polynomials, f1, f2 ∈ R[a1, b1, a2, b2],

f1 = xa1a2 − ya1b2 − xb1b2 + ya2b1 + a1 (4.60)

and

f2 = −ya1a2 + xa1b2 + xa2b1 − yb1b2 + b1, (4.61)

for the x and y coordinates, respectively. Note that the polynomial variables are config-
uration parameters; x and y are not polynomial variables. For a given point (x, y) ∈ A2,
all coefficients are determined.
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A1

A2

y1

x1

p

Figure 4.22: Two con�gur ations hold the point p at (1, 1).

A zero-dimensional variety

Now a kinematic closure constraint will be imposed. Fix the point (1, 0) in the body frame
of A2 at (1, 1) in W . This yields the constraints

f1 = a1a2 − b1b2 + a1 = 1 (4.62)

and

f2 = a1b2 + a2b1 + b1 = 1, (4.63)

by substituting x = 1 and y = 0 into (4.60) and (4.61). This yields the variety

V (a1a2 − b1b2 + a1 − 1, a1b2 + a2b1 + b1 − 1, a2
1 + b2

1 − 1, a2
2 + b2

2 − 1), (4.64)

which is a subset of R
4. The polynomials are slightly modified because each constraint

must be written in the form f = 0.
Although (4.64) represents the constrained configuration space for the chain of two

links, it is not very explicit. Without an explicit characterization (i.e., a parameterization),
it complicates motion planning. From Figure 4.22 it can be seen that there are only two
solutions. These occur for θ1 = 0, θ2 = π/2 and θ1 = π/2, θ2 = −π/2. In terms of the
polynomial variables, (a1, b1, a2, b2), the two solutions are (1, 0, 0, 1) and (0, 1, 0,−1).
These may be substituted into each polynomial in (4.64) to verify that 0 is obtained. Thus,
the variety represents two points in R

4. This can also be interpreted as two points on the
torus, S

1 × S
1.

It might not be surprising that the set of solutions has dimension zero because there
are four independent constraints, shown in (4.64), and four variables. Depending on the
choices, the variety may be empty. For example, it is physically impossible to bring the
point (1, 0) ∈ A2 to (1000, 0) ∈W .

A one-dimensional variety

The most interesting and complicated situations occur when there is a continuum of
solutions. For example, if one of the constraints is removed, then a one-dimensional set
of solutions can be obtained. Suppose only one variable is constrained for the example in
Figure 4.22. Intuitively, this should yield a one-dimensional variety. Set the x coordinate
to 0, which yields

a1a2 − b1b2 + a1 = 0, (4.65)
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Figure 4.23: A single constraint was added to the point p on A2, as shown in (a). The curves in (b), (c),
and (d) depict the variety for the cases of f 1 = 0, f 1 = 1/8, and f 1 = 1, respectively.

and allow any possible value for y. As shown in Figure 4.23a, the point p must follow
the y-axis. (This is equivalent to a three-bar linkage that can be constructed by making
a third joint that is prismatic and forced to stay along the y-axis.) Figure 4.23b shows
the resulting variety V (a1a2 − b1b2 + a1) but plotted in θ1 − θ2 coordinates to reduce the
dimension from 4 to 2 for visualization purposes. To correctly interpret the figures in
Figure 4.23, recall that the topology is S

1 × S
1, which means that the top and bottom are

identified, and also the sides are identified. The center of Figure 4.23b, which corresponds
to (θ1, θ2) = (π, π), prevents the variety from being a manifold. The resulting space is
actually homeomorphic to two circles that touch at a point. Thus, even with such a simple
example, the nice manifold structure may disappear. Observe that at (π, π) the links are
completely overlapped, and the point p ofA2 is placed at (0, 0) inW . The horizontal line in
Figure 4.23b corresponds to keeping the two links overlapping and swinging them around
together by varying θ1. The diagonal lines correspond to moving along configurations
such as the one shown in Figure 4.23a. Note that the links and the y-axis always form an
isosceles triangle, which can be used to show that the solution set is any pair of angles,
θ1, θ2 for which θ2 = π − θ1. This is the reason why the diagonal curves in Figure 4.23b
are linear. Figures 4.23c and 4.23d show the varieties for the constraints

a1a2 − b1b2 + a1 = 1
8 , (4.66)
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and

a1a2 − b1b2 + a1 = 1, (4.67)

respectively. In these cases, the point (0, 1) in A2 must follow the x = 1/8 and x = 1
axes, respectively. The varieties are manifolds, which are homeomorphic to S

1. The
sequence from Figure 4.23b to 4.23d can be imagined as part of an animation in which
the variety shrinks into a small circle. Eventually, it shrinks to a point for the case
a1a2 − b1b2 + a1 = 2, because the only solution is when θ1 = θ2 = 0. Beyond this, the
variety is the empty set because there are no solutions. Thus, by allowing one constraint
to vary, four different topologies are obtained: 1) two circles joined at a point, 2) a circle,
3) a point, and 4) the empty set.

Three links

Since visualization is still possible with one more dimension, suppose there are three
links, A1, A2, and A3. The C-space can be visualized as a 3D cube with opposite faces
identified. Each coordinate θi ranges from 0 to 2π , for which 0 ∼ 2π . Suppose that each
link has length 1 to obtain a1 = a2 = 1. A point (x, y) ∈ A3 is transformed as




cos θ1 − sin θ1 0
sin θ1 cos θ1 0

0 0 1








cos θ2 − sin θ2 10
sin θ2 cos θ2 0

0 0 1








cos θ3 − sin θ3 10
sin θ3 cos θ3 0

0 0 1








x

y

1



 .

(4.68)

To obtain polynomials, let ai = cos θi and bi = sin θi , which results in



a1 −b1 0
b1 a1 0
0 0 1








a2 −b2 1
b2 a2 0
0 0 1








a3 −b3 1
b3 a3 0
0 0 1








x

y

1



 , (4.69)

for which the constraints a2
i + b2

i = 1 for i = 1, 2, 3 must also be satisfied. This preserves
the torus topology of C, but now it is embedded in R

6. Multiplying the matrices yields the
polynomials f1, f2 ∈ R[a1, b1, a2, b2, a3, b3], defined as

f1 = 2a1a2a3 − a1b2b3 + a1a2 − 2b1b2a3 − b1a2b3 + a1, (4.70)

and

f2 = 2b1a2a3 − b1b2b3 + b1a2 + 2a1b2a3 + a1a2b3, (4.71)

for the x and y coordinates, respectively.
Again, consider imposing a single constraint,

2a1a2a3 − a1b2b3 + a1a2 − 2b1b2a3 − b1a2b3 + a1 = 0, (4.72)

which constrains the point (1, 0) ∈ A3 to traverse the y-axis. The resulting variety is an
interesting manifold, depicted in Figure 4.24 (remember that the sides of the cube are
identified).

Increasing the required f1 value for the constraint on the final point causes the variety
to shrink. Snapshots for f1 = 7/8 and f1 = 2 are shown in Figure 4.25. At f1 = 1, the
variety is not a manifold, but it then changes to S

2. Eventually, this sphere is reduced to a
point at f1 = 3, and then for f1 > 3 the variety is empty.

Instead of the constraint f1 = 0, we could instead constrain the y coordinate of p to ob-
tain f2 = 0. This yields another 2D variety. If both constraints are enforced simultaneously,
then the result is the intersection of the two original varieties. For example, suppose f1 = 1
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θ3

θ1
θ2

Figure 4.24: The variety for the three-link chain with f 1 = 0 is a 2D manifold.

θ1

θ3

θ2

θ2

θ1

θ3

f1 = 7/8 f1 = 2

Figure 4.25: If f 1 > 0, then the variety shrinks. If 1 < p < 3, the variety is a sphere. At f 1 = 0 it is a point,
and for f 1 > 3 it completely vanishes.

and f2 = 0. This is equivalent to a kind of four-bar mechanism [312], in which the fourth
link, A4, is fixed along the x-axis from 0 to 1. The resulting variety,

V (2a1a2a3 − a1b2b3 + a1a2 − 2b1b2a3 − b1a2b3 + a1 − 1,

2b1a2a3 − b1b2b3 + b1a2 + 2a1b2a3 + a1a2b3),
(4.73)

is depicted in Figure 4.26. Using the θ1, θ2, θ3 coordinates, the solution may be easily
parameterized as a collection of line segments. For all t ∈ [0, π], there exist solution points
at (0, 2t, π), (t, 2π − t, π + t), (2π − t, t, π − t), (2π − t, π, π + t), and (t, π, π − t).
Note that once again the variety is not a manifold. A family of interesting varieties can
be generated for the four-bar mechanism by selecting different lengths for the links. The
topologies of these mechanisms have been determined for 2D and a 3D extension that
uses spherical joints (see [701]).
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θ1

θ2

θ3

θ3

θ2

θ1

Figure 4.26: If two constraints, f 1 = 1 and f 2 = 0, are imposed, then the varieties are intersected to obtain
a 1D set of solutions. The example is equivalent to a well-studied four-bar mechanism.

4.4.3 Defining the variety for general linkages

We now describe a general methodology for defining the variety. Keeping the previous
examples in mind will help in understanding the formulation. In the general case, each
constraint can be thought of as a statement of the form:

The ith coordinate of a point p ∈ Aj needs to be held at the value x in the body frame of Ak .

For the variety in Figure 4.23b, the first coordinate of a point p ∈ A2 was held at the value
0 in W in the body frame of A1. The general form must also allow a point to be fixed
with respect to the body frames of links other than A1; this did not occur for the example
in Section 4.4.2

Suppose that n links, A1, . . . ,An, move in W = R
2 or W = R

3. One link, A1 for
convenience, is designated as the root as defined in Section 3.4. Some links are attached
in pairs to form joints. A linkage graph, G(V, E), is constructed from the links and joints.
Each vertex of G represents a link in L. Each edge in G represents a joint. This definition
may seem somewhat backward, especially in the plane because links often look like edges
and joints look like vertices. This alternative assignment is also possible, but it is not easy
to generalize to the case of a single link that has more than two joints. If more than two
links are attached at the same point, each generates an edge of G.

The steps to determine the polynomial constraints that express the variety are as follows:

1. Define the linkage graph G with one vertex per link and one edge per joint. If a joint
connects more than two bodies, then one body must be designated as a junction. See
Figures 4.27 and 4.28a. In Figure 4.28, links 4, 13, and 23 are designated as junctions in
this way.

2. Designate one link as the root, A1. This link may either be fixed in W , or transformations
may be applied. In the latter case, the set of transformations could be SE(2) or SE(3),
depending on the dimension of W . This enables the entire linkage to move independently
of its internal motions.

3. Eliminate the loops by constructing a spanning tree T of the linkage graph, G. This implies
that every vertex (or link) is reachable by a path from the root). Any spanning tree may
be used. Figure 4.28b shows a resulting spanning tree after deleting the edges shown with
dashed lines.
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Figure 4.27: A complicated linkage that has 29 links, several loops, links with more than two bodies, and
bodies with more than two links. Each integer i indicates link Ai .
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Figure 4.28: (a) One way to make the linkage graph that corresponds to the linkage in Figure 4.27. (b) A
spanning tree is indicated by showing the removed edges with dashed lines.

4. Apply the techniques of Section 3.4 to assign body frames and transformations to the
resulting tree of links.

5. For each edge of G that does not appear in T , write a set of constraints between the two
corresponding links. In Figure 4.28b, it can be seen that constraints are needed between
four pairs of links: 14–15, 21–22, 23–24, and 19–23.

This is perhaps the trickiest part. For examples like the one shown in Figure 3.27,
the constraint may be formulated as in (3.81). This is equivalent to what was done to
obtain the example in Figure 4.26, which means that there are actually two constraints,
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one for each of the x and y coordinates. This will also work for the example shown in
Figure 4.27 if all joints are revolute. Suppose instead that two bodies, Aj and Ak , must be
rigidly attached. This requires adding one more constraint that prevents mutual rotation.
This could be achieved by selecting another point on Aj and ensuring that one of its
coordinates is in the correct position in the body frame of Ak . If four equations are added,
two from each point, then one of them would be redundant because there are only three
degrees of freedom possible for Aj relative to Ak (which comes from the dimension of
SE(2)).

A similar but more complicated situation occurs for W = R
3. Holding a single point

fixed produces three constraints. If a single point is held fixed, then Aj may achieve
any rotation in SO(3) with respect to Ak . This implies that Aj and Ak are attached by
a spherical joint. If they are attached by a revolute joint, then two more constraints are
needed, which can be chosen from the coordinates of a second point. If Aj and Ak are
rigidly attached, then one constraint from a third point is needed. In total, however, there
can be no more than six independent constraints because this is the dimension of SE(3).

6. Convert the trigonometric functions to polynomials. For any 2D transformation, the
familiar substitution of complex numbers may be made. If the DH parameterization is
used for the 3D case, then each of the cos θi , sin θi expressions can be parameterized with
one complex number, and each of the cos αi , sin αi expressions can be parameterized with
another. If the rotation matrix for SO(3) is directly used in the parameterization, then the
quaternion parameterization should be used. In all of these cases, polynomial expressions
are obtained.

7. List the constraints as polynomial equations of the form f = 0. To write the description of
the variety, all of the polynomials must be set equal to zero, as was done for the examples
in Section 4.4.2.

Is it possible to determine the dimension of the variety from the number of independent
constraints? The answer is generally no, which can be easily seen from the chains of
links in Section 4.4.2; they produced varieties of various dimensions, depending on the
particular equations. Techniques for computing the dimension exist but require much more
machinery than is presented here (see the literature overview at the end of the chapter).
However, there is a way to provide a simple upper bound on the number of degrees of
freedom. Suppose the total degrees of freedom of the linkage in spanning tree form is m.
Each independent constraint can remove at most one degree of freedom. Thus, if there are
l independent constraints, then the variety can have no more than m− l dimensions. One
expression of this for a general class of mechanisms is the Kutzbach criterion; the planar
version of this is called Grübler’s formula [312].

One final concern is the obstacle region, Cobs. Once the variety has been identified,
the obstacle region and motion planning definitions in (4.34) and Formulation 4.1 do not
need to be changed. The configuration space C must be redefined, however, to be the set
of configurations that satisfy the closure constraints.

Further reading

Section 4.1 introduced the basic definitions and concepts of topology. Further study of this fascinating
subject can provide a much deeper understanding of configuration spaces. There are many books on
topology, some of which may be intimidating, depending on your level of math training. For a heavily
illustrated, gentle introduction to topology, see [538]. Another gentle introduction appears in [499].
An excellent text at the graduate level is available on-line: [442]. Other sources include [38, 454]. To
understand the motivation for many technical definitions in topology, [912] is helpful. The manifold
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coverage in Section 4.1.2 was simpler than that found in most sources because most sources introduce
smooth manifolds, which are complicated by differentiability requirements (these were not needed in
this chapter); see Section 8.3.2 for smooth manifolds. For the configuration spaces of points moving on
a topological graph, see [5].

Section 4.2 provided basic C-space definitions. For further reading on matrix groups and their
topological properties, see [64], which provides a transition into more advanced material on Lie group
theory. For more about quaternions in engineering, see [212, 566]. The remainder of Section 4.2 and
most of Section 4.3 were inspired by the coverage in [591]. C-spaces are also covered in [222]. For
further reading on computing representations of Cobs, see [516, 739] for bitmaps, and Chapter 6 and
[867] for combinatorial approaches.

Much of the presentation in Section 4.4 was inspired by the nice introduction to algebraic varieties in
[252], which even includes robotics examples; methods for determining the dimension of a variety are
also covered. More algorithmic coverage appears in [707]. See [696] for detailed coverage of robots that
are designed with closed kinematic chains.

Exercises

1. Consider the set X = {1, 2, 3, 4, 5}. Let X, ∅, {1, 3}, {1, 2}, {2, 3}, {1}, {2}, and {3} be the
collection of all subsets of X that are designated as open sets.

(a) Is X a topological space?

(b) Is it a topological space if {1, 2, 3} is added to the collection of open sets? Explain.

(c) What are the closed sets (assuming {1, 2, 3} is included as an open set)?

(d) Are any subsets of X neither open nor closed?

2. Continuous functions for the strange topology:

(a) Give an example of a continuous function, f : X → X, for the strange topology in Example
4.4.

(b) Characterize the set of all possible continuous functions.

3. For the letters of the Russian alphabet, A, B, V, G, D, E, Ë, �, Z, I, �I, K, L, M,
N, O, P, R, S, T, U, F, H, C, Q, X, W, �, Y, �, �, �, �, determine which
pairs are homeomorphic. Imagine each as a 1D subset of R

2 and draw them accordingly
before solving the problem.

4. Prove that homeomorphisms yield an equivalence relation on the collection of all topolog-
ical spaces.

5. What is the dimension of the C-space for a cylindrical rod that can translate and rotate
in R

3? If the rod is rotated about its central axis, it is assumed that the rod’s position and
orientation are not changed in any detectable way. Express the C-space of the rod in
terms of a Cartesian product of simpler spaces (such as S

1, S
2, R

n, P 2, etc.). What is your
reasoning?

6. Let τ1 : [0, 1] → R
2 be a loop path that traverses the unit circle in the plane, de-

�ned as τ1(s) = (cos(2πs), sin(2πs)). Let τ2 : [0, 1] → R
2 be another loop path: τ1(s) =

(−2 + 3 cos(2πs), 1
2 sin(2πs)). This path traverses an ellipse that is centered at (−2, 0).

Show that τ1 and τ2 are homotopic (by constructing a continuous function with an addi-
tional parameter that “morphs” τ1 into τ2).

7. Prove that homotopy yields an equivalence relation on the set of all paths from some
x1 ∈ X to some x2 ∈ X, in which x1 and x2 may be chosen arbitrarily.

8. Determine the C-space for a spacecraft that can translate and rotate in a 2D Asteroids-style
video game. The sides of the screen are identi�ed. The top and bottom are also identi�ed.
There are no “twists” in the identi�cations .
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9. Repeat the derivation of HA from Section 4.3.3, but instead consider Type VE contacts.

10. Determine the C-space for a car that drives around on a huge sphere (such as the earth
with no mountains or oceans). Assume the sphere is big enough so that its curvature may
be neglected (e.g., the car rests �atly on the earth without wobbling). [Hint: It is not S

2 × S
1.]

11. Suppose that A and O are each de�ned as equilateral triangles, with coordinates (0, 0),
(2, 0), and (1,

√
3). Determine the C-space obstacle. Specify the coordinates of all of its

vertices and indicate the corresponding contact type for each edge.

12. Show that (4.20) is a valid rotation matrix for all unit quaternions.

13. Show that F[x1, . . . , xn], the set of polynomials over a �eld F with variables x1, . . . , xn, is a
group with respect to addition.

14. Quaternions:

(a) De�ne a unit quaternion h1 that expresses a rotation of − π
2 around the axis given by the

vector [ 1√
3

1√
3

1√
3
].

(b) De�ne a unit quaternion h2 that expresses a rotation of π around the axis given by the vector
[0 1 0].

(c) Suppose the rotation represented by h1 is performed, followed by the rotation represented
by h2. This combination of rotations can be represented as a single rotation around an axis
given by a vector. Find this axis and the angle of rotation about this axis.

15. What topological space is contributed to the C-space by a spherical joint that achieves any
orientation except the identity?

16. Suppose � ve polyhedral bodies �oat freely in a 3D world. They are each capable of rotating
and translating. If these are treated as “one” composite robot, what is the topology of the
resulting C-space (assume that the bodies are not attached to each other)? What is its
dimension?

17. Suppose a goal region G ⊆W is de�ned in the C-space by requiring that the entire robot
is contained in G. For example, a car may have to be parked entirely within a space in a
parking lot.

(a) Give a de�nition of Cgoal that is similar to (4.34) but pertains to containment of A inside
of G.

(b) For the case in which A and G are convex and polygonal, develop an algorithm for ef�ciently
computing Cgoal .

18. Figure 4.29a shows the Möbius band de�ned by identi�cation of sides of the unit square.
Imagine that scissors are used to cut the band along the two dashed lines. Describe the
resulting topological space. Is it a manifold? Explain.

19. Consider Figure 4.29b, which shows the set of points in R
2 that are remaining after a

closed disc of radius 1/4 with center (x, y) is removed for every value of (x, y) such that x

and y are both integers.

(a) Is the remaining set of points a manifold? Explain.

(b) Now remove discs of radius 1 instead of 1/4. Is a manifold obtained?

(c) Finally, remove disks of radius 3/2. Is a manifold obtained?

20. Show that the solution curves shown in Figure 4.26 correctly illustrate the variety given in
(4.73).

21. Find the number of faces of Cobs for a cube and regular tetrahedron, assuming C is SE(3).
How many faces of each contact type are obtained?

22. Following the analysis matrix subgroups from Section 4.2, determine the dimension of
SO(4), the group of 4 × 4 rotation matrices. Can you characterize this topological space?
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Figure 4.29: (a) What topological space is obtained after slicing the Möbius band? (b) Is a manifold
obtained after tearing holes out of the plane?

23. Suppose that a kinematic chain of spherical joints is given. Show how to use (4.20) as
the rotation part in each homogeneous transformation matrix, as opposed to using the
DH parameterization. Explain why using (4.20) would be preferable for motion planning
applications.

24. Suppose that the constraint that c is held to position (10, 10) is imposed on the mechanism
shown in Figure 3.29. Using complex numbers to represent rotation, express this constraint
using polynomial equations.

25. The Tangle toy is made of 18 pieces of macaroni-shaped joints that are attached together
to form a loop. Each attachment between joints forms a revolute joint. Each link is a curved
tube that extends around 1/4 of a circle. What is the dimension of the variety that results
from maintaining the loop? What is its con�gur ation space (accounting for internal degrees
of freedom), assuming the toy can be placed anywhere in R

3?

Implementations

26. Computing C-space obstacles:

(a) Implement the algorithm from Section 4.3.2 to construct a convex, polygonal C-space ob-
stacle.

(b) Now allow the robot to rotate in the plane. For any convex robot and obstacle, compute the
orientations at which the C-space obstacle fundamentally changes due to different Type EV
and Type VE contacts becoming active.

(c) Animate the changing C-space obstacle by using the robot orientation as the time axis in
the animation.

27. Consider “straight-line” paths that start at the origin (lower left corner) of the manifolds
shown in Figure 4.5 and leave at a particular angle, which is input to the program. The
lines must respect identi�cations; thus, as the line hits the edge of the square, it may
continue onward. Study the conditions under which the lines �ll the entire space versus
forming a � nite pattern (i.e., a segment, stripes, or a tiling).
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5

Sampling-Based Motion Planning

There are two main philosophies for addressing the motion planning problem, in Formula-
tion 4.1 from Section 4.3.1. This chapter presents one of the philosophies, sampling-based
motion planning, which is outlined in Figure 5.1. The main idea is to avoid the explicit
construction of Cobs, as described in Section 4.3, and instead conduct a search that probes
the C-space with a sampling scheme. This probing is enabled by a collision detection
module, which the motion planning algorithm considers as a “black box.” This enables
the development of planning algorithms that are independent of the particular geometric
models. The collision detection module handles concerns such as whether the models
are semi-algebraic sets, 3D triangles, nonconvex polyhedra, and so on. This general phi-
losophy has been very successful in recent years for solving problems from robotics,
manufacturing, and biological applications that involve thousands and even millions of
geometric primitives. Such problems would be practically impossible to solve using tech-
niques that explicitly represent Cobs.

Notions of completeness

It is useful to define several notions of completeness for sampling-based algorithms. These
algorithms have the drawback that they result in weaker guarantees that the problem will be
solved. An algorithm is considered complete if for any input it correctly reports whether
there is a solution in a finite amount of time. If a solution exists, it must return one
in finite time. The combinatorial motion planning methods of Chapter 6 will achieve
this. Unfortunately, such completeness is not achieved with sampling-based planning.
Instead, weaker notions of completeness are tolerated. The notion of denseness becomes
important, which means that the samples come arbitrarily close to any configuration as
the number of iterations tends to infinity. A deterministic approach that samples densely
will be called resolution complete. This means that if a solution exists, the algorithm will
find it in finite time; however, if a solution does not exist, the algorithm may run forever.
Many sampling-based approaches are based on random sampling, which is dense with
probability one. This leads to algorithms that are probabilistically complete, which means
that with enough points, the probability that it finds an existing solution converges to one.
The most relevant information, however, is the rate of convergence, which is usually very
difficult to establish.

Section 5.1 presents metric and measure space concepts, which are fundamental to
nearly all sampling-based planning algorithms. Section 5.2 presents general sampling
concepts and quality criteria that are effective for analyzing the performance of sampling-
based algorithms. Section 5.3 gives a brief overview of collision detection algorithms,
to gain an understanding of the information available to a planning algorithm and the
computation price that must be paid to obtain it. Section 5.4 presents a framework that
defines algorithms which solve motion planning problems by integrating sampling and
discrete planning (i.e., searching) techniques. These approaches can be considered single

153
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Sampling-Based
Motion Planning AlgorithmCollision

Detection
Geometric
Models

Discrete
Searching

C-Space
Planning

Figure 5.1: The sampling-based planning philosophy uses collision detection as a “black box” that sep-
arates the motion planning from the particular geometric and kinematic models. C-space sampling and
discrete planning (i.e., searching) are performed.

query in the sense that a single pair, (qI , qG), is given, and the algorithm must search until
it finds a solution (or it may report early failure). Section 5.5 focuses on rapidly exploring
random trees (RRTs) and rapidly exploring dense trees (RDTs), which are used to develop
efficient single-query planning algorithms. Section 5.6 covers multiple-query algorithms,
which invest substantial preprocessing effort to build a data structure that is later used to
obtain efficient solutions for many initial-goal pairs. In this case, it is assumed that the
obstacle region O remains the same for every query.

5.1 Distance and volume in C-space

Virtually all sampling-based planning algorithms require a function that measures the
distance between two points in C. In most cases, this results in a metric space, which
is introduced in Section 5.1.1. Useful examples for motion planning are given in Sec-
tion 5.1.2. It will also be important in many of these algorithms to define the vol-
ume of a subset of C. This requires a measure space, which is introduced in Section
5.1.3. Section 5.1.4 introduces invariant measures, which should be used whenever
possible.

5.1.1 Metric spaces

It is straightforward to define Euclidean distance in R
n. To define a distance function

over any C, however, certain axioms will have to be satisfied so that it coincides with our
expectations based on Euclidean distance.

The following definition and axioms are used to create a function that converts a
topological space into a metric space.1 A metric space (X, ρ) is a topological space X

equipped with a function ρ : X ×X → R such that for any a, b, c ∈ X:

1. Nonnegativity: ρ(a, b) ≥ 0.

2. Reflexivity: ρ(a, b) = 0 if and only if a = b.

3. Symmetry: ρ(a, b) = ρ(b, a).

4. Triangle inequality: ρ(a, b) + ρ(b, c) ≥ ρ(a, c).

The function ρ defines distances between points in the metric space, and each of the four
conditions on ρ agrees with our intuitions about distance. The final condition implies that
ρ is optimal in the sense that the distance from a to c will always be less than or equal to

1 Some topological spaces are not metrizable, which means that no function exists that satisfies the axioms. Many
metrization theorems give sufficient conditions for a topological space to be metrizable [454], and virtually any
space that has arisen in motion planning will be metrizable.
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the total distance obtained by traveling through an intermediate point b on the way from
a to c.

Lp metrics

The most important family of metrics over R
n is given for any p ≥ 1 as

ρ(x, x ′) =
( n∑

i=1

|xi − x ′i |p
)1/p

. (5.1)

For each value of p, (5.1) is called an Lp metric (pronounced “el pee”). The three most
common cases are

1. L2: The Euclidean metric, which is the familiar Euclidean distance in R
n.

2. L1: The Manhattan metric, which is often nicknamed this way because in R
2 it corresponds

to the length of a path that is obtained by moving along an axis-aligned grid. For example,
the distance from (0, 0) to (2, 5) is 7 by traveling “east two blocks” and then “north five
blocks”.

3. L∞: The L∞ metric must actually be defined by taking the limit of (5.1) as p tends to
infinity. The result is

L∞(x, x ′) = max
1≤i≤n

{|xi − x ′i |}, (5.2)

which seems correct because the larger the value of p, the more the largest term of the
sum in (5.1) dominates.

An Lp metric can be derived from a norm on a vector space. An Lp norm over R
n is

defined as

‖x‖p =
( n∑

i=1

|xi |p
)1/p

. (5.3)

The case of p = 2 is the familiar definition of the magnitude of a vector, which is called
the Euclidean norm. For example, assume the vector space is R

n, and let ‖ · ‖ be the
standard Euclidean norm. The L2 metric is ρ(x, y) = ‖x − y‖. Any Lp metric can be
written in terms of a vector subtraction, which is notationally convenient.

Metric subspaces

By verifying the axioms, it can be shown that any subspace Y of a metric space (X, ρ)
itself becomes a metric space by restricting the domain of ρ to Y . This conveniently
provides metrics on any of the manifolds and varieties from Chapter 4 by simply using
any Lp metric on R

m, the space in which the manifold or variety is embedded.

Cartesian products of metric spaces

Metrics extend nicely across Cartesian products, which is very convenient because
C-spaces are often constructed from Cartesian products, especially in the case of multi-
ple bodies. Let (X, ρx) and (Y, ρy) be two metric spaces. A metric space (Z, ρz) can be
constructed for the Cartesian product Z = X × Y by defining the metric ρz as

ρz(z, z
′) = ρz(x, y, x ′, y ′) = c1ρx(x, x ′) + c2ρy(y, y ′), (5.4)

in which c1 > 0 and c2 > 0 are any positive real constants, and x, x ′ ∈ X and y, y ′ ∈ Y .
Each z ∈ Z is represented as z = (x, y).
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Other combinations lead to a metric for Z; for example,

ρz(z, z
′) =

(
c1
[
ρx(x, x ′)

]p + c2
[
ρy(y, y ′)

]p)1/p

, (5.5)

is a metric for any positive integer p. Once again, two positive constants must be chosen.
It is important to understand that many choices are possible, and there may not necessarily
be a “correct” one.

5.1.2 Important metric spaces for motion planning

This section presents some metric spaces that arise frequently in motion planning.

Example 5.1 (SO(2) Metric Using Complex Numbers) If SO(2) is represented
by unit complex numbers, recall that the C-space is the subset of R

2 given by
{(a, b) ∈ R

2 | a2 + b2 = 1}. Any Lp metric from R
2 may be applied. Using the Euclidean

metric,

ρ(a1, b1, a2, b2) =
√

(a1 − a2)2 + (b1 − b2)2, (5.6)

for any pair of points (a1, b1) and (a2, b2). �

Example 5.2 (SO(2) Metric by Comparing Angles) You might have noticed that the
previous metric for SO(2) does not give the distance traveling along the circle. It instead
takes a shortcut by computing the length of the line segment in R

2 that connects the two
points. This distortion may be undesirable. An alternative metric is obtained by directly
comparing angles, θ1 and θ2. However, in this case special care has to be given to the
identification, because there are two ways to reach θ2 from θ1 by traveling along the circle.
This causes a min to appear in the metric definition:

ρ(θ1, θ2) = min
{|θ1 − θ2|, 2π − |θ1 − θ2|

}
, (5.7)

for which θ1, θ2 ∈ [0, 2π]/ ∼. This may alternatively be expressed using the complex
number representation a + bi as an angle between two vectors:

ρ(a1, b1, a2, b2) = cos−1(a1a2 + b1b2), (5.8)

for two points (a1, b1) and (a2, b2). �

Example 5.3 (An SE(2) Metric) Again by using the subspace principle, a metric can
easily be obtained for SE(2). Using the complex number representation of SO(2), each
element of SE(2) is a point (xt , yt , a, b) ∈ R

4. The Euclidean metric, or any other Lp

metric on R
4, can be immediately applied to obtain a metric. �

Example 5.4 (SO(3) Metrics Using Quaternions) As usual, the situation becomes more
complicated for SO(3). The unit quaternions form a subset S

3 of R
4. Therefore, any Lp

metric may be used to define a metric on S
3, but this will not be a metric for SO(3) because

antipodal points need to be identified. Let h1, h2 ∈ R
4 represent two unit quaternions

(which are being interpreted here as elements of R
4 by ignoring the quaternion algebra).
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Taking the identifications into account, the metric is

ρ(h1, h2) = min
{‖h1 − h2‖, ‖h1 + h2‖

}
, (5.9)

in which the two arguments of the min correspond to the distances from h1 to h2 and−h2,
respectively. The h1 + h2 appears because h2 was negated to yield its antipodal point,
−h2.

As in the case of SO(2), the metric in (5.9) may seem distorted because it measures the
length of line segments that cut through the interior of S

3, as opposed to traveling along the
surface. This problem can be fixed to give a very natural metric for SO(3), which is based
on spherical linear interpolation. This takes the line segment that connects the points and
pushes it outward onto S

3. It is easier to visualize this by dropping a dimension. Imagine
computing the distance between two points on S

2. If these points lie on the equator, then
spherical linear interpolation yields a distance proportional to that obtained by traveling
along the equator, as opposed to cutting through the interior of S

2 (for points not on the
equator, use the great circle through the points).

It turns out that this metric can easily be defined in terms of the inner product between
the two quaternions. Recall that for unit vectors v1 and v2 in R

n, v1 · v2 = cos θ , in which
θ is the angle between the vectors. This angle is precisely what is needed to give the
proper distance along S

3. The resulting metric is a surprisingly simple extension of (5.8).
The distance along S

3 between two quaternions is

ρs(h1, h2) = cos−1(a1a2 + b1b2 + c1c2 + d1d2), (5.10)

in which each hi = (ai, bi, ci, di). Taking identification into account yields the metric

ρ(h1, h2) = min
{
ρs(h1, h2), ρs(h1,−h2)

}
. (5.11)

�

Example 5.5 (Another SE(2) Metric) For many C-spaces, the problem of relating
different kinds of quantities arises. For example, any metric defined on SE(2) must
compare both distance in the plane and an angular quantity. For example, even if c1 =
c2 = 1, the range for S

1 is [0, 2π) using radians but [0, 360) using degrees. If the same
constant c2 is used in either case, two very different metrics are obtained. The units applied
to R

2 and S
1 are completely incompatible. �

Example 5.6 (Robot Displacement Metric) Sometimes this incompatibility problem
can be fixed by considering the robot displacement. For any two configurations q1, q2 ∈ C,
a robot displacement metric can be defined as

ρ(q1, q2) = max
a∈A

{‖a(q1) − a(q2)‖}, (5.12)

in which a(qi) is the position of the point a in the world when the robotA is at configuration
qi . Intuitively, the robot displacement metric yields the maximum amount in W that any
part of the robot is displaced when moving from configuration q1 to q2. The difficulty
and efficiency with which this metric can be computed depend strongly on the particular
robot geometric model and kinematics. For a convex polyhedral robot that can translate
and rotate, it is sufficient to check only vertices. The metric may appear to be ideal, but
efficient algorithms are not known for most situations. �
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Example 5.7 (Tn Metrics) Next consider making a metric over a torus T
n. The Cartesian

product rules such as (5.4) and (5.5) can be extended over every copy of S
1 (one for each

parameter θi). This leads to n arbitrary coefficients c1, c2, . . . , cn. Robot displacement
could be used to determine the coefficients. For example, if the robot is a chain of links,
it might make sense to weight changes in the first link more heavily because the entire
chain moves in this case. When the last parameter is changed, only the last link moves; in
this case, it might make sense to give it less weight. �

Example 5.8 (SE(3) Metrics) Metrics for SE(3) can be formed by applying the Carte-
sian product rules to a metric for R

3 and a metric for SO(3), such as that given in (5.11).
Again, this unfortunately leaves coefficients to be specified. These issues will arise again
in Section 5.3.4, where more details appear on robot displacement. �

Pseudometrics

Many planning algorithms use functions that behave somewhat like a distance function
but may fail to satisfy all of the metric axioms. If such distance functions are used, they
will be referred to as pseudometrics. One general principle that can be used to derive
pseudometrics is to define the distance to be the optimal cost-to-go for some criterion
(recall discrete cost-to-go functions from Section 2.3). This will become more important
when differential constraints are considered in Chapter 14.

In the continuous setting, the cost could correspond to the distance traveled by a robot
or even the amount of energy consumed. Sometimes, the resulting pseudometric is not
symmetric. For example, it requires less energy for a car to travel downhill as opposed to
uphill. Alternatively, suppose that a car is only capable of driving forward. It might travel
a short distance to go forward from q1 to some q2, but it might have to travel a longer
distance to reach q1 from q2 because it cannot drive in reverse. These issues arise for the
Dubins car, which is covered in Sections 13.1.2 and 15.3.1.

An important example of a pseudometric from robotics is a potential function, which
is an important part of the randomized potential field method, which is discussed in
Section 5.4.3. The idea is to make a scalar function that estimates the distance to the
goal; however, there may be additional terms that attempt to repel the robot away from
obstacles. This generally causes local minima to appear in the distance function, which
may cause potential functions to violate the triangle inequality.

5.1.3 Basic measure theory definitions

This section briefly indicates how to define volume in a metric space. This provides a
basis for defining concepts such as integrals or probability densities. Measure theory is
an advanced mathematical topic that is well beyond the scope of this book; however, it
is worthwhile to briefly introduce some of the basic definitions because they sometimes
arise in sampling-based planning.

Measure can be considered as a function that produces real values for subsets of a metric
space, (X, ρ). Ideally, we would like to produce a nonnegative value, µ(A) ∈ [0,∞], for
any subset A ⊆ X. Unfortunately, due to the Banach-Tarski paradox, if X = R

n, there are
some subsets for which trying to assign volume leads to a contradiction. If X is finite, this
cannot happen. Therefore, it is hard to visualize the problem; see [839] for a construction
of the bizarre nonmeasurable sets. Due to this problem, a workaround was developed by
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defining a collection of subsets that avoids the paradoxical sets. A collection B of subsets
of X is called a sigma algebra if the following axioms are satisfied:

1. The empty set is in B.

2. If B ∈ B, then X \ B ∈ B.

3. For any collection of a countable number of sets in B, their union must also be in B.

Note that the last two conditions together imply that the intersection of a countable number
of sets in B is also in B. The sets in B are called the measurable sets.

A nice sigma algebra, called the Borel sets, can be formed from any metric space (X, ρ)
as follows. Start with the set of all open balls in X. These are the sets of the form

B(x, r) = {x ′ ∈ X | ρ(x, x ′) < r} (5.13)

for any x ∈ X and any r ∈ (0,∞). From the open balls, the Borel sets B are the sets that
can be constructed from these open balls by using the sigma algebra axioms. For example,
an open square in R

2 is in B because it can be constructed as the union of a countable
number of balls (infinitely many are needed because the curved balls must converge to
covering the straight square edges). By using Borel sets, the nastiness of nonmeasurable
sets is safely avoided.

Example 5.9 (Borel Sets) A simple example of B can be constructed for R. The open
balls are just the set of all open intervals, (x1, x2) ⊂ R, for any x1, x2 ∈ R such that
x1 < x2. �

Using B, a measure µ is now defined as a function µ : B → [0,∞] such that the
measure axioms are satisfied:

1. For the empty set, µ(∅) = 0.

2. For any collection, E1, E2, E3, . . . , of a countable (possibly finite) number of pairwise
disjoint, measurable sets, let E denote their union. The measure µ must satisfy

µ(E) =
∑

i

µ(Ei), (5.14)

in which i counts over the whole collection.

Example 5.10 (Lebesgue Measure) The most common and important measure is the
Lebesgue measure, which becomes the standard notions of length in R, area in R

2, and
volume in R

n for n ≥ 3. One important concept with Lebesgue measure is the existence of
sets of measure zero. For any countable set A, the Lebesgue measure yields µ(A) = 0. For
example, what is the total length of the point {1} ⊂ R? The length of any single point must
be zero. To satisfy the measure axioms, sets such as {1, 3, 4, 5} must also have measure
zero. Even infinite subsets such as Z and Q have measure zero in R. If the dimension of
a set A ⊆ R

n is m for some integer m < n, then µ(A) = 0, according to the Lebesgue
measure on R

n. For example, the set S
2 ⊂ R

3 has measure zero because the sphere has
no volume. However, if the measure space is restricted to S

2 and then the surface area is
defined, then nonzero measure is obtained. �

Example 5.11 (The Counting Measure) If (X, ρ) is finite, then the counting measure
can be defined. In this case, the measure can be defined over the entire power set of X.
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For any A ⊂ X, the counting measure yields µ(A) = |A|, the number of elements in A.
Verify that this satisfies the measure axioms. �

Example 5.12 (Probability Measure) Measure theory even unifies discrete and con-
tinuous probability theory. The measure µ can be defined to yield probability mass. The
probability axioms (see Section 9.1.2) are consistent with the measure axioms, which
therefore yield a measure space. The integrals and sums needed to define expectations
of random variables for continuous and discrete cases, respectively, unify into a single
measure-theoretic integral. �

Measure theory can be used to define very general notions of integration that are much
more powerful than the Riemann integral that is learned in classical calculus. One of the
most important concepts is the Lebesgue integral. Instead of being limited to partitioning
the domain of integration into intervals, virtually any partition into measurable sets can be
used. Its definition requires the notion of a measurable function to ensure that the function
domain is partitioned into measurable sets. For further study, see [348, 549, 839].

5.1.4 Using the correct measure

Since many metrics and measures are possible, it may sometimes seem that there is
no “correct” choice. This can be frustrating because the performance of sampling-based
planning algorithms can depend strongly on these. Conveniently, there is a natural measure,
called the Haar measure, for some transformation groups, including SO(N). Good metrics
also follow from the Haar measure, but unfortunately, there are still arbitrary alternatives.

The basic requirement is that the measure does not vary when the sets are transformed
using the group elements. More formally, let G represent a matrix group with real-valued
entries, and let µ denote a measure on G. If for any measurable subset A ⊆ G, and any
element g ∈ G, µ(A) = µ(gA) = µ(Ag), then µ is called the Haar measure2 for G. The
notation gA represents the set of all matrices obtained by the product ga, for any a ∈ A.
Similarly, Ag represents all products of the form ag.

Example 5.13 (Haar Measure for SO(2)) The Haar measure for SO(2) can be obtained
by parameterizing the rotations as [0, 1]/ ∼ with 0 and 1 identified, and letting µ be the
Lebesgue measure on the unit interval. To see the invariance property, consider the interval
[1/4, 1/2], which produces a set A ⊂ SO(2) of rotation matrices. This corresponds to the
set of all rotations from θ = π/2 to θ = π . The measure yields µ(A) = 1/4. Now consider
multiplying every matrix a ∈ A by a rotation matrix, g ∈ SO(2), to yield Ag. Suppose g is
the rotation matrix for θ = π . The set Ag is the set of all rotation matrices from θ = 3π/2
up to θ = 2π = 0. The measure µ(Ag) = 1/4 remains unchanged. Invariance for gA may
be checked similarly. The transformation g translates the intervals in [0, 1]/ ∼. Since the
measure is based on interval lengths, it is invariant with respect to translation. Note that
µ can be multiplied by a fixed constant (such as 2π) without affecting the invariance
property.

An invariant metric can be defined from the Haar measure on SO(2). For any points
x1, x2 ∈ [0, 1], let ρ = µ([x1, x2]), in which [x1, x2] is the shortest length (smallest

2 Such a measure is unique up to scale and exists for any locally compact topological group [348, 839].
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measure) interval that contains x1 and x2 as endpoints. This metric was already given
in Example 5.2.

To obtain examples that are not the Haar measure, let µ represent probability mass over
[0, 1] and define any nonuniform probability density function (the uniform density yields
the Haar measure). Any shifting of intervals will change the probability mass, resulting
in a different measure.

Failing to use the Haar measure weights some parts of SO(2) more heavily than others.
Sometimes imposing a bias may be desirable, but it is at least as important to know
how to eliminate bias. These ideas may appear obvious, but in the case of SO(3) and
many other groups it is more challenging to eliminate this bias and obtain the Haar
measure. �
Example 5.14 (Haar Measure for SO(3)) For SO(3) it turns out once again that quater-
nions come to the rescue. If unit quaternions are used, recall that SO(3) becomes pa-
rameterized in terms of S

3, but opposite points are identified. It can be shown that the
surface area on S

3 is the Haar measure. (Since S
3 is a 3D manifold, it may more appropri-

ately be considered as a surface “volume.”) It will be seen in Section 5.2.2 that uniform
random sampling over SO(3) must be done with a uniform probability density over S

3.
This corresponds exactly to the Haar measure. If instead SO(3) is parameterized with
Euler angles, the Haar measure will not be obtained. An unintentional bias will be intro-
duced; some rotations in SO(3) will have more weight than others for no particularly good
reason. �

5.2 Sampling theory

5.2.1 Motivation and basic concepts

The state space for motion planning, C, is uncountably infinite, yet a sampling-based plan-
ning algorithm can consider at most a countable number of samples. If the algorithm runs
forever, this may be countably infinite, but in practice we expect it to terminate early after
only considering a finite number of samples. This mismatch between the cardinality of C
and the set that can be probed by an algorithm motivates careful consideration of sampling
techniques. Once the sampling component has been defined, discrete planning methods
from Chapter 2 may be adapted to the current setting. Their performance, however, hinges
on the way the C-space is sampled.

Since sampling-based planning algorithms are often terminated early, the particular
order in which samples are chosen becomes critical. Therefore, a distinction is made
between a sample set and a sample sequence. A unique sample set can always be con-
structed from a sample sequence, but many alternative sequences can be constructed from
one sample set.

Denseness

Consider constructing an infinite sample sequence over C. What would be some desirable
properties for this sequence? It would be nice if the sequence eventually reached every
point in C, but this is impossible because C is uncountably infinite. Strangely, it is still
possible for a sequence to get arbitrarily close to every element of C (assuming C ⊆ R

m).
In topology, this is the notion of denseness. Let U and V be any subsets of a topological
space. The set U is said to be dense in V if cl(U ) = V (recall the closure of a set
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from Section 4.1.1). This means adding the boundary points to U produces V . A simple
example is that (0, 1) ⊂ R is dense in [0, 1] ⊂ R. A more interesting example is that the
set Q of rational numbers is both countable and dense in R. Think about why. For any
real number, such as π ∈ R, there exists a sequence of fractions that converges to it. This
sequence of fractions must be a subset of Q. A sequence (as opposed to a set) is called
dense if its underlying set is dense. The bare minimum for sampling methods is that they
produce a dense sequence. Stronger requirements, such as uniformity and regularity, will
be explained shortly.

A random sequence is probably dense

Suppose that C = [0, 1]. One of the simplest ways conceptually to obtain a dense sequence
is to pick points at random. Suppose I ⊂ [0, 1] is an interval of length e. If k samples
are chosen independently at random,3 the probability that none of them falls into I is
(1 − e)k . As k approaches infinity, this probability converges to zero. This means that
the probability that any nonzero-length interval in [0, 1] contains no points converges
to zero. One small technicality exists. The infinite sequence of independently, randomly
chosen points is only dense with probability one, which is not the same as being guar-
anteed. This is one of the strange outcomes of dealing with uncountably infinite sets in
probability theory. For example, if a number between [0, 1] is chosen at random, the
probably that π/4 is chosen is zero; however, it is still possible. (The probability is just
the Lebesgue measure, which is zero for a set of measure zero.) For motion planning
purposes, this technicality has no practical implications; however, if k is not very large,
then it might be frustrating to obtain only probabilistic assurances, as opposed to abso-
lute guarantees of coverage. The next sequence is guaranteed to be dense because it is
deterministic.

The van der Corput sequence

A beautiful yet underutilized sequence was published in 1935 by van der Corput, a Dutch
mathematician [952]. It exhibits many ideal qualities for applications. At the same time, it
is based on a simple idea. Unfortunately, it is only defined for the unit interval. The quest
to extend many of its qualities to higher dimensional spaces motivates the formal quality
measures and sampling techniques in the remainder of this section.

To explain the van der Corput sequence, let C = [0, 1]/ ∼, in which 0 ∼ 1, which
can be interpreted as SO(2). Suppose that we want to place 16 samples in C. An ideal
choice is the set S = {i/16 | 0 ≤ i < 16}, which evenly spaces the points at intervals
of length 1/16. This means that no point in C is further than 1/32 from the nearest
sample. What if we want to make S into a sequence? What is the best ordering? What
if we are not even sure that 16 points are sufficient? Maybe 16 is too few or even too
many.

The first two columns of Figure 5.2 show a naive attempt at making S into a sequence
by sorting the points by increasing value. The problem is that after i = 8, half of C has
been neglected. It would be preferable to have a nice covering of C for any i. Van der
Corput’s clever idea was to reverse the order of the bits, when the sequence is represented
with binary decimals. In the original sequence, the most significant bit toggles only once,

3 See Section 9.1.2 for a review of probability theory.
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Naive Reverse Van der
i Sequence Binary Binary Corput Points in [0, 1]/ ∼
1 0 .0000 .0000 0
2 1/16 .0001 .1000 1/2
3 1/8 .0010 .0100 1/4
4 3/16 .0011 .1100 3/4
5 1/4 .0100 .0010 1/8
6 5/16 .0101 .1010 5/8
7 3/8 .0110 .0110 3/8
8 7/16 .0111 .1110 7/8
9 1/2 .1000 .0001 1/16
10 9/16 .1001 .1001 9/16
11 5/8 .1010 .0101 5/16
12 11/16 .1011 .1101 13/16
13 3/4 .1100 .0011 3/16
14 13/16 .1101 .1011 11/16
15 7/8 .1110 .0111 7/16
16 15/16 .1111 .1111 15/16

Figure 5.2: The van der Corput sequence is obtained by reversing the bits in the binary decimal repre-
sentation of the naive sequence.

whereas the least significant bit toggles in every step. By reversing the bits, the most
significant bit toggles in every step, which means that the sequence alternates between
the lower and upper halves of C. The third and fourth columns of Figure 5.2 show the
original and reversed-order binary representations. The resulting sequence dances around
[0, 1]/ ∼ in a nice way, as shown in the last two columns of Figure 5.2. Let ν(i) denote
the ith point of the van der Corput sequence.

In contrast to the naive sequence, each ν(i) lies far away from ν(i + 1). Furthermore,
the first i points of the sequence, for any i, provide reasonably uniform coverage of C.
When i is a power of 2, the points are perfectly spaced. For other i, the coverage is
still good in the sense that the number of points that appear in any interval of length l

is roughly il. For example, when i = 10, every interval of length 1/2 contains roughly
5 points.

The length, 16, of the naive sequence is actually not important. If instead 8 is used,
the same ν(1), . . . , ν(8) are obtained. Observe in the reverse binary column of Figure
5.2 that this amounts to removing the last zero from each binary decimal representation,
which does not alter their values. If 32 is used for the naive sequence, then the same
ν(1), . . . , ν(16) are obtained, and the sequence continues nicely from ν(17) to ν(32). To
obtain the van der Corput sequence from ν(33) to ν(64), six-bit sequences are reversed
(corresponding to the case in which the naive sequence has 64 points). The process
repeats to produce an infinite sequence that does not require a fixed number of points to
be specified a priori. In addition to the nice uniformity properties for every i, the infinite
van der Corput sequence is also dense in [0, 1]/ ∼. This implies that every open subset
must contain at least one sample.

You have now seen ways to generate nice samples in a unit interval both randomly and
deterministically. Sections 5.2.2–5.2.4 explain how to generate dense samples with nice
properties in the complicated spaces that arise in motion planning.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

164 MOTION PLANNING

5.2.2 Random sampling

Now imagine moving beyond [0, 1] and generating a dense sample sequence for any
bounded C-space, C ⊆ R

m. In this section the goal is to generate uniform random samples.
This means that the probability density function p(q) over C is uniform. Wherever relevant,
it also will mean that the probability density is also consistent with the Haar measure. We
will not allow any artificial bias to be introduced by selecting a poor parameterization. For
example, picking uniform random Euler angles does not lead to uniform random samples
over SO(3). However, picking uniform random unit quaternions works perfectly because
quaternions use the same parameterization as the Haar measure; both choose points on
S

3.
Random sampling is the easiest of all sampling methods to apply to C-spaces. One

of the main reasons is that C-spaces are formed from Cartesian products, and indepen-
dent random samples extend easily across these products. If X = X1 ×X2, and uniform
random samples x1 and x2 are taken from X1 and X2, respectively, then (x1, x2) is a
uniform random sample for X. This is very convenient in implementations. For exam-
ple, suppose the motion planning problem involves 15 robots that each translate for any
(xt , yt ) ∈ [0, 1]2; this yields C = [0, 1]30. In this case, 30 points can be chosen uniformly
at random from [0, 1] and combined into a 30-dimensional vector. Samples generated this
way are uniformly randomly distributed over C. Combining samples over Cartesian prod-
ucts is much more difficult for nonrandom (deterministic) methods, which are presented
in Sections 5.2.3 and 5.2.4.

Generating a random element of SO(3)

One has to be very careful about sampling uniformly over the space of rotations. The
probability density must correspond to the Haar measure, which means that a random
rotation should be obtained by picking a point at random on S

3 and forming the unit
quaternion. An extremely clever way to sample SO(3) uniformly at random is given in
[46] and is reproduced here. Choose three points u1, u2, u3 ∈ [0, 1] uniformly at random.
A uniform, random quaternion is given by the simple expression

h = (
√

1 − u1 sin 2πu2,
√

1 − u1 cos 2πu2,
√

u1 sin 2πu3,
√

u1 cos 2πu3). (5.15)

A full explanation of the method is given in [46], and a brief intuition is given here. First
drop down a dimension and pick u1, u2 ∈ [0, 1] to generate points on S

2. Let u1 represent
the value for the third coordinate, (0, 0, u1) ∈ R

3. The slice of points on S
2 for which u1

is fixed for 0 < u1 < 1 yields a circle on S
2 that corresponds to some line of latitude on

S
2. The second parameter selects the longitude, 2πu2. Unfortunately, the points are not

uniformly distributed over S
2. Why? Imagine S

2 as the crust on a spherical loaf of bread
that is run through a bread slicer. The slices are cut in a direction parallel to the equator
and are of equal thickness. The crusts of each slice do not have equal area; therefore, the
points are not uniformly distributed. However, for S

3, the 3D crusts happen to have the
same area (or measure); this can be shown by evaluating surface integrals. This implies
that a (infinitesimal) slice can be selected uniformly at random with u1, and a point on the
crust is selected uniformly at random by u2 and u3. For S

4 and beyond, the measure of the
crusts vary, which means this elegant scheme only works for S

3. To respect the antipodal
identification for rotations, any quaternion h found in the lower hemisphere (i.e., a < 0)
can be negated to yield −h. This does not distort the uniform random distribution of the
samples.
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Generating random directions

Some sampling-based algorithms require choosing motion directions at random.4 From
a configuration q, the possible directions of motion can be imagined as being distributed
around a sphere. In an (n+ 1)-dimensional C-space, this corresponds to sampling on S

n.
For example, choosing a direction in R

2 amounts to picking an element of S
1; this can be

parameterized as θ ∈ [0, 2π]/ ∼. If n = 4, then the previously mentioned trick for SO(3)
should be used. If n = 3 or n > 4, then samples can be generated using a slightly more
expensive method that exploits spherical symmetries of the multidimensional Gaussian
density function [343]. The method is explained for R

n+1; boundaries and identifications
must be taken into account for other spaces. For each of the n+ 1 coordinates, generate
a sample ui from a zero-mean Gaussian distribution with the same variance for each
coordinate. Following from the Central Limit Theorem, ui can be approximately obtained
by generating k samples at random over [−1, 1] and adding them (k ≥ 12 is usually
sufficient in practice). The vector (u1, u2, . . . , un+1) gives a random direction in R

n−1

because each ui was obtained independently, and the level sets of the resulting probability
density function are spheres. We did not use uniform random samples for each ui because
this would bias the directions toward the corners of a cube; instead, the Gaussian yields
spherical symmetry. The final step is to normalize the vector by taking ui/‖u‖ for each
coordinate.

Pseudorandom number generation

Although there are advantages to uniform random sampling, there are also several disad-
vantages. This motivates the consideration of deterministic alternatives. Since there are
trade-offs, it is important to understand how to use both kinds of sampling in motion
planning. One of the first issues is that computer-generated numbers are not random.5 A
pseudorandom number generator is usually employed, which is a deterministic method
that simulates the behavior of randomness. Since the samples are not truly random, the
advantage of extending the samples over Cartesian products does not necessarily hold.
Sometimes problems are caused by unforeseen deterministic dependencies. One of the
best pseudorandom number generators for avoiding such troubles is the Mersenne twister
[687], for which implementations can be found on the Internet.

To help see the general difficulties, the classical linear congruential pseudorandom
number generator is briefly explained [622, 741]. The method uses three integer parame-
ters, M , a, and c, which are chosen by the user. The first two, M and a, must be relatively
prime, meaning that gcd(M, a) = 1. The third parameter, c, must be chosen to satisfy
0 ≤ c < M . Using modular arithmetic, a sequence can be generated as

yi+1 = ayi + c mod M, (5.16)

by starting with some arbitrary seed 1 ≤ y0 ≤ M . Pseudorandom numbers in [0, 1] are
generated by the sequence

xi = yi/M. (5.17)

4 The directions will be formalized in Section 8.3.2 when smooth manifolds are introduced. In that case, the directions
correspond to the set of possible velocities that have unit magnitude. Presently, the notion of a direction is only
given informally.

5 There are exceptions, which use physical phenomena as a random source [811].
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(a) 196 pseudorandom samples (b) 196 pseudorandom samples

Figure 5.3: Irregularity in a collection of (pseudo)random samples can be nicely observed with Voronoi
diagrams.

The sequence is periodic; therefore, M is typically very large (e.g., M = 231 − 1). Due to
periodicity, there are potential problems of regularity appearing in the samples, especially
when applied across a Cartesian product to generate points in R

n. Particular values must
be chosen for the parameters, and statistical tests are used to evaluate the samples either
experimentally or theoretically [741].

Testing for randomness

Thus, it is important to realize that even the “random” samples are deterministic. They are
designed to optimize performance on statistical tests. Many sophisticated statistical tests
of uniform randomness are used. One of the simplest, the chi-square test, is described
here. This test measures how far computed statistics are from their expected value. As
a simple example, suppose C = [0, 1]2 and is partitioned into a 10 by 10 array of 100
square boxes. If a set P of k samples is chosen at random, then intuitively each box should
receive roughly k/100 of the samples. An error function can be defined to measure how
far from true this intuition is:

e(P ) =
100∑

i=1

(bi − k/100)2, (5.18)

in which bi is the number of samples that fall into box i. It is shown [524] that e(P )
follows a chi-squared distribution. A surprising fact is that the goal is not to minimize
e(P ). If the error is too small, we would declare that the samples are too uniform to
be random! Imagine k = 1, 000, 000 and exactly 10, 000 samples appear in each of the
100 boxes. This yields e(P ) = 0, but how likely is this to ever occur? The error must
generally be larger (it appears in many statistical tables) to account for the irregularity
due to randomness.

This irregularity can be observed in terms of Voronoi diagrams, as shown in Figure 5.3.
The Voronoi diagram partitions R

2 into regions based on the samples. Each sample
x has an associated Voronoi region Vor(x). For any point y ∈ Vor(x), x is the closest
sample to y using Euclidean distance. The different sizes and shapes of these regions
give some indication of the required irregularity of random sampling. This irregularity
may be undesirable for sampling-based motion planning and is somewhat repaired by the
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(a) L2 dispersion (b) L∞ dispersion

Figure 5.4: Reducing the dispersion means reducing the radius of the largest empty ball.

deterministic sampling methods of Sections 5.2.3 and 5.2.4 (however, these methods also
have drawbacks).

5.2.3 Low-dispersion sampling

This section describes an alternative to random sampling. Here, the goal is to optimize
a criterion called dispersion [741]. Intuitively, the idea is to place samples in a way that
makes the largest uncovered area be as small as possible. This generalizes of the idea of
grid resolution. For a grid, the resolution may be selected by defining the step size for
each axis. As the step size is decreased, the resolution increases. If a grid-based motion
planning algorithm can increase the resolution arbitrarily, it becomes resolution complete.
Using the concepts in this section, it may instead reduce its dispersion arbitrarily to
obtain a resolution complete algorithm. Thus, dispersion can be considered as a powerful
generalization of the notion of “resolution.”

Dispersion definition

The dispersion6 of a set P of samples in a metric space (X, ρ) is7

δ(P ) = sup
x∈X

{
min
p∈P

{
ρ(x, p)

}}
. (5.19)

Figure 5.4 gives an interpretation of the definition for two different metrics. An al-
ternative way to consider dispersion is as the radius of the largest empty ball (for the
L∞ metric, the balls are actually cubes). Note that at the boundary of X (if it exists),
the empty ball becomes truncated because it cannot exceed the boundary. There is also a
nice interpretation in terms of Voronoi diagrams. Figure 5.3 can be used to help explain
L2 dispersion in R

2. The Voronoi vertices are the points at which three or more Voronoi
regions meet. These are points in C for which the nearest sample is far. An open, empty
disc can be placed at any Voronoi vertex, with a radius equal to the distance to the three
(or more) closest samples. The radius of the largest disc among those placed at all Voronoi
vertices is the dispersion. This interpretation also extends nicely to higher dimensions.

6 The definition is unfortunately backward from intuition. Lower dispersion means that the points are nicely dispersed.
Thus, more dispersion is bad, which is counterintuitive.

7 The sup represents the supremum, which is the least upper bound. If X is closed, then the sup becomes a max. See
Section 9.1.1 for more details.
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(a) 196-point Sukharev grid (b) 196 lattice points

Figure 5.5: The Sukharev grid and a nongrid lattice.

Making good grids

Optimizing dispersion forces the points to be distributed more uniformly over C. This
causes them to fail statistical tests, but the point distribution is often better for motion
planning purposes. Consider the best way to reduce dispersion if ρ is the L∞ metric
and X = [0, 1]n. Suppose that the number of samples, k, is given. Optimal dispersion is
obtained by partitioning [0, 1] into a grid of cubes and placing a point at the center of
each cube, as shown for n = 2 and k = 96 in Figure 5.5a. The number of cubes per axis
must be �k 1

n �, in which �·� denotes the floor. If k
1
n is not an integer, then there are leftover

points that may be placed anywhere without affecting the dispersion. Notice that k
1
n just

gives the number of points per axis for a grid of k points in n dimensions. The resulting
grid will be referred to as a Sukharev grid [923].

The dispersion obtained by the Sukharev grid is the best possible. Therefore, a useful
lower bound can be given for any set P of k samples [923]:

δ(P ) ≥ 1

2
⌊
N

1
d

⌋ . (5.20)

This implies that keeping the dispersion fixed requires exponentially many points in the
dimension, d.

At this point you might wonder why L∞ was used instead of L2, which seems more
natural. This is because the L2 case is extremely difficult to optimize (except in R

2, where
a tiling of equilateral triangles can be made, with a point in the center of each one). Even
the simple problem of determining the best way to distribute a fixed number of points in
[0, 1]3 is unsolved for most values of k. See [243] for extensive treatment of this problem.

Suppose now that other topologies are considered instead of [0, 1]n. Let X = [0, 1]/ ∼,
in which the identification produces a torus. The situation is quite different because X

no longer has a boundary. The Sukharev grid still produces optimal dispersion, but it can
also be shifted without increasing the dispersion. In this case, a standard grid may also
be used, which has the same number of points as the Sukharev grid but is translated to the
origin. Thus, the first grid point is (0, 0), which is actually the same as 2n − 1 other points
by identification. If X represents a cylinder and the number of points, k, is given, then it
is best to just use the Sukharev grid. It is possible, however, to shift each coordinate that
behaves like S

1. If X is rectangular but not a square, a good grid can still be made by tiling
the space with cubes. In some cases this will produce optimal dispersion. For complicated
spaces such as SO(3), no grid exists in the sense defined so far. It is possible, however,
to generate grids on the faces of an inscribed Platonic solid [253] and lift the samples to
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g1

g2

(a) (b)

Figure 5.6: (a) A distorted grid can even be placed over spheres and SO(3) by putting grids on the faces
of an inscribed cube and lifting them to the surface [987]. (b) A lattice can be considered as a grid in which
the generators are not necessarily orthogonal.

S
n with relatively little distortion [987]. For example, to sample S

2, Sukharev grids can
be placed on each face of a cube. These are lifted to obtain the warped grid shown in
Figure 5.6a.

Example 5.15 (Sukharev Grid) Suppose that n = 2 and k = 9. If X = [0, 1]2, then the
Sukharev grid yields points for the nine cases in which either coordinate may be 1/6, 1/2,
or 5/6. The L∞ dispersion is 1/6. The spacing between the points along each axis is 1/3,
which is twice the dispersion. If instead X = [0, 1]2/ ∼, which represents a torus, then
the nine points may be shifted to yield the standard grid. In this case each coordinate may
be 0, 1/3, or 2/3. The dispersion and spacing between the points remain unchanged. �

One nice property of grids is that they have a lattice structure. This means that neigh-
boring points can be obtained very easily be adding or subtracting vectors. Let gj be an
n-dimensional vector called a generator. A point on a lattice can be expressed as

x =
n∑

j=1

kjgj (5.21)

for n independent generators, as depicted in Figure 5.6b. In a 2D grid, the generators
represent “up” and “right.” If X = [0, 100]2 and a standard grid with integer spacing
is used, then the neighbors of the point (50, 50) are obtained by adding (0, 1), (0,−1),
(−1, 0), or (1, 0). In a general lattice, the generators need not be orthogonal. An example
is shown in Figure 5.5b. In Section 5.4.2, lattice structure will become important and
convenient for defining the search graph.

Infinite grid sequences

Now suppose that the number, k, of samples is not given. The task is to define an infinite
sequence that has the nice properties of the van der Corput sequence but works for any
dimension. This will become the notion of a multi-resolution grid. The resolution can
be iteratively doubled. For a multi-resolution standard grid in R

n, the sequence will first
place one point at the origin. After 2n points have been placed, there will be a grid with
two points per axis. After 4n points, there will be four points per axis. Thus, after 2ni

points for any positive integer i, a grid with 2i points per axis will be represented. If
only complete grids are allowed, then it becomes clear why they appear inappropriate for
high-dimensional problems. For example, if n = 10, then full grids appear after 1, 210,
220, 230, and so on, samples. Each doubling in resolution multiplies the number of points
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by 2n. Thus, to use grids in high dimensions, one must be willing to accept partial grids
and define an infinite sequence that places points in a nice way.

The van der Corput sequence can be extended in a straightforward way as follows.
Suppose X = T

2 = [0, 1]2/ ∼. The original van der Corput sequence started by counting
in binary. The least significant bit was used to select which half of [0, 1] was sampled.
In the current setting, the two least significant bits can be used to select the quadrant
of [0, 1]2. The next two bits can be used to select the quadrant within the quadrant.
This procedure continues recursively to obtain a complete grid after k = 22i points, for
any positive integer i. For any k, however, there is only a partial grid. The points are
distributed with optimal L∞ dispersion. This same idea can be applied in dimension n

by using n bits at a time from the binary sequence to select the orthant (n-dimensional
quadrant). Many other orderings produce L∞-optimal dispersion. Selecting orderings that
additionally optimize other criteria, such as discrepancy or L2 dispersion, are covered in
[642, 647]. Unfortunately, it is more difficult to make a multi-resolution Sukharev grid.
The base becomes 3 instead of 2; after every 3ni points a complete grid is obtained. For
example, in one dimension, the first point appears at 1/2. The next two points appear at
1/6 and 5/6. The next complete one-dimensional grid appears after there are 9 points.

Dispersion bounds

Since the sample sequence is infinite, it is interesting to consider asymptotic bounds on
dispersion. It is known that for X = [0, 1]n and any Lp metric, the best possible asymptotic
dispersion is O(k−1/n) for k points and n dimensions [741]. In this expression, k is the
variable in the limit and n is treated as a constant. Therefore, any function of n may
appear as a constant (i.e., O(f (n)k−1/n) = O(k−1/n) for any positive f (n)). An important
practical consideration is the size of f (n) in the asymptotic analysis. For example, for the
van der Corput sequence from Section 5.2.1, the dispersion is bounded by 1/k, which
means that f (n) = 1. This does not seem good because for values of k that are powers of
two, the dispersion is 1/2k. Using a multi-resolution Sukharev grid, the constant becomes
3/2 because it takes a longer time before a full grid is obtained. Nongrid, low-dispersion
infinite sequences exist that have f (n) = 1/ ln 4 [741]; these are not even uniformly
distributed, which is rather surprising.

5.2.4 Low-discrepancy sampling

In some applications, selecting points that align with the coordinate axis may be unde-
sirable. Therefore, extensive sampling theory has been developed to determine methods
that avoid alignments while distributing the points uniformly. In sampling-based motion
planning, grids sometimes yield unexpected behavior because a row of points may align
nicely with a corridor in Cfree. In some cases, a solution is obtained with surprisingly few
samples, and in others, too many samples are necessary. These alignment problems, when
they exist, generally drive the variance higher in computation times because it is difficult
to predict when they will help or hurt. This provides motivation for developing sampling
techniques that try to reduce this sensitivity.

Discrepancy theory and its corresponding sampling methods were developed to avoid
these problems for numerical integration [741]. Let X be a measure space, such as [0, 1]n.
Let R be a collection of subsets of X that is called a range space. In most cases, R
is chosen as the set of all axis-aligned rectangular subsets; hence, this will be assumed
from this point onward. With respect to a particular point set, P , and range space, R, the
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R

Figure 5.7: Discrepancy measures whether the right number of points fall into boxes. It is related to the
chi-square test but optimizes over all possible boxes.

discrepancy [965] for k samples is defined as (see Figure 5.7)

D(P,R) = sup
R∈R

{∣∣∣∣
|P ∩ R|

k
− µ(R)

µ(X)

∣∣∣∣

}
, (5.22)

in which |P ∩ R| denotes the number of points in P ∩ R. Each term in the supremum
considers how well P can be used to estimate the volume of R. For example, if µ(R) is
1/5, then we would hope that about 1/5 of the points in P fall into R. The discrepancy
measures the largest volume estimation error that can be obtained over all sets in R.

Asymptotic bounds

There are many different asymptotic bounds for discrepancy, depending on the particular
range space and measure space [685]. The most widely referenced bounds are based
on the standard range space of axis-aligned rectangular boxes in [0, 1]n. There are two
different bounds, depending on whether the number of points, k, is given. The best possible
asymptotic discrepancy for a single sequence is O(k−1 logn k). This implies that k is not
specified. If, however, for every k a new set of points can be chosen, then the best possible
discrepancy is O(k−1 logn−1 k). This bound is lower because it considers the best that can
be achieved by a sequence of points sets, in which every point set may be completely
different. In a single sequence, the next set must be extended from the current set by
adding a single sample.

Relating dispersion and discrepancy

Since balls have positive volume, there is a close relationship between discrepancy, which
is measure-based, and dispersion, which is metric-based. For example, for any P ⊂ [0, 1]n,

δ(P,L∞) ≤ D(P,R)1/d , (5.23)

which means low-discrepancy implies low-dispersion. Note that the converse is not true.
An axis-aligned grid yields high discrepancy because of alignments with the boundaries
of sets in R, but the dispersion is very low. Even though low-discrepancy implies low-
dispersion, lower dispersion can usually be obtained by ignoring discrepancy (this is
one less constraint to worry about). Thus, a trade-off must be carefully considered in
applications.

Low-discrepancy sampling methods

Due to the fundamental importance of numerical integration and the intricate link between
discrepancy and integration error, most sampling literature has led to low-discrepancy
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sequences and point sets [741, 894, 937]. Although motion planning is quite different
from integration, it is worth evaluating these carefully constructed and well-analyzed
samples. Their potential use in motion planning is no less reasonable than using pseudo-
random sequences, which were also designed with a different intention in mind (satisfying
statistical tests of randomness).

Low-discrepancy sampling methods can be divided into three categories: 1) Hal-
ton/Hammersley sampling; 2) (t,s)-sequences and (t,m,s)-nets; and 3) lattices. The first
category represents one of the earliest methods, and is based on extending the van der
Corput sequence. The Halton sequence is an n-dimensional generalization of the van der
Corput sequence, but instead of using binary representations, a different basis is used for
each coordinate [433]. The result is a reasonable deterministic replacement for random
samples in many applications. The resulting discrepancy (and dispersion) is lower than
that for random samples (with high probability). Figure 5.8a shows the first 196 Halton
points in R

2.
Choose n relatively prime integers p1, p2, . . . , pn (usually the first n primes, p1 = 2,

p2 = 3, . . . , are chosen). To construct the ith sample, consider the base-p representation
for i, which takes the form i = a0 + pa1 + p2a2 + p3a3 + . . . . The following point in
[0, 1] is obtained by reversing the order of the bits and moving the decimal point (as was
done in Figure 5.2):

r(i, p) = a0

p
+ a1

p2
+ a2

p3
+ a3

p4
+ · · · . (5.24)

For p = 2, this yields the ith point in the van der Corput sequence. Starting from i = 0,
the ith sample in the Halton sequence is

(
r(i, p1), r(i, p2), . . . , r(i, pn)

)
. (5.25)

Suppose instead that k, the required number of points, is known. In this case, a better
distribution of samples can be obtained. The Hammersley point set [434] is an adaptation
of the Halton sequence. Using only d − 1 distinct primes and starting at i = 0, the ith
sample in a Hammersley point set with k elements is

(
i/k, r(i, p1), . . . , r(i, pn−1)

)
. (5.26)

Figure 5.8b shows the Hammersley set for n = 2 and k = 196.
The construction of Halton/Hammersley samples is simple and efficient, which has

led to widespread application. They both achieve asymptotically optimal discrepancy;
however, the constant in their asymptotic analysis increases more than exponentially with
dimension [741]. The constant for the dispersion also increases exponentially, which is
much worse than for the methods of Section 5.2.3.

Improved constants are obtained for sequences and finite points by using (t,s)-
sequences, and (t,m,s)-nets, respectively [741]. The key idea is to enforce zero discrepancy
over particular subsets of R known as canonical rectangles, and all remaining ranges in
R will contribute small amounts to discrepancy. The most famous and widely used (t,s)-
sequences are Sobol’ and Faure (see [741]). The Niederreiter-Xing (t,s)-sequence has the
best-known asymptotic constant, (a/n)n, in which a is a small positive constant [742].

The third category is lattices, which can be considered as a generalization of grids
that allows nonorthogonal axes [685, 894, 959]. As an example, consider Figure 5.5b,
which shows 196 lattice points generated by the following technique. Let α be a positive
irrational number. For a fixed k, generate the ith point according to (i/k, {iα}), in which
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(a) 196 Halton points (b) 196 Hammersley points

Figure 5.8: The Halton and Hammersley points are easy to construct and provide a nice alternative to
random sampling that achieves more regularity. Compare the Voronoi regions to those in Figure 5.3. Beware
that although these sequences produce asymptotically optimal discrepancy, their performance degrades
substantially in higher dimensions (e.g., beyond 10).

{·} denotes the fractional part of the real value (modulo-one arithmetic). In Figure 5.5b,
α = (

√
5 + 1)/2, the golden ratio. This procedure can be generalized to n dimensions by

picking n− 1 distinct irrational numbers. A technique for choosing the α parameters by
using the roots of irreducible polynomials is discussed in [685]. The ith sample in the
lattice is

(
i

k
, {iα1}, . . . , {iαn−1}

)
. (5.27)

Recent analysis shows that some lattice sets achieve asymptotic discrepancy that is very
close to that of the best-known nonlattice sample sets [448, 938]. Thus, restricting the
points to lie on a lattice seems to entail little or no loss in performance, but has the added
benefit of a regular neighborhood structure that is useful for path planning. Historically,
lattices have required the specification of k in advance; however, there has been increasing
interest in extensible lattices, which are infinite sequences [449, 938].

5.3 Collision detection

Once it has been decided where the samples will be placed, the next problem is to
determine whether the configuration is in collision. Thus, collision detection is a critical
component of sampling-based planning. Even though it is often treated as a black box,
it is important to study its inner workings to understand the information it provides and
its associated computational cost. In most motion planning applications, the majority of
computation time is spent on collision checking.

A variety of collision detection algorithms exist, ranging from theoretical algorithms
that have excellent computational complexity to heuristic, practical algorithms whose
performance is tailored to a particular application. The techniques from Section 4.3 can
be used to develop a collision detection algorithm by defining a logical predicate using
the geometric model of Cobs. For the case of a 2D world with a convex robot and obstacle,
this leads to an linear-time collision detection algorithm. In general, however, it can be
determined whether a configuration is in collision more efficiently by avoiding the full
construction of Cobs.
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5.3.1 Basic concepts

As in Section 3.1.1, collision detection may be viewed as a logical predicate. In the current
setting it appears as φ : C → {true, false}, in which the domain is C instead of W . If
q ∈ Cobs, then φ(q) = true; otherwise, φ(q) = false.

Distance between two sets

For the Boolean-valued function φ, there is no information about how far the robot is
from hitting the obstacles. Such information is very important in planning algorithms. A
distance function provides this information and is defined as d : C → [0,∞), in which
the real value in the range of f indicates the distance in the world, W , between the closest
pair of points over all pairs from A(q) and O. In general, for two closed, bounded subsets,
E and F , of R

n, the distance is defined as

ρ(E,F ) = min
e∈E

{
min
f∈F

{
‖e − f ‖

}}
, (5.28)

in which ‖ · ‖ is the Euclidean norm. Clearly, if E ∩ F 	= ∅, then ρ(E, F ) = 0. The
methods described in this section may be used to either compute distance or only determine
whether q ∈ Cobs. In the latter case, the computation is often much faster because less
information is required.

Two-phase collision detection

Suppose that the robot is a collection of m attached links, A1, A2, . . . , Am, and that O
has k connected components. For this complicated situation, collision detection can be
viewed as a two-phase process.

1. Broad Phase: In the broad phase, the task is to avoid performing expensive computations
for bodies that are far away from each other. Simple bounding boxes can be placed around
each of the bodies, and simple tests can be performed to avoid costly collision checking
unless the boxes overlap. Hashing schemes can be employed in some cases to greatly
reduce the number of pairs of boxes that have to be tested for overlap [706]. For a robot
that consists of multiple bodies, the pairs of bodies that should be considered for collision
must be specified in advance, as described in Section 4.3.1.

2. Narrow Phase: In the narrow phase, individual pairs of bodies are each checked carefully
for collision. Approaches to this phase are described in Sections 5.3.2 and 5.3.3.

5.3.2 Hierarchical methods

In this section, suppose that two complicated, nonconvex bodies, E and F , are to be
checked for collision. Each body could be part of either the robot or the obstacle region.
They are subsets of R

2 or R
3, defined using any kind of geometric primitives, such as

triangles in R
3. Hierarchical methods generally decompose each body into a tree. Each

vertex in the tree represents a bounding region that contains some subset of the body. The
bounding region of the root vertex contains the whole body.

There are generally two opposing criteria that guide the selection of the type of bounding
region:

1. The region should fit the intended body points as tightly as possible.

2. The intersection test for two regions should be as efficient as possible.

Several popular choices are shown in Figure 5.9 for an L-shaped body.
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(a) (b) (c) (d)

Figure 5.9: Four different kinds of bounding regions: (a) sphere, (b) axis-aligned bounding box (AABB),
(c) oriented bounding box (OBB), and (d) convex hull. Each usually provides a tighter approximation than
the previous one but is more expensive to test for overlapping pairs.

Figure 5.10: The large circle shows the bounding region for a vertex that covers an L-shaped body. After
performing a split along the dashed line, two smaller circles are used to cover the two halves of the body.
Each circle corresponds to a child vertex.

The tree is constructed for a body, E (or alternatively, F ) recursively as follows. For
each vertex, consider the set X of all points in E that are contained in the bounding region.
Two child vertices are constructed by defining two smaller bounding regions whose union
covers X. The split is made so that the portion covered by each child is of similar size. If
the geometric model consists of primitives such as triangles, then a split could be made to
separate the triangles into two sets of roughly the same number of triangles. A bounding
region is then computed for each of the children. Figure 5.10 shows an example of a split
for the case of an L-shaped body. Children are generated recursively by making splits
until very simple sets are obtained. For example, in the case of triangles in space, a split
is made unless the vertex represents a single triangle. In this case, it is easy to test for the
intersection of two triangles.

Consider the problem of determining whether bodies E and F are in collision. Suppose
that the trees Te and Tf have been constructed for E and F , respectively. If the bounding
regions of the root vertices of Te and Tf do not intersect, then it is known that Te and
Tf are not in collision without performing any additional computation. If the bounding
regions do intersect, then the bounding regions of the children of Te are compared to
the bounding region of Tf . If either of these intersect, then the bounding region of Tf is
replaced with the bounding regions of its children, and the process continues recursively.
As long as the bounding regions overlap, lower levels of the trees are traversed, until
eventually the leaves are reached. If triangle primitives are used for the geometric models,
then at the leaves the algorithm tests the individual triangles for collision, instead of
bounding regions. Note that as the trees are traversed, if a bounding region from the
vertex v1 of Te does not intersect the bounding region from a vertex, v2, of Tf , then no
children of v1 have to be compared to children of v1. Usually, this dramatically reduces
the number of comparisons, relative in a naive approach that tests all pairs of triangles for
intersection.
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Figure 5.11: The Voronoi regions alternate between being edge-based and vertex-based. The Voronoi
regions of vertices are labeled with a “V” and the Voronoi regions of edges are labeled with an “E.”

It is possible to extend the hierarchical collision detection scheme to also compute
distance. The closest pair of points found so far serves as an upper bound that prunes
aways some future pairs from consideration. If a pair of bounding regions has a distance
greater than the smallest distance computed so far, then their children do not have to be
considered [641]. In this case, an additional requirement usually must be imposed. Every
bounding region must be a proper subset of its parent bounding region [810]. If distance
information is not needed, then this requirement can be dropped.

5.3.3 Incremental methods

This section focuses on a particular approach called incremental distance computation,
which assumes that between successive calls to the collision detection algorithm, the
bodies move only a small amount. Under this assumption the algorithm achieves “al-
most constant time” performance for the case of convex polyhedral bodies [639, 705].
Nonconvex bodies can be decomposed into convex components.

These collision detection algorithms seem to offer wonderful performance, but this
comes at a price. The models must be coherent, which means that all of the primitives
must fit together nicely. For example, if a 2D model uses line segments, all of the line
segments must fit together perfectly to form polygons. There can be no isolated segments
or chains of segments. In three dimensions, polyhedral models are required to have all
faces come together perfectly to form the boundaries of 3D shapes. The model cannot be
an arbitrary collection of 3D triangles.

The method will be explained for the case of 2D convex polygons, which are interpreted
as convex subsets of R

2. Voronoi regions for a convex polygon will be defined in terms
of features. The feature set is the set of all vertices and edges of a convex polygon. Thus,
a polygon with n edges has 2n features. Any point outside of the polygon has a closest
feature in terms of Euclidean distance. For a given feature, F , the set of all points in R

2

from which F is the closest feature is called the Voronoi region of F and is denoted Vor(F ).
Figure 5.11 shows all ten Voronoi regions for a pentagon. Each feature is considered as a
point set in the discussion below.

For any two convex polygons that do not intersect, the closest point is determined by
a pair of points, one on each polygon (the points are unique, except in the case of parallel
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edges). Consider the feature for each point in the closest pair. There are only three possible
combinations:

• Vertex-Vertex Each point of the closest pair is a vertex of a polygon.

• Edge-Vertex One point of the closest pair lies on an edge, and the other lies on a vertex.

• Edge-Edge Each point of the closest pair lies on an edge. In this case, the edges must be
parallel.

Let P1 and P2 be two convex polygons, and let F1 and F2 represent any feature pair, one
from each polygon. Let (x1, y1) ∈ F1 and (x2, y2) ∈ F2 denote the closest pair of points,
among all pairs of points in F1 and F2, respectively. The following condition implies that
the distance between (x1, y1) and (x2, y2) is the distance between P1 and P2:

(x1, y1) ∈ Vor(F2) and (x2, y2) ∈ Vor(F1). (5.29)

If (5.29) is satisfied for a given feature pair, then the distance between P1 and P2 equals
the distance between F1 and F2. This implies that the distance between P1 and P2 can be
determined in constant time. The assumption that P1 moves only a small amount relative
to P2 is made to increase the likelihood that the closest feature pair remains the same.
This is why the phrase “almost constant time” is used to describe the performance of
the algorithm. Of course, it is possible that the closest feature pair will change. In this
case, neighboring features are tested using the condition above until the new closest pair
of features is found. In this worst case, this search could be costly, but this violates the
assumption that the bodies do not move far between successive collision detection calls.

The 2D ideas extend to 3D convex polyhedra [249, 639, 705]. The primary difference
is that three kinds of features are considered: faces, edges, and vertices. The cases become
more complicated, but the idea is the same. Once again, the condition regarding mutual
Voronoi regions holds, and the resulting incremental collision detection algorithm has
“almost constant time” performance.

5.3.4 Checking a path segment

Collision detection algorithms determine whether a configuration lies in Cfree, but motion
planning algorithms require that an entire path maps into Cfree. The interface between the
planner and collision detection usually involves validation of a path segment (i.e., a path,
but often a short one). This cannot be checked point-by-point because it would require an
uncountably infinite number of calls to the collision detection algorithm.

Suppose that a path, τ : [0, 1] → C, needs to be checked to determine whether
τ ([0, 1]) ⊂ Cfree. A common approach is to sample the interval [0, 1] and call the col-
lision checker only on the samples. What resolution of sampling is required? How can
one ever guarantee that the places where the path is not sampled are collision-free? There
are both practical and theoretical answers to these questions. In practice, a fixed �q > 0
is often chosen as the C-space step size. Points t1, t2 ∈ [0, 1] are then chosen close enough
together to ensure that ρ(τ (t1), τ (t2)) ≤ �q, in which ρ is the metric on C. The value
of �q is often determined experimentally. If �q is too small, then considerable time is
wasted on collision checking. If �q is too large, then there is a chance that the robot could
jump through a thin obstacle.

Setting �q empirically might not seem satisfying. Fortunately, there are sound algorith-
mic ways to verify that a path is collision-free. In some applications the methods are still
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Figure 5.12: The furthest point on A from the origin travels the fastest when A is rotated. At most it can
be displaced by 2πr, if xt and yt are � xed.

not used because they are trickier to implement and they often yield worse performance.
Therefore, both methods are presented here, and you can decide which is appropriate,
depending on the context and your personal tastes.

Ensuring that τ ([0, 1]) ⊂ Cfree requires the use of both distance information and bounds
on the distance that points on A can travel in R. Such bounds can be obtained by using the
robot displacement metric from Example 5.6. Before expressing the general case, first we
will explain the concept in terms of a rigid robot that translates and rotates in W = R

2.
Let xt , yt ∈ R

2 and θ ∈ [0, 2π]/ ∼. Suppose that a collision detection algorithm indicates
that A(q) is at least d units away from collision with obstacles in W . This information
can be used to determine a region in Cfree that contains q. Suppose that the next candidate
configuration to be checked along τ is q ′. If no point on A travels more than distance d

when moving from q to q ′ along τ , then q ′ and all configurations between q and q ′ must
be collision-free. This assumes that on the path from q to q ′, every visited configuration
must lie between qi and q ′i for the ith coordinate and any i from 1 to n. If the robot can
instead take any path between q and q ′, then no such guarantee can be made).

When A undergoes a translation, all points move the same distance. For rotation,
however, the distance traveled depends on how far the point on A is from the rotation
center, (0, 0). Let ar = (xr, yr ) denote the point on A that has the largest magnitude,
r = √x2

r + y2
r . Figure 5.12 shows an example. A transformed point a ∈ Amay be denoted

by a(xt , yt , θ). The following bound is obtained for any a ∈ A, if the robot is rotated from
orientation θ to θ ′:

‖a(xt , yt , θ ) − a(xt , yt , θ
′)‖ ≤ ‖ar (xt , yt , θ ) − ar (xt , yt , θ

′)‖ < r|θ − θ ′|, (5.30)

assuming that a path in C is followed that interpolates between θ and θ ′ (using the shortest
path in S

1 between θ and θ ′). Thus, if A(q) is at least d away from the obstacles, then the
orientation may be changed without causing collision as long as r|θ − θ ′| < d. Note that
this is a loose upper bound because ar travels along a circular arc and can be displaced by
no more than 2πr .

Similarly, xt and yt may individually vary up to d, yielding |xt − x ′t | < d and
|yt − y ′t | < d. If all three parameters vary simultaneously, then a region in Cfree can be
defined as

{(x ′t , y ′t , θ ′) ∈ C | |xt − x ′t | + |yt − y ′t | + r|θ − θ ′| < d}. (5.31)
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Such bounds can generally be used to set a step size, �q, for collision checking that guar-
antees the intermediate points lie in Cfree. The particular value used may vary depending
on d and the direction8 of the path.

For the case of SO(3), once again the displacement of the point on A that has the
largest magnitude can be bounded. It is best in this case to express the bounds in terms of
quaternion differences, ‖h− h′‖. Euler angles may also be used to obtain a straightforward
generalization of (5.31) that has six terms, three for translation and three for rotation.
For each of the three rotation parts, a point with the largest magnitude in the plane
perpendicular to the rotation axis must be chosen.

If there are multiple links, it becomes much more complicated to determine the step
size. Each point a ∈ Ai is transformed by some nonlinear function based on the kinematic
expressions from Sections 3.3 and 3.4. Let a : C →W denote this transformation. In some
cases, it might be possible to derive a Lipschitz condition of the form

‖a(q) − a(q ′)‖ < c‖q − q ′‖, (5.32)

in which c ∈ (0,∞) is a fixed constant, a is any point on Ai , and the expression holds
for any q, q ′ ∈ C. The goal is to make the Lipschitz constant, c, as small as possible; this
enables larger variations in q.

A better method is to individually bound the link displacement with respect to each
parameter,

‖a(q1, . . . , qi−1, qi, qi+1, . . . , qn) − a(q1, . . . , qi−1, q
′
i , qi+1, . . . , qn)‖ < ci |qi − q ′i |,

(5.33)

to obtain the Lipschitz constants c1, . . . , cn. The bound on robot displacement becomes

‖a(q) − a(q ′)‖ <

n∑

i=1

ci |qi − q ′i |. (5.34)

The benefit of using individual parameter bounds can be seen by considering a long
chain. Consider a 50-link chain of line segments in R

2, and each link has length 10. The
C-space is T

50, which can be parameterized as [0, 2π]50/ ∼. Suppose that the chain is in
a straight-line configuration (θi = 0 for all 1 ≤ i ≤ 50), which means that the last point
is at (500, 0) ∈W . Changes in θ1, the orientation of the first link, dramatically move A50.
However, changes in θ50 move A50 a smaller amount. Therefore, it is advantageous to
pick a different �qi for each 1 ≤ i ≤ 50. In this example, a smaller value should be used
for �θ1 in comparison to �θ50.

Unfortunately, there are more complications. Suppose the 50-link chain is in a config-
uration that folds all of the links on top of each other (θi = π for each 1 ≤ i ≤ n). In this
case, A50 does not move as fast when θ1 is perturbed, in comparison to the straight-line
configuration. A larger step size for θ1 could be used for this configuration, relative to other
parts of C. The implication is that, although Lipschitz constants can be made to hold over
all of C, it might be preferable to determine a better bound in a local region around q ∈ C.
A linear method could be obtained by analyzing the Jacobian of the transformations, such
as (3.53) and (3.57).

Another important concern when checking a path is the order in which the samples are
checked. For simplicity, suppose that �q is constant and that the path is a constant-speed

8 To formally talk about directions, it would be better to define a differentiable structure on C. This will be deferred
to Section 15.4, where it seems unavoidable.
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parameterization. Should the collision checker step along from 0 up to 1? Experimental
evidence indicates that it is best to use a recursive binary strategy [381]. This makes no
difference if the path is collision-free, but it often saves time if the path is in collision.
This is a kind of sampling problem over [0, 1], which is addressed nicely by the van der
Corput sequence, ν. The last column in Figure 5.2 indicates precisely where to check
along the path in each step. Initially, τ (1) is checked. Following this, points from the van
der Corput sequence are checked in order: τ (0), τ (1/2), τ (1/4), τ (3/4), τ (1/8), . . . . The
process terminates if a collision is found or when the dispersion falls below �q. If �q

is not constant, then it is possible to skip over some points of ν in regions where the
allowable variation in q is larger.

5.4 Incremental sampling and searching

5.4.1 The general framework

The algorithms of Sections 5.4 and 5.5 follow the single-query model, which means
(qI , qG) is given only once per robot and obstacle set. This means that there are no
advantages to precomputation, and the sampling-based motion planning problem can be
considered as a kind of search. The multiple-query model, which favors precomputation,
is covered in Section 5.6.

The sampling-based planning algorithms presented in the present section are strikingly
similar to the family of search algorithms summarized in Section 2.2.4. The main dif-
ference lies in step 3 below, in which applying an action, u, is replaced by generating a
path segment, τs . Another difference is that the search graph, G, is undirected, with edges
that represent paths, as opposed to a directed graph in which edges represent actions. It is
possible to make these look similar by defining an action space for motion planning that
consists of a collection of paths, but this is avoided here. In the case of motion planning
with differential constraints, this will actually be required; see Chapter 14.

Most single-query, sampling-based planning algorithms follow this template:

1. Initialization: Let G(V,E) represent an undirected search graph, for which V contains
at least one vertex and E contains no edges. Typically, V contains qI , qG, or both. In
general, other points in Cfree may be included.

2. Vertex Selection Method (VSM): Choose a vertex qcur ∈ V for expansion.

3. Local Planning Method (LPM): For some qnew ∈ Cfree that may or may not be repre-
sented by a vertex in V , attempt to construct a path τs : [0, 1] → Cfree such that τ (0) = qcur

and τ (1) = qnew. Using the methods of Section 5.3.4, τs must be checked to ensure that it
does not cause a collision. If this step fails to produce a collision-free path segment, then
go to step 2.

4. Insert an Edge in the Graph: Insert τs into E, as an edge from qcur to qnew. If qnew is
not already in V , then it is inserted.

5. Check for a Solution: Determine whether G encodes a solution path. As in the discrete
case, if there is a single search tree, then this is trivial; otherwise, it can become complicated
and expensive.

6. Return to Step 2: Iterate unless a solution has been found or some termination condition
is satisfied, in which case the algorithm reports failure.

In the present context, G is a topological graph, as defined in Example 4.6. Each vertex
is a configuration and each edge is a path that connects two configurations. In this chapter,
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qI qG

qI qG

(a) (b)

qG
qI

qGqI

(c) (d)

Figure 5.13: All of these depict high-dimensional obstacle regions in C-space. (a) The search must involve
some sort of multi-resolution aspect, otherwise, that algorithm may explore too many points within a cavity.
(b) Sometimes the problem is like a bug trap, in which case bidirectional search can help. (c) For a double
bug trap, multi-directional search may be needed. (d) This example is hard to solve even for multi-directional
search.

it will be simply referred to as a graph when there is no chance of confusion. Some authors
refer to such a graph as a roadmap; however, we reserve the term roadmap for a graph
that contains enough paths to make any motion planning query easily solvable. This case
is covered in Section 5.6 and throughout Chapter 6.

A large family of sampling-based algorithms can be described by varying the imple-
mentations of steps 2 and 3. Implementations of the other steps may also vary, but this
is less important and will be described where appropriate. For convenience, step 2 will
be called the vertex selection method (VSM) and step 3 will be called the local planning
method (LPM). The role of the VSM is similar to that of the priority queue, Q, in Section
2.2.1. The role of the LPM is to compute a collision-free path segment that can be added
to the graph. It is called local because the path segment is usually simple (e.g., the shortest
path) and travels a short distance. It is not global in the sense that the LPM does not try to
solve the entire planning problem; it is expected that the LPM may often fail to construct
path segments.

It will be formalized shortly, but imagine for the time being that any of the search
algorithms from Section 2.2 may be applied to motion planning by approximating C with
a high-resolution grid. The resulting problem looks like a multi-dimensional extension of
Example 2.1 (the “labyrinth” walls are formed by Cobs). For a high-resolution grid in a
high-dimensional space, most classical discrete searching algorithms have trouble getting
trapped in a local minimum. There could be an astronomical number of configurations
that fall within a concavity in Cobs that must be escaped to solve the problem, as shown in
Figure 5.13a. Imagine a problem in which the C-space obstacle is a giant “bowl” that can
trap the configuration. This figure is drawn in two dimensions, but imagine that the C has
many dimensions, such as six for SE(3) or perhaps dozens for a linkage. If the discrete
planning algorithms from Section 2.2 are applied to a high-resolution grid approximation
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of C, then they will all waste their time filling up the bowl before being able to escape to
qG. The number of grid points in this bowl would typically be on the order of 100n for an
n-dimensional C-space. Therefore, sampling-based motion planning algorithms combine
sampling and searching in a way that attempts to overcome this difficulty.

As in the case of discrete search algorithms, there are several classes of algorithms
based on the number of search trees.

Unidirectional (single-tree) methods: In this case, the planning appears very similar
to discrete forward search, which was given in Figure 2.4. The main difference between
algorithms in this category is how they implement the VSM and LPM. Figure 5.13b shows
a bug trap9 example for which forward-search algorithms would have great trouble; how-
ever, the problem might not be difficult for backward search, if the planner incorporates
some kind of greedy, best-first behavior. This example, again in high dimensions, can be
considered as a kind of “bug trap.” To leave the trap, a path must be found from qI into
the narrow opening. Imagine a fly buzzing around through the high-dimensional trap. The
escape opening might not look too difficult in two dimensions, but if it has a small range
with respect to each configuration parameter, it is nearly impossible to find the opening.
The tip of the “volcano” would be astronomically small compared to the rest of the bug
trap. Examples such as this provide some motivation for bidirectional algorithms. It might
be easier for a search tree that starts in qG to arrive in the bug trap.

Bidirectional (two-tree) methods: Since it is not known whether qI or qG might lie in
a bug trap (or another challenging region), a bidirectional approach is often preferable.
This follows from an intuition that two propagating wavefronts, one centered on qI and
the other on qG, will meet after covering less area in comparison to a single wavefront
centered at qI that must arrive at qG. A bidirectional search is achieved by defining the
VSM to alternate between trees when selecting vertices. The LPM sometimes generates
paths that explore new parts of Cfree, and at other times it tries to generate a path that
connects the two trees.

Multi-directional (more than two trees) methods: If the problem is so bad that a double
bug trap exists, as shown in Figure 5.13c, then it might make sense to grow trees from other
places in the hopes that there are better chances to enter the traps in the other direction.
This complicates the problem of connecting trees, however. Which pairs of trees should
be selected in each iteration for possible connection? How often should the same pair be
selected? Which vertex pairs should be selected? Many heuristic parameters may arise in
practice to answer these questions.

Of course, one can play the devil’s advocate and construct the example in Figure 5.13d,
for which virtually all sampling-based planning algorithms are doomed. Even harder
versions can be made in which a sequence of several narrow corridors must be located
and traversed. We must accept the fact that some problems are hopeless to solve using
sampling-based planning methods, unless there is some problem-specific structure that
can be additionally exploited.

5.4.2 Adapting discrete search algorithms

One of the most convenient and straightforward ways to make sampling-based planning
algorithms is to define a grid over C and conduct a discrete search using the algorithms of

9 This principle is actually used in real life to trap flying bugs. This analogy was suggested by James O’Brien in a
discussion with James Kuffner.
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Section 2.2. The resulting planning problem actually looks very similar to Example 2.1.
Each edge now corresponds to a path in Cfree. Some edges may not exist because of
collisions, but this will have to be revealed incrementally during the search because an
explicit representation of Cobs is too expensive to construct (recall Section 4.3).

Assume that an n-dimensional C-space is represented as a unit cube, C = [0, 1]n/ ∼,
in which ∼ indicates that identifications of the sides of the cube are made to reflect the
C-space topology. Representing C as a unit cube usually requires a reparameterization. For
example, an angle θ ∈ [0, 2π) would be replaced with θ/2π to make the range lie within
[0, 1]. If quaternions are used for SO(3), then the upper half of S

3 must be deformed into
[0, 1]3/ ∼.

Discretization

Assume that C is discretized by using the resolutions k1, k2, . . . , and kn, in which each ki

is a positive integer. This allows the resolution to be different for each C-space coordinate.
Either a standard grid or a Sukharev grid can be used. Let

�qi = [0 · · · 0 1/ki 0 · · · 0], (5.35)

in which the first i − 1 components and the last n− i components are 0. A grid point is
a configuration q ∈ C that can be expressed in the form10

n∑

i=1

ji�qi, (5.36)

in which each ji ∈ {0, 1, . . . , ki}. The integers j1, . . . , jn can be imagined as array indices
for the grid. Let the term boundary grid point refer to a grid point for which ji = 0 or
ji = ki for some i. Due to identifications, boundary grid points might have more than one
representation using (5.36).

Neighborhoods

For each grid point q we need to define the set of nearby grid points for which an edge may
be constructed. Special care must be given to defining the neighborhood of a boundary grid
point to ensure that identifications and the C-space boundary (if it exists) are respected.
If q is not a boundary grid point, then the 1-neighborhood is defined as

N1(q) = {q +�q1, . . . , q +�qn, q −�q1, . . . , q −�qn}. (5.37)

For an n-dimensional C-space there at most 2n 1-neighbors. In two dimensions, this yields
at most four 1-neighbors, which can be thought of as “up,” “down,” “left,” and “right.”
There are at most four because some directions may be blocked by the obstacle region.

A 2-neighborhood is defined as

N2(q) = {q ±�qi ±�qj | 1 ≤ i, j ≤ n, i 	= j} ∪N1(q). (5.38)

Similarly, a k-neighborhood can be defined for any positive integer k ≤ n. For an n-
neighborhood, there are at most 3n − 1 neighbors; there may be fewer due to boundaries
or collisions. The definitions can be easily extended to handle the boundary points.

10 Alternatively, the general lattice definition in (5.21) could be used.
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(a) (b)

(c) (d)

Figure 5.14: A topological graph can be constructed during the search and can successfully solve a
motion planning problem using very few samples.

Obtaining a discrete planning problem

Once the grid and neighborhoods have been defined, a discrete planning problem is
obtained. Figure 5.14 depicts the process for a problem in which there are nine Sukharev
grid points in [0, 1]2. Using 1-neighborhoods, the potential edges in the search graph,
G(V, E), appear in Figure 5.14a. Note that G is a topological graph, as defined in Example
4.6, because each vertex is a configuration and each edge is a path. If qI and qG do not
coincide with grid points, they need to be connected to some nearby grid points, as shown
in Figure 5.14b. What grid points should qI and qG be connected to? As a general rule,
if k-neighbors are used, then one should try connecting qI and qG to any grid points that
are at least as close as the furthest k-neighbor from a typical grid point.

Usually, all of the vertices and edges shown in Figure 5.14b do not appear in G because
some intersect with Cobs. Figure 5.14c shows a more typical situation, in which some of
the potential vertices and edges are removed because of collisions. This representation
could be computed in advance by checking all potential vertices and edges for collision.
This would lead to a roadmap, which is suited for multiple queries and is covered in
Section 5.6. In this section, it is assumed that G is revealed “on the fly” during the search.
This is the same situation that occurs for the discrete planning methods from Section
2.2. In the current setting, the potential edges of G are validated during the search. The
candidate edges to evaluate are given by the definition of the k-neighborhoods. During
the search, any edge or vertex that has been checked for collision explicitly appears in a
data structure so that it does not need to be checked again. At the end of the search, a path
is found, as depicted in Figure 5.14d.
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Grid resolution issues

The method explained so far will nicely find the solution to many problems when provided
with the correct resolution. If the number of points per axis is too high, then the search
may be too slow. This motivates selecting fewer points per axis, but then solutions might
be missed. This trade-off is fundamental to sampling-based motion planning. In a more
general setting, if other forms of sampling and neighborhoods are used, then enough
samples have to be generated to yield a sufficiently small dispersion.

There are two general ways to avoid having to select this resolution (or more generally,
dispersion):

1. Iteratively refine the resolution until a solution is found. In this case, sampling and
searching become interleaved. One important variable is how frequently to alternate
between the two processes. This will be presented shortly.

2. An alternative is to abandon the adaptation of discrete search algorithms and develop
algorithms directly for the continuous problem. This forms the basis of the methods in
Sections 5.4.3, 5.4.4, and 5.5.

The most straightforward approach is to iteratively improve the grid resolution. Suppose
that initially a standard grid with 2n points total and 2 points per axis is searched using one
of the discrete search algorithms, such as best-first or A∗. If the search fails, what should
be done? One possibility is to double the resolution, which yields a grid with 4n points.
Many of the edges can be reused from the first grid; however, the savings diminish rapidly
in higher dimensions. Once the resolution is doubled, the search can be applied again.
If it fails again, then the resolution can be doubled again to yield 8n points. In general,
there would be a full grid for 2ni points, for each i. The problem is that if n is large, then
the rate of growth is too large. For example, if n = 10, then there would initially be 1024
points; however, when this fails, the search is not performed again until there are over one
million points! If this also fails, then it might take a very long time to reach the next level
of resolution, which has 230 points.

A method similar to iterative deepening from Section 2.2.2 would be preferable. Simply
discard the efforts of the previous resolution and make grids that have in points per axis for
each iteration i. This yields grids of sizes 2n, 3n, 4n, and so on, which is much better. The
amount of effort involved in searching a larger grid is insignificant compared to the time
wasted on lower resolution grids. Therefore, it seems harmless to discard previous work.

A better solution is not to require that a complete grid exists before it can be searched.
For example, the resolution can be increased for one axis at a time before attempting to
search again. Even better yet may be to tightly interleave searching and sampling. For
example, imagine that the samples appear as an infinite, dense sequence α. The graph
can be searched after every 100 points are added, assuming that neighborhoods can be
defined or constructed even though the grid is only partially completed. If the search
is performed too frequently, then searching would dominate the running time. An easy
way make this efficient is to apply the union-find algorithm [245, 826] to iteratively keep
track of connected components in G instead of performing explicit searching. If qI and
qG become part of the same connected component, then a solution path has been found.
Every time a new point in the sequence α is added, the “search” is performed in nearly11

constant time by the union-find algorithm. This is the tightest interleaving of the sampling

11 It is not constant because the running time is proportional to the inverse Ackerman function, which grows very,
very slowly. For all practical purposes, the algorithm operates in constant time. See Section 6.5.2.
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and searching, and results in a nice sampling-based algorithm that requires no resolution
parameter. It is perhaps best to select a sequence α that contains some lattice structure to
facilitate the determination of neighborhoods in each iteration.

What if we simply declare the resolution to be outrageously high at the outset? Imagine
there are 100n points in the grid. This places all of the burden on the search algorithm. If the
search algorithm itself is good at avoiding local minima and has built-in multi-resolution
qualities, then it may perform well without the iterative refinement of the sampling. The
method of Section 5.4.3 is based on this idea by performing best-first search on a high-
resolution grid, combined with random walks to avoid local minima. The algorithms of
Section 5.5 go one step further and search in a multi-resolution way without requiring
resolutions and neighborhoods to be explicitly determined. This can be considered as the
limiting case as the number of points per axis approaches infinity.

Although this section has focused on grids, it is also possible to use other forms of
sampling from Section 5.2. This requires defining the neighborhoods in a suitable way that
generalizes the k-neighborhoods of this section. In every case, an infinite, dense sample
sequence must be defined to obtain resolution completeness by reducing the dispersion
to zero in the limit. Methods for obtaining neighborhoods for irregular sample sets have
been developed in the context of sampling-based roadmaps; see Section 5.6. The notion
of improving resolution becomes generalized to adding samples that improve dispersion
(or even discrepancy).

5.4.3 Randomized potential fields

Adapting the discrete algorithms from Section 2.2 works well if the problem can be
solved with a small number of points. The number of points per axis must be small or the
dimension must be low, to ensure that the number of points, kn, for k points per axis and
n dimensions is small enough so that every vertex in g can be reached in a reasonable
amount of time. If, for example, the problem requires 50 points per axis and the dimension
is 10, then it is impossible to search all of the 5010 samples. Planners that exploit best-first
heuristics might find the answer without searching most of them; however, for a simple
problem such as that shown in Figure 5.13a, the planner will take too long exploring the
vertices in the bowl.12

The randomized potential field [71, 73, 591] approach uses random walks to attempt
to escape local minima when best-first search becomes stuck. It was one of the first
sampling-based planners that developed specialized techniques beyond classical discrete
search, in an attempt to better solve challenging motion planning problems. In many cases,
remarkable results were obtained. In its time, the approach was able to solve problems up
to 31 degrees of freedom, which was well beyond what had been previously possible. The
main drawback, however, was that the method involved many heuristic parameters that
had to be adjusted for each problem. This frustration eventually led to the development
of better approaches, which are covered in Sections 5.4.4, 5.5, and 5.6. Nevertheless, it
is worthwhile to study the clever heuristics involved in this earlier method because they
illustrate many interesting issues, and the method was very influential in the development
of other sampling-based planning algorithms.13

12 Of course, that problem does not appear to need so many points per axis; fewer may be used instead, if the
algorithm can adapt the sampling resolution or dispersion.

13 The exciting results obtained by the method even helped inspire me many years ago to work on motion planning.
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Figure 5.15: The randomized potential � eld method can be modeled as a three-state machine.

The most complicated part of the algorithm is the definition of a potential function,
which can be considered as a pseudometric that tries to estimate the distance from any
configuration to the goal. In most formulations, there is an attractive term, which is a
metric on C that yields the distance to the goal, and a repulsive term, which penalizes
configurations that come too close to obstacles. The construction of potential functions
involves many heuristics and is covered in great detail in [591]. One of the most effective
methods involves constructing cost-to-go functions over W and lifting them to C [72]. In
this section, it will be sufficient to assume that some potential function, g(q), is defined,
which is the same notation (and notion) as a cost-to-go function in Section 2.2.2. In this
case, however, there is no requirement that g(q) is optimal or even an underestimate of
the true cost to go.

When the search becomes stuck and a random walk is needed, it is executed for
some number of iterations. Using the discretization procedures of Section 5.4.2, a high-
resolution grid (e.g., 50 points per axis) is initially defined. In each iteration, the current
configuration is modified as follows. Each coordinate, qi , is increased or decreased by �qi

(the grid step size) based on the outcome of a fair coin toss. Topological identifications
must be respected, of course. After each iteration, the new configuration is checked for
collision, or whether it exceeds the boundary of C (if it has a boundary). If so, then it is
discarded, and another attempt is made from the previous configuration. The failures can
repeat indefinitely until a new configuration in Cfree is obtained.

The resulting planner can be described in terms of a three-state machine, which is
shown in Figure 5.15. Each state is called a mode to avoid confusion with earlier state-
space concepts. The VSM and LPM are defined in terms of the mode. Initially, the planner
is in the best first mode and uses qI to start a gradient descent. While in the best first
mode, the VSM selects the newest vertex, v ∈ V . In the first iteration, this is qI . The LPM
creates a new vertex, vn, in a neighborhood of v, in a direction that minimizes g. The
direction sampling may be performed using randomly selected or deterministic samples.
Using random samples, the sphere sampling method from Section 5.2.2 can be applied.
After some number of tries (another parameter), if the LPM is unsuccessful at reducing g,
then the mode is changed to random walk because the best-first search is stuck in a local
minimum of g.

In the random walk mode, a random walk is executed from the newest vertex. The
random walk terminates if either g is lowered or a specified limit of iterations is reached.
The limit is actually sampled from a predetermined random variable (which contains
parameters that also must be selected). When the random walk mode terminates, the
mode is changed back to best first. A counter is incremented to keep track of the number
of times that the random walk was attempted. A parameter K determines the maximum
number of attempted random walks (a reasonable value is K = 20 [72]). If best first
fails after K random walks have been attempted, then the backtrack mode is entered.
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The backtrack mode selects a vertex at random from among the vertices in V that were
obtained during a random walk. Following this, the counter is reset, and the mode is
changed back to best first.

Due to the random walks, the resulting paths are often too complicated to be useful in
applications. Fortunately, it is straightforward to transform a computed path into a simpler
one that is still collision-free. A common approach is to iteratively pick pairs of points
at random along the domain of the path and attempt to replace the path segment with a
straight-line path (in general, the shortest path in C). For example, suppose t1, t2 ∈ [0, 1]
are chosen at random, and τ : [0, 1] → Cfree is the computed solution path. This path is
transformed into a new path,

τ ′(t) =





τ (t) if 0 ≤ t ≤ t1

aτ (t1) + (1 − a)τ (t2) if t1 ≤ t ≤ t2

τ (t) if t2 ≤ t ≤ 1,
(5.39)

in which a ∈ [0, 1] represents the fraction of the way from t1 to t2. Explicitly, a =
(t2 − t)/(t2 − t1). The new path must be checked for collision. If it passes, then it replaces
the old path; otherwise, it is discarded and a new pair t1, t2, is chosen.

The randomized potential field approach can escape high-dimensional local minima,
which allow interesting solutions to be found for many challenging high-dimensional
problems. Unfortunately, the heavy amount of parameter tuning caused most people to
abandon the method in recent times, in favor of newer methods.

5.4.4 Other methods

Several influential sampling-based methods are given here. Each of them appears to offer
advantages over the randomized potential field method. All of them use randomization,
which was perhaps inspired by the potential field method.

Ariadne’s clew algorithm

This approach grows a search tree that is biased to explore as much new territory as
possible in each iteration [691, 690]. There are two modes, search and explore, which
alternate over successive iterations. In the explore mode, the VSM selects a vertex, ve,
at random, and the LPM finds a new configuration that can be easily connected to ve

and is as far as possible from the other vertices in G. A global optimization function
that aggregates the distances to other vertices is optimized using a genetic algorithm. In
the search mode, an attempt is made to extend the vertex added in the explore mode
to the goal configuration. The key idea from this approach, which influenced both the
next approach and the methods in Section 5.5, is that some of the time must be spent
exploring the space, as opposed to focusing on finding the solution. The greedy behavior
of the randomized potential field led to some efficiency but was also its downfall for
some problems because it was all based on escaping local minima with respect to the
goal instead of investing time on global exploration. One disadvantage of Ariadne’s Clew
algorithm is that it is very difficult to solve the optimization problem for placing a new
vertex in the explore mode. Genetic algorithms were used in [690], which are generally
avoided for motion planning because of the required problem-specific parameter tuning.
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Expansive-space planner

This method [470, 847] generates samples in a way that attempts to explore new parts of
the space. In this sense, it is similar to the explore mode of the Ariadne’s Clew algorithm.
Furthermore, the planner is made more efficient by borrowing the bidirectional search
idea from discrete search algorithms, as covered in Section 2.2.3. The VSM selects a
vertex, ve, from G with a probability that is inversely proportional to the number of other
vertices of G that lie within a predetermined neighborhood of ve. Thus, “isolated” vertices
are more likely to be chosen. The LPM generates a new vertex vn at random within a
predetermined neighborhood of ve. It will decide to insert vn into G with a probability that
is inversely proportional to the number of other vertices ofG that lie within a predetermined
neighborhood of vn. For a fixed number of iterations, the VSM repeatedly chooses the
same vertex, until moving on to another vertex. The resulting planner is able to solve many
interesting problems by using a surprisingly simple criterion for the placement of points.
The main drawbacks are that the planner requires substantial parameter tuning, which is
problem-specific (or at least specific to a similar family of problems), and the performance
tends to degrade if the query requires systematically searching a long labyrinth. Choosing
the radius of the predetermined neighborhoods essentially amounts to determining the
appropriate resolution.

Random-walk planner

A surprisingly simple and efficient algorithm can be made entirely from random walks
[181]. To avoid parameter tuning, the algorithm adjusts its distribution of directions and
magnitude in each iteration, based on the success of the past k iterations (perhaps k is the
only parameter). In each iteration, the VSM just selects the vertex that was most recently
added to G. The LPM generates a direction and magnitude by generating samples from
a multivariate Gaussian distribution whose covariance parameters are adaptively tuned.
The main drawback of the method is similar to that of the previous method. Both have
difficulty traveling through long, winding corridors. It is possible to combine adaptive
random walks with other search algorithms, such as the potential field planner [180].

5.5 Rapidly exploring dense trees

This section introduces an incremental sampling and searching approach that yields good
performance in practice without any parameter tuning.14 The idea is to incrementally
construct a search tree that gradually improves the resolution but does not need to explicitly
set any resolution parameters. In the limit, the tree densely covers the space. Thus, it has
properties similar to space filling curves [845], but instead of one long path, there are
shorter paths that are organized into a tree. A dense sequence of samples is used as a guide
in the incremental construction of the tree. If this sequence is random, the resulting tree
is called a rapidly exploring random tree (RRT). In general, this family of trees, whether
the sequence is random or deterministic, will be referred to as rapidly exploring dense
trees (RDTs) to indicate that a dense covering of the space is obtained. This method was
originally developed for motion planning under differential constraints [611, 614]; that
case is covered in Section 14.4.3.

14 The original RRT [601] was introduced with a step size parameter, but this is eliminated in the current presentation.
For implementation purposes, one might still want to revert to this older way of formulating the algorithm because
the implementation is a little easier. This will be discussed shortly.
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SIMPLE RDT(q0)
1 G.init(q0);
2 for i = 1 to k do
3 G.add vertex(α(i));
4 qn ← nearest(S(G), α(i));
5 G.add edge(qn, α(i));

Figure 5.16: The basic algorithm for constructing RDTs (which includes RRTs as a special case) when
there are no obstacles. It requires the availability of a dense sequence, α, and iteratively connects from α(i)
to the nearest point among all those reached by G.

q0

qn

α(i)

q0

(a) (b)

Figure 5.17: (a) Suppose inductively that this tree has been constructed so far using the algorithm in
Figure 5.16. (b) A new edge is added that connects from the sample α(i) to the nearest point in S, which is
the vertex qn.

qn

α(i)q0

Figure 5.18: If the nearest point in S lies in an edge, then the edge is split into two, and a new vertex
is inserted into G.

5.5.1 The exploration algorithm

Before explaining how to use these trees to solve a planning query, imagine that the goal
is to get as close as possible to every configuration, starting from an initial configuration.
The method works for any dense sequence. Once again, let α denote an infinite, dense
sequence of samples in C. The ith sample is denoted by α(i). This may possibly include a
uniform, random sequence, which is only dense with probability one. Random sequences
that induce a nonuniform bias are also acceptable, as long as they are dense with probability
one.

An RDT is a topological graph, G(V, E). Let S ⊂ Cfree indicate the set of all points
reached by G. Since each e ∈ E is a path, this can be expressed as the swath, S, of the
graph, which is defined as

S =
⋃

e∈E

e([0, 1]). (5.40)

In (5.40), e([0, 1]) ⊆ Cfree is the image of the path e.
The exploration algorithm is first explained in Figure 5.16 without any obstacles or

boundary obstructions. It is assumed that C is a metric space. Initially, a vertex is made
at q0. For k iterations, a tree is iteratively grown by connecting α(i) to its nearest point in
the swath, S. The connection is usually made along the shortest possible path. In every
iteration, α(i) becomes a vertex. Therefore, the resulting tree is dense. Figures 5.17–5.18
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45 iterations 2345 iterations

Figure 5.19: In the early iterations, the RRT quickly reaches the unexplored parts. However, the RRT is
dense in the limit (with probability one), which means that it gets arbitrarily to any point in the space.

illustrate an iteration graphically. Suppose the tree has three edges and four vertices, as
shown in Figure 5.17a. If the nearest point, qn ∈ S, to α(i) is a vertex, as shown in Figure
5.17b, then an edge is made from qn to α(i). However, if the nearest point lies in the
interior of an edge, as shown in Figure 5.18, then the existing edge is split so that qn

appears as a new vertex, and an edge is made from qn to α(i). The edge splitting, if
required, is assumed to be handled in line 4 by the method that adds edges. Note that the
total number of edges may increase by one or two in each iteration.

The method as described here does not fit precisely under the general framework
from Section 5.4.1; however, with the modifications suggested in Section 5.5.2, it can be
adapted to fit. In the RDT formulation, the nearest function serves the purpose of the
VSM, but in the RDT, a point may be selected from anywhere in the swath of the graph.
The VSM can be generalized to a swath-point selection method, SSM. This generalization
will be used in Section 14.3.4. The LPM tries to connect α(i) to qn along the shortest path
possible in C.

Figure 5.19 shows an execution of the algorithm in Figure 5.16 for the case in which
C = [0, 1]2 and q0 = (1/2, 1/2). It exhibits a kind of fractal behavior.15 Several main
branches are first constructed as it rapidly reaches the far corners of the space. Gradually,
more and more area is filled in by smaller branches. From the pictures, it is clear that
in the limit, the tree densely fills the space. Thus, it can be seen that the tree gradually
improves the resolution (or dispersion) as the iterations continue. This behavior turns out
to be ideal for sampling-based motion planning.

Recall that in sampling-based motion planning, the obstacle region Cobs is not explicitly
represented. Therefore, it must be taken into account in the construction of the tree.
Figure 5.20 indicates how to modify the algorithm in Figure 5.16 so that collision checking
is taken into account. The modified algorithm appears in Figure 5.21. The procedure
stopping-configuration yields the nearest configuration possible to the boundary of
Cfree, along the direction toward α(i). The nearest point qn ∈ S is defined to be same
(obstacles are ignored); however, the new edge might not reach to α(i). In this case, an

15 If α is uniform, random, then a stochastic fractal [589] is obtained. Deterministic fractals can be constructed using
sequences that have appropriate symmetries.
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qn

q0

Cobs

qs

α(i)

Figure 5.20: If there is an obstacle, the edge travels up to the obstacle boundary, as far as allowed by the
collision detection algorithm.

RDT(q0)
1 G.init(q0);
2 for i = 1 to k do
3 qn ← nearest(S, α(i));
4 qs ← stopping-configuration(qn,α(i));
5 if qs 	= qn then
6 G.add vertex(qs);
7 G.add edge(qn, qs);

Figure 5.21: The RDT with obstacles.

edge is made from qn to qs , the last point possible before hitting the obstacle. How close
can the edge come to the obstacle boundary? This depends on the method used to check
for collision, as explained in Section 5.3.4. It is sometimes possible that qn is already as
close as possible to the boundary of Cfree in the direction of α(i). In this case, no new edge
or vertex is added that for that iteration.

5.5.2 Efficiently finding nearest points

There are several interesting alternatives for implementing the nearest function in line 3
of the algorithm in Figure 5.16. There are generally two families of methods: exact or
approximate. First consider the exact case.

Exact solutions

Suppose that all edges in G are line segments in R
m for some dimension m ≥ n. An edge

that is generated early in the construction process will be split many times in later iterations.
For the purposes of finding the nearest point in S, however, it is best to handle this as
a single segment. For example, see the three large branches that extend from the root in
Figure 5.19. As the number of points increases, the benefit of agglomerating the segments
increases. Let each of these agglomerated segments be referred to as a supersegment. To
implement nearest, a primitive is needed that computes the distance between a point
and a line segment. This can be performed in constant time with simple vector calculus.
Using this primitive, nearest is implemented by iterating over all supersegments and
taking the point with minimum distance among all of them. It may be possible to improve
performance by building hierarchical data structures that can eliminate large sets of
supersegments, but this remains to be seen experimentally.

In some cases, the edges of G may not be line segments. For example, the shortest paths
between two points in SO(3) are actually circular arcs along S

3. One possible solution is
to maintain a separate parameterization of C for the purposes of computing the nearest
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qn

q0 α(i)

Figure 5.22: For implementation ease, intermediate vertices can be inserted to avoid checking for close
points along line segments. The trade-off is that the number of vertices is increased dramatically.

function. For example, SO(3) can be represented as [0, 1]3/ ∼, by making the appropriate
identifications to obtain RP

3. Straight-line segments can then be used. The problem is
that the resulting metric is not consistent with the Haar measure, which means that an
accidental bias would result. Another option is to tightly enclose S

3 in a 4D cube. Every
point on S

3 can be mapped outward onto a cube face. Due to antipodal identification, only
four of the eight cube faces need to be used to obtain a bijection between the set of all
rotation and the cube surface. Linear interpolation can be used along the cube faces, as
long as both points remain on the same face. If the points are on different faces, then two
line segments can be used by bending the shortest path around the corner between the
two faces. This scheme will result in less distortion than mapping SO(3) to [0, 1]3/ ∼;
however, some distortion will still exist.

Another approach is to avoid distortion altogether and implement primitives that can
compute the distance between a point and a curve. In the case of SO(3), a primitive is
needed that can find the distance between a circular arc in R

m and a point in R
m. This might

not be too difficult, but if the curves are more complicated, then an exact implementation
of the nearest function may be too expensive computationally.

Approximate solutions

Approximate solutions are much easier to construct, however, a resolution parameter is
introduced. Each path segment can be approximated by inserting intermediate vertices
along long segments, as shown in Figure 5.22. The intermediate vertices should be added
each time a new sample, α(i), is inserted into G. A parameter �q can be defined, and
intermediate samples are inserted to ensure that no two consecutive vertices in G are ever
further than �q from each other. Using intermediate vertices, the interiors of the edges
in G are ignored when finding the nearest point in S. The approximate computation of
nearest is performed by finding the closest vertex to α(i) in G. This approach is by far the
simplest to implement. It also fits precisely under the incremental sampling and searching
framework from Section 5.4.1.

When using intermediate vertices, the trade-offs are clear. The computation time for
each evaluation of nearest is linear in the number of vertices. Increasing the number of
vertices improves the quality of the approximation, but it also dramatically increases the
running time. One way to recover some of this cost is to insert the vertices into an efficient
data structure for nearest-neighbor searching. One of the most practical and widely used
data structures is the Kd-tree [266, 367, 761]. A depiction is shown in Figure 5.23 for 14
points in R

2. The Kd-tree can be considered as a multi-dimensional generalization of a
binary search tree. The Kd-tree is constructed for points, P , in R

2 as follows. Initially,
sort the points with respect to the x coordinate. Take the median point, p ∈ P , and divide
P into two sets, depending on which side of a vertical line through p the other points fall.
For each of the two sides, sort the points by the y coordinate and find their medians. Points
are divided at this level based on whether they are above or below horizontal lines. At the
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Figure 5.23: A Kd-tree can be used for ef�cient nearest-neighbor computations.

next level of recursion, vertical lines are used again, followed by horizontal again, and
so on. The same idea can be applied in R

n by cycling through the n coordinates, instead
of alternating between x and y, to form the divisions. In [53], the Kd-tree is extended to
topological spaces that arise in motion planning and is shown to yield good performance
for RRTs and sampling-based roadmaps. The Kd-tree can be constructed in O(n lg k)
time. Topological identifications must be carefully considered when traversing the tree.
To find the nearest point in the tree to some given point, the query algorithm descends to a
leaf vertex whose associated region contains the query point, finds all distances from the
data points in this leaf to the query point, and picks the closest one. Next, it recursively
visits those surrounding leaf vertices that are further from the query point than the closest
point found so far [48, 53]. The nearest point can be found in time logarithmic in k.

Unfortunately, these bounds hide a constant that increases exponentially with the
dimension, n. In practice, the Kd-tree is useful in motion planning for problems of up
to about 20 dimensions. After this, the performance usually degrades too much. As an
empirical rule, if there are more than 2n points, then the Kd-tree should be more efficient
than naive nearest neighbors. In general, the trade-offs must be carefully considered in a
particular application to determine whether exact solutions, approximate solutions with
naive nearest-neighbor computations, or approximate solutions with Kd-trees will be more
efficient. There is also the issue of implementation complexity, which probably has caused
most people to prefer the approximate solution with naive nearest-neighbor computations.

5.5.3 Using the trees for planning

So far, the discussion has focused on exploring Cfree, but this does not solve a planning
query by itself. RRTs and RDTs can be used in many ways in planning algorithms. For
example, they could be used to escape local minima in the randomized potential field
planner of Section 5.4.3.

Single-tree search

A reasonably efficient planner can be made by directly using the algorithm in Figure 5.21
to grow a tree from qI and periodically check whether it is possible to connect the RDT to
qG. An easy way to achieve this is to start with a dense sequence α and periodically insert
qG at regularly spaced intervals. For example, every 100th sample could be qG. Each
time this sample is reached, an attempt is made to reach qG from the closest vertex in
the RDT. If the sample sequence is random, which generates an RRT, then the following
modification works well. In each iteration, toss a biased coin that has probability 99/100
of being heads and 1/100 of being tails. If the result is heads, then set α(i), to be the
next element of the pseudorandom sequence; otherwise, set α(i) = qG. This forces the
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RDT BALANCED BIDIRECTIONAL(qI , qG)
1 Ta .init(qI ); Tb.init(qG);
2 for i = 1 to K do
3 qn ← nearest(Sa, α(i));
4 qs ← stopping-configuration(qn,α(i));
5 if qs 	= qn then
6 Ta .add vertex(qs);
7 Ta .add edge(qn, qs);
8 q ′n ← nearest(Sb, qs);
9 q ′s ← stopping-configuration(q ′n,qs);
10 if q ′s 	= q ′n then
11 Tb.add vertex(q ′s);
12 Tb.add edge(q ′n, q

′
s);

13 if q ′s = qs then return SOLUTION;
14 if |Tb| > |Ta| then SWAP(Ta, Tb);
15 return FAILURE

Figure 5.24: A bidirectional RDT-based planner.

RRT to occasionally attempt to make a connection to the goal, qG. Of course, 1/100 is
arbitrary, but it is in a range that works well experimentally. If the bias is too strong, then
the RRT becomes too greedy like the randomized potential field. If the bias is not strong
enough, then there is no incentive to connect the tree to qG. An alternative is to consider
other dense, but not necessarily nonuniform sequences in C. For example, in the case of
random sampling, the probability density function could contain a gentle bias towards the
goal. Choosing such a bias is a difficult heuristic problem; therefore, such a technique
should be used with caution (or avoided altogether).

Balanced, bidirectional search

Much better performance can usually be obtained by growing two RDTs, one from qI and
the other from qG. This is particularly valuable for escaping one of the bug traps, as men-
tioned in Section 5.4.1. For a grid search, it is straightforward to implement a bidirectional
search that ensures that the two trees meet. For the RDT, special considerations must be
made to ensure that the two trees will connect while retaining their “rapidly exploring”
property. One additional idea is to make sure that the bidirectional search is balanced
[563], which ensures that both trees are the same size.

Figure 5.24 gives an outline of the algorithm. The graph G is decomposed into two
trees, denoted by Ta and Tb. Initially, these trees start from qI and qG, respectively. After
some iterations, Ta and Tb are swapped; therefore, keep in mind that Ta is not always the
tree that contains qI . In each iteration, Ta is grown exactly the same way as in one iteration
of the algorithm in Figure 5.16. If a new vertex, qs , is added to Ta , then an attempt is made
in lines 10–12 to extend Tb. Rather than using α(i) to extend Tb, the new vertex qs of Ta

is used. This causes Tb to try to grow toward Ta . If the two connect, which is tested in line
13, then a solution has been found.

Line 14 represents an important step that balances the search. This is particularly
important for a problem such as the bug trap shown in Figure 5.13b or the puzzle shown in
Figure 1.2. If one of the trees is having trouble exploring, then it makes sense to focus more
energy on it. Therefore, new exploration is always performed for the smaller tree. How
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is “smaller” defined? A simple criterion is to use the total number of vertices. Another
reasonable criterion is to use the total length of all segments in the tree.

An unbalanced bidirectional search can instead be made by forcing the trees to be
swapped in every iteration. Once the trees are swapped, then the roles are reversed. For
example, after the first swap, Tb is extended in the same way as an integration in Figure
5.16, and if a new vertex qs is added then an attempt is made to connect Ta to qs .

One important concern exists when α is deterministic. It might be possible that even
though α is dense, when the samples are divided among the trees, each may not receive a
dense set. If each uses its own deterministic sequence, then this problem can be avoided.
In the case of making a bidirectional RRT planner, the same (pseudo)random sequence
can be used for each tree without encountering such troubles.

More than two trees

If a dual-tree approach offers advantages over a single tree, then it is natural to ask whether
growing three or more RDTs might be even better. This is particularly helpful for problems
like the double bug trap in Figure 5.13c. New trees can be grown from parts of C that
are difficult to reach. Controlling the number of trees and determining when to attempt
connections between them is difficult. Some interesting recent work has been done in this
direction [84, 919, 920].

These additional trees could be started at arbitrary (possibly random) configurations. As
more trees are considered, a complicated decision problem arises. The computation time
must be divided between attempting to explore the space and attempting to connect trees
to each other. It is also not clear which connections should be attempted. Many research
issues remain in the development of this and other RRT-based planners. A limiting case
would be to start a new tree from every sample in α(i) and to try to connect nearby trees
whenever possible. This approach results in a graph that covers the space in a nice way
that is independent of the query. This leads to the main topic of the next section.

5.6 Roadmap methods for multiple queries

Previously, it was assumed that a single initial-goal pair was given to the planning al-
gorithm. Suppose now that numerous initial-goal queries will be given to the algorithm,
while keeping the robot model and obstacles fixed. This leads to a multiple-query version
of the motion planning problem. In this case, it makes sense to invest substantial time to
preprocess the models so that future queries can be answered efficiently. The goal is to
construct a topological graph called a roadmap, which efficiently solves multiple initial-
goal queries. Intuitively, the paths on the roadmap should be easy to reach from each of
qI and qG, and the graph can be quickly searched for a solution. The general framework
presented here was mainly introduced in [519] under the name probabilistic roadmaps
(PRMs). The probabilistic aspect, however, is not important to the method. Therefore,
we call this family of methods sampling-based roadmaps. This distinguishes them from
combinatorial roadmaps, which will appear in Chapter 6.

5.6.1 The basic method

Once again, let G(V, E) represent a topological graph in which V is a set of vertices and
E is the set of paths that map into Cfree. Under the multiple-query philosophy, motion
planning is divided into two phases of computation:
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BUILD ROADMAP
1 G.init(); i ← 0;
2 while i < N

3 if α(i) ∈ Cfree then
4 G.add vertex(α(i)); i ← i + 1;
5 for each q ∈ neighborhood(α(i),G)
6 if ((not G.same component(α(i), q)) and connect(α(i), q)) then
7 G.add edge(α(i), q);

Figure 5.25: The basic construction algorithm for sampling-based roadmaps. Note that i is not incremented
if α(i) is in collision. This forces i to correctly count the number of vertices in the roadmap.

α(i)

Cobs

Cobs

Figure 5.26: The sampling-based roadmap is constructed incrementally by attempting to connect each
new sample, α(i), to nearby vertices in the roadmap.

Preprocessing Phase: During the preprocessing phase, substantial effort is invested to
build G in a way that is useful for quickly answering future queries. For this reason, it is
called a roadmap, which in some sense should be accessible from every part of Cfree.

Query Phase: During the query phase, a pair, qI and qG, is given. Each configuration
must be connected easily to G using a local planner. Following this, a discrete search is
performed using any of the algorithms in Section 2.2 to obtain a sequence of edges that
forms a path from qI to qG.

Generic preprocessing phase

Figure 5.25 presents an outline of the basic preprocessing phase, and Figure 5.26 illustrates
the algorithm. As seen throughout this chapter, the algorithm utilizes a uniform, dense
sequence α. In each iteration, the algorithm must check whether q ∈ Cfree. If q ∈ Cobs,
then it must continue to iterate until a collision-free sample is obtained. Once α(i) ∈ Cfree,
then in line 4 it is inserted as a vertex of G. The next step is to try to connect α(i) to some
nearby vertices, q, of G. Each connection is attempted by the connect function, which is
a typical LPM (local planning method) from Section 5.4.1. In most implementations, this
simply tests the shortest path between α(i) and q. Experimentally, it seems most efficient
to use the multi-resolution, van der Corput–based method described at the end of Section
5.3.4 [381]. Instead of the shortest path, it is possible to use more sophisticated connection
methods, such as the bidirectional algorithm in Figure 5.24. If the path is collision-free,
then connect returns true.

The same component condition in line 6 checks to make sure α(i) and q are in different
components of G before wasting time on collision checking. This ensures that every time
a connection is made, the number of connected components of G is decreased. This can be
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implemented very efficiently (near constant time) using the previously mentioned union-
find algorithm [245, 826]. In some implementations this step may be ignored, especially if
it is important to generate multiple, alternative solutions. For example, it may be desirable
to generate solution paths from different homotopy classes. In this case the condition (not
G.same component(α(i), q)) is replaced with G.vertex degree(q) < K , for some fixed K

(e.g., K = 15).

Selecting neighboring samples

Several possible implementations of line 5 can be made. In all of these, it seems best to
sort the vertices that will be considered for connection in order of increasing distance
from α(i). This makes sense because shorter paths are usually less costly to check for
collision, and they also have a higher likelihood of being collision-free. If a connection is
made, this avoids costly collision checking of longer paths to configurations that would
eventually belong to the same connected component.

Several useful implementations of neighborhood are

1. Nearest K: The K closest points to α(i) are considered. This requires setting the parameter
K (a typical value is 15). If you are unsure which implementation to use, try this one.

2. Component K: Try to obtain up to K nearest samples from each connected component
of G. A reasonable value is K = 1; otherwise, too many connections would be tried.

3. Radius: Take all points within a ball of radius r centered at α(i). An upper limit, K , may
be set to prevent too many connections from being attempted. Typically, K = 20. A radius
can be determined adaptively by shrinking the ball as the number of points increases. This
reduction can be based on dispersion or discrepancy, if either of these is available for
α. Note that if the samples are highly regular (e.g., a grid), then choosing the nearest K

and taking points within a ball become essentially equivalent. If the point set is highly
irregular, as in the case of random samples, then taking the nearest K seems preferable.

4. Visibility: In Section 5.6.2, a variant will be described for which it is worthwhile to try
connecting α to all vertices in G.

Note that all of these require C to be a metric space. One variation that has not yet been
given much attention is to ensure that the directions of the neighborhood points relative
to α(i) are distributed uniformly. For example, if the 20 closest points are all clumped
together in the same direction, then it may be preferable to try connecting to a further
point because it is in the opposite direction.

Query phase

In the query phase, it is assumed that G is sufficiently complete to answer many queries,
each of which gives an initial configuration, qI , and a goal configuration, qG. First, the
query phase pretends as if qI and qG were chosen from α for connection to G. This
requires running two more iterations of the algorithm in Figure 5.25. If qI and qG are
successfully connected to other vertices in G, then a search is performed for a path that
connects the vertex qI to the vertex qG. The path in the graph corresponds directly to a
path in Cfree, which is a solution to the query. Unfortunately, if this method fails, it cannot
be determined conclusively whether a solution exists. If the dispersion is known for a
sample sequence, α, then it is at least possible to conclude that no solution exists for the
resolution of the planner. In other words, if a solution does exist, it would require the path
to travel through a corridor no wider than the radius of the largest empty ball [603].
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qGqI

Figure 5.27: An example such as this is dif�cult for sampling-based roadmaps (in higher dimensional C-
spaces) because some samples must fall along many points in the curved tube. Other methods, however,
may be able to easily solve it.

V (q)

q

(a) Visibility definition (b) Visibility roadmap

Figure 5.28: (a) V(q) is the set of points reachable by the LPM from q. (b) A visibility roadmap has two kinds
of vertices: guards, which are shown in black, and connectors, shown in white. Guards are not allowed to
see other guards. Connectors must see at least two guards.

Some analysis

There have been many works that analyze the performance of sampling-based roadmaps.
The basic idea from one of them [70] is briefly presented here. Consider problems such
as the one in Figure 5.27, in which the connect method will mostly likely fail in the thin
tube, even though a connection exists. The higher dimensional versions of these problems
are even more difficult. Many planning problems involve moving a robot through an area
with tight clearance. This generally causes narrow channels to form in Cfree, which leads
to a challenging planning problem for the sampling-based roadmap algorithm. Finding
the escape of a bug trap is also challenging, but for the roadmap methods, even traveling
through a single corridor is hard (unless more sophisticated LPMs are used [482]).

Let V (q) denote the set of all configurations that can be connected to q using the
connect method. Intuitively, this is considered as the set of all configurations that can be
“seen” using line-of-sight visibility, as shown in Figure 5.28a

The ε-goodness of Cfree is defined as

ε(Cfree) = min
q∈Cfree

{
µ(V (q))

µ(Cfree)

}
, (5.41)

in which µ represents the measure. Intuitively, ε(Cfree) represents the small fraction of
Cfree that is visible from any point. In terms of ε and the number of vertices in G, bounds
can be established that yield the probability that a solution will be found [70]. The
main difficulties are that the ε-goodness concept is very conservative (it uses worst-case
analysis over all configurations), and ε-goodness is defined in terms of the structure of
Cfree, which cannot be computed efficiently. This result and other related results help to
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gain a better understanding of sampling-based planning, but such bounds are difficult to
apply to particular problems to determine whether an algorithm will perform well.

5.6.2 Visibility roadmap

One of the most useful variations of sampling-based roadmaps is the visibility roadmap
[886]. The approach works very hard to ensure that the roadmap representation is small yet
covers Cfree well. The running time is often greater than the basic algorithm in Figure 5.25,
but the extra expense is usually worthwhile if the multiple-query philosophy is followed
to its fullest extent.

The idea is to define two different kinds of vertices in G:

Guards: To become a guard, a vertex, q must not be able to see other guards. Thus, the
visibility region, V (q), must be empty of other guards.

Connectors: To become a connector, a vertex, q, must see at least two guards. Thus,
there exist guards q1 and q2, such that q ∈ V (q1) ∩ V (q2).

The roadmap construction phase proceeds similarly to the algorithm in Figure 5.25. The
neighborhood function returns all vertices in G. Therefore, for each new sample α(i), an
attempt is made to connect it to every other vertex in G.

The main novelty of the visibility roadmap is using a strong criterion to determine
whether to keep α(i) and its associated edges in G. There are three possible cases for each
α(i):

1. The new sample, α(i), is not able to connect to any guards. In this case, α(i) earns the
privilege of becoming a guard itself and is inserted into G.

2. The new sample can connect to guards from at least two different connected components
of G. In this case, it becomes a connector that is inserted into G along with its associated
edges, which connect it to these guards from different components.

3. Neither of the previous two conditions were satisfied. This means that the sample could
only connect to guards in the same connected component. In this case, α(i) is discarded.

The final condition causes a dramatic reduction in the number of roadmap vertices.
One problem with this method is that it does not allow guards to be deleted in favor

of better guards that might appear later. The placement of guards depends strongly on
the order in which samples appear in α. The method may perform poorly if guards
are not positioned well early in the sequence. It would be better to have an adaptive
scheme in which guards could be reassigned in later iterations as better positions become
available. Accomplishing this efficiently remains an open problem. Note the algorithm
is still probabilistically complete using random sampling or resolution complete if α is
dense, even though many samples are rejected.

5.6.3 Heuristics for improving roadmaps

The quest to design a good roadmap through sampling has spawned many heuristic
approaches to sampling and making connections in roadmaps. Most of these exploit
properties that are specific to the shape of the C-space and/or the particular geometry
and kinematics of the robot and obstacles. The emphasis is usually on finding ways to
dramatically reduce the number or required samples. Several of these methods are briefly
described here.
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1
α(i)

Cobs

4

2
3

Cobs Cobs

(a) (b)

Figure 5.29: (a) To obtain samples along the boundary, binary search is used along random directions
from a sample in Cobs. (b) The bridge test �nds narrow corridors by examining a triple of nearby samples
along a line.

Vertex enhancement [519]

This heuristic strategy focuses effort on vertices that were difficult to connect to other
vertices in the roadmap construction algorithm in Figure 5.25. A probability distribution,
P (v), is defined over the vertices v ∈ V . A number of iterations are then performed in
which a vertex is sampled from V according to P (v), and then some random motions
are performed from v to try to reach new configurations. These new configurations are
added as vertices, and attempts are made to connect them to other vertices, as selected
by the neighborhood function in an ordinary iteration of the algorithm in Figure 5.25.
A recommended heuristic [519] for defining P (v) is to define a statistic for each v as
nf /(nt + 1), in which nt is the total number of connections attempted for v, and nf is the
number of times these attempts failed. The probability P (v) is assigned as nf /(nt + 1)m,
in which m is the sum of the statistics over all v ∈ V (this normalizes the statistics to
obtain a valid probability distribution).

Sampling on the Cfree boundary [22, 26]

This scheme is based on the intuition that it is sometimes better to sample along the
boundary, ∂Cfree, rather than waste samples on large areas of Cfree that might be free of
obstacles. Figure 5.29a shows one way in which this can be implemented. For each sample
of α(i) that falls into Cobs, a number of random directions are chosen in C; these directions
can be sampled using the S

n sampling method from Section 5.2.2. For each direction,
a binary search is performed to get a sample in Cfree that is as close as possible to Cobs.
The order of point evaluation in the binary search is shown in Figure 5.29a. Let τ : [0, 1]
denote the path for which τ (0) ∈ Cobs and τ (1) ∈ Cfree. In the first step, test the midpoint,
τ (1/2). If τ (1/2) ∈ Cfree, this means that ∂Cfree lies between τ (0) and τ (1/2); otherwise, it
lies between τ (1/2) and τ (1). The next iteration selects the midpoint of the path segment
that contains ∂Cfree. This will be either τ (1/4) or τ (3/4). The process continues recursively
until the desired resolution is obtained.

Gaussian sampling [134]

The Gaussian sampling strategy follows some of the same motivation for sampling on
the boundary. In this case, the goal is to obtain points near ∂Cfree by using a Gaussian
distribution that biases the samples to be closer to ∂Cfree, but the bias is gentler, as
prescribed by the variance parameter of the Gaussian. The samples are generated as
follows. Generate one sample, q1 ∈ C, uniformly at random. Following this, generate
another sample, q2 ∈ C, according to a Gaussian with mean q1; the distribution must be
adapted for any topological identifications and/or boundaries of C. If one of q1 or q2 lies



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

202 MOTION PLANNING

Figure 5.30: The medial axis is traced out by the centers of the largest inscribed balls. The �v e line
segments inside of the rectangle correspond to the medial axis.

in Cfree and the other lies in Cobs, then the one that lies in Cfree is kept as a vertex in the
roadmap. For some examples, this dramatically prunes the number of required vertices.

Bridge-test sampling [468]

The Gaussian sampling strategy decides to keep a point based in part on testing a pair of
samples. This idea can be carried one step further to obtain a bridge test, which uses three
samples along a line segment. If the samples are arranged as shown in Figure 5.29b, then
the middle sample becomes a roadmap vertex. This is based on the intuition that narrow
corridors are thin in at least one direction. The bridge test indicates that a point lies in a
thin corridor, which is often an important place to locate a vertex.

Medial-axis sampling [458, 638, 971]

Rather than trying to sample close to the boundary, another strategy is to force the samples
to be as far from the boundary as possible. Let (X, ρ) be a metric space. Let a maximal
ball be a ball B(x, r) ⊆ X such that no other ball can be a proper subset. The centers of
all maximal balls trace out a one-dimensional set of points referred to as the medial axis.
A simple example of a medial axis is shown for a rectangular subset of R

2 in Figure 5.30.
The medial axis in Cfree is based on the largest balls that can be inscribed in cl(Cfree).
Sampling on the medial axis is generally difficult, especially because the representation
of Cfree is implicit. Distance information from collision checking can be used to start with
a sample, α(i), and iteratively perturb it to increase its distance from ∂Cfree [638, 971].
Sampling on the medial axis of W \O has also been proposed [458]. In this case, the
medial axis in W \O is easier to compute, and it can be used to heuristically guide the
placement of good roadmap vertices in Cfree.

Further reading

Unlike the last two chapters, the material of Chapter 5 is a synthesis of very recent research results.
Some aspects of sampling-based motion planning are still evolving. Early approaches include [71, 146,
195, 282, 284, 331, 332, 661, 763]. The Gilbert-Johnson-Keerthi algorithm [390] is an early collision
detection approach that helped inspire sampling-based motion planning; see [475] and [591] for many
early references. In much of the early work, randomization appeared to be the main selling point;
however, more recently it has been understood that deterministic sampling can work at least as well
while obtaining resolution completeness. For a more recent survey of sampling-based motion planning,
see [643].

Section 5.1 is based on material from basic mathematics books. For a summary of basic theorems
and numerous examples of metric spaces, see [699]. More material appears in basic point-set topology
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books (e.g., [454, 499]) and analysis books (e.g., [348]). Metric issues in the context of sampling-based
motion planning are discussed in [21, 612]. Measure theory is most often introduced in the context of
real analysis [348, 428, 549, 839, 840]. More material on Haar measure appears in [428].

Section 5.2 is mainly inspired by literature on Monte Carlo and quasi–Monte Carlo methods for
numerical integration and optimization. An excellent source of material is [741]. Other important refer-
ences for further reading include [193, 543, 685, 937, 938]. Sampling issues in the context of motion
planning are considered in [382, 562, 603, 642, 987]. Comprehensive introductions to pure Monte Carlo
algorithms appear in [343, 505]. The original source for the Monte Carlo method is [698]. For a survey
on algorithms that compute Voronoi diagrams, see [55].

For further reading on collision detection (beyond Section 5.3), see the surveys in [491, 640, 641, 706].
Hierarchical collision detection is covered in [408, 641, 705]. The incremental collision detection ideas
in Section 5.3.3 were inspired by the algorithm [639] and V-Clip [249, 705]. Distance computation is
covered in [169, 308, 389, 408, 416, 705, 810]. A method suited for detecting self-collisions of linkages
appears in [656]. A combinatorial approach to collision detection for motion planning appears in [857].
Numerous collision detection packages are available for use in motion planning research. One of the
most widely used is PQP because it works well for any mess of 3D triangles [948].

The incremental sampling and searching framework was synthesized by unifying ideas from many
planning methods. Some of these include grid-based search [72, 551, 623] and probabilistic roadmaps
(PRMs) [519]. Although the PRM was developed for multiple queries, the single-query version developed
in [127] helped shed light on the connection to earlier planning methods. This even led to grid-based
variants of PRMs [125, 603]. Another single-query variant is presented in [413].

RDTs were developed in the literature mainly as RRTs, and were introduced in [601, 613]. RRTs
have been used in several applications, and many variants have been developed [84, 140, 152, 202, 226,
246, 267, 364, 395, 498, 501, 502, 531, 634, 644, 645, 919, 920, 949, 979, 986]. Originally, they were
developed for planning under differential constraints, but most of their applications to date have been for
ordinary motion planning. For more information on efficient nearest-neighbor searching, see the recent
survey [478], and [47, 48, 49, 53, 101, 232, 367, 479, 541, 761, 909, 989].

Section 5.6 is based mainly on the PRM framework [519]. The “probabilistic” part is not critical to the
method; thus, it was referred to here as a sampling-based roadmap. A related precursor to the PRM was
proposed in [392, 393]. The PRM has been widely used in practice, and many variants have been proposed
[1, 23, 62, 63, 127, 163, 183, 246, 482, 547, 603, 630, 631, 743, 787, 795, 886, 901, 950, 971, 979, 995].
An experimental comparison of many of these variants appears in [382]. Some analysis of PRMs appears
in [70, 470, 576]. In some works, the term PRM has been applied to virtually any sampling-based
planning algorithm (e.g., [470]); however, in recent years the term has been used more consistently with
its original meaning in [519].

Many other methods and issues fall outside of the scope of this chapter. Several interesting methods
based on approximate cell decomposition [146, 330, 649, 661] can be considered as a form of sampling-
based motion planning. A sampling-based method of developing global potential functions appears in
[126]. Other sampling-based planning algorithms appear in [196, 350, 420, 421, 466]. The algorithms
of this chapter are generally unable to guarantee that a solution does not exist for a motion planning
problem. It is possible, however, to use sampling-based techniques to establish in finite time that no
solution exists [77]. Such a result is called a disconnection proof. Parallelization issues have also been
investigated in the context of sampling-based motion planning [84, 179, 185, 259, 798].

Exercises

1. Prove that the Cartesian product of a metric space is a metric space by taking a linear
combination as in (5.4).

2. Prove or disprove: If ρ is a metric, then ρ2 is a metric.

3. Determine whether the following function is a metric on any topological space: X: ρ(x, x ′) =
1 is x 	= x ′; otherwise, ρ(x, x ′) = 0.
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4. State and prove whether or not (5.28) yields a metric space on C = SE(3), assuming that
the two sets are rigid bodies.

5. The dispersion de�nition given in (5.19) is based on the worst case. Consider de�ning the
average dispersion:

δ̄(P ) =
∫

X

min
p∈P

{ρ(x, p)}dx. (5.42)

Describe a Monte Carlo (randomized) method to approximately evaluate (5.42).

6. Determine the average dispersion for the van der Corput sequence (base 2) on [0, 1]/ ∼.

7. Show that using the Lebesgue measure on S
3 (spreading mass around uniformly on S

3)
yields the Haar measure for SO(3).

8. Is the Haar measure useful in selecting an appropriate C-space metric? Explain.

9. Determine an expression for the (worst-case) dispersion of the ith sample in the base-p
(Figure 5.2 shows base-2) van der Corput sequence in [0, 1]/ ∼, in which 0 and 1 are
identi�ed.

10. Determine the dispersion of the following sequence on [0, 1]. The �rst point is α(1) = 1.
For each i > 1, let ci = ln(2i − 3)/ ln 4 and α(i) = ci − �ci�. It turns out that this sequence
achieves the best asymptotic dispersion possible, even in terms of the preceding constant.
Also, the points are not uniformly distributed. Can you explain why this happens? [It may
be helpful to plot the points in the sequence.]

11. Prove that (5.20) holds.

12. Prove that (5.23) holds.

13. Show that for any given set of points in [0, 1]n, a range space R can be designed so that
the discrepancy is as close as desired to 1.

14. Suppose A is a rigid body in R
3 with a � xed orientation speci�ed by a quaternion, h.

Suppose that h is perturbed a small amount to obtain another quaternion, h ′ (no translation
occurs). Construct a good upper bound on distance traveled by points on A, expressed in
terms of the change in the quaternion.

15. Design combinations of robots and obstacles in W that lead to C-space obstacles resem-
bling bug traps.

16. How many k-neighbors can there be at most in an n-dimensional grid with 1 ≤ k ≤ n?

17. In a high-dimensional grid, it becomes too costly to consider all 3n − 1 n-neighbors. It
might not be enough to consider only 2n 1-neighbors. Determine a scheme for selecting
neighbors that are spatially distributed in a good way, but without requiring too many. For
example, what is a good way to select 50 neighbors for a grid in R

10?

18. Explain the difference between searching an implicit, high-resolution grid and growing
search trees directly on the C-space without a grid.

19. Improve the bound in (5.31) by considering the fact that rotating points trace out a circle,
instead of a straight line.

20. (Open problem) Prove there are n+ 1 main branches for an RRT starting from the center of
an “in�nite” n-dimensional ball in R

n. The directions of the branches align with the vertices
of a regular simplex centered at the initial con�gur ation.

21. Implement 2D incremental collision checking for convex polygons to obtain “near constant
time” performance.

22. Implement the sampling-based roadmap approach. Select an appropriate family of motion
planning problems: 2D rigid bodies, 2D chains of bodies, 3D rigid bodies, etc.
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(a) Compare the roadmaps obtained using visibility-based sampling to those obtained for the
ordinary sampling method.

(b) Study the sensitivity of the method with respect to the particular neighborhood method.

(c) Compare random and deterministic sampling methods.

(d) Use the bridge test to attempt to produce better samples.

23. Implement the balanced, bidirectional RRT planning algorithm.

(a) Study the effect of varying the amount of intermediate vertices created along edges.

(b) Try connecting to the random sample using more powerful descent functions.

(c) Explore the performance gains from using Kd-trees to select nearest neighbors.

24. Make an RRT-based planning algorithm that uses more than two trees. Carefully resolve
issues such as the maximum number of allowable trees, when to start a tree, and when to
attempt connections between trees.

25. Implement both the expansive-space planner and the RRT, and conduct comparative
experiments on planning problems. For the full set of problems, keep the algorithm param-
eters � xed.

26. Implement a sampling-based algorithm that computes collision-free paths for a rigid robot
that can translate or rotate on any of the �at 2D manifolds shown in Figure 4.5.
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Combinatorial Motion Planning

Combinatorial approaches to motion planning find paths through the continuous configura-
tion space without resorting to approximations. Due to this property, they are alternatively
referred to as exact algorithms. This is in contrast to the sampling-based motion planning
algorithms from Chapter 5.

6.1 Introduction

All of the algorithms presented in this chapter are complete, which means that for any
problem instance (over the space of problems for which the algorithm is designed), the
algorithm will either find a solution or will correctly report that no solution exists. By con-
trast, in the case of sampling-based planning algorithms, weaker notions of completeness
were tolerated: resolution completeness and probabilistic completeness.

Representation is important

When studying combinatorial motion planning algorithms, it is important to carefully
consider the definition of the input. What is the representation used for the robot and
obstacles? What set of transformations may be applied to the robot? What is the dimen-
sion of the world? Are the robot and obstacles convex? Are they piecewise linear? The
specification of possible inputs defines a set of problem instances on which the algorithm
will operate. If the instances have certain convenient properties (e.g., low dimensionality,
convex models), then a combinatorial algorithm may provide an elegant, practical solu-
tion. If the set of instances is too broad, then a requirement of both completeness and
practical solutions may be unreasonable. Many general formulations of general motion
planning problems are PSPACE-hard1; therefore, such a hope appears unattainable. Nev-
ertheless, there exist general, complete motion planning algorithms. Note that focusing
on the representation is the opposite philosophy from sampling-based planning, which
hides these issues in the collision detection module.

Reasons to study combinatorial methods

There are generally two good reasons to study combinatorial approaches to motion plan-
ning:

1. In many applications, one may only be interested in a special class of planning problems.
For example, the world might be 2D, and the robot might only be capable of translation. For
many special classes, elegant and efficient algorithms can be developed. These algorithms
are complete, do not depend on approximation, and can offer much better performance
than sampling-based planning methods, such as those in Chapter 5.

1 This implies NP-hard. An overview of such complexity statements appears in Section 6.5.1.
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2. It is both interesting and satisfying to know that there are complete algorithms for an
extremely broad class of motion planning problems. Thus, even if the class of interest
does not have some special limiting assumptions, there still exist general-purpose tools
and algorithms that can solve it. These algorithms also provide theoretical upper bounds
on the time needed to solve motion planning problems.

Warning: Some methods are impractical

Be careful not to make the wrong assumptions when studying the algorithms of this
chapter. A few of them are efficient and easy to implement, but many might be neither. Even
if an algorithm has an amazing asymptotic running time, it might be close to impossible to
implement. For example, one of the most famous algorithms from computational geometry
can split a simple2 polygon into triangles in O(n) time for a polygon with n edges [192].
This is so amazing that it was covered in the New York Times, but the algorithm is
so complicated that it is doubtful that anyone will ever implement it. Sometimes it is
preferable to use an algorithm that has worse theoretical running time but is much easier
to understand and implement. In general, though, it is valuable to understand both kinds
of methods and decide on the trade-offs for yourself. It is also an interesting intellectual
pursuit to try to determine how efficiently a problem can be solved, even if the result is
mainly of theoretical interest. This might motivate others to look for simpler algorithms
that have the same or similar asymptotic running times.

Roadmaps

Virtually all combinatorial motion planning approaches construct a roadmap along the
way to solving queries. This notion was introduced in Section 5.6, but in this chapter
stricter requirements are imposed in the roadmap definition because any algorithm that
constructs one needs to be complete. Some of the algorithms in this chapter first construct
a cell decomposition of Cfree from which the roadmap is consequently derived. Other
methods directly construct a roadmap without the consideration of cells.

Let G be a topological graph (defined in Example 4.6) that maps into Cfree. Furthermore,
let S ⊂ Cfree be the swath, which is set of all points reached by G, as defined in (5.40). The
graph G is called a roadmap if it satisfies two important conditions:

1. Accessibility: From any q ∈ Cfree, it is simple and efficient to compute a path τ : [0, 1] →
Cfree such that τ (0) = q and τ (1) = s, in which s may be any point in S. Usually, s is the
closest point to q, assuming C is a metric space.

2. Connectivity-preserving: Using the first condition, it is always possible to connect some
qI and qG to some s1 and s2, respectively, in S. The second condition requires that if there
exists a path τ : [0, 1] → Cfree such that τ (0) = qI and τ (1) = qG, then there also exists a
path τ ′ : [0, 1] → S, such that τ ′(0) = s1 and τ ′(1) = s2. Thus, solutions are not missed
because G fails to capture the connectivity of Cfree. This ensures that complete algorithms
are developed.

By satisfying these properties, a roadmap provides a discrete representation of the continu-
ous motion planning problem without losing any of the original connectivity information
needed to solve it. A query, (qI , qG), is solved by connecting each query point to the
roadmap and then performing a discrete graph search on G. To maintain completeness,

2 A polygonal region that has no holes.
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the first condition ensures that any query can be connected to G, and the second condition
ensures that the search always succeeds if a solution exists.

6.2 Polygonal obstacle regions

Rather than diving into the most general forms of combinatorial motion planning, it
is helpful to first see several methods explained for a case that is easy to visualize.
Several elegant, straightforward algorithms exist for the case in which C = R

2 and Cobs

is polygonal. Most of these cannot be directly extended to higher dimensions; however,
some of the general principles remain the same. Therefore, it is very instructive to see
how combinatorial motion planning approaches work in two dimensions. There are also
applications where these algorithms may directly apply. One example is planning for a
small mobile robot that may be modeled as a point moving in a building that can be
modeled with a 2D polygonal floor plan.

After covering representations in Section 6.2.1, Sections 6.2.2–6.2.4 present three
different algorithms to solve the same problem. The one in Section 6.2.2 first performs cell
decomposition on the way to building the roadmap, and the ones in Sections 6.2.3 and 6.2.4
directly produce a roadmap. The algorithm in Section 6.2.3 computes maximum clearance
paths, and the one in Section 6.2.4 that computes shortest paths (which consequently have
no clearance).

6.2.1 Representation

Assume that W = R
2; the obstacles, O, are polygonal; and the robot, A, is a polygonal

body that is only capable of translation. Under these assumptions, Cobs will be polygonal.
For the special case in which A is a point in W , O maps directly to Cobs without any
distortion. Thus, the problems considered in this section may also be considered as
planning for a point robot. If A is not a point robot, then the Minkowski difference, (4.37),
of O and A must be computed. For the case in which both A and each component of O
are convex, the algorithm in Section 4.3.2 can be applied to compute each component of
Cobs. In general, both A and O may be nonconvex. They may even contain holes, which
results in a Cobs model such as that shown in Figure 6.1. In this case, A and O may be
decomposed into convex components, and the Minkowski difference can be computed
for each pair of components. The decompositions into convex components can actually
be performed by adapting the cell decomposition algorithm that will be presented in
Section 6.2.2. Once the Minkowski differences have been computed, they need to be
merged to obtain a representation that can be specified in terms of simple polygons, such
as those in Figure 6.1. An efficient algorithm to perform this merging is given in Section
2.4 of [266]. It can also be based on many of the same principles as the planning algorithm
in Section 6.2.2.

To implement the algorithms described in this section, it will be helpful to have a data
structure that allows convenient access to the information contained in a model such as
Figure 6.1. How is the outer boundary represented? How are holes inside of obstacles
represented? How do we know which holes are inside of which obstacles? These questions
can be efficiently answered by using the doubly connected edge list data structure, which
was described in Section 3.1.3 for consistent labeling of polyhedral faces. We will need to
represent models, such as the one in Figure 6.1, and any other information that planning
algorithms need to maintain during execution. There are three different records:
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Figure 6.1: A polygonal model speci�ed by four oriented simple polygons.

Vertices: Every vertex v contains a pointer to a point (x, y) ∈ C = R
2 and a pointer to

some half-edge that has v as its origin.

Faces: Every face has one pointer to a half-edge on the boundary that surrounds the face;
the pointer value is nil if the face is the outermost boundary. The face also contains a list
of pointers for each connected component (i.e., hole) that is contained inside of that face.
Each pointer in the list points to a half-edge of the component’s boundary.

Half-edges: Each half-edge is directed so that the obstacle portion is always to its left.
It contains five different pointers. There is a pointer to its origin vertex. There is a twin
half-edge pointer, which may point to a half-edge that runs in the opposite direction (see
Section 3.1.3). If the half-edge borders an obstacle, then this pointer is nil. Half-edges are
always arranged in circular chains to form the boundary of a face. Such chains are oriented
so that the obstacle portion (or a twin half-edge) is always to its left. Each half-edge stores
a pointer to its internal face. It also contains pointers to the next and previous half-edges
in the circular chain of half-edges.

For the example in Figure 6.1, there are four circular chains of half-edges that each bound
a different face. The face record of the small triangular hole points to the obstacle face
that contains the hole. Each obstacle contains a pointer to the face represented by the
outermost boundary. By consistently assigning orientations to the half-edges, circular
chains that bound an obstacle always run counterclockwise, and chains that bound holes
run clockwise. There are no twin half-edges because all half-edges bound part of Cobs.
The doubly connected edge list data structure is general enough to allow extra edges to
be inserted that slice through Cfree. These edges will not be on the border of Cobs, but they
can be managed using twin half-edge pointers. This will be useful for the algorithm in
Section 6.2.2.

6.2.2 Vertical cell decomposition

Cell decompositions will be defined formally in Section 6.3, but here we use the notion
informally. Combinatorial methods must construct a finite data structure that exactly
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Figure 6.2: There are four general cases: 1) extending upward and downward, 2) upward only, 3) downward
only, and 4) no possible extension.

encodes the planning problem. Cell decomposition algorithms achieve this partitioning of
Cfree into a finite set of regions called cells. The term k-cell refers refer to a k-dimensional
cell. The cell decomposition should satisfy three properties:

1. Computing a path from one point to another inside of a cell must be trivially easy. For
example, if every cell is convex, then any pair of points in a cell can be connected by a
line segment.

2. Adjacency information for the cells can be easily extracted to build the roadmap.

3. For a given qI and qG, it should be efficient to determine which cells contain them.

If a cell decomposition satisfies these properties, then the motion planning problem is
reduced to a graph search problem. Once again the algorithms of Section 2.2 may be
applied; however, in the current setting, the entire graph, G, is usually known in advance.3

This was not assumed for discrete planning problems.

Defining the vertical decomposition

We next present an algorithm that constructs a vertical cell decomposition [191], which
partitions Cfree into a finite collection of 2-cells and 1-cells. Each 2-cell is either a trapezoid
that has vertical sides or a triangle (which is a degenerate trapezoid). For this reason, the
method is sometimes called trapezoidal decomposition. The decomposition is defined as
follows. Let P denote the set of vertices used to define Cobs. At every p ∈ P , try to extend
rays upward and downward through Cfree, until Cobs is hit. There are four possible cases,
as shown in Figure 6.2, depending on whether or not it is possible to extend in each of the
two directions. If Cfree is partitioned according to these rays, then a vertical decomposition
results. Extending these rays for the example in Figure 6.3a leads to the decomposition
of Cfree shown in Figure 6.3b. Note that only trapezoids and triangles are obtained for the
2-cells in Cfree.

Every 1-cell is a vertical segment that serves as the border between two 2-cells. We
must ensure that the topology of Cfree is correctly represented. Recall that Cfree was defined
to be an open set. Every 2-cell is actually defined to be an open set in R

2; thus, it is the
interior of a trapezoid or triangle. The 1-cells are the interiors of segments. It is tempting
to make 0-cells, which correspond to the endpoints of segments, but these are not allowed
because they lie in Cobs.

3 Exceptions to this are some algorithms mentioned in Section 6.5.3, which obtain greater efficiency by only
maintaining one connected component of Cobs.
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(a) (b)

Figure 6.3: The vertical cell decomposition method uses the cells to construct a roadmap, which is
searched to yield a solution to a query.

General position issues

What if two points along Cobs lie on a vertical line that slices through Cfree? What happens
when one of the edges of Cobs is vertical? These are special cases that have been ignored
so far. Throughout much of combinatorial motion planning it is common to ignore such
special cases and assume Cobs is in general position. This usually means that if all of the
data points are perturbed by a small amount in some random direction, the probability
that the special case remains is zero. Since a vertical edge is no longer vertical after being
slightly perturbed, it is not in general position. The general position assumption is usually
made because it greatly simplifies the presentation of an algorithm (and, in some cases,
its asymptotic running time is even lower). In practice, however, this assumption can be
very frustrating. Most of the implementation time is often devoted to correctly handling
such special cases. Performing random perturbations may avoid this problem, but it tends
to unnecessarily complicate the solutions. For the vertical decomposition, the problems
are not too difficult to handle without resorting to perturbations; however, in general, it is
important to be aware of this difficulty, which is not as easy to fix in most other settings.

Defining the roadmap

To handle motion planning queries, a roadmap is constructed from the vertical cell de-
composition. For each cell Ci , let qi denote a designated sample point such that qi ∈ Ci .
The sample points can be selected as the cell centroids, but the particular choice is not
too important. Let G(V, E) be a topological graph defined as follows. For every cell, Ci ,
define a vertex qi ∈ V . There is a vertex for every 1-cell and every 2-cell. For each 2-cell,
define an edge from its sample point to the sample point of every 1-cell that lies along
its boundary. Each edge is a line-segment path between the sample points of the cells.
The resulting graph is a roadmap, as depicted in Figure 6.4. The accessibility condition
is satisfied because every sample point can be reached by a straight-line path thanks to
the convexity of every cell. The connectivity condition is also satisfied because G is de-
rived directly from the cell decomposition, which also preserves the connectivity of Cfree.
Once the roadmap is constructed, the cell information is no longer needed for answering
planning queries.

Solving a query

Once the roadmap is obtained, it is straightforward to solve a motion planning query,
(qI , qG). Let C0 and Ck denote the cells that contain qI and qG, respectively. In the graph
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Figure 6.4: The roadmap derived from the vertical cell decomposition.

qI

qG

Figure 6.5: An example solution path.

G, search for a path that connects the sample point of C0 to the sample point of Ck . If no
such path exists, then the planning algorithm correctly declares that no solution exists.
If one does exist, then let C1, C2, . . . , Ck−1 denote the sequence of 1-cells and 2-cells
visited along the computed path in G from C0 to Ck .

A solution path can be formed by simply “connecting the dots.” Let q0, q1, q2, . . . , qk−1,
qk , denote the sample points along the path in G. There is one sample point for every
cell that is crossed. The solution path, τ : [0, 1] → Cfree, is formed by setting τ (0) = qI ,
τ (1) = qG, and visiting each of the points in the sequence from q0 to qk by traveling
along the shortest path. For the example, this leads to the solution shown in Figure 6.5. In
selecting the sample points, it was important to ensure that each path segment from the
sample point of one cell to the sample point of its neighboring cell is collision-free.4

4 This is the reason why the approach is defined differently from Chapter 1 of [591]. In that case, sample points were
not placed in the interiors of the 2-cells, and collision could result for some queries.
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Computing the decomposition

The problem of efficiently computing the decomposition has not yet been considered.
Without concern for efficiency, the problem appears simple enough that all of the re-
quired steps can be computed by brute-force computations. If Cobs has n vertices, then
this approach would take at least O(n2) time because intersection tests have to be made
between each vertical ray and each segment. This even ignores the data structure is-
sues involved in finding the cells that contain the query points and in building the
roadmap that holds the connectivity information. By careful organization of the com-
putation, it turns out that all of this can be nicely handled, and the resulting running time
is only O(n lg n).

Plane-sweep principle

The algorithm is based on the plane-sweep (or line-sweep) principle from computational
geometry [129, 266, 304], which forms the basis of many combinatorial motion planning
algorithms and many other algorithms in general. Much of computational geometry can
be considered as the development of data structures and algorithms that generalize the
sorting problem to multiple dimensions. In other words, the algorithms carefully “sort”
geometric information.

The word “sweep” is used to refer to these algorithms because it can be imagined
that a line (or plane, etc.) sweeps across the space, only to stop where some critical
change occurs in the information. This gives the intuition, but the sweeping line is not
explicitly represented by the algorithm. To construct the vertical decomposition, imagine
that a vertical line sweeps from x = −∞ to x = ∞, using (x, y) to denote a point
in C = R

2.
From Section 6.2.1, note that the set P of Cobs vertices are the only data in R

2 that
appear in the problem input. It therefore seems reasonable that interesting things can only
occur at these points. Sort the points in P in increasing order by their X coordinate.
Assuming general position, no two points have the same X coordinate. The points in P

will now be visited in order of increasing x value. Each visit to a point will be referred
to as an event. Before, after, and in between every event, a list, L, of some Cobs edges
will be maintained. This list must be maintained at all times in the order that the edges
appear when stabbed by the vertical sweep line. The ordering is maintained from lower
to higher.

Algorithm execution

Figures 6.6 and 6.7 show how the algorithm proceeds. Initially, L is empty, and a doubly
connected edge list is used to represent Cfree. Each connected component of Cfree yields
a single face in the data structure. Suppose inductively that after several events occur, L

is correctly maintained. For each event, one of the four cases in Figure 6.2 occurs. By
maintaining L in a balanced binary search tree [245], the edges above and below p can
be determined in O(lg n) time. This is much better than O(n) time, which would arise
from checking every segment. Depending on which of the four cases from Figure 6.2
occurs, different updates to L are made. If the first case occurs, then two different edges
are inserted, and the face of which p is on the border is split two times by vertical line
segments. For each of the two vertical line segments, two half-edges are added, and
all faces and half-edges must be updated correctly (this operation is local in that only
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Figure 6.6: There are 14 events in this example.

Event Sorted Edges in L Event Sorted Edges in L

0 {a, b} 7 {d, j, n, b}
1 {d, b} 8 {d, j, n, m, l, b}
2 {d, f, e, b} 9 {d, j, l, b}
3 {d, f, i, b} 10 {d, k, l, b}
4 {d, f, g, h, i, b} 11 {d, b}
5 {d, f, g, j, n, h, i, b} 12 {d, c}
6 {d, f, g, j, n, b} 13 {}

Figure 6.7: The status of L is shown after each of 14 events occurs. Before the �rst event, L is empty.

records adjacent to where the change occurs need to be updated). The next two cases in
Figure 6.2 are simpler; only a single face split is made. For the final case, no splitting
occurs.

Once the face splitting operations have been performed, L needs to be updated. When
the sweep line crosses p, two edges are always affected. For example, in the first and last
cases of Figure 6.2, two edges must be inserted into L (the mirror images of these cases
cause two edges to be deleted from L). If the middle two cases occur, then one edge is
replaced by another in L. These insertion and deletion operations can be performed in
O(lg n) time. Since there are n events, the running time for the construction algorithm is
O(n lg n).

The roadmap G can be computed from the face pointers of the doubly connected edge
list. A more elegant approach is to incrementally build G at each event. In fact, all of
the pointer maintenance required to obtain a consistent doubly connected edge list can
be ignored if desired, as long as G is correctly built and the sample point is obtained for
each cell along the way. We can even go one step further, by forgetting about the cell
decomposition and directly building a topological graph of line-segment paths between
all sample points of adjacent cells.
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One closest
point

Two closest
points

One closest
point

Figure 6.8: The maximum clearance roadmap keeps as far away from the Cobs as possible. This involves
traveling along points that are equidistant from two or more points on the boundary of Cobs.

6.2.3 Maximum-clearance roadmaps

A maximum-clearance roadmap tries to keep as far as possible from Cobs, as shown for
the corridor in Figure 6.8. The resulting solution paths are sometimes preferred in mobile
robotics applications because it is difficult to measure and control the precise position of
a mobile robot. Traveling along the maximum-clearance roadmap reduces the chances of
collisions due to these uncertainties. Other names for this roadmap are generalized Voronoi
diagram and retraction method [752]. It is considered as a generalization of the Voronoi
diagram (recall from Section 5.2.2) from the case of points to the case of polygons. Each
point along a roadmap edge is equidistant from two points on the boundary of Cobs. Each
roadmap vertex corresponds to the intersection of two or more roadmap edges and is
therefore equidistant from three or more points along the boundary of Cobs.

The retraction term comes from topology and provides a nice intuition about the
method. A subspace S is a deformation retract of a topological space X if the following
continuous homotopy, h : X × [0, 1] → X, can be defined as follows [454]:

1. h(x, 0) = x for all x ∈ X.

2. h(x, 1) is a continuous function that maps every element of X to some element of S.

3. For all t ∈ [0, 1], h(s, t) = s for any s ∈ S.

The intuition is that Cfree is gradually thinned through the homotopy process, until a
skeleton, S, is obtained. An approximation to this shrinking process can be imagined by
shaving off a thin layer around the whole boundary of Cfree. If this is repeated iteratively,
the maximum-clearance roadmap is the only part that remains (assuming that the shaving
always stops when thin “slivers” are obtained).

To construct the maximum-clearance roadmap, the concept of features from Sec-
tion 5.3.3 is used again. Let the feature set refer to the set of all edges and vertices
of Cobs. Candidate paths for the roadmap are produced by every pair of features. This
leads to a naive O(n4) time algorithm as follows. For every edge-edge feature pair, gen-
erate a line as shown in Figure 6.9a. For every vertex-vertex pair, generate a line as
shown in Figure 6.9b. The maximum-clearance path between a point and a line is a
parabola. Thus, for every edge-point pair, generate a parabolic curve as shown in Fig-
ure 6.9c. The portions of the paths that actually lie on the maximum-clearance roadmap
are determined by intersecting the curves. Several algorithms exist that provide better
asymptotic running times [619, 629], but they are considerably more difficult to imple-
ment. The best-known algorithm runs in O(n lg n) time in which n is the number of
roadmap curves [867].
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Edge-Edge Vertex-Vertex Vertex-Edge

Figure 6.9: Voronoi roadmap pieces are generated in one of three possible cases. The third case leads
to a quadratic curve.

Figure 6.10: A bitangent edge must touch two re�e x vertices that are mutually visible from each other,
and the line must extend outward past each of them without poking into Cobs.

6.2.4 Shortest-path roadmaps

Instead of generating paths that maximize clearance, suppose that the goal is to find
shortest paths. This leads to the shortest-path roadmap, which is also called the reduced
visibility graph in [591]. The idea was first introduced in [745] and may perhaps be the first
example of a motion planning algorithm. The shortest-path roadmap is in direct conflict
with maximum clearance because shortest paths tend to graze the corners of Cobs. In fact,
the problem is ill posed because Cfree is an open set. For any path τ : [0, 1] → Cfree, it is
always possible to find a shorter one. For this reason, we must consider the problem of
determining shortest paths in cl(Cfree), the closure of Cfree. This means that the robot is
allowed to “touch” or “graze” the obstacles, but it is not allowed to penetrate them. To
actually use the computed paths as solutions to a motion planning problem, they need to
be slightly adjusted so that they come very close to Cobs but do not make contact. This
slightly increases the path length, but the additional cost can be made arbitrarily small as
the path gets arbitrarily close to Cobs.

The shortest-path roadmap,G, is constructed as follows. Let a reflex vertex be a polygon
vertex for which the interior angle (in Cfree) is greater than π . All vertices of a convex
polygon (assuming that no three consecutive vertices are collinear) are reflex vertices. The
vertices of G are the reflex vertices. Edges of G are formed from two different sources:

Consecutive reflex vertices: If two reflex vertices are the endpoints of an edge of Cobs,
then an edge between them is made in G.

Bitangent edges: If a bitangent line can be drawn through a pair of reflex vertices, then a
corresponding edge is made in G. A bitangent line, depicted in Figure 6.10, is a line that
is incident to two reflex vertices and does not poke into the interior of Cobs at any of these
vertices. Furthermore, these vertices must be mutually visible from each other.

An example of the resulting roadmap is shown in Figure 6.11. Note that the roadmap may
have isolated vertices, such as the one at the top of the figure. To solve a query, qI and
qG are connected to all roadmap vertices that are visible; this is shown in Figure 6.12.
This makes an extended roadmap that is searched for a solution. If Dijkstra’s algorithm is
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Figure 6.11: The shortest-path roadmap includes edges between consecutive re�e x vertices on Cobs and
also bitangent edges.

qG

qI

Figure 6.12: To solve a query, qI and qG are connected to all visible roadmap vertices, and graph search
is performed.

qG

qI

Figure 6.13: The shortest path in the extended roadmap is the shortest path between qI and qG.

used, and if each edge is given a cost that corresponds to its path length, then the resulting
solution path is the shortest path between qI and qG. The shortest path for the example in
Figure 6.12 is shown in Figure 6.13.

If the bitangent tests are performed naively, then the resulting algorithm requires O(n3)
time, in which n is the number of vertices of Cobs. There are O(n2) pairs of reflex vertices
that need to be checked, and each check requires O(n) time to make certain that no other
edges prevent their mutual visibility. The plane-sweep principle from Section 6.2.2 can
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p1 p3

p4p6

p5

p2

Figure 6.14: Potential bitangents can be identi�ed by checking for left turns, which avoids the use of
trigonometric functions and their associated numerical problems.

be adapted to obtain a better algorithm, which takes only O(n2 lg n) time. The idea is to
perform a radial sweep from each reflex vertex, v. A ray is started at θ = 0, and events
occur when the ray touches vertices. A set of bitangents through v can be computed in
this way in O(n lg n) time. Since there are O(n) reflex vertices, the total running time is
O(n2 lg n). See Chapter 15 of [266] for more details. There exists an algorithm that can
compute the shortest-path roadmap in time O(n lg n+m), in which m is the total number
of edges in the roadmap [386]. If the obstacle region is described by a simple polygon,
the time complexity can be reduced to O(n); see [712] for many shortest-path variations
and references.

To improve numerical robustness, the shortest-path roadmap can be implemented with-
out the use of trigonometric functions. For a sequence of three points, p1, p2, p3, define
the left-turn predicate, fl : R

2 ×R
2 ×R

2 → {true, false}, as fl(p1, p2, p3) = true
if and only if p3 is to the left of the ray that starts at p1 and pierces p2. A point p2 is a
reflex vertex if and only if fl(p1, p2, p3) = true, in which p1 and p3 are the points before
and after, respectively, along the boundary of Cobs. The bitangent test can be performed
by assigning points as shown in Figure 6.14. Assume that no three points are collinear
and the segment that connects p2 and p5 is not in collision. The pair, p2, p5, of vertices
should receive a bitangent edge if the following sentence is false:

(
fl(p1, p2, p5) ⊕ fl(p3, p2, p5)

) ∨ (fl(p4, p5, p2) ⊕ fl(p6, p5, p2)
)
, (6.1)

in which ⊕ denotes logical “exclusive or.” The fl predicate can be implemented without
trigonometric functions by defining

M(p1, p2, p3) =



1 x1 y1

1 x2 y2

1 x3 y3



 , (6.2)

in which pi = (xi, yi). If det(M) > 0, then lf (p1, p2, p3) = true; otherwise,
lf (p1, p2, p3) = false.

6.3 Cell decompositions

Section 6.2.2 introduced the vertical cell decomposition to solve the motion planning
problem when Cobs is polygonal. It is important to understand, however, that this is just one
choice among many for the decomposition. Some of these choices may not be preferable
in 2D; however, they might generalize better to higher dimensions. Therefore, other cell
decompositions are covered in this section, to provide a smoother transition from vertical
cell decomposition to cylindrical algebraic decomposition in Section 6.4, which solves
the motion planning problem in any dimension for any semi-algebraic model. Along the
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way, a cylindrical decomposition will appear in Section 6.3.4 for the special case of a
line-segment robot in W = R

2.

6.3.1 General definitions

In this section, the term complex refers to a collection of cells together with their bound-
aries. A partition into cells can be derived from a complex, but the complex contains
additional information that describes how the cells must fit together. The term cell de-
composition still refers to the partition of the space into cells, which is derived from a
complex.

It is tempting to define complexes and cell decompositions in a very general manner.
Imagine that any partition of Cfree could be called a cell decomposition. A cell could be so
complicated that the notion would be useless. Even Cfree itself could be declared as one
big cell. It is more useful to build decompositions out of simpler cells, such as ones that
contain no holes. Formally, this requires that every k-dimensional cell is homeomorphic to
Bk ⊂ R

k , an open k-dimensional unit ball. From a motion planning perspective, this still
yields cells that are quite complicated, and it will be up to the particular cell decomposition
method to enforce further constraints to yield a complete planning algorithm.

Two different complexes will be introduced. The simplicial complex is explained
because it is one of the easiest to understand. Although it is useful in many applications,
it is not powerful enough to represent all of the complexes that arise in motion planning.
Therefore, the singular complex is also introduced. Although it is more complicated to
define, it encompasses all of the cell complexes that are of interest in this book. It also
provides an elegant way to represent topological spaces. Another important cell complex,
which is not covered here, is the CW-complex [442].

Simplicial complex

For this definition, it is assumed that X = R
n. Let p1, p2, . . . , pk+1, be k + 1 linearly

independent5 points in R
n. A k-simplex, [p1, . . . , pk+1], is formed from these points as

[p1, . . . , pk+1] =
{

k+1∑

i=1

αipi ∈ R
n
∣∣∣ 0 ≤ αi ≤ 1 for any 1 ≤ i ≤ k + 1

}
, (6.3)

in which αipi is the scalar multiplication of αi by each of the point coordinates. Another
way to view (6.3) is as the convex hull of the k + 1 points (i.e., all ways to linearly inter-
polate between them). If k = 2, a triangular region is obtained. For k = 3, a tetrahedron
is produced.

For any k-simplex and any i such that 1 ≤ i ≤ k + 1, let αi = 0. This yields a (k − 1)-
dimensional simplex that is called a face of the original simplex. A 2-simplex has three
faces, each of which is a 1-simplex that may be called an edge. Each 1-simplex (or edge)
has two faces, which are 0-simplexes called vertices.

To form a complex, the simplexes must fit together in a nice way. This yields a high-
dimensional notion of a triangulation, which in R

2 is a tiling composed of triangular

5 Form k vectors by subtracting p1 from the other k points for some positive integer k such that k ≤ n. Arrange
the vectors into a k × n matrix. For linear independence, there must be at least one k × k cofactor with a nonzero
determinant. For example, if k = 2, then the three points cannot be collinear.
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Not a simplicial complex A simplicial complex

Figure 6.15: To become a simplicial complex, the simplex faces must �t together nicely.

regions. A simplicial complex, K, is a finite set of simplexes that satisfies the following:

1. Any face of a simplex in K is also in K.

2. The intersection of any two simplexes in K is either a common face of both of them or
the intersection is empty.

Figure 6.15 illustrates these requirements. For k > 0, a k-cell of K is defined to be interior,
int([p1, . . . , pk+1]), of any k-simplex. For k = 0, every 0-simplex is a 0-cell. The union
of all of the cells forms a partition of the point set covered by K. This therefore provides
a cell decomposition in a sense that is consistent with Section 6.2.2.

Singular complex

Simplicial complexes are useful in applications such as geometric modeling and computer
graphics for computing the topology of models. Due to the complicated topological spaces,
implicit, nonlinear models, and decomposition algorithms that arise in motion planning,
they are insufficient for the most general problems. A singular complex is a generalization
of the simplicial complex. Instead of being limited to R

n, a singular complex can be
defined on any manifold, X (it can even be defined on any Hausdorff topological space).
The main difference is that, for a simplicial complex, each simplex is a subset of R

n;
however, for a singular complex, each singular simplex is actually a homeomorphism
from a (simplicial) simplex in R

n to a subset of X.
To help understand the idea, first consider a 1D singular complex, which happens to be

a topological graph (as introduced in Example 4.6). The interval [0, 1] is a 1-simplex, and
a continuous path τ : [0, 1] → X is a singular 1-simplex because it is a homeomorphism
of [0, 1] to the image of τ in X. Suppose G(V, E) is a topological graph. The cells are
subsets of X that are defined as follows. Each point v ∈ V is a 0-cell in X. To follow the
formalism, each is considered as the image of a function f : {0} → X, which makes it a
singular 0-simplex, because {0} is a 0-simplex. For each path τ ∈ E, the corresponding
1-cell is

{x ∈ X | τ (s) = x for some s ∈ (0, 1)}. (6.4)

Expressed differently, it is τ ((0, 1)), the image of the path τ , except that the endpoints are
removed because they are already covered by the 0-cells (the cells must form a partition).

These principles will now be generalized to higher dimensions. Since all balls and
simplexes of the same dimension are homeomorphic, balls can be used instead of a simplex
in the definition of a singular simplex. Let Bk ⊂ R

k denote a closed, k-dimensional unit
ball,

Dk = {x ∈ R
n | ‖x‖ ≤ 1}, (6.5)
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in which ‖ · ‖ is the Euclidean norm. A singular k-simplex is a continuous mapping
σ : Dk → X. Let int(Dk) refer to the interior of Dk . For k ≥ 1, the k-cell, C, corresponding
to a singular k-simplex, σ , is the image C = σ (int(Dk)) ⊆ X. The 0-cells are obtained
directly as the images of the 0 singular simplexes. Each singular 0-simplex maps to the
0-cell in X. If σ is restricted to int(Dk), then it actually defines a homeomorphism between
Dk and C. Note that both of these are open sets if k > 0.

A simplicial complex requires that the simplexes fit together nicely. The same concept
is applied here, but topological concepts are used instead because they are more general.
Let K be a set of singular simplexes of varying dimensions. Let Sk denote the union of
the images of all singular i-simplexes for all i ≤ k.

A collection of singular simplexes that map into a topological space X is called a
singular complex if:

1. For each dimension k, the set Sk ⊆ X must be closed. This means that the cells must all
fit together nicely.

2. Each k-cell is an open set in the topological subspace Sk . Note that 0-cells are open in S0,
even though they are usually closed in X.

Example 6.1 (Vertical Decomposition) The vertical decomposition of Section 6.2.2 is
a nice example of a singular complex that is not a simplicial complex because it contains
trapezoids. The interior of each trapezoid and triangle forms a 2-cell, which is an open
set. For every pair of adjacent 2-cells, there is a 1-cell on their common boundary. There
are no 0-cells because the vertices lie in Cobs, not in Cfree. The subspace S2 is formed by
taking the union of all 2-cells and 1-cells to yield S2 = Cfree. This satisfies the closure
requirement because the complex is built in Cfree only; hence, the topological space is
Cfree. The set S2 = Cfree is both open and closed. The set S1 is the union of all 1-cells.
This is also closed because the 1-cell endpoints all lie in Cobs. Each 1-cell is also an
open set.

One way to avoid some of these strange conclusions from the topology restricted to
Cfree is to build the vertical decomposition in cl(Cfree), the closure of Cfree. This can be
obtained by starting with the previously defined vertical decomposition and adding a new
1-cell for every edge of Cobs and a 0-cell for every vertex of Cobs. Now S3 = cl(Cfree),
which is closed in R

2. Likewise, S2, S1, and S0, are closed in the usual way. Each of
the individual k-dimensional cells, however, is open in the topological space Sk . The
only strange case is that the 0-cells are considered open, but this is true in the discrete
topological space S0. �

6.3.2 2D decompositions

The vertical decomposition method of Section 6.2.2 is just one choice of many cell
decomposition methods for solving the problem when Cobs is polygonal. It provides a nice
balance between the number of cells, computational efficiency, and implementation ease. It
is usually possible to decompose Cobs into far fewer convex cells. This would be preferable
for multiple-query applications because the roadmap would be smaller. It is unfortunately
quite difficult to optimize the number of cells. Determining the decomposition of a
polygonal Cobs with holes that uses the smallest number of convex cells is NP-hard
[522, 648]. Therefore, we are willing to tolerate nonoptimal decompositions.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

222 MOTION PLANNING

Figure 6.16: A triangulation of Cobs.

Figure 6.17: A roadmap obtained from the triangulation.

Triangulation

One alternative to the vertical decomposition is to perform a triangulation, which yields
a simplicial complex over Cfree. Figure 6.16 shows an example. Since Cfree is an open
set, there are no 0-cells. Each 2-simplex (triangle) has either one, two, or three faces,
depending on how much of its boundary is shared with Cobs. A roadmap can be made
by connecting the samples for 1-cells and 2-cells as shown in Figure 6.17. Note that
there are many ways to triangulate Cfree for a given problem. Finding good triangulations,
which for example means trying to avoid thin triangles, is given considerable attention in
computational geometry [129, 266, 304].

How can the triangulation be computed? It might seem tempting to run the vertical
decomposition algorithm of Section 6.2.2 and split each trapezoid into two triangles.
Even though this leads to triangular cells, it does not produce a simplicial complex (two
triangles could abut the same side of a triangle edge). A naive approach is to incrementally
split faces by attempting to connect two vertices of a face by a line segment. If this
segment does not intersect other segments, then the split can be made. This process can
be iteratively performed over all vertices of faces that have more than three vertices,
until a triangulation is eventually obtained. Unfortunately, this results in an O(n3) time
algorithm because O(n2) pairs must be checked in the worst case, and each check requires
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Figure 6.18: The cylindrical decomposition differs from the vertical decomposition in that the rays continue
forever instead of stopping at the nearest edge. Compare this � gure to Figure 6.6.

O(n) time to determine whether an intersection occurs with other segments. This can be
easily reduced to O(n2 lg n) by performing radial sweeping. Chapter 3 of [266] presents
an algorithm that runs in O(n lg n) time by first partitioning Cfree into monotone polygons,
and then efficiently triangulating each monotone polygon. If Cfree is simply connected,
then, surprisingly, a triangulation can be computed in linear time [192]. Unfortunately,
this algorithm is too complicated to use in practice (there are, however, simpler algorithms
for which the complexity is close to O(n); see [92] and the end of Chapter 3 of [266] for
surveys).

Cylindrical decomposition

The cylindrical decomposition is very similar to the vertical decomposition, except that
when any of the cases in Figure 6.2 occurs, then a vertical line slices through all faces,
all the way from y = −∞ to y = ∞. The result is shown in Figure 6.18, which may
be considered as a singular complex. This may appear very inefficient in comparison to
the vertical decomposition; however, it is presented here because it generalizes nicely
to any dimension, any C-space topology, and any semi-algebraic model. Therefore, it is
presented here to ease the transition to more general decompositions. The most important
property of the cylindrical decomposition is shown in Figure 6.19. Consider each vertical
strip between two events. When traversing a strip from y = −∞ to y = ∞, the points
alternate between being Cobs and Cfree. For example, between events 4 and 5, the points
below edge f are in Cfree. Points between f and g lie in Cobs. Points between g and h lie in
Cfree, and so forth. The cell decomposition can be defined so that 2D cells are also created
in Cobs. Let S(x, y) denote the logical predicate (3.6) from Section 3.1.1. When traversing
a strip, the value of S(x, y) also alternates. This behavior is the main reason to construct a
cylindrical decomposition, which will become clearer in Section 6.4.2. Each vertical strip
is actually considered to be a cylinder, hence, the name cylindrical decomposition (i.e.,
there are not necessarily any cylinders in the 3D geometric sense).
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Figure 6.19: The cylindrical decomposition produces vertical strips. Inside of a strip, there is a stack of
collision-free cells, separated by Cobs.

6.3.3 3D vertical decomposition

It turns out that the vertical decomposition method of Section 6.2.2 can be extended to
any dimension by recursively applying the sweeping idea. The method requires, however,
that Cobs is piecewise linear. In other words, Cobs is represented as a semi-algebraic model
for which all primitives are linear. Unfortunately, most of the general motion planning
problems involve nonlinear algebraic primitives because of the nonlinear transformations
that arise from rotations. Recall the complicated algebraic Cobs model constructed in Sec-
tion 4.3.3. To handle generic algebraic models, powerful techniques from computational
algebraic geometry are needed. This will be covered in Section 6.4.

One problem for which Cobs is piecewise linear is a polyhedral robot that can translate
in R

3, and the obstacles in W are polyhedra. Since the transformation equations are linear
in this case, Cobs ⊂ R

3 is polyhedral. The polygonal faces of Cobs are obtained by forming
geometric primitives for each of the Type FV, Type VF, and Type EE cases of contact
between A and O, as mentioned in Section 4.3.2.

Figure 6.20 illustrates the algorithm that constructs the 3D vertical decomposition.
Compare this to the algorithm in Section 6.2.2. Let (x, y, z) denote a point in C = R

3. The
vertical decomposition yields convex 3-cells, 2-cells, and 1-cells. Neglecting degeneracies,
a generic 3-cell is bounded by six planes. The cross section of a 3-cell for some fixed x

value yields a trapezoid or triangle, exactly as in the 2D case, but in a plane parallel to the
yz plane. Two sides of a generic 3-cell are parallel to the yz plane, and two other sides are
parallel to the xz plane. The 3-cell is bounded above and below by two polygonal faces
of Cobs.

Initially, sort the Cobs vertices by their x coordinate to obtain the events. Now consider
sweeping a plane perpendicular to the x-axis. The plane for a fixed value of x produces
a 2D polygonal slice of Cobs. Three such slices are shown at the bottom of Figure 6.20.
Each slice is parallel to the yz plane and appears to look exactly like a problem that can be
solved by the 2D vertical decomposition method. The 2-cells in a slice are actually slices
of 3-cells in the 3D decomposition. The only places in which these 3-cells can critically
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Figure 6.20: In higher dimensions, the sweeping idea can be applied recursively.

change is when the sweeping plane stops at some x value. The center slice in Figure 6.20
corresponds to the case in which a vertex of a convex polyhedron is encountered, and all
of the polyhedron lies to right of the sweep plane (i.e., the rest of the polyhedron has not
been encountered yet). This corresponds to a place where a critical change must occur
in the slices. These are 3D versions of the cases in Figure 6.2, which indicate how the
vertical decomposition needs to be updated. The algorithm proceeds by first building the
2D vertical decomposition at the first x event. At each event, the 2D vertical decomposition
must be updated to take into account the critical changes. During this process, the 3D cell
decomposition and roadmap can be incrementally constructed, as in the 2D case.

The roadmap is constructed by placing a sample point in the center of each 3-cell
and 2-cell. The vertices are the sample points, and edges are added to the roadmap by
connecting the sample points for each case in which a 3-cell is adjacent to a 2-cell.

This same principle can be extended to any dimension, but the applications to motion
planning are limited because the method requires linear models (or at least it is very
challenging to adapt to nonlinear models; in some special cases, this can be done). See
[429] for a summary of the complexity of vertical decompositions for various geometric
primitives and dimensions.

6.3.4 A decomposition for a line-segment robot

This section presents one of the simplest cell decompositions that involves nonlinear
models, yet it is already fairly complicated. This will help to give an appreciation of the
difficulty of combinatorial planning in general. Consider the planning problem shown
in Figure 6.21. The robot, A, is a single line segment that can translate or rotate in
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Figure 6.21: Motion planning for a line segment that can translate and rotate in a 2D world.

W = R
2. The dot on one end of A is used to illustrate its origin and is not part of the

model. The C-space, C, is homeomorphic to R
2 × S

1. Assume that the parameterization
R

2 × [0, 2π]/ ∼ is used in which the identification equates θ = 0 and θ = 2π . A point
in C is represented as (x, y, θ).

An approximate solution

First consider making a cell decomposition for the case in which the segment can only
translate. The method from Section 4.3.2 can be used to compute Cobs by treating the
robot-obstacle interaction with Type EV and Type VE contacts. When the interior of A
touches an obstacle vertex, then Type EV is obtained. An endpoint ofA touching an object
interior yields Type VE. Each case produces an edge of Cobs, which is polygonal. Once this
is represented, the vertical decomposition can be used to solve the problem. This inspires a
reasonable numerical approach to the rotational case, which is to discretize θ into K values,
i�θ , for 0 ≤ i ≤ K , and �θ = 2π/K [20]. The obstacle region, Cobs, is polygonal for each
case, and we can imagine having a stack of K polygonal regions. A roadmap can be formed
by connecting sampling points inside of a slice in the usual way, and also by connecting
samples between corresponding cells in neighboring slices. If K is large enough, this
strategy works well, but the method is not complete because a sufficient value for K

cannot be determined in advance. The method is actually an interesting hybrid between
combinatorial and sampling-based motion planning. A resolution-complete version can
be imagined.

In the limiting case, as K tends to infinity, the surfaces of Cobs become curved along the
θ direction. The conditions in Section 4.3.3 must be applied to generate the actual obstacle
regions. This is possible, but it yields a semi-algebraic representation of Cobs in terms of
implicit polynomial primitives. It is no easy task to determine an explicit representation in
terms of simple cells that can be used for motion planning. The method of Section 6.3.3
cannot be used because Cobs is not polyhedral. Therefore, special analysis is warranted to
produce a cell decomposition.

The general idea is to construct a cell decomposition in R
2 by considering only the

translation part, (x, y). Each cell in R
2 is then lifted into C by considering θ as a third axis

that is “above” the xy plane. A cylindrical decomposition results in which each cell in the
xy plane produces a cylindrical stack of cells for different θ values. Recall the cylinders
in Figures 6.18 and 6.19. The vertical axis corresponds to θ in the current setting, and the
horizontal axis is replaced by two axes, x and y.
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Figure 6.22: Fix (x, y) and swing the segment around for all values of θ ∈ [0, 2π]/ ∼. (a) Note the vertex
and edge features that are hit by the segment. (b) Record orientation intervals over which the robot is not
in collision.

To construct the decomposition in R
2, consider the various robot-obstacle contacts

shown in Figure 6.22. In Figure 6.22a, the segment swings around from a fixed (x, y).
Two different kinds of contacts arise. For some orientation (value of θ), the segment
contacts v1, forming a Type EV contact. For three other orientations, the segment contacts
an edge, forming Type VE contacts. Once again using the feature concept, there are
four orientations at which the segment contacts a feature. Each feature may be either a
vertex or an edge. Between the two contacts with e2 and e3, the robot is not in collision.
These configurations lie in Cfree. Also, configurations for which the robot is between
contacts e3 (the rightmost contact) and v1 are also in Cfree. All other orientations produce
configurations in Cobs. Note that the line segment cannot get from being between e2 and
e3 to being between e3 and v1, unless the (x, y) position is changed. It therefore seems
sensible that these must correspond to different cells in whatever decomposition is made.

Radar maps

Figure 6.22b illustrates which values of θ produce collision. We will refer to this represen-
tation as a radar map. The four contact orientations are indicated by the contact feature.
The notation [e3, v1] and [e2, e3] identifies the two intervals for which (x, y, θ) ∈ Cfree.
Now imagine changing (x, y) by a small amount, to obtain (x ′, y ′). How would the radar
map change? The precise angles at which the contacts occur would change, but the no-
tation [e3, v1] and [e2, e3], for configurations that lie in Cfree, remains unchanged. Even
though the angles change, there is no interesting change in terms of the contacts; therefore,
it makes sense to declare (x, y, θ) and (x, y, θ ′) to lie in the same cell in Cfree because
θ and θ ′ both place the segment between the same contacts. Imagine a column of two
3-cells above a small area around (x, y). One 3-cell is for orientations in [e3, v1], and the
other is for orientations in [e2, e3]. These appear to be 3D regions in Cfree because each of
x, y, and θ can be perturbed a small amount without leaving the cell.

Of course, if (x, y) is changed enough, then eventually we expect a dramatic change
to occur in the radar map. For example, imagine e3 is infinitely long, and the x value is
gradually increased in Figure 6.22a. The black band between v1 and e2 in Figure 6.22b
shrinks in length. Eventually, when the distance from (x ′, y ′) to v1 is greater than the length
of A, the black band disappears. This situation is shown in Figure 6.23. The change is very
important to notice because after that region vanishes, any orientation θ ′ between e3 and
e3, traveling the long way around the circle, produces a configuration (x ′, y ′, θ ′) ∈ Cfree.
This seems very important because it tells us that we can travel between the original
two cells by moving the robot further way from v1, rotating the robot, and then moving
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Figure 6.23: If x is increased enough, a critical change occurs in the radar map because v1 can no longer
be reached by the robot.

back. Now move from the position shown in Figure 6.23 into the positive y direction. The
remaining black band begins to shrink and finally disappears when the distance to e3 is
further than the robot length. This represents another critical change.

The radar map can be characterized by specifying a circular ordering

([f1, f2], [f3, f4], [f5, f6], . . . , [f2k−1, f2k]), (6.6)

when there are k orientation intervals over which the configurations lie in Cfree. For the
radar map in Figure 6.22b, this representation yields ([e3, v1], [e2, e3]). Each fi is a fea-
ture, which may be an edge or a vertex. Some of the fi may be identical; the representation
for Figure 6.23b is ([e3, e3]). The intervals are specified in counterclockwise order around
the radar map. Since the ordering is circular, it does not matter which interval is specified
first. There are two degenerate cases. If (x, y, θ) ∈ Cfree for all θ ∈ [0, 2π), then we write ()
for the ordering. On the other hand, if (x, y, θ) ∈ Cobs for all θ ∈ [0, 2π), then we write ∅.

Critical changes in cells

Now we are prepared to explain the cell decomposition in more detail. Imagine traveling
along a path in R

2 and producing an animated version of the radar map in Figure 6.22b.
We say that a critical change occurs each time the circular ordering representation of (6.6)
changes. Changes occur when intervals: 1) appear, 2) disappear, 3) split apart, 4) merge
into one, or 5)w hen the feature of an interval changes. The first task is to partition R

2

into maximal 2-cells over which no critical changes occur. Each one of these 2-cells, R,
represents the projection of a strip of 3-cells in Cfree. Each 3-cell is defined as follows. Let
{R, [fi, fi+1]} denote the 3D region in Cfree for which (x, y) ∈ R and θ places the segment
between contacts fi and fi+1. The cylinder of cells above R is given by {R, [fi, fi+1]} for
each interval in the circular ordering representation, (6.6). If any orientation is possible
because A never contacts an obstacle while in R, then we write {R}.

What are the positions in R
2 that cause critical changes to occur? It turns out that there

are five different cases to consider, each of which produces a set of critical curves in R
2.

When one of these curves is crossed, a critical change occurs. If none of these curves is
crossed, then no critical change can occur. Therefore, these curves precisely define the
boundaries of the desired 2-cells in R

2. Let L denote the length of the robot (which is the
line segment).

Consider how the five cases mentioned above may occur. Two of the five cases have
already been observed in Figures 6.22 and 6.23. These appear in Figures 6.24a and
Figures 6.24b, and occur if (x, y) is within L of an edge or a vertex. The third and fourth
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Figure 6.24: Four of the � ve cases that produce critical curves in R
2.
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Figure 6.25: The � fth case is the most complicated. It results in a fourth-degree algebraic curve called the
Conchoid of Nicomedes.

cases are shown in Figures 6.24c and 6.24d, respectively. The third case occurs because
crossing the curve causes A to change between being able to touch e and being able
to touch v. This must be extended from any edge at an endpoint that is a reflex vertex
(interior angle is greater than π). The fourth case is actually a return of the bitangent case
from Figure 6.10, which arose for the shortest path graph. If the vertices are within L of
each other, then a linear critical curve is generated because A is no longer able to touch v2

when crossing it from right to left. Bitangents always produce curves in pairs; the curve
above v2 is not shown. The final case, shown in Figure 6.25, is the most complicated. It
is a fourth-degree algebraic curve called the Conchoid of Nicomedes, which arises from
A being in simultaneous contact between v and e. Inside of the teardrop-shaped curve,
A can contact e but not v. Just outside of the curve, it can touch v. If the xy coordinate
frame is placed so that v is at (0, 0), then the equation of the curve is

(x2 − y2)(y + d)2 − y2L2 = 0, (6.7)

in which d is the distance from v to e.
Putting all of the curves together generates a cell decomposition of R

2. There are
noncritical regions, over which there is no change in (6.6); these form the 2-cells. The
boundaries between adjacent 2-cells are sections of the critical curves and form 1-cells.
There are also 0-cells at places where critical curves intersect. Figure 6.26 shows an
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R1 R2 R3 R4
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R9

R10
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R13
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x2

x1

e4

e1

Figure 6.26: The critical curves form the boundaries of the noncritical regions in R
2.

example adapted from [591]. Note that critical curves are not drawn if their corresponding
configurations are all in Cobs. The method still works correctly if they are included, but
unnecessary cell boundaries are made. Just for fun, they could be used to form a nice cell
decomposition of Cobs, in addition to Cfree. Since Cobs is avoided, is seems best to avoid
wasting time on decomposing it. These unnecessary cases can be detected by imagining
that A is a laser with range L. As the laser sweeps around, only features that are contacted
by the laser are relevant. Any features that are hidden from view of the laser correspond
to unnecessary boundaries.

After the cell decomposition has been constructed in R
2, it needs to be lifted into

R
2 × [0, 2π]/ ∼. This generates a cylinder of 3-cells above each 2D noncritical region,

R. The roadmap could easily be defined to have a vertex for every 3-cell and 2-cell,
which would be consistent with previous cell decompositions; however, vertices at 2-
cells are not generated here to make the coming example easier to understand. Each
3-cell,{R, [fi, fi+1]}, corresponds to the vertex in a roadmap. The roadmap edges connect
neighboring 3-cells that have a 2-cell as part of their common boundary. This means that
in R

2 they share a one-dimensional portion of a critical curve.

Constructing the roadmap

The problem is to determine which 3-cells are actually adjacent. Figure 6.27 depicts
the cases in which connections need to be made. The xy plane is represented as one
axis (imagine looking in a direction parallel to it). Consider two neighboring 2-cells
(noncritical regions), R and R′, in the plane. It is assumed that a 1-cell (critical curve)
in R

2 separates them. The task is to connect together 3-cells in the cylinders above R

and R′. If neighboring cells share the same feature pair, then they are connected. This
means that {R, [fi, fi+1]} and {R′, [fi, fi+1]} must be connected. In some cases, one
feature may change, while the interval of orientations remains unchanged. This may
happen, for example, when the robot changes from contacting an edge to contacting a
vertex of the edge. In these cases, a connection must also be made. One case illustrated in
Figure 6.27 is when a splitting or merging of orientation intervals occurs. Traveling from
R to R′, the figure shows two regions merging into one. In this case, connections must
be made from each of the original two 3-cells to the merged 3-cell. When constructing
the roadmap edges, sample points of both the 3-cells and 2-cells should be used to ensure
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xy plane
R R′

Figure 6.27: Connections are made between neighboring 3-cells that lie above neighboring noncritical
regions.

R7

R5

e3

e2

x2

x1

e4

e1

R10

R9

R8

R13

R11

R12

R2 R3R1 R6R4

Figure 6.28: A depiction of the 3-cells above the noncritical regions. Sample rod orientations are shown for
each cell (however, the rod length is shortened for clarity). Edges between cells are shown in Figure 6.29.

collision-free paths are obtained, as in the case of the vertical decomposition in Section
6.2.2. Figure 6.28 depicts the cells for the example in Figure 6.26. Each noncritical
region has between one and three cells above it. Each of the various cells is indicated
by a shortened robot that points in the general direction of the cell. The connections
between the cells are also shown. Using the noncritical region and feature names from
Figure 6.26, the resulting roadmap is depicted abstractly in Figure 6.29. Each vertex
represents a 3-cell in Cfree, and each edge represents the crossing of a 2-cell between
adjacent 3-cells. To make the roadmap consistent with previous roadmaps, we could
insert a vertex into every edge and force the path to travel through the sample point of the
corresponding 2-cell.

Once the roadmap has been constructed, it can be used in the same way as other
roadmaps in this chapter to solve a query. Many implementation details have been ne-
glected here. Due to the fifth case, some of the region boundaries in R

2 are fourth-degree
algebraic curves. Ways to prevent the explicit characterization of every noncritical region
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Figure 6.29: The roadmap corresponding to the example in Figure 6.26.

boundary, and other implementation details, are covered in [57]. Some of these details are
also summarized in [591].

Complexity

How many cells can there possibly be in the worst case? First count the number of
noncritical regions in R

2. There are O(n) different ways to generate critical curves of
the first three types because each corresponds to a single feature. Unfortunately, there
are O(n2) different ways to generate bitangents and the Conchoid of Nicomedes because
these are based on pairs of features. Assuming no self-intersections, a collection of O(n2)
curves in R

2, may intersect to generate at most O(n4) regions. Above each noncritical
region in R

2, there could be a cylinder of O(n) 3-cells. Therefore, the size of the cell
decomposition is O(n5) in the worst case. In practice, however, it is highly unlikely that all
of these intersections will occur, and the number of cells is expected to be reasonable. In
[853], an O(n5)-time algorithm is given to construct the cell decomposition. Algorithms
that have much better running time are mentioned in Section 6.5.3, but they are more
complicated to understand and implement.

6.4 Computational algebraic geometry

This section presents algorithms that are so general that they solve any problem of
Formulation 4.1 and even the closed-chain problems of Section 4.4. It is amazing that such
algorithms exist; however, it is also unfortunate that they are both extremely challenging
to implement and not efficient enough for most applications. The concepts and tools of this
section were mostly developed in the context of computational real algebraic geometry
[79, 252]. They are powerful enough to conquer numerous problems in robotics, computer
vision, geometric modeling, computer-aided design, and geometric theorem proving.
One of these problems happens to be motion planning, for which the connection to
computational algebraic geometry was first recognized in [854].
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6.4.1 Basic definitions and concepts

This section builds on the semi-algebraic model definitions from Section 3.1 and the
polynomial definitions from Section 4.4.1. It will be assumed that C ⊆ R

n, which could
for example arise by representing each copy of SO(2) or SO(3) in its 2 × 2 or 3 × 3
matrix form. For example, in the case of a 3D rigid body, we know that C = R

3 ×RP
3,

which is a six-dimensional manifold, but it can be embedded in R
12, which is obtained

from the Cartesian product of R
3 and the set of all 3 × 3 matrices. The constraints that

force the matrices to lie in SO(2) or SO(3) are polynomials, and they can therefore be
added to the semi-algebraic models of Cobs and Cfree. If the dimension of C is less than
n, then the algorithm presented below is sufficient, but there are some representation
and complexity issues that motivate using a special parameterization of C to make both
dimensions the same while altering the topology of C to become homeomorphic to R

n.
This is discussed briefly in Section 6.4.2.

Suppose that the models in R
n are all expressed using polynomials from Q[x1, . . . , xn],

the set of polynomials6 over the field of rational numbers Q. Let f ∈ Q[x1, . . . , xn] denote
a polynomial.

Tarski sentences

Recall the logical predicates that were formed in Section 3.1. They will be used again
here, but now they are defined with a little more flexibility. For any f ∈ Q[x1, . . . , xn],
an atom is an expression of the form f � 0, in which � may be any relation in the
set {=, 	=, <, >,≤,≥}. In Section 3.1, such expressions were used to define logical
predicates. Here, we assume that relations other than ≤ can be used and that the vector of
polynomial variables lies in R

n.
A quantifier-free formula, φ(x1, . . . , xn), is a logical predicate composed of atoms and

logical connectives, “and,” “or,” and “not,” which are denoted by∧,∨, and¬, respectively.
Each atom itself is considered as a logical predicate that yields true if and only if the
relation is satisfied when the polynomial is evaluated at the point (x1, . . . , xn) ∈ R

n.

Example 6.2 (An Example Predicate) Let φ be a predicate over R
3, defined as

φ(x1, x2, x3) = (x2
1x3 − x4

2 < 0) ∨ (¬(3x2x3 	= 0) ∧ (2x2
3 − x1x2x3 + 2 ≥ 0)

)
. (6.8)

The precedence order of the connectives follows the laws of Boolean algebra. �

Let a quantifier Q be either of the symbols, ∀, which means “for all,” or ∃, which means
“there exists.” A Tarski sentence � is a logical predicate that may additionally involve
quantifiers on some or all of the variables. In general, a Tarski sentence takes the form

�(x1, . . . , xn−k) = (Qz1)(Qz2) . . . (Qzk) φ(z1, . . . , zk, x1, . . . , xn−k), (6.9)

in which the zi are the quantified variables, the xi are the free variables, and φ is a
quantifier-free formula. The quantifiers do not necessarily have to appear at the left to be
a valid Tarski sentence; however, any expression can be manipulated into an equivalent
expression that has all quantifiers in front, as shown in (6.9). The procedure for moving
quantifiers to the front is as follows [708]: 1) Eliminate any redundant quantifiers; 2)
rename some of the variables to ensure that the same variable does not appear both free

6 It will be explained shortly why Q[x1, . . . , xn] is preferred over R[x1, . . . , xn].
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and bound; 3) move negation symbols as far inward as possible; and 4) push the quantifiers
to the left.

Example 6.3 (Several Tarski Sentences) Tarski sentences that have no free variables
are either true or false in general because there are no arguments on which the results
depend. The sentence

� = ∀x∃y (x2 − y < 0), (6.10)

is true because for any x ∈ R, some y ∈ R can always be chosen so that y > x2. In the
general notation of (6.9), this example becomes Qz1 = ∀x, Qz2 = ∃y, and φ(z1, z2) =
(x2 − y < 0).

Swapping the order of the quantifiers yields the Tarski sentence

� = ∃y∀x (x2 − y < 0), (6.11)

which is false because for any y, there is always an x such that x2 > y.
Now consider a Tarski sentence that has a free variable:

�(z) = ∃y∀x (x2 − zx2 − y < 0). (6.12)

This yields a function � : R → {true, false}, in which

�(z) =
{

true if z > 1
false if z ≤ 1.

(6.13)

An equivalent quantifier-free formula φ can be defined as φ(z) = (z > 1), which takes
on the same truth values as the Tarski sentence in (6.12). This might make you wonder
whether it is always possible to make a simplification that eliminates the quantifiers. This
is called the quantifier-elimination problem, which will be explained shortly. �

The decision problem

The sentences in (6.10) and (6.11) lead to an interesting problem. Consider the set of all
Tarski sentences that have no free variables. The subset of these that are true comprise
the first-order theory of the reals. Can an algorithm be developed to determine whether
such a sentence is true? This is called the decision problem for the first-order theory of the
reals. At first it may appear hopeless because R

n is uncountably infinite, and an algorithm
must work with a finite set. This is a familiar issue faced throughout motion planning.
The sampling-based approaches in Chapter 5 provided one kind of solution. This idea
could be applied to the decision problem, but the resulting lack of completeness would
be similar. It is not possible to check all possible points in R

n by sampling. Instead, the
decision problem can be solved by constructing a combinatorial representation that exactly
represents the decision problem by partitioning R

n into a finite collection of regions. Inside
of each region, only one point needs to be checked. This should already seem related to
cell decompositions in motion planning; it turns out that methods developed to solve the
decision problem can also conquer motion planning.

The quantifier-elimination problem

Another important problem was exemplified in (6.12). Consider the set of all Tarski
sentences of the form (6.9), which may or may not have free variables. Can an algorithm
be developed that takes a Tarski sentence � and produces an equivalent quantifier-free
formula φ? Let x1, . . . , xn denote the free variables. To be equivalent, both must take on
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the same true values over R
n, which is the set of all assignments (x1, . . . , xn) for the free

variables.
Given a Tarski sentence, (6.9), the quantifier-elimination problem is to find a quantifier-

free formula φ such that

�(x1, . . . , xn) = φ(x1, . . . , xn) (6.14)

for all (x1, . . . , xn) ∈ R
n. This is equivalent to constructing a semi-algebraic model be-

cause φ can always be expressed in the form

φ(x1, . . . , xn) =
k∨

i=1

mi∧

j=1

(
fi,j (x1, . . . , xn) � 0

)
, (6.15)

in which � may be either <, =, or >. This appears to be the same (3.6), except that (6.15)
uses the relations <,=, and > to allow open and closed semi-algebraic sets, whereas (3.6)
only used ≤ to construct closed semi-algebraic sets for O and A.

Once again, the problem is defined on R
n, which is uncountably infinite, but an

algorithm must work with a finite representation. This will be achieved by the cell de-
composition technique presented in Section 6.4.2.

Semi-algebraic decomposition

As stated in Section 6.3.1, motion planning inside of each cell in a complex should be
trivial. To solve the decision and quantifier-elimination problems, a cell decomposition
was developed for which these problems become trivial in each cell. The decomposition is
designed so that only a single point in each cell needs to be checked to solve the decision
problem.

The semi-algebraic set Y ⊆ R
n that is expressed with (6.15) is

Y =
k⋃

i=1

mi⋂

j=1

{
(x1, . . . , xn) ∈ R

n | sgn(fi,j (x1, . . . , xn)) = si,j

}
, (6.16)

in which sgn is the sign function, and each si,j ∈ {−1, 0, 1}, which is the range of sgn.
Once again the nice relationship between set-theory and logic, which was described in
Section 3.1, appears here. We convert from a set-theoretic description to a logical predicate
by changing ∪ and ∩ to ∨ and ∧, respectively.

Let F denote the set of m =∑k
i=1 mi polynomials that appear in (6.16). A sign

assignment with respect to F is a vector-valued function, sgnF : R
n → {−1, 0, 1}m. Each

f ∈ F has a corresponding position in the sign assignment vector. At this position,
the sign, sgn(f (x1, . . . , xn)) ∈ {−1, 0, 1}, appears. A semi-algebraic decomposition is a
partition of R

n into a finite set of connected regions that are each sign invariant. This
means that inside of each region, sgnF must remain constant. The regions will not be
called cells because a semi-algebraic decomposition is not necessarily a singular complex
as defined in Section 6.3.1; the regions here may contain holes.

Example 6.4 (Sign assignment) Recall Example 3.1 and Figure 3.4 from Section 3.1.2.
Figure 3.4a shows a sign assignment for a case in which there is only one polynomial,
F = {x2 + y2 − 4}. The sign assignment is defined as

sgnF (x, y) =





−1 if x2 + y2 − 4 < 0
0 if x2 + y2 − 4 = 0
1 if x2 + y2 − 4 > 0.

(6.17)
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(−1,−1, 1, 1) (−1, 1,−1, 1)

(−1, 1, 1, 0)

(−1, 1, 0, 1)(−1, 0, 1, 1)

(1, 1, 1, 1)

(0, 1, 1, 1)
(−1, 1, 1,−1)

(−1, 1, 1, 1)

Figure 6.30: A semi-algebraic decomposition of the gingerbread face yields 9 sign-invariant regions.

Now consider the sign assignment sgnF , shown in Figure 6.30 for the gingerbread face
of Figure 3.4b. The polynomials of the semi-algebraic model are F = {f1, f2, f3, f4}, as
defined in Example 3.1. In order, these are the “head,” “left eye,” “right eye,” and “mouth.”
The sign assignment produces a four-dimensional vector of signs. Note that if (x, y) lies
on one of the zeros of a polynomial in F , then a 0 appears in the sign assignment. If the
curves of two or more of the polynomials had intersected, then the sign assignment would
produce more than one 0 at the intersection points.

For the semi-algebraic decomposition for the gingerbread face in Figure 6.30, there
are nine regions. Five 2D regions correspond to: 1) being outside of the face, 2)inside of
the left eye, 3) inside of the right eye, 4) inside of the mouth, and 5) inside of the face but
outside of the mouth and eyes. There are four 1D regions, each of which corresponds to
points that lie on one of the zero sets of a polynomial. The resulting decomposition is not
a singular complex because the (−1, 1, 1, 1) region contains three holes. �

A decomposition such as the one in Figure 6.30 would not be very useful for motion
planning because of the holes in the regions. Further refinement is needed for motion
planning, which is fortunately produced by cylindrical algebraic decomposition. On the
other hand, any semi-algebraic decomposition is quite useful for solving the decision
problem. Only one point needs to be checked inside of each region to determine whether
some Tarski sentence that has no free variables is true. Why? If the polynomial signs
cannot change over some region, then the true/false value of the corresponding logical
predicate, �, cannot change. Therefore, it sufficient only to check one point per sign-
invariant region.

6.4.2 Cylindrical algebraic decomposition

Cylindrical algebraic decomposition is a general method that produces a cylindrical
decomposition in the same sense considered in Section 6.3.2 for polygons in R

2 and
also the decomposition in Section 6.3.4 for the line-segment robot. It is also referred to as
Collins decomposition after its original developer [40, 234, 235]. The decomposition in
Figure 6.19 can even be considered as a cylindrical algebraic decomposition for a semi-
algebraic set in which every geometric primitive is a linear polynomial. In this section,
such a decomposition is generalized to any semi-algebraic set in R

n.
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The idea is to develop a sequence of projections that drops the dimension of the
semi-algebraic set by one each time. Initially, the set is defined over R

n, and after one
projection, a semi-algebraic set is obtained in R

n−1. Eventually, the projection reaches
R, and a univariate polynomial is obtained for which the zeros are at the critical places
where cell boundaries need to be formed. A cell decomposition of 1-cells (intervals) and
0-cells is formed by partitioning R. The sequence is then reversed, and decompositions
are formed from R

2 up to R
n. Each iteration starts with a cell decomposition in R

i and
lifts it to obtain a cylinder of cells in R

i+1. Figure 6.35 shows how the decomposition
looks for the gingerbread example; since n = 2, it only involves one projection and one
lifting.

Semi-algebraic projections are semi-algebraic

The following is implied by the Tarski-Seidenberg Theorem [79]:

A projection of a semi-algebraic set from dimension n to dimension n− 1 is a semi-
algebraic set.

This gives a kind of closure of semi-algebraic sets under projection, which is required
to ensure that every projection of a semi-algebraic set in R

i leads to a semi-algebraic
set in R

i−1. This property is actually not true for (real) algebraic varieties, which were
introduced in Section 4.4.1. Varieties are defined using only the = relation and are not
closed under the projection operation. Therefore, it is a good thing (not just a coincidence!)
that we are using semi-algebraic sets.

Real algebraic numbers

As stated previously, the sequence of projections ends with a univariate polynomial over
R. The sides of the cells will be defined based on the precise location of the roots of
this polynomial. Furthermore, representing a sample point for a cell of dimension k in a
complex in R

n for k < n requires perfect precision. If the coordinates are slightly off, the
point will lie in a different cell. This raises the complicated issue of how these roots are
represented and manipulated in a computer.

For univariate polynomials of degree 4 or less, formulas exist to compute all of the
roots in terms of functions of square roots and higher order roots. From Galois theory
[472, 772], it is known that such formulas and nice expressions for roots do not exist
for most higher degree polynomials, which can certainly arise in the complicated semi-
algebraic models that are derived in motion planning. The roots in R could be any real
number, and many real numbers require infinite representations.

One way of avoiding this mess is to assume that only polynomials in Q[x1, . . . , xn] are
used, instead of the more general R[x1, . . . , xn]. The field Q is not algebraically closed
because zeros of the polynomials lie outside of Q

n. For example, if f (x1) = x2
1 − 2, then

f = 0 for x1 = ±√2, and
√

2 	∈ Q. However, some elements of R can never be roots of
a polynomial in Q[x1, . . . , xn].

The set A of all real roots to all polynomials in Q[x] is called the set of real algebraic
numbers. The set A ⊂ R actually represents a field (recall from Section 4.4.1). Several
nice algorithmic properties of the numbers in A are 1) they all have finite representations,
2) addition and multiplication operations on elements of A can be computed in polynomial
time, and 3) conversions between different representations of real algebraic numbers can be
performed in polynomial time. This means that all operations can be computed efficiently
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without resorting to some kind of numerical approximation. In some applications, such
approximations are fine; however, for algebraic decompositions, they destroy critical
information by potentially confusing roots (e.g., how can we know for sure whether a
polynomial has multiple roots or just two roots that are very close together?).

The details are not presented here, but there are several methods for representing real
algebraic numbers and the corresponding algorithms for manipulating them efficiently.
The running time of cylindrical algebraic decomposition ultimately depends on this rep-
resentation. In practice, a numerical root-finding method that has a precision parameter, ε,
can be used by choosing ε small enough to ensure that roots will not be confused. A suffi-
ciently small value can be determined by applying gap theorems, which give lower bounds
on the amount of real root separation, expressed in terms of the polynomial coefficients
[175]. Some methods avoid requiring a precision parameter. One well-known example is
the derivation of a Sturm sequence of polynomials based on the given polynomial. The
polynomials in the Sturm sequence are then used to find isolating intervals for each of
the roots [79]. The polynomial, together with its isolating interval, can be considered
as an exact root representation. Algebraic operations can even be performed using this
representation in time O(d lg2 d), in which d is the degree of the polynomial [854]. See
[79, 175, 854] for detailed presentations on the exact representation and calculation with
real algebraic numbers.

One-dimensional decomposition

To explain the cylindrical algebraic decomposition method, we first perform a semi-
algebraic decomposition of R, which is the final step in the projection sequence. Once
this is explained, then the multi-dimensional case follows more easily.

Let F be a set of m univariate polynomials,

F = {fi ∈ Q[x] | i = 1, . . . , m}, (6.18)

which are used to define some semi-algebraic set in R. The polynomials in F could come
directly from a quantifier-free formula φ (which could even appear inside of a Tarski
sentence, as in (6.9)).

Define a single polynomial as f =∏m
i=1 fi . Suppose that f has k distinct, real roots,

which are sorted in increasing order:

−∞ < β1 < β2 < · · · < βi−1 < βi < βi+1 < · · · < βk < ∞. (6.19)

The one-dimensional semi-algebraic decomposition is given by the following sequence
of alternating 1-cells and 0-cells:

(−∞, β1), [β1, β1], (β1, β2), . . . , (βi−1, βi), [βi, βi],

(βi, βi+1), . . . , [βk, βk], (βk,∞).
(6.20)

Any semi-algebraic set that can be expressed using the polynomials in F can also be
expressed as the union of some of the 0-cells and 1-cells given in (6.20). This can also be
considered as a singular complex (it can even be considered as a simplicial complex, but
this does not extend to higher dimensions).

Sample points can be generated for each of the cells as follows. For the unbounded
cells [−∞, β1) and (βk,∞], valid samples are β1 − 1 and βk + 1, respectively. For each
finite 1-cell, (βi, βi+1), the midpoint (βi + βi+1)/2 produces a sample point. For each
0-cell, [βi, βi], the only choice is to use βi as the sample point.
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f1(x) = x2 − 2x f2(x) = x2 − 4x + 3

2 310
R

1

Figure 6.31: Two parabolas are used to de�ne the semi-algebraic set [1, 2].

R
0

[3, 3](2, 3)(1, 2)[1, 1] [2, 2](0, 1)[0, 0](−∞, 0) (3,∞)

2 31

Figure 6.32: A semi-algebraic decomposition for the polynomials in Figure 6.31.

Folding over Intersection

Figure 6.33: Critical points occur either when the surface folds over in the vertical direction or when
surfaces intersect.

Example 6.5 (One-Dimensional Decomposition) Figure 6.31 shows a semi-algebraic
subset of R that is defined by two polynomials, f1(x) = x2 − 2x and f2(x) = x2 − 4x + 3.
Here, F = {f1, f2}. Consider the quantifier-free formula

φ(x) = (x2 − 2x ≥ 0) ∧ (x2 − 4x + 3 ≥ 0). (6.21)

The semi-algebraic decomposition into five 1-cells and four 0-cells is shown in Figure 6.32.
Each cell is sign invariant. The sample points for the 1-cells are −1, 1/2, 3/2, 5/2, and 4,
respectively. The sample points for the 0-cells are 0, 1, 2, and 3, respectively.

A decision problem can be nicely solved using the decomposition. Suppose a Tarski
sentence that uses the polynomials in F has been given. Here is one possibility:

� = ∃x[(x2 − 2x ≥ 0) ∧ (x2 − 4x + 3 = 0)] (6.22)

The sample points alone are sufficient to determine whether � is true or false. Once
x = 1 is attempted, it is discovered that � is true. The quantifier-elimination problem
cannot yet be considered because more dimensions are needed. �

The inductive step to higher dimensions

Now consider constructing a cylindrical algebraic decomposition for R
n (note the decom-

position is actually semi-algebraic). Figure 6.35 shows an example for R
2. First consider

how to iteratively project the polynomials down to R to ensure that when the decom-
position of R

n is constructed, the sign-invariant property is maintained. The resulting
decomposition corresponds to a singular complex.

There are two cases that cause cell boundaries to be performed, as shown in Figure 6.33.
Let Fn denote the original set of polynomials in Q[x1, . . . , xn] that are used to define the
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semi-algebraic set (or Tarski sentence) in R
n. Form a single polynomial f =∏m

i=1 fi .
Let f ′ = ∂f/∂xn, which is also a polynomial. Let g = GCD(f, f ′), which is the greatest
common divisor of f and f ′. The set of zeros of g is the set of all points that are
zeros of both f and f ′. Being a zero of f ′ means that the surface given by f = 0 does
not vary locally when perturbing xn. These are places where a cell boundary needs to
be formed because the surface may fold over itself in the xn direction, which is not
permitted for a cylindrical decomposition. Another place where a cell boundary needs
to be formed is at the intersection of two or more polynomials in Fn. The projection
technique from R

n to R
n−1 generates a set, Fn−1, of polynomials in Q[x1, . . . , xn−1] that

satisfies these requirements. The polynomials Fn−1 have the property that at least one
contains a zero point below every point in x ∈ R

n for which f (x) = 0 and f ′(x) = 0,
or polynomials in Fn intersect. The projection method that constructs Fn−1 involves
computing principle subresultant coefficients, which are covered in [79, 855]. Resultants,
of which the subresultants are an extension, are covered in [252].

The polynomials in Fn−1 are then projected to R
n−2 to obtain Fn−2. This process

continues until F1 is obtained, which is a set of polynomials in Q[x1]. A one-dimensional
decomposition is formed, as defined earlier. From F1, a single polynomial is formed
by taking the product, and R is partitioned into 0-cells and 1-cells. We next describe the
process of lifting a decomposition over R

i−1 up to R
i . This technique is applied iteratively

until R
n is reached.

Assume inductively that a cylindrical algebraic decomposition has been computed
for a set of polynomials Fi−1 in Q[x1, . . . , xi−1]. The decomposition consists of k-cells
for which 0 ≤ k ≤ i. Let p = (x1, . . . , xi−1) ∈ R

i−1. For each one of the k-cells Ci−1, a
cylinder over Ci−1 is defined as the (k + 1)-dimensional set

{(p, xi) ∈ R
i | p ∈ Ci−1}. (6.23)

The cylinder is sliced into a strip of k-dimensional and k + 1-dimensional cells by using
polynomials in Fi . Let fj denote one of the � slicing polynomials in the cylinder, sorted
in increasing xi order as f1, f2, . . . , fj , fj+1, . . . , f�. The following kinds of cells are
produced (see Figure 6.34):

1. Lower unbounded sector:

{(p, xi) ∈ R
i | p ∈ Ci−1 and xi < f1(p) }. (6.24)

2. Section:

{(p, xi) ∈ R
i | p ∈ Ci−1 and xi = fj (p) }. (6.25)

3. Bounded sector:

{(p, xi) ∈ R
i | p ∈ Ci−1 and fj (p) < xi < fj+1(p) }. (6.26)

4. Upper unbounded sector:

{(p, xi) ∈ R
i | p ∈ Ci−1 and f�(p) < xi }. (6.27)

There is one degenerate possibility in which there are no slicing polynomials and the
cylinder over Ci−1 can be extended into one unbounded cell. In general, the sample points
are computed by picking a point in p ∈ Ci−1 and making a vertical column of samples of
the form (p, xi). A polynomial in Q[xi] can be generated, and the samples are placed using
the same assignment technique that was used for the one-dimensional decomposition.
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f1

fj

Ci−1

fj+1

f

Figure 6.34: A cylinder over every k-cell Ci−1 is formed. A sequence of polynomials, f 1, . . . , f �, slices the
cylinder into k-dimensional sections and (k+ 1)-dimensional sectors.

Example 6.6 (Mutilating the Gingerbread Face) Figure 6.35 shows a cylindrical
algebraic decomposition of the gingerbread face. Observe that the resulting complex is
very similar to that obtained in Figure 6.19. �

Note that the cells do not necessarily project onto a rectangular set, as in the case
of a higher dimensional vertical decomposition. For example, a generic n-cell Cn for a
decomposition of R

n is described as the open set of (x1, . . . , xn) ∈ R
n such that

• C0 < xn < C ′
0 for some 0-cells C0, C

′
0 ∈ R, which are roots of some f, f ′ ∈ F1.

• (xn−1, xn) lies between C1 and C ′
1 for some 1-cells C1, C ′

1, which are zeros of some
f, f ′ ∈ F2.
...

• (xn−i+1, . . . , xn) lies between Ci−1 and C ′
i−1 for some i-cells Ci−1, C ′

i−1, which are zeros
of some f, f ′ ∈ Fi .
...

• (x1, . . . , xn) lies between Cn−1 and C ′
n−1 for some (n− 1)-cells Cn−1, C ′

n−1, which are
zeros of some f, f ′ ∈ Fn.

The resulting decomposition is sign invariant, which allows the decision and quantifier-
elimination problems to be solved in finite time. To solve a decision problem, the poly-
nomials in Fn are evaluated at every sample point to determine whether one of them
satisfies the Tarski sentence. To solve the quantifier-elimination problem, note that any
semi-algebraic sets that can be constructed from Fn can be defined as a union of some
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Figure 6.35: A cylindrical algebraic decomposition of the gingerbread face. There are 37 2-cells, 64 1-
cells, and 28 0-cells. The straight 1-cells are intervals of the vertical lines, and the curved ones are portions
of the zero set of a polynomial in F . The decomposition of R is also shown.

cells in the decomposition. For the given Tarski sentence, Fn is formed from all polyno-
mials that are mentioned in the sentence, and the cell decomposition is performed. Once
obtained, the sign information is used to determine which cells need to be included in the
union. The resulting union of cells is designed to include only the points in R

n at which
the Tarski sentence is true.

Solving a motion planning problem

Cylindrical algebraic decomposition is also capable of solving any of the motion planning
problems formulated in Chapter 4. First assume that C = R

n. As for other decompositions,
a roadmap is formed in which every vertex is an n-cell and edges connect every pair of
adjacent n-cells by traveling through an (n− 1)-cell. It is straightforward to determine
adjacencies inside of a cylinder, but there are several technical details associated with
determining adjacencies of cells from different cylinders (pages 152–154 of [79] present
an example that illustrates the problem). The cells of dimension less than n− 1 are not
needed for motion planning purposes (just as vertices were not needed for the vertical
decomposition in Section 6.2.2). The query points qI and qG are connected to the roadmap
depending on the cell in which they lie, and a discrete search is performed.

If C ⊂ R
n and its dimension is k for k < n, then all of the interesting cells are of lower

dimension. This occurs, for example, due to the constraints on the matrices to force them
to lie in SO(2) or SO(3). This may also occur for problems from Section 4.4, in which
closed chains reduce the degrees of freedom. The cylindrical algebraic decomposition
method can still solve such problems; however, the exact root representation problem
becomes more complicated when determining the cell adjacencies. A discussion of these
issues appears in [854]. For the case of SO(2) and SO(3), this complication can be
avoided by using stereographic projection to map S

1 or S
3 to R or R

3, respectively. This
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mapping removes a single point from each, but the connectivity of Cfree remains unharmed.
The antipodal identification problem for unit quaternions represented by S

3 also does not
present a problem; there is a redundant copy of C, which does not affect the connectivity.

The running time for cylindrical algebraic decomposition depends on many factors,
but in general it is polynomial in the number of polynomials in Fn, polynomial in the
maximum algebraic degree of the polynomials, and doubly exponential in the dimension.
Complexity issues are covered in more detail in Section 6.5.3.

6.4.3 Canny’s roadmap algorithm

The doubly exponential running time of cylindrical algebraic decomposition inspired
researchers to do better. It has been shown that quantifier elimination requires doubly
exponential time [264]; however, motion planning is a different problem. Canny intro-
duced a method that produces a roadmap directly from the semi-algebraic set, rather than
constructing a cell decomposition along the way. Since there are doubly exponentially
many cells in the cylindrical algebraic decomposition, avoiding this construction pays off.
The resulting roadmap method of Canny solves the motion planning problem in time that
is again polynomial in the number of polynomials and polynomial in the algebraic degree,
but it is only singly exponential in dimension [172, 175]; see also [79].

Much like the other combinatorial motion planning approaches, it is based on finding
critical curves and critical points. The main idea is to construct linear mappings from R

n to
R

2 that produce silhouette curves of the semi-algebraic sets. Performing one such mapping
on the original semi-algebraic set yields a roadmap, but it might not preserve the original
connectivity. Therefore, linear mappings from R

n−1 to R
2 are performed on some (n− 1)-

dimensional slices of the original semi-algebraic set to yield more roadmap curves. This
process is applied recursively until the slices are already one-dimensional. The resulting
roadmap is formed from the union of all of the pieces obtained in the recursive calls. The
resulting roadmap has the same connectivity as the original semi-algebraic set [175].

Suppose that C = R
n. Let F = {f1, . . . , fm} denote the set of polynomials that define

the semi-algebraic set, which is assumed to be a disjoint union of manifolds. Assume
that each fi ∈ Q[x1, . . . , xn]. First, a small perturbation to the input polynomials F is
performed to ensure that every sign-invariant set of R

n is a manifold. This forces the
polynomials into a kind of general position, which can be achieved with probability one
using random perturbations; there are also deterministic methods to solve this problem.
The general position requirements on the input polynomials and the 2D projection direc-
tions are fairly strong, which has stimulated more recent work that eliminates many of
the problems [79]. From this point onward, it will be assumed that the polynomials are in
general position.

Recall the sign-assignment function from Section 6.4.1. Each sign-invariant set is
a manifold because of the general position assumption. Canny’s method computes a
roadmap for any k-dimensional manifold for k < n. Such a manifold has precisely n− k

signs that are 0 (which means that points lie precisely on the zero sets of n− k polynomials
in F). At least one of the signs must be 0, which means that Canny’s roadmap actually
lies in ∂Cfree (this technically is not permitted, but the algorithm nevertheless correctly
decides whether a solution path exists through Cfree).

Recall that each fi is a function, fi : R
n → R. Let x denote (x1, . . . , xn) ∈ R

n. The k

polynomials that have zero signs can be put together sequentially to produce a mapping
ψ : R

n → R
k . The ith component of the vector ψ(x) is ψi(x) = fi(x). This is closely
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related to the sign assignment function of Section 6.4.1, except that now the real value
from each polynomial is directly used, rather than taking its sign.

Now introduce a function g : R
n → R

j , in which either j = 1 or j = 2 (the general
concepts presented below work for other values of j , but 1 and 2 are the only values
needed for Canny’s method). The function g serves the same purpose as a projection in
cylindrical algebraic decomposition, but note that g immediately drops from dimension n

to dimension 2 or 1, instead of dropping to n− 1 as in the case of cylindrical projections.
Let h : R

n → R
k+j denote a mapping constructed directly from ψ and g as follows.

For the ith component, if i ≤ k, then hi(x) = ψi(x) = fi(x). Assume that k + j ≤ n. If
i > k, then hi(x) = gi−k(x). Let Jx(h) denote the Jacobian of h and be defined at x as

Jx(h) =





∂h1(x)

∂x1
· · · ∂h1(x)

∂xn
...

...
∂hm+k(x)

∂x1
· · · ∂hm+k(x)

∂xn




=





∂f1(x)

∂x1
· · · ∂f1(x)

∂xn
...

...
∂fk(x)

∂x1
· · · ∂fk(x)

∂xn

∂g1(x)

∂x1
· · · ∂g1(x)

∂xn
...

...
∂gj (x)

∂x1
· · · ∂gj (x)

∂xn





. (6.28)

A point x ∈ R
n at which Jx(h) is singular is called a critical point. The matrix is defined

to be singular if every (m+ k) × (m+ k) subdeterminant is zero. Each of the first k

rows of Jx(h) calculates the surface normal to fi(x) = 0. If these normals are not linearly
independent of the directions given by the last j rows, then the matrix becomes singular.
The following example from [171] nicely illustrates this principle.

Example 6.7 (Canny’s Roadmap Algorithm) Let n = 3, k = 1, and j = 1. The zeros
of a single polynomial f1 define a 2D subset of R

3. Let f1 be the unit sphere, S
2, defined

as the zeros of the polynomial

f1(x1, x2, x3) = x2
1 + x2

2 + x2
3 − 1. (6.29)

Suppose that g : R
3 → R is defined as g(x1, x2, x3) = x1. The Jacobian, (6.28), becomes

(
2x1 2x2 2x3

1 0 0

)
(6.30)

and is singular when all three of the possible 2 × 2 subdeterminants are zero. This occurs
if and only if x2 = x3 = 0. This yields the critical points (−1, 0, 0) and (1, 0, 0) on S

2.
Note that this is precisely when the surface normals of S

2 are parallel to the vector [1 0 0].
Now suppose that j = 2 to obtain g : R

3 → R
2, and suppose g(x1, x2, x3) = (x1, x2).

In this case, (6.28) becomes



2x1 2x2 2x3

1 0 0
0 1 0



 , (6.31)

which is singular if and only if x3 = 0. The critical points are therefore the x1x2 plane
intersected with S

3, which yields the equator points (all (x1, x2) ∈ R
2 such that x2

1 +
x2

2 = 1). In this case, more points are generated because the matrix becomes degenerate
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x1

x3

x2

Figure 6.36: Suppose that the semi-algebraic set is a solid torus in R
3.

for any surface normal of S
2 that is parallel to [1 0 0], [0 1 0] or any linear combination

of these. �

The first mapping in Example 6.7 yielded two isolated critical points, and the second
mapping yielded a one-dimensional set of critical points, which is referred to as a silhou-
ette. The union of the silhouette and the isolated critical points yields a roadmap for S

2.
Now consider generalizing this example to obtain the full algorithm for general n and k. A
linear mapping g : R

n → R
2 is constructed that might not be axis-aligned as in Example

6.7 because it must be chosen in general position (otherwise degeneracies might arise
in the roadmap). Define ψ to be the set of polynomials that become zero on the desired
manifold on which to construct a roadmap. Form the matrix (6.28) and determine the
silhouette. This is accomplished in general using subresultant techniques that were also
needed for cylindrical algebraic decomposition; see [79, 175] for details. Let g1 denote
the first component of g, which yields a mapping g1 : R

n → R. Forming (6.28) using g1

yields a finite set of critical points. Taking the union of the critical points and the silhouette
produces part of the roadmap.

So far, however, there are no guarantees that the connectivity is preserved. To handle
this problem, Canny’s algorithm proceeds recursively. For each of the critical points
x ∈ R

n, an n− 1-dimensional hyperplane through x is chosen for which the g1 row of
(6.28) is the normal (hence it is perpendicular in some sense to the flow of g1). Inside of
this hyperplane, a new g mapping is formed. This time a new direction is chosen, and the
mapping takes the form g : R

n−1 → R
2. Once again, the silhouettes and critical points

are founded and added to the roadmap. This process is repeated recursively until the base
case in which the silhouettes and critical points are directly obtained without forming g.

It is helpful to consider an example. Since the method involves a sequence of 2D
projections, it is difficult to visualize. Problems in R

4 and higher involve two or more 2D
projections and would therefore be more interesting. An example over R

3 is presented
here, even though it unfortunately has only one projection; see [175] for another example
over R

3.

Example 6.8 (Canny’s Algorithm on a Torus) Consider the 3D algebraic set shown in
Figure 6.36. After defining the mapping g(x1, x2, x3) = (x1, x2), the roadmap shown in
Figure 6.37 is obtained. The silhouettes are obtained from g, and the critical points are
obtained from g1 (this is the first component of g). Note that the original connectivity of
the solid torus is not preserved because the inner ring does not connect to the outer ring.
This illustrates the need to also compute the roadmap for lower dimensional slices. For
each of the four critical points, the critical curves are computed for a plane that is parallel
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Figure 6.37: The projection into the x1x2 plane yields silhouettes for the inner and outer rings and also
four critical points.

Figure 6.38: A slice taken for the inner critical points is parallel to the x2x3 plane. The roadmap for the
slice connects to the silhouettes from Figure 6.37, thereby preserving the connectivity of the original set in
Figure 6.36.

Figure 6.39: All of the silhouettes and critical points are merged to obtain the roadmap.

to the x2x3 plane and for which the x1 position is determined by the critical point. The
slice for one of the inner critical points is shown in Figure 6.38. In this case, the slice
already has two dimensions. New silhouette curves are added to the roadmap to obtain
the final result shown in Figure 6.39. �

To solve a planning problem, the query points qI and qG are artificially declared to be
critical points in the top level of recursion. This forces the algorithm to generate curves
that connect them to the rest of the roadmap.

The completeness of the method requires very careful analysis, which is thoroughly
covered in [79, 175]. The main elements of the analysis are showing that: 1) the polyno-
mials can be perturbed and g can be chosen to ensure general position, 2) the singularity
conditions on (6.28) lead to algebraic sets (varieties), and 3) the resulting roadmap has
the required properties mentioned in Section 6.1 of being accessible and connectivity-
preserving for Cfree (actually it is shown for ∂Cfree). The method explained above computes
the roadmap for each sign-invariant set, but to obtain a roadmap for the planning prob-
lem, the roadmaps from each sign-invariant set must be connected together correctly;
fortunately, this has been solved via the Linking Lemma of [171]. A major problem,
however, is that even after knowing the connectivity of the roadmap, it is a considerable
challenge to obtain a parameterization of each curve on the roadmap. For this and many
other technical reasons, no general implementation of Canny’s algorithm appears to exist
at present. Another problem is the requirement of a Whitney stratification (which can be
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fixed by perturbation of the input). The Basu-Pollack-Roy roadmap algorithm overcomes
this problem [79].

6.5 Complexity of motion planning

This section summarizes theoretical work that characterizes the complexity of motion
planning problems. Note that this is not equivalent to characterizing the running time of
particular algorithms. The existence of an algorithm serves as an upper bound on the
problem’s difficulty because it is a proof by example that solving the problem requires
no more time than what is needed by the algorithm. On the other hand, lower bounds are
also very useful because they give an indication of the difficulty of the problem itself.
Suppose, for example, you are given an algorithm that solves a problem in time O(n2).
Does it make sense to try to find a more efficient algorithm? Does it make sense to
try to find a general-purpose motion algorithm that runs in time that is polynomial in
the dimension? Lower bounds provide answers to questions such as this. Usually lower
bounds are obtained by concocting bizarre, complicated examples that are allowed by the
problem definition but were usually not considered by the person who first formulated
the problem. In this line of research, progress is made by either raising the lower bound
(unless it is already tight) or by showing that a narrower version of the problem still allows
such bizarre examples. The latter case occurs often in motion planning.

6.5.1 Lower bounds

Lower bounds have been established for a variety of motion planning problems and
also a wide variety of planning problems in general. To interpret these bounds a basic
understanding of the theory of computation is required [465, 892]. This fascinating subject
will be unjustly summarized in a few paragraphs. A problem is a set of instances that are
each carefully encoded as a binary string. An algorithm is formally considered as a Turing
machine, which is a finite-state machine that can read and write bits to an unbounded piece
of tape. Other models of computation also exist, such as integer RAM and real RAM
(see [120]); there are debates as to which model is most appropriate, especially when
performing geometric computations with real numbers. The standard Turing machine
model will be assumed from here onward. Algorithms are usually formulated to make a
binary output, which involves accepting or rejecting a problem instance that is initially
written to the tape and given to the algorithm. In motion planning, this amounts to deciding
whether a solution path exists for a given problem instance.

Languages

A language is a set of binary strings associated with a problem. It represents the complete
set of instances of a problem. An algorithm is said to decide a language if in finite time it
correctly accepts all strings that belong to it and rejects all others. The interesting question
is: How much time or space is required to decide a language? This question is asked of the
problem, under the assumption that the best possible algorithm would be used to decide
it. (We can easily think of inefficient algorithms that waste resources.)

A complexity class is a set of languages that can all be decided within some specified
resource bound. The class P is the set of all languages (and hence problems) for which a
polynomial-time algorithm exists (i.e., the algorithm runs in time O(nk) for some integer
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P NP PSPACE EXPTIME

Figure 6.40: It is known that P ⊂ EXPTIME is a strict subset; however, it is not known precisely how large
NP and PSPACE are.

k). By definition, an algorithm is called efficient if it decides its associated language in
polynomial time.7 If no efficient algorithm exists, then the problem is called intractable.
The relationship between several other classes that often emerge in theoretical motion
planning is shown in Figure 6.40. The class NP is the set of languages that can be
solved in polynomial time by a nondeterministic Turing machine. Some discussion of
nondeterministic machines appears in Section 11.3.2. Intuitively, it means that solutions
can be verified in polynomial time because the machine magically knows which choices to
make while trying to make the decision. The class PSPACE is the set of languages that can
be decided with no more than a polynomial amount of storage space during the execution
of the algorithm (NPSPACE=PSPACE, so there is no nondeterministic version). The class
EXPTIME is the set of languages that can be decided in time O(2nk

) for some integer
k. It is known that EXPTIME is larger than P, but it is not known precisely where the
boundaries of NP and PSPACE lie. It might be the case that P=NP= PSPACE (although
hardly anyone believes this), or it could be that NP = PSPACE = EXPTIME.

Hardness and completeness

Since an easier class is included as a subset of a harder one, it is helpful to have a notion
of a language (i.e., problem) being among the hardest possible within a class. Let X refer
to either P, NP, PSPACE, or EXPTIME. A language A is called X-hard if every language
B in class X is polynomial-time reducible to A. In short, this means that in polynomial
time, any language in B can be translated into instances for language A, and then the
decisions for A can be correctly translated back in polynomial time to correctly decide
B. Thus, if A can be decided, then within a polynomial-time factor, every language in X
can be decided. The hardness concept can even be applied to a language (problem) that
does not belong to the class. For example, we can declare that a language A is NP-hard
even if A 	∈ NP (it could be harder and lie in EXPTIME, for example). If it is known
that the language is both hard for some class X and is also a member of X, then it is
called X-complete (i.e., NP-complete, PSPACE-complete, etc.).8 Note that because of this
uncertainty regarding P, NP, and PSPACE, one cannot say that a problem is intractable if
it is NP-hard or PSPACE-hard, but one can, however, if the problem is EXPTIME-hard.
One additional remark: it is useful to remember that PSPACE-hard implies NP-hard.

7 Note that this definition may be absurd in practice; an algorithm that runs in time O(n90125) would probably not be
too efficient for most purposes.

8 If you remember hearing that a planning problem is NP-something, but cannot remember whether it was NP-hard
or NP-complete, then it is safe to say NP-hard because NP-complete implies NP-hard. This can similarly be said
for other classes, such as PSPACE-complete vs. PSPACE-hard.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

COMBINATORIAL MOTION PLANNING 249

Figure 6.41: Even motion planning for a bunch of translating rectangles inside of a rectangular box in R
2

is PSPACE-hard (and hence, NP-hard).

Lower bounds for motion planning

The general motion planning problem, Formulation 4.1, was shown in 1979 to be PSPACE-
hard by Reif [820]. In fact, the problem was restricted to polyhedral obstacles and a
finite number of polyhedral robot bodies attached by spherical joints. The coordinates
of all polyhedra are assumed to be in Q (this enables a finite-length string encoding
of the problem instance). The proof introduces a fascinating motion planning instance
that involves many attached, dangling robot parts that must work their way through a
complicated system of tunnels, which together simulates the operation of a symmetric
Turing machine. Canny later established that the problem in Formulation 4.1 (expressed
using polynomials that have rational coefficients) lies in PSPACE [175]. Therefore, the
general motion planning problem is PSPACE-complete.

Many other lower bounds have been shown for a variety of planning problems. One
famous example is the Warehouseman’s problem shown in Figure 6.41. This problem
involves a finite number of translating, axis-aligned rectangles in a rectangular world. It
was shown in [464] to be PSPACE-hard. This example is a beautiful illustration of how
such a deceptively simple problem formulation can lead to such a high lower bound. More
recently, it was even shown that planning for Sokoban, which is a warehouseman’s problem
on a discrete 2D grid, is also PSPACE-hard [257]. Other general motion planning problems
that were shown to be PSPACE-hard include motion planning for a chain of bodies in the
plane [463, 493] and motion planning for a chain of bodies among polyhedral obstacles in
R

3. Many lower bounds have been established for a variety of extensions and variations
of the general motion planning problem. For example, in [174] it was established that a
certain form of planning under uncertainty for a robot in a 3D polyhedral environment
is NEXPTIME-hard, which is harder than any of the classes shown in Figure 6.40; the
hardest problems in this NEXPTIME are believed to require doubly exponential time to
solve.

The lower bound or hardness results depend significantly on the precise representation
of the problem. For example, it is possible to make problems look easier by making
instance encodings that are exponentially longer than they should be. The running time or
space required is expressed in terms of n, the input size. If the motion planning problem



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

250 MOTION PLANNING

instances are encoded with exponentially more bits than necessary, then a language that
belongs to P is obtained. As long as the instance encoding is within a polynomial factor
of the optimal encoding (this can be made precise using Kolmogorov complexity [633]),
then this bizarre behavior is avoided. Another important part of the representation is to pay
attention to how parameters in the problem formulation can vary. We can redefine motion
planning to be all instances for which the dimension of C is never greater than 21000.
The number of dimensions is sufficiently large for virtually any application. The resulting
language for this problem belongs to P because cylindrical algebraic decomposition and
Canny’s algorithm can solve any motion planning problem in polynomial time. Why?
This is because now the dimension parameter in the time-complexity expressions can be
replaced by 21000, which is a constant. This formally implies that an efficient algorithm
is already known for any motion planning problem that we would ever care about. This
implication has no practical value, however. Thus, be very careful when interpreting
theoretical bounds.

The lower bounds may appear discouraging. There are two general directions to go
from here. One is to weaken the requirements and tolerate algorithms that yield some kind
of resolution completeness or probabilistic completeness. This approach was taken in
Chapter 5 and leads to many efficient algorithms. Another direction is to define narrower
problems that do not include the bizarre constructions that lead to bad lower bounds. For
the narrower problems, it may be possible to design interesting, efficient algorithms. This
approach was taken for the methods in Sections 6.2 and 6.3. In Section 6.5.3, upper bounds
for some algorithms that address these narrower problems will be presented, along with
bounds for the general motion planning algorithms. Several of the upper bounds involve
Davenport-Schinzel sequences, which are therefore covered next.

6.5.2 Davenport-Schinzel sequences

Davenport-Schinzel sequences provide a powerful characterization of the structure that
arises from the lower or upper envelope of a collection of functions. The lower envelope
of five functions is depicted in Figure 6.42. Such envelopes arise in many problems
throughout computational geometry, including many motion planning problems. They
are an important part of the design and analysis of many modern algorithms, and the
resulting algorithm’s time complexity usually involves terms that follow directly from the
sequences. Therefore, it is worthwhile to understand some of the basics before interpreting
some of the results of Section 6.5.3. Much more information on Davenport-Schinzel
sequences and their applications appears in [868]. The brief introduction presented here
is based on [867].

For positive integers n and s, an (n, s) Davenport-Schinzel sequence is a sequence
(u1, . . . , um) composed from a set of n symbols such that:

1. The same symbol may not appear consecutively in the sequence. In other words, ui 	= ui+1

for any i such that 1 ≤ i < m.

2. The sequence does not contain any alternating subsequence that uses two symbols
and has length s + 2. A subsequence can be formed by deleting any elements in the
original sequence. The condition can be expressed as: There do not exist s + 2 indices
i1 < i2 < · · · < is+2 for which ui1 = ui3 = ui5 = a and ui2 = ui4 = ui6 = b, for some
symbols a and b.
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X

f4(x)

f5(x)

f3(x)

f2(x)

f1(x)

Figure 6.42: The lower envelope of a collection of functions.

As an example, an (n, 3) sequence cannot appear as (a · · · b · · · a · · · b · · · a), in which
each · · · is filled in with any sequence of symbols. Let λs(n) denote the maximum
possible length of an (n, s) Davenport-Schinzel sequence.

The connection between Figure 6.42 and these sequences can now be explained.
Consider the sequence of function indices that visit the lower envelope. In the example,
this sequence is (5, 2, 3, 4, 1). Suppose it is known that each pair of functions intersects
in at most s places. If there are n real-valued continuous functions, then the sequence of
function indices must be an (n, s) Davenport-Schinzel sequence. It is amazing that such
sequences cannot be very long. For a fixed s, they are close to being linear.

The standard bounds for Davenport-Schinzel sequences are [867]9

λ1(n) = n (6.32)

λ2(n) = 2n− 1 (6.33)

λ3(n) = �(nα(n)) (6.34)

λ4(n) = �(n · 2α(n)) (6.35)

λ2s(n) ≤ n · 2α(n)s−1+C2s (n) (6.36)

λ2s+1(n) ≤ n · 2α(n)s−1 lg α(n)+C ′
2s+1(n) (6.37)

λ2s(n) = �(n · 2
1

(s−1)! α(n)s−1+C ′
2s (n)). (6.38)

In the expressions above Cr (n) and C ′
r (n) are terms that are smaller than their lead-

ing exponents. The α(n) term is the inverse Ackerman function, which is an extremely
slow-growing function that appears frequently in algorithms. The Ackerman function is
defined as follows. Let A1(m) = 2m and An+1(m) represent m applications of An. Thus,
A1(m) performs doubling, A2(m) performs exponentiation, and A3(m) performs tower
exponentiation, which makes a stack of 2’s,

22..
.

22

, (6.39)

that has height m. The Ackerman function is defined as A(n) = An(n). This function
grows so fast that A(4) is already an exponential tower of 2’s that has height 65536. Thus,

9 The following asymptotic notion is used: O(f (n)) denotes an upper bound, �(f (n)) denotes a lower bound,
and �(f (n)) means that the bound is tight (both upper and lower). This notation is used in most books on
algorithms [245].
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the inverse Ackerman function, α, grows very slowly. If n is less than or equal to an
exponential tower of 65536 2’s, then α(n) ≤ 4. Even when it appears in exponents of the
Davenport-Schinzel bounds, it does not represent a significant growth rate.

Example 6.9 (Lower Envelope of Line Segments) One interesting application of
Davenport-Schinzel applications is to the lower envelope of a set of line segments in
R

2. Since segments in general position can intersect in at most one place, the number of
edges in the lower envelope is �(λ3(n)) = �(nα(n)). There are actually arrangements of
segments in R

2 that reach this bound; see [868]. �

6.5.3 Upper bounds

The upper bounds for motion planning problems arise from the existence of complete
algorithms that solve them. This section proceeds by starting with the most general
bounds, which are based on the methods of Section 6.4, and concludes with bounds for
simpler motion planning problems.

General algorithms

The first upper bound for the general motion planning problem of Formulation 4.1 came
from the application of cylindrical algebraic decomposition [854]. Let n be the dimension
of C. Let m be the number of polynomials in F , which are used to define Cobs. Recall
from Section 4.3.3 how quickly this grows for simple examples. Let d be the maximum
degree among the polynomials in F . The maximum degree of the resulting polynomials
is bounded by O(d2n−1

), and the total number of polynomials is bounded by O((md)3n−1
).

The total running time required to use cylindrical algebraic decomposition for motion
planning is bounded by (md)O(1)n .10 Note that the algorithm is doubly exponential in
dimension n but polynomial in m and d. It can theoretically be declared to be efficient on
a space of motion planning problems of bounded dimension (although, it certainly is not
efficient for motion planning in any practical sense).

Since the general problem is PSPACE-complete, it appears unavoidable that a complete,
general motion planning algorithm will require a running time that is exponential in
dimension. Since cylindrical algebraic decomposition is doubly exponential, it led many
in the 1980s to wonder whether this upper bound could be lowered. This was achieved by
Canny’s roadmap algorithm, for which the running time is bounded by mn(lg m)dO(n4).
Hence, it is singly exponential, which appears very close to optimal because it is up
against the lower bound that seems to be implied by PSPACE-hardness (and the fact that
problems exist that require a roadmap with (md)n connected components [79]). Much of
the algorithm’s complexity is due to finding a suitable deterministic perturbation to put
the input polynomials into general position. A randomized algorithm can alternatively be
used, for which the randomized expected running time is bounded by mn(lg m)dO(n2). For
a randomized algorithm [722], the randomized expected running time is still a worst-case
upper bound, but averaged over random “coin tosses” that are introduced internally in
the algorithm; it does not reflect any kind of average over the expected input distribution.
Thus, these two bounds represent the best-known upper bounds for the general motion

10 It may seem odd for O(·) to appear in the middle of an expression. In this context, it means that there exists some
c ∈ [0,∞) such that the running time is bounded by (md)c

n
. Note that another O is not necessary in front of the

whole formula.
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planning problem. Canny’s algorithm may also be applied to solve the kinematic closure
problems of Section 4.4, but the complexity does not reflect the fact that the dimension,
k, of the algebraic variety is less than n, the dimension of C. A roadmap algorithm that is
particularly suited for this problem is introduced in [78], and its running time is bounded
by mk+1dO(n2). This serves as the best-known upper bound for the problems of Section 4.4.

Specialized algorithms

Now upper bounds are summarized for some narrower problems, which can be solved
more efficiently than the general problem. All of the problems involve either two or three
degrees of freedom. Therefore, we expect that the bounds are much lower than those for
the general problem. In many cases, the Davenport-Schinzel sequences of Section 6.5.2
arise. Most of the bounds presented here are based on algorithms that are not practical
to implement; they mainly serve to indicate the best asymptotic performance that can be
obtained for a problem. Most of the bounds mentioned here are included in [867].

Consider the problem from Section 6.2, in which the robot translates in W = R
2 and

Cobs is polygonal. Suppose thatA is a convex polygon that has k edges andO is the union of
m disjoint, convex polygons with disjoint interiors, and their total number of edges is n. In
this case, the boundary of Cfree (computed by Minkowski difference; see Section 4.3.2) has
at most 6m− 12 nonreflex vertices (interior angles less than π) and n+ km reflex vertices
(interior angles greater than π). The free space, Cfree, can be decomposed and searched
in time O((n+ km) lg2 n) [521, 867]. Using randomized algorithms, the bound reduces
to O((n+ km) · 2α(n) lg n) randomized expected time. Now suppose that A is a single
nonconvex polygonal region described by k edges and that O is a similar polygonal region
described by n edges. The Minkowski difference could yield as many as �(k2n2) edges for
Cobs. This can be avoided if the search is performed within a single connected component
of Cfree. Based on analysis that uses Davenport-Schinzel sequences, it can be shown
that the worst connected component may have complexity �(knα(k)), and the planning
problem can be solved in time O(kn lg2 n) deterministically or for a randomized algorithm,
O(kn · 2α(n) lg n) randomized expected time is needed. More generally, if Cobs consists of
n algebraic curves in R

2, each with degree no more than d, then the motion planning
problem for translation only can be solved deterministically in time O(λs+2(n) lg2 n),
or with a randomized algorithm in O(λs+2(n) lg n) randomized expected time. In these
expressions, λs+2(n) is the bound (6.37) obtained from the (n, s + 2) Davenport-Schinzel
sequence, and s ≤ d2.

For the case of the line-segment robot of Section 6.3.4 in an obstacle region described
with n edges, an O(n5)-time algorithm was given. This is not the best possible running
time for solving the line-segment problem, but the method is easier to understand than
others that are more efficient. In [751], a roadmap algorithm based on retraction is given
that solves the problem in O(n2 lg n lg∗ n) time, in which lg∗ n is the number of times
that lg has to be iterated on n to yield a result less than or equal to 1 (i.e., it is a very
small, insignificant term; for practical purposes, you can imagine that the running time is
O(n2 lg n)). The tightest known upper bound is O(n2 lg n) [628]. It is established in [520]
that there exist examples for which the solution path requires �(n2) length to encode.
For the case of a line segment moving in R

3 among polyhedral obstacles with a total of
n vertices, a complete algorithm that runs in time O(n4 + ε) for any ε > 0 was given in
[550]. In [520] it was established that solution paths of complexity �(n4) exist.

Now consider the case for which C = SE(2), A is a convex polygon with k edges,
and O is a polygonal region described by n edges. The boundary of Cfree has no more
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Figure 6.43: Determine the cylindrical algebraic decomposition obtained by projecting onto the x-axis.

than O(knλ6(kn)) edges and can be computed to solve the motion planning problem in
time O(knλ6(kn) lg kn) [10, 11]. An algorithm that runs in time O(k4nλ3(n) lg n) and
provides better clearance between the robot and obstacles is given in [207]. In [56] (some
details also appear in [591]), an algorithm is presented, and even implemented, that solves
the more general case in which A is nonconvex in time O(k3n3 lg(kn)). The number of
faces of Cobs could be as high as �(k3n3) for this problem. By explicitly representing and
searching only one connected component, the best-known upper bound for the problem
is O((kn)2+ε), in which ε > 0 may be chosen arbitrarily small [431].

In the final case, suppose thatA translates inW = R
3 to yield C = R

3. For a polyhedron
or polyhedral region, let its complexity be the total number of faces, edges, and vertices.
If A is a polyhedron with complexity k, and O is a polyhedral region with complexity
n, then the boundary of Cfree is a polyhedral surface of complexity �(k3n3). As for other
problems, if the search is restricted to a single component, then the complexity is reduced.
The motion planning problem in this case can be solved in time O((kn)2+ε) [42]. If A
is convex and there are m convex obstacles, then the best-known bound is O(kmn lg2 m)
time. More generally, if Cobs is bounded by n algebraic patches of constant maximum
degree, then a vertical decomposition method solves the motion planning problem within
a single connected component of Cfree in time O(n2+ε).

Further reading

Most of the literature on combinatorial planning is considerably older than the sampling-based planning
literature. A nice collection of early papers appears in [856]; this includes [463, 751, 752, 820, 853, 854,
855]. The classic motion planning textbook of Latombe [591] covers most of the methods presented in this
chapter. The coverage here does not follow [591], which makes separate categories for cell decomposition
methods and roadmap methods. A cell decomposition is constructed to produce a roadmap; hence, they
are unified in this chapter. An excellent reference for material in combinatorial algorithms, computational
geometry, and complete algorithms for motion planning is the collection of survey papers in [405].

Section 6.2 follows the spirit of basic algorithms from computational geometry. For a gentle introduc-
tion to computational geometry, including a nice explanation of vertical composition, see [266]. Other
sources for computational geometry include [129, 304, 809]. To understand the difficulties in computing
optimal decompositions of polygons, see [760]. See [653, 712, 835] for further reading on computing
shortest paths.

Cell decompositions and cell complexes are very important in computational geometry and algebraic
topology. Section 6.3 provided a brief perspective that was tailored to motion planning. For simplicial
complexes in algebraic topology, see [499, 538, 837]; for singular complexes, see [837]. In computational
geometry, various kinds of cell decompositions arise. Some of the most widely studied decompositions
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are triangulations [92] and arrangements [429], which are regions generated by a collection of primitives,
such as lines or circles in the plane. For early cell decomposition methods in motion planning, see [856].
A survey of computational topology appears in [954].

The most modern and complete reference for the material in Section 6.4 is [79]. A gentle introduction
to computational algebraic geometry is given in [252]. For details regarding algebraic computations with
polynomials, see [707]. A survey of computational algebraic geometry appears in [708]. In addition to
[79], other general references to cylindrical algebraic decomposition are [40, 234]. For its use in motion
planning, see [591, 854]. The main reference for Canny’s roadmap algorithm is [175]. Alternative high-
level overviews to the one presented in Section 6.4.3 appear in [222, 591]. Variations and improvements
to the algorithm are covered in [79]. A potential function-based extension of Canny’s roadmap algorithm
is developed in [178].

For further reading on the complexity of motion planning, consult the numerous references given in
Section 6.5.

Exercises

1. Extend the vertical decomposition algorithm to correctly handle the case in which Cobs has
two or more points that lie on the same vertical line. This includes the case of vertical
segments. Random perturbations are not allowed.

2. Fully describe and prove the correctness of the bitangent computation method shown in
Figure 6.14, which avoids trigonometric functions. Make certain that all types of bitangents
(in general position) are considered.

3. Develop an algorithm that uses the plane-sweep principle to ef�ciently compute a repre-
sentation of the union of two nonconvex polygons.

4. Extend the vertical cell decomposition algorithm of Section 6.2.2 to work for obstacle
boundaries that are described as chains of circular arcs and line segments.

5. Extend the short-path roadmap algorithm of Section 6.2.4 to work for obstacle boundaries
that are described as chains of circular arcs and line segments.

6. Derive the equation for the Conchoid of Nicomedes, shown in Figure 6.24, for the case of
a line-segment robot contacting an obstacle vertex and edge simultaneously.

7. Propose a resolution-complete algorithm for motion planning of the line-segment robot in
a polygonal obstacle region. The algorithm should compute exact C-space obstacle slices
for any �x ed orientation, θ ; however, the algorithm should use van der Corput sampling
over the set [0, 2π ) of orientations.

8. Determine the result of cylindrical algebraic decomposition for unit spheres S
1, S

2, S
3,

S
4, . . .. Each S

n is expressed as a unit sphere in R
n+1. Graphically depict the cases of S

1

and S
2. Also, attempt to develop an expression for the number of cells as a function of n.

9. Determine the cylindrical algebraic decomposition for the three intersecting circles shown
in Figure 6.43. How many cells are obtained?

10. Using the matrix in (6.28), show that the result of Canny’s roadmap for the torus, shown in
Figure 6.39, is correct. Use the torus equation

(x2
1 + x2

2 + x2
3 − (r2

1 + r2
2 ))2 − 4r2

1 (r2
2 − x2

3 ) = 0, (6.40)

in which r1 is the major circle, r2 is the minor circle, and r1 > r2.

11. Propose a vertical decomposition algorithm for a polygonal robot that can translate in the
plane and even continuously vary its scale. How would the algorithm be modi�ed to instead
work for a robot that can translate or be sheared?
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12. Develop a shortest-path roadmap algorithm for a �at torus, de�ned by identifying opposite
edges of a square. Use Euclidean distance but respect the identi�cations when determining
the shortest path. Assume the robot is a point and the obstacles are polygonal.

Implementations

13. Implement the vertical cell decomposition planning algorithm of Section 6.2.2.

14. Implement the maximum-clearance roadmap planning algorithm of Section 6.2.3.

15. Implement a planning algorithm for a point robot that moves in W = R
3 among polyhedral

obstacles. Use vertical decomposition.

16. Implement an algorithm that performs a cylindrical decomposition of a polygonal obstacle
region.

17. Implement an algorithm that computes the cell decomposition of Section 6.3.4 for the
line-segment robot.

18. Experiment with cylindrical algebraic decomposition. The project can be greatly facilitated
by utilizing existing packages for performing basic operations in computational algebraic
geometry.

19. Implement the algorithm proposed in Exercise 7.
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Extensions of Basic Motion Planning

This chapter presents many extensions and variations of the motion planning problem
considered in Chapters 3 to 6. Each one of these can be considered as a “spin-off”
that is fairly straightforward to describe using the mathematical concepts and algorithms
introduced so far. Unlike the previous chapters, there is not much continuity in Chapter 7.
Each problem is treated independently; therefore, it is safe to jump to whatever sections
in the chapter you find interesting without fear of missing important details.

In many places throughout the chapter, a state space X will arise. This is consistent
with the general planning notation used throughout the book. In Chapter 4, the C-space,
C, was introduced, which can be considered as a special state space: It encodes the set
of transformations that can be applied to a collection of bodies. Hence, Chapters 5 and 6
addressed planning in X = C. The C-space alone is insufficient for many of the problems
in this chapter; therefore, X will be used because it appears to be more general. For most
cases in this chapter, however, X is derived from one or more C-spaces. Thus, C-space
and state space terminology will be used in combination.

7.1 Time-varying problems

This section brings time into the motion planning formulation. Although the robot has
been allowed to move, it has been assumed so far that the obstacle region O and the
goal configuration, qG ∈ Cfree, are stationary for all time. It is now assumed that these
entities may vary over time, although their motions are predictable. If the motions are
not predictable, then some form of feedback is needed to respond to observations that
are made during execution. Such problems are much more difficult and will be handled
in Chapters 8 and throughout Part IV.

7.1.1 Problem formulation

The formulation is designed to allow the tools and concepts learned so far to be applied
directly. Let T ⊂ R denote the time interval, which may be bounded or unbounded. If T

is bounded, then T = [0, tf ], in which 0 is the initial time and tf is the final time. If T is
unbounded, then T = [0,∞). An initial time other than 0 could alternatively be defined
without difficulty, but this will not be done here.

Let the state space X be defined as X = C × T , in which C is the usual C-space of
the robot, as defined in Chapter 4. A state x is represented as x = (q, t), to indicate the
configuration q and time t components of the state vector. The planning will occur directly
in X, and in many ways it can be treated as any C-space seen to far, but there is one critical
difference: Time marches forward. Imagine a path that travels through X. If it first reaches
a state (q1, 5), and then later some state (q2, 3), some traveling backward through time is
required! There is no mathematical problem with allowing such time travel, but it is not

257
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realistic for most applications. Therefore, paths in X are forced to follow a constraint that
they must move forward in time.

Now consider making the following time-varying versions of the items used in Formu-
lation 4.1 for motion planning.

Formulation 7.1 (The Time-Varying Motion Planning Problem)

1. A world W in which either W = R
2 or W = R

3. This is the same as in Formulation 4.1.

2. A time interval T ⊂ R that is either bounded to yield T = [0, tf ] for some final time,
tf > 0, or unbounded to yield T = [0,∞).

3. A semi-algebraic, time-varying obstacle region O(t) ⊂W for every t ∈ T . It is assumed
that the obstacle region is a finite collection of rigid bodies that undergoes continuous,
time-dependent rigid-body transformations.

4. The robot A (or A1, . . . ,Am for a linkage) and configuration space C definitions are the
same as in Formulation 4.1.

5. The state space X is the Cartesian product X = C × T and a state x ∈ X is denoted
as x = (q, t) to denote the configuration q and time t components. See Figure 7.1. The
obstacle region, Xobs , in the state space is defined as

Xobs = {(q, t) ∈ X | A(q) ∩O(t) 	= ∅}, (7.1)

and Xfree = X \Xobs . For a given t ∈ T , slices of Xobs and Xfree are obtained. These are
denoted as Cobs(t) and Cfree(t), respectively, in which (assuming A is one body)

Cobs(t) = {q ∈ C | A(q) ∩O(t) 	= ∅} (7.2)

and Cfree = C \ Cobs.

6. A state xI ∈ Xfree is designated as the initial state, with the constraint that xI = (qI , 0)
for some qI ∈ Cfree(0). In other words, at the initial time the robot cannot be in collision.

7. A subset XG ⊂ Xfree is designated as the goal region. A typical definition is to pick some
qG ∈ C and let XG = {(qG, t) ∈ Xfree | t ∈ T }, which means that the goal is stationary
for all time.

8. A complete algorithm must compute a continuous, time-monotonic path, τ [0, 1] → Xfree,
such that τ (0) = xI and τ (1) ∈ XG, or correctly report that such a path does not exist. To
be time-monotonic implies that for any s1, s2 ∈ [0, 1] such that s1 < s2, we have t1 < t2,
in which (q1, t1) = τ (s1) and (q2, t2) = τ (s2).

Example 7.1 (Piecewise-Linear Obstacle Motion) Figure 7.1 shows an example of a
convex, polygonal robot A that translates in W = R

2. There is a single, convex, polygonal
obstacle O. The two of these together yield a convex, polygonal C-space obstacle, Cobs(t),
which is shown for times t1, t2, and t3. The obstacle moves with a piecewise-linear motion
model, which means that transformations applied to O are a piecewise-linear function
of time. For example, let (x, y) be a fixed point on the obstacle. To be a linear motion
model, this point must transform as (x + c1t, y + c2t) for some constants c1, c2 ∈ R. To
be piecewise-linear, it may change to a different linear motion at a finite number of critical
times. Between these critical times, the motion must remain linear. There are two critical
times in the example. If Cobs(t) is polygonal, and a piecewise-linear motion model is used,
then Xobs is polyhedral, as depicted in Figure 7.1. A stationary goal is also shown, which
appears as a line that is parallel to the T -axis. �
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Cfree(t1) Cfree(t2) Cfree(t3)
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Figure 7.1: A time-varying example with piecewise-linear obstacle motion.

In the general formulation, there are no additional constraints on the path, τ , which
means that the robot motion model allows infinite acceleration and unbounded speed.
The robot velocity may change instantaneously, but the path through C must always be
continuous. These issues did not arise in Chapter 4 because there was no need to mention
time. Now it becomes necessary.1

7.1.2 Direct solutions

Sampling-based methods

Many sampling-based methods can be adapted from C to X without much difficulty. The
time dependency of obstacle models must be taken into account when verifying that path
segments are collision-free; the techniques from Section 5.3.4 can be extended to handle
this. One important concern is the metric for X. For some algorithms, it may be important
to permit the use of a pseudometric because symmetry is broken by time (going backward
in time is not as easy as going forward).

For example, suppose that the C-space C is a metric space, (C, ρ). The metric can
be extended across time to obtain a pseudometric, ρX, as follows. For a pair of states,

1 The infinite acceleration and unbounded speed assumptions may annoy those with mechanics and control back-
grounds. In this case, assume that the present models approximate the case in which every body moves slowly, and
the dynamics can be consequently neglected. If this is still not satisfying, then jump ahead to Part IV, where general
nonlinear systems are considered. It is still helpful to consider the implications derived from the concepts in this
chapter because the issues remain for more complicated problems that involve dynamics.
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x = (q, t) and x ′ = (q ′, t ′), let

ρX(x, x ′) =





0 if q = q ′

∞ if q 	= q ′ and t ′ ≤ t

ρ(q, q ′) otherwise.
(7.3)

Using ρX, several sampling-based methods naturally work. For example, RDTs from
Section 5.5 can be adapted to X. Using ρX for a single-tree approach ensures that all
path segments travel forward in time. Using bidirectional approaches is more difficult
for time-varying problems because XG is usually not a single point. It is not clear which
(q, t) should be the starting vertex for the tree from the goal; one possibility is to initialize
the goal tree to an entire time-invariant segment. The sampling-based roadmap methods
of Section 5.6 are perhaps the most straightforward to adapt. The notion of a directed
roadmap is needed, in which every edge must be directed to yield a time-monotonic path.
For each pair of states, (q, t) and (q ′, t ′), such that t 	= t ′, exactly one valid direction
exists for making a potential edge. If t = t ′, then no edge can be attempted because it
would require the robot to instantaneously “teleport” from one part of W to another. Since
forward time progress is already taken into account by the directed edges, a symmetric
metric may be preferable instead of (7.3) for the sampling-based roadmap approach.

Combinatorial methods

In some cases, combinatorial methods can be used to solve time-varying problems. If the
motion model is algebraic (i.e., expressed with polynomials), then Xobs is semi-algebraic.
This enables the application of general planners from Section 6.4, which are based on
computational real algebraic geometry. The key issue once again is that the resulting
roadmap must be directed with all edges being time-monotonic. For Canny’s roadmap
algorithm, this requirement seems difficult to ensure. Cylindrical algebraic decomposition
is straightforward to adapt, provided that time is chosen as the last variable to be considered
in the sequence of projections. This yields polynomials in Q[t], and R is nicely partitioned
into time intervals and time instances. Connections can then be made for a cell of one
cylinder to an adjacent cell of a cylinder that occurs later in time.

If Xobs is polyhedral as depicted in Figure 7.1, then vertical decomposition can be
used. It is best to first sweep the plane along the time axis, stopping at the critical times
when the linear motion changes. This yields nice sections, which are further decomposed
recursively, as explained in Section 6.3.3, and also facilitates the connection of adjacent
cells to obtain time-monotonic path segments. It is not too difficult to imagine the approach
working for a four-dimensional state space, X, for which Cobs(t) is polyhedral as in
Section 6.3.3, and time adds the fourth dimension. Again, performing the first sweep with
respect to the time axis is preferable.

If X is not decomposed into cylindrical slices over each noncritical time interval,
then cell decompositions may still be used, but be careful to correctly connect the cells.
Figure 7.2 illustrates the problem, for which transitivity among adjacent cells is broken.
This complicates sample point selection for the cells.

Bounded speed

There has been no consideration so far of the speed at which the robot must move to
avoid obstacles. It is obviously impractical in many applications if the solution requires
the robot to move arbitrarily fast. One step toward making a realistic model is to enforce
a bound on the speed of the robot. (More steps towards realism are taken in Chapter 13.)
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C2

C3

C1

q

t

Figure 7.2: Transitivity is broken if the cells are not formed in cylinders over T. A time-monotonic path
exists from C1 to C2, and from C2 to C3, but this does not imply that one exists from C1 to C3.

t

y

Figure 7.3: A projection of the cone constraint for the bounded-speed problem.

For simplicity, suppose C = R
2, which corresponds to a translating rigid robot, A, that

moves in W = R
2. A configuration, q ∈ C, is represented as q = (y, z) (since x already

refers to the whole state vector). The robot velocity is expressed as v = (ẏ, ż) ∈ R
2, in

which ẏ = dy/dt and ż = dz/dt . The robot speed is ‖v‖ =
√

ẏ2 + ż2. A speed bound,
b, is a positive constant, b ∈ (0,∞), for which ‖v‖ ≤ b.

In terms of Figure 7.1, this means that the slope of a solution path τ is bounded.
Suppose that the domain of τ is T = [0, tf ] instead of [0, 1]. This yields τ : T → X

and τ (t) = (y, z, t). Using this representation, dτ1/dt = ẏ and dτ2/dt = ż, in which τi

denotes the ith component of τ (because it is a vector-valued function). Thus, it can seen
that b constrains the slope of τ (t) in X. To visualize this, imagine that only motion in
the y direction occurs, and suppose b = 1. If τ holds the robot fixed, then the speed
is zero, which satisfies any bound. If the robot moves at speed 1, then dτ1/dt = 1 and
dτ2/dt = 0, which satisfies the speed bound. In Figure 7.1 this generates a path that has
slope 1 in the yt plane and is horizontal in the zt plane. If dτ1/dt = dτ2/dt = 1, then the
bound is exceeded because the speed is

√
2. In general, the velocity vector at any state

(y, z, t) points into a cone that starts at (y, z) and is aligned in the positive t direction;
this is depicted in Figure 7.3. At time t +�t , the state must stay within the cone, which
means that

(
y(t +�t) − y(t)

)2 + (z(t +�t) − z(t)
)2 ≤ b2(�t)2. (7.4)

This constraint makes it considerably more difficult to adapt the algorithms of Chap-
ters 5 and 6. Even for piecewise-linear motions of the obstacles, the problem has been
established to be PSPACE-hard [821, 822, 929]. A complete algorithm is presented in [822]
that is similar to the shortest-path roadmap algorithm of Section 6.2.4. The sampling-based
roadmap of Section 5.6 is perhaps one of the easiest of the sampling-based algorithms
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O(t)

A

t

1

0
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(a) (b)

Figure 7.4: An illustration of path tuning. (a) If the robot follows its computed path, it may collide with the
moving obstacle. (b) The resulting state space.

to adapt for this problem. The neighbors of point q, which are determined for attempted
connections, must lie within the cone that represents the speed bound. If this constraint is
enforced, a resolution complete or probabilistically complete planning algorithm results.

7.1.3 The velocity-tuning method

An alternative to defining the problem in C × T is to decouple it into a path planning
part and a motion timing part [509]. Algorithms based on this method are not complete,
but velocity tuning is an important idea that can be applied elsewhere. Suppose there are
both stationary obstacles and moving obstacles. For the stationary obstacles, suppose that
some path τ : [0, 1] → Cfree has been computed using any of the techniques described in
Chapters 5 and 6.

The timing part is then handled in a second phase. Design a timing function (or time
scaling), σ : T → [0, 1], that indicates for time, t , the location of the robot along the
path, τ . This is achieved by defining the composition φ = τ ◦ σ , which maps from T

to Cfree via [0, 1]. Thus, φ : T → Cfree. The configuration at time t ∈ T is expressed as
φ(t) = τ (σ (t)).

A 2D state space can be defined as shown in Figure 7.4. The purpose is to convert
the design of σ (and consequently φ) into a familiar planning problem. The robot must
move along its path from τ (0) to τ (1) while an obstacle, O(t), moves along its path over
the time interval T . Let S = [0, 1] denote the domain of τ . A state space, X = T × S, is
shown in Figure 7.4b, in which each point (t, s) indicates the time t ∈ T and the position
along the path, s ∈ [0, 1]. The obstacle region in X is defined as

Xobs = {(t, s) ∈ X | A(τ (s)) ∩O(t) 	= ∅}. (7.5)

Once again, Xfree is defined as Xfree = X \Xobs . The task is to find a continuous path
g : [0, 1] → Xfree. If g is time-monotonic, then a position s ∈ S is assigned for every time,
t ∈ T . These assignments can be nicely organized into the timing function, σ : T → S,
from which φ is obtained by φ = τ ◦ σ to determine where the robot will be at each time.
Being time-monotonic in this context means that the path must always progress from
left to right in Figure 7.4b. It can, however, be nonmonotonic in the positive s direction.
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t
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Figure 7.5: Vertical cell decomposition can solve the path tuning problem. Note that this example is not in
general position because vertical edges exist. The goal is to reach the horizontal line at the top, which can
be accomplished from any adjacent 2-cell. For this example, it may even be accomplished from the � rst
2-cell if the robot is able to move quickly enough.

This corresponds to moving back and forth along τ , causing some configurations to be
revisited.

Any of the methods described in Formulation 7.1 can be applied here. The dimension of
X in this case is always 2. Note that Xobs is polygonal ifA andO are both polygonal regions
and their paths are piecewise-linear. In this case, the vertical decomposition method of
Section 6.2.2 can be applied by sweeping along the time axis to yield a complete algorithm
(it is complete after having committed to τ , but it is not complete for Formulation 7.1).
The result is shown in Figure 7.5. The cells are connected only if it is possible to reach one
from the other by traveling in the forward time direction. As an example of a sampling-
based approach that may be preferable when Xobs is not polygonal, place a grid over X

and apply one of the classical search algorithms described in Section 5.4.2. Once again,
only path segments in X that move forward in time are allowed.

7.2 Multiple robots

Suppose that multiple robots share the same world, W . A path must be computed for
each robot that avoids collisions with obstacles and with other robots. In Chapter 4, each
robot could be a rigid body, A, or it could be made of k attached bodies, A1, . . . ,Ak . To
avoid confusion, superscripts will be used in this section to denote different robots. The
ith robot will be denoted by Ai . Suppose there are m robots, A1, A2, . . . ,Am. Each robot,
Ai , has its associated C-space, Ci , and its initial and goal configurations, qi

init and qi
goal ,

respectively.

7.2.1 Problem formulation

A state space is defined that considers the configurations of all robots simultaneously,

X = C1 × C2 × · · · × Cm. (7.6)
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A state x ∈ X specifies all robot configurations and may be expressed as x =
(q1, q2, . . . , qm). The dimension of X is N , which is N =∑m

i=1 dim(Ci).
There are two sources of obstacle regions in the state space: 1) robot-obstacle collisions,

and 2) robot-robot collisions. For each i such that 1 ≤ i ≤ m, the subset of X that
corresponds to robot Ai in collision with the obstacle region, O, is

Xi
obs = {x ∈ X | Ai(qi) ∩O 	= ∅}. (7.7)

This only models the robot-obstacle collisions.
For each pair, Ai and Aj , of robots, the subset of X that corresponds to Ai in collision

with Aj is

X
ij

obs = {x ∈ X | Ai(qi) ∩Aj (qj ) 	= ∅}. (7.8)

Both (7.7) and (7.8) will be combined in (7.10) later to yield Xobs .

Formulation 7.2 (Multiple-Robot Motion Planning)

1. The world W and obstacle region O are the same as in Formulation 4.1.

2. There are m robots, A1, . . . ,Am, each of which may consist of one or more bodies.

3. Each robot Ai , for i from 1 to m, has an associated configuration space, Ci .

4. The state space X is defined as the Cartesian product

X = C1 × C2 × · · · × Cm. (7.9)

The obstacle region in X is

Xobs =
(

m⋃

i=1

Xi
obs

)
⋃




⋃

ij, i 	=j

X
ij

obs



 , (7.10)

in which Xi
obs and X

ij

obs are the robot-obstacle and robot-robot collision states from (7.7)
and (7.8), respectively.

5. A state xI ∈ Xfree is designated as the initial state, in which xI = (q1
I , . . . , q

m
I ). For each

i such that 1 ≤ i ≤ m, qi
I specifies the initial configuration of Ai .

6. A state xG ∈ Xfree is designated as the goal state, in which xG = (q1
G, . . . , qm

G ).

7. The task is to compute a continuous path τ : [0, 1] → Xf ree such that τ (0) = xinit and
τ (1) ∈ xgoal .

An ordinary motion planning problem?

On the surface it may appear that there is nothing unusual about the multiple-robot
problem because the formulations used in Chapter 4 already cover the case in which
the robot consists of multiple bodies. They do not have to be attached; therefore, X

can be considered as an ordinary C-space. The planning algorithms of Chapters 5 and
6 may be applied without adaptation. The main concern, however, is that the dimension
of X grows linearly with respect to the number of robots. For example, if there are 12
rigid bodies for which each has Ci = SE(3), then the dimension of X is 6 · 12 = 72.
Complete algorithms require time that is at least exponential in dimension, which makes
them unlikely candidates for such problems. Sampling-based algorithms are more likely
to scale well in practice when there many robots, but the dimension of X might still be
too high.
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X

Xj

X i

X
ij
obs

Figure 7.6: The set Xij
obs and its cylindrical structure on X.

Reasons to study multi-robot motion planning

Even though multiple-robot motion planning can be handled like any other motion plan-
ning problem, there are several reasons to study it separately:

1. The motions of the robots can be decoupled in many interesting ways. This leads to
several interesting methods that first develop some kind of partial plan for the robots
independently, and then consider the plan interactions to produce a solution. This idea is
referred to as decoupled planning.

2. The part of Xobs due to robot-robot collisions has a cylindrical structure, depicted in
Figure 7.6, which can be exploited to make more efficient planning algorithms. Each
X

ij

obs defined by (7.8) depends only on two robots. A point, x = (q1, . . . , qm), is in Xobs

if there exists i, j such that 1 ≤ i, j ≤ m and Ai(qi) ∩Aj (qj ) 	= ∅, regardless of the
configurations of the other m− 2 robots. For some decoupled methods, this even implies
that Xobs can be completely characterized by 2D projections, as depicted in Figure 7.9.

3. If optimality is important, then a unique set of issues arises for the case of multiple robots.
It is not a standard optimization problem because the performance of each robot has to be
optimized. There is no clear way to combine these objectives into a single optimization
problem without losing some critical information. It will be explained in Section 7.7.2 that
Pareto optimality naturally arises as the appropriate notion of optimality for multiple-robot
motion planning.

Assembly planning

One important variant of multiple-robot motion planning is called assembly planning;
recall from Section 1.2 its importance in applications. In automated manufacturing, many
complicated objects are assembled step-by-step from individual parts. It is convenient
for robots to manipulate the parts one-by-one to insert them into the proper locations
(see Section 7.3.2). Imagine a collection of parts, each of which is interpreted as a robot,
as shown in Figure 7.7a. The goal is to assemble the parts into one coherent object,
such as that shown in Figure 7.7b. The problem is generally approached by starting with
the goal configuration, which is tightly constrained, and working outward. The problem
formulation may allow that the parts touch, but their interiors cannot overlap. In general,
the assembly planning problem with arbitrarily many parts is NP-hard. Polynomial-time
algorithms have been developed in several special cases. For the case in which parts can
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Figure 7.7: (a) A collection of pieces used to de�ne an assembly planning problem; (b) assembly planning
involves determining a sequence of motions that assembles the parts. The object shown here is assembled
from the parts.

be removed by a sequence of straight-line paths, a polynomial-time algorithm is given in
[973, 974].

7.2.2 Decoupled planning

Decoupled approaches first design motions for the robots while ignoring robot-robot in-
teractions. Once these interactions are considered, the choices available to each robot are
already constrained by the designed motions. If a problem arises, these approaches are
typically unable to reverse their commitments. Therefore, completeness is lost. Neverthe-
less, decoupled approaches are quite practical, and in some cases completeness can be
recovered.

Prioritized planning

A straightforward approach to decoupled planning is to sort the robots by priority and
plan for higher priority robots first [322, 951]. Lower priority robots plan by viewing the
higher priority robots as moving obstacles. Suppose the robots are sorted as A1, . . . ,Am,
in which A1 has the highest priority.

Assume that collision-free paths, τi : [0, 1] → Ci
f ree, have been computed for i from 1

to n. The prioritized planning approach proceeds inductively as follows:

Base case: Use any motion planning algorithm from Chapters 5 and 6 to compute a
collision-free path, τ1 : [0, 1] → C1

f ree for A1. Compute a timing function, σ1, for τ1, to
yield φ1 = τ1 ◦ σ1 : T → C1

f ree.

Inductive step: Suppose that φ1, . . . , φi−1 have been designed for A1, . . . ,Ai−1, and
that these functions avoid robot-robot collisions between any of the first i − 1 robots.
Formulate the first i − 1 robots as moving obstacles in W . For each t ∈ T and j ∈
{1, . . . , i − 1}, the configuration qj of each Aj is φj (t). This yields Aj (φj (t)) ⊂W ,
which can be considered as a subset of the obstacle O(t). Design a path, τi , and timing
function, σi , using any of the time-varying motion planning methods from Section 7.1
and form φi = τi ◦ σi .

Although practical in many circumstances, Figure 7.8 illustrates how completeness is lost.
A special case of prioritized planning is to design all of the paths, τ1, τ2, . . . , τm, in

the first phase and then formulate each inductive step as a velocity tuning problem. This
yields a sequence of 2D planning problems that can be solved easily. This comes at a
greater expense, however, because the choices are even more constrained. The idea of
preplanned paths, and even roadmaps, for all robots independently can lead to a powerful
method if the coordination of the robots is approached more carefully. This is the next
topic.
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A2 A1

Figure 7.8: If A1 neglects the query for A2, then completeness is lost when using the prioritized planning
approach. This example has a solution in general, but prioritized planning fails to �nd it.
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Figure 7.9: The obstacles that arise from coordinating m robots are always cylindrical. The set of all
1
2 m(m− 1) axis-aligned 2D projections completely characterizes Xobs.

Fixed-path coordination

Suppose that each robot Ai is constrained to follow a path τi : [0, 1] → Ci
f ree, which

can be computed using any ordinary motion planning technique. For m robots, an
m-dimensional state space called a coordination space is defined that schedules the
motions of the robots along their paths so that they will not collide [749]. One important
feature is that time will only be implicitly represented in the coordination space. An algo-
rithm must compute a path in the coordination space, from which explicit timings can be
easily extracted.

For m robots, the coordination space X is defined as the m-dimensional unit cube
X = [0, 1]m. Figure 7.9 depicts an example for which m = 3. The ith coordinate of X

represents the domain, Si = [0, 1], of the path τi . Let si denote a point in Si (it is also
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the ith component of x). A state, x ∈ X, indicates the configuration of every robot. For
each i, the configuration qi ∈ Ci is given by qi = τi(si). At state (0, . . . , 0) ∈ X, every
robot is in its initial configuration, qi

I = τi(0), and at state (1, . . . , 1) ∈ X, every robot
is in its goal configuration, qi

G = τi(1). Any continuous path, h : [0, 1] → X, for which
h(0) = (0, . . . , 0) and h(1) = (1, . . . , 1), moves the robots to their goal configurations.
The path h does not even need to be monotonic, in contrast to prioritized planning.

One important concern has been neglected so far. What prevents us from designing h

as a straight-line path between the opposite corners of [0, 1]m? We have not yet taken into
account the collisions between the robots. This forms an obstacle region Xobs that must be
avoided when designing a path through X. Thus, the task is to design h : [0, 1] → Xfree,
in which Xfree = X \Xobs .

The definition of Xobs is very similar to (7.8) and (7.10), except that here the state-space
dimension is much smaller. Each qi is replaced by a single parameter. The cylindrical
structure, however, is still retained, as shown in Figure 7.9. Each cylinder of Xobs is

X
ij

obs = {(s1, . . . , sm) ∈ X | Ai(τi(si)) ∩Aj (τj (sj )) 	= ∅}, (7.11)

which are combined to yield

Xobs =
⋃

ij, i 	=j

X
ij

obs . (7.12)

Standard motion planning algorithms can be applied to the coordination space because
there is no monotonicity requirement on h. If 1) W = R

2, 2) m = 2 (two robots), 3) the
obstacles and robots are polygonal, and 4) the paths, τi , are piecewise-linear, then Xobs is
a polygonal region in X. This enables the methods of Section 6.2, for a polygonal Cobs,
to directly apply after the representation of Xobs is explicitly constructed. For m > 2, the
multi-dimensional version of vertical cell decomposition given for m = 3 in Section 6.3.3
can be applied. For general coordination problems, cylindrical algebraic decomposition
or Canny’s roadmap algorithm can be applied. For the problem of robots in W = R

2

that either translate or move along circular paths, a resolution complete planning method
based on the exact determination of Xobs using special collision detection methods is given
in [887].

For very challenging coordination problems, sampling-based solutions may yield prac-
tical solutions. Perhaps one of the simplest solutions is to place a grid over X and adapt the
classical search algorithms, as described in Section 5.4.2 [609, 749]. Other possibilities
include using the RDTs of Section 5.5 or, if the multiple-query framework is appropriate,
then the sampling-based roadmap methods of 5.6 are suitable. Methods for validating the
path segments, which were covered in Section 5.3.4, can be adapted without trouble to
the case of coordination spaces.

Thus far, the particular speeds of the robots have been neglected. For explanation
purposes, consider the case of m = 2. Moving vertically or horizontally in X holds one
robot fixed while the other moves at some maximum speed. Moving diagonally in X

moves both robots, and their relative speeds depend on the slope of the path. To carefully
regulate these speeds, it may be necessary to reparameterize the paths by distance. In this
case each axis of X represents the distance traveled, instead of [0, 1].

Fixed-roadmap coordination

The fixed-path coordination approach still may not solve the problem in Figure 7.8 if the
paths are designed independently. Fortunately, fixed-path coordination can be extended
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to enable each robot to move over a roadmap or topological graph. This still yields a
coordination space that has only one dimension per robot, and the resulting planning
methods are much closer to being complete, assuming each robot utilizes a roadmap
that has many alternative paths. There is also motivation to study this problem by itself
because of automated guided vehicles (AGVs), which often move in factories on a network
of predetermined paths. In this case, coordinating the robots is the planning problem, as
opposed to being a simplification of Formulation 7.2.

One way to obtain completeness for Formulation 7.2 is to design the independent
roadmaps so that each robot has its own garage configuration. The conditions for a
configuration, qi , to be a garage for Ai are 1) while at configuration qi , it is impossible
for any other robots to collide with it (i.e., in all coordination states for which the ith
coordinate is qi , no collision occurs); and 2) qi is always reachable by Ai from xI . If each
robot has a roadmap and a garage, and if the planning method for X is complete, then the
overall planning algorithm is complete. If the planning method in X uses some weaker
notion of completeness, then this is also maintained. For example, a resolution complete
planner for X yields a resolution complete approach to the problem in Formulation 7.2.

Cube complex

How is the coordination space represented when there are multiple paths for each robot?
It turns out that a cube complex is obtained, which is a special kind of singular complex
(recall from Section 6.3.1). The coordination space for m fixed paths can be considered
as a singular m-simplex. For example, the problem in Figure 7.9 can be considered as a
singular 3-simplex, [0, 1]3 → X. In Section 6.3.1, the domain of a k-simplex was defined
using Bk , a k-dimensional ball; however, a cube, [0, 1]k , also works because Bk and [0, 1]k

are homeomorphic.
For a topological space, X, let a k-cube (which is also a singular k-simplex), �k ,

be a continuous mapping σ : [0, 1]k → X. A cube complex is obtained by connecting
together k-cubes of different dimensions. Every k-cube for k ≥ 1 has 2k faces, which
are (k − 1)-cubes that are obtained as follows. Let (s1, . . . , sk) denote a point in [0, 1]k .
For each i ∈ {1, . . . , k}, one face is obtained by setting si = 0 and another is obtained by
setting si = 1.

The cubes must fit together nicely, much in the same way that the simplexes of a
simplicial complex were required to fit together. To be a cube complex, K must be a
collection of simplexes that satisfy the following requirements:

1. Any face, �k−1, of a cube �k ∈ K is also in K.

2. The intersection of the images of any two k-cubes �k,�′
k ∈ K, is either empty or there

exists some cube, �i ∈ K for i < k, which is a common face of both �k and �′
k .

Let Gi denote a topological graph (which may also be a roadmap) for robot Ai . The
graph edges are paths of the form τ : [0, 1] → Ci

f ree. Before covering formal definitions
of the resulting complex, consider Figure 7.10a, in which A1 moves along three paths
connected in a “T” junction and A2 moves along one path. In this case, three 2D fixed-
path coordination spaces are attached together along one common edge, as shown in Fig-
ure 7.10b. The resulting cube complex is defined by three 2-cubes (i.e., squares), one
1-cube (i.e., line segment), and eight 0-cubes (i.e., corner points).

Now suppose more generally that there are two robots, A1 and A2, with associated
topological graphs, G1(V1, E1) and G2(V2, E2), respectively. Suppose that G and G2 have
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Figure 7.10: (a) An example in which A1 moves along three paths, and A2 moves along one. (b) The
corresponding coordination space.

n1 and n2 edges, respectively. A 2D cube complex, K, is obtained as follows. Let τi denote
the ith path of G1, and let σj denote the j th path of G2. A 2-cube (square) exists in K for
every way to select an edge from each graph. Thus, there are n1n2 2-cubes, one for each
pair (τi, σj ), such that τi ∈ E1 and σj ∈ E2. The 1-cubes are generated for pairs of the
form (vi, σj ) for vi ∈ V1 and σj ∈ E2, or (τi, vj ) for τi ∈ E1 and vj ∈ V2. The 0-cubes
(corner points) are reached for each pair (vi, vj ) such that vi ∈ V1 and vj ∈ V2.

If there are m robots, then an m-dimensional cube complex arises. Every m-cube
corresponds to a unique combination of paths, one for each robot. The (m− 1)-cubes are
the faces of the m-cubes. This continues iteratively until the 0-cubes are reached.

Planning on the cube complex

Once again, any of the planning methods described in Chapters 5 and 6 can be adapted here,
but the methods are slightly complicated by the fact that X is a complex. To use sampling-
based methods, a dense sequence should be generated over X. For example, if random
sampling is used, then an m-cube can be chosen at random, followed by a random point
in the cube. The local planning method (LPM) must take into account the connectivity
of the cube complex, which requires recognizing when branches occur in the topological
graph. Combinatorial methods must also take into account this connectivity. For example,
a sweeping technique can be applied to produce a vertical cell decomposition, but the
sweep-line (or sweep-plane) must sweep across the various m-cells of the complex.

7.3 Mixing discrete and continuous spaces

Many important applications involve a mixture of discrete and continuous variables. This
results in a state space that is a Cartesian product of the C-space and a finite set called
the mode space. The resulting space can be visualized as having layers of C-spaces that
are indexed by the modes, as depicted in Figure 7.11. The main application given in this
section is manipulation planning; many others exist, especially when other complications
such as dynamics and uncertainties are added to the problem. The framework of this
section is inspired mainly from hybrid systems in the control theory community [411],
which usually model mode-dependent dynamics. The main concern in this section is that
the allowable robot configurations and/or the obstacles depend on the mode.

7.3.1 Hybrid systems framework

As illustrated in Figure 7.11, a hybrid system involves interaction between discrete and
continuous spaces. The formal model will first be given, followed by some explanation.
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Figure 7.11: A hybrid state space can be imagined as having layers of C-spaces that are indexed by
modes.

This formulation can be considered as a combination of the components from discrete
feasible planning, Formulation 2.1, and basic motion planning, Formulation 4.1.

Formulation 7.3 (Hybrid-System Motion Planning)

1. The W and C components from Formulation 4.1 are included.

2. A nonempty mode space, M that is a finite or countably infinite set of modes.

3. A semi-algebraic obstacle region O(m) for each m ∈ M .

4. A semi-algebraic robot A(m), for each m ∈ M . It may be a rigid robot or a collection
of links. It is assumed that the C-space is not mode-dependent; only the geometry of the
robot can depend on the mode. The robot, transformed to configuration q, is denoted as
A(q,m).

5. A state space X is defined as the Cartesian product X = C ×M . A state is represented as
x = (q,m), in which q ∈ C and m ∈ M . Let

Xobs = {(q,m) ∈ X | A(q,m) ∩O(m) 	= ∅}, (7.13)

and Xf ree = X \Xobs .

6. For each state, x ∈ X, there is a finite action space, U (x). Let U denote the set of all
possible actions (the union of U (x) over all x ∈ X).

7. There is a mode transition function fm that produces a mode, fm(x, u) ∈ M , for every
x ∈ X and u ∈ U (x). It is assumed that fm is defined in a way that does not produce race
conditions (oscillations of modes within an instant of time). This means that if q is fixed,
the mode can change at most once. It then remains constant and can change only if q is
changed.

8. There is a state transition function, f , that is derived from fm by changing the mode and
holding the configuration fixed. Thus, f (x, u) = (q, fm(x, u)).

9. A configuration xI ∈ Xfree is designated as the initial state.

10. A set XG ∈ Xfree is designated as the goal region. A region is defined instead of a point to
facilitate the specification of a goal configuration that does not depend on the final mode.

11. An algorithm must compute a (continuous) path τ : [0, 1] → Xfree and an action trajectory
σ : [0, 1] → U such that τ (0) = xI and τ (1) ∈ XG, or the algorithm correctly reports that
such a combination of a path and an action trajectory does not exist.

The obstacle region and robot may or may not be mode-dependent, depending on the
problem. Examples of each will be given shortly. Changes in the mode depend on the
action taken by the robot. From most states, it is usually assumed that a “do nothing”
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Figure 7.12: In the upper left (at the portiernia), the robot can pick up and drop off keys that open one of
two doors. If the robot contacts a door while holding the correct key, then it opens.

action exists, which leaves the mode unchanged. From certain states, the robot may select
an action that changes the mode as desired. An interesting degenerate case exists in which
there is only a single action available. This means that the robot has no control over the
mode from that state. If the robot arrives in such a state, a mode change could unavoidably
occur.

The solution requirement is somewhat more complicated because both a path and
an action trajectory need to be specified. It is insufficient to specify a path because it
is important to know what action was applied to induce the correct mode transitions.
Therefore, σ indicates when these occur. Note that τ and σ are closely coupled; one
cannot simply associate any σ with a path τ ; it must correspond to the actions required to
generate τ .

Example 7.2 (The Power of the Portiernia) In this example, a robot, A, is modeled
as a square that translates in W = R

2. Therefore, C = R
2. The obstacle region in W is

mode-dependent because of two doors, which are numbered “1” and “2” in Figure 7.12a.
In the upper left sits the portiernia,2 which is able to give a key to the robot, if the robot is
in a configuration as shown in Figure 7.12b. The portiernia only trusts the robot with one
key at a time, which may be either for Door 1 or Door 2. The robot can return a key by
revisiting the portiernia. As shown in Figures 7.12c and 7.12d, the robot can open a door
by making contact with it, as long as it holds the correct key.

The set, M , of modes needs to encode which key, if any, the robot holds, and it must
also encode the status of the doors. The robot may have: 1) the key to Door 1; 2) the key

2 This is a place where people guard the keys at some public facilities in Poland.
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A

A
Elongated

Compressed

Figure 7.13: An example in which the robot must recon�gure itself to solve the problem. There are two
modes: elongated and compressed.

A A

Elongated mode Compressed mode

Figure 7.14: When the robot recon�gures itself, Cfree(m) changes, enabling the problem to be solved.

to Door 2; or 3) no keys. The doors may have the status: 1) both open; 2) Door 1 open,
Door 2 closed; 3) Door 1 closed, Door 2 open; or 4) both closed. Considering keys and
doors in combination yields 12 possible modes.

If the robot is at a portiernia configuration as shown in Figure 7.12b, then its available
actions correspond to different ways to pick up and drop off keys. For example, if the
robot is holding the key to Door 1, it can drop it off and pick up the key to Door 2. This
changes the mode, but the door status and robot configuration must remain unchanged
when f is applied. The other locations in which the robot may change the mode are when
it comes in contact with Door 1 or Door 2. The mode changes only if the robot is holding
the proper key. In all other configurations, the robot only has a single action (i.e., no
choice), which keeps the mode fixed.

The task is to reach the configuration shown in the lower right with dashed lines. The
problem is solved by: 1) picking up the key for Door 1 at the portiernia; 2) opening
Door 1; 3) swapping the key at the portiernia to obtain the key for Door 2; or 4) entering
the innermost room to reach the goal configuration. As a final condition, we might want
to require that the robot returns the key to the portiernia. �

Example 7.2 allows the robot to change the obstacles in O. The next example involves
a robot that can change its shape. This is an illustrative example of a reconfigurable robot.
The study of such robots has become a popular topic of research [211, 387, 555, 990];
the reconfiguration possibilities in that research area are much more complicated than the
simple example considered here.

Example 7.3 (Reconfigurable Robot) To solve the problem shown in Figure 7.13, the
robot must change its shape. There are two possible shapes, which correspond directly
to the modes: elongated and compressed. Examples of each are shown in the figure.
Figure 7.14 shows how Cfree(m) appears for each of the two modes. Suppose the robot
starts initially from the left while in the elongated mode and must travel to the last room on
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the right. This problem must be solved by 1) reconfiguring the robot into the compressed
mode; 2) passing through the corridor into the center; 3) reconfiguring the robot into the
elongated mode; and 4) passing through the corridor to the rightmost room. The robot
has actions that directly change the mode by reconfiguring itself. To make the problem
more interesting, we could require the robot to reconfigure itself in specific locations
(e.g., where there is enough clearance, or possibly at a location where another robot can
assist it). �

The examples presented so far barely scratch the surface on the possible hybrid motion
planning problems that can be defined. Many such problems can arise, for example, in
the context making automated video game characters or digital actors. To solve these
problems, standard motion planning algorithms can be adapted if they are given infor-
mation about how to change the modes. Locations in X from which the mode can be
changed may be expressed as subgoals. Much of the planning effort should then be fo-
cused on attempting to change modes, in addition to trying to directly reach the goal.
Applying sampling-based methods requires the definition of a metric on X that accounts
for both changes in the mode and the configuration. A wide variety of hybrid problems
can be formulated, ranging from those that are impossible to solve in practice to those
that are straightforward extensions of standard motion planning. In general, the hybrid
motion planning model is useful for formulating a hierarchical approach, as described in
Section 1.4. One particularly interesting class of problems that fit this model, for which
successful algorithms have been developed, will be covered next.

7.3.2 Manipulation planning

This section presents an overview of manipulation planning; the concepts explained here
are mainly due to [16, 17]. Returning to Example 7.2, imagine that the robot must carry
a key that is so large that it changes the connectivity of Cfree. For the manipulation
planning problem, the robot is called a manipulator, which interacts with a part. In some
configurations it is able to grasp the part and move it to other locations in the environment.
The manipulation task usually requires moving the part to a specified location in W ,
without particular regard as to how the manipulator can accomplish the task. The model
considered here greatly simplifies the problems of grasping, stability, friction, mechanics,
and uncertainties and instead focuses on the geometric aspects (some of these issues will
be addressed in Section 12.5). For a thorough introduction to these other important aspects
of manipulation planning, see [684]; see also Sections 13.1.3 and 12.5.

Admissible configurations

Assume that W , O, and A from Formulation 4.1 are used. For manipulation planning, A
is called the manipulator, and let Ca refer to the manipulator configuration space. Let P
denote a part, which is a rigid body modeled in terms of geometric primitives, as described
in Section 3.1. It is assumed that P is allowed to undergo rigid-body transformations and
will therefore have its own part configuration space, Cp = SE(2) or Cp = SE(3). Let
qp ∈ Cp denote a part configuration. The transformed part model is denoted as P(qp).

The combined configuration space, C, is defined as the Cartesian product

C = Ca × Cp, (7.14)
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Figure 7.15: Examples of several important subsets of C for manipulation planning.

in which each configuration q ∈ C is of the form q = (qa, qp). The first step is to remove
all configurations that must be avoided. Parts of Figure 7.15 show examples of these sets.
Configurations for which the manipulator collides with obstacles are

Ca
obs = {(qa, qp) ∈ C | A(qa) ∩O 	= ∅}. (7.15)

The next logical step is to remove configurations for which the part collides with obstacles.
It will make sense to allow the part to “touch” the obstacles. For example, this could model
a part sitting on a table. Therefore, let

Cp

obs = {(qa, qp) ∈ C | int(P(qp)) ∩O 	= ∅} (7.16)

denote the open set for which the interior of the part intersects O. Certainly, if the part
penetrates O, then the configuration should be avoided.

Consider C \ (Ca
obs ∪ Cp

obs). The configurations that remain ensure that the robot and part
do not inappropriately collide with O. Next consider the interaction between A and P .
The manipulator must be allowed to touch the part, but penetration is once again not
allowed. Therefore, let

Cap

obs = {(qa, qp) ∈ C | A(qa) ∩ int(P(qp)) 	= ∅}. (7.17)

Removing all of these bad configurations yields

Cadm = C \ (Ca
obs ∪ Cp

obs ∪ Cap

obs), (7.18)

which is called the set of admissible configurations.
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Stable and grasped configurations

Two important subsets of Cadm are used in the manipulation planning problem. See
Figure 7.15. Let Cp

sta denote the set of stable part configurations, which are configurations
at which the part can safely rest without any forces being applied by the manipulator. This
means that a part cannot, for example, float in the air. It also cannot be in a configuration
from which it might fall. The particular stable configurations depend on properties such as
the part geometry, friction, mass distribution, and so on. These issues are not considered
here. From this, let Csta ⊆ Cadm be the corresponding stable configurations, defined as

Csta = {(qa, qp) ∈ Cadm | qp ∈ Cp
sta}. (7.19)

The other important subset of Cadm is the set of all configurations in which the robot
is grasping the part (and is capable of carrying it, if necessary). Let this denote the
grasped configurations, denoted by Cgr ⊆ Cadm. For every configuration, (qa, qp) ∈ Cgr ,
the manipulator touches the part. This means that A(qa) ∩ P(qp) 	= ∅ (penetration is still
not allowed because Cgr ⊆ Cadm). In general, many configurations at whichA(qa) contacts
P(qp) will not necessarily be in Cgr . The conditions for a point to lie in Cgr depend on
the particular characteristics of the manipulator, the part, and the contact surface between
them. For example, a typical manipulator would not be able to pick up a block by making
contact with only one corner of it. This level of detail is not defined here; see [684] for
more information about grasping.

We must always ensure that either x ∈ Csta or x ∈ Cgr . Therefore, let Cfree = Csta ∪ Cgr ,
to reflect the subset of Cadm that is permissible for manipulation planning.

The mode space, M , contains two modes, which are named the transit mode and
the transfer mode. In the transit mode, the manipulator is not carrying the part, which
requires that q ∈ Csta . In the transfer mode, the manipulator carries the part, which requires
that q ∈ Cgr . Based on these simple conditions, the only way the mode can change is if
q ∈ Csta ∩ Cgr . Therefore, the manipulator has two available actions only when it is in these
configurations. In all other configurations the mode remains unchanged. For convenience,
let Ctra = Csta ∩ Cgr denote the set of transition configurations, which are the places in
which the mode may change.

Using the framework of Section 7.3.1, the mode space, M , and C-space,C, are combined
to yield the state space, X = C ×M . Since there are only two modes, there are only two
copies of C, one for each mode. State-based sets, Xfree, Xtra , Xsta , and Xgr , are directly
obtained from Cfree, Ctra , Csta , and Cgr by ignoring the mode. For example,

Xtra = {(q,m) ∈ X | q ∈ Ctra}. (7.20)

The sets Xfree, Xsta , and Xgr are similarly defined.
The task can now be defined. An initial part configuration, q

p

init ∈ Csta , and a goal
part configuration, qp

goal ∈ Csta , are specified. Compute a path τ : [0, 1] → Xfree such that
τ (0) = q

p

init and τ (1) = q
p

goal . Furthermore, the action trajectory σ : [0, 1] → U must be
specified to indicate the appropriate mode changes whenever τ (s) ∈ Xtra . A solution can
be considered as an alternating sequence of transit paths and transfer paths, whose names
follow from the mode. This is depicted in Figure 7.16.

Manipulation graph

The manipulation planning problem generally can be solved by forming a manipulation
graph, Gm [16, 17]. Let a connected component of Xtra refer to any connected component
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Transfer
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C

C

Figure 7.16: The solution to a manipulation planning problem alternates between the two layers of X. The
transitions can only occur when x ∈ Xtra.

of Ctra that is lifted into the state space by ignoring the mode. There are two copies of the
connected component of Ctra , one for each mode. For each connected component of Xtra ,
a vertex exists in Gm. An edge is defined for each transfer path or transit path that connects
two connected components of Xtra . The general approach to manipulation planning then
is as follows:

1. Compute the connected components of Xtra to yield the vertices of Gm.

2. Compute the edges of Gm by applying ordinary motion planning methods to each pair of
vertices of Gm.

3. Apply motion planning methods to connect the initial and goal states to every possible
vertex of Xtra that can be reached without a mode transition.

4. Search Gm for a path that connects the initial and goal states. If one exists, then extract
the corresponding solution as a sequence of transit and transfer paths (this yields σ , the
actions that cause the required mode changes).

This can be considered as an example of hierarchical planning, as described in Section 1.4.

Multiple parts

The manipulation planning framework nicely generalizes to multiple parts, P1, . . . ,Pk .
Each part has its own C-space, and C is formed by taking the Cartesian product of all part
C-spaces with the manipulator C-space. The set Cadm is defined in a similar way, but now
part-part collisions also have to be removed, in addition to part-manipulator, manipulator-
obstacle, and part-obstacle collisions. The definition of Csta requires that all parts be in
stable configurations; the parts may even be allowed to stack on top of each other. The
definition of Cgr requires that one part is grasped and all other parts are stable. There are
still two modes, depending on whether the manipulator is grasping a part. Once again,
transitions occur only when the robot is in Ctra = Csta ∩ Cgr . The task involves moving
each part from one configuration to another. This is achieved once again by defining a
manipulation graph and obtaining a sequence of transit paths (in which no parts move)
and transfer paths (in which one part is carried and all other parts are fixed). Challenging
manipulation problems solved by motion planning algorithms are shown in Figures 7.17
and 7.18.

Other generalizations are possible. A generalization to k robots would lead to 2k modes,
in which each mode indicates whether each robot is grasping the part. Multiple robots
could even grasp the same object. Another generalization could allow a single robot to
grasp more than one object.
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Figure 7.17: This example was solved in [246] using the manipulation planning framework and the visibility-
based roadmap planner. It is very challenging because the same part must be regrasped in many places.

Figure 7.18: This manipulation planning example was solved in [916] and involves 90 movable pieces
of furniture. Some of them must be dragged out of the way to solve the problem. Paths for two different
queries are shown.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

EXTENSIONS OF BASIC MOTION PLANNING 279

Figure 7.19: Two or more manipulators manipulating the same object causes closed kinematic chains.
Each black disc corresponds to a revolute joint.

7.4 Planning for closed kinematic chains

This section continues where Section 4.4 left off. The subspace of C that results from
maintaining kinematic closure was defined and illustrated through some examples. Plan-
ning in this context requires that paths remain on a lower dimensional variety for which
a parameterization is not available. Many important applications require motion planning
while maintaining these constraints. For example, consider a manipulation problem that
involves multiple manipulators grasping the same object, which forms a closed loop as
shown in Figure 7.19. A loop exists because both manipulators are attached to the ground,
which may itself be considered as a link. The development of virtual actors for movies
and video games also involves related manipulation problems. Loops also arise in this
context when more than one human limb is touching a fixed surface (e.g., two feet on the
ground). A class of robots called parallel manipulators are intentionally designed with
internal closed loops [696]. For example, consider the Stewart-Gough platform [409, 915]
illustrated in Figure 7.20. The lengths of each of the six arms, A1, . . . ,A6, can be in-
dependently varied while they remain attached via spherical joints to the ground and
to the platform, which is A7. Each arm can actually be imagined as two links that are
connected by a prismatic joint. Due to the total of 6 degrees of freedom introduced by
the variable lengths, the platform actually achieves the full 6 degrees of freedom (hence,
some six-dimensional region in SE(3) is obtained for A7). Planning the motion of the
Stewart-Gough platform, or robots that are based on the platform (the robot shown in
Figure 7.27 uses a stack of several of these mechanisms), requires handling many closure
constraints that must be maintained simultaneously. Another application is computational
biology, in which the C-space of molecules is searched, many of which are derived from
molecules that have closed, flexible chains of bonds [247].

7.4.1 Adaptation of motion planning algorithms

All of the components from the general motion planning problem of Formulation 4.1 are
included: W , O, A1, . . . ,Am, C, qI , and qG. It is assumed that the robot is a collection of
r links that are possibly attached in loops.
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Figure 7.20: An illustration of the Stewart-Gough platform (adapted from a � gure made by Frank Sottile).

It is assumed in this section that C = R
n. If this is not satisfactory, there are two ways

to overcome the assumption. The first is to represent SO(2) and SO(3) as S
1 and S

3,
respectively, and include the circle or sphere equation as part of the constraints considered
here. This avoids the topology problems. The other option is to abandon the restriction of
using R

n and instead use a parameterization of C that is of the appropriate dimension. To
perform calculus on such manifolds, a smooth structure is required, which is introduced
in Section 8.3.2. In the presentation here, however, vector calculus on R

n is sufficient,
which intentionally avoids these extra technicalities.

Closure constraints

The closure constraints introduced in Section 4.4 can be summarized as follows. There is a
set, P , of polynomials f1, . . . , fk that belong to Q[q1, . . . , qn] and express the constraints
for particular points on the links of the robot. The determination of these is detailed in
Section 4.4.3. As mentioned previously, polynomials that force points to lie on a circle or
sphere in the case of rotations may also be included in P .

Let n denote the dimension of C. The closure space is defined as

Cclo = {q ∈ C | ∀fi ∈ P, fi(q1, . . . , qn) = 0}, (7.21)

which is an m-dimensional subspace of C that corresponds to all configurations
that satisfy the closure constants. The obstacle set must also be taken into account.
Once again, Cobs and Cfree are defined using (4.34). The feasible space is defined as
Cf ea = Cclo ∩ Cfree, which are the configurations that satisfy closure constraints and avoid
collisions.

The motion planning problem is to find a path τ : [0, 1] → Cf ea such that τ (0) = qI

and τ (1) = qG. The new challenge is that there is no explicit parameterization of Cf ea ,
which is further complicated by the fact that m < n (recall that m is the dimension
of Cclo).
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C
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clo
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Figure 7.21: For the RDT, the samples can be drawn from a region in R
n, the space in which Cclo is

embedded.

Combinatorial methods

Since the constraints are expressed with polynomials, it may not be surprising that the
computational algebraic geometry methods of Section 6.4 can solve the general motion
planning problem with closed kinematic chains. Either cylindrical algebraic decomposi-
tion or Canny’s roadmap algorithm may be applied. As mentioned in Section 6.5.3, an
adaptation of the roadmap algorithm that is optimized for problems in which m < n is
given in [78].

Sampling-based methods

Most of the methods of Chapter 5 are not easy to adapt because they require sampling
in Cf ea , for which a parameterization does not exist. If points in a bounded region of R

n

are chosen at random, the probability is zero that a point on Cf ea will be obtained. Some
incremental sampling and searching methods can, however, be adapted by the construction
of a local planning method (LPM) that is suited for problems with closure constraints.
The sampling-based roadmap methods require many samples to be generated directly on
Cf ea . Section 7.4.2 presents some techniques that can be used to generate such samples for
certain classes of problems, enabling the development of efficient sampling-based planners
and also improving the efficiency of incremental search planners. Before covering these
techniques, we first present a method that leads to a more general sampling-based planner
and is easier to implement. However, if designed well, planners based on the techniques
of Section 7.4.2 are more efficient.

Now consider adapting the RDT of Section 5.5 to work for problems with closure
constraints. Similar adaptations may be possible for other incremental sampling and
searching methods covered in Section 5.4, such as the randomized potential field planner. A
dense sampling sequence, α, is generated over a bounded n-dimensional subset of R

n, such
as a rectangle or sphere, as shown in Figure 7.21. The samples are not actually required
to lie on Cclo because they do not necessarily become part of the topological graph, G.
They mainly serve to pull the search tree in different directions. One concern in choosing
the bounding region is that it must include Cclo (at least the connected component that
includes qI ) but it must not be unnecessarily large. Such bounds are obtained by analyzing
the motion limits for a particular linkage.
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α(i)

Cclo

Cq

Figure 7.22: For each sample α(i) the nearest point, qn ∈ C, is found, and then the local planner generates
a motion that lies in the local tangent plane. The motion is the project of the vector from qn to α(i) onto the
tangent plane.

Stepping along Cclo

The RDT algorithm given Figure 5.21 can be applied directly; however, the stopping-
configuration function in line 4 must be changed to account for both obstacles and
the constraints that define Cclo. Figure 7.22 shows one general approach that is based on
numerical continuation [18]. An alternative is to use inverse kinematics, which is part of
the approach described in Section 7.4.2. The nearest RDT vertex, q ∈ C, to the sample
α(i) is first computed. Let v = α(i) − q, which indicates the direction in which an edge
would be made from q if there were no constraints. A local motion is then computed by
projecting v into the tangent plane3 of Cclo at the point q. Since Cclo is generally nonlinear,
the local motion produces a point that is not precisely on Cclo. Some numerical tolerance
is generally accepted, and a small enough step is taken to ensure that the tolerance
is maintained. The process iterates by computing v with respect to the new point and
moving in the direction of v projected into the new tangent plane. If the error threshold is
surpassed, then motions must be executed in the normal direction to return to Cclo. This
process of executing tangent and normal motions terminates when progress can no longer
be made, due either to the alignment of the tangent plane (nearly perpendicular to v) or
to an obstacle. This finally yields qs , the stopping configuration. The new path followed
in Cf ea is no longer a “straight line” as was possible for some problems in Section 5.5;
therefore, the approximate methods in Section 5.5.2 should be used to create intermediate
vertices along the path.

In each iteration, the tangent plane computation is computed at some q ∈ Cclo as
follows. The differential configuration vector dq lies in the tangent space of a constraint
fi(q) = 0 if

∂fi(q)

∂q1
dq1 + ∂fi(q)

∂q2
dq2 + · · · + ∂fi(q)

∂qn

dqn = 0. (7.22)

3 Tangent planes are defined rigorously in Section 8.3.
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This leads to the following homogeneous system for all of the k polynomials in P that
define the closure constraints





∂f1(q)

∂q1

∂f1(q)

∂q2
· · · ∂f1(q)

∂qn

∂f2(q)

∂q1

∂f2(q)

∂q2
· · · ∂f2(q)

∂qn
...

...
...

∂fk(q)

∂q1

∂fk(q)

∂q2
· · · ∂fk(q)

∂qn









dq1

dq2
...

dqn



 = 0. (7.23)

If the rank of the matrix is m ≤ n, then m configuration displacements can be cho-
sen independently, and the remaining n−m parameters must satisfy (7.23). This can
be solved using linear algebra techniques, such as singular value decomposition (SVD)
[401, 961], to compute an orthonormal basis for the tangent space at q. Let e1, . . . , em,
denote these n-dimensional basis vectors. The components of the motion direction are ob-
tained from v = α(i) − qn. First, construct the inner products, a1 = v · e1, a2 = v · e2, . . . ,

am = v · em. Using these, the projection of v in the tangent plane is the n-dimensional
vector w given by

w =
m∑

i

aiei, (7.24)

which is used as the direction of motion. The magnitude must be appropriately scaled to
take sufficiently small steps. Since Cclo is generally curved, a linear motion leaves Cclo. A
motion in the inward normal direction is then required to move back onto Cclo.

Since the dimension m of Cclo is less than n, the procedure just described can only
produce numerical approximations to paths in Cclo. This problem also arises in im-
plicit curve tracing in graphics and geometric modeling [457]. Therefore, each constraint
fi(q1, . . . , qn) = 0 is actually slightly weakened to |fi(q1, . . . , qn)| < ε for some fixed
tolerance ε > 0. This essentially “thickens” Cclo so that its dimension is n. As an alterna-
tive to computing the tangent plane, motion directions can be sampled directly inside of
this thickened region without computing tangent planes. This results in an easier imple-
mentation, but it is less efficient [979].

7.4.2 Active-passive link decompositions

An alternative sampling-based approach is to perform an active-passive decomposition,
which is used to generate samples in Cclo by directly sampling active variables, and
computing the closure values for passive variables using inverse kinematics methods. This
method was introduced in [435] and subsequently improved through the development of
the random loop generator in [246, 248]. The method serves as a general framework that
can adapt virtually any of the methods of Chapter 5 to handle closed kinematic chains,
and experimental evidence suggests that the performance is better than the method of
Section 7.4.1. One drawback is that the method requires some careful analysis of the
linkage to determine the best decomposition and also bounds on its mobility. Such analysis
exists for very general classes of linkages [246].



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

284 MOTION PLANNING

θ2

θ4

θ5 θ6

θ1 θ7

θ3

Figure 7.23: A chain of links in the plane. There are seven links and seven joints, which are constrained
to form a loop. The dimension of C is seven, but the dimension of Cclo is four.

Figure 7.24: Three of the joint variables can be determined automatically by inverse kinematics. Therefore,
four of the joints be designated as active, and the remaining three will be passive.

Active and passive variables

In this section, let C denote the C-space obtained from all joint variables, instead of
requiring C = R

n, as in Section 7.4.1. This means that P includes only polynomials that
encode closure constraints, as opposed to allowing constraints that represent rotations.
Using the tree representation from Section 4.4.3, this means that C is of dimension n,
arising from assigning one variable for each revolute joint of the linkage in the absence
of any constraints. Let q ∈ C denote this vector of configuration variables. The active-
passive decomposition partitions the variables of q to form two vectors, qa , called the
active variables and qp, called the passive variables. The values of passive variables
are always determined from the active variables by enforcing the closure constraints and
using inverse kinematics techniques. If m is the dimension of Cclo, then there are always
m active variables and n−m passive variables.

Temporarily, suppose that the linkage forms a single loop as shown in Figure 7.23. One
possible decomposition into active qa and passive qp variables is given in Figure 7.24. If
constrained to form a loop, the linkage has four degrees of freedom, assuming the bottom
link is rigidly attached to the ground. This means that values can be chosen for four
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Figure 7.25: In this case, the active variables are chosen in a way that makes it impossible to assign
passive variables that close the loop.

active joint angles qa and the remaining three qp can be derived from solving the inverse
kinematics. To determine qp, there are three equations and three unknowns. Unfortunately,
these equations are nonlinear and fairly complicated. Nevertheless, efficient solutions exist
for this case, and the 3D generalization [678]. For a 3D loop formed of revolute joints,
there are six passive variables. The number, 3, of passive links in R

2 and the number 6
for R

3 arise from the dimensions of SE(2) and SE(3), respectively. This is the freedom
that is stripped away from the system by enforcing the closure constraints. Methods for
efficiently computing inverse kinematics in two and three dimensions are given in [30].
These can also be applied to the RDT stepping method in Section 7.4.1, instead of using
continuation.

If the maximal number of passive variables is used, there is at most a finite number
of solutions to the inverse kinematics problem; this implies that there are often several
choices for the passive variable values. It could be the case that for some assignments of
active variables, there are no solutions to the inverse kinematics. An example is depicted
in Figure 7.25. Suppose that we want to generate samples in Cclo by selecting random
values for qa and then using inverse kinematics for qp. What is the probability that a
solution to the inverse kinematics exists? For the example shown, it appears that solutions
would not exist in most trials.

Loop generator

The random loop generator greatly improves the chance of obtaining closure by iteratively
restricting the range on each of the active variables. The method requires that the active
variables appear sequentially along the chain (i.e., there is no interleaving of active and
passive variables). The m coordinates of qa are obtained sequentially as follows. First,
compute an interval, I1, of allowable values for qa

1 . The interval serves as a loose bound
in the sense that, for any value qa

1 	∈ I1, it is known for certain that closure cannot be
obtained. This is ensured by performing a careful geometric analysis of the linkage,
which will be explained shortly. The next step is to generate a sample in qa

1 ∈ I1, which
is accomplished in [246] by picking a random point in I1. Using the value qa

1 , a bounding
interval I2 is computed for allowable values of qa

2 . The value qa
2 is obtained by sampling
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(a) (b)

Figure 7.26: (a) If any joint angle is possible, then the links sweep out a circle in the limit. (b) If there are
limits on the joint angles, then a tighter bound can be obtained for the reachability of the linkage.

in I2. This process continues iteratively until Im and qa
m are obtained, unless it terminates

early because some Ii = ∅ for i < m. If successful termination occurs, then the active
variables qa are used to find values qp for the passive variables. This step still might fail,
but the probability of success is now much higher. The method can also be applied to
linkages in which there are multiple, common loops, as in the Stewart-Gough platform, by
breaking the linkage into a tree and closing loops one at a time using the loop generator.
The performance depends on how the linkage is decomposed [246].

Computing bounds on joint angles

The main requirement for successful application of the method is the ability to compute
bounds on how far a chain of links can travel in W over some range of joint variables. For
example, for a planar chain that has revolute joints with no limits, the chain can sweep out
a circle as shown in Figure 7.26a. Suppose it is known that the angle between links must
remain between −π/6 and π/6. A tighter bounding region can be obtained, as shown in
Figure 7.26b. Three-dimensional versions of these bounds, along with many necessary
details, are included in [246]. These bounds are then used to compute Ii in each iteration
of the sampling algorithm.

Now that there is an efficient method that generates samples directly in Cclo, it is
straightforward to adapt any of the sampling-based planning methods of Chapter 5.
In [246] many impressive results are obtained for challenging problems that have the
dimension of C up to 97 and the dimension of Cclo up to 25; see Figure 7.27. These
methods are based on applying the new sampling techniques to the RDTs of Section 5.5
and the visibility sampling-based roadmap of Section 5.6.2. For these algorithms, the local
planning method is applied to the active variables, and inverse kinematics algorithms are
used for the passive variables in the path validation step. This means that inverse kinematics
and collision checking are performed together, instead of only collision checking, as
described in Section 5.3.4.

One important issue that has been neglected in this section is the existence of kinematic
singularities, which cause the dimension of Cclo to drop in the vicinity of certain points.
The methods presented here have assumed that solving the motion planning problem
does not require passing through a singularity. This assumption is reasonable for robot
systems that have many extra degrees of freedom, but it is important to understand that
completeness is lost in general because the sampling-based methods do not explicitly
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Figure 7.27: Planning for the Logabex LX4 robot [189]. This solution was computed in less than a minute
by applying active-passive decomposition to an RDT-based planner [246]. In this example, the dimension
of C is 97 and the dimension of Cclo is 25.

handle these degeneracies. In a sense, they occur below the level of sampling resolution.
For more information on kinematic singularities and related issues, see [696].

7.5 Folding problems in robotics and biology

A growing number of motion planning applications involve some form of folding.
Examples include automated carton folding, computer-aided drug design, protein folding,
modular reconfigurable robots, and even robotic origami. These problems are generally
modeled as a linkage in which all bodies are connected by revolute joints. In robotics,
self-collision between pairs of bodies usually must be avoided. In biological applications,
energy functions replace obstacles. Instead of crisp obstacle boundaries, energy functions
can be imagined as “soft” obstacles, in which a real value is defined for every q ∈ C,
instead of defining a set Cobs ⊂ C. For a given threshold value, such energy functions can
be converted into an obstacle region by defining Cobs to be the configurations that have
energy above the threshold. However, the energy function contains more information be-
cause such thresholds are arbitrary. This section briefly shows some examples of folding
problems and techniques from the recent motion planning literature.

Carton folding

An interesting application of motion planning to the automated folding of boxes is pre-
sented in [664]. Figure 7.28 shows a carton in its original flat form and in its folded form.
As shown in Figure 7.29, the problem can be modeled as a tree of bodies connected by
revolute joints. Once this model has been formulated, many methods from Chapters 5 and
6 can be adapted for this problem. In [664], a planning algorithm optimized particularly
for box folding is presented. It is an adaptation of an approximate cell decomposition
algorithm developed for kinematic chains in [661]. Its complexity is exponential in the
degrees of freedom of the carton, but it gives good performance on practical examples.
One such solution that was found by motion planning is shown in Figure 7.30. To use these
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Figure 7.28: An important packaging problem is to automate the folding of a perforated sheet of cardboard
into a carton.

Figure 7.29: The carton can be cleverly modeled as a tree of bodies that are attached by revolute joints.

Figure 7.30: A folding sequence that was computed using the algorithm in [664].

solutions in a factory, the manipulation problem has to be additionally considered. For
example, as demonstrated in [664], a manipulator arm robot can be used in combination
with a well-designed set of fixtures. The fixtures help hold the carton in place while the
manipulator applies pressure in the right places, which yields the required folds. Since
the feasibility with fixtures depends on the particular folding path, the planning algorithm
generates all possible distinct paths from the initial configuration (at which the box is
completely unfolded).
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Simplifying knots

A knot is a closed curve that does not intersect itself, is embedded in R
3, and cannot be

untangled to produce a simple loop (such as a circular path). If the knot is allowed to
intersect itself, then any knot can be untangled; therefore, a careful definition of what
it means to untangle a knot is needed. For a closed curve, τ : [0, 1] → R

3, embedded
in R

3 (it cannot intersect itself), let the set R
3 \ τ ([0, 1]) of points not reached by the

curve be called the ambient space of τ . In knot theory, an ambient isotopy between two
closed curves, τ1 and τ2, embedded in R

3 is a homeomorphism between their ambient
spaces. Intuitively, this means that τ1 can be warped into τ2 without allowing any self-
intersections. Therefore, determining whether two loops are equivalent seems closely
related to motion planning. Such equivalence gives rise to groups that characterize the
space of knots and are closely related to the fundamental group described in Section 4.1.3.
For more information on knot theory, see [8, 454, 514].

A motion planning approach was developed in [574] to determine whether a closed
curve is equivalent to the unknot, which is completely untangled. This can be expressed as
a curve that maps onto S

1, embedded in R
3. The algorithm takes as input a knot expressed

as a circular chain of line segments embedded in R
3. In this case, the unknot can be

expressed as a triangle in R
3. One of the most challenging examples solved by the planner

is shown in Figure 7.31. The planner is sampling-based and shares many similarities with
the RDT algorithm of Section 5.5 and the Ariadne’s clew and expansive space planners
described in Section 5.4.4. Since the task is not to produce a collision-free path, there are
several unique aspects in comparison to motion planning. An energy function is defined
over the collection of segments to try to guide the search toward simpler configurations.
There are two kinds of local operations that are made by the planner: 1) Try to move a
vertex toward a selected subgoal in the ambient space. This is obtained by using random
sampling to grow a search tree. 2) Try to delete a vertex, and connect the neighboring
vertices by a straight line. If no collision occurs along the intermediate configurations,
then the knot has been simplified. The algorithm terminates when it is unable to further
simplify the knot.

Drug design

A sampling-based motion planning approach to pharmaceutical drug design is taken in
[604]. The development of a drug is a long, incremental process, typically requiring
years of research and experimentation. The goal is to find a relatively small molecule
called a ligand, typically comprising a few dozen atoms, that docks with a receptor cavity
in a specific protein [618]; Figure 1.14 (Section 1.2) illustrated this. Examples of drug
molecules were also given in Figure 1.14. Protein-ligand docking can stimulate or inhibit
some biological activity, ultimately leading to the desired pharmacological effect. The
problem of finding suitable ligands is complicated due to both energy considerations and
the flexibility of the ligand. In addition to satisfying structural considerations, factors
such as synthetic accessibility, drug pharmacology and toxicology greatly complicate and
lengthen the search for the most effective drug molecules.

One popular model used by chemists in the context of drug design is a pharmacophore,
which serves as a template for the desired ligand [231, 341, 385, 862]. The pharmacophore
is expressed as a set of features that an effective ligand should possess and a set of
spatial constraints among the features. Examples of features are specific atoms, centers
of benzene rings, positive or negative charges, hydrophobic or hydrophilic centers, and
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Figure 7.31: The planner in [574] untangles the famous Ochiai unknot benchmark in a few minutes on a
standard PC.

(x2, y2, z2)

(x1, y1, z1)
(x3, y3, z3)

(0, 0, 0)

Figure 7.32: A pharmacophore is a model used by chemists to simplify the interaction process between a
ligand (candidate drug molecule) and a protein. It often amounts to holding certain features of the molecule
�x ed in R

3. In this example, the positions of three atoms must be �x ed relative to the body frame of
an arbitrarily designated root atom. It is assumed that these features interact with some complementary
features in the cavity of the protein.

hydrogen bond donors or acceptors. Features generally require that parts of the molecule
must remain fixed in R

3, which induces kinematic closure constraints. These features are
developed by chemists to encapsulate the assumption that ligand binding is due primarily
to the interaction of some features of the ligand to “complementary” features of the
receptor. The interacting features are included in the pharmacophore, which is a template
for screening candidate drugs, and the rest of the ligand atoms merely provide a scaffold
for holding the pharmacophore features in their spatial positions. Figure 7.32 illustrates
the pharmacophore concept.

Candidate drug molecules (ligands), such as the ones shown in Figure 1.14, can be
modeled as a tree of bodies as shown in Figure 7.33. Some bonds can rotate, yielding



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

EXTENSIONS OF BASIC MOTION PLANNING 291

θ1
θ2

θ3

θ5

θ6

θ4

Root Atom

Figure 7.33: The modeling of a �e xible molecule is similar to that of a robot. One atom is designated
as the root, and the remaining bodies are arranged in a tree. If there are cyclic chains in the molecules,
then constraints as described in Section 4.4 must be enforced. Typically, only some bonds are capable of
rotation, whereas others must remain rigid.

revolute joints in the model; other bonds must remain fixed. The drug design problem
amounts to searching the space of configurations (called conformations) to try to find a
low-energy configuration that also places certain atoms in specified locations in R

3. This
additional constraint arises from the pharmacophore and causes the planning to occur on
Cclo from Section 7.4 because the pharmacophores can be expressed as closure constraints.

An energy function serves a purpose similar to that of a collision detector. The evalu-
ation of a ligand for drug design requires determining whether it can achieve low-energy
conformations that satisfy the pharmacophore constraints. Thus, the task is different from
standard motion planning in that there is no predetermined goal configuration. One of the
greatest difficulties is that the energy functions are extremely complicated, nonlinear, and
empirical. Here is typical example (used in [604]):

e(q) =
∑

bonds

1

2
Kb(R − R′)2 +

∑
ang

1

2
Ka(α − α′)2

+
∑

torsions
Kd [1 + cos(pθ − θ ′)] (7.25)

+
∑

i,j

{
4εij

[(
σij

rij

)12

−
(

σij

rij

)6
]
+ cicj

εrij

}
.

The energy accounts for torsion-angle deformations, van der Waals potential, and Coulomb
potentials. In (7.25), the first sum is taken over all bonds, the second over all bond angles,
the third over all rotatable bonds, and the last is taken over all pairs of atoms. The variables
are the force constants, Kb, Ka , and Kd ; the dielectric constant, ε; a periodicity constant,
p; the Lennard-Jones radii, σij ; well depth, εij ; partial charge, ci ; measured bond length,
R; equilibrium bond length, R′; measured bond angle, α; equilibrium bond angle, α′;
measured torsional angle, θ ; equilibrium torsional angle, θ ′; and distance between atom
centers, rij . Although the energy expression is very complicated, it only depends on the
configuration variables; all others are constants that are estimated in advance.
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Figure 7.34: Protein folding for a polypeptide, computed by a sampling-based roadmap planning algo-
rithm [24]

Protein folding

In computational biology, the problem of protein folding shares many similarities with
drug design in that the molecules have rotatable bonds and energy functions are used to
express good configurations. The problems are much more complicated, however, because
the protein molecules are generally much larger than drug molecules. Instead of a dozen
degrees of freedom, which is typical for a drug molecule, proteins have hundreds or
thousands of degrees of freedom. When proteins appear in nature, they are usually in a
folded, low-energy configuration. The structure problem involves determining precisely
how the protein is folded so that its biological activity can be completely understood. In
some studies, biologists are even interested in the pathway that a protein takes to arrive
in its folded state [24, 25]. This leads directly to an extension of motion planning that
involves arriving at a goal state in which the molecule is folded. In [24, 25], sampling-based
planning algorithms were applied to compute folding pathways for proteins. The protein
starts in an unfolded configuration and must arrive in a specified folded configuration
without violating energy constraints along the way. Figure 7.34 shows an example from
[25]. That work also draws interesting connections between protein folding and box
folding, which was covered previously.

7.6 Coverage planning

Imagine automating the motion of a lawnmower for an estate that has many obstacles, such
as a house, trees, garage, and a complicated property boundary. What are the best zig-zag
motions for the lawnmower? Can the amount of redundant traversals be minimized? Can
the number of times the lawnmower needs to be stopped and rotated be minimized? This
is one example of coverage planning, which is motivated by applications such as lawn
mowing, automated farming, painting, vacuum cleaning, and mine sweeping. A survey
of this area appears in [219]. Even for a region in W = R

2, finding an optimal-length
solution to coverage planning is NP-hard, by reduction to the closely related Traveling
Salesman Problem [36, 712]. Therefore, we are willing to tolerate approximate or even
heuristic solutions to the general coverage problem, even in R

2.

Boustrophedon decomposition

One approach to the coverage problem is to decompose Cfree into cells and perform
boustrophedon (from the Greek “ox turning”) motions in each cell as shown in Figure 7.35
[224]. It is assumed that the robot is a point in W = R

2, but it carries a tool of thickness ε

that hangs evenly over the sides of the robot. This enables it to paint or mow part of Cfree
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Figure 7.35: An example of the ox plowing motions.

(a) (b)

Figure 7.36: (a) Only the �rst case from Figure 6.2 is needed: extend upward and downward. All other
cases are neglected. (b) The resulting decomposition is shown, which has fewer cells than that of the
vertical decomposition in Figure 6.3.

up to distance ε/2 from either side of the robot as it moves forward. Such motions are
often used in printers to reduce the number of carriage returns.

If Cobs is polygonal, a reasonable decomposition can be obtained by adapting the
vertical decomposition method of Section 6.2.2. In that algorithm, critical events were
defined for several cases, some of which are not relevant for the boustrophedon motions.
The only events that need to be handled are shown in Figure 7.36a [218]. This produces
a decomposition that has fewer cells, as shown in Figure 7.36b. Even though the cells
are nonconvex, they can always be sliced nicely into vertical strips, which makes them
suitable for boustrophedon motions. The original vertical decomposition could also be
used, but the extra cell boundaries would cause unnecessary repositioning of the robot.
A similar method, which furthermore optimizes the number of robot turns, is presented
in [471].

Spanning tree covering

An interesting approximate method was developed by Gabriely and Rimon; it places a
tiling of squares inside of Cfree and computes the spanning tree of the resulting connectivity
graph [374, 375]. Suppose again that Cfree is polygonal. Consider the example shown in
Figure 7.37a. The first step is to tile the interior of Cfree with squares, as shown in
Figure 7.37b. Each square should be of width ε, for some constant ε > 0. Next, construct
a roadmap G by placing a vertex in the center of each square and by defining an edge that
connects the centers of each pair of adjacent cubes. The next step is to compute a spanning
tree of G. This is a connected subgraph that has no cycles and touches every vertex of G; it
can be computed in O(n) time, if G has n edges [686]. There are many possible spanning
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(a) (b)

(c) (d)

Figure 7.37: (a) An example used for spanning tree covering. (b) The �rst step is to tile the interior with
squares. (c) The spanning tree of a roadmap formed from grid adjacencies. (d) The resulting coverage
path.

Figure 7.38: A circular path is made by doubling the resolution and following the perimeter of the spanning
tree.

trees, and a criterion can be defined and optimized to induce preferences. One possible
spanning tree is shown Figure 7.37c.

Once the spanning tree is made, the robot path is obtained by starting at a point near
the spanning tree and following along its perimeter. This path can be precisely specified
as shown in Figure 7.38. Double the resolution of the tiling, and form the corresponding
roadmap. Part of the roadmap corresponds to the spanning tree, but also included is a
loop path that surrounds the spanning tree. This path visits the centers of the new squares.
The resulting path for the example of Figure 7.37a is shown in Figure 7.37d. In general,
the method yields an optimal route, once the approximation is given. A bound on the
uncovered area due to approximation is given in [374]. Versions of the method that do
not require an initial map are also given in [374, 375]; this involves reasoning about
information spaces, which are covered in Chapter 11.
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Figure 7.39: For a polyhedral environment, the shortest paths do not have to cross vertices. Therefore,
the shortest-path roadmap method from Section 6.2.4 does not extend to three dimensions.

7.7 Optimal motion planning

This section can be considered transitional in many ways. The main concern so far with
motion planning has been feasibility as opposed to optimality. This placed the focus on
finding any solution, rather than further requiring that a solution be optimal. In later parts
of the book, especially as uncertainty is introduced, optimality will receive more attention.
Even the most basic forms of decision theory (the topic of Chapter 9) center on making
optimal choices. The requirement of optimality in very general settings usually requires
an exhaustive search over the state space, which amounts to computing continuous cost-
to-go functions. Once such functions are known, a feedback plan is obtained, which is
much more powerful than having only a path. Thus, optimality also appears frequently in
the design of feedback plans because it sometimes comes at no additional cost. This will
become clearer in Chapter 8. The quest for optimal solutions also raises interesting issues
about how to approximate a continuous problem as a discrete problem. The interplay
between time discretization and space discretization becomes very important in relating
continuous and discrete planning problems.

7.7.1 Optimality for one robot

Euclidean shortest paths

One of the most straightforward notions of optimality is the Euclidean shortest path in R
2

or R
3. Suppose that A is a rigid body that translates only in either W = R

2 or W = R
3,

which contains an obstacle region O ⊂W . Recall that, ordinarily, Cfree is an open set,
which means that any path, τ : [0, 1] → Cfree, can be shortened. Therefore, shortest paths
for motion planning must be defined on the closure cl(Cfree), which allows the robot to
make contact with the obstacles; however, their interiors must not intersect.

For the case in which Cobs is a polygonal region, the shortest-path roadmap method of
Section 6.2.4 has already been given. This can be considered as a kind of multiple-query
approach because the roadmap completely captures the structure needed to construct
the shortest path for any query. It is possible to make a single-query algorithm using the
continuous Dijkstra paradigm [446, 711]. This method propagates a wavefront from qI and
keeps track of critical events in maintaining the wavefront. As events occur, the wavefront
becomes composed of wavelets, which are arcs of circles centered on obstacle vertices.
The possible events that can occur are 1) a wavelet disappears, 2) a wavelet collides with
an obstacle vertex, 3) a wavelet collides with another wavelet, or 4) a wavelet collides
with a point in the interior of an obstacle edge. The method can be made to run in time
O(n lg n) and uses O(n lg n) space. A roadmap is constructed that uses O(n) space. See
Section 8.4.3 for a related method.
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Such elegant methods leave the impression that finding shortest paths is not very
difficult, but unfortunately they do not generalize nicely to R

3 and a polyhedral Cobs.
Figure 7.39 shows a simple example in which the shortest path does not have to cross
a vertex of Cobs. It may cross anywhere in the interior of an edge; therefore, it is not
clear where to draw the bitangent lines that would form the shortest-path roadmap. The
lower bounds for this problem are also discouraging. It was shown in [174] that the
3D shortest-path problem in a polyhedral environment is NP-hard. Most of the difficulty
arises because of the precision required to represent 3D shortest paths. Therefore, efficient
polynomial-time approximation algorithms exist [217, 766].

General optimality criteria

It is difficult to even define optimality for more general C-spaces. What does it mean to
have a shortest path in SE(2) or SE(3)? Consider the case of a planar, rigid robot that
can translate and rotate. One path could minimize the amount of rotation whereas another
tries to minimize the amount of translation. Without more information, there is no clear
preference. Ulam’s distance is one possibility, which is to minimize the distance traveled
by k fixed points [477]. In Chapter 13, differential models will be introduced, which lead
to meaningful definitions of optimality. For example, the shortest paths for a slow-moving
car are shown in Section 15.3; these require a precise specification of the constraints on
the motion of the car (it is more costly to move a car sideways than forward).

This section formulates some optimal motion planning problems, to provide a smooth
transition into the later concepts. Up until now, actions were used in Chapter 2 for discrete
planning problems, but they were successfully avoided for basic motion planning by
directly describing paths that map into Cfree. It will be convenient to use them once again.
Recall that they were convenient for defining costs and optimal planning in Section 2.3.

To avoid for now the complications of differential equations, consider making an
approximate model of motion planning in which every path must be composed of a
sequence of shortest-path segments in Cfree. Most often these are line segments; however,
for the case of SO(3), circular arcs obtained by spherical linear interpolation may be
preferable. Consider extending Formulation 2.3 from Section 2.3.2 to the problem of
motion planning.

Let the C-space C be embedded in R
m (i.e., C ⊂ R

m). An action will be defined shortly
as an m-dimensional vector. Given a scaling constant ε and a configuration q, an action
u produces a new configuration, q ′ = q + εu. This can be considered as a configuration
transition equation, q ′ = f (q, u). The path segment represented by the action u is the
shortest path (usually a line segment) between q and q ′. Following Section 2.3, let πK

denote a K-step plan, which is a sequence (u1, u2, . . . , uK ) of K actions. Note that if
πK and qI are given, then a sequence of states, q1, q2, . . . , qK+1, can be derived using f .
Initially, q1 = qI , and each following state is obtained by qk+1 = f (qk, uk). From this a
path, τ : [0, 1] → C, can be derived.

An approximate optimal planning problem is formalized as follows:

Formulation 7.4 (Approximate Optimal Motion Planning)

1. The following components are defined the same as in Formulation 4.1: W , O, A, C, Cobs,
Cfree, and qI . It is assumed that C is an n-dimensional manifold.

2. For each q ∈ C, a possibly infinite action space, U (q). Each u ∈ U is an n-dimensional
vector.
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Figure 7.40: Under the Manhattan (L 1) motion model, all monotonic paths that follow the grid directions
have equivalent length.

3. A positive constant ε > 0 called the step size.

4. A set of stages, each denoted by k, which begins at k = 1 and continues indefinitely. Each
stage is indicated by a subscript, to obtain qk and uk .

5. A configuration transition function f (q, u) = q + εu in which q + εu is computed by
vector addition on R

m.

6. Instead of a goal state, a goal region XG is defined.

7. Let L denote a real-valued cost functional, which is applied to a K-step plan, πK . This
means that the sequence (u1, . . . , uK ) of actions and the sequence (q1, . . . , qK+1) of
configurations may appear in an expression of L. Let F = K + 1. The cost functional is

L(πK ) =
K∑

k=1

l(qk, uk) + lF (qF ). (7.26)

The final term lF (qF ) is outside of the sum and is defined as lF (qF ) = 0 if qF ∈ XG and
lF (qF ) = ∞ otherwise. As in Formulation 2.3, K is not necessarily a constant.

8. Each U (q) contains the special termination action uT , which behaves the same way as
in Formulation 2.3. If uT is applied to qk at stage k, then the action is repeatedly applied
forever, the configuration remains in qk forever, and no more cost accumulates.

The task is to compute a sequence of actions that optimizes (7.26). Formulation 7.4
can be used to define a variety of optimal planning problems. The parameter ε can
be considered as the resolution of the approximation. In many formulations it can be
interpreted as a time step, ε = �t ; however, note that no explicit time reference is necessary
because the problem only requires constructing a path through Cfree. As ε approaches zero,
the formulation approaches an exact optimal planning problem. To properly express the
exact problem, differential equations are needed. This is deferred until Part IV.

Example 7.4 (Manhattan Motion Model) Suppose that in addition to uT , the action
set U (q) contains 2n vectors in which only one component is nonzero and must take the
value 1 or −1. For example, if C = R

2, then

U (q) = {(1, 0), (−1, 0), (0,−1), (0, 1), uT }. (7.27)

When used in the configuration transition equation, this set of actions produces “up,”
“down,” “left,” and “right” motions and a “terminate” command. This produces a topo-
logical graph according to the 1-neighborhood model, (5.37), which was given in Sec-
tion 5.4.2. The action set for this example and the following two examples are shown in
Figure 7.41 for comparison. The cost term l(qk, uk) is defined to be 1 for all qk ∈ Cfree and
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Independent
Joint

EuclideanManhattan

Figure 7.41: Depictions of the actions sets, U(q), for Examples 7.4, 7.5, and 7.6.

uk . If qk ∈ Cobs, then l(qk, uk) = ∞. Note that the set of configurations reachable by these
actions lies on a grid, in which the spacing between 1-neighbors is ε. This corresponds
to a convenient special case in which time discretization (implemented by ε) leads to a
regular space discretization. Consider Figure 7.40. It is impossible to take a shorter path
along a diagonal because the actions do not allow it. Therefore, all monotonic paths along
the grid produce the same costs.

Optimal paths can be obtained by simply applying the dynamic programming algo-
rithms of Chapter 2. This example provides a nice unification of concepts from Section 2.2,
which introduced grid search, and Section 5.4.2, which explained how to adapt search
methods to motion planning. In the current setting, only algorithms that produce optimal
solutions on the corresponding graph are acceptable.

This form of optimization might not seem relevant because it does not represent the
Euclidean shortest-path problem for R

2. The next model adds more actions, and does
correspond to an important class of optimization problems in robotics. �

Example 7.5 (Independent-Joint Motion Model) Now suppose that U (q) includes uT

and the set of all 3n vectors for which every element is either −1, 0, or 1. Under this
model, a path can be taken along any diagonal. This still does not change the fact that
all reachable configurations lie on a grid. Therefore, the standard grid algorithms can be
applied once again. The difference is that now there are 3n − 1 edges emanating from
every vertex, as opposed to 2n in Example 7.4. This model is appropriate for robots
that are constructed from a collection of links attached by revolute joints. If each joint is
operated independently, then it makes sense that each joint could be moved either forward,
backward, or held stationary. This corresponds exactly to the actions. However, this model
cannot nicely approximate Euclidean shortest paths; this motivates the next example. �

Example 7.6 (Euclidean Motion Model) To approximate Euclidean shortest paths, let
U (q) = S

n−1 ∪ {uT }, in which S
n−1 is the m-dimensional unit sphere centered at the origin

of R
n. This means that in k stages, any piecewise-linear path in which each segment has

length ε can be formed by a sequence of inputs. Therefore, the set of reachable states is no
longer confined to a grid. Consider taking ε = 1, and pick any point, such as (π, π) ∈ R

2.
How close can you come to this point? It turns out that the set of points reachable
with this model is dense in R

n if obstacles are neglected. This means that we can come
arbitrarily close to any point in R

n. Therefore, a finite grid cannot be used to represent
the problem. Approximate solutions can still be obtained by numerically computing an
optimal cost-to-go function over C. This approach is presented in Section 8.5.2.

One additional issue for this problem is the precision defined for the goal. If the goal
region is very small relative to ε, then complicated paths may have to be selected to arrive
precisely at the goal. �
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A2A1

Figure 7.42: There are two Pareto-optimal coordination plans for this problem, depending on which robot
has to wait.

Example 7.7 (Weighted-Region Problem) In outdoor and planetary navigation appli-
cations, it does not make sense to define obstacles in the crisp way that has been used so
far. For each patch of terrain, it is more convenient to associate a cost that indicates the
estimated difficulty of its traversal. This is sometimes considered as a “grayscale” model
of obstacles. The model can be easily captured in the cost term l(qk, uk). The action spaces
can be borrowed from Examples 7.4 or 7.5. Stentz’s algorithm [914], which is introduced
in Section 12.3.2, generates optimal navigation plans for this problem, even assuming that
the terrain is initially unknown. Theoretical bounds for optimal weighted-region planning
problems are given in [712, 713]. An approximation algorithm appears in [823]. �

7.7.2 Multiple-robot optimality

Suppose that there are two robots as shown in Figure 7.42. There is just enough room to
enable the robots to translate along the corridors. Each would like to arrive at the bottom,
as indicated by arrows; however, only one can pass at a time through the horizontal
corridor. Suppose that at any instant each robot can either be on or off. When it is on, it
moves at its maximum speed, and when it is off, it is stopped.4 Now suppose that each
robot would like to reach its goal as quickly as possible. This means each would like to
minimize the total amount of time that it is off. In this example, there appears to be only
two sensible choices: 1) A1 stays on and moves straight to its goal while A2 is off just
long enough to let A1 pass, and then moves to its goal. 2) The opposite situation occurs,
in which A2 stays on and A1 must wait. Note that when a robot waits, there are multiple
locations at which it can wait and still yield the same time to reach the goal. The only
important information is how long the robot was off.

Thus, the two interesting plans are that either A2 is off for some amount of time,
toff > 0, or A1 is off for time toff . Consider a vector of costs of the form (L1, L2), in
which each component represents the cost for each robot. The costs of the plans could be
measured in terms of time wasted by waiting. This yields (0, toff ) and (toff , 0) for the cost

4 This model allows infinite acceleration. Imagine that the speeds are slow enough to allow this approximation. If
this is still not satisfactory, then jump ahead to Chapter 13.
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vectors associated with the two plans (we could equivalently define cost to be the total
time traveled by each robot; the time on is the same for both robots and can be subtracted
from each for this simple example). The two plans are better than or equivalent to any
others. Plans with this property are called Pareto optimal (or nondominated). For example,
if A2 waits 1 second too long for A1 to pass, then the resulting costs are (0, toff + 1),
which is clearly worse than (0, toff ). The resulting plan is not Pareto optimal. More details
on Pareto optimality appear in Section 9.1.1.

Another way to solve the problem is to scalarize the costs by mapping them to a single
value. For example, we could find plans that optimize the average wasted time. In this case,
one of the two best plans would be obtained, yielding toff average wasted time. However,
no information is retained about which robot had to make the sacrifice. Scalarizing
the costs usually imposes some kind of artificial preference or prioritization among the
robots. Ultimately, only one plan can be chosen, which might make it seem inappropriate
to maintain multiple solutions. However, finding and presenting the alternative Pareto-
optimal solutions could provide valuable information if, for example, these robots are
involved in a complicated application that involves many other time-dependent processes.
Presenting the Pareto-optimal solutions is equivalent to discarding all of the worse plans
and showing the best alternatives. In some applications, priorities between robots may
change, and if a scheduler of robots has access to the Pareto-optimal solutions, it is easy to
change priorities by switching between Pareto-optimal plans without having to generate
new plans each time.

Now the Pareto-optimality concept will be made more precise and general. Suppose
there are m robots, A1, . . . ,Am. Let γ refer to a motion plan that gives the paths and
timing functions for all robots. For each Ai , let Li denote its cost functional, which yields
a value Li(γ ) ∈ [0,∞] for a given plan, γ . An m-dimensional vector, L(γ ), is defined as

L(γ ) = (L1(γ ), L2(γ ), . . . , Lm(γ )). (7.28)

Two plans, γ and γ ′, are called equivalent if L(γ ) = L(γ ′). A plan γ is said to dominate
a plan γ ′ if they are not equivalent and Li(γ ) ≤ Li(γ ′) for all i such that 1 ≤ i ≤ m. A
plan is called Pareto optimal if it is not dominated by any others. Since many Pareto-
optimal plans may be equivalent, the task is to determine one representative from each
equivalence class. This will be called finding the unique Pareto-optimal plans. For the
example in Figure 7.42, there are two unique Pareto-optimal plans, which were already
given.

Scalarization

For the motion planning problem, a Pareto-optimal solution is also optimal for a scalar cost
functional that is constructed as a linear combination of the individual costs. Let α1, . . . ,

αm be positive real constants, and let

l(γ ) =
m∑

i=1

αiLi(γ ). (7.29)

It is easy to show that any plan that is optimal with respect to (7.29) is also a Pareto-optimal
solution [609]. If a Pareto optimal solution is generated in this way, however, there is no
easy way to determine what alternatives exist.
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Computing Pareto-optimal plans

Since optimization for one robot is already very difficult, it may not be surprising that
computing Pareto-optimal plans is even harder. For some problems, it is even possible
that a continuum of Pareto-optimal solutions exist (see Example 9.3), which is very
discouraging. Fortunately, for the problem of coordinating robots on topological graphs,
as considered in Section 7.2.2, there is only a finite number of solutions [388]. A grid-
based algorithm, which is based on dynamic programming and computes all unique
Pareto-optimal coordination plans, is presented in [609]. For the special case of two
polygonal robots moving on a tree of piecewise-linear paths, a complete algorithm is
presented in [214].

Further reading

This chapter covered some of the most direct extensions of the basic motion planning problem. Extensions
that involve uncertainties are covered throughout Part III, and the introduction of differential constraints to
motion planning is the main focus of Part IV. Numerous other extensions can be found by searching
through robotics research publications or the Internet.

The treatment of time-varying motion planning in Section 7.1 assumes that all motions are predictable.
Most of the coverage is based on early work [155, 509, 821, 822]; other related work includes [369,
370, 535, 815, 877, 906]. To introduce uncertainties into this scenario, see Chapter 10. The logic-based
representations of Section 2.4 have been extended to temporal logics to allow time-varying aspects of
discrete planning problems (see Part IV of [384]).

For more on multiple-robot motion planning, see [15, 34, 41, 321, 322, 347, 366, 410, 609, 783, 887].
Closely related is the problem of planning for modular reconfigurable robots [182, 211, 387, 555, 990]. In
both contexts, nonpositive curvature (NPC) is an important condition that greatly simplifies the structure
of optimal paths [141, 387, 388]. For points moving on a topological graph, the topology of Cfree is
described in [5]. Over the last few years there has also been a strong interest in the coordination of a
team or swarm of robots [167, 230, 276, 302, 307, 338, 363, 668].

The complexity of assembly planning is studied in [400, 518, 736, 972]. The problem is generally
NP-hard; however, for some special cases, polynomial-time algorithms have been developed [9, 432,
973, 974]. Other works include [188, 430, 456, 461, 545].

Hybrid systems have attracted widespread interest over the past decade. Most of this work considers
how to design control laws for piecewise-smooth systems [139, 637]. Early sources of hybrid control
literature appear in [411]. The manipulation planning framework of Section 7.3.2 is based on [16, 17, 168].
The manipulation planning framework presented in this chapter ignores grasping issues. For analyses
and algorithms for grasping, see [258, 490, 684, 784, 802, 803, 829, 830, 921]. Manipulation on a
microscopic scale is considered in [128].

To read beyond Section 7.4 on sampling-based planning for closed kinematic chains, see [246, 248,
435, 979]. A complete planner for some closed chains is presented in [700]. For related work on inverse
kinematics, see [311, 696]. The power of redundant degrees of freedom in robot systems was shown
in [160].

Section 7.5 is a synthesis of several applications. The application of motion planning techniques to
problems in computational biology is a booming area; see [24, 25, 33, 247, 517, 592, 604, 657, 1001] for
some representative papers. The knot-planning coverage is based on [575]. The box-folding presentation
is based on [664]. A robotic system and planning technique for creating origami is presented in [66].

The coverage planning methods presented in Section 7.6 are based on [224] and [374, 375]. A survey
of coverage planning appears in [219]. Other references include [6, 7, 166, 376, 447, 471, 976]. For
discrete environments, approximation algorithms for the problem of optimally visiting all states in a goal
set (the orienteering problem) are presented and analyzed in [117, 190].
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A1

A2

Figure 7.43: Two translating robots moving along piecewise-linear paths.

Beyond two dimensions, optimal motion planning is extremely difficult. See Section 8.5.2 for dynamic
programming-based approximations. See [217, 766] for approximate shortest paths in R

3. The weighted
region problem is considered in [712, 713]. Pareto-optimal coordination is considered in [214, 388, 609].

Exercises

1. Consider the obstacle region, (7.1), in the state space for time-varying motion planning.

(a) To ensure that Xobs is polyhedral, what kind of paths should be allowed? Show how the
model primitives Hi that de�ne O are expressed in general, using t as a parameter.

(b) Repeat the exercise, but for ensuring that Xobs is semi-algebraic.

2. Propose a way to adapt the sampling-based roadmap algorithm of Section 5.6 to solve the
problem of time-varying motion planning with bounded speed.

3. Develop an ef�cient algorithm for computing the obstacle region for two translating polyg-
onal robots that each follow a linear path.

4. Sketch the coordination space for the two robots moving along the � xed paths shown in
Figure 7.43.

5. Suppose there are two robots, and each moves on its own roadmap of three paths. The
paths in each roadmap are arranged end-to-end in a triangle.

(a) Characterize the � xed-roadmap coordination space that results, including a description of
its topology.

(b) Now suppose there are n robots, each on a triangular roadmap, and characterize the � xed-
roadmap coordination space.

6. Consider the state space obtained as the Cartesian product of the C-spaces of n identical
robots. Suppose that each robot is labeled with a unique integer. Show that X can be
partitioned nicely into n! regions in which Xobs appears identical and the only difference is
the labels (which indicate the particular robots that are in collision).

7. Suppose there are two robots, and each moves on its own roadmap of three paths. The
paths in one roadmap are arranged end-to-end in a triangle, and the paths in the other are
arranged as a Y. Characterize the � xed-roadmap coordination space that results, including
a description of its topology.

8. Design an ef�cient algorithm that takes as input a graph representation of the connectivity
of a linkage and computes an active-passive decomposition. Assume that all links are
revolute. The algorithm should work for either 2D or 3D linkages (the dimension is also an
input). Determine the asymptotic running time of your algorithm.

9. Consider the problem of coordinating the motion of two robots that move along precom-
puted paths but in the presence of predictable moving obstacles. Develop a planning
algorithm for this problem.

10. Consider a manipulator in W = R
2 made of four links connected in a chain by revolute

joints. There is unit distance between the joints, and the � rst joint is attached at (0, 0) in
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W = R
2. Suppose that the end of the last link, which is position (1, 0) in its body frame, is

held at (0, 2) ∈W.

(a) Use kinematics expressions to express the closure constraints for a con�gur ation q ∈ C.

(b) Convert the closure constraints into polynomial form.

(c) Use differentiation to determine the constraints on the allowable velocities that maintain
closure at a con�gur ation q ∈ C.

Implementations

11. Implement the vertical decomposition algorithm to solve the path-tuning problem, as shown
in Figure 7.5.

12. Use grid-based sampling and a search algorithm to compute collision-free motions of three
robots moving along predetermined paths.

13. Under the conditions of Exercise 12, compute Pareto-optimal coordination strategies that
optimize the time (number of stages) that each robot takes to reach its goal. Design a
wavefront propagation algorithm that keeps track of the complete (ignoring equivalent
strategies) set of minimal Pareto-optimal coordination strategies at each reached state.
Avoid storing entire plans at each discretized state.

14. To gain an appreciation of the dif�culties of planning for closed kinematic chains, try motion
planning for a point on a torus among obstacles using only the implicit torus constraint
given by (6.40). To simplify collision detection, the obstacles can be a collection of balls
in R

3 that intersect the torus. Adapt a sampling-based planning technique, such as the
bidirectional RRT, to traverse the torus and solve planning problems.

15. Implement the spanning-tree coverage planning algorithm of Section 7.6.

16. Develop an RRT-based planning algorithm that causes the robot to chase an unpredictable
moving target in a planar environment that contains obstacles. The algorithm should run
quickly enough so that replanning can occur during execution. The robot should execute
the � rst part of the most recently computed path while simultaneously computing a better
plan for the next time increment.

17. Modify Exercise 16 so that the robot assumes the target follows a predictable, constant-
velocity trajectory until some deviation is observed.

18. Show how to handle unexpected obstacles by using a fast enough planning algorithm. For
simplicity, suppose the robot is a point moving in a polygonal obstacle region. The robot
�rst computes a path and then starts to execute it. If the obstacle region changes, then
a new path is computed from the robot’s current position. Use vertical decomposition or
another algorithm of your choice (provided it is fast enough). The user should be able to
interactively place or move obstacles during plan execution.

19. Use the manipulation planning framework of Section 7.3.2 to develop an algorithm that
solves the famous Towers of Hanoi problem by a robot that carries the rings [168]. For
simplicity, suppose a polygonal robot moves polygonal parts in W = R

2 and rotation is not
allowed. Make three pegs, and initially place all parts on one peg, sorted from largest to
smallest. The goal is to move all of the parts to another peg while preserving the sorting.

20. Use grid-based approximation to solve optimal planning problems for a point robot in
the plane. Experiment with using different neighborhoods and metrics. Characterize the
combinations under which good and bad approximations are obtained.
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Feedback Motion Planning

So far in Part II it has been assumed that a continuous path sufficiently solves a motion
planning problem. In many applications, such as computer-generated animation and virtual
prototyping, there is no need to challenge this assumption because models in a virtual
environment usually behave as designed. In applications that involve interaction with the
physical world, future configurations may not be predictable. A traditional way to account
for this in robotics is to use the refinement scheme that was shown in Figure 1.19 to design
a feedback control law that attempts to follow the computed path as closely as possible.
Sometimes this is satisfactory, but it is important to recognize that this approach is highly
decoupled. Feedback and dynamics are neglected in the construction of the original path;
the computed path may therefore not even be usable.

Section 8.1 motivates the consideration of feedback in the context of motion plan-
ning. Section 8.2 presents the main concepts of this chapter, but only for the case of a
discrete state space. This requires less mathematical concepts than the continuous case,
making it easier to present feedback concepts. Section 8.3 then provides the mathematical
background needed to extend the feedback concepts to continuous state spaces (which in-
cludes C-spaces). Feedback motion planning methods are divided into complete methods,
covered in Section 8.4, and sampling-based methods, covered in Section 8.5.

8.1 Motivation

For most problems involving the physical world, some form of feedback is needed. This
means the actions of a plan should depend in some way on information gathered during
execution. The need for feedback arises from the unpredictability of future states. In this
chapter, every state space will be either discrete, or X = C, which is a configuration space
as considered in Chapter 4.

Two general ways to model uncertainty in the predictability of future states are

1. Explicitly: Develop models that explicitly account for the possible ways that the actual
future state can drift away from the planned future state. A planning algorithm must take
this uncertainty directly into account. Such explicit models of uncertainty are introduced
and incorporated into the planning model in Part III.

2. Implicitly: The model of state transitions indicates that no uncertainty is possible; how-
ever, a feedback plan is constructed to ensure that it knows which action to apply, just in
case it happens to be in some unexpected state during execution. This approach is taken
in this chapter.

The implicit way to handle this uncertainty may seem strange at first; therefore, some
explanation is required. It will be seen in Part III that explicitly modeling uncertainty is
extremely challenging and complicated. The requirements for expressing reliable models
are much stronger; the complexity of the problem increases, making algorithm design

304
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Open Loop Feedback
Free motions Traditional motion planning Chapter 8

Dynamics Chapters 14 and 15 Traditional control theory

Figure 8.1: By separating the issue of dynamics from feedback, two less-investigated topics emerge.

more difficult and leading to greater opportunities to make modeling errors. The implicit
way of handling uncertainty in predictability arose in control theory [110, 124, 689]. It is
well known that a feedback control law is needed to obtain reliable performance, yet it is
peculiar that the formulation of dynamics used in most contexts does not explicitly account
for this. Classical control theory has always assumed that feedback is crucial; however,
only in modern branches of the field, such as stochastic control and robust control, does
this uncertainty get explicitly modeled. Thus, there is a widely accepted and successful
practice of designing feedback control laws that use state feedback to implicitly account
for the fact that future states may be unpredictable. Given the widespread success of this
control approach across numerous applications over the past century, it seems valuable to
utilize this philosophy in the context of motion planning as well (if you still do not like it,
then jump to Chapter 10).

Due to historical reasons in the development of feedback control, it often seems that
feedback and dynamics are inseparable. This is mainly because control theory was devel-
oped to reliably alter the behavior of dynamical systems. In traditional motion planning,
neither feedback nor dynamics is considered. A solution path is considered open loop,
which means there is no feedback of information during execution to close the loop.
Dynamics are also not handled because the additional complications of differential con-
straints and higher dimensional phase spaces arise (see Part IV).

By casting history aside and separating feedback from dynamics, four separate topics
can be made, as shown in Figure 8.1. The topic of open-loop planning that involves
dynamics has received increasing attention in recent years. This is the focus throughout
most of Part IV. Those fond of classical control theory may criticize it for failing to
account for feedback; however, such open-loop trajectories (paths in a phase space)
are quite useful in applications that involve simulations. Furthermore, a trajectory that
accounts for dynamics is more worthwhile in a decoupled approach than using a path that
ignores dynamics, which has been an acceptable practice for decades. These issues will
be elaborated upon further in Part IV.

The other interesting topic that emerges in Figure 8.1 is to develop feedback plans
for problems in which there are no explicit models of dynamics or other differential
constraints. If it was reasonable to solve problems in classical motion planning by ignoring
differential constraints, one should certainly feel no less guilty designing feedback motion
plans that still neglect differential constraints.1 This uses the implicit model of uncertainty
in predictability without altering any of the other assumptions previously applied in
traditional motion planning.

Even if there are no unpredictability issues, another important use of feedback plans is
for problems in which the initial state is not known. A feedback plan indicates what action
to take from every state. Therefore, the specification of an initial condition is not important.
The analog of this in graph algorithms is the single-source shortest-paths problem, which

1 Section 8.4.4 will actually consider some simple differential constraints, such as acceleration bounds; the full
treatment of differential constraints is deferred until Part IV.
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indicates how to arrive at a particular vertex optimally from any other vertex. Due to this
connection, the next section presents feedback concepts for discrete state spaces, before
extending the ideas to continuous spaces, which are needed for motion planning.

For these reasons, feedback motion planning is considered in this chapter. As a module
in a decoupled approach used in robotics, feedback motion plans are at least as useful as
a path computed by the previous techniques. We expect feedback solutions to be more
reliable in general, when used in the place of open-loop paths computed by traditional
motion planning algorithms.

8.2 Discrete state spaces

This section is provided mainly to help to explain similar concepts that are coming in
later sections. The presentation is limited to discrete spaces, which are much simpler to
formulate and understand. Following this, an extension to configuration spaces and other
continuous state spaces can be made. The discussion here is also relevant background
for the feedback planning concepts that will be introduced in Section 8.4.1. In that case,
uncertainty will be explicitly modeled. The resulting formulation and concepts can be
considered as an extension of this section.

8.2.1 Defining a feedback plan

Consider a discrete planning problem similar to the ones defined in Formulations 2.1 and
2.3, except that the initial state is not given. Due to this, the cost functional cannot be
expressed only as a function of a plan. It is instead defined in terms of the state history
and action history. At stage k, these are defined as

x̃k = (x1, x2, . . . , xk) (8.1)

and

ũk = (u1, u2, . . . , uk), (8.2)

respectively. Sometimes, it will be convenient to alternatively refer to x̃k as the state
trajectory.

The resulting formulation is

Formulation 8.1 (Discrete Optimal Feedback Planning)

1. A finite, nonempty state space X.

2. For each state, x ∈ X, a finite action space U (x).

3. A state transition function f that produces a state, f (x, u) ∈ X, for every x ∈ X and
u ∈ U (x). Let U denote the union of U (x) for all x ∈ X.

4. A set of stages, each denoted by k, that begins at k = 1 and continues indefinitely.

5. A goal set, XG ⊂ X.

6. Let L denote a stage-additive cost functional,

L(x̃F , ũK ) =
K∑

k=1

l(xk, uk) + lF (xF ), (8.3)

in which F = K + 1.
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There is one other difference in comparison to the formulations of Chapter 2. The state
space is assumed here to be finite. This facilitates the construction of a feedback plan, but
it is not necessary in general.

Consider defining a plan that solves Formulation 8.1. If the initial condition is given,
then a sequence of actions could be specified, as in Chapter 2. Without having the initial
condition, one possible approach is to determine a sequence of actions for each possible
initial state, x1 ∈ X. Once the initial state is given, the appropriate action sequence is
known. This approach, however, wastes memory. Suppose some x is given as the initial
state and the first action is applied, leading to the next state x ′. What action should be
applied from x ′? The second action in the sequence at x can be used; however, we can also
imagine that x ′ is now the initial state and use its first action. This implies that keeping
an action sequence for every state is highly redundant. It is sufficient at each state to keep
only the first action in the sequence. The application of that action produces the next state,
at which the next appropriate action is stored. An execution sequence can be imagined
from an initial state as follows. Start at some state, apply the action stored there, arrive at
another state, apply its action, arrive at the next state, and so on, until the goal is reached.

It therefore seems appropriate to represent a feedback plan as a function that maps every
state to an action. Therefore, a feedback plan π is defined as a function π : X → U . From
every state, x ∈ X, the plan indicates which action to apply. If the goal is reached, then
the termination action should be applied. This is specified as part of the plan: π(x) = uT ,
if x ∈ XG. A feedback plan is called a solution to the problem if it causes the goal to be
reached from every state that is reachable from the goal.

If an initial state x1 and a feedback plan π are given, then the state and action histories
can be determined. This implies that the execution cost, (8.3), also can be determined. It
can therefore be alternatively expressed as L(π, x1), instead of L(x̃F , ũK ). This relies on
future states always being predictable. In Chapter 10, it will not be possible to make this
direct correspondence due to uncertainties (see Section 10.1.3).

Feasibility and optimality

The notions of feasible and optimal plans need to be reconsidered in the context of
feedback planning because the initial condition is not given. A plan π is called a solution
to the feasible planning problem if from every x ∈ X from which XG is reachable the
goal set is indeed reached by executing π from x. This means that the cost functional is
ignored (an alternative to Formulation 8.1 can be defined in which the cost functional is
removed). For convenience, π will be called a feasible feedback plan.

Now consider optimality. From a given state x, it is clear that an optimal plan exists
using the concepts of Section 2.3. Is it possible that a different optimal plan needs to be
associated with every x ∈ X that can reach XG? It turns out that only one plan is needed
to encode optimal paths from every initial state to XG. Why is this true? Suppose that the
optimal cost-to-go is computed over X using Dijkstra’s algorithm or value iteration, as
covered in Section 2.3. Every cost-to-go value at some x ∈ X indicates the cost received
under the implementation of the optimal open-loop plan from x. The first step in this
optimal plan can be determined by (2.19), which yields a new state x ′ = f (x, u). From
x ′, (2.19) can be applied once again to determine the next optimal action. The cost at x ′

represents both the optimal cost-to-go if x ′ is the initial condition and also the optimal cost-
to-go when continuing on the optimal path from x. The two must be equivalent because of
the dynamic programming principle. Since all such costs must coincide, a single feedback
plan can be used to obtain the optimal cost-to-go from every initial condition.
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xG uT

(a) (b)

Figure 8.2: a) A 2D grid-planning problem. b) A solution feedback plan.

A feedback plan π is therefore defined as optimal if from every x ∈ X, the total cost,
L(π, x), obtained by executing π is the lowest among all possible plans. The requirement
that this holds for every initial condition is important for feedback planning.

Example 8.1 (Feedback Plan on a 2D Grid) This example uses the 2D grid model
explained in Example 2.1. A robot moves on a grid, and the possible actions are up (↑),
down (↓), left (←), right (→), and terminate (uT ); some directions are not available from
some states. A solution feedback plan is depicted in Figure 8.2. Many other possible
solutions plans exist. The one shown here happens to be optimal in terms of the number
of steps to the goal. Some alternative feedback plans are also optimal (figure out which
arrows can be changed). To apply the plan from any initial state, simply follow the arrows
to the goal. In each stage, the application of the action represented by the arrow leads to
the next state. The process terminates when uT is applied at the goal. �

8.2.2 Feedback plans as navigation functions

It conveniently turns out that tools for computing a feedback plan were already given in
Chapter 2. Methods such as Dijkstra’s algorithm and value iteration produce information
as a side effect that can be used to represent a feedback plan. This section explains how
this information is converted into a feedback plan. To achieve this, a feedback plan will
be alternatively expressed as a potential function over the state space (recall potential
functions from Section 5.4.3). The potential values are computed by planning algorithms
and can be used to recover the appropriate actions during execution. In some cases, an
optimal feedback plan can even be represented using potential functions.

Navigation functions

Consider a (discrete) potential function, defined as φ : X → [0,∞]. The potential function
can be used to define a feedback plan through the use of a local operator, which is a function
that selects the action that reduces the potential as much as possible. First, consider the
case of a feasible planning problem. The potential function, φ, defines a feedback plan by
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selecting u through the local operator,

u∗ = argmin
u∈U (x)

{
φ(f (x, u))

}
, (8.4)

which means that u∗ ∈ U (x) is chosen to reduce φ as much as possible. The local operator
yields a kind of greedy descent of the potential. Note that the action u∗ may not be unique.
In the continuous-space analog to this, the corresponding local operator performs a descent
along the negative gradient (often referred to as gradient descent).

In the case of optimal planning, the local operator is defined as

u∗ = argmin
u∈U (x)

{
l(x, u) + φ(f (x, u))

}
, (8.5)

which looks similar to the dynamic programming condition, (2.19). It becomes identical
to (2.19) if φ is interpreted as the optimal cost-to-go. A simplification of (8.5) can be
made if the planning problem is isotropic, which means that the cost is the same in every
direction: l(x, u) = l(x, u′) for all u, u′ ∈ U (x). In this case, the cost term l(x, u) does not
affect the minimization in (8.5). A common example in which this assumption applies is
if the cost functional counts the number of stages required to reach the goal. The costs of
particular actions chosen along the way are not important. Using the isotropic property,
(8.5) simplifies back to (8.4).

When is a potential function useful? Many useless potential functions can be defined
that fail to reach the goal, or cause states to cycle indefinitely, and so on. The most
desirable potential function is one that for any initial state causes arrival in XG, if it is
reachable. This requires only a few simple properties. A potential function that satisfies
these will be called a navigation function.2

Suppose that the cost functional is isotropic. Let x ′ = f (x, u∗), which is the state
reached after applying the action u∗ ∈ U (x) that was selected by (8.4). A potential func-
tion, φ, is called a (feasible) navigation function if

1. φ(x) = 0 for all x ∈ XG.

2. φ(x) = ∞ if and only if no point in XG is reachable from x.

3. For every state, x ∈ X \XG, the local operator produces a state x ′ for which φ(x ′) < φ(x).

The first condition requires the goal to have zero potential (this condition is actually not
necessary but is included for convenience). The second condition requires that ∞ serves
as a special indicator that the goal is not reachable from some state. The third condition
means that the potential function has no local minima except at the goal. This means that
the execution of the resulting feedback plan will progress without cycling and the goal
region will eventually be reached.

An optimal navigation function is defined as the optimal cost-to-go, G∗. This means
that in addition to the three properties above, the navigation function must also satisfy the
principle of optimality:

φ(x) = min
u∈U (x)

{
l(x, u) + φ(f (x, u))

}
, (8.6)

which is just (2.18) with G∗ replaced by φ. See Section 15.2.1 for more on this connection.

2 This term was developed for continuous configuration spaces in [544, 832]; it will be used more broadly in this
book but still retains the basic idea.
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Figure 8.3: The cost-to-go values serve as a navigation function.

Example 8.2 (Navigation Function on a 2D Grid) Return to the planning problem in
Example 8.1. Assume that an isotropic cost model is used: l(x, u) = 1 if u 	= uT . Figure 8.3
shows a navigation function. The numbers shown in the tiles represent φ. Verify that φ

satisfies the three requirements for a navigation function.
At any state, an action is applied that reduces the potential value. This corresponds to

selecting the action using (8.4). The process may be repeated from any state until XG

is reached. This example clearly illustrates how a navigation function can be used as an
alternative definition of a feedback plan. �

Example 8.3 (Airport Terminal) You may have found yourself using a navigation
function to find the exit after arriving in an unfamiliar airport terminal. Many terminals
are tree-structured, with increasing gate numbers as the distance to the terminal exit
increases. If you wish to leave the terminal, you should normally walk toward the lower
numbered gates. �

Computing navigation functions

There are many ways to compute navigation functions. The cost-to-go function determined
by Dijkstra’s algorithm working backward from XG yields an optimal navigation function.
The third condition of a navigation function under the anisotropic case is exactly the
stationary dynamic programming equation, (2.18), if the navigation function φ is defined
as the optimal cost-to-go G∗. It was mentioned previously that the optimal actions can be
recovered using only the cost-to-go. This was actually an example of using a navigation
function, and the resulting procedure could have been considered as a feedback plan. If
optimality is not important, then virtually any backward search algorithm from Section 2.2
can be used, provided that it records the distance to the goal from every reached state.
The distance does not have to be optimal. It merely corresponds to the cost obtained if the
current vertex in the search tree is traced back to the root vertex (or back to any vertex in
XG, if there are multiple goal states).

If the planning problem does not even include a cost functional, as in Formulation
2.1, then a cost functional can be invented for the purposes of constructing a navigation
function. At each x ∈ X from which XG is reachable, the number of edges in the search
graph that would be traversed from x to XG can be stored as the cost. If Dijkstra’s
algorithm is used to construct the navigation function, then the resulting feedback plan
yields executions that are shortest in terms of the number of stages required to reach
the goal.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

FEEDBACK MOTION PLANNING 311

The navigation function itself serves as the representation of the feedback plan, by
recovering the actions from the local operator. Thus, a function, π : X → U , can be
recovered from a navigation function, φ : X → [0,∞]. Likewise, a navigation function,
φ, can be constructed from π . Therefore, the π and φ can be considered as interchangeable
representations of feedback plans.

8.2.3 Grid-based navigation functions for motion planning

To consider feedback plans for continuous spaces, vector fields and other basic definitions
from differential geometry will be needed. These will be covered in Section 8.3; however,
before handling such complications, we first will describe how to use the ideas presented
so far in Section 8.2 as a discrete approximation to feedback motion planning.

Examples 8.1 and 8.2 have already defined feedback plans and navigation functions for
2D grids that contain obstacles. Imagine that this model is used to approximate a motion
planning problem for which C ⊂ R

2. Section 5.4.2 showed how to make a topological
graph that approximates the motion planning problem with a grid of samples. The motions
used in Example 8.1 correspond to the 1-neighborhood definition, (5.37). This idea was
further refined in Section 7.7.1 to model approximate optimal motion planning by moving
on a grid; see Formulation 7.4. By choosing the Manhattan motion model, as defined in
Example 7.4, a grid with the same motions considered in Example 8.1 is produced.

To construct a navigation function that may be useful in mobile robotics, a high-
resolution (e.g., 50 to 100 points per axis) grid is usually required. In Section 5.4.2, only
a few points per axis were needed because feedback was not assumed. It was possible
in some instances to find a collision-free path by investigating only a few points per
axis. During the execution of a feedback plan, it is assumed that the future states of
the robot are not necessarily predictable. Wherever the robot may end up, the navigation
function in combination with the local operator must produce the appropriate action. If the
current state (or configuration) is approximated by a grid, then it is important to reduce
the approximation error as much as possible. This is accomplished by setting the grid
resolution high. In the feedback case, the grid can be viewed as “covering” the whole
configuration space, whereas in Section 5.4.2 the grid only represented a topological graph
of paths that cut across the space.3

Wavefront propagation algorithms

Once the approximation has been made, any of the methods discussed in Section 8.2.2 can
be used to compute a navigation function. An optimal navigation function can be easily
computed using Dijkstra’s algorithm from the goal. If each motion has unit cost, then a
useful simplification can be made. Figure 8.4 describes a wavefront propagation algorithm
that computes an optimal navigation function. It can be considered as a special case of
Dijkstra’s algorithm that avoids explicit construction of the priority queue. In Dijkstra’s
algorithm, the cost of the smallest element in the queue is monotonically nondecreasing
during the execution of the algorithm. In the case of each motion having unit cost, there
will be many states in the queue that have the same cost. Dijkstra’s algorithm could remove
in parallel all elements that have the same, smallest cost. Suppose the common, smallest
cost value is i. These states are organized into a wavefront, Wi . The initial wavefront is

3 Difficulty in distinguishing between these two caused researchers for many years to believe that grids yield terrible
performance for the open-loop path planning problems of Chapter 5. This was mainly because it was assumed that a
high-resolution grid was necessary. For many problems, however, they could terminate early after only considering
a few points per axis.
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WAVEFRONT PROPAGATION ALGORITHM

1. Initialize W0 = XG; i = 0.

2. Initialize Wi+1 = ∅.

3. For every x ∈ Wi , assign φ(x) = i and insert all unexplored neighbors of x into Wi+1.

4. If Wi+1 = ∅, then terminate; otherwise, let i := i + 1 and go to Step 2.

Figure 8.4: The wavefront propagation algorithm is a specialized version of Dijkstra’s algorithm that opti-
mizes the number of stages to reach the goal.

W0, which represents the states in XG. The algorithm can immediately assign an optimal
cost-to-go value of 1 to every state that can be reached in one stage from any state in W0.
These must be optimal because no other cost value is optimal. The states that receive cost
1 can be organized into the wavefront W1. The unexplored neighbors of W1 are assigned
cost 2, which also must be optimal. This process repeats inductively from i to i + 1 until
all reachable states have been reached. In the end, the optimal cost-to-go is computed in
O(n) time, in which n is the number of reachable grid states. For any states that were not
reached, the value φ(x) = ∞ can be assigned. The navigation function shown in Figure
8.3 can actually be computed using the wavefront propagation algorithm.

Maximum clearance

One problem that typically arises in mobile robotics is that optimal motion plans bring
robots too close to obstacles. Recall from Section 6.2.4 that the shortest Euclidean paths for
motion planning in a polygonal environment must be allowed to touch obstacle vertices.
This motivated the maximum clearance roadmap, which was covered in Section 6.2.3.
A grid-based approximate version of the maximum clearance roadmap can be made.
Furthermore, a navigation function can be defined that guides the robot onto the roadmap,
then travels along the roadmap, and finally deposits the robot at a specified goal. In [591],
the resulting navigation function is called NF2.

Assume that there is a single goal state, xG ∈ X. The computation of a maximum
clearance navigation function proceeds as follows:

1. Instead of XG, assign W0 to be the set of all states from which motion in at least one
direction is blocked. These are the states on the boundary of the discretized collision-free
space.

2. Perform wavefront iterations that propagate costs in waves outward from the obstacle
boundaries.

3. As the wavefronts propagate, they will meet approximately at the location of the maximum
clearance roadmap for the original, continuous problem. Mark any state at which two
wavefront points arrive from opposing directions as a skeleton state. It may be the case
that the wavefronts simply touch each other, rather than arriving at a common state; in
this case, one of the two touching states is chosen as the skeleton state. Let S denote the
set of all skeleton states.

4. After the wavefront propagation ends, connect xG to the skeleton by inserting xG and
all states along the path to the skeleton into S. This path can be found using any search
algorithm.

5. Compute a navigation function φ1 over S by treating all other states as if they were
obstacles and using the wavefront propagation algorithm. This navigation function guides
any point in S to the goal.
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6. Treat S as a goal region and compute a navigation function φ2 using the wavefront
propagation algorithm. This navigation function guides the state to the nearest point on
the skeleton.

7. Combine φ1 and φ2 as follows to obtain φ. For every x ∈ S, let φ(x) = φ1(x). For every
remaining state, the value φ(x) = φ1(x ′) + φ2(x) is assigned, in which x ′ is the nearest
state to x such that x ′ ∈ S. The state x ′ can easily be recorded while φ2 is computed.

If Cfree is multiply connected, then there may be multiple ways to each xG by traveling
around different obstacles (the paths are not homotopic). The method described above
does not take into account the problem that one route may have a tighter clearance than
another. The given approach only optimizes the distance traveled along the skeleton; it
does not, however, maximize the nearest approach to an obstacle, if there are multiple
routes.

Dial’s algorithm

Now consider generalizing the wavefront propagation idea. Wavefront propagation can be
applied to any discrete planning problem if l(x, u) = 1 for any x ∈ X and u ∈ U (x) (except
u = uT ). It is most useful when the transition graph is sparse (imagine representing the
transition graph using an adjacency matrix). The grid problem is a perfect example where
this becomes important. More generally, if the cost terms assume integer values, then
Dial’s algorithm [274] results, which is a generalization of wavefront propagation, and a
specialization of Dijkstra’s algorithm. The idea is that the priority queue can be avoided
by assigning the alive vertices to buckets that correspond to different possible cost-to-go
values. In the wavefront propagation case, there are never more than two buckets needed
at a time. Dial’s algorithm allows all states in the smallest cost bucket to be processed in
parallel. The scheme was enhanced in [939] to yield a linear-time algorithm.

Other extensions

Several ideas from this section can be generalized to produce other navigation functions.
One disadvantage of the methods discussed so far is that undesirable staircase motions (as
shown in Figure 7.40) are produced. If the 2-neighborhood, as defined in (5.38), is used
to define the action spaces, then the motions will generally be shorter. Dial’s algorithm
can be applied to efficiently compute an optimal navigation function in this case.

A grid approximation can be made to higher dimensional configuration spaces. Since a
high resolution is needed, however, it is practical only for a few dimensions (e.g., 3 or 4). If
the 1-neighborhood is used, then wavefront propagation can be easily applied to compute
navigation functions. Dial’s algorithm can be adapted for general k-neighborhoods.

Constructing navigation functions over grids may provide a practical solution in many
applications. In other cases it may be unacceptable that staircase motions occur. In many
cases, it may not even be possible to compute the navigation function quickly enough.
Factors that influence this problem are 1) very high accuracy, and a hence high-resolution
grid may be necessary; 2) the dimension of the configuration space may be high; and 3)
the environment may be frequently changing, and a real-time response is required. To
address these issues, it is appealing to abandon grid approximations. This will require
defining potential functions and velocities directly on the configuration space. Section 8.3
presents the background mathematical concepts to make this transition.
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8.3 Vector fields and integral curves

To consider feedback motion plans over continuous state spaces, including configuration
spaces, we will need to define a vector field and the trajectory that is obtained by integrating
the vector field from an initial point. A vector field is ideal for characterizing a feedback
plan over a continuous state space. It can be viewed as providing the continuous-space
analog to the feedback plans on grids, as shown in Figure 8.2b.

This section presents two alternative presentations of the background mathematical
concepts. Section 8.3.1 assumes that X = R

n, which leads to definitions that appear
very similar to those you may have learned in basic calculus and differential equations
courses. Section 8.3.2 covers the more general case of vector fields on manifolds. This
requires significantly more technical concepts and builds on the manifold definitions of
Section 4.1.2.

Some readers may have already had some background in differentiable manifolds.
If, however, you are seeing it for the first time, then it may be difficult to comprehend
on the first reading. In addition to rereading, here are two other suggestions. First, try
studying background material on this subject, which is suggested at the end of the chapter.
Second, disregard the manifold technicalities in the subsequent sections and pretend that
X = C = R

n. Nearly everything will make sense without the additional technicalities.
Imagine that a manifold is defined as a cube, [0, 1]n, with some sides identified, as in
Section 4.1.2. The concepts that were presented for R

n can be applied everywhere except
at the boundary of the cube. For example, if S

1 is defined as [0, 1]/ ∼, and a function f

is defined on S
1, how can we define the derivative at f (0)? The technical definitions of

Section 8.3.2 fix this problem. Sometimes, the technicalities can be avoided in practice
by cleverly handling the identification points.

8.3.1 Vector fields on R
n

This section revisits some basic concepts from introductory courses such as calculus,
linear algebra, and differential equations. You may have learned most of these for R

2 and
R

3. We eventually want to describe velocities in R
n and on manifolds, and then use the

notion of a vector field to express a feedback plan in Section 8.4.1.

Vector spaces

Before defining a vector field, it is helpful to be precise about what is meant by a vector.
A vector space (or linear space) is defined as a set, V , that is closed under two algebraic
operations called vector addition and scalar multiplication and satisfies several axioms,
which will be given shortly. The vector space used in this section is R

n, in which the
scalars are real numbers, and a vector is represented as a sequence of n real numbers.
Scalar multiplication multiplies each component of the vector by the scalar value. Vector
addition forms a new vector by adding each component of two vectors.

A vector space V can be defined over any field F (recall the definition from Section
4.4.1). The field F represents the scalars, and V represents the vectors. The concepts
presented below generalize the familiar case of the vector space R

n. In this case, V = R
n

and F = R. In the definitions that follow, you may make these substitutions, if desired.
We will not develop vector spaces that are more general than this; the definitions are
nevertheless given in terms of V and F to clearly separate scalars from vectors. The vector
addition is denoted by +, and the scalar multiplication is denoted by ·. These operations
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must satisfy the following axioms (a good exercise is to verify these for the case of R
n

treated as a vector space over the field R):

1. (Commutative Group Under Vector Addition) The set V is a commutative group with
respect to vector addition, +.

2. (Associativity of Scalar Multiplication) For any v ∈ V and any α, β ∈ F, α(βv) =
(αβ)v.

3. (Distributivity of Scalar Sums) For any v ∈ V and any α, β ∈ F, (α + β)v = αv + βv.

4. (Distributivity of Vector Sums) For any v,w ∈ V and any α ∈ F, α(v + w) = αv + αw.

5. (Scalar Multiplication Identity) For any v ∈ V , 1v = v for the multiplicative identity
1 ∈ F.

The first axiom allows vectors to be added in any order. The rest of the axioms require
that the scalar multiplication interacts with vectors in the way that we would expect from
the familiar vector space R

n over R.
A basis of a vector space V is defined as a set,v1, . . . , vn, of vectors for which every

v ∈ V can be uniquely written as a linear combination:

v = α1v1 + α2v2 + · · · + αnvn, (8.7)

for some α1, . . . , αn ∈ F. This means that every vector has a unique representation as
a linear combination of basis elements. In the case of R

3, a familiar basis is [0 0 1],
[0 1 0], and [1 0 0]. All vectors can be expressed as a linear combination of these three.
Remember that a basis is not necessarily unique. From linear algebra, recall that any three
linearly independent vectors can be used as a basis for R

3. In general, the basis must
only include linearly independent vectors. Even though a basis is not necessarily unique,
the number of vectors in a basis is the same for any possible basis over the same vector
space. This number, n, is called the dimension of the vector space. Thus, we can call R

n

an n-dimensional vector space over R.

Example 8.4 (The Vector Space R
n Over R) As indicated already, Rn can be considered

as a vector space. A natural basis is the set of n vectors in which, for each i ∈ {1, . . . , n},
a unit vector is constructed as follows. Let xi = 1 and xj = 0 for all j 	= i. Since there
are n basis vectors, R

n is an n-dimensional vector space. The basis is not unique. Any set
of n linearly independent vectors may be used, which is familiar from linear algebra, in
which nonsingular n× n matrices are used to transform between them. �

To illustrate the power of these general vector space definitions, consider the following
example.

Example 8.5 (A Vector Space of Functions) The set of all continuous, real-valued
functions f : [0, 1] → R, for which

∫ 1

0
f (x)dx (8.8)

is finite, forms a vector space over R. It is straightforward to verify that the vector space
axioms are satisfied. For example, if two functions f1 and f2 are added, the integral
remains finite. Furthermore, f1 + f2 = f2 + f1, and all of the group axioms are satisfied
with respect to addition. Any function f that satisfies (8.8) can be multiplied by a scalar
in R, and the integral remains finite. The axioms that involve scalar multiplication can
also be verified.
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It turns out that this vector space is infinite-dimensional. One way to see this is to
restrict the functions to the set of all those for which the Taylor series exists and converges
to the function (these are called analytic functions). Each function can be expressed via
a Taylor series as a polynomial that may have an infinite number of terms. The set of
all monomials, x, x2, x3, and so on, represents a basis. Every continuous function can
be considered as an infinite vector of coefficients; each coefficient is multiplied by one
of the monomials to produce the function. This provides a simple example of a function
space; with some additional definitions, this leads to a Hilbert space, which is crucial in
functional analysis, a subject that characterizes spaces of functions [839, 841]. �

The remainder of this chapter considers only finite-dimensional vector spaces over R.
It is important, however, to keep in mind the basic properties of vector spaces that have
been provided.

Vector fields

A vector field looks like a “needle diagram” over R
n, as depicted in Figure 8.5. The idea

is to specify a direction at each point p ∈ R
n. When used to represent a feedback plan, it

indicates the direction that the robot needs to move if it finds itself at p.
For every p ∈ R

n, associate an n-dimensional vector space called the tangent space at
p, which is denoted as Tp(Rn). Why not just call it a vector space at p? The use of the
word “tangent” here might seem odd; it is motivated by the generalization to manifolds,
for which the tangent spaces will be “tangent” to points on the manifold.

A vector field4 "V on R
n is a function that assigns a vector v ∈ Tp(Rn) to every p ∈ R

n.
What is the range of this function? The vector "V (p) at each p ∈ R

n actually belongs to a
different tangent space. The range of the function is therefore the union

T (Rn) =
⋃

p∈Rn

Tp(Rn), (8.9)

which is called the tangent bundle on R
n. Even though the way we describe vectors from

Tp(Rn) may appear the same for any p ∈ R
n, each tangent space is assumed to produce

distinct vectors. To maintain distinctness, a point in the tangent bundle can be expressed
with 2n coordinates, by specifying p and v together. This will become important for
defining phase space concepts in Part IV. In the present setting, it is sufficient to think of
the range of "V as R

n because Tp(Rn) = R
n for every p ∈ R

n.
A vector field can therefore be expressed using n real-valued functions on R

n. Let
fi(x1, . . . , xn) for i from 1 to n denote such functions. Using these, a vector field is
specified as

f (x) = [f1(x1, . . . , xn) f2(x1, . . . , xn) · · · fn(x1, . . . , xn)]. (8.10)

In this case, it appears that a vector field is a function f from R
n into R

n. Therefore,
standard function notation will be used from this point onward to denote a vector field.

Now consider some examples of vector fields over R
2. Let a point in R

2 be rep-
resented as p = (x, y). In standard vector calculus, a vector field is often specified as
[f1(x, y) f2(x, y)], in which f1 and f2 are functions on R

2

4 Unfortunately, the term field appears in two unrelated places: in the definition of a vector space and in the term
vector field. Keep in mind that this is an accidental collision of terms.
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Figure 8.5: (a) A constant vector �eld, f (x, y) = [1 1]. (b) A vector � eld, f (x, y) = [−x − y] in which all
vectors point to the origin.
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Figure 8.6: A swirling vector � eld, f (x, y) = [(y− x) (−x− y)].

Example 8.6 (Constant Vector Field) Figure 8.5a shows a constant vector field, which
assigns the vector [1 2] to every (x, y) ∈ R

2. �

Example 8.7 (Inward Flow) Figure 8.5b depicts a vector field that assigns [−x − y]
to every (x, y) ∈ R

2. This causes all vectors to point to the origin. �

Example 8.8 (Swirl) The vector field in Figure 8.6 assigns [(y − x) (−x − y)] to every
(x, y) ∈ R

2. �

Due to obstacles that arise in planning problems, it will be convenient to sometimes
restrict the domain of a vector field to an open subset of R

n. Thus, for any open subset
O ⊂ R

n, a vector field f : O → R
n can be defined.
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Smoothness

A function fi from a subset of R
n into R is called a smooth function if derivatives of any

order can be taken with respect to any variables, at any point in the domain of fi . A vector
field is said to be smooth if every one of its n defining functions, f1, . . . , fn, is smooth. An
alternative name for a smooth function is a C∞ function. The superscript represents the
order of differentiation that can be taken. For a Ck function, its derivatives can be taken
at least up to order k. A C0 function is an alternative name for a continuous function. The
notion of a homeomorphism can be extended to a diffeomorphism, which is a homeomor-
phism that is a smooth function. Two topological spaces are called diffeomorphic if there
exists a diffeomorphism between them.

Vector fields as velocity fields

We now give a particular interpretation to vector fields. A vector field expressed using
(8.10) can be used to define a set of first-order differential equations as

dx1

dt
= f1(x1, . . . , xn)

dx2

dt
= f2(x1, . . . , xn)

...

dxn

dt
= fn(x1, . . . , xn).

(8.11)

Each equation represents the derivative of one coordinate with respect to time. For any
point x ∈ R

n, a velocity vector is defined as

dx

dt
=
[
dx1

dt

dx2

dt
· · · dxn

dt

]
. (8.12)

This enables f to be interpreted as a velocity field.
It is customary to use the short notation ẋ = dx/dt . Each velocity component can be

shortened to ẋi = dxi/dt . Using f to denote the vector of functions f1, . . . , fn, (8.11)
can be shorted to

ẋ = f (x). (8.13)

The use of f here is an intentional coincidence with the use of f for the state transition
equation. In Part IV, we will allow vector fields to be parameterized by actions. This
leads to a continuous-time state transition equation that looks like ẋ = f (x, u) and is very
similar to the transition equations defined over discrete stages in Chapter 2.

The differential equations expressed in (8.11) are often referred to as autonomous
or stationary because f does not depend on time. A time-varying vector field could
alternatively be defined, which yields ẋ = f (x(t), t). This will not be covered, however,
in this chapter.

An integral curve

If a vector field f is given, then a velocity vector is defined at each point using (8.10). Imag-
ine a point that starts at some x0 ∈ R

n at time t = 0 and then moves according to the veloci-
ties expressed in f . Where should it travel? Its trajectory starting from x0 can be expressed
as a function τ : [0,∞) → R

n, in which the domain is a time interval, [0,∞). A trajectory
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represents an integral curve (or solution trajectory) of the differential equations with initial
condition τ (0) = x0 if

dτ

dt
(t) = f (τ (t)) (8.14)

for every time t ∈ [0,∞). This is sometimes expressed in integral form as

τ (t) = x0 +
∫ t

0
f (τ (s))ds (8.15)

and is called a solution to the differential equations in the sense of Caratheodory. In-
tuitively, the integral curve starts at x0 and flows along the directions indicated by the
velocity vectors. This can be considered as the continuous-space analog of following the
arrows in the discrete case, as depicted in Figure 8.2b.

Example 8.9 (Integral Curve for a Constant Velocity Field) The simplest case is a
constant vector field. Suppose that a constant field x1 = 1 and x2 = 2 is defined on R

2.
The integral curve from (0, 0) is τ (t) = (t, 2t). It can be easily seen that (8.14) holds for
all t ≥ 0. �

Example 8.10 (Integral Curve for a Linear Velocity Field) Consider a velocity field on
R

2. Let ẋ1 = −2x1 and ẋ2 = −x2. The function τ (t) = (e−2t , e−t ) represents the integral
curve from (1, 1). At t = 0, τ (0) = (1, 1), which is the initial state. If can be verified that
for all t > 0, (8.14) holds. This is a simple example of a linear velocity field. In general,
if each fi is a linear function of the coordinate variables x1, . . . , xn, then a linear velocity
field is obtained. The integral curve is generally found by determining the eigenvalues
of the matrix A when the velocity field is expressed as ẋ = Ax. See [194] for numerous
examples. �

A basic result from differential equations is that a unique integral curve exists to
ẋ = f (x) if f is smooth. An alternative condition is that a unique solution exists if f

satisfies a Lipschitz condition. This means that there exists some constant c ∈ (0,∞) such
that

‖f (x) − f (x ′)‖ ≤ c‖x − x ′‖ (8.16)

for all x, x ′ ∈ X, and ‖ · ‖ denotes the Euclidean norm (vector magnitude). The constant
c is often called a Lipschitz constant. Note that if f satisfies the Lipschitz condition, then
it is continuous. Also, if all partial derivatives of f over all of X can be bounded by a
constant, then f is Lipschitz. The expression in (8.16) is preferred, however, because it is
more general (it does not even imply that f is differentiable everywhere).

Piecewise-smooth vector fields

It will be important to allow vector fields that are smooth only over a finite number
of patches. At a switching boundary between two patches, a discontinuous jump may
occur. For example, suppose that an (n− 1)-dimensional switching boundary, S ⊂ R

n, is
defined as

S = {x ∈ R
n| s(x) = 0}, (8.17)
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in which s is a function s : R
n → R. If R

n has dimension n and s is not singular, then S

has dimension n− 1. Define

S+ = {x ∈ R
n| s(x) > 0} (8.18)

and

S− = {x ∈ R
n| s(x) < 0}. (8.19)

The definitions are similar to the construction of implicit models using geometric prim-
itives in Section 3.1.2. Suppose that f (x) is smooth over S+ and S− but experiences a
discontinuous jump at S. Such differential equations model hybrid systems in control
theory [139, 411, 637]. The task there is to design a hybrid control system. Can we still
determine a solution trajectory in this case? Under special conditions, we can obtain what
is called a solution to the differential equations in the sense of Filipov [340, 848].

Let B(x, δ) denote an open ball of radius δ centered at x. Let f (B(x, δ)) denote the set

f (B(x, δ)) = {x ′ ∈ X | ∃x ′′ ∈ B(x, δ) for which x ′ = f (x ′′)}. (8.20)

Let X0 denote any subset of R
n that has measure zero (i.e., µ(X0) = 0). Let hull(A) denote

the convex hull of a set, A, of points in R
n. A path τ : [0, tf ] → R

n is called a solution in
the sense of Filipov if for almost all t ∈ [0, tf ],

dτ

dt
(t) ∈

⋂

δ>0





⋂

X0

hull(f (B(τ (t), δ) \X0))




 , (8.21)

in which the intersections are taken over all possible δ > 0 and sets, X0, of measure
zero. The expression (8.21) is actually called a differential inclusion [54] because a set of
choices is possible for ẋ. The “for almost all” requirement means that the condition can
even fail to hold on a set of measure zero in [0, tf ]. Intuitively, it says that almost all of
the velocity vectors produced by τ must point “between” the velocity vectors given by f

in the vicinity of τ (x(t)). The “between” part comes from using the convex hull. Filipov’s
sense of solution is an incredible generalization of the solution concept in the sense of
Caratheodory. In that case, every velocity vector produced by τ must agree with f (x(t)),
as given in (8.14). The condition in (8.21) allows all sorts of sloppiness to appear in the
solution, even permitting f to be discontinuous.

Many bizarre vector fields can yield solutions in the sense of Filipov. The switch-
ing boundary model is relatively simple among those permitted by Filipov’s condition.
Figure 8.7 shows various cases that can occur at the switching boundary S. For the case
of consistent flow, solutions occur as you may intuitively expect. Filipov’s condition,
(8.21), requires that at S the velocity vector of τ points between vectors before and after
crossing S (for example, it can point down, which is the average of the two directions).
The magnitude must also be between the two magnitudes. For the inward flow case, the
integral curve moves along S, assuming the vectors inside of S point in the same direction
(within the convex hull) as the vectors on either side of the boundary. In applications that
involve physical systems, this may lead to oscillations around S. This can be alleviated
by regularization, which thickens the boundary [848] (the subject of sliding-mode control
addresses this issue [305]). The outward flow case can lead to nonuniqueness if the initial
state lies in S. However, trajectories that start outside of S will not cross S, and there will
be no such troubles. If the flow is tangent on both sides of a boundary, then other forms
of nonuniqueness may occur. The tangent-flow case will be avoided in this chapter.
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Consistent Flow Inward Flow

Outward flow Tangent flow

Figure 8.7: Different kinds of �o ws around a switching boundary.

M

Tp(M)

Figure 8.8: Intuitively, the tangent space is a linear approximation to the manifold in a neighborhood
around p.

8.3.2 Smooth manifolds

The manifold definition given in Section 4.1.2 is often called a topological manifold. A
manifold defined in this way does not necessarily have enough axioms to ensure that
calculus operations, such as differentiation and integration, can be performed. We would
like to talk about velocities on the configuration space C or in general for a continuous
state space X. As seen in Chapter 4, the configuration space could be a manifold such as
RP

3. Therefore, we need to define some more qualities that a manifold should possess to
enable calculus. This leads to the notion of a smooth manifold.

Assume that M is a topological manifold, as defined in Section 4.1.2. For example,
M could represent SO(3), the set of all rotation matrices for R

3. A simpler example that
will be helpful to keep in mind is M = S

2, which is a sphere in R
3. We want to extend

the concepts of Section 8.3.1 from R
n to manifolds. One of the first definitions will be

the tangent space Tp(M) at a point p ∈ M . As you might imagine intuitively, the tangent
vectors are tangent to a surface, as shown in Figure 8.8. These will indicate possible
velocities with which we can move along the manifold from p. This is more difficult to
define for a manifold than for R

n because it is easy to express any point in R
n using n
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coordinates, and all local coordinate frames for the tangent spaces at every p ∈ R
n are

perfectly aligned with each other. For a manifold such as S
2, we must define tangent

spaces in a way that is not sensitive to coordinates and handles the fact that the tangent
plane rotates as we move around on S

2.
First think carefully about what it means to assign coordinates to a manifold. Suppose

M has dimension n and is embedded in R
m. For M = SO(3), n = 3 and m = 9. For

M = S
2, n = 2 and m = 3. The number of coordinates should be n, the dimension of M;

however, manifolds embedded in R
m are often expressed as a subset of R

m for which
some equality constraints must be obeyed. We would like to express some part of M in
terms of coordinates in R

n.

Coordinates and parameterizations

For any open set U ⊆ M and function φ : U → R
n such that φ is a homeomorphism onto

a subset of R
n, the pair (U, φ) is called a coordinate neighborhood (or chart in some

literature). The values φ(p) for some p ∈ U are called the coordinates of p.

Example 8.11 (Coordinate Neighborhoods on S
1) A simple example can be obtained

for the circle M = S
1. Suppose M is expressed as the unit circle embedded in R

2 (the
set of solutions to x2 + y2 = 1). Let (x, y) denote a point in R

2. Let U be the subset
of S

1 for which x > 0. A coordinate function φ : U → (−π/2, π/2), can be defined as
φ(x, y) = tan−1(y/x).

Let W = φ(U ) (the range of φ) for some coordinate neighborhood (U, φ). Since U

and W are homeomorphic via φ, the inverse function φ−1 can also be defined. It turns
out that the inverse is the familiar idea of a parameterization. Continuing Example 8.11,
φ−1 yields the mapping θ �→ (cos θ, sin θ), which is the familiar parameterization of the
circle but restricted to θ ∈ (−π/2, π/2). �

To make differentiation work at a point p ∈ M , it will be important to have a coordinate
neighborhood defined over an open subset of M that contains p. This is mainly because
defining derivatives of a function at a point requires that an open set exists around the
point. If the coordinates appear to have no boundary, then this will be possible. It is
unfortunately not possible to cover all of M with a single coordinate neighborhood,
unless M = R

n (or M is at least homeomorphic to R
n). We must therefore define multiple

neighborhoods for which the domains cover all of M . Since every domain is an open set,
some of these domains must overlap. What happens in this case? We may have two or
more alternative coordinates for the same point. Moving from one set of coordinates to
another is the familiar operation used in calculus called a change of coordinates. This will
now be formalized.

Suppose that (φ, U ) and (ψ, V ) are coordinate neighborhoods on some manifold M ,
and U ∩ V 	= ∅. Figure 8.9 indicates how to change coordinates from φ to ψ . This change
of coordinates is expressed using function composition as ψ ◦ φ−1 : R

n → R
n (φ−1 maps

from R
n into M , and ψ maps from a subset of M to R

n).

Example 8.12 (Change of Coordinates) Consider changing from Euler angles to quater-
nions for M = SO(3). Since SO(3) is a 3D manifold, n = 3. This means that any co-
ordinate neighborhood must map a point in SO(3) to a point in R

3. We can construct a
coordinate function φ : SO(3) → R

3 by computing Euler angles from a given rotation
matrix. The functions are actually defined in (3.47), (3.48), and (3.49). To make this a
coordinate neighborhood, an open subset U of M must be specified.
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R
n

R
n

U V

Mφ ψ

ψ ◦ φ−1

Figure 8.9: An illustration of a change of coordinates.

We can construct another coordinate function ψ : SO(3) → R
3 by using quaternions.

This may appear to be a problem because quaternions have four components; however,
the fourth component can be determined from the other three. Using (4.24) to (4.26), the
a, b, and c coordinates can be determined.

Now suppose that we would like to change from Euler angles to quaternions in the
overlap region U ∩ V , in which V is an open set on which the coordinate neighborhood
for quaternions is defined. The task is to construct a change of coordinates, ψ ◦ φ−1.
We first have to invert φ over U . This means that we instead need a parameterization
of M in terms of Euler angles. This is given by (3.42), which yields a rotation matrix,
φ−1(α, β, γ ) ∈ SO(3) for α, β, and γ . Once this matrix is determined, then ψ can be
applied to it to determine the quaternion parameters, a, b, and c. This means that we
have constructed three real-valued functions, f1, f2, and f3, which yield a = f1(α, β, γ ),
b = f2(α, β, γ ), and c = f3(α, β, γ ). Together, these define ψ ◦ φ−1. �

There are several reasons for performing coordinate changes in various contexts. Ex-
ample 8.12 is motivated by a change that frequently occurs in motion planning. Imagine,
for example, that a graphics package displays objects using quaternions, but a collision-
detection algorithm uses Euler angles. It may be necessary in such cases to frequently
change coordinates. From studies of calculus, you may recall changing coordinates to
simplify an integral. In the definition of a smooth manifold, another motivation arises.
Since coordinate neighborhoods are based on homeomorphisms of open sets, several may
be required just to cover all of M . For example, even if we decide to use quaternions for
SO(3), several coordinate neighborhoods that map to quaternions may be needed. On the
intersections of their domains, a change of coordinates is necessary.

Now we are ready to define a smooth manifold. Changes of coordinates will appear in
the manifold definition, and they must satisfy a smoothness condition. A smooth structure5

on a (topological) manifold M is a family6 U = {Uα, φα} of coordinate neighborhoods
such that:

1. The union of all Uα contains M . Thus, it is possible to obtain coordinates in R
n for any

point in M .

2. For any (U, φ) and (V, φ) in U , if U ∩ V 	= ∅, then the changes of coordinates, ψ ◦ φ−1

and φ ◦ ψ−1, are smooth functions on U ∩ V . The changes of coordinates must produce
diffeomorphisms on the intersections. In this case, the coordinate neighborhoods are called
compatible.

5 Alternative names are differentiable structure and C∞ structure.
6 In literature in which the coordinate neighborhoods are called charts, this family is called an atlas.
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3. The family U is maximal in the sense that if some (U, φ) is compatible with every
coordinate neighborhood in U , then (U, φ) must be included in U .

A well-known theorem (see [135], p. 54) states that if a set of compatible neighborhoods
covers all of M , then a unique smooth structure exists that contains them.7 This means
that a differential structure can often be specified by a small number of neighborhoods,
and the remaining ones are implied.

A manifold, as defined in Section 4.1.2, together with a smooth structure is called a
smooth manifold.8

Example 8.13 (Rn as a Smooth Manifold) We should expect that the concepts presented
so far apply to R

n, which is the most straightforward family of manifolds. A single
coordinate neighborhood R

n → R
n can be used, which is the identity map. For all integers

n ∈ {1, 2, 3} and n > 4, this is the only possible smooth structure on R
n. It is truly amazing

that for R
4, there are uncountably many incompatible smooth structures, called exotic R

4

[293]. There is no need to worry, however; just use the one given by the identity map
for R

4. �

Example 8.14 (Sn as a Smooth Manifold) One way to define S
n as a smooth manifold

uses 2(n+ 1) coordinate neighborhoods and results in simple expressions. Let S
n be

defined as

S
n = {(x1, . . . , xn+1) ∈ R

n+1| x2
1 + · · · + x2

n+1 = 1}. (8.22)

The domain of each coordinate neighborhood is defined as follows. For each i from 1 to
n+ 1, there are two neighborhoods:

U+
i = {(x1, . . . , xn+1) ∈ R

n+1| xi > 0} (8.23)

and

U−
i = {(x1, . . . , xn+1) ∈ R

n+1| xi < 0}. (8.24)

Each neighborhood is an open set that covers half of S
n but misses the great circle at xi = 0.

The coordinate functions can be defined by projection down to the (n− 1)-dimensional
hyperplane that contains the great circle. For each i,

φ+
i (x1, . . . , xn+1) = (x1, . . . , xi−1, xi+1, . . . , xn) (8.25)

over U+
i . Each φ−

i is defined the same way, but over U−
i . Each coordinate function is

a homeomorphism from an open subset of S
n to an open subset of R

n, as required. On
the subsets in which the neighborhoods overlap, the changes of coordinate functions are
smooth. For example, consider changing from φ+

i to φ−
j for some i 	= j . The change of

coordinates is a function φ−
j ◦ (φ+

i )−1. The inverse of φ+
i is expressed as

(φ+
i )−1(x1, . . . , xi−1, xi+1, . . . , xn) =
(x1, . . . , xi−1, 1 −

√
1 − x2

1 − · · · − x2
i−1 − x2

i+1 − · · · − x2
n, xi+1, . . . , xn+1).

(8.26)

7 This is under the assumption that M is Hausdorff and has a countable basis of open sets, which applies to the
manifolds considered here.

8 Alternative names are differentiable manifold and C∞ manifold.
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When composed with φ−
j , the j th coordinate is dropped. This yields

φ−
k ◦ (φ+

i )−1(x1, . . . , xi−1, xi+1, . . . , xn) =
(x1, . . . , xi−1, 1 −

√
1 − x2

1 − · · · − x2
i−1 − x2

i+1 − · · · − x2
n,

xi+1, . . . , xj−1, xj+1, . . . , xn),

(8.27)

which is a smooth function over the domain U+
i . Try visualizing the changes of coordinates

for the circle S
1 and sphere S

2.
The smooth structure can alternatively be defined using only two coordinate neighbor-

hoods by using stereographic projection. For S
2, one coordinate function maps almost

every point x ∈ S
2 to R

2 by drawing a ray from the north pole to x and mapping to the
point in the x3 = 0 plane that is crossed by the ray. The only excluded point is the north
pole itself. A similar mapping can be constructed from the south pole. �

Example 8.15 (RP
n as a Smooth Manifold) This example is particularly important

because RP
3 is the same manifold as SO(3), as established in Section 4.2.2. Recall from

Section 4.1.2 that RP
n is defined as the set of all lines in R

n+1 that pass through the origin.
This means that for any α ∈ R such that α 	= 0, and any x ∈ R

n+1, both x and αx are
identified. In projective space, scale does not matter.

A smooth structure can be specified by only n+ 1 coordinate neighborhoods. For each
i from 1 to n+ 1, let

φi(x1, . . . , xn+1) = (x1/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi), (8.28)

over the open set of all points in R
n+1 for which xi 	= 0. The inverse coordinate function

is given by

φ−1
i (z1, . . . , zn) = (z1, . . . , zi−1, 1, zi, . . . , zn+1). (8.29)

It is not hard to verify that these simple transformations are smooth on overlapping
neighborhoods.

A smooth structure over SO(3) can be derived as a special case because SO(3) is
topologically equivalent to RP

3. Suppose elements of SO(3) are expressed using unit
quaternions. Each (a, b, c, d) is considered as a point on S

3. There are four coordinate
neighborhoods. For example, one of them is

φb(a, b, c, d) = (a/b, c/b, d/b), (8.30)

which is defined over the subset of R
4 for which b 	= 0. The inverse of φb(a, b, c, d) needs

to be defined so that a point on SO(3) maps to a point in R
4 that has unit magnitude. �

Tangent spaces on manifolds

Now consider defining tangent spaces on manifolds. Intuitively, the tangent space Tp(M)
at a point p on an n-dimensional manifold M is an n-dimensional hyperplane in R

m

that best approximates M around p, when the hyperplane origin is translated to p. This
is depicted in Figure 8.8. The notion of a tangent was actually used in Section 7.4.1 to
describe local motions for motion planning of closed kinematic chains (see Figure 7.22).

To define a tangent space on a manifold, we first consider a more complicated definition
of the tangent space at a point in R

n, in comparison to what was given in Section 8.3.1.
Suppose that M = R

2, and consider taking directional derivatives of a smooth function
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f : R
2 → R at a point p ∈ R

2. For some (unnormalized) direction vector, v ∈ R
2, the

directional derivative of f at p can be defined as

∇v(f )
∣∣∣
p
= v1

∂f

∂x1

∣∣∣
p
+ v2

∂f

∂x2

∣∣∣
p
. (8.31)

The directional derivative used here does not normalize the direction vector (contrary to
basic calculus). Hence, ∇v(f ) = ∇(f ) · v, in which “·” denotes the inner product or dot
product, and ∇(f ) denotes the gradient of f . The set of all possible direction vectors that
can be used in this construction forms a two-dimensional vector space that happens to be
the tangent space Tp(R2), as defined previously. This can be generalized to n dimensions
to obtain

∇v(f )
∣∣∣
p
=

n∑

i=1

vi

∂f

∂xi

∣∣∣
p
, (8.32)

for which all possible direction vectors represent the tangent space Tp(Rn). The set of all
directions can be interpreted for our purposes as the set of possible velocity vectors.

Now consider taking (unnormalized) directional derivatives of a smooth function,
f : M → R, on a manifold. For an n-dimensional manifold, the tangent space Tp(M) at
a point p ∈ M can be considered once again as the set of all unnormalized directions.
These directions must intuitively be tangent to the manifold, as depicted in Figure 8.8.
There exists a clever way to define them without even referring to specific coordinate
neighborhoods. This leads to a definition of Tp(M) that is intrinsic to the manifold.

At this point, you may accept that Tp(M) is an n-dimensional vector space that is affixed
to M at p and oriented as shown in Figure 8.8. For the sake of completeness, however,
a technical definition of Tp(M) from differential geometry will be given; more details
appear in [135, 874]. The construction is based on characterizing the set of all possible
directional derivative operators. Let C∞(p) denote the set of all smooth functions that
have domains that include p. Now make the following identification. Any two functions
f, g ∈ C∞(p) are defined to be equivalent if there exists an open set U ⊂ M such that for
any p ∈ U , f (p) = g(p). There is no need to distinguish equivalent functions because
their derivatives must be the same at p. Let C̃∞(p) denote C∞ under this identification. A
directional derivative operator at p can be considered as a function that maps from C̃∞(p)
to R for some direction. In the case of R

n, the operator appears as ∇v for each direction
v. Think about the set of all directional derivative operators that can be made. Each one
must assign a real value to every function in C̃∞(p), and it must obey two axioms from
calculus regarding directional derivatives. Let ∇v denote a directional derivative operator
at some p ∈ M (be careful, however, because here v is not explicitly represented since
there are no coordinates). The directional derivative operator must satisfy two axioms:

1. Linearity: For any α, β ∈ R and f, g ∈ C̃∞(p),

∇v(αf + βg) = α∇vf + β∇vg. (8.33)

2. Leibniz Rule (or Derivation): For any f, g ∈ C̃∞(p),

∇v(fg) = ∇vf g(p) + f (p)∇vg. (8.34)

You may recall these axioms from standard vector calculus as properties of the directional
derivative. It can be shown that the set of all possible operators that satisfy these axioms
forms an n-dimensional vector space [135]. This vector space is called the tangent space,
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Tp(M), at p. This completes the definition of the tangent space without referring to
coordinates.

It is helpful, however, to have an explicit way to express vectors in Tp(M). A basis
for the tangent space can be obtained by using coordinate neighborhoods. An important
theorem from differential geometry states that if F : M → N is a diffeomorphism onto
an open set U ⊂ N , then the tangent space, Tp(M), is isomorphic to TF (p)(N). This
means that by using a parameterization (the inverse of a coordinate neighborhood), there
is a bijection between velocity vectors in Tp(M) and velocity vectors in TF (p)(N). Small
perturbations in the parameters cause motions in the tangent directions on the manifold N .
Imagine, for example, making a small perturbation to three quaternion parameters that are
used to represent SO(3). If the perturbation is small enough, motions that are tangent to
SO(3) occur. In other words, the perturbed matrices will lie very close to SO(3) (they will
not lie in SO(3) because SO(3) is defined by nonlinear constraints on R

9, as discussed in
Section 4.1.2).

Example 8.16 (The Tangent Space for S
2) The discussion can be made more concrete

by developing the tangent space for S
2, which is embedded in R

3 as the set of all points
(x, y, z) ∈ R

3 for which x2 + y2 + z2 = 1. A coordinate neighborhood can be defined that
covers most of S

2 by using standard spherical coordinates. Let f denote the coordinate
function, which maps from (x, y, z) to angles (θ, φ). The domain of f is the open set
defined by θ ∈ (0, 2π) and φ ∈ (0, π) (this excludes the poles). The standard formulas
are θ = atan2(y, x) and φ = cos−1 z. The inverse, f −1, yields a parameterization, which
is x = cos θ sin φ, y = sin θ sin φ, and z = cos φ.

Now consider different ways to express the tangent space at some point p ∈ S
2, other

than the poles (a change of coordinates is needed to cover these). Using the coordinates
(θ, φ), velocities can be defined as vectors in R

2. We can imagine moving in the plane
defined by θ and φ, provided that the limits θ ∈ (0, 2π) and φ ∈ (0, π) are respected.

We can also use the parameterization to derive basis vectors for the tangent space as
vectors in R

3. Since the tangent space has only two dimensions, we must obtain a plane
that is “tangent” to the sphere at p. These can be found by taking derivatives. Let f −1 be
denoted as x(θ, φ), y(θ, φ), and z(θ, φ). Two basis vectors for the tangent plane at p are

[
dx(θ, φ)

dθ

dy(θ, φ)

dθ

dz(θ, φ)

dθ

]
(8.35)

and
[
dx(θ, φ)

dφ

dy(θ, φ)

dφ

dz(θ, φ)

dφ

]
. (8.36)

Computing these derivatives and normalizing yields the vectors [− sin θ cos θ 0] and
[cos θ cos φ sin θ cos φ − sin φ]. These can be imagined as the result of making small
perturbations of θ and φ at p. The vector space obtained by taking all linear combinations
of these vectors is the tangent space at R

2. Note that the direction of the basis vectors
depends on p ∈ S

2, as expected.
The tangent vectors can now be imagined as lying in a plane that is tangent to the

surface, as shown in Figure 8.8. The normal vector to a surface specified as g(x, y, z) = 0
is ∇g, which yields [x y z] after normalizing. This could alternatively be obtained by
taking the cross product of the two vectors above and using the parameterization f −1 to
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express it in terms of x, y, and z. For a point p = (x0, y0, z0), the plane equation is

x0(x − x0) + y0(y − y0) + z0(z− z0) = 0. (8.37)

�
Vector fields and velocity fields on manifolds

The notation for a tangent space on a manifold looks the same as for R
n. This enables

the vector field definition and notation to extend naturally from R
n to smooth manifolds.

A vector field on a manifold M assigns a vector in Tp(M) for every p ∈ M . It can once
again be imagined as a needle diagram, but now the needle diagram is spread over the
manifold, rather than lying in R

n.
The velocity field interpretation of a vector field can also be extended to smooth

manifolds. This means that ẋ = f (x) now defines a set of n differential equations over M

and is usually expressed using a coordinate neighborhood of the smooth structure. If f

is a smooth vector field, then a solution trajectory, τ : [0,∞) → M , can be defined from
any x0 ∈ M . Solution trajectories in the sense of Filipov can also be defined, for the case
of piecewise-smooth vector fields.

8.4 Complete methods for continuous spaces

A complete feedback planning algorithm must compute a feedback solution if one exists;
otherwise, it must report failure. Section 8.4.1 parallels Section 8.2 by defining feedback
plans and navigation functions for the case of a continuous state space. Section 8.4.2
indicates how to define a feasible feedback plan from a cell complex that was computed
using cell decomposition techniques. Section 8.4.3 presents a combinatorial approach
to computing an optimal navigation function and corresponding feedback plan in R

2.
Sections 8.4.2 and 8.4.3 allow the feedback plan to be a discontinuous vector field. In
many applications, especially those in which dynamics dominate, some conditions need
to be enforced on the navigation functions and their resulting vector fields. Section 8.4.4
therefore considers constraints on the allowable vector fields and navigation functions.
This coverage includes navigation functions in the sense of Rimon-Koditschek [832],
from which the term navigation function was introduced.

8.4.1 Feedback motion planning definitions

Using the concepts from Section 8.3, we are now ready to define feedback motion planning
over configuration spaces or other continuous state spaces. Recall Formulation 4.1, which
defined the basic motion planning problem in terms of configuration space. The differences
in the current setting are that there is no initial condition, and the requirement of a solution
path is replaced by a solution vector field. The formulation here can be considered as a
continuous-time adaptation to Formulation 8.1.

Formulation 8.2 (Feedback Motion Planning)

1. A state space, X, which is a smooth manifold. The state space will most often be Cfree, as
defined in Section 4.3.1.9

9 Note that X already excludes the obstacle region. For some problems in Part IV, the state space will be X = C,
which includes the obstacle region.
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2. For each state, x ∈ X, an action space, U (x) = Tx(X). The zero velocity, 0 ∈ Tx(X),
is designated as the termination action, uT . Using this model, the robot is capable of
selecting its velocity at any state.10

3. An unbounded time interval, T = [0,∞).

4. A state transition (differential) equation,

ẋ = u, (8.38)

which is expressed using a coordinate neighborhood and yields the velocity, ẋ, directly
assigned by the action u. The velocity produced by uT is 0 ∈ Tx(X) (which means “stop”).

5. A goal set, XG ⊂ X.

A feedback plan, π , for Formulation 8.2 is defined as a function π , which produces
an action u ∈ U (x) for each x ∈ X. A feedback plan can equivalently be considered as
a vector field on X because each u ∈ U (x) specifies a velocity vector (uT specifies zero
velocity). Since the initial state is not fixed, it becomes slightly more complicated to define
what it means for a plan to be a solution to the problem. Let Xr ⊂ X denote the set of
all states from which XG is reachable. More precisely, a state xI belongs to Xr if and
only if a continuous path τ : [0, 1] → X exists for which τ (0) = xI and τ (1) = xG for
some xG ∈ XG. This means that a solution path exists from xI for the “open-loop” motion
planning problem, which was considered in Chapter 4.

8.4.1.1 Solution concepts

A feedback plan, π , is called a solution to the problem in Formulation 8.2 if from all
xI ∈ Xr , the integral curves of π (considered as a vector field) arrive in XG, at which
point the termination action is applied. Some words of caution must be given about what it
means to “arrive” in XG. Notions of stability from control theory [526, 848] are useful for
distinguishing different cases; see Section 15.1. If XG is a small ball centered on xG, then
the ball will be reached after finite time using the inward vector field shown in Figure 8.5b.
Now suppose that XG is a single point, xG. The inward vector field produces velocities
that bring the state closer and closer to the origin, but when is it actually reached? It turns
out that convergence to the origin in this case is only asymptotic; the origin is reached
in the limit as the time approaches infinity. Such stability often arises in control theory
from smooth vector fields. We may allow such asymptotic convergence to the goal (if the
vector field is smooth and the goal is a point, then this is unavoidable). If any integral
curves result in only asymptotic convergence to the goal, then a solution plan is called
an asymptotic solution plan. Note that in general it may be impossible to require that π

is a smooth (or even continuous) nonzero vector field. For example, due to the hairy ball
theorem [837], it is known that no such vector field exists for S

n for any even integer
n. Therefore, the strongest possible requirement is that π is smooth except on a set of
measure zero; see Section 8.4.4. We may also allow solutions π for which almost all
integral curves arrive in XG.

However, it will be assumed by default in this chapter that a solution plan converges
to xG in finite time. For example, if the inward field is normalized to produce unit speed
everywhere except the origin, then the origin will be reached in finite time. A constraint

10 This allows discontinuous changes in velocity, which is unrealistic in many applications. Additional constraints,
such as imposing acceleration bounds, will also be discussed. For a complete treatment of differential constraints,
see Part IV.
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can be placed on the set of allowable vector fields without affecting the existence of a
solution plan. As in the basic motion planning problem, the speed along the path is not
important. Let a normalized vector field be any vector field for which either ‖f (x)‖ = 1 or
f (x) = 0, for all x ∈ X. This means that all velocity vectors are either unit vectors or the
zero vector, and the speed is no longer a factor. A normalized vector field provides either
a direction of motion or no motion. Note that any vector field f can be converted into a
normalized vector field by dividing the velocity vector f (x) by its magnitude (unless the
magnitude is zero), for each x ∈ X.

In many cases, unit speed does not necessarily imply a constant speed in some true
physical sense. For example, if the robot is a floating rigid body, there are many ways to
parameterize position and orientation. The speed of the body is sensitive to this parameter-
ization. Therefore, other constraints may be preferable instead of ‖f (x)‖ = 1; however,
it is important to keep in mind that the constraint is imposed so that f (x) provides a
direction at x. The particular magnitude is assumed unimportant.

So far, consideration has been given only to a feasible feedback motion planning
problem. An optimal feedback motion planning problem can be defined by introducing
a cost functional. Let x̃t denote the function x̃t : [0, t] → X, which is called the state
trajectory (or state history). This is a continuous-time version of the state history, which
was defined previously for problems that have discrete stages. Similarly, let ũt denote
the action trajectory (or action history), ũt : [0, t] → U . Let L denote a cost functional,
which may be applied from any xI to yield

L(x̃tF , ũtF ) =
∫ tF

0
l(x(t), u(t))dt + lF (x(tF )), (8.39)

in which tF is the time at which the termination action is applied. The term l(x(t), u(t))
can alternatively be expressed as l(x(t), ẋ(t)) by using the state transition equation (8.38).
A normalized vector field that optimizes (8.39) from all initial states that can reach the
goal is considered as an optimal feedback motion plan.

Note that the state trajectory can be determined from an action history and initial
state. In fact, we could have used action trajectories to define a solution path to the
motion planning problem of Chapter 4. Instead, a solution was defined there as a path
τ : [0, 1] → Cfree to avoid having to introduce velocity fields on smooth manifolds. That
was the only place in the book in which the action space seemed to disappear, and now
you can see that it was only hiding to avoid inessential notation.

8.4.1.2 Navigation functions

As in Section 8.2.2, potential functions can be used to represent feedback plans, assuming
that a local operator is developed that works for continuous state spaces. In the discrete
case, the local operator selects an action that reduces the potential value. In the continuous
case, the local operator must convert the potential function into a vector field. In other
words, a velocity vector must be defined at each state. By default, it will be assumed here
that the vector fields derived from the navigation function are not necessarily normalized.

Assume that π(x) = uT is defined for all x ∈ XG, regardless of the potential function.
Suppose that a potential function φ : X → R has been defined for which the gradient

∇φ =
[

∂φ

∂x1

∂φ

∂x2
· · · ∂φ

∂xn

]
(8.40)
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exists over all of X \XG. The corresponding feedback plan can then be defined as
π(x) = −∇φ|x . This defines the local operator, which means that the velocity is taken
in the direction of the steepest descent of φ. The idea of using potential functions in this
way was proposed for robotics by Khatib [528, 529] and can be considered as a form of
gradient descent, which is a general optimization technique.

It is also possible to work with potential functions for which the gradient does not exist
everywhere. In these cases, a continuous-space version of (8.4) can be defined for a small,
fixed �t as

u∗ = argmin
u∈U (x)

{
φ(x ′)

}
, (8.41)

in which x ′ is the state obtained by integrating velocity u from x for time �t . One problem
is that �t should be chosen to use the smallest possible neighborhood around φ. It is best
to allow only potential functions for which �t can be made arbitrarily small at every x

without affecting the decision in (8.41). To be precise, this means that an infinite sequence
of u∗ values can be determined from a sequence of �t values that converges to 0. A
potential function should then be chosen to ensure after some point in the sequence, u∗,
exists and the same u∗ can be chosen to satisfy (8.41) as �t approaches 0. A special case
of this is if the gradient of φ exists; the infinite sequence in this case converges to the
negative gradient.

A potential function, φ, is called a navigation function if the vector field that is derived
from it is a solution plan. The optimal cost-to-go serves as an optimal navigation function.
If multiple vector fields can be derived from the same φ, then every possible derived vector
field must yield a solution feedback plan. If designed appropriately, the potential function
can be viewed as a kind of “ski slope” that guides the state to XG. If there are extra local
minima that cause the state to become trapped, then XG will not be reached. To be a
navigation function, such local minima outside of XG are not allowed. Furthermore, there
may be additional requirements to ensure that the derived vector field satisfies additional
constraints, such as bounded acceleration.

Example 8.17 (Quadratic Potential Function) As a simple example, suppose X = R
2,

there are no obstacles, and qgoal = (0, 0). A quadratic function φ(x, y) = 1
2x2

1 + 1
2x2

2
serves as a good potential function to guide the state to the goal. The feedback motion
strategy is defined as f = −∇φ = [−x1 − x2], which is the inward vector field shown
in Figure 8.5b.

If the goal is instead at some (x ′1, x
′
2) ∈ R

2, then a potential function that guides the
state to the goal is φ(x1, x2) = (x1 − x ′1)2 + (x2 − x ′2)2. �

Suppose the state space represents a configuration space that contains point obsta-
cles. The previous function φ can be considered as an attractive potential because the
configuration is attracted to the goal. One can also construct a repulsive potential that
repels the configuration from the obstacles to avoid collision. Let φa denote the attractive
component and φr denote a repulsive potential that is summed over all obstacle points.
A potential function of the form φ = φa + φr can be defined to combine both effects.
The robot should be guided to the goal while avoiding obstacles. The problem is that it
is difficult in general to ensure that the potential function will not contain multiple local
minima. The configuration could become trapped at a local minimum that is not in the
goal region. This was an issue with the planner from Section 5.4.3.
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8.4.2 Vector fields over cell complexes

This section describes how to construct a piecewise-smooth vector field over a cell com-
plex. Only normalized vector fields will be considered. It is assumed that each cell in the
complex has a simple shape over which it is easy to define a patch of the vector field.
In many cases, the cell decomposition techniques that were introduced in Chapter 6 for
motion planning can be applied to construct a feedback plan.

Suppose that an n-dimensional state space X has been decomposed into a cell complex,
such as a simplicial complex or singular complex, as defined in Section 6.3.1. Assume
that the goal set is a single point, xG. Defining a feedback plan π over X requires placing
a vector field on X for which all integral curves lead to xG (if xG is reachable). This
is accomplished by defining a smooth vector field for each n-cell. Each (n− 1)-cell
is a switching boundary, as considered in Section 8.3.1. This leads directly to solution
trajectories in the sense of Filipov. If π is allowed to be discontinuous, then it is actually
not important to specify values on any of the cells of dimension n− 1 or less.

A hierarchical approach is taken to the construction of π :

1. Define a discrete planning problem over the n-cells. The cell that contains xG is designated
as the goal, and a discrete navigation function is defined over the cells.

2. Define a vector field over each n-cell. The field should cause all states in the cell to flow
into the next cell as prescribed by the discrete navigation function.

One additional consideration that is important in applications is to try to reduce the
effect of the discontinuity across the boundary as much as possible. It may be possible to
eliminate the discontinuity, or even construct a smooth transition between n-cells. This
issue will not be considered here, but it is nevertheless quite important [237, 646].

The approach will now be formalized. Suppose that a cell complex has been defined
over a continuous state space, X. Let X̌ denote the set of n-cells, which can be interpreted
as a finite state space. A discrete planning problem will be defined over X̌. To avoid
confusion with the original continuous problem, the prefix super will be applied to the
discrete planning components. Each superstate x̌ ∈ X̌ corresponds to an n-cell. From each
x̌, a superaction, ǔ ∈ Ǔ (x̌) exists for each neighboring n-cell (to be neighboring, the two
cells must share an (n− 1)-dimensional boundary). Let the goal superstate x̌g be the n-cell
that contains xG. Assume that the cost functional is defined for the discrete problem so
that every action (other than uT ) produces a unit cost. Now the concepts from Section 8.2
can be applied to the discrete problem. A discrete navigation function, φ̌ : X̌ → R, can
be computed using Dijkstra’s algorithm (or another algorithm, particularly if optimality
is not important). Using the discrete local operator from Section 8.2.2, this results in a
discrete feedback plan, π̌ : X̌ → Ǔ .

Based on the discrete feedback plan, there are two kinds of n-cells. The first is the
goal cell, x̌g , for which a vector field needs to be defined so that all integral curves lead
to Xg in finite time.11 A termination action can be applied when xG is actually reached.
The remaining n-cells are of the second kind. For each cell x̌, the boundary that is shared
with the cell reached by applying ǔ = π̌ (x̌) is called the exit face. The vector field over
the n-cell x̌ must be defined so that all integral curves lead to the exit face. When the exit

11 This is possible in finite time, even if Xg is a single point, because the vector field is not continuous. Otherwise,
only asymptotic convergence may be possible.
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xG

Figure 8.10: A triangulation is used to de�ne a vector � eld over X. All solution trajectories lead to the goal.

Repulsive vertex

Exit edge

Figure 8.11: A vector � eld can be de�ned for each triangle by repelling from a vertex that opposes the exit
edge.

face is reached, a transition will occur into the next n-cell. If the n-cells are convex, then
defining this transition is straightforward (unless there are additional requirements on the
field, such as smoothness at the boundary). For more complicated cells, one possibility is
to define a vector field that retracts all points onto a single curve in the cell.

A simple example of the approach is illustrated for the case of X = Cfree ⊂ R
2, in

which the boundary of Cfree is polygonal. This motion planning problem was considered
in Section 6.2, but without feedback. Suppose that a triangulation of X has been computed,
as described in Section 6.3.2. An example was shown in Figure 6.16. A discrete feedback
plan is shown for a particular goal state in Figure 8.10. Each 2-cell (triangle) is labeled
with an arrow that points to the next cell.

For the cell that contains xG, a normalized version of the inward vector field shown
in Figure 8.5b can be formed by dividing each nonzero vector by its magnitude. It can
then be translated to move its origin to xG. For each remaining 2-cell, a vector field must
be constructed that flows into the appropriate neighboring cell. Figure 8.11 illustrates a
simple way to achieve this. An outward vector field can be made by negating the field
shown in Figure 8.5b to obtain f = [x y]. This field can be normalized and translated to
move the origin to the triangle vertex that is not incident to the exit edge. This is called
the repulsive vertex in Figure 8.11. This generates a vector field that pushes all points in
the triangle to the ext edge. If the fields are constructed in this way for each triangle, then
the global vector field represents a solution feedback plan for the problem. Integral curves
(in the sense of Filipov) lead to xG in finite time.
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V (x)

way points
x

(a) (b)

Figure 8.12: (a) A point, x, in a simple polygon. (b) The visibility polygon, V(x).

8.4.3 Optimal navigation functions

The vector fields developed in the last section yield feasible trajectories, but not necessarily
optimal trajectories unless the initial and goal states are in the same convex n-cell. If
X = R

2, then it is possible to make a continuous version of Dijkstra’s algorithm [711].
This results in an exact cost-to-go function over X based on the Euclidean shortest path
to a goal, xG. The cost-to-go function serves as the navigation function, from which the
feedback plan is defined by using a local steepest descent.

Suppose that X is bounded by a simple polygon (no holes). Assume that only normal-
ized vector fields are allowed. The cost functional is assumed to be the Euclidean distance
traveled along a state trajectory. Recall from Section 6.2.4 that for optimal path planning,
X = cl(Cfree) must be used. Assume that Cfree and cl(Cfree) have the same connectivity.12

This technically interferes with the definition of tangent spaces from Section 8.3 because
each point of X must be contained in an open neighborhood. Nevertheless, we allow vec-
tors along the boundary, provided that they “point” in a direction tangent to the boundary.
This can be formally defined by considering boundary regions as separate manifolds.

Consider computing the optimal cost-to-go to a point xG for a problem such as that
shown in Figure 8.12a. For any x ∈ X, let the visibility polygon V (x) refer to the set of all
points visible from x, which is illustrated in Figure 8.12b. A point x ′ lies in V (x) if and
only if the line segment from x ′ to x is contained in X. This implies that the cost-to-go
from x ′ to x is just the Euclidean distance from x ′ to x. The optimal navigation function
can therefore be immediately defined over V (xG) as

φ(x) = ‖x − xG‖. (8.42)

Level sets at regularly spaced values of this navigation function are shown in Figure 8.13a.
How do we compute the optimal cost-to-go values for the points in X \ V (xG)? For

the segments on the boundary of V (x) for any x ∈ X, some edges are contained in the
boundary of X, and others cross the interior of X. For the example in Figure 8.12b, there
are two edges that cross the interior. For each segment that crosses the interior, let the
closer of the two vertices to x be referred to as a way point. Two way points are indicated
in Figure 8.12b. The way points of V (xG) are places through which some optimal paths
must cross. Let W (x) for any x ∈ X denote the set of way points of V (x).

12 This precludes a choice of Cfree for which adding the boundary point enables a homotopically distinct path to be
made through the boundary point. An example of this is when two square obstacles in R

2 contact each other only
at a pair of corners.
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(a) (b) (c) (d)

Figure 8.13: The optimal navigation function is computed in four iterations. In each iteration, the navigation
function is extended from a new way point.

A straightforward algorithm proceeds as follows. Let Zi denote the set of points over
which φ has been defined, in the ith iteration of the algorithm. In the first iteration,
Z1 = V (xG), which is the case shown in Figure 8.13a. The way points of V (xG) are
placed in a queue, Q. In each following iteration, a way point x is removed from Q.
Let Zi denote the domain over which φ is defined so far. The domain of φ is extended
to include all new points visible from x. These new points are V (x) \ Zi . This yields
Zi+1 = Zi ∪ V (x), the extended domain of φ. The values of φ(x ′) for x ′ ∈ Zi+1 \ Zi are
defined by

φ(x ′) = φ(x) + ‖x ′ − x‖, (8.43)

in which x is the way point that was removed from Q (the optimal cost-to-go value of x

was already computed). The way points of V (x) that do not lie in Zi+1 are added to Q.
Each of these will yield new portions of X that have not yet been seen. The algorithm
terminates when Q is empty, which implies that Zk = X for some k. The execution of the
algorithm is illustrated in Figure 8.13.

The visibility polygon can be computed in time O(n lg n) if X is described by n edges.
This is accomplished by performing a radial sweep, which is an adaptation of the method
applied in Section 6.2.2 for vertical cell decomposition. The difference for computing
V (x) is that a ray anchored at x is swept radially (like a radar sweep). The segments that
intersect the ray are sorted by their distance from x. For the algorithm that constructs the
navigation function, no more than O(n) visibility polygons are computed because each
one is computed from a unique way point. This implies O(n2 lg n) running time for the
whole algorithm. Unfortunately, there is no extension to higher dimensions; recall from
Section 7.7.1 that computing shortest paths in a 3D environment is NP-hard [174].

The algorithm given here is easy to describe, but it is not the most general, nor the most
efficient. If X has holes, then the level set curves can collide by arriving from different
directions when traveling around an obstacle. The queue, Q, described above can be
sorted as in Dijkstra’s algorithm, and special data structures are needed to identify when
critical events occur as the cost-to-go is propagated outward. It was shown in [446] that
this can be done in time O(n lg n) and space O(n lg n).

8.4.4 A step toward considering dynamics

If dynamics is an important factor, then the discontinuous vector fields considered so far
are undesirable. Due to momentum, a mechanical system cannot instantaneously change
its velocity (see Section 13.3). In this context, vector fields should be required to satisfy
additional constraints, such as smoothness or bounded acceleration. This represents only
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a step toward considering dynamics. Full consideration is given in Part IV, in which
precise equations of motions of dynamical systems are expressed as part of the model.
The approach in this section is to make vector fields that are “dynamics-ready” rather than
carefully considering particular equations of motion.

A framework has been developed by defining a navigation function that satisfies some
desired constraints over a simple region, such as a disc [832]. A set of transformations
is then designed that are proved to preserve the constraints while adapting the navigation
function to more complicated environments. For a given problem, a complete algorithm
for constructing navigation functions is obtained by applying the appropriate series of
transformations from some starting shape.

This section mostly focuses on constraints that are maintained under this trans-
formation-based framework. Sections 8.4.2 and 8.4.3 worked with normalized vector
fields. Under this constraint, virtually any vector field could be defined, provided that
the resulting algorithm constructs fields for which integral curves exist in the sense of
Filipov. In this section, we remove the constraint that vector fields must be normalized,
and then consider other constraints. The velocity given by the vector field is now assumed
to represent the true speed that must be executed when the vector field is applied as a
feedback plan.

One implication of adding constraints to the vector field is that optimal solutions
may not satisfy them. For example, the optimal navigation functions of Section 8.4.3
lead to discontinuous vector fields, which violate the constraints to be considered in this
section. The required constraints restrict the set of allowable vector fields. Optimality
must therefore be defined over the restricted set of vector fields. In some cases, an optimal
solution may not even exist (see the discussion of open sets and optimality in Section
9.1.1). Therefore, this section focuses only on feasible solutions.

8.4.4.1 An acceleration-based control model

To motivate the introduction of constraints, consider a control model proposed in [237,
833]. The action space, defined as U (x) = Tx(X) in Formulation 8.2, produces a velocity
for each action u ∈ U (x). Therefore, ẋ = u. Suppose instead that each action produces
an acceleration. This can be expressed as ẍ = u, in which ẍ is an acceleration vector,

ẍ = dẋ

dt
=
[
d2x1

dt2

d2x2

dt2
· · · d2xn

dt2

]
. (8.44)

The velocity ẋ is obtained by integration over time. The state trajectory, x̃ : T → X, is
obtained by integrating (8.44) twice.

Suppose that a vector field is given in the form ẋ = f (x). How can a feedback plan be
derived? Consider how the velocity vectors specified by f (x) change as x varies. Assume
that f (x) is smooth (or at least C1), and let

∇ẋf (x) = [∇ẋf1(x) ∇ẋf2(x) · · · ∇ẋfn(x)] , (8.45)

in which ∇ẋ denotes the unnormalized directional derivative in the direction of ẋ: ∇fi · ẋ.
Suppose that an initial state xI is given, and that the initial velocity is ẋ = f (xI ). The
feedback plan can now be defined as

u = ∇ẋf (x). (8.46)
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This is equivalent to the previous definition of a feedback plan from Section 8.4.1; the only
difference is that now two integrations are needed (which requires both x and ẋ = f (xI )
as initial conditions) and a differentiability condition must be satisfied for the vector field.

Now the relationship between ẋ and f (x) will be redefined. Suppose that ẋ is the true
measured velocity during execution and that f (x) is the prescribed velocity, obtained from
the vector field f . During execution, it is assumed that ẋ and f (x) are not necessarily
the same, but the task is to keep them as close to each other as possible. A discrepancy
between them may occur due to dynamics that have not been modeled. For example, if
the field f (x) requests that the velocity must suddenly change, a mobile robot may not be
able to make a sharp turn due to its momentum.

Using the new interpretation, the difference, f (x) − ẋ, can be considered as a discrep-
ancy or error. Suppose that a vector field f has been computed. A feedback plan becomes
the acceleration-based control model

u = K(f (x) − ẋ) +∇ẋf (x), (8.47)

in which K is a scalar gain constant. A larger value of K will make the control system more
aggressively attempt to reduce the error. If K is too large, then acceleration or energy
constraints may be violated. Note that if ẋ = f (x), then u = ∇ẋf (x), which becomes
equivalent to the earlier formulation.

8.4.4.2 Velocity and acceleration constraints

Considering the acceleration-based control model, some constraints can be placed on the
set of allowable vector fields. A bounded-velocity model means that ‖ẋ‖ < vmax , for some
positive real value vmax called the maximum speed. This could indicate, for example, that
the robot has a maximum speed for safety reasons. It is also possible to bound individual
components of the velocity vector. For example, there may be separate bounds for the
maximum angular and linear velocities of an aircraft. Intuitively, velocity bounds imply
that the functions fi , which define the vector field, cannot take on large values.

A bounded-acceleration model means that ‖ẍ‖ ≤ amax , in which amax is a positive
real value called the maximum acceleration. Intuitively, acceleration bounds imply that
the velocity cannot change too quickly while traveling along an integral curve. Using
the control model ẍ = u, this implies that ‖u‖ ≤ amax . It also imposes the constraint that
vector fields must satisfy ‖∇ẋf (x)‖ ≤ amax for all ẋ and x ∈ X. The condition ‖u‖ ≤ amax

is very important in practice because higher accelerations are generally more expensive
(bigger motors are required, more fuel is consumed, etc.). The action u may correspond
directly to the torques that are applied to motors. In this case, each motor usually has an
upper limit.

As has already been seen, setting an upper bound on velocity generally does not affect
the existence of a solution. Imagine that a robot can always decide to travel more slowly.
If there is also an upper bound on acceleration, then the robot can attempt to travel more
slowly to satisfy the bound. Imagine slowing down in a car to make a sharp turn. If you
would like to go faster, then it may be more difficult to satisfy acceleration constraints.
Nevertheless, in most situations, it is preferable to go faster.

A discontinuous vector field fails to satisfy any acceleration bound because it essentially
requires infinite acceleration at the discontinuity to cause a discontinuous jump in the
velocity vector. If the vector field satisfies the Lipschitz condition (8.16) for some constant
C, then it satisfies the acceleration bound if C < amax .
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In Chapter 13, we will precisely specify U (x) at every x ∈ X, which is more general
than imposing simple velocity and acceleration bounds. This enables virtually any physical
system to be modeled.

8.4.4.3 Navigation function in the sense of Rimon-Koditschek

Now consider constructing a navigation function from which a vector field can be derived
that satisfies constraints motivated by the acceleration-based control model, (8.47). As
usual, the definition of a navigation function begins with the consideration of a potential
function, φ : X → R. What properties does a potential function need to have so that it
may be considered as a navigation function as defined in Section 8.4.1 and also yield a
vector field that satisfies an acceleration bound? Sufficient conditions will be given that
imply that a potential function will be a navigation function that satisfies the bound.

To give the conditions, it will first be important to characterize extrema of multivariate
functions. Recall from basic calculus that a function f : R → R has a critical point when
the first derivative is zero. At such points, the sign of the second derivative indicates
whether the critical point is a minimum or maximum. These ideas can be generalized to
higher dimensions. A critical point of φ is one for which ∇φ = 0. The Hessian of φ is
defined as the matrix

H (φ) =





∂2φ

∂2x2
1

∂2φ

∂x1∂x2
· · · ∂2φ

∂x1∂xn

∂2φ

∂x2∂x1

∂2φ

∂x2
2

· · · ∂2φ

∂x2∂xn

...
...

...

∂2φ

∂xn∂x1

∂2φ

∂xn∂x2
· · · ∂2φ

∂x2
n





. (8.48)

At each critical point, the Hessian gives some information about the extremum. If the rank
of H (φ) at x is n, then the Hessian indicates the kind of extremum. If (8.48) is positive
definite,13 then the φ achieves a local minimum at x. If (8.48) is negative definite,14 then
the φ achieves a local minimum at x. In all other cases, x is a saddle point. If the rank of
H (φ) at x is less than n, then the Hessian is degenerate. In this case the Hessian cannot
classify the type of extremum. An example of this occurs when x lies in a plateau (there
is no direction in which φ increases or decreases. Such behavior is obviously bad for a
potential function because the local operator would not be able to select a direction.

Suppose that the navigation function is required to be smooth, to ensure the existence
of a gradient at every point. This enables gradient descent to be performed. If X is not
contractible, then it turns out there must exist some critical points other than xG at which
∇φ(x) = 0. The critical points can even be used to infer the topology of X, which is
the basic idea in the subject of Morse theory [704, 236]. Unfortunately, this implies that
there does not exist a solution navigation function for such spaces because the definition

13 Positive definite for an n× n matrix A means that for all x ∈ R
n, xT Ax > 0. If A is symmetric (which applies to

H (φ)), then this is equivalent to A having all positive eigenvalues.
14 Negative definite means that for all x ∈ R

n, xT Ax < 0. If A is symmetric, then this is equivalent to A having all
negative eigenvalues.
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in Section 8.4.1 required that the integral curve from any state that can reach xG must
reach it using the vector field derived from the navigation function. If the initial state
is a critical point, the integral curve is constant (the state remains at the critical point).
Therefore, under the smoothness constraint, the definition of a navigation function should
be modified to allow critical points at a small number of places (only on a set that has
measure zero). It is furthermore required that the set of states from which the integral
curves arrive at each critical point (i.e., the domain of attraction of each critical point)
has measure zero. From all possible initial states, except from a set of measure zero, the
integral curves must reach xG, if it is reachable. This is ensured in the following definition.

A function φ : X → R is called a navigation function in the sense of Rimon-Koditschek
if [832]:

1. It is smooth (or at least C2).

2. Among all values on the connected component of Cfree that contains xG, there is only one
local minimum, which is at xG.15

3. It is maximal and constant on ∂Cfree, the boundary of Cfree.

4. It is a Morse function [704], which means that at each critical point x (i.e., ∇φ|x = 0),
the Hessian of φ is not degenerate.16 Such functions are known to exist on any smooth
manifold.

If φ is smooth in the C∞ sense, then by Sard’s Theorem [236] the set of critical points
has measure zero.

Methods for constructing navigation functions are outlined in [832] for a general family
of problems in which Cfree has a semi-algebraic description. The basic idea is to start with
simple shapes over which a navigation function can be easily defined. One example of
this is a spherical subset of R

n, which contains spherical obstacles. A set of distorting
transformations is then developed to adapt the navigation functions to other shapes while
ensuring that the four properties above are maintained. One such transformation extends
a ball into any visibility region (in the sense defined in Section 8.4.3). This is achieved by
smoothly stretching out the ball into the shape of the visibility region. (Such regions are
sometimes called star-shaped.) The transformations given in [832] can be combined to
define navigation functions for a large family of configuration spaces. The main problem
is that the configuration space obstacles and the connectivity of Cfree are represented only
implicitly, which makes it difficult to correctly apply the method to complicated high-
dimensional problems. One of the advantages of the approach is that proving convergence
to the goal is simplified. In many cases, Lyapunov stability analysis can be performed (see
Section 15.1.1).

8.4.4.4 Harmonic potential functions

Another important family of navigation functions is constructed from harmonic functions
[238, 241, 242, 484, 532]. A function φ is called a harmonic function if it satisfies the
differential equation

∇2φ =
n∑

i=1

∂2φ

∂x2
i

= 0. (8.49)

15 Some authors do not include the global minimum as a local minimum. In this case, one would say that there are
no local minima.

16 Technically, to be Morse, the values of the function must also be distinct at each critical point.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

340 MOTION PLANNING

There are many possible solutions to the equation, depending on the conditions along the
boundary of the domain over which φ is defined. A simple disc-based example is given
in [237] for which an analytical solution exists. Complicated navigation functions are
generally defined by imposing constraints on φ along the boundary of Cfree. A Dirichlet
boundary condition means that the boundary must be held to a constant value. Using this
condition, a harmonic navigation function can be developed that guides the state into a goal
region from anywhere in a simply connected state space. If there are interior obstacles,
then a Neumann boundary condition forces the velocity vectors to be tangent to the
obstacle boundary. By solving (8.49) under a combination of both boundary conditions, a
harmonic navigation function can be constructed that avoids obstacles by moving parallel
to their boundaries and eventually landing in the goal. It has been shown under general
conditions that navigation functions can be produced [242, 241]; however, the main
problems are that the boundary of Cfree is usually not constructed explicitly (recall why
this was avoided in Chapter 5) and that a numerical solution to (8.49) is expensive to
compute. This can be achieved, for example, by using Gauss-Seidel iterations (as indicated
in [242]), which are related to value iteration (see [98] for the distinction). A sampling-
based approach to constructing navigation functions via harmonic functions is presented in
[126]. Value iteration will be used to produce approximate, optimal navigation functions in
Section 8.5.2.

8.5 Sampling-based methods for continuous spaces

The methods in Section 8.4 can be considered as the feedback-case analogs to the com-
binatorial methods of Chapter 6. Although such methods provide elegant solutions to the
problem, the issue arises once again that they are either limited to lower dimensional
problems or problems that exhibit some special structure. This motivates the introduction
of sampling-based methods. This section presents the feedback-case analog to Chapter 5.

8.5.1 Computing a composition of funnels

Mason introduced the concept of a funnel as a metaphor for motions that converge to the
same small region of the state space, regardless of the initial position [682]. As grains of
sand in a funnel, they follow the slope of the funnel until they reach the opening at the
bottom. A navigation function can be imagined as a funnel that guides the state into the
goal. For example, the cost-to-go function depicted in Figure 8.13d can be considered as
a complicated funnel that sends each piece of sand along an optimal path to the goal.

Rather than designing a single funnel, consider decomposing the state space into a
collection of simple, overlapping regions. Over each region, a funnel can be designed
that leads the state into another funnel; see Figure 8.14. As an example, the approach in
[164] places a Lyapunov function (such functions are covered in Section 15.1.2) over each
funnel to ensure convergence to the next funnel. A feedback plan can be constructed by
composing several funnels. Starting from some initial state in X, a sequence of funnels
is visited until the goal is reached. Each funnel essentially solves the subgoal of reaching
the next funnel. Eventually, a funnel is reached that contains the goal, and a navigation
function on this funnel causes the goal to be reached. In the context of sensing uncertainty,
for which the funnel metaphor was developed, the composition of funnels becomes the
preimage planning framework [662], which is covered in Section 12.5.1. In this section,
however, it is assumed that the current state is always known.
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Figure 8.14: A navigation function and corresponding vector �eld can be designed as a composition of
funnels.

X

X̂

Figure 8.15: An approximate cover is shown. Every point of X̃ is contained in at least one neighborhood,
and X̃ is a subset of X.

8.5.1.1 An approximate cover

Figure 8.15 illustrates the notion of an approximate cover, which will be used to represent
the funnel domains. Let X̃ denote a subset of a state space X. A cover of X̃ is a collection
O of sets for which

1. O ⊆ X for each O ∈ O.

2. X̃ is a subset of the union of all sets in the cover:

X̃ ⊆
⋃

O∈O
O. (8.50)

Let each O ∈ O be called a neighborhood. The notion of a cover was actually used in
Section 8.3.2 to define a smooth manifold using a cover of coordinate neighborhoods.

In general, a cover allows the following:

1. Any number of neighborhoods may overlap (have nonempty intersection).

2. Any neighborhood may contain points that lie outside of X̃.

A cell decomposition, which was introduced in Section 6.3.1, is a special kind of cover for
which the neighborhoods form a partition of X̃, and they must fit together nicely (recall
Figure 6.15).

So far, no constraints have been placed on the neighborhoods. They should be chosen
in practice to greatly simplify the design of a navigation function over each one. For
the original motion planning problem, cell decompositions were designed to make the
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O′O

Figure 8.16: A transition from O to O ′ is caused by a vector � eld on O for which all integral curves lead
into O ∩O ′.

determination of a collision-free path trivial in each cell. The same idea applies here,
except that we now want to construct a feedback plan. Therefore, it is usually assumed
that the cells have a simple shape.

A cover is called approximate if X̃ is a strict subset of X. Ideally, we would like
to develop an exact cover, which implies that X̃ = X and each neighborhood has some
nice property, such as being convex. Developing such covers is possible in practice for
state spaces that are either low-dimensional or exhibit some special structure. This was
observed for the cell decomposition methods of Chapter 6.

Consider constructing an approximate cover for X. The goal should be to cover as
much of X as possible. This means that µ(X \ X̃) should be made as small as possible,
in which µ denotes Lebesgue measure, as defined in Section 5.1.3. It is also desirable
to ensure that X̃ preserves the connectivity of X. In other words, if a path between two
points exists in X, then it should also exist in X̃.

8.5.1.2 Defining a feedback plan over a cover

The ideas from Section 8.4.2 can be adapted to define a feedback plan over X̃ using a
cover. Let X̌ denote a discrete state space in which each superstate is a neighborhood. Most
of the components of the associated discrete planning problems are the same as in Section
8.4.2. The only difference is in the definition of superactions because neighborhoods can
overlap in a cover. For each neighborhood O ∈ O, a superaction exists for each other
neighborhood, O ′ ∈ O such that O ∩O ′ 	= ∅ (usually, their interiors overlap to yield
int(O) ∩ int(O ′) 	= ∅).

Note that in the case of a cell decomposition, this produces no superactions because it
is a partition. To follow the metaphor of composing funnels, the domains of some funnels
should overlap, as shown in Figure 8.14. A transition from one neighborhood, O, to
another, O ′, is obtained by defining a vector field on O that sends all states from O \O ′

into O ∩O ′; see Figure 8.16. Once O ′ is reached, the vector field of O is no longer
followed; instead, the vector field of O ′ is used. Using the vector field of O ′, a transition
may be applied to reach another neighborhood. Note that the jump from the vector field
of O to that of O ′ may cause the feedback plan to be a discontinuous vector field on X̃.
If the cover is designed so that O ∩O ′ is large (if they intersect), then gradual transitions
may be possible by blending the vector fields from O and O ′.

Once the discrete problem has been defined, a discrete feedback plan can be computed
over X̌, as defined in Section 8.2. This is converted into a feedback plan over X by
defining a vector field on each neighborhood that causes the appropriate transitions. Each
x̌ ∈ X̌ can be interpreted both as a superstate and a neighborhood. For each x̌, the discrete
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INCREMENTAL COVER CONSTRUCTION

1. Initialize O = ∅ and i = 1.

2. Let x = α(i), and let d be the distance returned by the collision detection algorithm
applied at x.

3. If d > 0 (which implies that x ∈ Cfree) and x 	∈ O for all O ∈ O, then insert a new
neighborhood, On, into O. The neighborhood size and shape are determined from x

and d.

4. If the termination condition is not satisfied, then let i := i + 1, and go to Step 1.

5. Remove any neighborhoods from O that are contained entirely inside of another neigh-
borhood.

Figure 8.17: The cover is incrementally extended by adding new neighborhoods that are guaranteed to
be collision-free.

feedback plan produces a superaction ǔ = π(x̌), which yields a new neighborhood x̌ ′.
The vector field over x̌ = O is then designed to send all states into x̌ ′ = O ′.

If desired, a navigation function φ over X can even be derived from a navigation
function, φ̌, over X̌. Suppose that φ̌ is constructed so that every φ̌(x̌) is distinct for
every x̌ ∈ X̌. Any navigation function can be easily transformed to satisfy this constraint
(because X̌ is finite). Let φO denote a navigation function over some O ∈ O. Assume that
XG is a point, xG (extensions can be made to more general cases). For every neighborhood
O ∈ O such that xG 	∈ O, φO is defined so that performing gradient descent leads into the
overlapping neighborhood for which φ̌(x̌) is smallest. If O contains xG, the navigation
function φO simply guides the state to xG.

The navigation functions over each O ∈ O can be easily pieced together to yield a
navigation function over all of X. In places where multiple neighborhoods overlap, φ is
defined to be the navigation function associated with the neighborhood for which φ̌(x̌)
is smallest. This can be achieved by adding a large constant to each φO . Let c denote
a constant for which φO(x) < c over all O ∈ O and x ∈ O (it is assumed that each φO

is bounded). Suppose that φ̌ assumes only integer values. Let O(x) denote the set of all
O ∈ O such that x ∈ O. The navigation function over X is defined as

φ(x) = min
O∈O(x)

{
φO(x) + c φ̌(O)

}
. (8.51)

8.5.1.3 A sampling-based approach

There are numerous alternative ways to construct a cover. To illustrate the ideas, an
approach called the sampling-based neighborhood graph is presented here [983]. Suppose
that X = Cfree, which is a subset of some configuration space. As introduced in Section
5.4, let α be a dense, infinite sequence of samples in X. Assume that a collision detection
algorithm is available that returns the distance, (5.28), between the robot and obstacles in
the world. Such algorithms were described in Section 5.3.

An incremental algorithm is given in Figure 8.17. Initially, O is empty. In each iter-
ation, if α(i) ∈ Cfree and it is not already contained in some neighborhood, then a new
neighborhood is added to O. The two main concerns are 1) how to define a new neigh-
borhood, O, such that O ⊂ Cfree, and 2) when to terminate. At any given time, the cover
is approximate. The union of all neighborhoods is X̃, which is a strict subset of X. In
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comparison to Figure 8.15, the cover is a special case in which the neighborhoods do not
extend beyond X̃.

Defining new neighborhoods

For defining new neighborhoods, it is important to keep them simple because during
execution, the neighborhoods that contain the state x must be determined quickly. Suppose
that all neighborhoods are open balls:

B(x, r) = {x ′ ∈ X | ρ(x, x ′) < r}, (8.52)

in which ρ is the metric on C. There are efficient algorithms for determining whether
x ∈ O for some O ∈ O, assuming all of the neighborhoods are balls [703]. In practice,
methods based on Kd-trees yield good performance [48, 53] (recall Section 5.5.2). A new
ball, B(x, r), can be constructed in Step 3 for x = α(i), but what radius can be assigned?
For a point robot that translates in R

2 or R
3, the Hausdorff distance d between the robot

and obstacles in W is precisely the distance to Cobs from α(i). This implies that we can
set r = d, and B(x, r) is guaranteed to be collision-free.

In a general configuration space, it is possible to find a value of r such that B(x, r) ⊆
Cfree, but in general r < d. This issue arose in Section 5.3.4 for checking path segments.
The transformations of Sections 3.2 and 3.3 become important in the determination of
r . For illustrative purposes, suppose that C = R

2 × S
1, which corresponds to a rigid

robot, A, that can translate and rotate in W = R
2. Each point a ∈ A is transformed using

(3.35). Now imagine starting with some configuration q = (x, y, θ) and perturbing each
coordinate by some �x, �y, and �θ . What is the maximum distance that a point on
A could travel? Translation affects all points on A the same way, but rotation affects
points differently. Recall Figure 5.12 from Section 5.3.4. Let ar ∈ A denote the point that
is furthest from the origin (0, 0). Let r denote the distance from ar to the origin. If the
rotation is perturbed by some small amount, �θ , then the displacement of any a ∈ A is
no more than r�θ . If all three configuration parameters are perturbed, then

(�x)2 + (�y)2 + (r�θ )2 < d2 (8.53)

is the constraint that must be satisfied to ensure that the resulting ball is contained in Cfree.
This is actually the equation of a solid ellipsoid, which becomes a ball if r = 1. This can
be made into a ball by reparameterizing SE(2) so that �θ has the same affect as �x and
�y. A transformation h : θ �→ rθ maps θ into a new domain Z = [0, 2πr). In this new
space, the equation of the ball is

(�x)2 + (�y)2 + (�z)2 < d2, (8.54)

in which �z represents the change in z ∈ Z. The reparameterized version of (3.35) is

T =



cos(θ/r) − sin(θ/r) xt

sin(θ/r) cos(θ/r) yt

0 0 1



 . (8.55)

For a 3D rigid body, similar reparameterizations can be made to Euler angles or quaternions
to generate six-dimensional balls. Extensions can be made to chains of bodies [983]. One
of the main difficulties, however, is that the balls are not the largest possible. In higher
dimensions the problem becomes worse because numerous balls are needed, and the radii
constructed as described above tend to be much smaller than what is possible. The number
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(a) (b)

Figure 8.18: (a) A approximate cover for a 2D con�gur ation space. (b) Level sets of a navigation function.

of balls can be reduced by also allowing axis-aligned cylinders, but it still remains difficult
to construct a cover over a large fraction of Cfree in more than six dimensions.

Termination

The sampling-based planning algorithms in Chapter 5 were designed to terminate upon
finding a solution path. In the current setting, termination is complicated by the fact that
we are interested in solutions from all initial configurations. Since α is dense, the volume
of uncovered points in Cfree tends to zero. After some finite number of iterations, it would
be nice to measure the quality of the approximation and then terminate when the desired
quality is achieved. This was also possible with the visibility sampling-based roadmap in
Section 5.6.2. Using random samples, an estimate of the fraction of Cfree can be obtained
by recording the percentage of failures in obtaining a sample in Cfree that is outside of
the cover. For example, if a new neighborhood is created only once in 1000 iterations,
then it can be estimated that 99.9 percent of Cfree is covered. High-probability bounds can
also be determined. Termination conditions are given in [983] that ensure with probability
greater than Pc that at least a fraction α ∈ (0, 1) of Cfree has been covered. The constants
Pc and α are given as parameters to the algorithm, and it will terminate when the condition
has been satisfied using rigorous statistical tests. If deterministic sampling is used, then
termination can be made to occur based on the dispersion, which indicates the largest
ball in Cfree that does not contain the center of another neighborhood. One problem with
volume-based criteria, such as those suggested here, is that there is no way to ensure that
the cover preserves the connectivity of Cfree. If two portions of Cfree are connected by a
narrow passage, the cover may miss a neighborhood that has very small volume yet is
needed to connect the two portions.

Example 8.18 (2D Example of Computed Funnels) Figure 8.18 shows a 2D example
that was computed using random samples and the algorithm in Figure 8.17. Note that once
a cover is computed, it can be used to rapidly compute different navigation functions and
vector fields for various goals. This example is mainly for illustrative purposes. For the
case of a polygonal environment, constructing covers based on convex polygons would
be more efficient. �
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xk

Stage k + 1

Stage k

Possible next states

Figure 8.19: Even though xk is a sample point, the next state, xk+1, may land between sample points. For
each uk ∈ U(xk), interpolation may be needed for the resulting next state, xk+1 = f (xk, uk).

8.5.2 Dynamic programming with interpolation

This section concludes Part II by solving the motion planning problem with value itera-
tion, which was introduced in Section 2.3. It has already been applied to obtain discrete
feedback plans in Section 8.2. It will now be adapted to continuous spaces by allowing
interpolation first over a continuous state space and then by additionally allowing inter-
polation over a continuous action space. This yields a numerical approach to computing
optimal navigation functions and feedback plans for motion planning. The focus will re-
main on backward value iteration; however, the interpolation concepts may also be applied
in the forward direction. The approach here views optimal feedback motion planning as
a discrete-time optimal control problem [28, 86, 153, 586].

8.5.2.1 Using interpolation for continuous state spaces

Consider a problem formulation that is identical to Formulation 8.1 except that X is
allowed to be continuous. Assume that X is bounded, and assume for now that the action
space, U (x), it finite for all x ∈ X. Backward value iteration can be applied. The dynamic
programming arguments and derivation are identical to those in Section 2.3. The resulting
recurrence is identical to (2.11) and is repeated here for convenience:

G∗
k(xk) = min

uk∈U (xk )

{
l(xk, uk) +G∗

k+1(xk+1)
}
. (8.56)

The only difficulty is that G∗
k(xk) cannot be stored for every xk ∈ X because X is con-

tinuous. There are two general approaches. One is to approximate G∗
k using a parametric

family of surfaces, such as polynomials or nonlinear basis functions derived from neural
networks [99]. The other is to store G∗

k only over a finite set of sample points and use
interpolation to obtain its value at all other points [585, 586].

Suppose that a finite set S ⊂ X of samples is used to represent cost-to-go functions over
X. The evaluation of (8.56) using interpolation is depicted in Figure 8.19. In general, the
samples should be chosen to reduce the dispersion (defined in Section 5.2.3) as much as
possible. This prevents attempts to approximate the cost-to-go function on large areas that
contain no sample points. The rate of convergence ultimately depends on the dispersion
[94] (in combination with Lipschitz conditions on the state transition equation and the
cost functional). To simplify notation and some other issues, assume that S is a grid of
regularly spaced points in R

n.
First, consider the case in which X = [0, 1] ⊂ R. Let S = {s0, s1, . . . , sr}, in which

si = i/r . For example, if r = 3, then S = {0, 1/3, 2/3, 1}. Note that this always yields
points on the boundary of X, which ensures that for any point in (0, 1) there are samples
both above and below it. Let i be the largest integer such that si < x. This implies that
si+1 > x. The samples si and si+1 are called interpolation neighbors of x.
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The value of G∗
k+1 in (8.56) at any x ∈ [0, 1] can be obtained via linear interpolation

as

G∗
k+1(x) ≈ αG∗

k+1(si) + (1 − α)G∗
k+1(si+1), (8.57)

in which the coefficient α ∈ [0, 1] is computed as

α = 1 − x − si

r
. (8.58)

If x = si , then α = 1, and (8.57) reduces to G∗
k+1(si), as expected. If x = si+1, then α = 0,

and (8.57) reduces to G∗
k+1(si+1). At all points in between, (8.57) blends the cost-to-go

values at si and si+1 using α to provide the appropriate weights.
The interpolation idea can be naturally extended to multiple dimensions. Let X be

a bounded subset of R
n. Let S represent an n-dimensional grid of points in R

n. Each
sample in S is denoted by s(i1, i2, . . . , in). For some x ∈ X, there are 2n interpolation
neighbors that “surround” it. These are the corners of an n-dimensional cube that contains
x. Let x = (x1, . . . , xn). Let ij denote the largest integer for which the j th coordinate of
s(i1, i2, . . . , in) is less than xj . The 2n samples are all those for which either ij or ij + 1
appears in the expression s(·, ·, . . . , ·), for each j ∈ {1, . . . , n}. This requires that samples
exist in S for all of these cases. Note that X may be a complicated subset of R

n, provided
that for any x ∈ X, all of the required 2n interpolation neighbors are in S. Using the 2n

interpolation neighbors, the value of G∗
k+1 in (8.56) on any x ∈ X can be obtained via

multi-linear interpolation. In the case of n = 2, this is expressed as

G∗
k+1(x) ≈ α1α2 G∗

k+1(s(i1, i2))

+ α1(1 − α2) G∗
k+1(s(i1, i2 + 1))

+ (1 − α1)α2 G∗
k+1(s(i1 + 1, i2))

+ (1 − α1)(1 − α2) G∗
k+1(s(i1 + 1, i2 + 1)),

(8.59)

in which α1 and α2 are defined similarly to α in (8.58) but are based on distances along the
x1 and x2 directions, respectively. The expressions for multi-linear interpolation in higher
dimensions are similar but are more cumbersome to express. Higher order interpolation,
such a quadratic interpolation may alternatively be used [586].

Unfortunately, the number of interpolation neighbors grows exponentially with the
dimension, n. Instead of using all 2n interpolation neighbors, one improvement is to
decompose the cube defined by the 2n samples into simplexes. Each simplex has only n+ 1
samples as its vertices. Only the vertices of the simplex that contains x are declared to
be the interpolation neighbors of x; this reduces the cost of evaluating G∗

k+1(x) to O(n)
time. The problem, however, is that determining the simplex that contains x may be
a challenging point-location problem (a common problem in computational geometry
[266]). If barycentric subdivision is used to decompose the cube using the midpoints of
all faces, then the point-location problem can be solved in O(n lg n) time [265, 610, 724],
which is an improvement over the O(2n) scheme described above. Examples of this
decomposition are shown for two and three dimensions in Figure 8.20. This is sometimes
called the Coxeter-Freudenthal-Kuhn triangulation. Even though n is not too large due
to practical performance considerations (typically, n ≤ 6), substantial savings occur in
implementations, even for n = 3.

It will be convenient to refer directly to the set of all points in X for which all
required interpolation neighbors exist. For any finite set S ⊆ X of sample points, let the
interpolation region R(S) be the set of all x ∈ X \ S for which G∗(x) can be computed by
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n = 2 n = 3

Figure 8.20: Barycentric subdivision can be used to partition each cube into simplexes, which allows
interpolation to be performed in O(n lg n) time, instead of O(2n).

Cobs
∂Cfree

xg

(a) (b) (c)

Figure 8.21: (a) An interpolation region, R(S), is shown for a set of sample points, S. (b) The interpolation
region that arises due to obstacles. (c) The interpolation region for goal points must not be empty.

interpolation. This means that x ∈ R(S) if and only if all interpolation neighbors of x lie in
S. Figure 8.21a shows an example. Note that some sample points may not contribute any
points to R. If a grid of samples is used to approximate G∗, then the volume of X \ R(S)
approaches zero as the sampling resolution increases.

Continuous action spaces

Now suppose that U (x) is continuous, in addition to X. Assume that U (x) is both a closed
and bounded subset of R

n. Once again, the dynamic programming recurrence, (8.56),
remains the same. The trouble now is that the min represents an optimization problem
over an uncountably infinite number of choices. One possibility is to employ nonlinear
optimization techniques to select the optimal u ∈ U (x). The effectiveness of this depends
heavily on U (x), X, and the cost functional.

Another approach is to evaluate (8.56) over a finite set of samples drawn from U (x).
Again, it is best to choose samples that reduce the dispersion as much as possible. In some
contexts, it may be possible to eliminate some actions from consideration by carefully
utilizing the properties of the cost-to-go function and its representation via interpolation.

8.5.2.2 The connection to feedback motion planning

The tools have now been provided to solve motion planning problems using value iteration.
The configuration space is a continuous state space; let X = Cfree. The action space is also
continuous, U (x) = Tx(X). For motion planning problems, 0 ∈ Tx(X) is only obtained
only when uT is applied. Therefore, it does not need to be represented separately. To
compute optimal cost-to-go functions for motion planning, the main concerns are as
follows:

1. The action space must be bounded.
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2. A discrete-time approximation must be made to derive a state transition equation that
works over stages.

3. The cost functional must be discretized.

4. The obstacle region, Cobs, must be taken into account.

5. At least some interpolation region must yield G∗(x) = 0, which represents the goal region.

We now discuss each of these.

Bounding the action space

Recall that using normalized vector fields does not alter the existence of solutions. This
is convenient because U (x) needs to be bounded to approximate it with a finite set of
samples. It is useful to restrict the action set to obtain

U (x) = {u ∈ R
n | ‖u‖ ≤ 1}. (8.60)

To improve performance, it is sometimes possible to use only those u for which ‖u‖ = 1
or u = 0; however, numerical instability problems may arise. A finite sample set for U (x)
should have low dispersion and always include u = 0.

Obtaining a state transition equation

Value iterations occur over discrete stages; however, the integral curves of feedback plans
occur over continuous time. Therefore, the time interval T needs to be sampled. Let �t

denote a small positive constant that represents a fixed interval of time. Let the stage
index k refer to time (k − 1)�t . Now consider representing a velocity field ẋ over R

n. By
definition,

dx

dt
= lim

�t→0

x(t +�t) − x(t)

�t
. (8.61)

In Section 8.3.1, a velocity field was defined by assigning some u ∈ U (x) to each x ∈ X.
If the velocity vector u is integrated from x(t) over a small �t , then a new state, x(t +�t),
results. If u remains constant, then

x(t +�t) = x(t) +�t u, (8.62)

which is called an Euler approximation. If a feedback plan is executed, then u is determined
from x via u = π(x(t)). In general, this means that u could vary as the state is integrated
forward. In this case, (8.62) is only approximate,

x(t +�t) ≈ x(t) +�t π (x(t)). (8.63)

The expression in (8.62) can be considered as a state transition equation that works over
stages. Let xk+1 = x(t +�t) and xk = x(t). The transitions can now be expressed as

xk+1 = f (xk, u) = xk +�t u. (8.64)

The quality of the approximation improves as �t decreases. Better approximations can
be made by using more sample points along time. The most widely known approximations
are the Runge-Kutta family. For optimal motion planning, it turns out that the direction
vector almost always remains constant along the integral curve. For example, in Fi-
gure 8.12, observe that piecewise-linear paths are obtained by performing gradient de-
scent of the optimal navigation function. The direction vector is constant over most
of the resulting integral curve (it changes only as obstacles are contacted). Therefore,
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approximation problems tend not to arise in motion planning problems. When approxi-
mating dynamical systems, such as those presented in Chapter 13, then better approxima-
tions are needed; see Section 14.3.2. One important concern is that �t is chosen in a way
that is compatible with the grid resolution. If �t is so small that the actions to not change
the state enough to yield new interpolation neighbors, then the interpolated cost-to-go
values will remain constant. This implies that �t must be chosen to ensure that x(t +�t)
has a different set of interpolation neighbors than x(t).

An interesting connection can be made to the approximate motion planning problem
that was developed in Section 7.7. Formulation 7.4 corresponds precisely to the approx-
imation defined here, except that ε was used instead of �t because velocities were not
yet considered (also, the initial condition was specified because there was no feedback).
Recall the different possible action spaces shown in Figure 7.41. As stated in Section 7.7,
if the Manhattan or independent-joint models are used, then the configurations remain
on a grid of points. This enables discrete value iterations to be performed. A discrete
feedback plan and navigation function, as considered in Section 8.2.3, can even be com-
puted. If the Euclidean motion model is used, which is more natural, then the transitions
allow a continuum of possible configurations. This case can finally be handled by using
interpolation over the configuration space, as described in this section.

Approximating the cost functional

A discrete cost functional must be derived from the continuous cost functional, (8.39).
The final term is just assigned as lF (xF ) = lF (x(tf )). The cost at each stage is

ld (xk, uk) =
∫ �t

0
l(x(t), u(t))dt, (8.65)

and ld (xk, uk) is used in the place of l(xk, uk) in (8.56). For many problems, the integral
does not need to be computed repeatedly. To obtain Euclidean shortest paths, ld (xk, uk) =
‖uk‖ can be safely assigned for all xk ∈ X and uk ∈ U (xk). A reasonable approximation
to (8.65) if �t is small is l(x(t), u(t))�t .

Handling obstacles

A simple way to handle obstacles is to determine for each x ∈ S whether x ∈ Cobs. This
can be computed and stored in an array before the value iterations are performed. For
rigid robots, this can be efficiently computed using fast Fourier transforms [516]. For
each x ∈ Cobs, G∗(x) = ∞. No value iterations are performed on these states; their values
must remain at infinity. During the evaluation of (8.59) (or a higher dimensional version),
different actions are attempted. For each action, it is required that all of the interpolation
neighbors of xk+1 lie in Cfree. If one of them lies in Cobs, then that action produces infinite
cost. This has the effect of automatically reducing the interpolation region, R(S), to all
cubes who vertices all lie in Cfree, as shown in Figure 8.21b. All samples in Cobs are assumed
to be deleted from S in the remainder of this section; however, the full grid is still used
for interpolation so that infinite values represent the obstacle region.

Note that as expressed so far, it is possible that points in Cobs may lie in R(S) because
collision detection is performed only on the samples. In practice, either the grid resolution
must be made fine enough to minimize the chance of this error occurring or distance
information from a collision detection algorithm must be used to infer that a sufficiently
large ball around each sample is collision free. If an interpolation region cannot be assured
to lie in Cfree, then the resolution may have to be increased, at least locally.
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Handling the goal region

Recall that backward value iterations start with the final cost-to-go function and iterate
backward. Initially, the final cost-to-go is assigned as infinity at all states except those in
the goal. To properly initialize the final cost-to-go function, there must exist some subset
of X over which the zero value can be obtained by interpolation. Let G = S ∩XG. The
requirement is that the interpolation region R(G) must be nonempty. If this is not satisfied,
then the grid resolution needs to be increased or the goal set needs to be enlarged. If Xg is a
single point, then it needs to be enlarged, regardless of the resolution (unless an alternative
way to interpolate near a goal point is developed). In the interpolation region shown in
Figure 8.21c, all states in the vicinity of xG yield an interpolated cost-to-go value of zero.
If such a region did not exist, then all costs would remain at infinity during the evaluation
of (8.59) from any state. Note that �t must be chosen large enough to ensure that new
samples can reach G.

Using G∗ as a navigation function

After the cost-to-go values stabilize, the resulting cost-to-go function, G∗ can be used
as a navigation function. Even though G∗ is defined only over S ⊂ X, the value of
the navigation function can be obtained using interpolation over any point in R(S). The
optimal action is selected as the one that satisfies the min in (8.6). This means that the state
trajectory does not have to visit the grid points as in the Manhattan model. A trajectory
can visit any point in R(S), which enables trajectories to converge to the true optimal
solution as �t and the grid spacing tend to zero.

Topological considerations

So far there has been no explicit consideration of the topology of C. Assuming that C is a
manifold, the concepts discussed so far can be applied to any open set on which coordinates
are defined. In practice, it is often convenient to use the manifold representations of Section
4.1.2. The manifold can be expressed as a cube, [0, 1]n, with some faces identified to obtain
[0, 1]n/ ∼. Over the interior of the cube, all of the concepts explained in this section work
without modification. At the boundary, the samples used for interpolation must take the
identification into account. Furthermore, actions, uk , and next states, xk+1, must function
correctly on the boundary. One must be careful, however, in declaring that some solution
is optimal, because Euclidean shortest paths depend on the manifold parameterization.
This ambiguity is usually resolved by formulating the cost in terms of some physical
quantity, such as time or energy. This often requires modeling dynamics, which will be
covered in Part IV.

Value iteration with interpolation is extremely general. It is a generic algorithm for
approximating the solution to optimal control problems. It can be applied to solve many
of the problems in Part IV by restricting U (x) to take into account complicated differential
constraints. The method can also be extended to problems that involve explicit uncertainty
in predictability. This version of value iteration is covered in Section 10.6.

8.5.2.3 Obtaining Dijkstra-like algorithms

For motion planning problems, it is expected that x(t +�t), as computed from (8.62),
is always close to x(t) relative to the size of X. This suggests the use of a Dijkstra-
like algorithm to compute optimal feedback plans more efficiently. As discussed for the
finite case in Section 2.3.3, many values remain unchanged during the value iterations, as
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indicated in Example 2.5. Dijkstra’s algorithm maintains a data structure that focuses the
computation on the part of the state space where values are changing. The same can be
done for the continuous case by carefully considering the sample points [610].

During the value iterations, there are three kinds of sample points, just as in the discrete
case (recall from Section 2.3.3):

1. Dead: The cost-to-go has stabilized to its optimal value.

2. Alive: The current cost-to-go is finite, but it is not yet known whether the value is optimal.

3. Unvisited: The cost-to-go value remains at infinity because the sample has not been
reached.

The sets are somewhat harder to maintain for the case of continuous state spaces because
of the interaction between the sample set S and the interpolated region R(S).

Imagine the first value iteration. Initially, all points in G are set to zero values. Among
the collection of samples S, how many can reach R(G) in a single stage? We expect that
samples very far from G will not be able to reach R(G); this keeps their values are infinity.
The samples that are close to G should reach it. It would be convenient to prune away from
consideration all samples that are too far from G to lower their value. In every iteration,
we eliminate iterating over samples that are too far away from those already reached. It is
also unnecessary to iterate over the dead samples because their values no longer change.

To keep track of reachable samples, it will be convenient to introduce the notion of a
backprojection, which will be studied further in Section 10.1. For a single state, x ∈ X,
its backprojection is defined as

B(x) = {x ′ ∈ X | ∃u′ ∈ U (x ′) such that x = f (x ′, u′)}. (8.66)

The backprojection of a set, X′ ⊆ X, of points is just the union of backprojections for
each point:

B(X′) =
⋃

x∈X′
B(x). (8.67)

Now consider a version of value iteration that uses backprojections to eliminate some
states from consideration because it is known that their values cannot change. Let i refer to
the number of stages considered by the current value iteration. During the first iteration,
i = 1, which means that all one-stage trajectories are considered. Let S be the set of
samples (assuming already that none lie in Cobs). Let Di and Ai refer to the dead and alive
samples, respectively. Initially, D1 = G, the set of samples in the goal set. The first set,
A1, of alive samples is assigned by using the concept of a frontier. The frontier of a set
S ′ ⊆ S of sample points is

Front(S ′) = (B(R(S ′)) \ S ′) ∩ S. (8.68)

This is the set of sample points that can reach R(S ′) in one stage, excluding those already
in S ′. Figure 8.22 illustrates the frontier. Using (8.68), A1 is defined as A1 = Front(D1).

Now the approach is described for iteration i. The cost-to-go update (8.56) is computed
at all points in Ai . If G∗

k+1(s) = G∗
k(s) for some s ∈ Ai , then s is declared dead and moved

to Di+1. Samples are never removed from the dead set; therefore, all points in Di are
also added to Di+1. The next active set, Ai+1, includes all samples in Ai , excluding those
that were moved to the dead set. Furthermore, all samples in Front(Ai) are added to Ai+1

because these will produce a finite cost-to-go value in the next iteration. The iterations
continue as usual until some stage, m, is reached for which Am is empty, and Dm includes
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s

(a) (b)

Figure 8.22: An illustration of the frontier concept: (a) the shaded disc indicates the set of all reachable
points in one stage, from the sample on the left. The sample cannot reach in one stage the shaded region
on the right, which represents R(S ′). (b) The frontier is the set of samples that can reach R(S ′). The
inclusion of the frontier increases the interpolation region beyond R(S ′).

all samples from which the goal can be reached (under the approximation assumptions
made in this section).

For efficiency purposes, an approximation to Front may be used, provided that the true
frontier is a proper subset of the approximate frontier. For example, the frontier might
add all new samples within a specified radius of points in S ′. In this case, the updated
cost-to-go value for some s ∈ Ai may remain infinite. If this occurs, it is of course not
added to Di+1. Furthermore, it is deleted from Ai in the computation of the next frontier
(the frontier should only be computed for samples that have finite cost-to-go values).

The approach considered so far can be expected to reduce the amount of computations
in each value iteration by eliminating the evaluation of (8.56) on unnecessary samples.
The same cost-to-go values are obtained in each iteration because only samples for which
the value cannot change are eliminated in each iteration. The resulting algorithm still does
not, however, resemble Dijkstra’s algorithm because value iterations are performed over
all of Ai in each stage.

To make a version that behaves like Dijkstra’s algorithm, a queue Q will be introduced.
The algorithm removes the smallest element of Q in each iteration. The interpolation
version first assigns G∗(s) = 0 for each s ∈ G. It also maintains a set D of dead samples,
which is initialized to D = G. For each s ∈ Front(G), the cost-to-go update (8.56) is
computed. The priority Q is initialized to Front(G), and elements are sorted by their
current cost-to-go values (which may not be optimal). The algorithm iteratively removes
the smallest element from Q (because its optimal cost-to-go is known to be the current
value) and terminates when Q is empty. Each time the smallest element, ss ∈ Q, is
removed, it is inserted into D. Two procedures are then performed: 1) Some elements in
the queue need to have their cost-to-go values recomputed using (8.56) because the value
G∗(ss) is known to be optimal, and their values may depend on it. These are the samples
in Q that lie in Front(D) (in which D just got extended to include ss). 2) Any samples in
B(R(D)) that are not in Q are inserted into Q after computing their cost-to-go values
using (8.56). This enables the active set of samples to grow as the set of dead samples
grows. Dijkstra’s algorithm with interpolation does not compute values that are identical
to those produced by value iterations because G∗

k+1 is not explicitly stored when G∗
k

is computed. Each computed value is some cost-to-go, but it is only known to be the
optimal when the sample is placed into D. It can be shown, however, that the method
converges because computed values are no higher than what would have been computed
in a value iteration. This is also the basis of dynamic programming using Gauss-Seidel
iterations [98].
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A specialized, wavefront-propagation version of the algorithm can be made for the
special case of finding solutions that reach the goal in the smallest number of stages.
The algorithm is similar to the one shown in Figure 8.4. It starts with an initial wavefront
W0 = G in which G∗(s) = 0 for each s ∈ G. In each iteration, the optimal cost-to-go value
i is increased by one, and the wavefront, Wi+1, is computed from Wi as Wi+1 = Front(Wi).
The algorithm terminates at the first iteration in which the wavefront is empty.

Further reading

There is much less related literature for this chapter in comparison to previous chapters. As explained
in Section 8.1, there are historical reasons why feedback is usually separated from motion planning.
Navigation functions [544, 832] were one of the most influential ideas in bringing feedback into motion
planning; therefore, navigation functions were a common theme throughout the chapter. For other works
that use or develop navigation functions, see [208, 276, 753]. The ideas of progress measures [319],
Lyapunov functions (covered in Section 15.1.1), and cost-to-go functions are all closely related. For
Lyapunov-based design of feedback control laws, see [280]. In the context of motion planning, the Error
Detection and Recovery (EDR) framework also contains feedback ideas [286].

In [327], the topological complexity of C-spaces is studied by characterizing the minimum number
of regions needed to cover C × C by defining a continuous path function over each region. This indicates
limits on navigation functions that can be constructed, assuming that both qI and qG are variables
(throughout this chapter, qG was instead fixed). Further work in this direction includes [328, 329].

To gain better intuitions about properties of vector fields, [44] is a helpful reference, filled with
numerous insightful illustrations. A good introduction to smooth manifolds that is particularly suited for
control-theory concepts is [135]. Basic intuitions for 2D and 3D curves and surfaces can be obtained
from [756]. Other sources for smooth manifolds and differential geometry include [4, 109, 236, 281,
874, 907, 960]. For discussions of piecewise-smooth vector fields, see [27, 637, 848, 998].

Sections 8.4.2 and 8.4.3 were inspired by [237, 646] and [711], respectively. Many difficulties were
avoided because discontinuous vector fields were allowed in these approaches. By requiring continuity
or smoothness, the subject of Section 8.4.4 was obtained. The material is based mainly on [832, 833].
Other work on navigation functions includes [251, 654, 655].

Section 8.5.1 was inspired mainly by [164, 682], and the approach based on neighborhood graphs is
drawn from [983].

Value iteration with interpolation, the subject of Section 8.5.2, is sometimes forgotten in motion
planning because computers were not powerful enough at the time it was developed [86, 87, 585, 586].
Presently, however, solutions can be computed for challenging problems with several dimensions (e.g.,
3 or 4). Convergence of discretized value iteration to solving the optimal continuous problem was first
established in [94], based on Lipschitz conditions on the state transition equation and cost functional.
Analyses that take interpolation into account, and general discretization issues, appear in [170, 294,
402, 568, 570]. A multi-resolution variant of value iteration was proposed in [725]. The discussion of
Dijkstra-like versions of value iteration was based on [610, 946]. The level-set method is also closely
related [535, 537, 536, 864].

Exercises

1. Suppose that a very fast path planning algorithm runs on board of a mobile robot (for
example, it may � nd an answer in a few milliseconds, which is reasonable using trapezoidal
decomposition in R

2). Explain how this method can be used to simulate having a feedback
plan on the robot. Explain the issues and trade-offs between having a fast on-line algorithm
that computes open-loop plans vs. a better off-line algorithm that computes a feedback
plan.

2. Use Dijkstra’s algorithm to construct navigation functions on a 2D grid with obstacles.
Experiment with adding a penalty to the cost functional for getting too close to obstacles.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

FEEDBACK MOTION PLANNING 355

XG

Figure 8.23: Consider designing a continuous vector �eld that �o ws into XG.

3. If there are alternative routes, the NF2 algorithm does not necessarily send the state
along the route that has the largest minimum clearance. Fix the NF2 algorithm so that it
addresses this problem.

4. Tangent space problems:

(a) For the manifold of unit quaternions, � nd basis vectors for the tangent space in R
4 at any

point.

(b) Find basis vectors for the tangent space in R
9, assuming that matrices in SO(3) are param-

eterized with quaternions, as shown in (4.20).

5. Extend the algorithm described in Section 8.4.3 to make it work for polygons that have
holes. See Example 8.16 for a similar problem.

6. Give a complete algorithm that uses the vertical cell decomposition for a polygonal obstacle
region in R

2 to construct a vector � eld that serves as a feedback plan. The vector � eld may
be discontinuous.

7. Figure 8.23 depicts a 2D example for which Xfree is an open annulus. Consider designing
a vector � eld for which all integral curves �o w into XG and the vector � eld is continu-
ous outside of XG. Either give a vector � eld that achieves this or explain why it is not
possible.

8. Use the maximum-clearance roadmap idea from Section 6.2.3 to de�ne a cell decompo-
sition and feedback motion plan (vector �eld) that maximizes clearance. The vector � eld
may be discontinuous.

9. Develop an algorithm that computes an exact cover for a polygonal con�gur ation space
and ensures that if two neighborhoods intersect, then their intersection always contains
an open set (i.e., the overlap region is two-dimensional). The neighborhoods in the cover
should be polygonal.

10. Using a distance measurement and Euler angles, determine the expression for a collision-
free ball that can be inferred (make the ball as large as possible). This should generalize
(8.54).

11. Using a distance measurement and quaternions, determine the expression for a collision-
free ball (once again, make it as large as possible).

12. Generalize the multi-linear interpolation scheme in (8.59) from 2 to n dimensions.

13. Explain the convergence problems for value iteration that can result if ‖u‖ = 1 is used to
constraint the set of allowable actions, instead of ‖u‖ ≤ 1.

Implementations

14. Experiment with numerical methods for solving the function (8.49) in two dimensions under
various boundary conditions. Report on the ef�ciency and accuracy of the methods. How
well can they be applied in higher dimensions?



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

356 MOTION PLANNING

15. Implement value iteration with interpolation (it is not necessary to use the method in
Figure 8.20) for a polygonal robot that translates and rotates among polygonal obstacles
in W = R

2. De�ne the cost functional so that the distance traveled is obtained with respect
to a weighted Euclidean metric (the weights that compare rotation to translation can be set
arbitrarily).

16. Evaluate the ef�ciency of the interpolation method shown in Figure 8.20 applied to multi-
linear interpolation given by generalizing (8.59) as in Exercise 12. You do not need to
implement the full value iteration approach (alternatively, this could be done, which provides
a better comparison of the overall performance).

17. Implement the method of Section 8.4.2 of computing vector � elds on a triangulation. For
given input polygons, have your program draw a needle diagram of the computed vector
�eld. Determine how fast the vector �eld can be recomputed as the goal changes.

18. Optimal navigation function problems:

(a) Implement the algorithm illustrated in Figure 8.13. Show the level sets of the optimal cost-
to-go function.

(b) Extend the algorithm and implementation to the case in which there are polygonal holes in
Xfree.

19. Adapt value iteration with interpolation so that a point robot moving in the plane can keep
track of a predictable moving point called a target. The cost functional should cause a
small penalty to be added if the target is not visible. Optimizing this should minimize the
amount of time that the target is not visible. Assume that the initial con�gur ation of the
robot is given. Compute optimal feedback plans for the robot.

20. Try to experimentally construct navigation functions by adding potential functions that
repel the state away from obstacles and attract the state toward xG. For simplicity, you
may assume that X = R

2 and the obstacles are discs. Start with a single disc and then
gradually construct more complicated obstacle regions. How dif�cult is it to ensure that the
resulting potential function has no local minima outside of xG?
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Overview of Part III: Decision-Theoretic Planning

Planning Under Uncertainty

As in Part II, it also seems appropriate to give two names to Part III. It is officially called
decision-theoretic planning, but it can also be considered as planning under uncertainty.
All of the concepts in Parts I and II avoided models of uncertainties. Chapter 8 consid-
ered plans that can overcome some uncertainties, but there was no explicit modeling of
uncertainty.

In this part, uncertainties generally interfere with two aspects of planning:

1. Predictability: Due to uncertainties, it is not known what will happen in the future when
certain actions are applied. This means that future states are not necessarily predictable.

2. Sensing: Due to uncertainties, the current state is not necessarily known. Information re-
garding the state is obtained from initial conditions, sensors, and the memory of previously
applied actions.

These two kinds of uncertainty are independent in many ways. Each has a different effect
on the planning problem.

Making a single decision

Chapter 9 provides an introduction to Part III by presenting ways to represent uncertainty
in the process of making a single decision. The view taken in this chapter is that uncertainty
can be modeled as interference from another decision maker. A special decision maker
called nature will be introduced. The task is to make good decisions, in spite of actions
applied by nature. Either worst-case or probabilistic models can be used to characterize
nature’s decision-making process. Some planning problems might involve multiple ratio-
nal decision makers. This leads to game theory, which arises from the uncertainty about
how other players will behave when they have conflicting goals. All of the concepts in
Chapter 9 involve making a single decision; therefore, a state space is generally not nec-
essary because there would only be one application of the state transition equation. One
purpose of the chapter is to introduce and carefully evaluate the assumptions that are typi-
cally made in different forms of decision theory. This forms the basis of more complicated
problems that follow, especially sequential decision making and control theory.

Uncertainty in predictability

Chapter 10 takes the concepts from Chapter 9 and iterates them over multiple stages. This
brings in the notions of states and state transitions, and can be considered as a blending
of discrete planning concepts from Chapter 2 with the uncertainty concepts of Chapter
9. Some coverage of continuous state spaces and continuous time is also given, which

358
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extends ideas from Part II. The state transition equation is generally extended to allow
future states to depend on unknown actions taken by nature. In a game-theoretic setting,
the state transitions may even depend on the actions of more than two decision makers.

For all of the models in Chapter 10, only uncertainty in predictability exists; the current
state is always known. A plan is defined as a function that indicates the appropriate action
to take from any current state. Plans are not formulated as a sequence of actions because
future states are unpredictable, and responses to the future states may be required at the
time they are achieved. Thus, for a fixed plan, the execution may be different each time:
Different actions are applied and different states are reached. Plans are generally evaluated
using worst-case, expected-case, or game-equilibrium analysis.

Uncertainty in sensing: The information space

Chapter 11 introduces perhaps the most important concept of this book: the information
space. If there is uncertainty in sensing the current state, then the planning problem
naturally lives in an information space. An analogy can be made to the configuration
space and motion planning. Before efforts to unify motion planning by using configuration
space concepts [591, 660, 854], most algorithms were developed on a case-by-case basis.
For example, robot manipulators and mobile robots have very different characteristics
when defined in the world. However, once viewed in the configuration space, it is easier
to consider general algorithms, such as those from Chapters 5 and 6.

A similar kind of unification should be possible for planning problems that involve
sensing uncertainties (i.e., are unable to determine the current state). Presently, the methods
in the literature are developed mainly around individual models and problems, as basic
motion planning once was. Therefore, it is difficult to provide a perspective as unified as
the techniques in Part II. Nevertheless, the concepts from Chapter 11 are used to provide
a unified introduction to many planning problems that involve sensing uncertainties in
Chapter 12. As in the case of the configuration space, some effort is required to learn
the information space concepts; however, it will pay great dividends if the investment is
made.

Chapter 12 presents several different problems and solutions for planning under sensing
uncertainty. The problems include exploring new environments with robots, playing a
pursuit-evasion game with cameras, and manipulating objects with little or no sensing.
The chapter provides many interesting applications of information space concepts, but it
should also leave you with the feeling that much more remains to be done. Planning in
information spaces remains a challenging research problem throughout much of robotics,
control theory, and artificial intelligence.
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Basic Decision Theory

This chapter serves as a building block for modeling and solving planning problems that
involve more than one decision maker. The focus is on making a single decision in the
presence of other decision makers that may interfere with the outcome. The planning
problems in Chapters 10 to 12 will be viewed as a sequence of decision-making problems.
The ideas presented in this chapter can be viewed as making a one-stage plan. With
respect to Chapter 2, the present chapter reduces the number of stages down to one
and then introduces more sophisticated ways to model a single stage. Upon returning to
multiple stages in Chapter 10, it will quickly be seen that many algorithms from Chapter 2
extend nicely to incorporate the decision-theoretic concepts of this chapter.

Since there is no information to carry across stages, there will be no need for a
state space. Instead of designing a plan for a robot, in this chapter we will refer to
designing a strategy for a decision maker (DM). The planning problem reduces down to
a decision-making problem. In later chapters, which describe sequential decision making,
planning terminology will once again be used. It does not seem appropriate yet in this
chapter because making a single decision appears too degenerate to be referred to as
planning.

A consistent theme throughout Part III will be the interaction of multiple DMs. In
addition to the primary DM, which has been referred to as the robot, there will be one
or more other DMs that cannot be predicted or controlled by the robot. A special DM
called nature will be used as a universal way to model uncertainties. Nature will usually
be fictitious in the sense that it is not a true entity that makes intelligent, rational decisions
for its own benefit. The introduction of nature merely serves as a convenient modeling
tool to express many different forms of uncertainty. In some settings, however, the DMs
may actually be intelligent opponents who make decisions out of their own self-interest.
This leads to game theory, in which all decision makers (including the robot) can be called
players.

Section 9.1 provides some basic review and perspective that will help in understanding
and relating later concepts in the chapter. Section 9.2 covers making a single decision
under uncertainty, which is typically referred to as decision theory. Sections 9.3 and 9.4
address game theory, in which two or more DMs make their decisions simultaneously and
have conflicting interests. In zero-sum game theory, which is covered in Section 9.3, there
are two DMs that have diametrically opposed interests. In nonzero-sum game theory,
covered in Section 9.4, any number of DMs come together to form a noncooperative
game, in which any degree of conflict or competition is allowable among them. Section
9.5 concludes the chapter by covering justifications and criticisms of the general models
formulated in this chapter. It useful when trying to apply decision-theoretic models to
planning problems in general.

This chapter was written without any strong dependencies on Part II. In fact, even
the concepts from Chapter 2 are not needed because there are no stages or state spaces.

360
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Occasional references to Part II will be given, but these are not vital to the understanding.
Most of the focus in this chapter is on discrete spaces.

9.1 Preliminary concepts

9.1.1 Optimization
9.1.1.1 Optimizing a single objective

Before progressing to complicated decision-making models, first consider the simple case
of a single decision maker that must make the best decision. This leads to a familiar
optimization problem, which is formulated as follows.

Formulation 9.1 (Optimization)

1. A nonempty set U called the action space. Each u ∈ U is referred to as an action.

2. A function L : U → R ∪ {∞} called the cost function.

Compare Formulation 9.1 to Formulation 2.2. State space, X, and state transition concepts
are no longer needed because there is only one decision. Since there is no state space,
there is also no notion of initial and goal states. A strategy simply consists of selecting
the best action.

What does it mean to be the “best” action? If U is finite, then the best action, u∗ ∈ U is

u∗ = argmin
u∈U

{
L(u)

}
. (9.1)

If U is infinite, then there are different cases. Suppose that U = (−1, 1) and L(u) = u.
Which action produces the lowest cost? We would like to declare that −1 is the lowest
cost, but−1 	∈ U . If we had instead defined U = [−1, 1], then this would work. However,
if U = (−1, 1) and L(u) = u, then there is no action that produces minimum cost. For
any action u ∈ U , a second one, u′ ∈ U , can always be chosen for which L(u′) < L(u).
However, if U = (−1, 1) and L(u) = |u|, then (9.1) correctly reports that u = 0 is the
best action. There is no problem in this case because the minimum occurs in the interior,
as opposed to on the boundary of U . In general it is important to be aware that an optimal
value may not exist.

There are two ways to fix this frustrating behavior. One is to require that U is a closed
set and is bounded (both were defined in Section 4.1). Since closed sets include their
boundary, this problem will be avoided. The bounded condition prevents a problem such
as optimizing U = R, and L(u) = u. What is the best u ∈ U? Smaller and smaller values
can be chosen for u to produce a lower cost, even though R is a closed set.

The alternative way to fix this problem is to define and use the notion of an infimum,
denoted by inf. This is defined as the largest lower bound that can be placed on the cost.
In the case of U = (−1, 1) and L(u) = u, this is

inf
u∈(0,1)

{
L(u)

}
= −1. (9.2)

The only difficulty is that there is no action u ∈ U that produces this cost. The infimum
essentially uses the closure of U to evaluate (9.2). If U happened to be closed already,
then u would be included in U . Unbounded problems can also be handled. The infimum
for the case of U = R and L(u) = u is −∞.
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As a general rule, if you are not sure which to use, it is safer to write inf in the place were
you would use min. The infimum happens to yield the minimum whenever a minimum
exists. In addition, it gives a reasonable answer when no minimum exists. It may look
embarrassing, however, to use inf in cases where it is obviously not needed (i.e., in the
case of a finite U ).

It is always possible to make an “upside-down” version of an optimization problem
by multiplying L by −1. There is no fundamental change in the result, but sometimes it
is more natural to formulate a problem as one of maximization instead of minimization.
This will be done, for example, in the discussion of utility theory in Section 9.5.1. In such
cases, a reward function, R, is defined instead of a cost function. The task is to select
an action u ∈ U that maximizes the reward. It will be understood that a maximization
problem can easily be converted into a minimization problem by setting L(u) = −R(u)
for all u ∈ U . For maximization problems, the infimum can be replaced by the supremum,
sup, which is the least upper bound on R(u) over all u ∈ U .

For most problems in this book, the selection of an optimal u ∈ U in a single decision
stage is straightforward; planning problems are instead complicated by many other aspects.
It is important to realize, however, that optimization itself is an extremely challenging
if U and L are complicated. For example, U may be finite but extremely large, or U

may be a high-dimensional (e.g., 1000) subset of R
n. Also, the cost function may be

extremely difficult or even impossible to express in a simple closed form. If the function
is simple enough, then standard calculus tools based on first and second derivatives may
apply. It most real-world applications, however, more sophisticated techniques are needed.
Many involve a form of gradient descent and therefore only ensure that a local minimum is
found. In many cases, sampling-based techniques are needed. In fact, many of the sampling
ideas of Section 5.2, such as dispersion, were developed in the context of optimization.
For some classes of problems, combinatorial solutions may exist. For example, linear
programming involves finding the min or max of a collection of linear functions, and
many combinatorial approaches exist [261, 266, 667, 734]. This optimization problem
will appear in Section 9.4.

Given the importance of sampling-based and combinatorial methods in optimization,
there are interesting parallels to motion planning. Chapters 5 and 6 each followed these
two philosophies, respectively. Optimal motion planning actually corresponds to an op-
timization problem on the space of paths, which is extremely difficult to characterize.
In some special cases, as in Section 6.2.4, it is possible to find optimal solutions, but
in general, such problems are extremely challenging. Calculus of variations is a general
approach for addressing optimization problems over a space of paths that must satisfy
differential constraints [844]; this will be covered in Section 13.4.1.

9.1.1.2 Multiobjective optimization

Suppose that there is a collection of cost functions, each of which evaluates an action.
This leads to a generalization of Formulation 9.1 to multiobjective optimization.

Formulation 9.2 (Multiobjective Optimization)

1. A nonempty set U called the action space. Each u ∈ U is referred to as an action.

2. A vector-valued cost function of the form L : U → R
d for some integer d. If desired, ∞

may also be allowed for any of the cost components.
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A version of this problem was considered in Section 7.7.2, which involved the optimal
coordination of multiple robots. Two actions, u and u′, are called equivalent if L(u) =
L(u′). An action u is said to dominate an action u′ if they are not equivalent and Li(u) ≤
Li(u′) for all i such that 1 ≤ i ≤ d. This defines a partial ordering,≤, on the set of actions.
Note that many actions may be incomparable. An action is called Pareto optimal if it is not
dominated by any others. This means that it is minimal with respect to the partial ordering.

Example 9.1 (Simple Example of Pareto Optimality) Suppose that U = {1, 2, 3, 4, 5}
and d = 2. The costs are assigned as L(1) = (4, 0), L(2) = (3, 3), L(3) = (2, 2), L(4) =
(5, 7), and L(5) = (9, 0). The actions 2, 4, and 5 can be eliminated because they are
dominated by other actions. For example, (3, 3) is dominated by (2, 2); hence, action
u = 3 is preferable to u = 2. The remaining two actions, u = 1 and u = 3, are Pareto
optimal. �

Based on this simple example, the notion of Pareto optimality seems mostly aimed at
discarding dominated actions. Although there may be multiple Pareto-optimal solutions,
it at least narrows down U to a collection of the best alternatives.

Example 9.2 (Pennsylvania Turnpike) Imagine driving across the state of Pennsylvania
and being confronted with the Pennsylvania Turnpike, which is a toll highway that once
posted threatening signs about speed limits and the according fines for speeding. Let
U = {50, 51, . . . , 100} represent possible integer speeds, expressed in miles per hour
(mph). A posted sign indicates that the speeding fines are 1) $50 for being caught driving
between 56 and 65 mph, 2) $100 for being caught between 66 and 75, 3) $200 between 76
and 85, and 4) $500 between 86 and 100. Beyond 100 mph, it is assumed that the penalty
includes jail time, which is so severe that it will not be considered.

The two criteria for a driver are 1) the time to cross the state, and 2) the amount of
money spent on tickets. It is assumed that you will be caught violating the speed limit. The
goal is to minimize both. What are the resulting Pareto-optimal driving speeds? Compare
driving 56 mph to driving 57 mph. Both cost the same amount of money, but driving 57
mph takes less time. Therefore, 57 mph dominates 56 mph. In fact, 65 mph dominates all
speeds down to 56 mph because the cost is the same, and it reduces the time the most.
Based on this argument, the Pareto-optimal driving speeds are 55, 65, 75, 85, and 100. It
is up to the individual drivers to decide on the particular best action for them; however, it
is clear that no speeds outside of the Pareto-optimal set are sensible. �

The following example illustrates the main frustration with Pareto optimality. Remov-
ing nondominated solutions may not be useful enough. In come cases, there may even
be a continuum of Pareto-optimal solutions. Therefore, the Pareto-optimal concept is not
always useful. Its value depends on the particular application.

Example 9.3 (A Continuum of Pareto-Optimal Solutions) Let U = [0, 1] and d = 2.
Let L(u) = (u, 1 − u). In this case, every element of U is Pareto optimal. This can be seen
by noting that a slight reduction in one criterion causes an increase in the other. Thus, any
two actions are incomparable. �

9.1.2 Probability theory review

This section reviews some basic probability concepts and introduces notation that will be
used throughout Part III.
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Probability space

A probability space is a three-tuple, (S,F, P ), in which the three components are

1. Sample space: A nonempty set S called the sample space, which represents all possible
outcomes.

2. Event space: A collection F of subsets of S, called the event space. If S is discrete,
then usually F = pow(S). If S is continuous, then F is usually a sigma-algebra on S, as
defined in Section 5.1.3.

3. Probability function: A function, P : F → R, that assigns probabilities to the events in
F . This will sometimes be referred to as a probability distribution over S.

The probability function, P , must satisfy several basic axioms:

1. P (E) ≥ 0 for all E ∈ F .

2. P (S) = 1.

3. P (E ∪ F ) = P (E) + P (F ) if E ∩ F = ∅, for all E,F ∈ F .

If S is discrete, then the definition of P over all of F can be inferred from its definition
on single elements of S by using the axioms. It is common in this case to write P (s) for
some s ∈ S, which is slightly abusive because s is not an event. It technically should be
P ({s}) for some {s} ∈ F .

Example 9.4 (Tossing a Die) Consider tossing a six-sided cube or die that has numbers
1 to 6 painted on its sides. When the die comes to rest, it will always show one number.
In this case, S = {1, 2, 3, 4, 5, 6} is the sample space. The event space is pow(S), which
is all 26 subsets of S. Suppose that the probability function is assigned to indicate that all
numbers are equally likely. For any individual s ∈ S, P ({s}) = 1/6. The events include
all subsets so that any probability statement can be formulated. For example, what is
the probability that an even number is obtained? The event E = {2, 4, 6} has probability
P (E) = 1/2 of occurring. �

The third probability axiom looks similar to the last axiom in the definition of a
measure space in Section 5.1.3. In fact, P is technically a special kind of measure space
as mentioned in Example 5.12. If S is continuous, however, this measure cannot be
captured by defining probabilities over the singleton sets. The probabilities of singleton
sets are usually zero. Instead, a probability density function, p : S → R, is used to define
the probability measure. The probability function, P , for any event E ∈ F can then be
determined via integration:

P (E) =
∫

E

p(x) dx, (9.3)

in which x ∈ E is the variable of integration. Intuitively, P indicates the total probability
mass that accumulates over E.

Conditional probability

A conditional probability is expressed as P (E|F ) for any two events E, F ∈ F and is
called the “probability of E, given F .” Its definition is

P (E|F ) = P (E ∩ F )

P (F )
. (9.4)

Two events, E and F , are called independent if and only if P (E ∩ F ) = P (E)P (F );
otherwise, they are called dependent. An important and sometimes misleading concept is
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conditional independence. Consider some third event, G ∈ F . It might be the case that E

and F are dependent, but when G is given, they become independent. Thus, P (E ∩ F ) 	=
P (E)P (F ); however, P (E ∩ F |G) = P (E|G)P (F |G). Such examples occur frequently
in practice. For example, E might indicate someone’s height, and F is their reading level.
These will generally be dependent events because children are generally shorter and have
a lower reading level. If we are given the person’s age as an event G, then height is no
longer important. It seems intuitive that there should be no correlation between height and
reading level once the age is given.

The definition of conditional probability, (9.4), imposes the constraint that

P (E ∩ F ) = P (F )P (E|F ) = P (E)P (F |E), (9.5)

which nicely relates P (E|F ) to P (F |E). This results in Bayes’ rule, which is a convenient
way to swap E and F :

P (F |E) = P (E|F )P (F )

P (E)
. (9.6)

The probability distribution, P (F ), is referred to as the prior, and P (F |E) is the poste-
rior. These terms indicate that the probabilities come before and after E is considered,
respectively.

If all probabilities are conditioned on some event, G ∈ F , then conditional Bayes’ rule
arises, which only differs from (9.6) by placing the condition G on all probabilities:

P (F |E,G) = P (E|F,G)P (F |G)

P (E|G)
. (9.7)

Marginalization

Let the events F1, F2, . . . , Fn be any partition of S. The probability of an event E can be
obtained through marginalization as

P (E) =
n∑

i=1

P (E|Fi)P (Fi). (9.8)

One of the most useful applications of marginalization is in the denominator of Bayes’
rule. A substitution of (9.8) into the denominator of (9.6) yields

P (F |E) = P (E|F )P (F )
n∑

i=1

P (E|Fi)P (Fi)

. (9.9)

This form is sometimes easier to work with because P (E) appears to be eliminated.

Random variables

Assume that a probability space (S,F, P ) is given. A random variable1 X is a function
that maps S into R. Thus, X assigns a real value to every element of the sample space. This
enables statistics to be conveniently computed over a probability space. If S is already a
subset of R, X may by default represent the identity function.

1 This is a terrible name, which often causes confusion. A random variable is not “random,” nor is it a “variable.”
It is simply a function, X : S → R. To make matters worse, a capital letter is usually used to denote it, whereas
lowercase letters are usually used to denote functions.
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Expectation

The expectation or expected value of a random variable X is denoted by E[X]. It can be
considered as a kind of weighted average for X, in which the weights are obtained from
the probability distribution. If S is discrete, then

E[X] =
∑

s∈S

X(s)P (s). (9.10)

If S is continuous, then2

E[X] =
∫

S

X(s)p(s)ds. (9.11)

One can then define conditional expectation, which applies a given condition to the
probability distribution. For example, if S is discrete and an event F is given, then

E[X|F ] =
∑

s∈S

X(s)P (s|F ). (9.12)

Example 9.5 (Tossing Dice) Returning to Example 9.4, the elements of S are already real
numbers. Hence, a random variable X can be defined by simply letting X(s) = s. Using
(9.11), the expected value, E[X], is 3.5. Note that the expected value is not necessarily a
value that is “expected” in practice. It is impossible to actually obtain 3.5, even though it
is not contained in S. Suppose that the expected value of X is desired only over trials that
result in numbers greater then 3. This can be described by the event F = {4, 5, 6}. Using
conditional expectation, (9.12), the expected value is E[X|F ] = 5.

Now consider tossing two dice in succession. Each element s ∈ S is expressed as
s = (i, j ) in which i, j ∈ {1, 2, 3, 4, 5, 6}. Since S 	⊂ R, the random variable needs to be
slightly more interesting. One common approach is to count the sum of the dice, which
yields X(s) = i + j for any s ∈ S. In this case, E[X] = 7. �

9.1.3 Randomized strategies

Up until now, any actions taken in a plan have been deterministic. The plans in Chapter 2
specified actions with complete certainty. Formulation 9.1 was solved by specifying the
best action. It can be viewed as a strategy that trivially makes the same decision every
time.

In some applications, the decision maker may not want to be predictable. To achieve
this, randomization can be incorporated into the strategy. If U is discrete, a randomized
strategy, w, is specified by a probability distribution, P (u), over U . Let W denote the set
of all possible randomized strategies. When the strategy is applied, an action u ∈ U is
chosen by sampling according to the probability distribution, P (u). We now have to make
a clear distinction between defining the strategy and applying the strategy. So far, the
two have been equivalent; however, a randomized strategy must be executed to determine
the resulting action. If the strategy is executed repeatedly, it is assumed that each trial is
independent of the actions obtained in previous trials. In other words, P (uk|ui) = P (uk),
in which P (uk|ui) represents the probability that the strategy chooses action uk in trial k,

2 Using the language of measure theory, both definitions are just special cases of the Lebesgue integral. Measure
theory nicely unifies discrete and continuous probability theory, thereby avoiding the specification of separate
cases. See [348, 549, 839].
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given that ui was chosen in trial i for some i < k. If U is continuous, then a randomized
strategy may be specified by a probability density function, p(u). In decision-theory and
game-theory literature, deterministic and randomized strategies are often referred to as
pure and mixed, respectively.

Example 9.6 (Basing Decisions on a Coin Toss) Let U = {a, b}. A randomized strategy
w can be defined as

1. Flip a fair coin, which has two possible outcomes: heads (H) or tails (T).

2. If the outcome is H, choose a; otherwise, choose b.

Since the coin is fair, w is defined by assigning P (a) = P (b) = 1/2. Each time the
strategy is applied, it not known what action will be chosen. Over many trials, however,
it converges to choosing a half of the time. �

A deterministic strategy can always be viewed as a special case of a randomized
strategy, if you are not bothered by events that have probability zero. A deterministic
strategy, ui ∈ U , can be simulated by a random strategy by assigning P (u) = 1 if u = ui ,
and P (u) = 0 otherwise. Only with probability zero can different actions be chosen
(possible, but not probable!).

Imagine using a randomized strategy to solve a problem expressed using Formulation
9.1. The first difficulty appears to be that the cost cannot be predicted. If the strategy is
applied numerous times, then we can define the average cost. As the number of times
tends to infinity, this average would converge to the expected cost, denoted by L̄(w), if
L is treated as a random variable (in addition to the cost function). If U is discrete, the
expected cost of a randomized strategy w is

L̄(w) =
∑

u∈U

L(u)P (u) =
∑

u∈U

L(u)w. (9.13)

An interesting question is whether there exists some w ∈ W such that L̄(w) < L(u),
for all u ∈ U . In other words, do there exist randomized strategies that are better than
all deterministic strategies, using Formulation 9.1? The answer is no because the best
strategy is always to assign probability one to the action, u∗, that minimizes L. This is
equivalent to using a deterministic strategy. If there are two or more actions that obtain the
optimal cost, then a randomized strategy could arbitrarily distribute all of the probability
mass between these. However, there would be no further reduction in cost. Therefore,
randomization seems pointless in this context, unless there are other considerations.

One important example in which a randomized strategy is of critical importance is when
making decisions in competition with an intelligent adversary. If the problem is repeated
many times, an opponent could easily learn any deterministic strategy. Randomization
can be used to weaken the prediction capabilities of an opponent. This idea will be used
in Section 9.3 to obtain better ways to play zero-sum games.

Following is an example that illustrates the advantage of randomization when repeat-
edly playing against an intelligent opponent.

Example 9.7 (Matching Pennies) Consider a game in which two players repeatedly
play a simple game of placing pennies on the table. In each trial, the players must place
their coins simultaneously with either heads (H) facing up or tails (T) facing up. Let a
two-letter string denote the outcome. If the outcome is HH or TT (the players choose the
same), then Player 1 pays Player 2 one Peso; if the outcome is HT or TH, then Player 2
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pays Player 1 one Peso. What happens if Player 1 uses a deterministic strategy? If Player
2 can determine the strategy, then he can choose his strategy so that he always wins the
game. However, if Player 1 chooses the best randomized strategy, then he can expect at
best to break even on average. What randomized strategy achieves this?

A generalization of this to three actions is the famous game of Rock-Paper-Scissors
[958]. If you want to design a computer program that repeatedly plays this game against
smart opponents, it seems best to incorporate randomization. �

9.2 A game against nature

9.2.1 Modeling nature

For the first time in this book, uncertainty will be directly modeled. There are two DMs:

Robot: This is the name given to the primary DM throughout the book. So far, there has
been only one DM. Now that there are two, the name is more important because it will be
used to distinguish the DMs from each other.

Nature: This DM is a mysterious force that is unpredictable to the robot. It has its own
set of actions, and it can choose them in a way that interferes with the achievements of the
robot. Nature can be considered as a synthetic DM that is constructed for the purposes of
modeling uncertainty in the decision-making or planning process.

Imagine that the robot and nature each make a decision. Each has a set of actions to
choose from. Suppose that the cost depends on which actions are chosen by each. The cost
still represents the effect of the outcome on the robot; however, the robot must now take
into account the influence of nature on the cost. Since nature is unpredictable, the robot
must formulate a model of its behavior. Assume that the robot has a set, U , of actions, as
before. It is now assumed that nature also has a set of actions. This is referred to as the
nature action space and is denoted by �. A nature action is denoted as θ ∈ �. It now
seems appropriate to call U the robot action space; however, for convenience, it will often
be referred to as the action space, in which the robot is implied.

This leads to the following formulation, which extends Formulation 9.1.

Formulation 9.3 (A Game Against Nature)

1. A nonempty set U called the (robot) action space. Each u ∈ U is referred to as an action.

2. A nonempty set � called the nature action space. Each θ ∈ � is referred to as a nature
action.

3. A function L : U ×� → R ∪ {∞}, called the cost function.

The cost function, L, now depends on u ∈ U and θ ∈ �. If U and � are finite, then it is
convenient to specify L as a |U | × |�| matrix called the cost matrix.

Example 9.8 (A Simple Game Against Nature) Suppose that U and � each contain
three actions. This results in nine possible outcomes, which can be specified by the
following cost matrix:

�

U

1 −1 0
−1 2 −2
2 −1 1
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The robot action, u ∈ U , selects a row, and the nature action, θ ∈ �, selects a column.
The resulting cost, L(u, θ), is given by the corresponding matrix entry. �

In Formulation 9.3, it appears that both DMs act at the same time; nature does not know
the robot action before deciding. In many contexts, nature may know the robot action. In
this case, a different nature action space can be defined for every u ∈ U . This generalizes
Formulation 9.3 to obtain:

Formulation 9.4 (Nature Knows the Robot Action)

1. A nonempty set U called the action space. Each u ∈ U is referred to as an action.

2. For each u ∈ U , a nonempty set �(u) called the nature action space.

3. A function L : U ×� → R ∪ {∞}, called the cost function.

If the robot chooses an action u ∈ U , then nature chooses from �(u).

9.2.2 Nondeterministic vs. probabilistic models

What is the best decision for the robot, given that it is engaged in a game against nature?
This depends on what information the robot has regarding how nature chooses its actions.
It will always be assumed that the robot does not know the precise nature action to be
chosen; otherwise, it is pointless to define nature. Two alternative models that the robot
can use for nature will be considered. From the robot’s perspective, the possible models
are

Nondeterministic: I have no idea what nature will do.

Probabilistic: I have been observing nature and gathering statistics.

Under both models, it is assumed that the robot knows � in Formulation 9.3 or �(u)
for all u ∈ U in Formulation 9.4. The nondeterministic and probabilistic terminology
are borrowed from Erdmann [315]. In some literature, the term possibilistic is used
instead of nondeterministic. This is an excellent term, but it is unfortunately too similar
to probabilistic in English.

Assume first that Formulation 9.3 is used and that U and � are finite. Under the
nondeterministic model, there is no additional information. One reasonable approach in
this case is to make a decision by assuming the worst. It can even be imagined that
nature knows what action the robot will take, and it will spitefully choose a nature action
that drives the cost as high as possible. This pessimistic view is sometimes humorously
referred to as Murphy’s Law (“If anything can go wrong, it will.”) [113] or Sod’s Law. In
this case, the best action, u∗ ∈ U , is selected as

u∗ = argmin
u∈U

{
max
θ∈�

{
L(u, θ )

}}
. (9.14)

The action u∗ is the lowest cost choice using worst-case analysis. This is sometimes
referred to as a minimax solution because of the min and max in (9.14). If U or �

is infinite, then the min or max may not exist and should be replaced by inf or sup,
respectively.

Worst-case analysis may seem too pessimistic in some applications. Perhaps the as-
sumption that all actions in � are equally likely may be preferable. This can be handled
as a special case of the probabilistic model, which is described next.
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Under the probabilistic model, it is assumed that the robot has gathered enough data to
reliably estimate P (θ) (or p(θ) if � is continuous). In this case, it is imagined that nature
applies a randomized strategy, as defined in Section 9.1.3. It assumed that the applied
nature actions have been observed over many trials, and in the future they will continue to
be chosen in the same manner, as predicted by the distribution P (θ). Instead of worst-case
analysis, expected-case analysis is used. This optimizes the average cost to be received
over numerous independent trials. In this case, the best action, u∗ ∈ U , is

u∗ = argmin
u∈U

{
Eθ

[
L(u, θ )

]}
, (9.15)

in which Eθ indicates that the expectation is taken according to the probability distribution
(or density) over θ . Since � and P (θ) together form a probability space, L(u, θ) can be
considered as a random variable for each value of u (it assigns a real value to each element
of the sample space).3 Using P (θ), the expectation in (9.15) can be expressed as

Eθ [L(u, θ )] =
∑

θ∈�

L(u, θ )P (θ ). (9.16)

Example 9.9 (Nondeterministic vs. Probabilistic) Return to Example 9.8. Let U =
{u1, u2, u3} represent the robot actions, and let � = {θ1, θ2, θ3} represent the nature ac-
tions.

Under the nondeterministic model of nature, u∗ = u1, which results in L(u∗, θ) = 1 in
the worst case using (9.14). Under the probabilistic model, let P (θ1) = 1/5, P (θ2) = 1/5,
and P (θ3) = 3/5. To find the optimal action, (9.15) can be used. This involves computing
the expected cost for each action:

Eθ [L(u1, θ )] = (1)1/5 + (−1)1/5 + (0)3/5 = 0

Eθ [L(u2, θ )] = (−1)1/5 + (2)1/5 + (−2)3/5 = −1

Eθ [L(u3, θ )] = (2)1/5 + (−1)1/5 + (1)3/5 = 4/5.

(9.17)

The best action is u∗ = u2, which produces the lowest expected cost, −1.
If the probability distribution had instead been P = [1/10 4/5 1/10], then u∗ = u1

would have been obtained. Hence the best decision depends on P (θ); if this information is
statistically valid, then it enables more informed decisions to be made. If such information
is not available, then the nondeterministic model may be more suitable.

It is possible, however, to assign P (θ) as a uniform distribution in the absence of data.
This means that all nature actions are equally likely; however, conclusions based on this
are dangerous; see Section 9.5. �

In Formulation 9.4, the nature action space �(u) depends on u ∈ U , the robot action.
Under the nondeterministic model, (9.14) simply becomes

u∗ = argmin
u∈U

{
max

θ∈�(u)
L(u, θ )

}
. (9.18)

Unfortunately, these problems do not have a nice matrix representation because the size
of �(u) can vary for different u ∈ U . In the probabilistic case, P (θ) is replaced by a
conditional probability distribution P (θ |u). Estimating this distribution requires observing
numerous independent trials for each possible u ∈ U . The behavior of nature can now

3 Alternatively, a random variable may be defined over U ×�, and conditional expectation would be taken, in which
u is given.
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depend on the robot action; however, nature is still characterized by a randomized strategy.
It does not adapt its strategy across multiple trials. The expectation in (9.16) now becomes

Eθ

[
L(u, θ )

]
=
∑

θ∈�(u)

L(u, θ )P (θ |u), (9.19)

which replaces P (θ) by P (θ |u).

Regret

It is important to note that the models presented here are not the only accepted ways to
make good decisions. In game theory, the key idea is to minimize “regret.” This is the
feeling you get after making a bad decision and wishing that you could change it after the
game is finished. Suppose that after you choose some u ∈ U , you are told which θ ∈ �

was applied by nature. The regret is the amount of cost that you could have saved by
picking a different action, given the nature action that was applied.

For each combination of u ∈ U and θ ∈ �, the regret, T , is defined as

T (u, θ ) = max
u′∈U

{
L(u, θ ) − L(u′, θ )

}
. (9.20)

For Formulation 9.3, if U and � are finite, then a |�| × |U | regret matrix can be defined.
Suppose that minimizing regret is the primary concern, as opposed to the actual cost

received. Under the nondeterministic model, the action that minimizes the worst-case
regret is

u∗ = argmin
u∈U

{
max
θ∈�

{
T (u, θ )

}}
. (9.21)

In the probabilistic model, the action that minimizes the expected regret is

u∗ = argmin
u∈U

{
Eθ

[
T (u, θ )

]}
. (9.22)

The only difference with respect to (9.14) and (9.15) is that L has been replaced by T .
In Section 9.3.2, regret will be discussed in more detail because it forms the basis of
optimality concepts in game theory.

Example 9.10 (Regret Matrix) The regret matrix for Example 9.8 is

�

U

2 0 2
0 3 0
3 0 3

Using the nondeterministic model, u∗ = u1, which results in a worst-case regret of 2
using (9.21). Under the probabilistic model, let P (θ1) = P (θ2) = P (θ3) = 1/3. In this
case, u∗ = u1 or u∗ = u2, because in both cases the expected regret is 1 using (9.22).

9.2.3 Making use of observations

Formulations 9.3 and 9.4 do not allow the robot to receive any information (other than L)
prior to making its decision. Now suppose that the robot has a sensor that it can check just
prior to choosing the best action. This sensor provides an observation or measurement
that contains information about which nature action might be chosen. In some contexts,
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the nature action can be imagined as a kind of state that has already been selected. The
observation then provides information about this. For example, nature might select the
current temperature in Bangkok. An observation could correspond to a thermometer in
Bangkok that takes a reading.

Formulating the problem

Let Y denote the observation space, which is the set of all possible observations, y ∈ Y .
For convenience, suppose that Y , U , and � are all discrete. It will be assumed as part of the
model that some constraints on θ are known once y is given. Under the nondeterministic
model a set Y (θ) ⊆ Y is specified for every θ ∈ �. The set Y (θ) indicates the possible
observations, given that the nature action is θ . Under the probabilistic model a conditional
probability distribution, P (y|θ), is specified. Examples of sensing models will be given
in Section 9.2.4. Many others appear in Sections 11.1.1 and 11.5.1, although they are
expressed with respect to a state space X that reduces to � in this section. As before, the
probabilistic case also requires a prior distribution, P (�), to be given. This results in the
following formulation.

Formulation 9.5 (A Game Against Nature with an Observation)

1. A finite, nonempty set U called the action space. Each u ∈ U is referred to as an action.

2. A finite, nonempty set � called the nature action space.

3. A finite, nonempty set Y called the observation space.

4. A set Y (θ ) ⊂ Y or probability distribution P (y|θ ) specified for every θ ∈ �. This indicates
which observations are possible or probable, respectively, if θ is the nature action. In the
probabilistic case a prior, P (θ ), must also be specified.

5. A function L : U ×� → R ∪ {∞}, called the cost function.

Consider solving Formulation 9.5. A strategy is now more complicated than simply
specifying an action because we want to completely characterize the behavior of the robot
before the observation has been received. This is accomplished by defining a strategy as
a function, π : Y → U . For each possible observation, y ∈ Y , the strategy provides an
action. We now want to search the space of possible strategies to find the one that makes
the best decisions over all possible observations. In this section, Y is actually a special
case of an information space, which is the main topic of Chapters 11 and 12. Eventually,
a strategy (or plan) will be conditioned on an information state, which generalizes an
observation.

Optimal strategies

Now consider finding the optimal strategy, denoted by π∗, under the nondeterministic
model. The sets Y (θ) for each θ ∈ � must be used to determine which nature actions are
possible for each observation, y ∈ Y . Let �(y) denote this, which is obtained as

�(y) = {θ ∈ � | y ∈ Y (θ )}. (9.23)

The optimal strategy, π∗, is defined by setting

π∗(y) = argmin
u∈U

{
max

θ∈�(y)

{
L(u, θ )

}}
, (9.24)

for each y ∈ Y . Compare this to (9.14), in which the maximum was taken over all �. The
advantage of having the observation, y, is that the set is restricted to �(y) ⊆ �.
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Under the probabilistic model, an operation analogous to (9.23) must be performed.
This involves computing P (θ |y) from P (y|θ) to determine the information that y contains
regarding θ . Using Bayes’ rule, (9.9), with marginalization on the denominator, the result
is

P (θ |y) = P (y|θ )P (θ )
∑

θ∈�

P (y|θ )P (θ )
. (9.25)

To see the connection between the nondeterministic and probabilistic cases, define a
probability distribution, P (y|θ), that is nonzero only if y ∈ Y (θ) and use a uniform
distribution for P (θ). In this case, (9.25) assigns nonzero probability to precisely the
elements of �(y) as given in (9.23). Thus, (9.25) is just the probabilistic version of (9.23).
The optimal strategy, π∗, is specified for each y ∈ Y as

π∗(y) = argmin
u∈U

{
Eθ

[
L(u, θ )

∣∣∣ y
]}

= argmin
u∈U

{
∑

θ∈�

L(u, θ )P (θ |y)

}
. (9.26)

This differs from (9.15) and (9.16) by replacing P (θ) with P (θ |y). For each u, the
expectation in (9.26) is called the conditional Bayes’ risk. The optimal strategy, π∗,
always selects the strategy that minimizes this risk. Note that P (θ |y) in (9.26) can be
expressed using (9.25), for which the denominator (9.26) represents P (y) and does not
depend on u; therefore, it does not affect the optimization. Due to this, P (y|θ)P (θ) can be
used in the place of P (θ |y) in (9.26), and the same π∗ will be obtained. If the spaces are
continuous, then probability densities are used in the place of all probability distributions,
and the method otherwise remains the same.

Nature acts twice

A convenient, alternative formulation can be given by allowing nature to act twice:

1. First, a nature action, θ ∈ �, is chosen but is unknown to the robot.

2. Following this, a nature observation action is chosen to interfere with the robot’s ability
to sense θ .

Let ψ denote a nature observation action, which is chosen from a nature observation
action space, �(θ). A sensor mapping, h, can now be defined that yields y = h(θ, ψ) for
each θ ∈ � and ψ ∈ �(θ). Thus, for each of the two kinds of nature actions, θ ∈ � and
ψ ∈ �, an observation, y = h(θ, ψ), is given. This yields an alternative way to express
Formulation 9.5:

Formulation 9.6 (Nature Interferes with the Observation)

1. A nonempty, finite set U called the action space.

2. A nonempty, finite set � called the nature action space.

3. A nonempty, finite set Y called the observation space.

4. For each θ ∈ �, a nonempty set �(θ ) called the nature observation action space.

5. A sensor mapping h : �×� → Y .

6. A function L : U ×� → R ∪ {∞} called the cost function.

This nicely unifies the nondeterministic and probabilistic models with a single function
h. To express a nondeterministic model, it is assumed that any ψ ∈ �(θ) is possible.
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Using h,

�(y) = {θ ∈ � | ∃ψ ∈ �(θ ) such that y = h(θ, ψ)}. (9.27)

For a probabilistic model, a distribution P (ψ |θ) is specified (often, this may reduce to
P (ψ)). Suppose that when the domain of h is restricted to some θ ∈ �, then it forms an
injective mapping from � to Y . In other words, every nature observation action leads to
a unique observation, assuming θ is fixed. Using P (ψ) and h, P (y|θ) is derived as

P (y|θ ) =
{

P (ψ |θ ) for the unique ψ such that y = h(θ, ψ).
0 if no such ψ exists.

(9.28)

If the injective assumption is lifted, then P (ψ |θ) is replaced by a sum over all ψ for which
y = h(θ, ψ). In Formulation 9.6, the only difference between the nondeterministic and
probabilistic models is the characterization of ψ , which represents a kind of measurement
interference. A strategy still takes the form π : � → U . A hybrid model is even possible
in which one nature action is modeled nondeterministically and the other probabilistically.

Receiving multiple observations

Another extension of Formulation 9.5 is to allow multiple observations, y1, y2, . . . , yn,
before making a decision. Each yi is assumed to belong to an observation space, Yi . A
strategy, π , now depends on all observations:

π : Y1 × Y2 × · · · × Yn → U. (9.29)

Under the nondeterministic model, Yi(θ) is specified for each i and θ ∈ �. The set
�(y) is replaced by

�(y1) ∩�(y2) ∩ · · · ∩�(yn) (9.30)

in (9.24) to obtain the optimal action, π∗(y1, . . . , yn).
Under the probabilistic model, P (yi |θ) is specified instead. It is often assumed that

the observations are conditionally independent given θ . This means for any yi , θ , and
yj such that i 	= j , P (yi |θ, yj ) = P (yi |θ). The condition P (θ |y) in (9.26) is replaced by
P (θ |y1, . . . , yn). Applying Bayes’ rule, and using the conditional independence of the
yi’s given θ , yields

P (θ |y1, . . . , yn) = P (y1|θ )P (y2|θ ) · · ·P (yn|θ )P (θ )

P (y1, . . . , yn)
. (9.31)

The denominator can be treated as a constant factor that does not affect the optimization.
Therefore, it does not need to be explicitly computed unless the optimal expected cost is
needed in addition to the optimal action.

Conditional independence allows a dramatic simplification that avoids the full speci-
fication of P (y|θ). Sometimes the conditional independence assumption is used when it
is incorrect, just to exploit this simplification. Therefore, a method that uses conditional
independence of observations is often called naive Bayes.

9.2.4 Examples of optimal decision making

The framework presented so far characterizes statistical decision theory, which covers a
broad range of applications and research issues. Virtually any context in which a decision
must be made automatically, by a machine or a person following specified rules, is a
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candidate for using these concepts. In Chapters 10 through 12, this decision problem will
be repeatedly embedded into complicated planning problems. Planning will be viewed as
a sequential decision-making process that iteratively modifies states in a state space. Most
often, each decision step will be simpler than what usually arises in common applications
of decision theory. This is because planning problems are complicated by many other
factors. If the decision step in a particular application is already too hard to solve, then an
extension to planning appears hopeless.

It is nevertheless important to recognize the challenges in general that arise when
modeling and solving decision problems under the framework of this section. Some
examples are presented here to help illustrate its enormous power and scope.

9.2.4.1 Pattern classification

An active field over the past several decades in computer vision and machine learning has
been pattern classification [273, 297, 714]. The general problem involves using a set of
data to perform classifications. For example, in computer vision, the data correspond to
information extracted from an image. These indicate observed features of an object that
are used by a vision system to try to classify the object (e.g., “I am looking at a bowl of
Vietnamese noodle soup”).

The presentation here represents a highly idealized version of pattern classification. We
will assume that all of the appropriate model details, including the required probability
distributions, are available. In some contexts, these can be obtained by gathering statistics
over large data sets. In many applications, however, obtaining such data is expensive or
inaccessible, and classification techniques must be developed in lieu of good information.
Some problems are even unsupervised, which means that the set of possible classes must
also be discovered automatically. Due to issues such as these, pattern classification remains
a challenging research field.

The general model is that nature first determines the class, then observations are
obtained regarding the class, and finally the robot action attempts to guess the correct
class based on the observations. The problem fits under Formulation 9.5. Let � denote a
finite set of classes. Since the robot must guess the class, U = �. A simple cost function
is defined to measure the mismatch between u and θ :

L(u, θ ) =
{

0 if u = θ (correct classification

1 if u 	= θ (incorrect classification) .
(9.32)

The nondeterministic model yields a cost of 1 if it is possible that a classification error
can be made using action u. Under the probabilistic model, the expectation of (9.32) gives
the probability that a classification error will be made given an action u.

The next part of the formulation considers information that is used to make the classi-
fication decision. Let Y denote a feature space, in which each y ∈ Y is called a feature or
feature vector (often y ∈ R

n). The feature in this context is just an observation, as given
in Formulation 9.5. The best classifier or classification rule is a strategy π : Y → U that
provides the smallest classification error in the worst case or expected case, depending on
the model.

A Bayesian classifier

The probabilistic approach is most common in pattern classification. This results in a
Bayesian classifier. Here it is assumed that P (y|θ) and P (θ) are given. The distribution of



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

376 DECISION-THEORETIC PLANNING

Shape 0 A E F H
1 B C D G

Ends 0 B D
1
2 A C G
3 F E
4 H

Holes 0 C E F G H
1 A D
2 B

Figure 9.1: A mapping from letters to feature values.

features for a given class is indicated by P (y|θ). The overall frequency of class occurrences
is given by P (θ). If large, preclassified data sets are available, then these distributions
can be reliably learned. The feature space is often continuous, which results in a density
p(y|θ), even though P (θ) remains a discrete probability distribution. An optimal classifier,
π∗, is designed according to (9.26). It performs classification by receiving a feature vector,
y, and then declaring that the class is u = π∗(y). The expected cost using (9.32) is the
probability of error.

Example 9.11 (Optical Character Recognition) An example of classification is given
by a simplified optical character recognition (OCR) problem. Suppose that a camera
creates a digital image of a page of text. Segmentation is first performed to determine the
location of each letter. Following this, the individual letters must be classified correctly.
Let � = {A, B, C, D, E, F, G, H }, which would ordinarily include all of the letters of
the alphabet.

Suppose that there are three different image processing algorithms:

Shape extractor: This returns s = 0 if the letter is composed of straight edges only, and
s = 1 if it contains at least one curve.

End counter: This returns e, the number of segment ends. For example, O has none and
X has four.

Hole counter: This returns h, the number of holes enclosed by the character. For example,
X has none and O has one.

The feature vector is y = (s, e, h). The values that should be reported under ideal condi-
tions are shown in Figure 9.1. These indicate �(s), �(e), and �(h). The intersection of
these yields �(y) for any combination of s, e, and h.

Imagine doing classification under the nondeterministic model, with the assumption
that the features always provide correct information. For y = (0, 2, 1), the only possible
letter is A. For y = (1, 0, 2), the only letter is B. If each (s, e, h) is consistent with only
one or no letters, then a perfect classifier can be constructed. Unfortunately, (0, 3, 0) is
consistent with both E and F . In the worst case, the cost of using (9.32) is 1.

One way to fix this is to introduce a new feature. Suppose that an image processing
algorithm is used to detect corners. These are places at which two segments meet at a right
(90 degrees) angle. Let c denote the number of corners, and let the new feature vector be
y = (s, e, h, c). The new algorithm nicely distinguishes E from F , for which c = 2 and
c = 1, respectively. Now all letters can be correctly classified without errors.
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Of course, in practice, the image processing algorithms occasionally make mistakes.
A Bayesian classifier can be designed to maximize the probability of success. Assume
conditional independence of the observations, which means that the classifier can be
considered naive. Suppose that the four image processing algorithms are run over a training
data set and the results are recorded. In each case, the correct classification is determined
by hand to obtain probabilities P (s|θ), P (e|θ), P (h|θ), and P (c|θ). For example, suppose
that the hole counter receives the letter A as input. After running the algorithm over
many occurrences of A in text, it may be determined that P (h = 1| θ = A) = 0.9, which
is the correct answer. With smaller probabilities, perhaps P (h = 0| θ = A) = 0.09 and
P (h = 2| θ = A) = 0.01. Assuming that the output of each image processing algorithm
is independent given the input letter, a joint probability can be assigned as

P (y|θ ) = P (s, e, h, c| θ ) = P (s|θ )P (e|θ )P (h|θ )P (c|θ ). (9.33)

The value of the prior P (θ) can be obtained by running the classifier over large amounts
of hand-classified text and recording the relative numbers of occurrences of each letter.
It is interesting to note that some context-specific information can be incorporated. If the
text is known to be written in Spanish, then P (θ) should be different than from text written
in English. Tailoring P (θ) to the type of text that will appear improves the performance
of the resulting classifier.

The classifier makes its decisions by choosing the action that minimizes the probability
of error. This error is proportional to

∑

θ∈�

P (s|θ )P (e|θ )P (h|θ )P (c|θ )P (θ ), (9.34)

by neglecting the constant P (y) in the denominator of Bayes’ rule in (9.26). �

9.2.4.2 Parameter estimation

Another important application of the decision-making framework of this section is param-
eter estimation [91, 270]. In this case, nature selects a parameter, θ ∈ �, and � represents
a parameter space. Through one or more independent trials, some observations are ob-
tained. Each observation should ideally be a direct measurement of �, but imperfections
in the measurement process distort the observation. Usually, � ⊆ Y , and in many cases,
Y = �. The robot action is to guess the parameter that was chosen by nature. Hence,
U = �. In most applications, all of the spaces are continuous subsets of R

n. The cost
function is designed to increase as the error, ‖u− θ‖, becomes larger.

Example 9.12 (Parameter Estimation) Suppose that U = Y = � = R. Nature there-
fore chooses a real-valued parameter, which is estimated. The cost of making a mistake
is

L(u, θ ) = (u− θ )2. (9.35)

Suppose that a Bayesian approach is taken. The prior probability density p(θ) is given
as uniform over an interval [a, b] ⊂ R. An observation is received, but it is noisy. The
noise can be modeled as a second action of nature, as described in Section 9.2.3. This leads
to a density p(y|θ). Suppose that the noise is modeled with a Gaussian, which results in

p(y|θ ) = 1√
2πσ 2

e−(y−θ)2/2σ 2
, (9.36)

in which the mean is θ and the standard deviation is σ .
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The optimal parameter estimate based on y is obtained by selecting u ∈ R to minimize
∫ ∞

−∞
L(u, θ )p(θ |y)dθ, (9.37)

in which

p(θ |y) = p(y|θ )p(θ )

p(y)
, (9.38)

by Bayes’ rule. The term p(y) does not depend on θ , and it can therefore be ignored in
the optimization. Using the prior density, p(θ) = 0 outside of [a, b]; hence, the domain
of integration can be restricted to [a, b]. The value of p(θ) = 1/(b − a) is also a constant
that can be ignored in the optimization. Using (9.36), this means that u is selected to
optimize

∫ b

a

L(u, θ )p(y|θ )dθ, (9.39)

which can be expressed in terms of the standard error function, erf(x) (the integral from
0 to a constant, of a Gaussian density over an interval).

If a sequence, y1, . . . , yk , of independent observations is obtained, then (9.39) is
replaced by

∫ b

a

L(u, θ )p(y1|θ ) · · ·p(yk|θ )dθ. (9.40)

�

9.3 Two-player zero-sum games

Section 9.2 involved one real decision maker (DM), the robot, playing against a fictitious
DM called nature. Now suppose that the second DM is a clever opponent that makes
decisions in the same way that the robot would. This leads to a symmetric situation in
which two decision makers simultaneously make a decision, without knowing how the
other will act. It is assumed in this section that the DMs have diametrically opposing
interests. They are two players engaged in a game in which a loss for one player is a gain
for the other, and vice versa. This results in the most basic form of game theory, which is
referred to as a zero-sum game.

9.3.1 Game formulation

Suppose there are two players, P1 and P2, that each have to make a decision. Each has a
finite set of actions, U and V , respectively. The set V can be viewed as the “replacement”
of � from Formulation 9.3 by a set of actions chosen by a true opponent. Each player has a
cost function, which is denoted as Li : U × V → R for i = 1, 2. An important constraint
for zero-sum games is

L1(u, v) = −L2(u, v), (9.41)

which means that a cost for one player is a reward for the other. This is the basis of the
term zero sum, which means that the two costs can be added to obtain zero. In zero-sum
games the interests of the players are completely opposed. In Section 9.4 this constraint
will be lifted to obtain more general games.
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In light of (9.41) it is pointless to represent two cost functions. Instead, the superscript
will be dropped, and L will refer to the cost, L1, of P1. The goal of P1 is to minimize L.
Due to (9.41), the goal of P2 is to maximize L. Thus, L can be considered as a reward for
P2, but a cost for P1.

A formulation can now be given:

Formulation 9.7 (A Zero-Sum Game)

1. Two players, P1 and P2.

2. A nonempty, finite set U called the action space for P1. For convenience in describing
examples, assume that U is a set of consecutive integers from 1 to |U |. Each u ∈ U is
referred to as an action of P1.

3. A nonempty, finite set V called the action space for P2. Assume that V is a set of
consecutive integers from 1 to |V |. Each v ∈ V is referred to as an action of P2.

4. A function L : U × V → R ∪ {−∞,∞} called the cost function for P1. This also serves
as a reward function for P2 because of (9.41).

Before discussing what it means to solve a zero-sum game, some additional assumptions
are needed. Assume that the players know each other’s cost functions. This implies that
the motivation of the opponent is completely understood. The other assumption is that
the players are rational, which means that they will try to obtain the best cost whenever
possible. P1 will not choose an action that leads to higher cost when a lower cost action
is available. Likewise, P2 will not choose an action that leads to lower cost. Finally, it is
assumed that both players make their decisions simultaneously. There is no information
regarding the decision of P1 that can be exploited by P2, and vice versa.

Formulation 9.7 is often referred to as a matrix game because L can be expressed with
a cost matrix, as was done in Section 9.2. Here the matrix indicates costs for P1 and P2,
instead of the robot and nature. All of the required information from Formulation 9.7 is
specified by a single matrix; therefore, it is a convenient form for expressing zero-sum
games.

Example 9.13 (Matrix Representation of a Zero-Sum Game) Suppose that U , the
action set for P1, contains three actions and V contains four actions. There should be
3 × 4 = 12 values in the specification of the cost function, L. This can be expressed as a
cost matrix,

V

U

1 3 3 2
0 −1 2 1
−2 2 0 1

, (9.42)

in which each row corresponds to some u ∈ U , and each column corresponds to some
v ∈ V . Each entry yields L(u, v), which is the cost for P1. This representation is similar
to that shown in Example 9.8, except that the nature action space, �, is replaced by V .
The cost for P2 is −L(u, v). �

9.3.2 Deterministic strategies

What constitutes a good solution to Formulation 9.7? Consider the game from the per-
spective of P1. It seems reasonable to apply worst-case analysis when trying to account for
the action that will be taken by P2. This results in a choice that is equivalent to assuming
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that P2 is nature acting under the nondeterministic model, as considered in Section 9.2.2.
For a matrix game, this is computed by first determining the maximum cost over each
row. Selecting the action that produces the minimum among these represents the lowest
cost that P1 can guarantee for itself. Let this selection be referred to as a security strategy
for P1.

For the matrix game in (9.42), the security strategy is illustrated as

V

U

1 3 3 2 → 3
0 −1 2 1 → 2
−2 2 0 1 → 2

, (9.43)

in which u = 2 and u = 3 are the best actions. Each yields a cost no worse than 2,
regardless of the action chosen by P2.

This can be formalized using the existing notation. A security strategy, u∗, for P1 is
defined in general as

u∗ = argmin
u∈U

{
max
v∈V

{
L(u, v)

}}
. (9.44)

There may be multiple security strategies that satisfy the argmin; however, this does not
cause trouble, as will be explained shortly. Let the resulting worst-case cost be denoted
by L

∗
, and let it be called the upper value of the game. This is defined as

L
∗ = max

v∈V

{
L(u∗, v)

}
. (9.45)

Now swap roles, and consider the game from the perspective of P2, which would like to
maximize L. It can also use worst-case analysis, which means that it would like to select
an action that guarantees a high cost, in spite of the action of P1 to potentially reduce it.
A security strategy, v∗, for P2 is defined as

v∗ = argmax
v∈V

{
min
u∈U

{
L(u, v)

}}
. (9.46)

Note the symmetry with respect to (9.44). There may be multiple security strategies for
P2. A security strategy v∗ is just an “upside-down” version of the worst-case analysis
applied in Section 9.2.2. The lower value, L∗, is defined as

L∗ = min
u∈U

{
L(u, v∗)

}
. (9.47)

Returning to the matrix game in (9.42), the last column is selected by applying (9.46):

V

U

1 3 3 2
0 −1 2 1
−2 2 0 1
↓ ↓ ↓ ↓
−2 −1 0 1

. (9.48)

An interesting relationship between the upper and lower values is that L∗ ≤ L
∗

for any
game using Formulation 9.7. This is shown by observing that

L∗ = min
u∈U

{
L(u, v∗)

}
≤ L(u∗, v∗) ≤ max

v∈V

{
L(u∗, v)

}
= L

∗
, (9.49)
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≥

≤ L∗ ≤

≥

Figure 9.2: A saddle point can be detected in a matrix by �nding a value L ∗ that is lowest among all
elements in its column and greatest among all elements in its row.

in which L(u∗, v∗) is the cost received when the players apply their respective security
strategies. If the game is played by rational DMs, then the resulting cost always lies
between L∗ and L

∗
.

Regret

Suppose that the players apply security strategies, u∗ = 2 and v∗ = 4. This results in a cost
of L(2, 4) = 1. How do the players feel after the outcome? P1 may feel satisfied because
given that P2 selected v∗ = 4, it received the lowest cost possible. On the other hand, P2

may regret its decision in light of the action chosen by P1. If it had known that u = 2
would be chosen, then it could have picked v = 2 to receive cost L(2, 2) = 2, which is
better than L(2, 4) = 1. If the game were to be repeated, then P2 would want to change
its strategy in hopes of tricking P1 to obtain a higher reward.

Is there a way to keep both players satisfied? Any time there is a gap between L∗

and L
∗
, there is regret for one or both players. If r1 and r2 denote the amount of regret

experienced by P1 and P2, respectively, then the total regret is

r1 + r2 = L
∗ − L∗. (9.50)

Thus, the only way to satisfy both players is to obtain upper and lower values such that
L∗ = L

∗
. These are properties of the game, however, and they are not up to the players

to decide. For some games, the values are equal, but for many L∗ < L
∗
. Fortunately, by

using randomized strategies, the upper and lower values always coincide; this is covered
in Section 9.3.3.

Saddle points

If L∗ = L
∗
, the security strategies are called a saddle point, and L∗ = L∗ = L

∗
is called

the value of the game. If this occurs, the order of the max and min can be swapped without
changing the value:

L∗ = min
u∈U

{
max
v∈V

{
L(u, v)

}}
= max

v∈V

{
min
u∈U

{
L(u, v)

}}
. (9.51)

A saddle point is sometimes referred to as an equilibrium because the players have no
incentive to change their choices (because there is no regret). A saddle point is defined as
any u∗ ∈ U and v∗ ∈ V such that

L(u∗, v) ≤ L(u∗, v∗) ≤ L(u, v∗) (9.52)

for all u ∈ U and v ∈ V . Note that L∗ = L(u∗, v∗). When looking at a matrix game, a
saddle point is found by finding the simple pattern shown in Figure 9.2.
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≥ ≥
≤ L∗ ≤ L∗ ≤

≥ ≥
≤ L∗ ≤ L∗ ≤

≥ ≥
Figure 9.3: A matrix could have more than one saddle point, which may seem to lead to a coordination
problem between the players. Fortunately, there is no problem, because the same value will be received
regardless of which saddle point is selected by each player.

Example 9.14 (A Deterministic Saddle Point) Here is a matrix game that has a saddle
point:

V

U

3 3 5
1 −1 7
0 −2 4

. (9.53)

By applying (9.52) (or using Figure 9.2), the saddle point is obtained when u = 3 and
v = 3. The result is that L∗ = 4. In this case, neither player has regret after the game is
finished. P1 is satisfied because 4 is the lowest cost it could have received, given that P2

chose the third column. Likewise, 4 is the highest cost that P2 could have received, given
that P1 chose the bottom row. �

What if there are multiple saddle points in the same game? This may appear to be a
problem because the players have no way to coordinate their decisions. What if P1 tries to
achieve one saddle point while P2 tries to achieve another? It turns out that if there is more
than one saddle point, then there must at least be four, as shown in Figure 9.3. As soon
as we try to make two “+” patterns like the one shown in Figure 9.2, they intersect, and
four saddle points are created. Similar behavior occurs as more saddle points are added.

Example 9.15 (Multiple Saddle Points) This game has multiple saddle points and
follows the pattern in Figure 9.3:

V

U

4 3 5 1 2
−1 0 −2 0 −1
−4 1 4 3 5
−3 0 −1 0 −2
3 2 −7 3 8

. (9.54)

Let (i, j ) denote the pair of choices for P1 and P2, respectively. Both (2, 2) and (4, 4) are
saddle points with value V = 0. What if P1 chooses u = 2 and P2 chooses v = 4? This is
not a problem because (2, 4) is also a saddle point. Likewise, (4, 2) is another saddle point.
In general, no problems are caused by the existence of multiple saddle points because the
resulting cost is independent of which saddle point is attempted by each player. �

9.3.3 Randomized strategies

The fact that some zero-sum games do not have a saddle point is disappointing because
regret is unavoidable in these cases. Suppose we slightly change the rules. Assume that
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the same game is repeatedly played by P1 and P2 over numerous trials. If they use a
deterministic strategy, they will choose the same actions every time, resulting in the same
costs. They may instead switch between alternative security strategies, which causes
fluctuations in the costs. What happens if they each implement a randomized strategy?
Using the idea from Section 9.1.3, each strategy is specified as a probability distribution
over the actions. In the limit, as the number of times the game is played tends to infinity,
an expected cost is obtained. One of the most famous results in game theory is that on
the space of randomized strategies, a saddle point always exists for any zero-sum matrix
game; however, expected costs must be used. Thus, if randomization is used, there will
be no regrets. In an individual trial, regret may be possible; however, as the costs are
averaged over all trials, both players will be satisfied.

9.3.3.1 Extending the formulation

Since a game under Formulation 9.7 can be nicely expressed as a matrix, it is tempting
to use linear algebra to conveniently express expected costs. Let |U | = m and |V | = n.
As in Section 9.1.3, a randomized strategy for P1 can be represented as an m-dimensional
vector,

w = [w1 w2 . . . wm]. (9.55)

The probability axioms of Section 9.1.2 must be satisfied: 1) wi ≥ 0 for all i ∈ {1, . . . , m},
and 2) w1 + · · · + wm = 1. If w is considered as a point in R

m, then the two constraints
imply that it must lie on an (m− 1)-dimensional simplex (recall Section 6.3.1). If m = 3,
this means that w lies in a triangular subset of R

3. Similarly, let z represent a randomized
strategy for P2 as an n-dimensional vector,

z = [z1 z2 . . . zn]T , (9.56)

that also satisfies the probability axioms. In (9.56), T denotes transpose, which yields a
column vector that satisfies the dimensional constraints required for an upcoming matrix
multiplication.

Let L̄(w, z) denote the expected cost that will be received if P1 plays w and P2 plays
z. This can be computed as

L̄(w, z) =
m∑

i=1

n∑

j=1

L(i, j )wizj . (9.57)

Note that the cost, L(i, j ), makes use of the assumption in Formulation 9.7 that the actions
are consecutive integers. The expected cost can be alternatively expressed using the cost
matrix, A. In this case

L̄(w, z) = wAz, (9.58)

in which the product wAz yields a scalar value that is precisely (9.57). To see this, first
consider the product Az. This yields an m-dimensional vector in which the ith element is
the expected cost that P1 would receive if it tries u = i. Thus, it appears that P1 views P2

as a nature player under the probabilistic model. Once w and Az are multiplied, a scalar
value is obtained, which averages the costs in the vector Az according the probabilities
of w.

Let W and Z denote the set of all randomized strategies for P1 and P2, respectively.
These spaces include strategies that are equivalent to the deterministic strategies consid-
ered in Section 9.3.2 by assigning probability one to a single action. Thus, W and Z can
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be considered as expansions of the set of possible strategies in comparison to what was
available in the deterministic setting. Using W and Z, randomized security strategies for
P1 and P2 are defined as

w∗ = argmin
w∈W

{
max
z∈Z

{
L̄(w, z)

}}
(9.59)

and

z∗ = argmax
z∈Z

{
min
w∈W

{
L̄(w, z)

}}
, (9.60)

respectively. These should be compared to (9.44) and (9.46). The differences are that the
space of strategies has been expanded, and expected cost is now used.

The randomized upper value is defined as

L∗ = max
z∈Z

{
L̄(w∗, z)

}
, (9.61)

and the randomized lower value is

L∗ = min
w∈W

{
L̄(w, z∗)

}
. (9.62)

Since W and Z include the deterministic security strategies, L∗ ≤ L
∗

and L∗ ≥ L∗. These
inequalities imply that the randomized security strategies may have some hope in closing
the gap between the two values in general.

The most fundamental result in zero-sum game theory was shown by von Neumann
[956, 957], and it states that L∗ = L∗

for any game in Formulation 9.7. This yields
the randomized value L∗ = L∗ = L∗

for the game. This means that there will never be
expected regret if the players stay with their security strategies. If the players apply their
randomized security strategies, then a randomized saddle point is obtained. This saddle
point cannot be seen as a simple pattern in the matrix A because it instead exists over W

and Z.
The guaranteed existence of a randomized saddle point is an important result because

it demonstrates the value of randomization when making decisions against an intelligent
opponent. In Example 9.7, it was intuitively argued that randomization seems to help
when playing against an intelligent adversary. When playing the game repeatedly with a
deterministic strategy, the other player could learn the strategy and win every time. Once
a randomized strategy is used, the players will not experience regret.

9.3.3.2 Computation of randomized saddle points

So far it has been established that a randomized saddle point always exists, but how can
one be found? Two key observations enable a combinatorial solution to the problem:

1. The security strategy for each player can be found by considering only deterministic
strategies for the opposing player.

2. If the strategy for the other player is fixed, then the expected cost is a linear function of
the undetermined probabilities.

First consider the problem of determining the security strategy for P1. The first observa-
tion means that (9.59) does not need to consider randomized strategies for P2. Inside of the
argmin, w is fixed. What randomized strategy, z ∈ Z, maximizes L̄(w, z) = wAz? If w is
fixed, then wA can be treated as a constant n-dimensional vector, s. This means L̄(w, z) =
s · z, in which · is the inner (dot) product. Now the task is to select z to maximize s · z.
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This involves selecting the largest element of s; suppose this is si . The maximum cost
over all z ∈ Z is obtained by placing all of the probability mass at action i. Thus, the
strategy zi = 1 and zj = 0 for i 	= j gives the highest cost, and it is deterministic.

Using the first observation, for each w ∈ W , only n possible responses by P2 need to
be considered. These are the n deterministic strategies, each of which assigns zi = 1 for
a unique i ∈ {1, . . . , n}.

Now consider the second observation. The expected cost, L̄(w, z) = wAz, is a linear
function of w, if z is fixed. Since z only needs to be fixed at n different values due to the
first observation, w is selected at the point at which the smallest maximum value among
the n linear functions occurs. This is the minimum value of the upper envelope of the
collection of linear functions. Such envelopes were mentioned in Section 6.5.2. Example
9.16 will illustrate this. The domain for this optimization can conveniently be set as a
triangle in R

m−1. Even though W ⊂ R
m, the last coordinate, wm, is not needed because

it is always wm = 1 − (w1 + · · · + wm−1). The resulting optimization falls under linear
programming, for which many combinatorial algorithms exist [261, 266, 667, 734].

In the explanation above, there is nothing particular to P1 when trying to find its
security strategy. The same method can be applied to determine the security strategy
for P2; however, every minimization is replaced by a maximization, and vice versa. In
summary, the min in (9.60) needs only to consider the deterministic strategies in W . If
w becomes fixed, then L̄(w, z) = wAz is once again a linear function, but this time it is
linear in z. The best randomized action is chosen by finding the point z ∈ Z that gives
the highest minimum value among m linear functions. This is the minimum value of the
lower envelope of the collection of linear functions. The optimization occurs over R

n−1

because the last coordinate, zn, is obtained directly from zn = 1 − (z1 + · · · + zn−1).
This computation method is best understood through an example.

Example 9.16 (Computing a Randomized Saddle Point) The simplest case is when
both players have only two actions. Let the cost matrix be defined as

V

U
3 0
−1 1

. (9.63)

Consider computing the security strategy for P1. Note that W and Z are only one-
dimensional subsets of R

2. A randomized strategy for P1 is w = [w1 w2], with w1 ≥
0, w2 ≥ 0, and w1 + w2 = 1. Therefore, the domain over which the optimization is
performed is w1 ∈ [0, 1] because w2 can always be derived as w2 = 1 − w1. Using the
first observation above, only the two deterministic strategies for P2 need to be considered.
When considered as linear functions of w, these are

3w1 + 0(1 − w1) (9.64)

for z1 = 1 and

w1 + (−1)(1 − w1) (9.65)

for z2 = 1. The lines are plotted in Figure 9.4a. The security strategy is determined by
the minimum point along the upper envelope shown in the figure. This is indicated by the
thickened line, and it is always a piecewise-linear function in general. The lowest point
occurs at w1 = 2/5, and the resulting value is L∗ = 3/5. Therefore, w∗ = [2/5 3/5].
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Figure 9.4: (a) Computing the randomized security strategy, w∗, for P1. (b) Computing the randomized
security strategy, z∗, for P2.

A similar procedure can be used to obtain z∗. The lines that correspond to the deter-
ministic strategies of P1 are shown in Figure 9.4b. The security strategy is obtained by
finding the maximum value along the lower envelope of the lines, which is shown as the
thickened line in the figure. This results in z∗ = [1/5 4/5]T , and once again, the value is
observed as L∗ = 3/5 (this must coincide with the previous one because the randomized
upper and lower values are the same!). �

This procedure appears quite simple if there are only two actions per player. If n =
m = 100, then the upper and lower envelopes are piecewise-linear functions in R

99. This
may be computationally impractical because all existing linear programming algorithms
have running time at least exponential in dimension [266].

9.4 Nonzero-sum games

This section parallels the development of Section 9.3, except that the more general case of
nonzero-sum games is considered. This enables games with any desired degree of conflict
to be modeled. Some decisions may even benefit all players. One of the main applications
of the subject is in economics, where it helps to explain the behavior of businesses in
competition.

The saddle-point solution will be replaced by the Nash equilibrium, which again is
based on eliminating regret. Since the players do not necessarily oppose each other, it is
possible to model a game that involves any number of players. For nonzero games, new
difficulties arise, such as the nonuniqueness of Nash equilibria and the computation of
randomized Nash equilibria does not generally fit into linear programming.

9.4.1 Two-player games

To help make the connection to Section 9.3 smoother, two-player games will be considered
first. This case is also easier to understand because the notation is simpler. The ideas are
then extended without difficulty from two players to many players. The game is formulated
as follows.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

BASIC DECISION THEORY 387

A:

≥

L∗
a

≥

B: ≥ L∗
b ≥

Figure 9.5: A Nash equilibrium can be detected in a pair of matrices by � nding some (i, j ) such that
L ∗

a = L 1(i, j ) is the lowest among all elements in column j of A, and L ∗
b = L 2(i, j ) is the lowest among all

elements in row i of B. Compare this with Figure 9.2.

Formulation 9.8 (A Two-Player Nonzero-Sum Game)

1. The same components as in Formulation 9.7, except the cost function.

2. A function, L1 : U × V → R ∪ {∞}, called the cost function for P1.

3. A function, L2 : U × V → R ∪ {∞}, called the cost function for P2.

The only difference with respect to Formulation 9.7 is that now there are two, independent
cost functions, L1 and L2, one for each player. Each player would like to minimize its
cost. There is no maximization in this problem; that appeared in zero-sum games because
P2 had opposing interests from P1. A zero-sum game can be modeled under Formulation
9.7 by setting L1 = L and L2 = −L.

Paralleling Section 9.3, first consider applying deterministic strategies to solve the
game. As before, one possibility is that a player can apply its security strategy. To
accomplish this, it does not even need to look at the cost function of the other player.
It seems somewhat inappropriate, however, to neglect the consideration of both cost
functions when making a decision. In most cases, the security strategy results in regret,
which makes it inappropriate for nonzero-sum games.

A strategy that avoids regret will now be given. A pair (u∗, v∗) of actions is defined to
be a Nash equilibrium if

L(u∗, v∗) = min
u∈U

{
L(u, v∗)

}
(9.66)

and

L(u∗, v∗) = min
v∈V

{
L(u∗, v)

}
. (9.67)

These expressions imply that neither P1 nor P2 has regret. Equation (9.66) indicates that
P1 is satisfied with its action, u∗, given the action, v∗, chosen by P2. P1 cannot reduce its
cost any further by changing its action. Likewise, (9.67) indicates that P2 is satisfied with
its action v∗.

The game in Formulation 9.8 can be completely represented using two cost matrices.
Let A and B denote the cost matrices for P1 and P2, respectively. Recall that Figure 9.2
showed a pattern for detecting a saddle point. A Nash equilibrium can be detected as
shown in Figure 9.5. Think about the relationship between the two. If A = −B, then B

can be negated and superimposed on top of A. This will yield the pattern in Figure 9.2
(each ≥ becomes ≤ because of negation). The values L∗

a and L∗
b coincide in this case.

This observation implies that if A = −B, then the Nash equilibrium is actually the same
concept as a saddle point. It applies, however, to much more general games.
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Example 9.17 (A Deterministic Nash Equlibrium) Consider the game specified by
the cost matrices A and B:

A :

V

U

9 4 7
6 −1 5
1 4 2

B :

V

U

2 1 6
5 0 2
2 2 5

. (9.68)

By applying (9.66) and (9.67), or by using the patterns in Figure 9.5, it can be seen
that u = 3 and v = 1 is a Nash equilibrium. The resulting costs are L1 = 1 and L2 = 2.
Another Nash equilibrium appears at u = 2 and v = 2. This yields costs L1 = −1 and
L2 = 0, which is better for both players.

For zero-sum games, the existence of multiple saddle points did not cause any problem;
however, for nonzero-sum games, there are great troubles. In the example shown here,
one Nash equilibrium is clearly better than the other for both players. Therefore, it may
seem reasonable that a rational DM would choose the better one. The issue of multiple
Nash equilibria will be discussed next. �

9.4.1.1 Dealing with multiple Nash equilibria

Example 9.17 was somewhat disheartening due to the existence of multiple Nash equi-
libria. In general, there could be any number of equilibria. How can each player know
which one to play? If they each choose a different one, they are not guaranteed to fall
into another equilibrium as in the case of saddle points of zero-sum games. Many of the
equilibria can be eliminated by using Pareto optimality, which was explained in Section
9.1.1 and also appeared in Section 7.7.2 as a way to optimally coordinate multiple robots.
The idea is to formulate the selection as a multi-objective optimization problem, which
fits into Formulation 9.2.

Consider two-dimensional vectors of the form (xi, yi), in which x and y represent the
costs L1 and L2 obtained under the implementation of a Nash equilibrium denoted by πi .
For two different equilibria π1 and π2, the cost vectors (x1, y1) and (x2, y2) are obtained.
In Example 9.17, these were (1, 2) and (−1, 0). In general, π1 is said to be better than
π2 if x1 ≤ x2, y1 ≤ y2, and at least one of the inequalities is strict. In Example 9.17,
the equilibrium that produces (−1, 0) is clearly better than obtaining (1, 2) because both
players benefit.

The definition of “better” induces a partial ordering on the space of Nash equilibria.
It is only partial because some vectors are incomparable. Consider, for example, (−1, 1)
and (1,−1). The first one is preferable to P1, and the second is preferred by P2. In game
theory, the Nash equilibria that are minimal with respect to this partial ordering are called
admissible. They could alternatively be called Pareto optimal.

The best situation is when a game has one Nash equilibrium. If there are multiple
Nash equilibria, then there is some hope that only one of them is admissible. In this
case, it is hoped that the rational players are intelligent enough to figure out that any
nonadmissible equilibria should be discarded. Unfortunately, there are many games that
have multiple admissible Nash equilibria. In this case, analysis of the game indicates that
the players must communicate or collaborate in some way to eliminate the possibility of
regret. Otherwise, regret is unavoidable in the worst case. It is also possible that there
are no Nash equilibria, but, fortunately, by allowing randomized strategies, a randomized
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Nash equilibrium is always guaranteed to exist. This will be covered after the following
two examples.

Example 9.18 (The Battle of the Sexes) Consider a game specified by the cost matrices
A and B:

A :
V

U
−2 0
0 −1

B :
V

U
−1 0
0 −2

. (9.69)

This is a famous game called the “Battle of the Sexes.” Suppose that a man and a woman
have a relationship, and they each have different preferences on how to spend the evening.
The man prefers to go shopping, and the woman prefers to watch a football match. The
game involves selecting one of these two activities. The best case for either one is to
do what they prefer while still remaining together. The worst case is to select different
activities, which separates the couple. This game is somewhat unrealistic because in most
situations some cooperation between them is expected.

Both u = v = 1 and u = v = 2 are Nash equilibria, which yield cost vectors (−2,−1)
and (−1,−2), respectively. Neither solution is better than the other; therefore, they are
both admissible. There is no way to avoid the possibility of regret unless the players
cooperate (you probably already knew this). �

The following is one of the most famous nonzero-sum games.

Example 9.19 (The Prisoner’s Dilemma) The following game is very simple to express,
yet it illustrates many interesting issues. Imagine that a heinous crime has been committed
by two people. The authorities know they are guilty, but they do not have enough evidence
to convict them. Therefore, they develop a plan to try to trick the suspects. Each suspect
(or player) is placed in an isolated prison cell and given two choices. Each player can
cooperate with the authorities, u = 1 or v = 1, or refuse, u = 2 or v = 2. By cooperating,
the player admits guilt and turns over evidence to the authorities. By refusing, the player
claims innocence and refuses to help the authorities.

The cost Li represents the number of years that the player will be sentenced to prison.
The cost matrices are assigned as

A :
V

U
8 0

30 2
B :

V

U
8 30
0 2

. (9.70)

The motivation is that both players receive 8 years if they both cooperate, which is the
sentence for being convicted of the crime and being rewarded for cooperating with the
authorities. If they both refuse, then they receive 2 years because the authorities have
insufficient evidence for a longer term. The interesting cases occur if one refuses and
the other cooperates. The one who refuses is in big trouble because the evidence provided
by the other will be used against him. The one who cooperates gets to go free (the cost is
0); however, the other is convicted on the evidence and spends 30 years in prison.

What should the players do? What would you do? If they could make a coordinated
decision, then it seems that a good choice would be for both to refuse, which results in
costs (2, 2). In this case, however, there would be regret because each player would think
that he had a chance to go free (receiving cost 0 by refusing). If they were to play the
game a second time, they might be inclined to change their decisions.
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The Nash equilibrium for this problem is for both of them to cooperate, which results
in (8, 8). Thus, they pay a price for not being able to communicate and coordinate their
strategy. This solution is also a security strategy for the players, because it achieves the
lowest cost using worst-case analysis. �

9.4.1.2 Randomized Nash equilibria

What happens if a game has no Nash equilibrium over the space of deterministic strategies?
Once again the problem can be alleviated by expanding the strategy space to include
randomized strategies. In Section 9.3.3 it was explained that every zero-sum game under
Formulation 9.7 has a randomized saddle point on the space of randomized strategies. It
was shown by Nash that every nonzero-sum game under Formulation 9.8 has a randomized
Nash equilibrium [733]. This is a nice result; however, there are a couple of concerns.
There may still exist other admissible equilibria, which means that there is no reliable
way to avoid regret unless the players collaborate. The other concern is that randomized
Nash equilibria unfortunately cannot be computed using the linear programming approach
of Section 9.3.3. The required optimization is instead a form of nonlinear programming
[96, 667, 734], which does not necessarily admit a nice, combinatorial solution.

Recall the definition of randomized strategies from Section 9.3.3. For a pair (w, z) of
randomized strategies, the expected costs, L̄1(w, z) and L̄2(w, z), can be computed using
(9.57). A pair (w∗, z∗) of strategies is said to be a randomized Nash equilibrium if

L̄1(w∗, z∗) = min
w∈W

{
L̄1(w, z∗)

}
(9.71)

and

L̄2(w∗, z∗) = min
z∈Z

{
L̄2(w∗, z)

}
. (9.72)

In game-theory literature, this is usually referred to as a mixed Nash equilibrium. Note
that (9.71) and (9.72) are just generalizations of (9.66) and (9.67) from the space of
deterministic strategies to the space of randomized strategies.

Using the cost matrices A and B, the Nash equilibrium conditions can be written as

w∗Az∗ = min
w∈W

{
wAz∗

}
(9.73)

and

w∗Bz∗ = min
z∈Z

{
w∗Bz

}
. (9.74)

Unfortunately, the computation of randomized Nash equilibria is considerably more
challenging than computing saddle points. The main difficulty is that Nash equilibria are
not necessarily security strategies. By using security strategies, it is possible to decouple
the decisions of the players into separate linear programming problems, as was seen
in Example 9.16. For the randomized Nash equilibrium, the optimization between the
players remains coupled. The resulting optimization is often referred to as the linear
complementarity problem. This can be formulated as a nonlinear programming problem
[667, 734], which means that it is a nonlinear optimization that involves both equality
and inequality constraints on the domain (in this particular case, a bilinear programming
problem is obtained [60]).

Example 9.20 (Finding a Randomized Nash Equilibrium) To get an idea of the kind
of optimization that is required, recall Example 9.18. A randomized Nash equilibrium
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that is distinct from the two deterministic equilibria can be found. Using the cost matrices
from Example 9.18, the expected cost for P1 given randomized strategies w and z is

L̄1(w, z) = wAz

= (w1 w2
) (−2 0

0 −1

)(
z1

z2

)

=− 2w1z1 − w2z2

=− 3w1z1 + w1 + z1,

(9.75)

in which the final step uses the fact that w2 = 1 − w1 and z2 = 1 − z1. Similarly, the
expected cost for P2 is

L̄2(w, z) = wBz

= (w1 w2
) (−1 0

0 −2

)(
z1

z2

)

=− w1z1 − 2w2z2

=− 3w1z1 + 2w1 + 2z1.

(9.76)

If z is fixed, then the final equation in (9.75) is linear in w; likewise, if w is fixed,
then (9.76) is linear in z. In the case of computing saddle points for zero-sum games, we
were allowed to make this assumption; however, it is not possible here. We must choose
(w∗, z∗) to simultaneously optimize (9.75) while z = z∗ and (9.76) while w = w∗.

It turns out that this problem is simple enough to solve with calculus. Using the classical
optimization method of taking derivatives, a candidate solution can be found by computing

∂L̄1(w1, z1)

∂w1
= 1 − 3z1 (9.77)

and

∂L̄2(w1, z1)

∂z1
= 2 − 3w1. (9.78)

Extrema occur when both of these simultaneously become 0. Solving 1 − 3z1 = 0 and
2 − 3w1 = 0 yields (w∗, z∗) = (2/3, 1/3), which is a randomized Nash equilibrium. The
deterministic Nash equilibria are not detected by this method because they occur on the
boundary of W and Z, where the derivative is not defined. �

The computation method in Example 9.20 did not appear too difficult because there
were only two actions per player, and half of the matrix costs were 0. In general, two
complicated equations must be solved simultaneously. The expressions, however, are
always second-degree polynomials. Furthermore, they each become linear with respect to
the other variables if w or z is held fixed.

Summary of possible solutions

The solution possibilities to remember for a nonzero-sum game under Formulation 9.8
are as follows.

1. There may be multiple, admissible (deterministic) Nash equilibria.

2. There may be no (deterministic) Nash equilibria.

3. There is always at least one randomized Nash equilibrium.
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9.4.2 More than two players

The ideas of Section 9.4.1 easily generalize to any number of players. The main difficulty
is that complicated notation makes the concepts appear more difficult. Keep in mind,
however, that there are no fundamental differences. A nonzero-sum game with n players
is formulated as follows.

Formulation 9.9 (An n-Player Nonzero-Sum Game)

1. A set of n players, P1, P2, . . . , Pn.

2. For each player Pi , a finite, nonempty set Ui called the action space for Pi . For conve-
nience, assume that each Ui is a set of consecutive integers from 1 to |Ui |. Each ui ∈ Ui

is referred to as an action of Pi .

3. For each player Pi , a function, Li : U 1 × U 2 × · · · × Un → R ∪ {∞} called the cost
function for Pi .

A matrix formulation of the costs is no longer possible because there are too many
dimensions. For example, if n = 3 and |Ui | = 2 for each player, then Li(u1, u2, u3) is
specified by a 2 × 2 × 2 cube of 8 entries. Three of these cubes are needed to specify
the game. Thus, it may be helpful to just think of Li as a multivariate function and avoid
using matrices.4

The Nash equilibrium idea generalizes by requiring that each Pi experiences no regret,
given the actions chosen by the other n− 1 players. Formally, a set (u1∗, . . . , un∗) of
actions is said to be a (deterministic) Nash equilibrium if

Li(u
1∗, . . . , ui∗, . . . , un∗) = min

ui∈Ui

{
Li(u

1∗, . . . , u(i−1)∗, ui, u(i+1)∗, . . . , un∗)
}

(9.79)

for every i ∈ {1, . . . , n}.
For n > 2, any of the situations summarized at the end of Section 9.4.1 can occur.

There may be no deterministic Nash equilibria or multiple Nash equilibria. The definition
of an admissible Nash equilibrium is extended by defining the notion of better over n-
dimensional cost vectors. Once again, the minimal vectors with respect to the resulting
partial ordering are considered admissible (or Pareto optimal). Unfortunately, multiple
admissible Nash equilibria may still exist.

It turns out that for any game under Formulation 9.9, there exists a randomized Nash
equilibrium. Let zi denote a randomized strategy for Pi . The expected cost for each Pi can
be expressed as

L̄i(z1, z2, . . . , zn) =
m1∑

i1=1

m2∑

i2=1

· · ·
mn∑

in=1

Li(i1, i2, . . . , in)z1
i1
z2
i2
· · · zn

in
. (9.80)

Let Zi denote the space of randomized strategies for Pi . An assignment, (z1∗, . . . , zn∗),
of randomized strategies to all of the players is called a randomized Nash equilibrium if

L̄i(z1∗, . . . , zi∗, . . . , zn∗) = min
zi∈Zi

{
L̄i(z1∗, . . . , z(i−1)∗, zi, z(i+1)∗, . . . , zn∗)

}
(9.81)

for all i ∈ {1, . . . , n}.
As might be expected, computing a randomized Nash equilibrium for n > 2 is even

more challenging than for n = 2. The method of Example 9.20 can be generalized to

4 If you enjoy working with tensors, these could be used to capture n-player cost functions [109].
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n-player games; however, the expressions become even more complicated. There are n

equations, each of which appears linear if the randomized strategies are fixed for the
other n− 1 players. The result is a collection of n-degree polynomials over which n

optimization problems must be solved simultaneously.

Example 9.21 (A Three-Player Nonzero-Sum Game) Suppose there are three players,
P1, P2, and P3, each of which has two actions, 1 and 2. A deterministic strategy is specified
by a vector such as (1, 2, 1), which indicates u1 = 1, u2 = 2, and u3 = 1.

Now some costs will be defined. For convenience, let

L(i, j, k) =
(
L1(i, j, k), L2(i, j, k), L3(i, j, k)

)
(9.82)

for each i, j, k ∈ {1, 2}. Let the costs be

L(1, 1, 1) = (1, 1,−2) L(1, 1, 2) = (−4, 3, 1)

L(1, 2, 1) = (2,−4, 2) L(1, 2, 2) = (−5,−5, 10) (9.83)

L(2, 1, 1) = (3,−2,−1) L(2, 1, 2) = (−6,−6, 12)

L(2, 2, 1) = (2, 2,−4) L(2, 2, 2) = (−2, 3,−1).

There are two deterministic Nash equilibria, which yield the costs (2,−4, 2) and
(3,−2,−1). These can be verified using (9.79). Each player is satisfied with the outcome
given the actions chosen by the other players. Unfortunately, both Nash equilibria are
both admissible. Therefore, some collaboration would be needed between the players to
ensure that no regret will occur. �

9.5 Decision theory under scrutiny

Numerous models for decision making were introduced in this chapter. These provide
a foundation for planning under uncertainty, which is the main focus of Part III. Before
constructing planning models with this foundation, it is important to critically assess how
appropriate it may be in applications. You may have had many questions while reading
Sections 9.1 to 9.4. How are the costs determined? Why should we believe that optimizing
the expected cost is the right thing to do? What happens if prior probability distributions
are not available? Is worst-case analysis too conservative? Can we be sure that players
in a game will follow the assumed rational behavior? Is it realistic that players know
each other’s cost functions? The purpose of this section is to help shed some light on
these questions. A building is only as good as its foundation. Any mistakes made by
misunderstanding the limitations of decision theory will ultimately work their way into
planning formulations that are constructed from them.

9.5.1 Utility theory and rationality

This section provides some justification for using cost functions and then minimizing their
expected value under Formulations 9.3 and 9.4. The resulting framework is called utility
theory, which is usually formulated using rewards instead of costs. As stated in Section
9.1.1, a cost can be converted into a reward by multiplying by −1 and then swapping
each maximization with minimization. We will therefore talk about a reward R with the
intuition that a higher reward is better.
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9.5.1.1 Comparing rewards

Imagine assigning reward values to various outcomes of a decision-making process. In
some applications numerical values may come naturally. For example, the reward might
be the amount of money earned in a financial investment. In robotics applications, one
could negate time to execute a task or the amount of energy consumed. For example, the
reward could indicate the amount of remaining battery life after a mobile robot builds a
map.

In some applications the source of rewards may be subjective. For example, what is
the reward for washing dishes, in comparison to sweeping the floor? Each person would
probably assign different rewards, which may even vary from day to day. It may be based
on their enjoyment or misery in performing the task, the amount of time each task would
take, the perceptions of others, and so on. If decision theory is used to automate the
decision process for a human “client,” then it is best to consult carefully with the client
to make sure you know their preferences. In this situation, it may be possible to sort their
preferences and then assign rewards that are consistent with the ordering.

Once the rewards are assigned, consider making a decision under Formulation 9.1,
which does not involve nature. Each outcome corresponds directly to an action, u ∈ U . If
the rewards are given by R : U → R, then the cost, L, can be defined as L(u) = −R(u)
for every u ∈ U . Satisfying the client is then a matter of choosing u to minimize L.

Now consider a game against nature. The decision now involves comparing probability
distributions over the outcomes. The space of all probability distributions may be enor-
mous, but this is simplified by using expectation to map each probability distribution (or
density) to a real value. The concern should be whether this projection of distributions
onto real numbers will fail to reflect the true preferences of the client. The following
example illustrates the effect of this.

Example 9.22 (Do You Like to Gamble?) Suppose you are given three choices:

1. You can have 1000 Euros.

2. We will toss an unbiased coin, and if the result is heads, then you will receive 2000 Euros.
Otherwise, you receive nothing.

3. With probability 2/3, you can have 3000 Euros; however, with probability 1/3, you have
to give me 3000 Euros.

The expected reward for each of these choices is 1000 Euros, but would you really consider
these to be equivalent? Your love or disdain for gambling is not being taken into account
by the expectation. How should such an issue be considered in games against nature? �

To begin to fix this problem, it is helpful to consider another scenario. Many people
would probably agree that having more money is preferable (if having too much worries
you, then you can always give away the surplus to your favorite charities). What is
interesting, however, is that being wealthy decreases the perceived value of money. This
is illustrated in the next example.

Example 9.23 (Reality Television) Suppose you are lucky enough to appear on a popular
reality television program. The point of the show is to test how far you will go in making
a fool out of yourself, or perhaps even torturing yourself, to earn some money. You are
asked to do some unpleasant task (such as eating cockroaches, or holding your head under
water for a long time, and so on.). Let u1 be the action to agree to do the task, and let u2
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mean that you decline the opportunity. The prizes are expressed in U.S. dollars. Imagine
that you are a starving student on a tight budget.

Below are several possible scenarios that could be presented on the television program.
Consider how you would react to each one.

1. Suppose that u1 earns you $1 and u2 earns you nothing. Purely optimizing the reward
would lead to choosing u1, which means performing the unpleasant task. However, is
this worth $1? The problem so far is that we are not taking into account the amount of
discomfort in completing a task. Perhaps it might make sense to make a reward function
that shifts the dollar values by subtracting the amount for which you would be just barely
willing to perform the task.

2. Suppose that u1 earns you $10,000 and u2 earns you nothing. $10,000 is assumed to be an
enormous amount of money, clearly worth enduring any torture inflicted by the television
program. Thus, u1 is preferable.

3. Now imagine that the television host first gives you $10 million just for appearing on
the program. Are you still willing to perform the unpleasant task for an extra $10,000?
Probably not. What is happening here? Your sense of value assigned to money seems to
decrease as you get more of it, right? It would not be too interesting to watch the program
if the contestants were all wealthy oil executives.

4. Suppose that you have performed the task and are about to win the prize. Just to add
to the drama, the host offers you a gambling opportunity. You can select action u1 and
receive $10,000, or be a gambler by selecting u2 and have probability 1/2 of winning
$25,000 by the tossing of a fair coin. In terms of the expected reward, the clear choice is
u2. However, you just completed the unpleasant task and expect to earn money. The risk
of losing it all may be intolerable. Different people will have different preferences in this
situation.

5. Now suppose once again that you performed the task. This time your choices are u1, to
receive $100, or u2, to have probability 1/2 of receiving $250 by tossing a fair coin. The
host is kind enough, though, to let you play 100 times. In this case, the expected totals
for the two actions are $10,000 and $12,500, respectively. This time it seems clear that
the best choice is to gamble. After 100 independent trials, we would expect that, with
extremely high probability, over $10,000 would be earned. Thus, reasoning by expected-
case analysis seems valid if we are allowed numerous, independent trials. In this case,
with high probability a value close to the expected reward should be received. �

Based on these examples, it seems that the client or evaluator of the decision-making
system must indicate preferences between probability distributions over outcomes. There
is a formal way to ensure that once these preferences are assigned, a cost function can be
designed for which its expectation faithfully reflects the preferences over distributions.
This results in utility theory, which involves the following steps:

1. Require that the client is rational when assigning preferences. This notion is defined
through axioms.

2. If the preferences are assigned in a way that is consistent with the axioms, then a utility
function is guaranteed to exist. When expected utility is optimized, the preferences match
exactly those of the client.

3. The cost function can be derived from the utility function.

The client must specify preferences among probability distributions of outcomes. Sup-
pose that Formulation 9.2 is used. For convenience, assume that U and � are finite.
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Let X denote a state space based on outcomes.5 Let f : U ×� → X denote a mapping
that assigns a state to every outcome. A simple example is to declare that X = U ×�

and make f the identity map. This makes the outcome space and state space coincide. It
may be convenient, though, to use f to collapse the space of outcomes down to a smaller
set. If two outcomes map to the same state using f , then it means that the outcomes are
indistinguishable as far as rewards or costs are concerned.

Let z denote a probability distribution over X, and let Z denote the set of all prob-
ability distributions over X. Every z ∈ Z is represented as an n-dimensional vector of
probabilities in which n = |X|; hence, it is considered as an element of R

n. This makes it
convenient to “blend” two probability distributions. For example, let α ∈ (0, 1) be a con-
stant, and let z1 and z2 be any two probability distributions. Using scalar multiplication, a
new probability distribution, αz1 + (1 − α)z2, is obtained, which is a blend of z1 and z2.
Conveniently, there is no need to normalize the result. It is assumed that z1 and z2 initially
have unit magnitude. The blend has magnitude α + (1 − α) = 1.

The modeler of the decision process must consult the client to represent preferences
among elements of Z. Let z1 ≺ z2 mean that z2 is strictly preferred over z1. Let z1 ≈ z2

mean that z1 and z2 are equivalent in preference. Let z1 % z2 mean that either z1 ≺ z2 or
z1 ≈ z2. The following example illustrates the assignment of preferences.

Example 9.24 (Indicating Preferences) Suppose that U = � = {1, 2}, which leads to
four possible outcomes: (1, 1), (1, 2), (2, 1), and (2, 2). Imagine that nature represents
a machine that generates 1 or 2 according to a probability distribution. The action is to
guess the number that will be generated by the machine. If you pick the same number,
then you win that number of gold pieces. If you do not pick the same number, then you
win nothing, but also lose nothing.

Consider the construction of the state space X by using f . The outcomes (2, 1) and
(1, 2) are identical concerning any conceivable reward. Therefore, these should map to the
same state. The other two outcomes are distinct. The state space therefore needs only three
elements and can be defined as X = {0, 1, 2}. Let f (2, 1) = f (1, 2) = 0, f (1, 1) = 1, and
f (2, 2) = 2. Thus, the last two states indicate that some gold will be earned.

The set Z of probability distributions over X is now considered. Each z ∈ Z is a three-
dimensional vector. As an example, z1 = [1/2 1/4 1/4] indicates that the state will
be 0 with probability 1/2, 1 with probability 1/4, and 2 with probability 1/4. Suppose
z2 = [1/3 1/3 1/3]. Which distribution would you prefer? It seems in this case that z2

is uniformly better than z1 because there is a greater chance of winning gold. Thus, we
declare z1 ≺ z2. The distribution z3 = [1 0 0] seems to be the worst imaginable. Hence,
we can safely declare z3 ≺ z1 and z1 ≺ z2.

The procedure of determining the preferences can become quite tedious for complicated
problems. In the current example, Z is a 2D subset of R

3. This subset can be partitioned into
a finite set of regions over which the client may be able to clearly indicate preferences. One
of the major criticisms of this framework is the impracticality of determining preferences
over Z [834].

After the preferences are determined, is there a way to ensure that a real-value function
on X exists for which the expected value exactly reflects the preferences? If the axioms
of rationality are satisfied by the assignment of preferences, then the answer is yes. These
axioms are covered next. �

5 In most utility theory literature, this is referred to as a reward space, R [91].



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

BASIC DECISION THEORY 397

9.5.1.2 Axioms of rationality

To meet the goal of designing a utility function, it turns out that the preferences must
follow rules called the axioms of rationality. They are sensible statements of consistency
among the preferences. As long as these are followed, then a utility function is guaranteed
to exist (detailed arguments appear in [270, 834]). The decision maker is considered
rational if the following axioms are followed when defining ≺ and ≈:6

1. If z1, z2 ∈ Z, then either z1 % z2 or z2 % z1.
“You must be able to make up your mind.”

2. If z1 % z2 and z2 % z3, then z1 % z3.
“Preferences must be transitive.”

3. If z1 ≺ z2, then

αz1 + (1 − α)z3 ≺ αz2 + (1 − α)z3, (9.84)

for any z3 ∈ Z and α ∈ (0, 1).
“Evenly blending in a new distribution does not alter preference.”

4. If z1 ≺ z2 ≺ z3, then there exists some α ∈ (0, 1) and β ∈ (0, 1) such that

αz1 + (1 − α)z3 ≺ z2 (9.85)

and

z2 ≺ βz1 + (1 − β)z3. (9.86)

“There is no heaven or hell.”

Each axiom has an intuitive interpretation that makes practical sense. The first one
simply indicates that the preference direction can always be inferred for a pair of distri-
butions. The second axiom indicates that preferences must be transitive.7 The last two
axioms are somewhat more complicated. In the third axiom, z2 is strictly preferred to z1.
An attempt is made to cause confusion by blending in a third distribution, z3. If the same
“amount” of z3 is blended into both z1 and z2, then the preference should not be affected.
The final axiom involves z1, z2, and z3, each of which is strictly better than its predecessor.
The first equation, (9.85), indicates that if z2 is strictly better than z1, then a tiny amount
of z3 can be blended into z1, with z2 remaining preferable. If z3 had been like “heaven”
(i.e., infinite reward), then this would not be possible. Similarly, (9.86) indicates that a
tiny amount of z1 can be blended into z3, and the result remains better than z2. This means
that z1 cannot be “hell,” which would have infinite negative reward.8

9.5.1.3 Constructing a utility function

If the preferences have been determined in a way consistent with the axioms, then it can
be shown that a utility function always exists. This means that there exists a function

6 Alternative axiom systems exist [270, 842].
7 For some reasonable problems, however, transitivity is not desirable. See the Candorcet and Simpson paradoxes

in [834].
8 Some axiom systems allow infinite rewards, which lead to utility and cost functions with infinite values, but this

is not considered here.
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U(x)

x

Figure 9.6: The utility of new amounts of money decreases as the total accumulation of wealth increases.
The utility function may even bounded.

U : X → R such that, for all z1, z2 ∈ Z,

z1 ≺ z2 if and only if Ez1 [U] < Ez2 [U], (9.87)

in which Ezi
denotes the expected value of U , which is being treated as a random variable

under the probability distribution zi . The existence of U implies that it is safe to determine
the best action by maximizing the expected utility.

A reward function can be defined using a utility function, U , as R(u, θ) = U(f (u, θ)).
The utility function can be converted to a cost function as L(u, θ) = −R(u, θ) =
−U(f (u, θ)). Minimizing the expected cost, as was recommended under Formulations
9.3 and 9.4 with probabilistic uncertainty, now seems justified under the assumption that
U was constructed correctly to preserve preferences.

Unfortunately, establishing the existence of a utility function does not produce a sys-
tematic way to construct it. In most circumstances, one is forced to design U by a trial-
and-error process that involves repeatedly checking the preferences. In the vast majority
of applications, people create utility and cost functions without regard to the implica-
tions discussed in this section. Thus, undesirable conclusions may be reached in practice.
Therefore, it is important not to be too confident about the quality of an optimal decision
rule.

Note that if worst-case analysis had been used, then most of the problems discussed
here could have been avoided. Worst-case analysis, however, has its weaknesses, which
will be discussed in Section 9.5.3.

Example 9.25 (The Utility of Money) We conclude the section by depicting a utility
function that is often applied to money. Suppose that the state space X = R, which corre-
sponds to the amount of U.S. dollars earned. The utility of money applied by most people
indicates that the value of new increments of money decreases as the total accumulated
wealth increases. The utility function may even be bounded. Imagine there is some maxi-
mum dollar amount, such as $10100, after which additional money has no value. A typical
utility curve is shown in Figure 9.6 [91]. �

9.5.2 Concerns regarding the probabilistic model

Section 9.5.1 addressed the source of cost functions and the validity of taking their
expectations. This section raises concerns over the validity of the probability distributions
used in Section 9.2. The two main topics are criticisms of Bayesian methods in general
and problems with constructing probability distributions.
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9.5.2.1 Bayesians vs. frequentists

For the past century and a half, there has been a fundamental debate among statisticians on
the meaning of probabilities. Virtually everyone is satisfied with the axioms of probability,
but beyond this, what is their meaning when making inferences? The two main camps
are the frequentists and the Bayesians. A form of Bayes’ rule was published in 1763 after
the death of Bayes [82]. During most of the nineteenth century Bayesian analysis tended
to dominate literature; however, during the twentieth century, the frequentist philosophy
became more popular as a more rigorous interpretation of probabilities. In recent years,
the credibility of Bayesian methods has been on the rise again.

As seen so far, a Bayesian interprets probabilities as the degree of belief in a hypothesis.
Under this philosophy, it is perfectly valid to begin with a prior distribution, gather a few
observations, and then make decisions based on the resulting posterior distribution from
applying Bayes’ rule.

From a frequentist perspective, Bayesian analysis makes far too liberal use of probabil-
ities. The frequentist believes that probabilities are only defined as the quantities obtained
in the limit after the number of independent trials tends to infinity. For example, if an
unbiased coin is tossed over numerous trials, the probability 1/2 represents the value to
which the ratio between heads and the total number of trials will converge as the number
of trials tends to infinity. On the other hand, a Bayesian might say that the probability that
the next trial results in heads is 1/2. To a frequentist, this interpretation of probability is
too strong.

Frequentists have developed a version of decision theory based on their philosophy;
comparisons between the two appear in [834]. As an example, a frequentist would advocate
optimizing the following frequentist risk to obtain a decision rule:

R(θ, π ) =
∫

y

L(π (y), θ )P (y|θ )dy, (9.88)

in which π represents the strategy, π : Y → U . The frequentist risk averages over all data,
rather than making a decision based on a single observation, as advocated by Bayesians
in (9.26). The probability P (y|θ) is assumed to be obtained in the limit as the number
of independent data trials tends to infinity. The main drawback in using (9.88) is that the
optimization depends on θ . The resulting best decision rule must depend on θ , which is
unknown. In some limited cases, it may be possible to select some π that optimizes (9.88)
for all θ , but this rarely occurs. Thus, the frequentist risk can be viewed as a constraint on
the desirability of strategies, but it usually is not powerful enough to select a single one.
This problem is reminiscent of Pareto optimality, which was discussed in Section 9.1.1.
The frequentist approach attempts to be more conservative and rigorous, with the result
being that weaker statements are made regarding decisions.

9.5.2.2 The source of prior distributions

Suppose that the Bayesian method has been adopted. The most widespread concern in all
Bayesian analyses is the source of the prior distribution. In Section 9.2, this is represented
as P (θ) (or p(θ)), which represents a distribution (or density) over the nature action
space. The best way to obtain P (θ) is by estimating the distribution over numerous
independent trials. This brings its definition into alignment with frequentist views. This
was possible with Example 9.11, in which P (θ) could be reliably estimated from the
frequency of occurrence of letters across numerous pages of text. The distribution could
even be adapted to a particular language or theme.
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In most applications that use decision theory, however, it is impossible or too costly
to perform such experiments. What should be done in this case? If a prior distribution is
simply “made up,” then the resulting posterior probabilities may be suspect. In fact, it may
be invalid to call them probabilities at all. Sometimes the term subjective probabilities
is used in this case. Nevertheless, this is commonly done because there are few other
options. One of these options is to resort to frequentist decision theory, but, as mentioned,
it does not work with single observations.

Fortunately, as the number of observations increases, the influence of the prior on
the Bayesian posterior distributions diminishes. If there is only one observation, or even
none as in Formulation 9.3, then the prior becomes very influential. If there is little or no
information regarding P (θ), the distribution should be designed as carefully as possible. It
should also be understood that whatever conclusions are made with this assumption, they
are biased by the prior. Suppose this model is used as the basis of a planning approach.
You might feel satisfied computing the “optimal” plan, but this notion of optimality could
still depend on some arbitrary initial bias due to the assignment of prior values.

If there is no information available, then it seems reasonable that P (θ) should be as
uniform as possible over �. This was referred to by Laplace as the “principle of insufficient
reason” [584]. If there is no reason to believe that one element is more likely than another,
then they should be assigned equal values. This can also be justified by using Shannon’s
entropy measure from information theory [50, 250, 866]. In the discrete case, this is

−
∑

θ∈�

P (θ ) lg P (θ ), (9.89)

and in the continuous case it is

−
∫

�

p(θ ) lg p(θ )dθ. (9.90)

This entropy measure was developed in the context of communication systems to estimate
the minimum number of bits needed to encode messages delivered through a noisy
medium. It generally indicates the amount of uncertainty associated with the distribution.
A larger value of entropy implies a greater amount of uncertainty.

It turns out that the entropy function is maximized when P (θ) is a uniform distribution,
which seems to justify the principle of insufficient reason. This can be considered as a
noninformative prior. The idea is even applied quite frequently when � = R, which leads
to an improper prior. The density function cannot maintain a constant, nonzero value over
all of R because its integral would be infinite. Since the decisions made in Section 9.2 do
not depend on any normalizing factors, a constant value can be assigned for p(θ) and the
decisions are not affected by the fact that the prior is improper.

The main difficulty with applying the entropy argument in the selection of a prior is that
� itself may be chosen in a number of arbitrary ways. Uniform assignments to different
choices of � ultimately yield different information regarding the priors. Consider the
following example.

Example 9.26 (A Problem with Noninformative Priors) Consider a decision about
what activities to do based on the weather. Imagine that there is absolutely no information
about what kind of weather is possible. One possible assignment is � = {p, c}, in which
p means “precipitation” and c means “clear.” Maximizing (9.89) suggests assigning
P (p) = P (c) = 1/2.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

BASIC DECISION THEORY 401

After thinking more carefully, perhaps we would like to distinguish between different
kinds of precipitation. A better set of nature actions would be � = {r, s, c}, in which
c still means “clear,” but precipitation p has been divided into r for “rain” and s for
“snow.” Now maximizing (9.89) assigns probability 1/3 to each nature action. This is
clearly different from the original assignment. Now that we distinguish between different
kinds of precipitation, it seems that precipitation is much more likely to occur. Does
our preference to distinguish between different forms of precipitation really affect the
weather? �

Example 9.27 (Noninformitive Priors for Continuous Spaces) Similar troubles can
result in continuous spaces. Recall the parameter estimation problem described in Example
9.12. Suppose instead that the task is to estimate a line based on some data points that
were supposed to fall on the line but missed due to noise in the measurement process.

What initial probability density should be assigned to �, the set of all lines? Suppose
that the line lives in Z = R

2. The line equation can be expressed as

θ1z1 + θ2z2 + θ3 = 0. (9.91)

The problem is that if the parameter vector, θ = [θ1 θ2 θ3], is multiplied by a scalar
constant, then the same line is obtained. Thus, even though θ ∈ R

3, a constraint must be
added. Suppose we require that

θ2
1 + θ2

2 + θ1
3 = 1 (9.92)

and θ1 ≥ 0. This mostly fixes the problem and ensures that each parameter value cor-
responds to a unique line (except for some duplicate cases at θ1 = 0, but these can be
safely neglected here). Thus, the parameter space is the upper half of a sphere, S

2. The
maximum-entropy prior suggests assigning a uniform probability density to �. This may
feel like the right thing to do, but this notion of uniformity is biased by the particular
constraint applied to the parameter space to ensure uniqueness. There are many other
choices. For example, we could replace (9.92) by constraints that force the points to lie on
the upper half of the surface of cube, instead of a sphere. A uniform probability density
assigned in this new parameter space certainly differs from one over the sphere.

In some settings, there is a natural representation of the parameter space that is invariant
to certain transformations. Section 5.1.4 introduced the notion of Haar measure. If the Haar
measure is used as a noninformative prior, then a meaningful notion of uniformity may be
obtained. For example, suppose that the parameter space is SO(3). Uniform probability
mass over the space of unit quaternions, as suggested in Example 5.14, is an excellent
choice for a noninformative prior because it is consistent with the Haar measure, which
is invariant to group operations applied to the events. Unfortunately, a Haar measure does
not exist for most spaces that arise in practice.9 �

9.5.2.3 Incorrect assumptions on conditional distributions

One final concern is that many times even the distribution P (y|θ) is incorrectly estimated
because it is assumed arbitrarily to belong to a family of distributions. For example, it
is often very easy to work with Gaussian densities. Therefore, it is tempting to assume
that p(y|θ) is Gaussian. Experiments can be performed to estimate the mean and variance

9 A locally compact topological group is required [348, 839].
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parameters. Even though some best fit will be found, it does not necessarily imply that
a Gaussian is a good representation. Conclusions based on this model may be incorrect,
especially if the true distribution has a different shape, such as having a larger tail or being
multimodal. In many cases, nonparametric methods may be needed to avoid such biases.
Such methods do not assume a particular family of distributions. For example, imagine
estimating a probability distribution by making a histogram that records the frequency of
y occurrences for a fixed value of θ . The histogram can then be normalized to contain a
representation of the probability distribution without assuming an initial form.

9.5.3 Concerns regarding the nondeterministic model

Given all of the problems with probabilistic modeling, it is tempting to abandon the
whole framework and work strictly with the nondeterministic model. This only requires
specifying �, without indicating anything about the relative likelihoods of various ac-
tions. Therefore, most of the complicated issues presented in Sections 9.5.1 and 9.5.2
vanish. Unfortunately, this advantage comes at a substantial price. Making decisions with
worst-case analysis under the nondeterministic model has its own shortcomings. After
considering the trade-offs, you can decide which is most appropriate for a particular
application of interest.

The first difficulty is to ensure that � is sufficiently large to cover all possibilities.
Consider Formulation 9.6, in which nature acts twice. Through a nature observation
action space, �(θ), interference is caused in the measurement process. Suppose that
� = R and h(θ, ψ) = θ + ψ . In this case, �(θ) can be interpreted as the measurement
error. What is the maximum amount of error that can occur? Perhaps a sonar is measuring
the distance from the robot to a wall. Based on the sensor specifications, it may be
possible to construct a nice bound on the error. Occasionally, however, the error may be
larger than this bound. Sonars sometimes fail to hear the required echo to compute the
distance. In this case the reported distance is∞. Due to reflections, extremely large errors
can sometimes occur. Although such errors may be infrequent, if we want guaranteed
performance, then large or even infinite errors should be included in �(θ). The problem
is that worst-case reasoning could always conclude that the sensor is useless by reporting
∞. Any statistically valid information that could be gained from the sensor would be
ignored. Under the probabilistic model, it is easy to make �(θ) quite large and then assign
very small probabilities to larger errors. The problem with nondeterministic uncertainty
is that �(θ) needs to be smaller to make appropriate decisions; however, theoretically
“guaranteed” performance may not truly be guaranteed in practice.

Once a nondeterministic model is formulated, the optimal decision rule may produce
results that seem absurd for the intended application. The problem is that the DM cannot
tolerate any risk. An action is applied only if the result can be guaranteed. The hope
of doing better than the worst case is not taken into account. Consider the following
example:

Example 9.28 (A Problem with Conservative Decision Making) Suppose that a friend
offers you the choice of either a check for 1000 Euros or 1 Euro in cash. With the check,
you must take it to the bank, and there is a small chance that your friend will have
insufficient funds in the account. In this case, you will receive nothing. If you select the 1
Euro in cash, then you are guaranteed to earn something.
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The following cost matrix reflects the outcomes (ignoring utility theory):

U

�
1 1000
1 0

. (9.93)

Using probabilistic analysis, we might conclude that it is best to take the check. Perhaps
the friend is even known to be very wealthy and responsible with banking accounts. This
information, however, cannot be taken into account in the decision-making process. Using
worst-case analysis, the optimal action is to take the 1 Euro in cash. You may not feel too
good about it, though. Imagine the regret if you later learn that the account had sufficient
funds to cash the check for 1000 Euros. �

Thus, it is important to remember the price that one must pay for wanting results that
are absolutely guaranteed. The probabilistic model offers the flexibility of incorporating
statistical information. Sometimes the probabilistic model can be viewed as a general-
ization of the nondeterministic model. If it is assumed that nature acts after the robot,
then the nature action can take this into account, as incorporated into Formulation 9.4.
In the nondeterministic case, �(u) is specified, and in the probabilistic case, P (θ |u) is
specified. The distribution P (θ |u) can be designed so that nature selects with very high
probability the θ ∈ � that maximizes L(u, θ). In Example 9.28, this would mean that the
probability that the check would bounce (resulting in no earnings) would by very high,
such as 0.999999. In this case, even the optimal action under the probabilistic model is
to select the 1 Euro in cash. For virtually any decision problem that is modeled using
worst-case analysis, it is possible to work backward and derive possible priors for which
the same decision would be made using probabilistic analysis. In Example 9.4, it seemed
as if the decision was based on assuming that with very high probability, the check would
bounce, even though there were no probabilistic models.

This means that worst-case analysis under the nondeterministic model can be consid-
ered as a special case of a probabilistic model in which the prior distribution assigns high
probabilities to the worst-case outcomes. The justification for this could be criticized in
the same way that other prior assignments are criticized in Bayesian analysis. What is the
basis of this particular assignment?

9.5.4 Concerns regarding game theory

One of the most basic limitations of game theory is that each player must know the cost
functions of the other players. As established in Section 9.5.1, it is even quite difficult
to determine an appropriate cost function for a single decision maker. It is even more
difficult to determine costs and motivations of other players. In most practical settings
this information is not available. One possibility is to model uncertainty associated with
knowledge of the cost function of another player. Bayesian analysis could be used to
reason about the cost based on observations of actions chosen by the player. Issues of
assigning priors once again arise. One of the greatest difficulties in allowing uncertainties
in the cost functions is that a kind of “infinite reflection” occurs [394]. For example, if
I am playing a game, does the other player know my cost function? I may be uncertain
about this. Furthermore, does the other player know that I do not completely know its cost



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

404 DECISION-THEORETIC PLANNING

function? This kind of second-guessing can occur indefinitely, leading to a nightmare of
nested reasoning and assignments of prior distributions.10

The existence of saddle points or Nash equilibria was assured by using randomized
strategies. Mathematically, this appears to be a clean solution to a frustrating problem;
however, it also represents a substantial change to the model. Many games are played
just once. For the expected-case results to converge, the game must be played an infinite
number of times. If a game is played once, or only a few times, then the players are
very likely to experience regret, even though the theory based on expected-case analysis
indicates that regret is eliminated.

Another issue is that intelligent human players may fundamentally alter their strategies
after playing a game several times. It is very difficult for humans to simulate a randomized
strategy (assuming they even want to, which is unlikely). There are even international
tournaments in which the players repeatedly engage in classic games such as Rock-Paper-
Scissors or the Prisoner’s Dilemma. For an interesting discussion of a tournament in
which people designed programs that repeatedly compete on the Prisoner’s Dilemma, see
[918]. It was observed that even some cooperation often occurs after many iterations,
which secures greater rewards for both players, even though they cannot communicate.
A famous strategy arose in this context called Tit-for-Tat (written by Anatol Rapoport),
which in each stage repeated the action chosen by the other player in the last stage. The
approach is simple yet surprisingly successful.

In the case of nonzero-sum games, it is particularly disheartening that multiple Nash
equilibria may exist. Suppose there is only one admissible equilibrium among several
Nash equilibria. Does it really seem plausible that an adversary would think very carefully
about the various Nash equilibria and pick the admissible one? Perhaps some players are
conservative and even play security strategies, which completely destroys the assumptions
of minimizing regret. If there are multiple admissible Nash equilibria, it appears that
regret is unavoidable unless there is some collaboration between players. This result is
unfortunate if such collaboration is impossible.

Further reading

Section 9.1 covered very basic concepts, which can be found in numerous books and on the Internet.
For more on Pareto optimality, see [849, 910, 953, 1005]. Section 9.2 is inspired mainly by decision
theory books. An excellent introduction is [91]. Other sources include [270, 273, 676, 834]. The “game
against nature” view is based mainly on [111]. Pattern classification, which is an important form of
decision theory, is covered in [19, 273, 297, 714]. Bayesian networks [781] are a popular representation
in artificial intelligence research and often provide compact encodings of information for complicated
decision-making problems.

Further reading on the game theory concepts of Sections 9.3 and 9.4 can be found in many books
(e.g., [60, 762]). A fun book that has many examples and intuitions is [918]. For games that have infinite
action sets, see [60]. The computation of randomized Nash equilibria remains a topic of active research.
A survey of methods appears in [694]; see also [548, 702]. The coupled polynomial equations that appear
in computing randomized Nash equilibria may seem to suggest applying algorithms from computational
algebraic geometry, as were needed in Section 6.4 to solve this kind of problem in combinatorial motion
planning. An approach that uses such tools is given in [263]. Contrary to the noncooperative games

10 Readers familiar with the movie The Princess Bride may remember the humorous dialog between Vizzini and the
Dread Pirate Roberts about which goblet contains the deadly Iocane powder.
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defined in Section 9.4, cooperative game theory investigates ways in which various players can form
coalitions to improve their rewards [782].

Parts of Section 9.5 were inspired by [91]. Utility theory appears in most decision theory books
(e.g., [91]) and in some artificial intelligence books (e.g., [842]). An in-depth discussion of Bayesian vs.
frequentist issues appears in [834]. For a thorough introduction to constructing cost models for decision
making, see [542].

Exercises

1. Suppose that a single-stage two-objective decision-making problem is de�ned in which
there are two objectives and a continuous set of actions, U = [−10, 10]. The cost vector is
L = [u2 u− 1]. Determine the set of Pareto-optimal actions.

2. Let

�

U

−1 3 2 −1
−1 0 7 −1
1 5 5 −2

de�ne the cost for each combination of choices by the decision maker and nature. Let
nature’s randomized strategy be [1/5 2/5 1/10 3/10].

(a) Use nondeterministic reasoning to �nd the minimax decision and worst-case cost.

(b) Use probabilistic reasoning to �nd the best expected-case decision and expected cost.

3. Many reasonable decision rules are possible, other than those considered in this chapter.

(a) Exercise 2(a) re�ects extreme pessimism. Suppose instead that extreme optimism is used.
Select the choice that optimizes the best-case cost for the matrix in Exercise 2.

(b) One approach is to develop a coef�cient of optimism, α ∈ [0, 1], which allows one to interpo-
late between the two extreme scenarios. Thus, a decision, u ∈ U , is chosen by minimizing

α max
θ∈�

{
L(u, θ)

}
+ (1 − α) min

θ∈�

{
L(u, θ)

}
. (9.94)

Determine the optimal decision for this scenario under all possible choices for α ∈ [0, 1].
Give your answer as a list of choices, each with a speci�ed range of α.

4. Suppose that after making a decision, you observe the choice made by nature. How does
the cost that you received compare with the best cost that could have been obtained if
you chose something else, given this choice by nature? This difference in costs can be
considered as regret or minimum “Doh!”11 Psychologists have argued that some people
make choices based on minimizing regret. It re�ects how badly you wish you had done
something else after making the decision.

(a) Develop an expression for the worst-case regret, and use it to make a minimax regret
decision using the matrix from Exercise 2.

(b) Develop an expression for the expected regret, and use it to make a minimum expected
regret decision.

5. Using the matrix from Exercise 2, consider the set of all probability distributions for na-
ture. Characterize the set of all distributions for which the minimax decision and the
best expected decision results in the same choice. This indicates how to provide reverse
justi�cation for priors.

11 In 2001, the Homer Simpson term“Doh!” was added to the Oxford English Dictionary as an expression of regret.
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6. Consider a Bayesian decision-theory scenario with cost function L. Show that the decision
rule never changes if L(u, θ) is replaced by aL(u, θ) + b, for any a > 0 and b ∈ R.

7. Suppose that there are two classes, � = {ω1, ω2}, with P (ω1) = P (ω2) = 1
2 . The observation

space, Y , is R. Recall from probability theory that the normal (or Gaussian) probability
density function is

p(y) = 1

σ
√

2π
e−(y−µ)2/2σ 2

, (9.95)

in which µ denotes the mean and σ 2 denotes the variance. Suppose that p(y|ω1) is a
normal density in which µ = 0 and σ 2 = 1. Suppose that p(y|ω2) is a normal density in
which µ = 6 and σ 2 = 4. Find the optimal classi�cation rule, γ : Y → �. You are welcome
to solve the problem numerically (by computer) or graphically (by careful function plotting).
Carefully explain how you arrived at the answer in any case.

8. Let

�

U

2 −2 −2 1
−1 −2 −2 6
4 0 −3 4

give the cost for each combination of choices by the decision maker and nature. Let nature’s
randomized strategy be [1/4 1/2 1/8 1/8].

(a) Use nondeterministic reasoning to �nd the minimax decision and worst-case cost.

(b) Use probabilistic reasoning to �nd the best expected-case decision and expected cost.

(c) Characterize the set of all probability distributions for which the minimax decision and the
best expected decision results in the same choice.

9. In a constant-sum game, the costs for any u ∈ U and v ∈ V add to yield

L1(u, v) + L2(u, v) = c (9.96)

for some constant c that is independent of u and v. Show that any constant-sum game can
be transformed into a zero-sum game, and that saddle point solutions can be found using
techniques for the zero-sum formulation.

10. Formalize Example 9.7 as a zero-sum game, and compute security strategies for the
players. What is the expected value of the game?

11. Suppose that for two zero-sum games, there exists some nonzero c ∈ R for which the cost
matrix of one game is obtained by multiplying all entries by c in the cost matrix of the other.
Prove that these two games must have the same deterministic and randomized saddle
points.

12. In the same spirit as Exercise 11, prove that two zero-sum games have the same deter-
ministic and randomized saddle points if c is added to all matrix entries.

13. Prove that multiple Nash equilibria of a nonzero-sum game speci�ed by matrices A and
B are interchangeable if (A, B) as a game yields the same Nash equilibria as the game
(A,−A).

14. Analyze the game of Rock-Paper-Scissors. For each player, assign a cost of 1 for losing, 0
for a tie, and −1 for winning. Specify the cost functions. Is it possible to avoid regret? Does
it have a deterministic Nash equilibrium? Can you �nd a randomized Nash equilibrium?
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15. Compute the randomized equilibrium point for the following zero-sum game:

V

U
0 −1
−1 2

. (9.97)

Indicate the randomized strategies for the players and the resulting expected value of the
game.

Implementations

16. Consider estimating the value of an unknown parameter, θ ∈ R. The prior probability den-
sity is a normal,

p(θ ) = 1

σ
√

2π
e−(θ−µ)2/2σ 2

, (9.98)

with µ = 0 and σ = 4. Suppose that a sequence, y1, y2, . . . , yk, of k observations is made
and that each p(yi |θ ) is a normal density with µ = θ and σ = 9. Suppose that u represents
your guess of the parameter value. The task is select u to minimize the expectation of
the cost, L(u, θ) = (u− θ )2. Suppose that the “true” value of θ is 4. Determine the u∗,
the minimal action with respect to the expected cost after observing: yi = 4 for every
i ∈ {1, . . . , k}.
(a) Determine u∗ for k = 1.

(b) Determine u∗ for k = 10.

(c) Determine u∗ for k = 1000.

This experiment is not very realistic because the observations should be generated by
sampling from the normal density, p(yi |θ ). Repeat the exercise using values drawn with
the normal density, instead of yk = 4, for each k.

17. Implement an algorithm that computes a randomized saddle point for zero-sum games.
Assume that one player has no more than two actions and the other may have any �nite
number of actions.

18. Suppose that a K-stage decision-making problem is de�ned using multiple objectives.
There is a �nite state space X and a � nite action set U (x) for each x ∈ X. A state transition
equation, xk+1 = f(xk, uk), gives the next state from a current state and input. There are N

cost functionals of the form

Li(u1, . . . , uK ) =
K∑

k=1

l(xk, uk) + lF (xF ), (9.99)

in which F = K + 1. Assume that lF (xF ) = ∞ if xF ∈ Xgoal (for some goal region Xgoal ⊂ X)
and lF (xF ) = 0 otherwise. Assume that there is no termination action (which simpli�es the
problem). Develop a value-iteration approach that �nds the complete set of Pareto-optimal
plans ef�ciently as possible. If two or more plans produce the same cost vector, then only
one representative needs to be returned.
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Sequential Decision Theory

Chapter 9 essentially took a break from planning by indicating how to make a single
decision in the presence of uncertainty. In this chapter, we return to planning by formulat-
ing a sequence of decision problems. This is achieved by extending the discrete planning
concepts from Chapter 2 to incorporate the effects of multiple decision makers. The most
important new decision maker is nature, which causes unpredictable outcomes when ac-
tions are applied during the execution of a plan. State spaces and state transition equations
reappear in this chapter; however, in contrast to Chapter 2, additional decision makers
interfere with the state transitions. As a result of this effect, a plan needs to incorporate
state feedback, which enables it to choose an action based on the current state. When
the plan is determined, it is not known what future states will arise. Therefore, feedback
is required, as opposed to specifying a plan as a sequence of actions, which sufficed in
Chapter 2. This was only possible because actions were predictable.

Keep in mind throughout this chapter that the current state is always known. The only
uncertainty that exists is with respect to predicting future states. Chapters 11 and 12 will
address the important and challenging case in which the current state is not known. This
requires defining sensing models that attempt to measure the state. The main result is that
planning occurs in an information space, as opposed to the state space. Most of the ideas
of this chapter extend into information spaces when uncertainties in prediction and in the
current state exist together.

The problems considered in this chapter have a wide range of applicability. Most
of the ideas were developed in the context of stochastic control theory [95, 567, 570].
The concepts can be useful for modeling problems in mobile robotics because future
states are usually unpredictable and can sometimes be modeled probabilistically [1004]
or using worst-case analysis [593]. Many other applications exist throughout engineering,
operations research, and economics. Examples include process scheduling, gambling
strategies, and investment planning.

As usual, the focus here is mainly on arriving in a goal state. Both nondeterministic
and probabilistic forms of uncertainty will be considered. In the nondeterministic case,
the task is to find plans that are guaranteed to work in spite of nature. In some cases,
a plan can be computed that has optimal worst-case performance while achieving the
goal. In the probabilistic case, the task is to find a plan that yields optimal expected-case
performance. Even though the outcome is not predictable in a single-plan execution, the
idea is to reduce the average cost, if the plan is executed numerous times on the same
problem.

10.1 Introducing sequential games against nature

This section extends many ideas from Chapter 2 to the case in which nature interferes
with the outcome of actions. Section 10.1.1 defines the planning problem in this context,

408
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which is a direct extension of Section 2.1. Due to unpredictability, forward projections and
backprojections are introduced in Section 10.1.2 to characterize possible future and past
states, respectively. Forward projections characterize the future states that will be obtained
under the application of a plan or a sequence of actions. In Chapter 2 this concept was
not needed because the sequence of future states could always be derived from a plan and
initial state. Section 10.1.3 defines the notion of a plan and uses forward projections to
indicate how its execution may differ every time the plan is applied.

10.1.1 Model definition

The formulation presented in this section is an extension of Formulation 2.3 that incorpo-
rates the effects of nature at every stage. Let X denote a discrete state space, and let U (x)
denote the set of actions available to the decision maker (or robot) from state x ∈ X. At
each stage k it is assumed that a nature action θk is chosen from a set �(xk, uk). This
can be considered as a multi-stage generalization of Formulation 9.4, which introduced
�(u). Now � may depend on the state in addition to the action because both xk and uk

are available in the current setting. This implies that nature acts with the knowledge of
the action selected by the decision maker. It is always assumed that during stage k, the
decision maker does not know the particular nature action that will be chosen. It does,
however, know the set �(xk, uk) for all xk ∈ X and uk ∈ U (xk).

As in Section 9.2, there are two alternative nature models: nondeterministic or prob-
abilistic. If the nondeterministic model is used, then it is only known that nature will
make a choice from �(xk, uk). In this case, making decisions using worst-case analysis
is appropriate.

If the probabilistic model is used, then a probability distribution over �(xk, uk) is
specified as part of the model. The most important assumption to keep in mind for this
case is that nature is Markovian. In general, this means that the probability depends only
on local information. In most applications, this locality is with respect to time. In our
formulation, it means that the distribution over �(xk, uk) depends only on information
obtained at the current stage. In other settings, Markovian could mean a dependency on a
small number of stages, or even a local dependency in terms of spatial relationships, as in
a Markov random field [233, 379].

To make the Markov assumption more precise, the state and action histories as defined
in Section 8.2.1 will be used again here. Let

x̃k = (x1, x2, . . . , xk) (10.1)

and

ũk = (u1, u2, . . . , uk). (10.2)

These represent all information that is available up to stage k. Without the Markov
assumption, it could be possible that the probability distribution for nature is conditioned
on all of x̃k and ũk , to obtain P (θk|x̃k, ũk). The Markov assumption declares that for all
θ ∈ �(xk, uk),

P (θk+1|x̃k, ũk) = P (θk+1|xk, uk), (10.3)

which drops all history except the current state and action. Once these two are known,
there is no extra information regarding the nature action that could be gained from any
portion of the histories.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

410 DECISION-THEORETIC PLANNING

The effect of nature is defined in the state transition equation, which produces a new
state, xk+1, once xk , uk , and θk are given:

xk+1 = f (xk, uk, θk). (10.4)

From the perspective of the decision maker, θk is not given. Therefore, it can only infer
that a particular set of states will result from applying uk and xk:

Xk+1(xk, uk) = {xk+1 ∈ X | ∃θ1 ∈ �(xk, uk) such that xk+1 = f (xk, uk, θk)}. (10.5)

In (10.5), the notation Xk+1(xk, uk) indicates a set of possible values for xk+1, given xk

and uk . The notation Xk(·) will generally be used to indicate the possible values for xk

that can be derived using the information that appears in the argument.
In the probabilistic case, a probability distribution over X can be derived for stage

k + 1, under the application of uk from xk . As part of the problem, P (θk|xk, uk) is given.
Using the state transition equation, xk+1 = f (xk, uk, θk),

P (xk+1|xk, uk) =
∑

θk∈�′
P (θk|xk, uk) (10.6)

can be derived, in which

�′ = {θk ∈ �(xk, uk) | xk+1 = f (xk, uk, θk)}. (10.7)

The calculation of P (xk+1|xk, uk) simply involves accumulating all of the probability
mass that could lead to xk+1 from the application of various nature actions.

Putting these parts of the model together and adding some of the components from
Formulation 2.3, leads to the following formulation:

Formulation 10.1 (Discrete Planning with Nature)

1. A nonempty state space X which is a finite or countably infinite set of states.

2. For each state, x ∈ X, a finite, nonempty action space U (x). It is assumed that U con-
tains a special termination action, which has the same effect as the one defined in
Formulation 2.3.

3. A finite, nonempty nature action space �(x, u) for each x ∈ X and u ∈ U (x).

4. A state transition function f that produces a state, f (x, u, θ ), for every x ∈ X, u ∈ U ,
and θ ∈ �(x, u).

5. A set of stages, each denoted by k, that begins at k = 1 and continues indefinitely.
Alternatively, there may be a fixed, maximum stage k = K + 1 = F .

6. An initial state xI ∈ X. For some problems, this may not be specified, in which case a
solution plan must be found from all initial states.

7. A goal set XG ⊂ X.

8. A stage-additive cost functional L. Let θ̃K denote the history of nature actions up to stage
K . The cost functional may be applied to any combination of state, action, and nature
histories to yield

L(x̃F , ũK, θ̃K ) =
K∑

k=1

l(xk, uk, θk) + lF (xF ), (10.8)

in which F = K + 1. If the termination action uT is applied at some stage k, then for all
i ≥ k, ui = uT , xi = xk , and l(xi, uT , θi) = 0.
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Using Formulation 10.1, either a feasible or optimal planning problem can be defined.
To obtain a feasible planning problem, let l(xk, uk, θk) = 0 for all xk ∈ X, uk ∈ U , and
θk ∈ �k(uk). Furthermore, let

lF (xF ) =
{

0 if xF ∈ XG

∞ otherwise.
(10.9)

To obtain an optimal planning problem, in general l(xk, uk, θk) may assume any nonneg-
ative, finite value if xk 	∈ XG. For problems that involve probabilistic uncertainty, it is
sometimes appropriate to assign a high, finite value for lF (xF ) of xF 	∈ XG, as opposed to
assigning an infinite cost for failing to achieve the goal.

Note that in each stage, the cost term is generally allowed to depend on the nature
action θk . If probabilistic uncertainty is used, then Formulation 10.1 is often referred to
as a controlled Markov process or Markov decision process (MDP). If the actions are
removed from the formulation, then it is simply referred to as a Markov process. In most
statistical literature, the name Markov chain is used instead of Markov process when there
are discrete stages (as opposed to continuous-time Markov processes). Thus, the terms
controlled Markov chain and Markov decision chain may be preferable.

In some applications, it may be convenient to avoid the explicit characterization of
nature. Suppose that l(xk, uk, θk) = l(xk, uk). If nondeterministic uncertainty is used, then
Xk+1(xk, uk) can be specified for all xk ∈ X and uk ∈ U (xk) as a substitute for the state
transition equation; this avoids having to refer to nature. The application of an action uk

from a state xk directly leads to a specified subset of X. If probabilistic uncertainty is
used, then P (xk+1|xk, uk) can be directly defined as the alternative to the state transition
equation. This yields a probability distribution over X, if uk is applied from some xk , once
again avoiding explicit reference to nature. Most of the time we will use a state transition
equation that refers to nature; however, it is important to keep these alternatives in mind.
They arise in many related books and research articles.

As used throughout Chapter 2, a directed state transition graph is sometimes convenient
for expressing the planning problem. The same idea can be applied in the current setting.
As in Section 2.1, X is the vertex set; however, the edge definition must change to
reflect nature. A directed edge exists from state x to x ′ if there exists some u ∈ U (x) and
θ ∈ �(x, u) such that x ′ = f (x, u, θ). A weighted graph can be made by associating the
cost term l(xk, uk, θk) with each edge. In the case of a probabilistic model, the probability
of the transition occurring may also be associated with each edge.

Note that both the decision maker and nature are needed to determine which vertex
will be reached. As the decision maker contemplates applying an action u from the state
x, it sees that there may be several outgoing edges due to nature. If a different action is
contemplated, then this set of possible outgoing edges changes. Once nature applies its
action, then the particular edge is traversed to arrive at the new state; however, this is not
completely controlled by the decision maker.

Example 10.1 (Traversing the Number Line) Let X = Z, U = {−2, 2, uT }, and � =
{−1, 0, 1}. The action sets of the decision maker and nature are the same for all states.
For the state transition equation, xk+1 = f (xk, uk, θk) = xk + uk + θk . For each stage,
unit cost is received. Hence l(x, u, θ) = 1 for all x, θ , and u 	= uT . The initial state is
xI = 100, and the goal set is XG = {−1, 0, 1}.

Consider executing a sequence of actions, (−2,−2, . . . ,−2), under the nondetermin-
istic uncertainty model. This means that we attempt to move left two units in each stage.
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XG

xI

Figure 10.1: A grid-based shortest path problem with interference from nature.

After the first −2 is applied, the set of possible next states is {97, 98, 99}. Nature may
slow down the progress to be only one unit per stage, or it may speed up the progress so
that XG is three units closer per stage. Note that after 100 stages, the goal is guaranteed to
be achieved, in spite of any possible actions of nature. Once XG is reached, uT should be
applied. If the problem is changed so that XG = {0}, it becomes impossible to guarantee
that the goal will be reached because nature may cause the goal to be overshot.

Now let U = {−1, 1, uT } and � = {−2,−1, 0, 1, 2}. Under nondeterministic uncer-
tainty, the problem can no longer be solved because nature is now powerful enough
to move the state completely in the wrong direction in the worst case. A reasonable
probabilistic version of the problem can, however, be defined and solved. Suppose that
P (θ) = 1/5 for each θ ∈ �. The transition probabilities can be defined from P (θ). For
example, if xk = 100 and uk = −1, then P (xk+1|xk, uk) = 1/5 if 97 ≤ xk ≤ 101, and
P (xk+1|xk, uk) = 0 otherwise. With the probabilistic formulation, there is a nonzero
probability that the goal, XG = {−1, 0, 1}, will be reached, even though in the worst-
case reaching the goal is not guaranteed.

Example 10.2 (Moving on a Grid) A grid-based robot planning model can be made. A
simple example is shown in Figure 10.1. The state space is a subset of a 15 × 15 integer
grid in the plane. A state is represented as (i, j ), in which 1 ≤ i, j ≤ 15; however, the
points in the center region (shown in Figure 10.1) are not included in X.

Let A = {0, 1, 2, 3, 4} be a set of actions, which denote “stay,” “right,” “up,” “left,”
and “down,” respectively. Let U = A ∪ uT . For each x ∈ X, let U (x) contain uT and
whichever actions are applicable from x (some are not applicable along the boundaries).

Let �(x, u) represent the set of all actions in A that are applicable after performing
the move implied by u. For example, if x = (2, 2) and u = 3, then the robot is attempting
to move to (1, 2). From this state, there are three neighboring states, each of which
corresponds to an action of nature. Thus, �(x, u) in this case is {0, 1, 2, 4}. The action
θ = 3 does not appear because there is no state to the left of (1, 2). Suppose that the
probabilistic model is used, and that every nature action is equally likely.

The state transition function f is formed by adding the effect of both uk and θk . For
example, if xk = (i, j ), uk = 1, and θk = 2, then xk+1 = (i + 1, j + 1). If θk had been 3,
then the two actions would cancel and xk+1 = (i, j ). Without nature, it would have been
assumed that θk = 0. As always, the state never changes once uT is applied, regardless of
nature’s actions.

For the cost functional, let l(xk, uk) = 1 (unless uk = uT ; in this case, l(xk, uT ) = 0).
For the final stage, let lF (xF ) = 0 if xF ∈ XG; otherwise, let lF (xF ) = ∞. A reasonable
task is to get the robot to terminate in XG in the minimum expected number of stages. A
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feedback plan is needed, which will be introduced in Section 10.1.3, and the optimal plan
for this problem can be efficiently computed using the methods of Section 10.2.1.

This example can be easily generalized to moving through a complicated labyrinth in
two or more dimensions. If the grid resolution is high, then an approximation to motion
planning is obtained. Rather than forcing motions in only four directions, it may be
preferable to allow any direction. This case is covered in Section 10.6, which addresses
planning in continuous state spaces. �

10.1.2 Forward projections and backprojections

A forward projection is a useful concept for characterizing the behavior of plans during
execution. Before uncertainties were considered, a plan was executed exactly as expected.
When a sequence of actions was applied to an initial state, the resulting sequence of
states could be computed using the state transition equation. Now that the state transitions
are unpredictable, we would like to imagine what states are possible several stages into
the future. In the case of nondeterministic uncertainty, this involves computing a set of
possible future states, given a current state and plan. In the probabilistic case, a probability
distribution over states is computed instead.

Nondeterministic forward projections

To facilitate the notation, suppose in this section that U (x) = U for all x ∈ X. In Sec-
tion 10.1.3 this will be lifted.

Suppose that the initial state, x1 = xI , is known. If the action u1 ∈ U is applied, then
the set of possible next states is

X2(x1, u1) = {x2 ∈ X | ∃θ1 ∈ �(x1, u1) such that x2 = f (x1, u1, θ1)}, (10.10)

which is just a special version of (10.5). Now suppose that an action u2 ∈ U will be
applied. The forward projection must determine which states could be reached from x1

by applying u1 followed by u2. This can be expressed as

X3(x1, u1, u2) = {x3 ∈ X | ∃θ1 ∈ �(x1, u1) and ∃θ2 ∈ �(x2, u2)

such that x2 = f (x1, u1, θ1) and x3 = f (x2, u2, θ2)}. (10.11)

This idea can be repeated for any number of iterations but becomes quite cumbersome in
the current notation. It is helpful to formulate the forward projection recursively. Suppose
that an action history ũk is fixed. Let Xk+1(Xk, uk) denote the forward projection at stage
k + 1, given that Xk is the forward projection at stage k. This can be computed as

Xk+1(Xk, uk) = {xk+1 ∈ X | ∃xk ∈ Xk and ∃θk ∈ �(xk, uk)

such that xk+1 = f (xk, uk, θk)}. (10.12)

This may be applied any number of times to compute Xk+1 from an initial condition
X1 = {x1}.
Example 10.3 (Nondeterministic Forward Projections) Recall the first model given
in Example 10.1, in which U = {−2, 2, uT } and � = {−1, 0, 1}. Suppose that x1 = 0,
and u = 2 is applied. The one-stage forward projection is X2(0, 2) = {1, 2, 3}. If u = 2 is
applied again, the two-stage forward projection is X3(0, 2, 2) = {2, 3, 4, 5, 6}. Repeating
this process, the k-stage forward projection is {k, . . . , 3k}. �
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Probabilistic forward projections

The probabilistic forward projection can be considered as a Markov process because the
“decision” part is removed once the actions are given. Suppose that xk is given and uk

is applied. What is the probability distribution over xk+1? This was already specified in
(10.6) and is the one-stage forward projection. Now consider the two-stage probabilistic
forward projection, P (xk+2|xk, uk, uk+1). This can be computed by marginalization as

P (xk+2|xk, uk, uk+1) =
∑

xk+1∈X

P (xk+2|xk+1, uk+1)P (xk+1|xk, uk). (10.13)

Computing further forward projections requires nested summations, which marginalize
all of the intermediate states. For example, the three-stage forward projection is

P (xk+3|xk, uk,uk+1, uk+2) =
∑

xk+1∈X

∑

xk+2∈X

P (xk+3|xk+2, uk+2)P (xk+2|xk+1, uk+1)P (xk+1|xk, uk). (10.14)

A convenient expression of the probabilistic forward projections can be obtained by
borrowing nice algebraic properties from linear algebra. For each action u ∈ U , let its
state transition matrix Mu be an n× n matrix, for n = |X|, of probabilities. The matrix
is defined as

Mu =





m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n

...
...

...
mn,1 mn,2 · · · mn,n



 , (10.15)

in which

mi,j = P (xk+1 = i | xk = j, u). (10.16)

For each j , the j th column of Mu must sum to one and can be interpreted as the probability
distribution over X that is obtained if uk is applied from state xk = j .

Let v denote an n-dimensional column vector that represents any probability distri-
bution over X. The product Muv yields a column vector that represents the probability
distribution over X that is obtained after starting with v and applying u. The matrix
multiplication performs n inner products, each of which is a marginalization as shown in
(10.13). The forward projection at any stage, k, can now be expressed using a product of
k − 1 state transition matrices. Suppose that ũk−1 is fixed. Let v = [0 0 · · · 0 1 0 · · · 0],
which indicates that x1 is known (with probability one). The forward projection can be
computed as

v′ = Muk−1Muk−2 · · ·Mu2Mu1v. (10.17)

The ith element of v′ is P (xk = i | x1, ũk−1).

Example 10.4 (Probabilistic Forward Projections) Once again, use the first model
from Example 10.1; however, now assign probability 1/3 to each nature action. Assume
that, initially, x1 = 0, and u = 2 is applied in every stage. The one-stage forward projection
yields probabilities

[1/3 1/3 1/3] (10.18)
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over the sequence of states (1, 2, 3). The two-stage forward projection yields

[1/9 2/9 3/9 2/9 1/9] (10.19)

over (2, 3, 4, 5, 6). �

Backprojections

Sometimes it is helpful to define the set of possible previous states from which one or more
current states could be obtained. For example, they will become useful in defining graph-
based planning algorithms in Section 10.2.3. This involves maintaining a backprojection,
which is a counterpart to the forward projection that runs in the opposite direction.
Backprojections were considered in Section 8.5.2 to keep track of the active states in a
Dijkstra-like algorithm over continuous state spaces. In the current setting, backprojections
need to address uncertainty.

Consider the case of nondeterministic uncertainty. Let a state x ∈ X be given. Under a
fixed action u, what previous states, x ′ ∈ X, could possibly lead to x? This depends only
on the possible choices of nature and is expressed as

WB(x, u) = {x ′ ∈ X | ∃θ ∈ �(x ′, u) such that x = f (x ′, u, θ )}. (10.20)

The notation WB(x, u) refers to the weak backprojection of x under u, and gives the set
of all states from which x may possibly be reached in one stage.

The backprojection is called “weak” because it does not guarantee that x is reached,
which is a stronger condition. By guaranteeing that x is reached, a strong backprojection
of x under u is defined as

SB(x, u) = {x ′ ∈ X | ∀θ ∈ �(x ′, u), x = f (x ′, u, θ )}. (10.21)

The difference between (10.20) and (10.21) is either there exists an action of nature that
enables x to be reached, or x is reached for all actions of nature. Note that SB(x, u) ⊆
WB(x, u). In many cases, SB(x, u) = ∅, and WB(x, u) is rarely empty. The backprojection
that was introduced in (8.66) of Section 8.5.2 did not involve uncertainty; hence, the
distinction between weak and strong backprojections did not arise.

Two useful generalizations will now be made: 1) A backprojection can be defined from
a set of states; 2) the action does not need to be fixed. Instead of a fixed state, x, consider
a set S ⊆ X of states. What are the states from which an element of S could possibly
be reached in one stage under the application of u? This is the weak backprojection of S

under u:

WB(S, u) = {x ′ ∈ X | ∃θ ∈ �(x ′, u) such that f (x ′, u, θ ) ∈ S}, (10.22)

which can also be expressed as

WB(S, u) =
⋃

x∈S

WB(x, u). (10.23)

Similarly, the strong backprojection of S under u is defined as

SB(S, u) = {x ′ ∈ X | ∀θ ∈ �(x ′, u), f (x ′, u, θ ) ∈ S}. (10.24)

Note that SB(S, u) cannot be formed by the union of SB(x, u) over all x ∈ S. Another
observation is that for each xk ∈ SB(S, uk), we have Xk+1(xk, uk) ⊆ S.

Now the dependency on u will be removed. This yields a backprojection of a set S.
These are states from which there exists an action that possibly reaches S. The weak
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backprojection of S is

WB(S) = {x ′ ∈ X | ∃u ∈ U (x) such that x ∈ WB(S, u)}, (10.25)

and the strong backprojection of S is

SB(S) = {x ′ ∈ X | ∃u ∈ U (x) such that x ∈ SB(S, u)}. (10.26)

Note that SB(S) ⊆ WB(S).

Example 10.5 (Backprojections) Once again, consider the model from the first part of
Example 10.1. The backprojection WB(0, 2) represents the set of all states from which u =
2 can be applied and x = 0 is possibly reached; the result is WB(0, 2) = {−3,−2,−1}.
The state 0 cannot be reached with certainty from any state in WB(0, 2). Therefore,
SB(0, 2) = ∅.

Now consider backprojections from the goal, XG = {−1, 0, 1}, under the action u = 2.
The weak backprojection is

WB(XG, 2) = WB(−1, 2) ∪ WB(0, 2) ∪ WB(1, 2) = {−4,−3,−2,−1, 0}. (10.27)

The strong backprojection is SB(XG, 2) = {−2}. From any of the other states in
WB(XG, 2), nature could cause the goal to be missed. Note that SB(XG, 2) cannot be
constructed by taking the union of SB(x, 2) over every x ∈ XG.

Finally, consider backprojections that do not depend on an action. These are WB(XG) =
{−4,−3, . . . , 4} and SB(XG) = XG. In the latter case, all states in XG lie in SB(XG)
because uT can be applied. Without allowing uT , we would obtain SB(XG) = {−2, 2}. �

Other kinds of backprojections are possible, but we will not define them. One possibility
is to make backprojections over multiple stages, as was done for forward projections.
Another possibility is to define them for the probabilistic case. This is considerably more
complicated. An example of a probabilistic backprojection is to find the set of all states
from which a state in S will be reached with at least probability p.

10.1.3 A plan and its execution

In Chapter 2, a plan was specified by a sequence of actions. This was possible because
the effect of actions was completely predictable. Throughout most of Part II, a plan
was specified as a path, which is a continuous-stage version of the action sequence.
Section 8.2.1 introduced plans that are expressed as a function on the state space. This
was optional because uncertainty was not explicitly modeled (except perhaps in the initial
state).

As a result of unpredictability caused by nature, it is now important to separate the
definition of a plan from its execution. The same plan may be executed many times from
the same initial state; however, because of nature, different future states will be obtained.
This requires the use of feedback in the form of a plan that maps states to actions.

Defining a plan

Let a (feedback) plan for Formulation 10.1 be defined as a function π : X → U that
produces an action π(x) ∈ U (x), for each x ∈ X. Although the future state may not be
known due to nature, if π is given, then it will at least be known what action will be
taken from any future state. In other works, π has been called a feedback policy, feedback
control law, reactive plan [342], and conditional plan.
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For some problems, particularly when K is fixed at some finite value, a stage-dependent
plan may be necessary. This enables a different action to be chosen for every stage, even
from the same state. Let K denote the set {1, . . . , K} of stages. A stage-dependent plan
is defined as π : X ×K → U . Thus, an action is given by u = π(x, k). Note that the
definition of a K-step plan, which was given Section 2.3, is a special case of the current
definition. In that setting, the action depended only on the stage because future states
were always predictable. Here they are no longer predictable and must be included in the
domain of π . Unless otherwise mentioned, it will be assumed by default that π is not
stage-dependent.

Note that once π is formulated, the state transitions appear to be a function of only the
current state and nature. The next state is given by f (x, π(x), θ). The same is true for the
cost term, l(x, π(x), θ).

Forward projections under a fixed plan

Forward projections can now be defined under the constraint that a particular plan is
executed. The specific expression of actions is replaced by π . Each time an action is
needed from a state x ∈ X, it is obtained as π(x). In this formulation, a different U (x)
may be used for each x ∈ X, assuming that π is correctly defined to use whatever actions
are actually available in U (x) for each x ∈ X.

First we will consider the nondeterministic case. Suppose that the initial state x1

and a plan π are known. This means that u1 = π(x1), which can be substituted into
(10.10) to compute the one-stage forward projection. To compute the two-stage forward
projection, u2 is determined from π(x2) for use in (10.11). A recursive formulation of the
nondeterministic forward projection under a fixed plan is

Xk+1(x1, π ) = {xk+1 ∈ X | ∃θk ∈ �(xk, π (xk)) such that

xk ∈ Xk(x1, π ) and xk+1 = f (xk, π (xk), θk)}. (10.28)

The probabilistic forward projection in (10.10) can be adapted to use π , which results
in

P (xk+2|xk, π ) =
∑

xk+1∈X

P (xk+2|xk+1, π (xk+1))P (xk+1|xk, π (xk)). (10.29)

The basic idea can be applied k − 1 times to compute P (xk|x1, π).
A state transition matrix can be used once again to express the probabilistic forward

projection. In (10.15), all columns correspond to the application of the action u. Let Mπ ,
be the forward projection due to a fixed plan π . Each column of Mπ may represent a
different action because each column represents a different state xk . Each entry of Mπ is

mi,j = P (xk+1 = i | xk = j, π (xk)). (10.30)

The resulting Mπ defines a Markov process that is induced under the application of the
plan π .

Graph representations of a plan

The game against nature involves two decision makers: nature and the robot. Once the
plan is formulated, the decisions of the robot become fixed, which leaves nature as the only
remaining decision maker. Using this interpretation, a directed graph can be defined in the
same way as in Section 2.1, except nature actions are used instead of the robot’s actions.
It can even be imagined that nature itself faces a discrete feasible planning problem as
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in Formulation 2.1, in which �(x, π(x)) replaces U (x), and there is no goal set. Let
Gπ denote a plan-based state transition graph, which arises under the constraint that π

is executed. The vertex set of Gπ is X. A directed edge in Gπ exists from x to x ′ if
there exists some θ ∈ �(x, π(x)) such that x ′ = f (x, π(x), θ). Thus, from each vertex
in Gπ , the set of outgoing edges represents all possible transitions to next states that
are possible, given that the action is applied according to π . In the case of probabilistic
uncertainty, Gπ becomes a weighted graph in which each edge is assigned the probability
P (x ′|x, π(x), θ). In this case, Gπ corresponds to the graph representation commonly used
to depict a Markov chain.

A nondeterministic forward projection can easily be derived from Gπ by following
the edges outward from the current state. The outward edges lead to the states of the
one-stage forward projection. The outward edges of these states lead to the two-stage
forward projection, and so on. The probabilistic forward projection can also be derived
from Gπ .

The cost of a feedback plan

Consider the cost-to-go of executing a plan π from a state x1 ∈ X. The resulting cost
depends on the sequences of states that are visited, actions that are applied by the plan,
and the applied nature actions. In Chapter 2 this was obtained by adding the cost terms,
but now there is a dependency on nature. Both worst-case and expected-case analyses are
possible, which generalize the treatment of Section 9.2 to state spaces and multiple stages.

Let H(π, x1) denote the set of state-action-nature histories that could arise from π

when applied using x1 as the initial state. The cost-to-go, Gπ (x1), under a given plan π

from x1 can be measured using worst-case analysis as

Gπ (x1) = max
(x̃,ũ,θ̃ )∈H(π,x1)

{
L(x̃, ũ, θ̃ )

}
, (10.31)

which is the maximum cost over all possible trajectories from x1 under the plan π . If any
of these fail to terminate in the goal, then the cost becomes infinity. In (10.31), x̃, ũ, and
θ̃ are infinite histories, although their influence on the cost is expected to terminate early
due to the application of uT .

An optimal plan using worst-case analysis is any plan for which Gπ (x1) is minimized
over all possible plans (all ways to assign actions to the states). In the case of feasible
planning, there are usually numerous equivalent alternatives. Sometimes the task may be
only to find a feasible plan, which means that all trajectories must reach the goal, but the
cost does not need to be optimized.

Using probabilistic uncertainty, the cost of a plan can be measured using expected-case
analysis as

Gπ (x1) = EH(π,x1)

[
L(x̃, ũ, θ̃ )

]
, (10.32)

in which E denotes the mathematical expectation taken over H(π, x1) (i.e., the plan is
evaluated in terms of a weighted sum, in which each term has a weight for the probability
of a state-action-nature history and its associated cost, L(x̃, ũ, θ̃)). This can also be
interpreted as the expected cost over trajectories from x1. If any of these have nonzero
probability and fail to terminate in the goal, then Gπ (x1) = ∞. In the probabilistic setting,
the task is usually to find a plan that minimizes Gπ (x1).

An interesting question now emerges: Can the same plan, π , be optimal from every
initial state x1 ∈ X, or do we need to potentially find a different optimal plan for each
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initial state? Fortunately, a single plan will suffice to be optimal over all initial states.
Why? This behavior was also observed in Section 8.2.1. If π is optimal from some x1,
then it must also be optimal from every other state that is potentially visited by executing
π from x1. Let x denote some visited state. If π was not optimal from x, then a better
plan would exist, and the goal could be reached from x with lower cost. This contradicts
the optimality of π because solutions must travel through x. Let π∗ denote a plan that is
optimal from every initial state.

10.2 Algorithms for computing feedback plans

10.2.1 Value iteration

Fortunately, the value iteration method of Section 2.3.1.1 extends nicely to handle un-
certainty in prediction. This was the main reason why value iteration was introduced in
Chapter 2. Value iteration was easier to describe in Section 2.3.1.1 because the compli-
cations of nature were avoided. In the current setting, value iteration retains most of its
efficiency and can easily solve problems that involve thousands or even millions of states.

The state space, X, is assumed to be finite throughout Section 10.2.1. An extension to
the case of a countably infinite state space can be developed if cost-to-go values over the
entire space do not need to be computed incrementally.

Only backward value iteration is considered here. Forward versions can be defined
alternatively.

Nondeterministic case

Suppose that the nondeterministic model of nature is used. A dynamic programming re-
currence, (10.39), will be derived. This directly yields an iterative approach that computes
a plan that minimizes the worst-case cost. The following presentation shadows that of
Section 2.3.1.1; therefore, it may be helpful to refer back to this periodically.

An optimal plan π∗ will be found by computing optimal cost-to-go functions. For
1 ≤ k ≤ F , let G∗

k denote the worst-case cost that could accumulate from stage k to F

under the execution of the optimal plan (compare to (2.5))

G∗
k(xk) = min

uk

max
θk

min
uk+1

max
θk+1

· · ·min
uK

max
θK

{
K∑

i=k

l(xi, ui, θi) + lF (xF )

}
. (10.33)

Inside of the min’s and max’s of (10.33) are the last F − k terms of the cost functional,
(10.8). For simplicity, the ranges of each ui and θi in the min’s and max’s of (10.33) have
not been indicated. The optimal cost-to-go for k = F is

G∗
F (xF ) = lF (xF ), (10.34)

which is the same as (2.6) for the predictable case.
Now consider making K passes over X, each time computing G∗

k from G∗
k+1, as k

ranges from F down to 1. In the first iteration, G∗
F is copied from lF . In the second

iteration, G∗
K is computed for each xK ∈ X as (compare to (2.7))

G∗
K (xK ) = min

uK

max
θK

{
l(xK, uK, θK ) + lF (xF )

}
, (10.35)
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in which uK ∈ U (xK ) and θK ∈ �(xK, uK ). Since lF = G∗
F and xF = f (xK, uK, θK ),

substitutions are made into (10.35) to obtain (compare to (2.8))

G∗
K (xK ) = min

uK

max
θK

{
l(xK, uK, θK ) +G∗

F (f (xK, uK, θK ))
}
, (10.36)

which computes the costs of all optimal one-step plans from stage K to stage F = K + 1.
More generally, G∗

k can be computed once G∗
k+1 is given. Carefully study (10.33), and

note that it can be written as (compare to (2.9))

G∗
k(xk) = min

uk

max
θk

{
min
uk+1

max
θk+1

· · ·min
uK

max
θK

{
l(xk, uk, θk) +

K∑

i=k+1

l(xi, ui, θi) + lF (xF )

}} (10.37)

by pulling the first cost term out of the sum and by separating the minimization over uk

from the rest, which range from uk+1 to uK . The second min and max do not affect the
l(xk, uk, θk) term; thus, l(xk, uk, θk) can be pulled outside to obtain (compare to (2.10))

G∗
k(xk) = min

uk

max
θk

{
l(xk, uk, θk) +

min
uk+1

max
θk+1

· · ·min
uK

max
θK

{ K∑

i=k+1

l(xi, ui, θi) + l(xF )

}}
.

(10.38)

The inner min’s and max’s represent G∗
k+1, which yields the recurrence (compare to

(2.11))

G∗
k(xk) = min

uk∈U (xk )

{
max

θk

{
l(xk, uk, θk) +G∗

k+1(xk+1)
}}

. (10.39)

Probabilistic case

Now consider the probabilistic case. A value iteration method can be obtained by once
again shadowing the presentation in Section 2.3.1.1. For k from 1 to F , let G∗

k denote
the expected cost from stage k to F under the execution of the optimal plan (compare to
(2.5)):

G∗
k(xk) = min

uk,...,uK

{
Eθk,...,θK

[
K∑

i=k

l(xi, ui, θi) + lF (xF )

]}
. (10.40)

The optimal cost-to-go for the boundary condition of k = F again reduces to (10.34).
Once again, the algorithm makes K passes over X, each time computing G∗

k from
G∗

k+1, as k ranges from F down to 1. As before, G∗
F is copied from lF . In the second

iteration, G∗
K is computed for each xK ∈ X as (compare to (2.7))

G∗
K (xK ) = min

uK

{
EθK

[
l(xK, uK, θK ) + lF (xF )

]}
, (10.41)

in which uK ∈ U (xK ) and the expectation occurs over θK . Substitutions are made into
(10.41) to obtain (compare to (2.8))

G∗
K (xK ) = min

uK

{
EθK

[
l(xK, uK, θK ) +G∗

F (f (xK, uK, θK ))
]}

. (10.42)
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The general iteration is

G∗
k(xk) =min

uk

{
Eθk

[
min

uk+1,...,uK

{
Eθk+1,...,θK

[
l(xk, uk, θk) +

K∑

i=k+1

l(xi, ui, θi) + lF (xF )

]}]}
,

(10.43)

which is obtained once again by pulling the first cost term out of the sum and by separating
the minimization over uk from the rest. The second min and expectation do not affect the
l(xk, uk, θk) term, which is pulled outside to obtain (compare to (2.10))

G∗
k(xk) =min

uk

{
Eθk

[
l(xk, uk, θk) +

min
uk+1,... ,uK

{
Eθk+1,... ,θK

[ K∑

i=k+1

l(xi, ui, θi) + l(xF )

]}]}
.

(10.44)

The inner min and expectation define G∗
k+1, yielding the recurrence (compare to (2.11)

and (10.39))

G∗
k(xk) = min

uk∈U (xk )

{
Eθk

[
l(xk, uk, θk) +G∗

k+1(xk+1)
]}

= min
uk∈U (xk )

{ ∑

θ∈�(xk,uk)

(
l(xk, uk, θk) +G∗

k+1(f (xk, uk, θk))
)
P (θk|xk, uk)

}
.

(10.45)

If the cost term does not depend on θk , it can be written as l(xk, uk), and (10.45)
simplifies to

G∗
k(xk) = min

uk∈U (xk )

{
l(xk, uk) +

∑

xk+1∈X

G∗
k+1(xk+1)P (xk+1|xk, uk)

}
. (10.46)

The dependency of state transitions on θk is implicit through the expression of
P (xk+1|xk, uk), for which the definition uses P (θk|xk, uk) and the state transition equation
f . The form given in (10.46) may be more convenient than (10.45) in implementations.

Convergence issues

If the maximum number of stages is fixed in the problem definition, then convergence is
assured. Suppose, however, that there is no limit on the number of stages. Recall from
Section 2.3.2 that each value iteration increases the total path length by one. The actual
stage indices were not important in backward dynamic programming because arbitrary
shifting of indices does not affect the values. Eventually, the algorithm terminated because
optimal cost-to-go values had been computed for all reachable states from the goal. This
resulted in a stationary cost-to-go function because the values no longer changed. States
that are reachable from the goal converged to finite values, and the rest remained at
infinity. The only problem that prevents the existence of a stationary cost-to-go function,
as mentioned in Section 2.3.2, is negative cycles in the graph. In this case, the best plan
would be to loop around the cycle forever, which would reduce the cost to −∞.

In the current setting, a stationary cost-to-go function once again arises, but cycles
once again cause difficulty in convergence. The situation is, however, more complicated
due to the influence of nature. It is helpful to consider a plan-based state transition graph,
Gπ . First consider the nondeterministic case. If there exists a plan π from some state
x1 for which all possible actions of nature cause the traversal of cycles that accumulate
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xI xG xI xG

(a) (b)

Figure 10.2: Plan-based state transition graphs. (a) The goal is possibly reachable, but not guaranteed
reachable because an in�nite cycle could occur. (b) The goal is guaranteed reachable because all �o ws
lead to the goal.

negative cost, then the optimal cost-to-go at x1 converges to −∞, which prevents the
value iterations from terminating. These cases can be detected in advance, and each such
initial state can be avoided (some may even be in a different connected component of the
state space).

It is also possible that there are unavoidable positive cycles. In Section 2.3.2, the cost-
to-go function behaved differently depending on whether the goal set was reachable. Due
to nature, the goal set may be possibly reachable or guaranteed reachable, as illustrated in
Figure 10.2. To be possibly reachable from some initial state, there must exist a plan, π ,
for which there exists a sequence of nature actions that will lead the state into the goal set.
To be guaranteed reachable, the goal must be reached in spite of all possible sequences of
nature actions. If the goal is possibly reachable, but not guaranteed reachable, from some
state x1 and all edges have positive cost, then the cost-to-go value of x1 tends to infinity
as the value iterations are repeated. For example, every plan-based state transition graph
may contain a cycle of positive cost, and in the worst case, nature may cause the state to
cycle indefinitely. If convergence of the value iterations is only evaluated at states from
which the goal set is guaranteed to be reachable, and if there are no negative cycles, then
the algorithm should terminate when all cost-to-go values remain unchanged.

For the probabilistic case, there are three situations:

1. The value iterations arrive at a stationary cost-to-go function after a finite number of
iterations.

2. The value iterations do not converge in any sense.

3. The value iterations converge only asymptotically to a stationary cost-to-go function. The
number of iterations tends to infinity as the values converge.

The first two situations have already occurred. The first one occurs if there exists a plan,
π , for which Gπ has no cycles. The second situation occurs if there are negative or positive
cycles for which all edges in the cycle have probability one. This situation is essentially
equivalent to that for the nondeterministic case. Worst-case analysis assumes that the
worst possible nature actions will be applied. For the probabilistic case, the nature actions
are forced by setting their probabilities to one.

The third situation is unique to the probabilistic setting. This is caused by positive
or negative cycles in Gπ for which the edges have probabilities in (0, 1). The optimal
plan may even have such cycles. As the value iterations consider longer and longer
paths, a cycle may be traversed more times. However, each time the cycle is traversed, the
probability diminishes. The probabilities diminish exponentially in terms of the number of
stages, whereas the costs only accumulate linearly. The changes in the cost-to-go function
gradually decrease and converge only to stationary values as the number of iterations tends
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xI xG

1 1/2

1/211

1

Figure 10.3: A plan-based state transition graph that causes asymptotic convergence. The probabilities
of the transitions are shown on the edges. Longer and longer paths exist by traversing the cycle, but the
probabilities become smaller.

to infinity. If some approximation error is acceptable, then the iterations can be terminated
once the maximum change over all of X is within some ε threshold. The required number
of value iterations to obtain a solution of the desired quality depends on the probabilities
of following the cycles and on their costs. If the probabilities are lower, then the algorithm
converges sooner.

Example 10.6 (A Cycle in the Transition Graph) Suppose that a plan, π , is chosen
that yields the plan-based state transition graph shown in Figure 10.3. A probabilistic
model is used, and the probabilities are shown on each edge. For simplicity, assume that
each transition results in unit cost, l(x, u, θ) = 1, over all x, u, and θ .

The expected cost from xI is straightforward to compute. With probability 1/2, the
cost to reach xG is 3. With probability 1/4, the cost is 7. With probability 1/8, the cost is
11. Each time another cycle is taken, the cost increases by 4, but the probability is cut in
half. This leads to the infinite series

Gπ (xI ) = 3 + 4
∞∑

i=1

1

2i+1
= 5. (10.47)

The infinite sum is part of the standard geometric series and converges to 1/2; hence
(10.47) converges to 5.

Even though the cost converges to a finite value, this only occurs in the limit. An infinite
number of value iterations would theoretically be required to obtain this result. For most
applications, an approximate solution suffices, and very high precision can be obtained
with a small number of iterations (e.g., after 20 iterations, the change is on the order of
one-billionth). Thus, in general, it is sensible to terminate the value iterations after the
maximum cost-to-go change is less than a threshold based directly on precision.

Note that if nondeterministic uncertainty is used, then the value iterations do not
converge because, in the worst case, nature will cause the state to cycle forever. Even
though the goal is not guaranteed reachable, the probabilistic uncertainty model allows
reasonable solutions. �

Using the plan

Assume that there is no limit on the number of stages. After the value iterations terminate,
cost-to-go functions are determined over X. This is not exactly a plan, because an action
is required for each x ∈ X. The actions can be obtained by recording the u ∈ U (x) that
produced the minimum cost value in (10.45) or (10.39).

Assume that the value iterations have converged to a stationary cost-to-go function.
Before uncertainty was introduced, the optimal actions were determined by (2.19). The
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nondeterministic and probabilistic versions of (2.19) are

π∗(x) = argmin
u∈U (x)

{
max

θ∈�(x,u)

{
l(x, u, θ ) +G∗(f (x, u, θ ))

}}
(10.48)

and

π∗(x) = argmin
u∈U (x)

{
Eθ

[
l(x, u, θ ) +G∗(f (x, u, θ ))

]}
, (10.49)

respectively. For each x ∈ X at which the optimal cost-to-go value is known, one evalua-
tion of (10.45) yields the best action.

Conveniently, the optimal action can be recovered directly during execution of the
plan, rather than storing actions. Each time a state xk is obtained during execution, the
appropriate action uk = π∗(xk) is selected by evaluating (10.48) or (10.49) at xk . This
means that the cost-to-go function itself can be interpreted as a representation of the
optimal plan, once it is understood that a local operator is required to recover the action. It
may seem strange that such a local computation yields the global optimum; however, this
works because the cost-to-go function already encodes the global costs. This behavior was
also observed for continuous state spaces in Section 8.4.1, in which a navigation function
served to define a feedback motion plan. In that context, a gradient operator was needed
to recover the direction of motion. In the current setting, (10.48) and (10.49) serve the
same purpose.

10.2.2 Policy iteration

The value iterations of Section 10.2.1 work by iteratively updating cost-to-go values on
the state space. The optimal plan can alternatively be obtained by iteratively searching
in the space of plans. This leads to a method called policy iteration [86]; the term policy
is synonymous with plan. The method will be explained for the case of probabilistic
uncertainty, and it is assumed that X is finite. With minor adaptations, a version for
nondeterministic uncertainty can also be developed.

Policy iteration repeatedly requires computing the cost-to-go for a given plan, π . Recall
the definition of Gπ from (10.32). First suppose that there are no uncertainties, and that
the state transition equation is x ′ = f (x, u). The dynamic programming equation (2.18)
from Section 2.3.2 can be used to derive the cost-to-go for each state x ∈ X under the
application of π . Make a copy of (2.18) for each x ∈ X, and instead of the min, use the
given action u = π(x), to yield

Gπ (x) = l(x, π (x)) +Gπ (f (x, π (x))). (10.50)

In (10.50), the G∗ has been replaced by Gπ because there are no variables to optimize
(it is simply the cost of applying π). Equation (10.50) can be thought of as a trivial form
of dynamic programming in which the choice of possible plans has been restricted to a
single plan, π . If the dynamic programming recurrence (2.18) holds over the space of all
plans, it must certainly hold over a space that consists of a single plan; this is reflected in
(10.50).

If there are n states, (10.50) yields n equations, each of which gives an expression of
Gπ (x) for a different state. For the states in which x ∈ XG, it is known that Gπ (x) = 0.
Now that this is known, the cost-to-go for all states from which XG can be reached in one
stage can be computed using (10.50) with Gπ (f (x, π(x))) = 0. Once these cost-to-go
values are computed, another wave of values can be computed from states that can reach
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POLICY ITERATION ALGORITHM

1. Pick an initial plan π , in which uT is applied at each x ∈ XG and all other actions are
chosen arbitrarily.

2. Use (10.53) to compute Gπ for each x ∈ X under the plan π .

3. Substituting the computed Gπ values for G∗, use (10.51) to compute a better plan, π ′:

π ′(x) = argmin
u∈U (x)

{
l(x, u) +

∑

x ′∈X

Gπ (x ′)P (x ′|x, u)
}
. (10.54)

4. If π ′ produces at least one lower cost-to-go value than π , then let π = π ′ and repeat Steps
2 and 3. Otherwise, declare π to be the optimal plan, π∗.

Figure 10.4: The policy iteration algorithm iteratively searches the space of plans by evaluating and
improving plans.

these in one stage. This process continues until the cost-to-go values are computed for all
states. This is similar to the behavior of Dijkstra’s algorithm.

This process of determining the cost-to-go should not seem too mysterious. Equation
(10.50) indicates how the costs differ between neighboring states in the state transition
graph. Since all of the differences are specified and an initial condition is given for XG,
all others can be derived by adding up the differences expressed in (10.50). Similar ideas
appear in the Hamilton-Jacobi-Bellman equation and Pontryagin’s minimum principle,
which are covered in Section 15.2.

Now we turn to the case in which there are probabilistic uncertainties. The probabilistic
analog of (2.18) is (10.49). For simplicity, consider the special case in which l(x, u, θ)
does not depend on θ , which results in

π∗(x) = argmin
u∈U (x)

{
l(x, u) +

∑

x ′∈X

G∗(x ′)P (x ′|x, u)

}
, (10.51)

in which x ′ = f (x, u). The cost-to-go function, G∗, satisfies the dynamic programming
recurrence

G∗(x) = min
u∈U (x)

{
l(x, u) +

∑

x ′∈X

G∗(x ′)P (x ′|x, u)

}
. (10.52)

The probabilistic analog to (10.50) can be made from (10.52) by restricting the set of
actions to a single plan, π , to obtain

Gπ (x) = l(x, π(x)) +
∑

x ′∈X

Gπ (x ′)P (x ′|x, π(x)), (10.53)

in which x ′ = f (x, π(x)).
The cost-to-go for each x ∈ X under the application of π can be determined by writing

(10.53) for each state. Note that all quantities except Gπ are known. This means that
if there are n states, then there are n linear equations and n unknowns (Gπ (x) for each
x ∈ X). The same was true when (10.50) was used, except the equations were much
simpler. In the probabilistic setting, a system of n linear equations must be solved to
determine Gπ . This may be performed using classical linear algebra techniques, such as
singular value decomposition (SVD) [401, 961].

Now that we have a method for evaluating the cost of a plan, the policy iteration
method is straightforward, as specified in Figure 10.4. Note that in Step 3, the cost-to-go
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ba c
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Figure 10.5: The probabilistic state transition graphs for u = 1 and u = 2. Transitions out of c are not
shown because it is assumed that a termination action is always applied from xg.

Gπ , which was developed for one plan, π , is used to evaluate other plans. The result is the
cost that will be obtained if a new action is tried in the first stage and then π is used for all
remaining stages. If a new action cannot reduce the cost, then π must have already been
optimal because it means that (10.54) has become equivalent to the stationary dynamic
programming equation, (10.49). If it is possible to improve π , then a new plan is obtained.
The new plan must be strictly better than the previous plan, and there is only a finite
number of possible plans in total. Therefore, the policy iteration method converges after
a finite number of iterations.

Example 10.7 (An Illustration of Policy Iteration) A simple example will now be
used to illustrate policy iteration. Let X = {a, b, c} and U = {1, 2, uT }. Let XG = {c}.
Let l(x, u) = 1 for all x ∈ X and u ∈ U \ {uT } (if uT is applied, there is no cost). The
probabilistic state transition graphs for each action are shown in Figure 10.5. The first
step is to pick an initial plan. Let π(a) = 1 and π(b) = 1; let π(c) = uT because c ∈ XG.

Now use (10.53) to compute Gπ . This yields three equations:

Gπ (a) = 1 +Gπ (a)P (a | a, 1) +Gπ (b)P (b | a, 1) +Gπ (c)P (c | a, 1) (10.55)

Gπ (b) = 1 +Gπ (a)P (a | b, 1) +Gπ (b)P (b | b, 1) +Gπ (c)P (c | b, 1) (10.56)

Gπ (c) = 0 +Gπ (a)P (a | c, uT ) +Gπ (b)P (b | c, uT ) +Gπ (c)P (c | c, uT ). (10.57)

Each equation represents a different state and uses the appropriate action from π . The
final equation reduces to Gπ (c) = 0 because of the basic rules of applying a termination
condition. After substituting values for P (x ′|x, u) and using Gπ (c) = 0, the other two
equations become

Gπ (a) = 1 + 1
3Gπ (a) + 1

3Gπ (b) (10.58)

and

Gπ (b) = 1 + 1
3Gπ (a) + 1

3Gπ (b). (10.59)

The solutions are Gπ (a) = Gπ (b) = 3.
Now use (10.54) for each state with Gπ (a) = Gπ (b) = 3 and Gπ (c) = 0 to find a better

plan, π ′. At state a, it is found by solving

π ′(a) = argmin
u∈U

{
l(x, a) +

∑

x ′∈X

Gπ (x ′)P (x ′|x, a)
}
. (10.60)

The best action is u = 2, which produces cost 5/2 and is computed as

l(x, 2) +
∑

x ′∈X

Gπ (x ′)P (x ′|x, 2) = 1 + 0 + (3) 1
2 + (0) 1

4 = 5
2 . (10.61)

Thus, π ′(a) = 2. Similarly, π ′(b) = 2 can be computed, which produces cost 7/4. Once
again, π ′(c) = uT , which completes the determination of an improved plan.
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BACKPROJECTION ALGORITHM

1. Initialize S = XG, and let π (x) = uT for each x ∈ XG.

2. For each x ∈ X \ S, if there exists some u ∈ U (x) such that x ∈ SB(S, u) then: 1) let
π (x) = u, and 2) insert x into S.

3. If Step 2 failed to extend S, then exit. This implies that SB(S) = S, which means no more
progress can be made. Otherwise, go to Step 2.

Figure 10.6: A general algorithm for computing a feasible plan under nondeterministic uncertainty.

Since an improved plan has been found, replace π with π ′ and return to Step 2. The
new plan yields the equations

Gπ (a) = 1 + 1
2Gπ (b) (10.62)

and

Gπ (b) = 1 + 1
4Gπ (a). (10.63)

Solving these yields Gπ (a) = 12/7 and Gπ (b) = 10/7. The next step attempts to find a
better plan using (10.54), but it is determined that the current plan cannot be improved.
The policy iteration method terminates by correctly reporting that π∗ = π . �

Policy iteration may appear preferable to value iteration, especially because it usually
converges in fewer iterations than value iteration. The equation solving that determines the
cost of a plan effectively considers multiple stages at once. However, for most planning
problems, X is large and the large linear system of equations that must be solved at every
iteration can become unwieldy. In some applications, either the state space may be small
enough or sparse matrix techniques may allow efficient solutions over larger state spaces.
In general, value-based methods seem preferable for most planning problems.

10.2.3 Graph search methods

Value iteration is quite general; however, in many instances, most of the time is wasted
on states that do not update their values because either the optimal cost-to-go is already
known or the goal is not yet reached. Policy iteration seems to alleviate this problem,
but it is limited to small state spaces. These shortcomings motivate the consideration
of alternatives, such as extending the graph search methods of Section 2.2. In some
cases, Dijkstra’s algorithm can even be extended to quickly obtain optimal solutions, but a
strong assumption is required on the structure of solutions. In the nondeterministic setting,
search methods can be developed that produce only feasible solutions, without regard for
optimality. For the methods in this section, X need not be finite, as long as the search
method is systematic, in the sense defined in Section 2.2.

Backward search with backprojections

A backward search can be conducted by incrementally growing a plan outward from
XG by using backprojections. A complete algorithm for computing feasible plans under
nondeterministic uncertainty is outlined in Figure 10.6. Let S denote the set of states for
which the plan has been computed. Initially, S = XG and, if possible, S may grow until
S = X. The plan definition starts with π(x) = uT for each x ∈ XG and is incrementally
extended to new states during execution.
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S

x

Forward projection
under u

Figure 10.7: A state x can be added to S if there exists an action u ∈ U(x) such that the one-stage
forward projection is contained in S.

Step 2 takes every state x that is not already in S and checks whether it should be
added. This requires determining whether some action, u, can be applied from x, with the
next state guaranteed to lie in S, as shown in Figure 10.7. If so, then π(x) = u is assigned
and S is extended to include x. If no such progress can be made, then the algorithm
must terminate. Otherwise, every state is checked again by returning to Step 2. This is
necessary because S has grown, and in the next iteration new states may lie in its strong
backprojection.

For efficiency reasons, the X \ S set in Step 2 may be safely replaced with the smaller
set, WB(S) \ S, because it is impossible for other states in X to be affected. Depending on
the problem, this condition may provide a quick way to prune many hopeless states from
consideration. As an example, consider a grid-like environment in which a maximum
of two steps in any direction is possible at a given time. A simple distance test can be
implemented to eliminate many states from possible inclusion into S in Step 2.

As long as the consideration of states to include in S is systematic, as considered
in Section 2.2, numerous variations of the algorithm in Figure 10.6 are possible. One
possibility is to keep track of the cost-to-go and grow S based on incrementally inserting
minimal-cost states. This leads to a nondeterministic version of Dijkstra’s algorithm,
which is covered next.

Nondeterministic Dijkstra

Figure 10.8 shows an extension of Dijkstra’s algorithm for solving the problem of Formu-
lation 10.1 under nondeterministic uncertainty. It can also be considered as a variant of
the algorithm in Figure 10.6 because it grows S by using backprojections. The algorithm
in Figure 10.8 represents a backward-search version of Dijkstra’s algorithm; therefore, it
maintains the worst-case cost-to-go, G, which sometimes becomes the optimal, worst-case
cost-to-go, G∗. Initially, G = 0 for states in the goal, and G = ∞ for all others.

Step 1 performs the initialization. Step 2 selects the state in A that has the smallest
value. As in Dijkstra’s algorithm for deterministic problems, it is known that the cost-to-go
for this state is the smallest possible. It is therefore declared in Step 3 that G∗(xs) = G(xs),
and π∗ is extended to include xs .

Step 4 updates the costs for some states and expands the active set, A. Which costs
could be immediately affected by the insertion of xs into S? These are states xk ∈ X \ S

for which there exists some uk ∈ U (xk) that produces a one-stage forward projection,
Xk+1(xk, uk), such that: 1) xs ∈ Xk+1(xk, uk) and 2) Xk+1(xk, uk) ⊆ S. This is depicted
in Figure 10.9. Let the set of states that satisfy these constraints be called the frontier set,
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NONDETERMINISTIC DIJKSTRA

1. Initialize S = ∅ and A = XG. Associate uT with every x ∈ A. Assign G(x) = 0 for all
x ∈ A and G(x) = ∞ for all other states.

2. Unless A is empty, remove the xs ∈ A and its corresponding u, for which G is smallest.
If A was empty, then exit (no further progress is possible).

3. Designate π∗(xs) = u as part of the optimal plan and insert xs into S. Declare G∗(xs) =
G(xs).

4. Compute G(xs) using (10.64) for any x in the frontier set, Front(xs, S), and insert
Front(xs, A) into A and with associated actions for each inserted state. For states already
in A, retain whichever G value is lower, either its original value or the new computed
value. Go to Step 2.

Figure 10.8: A Dijkstra-based algorithm for computing an optimal feasible plan under nondeterministic
uncertainty.

Figure 10.9: The worst-case cost-to-go is computed for any state x such that there exists a u ∈ U(x) for
which the one-stage forward projection is contained in the updated Sand one state in the forward projection
is xs.

denoted by Front(xs, S). For each x ∈ Front(xs, S), let Uf (x) ⊆ U (x) denote the set of
all actions for which the forward projection satisfies the two previous conditions.

The frontier set can be interpreted in terms of backprojections. The weak backprojection
WB(xs) yields all states that can possibly reach xs in one step. However, the cost-to-go is
only finite for states in SB(S) (here S already includes xs). The states in S should certainly
be excluded because their optimal costs are already known. These considerations reduce
the set of candidate frontier states to (WB(xs) ∩ SB(S)) \ S. This set is still too large
because the same action, u, must produce a one-stage forward projection that includes xs

and is a subset of S.
The worst-case cost-to-go is computed for all x ∈ Front(xs, S) as

G(x) = min
u∈Uf (x)

{
max

θ∈�(x,u)

{
l(x, u, θ) +G(f (x, u, θ))

}}
, (10.64)

in which the restricted action set, Uf (x), is used. If x was already in A and a previous
G(x) was computed, then the minimum of its previous value and (10.64) is kept.

Probabilistic Dijkstra

A probabilistic version of Dijkstra’s algorithm does not exist in general; however, for
some problems, it can be made to work. The algorithm in Figure 10.8 is adapted to the
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probabilistic case by using

G(x) = min
u∈Uf (x)

{
Eθ

[
l(x, u, θ ) +G(f (x, u, θ ))

]}
(10.65)

in the place of (10.64). The definition of Front remains the same, and the nondeterministic
forward projections are still applied to the probabilistic problem. Only edges in the
transition graph that have nonzero probability are actually considered as possible future
states. Edges with zero probability are precluded from the forward projection because
they cannot affect the computed cost values.

The probabilistic version of Dijkstra’s algorithm can be successfully applied if there ex-
ists a plan, π , for which from any xk ∈ X there is probability one that Gπ (xk+1) < Gπ (xk).
What does this condition mean? From any xk , all possible next states that have
nonzero probability of occurring must have a lower cost value. If all edge costs are
positive, this means that all paths in the multi-stage forward projection will make
monotonic progress toward the goal. In the deterministic case, this always occurs if
l(x, u) is always positive. If nonmonotonic paths are possible, then Dijkstra’s algorithm
breaks down because the region in which cost-to-go values change is no longer con-
tained within a propagating band, which arises in Dijkstra’s algorithm for deterministic
problems.

10.3 Infinite-horizon problems

In stochastic control theory and artificial intelligence research, most problems considered
to date do not specify a goal set. Therefore, there are no associated termination actions. The
task is to develop a plan that minimizes the expected cost (or maximize expected reward)
over some number of stages. If the number of stages is finite, then it is straightforward
to apply the value iteration method of Section 10.2.1. The adapted version of backward
value iteration simply terminates when the first stage is reached. The problem becomes
more challenging if the number of stages is infinite. This is called an infinite-horizon
problem.

The number of stages for the planning problems considered in Section 10.1 is also
infinite; however, it was expected that if the goal could be reached, termination would
occur in a finite number of iterations. If there is no termination condition, then the costs
tend to infinity. There are two alternative cost models that force the costs to become
finite. The discounted cost model shrinks the per-stage costs as the stages extend into
the future; this yields a geometric series for the total cost that converges to a finite
value. The average cost-per-stage model divides the total cost by the number of stages.
This essentially normalizes the accumulating cost, once again preventing its divergence to
infinity. Some of the computation methods of Section 10.2 can be adapted to these models.
This section formulates these two infinite-horizon cost models and presents computational
solutions.

10.3.1 Problem formulation

Both of the cost models presented in this section were designed to force the cumulative
cost to become finite, even though there is an infinite number of stages. Each can be
considered as a minor adaptation of cost functional used in Formulation 10.1.
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The following formulation will be used throughout Section 10.3.

Formulation 10.2 (Infinite-Horizon Problems)

1. A nonempty, finite state space X.

2. For each state x ∈ X, a finite action space U (x) (there is no termination action, contrary
to Formulation 10.1).

3. A finite nature action space �(x, u) for each x ∈ X and u ∈ U (x).

4. A state transition function f that produces a state, f (x, u, θ ), for every x ∈ X, u ∈ U (x),
and θ ∈ �(x, u).

5. A set of stages, each denoted by k, that begins at k = 1 and continues indefinitely.

6. A stage-additive cost functional, L(x̃, ũ, θ̃ ), in which x̃, ũ, and θ̃ are infinite state, action,
and nature histories, respectively. Two alternative forms of L will be given shortly.

In comparison to Formulation 10.1, note that here there is no initial or goal state.
Therefore, there are no termination actions. Without the specification of a goal set, this
may appear to be a strange form of planning. A feedback plan, π , still takes the same
form; π(x) produces an action u ∈ U (x) for each x ∈ X.

As a possible application, imagine a robot that delivers materials in a factory from
several possible source locations to several destinations. The robot operates over a long
work shift and has a probabilistic model of when requests to deliver materials will arrive.
Formulation 10.2 can be used to define a problem in which the goal is to minimize the
average amount of time that materials wait to be delivered. This strategy should not depend
on the length of the shift; therefore, an infinite number of stages is reasonable. If the shift
is too short, the robot may focus only on one delivery, or it may not even have enough
time to accomplish that.

Discounted cost

In Formulation 10.2, the cost functional in Item 6 must be defined carefully to ensure
that finite values are always obtained, even though the number of stages tends to infinity.
The discounted cost model provides one simple way to achieve this by rapidly decreasing
costs in future stages. Its definition is based on the standard geometric series. For any real
parameter α ∈ (0, 1),

lim
K→∞

(
K∑

k=0

αk

)
= 1

1 − α
. (10.66)

The simplest case, α = 1/2, yields 1 + 1/2 + 1/4 + 1/8 + · · · , which clearly converges
to 2.

Now let α ∈ (0, 1) denote a discount factor, which is applied in the definition of a cost
functional:

L(x̃, ũ, θ̃ ) = lim
K→∞

(
K∑

k=0

αkl(xk, uk, θk)

)
. (10.67)

Let lk denote the cost, l(xk, uk, θk), received at stage k. For convenience in this setting,
the first stage is k = 0, as opposed to k = 1, which has been used previously. As the
maximum stage, K , increases, the diminished importance of costs far in the future can
easily be observed, as indicated in Figure 10.10.
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Stage L∗
K

K = 0 l0
K = 1 l0 + αl1
K = 2 l0 + αl1 + α2l2
K = 3 l0 + αl1 + α2l2 + α3l3
K = 4 l0 + αl1 + α2l2 + α3l3 + α4l4

...

Figure 10.10: The cost magnitudes decease exponentially over the stages.

The rate of cost decrease depends strongly on α. For example, if α = 1/2, the costs
decrease very rapidly. If α = 0.999, the convergence to zero is much slower. The trade-off
is that with a large value of α, more stages are taken into account, and the designed plan
is usually of higher quality. If a small value of α is used, methods such as value iteration
converge much more quickly; however, the solution quality may be poor because of “short
sightedness.”

The term l(xk, uk, θk) in (10.67) assumes different values depending on xk , uk , and
θk . Since there are only a finite number of possibilities, they must be bounded by some
positive constant c.1 Hence,

lim
K→∞

(
K∑

k=0

αkl(xk, uk, θk)

)
≤ lim

K→∞

(
K∑

k=0

αkc

)
≤ c

1 − α
, (10.68)

which means that L(x̃, ũ, θ̃) is bounded from above, as desired. A similar lower bound
can be constructed, which ensures that the resulting total cost is always finite.

Average cost-per-stage

An alternative to discounted cost is to use the average cost-per-stage model, which keeps
the cumulative cost finite by dividing out the total number of stages:

L(x̃, ũ, θ̃ ) = lim
K→∞

(
1

K

K−1∑

k=0

l(xk, uk, θk)

)
. (10.69)

Using the maximum per-stage cost bound c, it is clear that (10.69) grows no larger than c,
even as K →∞. This model is sometimes preferable because the cost does not depend
on an arbitrary parameter, α.

10.3.2 Solution techniques

Straightforward adaptations of the value and policy iteration methods of Section 10.2
exist for infinite-horizon problems. These will be presented here; however, it is important
to note that many other important issues exist regarding their convergence and numerical
stability [98]. There are several other variants of these algorithms that are too involved to
cover here but nevertheless are important because they address many of these additional
issues. The main point in this section is to understand the simple relationship to the
problems considered so far in Sections 10.1 and 10.2.

1 The state space X may even be infinite, but this requires that the set of possible costs is bounded.
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Value iteration for discounted cost

A backward value iteration solution will be presented that follows naturally from the
method given in Section 10.2.1. For notational convenience, let the first stage be designated
as k = 0 so that αk−1 may be replaced by αk . In the probabilistic case, the expected optimal
cost-to-go is

G∗(x) = lim
K→∞

(
min

ũ

{
Eθ̃

[
K∑

k=1

αkl(xk, uk, θk)

]})
. (10.70)

The expectation is taken over all nature histories, each of which is an infinite sequence of
nature actions. The corresponding expression for the nondeterministic case is

G∗(x) = lim
K→∞

(
min

ũ

{
max

θ̃

{
K∑

k=1

αkl(xk, uk, θk)

}})
. (10.71)

Since the probabilistic case is more common, it will be covered here. The nonde-
terministic version is handled in a similar way (see Exercise 17). As before, backward
value iterations will be performed because they are simpler to express. The discount fac-
tor causes a minor complication that must be fixed to make the dynamic programming
recurrence work properly.

One difficulty is that the stage index now appears in the cost function, in the form of αk .
This means that the shift-invariant property from Section 2.3.1.1 is no longer preserved.
We must therefore be careful about assigning stage indices. This is a problem because for
backward value iteration the final stage index has been unknown and unimportant.

Consider a sequence of discounted decision-making problems, by increasing the max-
imum stage index: K = 0, K = 1, K = 2, . . . . Look at the neighboring cost expressions
in Figure 10.10. What is the difference between finding the optimal cost-to-go for the
K + 1-stage problem and the K-stage problem? In Figure 10.10 the last three terms of
the cost for K = 4 can be obtained by multiplying all terms for K = 3 by α and adding
a new term, l0. The only difference is that the stage indices need to be shifted by one
on each li that was borrowed from the K = 3 case. In general, the optimal costs of a
K-stage optimization problem can serve as the optimal costs of the K + 1-stage problem
if they are first multiplied by α. The K + 1-stage optimization problem can be solved
by optimizing over the sum of the first-stage cost plus the optimal cost for the K-stage
problem, discounted by α.

This can be derived using straightforward dynamic programming arguments as follows.
Suppose that K is fixed. The cost-to-go can be expressed recursively for k from 0 to K as

G∗
k(xk) = min

uk∈U (xk )

{
Eθk

[
αkl(xk, uk, θk) +G∗

k−1(xk+1)
]}

, (10.72)

in which xk+1 = f (xk, uk, θk). The problem, however, is that the recursion depends on k

through αk , which makes it appear nonstationary.
The idea of using neighboring cost values as shown in Figure 10.10 can be applied by

making a notational change. Let J ∗
K−k(xk) = α−kG∗

k(xk). This reverses the direction of
the stage indices to avoid specifying the final stage and also scales by α−k to correctly
compensate for the index change. Substitution into (10.72) yields

αkJ ∗
K−k(xk) = min

uk∈U (xk )

{
Eθk

[
αkl(xk, uk, θk) + αk+1J ∗

K−k−1(xk+1)
]}

. (10.73)
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Dividing by αk and then letting i = K − k yields

J ∗
i (xk) = min

uk∈U (xk )

{
Eθk

[
l(xk, uk, θk) + αJ ∗

i−1(xk+1)
]}

, (10.74)

in which J ∗
i represents the expected cost for a finite-horizon discounted problem in

which K = i. Note that (10.74) expresses J ∗
i in terms of J ∗

i−1, but xk is given, and the
right-hand side uses xk+1. The indices appear to run in opposite directions because this
is simply backward value iteration with a notational change that reverses some of the
indices. The particular stage indices of xk and xk+1 are not important in (10.74), as long
as xk+1 = f (xk, uk, θk) (for example, the substitutions x = xk , x ′ = xk+1, u = uk , and
θ = θk can be safely made).

Value iteration proceeds by first letting J ∗
0 (x0) = 0 for all x ∈ X. Successive cost-to-go

functions are computed by iterating (10.74) over the state space. Under the cycle-avoiding
assumptions of Section 10.2.1, the convergence is usually asymptotic due to the infinite
horizon. The discounting gradually causes the cost differences to diminish until they are
within the desired tolerance. The stationary form of the dynamic programming recurrence,
which is obtained in the limit as i tends to infinity, is

J ∗(x) = min
u∈U (x)

{
Eθk

[
l(x, u, θ ) + αJ ∗(f (x, u, θ ))

]}
. (10.75)

If the cost terms do not depend on nature, then the simplified form is

J ∗(x) = min
u∈U (x)

{
l(x, u) + α

∑

x ′∈X

J ∗(x ′)P (x ′|x, u)
}
. (10.76)

As explained in Section 10.2.1, the optimal action, π∗(x), is assigned as the u ∈ U (x) that
satisfies (10.75) or (10.76) at x.

Policy iteration for discounted cost

The policy iteration method may alternatively be applied to the probabilistic discounted-
cost problem. Recall the method given in Figure 10.4. The general approach remains
the same: A search is conducted over the space of plans by solving a linear system of
equations in each iteration. In Step 2, (10.53) is replaced by

Jπ (x) = l(x, u) + α
∑

x ′∈X

Jπ (x ′)P (x ′|x, u), (10.77)

which is a special form of (10.76) for evaluating a fixed plan. In Step 3, (10.54) is replaced
by

π ′(x) = argmin
u∈U (x)

{
l(x, u) + α

∑

x ′∈X

Jπ (x ′)P (x ′|x, u)
}
. (10.78)

Using these alterations, the policy iteration algorithm proceeds in the same way as in
Section 10.2.2.

Solutions for the average cost-per-stage model

A value iteration algorithm for the average cost model can be obtained by simply neglecting
to divide by K . Selecting actions that optimize the total cost also optimizes the average
cost as the number of stages approaches infinity. This may cause costs to increase toward
±∞; however, only a finite number of iterations can be executed in practice.

The backward value iterations of Section 10.2.1 can be followed with very little modi-
fication. Initially, let G∗(xF ) = 0 for all xF ∈ X. The value iterations are computed using



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

SEQUENTIAL DECISION THEORY 435

the standard form

G∗
k(xk) = min

uk∈U (xk )

{ ∑

θ∈�(xk,uk)

(
l(xk, uk, θk) +G∗

k+1(f (xk, uk, θk))
)
P (θk|xk, uk)

}
. (10.79)

The iterations continue until convergence occurs. To determine whether a solution of
sufficient quality has been obtained, a reasonable criterion for is

max
x∈X

{∣∣G∗
k(x)/N −G∗

k+1(x)/(N − 1)
∣∣
}

< ε, (10.80)

in which ε is the error tolerance and N is the number of value iterations that have been
completed (it is required in (10.80) that N > 1). Once (10.80) has been satisfied, the
iterations can be terminated.

A numerical problem may exist with the growing values obtained for G∗(x). This can
be alleviated by periodically reducing all values by some constant factor to ensure that
the numbers fit within the allowable floating point range. In [98], a method called relative
value iteration is presented, which selects one state, s ∈ X, arbitrarily and expresses the
cost-to-go values by subtracting off the cost at s. This trims down all values simultaneously
to keep them bounded while still maintaining the convergence properties of the algorithm.

Policy iteration can alternatively be performed by using the method given in Figure 10.4
with only minor modification.

10.4 Reinforcement learning

10.4.1 The general philosophy

This section briefly introduces the basic ideas of a framework that has been highly
popular in the artificial intelligence community in recent years. It was developed and
used primarily by machine learning researchers [19, 75], and therefore this section is
called reinforcement learning. The problem generally involves computing optimal plans
for probabilistic infinite-horizon problems. The basic idea is to combine the problems of
learning the probability distribution, P (θ |x, u), and computing the optimal plan into the
same algorithm.

Terminology

Before detailing the method further, some explanation of existing names seems required.
Consider the term reinforcement learning. In machine learning, most decision-theoretic
models are expressed in terms of reward instead of cost. Thus, the task is to make decisions
or find plans that maximize a reward functional. Choosing good actions under this model
appears to provide positive reinforcement in the form of a reward. Therefore, the term
reinforcement is used. Using cost and minimization instead, some alternative names may
be decision-theoretic learning or cost-based learning.

The term learning is associated with the problem because estimating the probability
distribution P (θ |x, u) or P (x ′|x, u) is clearly a learning problem. However, it is important
to remember that there is also the planning problem of computing cost-to-go functions
(or reward-to-go functions) and determining a plan that optimizes the costs (or rewards).
Therefore, the term reinforcement planning may be just as reasonable.

The general framework is referred to as neuro-dynamic programming in [99] because
the formulation and resulting algorithms are based on dynamic programming. Most often,
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Apply action uk from xk

Next state, xk+1

Learning/Planning/Execution

Simulator

Monte Carlo

Algorithm

Cost value, l(xk, uk)

Figure 10.11: The general framework for reinforcement learning (or simulation-based dynamic program-
ming).

a variant of value iteration is obtained. The neuro part refers to a family of functions
that can be used to approximate plans and cost-to-go values. This term is fairly specific,
however, because other function families may be used. Furthermore, for some problems
(e.g., over small, finite state spaces), the cost values and plans are represented without
approximation.

The name simulation-based methods is used in [97], which is perhaps one of the most
accurate names (when used in the context of dynamic programming). Thus, simulation-
based dynamic programming or simulation-based planning nicely reflects the framework
explained here. The term simulation comes from the fact that a Monte Carlo simulator is
used to generate samples for which the required distributions are learned during planning.
You are, of course, welcome to use your favorite name, but keep in mind that under all of
the names, the idea remains the same. This will be helpful to remember if you intend to
study related literature.

The general framework

The framework is usually applied to infinite-horizon problems under probabilistic uncer-
tainty. The discounted-cost model is most popular; however, we will mostly work with
Formulation 10.1 because it is closer to the main theme of this book. It has been assumed
so far that when planning under Formulation 10.1, all model components are known,
including P (xk+1|xk, uk). This can be considered as a traditional framework, in which
there are three general phases:

Learning phase: The transition probabilities are estimated by visiting states in X, trying
actions, and gathering statistics. When this phase concludes, the model of the environment
is completely known.

Planning phase: An algorithm computes a feedback plan using a method such as value
iteration or policy iteration.

Execution phase: The plan is executed on a machine that is connected to the same
environment on which the learning phase was applied.

The simulation-based framework combines all three of these phases into one. Learning,
planning, and execution are all conducted by a machine that initially knows nothing about
the state transitions or even the cost terms. Ideally, the machine should be connected
to a physical environment for which the Markov model holds. However, in nearly all
implementations, the machine is instead connected to a Monte Carlo simulator as shown
in Figure 10.11. Based on the current state, the algorithm sends an action, uk , to the
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simulator, and the simulator computes its effect by sampling according to its internal
probability distributions. Obviously, the designer of the simulator knows the transition
probabilities, but these are not given directly to the planning algorithm. The simulator
then sends the next state, xk+1, and cost, l(xk, uk), back to the algorithm.

For simplicity, l(xk, uk) is used instead of allowing the cost to depend on the particular
nature action, which would yield l(xk, uk, θk). The explicit characterization of nature is
usually not needed in this framework. The probabilities P (xk+1|xk, uk) are directly learned
without specifying nature actions. It is common to generalize the cost term from l(xk, uk)
to l(xk, uk, xk+1), but this is avoided here for notational convenience. The basic ideas
remain the same, and only slight variations of the coming equations are needed to handle
this generalization.

The simulator is intended to simulate “reality,” in which the machine interacts with the
physical world. It replaces the environment in Figure 1.16b from Section 1.4. Using the
interpretation of that section, the algorithms presented in this context can be considered as
a plan as shown in Figure 1.18b. If the learning component is terminated, then the resulting
feedback plan can be programmed into another machine, as shown in Figure 1.18a. This
step is usually not performed, however, because often it is assumed that the machine
continues to learn over its lifetime.

One of the main issues is exploration vs. exploitation [75]. Some repetitive exploration
of the state space is needed to gather enough data that reliably estimate the model. For
true theoretical convergence, each state-action pair must be tried infinitely often. On the
other hand, information regarding the model should be exploited to efficiently accomplish
tasks. These two goals are often in conflict. Focusing too much on exploration will not
optimize costs. Focusing too much on exploitation may prevent useful solutions from
being developed because better alternatives have not yet been discovered.

10.4.2 Evaluating a plan via simulation

The simulation method is based on averaging the information gained incrementally from
samples. Suppose that you receive a sequence of costs, c1, c2, . . . , and would like to
incrementally compute their average. You are not told the total number of samples in
advance, and at any point you are required to report the current average. Let mi denote
the average of the first i samples,

mi = 1

i

i∑

j=1

cj . (10.81)

To efficiently compute mi from mi−1, multiply mi−1 by i − 1 to recover the total, add ci ,
and then divide by i:

mi = (i − 1)mi−1 + ci

i
. (10.82)

This can be manipulated into

mi = mi−1 + 1

i
(ci −mi−1). (10.83)

Now consider the problem of estimating the expected cost-to-go, Gπ (x), at every x ∈ X

for some fixed plan, π . If P (x ′|x, u) and the costs l(x, u) were known, then it could be
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computed by solving

Gπ (x) = l(x, u) +
∑

x ′
P (x ′|x, u)Gπ (x ′). (10.84)

However, without this information, we must rely on the simulator.
From each x ∈ X, suppose that 1000 trials are conducted, and the resulting costs to get

to the goal are recorded and averaged. Each trial is an iterative process in which π selects
the action, and the simulator indicates the next state and its incremental cost. Once the
goal state is reached, the costs are totaled to yield the measured cost-to-go for that trial
(this assumes that π(x) = uT for all x ∈ XG). If ci denotes this total cost at trial i, then
the average, mi , over i trials provides an estimate of Gπ (x). As i tends to infinity, we
expect mi to converge to Gπ (x). The update formula (10.83) can be conveniently used to
maintain the improving sequence of cost-to-go estimates. Let Ĝπ (x) denote the current
estimate of Gπ (x). The update formula based on (10.83) can be expressed as

Ĝπ (x) := Ĝπ (x) + 1

i
(l(x1, u1) + l(x2, u2) + · · · + l(xK, uK ) − Ĝπ (x)), (10.85)

in which := means assignment, in the sense used in some programming languages.
It turns out that a single trial can actually yield update values for multiple states

[75, 98]. Suppose that a trial is performed from x that results in the sequence x1 = x,
x2, . . . , xk, . . . , xK , xF of visited states. For every state, xk , in the sequence, a cost-to-go
value can be measured by recording the cost that was accumulated from xk to xK :

ck(xk) =
K∑

j=k

l(xj , uj ). (10.86)

It is much more efficient to make use of (10.85) on every state that is visited along the
path.

Temporal differences

Rather than waiting until the end of each trial to compute ci(xi), it is possible to update
each state, xi , immediately after it is visited and l(xi, ui) is received from the simulator.
This leads to a well-known method of estimating the cost-to-go called temporal differences
[930]. It is very similar to the method already given but somewhat more complicated. It
will be introduced here because the method frequently appears in reinforcement learning
literature, and an extension of it leads to a nice simulation-based method for updating the
estimated cost-to-go.

Once again, consider the sequence x1, . . . , xK , xF generated by a trial. Let dk denote
a temporal difference, which is defined as

dk = l(xk, uk) + Ĝπ (xk+1) − Ĝπ (xk). (10.87)

Note that both l(xk, uk) + Ĝπ (xk+1) and Ĝπ (xk) could each serve as an estimate of Gπ (xk).
The difference is that the right part of (10.87) utilizes the latest cost obtained from the
simulator for the first step and then uses Ĝπ (xk+1) for an estimate of the remaining cost.
In this and subsequent expressions, every action, uk , is chosen using the plan: uk = π(xk).

Let vk denote the number of times that xk has been visited so far, for each 1 ≤ k ≤ K ,
including previous trials and the current visit. The following update algorithm can be used
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during the trial. When x2 is reached, the value at x1 is updated as

Ĝπ (x1) := Ĝπ (x1) + 1

v1
d1. (10.88)

When x3 is reached, the values at x1 and x2 are updated as

Ĝπ (x1) := Ĝπ (x1) + 1

v1
d2,

Ĝπ (x2) := Ĝπ (x2) + 1

v2
d2.

(10.89)

Now consider what has been done so far at x1. The temporal differences partly collapse:

Ĝπ (x1) : = Ĝπ (x1) + 1

v1
d1 + 1

v1
d2

= Ĝπ (x1) + 1

v1
(l(x1, u1) + Ĝπ (x2) − Ĝπ (x1) + l(x2, u2) + Ĝπ (x3) − Ĝπ (x2))

= Ĝπ (x1) + 1

v1
(l(x1, u1) + l(x2, u2) − Ĝπ (x1) + Ĝπ (x3)). (10.90)

When x4 is reached, similar updates are performed. At xk , the updates are

Ĝπ (x1) :=Ĝπ (x1) + 1

v1
dk,

Ĝπ (x2) :=Ĝπ (x2) + 1

v2
dk,

...

Ĝπ (xk) :=Ĝπ (xk) + 1

vk

dk.

(10.91)

The updates are performed in this way until xF ∈ XG is reached. Now consider what
was actually computed for each xk . The temporal differences form a telescoping sum
that collapses, as shown in (10.90) after two iterations. After all iterations have been
completed, the value at xk has been updated as

Ĝπ (xk) : = Ĝπ (xk) + 1

vk

dk + 1

vk+1
dk+1 + · · · + 1

vK

dK + 1

vF

dF

= Ĝπ (xk) + 1

vk

(l(x1, u1) + l(x2, u2) + · · · + l(xK, uK ) − Ĝπ (xk) + Ĝπ (xF ))

= Ĝπ (xk) + 1

vk

(l(x1, u1) + l(x2, u2) + · · · + l(xK, uK ) − Ĝπ (xk)). (10.92)

The final Ĝπ (xF ) was deleted because its value is zero, assuming that the termina-
tion action is applied by π . The resulting final expression is equivalent to (10.85) if
each visited state in the sequence was distinct. This is often not true, which makes the
method discussed above differ slightly from the method of (10.85) because the count,
vk , may change during the trial in the temporal difference scheme. This difference, how-
ever, is negligible, and the temporal difference method computes estimates that converge
to Ĝπ [98, 99].
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The temporal difference method presented so far can be generalized in a way that often
leads to faster convergence in practice. Let λ ∈ [0, 1] be a specified parameter. The T D(λ)
temporal difference method replaces the equations in (10.91) with

Ĝπ (x1) :=Ĝπ (x1) + λk−1

(
1

v1
dk

)
,

Ĝπ (x2) :=Ĝπ (x2) + λk−2

(
1

v2
dk

)
,

...

Ĝπ (xk−1) :=Ĝπ (xk−1) + λ

(
1

vk−1
dk

)
,

Ĝπ (xk) :=Ĝπ (xk) + 1

vk

dk.

(10.93)

This has the effect of discounting costs that are received far away from xk . The method in
(10.91) was the special case of λ = 1, yielding T D(1).

Another interesting special case is T D(0), which becomes

Ĝπ (xk) = Ĝπ (xk) + 1

vk

(
l(xk, uk) + Ĝπ (xk+1) − Ĝπ (xk+1)

)
. (10.94)

This form appears most often in reinforcement learning literature (although it is applied
to the discounted-cost model instead). Experimental evidence indicates that lower values
of λ help to improve the convergence rate. Convergence for all values of λ is proved in
[99].

One source of intuition about why (10.94) works is that it is a special case of a
stochastic iterative algorithm or the Robbins-Monro algorithm [90, 99, 569]. This is
a general statistical estimation technique that is used for solving systems of the form
h(y) = y by using a sequence of samples. Each sample represents a measurement of h(y)
using Monte Carlo simulation. The general form of this iterative approach is to update y

as

y := (1 − ρ)y + ρh(y), (10.95)

in which ρ ∈ [0, 1] is a parameter whose choice affects the convergence rate. Intuitively,
(10.95) updates y by interpolating between its original value and the most recent sample
of h(y). Convergence proofs for this algorithm are not given here; see [99] for details.
The typical behavior is that a smaller value of ρ leads to more reliable estimates when
there is substantial noise in the simulation process, but this comes at the cost of slowing the
convergence rate. The convergence is asymptotic, which requires that all edges (that have
nonzero probability) in the plan-based state transition graph should be visited infinitely
often.

A general approach to obtaining Ĝπ can be derived within the stochastic iterative
framework by generalizing T D(0):

Ĝπ (x) := (1 − ρ)Ĝπ (x) + ρ
(
l(x, u) + Ĝπ (x ′)

)
. (10.96)

The formulation of T D(0) in (10.94) essentially selects the ρ parameter by the way it was
derived, but in (10.96) any ρ ∈ (0, 1) may be used.

It may appear incorrect that the update equation does not take into account the transition
probabilities. It turns out that they are taken into account in the simulation process because
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transitions that are more likely to occur have a stronger effect on (10.96). The same thing
occurs when the mean of a nonuniform probability density function is estimated by using
samples from the distribution. The values that occur with higher frequency make stronger
contributions to the average, which automatically gives them the appropriate weight.

10.4.3 Q-learning: Computing an optimal plan

This section moves from evaluating a plan to computing an optimal plan in the simulation-
based framework. The most important idea is the computation of Q-factors, Q∗(x, u). This
is an extension of the optimal cost-to-go, G∗, that records optimal costs for each possible
combination of a state, x ∈ X, and action u ∈ U (x). The interpretation of Q∗(x, u) is the
expected cost received by starting from state x, applying u, and then following the optimal
plan from the resulting next state, x ′ = f (x, u, θ). If u happens to be the same action as
would be selected by the optimal plan, π∗(x), then Q∗(x, u) = G∗(x). Thus, the Q-value
can be thought of as the cost of making an arbitrary choice in the first stage and then
exhibiting optimal decision making afterward.

Value iteration

A simulation-based version of value iteration can be constructed from Q-factors. The
reason for their use instead of G∗ is that a minimization over U (x) will be avoided in the
dynamic programming. Avoiding this minimization enables a sample-by-sample approach
to estimating the optimal values and ultimately obtaining the optimal plan. The optimal
cost-to-go can be obtained from the Q-factors as

G∗(x) = min
u∈U (x)

{
Q∗(x, u)

}
. (10.97)

This enables the dynamic programming recurrence in (10.46) to be expressed as

Q∗(x, u) = l(x, u) +
∑

x ′∈X

P (x ′|x, u) min
u′∈U (x ′)

{
Q∗(x ′, u′)

}
. (10.98)

By applying (10.97) to the right side of (10.98), it can also be expressed using G∗ as

Q∗(x, u) = l(x, u) +
∑

x ′∈X

P (x ′|x, u)G∗(x ′). (10.99)

If P (x ′|x, u) and l(x, u) were known, then (10.98) would lead to an alternative, storage-
intensive way to perform value iteration. After convergence occurs, (10.97) can be used
to obtain the G∗ values. The optimal plan is constructed as

π∗(x) = argmin
u∈U (x)

{
Q∗(x, u)

}
. (10.100)

Since the costs and transition probabilities are unknown, a simulation-based approach
is needed. The stochastic iterative algorithm idea can be applied once again. Recall
that (10.96) estimated the cost of a plan by using individual samples and required a
convergence-rate parameter, ρ. Using the same idea here, a simulation-based version of
value iteration can be derived as

Q̂∗(x, u) := (1 − ρ)Q̂∗(x, u) + ρ

(
l(x, u) + min

u′∈U (x ′)

{
Q̂∗(x ′, u′)

})
, (10.101)

in which x ′ is the next state and l(x, u) is the cost obtained from the simulator when u is
applied at x. Initially, all Q-factors are set to zero. Sample trajectories that arrive at the
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goal can be generated using simulation, and (10.101) is applied to the resulting states and
costs in each stage. Once again, the update equation may appear to be incorrect because
the transition probabilities are not explicitly mentioned, but this is taken into account
automatically through the simulation.

In most literature, Q-learning is applied to the discounted cost model. This yields a
minor variant of (10.101):

Q̂∗(x, u) := (1 − ρ)Q̂∗(x, u) + ρ

(
l(x, u) + α min

u′∈U (x ′)

{
Q̂∗(x ′, u′)

})
, (10.102)

in which the discount factor α appears because the update equation is derived from (10.76).

Policy iteration

A simulation-based policy iteration algorithm can be derived using Q-factors. Recall from
Section 10.2.2 that methods are needed to: 1) evaluate a given plan, π , and 2) improve the
plan by selecting better actions. The plan evaluation previously involved linear equation
solving. Now any plan, π , can be evaluated without even knowing P (x ′|x, u) by using
the methods of Section 10.4.2. Once Ĝπ is computed reliably from every x ∈ X, further
simulation can be used to compute Qπ (x, u) for each x ∈ X and u ∈ U . This can be
achieved by defining a version of (10.99) that is constrained to π :

Qπ (x, u) = l(x, u) +
∑

x ′∈X

P (x ′|x, u)Gπ (x ′). (10.103)

The transition probabilities do not need to be known. The Q-factors are computed by
simulation and averaging. The plan can be improved by setting

π ′(x) = argmin
u∈U (x)

{
Q∗(x, u)

}
, (10.104)

which is based on (10.97).

10.5 Sequential game theory

So far in the chapter, the sequential decision-making process has only involved a game
against nature. In this section, other decision makers are introduced to the game. The
single-stage games and their equilibrium concepts from Sections 9.3 and 9.4 will be
extended into a sequence of games. Section 10.5.1 introduces sequential zero-sum games
that are represented using game trees, which help visualize the concepts. Section 10.5.2
covers sequential zero-sum games using the state-space representation. Section 10.5.3
briefly covers extensions to other games, including nonzero-sum games and games that
involve nature. The formulations in this section will be called sequential game theory.
Another common name for them is dynamic game theory [60]. If there is a continuum
of stages, which is briefly considered in Section 13.5, then differential game theory is
obtained [60, 480, 786, 985].

10.5.1 Game trees

In most literature, sequential games are formulated in terms of game trees. A state-space
representation, which is more in alignment with the representations used in this chapter,
will be presented in Section 10.5.2. The tree representation is commonly referred to as
the extensive form of a game (as opposed to the normal form, which is the cost matrix
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Cost

P1 acts 21

1 3P2 acts 1 122 23 3

3

3 5 1 0 43 −1 7 −2

Figure 10.12: A 3× 3 matrix game expressed using a game tree.

representation used in Chapter 9). The representation is helpful for visualizing many
issues in game theory. It is perhaps most helpful for visualizing information states; this
aspect of game trees will be deferred until Section 11.7, after information spaces have
been formally introduced. Here, game trees are presented for cases that are simple to
describe without going deeply into information spaces.

Before a sequential game is introduced, consider representing a single-stage game in
a tree form. Recall Example 9.14, which is a zero-sum, 3 × 3 matrix game. It can be
represented as a game tree as shown in Figure 10.12. At the root, P1 has three choices. At
the next level, P2 has three choices. Based on the choices by both, one of nine possible
leaves will be reached. At this point, a cost is obtained, which is written under the leaf.
The entries of the cost matrix, (9.53), appear across the leaves of the tree. Every nonleaf
vertex is called a decision vertex: One player must select an action.

There are two possible interpretations of the game depicted in Figure 10.12:

1. Before it makes its decision, P2 knows which action was applied by P1. This does not
correspond to the zero-sum game formulation introduced in Section 9.3 because P2 seems
as powerful as nature. In this case, it is not equivalent to the game in Example 9.14.

2. P2 does not know the action applied by P1. This is equivalent to assuming that both P1

and P2 make their decisions at the same time, which is consistent with Formulation 9.7.
The tree could have alternatively been represented with P2 acting first.

Now imagine that P1 and P2 play a sequence of games. A sequential version of the
zero-sum game from Section 9.3 will be defined by extending the game tree idea given so
far to more levels. This will model the following sequential game:

Formulation 10.3 (Zero-Sum Sequential Game in Tree Form)

1. Two players, P1 and P2, take turns playing a game. A stage as considered previously
is now stretched into two substages, in which each player acts individually. It is usually
assumed that P1 always starts, followed by P2, then P1 again, and so on. Player alternations
continue until the game ends. The model reflects the rules of many popular games such
as chess or poker. Let K = {1, . . . , K} denote the set of stages at which P1 and P2 both
take a turn.

2. As each player takes a turn, it chooses from a nonempty, finite set of actions. The available
set could depend on the decision vertex.

3. At the end of the game, a cost for P1 is incurred based on the sequence of actions chosen
by each player. The cost is interpreted as a reward for P2.

4. The amount of information that each player has when making its decision must be
specified. This is usually expressed by indicating what portions of the action histories are
known. For example, if P1 just acted, does P2 know its choice? Does it know what action
P1 chose in some previous stage?
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2 0

P1 acts

P2 acts

L R

RRL L

LL LL RRRRP1 acts

P2 acts

Cost

RL L L L L L L LR R R R R R R

4 0 1 0 3 2 2 3 1 2 4 1 3 2

Figure 10.13: A two-player, two-stage game expressed using a game tree.

The game tree can now be described in detail. Figure 10.13 shows a particular example
for two stages (hence, K = 2 and K = {1, 2}). Every vertex corresponds to a point at
which a decision needs to be made by one player. Each edge emanating from a vertex
represents an action. The root of the tree indicates the beginning of the game, which
usually means that P1 chooses an action. The leaves of the tree represent the end of the
game, which are the points at which a cost is received. The cost is usually shown below
each leaf. One final concern is to specify the information available to each player, just
prior to its decision. Which actions among those previously applied by itself or other
players are known?

For the game tree in Figure 10.13, there are two players and two stages. Therefore, there
are four levels of decision vertices. The action sets for the players are U = V = {L, R},
for “left” and “right.” Since there are always two actions, a binary tree is obtained. There
are 16 possible outcomes, which correspond to all pairwise combinations of four possible
two-stage plans for each player.

For a single-stage game, both deterministic and randomized strategies were defined to
obtain saddle points. Recall from Section 9.3.3 that randomized strategies were needed
to guarantee the existence of a saddle point. For a sequential game, these are extended
to deterministic and randomized plans, respectively. In Section 10.1.3, a (deterministic)
plan was defined as a mapping from the state space to an action space. This definition
can be applied here for each player; however, we must determine what is a “state” for the
game tree. This depends on the information that each player has available when it plays.

A general framework for representing information in game trees is covered in Sec-
tion 11.7. Three simple kinds of information will be discussed here. In every case, each
player knows its own actions that were applied in previous stages. The differences corre-
spond to knowledge of actions applied by the other player. These define the “state” that
is used to make the decisions in a plan.

The three information models considered here are as follows.

Alternating play: The players take turns playing, and all players know all actions that
have been previously applied. This is the situation obtained, for example, in a game of
chess. To define a plan, let N1 and N2 denote the set of all vertices from which P1 and
P2 must make a decision, respectively. In Figure 10.13, N1 is the set of dark vertices
and N2 is the set of white vertices. Let U (n1) and V (n2) be the action spaces for P1 and
P2, respectively, which depend on the vertex. A (deterministic) plan for P1 is defined
as a function, π1, on N1 that yields an action u ∈ U (n1) for each n1 ∈ N1. Similarly,
a (deterministic) plan for P2 is defined as a function, π2, on N2 that yields an action
v ∈ V (n2) for each n2 ∈ N2. For the randomized case, let W (n1) and Z(n2) denote the
sets of all probability distributions over U (n1) and V (n2), respectively. A randomized plan
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for P1 is defined as a function that yields some w ∈ W (n1) for each n1 ∈ N1. Likewise, a
randomized plan for P2 is defined as a function that maps from N2 into Z(n2).

Stage-by-stage: Each player knows the actions applied by the other in all previous
stages; however, there is no information about actions chosen by others in the current
stage. This effectively means that both players act simultaneously in each stage. In this
case, a deterministic or randomized plan for P1 is defined as in the alternating play case;
however, plans for P2 are defined as functions on N1, instead of N2. This is because at
the time it makes its decision, P2 has available precisely the same information as P1. The
action spaces for P2 must conform to be dependent on elements of N1, instead of N2;
otherwise, P2 would not know what actions are available. Therefore, they are defined as
V (n1) for each n1 ∈ N1.

Open loop: Each player has no knowledge of the previous actions of the other. They only
know how many actions have been applied so far, which indicates the stage of the game.
Plans are defined as functions on K, the set of stages, because the particular vertex is not
known. Note that an open-loop plan is just a sequence of actions in the deterministic case
(as in Section 2.3) and a sequence of probability distributions in the randomized case.
Again, the action spaces must conform to the information. Thus, they are U (k) and V (k)
for each k ∈ K.

For a single-stage game, as in Figure 10.12, the stage-by-stage and open-loop models are
equivalent.

10.5.1.1 Determining a security plan

The notion of a security strategy from Section 9.3.2 extends in a natural way to sequential
games. This yields a security plan in which each player performs worst-case analysis by
treating the other player as nature under nondeterministic uncertainty. A security plan and
its resulting cost can be computed by propagating costs from the leaves up to the root.
The computation of the security plan for P1 for the game in Figure 10.13 is shown in
Figure 10.14. The actions that would be chosen by P2 are determined at all vertices in the
second-to-last level of the tree. Since P2 tries to maximize costs, the recorded costs at each
of these vertices is the maximum over the costs of its children. At the next higher level,
the actions that would be chosen by P1 are determined. At each vertex, the minimum cost
among its children is recorded. In the next level, P2 is considered, and so on, until the root
is reached. At this point, the lowest cost that P1 could secure is known. This yields the
upper value, L

∗
, for the sequential game. The security plan is defined by providing the

action that selects the lowest cost child vertex, for each n1 ∈ N1. If P2 responds rationally
to the security plan of P1, then the path shown in bold in Figure 10.14d will be followed.
The execution of P1’s security plan yields the action sequence (L, L) for P1 and (R, L)
for P2. The upper value is L

∗ = 1.
A security plan for P2 can be computed similarly; however, the order of the decisions

must be swapped. This is not easy to visualize, unless the order of the players is swapped
in the tree. If P2 acts first, then the resulting tree is as shown in Figure 10.15. The costs on
the leaves appear in different order; however, for the same action sequences chosen by P1

and P2, the costs obtained at the end of the game are the same as those in Figure 10.14.
The resulting lower value for the game is found to be L∗ = 1. The resulting security plan
is defined by assigning the action to each n2 ∈ N2 that maximizes the cost value of its
children. If P1 responds rationally to the security plan of P2, then the actions executed will
be (L, L) for P1 and (R, L) for P2. Note that these are the same as those obtained from
executing the security plan of P1, even though they appear different in the trees because
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Figure 10.14: The security plan for P1 is determined by propagating costs upward from the leaves. The
choices involved in the security plan are shown in the last picture. An upper value of 1 is obtained for the
game.

P2 acts

Cost 4 0 4 3

P2 acts

P1 acts

P1 acts

2 1 212 3 2 1 3 0 20

0 0 1 2 1 0 3 1

0 2 1 3

1

1

0

Figure 10.15: The security plan can be found for P2 by swapping the order of P1 and P2 (the order of the
costs on the leaves also become reshuf�ed).

the player order was swapped. In many cases, however, different action sequences will be
obtained.

As in the case of a single-stage game, L∗ = L
∗

implies that the game has a deterministic
saddle point and the value of the sequential game is L∗ = L∗ = L

∗
. This particular game

has a unique, deterministic saddle point. This yields predictable, identical choices for the
players, even though they perform separate, worst-case analyses.

A substantial reduction in the cost of computing the security strategies can be obtained
by recognizing when certain parts of the tree do not need to be explored because they
cannot yield improved costs. This idea is referred to as alpha-beta pruning in AI literature
(see [842], pp. 186-187 for references and a brief history). Suppose that the tree is searched
in depth-first order to determine the security strategy for P1. At some decision vertex for
P1, suppose it has been determined that a cost c would be secured if a particular action,
u, is applied; however, there are still other actions for which it is not known what costs
could be secured. Consider determining the cost that could be secured for one of these
remaining actions, denoted by u′. This requires computing how P2 will maximize cost to
respond to u′. As soon as P2 has at least one option for which the cost, c′, is greater than c,
the other children of P2 do not need to be explored. Why? This is because P1 would never
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Cost

P1 acts

P2 acts

1

u u′

0 −1 2

c′ ≥ 2

c = 1

No need to explore

Figure 10.16: If the tree is explored in depth-�rst order, there are situations in which some children (and
hence whole subtrees) do not need to be explored. This is an example that eliminates children of P2.
Another case exists, which eliminates children of P1.

choose u′ if P2 could respond in a way that leads to a higher cost than what P1 can already
secure by choosing u. Figure 10.16 shows a simple example. This situation can occur at
any level in the tree, and when an action does not need to be considered, an entire subtree
is eliminated. In other situations, children of P1 can be eliminated because P2 would not
make a choice that allows P1 to improve the cost below a value that P2 can already secure
for itself.

10.5.1.2 Computing a saddle point

The security plan for P1 constitutes a valid solution to the game under the alternating
play model. P2 has only to choose an optimal response to the plan of P1 at each stage.
Under the stage-by-stage model, the “solution” concept is a saddle point, which occurs
when the upper and lower values coincide. The procedure just described could be used
to determine the value and corresponding plans; however, what happens when the values
do not coincide? In this case, randomized security plans should be developed for the
players. As in the case of a single-stage game, a randomized upper value L∗

and a
randomized lower value L∗ are obtained. In the space of randomized plans, it turns out
that a saddle point always exists. This implies that the game always has a randomized
value, L∗ = L∗ = L∗

. This saddle point can be computed from the bottom up, in a manner
similar to the method just used to compute security plans.

Return to the example in Figure 10.13. This game actually has a deterministic saddle
point, as indicated previously. It still, however, serves as a useful illustration of the
method because any deterministic plan can once again be interpreted as a special case of
a randomized plan (all of the probability mass is placed on a single action). Consider the
bottom four subtrees of Figure 10.13, which are obtained by using only the last two levels
of decision vertices. In each case, P1 and P2 must act in parallel to end the sequential
game. Each subtree can be considered as a matrix game because the costs are immediately
obtained after the two players act.

This leads to an alternative way to depict the game in Figure 10.13, which is shown in
Figure 10.17. The bottom two layers of decision vertices are replaced by matrix games.
Now compute the randomized value for each game and place it at the corresponding leaf
vertex, as shown in Figure 10.18. In the example, there are only two layers of decision
vertices remaining. This can be represented as the game

V

U
0 1
2 3

, (10.105)
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P1 acts

P2 acts

L R

RRL L

2

0

4 1 0

3 2

2 3

1 2

4 1

3 20

Figure 10.17: Under the stage-by-stage model, the game in Figure 10.13 can instead be represented as
a tree in which each player acts once, and then they play a matrix game to determine the cost.

P1 acts

P2 acts

L R

RRL L

0 1 2 3

Figure 10.18: Each matrix in Figure 10.17 can be replaced by its randomized value. This clips one level
from the original tree. For this particular example, the randomized value is also a deterministic value. Note
that these are exactly the costs that appeared in Figure 10.14c. This occurred because each of the matrix
games has a deterministic value; if they do not, then the costs will not coincide.

which has a value of 1 and occurs if P1 applies L and P2 applies R. Thus, the solution to the
original sequential game has been determined by solving matrix games as an alternative
to the method applied to obtain the security plans. The benefit of the new method is that
if any matrix does not have a deterministic saddle point, its randomized value can instead
be computed. A randomized strategy must be played by the players if the corresponding
decision vertex is reached during execution.

10.5.1.3 Converting the tree to a single-stage game

Up to this point, solutions have been determined for the alternating-play and the stage-
by-stage models. The open-loop model remains. In this case, there is no exchange of
information between the players until the game is finished and they receive their costs.
Therefore, imagine that players engaged in such a sequential game are equivalently
engaged in a large, single-stage game. Recall that a plan under the open-loop model is
a function over K. Let �1 and �2 represent the sets of possible plans for P1 and P2,
respectively. For the game in Figure 10.13, �i is a set of four possible plans for each
player, which will be specified in the following order: (L, L), (L, R), (R, L), and (R, R).
These can be arranged into a 4 × 4 matrix game:

�2

�1

4 2 1 0
0 0 3 2
2 3 4 1
1 2 3 2

. (10.106)

This matrix game does not have a deterministic saddle point. Unfortunately, a four-
dimensional linear programming problem must be solved to find the randomized value
and equilibrium. This is substantially different than the solution obtained for the other
two information models.
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The matrix-game form can also be derived for sequential games defined under the
stage-by-stage model. In this case, however, the space of plans is even larger. For the
example in Figure 10.13, there are 32 possible plans for each player (there are 5 decision
vertices for each player, at which two different actions can be applied; hence, |�i | = 25

for i = 1 and i = 2). This results in a 32 × 32 matrix game! This game should admit
the same saddle point solution that we already determined. The advantage of using the
tree representation is that this enormous game was decomposed into many tiny matrix
games. By treating the problem stage-by-stage, substantial savings in computation re-
sults. This power arises because the dynamic programming principle was implicitly used
in the tree-based computation method of decomposing the sequential game into small
matrix games. The connection to previous dynamic programming methods will be made
clearer in the next section, which considers sequential games that are defined over a state
space.

10.5.2 Sequential games on state spaces

An apparent problem in the previous section is that the number of vertices grows expo-
nentially in the number of stages. In some games, however, there may be multiple action
sequences that lead to the same state. This is true of many popular games, such as chess,
checkers, and tic-tac-toe. In this case, it is convenient to define a state space that captures
the complete set of unique game configurations. The player actions then transform the
state. If there are different action sequences that lead to the same state, then separate ver-
tices are not needed. This converts the game tree into a game graph by declaring vertices
that represent the same state to be equivalent. The game graph is similar in many ways
to the transition graphs discussed in Section 10.1, in the sequential game against nature.
The same idea can be applied when there are opposing players.

We will arrive at a sequential game that is played over a state space by collapsing
the game tree into a game graph. We will also allow the more general case of costs
occurring on any transition edges, as opposed to only the leaves of the original game tree.
Only the stage-by-stage model from the game tree is generalized here. Generalizations
that use other information models are considered in Section 11.7. In the formulation that
follows, P2 can be can viewed as the replacement for nature in Formulation 10.1. The
new formulation is still a generalization of Formulation 9.7, which was a single-stage,
zero-sum game. To keep the concepts simpler, all spaces are assumed to be finite. The
formulation is as follows.

Formulation 10.4 (Sequential Zero-Sum Game on a State Space)

1. Two players, P1 and P2.

2. A finite, nonempty state space X.

3. For each state x ∈ X, a finite, nonempty action space U (x) for P1.

4. For each state x ∈ X, a finite, nonempty action space V (x) for P2. To allow an extension
of the alternating play model from Section 10.5.1, V (x, u) could alternatively be defined,
to enable the set of actions available to P2 to depend on the action u ∈ U of P1.

5. A state transition function f that produces a state, f (x, u, v), for every x ∈ X, u ∈ U (x),
and v ∈ V (x).

6. A set K of K stages, each denoted by k, which begins at k = 1 and ends at k = K . Let
F = K + 1, which is the final stage, after the last action is applied.
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7. An initial state xI ∈ X. For some problems, this may not be specified, in which case a
solution must be found from all initial states.

8. A stage-additive cost functional L. Let ṽK denote the history of P2’s actions up to stage
K . The cost functional may be applied to any combination of state and action histories to
yield

L(x̃F , ũK, ṽK ) =
K∑

k=1

l(xk, uk, vk) + lF (xF ). (10.107)

It will be assumed that both players always know the current state. Note that there are
no termination actions in the formulation. The game terminates after each player has acted
K times. There is also no direct formulation of a goal set. Both termination actions and
goal sets can be added to the formulation without difficulty, but this is not considered here.
The action sets can easily be extended to allow a dependency on the stage, to yield U (x, k)
and V (x, k). The methods presented in this section can be adapted without trouble. This
is avoided, however, to make the notation simpler.

Defining a plan for each player

Each player must now have its own plan. As in Section 10.1, it seems best to define a
plan as a mapping from states to actions, because it may not be clear what actions will be
taken by the other decision maker. In Section 10.1, the other decision maker was nature,
and here it is a rational opponent. Let π1 and π2 denote plans for P1 and P2, respectively.
Since the number of stages in Formulation 10.4 is fixed, stage-dependent plans of the
form π1 : X ×K → U and π2 : X ×K → V are appropriate (recall that stage-dependent
plans were defined in Section 10.1.3). Each produces an action π1(x, k) ∈ U (x) and
π2(x, k) ∈ V (x), respectively.

Now consider different solution concepts for Formulation 10.4. For P1, a deterministic
plan is a function π1 : X ×K → U , that produces an action u = π(x) ∈ U (x), for each
state x ∈ X and stage k ∈ K. For P2 it is instead π2 : X ×K → V , which produces an
action v = π(x) ∈ V (x), for each x ∈ X and k ∈ K. Now consider defining a randomized
plan. Let W (x) and Z(x) denote the sets of all probability distributions over U (x) and
V (x), respectively. A randomized plan for P1 yields some w ∈ W (x) for each x ∈ X

and k ∈ K. Likewise, a randomized plan for P2 yields some w ∈ Z(x) for each x ∈ X and
k ∈ K.

Saddle points in a sequential game

A saddle point will be obtained once again by defining security strategies for each player.
Each player treats the other as nature, and if the same worst-case value is obtained, then
the result is a saddle point for the game. If the values are different, then a randomized
plan is needed to close the gap between the upper and lower values.

Upper and lower values now depend on the initial state, x1 ∈ X. There was no equivalent
for this in Section 10.5.1 because the root of the game tree is the only possible starting
point.

If sequences, ũK and ṽK , of actions are applied from x1, then the state history, x̃F , can
be derived by repeatedly using the state transition function, f . The upper value from x1

is defined as

L
∗
(x1) = min

u1

max
v1

min
u2

max
v2

· · ·min
uK

max
vK

{
L(x̃F , ũK, ṽK )

}
, (10.108)
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which is identical to (10.33) if P2 is replaced by nature. Also, (10.108) generalizes (9.44)
to multiple stages. The lower value from x1, which generalizes (9.46), is

L∗(x1) = max
v1

min
u1

max
v2

min
u2

· · ·max
vK

min
uK

{
L(x̃F , ũK, ṽK )

}
. (10.109)

If L
∗
(x1) = L∗(x2), then a deterministic saddle point exists from x1. This implies that the

order of max and min can be swapped inside of every stage.

Value iteration

A value-iteration method can be derived by adapting the derivation that was applied to
(10.33) to instead apply to (10.108). This leads to the dynamic programming recurrence

L
∗
k(xk) = min

uk∈U (xk )

{
max

vk∈V (xk )

{
l(xk, uk, vk) + L

∗
k+1(xk+1)

}}
, (10.110)

which is analogous to (10.39). This can be used to iteratively compute a security plan for
P1. The security plan for P2 can be computed using

L∗
k(xk) = max

vk∈V (xk)

{
min

uk∈U (xk )

{
l(xk, uk, vk) + L∗

k+1(xk+1)
}}

, (10.111)

which is the dynamic programming equation derived from (10.109).
Starting from the final stage, F , the upper and lower values are determined directly

from the cost function:

L
∗
F (xF ) = L∗

F (xF ) = lF (xF ). (10.112)

Now compute L
∗
K and L∗

K . From every state, xK , (10.110) and (10.111) are evaluated to
determine whether L

∗
K (xK ) = L∗

K (xK ). If this occurs, then L∗
L(xK ) = L

∗
K (xK ) = L∗

K (xK )
is the value of the game from xK at stage K . If it is determined that from any particular
state, xK ∈ X, the upper and lower values are not equal, then there is no deterministic
saddle point from xK . Furthermore, this will prevent the existence of deterministic saddle
points from other states at earlier stages; these are encountered in later value iterations.
Such problems are avoided by allowing randomized plans, but the optimization is more
complicated because linear programming is repeatedly involved.

Suppose for now that L
∗
K (xK ) = L∗

K (xK ) for all xK ∈ X. The value iterations proceed
in the usual way from k = K down to k = 1. Again, suppose that at every stage, L

∗
k(xk) =

L∗
k(xk) for all xk ∈ X. Note that L∗

k+1 can be written in the place of L
∗
k+1 and L∗

k+1 in
(10.110) and (10.111) because it is assumed that the upper and lower values coincide.
If they do not, then the method fails because randomized plans are needed to obtain a
randomized saddle point.

Once the resulting values are computed from each x1 ∈ X1, a security plan π∗
1 for P1

is defined for each k ∈ K and xk ∈ X as any action u that satisfies the min in (10.110). A
security plan π∗

2 is similarly defined for P2 by applying any action v that satisfies the max
in (10.111).

Now suppose that there exists no deterministic saddle point from one or more initial
states. To avoid regret, randomized security plans must be developed. These follow by
direct extension of the randomized security strategies from Section 9.3.3. The vectors w

and z will be used here to denote probability distributions over U (x) and V (x), respectively.
The probability vectors are selected from W (x) and Z(x), which correspond to the set of
all probability distributions over U (x) and V (x), respectively. For notational convenience,
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assume U (x) = {1, . . . , m(x)} and V (x) = {1, . . . , n(x)}, in which m(x) and n(x) are
positive integers.

Recall (9.61) and (9.62), which defined the randomized upper and lower values of a
single-stage game. This idea is generalized here to randomized upper and lower value of
a sequential game. Their definitions are similar to (10.108) and (10.109), except that: 1)
the alternating min’s and max’s are taken over probability distributions on the space of
actions, and 2) the expected cost is used.

The dynamic programming principle can be applied to the randomized upper value to
derive

L∗
k(xk) = min

w∈W (xk )

{
max

z∈Z(xk )

{ m(xk )∑

i=1

n(xk )∑

j=1

(
l(xk, i, j ) + L∗

k+1(xk+1)
)
wizj

}}
, (10.113)

in which xk+1 = f (xk, i, j ). The randomized lower value is similarly obtained as

L∗
k(xk) = max

z∈Z(xk )

{
min

w∈W (xk )

{ m(xk )∑

i=1

n(xk )∑

j=1

(
l(xk, i, j ) + L∗

k+1(xk+1)
)
wizj

}}
. (10.114)

In many games, the cost term may depend only on the state: l(x, u, v) = l(x) for all
x ∈ X, u ∈ U (x) and v ∈ V (x). In this case, (10.113) and (10.114) simplify to

L∗
k(xk) = min

w∈W (xk )

{
max

z∈Z(xk )

{
l(xk) +

m(xk )∑

i=1

n(xk )∑

j=1

L∗
k+1(xk+1)wizj

}}
(10.115)

and

L∗
k(xk) = max

z∈Z(xk )

{
min

w∈W (xk )

{
l(xk) +

m(xk )∑

i=1

n(xk )∑

j=1

L∗
k+1(xk+1)wizj

}}
, (10.116)

which is similar to the simplification obtained in (10.46), in which θk was assumed not to
appear in the cost term. The summations are essentially generalizations of (9.57) to the
multiple-stage case. If desired, these could even be written as matrix multiplications, as
was done in Section 9.3.3.

Value iteration can be performed over the equations above to obtain the randomized
values of the sequential game. Since the upper and lower values are always the same,
there is no need to check for discrepancies between the two. In practice, it is best in
every evaluation of (10.113) and (10.114) (or their simpler forms) to first check whether a
deterministic saddle exists from xk . Whenever one does not exist, the linear programming
problem formulated in Section 9.3.3 must be solved to determine the value and the best
randomized plan for each player. This can be avoided if a deterministic saddle exists from
the current state and stage.

10.5.3 Other sequential games

Most of the ideas presented so far in Section 10.5 extend naturally to other sequential
game problems. This subsection briefly mentions some of these possible extensions.

Nash equilibria in sequential games

Formulations 10.3 and 10.4 can be extended to sequential nonzero-sum games. In the case
of game trees, a cost vector, with one element for each player, is written at each of the
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LL RRP1 acts

P2 acts

Cost

RL L L LR R R

1/3Nature acts 2/3

3 −2 −6 3 3 −1 6 0

Figure 10.19: This is a single-stage, zero-sum game that involves nature. It is assumed that all players
act at the same time.

leaves. Under the stage-by-stage model, deterministic and randomized Nash equilibria can
be computed using the bottom-up technique that was presented in Section 10.5.1. This will
result in the computation of a single Nash equilibrium. To represent all Nash equilibria is
considerably more challenging. As usual, the game tree is decomposed into many matrix
games; however, in each case, all Nash equilibria must be found and recorded along with
their corresponding costs. Instead of propagating a single cost up the tree, a set of cost
vectors, along with the actions associated with each cost vector, must be propagated up
the tree to the root. As in the case of a single-stage game, nonadmissible Nash equilibria
can be removed from consideration. Thus, from every matrix game encountered in the
computation, only the admissible Nash equilibria and their costs should be propagated
upward.

Formulation 10.4 can be extended by introducing the cost functions L1 and L2 for P1

and P2, respectively. The value-iteration approach can be extended in a way similar to
the extension of the game tree method. Multiple value vectors and their corresponding
actions must be maintained for each combination of state and stage. These correspond to
the admissible Nash equilibria.

The nonuniqueness of Nash equilibria causes the greatest difficulty in the sequential
game setting. There are typically many more equilibria in a sequential game than in a
single-stage game. Therefore, the concept is not very useful in the design of a planning
approach. It may be more useful, for example, in modeling the possible outcomes of a
complicated economic system. A thorough treatment of the subject appears in [60].

Introducing nature

A nature player can easily be introduced into a game. Suppose, for example, that nature is
introduced into a zero-sum game. In this case, there are three players: P1, P2, and nature.
Figure 10.19 shows a game tree for a single-stage, zero-sum game that involves nature. It
is assumed that all three players act at the same time, which fits the stage-by-stage model.
Many other information models are possible. Suppose that probabilistic uncertainty is
used to model nature, and it is known that nature chooses the left branch with probability
1/3 and the right branch with probability 2/3. Depending on the branch chosen by nature,
it appears that P1 and P2 will play a specific 2 × 2 matrix game. With probability 1/3, the
cost matrix will be

V

U
3 −2
−6 3

, (10.117)
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and with probability 2/3 it will be

V

U
3 −1
6 0

. (10.118)

Unfortunately, P1 and P2 do not know which matrix game they are actually playing.
The regret can be eliminated in the expected sense, if the game is played over many
independent trials. Let A1 and A2 denote (10.117) and (10.118), respectively. Define a
new cost matrix as A = (1/3)A1 + (2/3)A2 (a scalar multiplied by a matrix scales every
value of the matrix). The resulting matrix is

V

U
3 0
2 1

. (10.119)

This matrix game has a deterministic saddle point in which P1 chooses L (row 2) and
P2 chooses R (column 1), which yields a cost of 2. This means that they can play a
deterministic strategy to obtain an expected cost of 2, if the game play is averaged over
many independent trials. If this matrix did not admit a deterministic saddle point, then a
randomized strategy would be needed. It is interesting to note that randomization is not
needed for this example, even though P1 and P2 each play against both nature and an
intelligent adversary.

Several other variations are possible. If nature is modeled nondeterministically, then a
matrix of worst-case regrets can be formed to determine whether it is possible to eliminate
regret. A sequential version of games such as the one in Figure 10.19 can be considered.
In each stage, there are three substages in which nature, P1, and P2 all act. The bottom-up
approach from Section 10.5.1 can be applied to decompose the tree into many single-stage
games. Their costs can be propagated upward to the root in the same way to obtain an
equilibrium solution.

Formulation 10.4 can be easily extended to include nature in games over state spaces.
For each x, a nature action set is defined as �(x). The state transition equation is
defined as

xk+1 = f (xk, uk, vk, θk), (10.120)

which means that the next state depends on all three player actions, in addition to the
current state. The value-iteration method can be extended to solve problems of this type
by properly considering the effect of nature in the dynamic programming equations. In
the probabilistic case, for example, an expectation over nature is needed in every iteration.
The resulting sequential game is often referred to as a Markov game [777].

Introducing more players

Involving more players poses no great difficulty, other than complicating the notation.
For example, suppose that a set of n players, P1, P2, . . . , Pn, takes turns playing a game.
Consider using a game tree representation. A stage is now stretched into n substages, in
which each player acts individually. Suppose that P1 always starts, followed by P2, and so
on, until Pn. After Pn acts, then the next stage is started, and P1 acts. The circular sequence
of player alternations continues until the game ends. Again, many different information
models are possible. For example, in the stage-by-stage model, each player does not
know the action chosen by the other n− 1 players in the current stage. The bottom-up
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computation method can be used to compute Nash equilibria; however, the problems with
nonuniqueness must once again be confronted.

A state-space formulation that generalizes Formulation 10.4 can be made by introducing
action sets Ui(x) for each player Pi and state x ∈ X. Let ui

k denote the action chosen by
Pi at stage k. The state transition becomes

xk+1 = f (xk, u
1
k, u

2
k, . . . , u

n
k ). (10.121)

There is also a cost function, Li , for each Pi . Value iteration, adapted to maintain multiple
equilibria and cost vectors can be used to compute Nash equilibria.

10.6 Continuous state spaces

Virtually all of the concepts covered in this chapter extend to continuous state spaces.
This enables them to at least theoretically be applied to configuration spaces. Thus,
a motion planning problem that involves uncertainty or noncooperating robots can be
modeled using the concepts of this chapter. Such problems also inherit the feedback
concepts from Chapter 8. This section covers feedback motion planning problems that
incorporate uncertainty due to nature. In particular contexts, it may be possible extend
some of the methods of Sections 8.4 and 8.5. Solution feedback plans must ensure that the
goal is reached in spite of nature’s efforts. Among the methods in Chapter 8, the easiest
to generalize is value iteration with interpolation, which was covered in Section 8.5.2.
Therefore, it is the main focus of the current section. For games in continuous state spaces,
see Section 13.5.

10.6.0.1 Extending the value-iteration method

The presentation follows in the same way as in Section 8.5.2, by beginning with the
discrete problem and making various components continuous. Begin with Formulation
10.1 and let X be a bounded, open subset of R

n. Assume that U (x) and �(x, u) are
finite. The value-iteration methods of Section 10.2.1 can be directly applied by using the
interpolation concepts from Section 8.5.2 to compute the cost-to-go values over X. In the
nondeterministic case, the recurrence is (10.39), in which G∗

k+1 is represented on a finite
sample set S ⊂ X and is evaluated on all other points in R(S) by interpolation (recall from
Section 8.5.2 that R(S) is the interpolation region of S). In the probabilistic case, (10.45)
or (10.46) may once again be used, but G∗

k+1 is evaluated by interpolation.
If U (x) is continuous, then it can be sampled to evaluate the min in each recurrence, as

suggested in Section 8.5.2. Now suppose �(x, u) is continuous. In the nondeterministic
case, �(x, u) can be sampled to evaluate the max in (10.39) or it may be possible to
employ a general optimization technique directly over �(x, u). In the probabilistic case,
the expectation must be taken over a continuous probability space. A probability density
function, p(θ |x, u), characterizes nature’s action. A probabilistic state transition density
function can be derived from this as p(xk+1|xk, uk). Using these densities, the continuous
versions of (10.45) and (10.46) become

G∗
k(xk) = min

uk∈U (xk )

{∫

�(xk,uk)

(
l(xk, uk, θk) +G∗

k+1(f (xk, uk, θk))
)
p(θk|xk, uk)dθk

}

(10.122)
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and

G∗
k(xk) = min

uk∈U (xk )

{
l(xk, uk) +

∫

X

G∗
k+1(xk+1)p(xk+1|xk, uk)dxk+1

}
, (10.123)

respectively. Sampling can be used to evaluate the integrals. One straightforward method
is to approximate p(θ |x, u) by a discrete distribution. For example, in one dimension, this
can be achieved by partitioning �(x, u) into intervals, in which each interval is declared
to be a discrete nature action. The probability associated with the discrete nature action is
just the integral of p(θ |x, u) over the associated interval.

Section 8.5.2 concluded by describing Dijkstra-like algorithms for continuous spaces.
These were derived mainly by using backprojections, (8.66), to conclude that some
samples cannot change their values because they are too far from the active set. The same
principle can be applied in the current setting; however, the weak backprojection, (10.20),
must be used instead. Using the weak backprojection, the usual value iterations can be
applied while removing all samples that are not in the active set. For many problems,
however, the size of the active set may quickly become unmanageable because the weak
backprojection often causes much faster propagation than the original backprojection.
Continuous-state generalizations of the Dijkstra-like algorithms in Section 10.2.3 can be
made; however, this requires the additional condition that in every iteration, it must be
possible to extend D by forcing the next state to lie in R(D), in spite of nature.

10.6.0.2 Motion planning with nature

Recall from Section 8.5.2 that value iteration with interpolation can be applied to motion
planning problems that are approximated in discrete time. Nature can even be introduced
into the discrete-time approximation. For example, (8.62) can be replaced by

x(t +�t) = x(t) +�t (u+ θ ), (10.124)

in which θ is chosen from a bounded set, �(x, u). Using (10.124), value iterations can be
performed as described so far. An example of a 2D motion planning problem under this
model using probabilistic uncertainty is shown in Figure 10.20. It is interesting that when
the plan is executed from a fixed initial state, a different trajectory is obtained each time.
The average cost over multiple executions, however, is close to the expected optimum.

Interesting hybrid system examples can be made in which nature is only allowed to
interfere with the mode. Recall Formulation 7.3 from Section 7.3. Nature can be added to
yield the following formulation.

Formulation 10.5 (Hybrid System Motion Planning with Nature)

1. Assume all of the definitions from Formulation 7.3, except for the transition functions,
fm and f . The state is represented as x = (q,m).

2. A finite nature action space �(x, u) for each x ∈ X and u ∈ U (x).

3. A mode transition function fm that produces a state fm(x, u, θ ) for every x ∈ X, u ∈ U (x),
and θ ∈ �(x, u).

4. A state transition function f that is derived from fm by changing the mode and holding
the configuration fixed. Thus, f ((q,m), u) = (q, fm(q,m, θ )) (the only difference with
respect to Formulation 7.3 is that θ has been included).

5. An unbounded time interval T = [0,∞).
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(a) Motion planning game against nature (a) Optimal navigation function

XG XG

(c) Vector field (d) Simulated executions

Figure 10.20: (a) A 2D planning problem is shown in which nature is probabilistic (uniform density over an
interval of angles) and can interfere with the direction of motion. Contact with obstacles is actually allowed
in this problem. (b) Level sets of the computed, optimal cost-to-go (navigation) function. (c) The vector �eld
derived from the navigation function. (d) Several dozen execution trials are superimposed [608].

6. A continuous-time cost-functional,

L(x̃tF , ũtF ) =
∫ tF

0
l(x(t), u(t))dt + lF (x(tF )). (10.125)

Value iteration proceeds in the same way for such hybrid problems. Interpolation only
needs to be performed over the configuration space. Along the mode “axis” no interpo-
lation is needed because the mode set is already finite. The resulting computation time
grows linearly in the number of modes. A 2D motion planning example for a point robot,
taken from [616], is shown in Figures 10.21 and 10.22. In this case, the environment
contains a door that is modeled as a stationary Markov process. The configuration space
is sampled using a 40 × 40 grid. There are two modes: door open or door closed. Thus,
the configuration space has two layers, one for each mode. The robot wishes to minimize
the expected time to reach the goal. The navigation function for each layer cannot be
computed independently because each takes into account the transition probabilities for
the mode. For example, if the door is almost always open, then its plan would be different
from one in which the door is almost always closed. If the door is almost always open,
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Figure 10.21: Level sets of the optimal navigation function and resulting vector � eld are shown for a
stochastic, hybrid motion planning problem. There are two modes, which correspond to whether a door is
closed. The goal is to reach the rectangle at the bottom left [616]

Figure 10.22: Several executions from the same initial state are shown. A different trajectory results each
time because of the different times when the door is open or closed.
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then the robot should go toward the door, even if it is currently closed, because it is highly
likely that it will open soon. Numerous variations can be made on this example. More
modes could be added, and other interpretations are possible, such as hazardous regions
and shelters (the mode might be imagined as rain occurring and the robot must run for
shelter) or requests to deliver objects [616, 872, 873].

Further reading

Since this chapter considers sequential versions of single-stage decision problems, the suggested reading
at the end of Chapter 9 is also relevant here. The probabilistic formulation in Section 10.1 is a basic
problem of stochastic control theory [97, 567]. The framework is also popular in artificial intelligence
[81, 269, 474, 842]. For an early, influential work on stochastic control, see [111], in which the notion
of sequential games against nature is developed. The forward projection and backprojection topics are
not as common in control theory and are instead inspired from [283, 315, 662]. The nondeterministic
formulation is obtained by eliminating probabilities from the formulation; worst-case analysis also
appears extensively in control theory [58, 59, 303]. A case for using randomized strategies in robotics is
made in [316].

Section 10.2 is based on classical dynamic programming work, but with emphasis on the stochastic
shortest-path problem. For more reading on value and policy iteration in this context, see [97]. Section
10.2.3 is based on extending Dijkstra’s algorithm. For convergence issues due to approximations of
continuous problems, see [94, 570, 723]. For complexity results for games against nature, see [767, 770].

Section 10.3 was inspired by coverage in [97]. For further reading on reinforcement learning, the
subject of Section 10.4, see [19, 76, 99, 896].

Section 10.5 was based on material in [60], but with an emphasis on unifying concepts from previous
sections. Also contained in [60] are sequential game formulations on continuous spaces and even in
continuous time. In continuous time, these are called differential games, and they are introduced in
Section 13.5. Dynamic programming principles extend nicely into game theory. Furthermore, they
extend to Pareto optimality [244].

The main purpose of Section 10.6 is to return to motion planning by considering continuous state
spaces. Few works exist on combining stochastic optimal control with motion planning. The presented
material is based mainly on [602, 608, 616, 869, 870].

Exercises

1. Show that SB(S, u) cannot be expressed as the union of all SB(x, u) for x ∈ S.

2. Show that for any S ⊂ X and any state transition equation, x ′ = f (x, u, θ), it follows that
SB(S ) ⊆ W B(S ).

3. Generalize the strong and weak backprojections of Section 10.1.2 to work for multiple
stages.

4. Assume that nondeterministic uncertainty is used, and there is no limit on the number of
stages. Determine an expression for the forward projection at any stage k > 1, given that
π is applied.

5. Give an algorithm for computing nondeterministic forward projections that uses matrices
with binary entries. What is the asymptotic running time and space for your algorithm?

6. Develop a variant of the algorithm in Figure 10.6 that is based on possibly achieving the
goal, as opposed to guaranteeing that it is achieved.

7. Develop a forward version of value iteration for nondeterministic uncertainty, by paralleling
the derivation in Section 10.2.1.

8. Do the same as in Exercise 7, but for probabilistic uncertainty.
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Figure 10.23: A two-player, two-stage game expressed using a game tree.

9. Give an algorithm that computes probabilistic forward projections directly from the plan-
based state transition graph, Gπ .

10. Augment the nondeterministic value-iteration method of Section 10.2.1 to detect and han-
dle states from which the goal is possibly reachable but not guaranteed reachable.

11. Derive a generalization of (10.39) for the case of stage-dependent state-transition equa-
tions, xk+1 = f (xk, uk, θk, k), and cost terms, l(xk, uk, θk, k), under nondeterministic uncer-
tainty.

12. Do the same as in Exercise 11, but for probabilistic uncertainty.

13. Extend the policy-iteration method of Figure 10.4 to work for the more general case of
nature-dependent cost terms, l(xk, uk, θk).

14. Derive a policy-iteration method that is the nondeterministic analog to the method in
Figure 10.4. Assume that the cost terms do not depend on nature.

15. Can policy iteration be applied to solve problems under Formulation 2.3, which involve no
uncertainties? Explain what happens in this case.

16. Show that the probabilistic in�nite-hor izon problem under the discounted-cost model is
equivalent in terms of cost-to-go to a particular stochastic shortest-path problem (under
Formulation 10.1). [Hint: See page 378 of [97].]

17. Derive a value-iteration method for the in�nite-hor izon problem with the discounted-cost
model and nondeterministic uncertainty. This method should compute the cost-to-go given
in (10.71).

18. Figure 10.23 shows a two-stage, zero-sum game expressed as a game tree. Compute the
randomized value of this sequential game and give the corresponding randomized security
plans for each player.

19. Generalize alpha-beta pruning beyond game trees so that it works for sequential games
de�ned on a state space, starting from a � xed initial state.

20. Derive (10.110) and (10.111).

21. Extend Formulation 2.4 to allow nondeterministic uncertainty. This can be accomplished
by specifying sets of possible effects of operators.

22. Extend Formulation 2.4 to allow probabilistic uncertainty. For this case, assign probabilities
to the possible operator effects.

Implementations

23. Implement probabilistic backward value iteration and study the convergence issue depicted
in Figure 10.3. How does this affect performance in problems for which there are many
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cycles in the state transition graph? How does performance depend on particular costs
and transition probabilities?

24. Implement the nondeterministic version of Dijkstra’s algorithm and test it on a few examples.

25. Implement and test the probabilistic version of Dijkstra’s algorithm. Make sure that the
condition Gπ (xk+1) < Gπ (xk) from 10.2.3 is satis�ed. Study the performance of the algorithm
on problems for which the condition is almost violated.

26. Experiment with the simulation-based version of value iteration, which is given by (10.101).
For some simple examples, characterize how the performance depends on the choice of
ρ.

27. Implement a recursive algorithm that uses dynamic programming to determine the upper
and lower values for a sequential game expressed using a game tree under the stage-by-
stage model.
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Sensors and Information Spaces

Up until now it has been assumed everywhere that the current state is known. What if the
state is not known? In this case, information regarding the state is obtained from sensors
during the execution of a plan. This situation arises in most applications that involve
interaction with the physical world. For example, in robotics it is virtually impossible for
a robot to precisely know its state, except in some limited cases. What should be done if
there is limited information regarding the state? A classical approach is to take all of the
information available and try to estimate the state. In robotics, the state may include both
the map of its environment and the robot configuration. If the estimates are sufficiently
reliable, then we may safely pretend that there is no uncertainty in state information. This
enables many of the planning methods introduced so far to be applied with little or no
adaptation.

The more interesting case occurs when state estimation is altogether avoided. It may be
surprising, but many important tasks can be defined and solved without ever requiring that
specific states are sensed, even though a state space is defined for the planning problem. To
achieve this, the planning problem will be expressed in terms of an information space. In-
formation spaces serve the same purpose for sensing problems as the configuration spaces
of Chapter 4 did for problems that involve geometric transformations. Each information
space represents the place where a problem that involves sensing uncertainty naturally
lives. Successfully formulating and solving such problems depends on our ability to ma-
nipulate, simplify, and control the information space. In some cases elegant solutions
exist, and in others there appears to be no hope at present of efficiently solving them.
There are many exciting open research problems associated with information spaces and
sensing uncertainty in general.

Recall the situation depicted in Figure 11.1, which was also shown in Section 1.4. It is
assumed that the state of the environment is not known. There are three general sources
of information regarding the state:

1. The initial conditions can provide powerful information before any actions are applied.
It might even be the case that the initial state is given. At the other extreme, the initial
conditions might contain no information.

2. The sensor observations provide measurements related to the state during execution.
These measurements are usually incomplete or involve disturbances that distort their
values.

3. The actions already executed in the plan provide valuable information regarding the
state. For example, if a robot is commanded to move east (with no other uncertain-
ties except an unknown state), then it is expected that the state is further east than it
was previously. Thus, the applied actions provide important clues for deducing possible
states.

462
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Sensing

Actuation
M E

Figure 11.1: The state of the environment is not known. The only information available to make inferences
is the history of sensor observations, actions that have been applied, and the initial conditions. This history
becomes the information state.

Keep in mind that there are generally two ways to use the information space:

1. Take all of the information available, and try to estimate the state. This is the classical
approach. Pretend that there is no longer any uncertainty in state, but prove (or hope) that
the resulting plan works under reasonable estimation error. A plan is generally expressed
as π : X → U .

2. Solve the task entirely in terms of an information space. Many tasks may be achieved
without ever knowing the exact state. The goals and analysis are formulated in the
information space, without the need to achieve particular states. For many problems this
results in dramatic simplifications. A plan is generally expressed as π : I → U for an
information space, I.

The first approach may be considered somewhat traditional and can be handled by the
concepts of Chapter 8 once a good estimation technique is defined. Most of the focus of
the chapter is on the second approach, which represents a powerful way to express and
solve planning problems.

For brevity, “information” will be replaced by “I” in many terms. Hence, information
spaces and information states become I-spaces and I-states, respectively. This is similar
to the shortening of configuration spaces to C-spaces.

Sections 11.1 to 11.3 first cover information spaces for discrete state spaces. This case
is much easier to formulate than information spaces for continuous spaces. In Sections
11.4 to 11.6, the ideas are extended from discrete state spaces to continuous state spaces.
It is helpful to have a good understanding of the discrete case before proceeding to the
continuous case. Section 11.7 extends the formulation of information spaces to game
theory, in which multiple players interact over the same state space. In this case, each
player in the game has its own information space over which it makes decisions.

11.1 Discrete state spaces

11.1.1 Sensors

As the name suggests, sensors are designed to sense the state. Throughout all of this section
it is assumed that the state space, X, is finite or countably infinite, as in Formulations 2.1
and 2.3. A sensor is defined in terms of two components: 1) an observation space, which
is the set of possible readings for the sensor, and 2) a sensor mapping, which characterizes
the readings that can be expected if the current state or other information is given. Be
aware that in the planning model, the state is not really given; it is only assumed to be
given when modeling a sensor. The sensing model given here generalizes the one given
in Section 9.2.3. In that case, the sensor provided information regarding θ instead of x

because state spaces were not needed in Chapter 9.
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Let Y denote an observation space, which is a finite or countably infinite set. Let h

denote the sensor mapping. Three different kinds of sensor mappings will be considered,
each of which is more complicated and general than the previous one:

1. State sensor mapping: In this case, h : X → Y , which means that given the state, the
observation is completely determined.

2. State-nature sensor mapping: In this case, a finite set, �(x), of nature sensing actions
is defined for each x ∈ X. Each nature sensing action, ψ ∈ �(x), interferes with the
sensor observation. Therefore, the state-nature mapping, h, produces an observation,
y = h(x,ψ) ∈ Y , for every x ∈ X and ψ ∈ �(x). The particular ψ chosen by nature is
assumed to be unknown during planning and execution. However, it is specified as part
of the sensing model.

3. History-based sensor mapping: In this case, the observation could be based on the
current state or any previous states. Furthermore, a nature sensing action could be applied.
Suppose that the current stage is k. The set of nature sensing actions is denoted by �k(x),
and the particular nature sensing action is ψk ∈ �k(x). This yields a very general sensor
mapping,

yk = hk(x1, . . . , xk, ψk), (11.1)

in which yk is the observation obtained in stage k. Note that the mapping is denoted as hk

because the domain is different for each k. In general, any of the sensor mappings may be
stage-dependent, if desired.

Many examples of sensors will now be given. These are provided to illustrate the
definitions and to provide building blocks that will be used in later examples of I-spaces.
Examples 11.1 to 11.6 all involve state sensor mappings.

Example 11.1 (Odd/Even Sensor) Let X = Z, the set of integers, and let Y = {0, 1}.
The sensor mapping is

y = h(x) =
{

0 if x is even
1 if x is odd.

(11.2)

The limitation of this sensor is that it only tells whether x ∈ X is odd or even. When
combined with other information, this might be enough to infer the state, but in general it
provides incomplete information. �
Example 11.2 (Mod Sensor) Example 11.1 can be easily generalized to yield the
remainder when x is divided by k for some fixed integer k. Let X = Z, and let Y =
{0, 1, . . . , k − 1}. The sensor mapping is

y = h(x) = x mod k. (11.3)

�
Example 11.3 (Sign Sensor) Let X = Z, and let Y = {−1, 0, 1}. The sensor mapping
is

y = h(x) = sgn x. (11.4)

This sensor provides very limited information because it only indicates on which side
of the boundary x = 0 the state may lie. It can, however, precisely determine whether
x = 0. �
Example 11.4 (Selective Sensor) Let X = Z× Z, and let (i, j ) ∈ X denote a state in
which i, j ∈ Z. Suppose that only the first component of (i, j ) can be observed. This



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

SENSORS AND INFORMATION SPACES 465

yields the sensor mapping

y = h(i, j ) = i. (11.5)

An obvious generalization can be made for any state space that is formed from Cartesian
products. The sensor may reveal the values of one or more components, and the rest
remain hidden. �
Example 11.5 (Bijective Sensor) Let X be any state space, and let Y = X. Let the
sensor mapping be any bijective function h : X → Y . This sensor provides information
that is equivalent to knowing the state. Since h is bijective, it can be inverted to obtain
h−1 : Y → X. For any y ∈ Y , the state can be determined as x = h−1(y).

A special case of the bijective sensor is the identity sensor, for which h is the identity
function. This was essentially assumed to exist for all planning problems covered before
this chapter because it immediately yields the state. However, any bijective sensor could
serve the same purpose. �
Example 11.6 (Null Sensor) Let X be any state space, and let Y = {0}. The null sensor
is obtained by defining the sensor mapping as h(x) = 0. The sensor reading remains fixed
and hence provides no information regarding the state. �

From the examples so far, it is tempting to think about partitioning X based on sensor
observations. Suppose that in general a state mapping, h, is not bijective, and let H (y)
denote the following subset of X:

H (y) = {x ∈ X | y = h(x)}, (11.6)

which is the preimage of y. The set of preimages, one for each y ∈ Y , form a partition of
X. In some sense, this indicates the “resolution” of the sensor. A bijective sensor partitions
X into singleton sets because it contains perfect information. At the other extreme, the null
sensor partitions X into a single set, X itself. The sign sensor appears slightly more useful
because it partitions X into three sets: H (1) = {1, 2, . . . }, H (−1) = {. . . ,−2,−1}, and
H (0) = {0}. The preimages of the selective sensor are particularly interesting. For each
i ∈ Z, H (i) = Z. The partitions induced by the preimages may remind those with an
algebra background of the construction of quotient groups via homomorphisms [772].

Next consider some examples that involve a state-action sensor mapping. There are
two different possibilities regarding the model for the nature sensing action:

1. Nondeterministic: In this case, there is no additional information regarding which ψ ∈
�(x) will be chosen.

2. Probabilistic: A probability distribution is known. In this case, the probability, P (ψ |x),
that ψ will be chosen is known for each ψ ∈ �(x).

These two possibilities also appeared in Section 10.1.1, for nature actions that interfere
with the state transition equation.

It is sometimes useful to consider the state-action sensor model as a probability distri-
bution over Y for a given state. Recall the conversion from P (ψ |θ) to P (y|θ) in (9.28).
By replacing � by X, the same idea can be applied here. Assume that if the domain of h

is restricted to some x ∈ X, it forms an injective (one-to-one) mapping from � to Y . In
this case,

P (y|x) =
{

P (ψ |x) for the unique ψ such that y = h(x,ψ).
0 if no such ψ exists.

(11.7)
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If the injective assumption is lifted, then P (ψ |x) is replaced by a sum over all ψ for which
y = h(x, ψ).

Example 11.7 (Sensor Disturbance) Let X = Z, Y = Z, and � = {−1, 0, 1}. The idea
is to construct a sensor that would be the identity sensor if it were not for the interference
of nature. The sensor mapping is

y = h(x,ψ) = x + ψ. (11.8)

It is always known that |x − y| ≤ 1. Therefore, if y is received as a sensor reading, one
of the following must be true: x = y − 1, x = y, or x = y + 1. �

Example 11.8 (Disturbed Sign Sensor) Let X = Z, Y = {−1, 0, 1}, and � =
{−1, 0, 1}. Let the sensor mapping be

y = h(x,ψ) = sgn(x + ψ). (11.9)

In this case, if y = 0, it is no longer known for certain whether x = 0. It is possible that
x = −1 or x = 1. If x = 0, then it is possible for the sensor to read −1, 0, or 1. �

Example 11.9 (Disturbed Odd/Even Sensor) It is not hard to construct examples for
which some mild interference from nature destroys all of the information. Let X = Z,
Y = {0, 1}, and � = {0, 1}. Let the sensor mapping be

y = h(x,ψ) =
{

0 if x + ψ is even.
1 if x + ψ is odd.

(11.10)

Under the nondeterministic model for the nature sensing action, the sensor provides no
useful information regarding the state. Regardless of the observation, it is never known
whether x is even or odd. Under a probabilistic model, however, this sensor may provide
some useful information. �

It is once again informative to consider preimages. For a state-action sensor mapping,
the preimage is

H (y) = {x ∈ X | ∃ψ ∈ �(x) for which y = h(x,ψ)}. (11.11)

In comparison to state sensor mappings, the preimage sets are larger for state-action
sensor mappings. Also, they do not generally form a partition of X. For example, the
preimages of Example 11.8 are H (1) = {0, 1, . . . }, H (0) = {−1, 0, 1}, and H (−1) =
{. . . ,−2,−1, 0}. This is not a partition because every preimage contains 0. If desired,
H (y) can be directly defined for each y ∈ Y , instead of explicitly defining nature sensing
actions.

Finally, one example of a history-based sensor mapping is given.

Example 11.10 (Delayed-Observation Sensor) Let X = Y = Z. A delayed-
observation sensor can be defined for some fixed positive integer i as yk = xk−i . It
indicates what the state was i stages ago. In this case, it gives a perfect measurement of
the old state value. Many other variants are possible. For example, it might only give the
sign of the state from i stages ago. �
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Figure 11.2: In each stage, k, an observation, yk ∈ Y, is received and an action uk ∈ U is applied. The
state, xk, however, is hidden from the decision maker.

11.1.2 Defining the history information space

This section defines the most basic and natural I-space. Many others will be derived from
it, which is the topic of Section 11.2. Suppose that X, U , and f have been defined as in
Formulation 10.1, and the notion of stages has been defined as in Formulation 2.2. This
yields a state sequence x1, x2, . . . , and an action sequence u1, u2, . . . , during the execution
of a plan. However, in the current setting, the state sequence is not known. Instead, at
every stage, an observation, yk , is obtained. The process depicted in Figure 11.2.

In previous formulations, the action space, U (x), was generally allowed to depend on
x. Since x is unknown in the current setting, it would seem strange to allow the actions
to depend on x. This would mean that inferences could be made regarding the state by
simply noticing which actions are available.1 Instead, it will be assumed by default that
U is fixed for all x ∈ X. In some special contexts, however, U (x) may be allowed to vary.

Initial conditions

As stated at the beginning of the chapter, the initial conditions provide one of the three
general sources of information regarding the state. Therefore, three alternative types of
initial conditions will be allowed:

1. Known State: The initial state, x1 ∈ X, is given. This initializes the problem with perfect
state information. Assuming nature actions interfere with the state transition function, f ,
uncertainty in the current state will generally develop.

2. Nondeterministic: A set of states, X1 ⊂ X, is given. In this case, the initial state is only
known to lie within a particular subset of X. This can be considered as a generalization
of the first type, which only allowed singleton subsets.

3. Probabilistic: A probability distribution, P (x1), over X is given.

In general, let η0 denote the initial condition, which may be any one of the three alternative
types.

History

Suppose that the kth stage has passed. What information is available? It is assumed that
at every stage, a sensor observation is made. This results in a sensing history,

ỹk = (y1, y2, . . . , yk). (11.12)

At every stage an action can also be applied, which yields an action history,

ũk−1 = (u1, u2, . . . , uk−1). (11.13)

Note that the action history only runs to uk−1; if uk is applied, the state xk+1 and stage
k + 1 are obtained, which lie beyond the current stage, k. By combining the sensing and
action histories, the history at stage k is (ũk−1, ỹk).

1 Such a problem could be quite interesting to study, but it will not be considered here.
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History information states

The history, (ũk−1, ỹk), in combination with the initial condition, η0, yields the history I-
state, which is denoted by ηk . This corresponds to all information that is known up to stage
k. In spite of the fact that the states, x1, . . . , xk , might not be known, the history I-states are
always known because they are defined directly in terms of available information. Thus,
the history I-state is

ηk = (η0, ũk−1, ỹk). (11.14)

When representing I-spaces, we will generally ignore the problem of nesting parentheses.
For example, (11.14) is treated a single sequence, instead of a sequence that contains two
sequences. This distinction is insignificant for the purposes of decision making.

The history I-state, ηk , can also be expressed as

ηk = (ηk−1, uk−1, yk), (11.15)

by noticing that the history I-state at stage k contains all of the information from the history
I-state at stage k − 1. The only new information is the most recently applied action, uk−1,
and the current sensor observation, yk .

The history information space

The history I-space is simply the set of all possible history I-states. Although the history
I-states appear to be quite complicated, it is helpful to think of them abstractly as points
in a new space. To define the set of all possible history I-states, the sets of all initial
conditions, actions, and observations must be precisely defined.

The set of all observation histories is denoted as Ỹk and is obtained by a Cartesian
product of k copies of the observation space:

Ỹk = Y × Y . . . × Y︸ ︷︷ ︸
k

. (11.16)

Similarly, the set of all action histories is Ũk−1, the Cartesian product of k − 1 copies of
the action space U .

It is slightly more complicated to define the set of all possible initial conditions because
three different types of initial conditions are possible. Let I0 denote the initial condition
space. Depending on which of the three types of initial conditions are used, one of the
following three definitions of I0 is used:

1. Known State: If the initial state, x1, is given, then I0 ⊆ X. Typically, I0 = X; however,
it might be known in some instances that certain initial states are impossible. Therefore,
it is generally written that I0 ⊆ X.

2. Nondeterministic: If X1 is given, then I0 ⊆ pow(X) (the power set of X). Again, a
typical situation is I0 = pow(x); however, it might be known that certain subsets of X are
impossible as initial conditions.

3. Probabilistic: Finally, if P (x) is given, then I0 ⊆ P(X), in which P(x) is the set of all
probability distributions over X.

The history I-space at stage k is expressed as

Ik = I0 × Ũk−1 × Ỹk. (11.17)

Each ηk ∈ Ik yields an initial condition, an action history, and an observation history.
It will be convenient to consider I-spaces that do not depend on k. This will be defined
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by taking a union (be careful not to mistakenly think of this construction as a Cartesian
product). If there are K stages, then the history I-space is

Ihist = I0 ∪ I1 ∪ I2 ∪ · · · ∪ IK. (11.18)

Most often, the number of stages is not fixed. In this case, Ihist is defined to be the union
of Ik over all k ∈ {0} ∪N:

Ihist = I0 ∪ I1 ∪ I2 ∪ · · · . (11.19)

This construction is related to the state space obtained for time-varying motion planning
in Section 7.1. The history I-space is stage-dependent because information accumulates
over time. In the discrete model, the reference to time is only implicit through the use of
stages. Therefore, stage-dependent I-spaces are defined. Taking the union of all of these
is similar to the state space that was formed in Section 7.1 by making time be one axis
of the state space. For the history I-space, Ihist , the stage index k can be imagined as an
“axis.”

One immediate concern regarding the history I-space Ihist is that its I-states may be
arbitrarily long because the history grows linearly with the number of stages. For now, it
is helpful to imagine Ihist abstractly as another kind of state space, without paying close
attention to how complicated each η ∈ Ihist may be to represent. In many contexts, there
are ways to simplify the I-space. This is the topic of Section 11.2.

11.1.3 Defining a planning problem

Planning problems will be defined directly on the history I-space, which makes it appear
as an ordinary state space in many ways. Keep in mind, however, that it was derived from
another state space for which perfect state observations could not be obtained. In Section
10.1, a feedback plan was defined as a function of the state. Here, a feedback plan is
instead a function of the I-state. Decisions cannot be based on the state because it will
be generally unknown during the execution of the plan. However, the I-state is always
known; thus, it is logical to base decisions on it.

Let πK denote a K-step information-feedback plan, which is a sequence (π1, π2, . . . ,
πK ) of K functions, πk : Ik → U . Thus, at every stage k, the I-state ηk ∈ Ik is used as
a basis for choosing the action uk = πk(ηk). Due to interference of nature through both
the state transition equation and the sensor mapping, the action sequence (u1, . . . , uK )
produced by a plan, πK , will not be known until the plan terminates.

As in Formulation 2.3, it will be convenient to assume that U contains a termination
action, uT . If uT is applied at stage k, then it is repeatedly applied forever. It is assumed
once again that the state xk remains fixed after the termination condition is applied.
Remember, however, xk is still unknown in general; it becomes fixed but unknown.
Technically, based on the definition of the history I-space, the I-state must change after uT

is applied because the history grows. These changes can be ignored, however, because no
new decisions are made after uT is applied. A plan that uses a termination condition can
be specified as π = (π1, π2, . . . ) because the number of stages may vary each time the
plan is executed. Using the history I-space definition in (11.19), an information-feedback
plan is expressed as

π : I → U. (11.20)
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We are almost ready to define the planning problem. This will require the specification
of a cost functional. The cost depends on the histories of states x̃ and actions ũ as in
Section 10.1. The planning formulation involves the following components, summariz-
ing most of the concepts introduced so far in Section 11.1 (see Formulation 10.1 for
similarities):

Formulation 11.1 (Discrete Information Space Planning)

1. A nonempty state space X that is either finite or countably infinite.

2. A nonempty, finite action space U . It is assumed that U contains a special termination
action, which has the same effect as defined in Formulation 2.3.

3. A finite nature action space �(x, u) for each x ∈ X and u ∈ U .

4. A state transition function f that produces a state, f (x, u, θ ), for every x ∈ X, u ∈ U ,
and θ ∈ �(x, u).

5. A finite or countably infinite observation space Y .

6. A finite nature sensing action space �(x) for each x ∈ X.

7. A sensor mapping h which produces an observation, y = h(x,ψ), for each x ∈ X and
ψ ∈ �(x). This definition assumes a state-nature sensor mappings. A state sensor mapping
or history-based sensor mapping, as defined in Section 11.1.1, could alternatively be used.

8. A set of stages, each denoted by k, which begins at k = 1 and continues indefinitely.

9. An initial condition η0, which is an element of an initial condition space, I0.

10. A history I-space Ihist which is the union of I0 and Ik = I0 × Ũk−1 × Ỹk for every stage
k ∈ N.

11. Let L denote a stage-additive cost functional, which may be applied to any pair (x̃K+1, ũK )
of state and action histories to yield

L(x̃K+1, ũK ) =
K∑

k=1

l(xk, uk) + lF (xK+1). (11.21)

If the termination action uT is applied at some stage k, then for all i ≥ k, ui = uT ,
xi = xk , and l(xi, uT ) = 0. Either a feasible or optimal planning problem can be defined,
as in Formulation 10.1; however, the plan here is specified as π : I → U .

A goal set may be defined as XG ⊂ X. Alternatively, the goal could be expressed as a
desirable set of history I-states. After Section 11.2, it will be seen that the goal can be
expressed in terms of I-states that are derived from histories.

Some immediate extensions of Formulation 11.1 are possible, but we avoid them here
simplify notation in the coming concepts. One extension is to allow different action sets,
U (x), for each x ∈ X. Be careful, however, because information regarding the current
state can be inferred if the action set U (x) is given, and it varies depending on x. Another
extension is to allow the costs to depend on nature, to obtain l(xk, uk, θk), instead of
l(xk, uk) in (11.21).

The cost of a plan

The next task is to extend the definition of the cost-to-go under a fixed plan, which was
given in Section 10.1.3, to the case of imperfect state information. Consider evaluating the
quality of a plan, so that the “best” one might be selected. Suppose that the nondeterministic
uncertainty is used to model nature and that a nondeterministic initial condition is given.
If a plan π is fixed, some state and action trajectories are possible, and others are not. It is
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impossible to know in general what histories will occur; however, the plan constrains the
choices substantially. Let H(π, η0) denote the set of state-action histories that could arise
from π applied to the initial condition η0.

The cost of a plan π from an initial condition η0 is measured using worst-case analysis
as

Gπ (η0) = max
(x̃,ũ)∈H(π,η0)

{
L(x̃, ũ)

}
. (11.22)

Note that x̃ includes x1, which is usually not known. It may be known only to lie in X1, as
specified by η0. Let � denote the set of all possible plans. An optimal plan using worst-
case analysis is any plan for which (11.22) is minimized over all π ∈ � and η0 ∈ I0. In
the case of feasible planning, there are usually numerous equivalent alternatives.

Under probabilistic uncertainty, the cost of a plan can be measured using expected-case
analysis as

Gπ (η0) = EH(π,η0)

[
L(x̃, ũ)

]
, (11.23)

in which E denotes the mathematical expectation of the cost, with the probability distri-
bution taken over H(π, η0). The task is to find a plan π ∈ � that minimizes (11.23).

The information space is just another state space

It will become important throughout this chapter and Chapter 12 to view the I-space as
an ordinary state space. It only seems special because it is derived from another state
space, but once this is forgotten, it exhibits many properties of an ordinary state space in
planning. One nice feature is that the state in this special space is always known. Thus,
by converting from an original state space to its I-space, we also convert from having
imperfect state information to always knowing the state, albeit in a larger state space.

One important consequence of this interpretation is that the state transition equation
can be lifted into the I-space to obtain an information transition function, fI . Suppose
that there are no sensors, and therefore no observations. In this case, future I-states are
predictable, which leads to

ηk+1 = fI (ηk, uk). (11.24)

The function fI generates ηk+1 by concatenating uk onto ηk .
Now suppose that there are observations, which are generally unpredictable. In Section

10.1, the nature action θk ∈ �(x, u) was used to model the unpredictability. In terms of
the information transition equation, yk+1 serves the same purpose. When the decision
is made to apply uk , the observation yk+1 is not yet known (just as θk is unknown in
Section 10.1). In a sequential game against nature with perfect state information, xk+1 is
directly observed at the next stage. For the information transition equation, yk+1 is instead
observed, and ηk+1 can be determined. Using the history I-state representation, (11.14),
simply concatenate uk and yk+1 onto the histories in ηk to obtain ηk+1. The information
transition equation is expressed as

ηk+1 = fI (ηk, uk, yk+1), (11.25)

with the understanding that yk+1 plays the same role as θk in the case of perfect state
information and unpredictable future states. Even though nature causes future I-states to
be unpredictable, the current I-state is always known. A plan, π : I → U , now seems
like a state-feedback plan, if the I-space is viewed as a state space. The transitions are all
specified by fI .
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Figure 11.3: Many alternative information mappings may be proposed. Each leads to a derived information
space.

The costs in this new state space can be derived from the original cost functional,
but a maximization or expectation is needed over all possible states given the current
information. This will be covered in Section 12.1.

11.2 Derived information spaces

The history I-space appears to be quite complicated. Every I-state corresponds to a history
of actions and observations. Unfortunately, the length of the I-state sequence grows linearly
with the number of stages. To overcome this difficultly, it is common to map history I-states
to some simpler space. In many applications, the ability to perform this simplification is
critical to finding a practical solution. In some cases, the simplification fully preserves the
history I-space, meaning that completeness, and optimality if applicable, is not lost. In
other cases, we are willing to tolerate a simplification that destroys much of the structure
of the history I-space. This may be necessary to obtain a dramatic reduction in the size of
the I-space.

11.2.1 Information mappings

Consider a function that maps the history I-space into a space that is simpler to manage.
Formally, let κ : Ihist → Ider denote a function from a history I-space, Ihist , to a derived
I-space, Ider . The function, κ , is called an information mapping, or I-map. The derived
I-space may be any set; hence, there is great flexibility in defining an I-map.2 Figure11.3
illustrates the idea. The starting place is Ihist , and mappings are made to various derived I-
spaces. Some generic mappings, κ1, κ2, and κ3, are shown, along with some very important
kinds, Iest , Indet and Iprob. The last two are the subjects of Sections 11.2.2 and 11.2.3,
respectively. The other important I-map is κest , which uses the history to estimate the
state; hence, the derived I-space is X (see Example 11.11). In general, an I-map can even
map any derived I-space to another, yielding κ : Ider → I ′der , for any I-spaces Ider and
I ′der . Note that any composition of I-maps yields an I-map. The derived I-spaces I2 and
I3 from Figure 11.3 are obtained via compositions.

Making smaller information-feedback plans

The primary use of an I-map is to simplify the description of a plan. In Section 11.1.3,
a plan was defined as a function on the history I-space, Ihist . Suppose that an I-map,
κ , is introduced that maps from Ihist to Ider . A feedback plan on Ider is defined as π :
Ider → U . To execute a plan defined on Ider , the derived I-state is computed at each stage
k by applying κ to ηk to obtain κ(ηk) ∈ Ider . The action selected by π is π(κ(ηk)) ∈ U.

2 Ideally, the mapping should be onto Ider ; however, to facilitate some definitions, this will not be required.
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To understand the effect of using Ider instead of Ihist as the domain of π , consider the
set of possible plans that can be represented over Ider . Let �hist and �der be the sets of all
plans over Ihist and Ider , respectively. Any π ∈ �der can be converted into an equivalent
plan, π ′ ∈ �hist , as follows: For each η ∈ Ihist , define π ′(η) = π(κ(η)).

It is not always possible, however, to construct a plan, π ∈ �der , from some π ′ ∈ Ihist .
The problem is that there may exist some η1, η2 ∈ Ihist for which π ′(η1) 	= π ′(η2) and
κ(η1) = κ(η2). In words, this means that the plan in �hist requires that two histories cause
different actions, but in the derived I-space the histories cannot be distinguished. For a
plan in �der , both histories must yield the same action.

An I-map κ has the potential to collapse Ihist down to a smaller I-space by inducing a
partition of Ihist . For each ηder ∈ Ider , let the preimage κ−1(ηder ) be defined as

κ−1(ηder ) = {η ∈ Ihist | ηder = κ(η)}. (11.26)

This yields the set of history I-states that map to ηder . The induced partition can intuitively
be considered as the “resolution” at which the history I-space is characterized. If the sets
in (11.26) are large, then the I-space is substantially reduced. The goal is to select κ to
make the sets in the partition as large as possible; however, one must be careful to avoid
collapsing the I-space so much that the problem can no longer be solved.

Example 11.11 (State Estimation) In this example, the I-map is the classical approach
that is conveniently taken in numerous applications. Suppose that a technique has been
developed that uses the history I-state η ∈ Ihist to compute an estimate of the current
state. In this case, the I-map is κest : Ihist → X. The derived I-space happens to be X in
this case! This means that a plan is specified as π : X → U , which is just a state-feedback
plan.

Consider the partition of Ihist that is induced by κest . For each x ∈ X, the set κ−1
est (x), as

defined in (11.26), is the set of all histories that lead to the same state estimate. A plan on
X can no longer distinguish between various histories that led to the same state estimate.
One implication is that the ability to encode the amount of uncertainty in the state estimate
has been lost. For example, it might be wise to make the action depend on the covariance
in the estimate of x; however, this is not possible because decisions are based only on the
estimate itself. �

Example 11.12 (Stage Indices) Consider an I-map, κstage, that returns only the current
stage index. Thus, κstage(ηk) = k. The derived I-space is the set of stages, which is N.
A feedback plan on the derived I-space is specified as π : N → U . This is equivalent
to specifying a plan as an action sequence, (u1, u2, . . . , ), as in Section 2.3.2. Since the
feedback is trivial, this is precisely the original case of planning without feedback, which
is also refereed to as an open-loop plan. �

Constructing a derived information transition equation

As presented so far, the full history I-state is needed to determine a derived I-state.
It may be preferable, however, to discard histories and work entirely in the derived
I-space. Without storing the histories on the machine or robot, a derived information
transition equation needs to be developed. The important requirement in this case is as
follows:

If ηk is replaced by κ(ηk), then κ(ηk+1) must be correctly determined using only κ(ηk), uk ,
and yk+1.
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Figure 11.4: (a) For an I-map to be suf�cient, the same result must be reached in the lower right, regardless
of the path taken from the upper left. (b) The problem is that κ images may contain many histories, which
eventually map to multiple derived I-states.

Whether this requirement can be met depends on the particular I-map. Another way to
express the requirement is that if κ(ηk) is given, then the full history η does not contain
any information that could further constrain κ(ηk+1). The information provided by κ is
sufficient for determining the next derived I-states. This is similar to the concept of a
sufficient statistic, which arises in decision theory [91]. If the requirement is met, then
κ is called a sufficient I-map. One peculiarity is that the sufficiency is relative to Ider ,
as opposed to being absolute in some sense. For example, any I-map that maps onto
Ider = {0} is sufficient because κ(ηk+1) is always known (it remains fixed at 0). Thus, the
requirement for sufficiency depends strongly on the particular derived I-space.

For a sufficient I-map, a derived information transition equation is determined as

κ(ηk+1) = fIder (κ(ηk), uk, yk+1). (11.27)

The implication is that Ider is the new I-space in which the problem “lives.” There is no
reason for the decision maker to consider histories. This idea is crucial to the success of
many planning algorithms. Sections 11.2.2 and 11.2.3 introduce nondeterministic I-spaces
and probabilistic I-spaces, which are two of the most important derived I-spaces and are
obtained from sufficient I-maps. The I-map κstage from Example 11.12 is also sufficient.
The estimation I-map from Example 11.11 is usually not sufficient because some history
is needed to provide a better estimate.

The diagram in Figure 11.4a indicates the problem of obtaining a sufficient I-map. The
top of the diagram shows the history I-state transitions before the I-map was introduced.
The bottom of the diagram shows the attempted derived information transition equation,
fIder . The requirement is that the derived I-state obtained in the lower right must be the
same regardless of which path is followed from the upper left. Either fI can be applied
to η, followed by κ , or κ can be applied to η, followed by some fIder . The problem with
the existence of fIder is that κ is usually not invertible. The preimage κ−1(ηder ) of some
derived I-state ηder ∈ Ider yields a set of histories in Ihist . Applying fI to all of these
yields a set of possible next-stage history I-states. Applying κ to these may yield a set of
derived I-states because of the ambiguity introduced by κ−1. This chain of mappings is
shown in Figure 11.4b. If a singleton is obtained under all circumstances, then this yields
the required values of fIder . Otherwise, new uncertainty arises about the current derived
I-state. This could be handled by defining an information space over the information
space, but this nastiness will be avoided here.

Since I-maps can be defined from any derived I-space to another, the concepts presented
in this section do not necessarily require Ihist as the starting point. For example, an I-map,
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κ : Ider → I ′der , may be called sufficient with respect to Ider rather than with respect to
Ihist .

11.2.2 Nondeterministic information spaces

This section defines the I-map κndet from Figure 11.3, which converts each history I-
state into a subset of X that corresponds to all possible current states. Nature is modeled
nondeterministically, which means that there is no information about what actions nature
will choose, other than that they will be chosen from � and �. Assume that the state-action
sensor mapping from Section 11.1.1 is used. Consider what inferences may be drawn from
a history I-state, ηk = (η0, ũk−1, ỹk). Since the model does not involve probabilities, let
η0 represent a set X1 ⊆ X. Let κndet (ηk) be the minimal subset of X in which xk is known
to lie given ηk . This subset is referred to as a nondeterministic I-state. To remind you that
κndet (ηk) is a subset of X, it will now be denoted as Xk(ηk). It is important that Xk(ηk) be
as small as possible while consistent with ηk .

Recall from (11.6) that for every observation yk , a set H (yk) ⊆ X of possible values
for xk can be inferred. This could serve as a crude estimate of the nondeterministic I-state.
It is certainly known that Xk(ηk) ⊆ H (yk); otherwise, xk , would not be consistent with
the current sensor observation. If we carefully progress from the initial conditions while
applying constraints due to the state transition equation, the appropriate subset of H (yk)
will be obtained.

From the state transition function f , define a set-valued function F that yields a subset
of X for every x ∈ X and u ∈ U as

F (x, u) = {x ′ ∈ X | ∃θ ∈ �(x, u) for which x ′ = f (x, u, θ )}. (11.28)

Note that both F and H are set-valued functions that eliminate the direct appearance of na-
ture actions. The effect of nature is taken into account in the set that is obtained when these
functions are applied. This will be very convenient for computing the nondeterministic
I-state.

An inductive process will now be described that results in computing the nondeter-
ministic I-state, Xk(ηk), for any stage k. The base case, k = 1, of the induction proceeds
as

X1(η1) = X1(η0, y1) = X1 ∩H (y1). (11.29)

The first part of the equation replaces η1 with (η0, y1), which is a longer way to write
the history I-state. There are not yet any actions in the history. The second part applies
set intersection to make consistent the two pieces of information: 1) The initial state lies
in X1, which is the initial condition, and 2) the states in H (y1) are possible given the
observation y1.

Now assume inductively that Xk(ηk) ⊆ X has been computed and the task is to compute
Xk+1(ηk+1). From (11.15), ηk+1 = (ηk, uk, yk+1). Thus, the only new pieces of information
are that uk was applied and yk+1 was observed. These will be considered one at a time.

Consider computing Xk+1(ηk, uk). If xk was known, then after applying uk , the state
could lie anywhere within F (xk, uk), using (11.28). Although xk is actually not known, it
is at least known that xk ∈ Xk(ηk). Therefore,

Xk+1(ηk, uk) =
⋃

xk∈Xk (ηk)

F (xk, uk). (11.30)
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Xk+1(ηk, uk)
Xk(ηk)F (xk, uk)

xk

Figure 11.5: The � rst step in computing the nondeterministic I-state is to take the union of F(xk, uk) over
all possible xk ∈ Xk(ηk).

This can be considered as the set of all states that can be reached by starting from some
state in Xk(ηk) and applying any actions uk ∈ U and θk ∈ �(xk, uk). See Figure 11.5.

The next step is to take into account the observation yk+1. This information alone
indicates that xk+1 lies in H (yk+1). Therefore, an intersection is performed to obtain the
nondeterministic I-state,

Xk+1(ηk+1) = Xk+1(ηk, uk, yk+1) = Xk+1(ηk, uk) ∩H (yk+1). (11.31)

Thus, it has been shown how to compute Xk+1(ηk+1) from Xk(ηk). After starting with
(11.29), the nondeterministic I-states at any stage can be computed by iterating (11.30)
and (11.31) as many times as necessary.

Since the nondeterministic I-state is always a subset of X, the nondeterministic I-space,
Indet = pow(X), is obtained (shown in Figure 11.3). If X is finite, then Indet is also finite,
which was not the case with Ihist because the histories continued to grow with the number
of stages. Thus, if the number of stages is unbounded or large in comparison to the size
of X, then nondeterministic I-states seem preferable. It is also convenient that κndet is a
sufficient I-map, as defined in Section 11.2.1. This implies that a planning problem can be
completely expressed in terms of Indet without maintaining the histories. The goal region,
XG, can be expressed directly as a nondeterministic I-state. In this way, the planning task
is to terminate in a nondeterministic I-state, Xk(ηk), for which Xk(ηk) ⊆ XG.

The sufficiency of κndet is obtained because (11.30) and (11.31) show that Xk+1(ηk+1)
can be computed from Xk(ηk), uk , and yk+1. This implies that a derived information tran-
sition equation can be formed. The nondeterministic I-space can also be treated as “just
another state space.” Although many history I-states may map to the same nondetermin-
istic I-state, it has been assumed for decision-making purposes that particular history is
irrelevant, once Xk(ηk) is given.

The following example is not very interesting in itself, but it is simple enough to
illustrate the concepts.

Example 11.13 (Three-State Example) Let X = {0, 1, 2}, U = {−1, 0, 1}, and
�(x, u) = {0, 1} for all x ∈ X and u ∈ U . The state transitions are given by f (x, u, θ) =
(x + u+ θ) mod 3. Regarding sensing, Y = {0, 1, 2, 3, 4} and �(x) = {0, 1, 2} for all
x ∈ X. The sensor mapping is y = h(x, ψ) = x + ψ .

The history I-space appears very cumbersome for this example, which only involves
three states. The nondeterministic I-space for this example is

Ind et = {∅, {0}, {1}, {2}, {0, 1}, {1, 2}, {0, 2}, {0, 1, 2}}, (11.32)
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which is the power set of X = {0, 1, 2}. Note, however, that the empty set, ∅, can usually
be deleted from Indet .3 Suppose that the initial condition is X1 = {0, 2} and that the initial
state is x1 = 0. The initial state is unknown to the decision maker, but it is needed to
ensure that valid observations are made in the example.

Now consider the execution over a number of stages. Suppose that the first observation
is y1 = 2. Based on the sensor mapping, H (y1) = H (2) = {0, 1, 2}, which is not very
helpful because H (2) = X. Applying (11.29) yields X1(η1) = {0, 2}. Now suppose that
the decision maker applies the action u1 = 1 and nature applies θ1 = 1. Using f , this
yields x2 = 2. The decision maker does not know θ1 and must therefore take into account
any nature action that could have been applied. It uses (11.30) to infer that

X2(η1, u1) = F (2, 1) ∪ F (0, 1) = {0, 1} ∪ {1, 2} = {0, 1, 2}. (11.33)

Now suppose that y2 = 3. From the sensor mapping, H (3) = {1, 2}. Applying (11.31)
yields

X2(η2) = X2(η1, u1) ∩H (y2) = {0, 1, 2} ∩ {1, 2} = {1, 2}. (11.34)

This process may be repeated for as many stages as desired. A path is generated through
Indet by visiting a sequence of nondeterministic I-states. If the observation yk = 4 is ever
received, the state, xk , becomes immediately known because H (4) = {2}. �

11.2.3 Probabilistic information spaces

This section defines the I-map κprob from Figure 11.3, which converts each history I-state
into a probability distribution over X. A Markov, probabilistic model is assumed in the
sense that the actions of nature only depend on the current state and action, as opposed to
state or action histories. The set union and intersection of (11.30) and (11.31) are replaced
in this section by marginalization and Bayes’ rule, respectively. In a sense, these are the
probabilistic equivalents of union and intersection. It will be very helpful to compare the
expressions from this section to those of Section 11.2.2.

Rather than write κprob(η), standard probability notation will be applied to obtain
P (x|η). Most expressions in this section of the form P (xk|·) have an analogous expression
in Section 11.2.2 of the form Xk(·). It is helpful to recognize the similarities.

The first step is to construct probabilistic versions of H and F . These are P (xk|yk)
and P (xk+1|xk, uk), respectively. The latter term was given in Section 10.1.1. To obtain
P (xk|yk), recall from Section 11.1.1 that P (yk|xk) is easily derived from P (ψk|xk). To
obtain P (xk|yk), Bayes’ rule is applied:

P (xk|yk) = P (yk|xk)P (xk)

P (yk)
= P (yk|xk)P (xk)
∑

xk∈X

P (yk|xk)P (xk)
. (11.35)

In the last step, P (yk) was rewritten using marginalization, (9.8). In this case xk appears
as the sum index; therefore, the denominator is only a function of yk , as required. Bayes’
rule requires knowing the prior, P (xk). In the coming expressions, this will be replaced
by a probabilistic I-state.

3 One notable exception is in the theory of nondeterministic finite automata, in which it is possible that all copies of
the machine die and there is no possible current state [892].
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Now consider defining probabilistic I-states. Each is a probability distribution over X

and is written as P (xk|ηk). The initial condition produces P (x1). As for the nondetermin-
istic case, probabilistic I-states can be computed inductively. For the base case, the only
new piece of information is y1. Thus, the probabilistic I-state, P (x1|η1), is P (x1|y1). This
is computed by letting k = 1 in (11.35) to yield

P (x1|η1) = P (x1|y1) = P (y1|x1)P (x1)
∑

x1∈X

P (y1|x1)P (x1)
. (11.36)

Now consider the inductive step by assuming that P (xk|ηk) is given. The task is
to determine P (xk+1|ηk+1), which is equivalent to P (xk+1|ηk, uk, yk+1). As in Section
11.2.2, this will proceed in two parts by first considering the effect of uk , followed by
yk+1. The first step is to determine P (xk+1|ηk, uk) from P (xk|ηk). First, note that

P (xk+1|ηk, xk, uk) = P (xk+1|xk, uk) (11.37)

because ηk contains no additional information regarding the prediction of xk+1 once xk is
given. Marginalization, (9.8), can be used to eliminate xk from P (xk+1|xk, uk). This must
be eliminated because it is not given. Putting these steps together yields

P (xk+1|ηk, uk) =
∑

xk∈X

P (xk+1|xk, uk, ηk)P (xk|ηk)

=
∑

xk∈X

P (xk+1|xk, uk)P (xk|ηk),
(11.38)

which expresses P (xk+1|ηk, uk) in terms of given quantities. Equation (11.38) can be
considered as the probabilistic counterpart of (11.30).

The next step is to take into account the observation yk+1. This is accomplished by
making a version of (11.35) that is conditioned on the information accumulated so far: ηk

and uk . Also, k is replaced with k + 1. The result is

P (xk+1|yk+1, ηk, uk) = P (yk+1|xk+1, ηk, uk)P (xk+1|ηk, uk)
∑

xk+1∈X

P (yk+1|xk+1, ηk, uk)P (xk+1|ηk, uk)
. (11.39)

This can be considered as the probabilistic counterpart of (11.31). The left side of (11.39)
is equivalent to P (xk+1|ηk+1), which is the probabilistic I-state for stage k + 1, as desired.
There are two different kinds of terms on the right. The expression for P (xk+1|ηk, uk) is
given in (11.38). Therefore, the only remaining term to calculate is P (yk+1|xk+1, ηk, uk).
Note that

P (yk+1|xk+1, ηk, uk) = P (yk+1|xk+1) (11.40)

because the sensor mapping depends only on the state (and the probability model for
the nature sensing action, which also depends only on the state). Since P (yk+1|xk+1) is
specified as part of the sensor model, we have now determined how to obtain P (xk+1|ηk+1)
from P (xk|ηk), uk , and yk+1. Thus, Iprob is another I-space that can be treated as just
another state space.

The probabilistic I-space Iprob (shown in Figure 11.3) is the set of all probability
distributions over X. The update expressions, (11.38) and (11.39), establish that the I-
map κprob is sufficient, which means that the planning problem can be expressed entirely
in terms of Iprob, instead of maintaining histories. A goal region can be specified as
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1

p0

p1

Iprob

Figure 11.6: The probabilistic I-space for the three-state example is a 2-simplex embedded in R
3. This

simplex can be projected into R
2 to yield the depicted triangular region in R

2.

constraints on the probabilities. For example, from some particular x ∈ X, the goal might
be to reach any probabilistic I-state for which P (xk|ηk) > 1/2.

Example 11.14 (Three-State Example Revisited) Now return to Example 11.13, but
this time use probabilistic models. For a probabilistic I-state, let pi denote the probability
that the current state is i ∈ X. Any probabilistic I-state can be expressed as (p0, p1, p2) ∈
R

3. This implies that the I-space can be nicely embedded in R
3. By the axioms of

probability (given in Section 9.1.2), p0 + p1 + p2 = 1, which can be interpreted as a
plane equation in R

3 that restricts Iprob to a 2D set. Also following the axioms of
probability, for each i ∈ {0, 1, 2}, 0 ≤ pi ≤ 1. This means that Iprob is restricted to a
triangular region in R

3. The vertices of this triangular region are (0, 0, 1), (0, 1, 0), and
(1, 0, 0); these correspond to the three different ways to have perfect state information.
In a sense, the distance away from these points corresponds to the amount of uncertainty
in the state. The uniform probability distribution (1/3, 1/3, 1/3) is equidistant from the
three vertices. A projection of the triangular region into R

2 is shown in Figure 11.6. The
interpretation in this case is that p1 and p2 specify a point in R

2, and p3 is automatically
determined from p3 = 1 − p1 − p2.

The triangular region in R
3 is an uncountably infinite set, even though the history

I-space is countably infinite for a fixed initial condition. This may seem strange, but there
is no mistake because for a fixed initial condition, it is generally impossible to reach all
of the points in Iprob. If the initial condition can be any point in Iprob, then all of the
probabilistic I-space is covered because I0 = Iprob, in which I0 is the initial condition
space. �

11.2.4 Limited-memory information spaces

Limiting the amount of memory provides one way to reduce the sizes of history I-states.
Except in special cases, this usually does not preserve the feasibility or optimality of the
original problem. Nevertheless, such I-maps are very useful in practice when there appears
to be no other way to reduce the size of the I-space. Furthermore, they occasionally do
preserve the desired properties of feasibility, and sometimes even optimality.

Previous i stages

Under this model, the history I-state is truncated. Any actions or observations received
earlier than i stages ago are dropped from memory. An I-map, κi , is defined as

κi(ηk) = (uk−i , . . . , uk−1, yk−i+1, . . . , yk), (11.41)
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for any integer i > 0 and k > i. If i ≤ k, then the derived I-state is the full history I-state,
(11.14). The advantage of this approach, if it leads to a solution, is that the length of the
I-state no longer grows with the number of stages. If X and U are finite, then the derived
I-space is also finite. Note that κi is sufficient in the sense defined in Section 11.2.1
because enough history is passed from stage to stage to determine the derived I-states.

Sensor feedback

An interesting I-map is obtained by removing all but the last sensor observation from
the history I-state. This yields an I-map, κsf : Ihist → Y , which is defined as κ(ηk) = yk .
The model is referred to as sensor feedback. In this case, all decisions are made directly
in terms of the current sensor observation. The derived I-space is Y , and a plan on the
derived I-space is π : Y → U , which is called a sensor-feedback plan. In some literature,
this may be referred to as a purely reactive plan. Many problems for which solutions
exist in the history I-space cannot be solved using sensor feedback. Neglecting history
prevents the complicated deductions that are often needed regarding the state. In some
sense, sensor feedback causes short-sightedness that could unavoidably lead to repeating
the same mistakes indefinitely. However, it may be worth determining whether such a
sensor-feedback solution plan exists for some particular problem. Such plans tend to be
simpler to implement in practice because the actions can be connected directly to the
sensor output. Certainly, if a sensor-feedback solution plan exists for a problem, and
feasibility is the only concern, then it is pointless to design and implement a plan in terms
of the history I-space or some larger derived I-space. Note that this I-map is sufficient,
even though it ignores the entire history.

11.3 Examples for discrete state spaces

11.3.1 Basic nondeterministic examples

First, we consider a simple example that uses the sign sensor of Example 11.3.

Example 11.15 (Using the Sign Sensor) This example is similar to Example 10.1,
except that it involves sensing uncertainty instead of prediction uncertainty. Let X = Z,
U = {−1, 1, uT }, Y = {−1, 0, 1}, and y = h(x) = sgnx. For the state transition equation,
xk+1 = f (xk, uk) = xk + uk . No nature actions interfere with the state transition equation
or the sensor mapping. Therefore, future history I-states are predictable. The information
transition equation is ηk+1 = fI(ηk, uk). Suppose that initially, η0 = X, which means that
any initial state is possible. The goal is to terminate at 0 ∈ X.

The general expression for a history I-state at stage k is

ηk = (X, u1, . . . , uk−1, y1, . . . , yk). (11.42)

A possible I-state is η5 = (X,−1, 1, 1,−1, 1, 1, 1, 1, 0). Using the nondeterministic I-
space from Section 11.2.2, Indet = pow(X), which is uncountably infinite. By looking
carefully at the problem, however, it can be seen that most of the nondeterministic I-
states are not reachable. If yk = 0, it is known that xk = 0; hence, Xk(ηk) = {0}. If
yk = 1, it will always be the case that Xk(ηk) = {1, 2, . . . }. If yk = −1, then Xk(ηk) =
{. . . ,−2,−1}. From this a plan, π , can be specified over the three nondeterministic I-states
mentioned above. For the first one, π(Xk(ηk)) = uT . For the other two, π(Xk(ηk)) = −1
and π(Xk(ηk)) = 1, respectively. Based on the sign, the plan tries to move toward 0. If
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different initial conditions are allowed, then more nondeterministic I-states can be reached,
but this was not required as the problem was defined. Note that optimal-length solutions
are produced by the plan.

The solution can even be implemented with sensor feedback because the action depends
only on the current sensor value. Let π : Y → U be defined as

π (y) =





−1 if y = 1
1 if y = −1
uT if y = 0.

(11.43)

This provides dramatic memory savings over defining a plan on Ihist . �
The next example provides a simple illustration of solving a problem without ever

knowing the current state. This leads to the goal recognizability problem [662] (see
Section 12.5.1).

Example 11.16 (Goal Recognizability) Let X = Z, U = {−1, 1, uT }, and Y = Z. For
the state transition equation, xk+1 = f (xk, uk) = xk + uk . Now suppose that a variant of
Example 11.7 is used to model sensing: y = h(x, ψ) = x + ψ and � = {−5,−4, . . . , 5}.
Suppose that once again, η0 = X. In this case, it is impossible to guarantee that a goal,
XG = {0}, is reached because of the goal recognizability problem. The disturbance in the
sensor mapping does not allow precise enough state measurements to deduce the precise
achievement of the state. If the goal region, XG, is enlarged to {−5,−4, . . . , 5}, then the
problem can be solved. Due to the disturbance, the nondeterministic I-state is always a
subset of a consecutive sequence of 11 states. It is simple to derive a plan that moves this
interval until the nondeterministic I-state becomes a subset of XG. When this occurs, then
the plan applies uT . In solving this problem, the exact state never had to be known. �

The problem shown in Figure 11.7 serves two purposes. First, it is an example of
sensorless planning [323, 396], which means that there are no observations (see Sections
11.5.4 and 12.5.2). This is an interesting class of problems because it appears that no
information can be gained regarding the state. Contrary to intuition, it turns out for
this example and many others that plans can be designed that estimate the state. The
second purpose is to illustrate how the I-space can be dramatically collapsed using the
I-map concepts of Section 11.2.1. The standard nondeterministic I-space for this example
contains 219 I-states, but it can be mapped to a much smaller derived I-space that contains
only a few elements.

Example 11.17 (Moving in an L-Shaped Corridor) The state space X for the example
shown in Figure 11.7 has 19 states, each of which corresponds to a location on one of the
white tiles. For convenience, let each state be denoted by (i, j ). There are 10 bottom states,
denoted by (1, 1), (2, 1), . . . , (10, 1), and 10 left states, denoted by (1, 1), (1, 2), . . . ,
(1, 10). Since (1, 1) is both a bottom state and a left state, it is called the corner state.

There are no sensor observations for this problem. However, nature interferes with the
state transitions, which leads to a form of nondeterministic uncertainty. If an action is
applied that tries to take one step, nature may cause two or three steps to be taken. This
can be modeled as follows. Let

U = {(1, 0), (−1, 0), (0, 1), (0,−1)} (11.44)

and let � = {1, 2, 3}. The state transition equation is defined as f (x, u, θ) = x + θu

whenever such motion is not blocked (by hitting a dead end). For example, if x = (5, 1),
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Figure 11.7: An example that involves 19 states. There are no sensor observations; however, actions
can be chosen that enable the state to be estimated. The example provides an illustration of reducing the
I-space via I-maps.

u = (−1, 0), and θ = 2, then the resulting next state is (5, 1) + 2(−1, 0) = (3, 1). If
blocking is possible, the state changes as much as possible until it becomes blocked. Due
to blocking, it is even possible that f (x, u, θ) = x.

Since there are no sensor observations, the history I-state at stage k is

ηk = (η0, u1, . . . , uk−1). (11.45)

Now use the nondeterministic I-space, Indet = pow(X). The initial state, x1 = (10, 1),
is given, which means that the initial I-state, η0, is {(10, 1)}. The goal is to arrive at the
I-state, {(1, 10)}, which means that the task is to design a plan that moves from the lower
right to the upper left.

With perfect information, this would be trivial; however, without sensors the uncertainty
may grow very quickly. For example, after applying the action u1 = (−1, 0) from the initial
state, the nondeterministic I-state becomes {(7, 1), (8, 1), (9, 1)}. After u2 = (−1, 0) it
becomes {(4, 1), . . . , (8, 1)}. A nice feature of this problem, however, is that uncertainty
can be reduced without sensing. Suppose that for 100 stages, we repeatedly apply uk =
(−1, 0). What is the resulting I-state? As the corner state is approached, the uncertainty
is reduced because the state cannot be further changed by nature. It is known that each
action, uk = (−1, 0), decreases the X coordinate by at least one each time. Therefore,
after nine or more stages, it is known that ηk = {(1, 1)}. Once this is known, then the action
(0, 1) can be applied. This will again increase uncertainty as the state moves through the
set of left states. If (0, 1) is applied nine or more times, then it is known for certain that
xk = (1, 10), which is the required goal state.

A successful plan has now been obtained: 1) Apply (−1, 0) for nine stages, 2) then
apply (0, 1) for nine stages. This plan could be defined over Indet ; however, it is simpler
to use the I-map κstage from Example 11.12 to define a plan as π : N → U . For k such
that 1 ≤ k ≤ 9, π(k) = (−1, 0). For k such that 10 ≤ k ≤ 18, π(k) = (0, 1). For k > 18,
π(k) = uT . Note that the plan works even if the initial condition is any subset of X. From
this point onward, assume that any subset may be given as the initial condition.

Some alternative plans will now be considered by making other derived I-spaces from
Indet . Let κ3 be an I-map from Indet to a set I3 of three derived I-states. Let I3 = {g, l, a},
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Figure 11.8: (a) An nondeterministic �nite automaton (NFA) is a state machine that reads an input string
and decides whether to accept it. (b) A graphical depiction of an NFA.

in which g denotes “goal,” l denotes “left,” and a denotes “any.” The I-map, κ3, is

X(η) =





g if X(η) = {(1, 10)}
l if X(η) is a subset of the set of left states
a otherwise.

(11.46)

Based on the successful plan described so far, a solution on I3 is defined as π(g) = uT ,
π(l) = (0, 1), and π(a) = (−1, 0). This plan is simpler to represent than the one on N;
however, there is one drawback. The I-map κ3 is not sufficient. This implies that more of
the nondeterministic I-state needs to be maintained during execution. Otherwise, there is
no way to know when certain transitions occur. For example, if (−1, 0) is applied from
a, how can the robot determine whether l or a is reached in the next stage? This can be
easily determined from the nondeterministic I-state.

To address this problem, consider a new I-map, κ19 : Indet → I19, which is sufficient.
There are 19 derived I-states, which include g as defined previously, li for 1 ≤ j ≤ 9, and
ai for 2 ≤ i ≤ 10. The I-map is defined as κ19(X(η)) = g if X(η) = {(1, 10)}. Otherwise,
κ19(X(η)) = li for the smallest value of i such that X(η) is a subset of {(1, i), . . . , (1, 10)}.
If there is no such value for i, then κ19(X(η)) = ai , for the smallest value of i such
that X(η) is a subset of {(1, 1), . . . , (1, 10), (2, 1), . . . , (i, 1)}. Now the plan is defined
as π(g) = uT , π(li) = (0, 1), and π(ai) = (−1, 0). Although the plan is larger, the robot
does not need to represent the full nondeterministic I-state during execution. The correct
transitions occur. For example, if uk = (−1, 0) is applied at a5, then a4 is obtained. If
u = (−1, 0) is applied at a2, then l1 is obtained. From there, u = (0, 1) is applied to yield
l2. These actions can be repeated until eventually l9 and g are reached. The resulting plan,
however, is not an improvement over the original open-loop one. �

11.3.2 Nondeterministic finite automata

An interesting connection lies between the ideas of this chapter and the theory of finite
automata, which is part of the theory of computation (see [465, 892]). In Section 2.1,
it was mentioned that determining whether there exists some string that is accepted
by a DFA is equivalent to a discrete feasible planning problem. If unpredictability is
introduced into the model, then a nondeterministic finite automaton (NFA) is obtained, as
depicted in Figure 11.8. This represents one of the simplest examples of nondeterminism
in theoretical computer science. Such nondeterministic models serve as a powerful tool
for defining models of computation and their associated complexity classes. It turns out
that these models give rise to interesting examples of information spaces.

An NFA is typically described using a directed graph as shown in Figure 11.8b, and is
considered as a special kind of finite state machine. Each vertex of the graph represents
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a state, and edges represent possible transitions. An input string of finite length is read
by the machine. Typically, the input string is a binary sequence of 0’s and 1’s. The initial
state is designated by an inward arrow that has no source vertex, as shown pointing into
state a in Figure 11.8b. The machine starts in this state and reads the first symbol of the
input string. Based on its value, it makes appropriate transitions. For a DFA, the next
state must be specified for each of the two inputs 0 and 1 from each state. From a state in
an NFA, there may be any number of outgoing edges (including zero) that represent the
response to a single symbol. For example, there are two outgoing edges if 0 is read from
state c (the arrow from c to b actually corresponds to two directed edges, one for 0 and
the other for 1). There are also edges designated with a special ε symbol. If a state has an
outgoing ε, the state may immediately transition along the edge without reading another
symbol. This may be iterated any number of times, for any outgoing ε edges that may
be encountered, without reading the next input symbol. The nondeterminism arises from
the fact that there are multiple choices for possible next states due to multiple edges for
the same input and ε transitions. There is no sensor that indicates which state is actually
chosen.

The interpretation often given in the theory of computation is that when there are
multiple choices, the machine clones itself and one copy runs each choice. It is like
having multiple universes in which each different possible action of nature is occurring
simultaneously. If there are no outgoing edges for a certain combination of state and input,
then the clone dies. Any states that are depicted with a double boundary, such as state
a in Figure 11.8, are called accept states. When the input string ends, the NFA is said
to accept the input string if there exists at least one alternate universe in which the final
machine state is an accept state.

The formulation usually given for NFAs seems very close to Formulation 2.1 for
discrete feasible planning. Here is a typical NFA formulation [892], which formalizes the
ideas depicted in Figure 11.8:

Formulation 11.2 (Nondeterministic Finite Automaton)

1. A finite state space X.

2. A finite alphabet � which represents the possible input symbols. Let �ε = � ∪ {ε}.
3. A transition function, δ : X ×�ε → pow(X). For each state and symbol, a set of outgoing

edges is specified by indicating the states that are reached.

4. A start state x0 ∈ X.

5. A set A ⊆ X of accept states.

Example 11.18 (Three-State NFA) The example in Figure 11.8 can be expressed
using Formulation 11.2. The components are X = {a, b, c}, � = {0, 1}, �ε = {0, 1, ε},
x0 = a, and A = {a}. The state transition equation requires the specification of a state for
every x ∈ X and symbol in �ε :

0 1 ε

a ∅ {c} {b}
b {a} ∅ ∅
c {b, c} {b} ∅ .

(11.47)

�
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Now consider reformulating the NFA and its acceptance of strings as a kind of planning
problem. An input string can be considered as a plan that uses no form of feedback; it
is a fixed sequence of actions. The feasible planning problem is to determine whether
any string exists that is accepted by the NFA. Since there is no feedback, there is no
sensing model. The initial state is known, but subsequent states cannot be measured. The
history I-state ηk at stage k reduces to ηk = ũk−1 = (u1, . . . , uk−1), the action history. The
nondeterminism can be accounted for by defining nature actions that interfere with the
state transitions. This results in the following formulation, which is described in terms of
Formulation 11.2.

Formulation 11.3 (An NFA Planning Problem)

1. A finite state space X.

2. An action space U = � ∪ {uT }.
3. A state transition function, F : X × U → pow(X). For each state and symbol, a set of

outgoing edges is specified by indicating the states that are reached.

4. An initial state x0 = x1.

5. A set XG = A of goal states.

The history I-space Ihist is defined using

Ik = Ũk−1 (11.48)

for each k ∈ N and taking the union as defined in (11.19). Assume that the initial state of
the NFA is always fixed; therefore, it does not appear in the definition of Ihist .

For expressing the planning task, it is best to use the nondeterministic I-space Indet =
pow(X) from Section 11.2.2. Thus, each nondeterministic I-state, X(η) ∈ Indet , is the
subset of X that corresponds to the possible current states of the machine. The initial
condition could be any subset of X because ε transitions can occur from x1. Subsequent
nondeterministic I-states follow directly from F . The task is to compute a plan of the form

π = (u1, u2, . . . , uK, uT ), (11.49)

which results in XK+1(ηK+1) ∈ Indet with XK+1(ηK+1) ∩XG 	= ∅. This means that at
least one possible state of the NFA must lie in XG after the termination action is applied.
This condition is much weaker than a typical planning requirement. Using worst-case
analysis, a typical requirement would instead be that every possible NFA state lies in XG.

The problem given in Formulation 11.3 is not precisely a specialization of Formulation
11.1 because of the state transition function. For convenience, F was directly defined,
instead of explicitly requiring that f be defined in terms of nature actions, �(x, u),
which in this context depend on both x and u for an NFA. There is one other small
issue regarding this formulation. In the planning problems considered in this book, it
is always assumed that there is a current state. For an NFA, it was already mentioned
that if there are no outgoing edges for a certain input, then the clone of the machine
dies. This means that potential current states cease to exist. It is even possible that every
clone dies, which leaves no current state for the machine. This can be easily enabled by
directly defining F ; however, planning problems must always have a current state. To
resolve this issue, we could augment X in Formulation 11.3 to include an extra dead
state, which signifies the death of a clone when there are no outgoing edges. A dead state
can never lie in XG, and once a transition to a dead state occurs, the state remains dead
for all time. In this section, the state space will not be augmented in this way; however,
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it is important to note that the NFA formulation can easily be made consistent with
Formulation 11.3.

The planning model can now be compared to the standard use of NFAs in the theory
of computation. A language of an NFA is defined to be the set of all input strings
that it accepts. The planning problem formulated here determines whether there exists a
string (which is a plan that ends with termination actions) that is accepted by the NFA.
Equivalently, a planning algorithm determines whether the language of an NFA is empty.
Constructing the set of all successful plans is equivalent to determining the language of
the NFA.

Example 11.19 (Planning for the Three-State NFA) The example in Figure 11.8 can
be expressed using Formulation 11.2. The components are X = {a, b, c}, � = {0, 1},
�ε = {0, 1, ε}, x0 = a, and F = {a}. The function F (x, u) is defined as

0 1
a ∅ {c}
b {a, b} ∅
c {b, c} {b}.

(11.50)

The nondeterministic I-space is

X(η) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}, (11.51)

in which the initial condition is η0 = {a, b} because an ε transition occurs immediately
from a. An example plan that solves the problem is (1, 0, 0, uT , . . . ). This corresponds to
sending an input string “100” through the NFA depicted in Figure 11.8. The sequence of
nondeterministic I-states obtained during the execution of the plan is

{a, b} 1→ {c} 0→ {b, c} 0→ {a, b, c} uT→ {a, b, c}. (11.52)

�

A basic theorem from the theory of finite automata states that for the set of strings
accepted by an NFA, there exists a DFA (deterministic) that accepts the same set [892].
This is proved by constructing a DFA directly from the nondeterministic I-space. Each
nondeterministic I-state can be considered as a state of a DFA. Thus, the DFA has 2n states,
if the original NFA has n states. The state transitions of the DFA are derived directly from
the transitions between nondeterministic I-states. When an input (or action) is given, then
a transition occurs from one subset of X to another. A transition is made between the
two corresponding states in the DFA. This construction is an interesting example of how
the I-space is a new state space that arises when the states of the original state space are
unknown. Even though the I-space is usually larger than the original state space, its states
are always known. Therefore, the behavior appears the same as in the case of perfect
state information. This idea is very general and may be applied to many problems beyond
DFAs and NFAs; see Section 12.1.2

11.3.3 The probabilistic case: POMDPs

Example 11.14 generalizes nicely to the case of n states. In operations research and
artificial intelligence literature, these are generally referred to as partially observable
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Markov decision processes or POMDPs (pronounced “pom dee peez”). For the case of
three states, the probabilistic I-space, Iprob, is a 2-simplex embedded in R

3. In general, if
|X| = n, then Iprob is an (n− 1)-simplex embedded in R

n. The coordinates of a point are
expressed as (p0, p1, . . . , pn−1) ∈ R

n. By the axioms of probability, p0 + · · · + pn−1 = 1,
which implies that Iprob is an (n− 1)-dimensional subspace of R

n. The vertices of the
simplex correspond to the n cases in which the state is known; hence, their coordinates
are (0, 0, . . . , 0, 1), (0, 0, . . . , 0, 1, 0), . . . , (1, 0, . . . , 0). For convenience, the simplex
can be projected into R

n−1 by specifying a point in R
n−1 for which p1 + · · · + pn−2 ≤ 1

and then choosing the final coordinate as pn−1 = 1 − p1 + · · · + pn−2. Section 12.1.3
presents algorithms for planning for POMDPs.

11.4 Continuous state spaces

This section takes many of the concepts that have been developed in Sections 11.1
and 11.2 and generalizes them to continuous state spaces. This represents an important
generalization because the configuration space concepts, on which motion planning was
defined in Part II, are all based on continuous state spaces. In this section, the state space
might be a configuration space, X = C, as defined in Chapter 4 or any other continuous
state space. Since it may be a configuration space, many interesting problems can be
drawn from robotics.

During the presentation of the concepts of this section, it will be helpful to recall
analogous concepts that were already developed for discrete state spaces. In many cases,
the formulations appear identical. In others, the continuous case is more complicated, but
it usually maintains some of the properties from the discrete case. It will be seen after
introducing continuous sensing models in Section 11.5.1 that some problems formulated
in continuous spaces are even more elegant and easy to understand than their discrete
counterparts.

11.4.1 Discrete-stage information spaces

Assume here that there are discrete stages. Let X ⊆ R
m be an n-dimensional manifold for

n ≤ m called the state space.4 Let Y ⊆ R
m be an ny-dimensional manifold for ny ≤ m

called the observation space. For each x ∈ X, let �(x) ⊆ R
m be an nn-dimensional

manifold for nn ≤ m called the set of nature sensing actions. The three kinds of sensors
mappings, h, defined in Section 11.1.1 are possible, to yield either a state mapping,
y = h(x), a state-nature mapping y = h(x, ψ), or a history-based, y = hk(x1, . . . , xk, y).
For the case of a state mapping, the preimages, H (y), once again induce a partition of
X. Preimages can also be defined for state-action mappings, but they do not necessarily
induce a partition of X.

Many interesting sensing models can be formulated in continuous state spaces. Section
11.5.1 provides a kind of sensor catalog. There is once again the choice of nondetermin-
istic or probabilistic uncertainty if nature sensing actions are used. If nondeterministic
uncertainty is used, the expressions are the same as the discrete case. Probabilistic models

4 If you did not read Chapter 4 and are not familiar with manifold concepts, then assume X = R
n; it will not make

much difference. Make similar assumptions for Y , �(x), U , and �(x, u).
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are defined in terms of a probability density function, p : � → [0,∞),5 in which p(ψ)
denotes the continuous-time replacement for P (ψ). The model can also be expressed as
p(y|x), in that same manner that P (y|x) was obtained for discrete state spaces.

The usual three choices exist for the initial conditions: 1) Either x1 ∈ X is given;
2) a subset X1 ∈ X is given; or 3) a probability density function, p(x), is given. The
initial condition spaces in the last two cases can be enormous. For example, if X = [0, 1]
and any subset is possible as an initial condition, then I0 = pow(R), which has higher
cardinality than R. If any probability density function is possible, then I0 is a space of
functions.6

The I-space definitions from Section 11.1.2 remain the same, with the understanding
that all of the variables are continuous. Thus, (11.17) and (11.19) serve as the definitions
of Ik and I. Let U ⊆ R

m be an nu-dimensional manifold for nu ≤ m. For each x ∈ X and
u ∈ U , let �(x, u) be an nθ -dimensional manifold for nθ ≤ m. A discrete-stage I-space
planning problem over continuous state spaces can be easily formulated by replacing each
discrete variable in Formulation 11.1 by its continuous counterpart that uses the same
notation. Therefore, the full formulation is not given.

11.4.2 Continuous-time information spaces

Now assume that there is a continuum of stages. Most of the components of Section 11.4.1
remain the same. The spaces X, Y , �(x), U , and �(x, u) remain the same. The sensor
mapping also remains the same. The main difference occurs in the state transition equation
because the effect of nature must be expressed in terms of velocities. This was already
introduced in Section 10.6. In that context, there was only uncertainty in predictability.
In the current context there may be uncertainties in both predictability and in sensing the
current state.

For the discrete-stage case, the history I-states were based on action and observation
sequences. For the continuous-time case, the history instead becomes a function of time. As
defined in Section 7.1.1, let T denote a time interval, which may be bounded or unbounded.
Let ỹt : [0, t] → Y be called the observation history up to time t ∈ T . Similarly, let ũt :
[0, t) → U and x̃t : [0, t] → X be called the action history and state history, respectively,
up to time t ∈ T .

Thus, the three kinds of sensor mappings in the continuous-time case are as follows:

1. A state-sensor mapping is expressed as y(t) = h(x(t)), in which x(t) and y(t) are the state
and observation, respectively, at time t ∈ T .

2. A state-nature mapping is expressed as y(t) = h(x(t), ψ(t)), which implies that nature
chooses some ψ(t) ∈ �(x(t)) for each t ∈ T .

3. A history-based sensor mapping, which could depend on all of the states obtained so far.
Thus, it depends on the entire function x̃t . This could be denoted as y(t) = h(x̃t , ψ(t)) if
nature can also interfere with the observation.

5 Assume that all continuous spaces are measure spaces and all probability density functions are measurable functions
over these spaces.

6 To appreciate of the size of this space, it can generally be viewed as an infinite-dimensional vector space (recall
Example 8.5). Consider, for example, representing each function with a series expansion. To represent any analytic
function exactly over [0, 1], an infinite sequence of real-valued coefficients may be needed. Each sequence can be
considered as an infinitely long vector, and the set of all such sequences forms an infinite-dimensional vector space.
See [348, 839] for more background on function spaces and functional analysis.
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If ũt and ỹt are combined with the initial condition η0, the history I-state at time t is
obtained as

ηt = (η0, ũt , ỹt ). (11.53)

The history I-space at time t is the set of all possible ηt and is denoted as It . Note
that It is a space of functions because each ηt ∈ It is a function of time. Recall that in
the discrete-stage case, every Ik was combined into a single history I-space, Ihist , using
(11.18) or (11.19). The continuous-time analog is obtained as

Ihist =
⋃

t∈T

It , (11.54)

which is an irregular collection of functions because they have different domains; this
irregularity also occurred in the discrete-stage case, in which Ihist was composed of
sequences of varying lengths.

A continuous-time version of the cost functional in Formulation 11.1 can be given to
evaluate the execution of a plan. Let L denote a cost functional that may be applied to any
state-action history (x̃t , ũt ) to yield

L(x̃t , ũt ) =
∫ t

0
l(x(t ′), u(t ′))dt ′ + lF (x(t)), (11.55)

in which l(x(t ′), u(t ′)) is the instantaneous cost and lF (x(t)) is a final cost.

11.4.3 Derived information spaces

For continuous state spaces, the motivation to construct derived I-spaces is even stronger
than in the discrete case because the I-space quickly becomes unwieldy.

11.4.3.1 Nondeterministic and probabilistic I-spaces for discrete stages

The concepts of I-maps and derived I-spaces from Section 11.2 extend directly to continu-
ous spaces. In the nondeterministic case, κndet once again transforms the initial condition
and history into a subset of X. In the probabilistic case, κprob yields a probability density
function over X. First, consider the discrete-stage case.

The nondeterministic I-states are obtained exactly as defined in Section 11.2.2, except
that the discrete sets are replaced by their continuous counterparts. For example, F (x, u)
as defined in (11.28) is now a continuous set, as are X and �(x, u). Since probabilistic
I-states are probability density functions, the derivation in Section 11.2.3 needs to be
modified slightly. There are, however, no important conceptual differences. Follow the
derivation of Section 11.2.3 and consider which parts need to be replaced.

The replacement for (11.35) is

p(xk|yk) = p(yk|xk)p(xk)∫

X

p(yk|xk)p(xk)dxk

, (11.56)

which is based in part on deriving p(yk|xk) from p(ψk|xk). The base of the induction, which
replaces (11.36), is obtained by letting k = 1 in (11.56). By following the explanation
given from (11.37) to (11.40), but using instead probability density functions, the following
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update equations are obtained:

p(xk+1|ηk, uk) =
∫

X

p(xk+1|xk, uk, ηk)p(xk|ηk)dxk

=
∫

X

p(xk+1|xk, uk)p(xk|ηk)dxk,

(11.57)

and

p(xk+1|yk+1, ηk, uk) = p(yk+1|xk+1)p(xk+1|ηk, uk)∫

X

p(yk+1|xk+1)p(xk+1|ηk, uk)dxk+1

. (11.58)

11.4.3.2 Approximating nondeterministic and probabilistic I-spaces

Many other derived I-spaces extend directly to continuous spaces, such as the limited-
memory models of Section 11.2.4 and Examples 11.11 and 11.12. In the present context,
it is extremely useful to try to collapse the I-space as much as possible because it tends to
be unmanageable in most practical applications. Recall that an I-map, κ : Ihist → Ider ,
partitions Ihist into sets over which a constant action must be applied. The main concern
is that restricting plans to Ider does not inhibit solutions.

Consider making derived I-spaces that approximate nondeterministic or probabilistic
I-states. Approximations make sense because X is usually a metric space in the continuous
setting. The aim is to dramatically simplify the I-space while trying to avoid the loss of
critical information. A trade-off occurs in which the quality of the approximation is traded
against the size of the resulting derived I-space. For the case of nondeterministic I-states,
conservative approximations are formulated, which are sets that are guaranteed to contain
the nondeterministic I-state. For the probabilistic case, moment-based approximations
are presented, which are based on general techniques from probability and statistics to
approximate probability densities. To avoid unnecessary complications, the presentation
will be confined to the discrete-stage model.

Conservative approximations

Suppose that nondeterministic uncertainty is used and an approximation is made to the
nondeterministic I-states. An I-map, κapp : Indet → Iapp, will be defined in which Iapp

is a particular family of subsets of X. For example, Iapp could represent the set of all ball
subsets of X. If X = R

2, then the balls become discs, and only three parameters (x, y, r)
are needed to parameterize Iapp (x, y for the center and r for the radius). This implies
that Iapp ⊂ R

3; this appears to be much simpler than Indet , which could be a complicated
collection of regions in R

2. To make Iapp even smaller, it could be required that x, y, and
r are integers (or are sampled with some specified dispersion, as defined in Section 5.2.3).
If Iapp is bounded, then the number of derived I-states would become finite. Of course,
this comes an at expense because Indet may be poorly approximated.

For a fixed sequence of actions (u1, u2, . . . ) consider the sequence of nondeterministic
I-states:

X1(η1)
u1,y2−→ X2(η2)

u2,y3−→ X3(η3)
u3,y4−→ · · · , (11.59)

which is also depicted in Figure 11.9. The I-map Iapp must select a bounding region for
every nondeterministic I-state. Starting with a history I-state, η, the nondeterministic I-
state Xk(ηk) can first be computed, followed by applying Iapp to yield a bounding region.
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X2(η2) X3(η3)X1(η1)

Figure 11.9: The nondeterministic I-states may be complicated regions that are dif�cult or impossible to
compute.

X̂1 X̂2 X̂3

Figure 11.10: The nondeterministic I-states can be approximated by bounding spheres.

If there is a way to efficiently compute Xk(ηk) for any ηk , then a plan on Iapp could be
much simpler than those on Indet or Ihist .

If it is difficult to compute Xk(ηk), one possibility is to try to define a derived information
transition equation, as discussed in Section 11.2.1. The trouble, however, is that Iapp is
usually not a sufficient I-map. Imagine wanting to compute κapp(Xk+1(ηk+1)), which is a
bounding approximation to Xk+1(ηk+1). This can be accomplished by starting with Xk(ηk),
applying the update rules (11.30) and (11.31), and then applying κapp to Xk+1(ηk+1). In
general, this does not produce the same result as starting with the bounding volume
Iapp(Xk(ηk)), applying (11.30) and (11.31), and then applying κapp.

Thus, it is not possible to express the transitions entirely in Iapp without some further
loss of information. However, if this loss of information is tolerable, then an information-
destroying approximation may nevertheless be useful. The general idea is to make a
bounding region for the nondeterministic I-state in each iteration. Let X̂k denote this
bounding region at stage k. Be careful in using such approximations. As depicted in
Figures 11.9 and 11.10, the sequences of derived I-states diverge. The sequence in Figure
11.10 is not obtained by simply bounding each calculated I-state by an element of Iapp;
the entire sequence is different.

Initially, X̂1 is chosen so that X1(η1) ⊆ X̂1. In each inductive step, X̂k is treated as if it
were the true nondeterministic I-state (not an approximation). Using (11.30) and (11.31),
the update for considering uk and yk+1 is

X̂′
k+1 =

( ⋃

xk∈X̂k

F (xk, uk)

)
∩H (yk+1). (11.60)

In general, X̂′
k+1(ηk+1) might not lie in Iapp. Therefore, a bounding region, X̂k+1 ∈ Iapp,

must be selected to approximate X̂′ under the constraint that X̂′
k+1 ⊆ X̂k+1. This completes

the inductive step, which together with the base case yields a sequence

X̂1
u1,y2−→ X̂2

u2,y3−→ X̂3
u3,y4−→ · · · , (11.61)

which is depicted in Figure 11.10.
Both a plan, π : Iapp → U , and information transitions can now be defined over Iapp.

To ensure that a plan is sound, the approximation must be conservative. If in some
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iteration, X̂k+1(ηk+1) ⊂ X̂′
k+1(ηk+1), then the true state may not necessarily be included

in the approximate derived I-state. This could, for example, mean that a robot is in a
collision state, even though the derived I-state indicates that this is impossible. This bad
behavior is generally avoided by keeping conservative approximations. At one extreme,
the approximations can be made very conservative by always assigning X̂k+1(ηk+1) = X.
This, however, is useless because the only possible plans must apply a single, fixed action
for every stage. Even if the approximations are better, it might still be impossible to
cause transitions in the approximated I-state. To ensure that solutions exist to the planning
problem, it is therefore important to make the bounding volumes as close as possible to
the derived I-states.

This trade-off between the simplicity of bounding volumes and the computational ex-
pense of working with them was also observed in Section 5.3.2 for collision detection.
Dramatic improvement in performance can be obtained by working with simpler shapes;
however, in the present context this could come at the expense of failing to solve the
problem. Using balls as described so far might not seem to provide very tight bounds.
Imagine instead using solid ellipsoids. This would provide tighter approximations, but
the dimension of Iapp grows quadratically with the dimension of X. A sphere equation
generally requires n+ 1 parameters, whereas the ellipsoid equation requires (n2) + 2n pa-
rameters. Thus, if the dimension of X is high, it may be difficult or even impossible to
use ellipsoid approximations. Nonconvex bounding shapes could provide even better ap-
proximations, but the required number of parameters could easily become unmanageable,
even if X = R

2. For very particular problems, however, it may be possible to design a
family of shapes that is both manageable and tightly approximates the nondeterministic
I-states. This leads to many interesting research issues.

Moment-based approximations

Since the probabilistic I-states are functions, it seems natural to use function approximation
methods to approximate Iprob. One possibility might be to use the first m coefficients of
a Taylor series expansion. The derived I-space then becomes the space of possible Taylor
coefficients. The quality of the approximation is improved as m is increased, but also the
dimension of the derived I-space rises.

Since we are working with probability density functions, it is generally preferable
to use moments as approximations instead of Taylor series coefficients or other generic
function approximation methods. The first and second moments are the familiar mean
and covariance, respectively. These are preferable over other approximations because the
mean and covariance exactly represent the Gaussian density, which is the most basic and
fundamental density in probability theory. Thus, approximating the probabilistic I-space
with first and second moments is equivalent to assuming that the resulting probability
densities are always Gaussian. Such approximations are frequently made in practice
because of the convenience of working with Gaussians. In general, higher order moments
can be used to obtain higher quality approximations at the expense of more coefficients.
Let κmom : Iprob → Imom denote a moment-based I-map.

The same issues arise for κmom as for κapp. In most cases, κmom is not a sufficient
I-map. The moments are computed in the same way as the conservative approximations.
The update equations (11.57) and (11.58) are applied for probabilistic I-states; however,
after each step, κmom is applied to the resulting probability density function. This traps
the derived I-states in Imom. The moments could be computed after each of (11.57) and
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(11.58) or after both of them have been applied (different results may be obtained). The
later case may be more difficult to compute, depending on the application.

First consider using the mean (first moment) to represent some probabilistic I-state,
p(x|η). Let xi denote the ith coordinate of x. The mean, x̄i , with respect to xi is generally
defined as

x̄i =
∫

X

xi p(x|η)dx. (11.62)

This leads to the vector mean x̄ = (x̄1, . . . , x̄n). Suppose that we would like to construct
Imom using only the mean. Since there is no information about the covariance of the
density, working with x̄ is very similar to estimating the state. The mean value serves as
the estimate, and Imom = X. This certainly helps to simplify the I-space, but there is no
way to infer the amount of uncertainty associated with the I-state. Was the probability
mass concentrated greatly around x̄, or was the density function very diffuse over X?

Using second moments helps to alleviate this problem. The covariance with respect to
two variables, xi and xi , is

σi,j =
∫

X

xixj p(x|η)dx. (11.63)

Since σij = σji , the second moments can be organized into a symmetric covariance
matrix,

� =





σ1,1 σ1,2 · · · σ1,n

σ2,1 σ2,2 · · · σ2,n

...
...

...
σn,1 σn,2 · · · σn,n



 (11.64)

for which there are (n2) + n unique elements, corresponding to every xi,i and every way
to pair xi with xj for each distinct i and j such that 1 ≤ i, j ≤ n. This implies that if
first and second moments are used, then the dimension of Imom is (n2) + 2n. For some
problems, it may turn out that all probabilistic I-states are indeed Gaussians. In this case,
the mean and covariance exactly capture the probabilistic I-space. The I-map in this case
is sufficient. This leads to a powerful tool called the Kalman filter, which is the subject of
Section 11.6.1.

Higher quality approximations can be made by taking higher order moments. The rth
moment is defined as

∫

X

xi1xi2 · · · xir p(x|η)dx, (11.65)

in which i1, i2, . . . , ir are r integers chosen with replacement from {1, . . . , n}.
The moment-based approximation is very similar to the conservative approximations

for nondeterministic uncertainty. The use of mean and covariance appears very similar to
using ellipsoids for the nondeterministic case. The level sets of a Gaussian density are
ellipsoids. These level sets generalize the notion of confidence intervals to confidence
ellipsoids, which provides a close connection between the nondeterministic and proba-
bilistic cases. The domain of a Gaussian density is R

n, which is not bounded, contrary to
the nondeterministic case. However, for a given confidence level, it can be approximated
as a bounded set. For example, an elliptical region can be computed in which 99.9% of
the probability mass falls. In general, it may be possible to combine the idea of moments
and bounding volumes to construct a derived I-space for the probabilistic case. This could
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yield the guaranteed correctness of plans while also taking probabilities into account.
Unfortunately, this would once again increase the dimension of the derived I-space.

11.4.3.3 Derived I-spaces for continuous time

The continuous-time case is substantially more difficult, both to express and to compute
in general forms. In many special cases, however, there are elegant ways to compute it.
Some of these will be covered in Section 11.5 and Chapter 12. To help complete the I-
space framework, some general expressions are given here. In general, I-maps and derived
I-spaces can be constructed following the ideas of Section 11.2.1.

Since there are no discrete transition rules, the derived I-states cannot be expressed in
terms of simple update rules. However, they can at least be expressed as a function that
indicates the state x(t) that will be obtained after ũt and θ̃t are applied from an initial state
x(0). Often, this is obtained via some form of integration (see Section 14.1), although this
may not be explicitly given. In general, let Xt (ηt ) ⊂ X denote a nondeterministic I-state
at time t ; this is the replacement for Xk from the discrete-stage case. The initial condition
is denoted as X0, as opposed to X1, which was used in the discrete-stage case.

More definitions are needed to precisely characterize Xt (ηt ). Let θ̃t : [0, t) → � denote
the history of nature actions up to time t . Similarly, let ψ̃t : [0, t] → � denote the history of
nature sensing actions. Suppose that the initial condition is X0 ⊂ X. The nondeterministic
I-state is defined as

Xt (ηt ) = {x ∈ X | ∃x ′ ∈ X0, ∃θ̃t , and ∃ψ̃t such that

x = �(x ′, ũt , θ̃t ) and ∀t ′ ∈ [0, t], y(t ′) = h(x(t ′), ψ(t ′))}. (11.66)

In words, this means that a state x(t) lies in Xt (ηt ) if and only if there exists an initial
state x ′ ∈ X0, a nature history θ̃t , and a nature sensing action history, ψ̃t such that the
transition equation causes arrival at x(t) and the observation history ỹt agrees with the
sensor mapping over all time from 0 to t .

It is also possible to derive a probabilistic I-state, but this requires technical details from
continuous-time stochastic processes and stochastic differential equations. In some cases,
the resulting expressions work out very nicely; however, it is difficult to formulate a general
expression for the derived I-state because it depends on many technical assumptions
regarding the behavior of the stochastic processes. For details on such systems, see [570].

11.5 Examples for continuous state spaces

11.5.1 Sensor models

A remarkable variety of sensing models arises in applications that involve continuous state
spaces. This section presents a catalog of different kinds of sensor models that is inspired
mainly by robotics problems. The models are gathered together in one place to provide
convenient reference. Some of them will be used in upcoming sections, and others are
included to help in the understanding of I-spaces. For each sensor, there are usually two
different versions, based on whether nature sensing actions are included.

Linear sensing models

Developed mainly in control theory literature, linear sensing models are some of the
most common and important. For all of the sensors in this family, assume that X = Y =
R

n (nonsingular linear transformations allow the sensor space to effectively have lower
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H(y)

y
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(a) (b)

Figure 11.11: A simple sensing model in which the observation error is no more than r: (a) the nature
sensing action space; (b) the preimage in X based on observation y.

dimension, if desired). The simplest case in this family is the identity sensor, in which
y = h(x). In this case, the state is immediately known. If this sensor is available at every
stage, then the I-space collapses to X by the I-map κsf : Ihist → X.

Now nature sensing actions can be used to corrupt this perfect state observation to
obtain y = h(x, ψ) = x + ψ . Suppose that y is an estimate of x, the current state, with
error bounded by a constant r ∈ (0,∞). This can be modeled by assigning for every
x ∈ X, �(x) as a closed ball of radius r , centered at the origin:

� = {ψ ∈ R
n | ‖ψ‖ ≤ r}. (11.67)

Figure 11.11 illustrates the resulting nondeterministic sensing model. If the observation y

is received, then it is known that the true state lies within a ball in X of radius r , centered at
y. This ball is the preimage, H (y), as defined in (11.11). To make the model probabilistic, a
probability density function can be defined over �. For example, it could be assumed that
p(ψ) is a uniform density (although this model is not very realistic in many applications
because there is a boundary at which the probability mass discontinuously jumps to zero).

A more typical probabilistic sensing model can be made by letting �(x) = R
n and

defining a probability density function over all of R
n. (Note that the nondeterministic

version of this sensor is completely useless.) One of the easiest choices to work with is
the multivariate Gaussian probability density function,

p(ψ) = 1√
(2π )n|�|e

− 1
2 ψT �ψ, (11.68)

in which � is the covariance matrix (11.64), |�| is its determinant, and ψT �ψ is a
quadratic form, which multiplies out to yield

ψT �ψ =
n∑

i=1

n∑

j=1

σi,jψiψj . (11.69)

If p(x) is a Gaussian and y is received, then p(y|x) must also be Gaussian under this
model. This will become very important in Section 11.6.1.

The sensing models presented so far can be generalized by applying linear transforma-
tions. For example, let C denote a nonsingular n× n matrix with real-valued entries. If
the sensor mapping is y = h(x) = Cx, then the state can still be determined immediately
because the mapping y = Cx is bijective; each H (y) contains a unique point of X. A
linear transformation can also be formed on the nature sensing action. Let W denote an
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n× n matrix. The sensor mapping is

y = h(x) = Cx +Wψ. (11.70)

In general, C and W may even be singular, and a linear sensing model is still obtained.
Suppose that W = 0. If C is singular, however, it is impossible to infer the state directly
from a single sensor observation. This generally corresponds to a projection from an n-
dimensional state space to a subset of Y whose dimension is the rank of C. For example,
if

C =
(

0 1
0 0

)
, (11.71)

then y = Cx yields y1 = x2 and y2 = 0. Only x2 of each (x1, x2) ∈ X can be observed
because C has rank 1. Thus, for some special cases, singular matrices can measure
some state variables while leaving others invisible. For a general singular matrix C, the
interpretation is that X is projected into some k-dimensional subspace by the sensor, in
which k is the rank of C. If W is singular, this means that the effect of nature is limited.
The degrees of freedom with which nature can distort the sensor observations is the rank
of W . These concepts motivate the next set of sensor models.

Simple projection sensors

Several common sensor models can be defined by observing particular coordinates of X

while leaving others invisible. This is the continuous version of the selective sensor from
Example 11.4. Imagine, for example, a mobile robot that rolls in a 2D world, W = R

2,
and is capable of rotation. The state space (or configuration space) is X = R

2 × S
1. For

visualization purposes, it may be helpful to imagine that the robot is very tiny, so that it
can be interpreted as a point, to avoid the complicated configuration space constructions
of Section 4.3.7 Let p = (p1, p2) denote the coordinates of the point, and let s ∈ S

1 denote
its orientation. Thus, a state in R

2 × S
1 is specified as (p1, p2, s) (rather than (x, y, θ),

which may cause confusion with important spaces such as X, Y , and �).
Suppose that the robot can estimate its position but does not know its orientation. This

leads to a position sensor defined as Y = R
2, with y1 = p1 and y2 = p2 (also denoted as

y = h(x) = p). The third state variable, s, of the state remains unknown. Of course, any
of the previously considered nature sensing action models can be added. For example,
nature might cause errors that are modeled with Gaussian probability densities.

A compass or orientation sensor can likewise be made by observing only the final
state variable, s. In this case, Y = S

1 and y = s. Nature sensing actions can be included.
For example, the sensed orientation may be y, but it is only known that |s − y| ≤ ε for
some constant ε, which is the maximum sensor error. A Gaussian model cannot exactly
be applied because its domain is unbounded and S

1 is bounded. This can be fixed by
truncating the Gaussian or by using a more appropriate distribution.

The position and orientation sensors generalize nicely to a 3D world, W = R
3. Recall

from Section 4.2 that in this case the state space is X = SE(3), which can be represented as
R

3 ×RP
3. A position sensor measures the first three coordinates, whereas an orientation

sensor measures the last three coordinates. A physical sensor that measures orientation
in R

3 is often called a gyroscope. These are usually based on the principle of precession,
which means that they contain a spinning disc that is reluctant to change its orientation

7 This can also be handled, but it just adds unnecessary complication to the current discussion.
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(a) (b) (c)

Figure 11.12: Boundary sensors indicate whether contact with the boundary has occurred. In the latter
case, a proximity sensor may indicate whether the boundary is within a speci�ed distance.

due to angular momentum. For the case of a linkage of bodies that are connected by
revolute joints, a point in the state space gives the angles between each pair of attached
links. A joint encoder is a sensor that yields one of these angles.

Dynamics of mechanical systems will not be considered until Part IV; however, it is
worth pointing out several sensors. In these problems, the state space will be expanded
to include velocity parameters and possibly even acceleration parameters. In this case,
a speedometer can sense a velocity vector or a scalar speed. Sensors even exist to mea-
sure angular velocity, which indicates the speed with which rotation occurs. Finally, an
accelerometer can be used to sense acceleration parameters. With any of these models,
nature sensing actions can be used to account for measurement errors.

Boundary sensors

If the state space has an interesting boundary, as in the case of Cfree for motion planning
problems, then many important boundary sensors can be formulated based on the detection
of the boundary. Figure 11.12 shows several interesting cases on which sensors are based.

Suppose that the state space is a closed set with some well-defined boundary. To provide
a connection to motion planning, assume that X = cl(Cfree), the closure of Cfree. A contact
sensor determines whether the boundary is being contacted. In this case, Y = {0, 1} and
h is defined as h(x) = 1 if x ∈ ∂X, and h(x) = 0 otherwise. These two cases are shown
in Figures 11.12a and 11.12b, respectively. Using this sensor, there is no information
regarding where along the boundary the contact may be occurring. In mobile robotics, it
may be disastrous if the robot is in contact with obstacles. Instead, a proximity sensor is
often used, which yields h(x) = 1 if the state or position is within some specified constant,
r , of ∂X, and h(x) = 0 otherwise. This is shown in Figure 11.12.

In robot manipulation, haptic interfaces, and other applications in which physical
interaction occurs between machines and the environment, a force sensor may be used.
In addition to simply indicating contact, a force sensor can indicate the magnitude and
direction of the force. The robot model must be formulated so that it is possible to derive
the anticipated force value from a given state.

Landmark sensors

Many important sensing models can be defined in terms of landmarks. A landmark is a
special point or region in the state space that can be detected in some way by the sensor.
The measurements of the landmark can be used to make inferences about the current state.
An ancient example is using stars to navigate on the ocean. Based on the location of the
stars relative to a ship, its orientation can be inferred. You may have found landmarks
useful for trying to find your way through an unfamiliar city. For example, mountains
around the perimeter of Mexico City or the Eiffel Tower in Paris might be used to infer
your heading. Even though the streets of Paris are very complicated, it might be possible
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Landmark

x

Figure 11.13: The most basic landmark sensor indicates only its direction.

(a) (b)

Figure 11.14: (a) A mobile robot is dropped into an unknown environment. (b) Four sonars are used to
measure distances to the walls.

to walk to the Eiffel Tower by walking toward it whenever it is visible. Such models are
common in the competitive ratio framework for analyzing on-line algorithms [677].

In general, a set of states may serve as landmarks. A common model is to make xG

a single landmark. In robotics applications, these landmarks may be instead considered
as points in the world, W . Generalizations from points to landmark regions are also
possible. The ideas, here, however, will be kept simple to illustrate the concept. Following
this presentation, you can imagine a wide variety of generalizations. Assume for all
examples of landmarks that X = R

2, and let a state be denoted by x = (x1, x2).
For the first examples, suppose there is only one landmark, l ∈ X, with coordinates

(l1, l2). A homing sensor is depicted in Figure 11.13 and yields values in Y = S
1. The

sensor mapping is h(x) = atan2(l1 − x1, l2 − x2), in which atan2 gives the angle in the
proper quadrant.

Another possibility is a Geiger counter sensor (radiation level), in which Y = [0,∞)
and h(x) = ‖x − l‖. In this case, only the distance to the landmark is reported, but there
is no directional information.

A contact sensor could also be combined with the landmark idea to yield a sensor
called a pebble. This sensor reports 1 if the pebble is “touched”; otherwise, it reports 0.
This idea can be generalized nicely to regions. Imagine that there is a landmark region,
Xl ⊂ X. If x ∈ Xl , then the landmark region detector reports 1; otherwise, it reports 0.

Many useful and interesting sensing models can be formulated by using the ideas
explained so far with multiple landmarks. For example, using three homing sensors that
are not collinear, it is possible to reconstruct the exact state. Many interesting problems
can be made by populating the state space with landmark regions and their associated
detectors. In mobile robotics applications, this can be implemented by placing stationary
cameras or other sensors in an environment. The sensors can indicate which cameras can
currently view the robot. They might also provide the distance from each camera.
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(a) (b)

Figure 11.15: A range scanner or visibility sensor is like having a continuum of sonars, even with much
higher accuracy. A distance value is provided for each s∈ S

1.

Depth-mapping sensors

In many robotics applications, the robot may not have a map of the obstacles in the
world. In this case, sensing is used to both learn the environment and to determine its
position and orientation within the environment. Suppose that a robot is dropped into an
environment as shown in Figure 11.14a. For problems such as this, the state represents
both the position of the robot and the obstacles themselves. This situation is explained
in further detail in Section 12.3. Here, some sensor models for problems of this type are
given. These are related to the boundary and proximity sensors of Figure 11.12, but they
yield more information when the robot is not at the boundary.

One of the oldest sensors used in mobile robotics is an acoustic sonar, which emits
a high-frequency sound wave in a specific direction and measures the time that it takes
for the wave to reflect off a wall and return to the sonar (often the sonar serves as both
a speaker and a microphone). Based on the speed of sound and the time of flight, the
distance to the wall can be estimated. Sometimes, the wave never returns; this can be
modeled with nature. Also, errors in the distance estimate can be modeled with nature. In
general, the observation space Y for a single sonar is [0,∞], in which ∞ indicates that
the wave did not return. The interpretation of Y could be the time of flight, or it could
already be transformed into estimated distance. If there are k sonars, each pointing in a
different direction, then Y = [0,∞]k , which indicates that one reading can be obtained
for each sonar. For example, Figure 11.14b shows four sonars and the distances that they
can measure. Each observation therefore yields a point in R

4.
Modern laser scanning technology enables very accurate distance measurements with

very high angular density. For example, the SICK LMS-200 can obtain a distance mea-
surement for at least every 1/2 degree and sweep the full 360 degrees at least 30 times a
second. The measurement accuracy in an indoor environment is often on the order of a few
millimeters. Imagine the limiting case, which is like having a continuum of sonars, one
for every angle in S

1. This results in a sensor called a range scanner or visibility sensor,
which provides a distance measurement for each s ∈ S

1, as shown in Figure 11.15.
A weaker sensor can be made by only indicating points in S

1 at which discontinuities
(or gaps) occur in the depth scan. Refer to this as a gap sensor; an example is shown in
Figure 11.16. It might even be the case that only the circular ordering of these gaps is
given around S

1, without knowing the relative angles between them, or the distance to
each gap. A planner based on this sensing model is presented in Section 12.3.4.
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Figure 11.16: A gap sensor indicates only the directions at which discontinuities in depth occur, instead
of providing distance information.

Odometry sensors

A final category will be given, which provides interesting examples of history-based sensor
mappings, as defined for discrete state spaces in Section 11.1.1. Mobile robots often have
odometry sensors, which indicate how far the robot has traveled, based on the amount
that the wheels have turned. Such measurements are often inaccurate because of wheel
slippage, surface imperfections, and small modeling errors. For a given state history, x̃t , a
sensor can estimate the total distance traveled. For this model, Y = [0,∞) and y = h(x̃t ),
in which the argument, x̃t , to h is the entire state history up to time t . Another way to
model odometry is to have a sensor indicate the estimated distance traveled since the last
stage. This avoids the dependency on the entire history, but it may be harder to model the
resulting errors in distance estimation.

In some literature (e.g., [352]) the action history, ũk , is referred to as odometry. This
interpretation is appropriate in some applications. For example, each action might cor-
respond to turning the pedals one full revolution on a bicycle. The number of times the
pedals have been turned could serve as an odometry reading. Since this information al-
ready appears in ηk , it is not modeled in this book as part of the sensing process. For the
bicycle example, there might be an odometry sensor that bases its measurements on fac-
tors other than the pedal motions. It would be appropriate to model this as a history-based
sensor.

Another kind of history-based sensor is to observe a wall clock that indicates how much
time has passed since the initial stage. This, in combination with other information, such
as the speed of the robot, could enable strong inferences to be made about the state.

11.5.2 Simple projection examples

This section gives examples of I-spaces for which the sensor mapping is y = h(x) and h is
a projection that reveals some of the state variables, while concealing others. The examples
all involve continuous time, and the focus is mainly on the nondeterministic I-space Indet .
It is assumed that there are no actions, which means that U = ∅. Nature actions, �(x),
however, will be allowed. Since there are no robot actions and no nature sensing actions,
all of the uncertainty arises from the fact that h is a projection and the nature actions that
affect the state transition equation are not known. This is a very important and interesting
class of problems in itself. The examples can be further complicated by allowing some
control from the action set, U ; however, the purpose here is to illustrate I-space concepts.
Therefore, it will not be necessary.
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Y X

Figure 11.17: The state space is the set of points traced out by a sine curve in R
2.

Y X

Figure 11.18: The preimage, H(y), of an observation y is a countably in�nite set of points along X.

Example 11.20 (Moving on a Sine Curve) Suppose that the state space is the set of
points that lie on the sine curve in the plane:

X = {(x1, x2) ∈ R
2 | x2 = sin x1}. (11.72)

Let U = ∅, which results in no action history. The observation space is Y = [−1, 1] and
the sensor mapping yields y = h(x) = x2, the height of the point on the sine curve, as
shown in Figure 11.17.

The nature action space is � = {−1, 1}, in which −1 means to move at unit speed
in the −x1 direction along the sine curve, and 1 means to move at unit speed in the x1

direction along the curve. Thus, for some nature action history θ̃t , a state trajectory x̃t that
moves the point along the curve can be determined by integration.

A history I-state takes the form ηt = (X0, ỹt ), which includes the initial condition
X0 ⊆ X and the observation history ỹt up to time t . The nondeterministic I-states are very
interesting for this problem. For each observation y, the preimage H (y) is a countably
infinite set of points that corresponds to the intersection of X with a horizontal line at
height y, as shown in Figure 11.18.

The uncertainty for this problem is always characterized by the number of intersection
points that might contain the true state. Suppose that X0 = X. In this case, there is no
state trajectory that can reduce the amount of uncertainty. As the point moves along X, the
height is always known because of the sensor, but the x1 coordinate can only be narrowed
down to being any of the intersection points.

Suppose instead that X0 = {x0}, in which x0 is some particular point along X. If y

remains within (0, 1) over some any period of time starting at t = 0, then x(t) is known
because the exact segment of the sine curve that contains the state is known. However,
if the point reaches an extremum, which results in y = 0 or y = 1, then it is not known
which way the point will travel. From this point, the sensor cannot disambiguate moving
in the −x1 direction from the x1 direction. Therefore, the uncertainty grows, as shown
in Figure 11.19. After the observation y = 1 is obtained, there are two possibilities for
the current state, depending on which action was taken by nature when y = 1; hence, the
nondeterministic I-state contains two states. If the motion continues until y = −1, then
there will be four states in the nondeterministic I-state. Unfortunately, the uncertainty can
only grow in this example. There is no way to use the sensor to reduce the size of the
nondeterministic I-states. �
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XY

Figure 11.19: A bifurcation occurs when y = 1 or y = −1 is received. This irreversibly increases the
amount of uncertainty in the state.
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(a) (b)

Figure 11.20: (a) Imagine trying to infer the location of a point on a planar graph while observing only
a single coordinate. (b) This simple example involves a point moving along a graph that has four edges.
When the point is on the rightmost edge, there is no uncertainty; however, uncertainty exists when the
point travels along the other edges.

Figure 11.21: Pieces of the nondeterministic I-space Indet are obtained by the different possible sets of
edges on which the point may lie.

The previous example can be generalized to observing a single coordinate of a point
that moves around in a planar topological graph, as shown in Figure 11.20a. Most of the
model remains the same as for Example 11.20, except that the state space is now a graph.
The set of nature actions, �(x), needs to be extended so that if x is a vertex of the graph,
then there is one input for each incident edge. These are the possible directions along
which the point could move.

Example 11.21 (Observing a Point on a Graph) Consider the graph shown in Figure
11.20b, in which there are four edges.8 When the point moves on the interior of the
leftmost edge of the graph, then the state can be inferred from the sensor. The set H (y)
contains a single point on the leftmost edge. If the point moves in the interior of one of
the other edges, then H (y) contains three points, one for each edge above y. This leads to
seven possible cases for the nondeterministic I-state, as shown in Figure 11.21. Any subset
of these edges may be possible for the nondeterministic I-state, except for the empty set.

8 This example was significantly refined after a helpful discussion with Rob Ghrist.
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Y
h(x)

x
X

Figure 11.22: The graph can be generalized to a planar region, and layers in the nondeterministic I-space
will once again be obtained.

The eight pieces of Indet depicted in Figure 11.21 are connected together in an inter-
esting way. Suppose that the point is on the rightmost edge and moves left. After crossing
the vertex, the I-state must be the case shown in the upper right of Figure 11.21, which
indicates that the point could be on one of two edges. If the point travels right from one of
the I-states of the left edges, then the I-state shown in the bottom right of Figure 11.20 is
always reached; however, it is not necessarily possible to return to the same I-state on the
left. Thus, in general, there are directional constraints on Indet . Also, note that from the
I-state on the lower left of Figure 11.20, it is impossible to reach the I-state on the lower
right by moving straight right. This is because it is known from the structure of the graph
that this is impossible. �

The graph example can be generalized substantially to reflect a wide variety of prob-
lems that occur in robotics and other areas. For example, Figure 11.22 shows a polygon
in which a point can move. Only one coordinate is observed, and the resulting nonde-
terministic I-space has layers similar to those obtained for Example 11.21. These ideas
can be generalized to any dimension. Interesting models can be constructed using the
simple projection sensors, such as a position sensor or compass, from Section 11.5.1. In
Section 12.4, such layers will appear in a pursuit-evasion game that uses visibility sensors
to find moving targets.

11.5.3 Examples with nature sensing actions

This section illustrates the effect of nature sensing actions, but only for the nondeterminis-
tic case. General methods for computing probabilistic I-states are covered in Section 11.6.

Example 11.22 (Above or Below Disc?) This example involves continuous time. Sup-
pose that the task is to gather information and determine whether the state trajectory travels
above or below some designated region of the state space, as shown in Figure 11.23.

Let X = R
2. Motions are generated by integrating the velocity (ẋ, ẏ), which is ex-

pressed as ẋ = cos(u(t) + θ(t)) and ẏ = sin(u(t) + θ(t)). For simplicity, assume u(t) = 0
is applied for all time, which is a command to move right. The nature action θ(t) ∈ � =
[−π/4, π/4] interferes with the outcome. The robot tries to make progress by moving in
the positive x1 direction; however, the interference of nature makes it difficult to predict
the x2 direction. Without nature, there should be no change in the x2 coordinate; however,
with nature, the error in the x2 direction could be as much as t , after t seconds have passed.
Figure 11.24 illustrates the possible resulting motions.
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(a) (b)

Figure 11.23: (a) It is always possible to determine whether the state trajectory went above or below the
designated region. (b) Now the ability to determine whether the trajectory went above or below the hole
depends on the particular observations. In some cases, it may not be possible.

x
u

Figure 11.24: Nature interferes with the commanded direction, so that the true state could be anywhere
within a circular section.

Sensor observations will be made that alleviate the growing cone of uncertainty; use
the sensing model from Figure 11.11, and suppose that the measurement error r is 1.
Suppose there is a disc in R

2 of radius larger than 1, as shown in Figure 11.23a. Since the
true state is never further than 1 from the measured state, it is always possible to determine
whether the state passed above or below the disc. Multiple possible observation histories
are shown in Figure 11.23a. The observation history need not even be continuous, but it is
drawn that way for convenience. For a disc with radius less than 1, there may exist some
observation histories for which it is impossible to determine whether the true state traveled
above or below the disc; see Figure 11.23b. For other observation histories, it may still be
possible to make the determination; for example, from the uppermost trajectory shown in
Figure 11.23b it is known for certain that the true state traveled above the disc. �

Example 11.23 (A Simple Mobile Robot Model) In this example, suppose that a robot
is modeled as a point that moves in X = R

2. The sensing model is the same as in Example
11.22, except that discrete stages are used instead of continuous time. It can be imagined
that each stage represents a constant interval of time (e.g., 1 second).

To control the robot, a motion command is given in the form of an action uk ∈ U = S
1.

Nature interferes with the motions in two ways: 1) The robot tries to travel some distance
d, but there is some error εd > 0, for which the true distance traveled, d ′, is known
satisfy |d ′ − d| < εd ; and 2) the robot tries to move in a direction u, but there is some
error, εu > 0, for which the true direction u′ is known to satisfy |u− u′| < εu. These
two independent errors can be modeled by defining a 2D nature action set, �(x). The
transition equation is then defined so that the forward projection F (x, u) is as shown in
Figure 11.25.

Some nondeterministic I-states will now be constructed. Suppose that the initial state
x1 is known, and history I-states take the form

ηk = (x1, u1, . . . , uk−1, y1, . . . , yk). (11.73)
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F (x, u)

u
x

H(y)

Figure 11.25: A simple mobile robot motion model in which the sensing model is as given in Figure 11.11
and then nature interferes with commanded motions to yield an uncertainty region that is a circular ring.

H(y2)

y2

X2(η1, u1)

X2(η2)

X2(η2) X2(η2, u2)

x2

u2

(a) (b) (c)

Figure 11.26: (a) Combining information from X2(η1, u1) and the observation y2; (b) the intersection must
be taken between X2(η1, u1) and H(y2). (c) The action u2 leads to a complicated nondeterministic I-state
that is the union of F(x2, u2) over all x2 ∈ X2(η2).

H(y3)

X3(η2, u3)

X3(η3)

(a) (b)

Figure 11.27: After the sensor observation, y3, the intersection must be taken between X3(η2, u2) and
H(y3x).

The first sensor observation, y1, is useless because the initial state is known. Equation
(11.29) is applied to yield H (y1) ∩ {x1} = {x1}. Suppose that the action u1 = 0 is applied,
indicating that the robot should move horizontally to the right. Equation (11.30) is applied
to yield X2(η1, u1), which looks identical to the F (x, u) shown in Figure 11.25. Suppose
that an observation y2 is received as shown in Figure 11.26a. Using this, X2(η2) is
computed by taking the intersection of H (y2) and X2(η1, u1), as shown in Figure 11.26b.

The next step is considerably more complicated. Suppose that u2 = 0 and that (11.30)
is applied to compute X3(η2, u2) from X2(η2). The shape shown in Figure 11.26c is
obtained by taking the union of F (x2, u2) for all possible x2 ∈ X2(η2). The resulting
shape is composed of circular arcs and straight line segments (see Exercise 13). Once
y3 is obtained, an intersection is taken once again to yield X3(η3) = X3(η2, u2) ∩H (y3),
as shown in Figure 11.27. The process repeats in the same way for the desired number
of stages. The complexity of the region in Figure 11.26c provides motivation for the
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Figure 11.28: A top view of a tray that must be tilted to roll the ball into the desired corner.

approximation methods of Section 11.4.3. For example, the nondeterministic I-states
could be nicely approximated by ellipsoidal regions. �

11.5.4 Gaining information without sensors

For some problems, it is remarkable that uncertainty may be reduced without even using
sensors. Recall Example 11.17. This is counterintuitive because it seems that information
regarding the state can only be gained from sensing. It is possible, however, to also gain
information from the knowledge that some actions have been executed and the effect that
should have in terms of the state transitions. The example presented in this section is
inspired by work on sensorless manipulation planning [323, 398], which is covered in
more detail in Section 12.5.2. This topic underscores the advantages of reasoning in terms
of an I-space, as opposed to requiring that accurate state estimates can be made.

Example 11.24 (Tray Tilting) The state space, X ⊂ R
2, indicates the position of a ball

that rolls on a flat surface, as shown Figure 11.28. The ball is confined to roll within
the polygonal region shown in the figure. It can be imagined that the ball rolls in a tray
on which several barriers have been glued to confine its motion (try this experiment at
home!). If the tray is tilted, it is assumed that the ball rolls in a direction induced by gravity
(in the same way that a ball rolls to the bottom of a pinball machine).

The tilt of the tray is considered as an action that can be chosen by the robot. It is
assumed that the initial position of the ball (initial state) is unknown and there are no
sensors that can be used to estimate the state. The task is to find some tilting motions that
are guaranteed to place the ball in the position shown in Figure 11.28, regardless of its
initial position.

The problem could be modeled with continuous time, but this complicates the design.
If the tray is tilted in a particular orientation, it is assumed that the ball rolls in a direction,
possibly following the boundary, until it comes to rest. This can be considered as a
discrete-stage transition: The ball is in some rest state, a tilt action is applied, and a then it
enters another rest state. Thus, a discrete-stage state transition equation, xk+1 = f (xk, uk),
is used.

To describe the tilting actions, we can formally pick directions for the upward normal
vector to the tray from the upper half of S

2; however, this can be reduced to a one-
dimensional set because the steepness of the tilt is not important, as long as the ball rolls
to its new equilibrium state. Therefore, the set of actions can be considered as U = S

1, in
which a direction u ∈ S

1 indicates the direction that the ball rolls due to gravity. Before
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1: down 2: down-left 3: down-right

4: up 5: up-left 6: down-left

Figure 11.29: A plan is shown that places the ball in the desired location using a sequence of six tilts,
regardless of its initial position and in spite of the fact that there are no sensors. The thickened black lines
and black dots indicate the possible locations for the ball: the nondeterministic I-states. Under each picture,
the direction that the ball rolls due to the action is written.

any action is applied, it is assumed that the tray is initially level (its normal is parallel to
the direction of gravity). In practice, one should be more careful and model the motion
of the tray between a pair of actions; this is neglected here because the example is only
for illustrative purposes. This extra level of detail could be achieved by introducing new
state variables that indicate the orientation of the tray or by using continuous-time actions.
In the latter case, the action is essentially providing the needed state information, which
means that the action function would have to be continuous. Here it is simply assumed
that a sequence of actions from S

1 is applied.
The initial condition is X1 = X and the history I-state is

ηk = (X1, u1, u2, . . . , uk−1). (11.74)

Since there are no observations, the path through the I-space is predictable. Therefore, a
plan, π , is simply an action sequence, π = (u1, u2, . . . , uK ), for any desired K .

It is surprisingly simple to solve this task by reasoning in terms of nondeterministic
I-states, each of which corresponds to a set of possible locations for the ball. A sequence
of six actions, as shown in Figure 11.29, is sufficient to guarantee that the ball will come
to rest at the goal position, regardless of its initial position. �

11.6 Computing probabilistic information states

The probabilistic I-states can be quite complicated in practice because each element
of Iprob is a probability distribution or density function. Therefore, substantial effort
has been invested in developing efficient techniques for computing probabilistic I-states
efficiently. This section can be considered as a continuation of the presentations in Sections
11.2.3 (and part of Section 11.4, for the case of continuous state spaces). Section 11.6.1
covers Kalman filtering, which provides elegant computations of probabilistic I-states. It
is designed for problems in which the state transitions and sensor mapping are linear, and
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all acts of nature are modeled by multivariate Gaussian densities. Section 11.6.2 covers a
general sampling-based planning approach, which is approximate but applies to a broader
class of problems. One of these methods, called particle filtering, has become very popular
in recent years for mobile robot localization.

11.6.1 Kalman filtering

This section covers the most successful and widely used example of a derived I-space that
dramatically collapses the history I-space. In the special case in which both f and h are
linear functions, and p(θ), p(ψ), and p(x1) are Gaussian, all probabilistic I-states become
Gaussian. This means that the probabilistic I-space, Iprob, does not need to represent
every conceivable probability density function. The probabilistic I-state is always trapped
in the subspace of Iprob that corresponds only to Gaussians. The subspace is denoted as
Igauss . This implies that an I-map, κmom : Iprob → Igauss , can be applied without any loss
of information.

The model is called linear-Gaussian (or LG). Each Gaussian density on R
n is fully

specified by its n-dimensional mean vector µ and an n× n symmetric covariance matrix,
�. Therefore, Igauss can be considered as a subset of R

m in which m = 2n+ (n2). For
example, if X = R

n, then Igauss ⊂ R
5, because two independent parameters specify the

mean and three independent parameters specify the covariance matrix (not four, because
of symmetry). It was mentioned in Section 11.4.3 that moment-based approximations can
be used in general; however, for an LG model it is important to remember that Igauss is
an exact representation of Iprob.

In addition to the fact that the Iprob collapses nicely, κmom is a sufficient I-map, and
convenient expressions exist for incrementally updating the derived I-states entirely in
terms of the computed means and covariance. This implies that we can work directly with
Igauss , without any regard for the original histories or even the general formulas for the
probabilistic I-states from Section 11.4.1. The update expressions are given here without
the full explanation, which is lengthy but not difficult and can be found in virtually any
textbook on stochastic control (e.g., [97, 567]).

For Kalman filtering, all of the required spaces are Euclidean, but they may have
different dimensions. Therefore, let X = R

n, U = � = R
m, and Y = � = R

r . Since
Kalman filtering relies on linear models, everything can be expressed in terms of matrix
transformations. Let Ak , Bk , Ck , Gk , and Hk each denote a matrix with constant real-
valued entries and which may or may not be singular. The dimensions of the matrices
will be inferred from the equations in which they will appear (the dimensions have to
be defined correctly to make the multiplications work out right). The k subscript is used
to indicate that a different matrix may be used in each stage. In many applications, the
matrices will be the same in each stage, in which case they can be denoted by A, B, C,
G, and H . Since Kalman filtering can handle the more general case, the subscripts are
included (even though they slightly complicate the expressions).

In general, the state transition equation, xk+1 = fk(xk, uk, θk), is defined as

xk+1 = Akxk + Bkuk +Gkθk, (11.75)

in which the matrices Ak , Bk , and Gk are of appropriate dimensions. The notation fk is
used instead of f , because the Kalman filter works even if f is different in every stage.
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Example 11.25 (Linear-Gaussian Example) For a simple example of (11.75), suppose
X = R

3 and U = � = R
2. A particular instance is

xk+1 =



0

√
2 1

1 −1 4
2 0 1



 xk +



1 0
0 1
1 1



 uk +



1 1
0 −1
0 1



 θk. (11.76)

�

The general form of the sensor mapping yk = hk(xk, ψk) is

yk = Ckxk +Hkψk, (11.77)

in which the matrices Ck and Hk are of appropriate dimension. Once again, hk is used
instead of h because a different sensor mapping can be used in every stage.

So far the linear part of the model has been given. The next step is to specify the
Gaussian part. In each stage, both nature actions θk and ψk are modeled with zero-mean
Gaussians. Thus, each has an associated covariance matrix, denoted by �θ and �ψ ,
respectively. Using the model given so far and starting with an initial Gaussian density
over X, all resulting probabilistic I-states will be Gaussian [567].

Every derived I-state in Igauss can be represented by a mean and covariance. Let µk and
�k denote the mean and covariance of P (xk|ηk). The expressions given in the remainder
of this section define a derived information transition equation that computes µk+1 and
�k+1, given µk , �k , uk , and yk+1. The process starts by computing µ1 and �1 from the
initial conditions.

Assume that an initial condition is given that represents a Gaussian density over R
n. Let

this be denoted by µ0, and �0. The first I-state, which incorporates the first observation
y1, is computed as µ1 = L1y1 and

�1 = (I − L1C1)�0, (11.78)

in which I is the identity matrix and

L1 = �0C
T
1

(
C1�0C

T
1 +H1�ψH1

)−1
. (11.79)

Although the expression for L1 is complicated, note that all matrices have been specified
as part of the model. The only unfortunate part is that a matrix inversion is required,
which sometimes leads to numerical instability in practice; see [567] or other sources for
an alternative formulation that alleviates this problem.

Now that µ1 and �1 have been expressed, the base case is completed. The next part is
to give the iterative updates from stage k to stage k + 1. Using µk , the mean at the next
stage is computed as

µk+1 = Akµk + Lk+1(yk+1 − Ck+1Akµk), (11.80)

in which Lk+1 will be defined shortly. The covariance is computed in two steps; one is
based on applying uk , and the other arises from considering yk+1. Thus, after uk is applied,
the covariance becomes

�′
k+1 = Ak�kA

T
k +Gk�θG

T
k . (11.81)

After yk+1 is received, the covariance �k+1 is computed from �′
k+1 as

�k+1 = (I − Lk+1Ck+1)�′
k+1. (11.82)
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The expression for Lk is

Lk = �′
kC

T
k

(
Ck�

′
kC

T
k +Hk�ψHk

)−1
. (11.83)

To obtain Lk+1, substitute k + 1 for k in (11.83). Note that to compute µk+1 using (11.80),
�′

k+1 must first be computed because (11.80) depends on Lk+1, which in turn depends
on �′

k+1.
The most common use of the Kalman filter is to provide reliable estimates of the state xk

by using µk . It turns out that the optimal expected-cost feedback plan for a cost functional
that is a quadratic form can be obtained for LG systems in a closed-from expression;
see Section 15.2.2. This model is often called LQG, to reflect the fact that it is linear,
quadratic-cost, and Gaussian. The optimal feedback plan can even be expressed directly in
terms of µk , without requiring �k . This indicates that the I-space may be collapsed down
to X; however, the corresponding I-map is not sufficient. The covariances are still needed
to compute the means, as is evident from (11.80) and (11.83). Thus, an optimal plan can
be specified as π : X → U , but the derived I-states in Igauss need to be represented for
the I-map to be sufficient.

The Kalman filter provides a beautiful solution to the class of linear Gaussian models.
It is even successfully applied quite often in practice for problems that do not even satisfy
these conditions. This is called the extended Kalman filter. The success may be explained
by recalling that the probabilistic I-space may be approximated by mean and covariance
in a second-order moment-based approximation. In general, such an approximation may
be inappropriate, but it is nevertheless widely used in practice.

11.6.2 Sampling-based approaches

Since probabilistic I-space computations over continuous spaces involve the evaluation
of complicated, possibly high-dimensional integrals, there is strong motivation for us-
ing sampling-based approaches. If a problem is nonlinear and/or non-Gaussian, such
approaches may provide the only practical way to compute probabilistic I-states. Two
approaches are considered here: grid-based sampling and particle filtering. One of the
most common applications of the techniques described here is mobile robot localization,
which is covered in Section 12.2.

A grid-based approach

Perhaps the most straightforward way to numerically compute probabilistic I-states is to
approximate probability density functions over a grid and use numerical integration to
evaluate the integrals in (11.57) and (11.58).

A grid can be used to compute a discrete probability distribution that approximates the
continuous probability density function. Consider, for example, using the Sukharev grid
shown in Figure 5.5a, or a similar grid adapted to the state space. Consider approximating
some probability density function p(x) using a finite set, S ⊂ X. The Voronoi region
surrounding each point can be considered as a “bucket” that holds probability mass. A
probability is associated with each sample and is defined as the integral of p(x) over the
Voronoi region associated with the point. In this way, the samples S and their discrete
probability distribution, P (s) for all s ∈ S approximate p(x) over X. Let P (sk) denote the
probability distribution over Sk , the set of grid samples at stage k.
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In the initial step, P (s) is computed from p(x) by numerically evaluating the integrals
of p(x1) over the Voronoi region of each sample. This can alternatively be estimated by
drawing random samples from the density p(x1) and then recording the number of samples
that fall into each bucket (Voronoi region). Normalizing the counts for the buckets yields
a probability distribution, P (s1). Buckets that have little or no points can be eliminated
from future computations, depending on the desired accuracy. Let S1 denote the samples
for which nonzero probabilities are associated.

Now suppose that P (sk|ηk) has been computed over Sk and the task is to com-
pute P (sk+1|ηk+1) given uk and yk+1. A discrete approximation, P (sk+1|sk, uk), to
p(xk+1|xk, uk) can be computed using a grid and buckets in the manner described above.
At this point the densities needed for (11.57) have been approximated by discrete distribu-
tions. In this case, (11.38) can be applied over Sk to obtain a grid-based distribution over
Sk+1 (again, any buckets that do not contain enough probability mass can be discarded).
The resulting distribution is P (sk+1|ηk, uk), and the next step is to consider yk+1. Once
again, a discrete distribution can be computed; in this case, p(xk+1|yk+1) is approximated
by P (sk+1|yk+1) by using the grid samples. This enables (11.58) to be replaced by the
discrete counterpart (11.39), which is applied to the samples. The resulting distribution,
P (sk+1|ηk+1), represents the approximate probabilistic I-state.

Particle filtering

As mentioned so far, the discrete distributions can be estimated by using samples. In fact,
it turns out that the Voronoi regions over the samples do not even need to be carefully
considered. One can work directly with a collection of samples drawn randomly from the
initial probability density, p(x1). The general method is referred to as particle filtering
and has yielded good performance in applications to experimental mobile robotics. Recall
Figure 1.7 and see Section 12.2.3.

Let S ⊂ X denote a finite collection of samples. A probability distribution is defined
over S. The collection of samples, together with its probability distribution, is considered as
an approximation of a probability density over X. Since S is used to represent probabilistic
I-states, let Pk denote the probability distribution over Sk , which is computed at stage k

using the history I-state ηk . Thus, at every stage, there is a new sample set, Sk , and
probability distribution, Pk .

The general method to compute the probabilistic I-state update proceeds as follows.
For some large number, m, of iterations, perform the following:

1. Select a state xk ∈ Sk according to the distribution Pk .

2. Generate a new sample, xk+1, for Sk+1 by generating a single sample according to the
density p(xk+1|xk, uk).

3. Assign the weight, w(xk+1) = p(yk+1|xk+1).

After the m iterations have completed, the weights over Sk+1 are normalized to obtain a
valid probability distribution, Pk+1. It turns out that this method provides an approximation
that converges to the true probabilistic I-states as m tends to infinity. Other methods exist,
which provide faster convergence [539]. One of the main difficulties with using particle
filtering is that for some problems it is difficult to ensure that a sufficient concentration of
samples exists in the places where they are needed the most. This is a general issue that
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plagues many sampling-based algorithms, including the motion planning algorithms of
Chapter 5.

11.7 Information spaces in game theory

This section unifies the sequential game theory concepts from Section 10.5 with the I-
space concepts from this chapter. Considerable attention is devoted to the modeling of
information in game theory. The problem is complicated by the fact that each player has
its own frame of reference, and hence its own I-space. Game solution concepts, such as
saddle points or Nash equilibria, depend critically on the information available to each
player as it makes it decisions. Paralleling Section 10.5, the current section first covers
I-states in game trees, followed by I-states for games on state spaces. The presentation in
this section will be confined to the case in which the state space and stages are finite. The
formulation of I-spaces extends naturally to countably infinite or continuous state spaces,
action spaces, and stages [60].

11.7.1 Information States in Game Trees

Recall from Section 10.5.1 that an important part of formulating a sequential game in a
game tree is specifying the information model. This was described in Step 4 of Formulation
10.3. Three information models were considered in Section 10.5.1: alternating play, stage-
by-stage, and open loop. These and many other information models can be described using
I-spaces.

From Section 11.1, it should be clear that an I-space is always defined with respect to a
state space. Even though Section 10.5.1 did not formally introduce a state space, it is not
difficult to define one. Let the state space X be N , the set of all vertices in the game tree.
Assume that two players are engaged in a sequential zero-sum game. Using notation from
Section 10.5.1, N1 and N2 are the decision vertices of P1 and P2, respectively. Consider
the nondeterministic I-space Indet over N . Let η denote a nondeterministic I-state; thus,
each η ∈ Indet is a subset of N .

There are now many possible ways in which the players can be confused while making
their decisions. For example, if some η contains vertices from both N1 and N2, the player
does not know whether it is even its turn to make a decision. If η additionally contains
some leaf vertices, the game may be finished without a player even being aware of it.
Most game tree formulations avoid these strange situations. It is usually assumed that the
players at least know when it is their turn to make a decision. It is also usually assumed
that they know the stage of the game. This eliminates many sets from Indet .

While playing the game, each player has its own nondeterministic I-state because the
players may hide their decisions from each other. Let η1 and η2 denote the nondeterministic
I-states for P1 and P2, respectively. For each player, many sets in Indet are eliminated.
Some are removed to avoid the confusions mentioned above. We also impose the constraint
that ηi ⊆ Ni for i = 1 and i = 2. We only care about the I-state of a player when it is
that player’s turn to make a decision. Thus, the nondeterministic I-state should tell us
which decision vertices in Ni are possible as Pi faces a decision. Let I1 and I2 represent
the nondeterministic I-spaces for P1 and P2, respectively, with all impossible I-states
eliminated.

The I-spaces I1 and I2 are usually defined directly on the game tree by circling vertices
that belong to the same I-state. They form a partition of the vertices in each level of the
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Figure 11.30: Several different information models are illustrated for the game in Figure 10.13.

Cost

P1 acts 21

1 2 3P2 acts 1 12 23 3

3

3 5 1 0 43 −1 7 −2

Figure 11.31: A single-stage game that has an information model unlike those in Section 10.5.1.

tree (except the leaves). In fact, Ii even forms a partition of Ni for each player. Figure
11.30 shows four information models specified in this way for the example in Figure
10.13. The first three correspond directly to the models allowed in Section 10.5.1. In the
alternating-play model, each player always knows the decision vertex. This corresponds
to a case of perfect state information. In the stage-by-stage model, P1 always knows the
decision vertex; P2 knows the decision vertex from which P1 made its last decision, but it
does not know which branch was chosen. The open-loop model represents the case that
has the poorest information. Only P1 knows its decision vertex at the beginning of the
game. After that, there is no information about the actions chosen. In fact, the players
cannot even remember their own previous actions. Figure 11.30d shows an information
model that does not fit into any of the three previous ones. In this model, very strange
behavior results. If P1 and P2 initially choose right branches, then the resulting decision
vertex is known; however, if P2 instead chooses the left branch, then P1 will forget which
action it applied (as if the action of P2 caused P1 to have amnesia!). Here is a single-stage
example:

Example 11.26 (An Unusual Information Model) Figure 11.31 shows a game that
does not fit any of the information models in Section 10.5.1. It is actually a variant of the
game considered before in Figure 10.12. The game is a kind of hybrid that partly looks
like the alternating-play model and partly like the stage-by-stage model. This particular
problem can be solved in the usual way, from the bottom up. A value is computed for
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each of the nondeterministic I-states, for the level in which P2 makes a decision. The
left I-state has value 5, which corresponds to P1 choosing 1 and P2 responding with 3.
The right I-state has value 4, which results from the deterministic saddle point in a 2 × 3
matrix game played between P1 and P2. The overall game has a deterministic saddle point
in which P1 chooses 3 and P2 chooses 3. This results in a value of 4 for the game. �

Plans are now defined directly as functions on the I-spaces. A (deterministic) plan for
P1 is defined as a function π1 on I1 that yields an action u ∈ U (η1) for each η1 ∈ I1, and
U (η1) is the set of actions that can be inferred from the I-state η1; assume that this set is
the same for all decision vertices in η1. Similarly, a (deterministic) plan for P2 is defined
as a function π2 on I2 that yields an action v ∈ V (η2) for each η2 ∈ I2.

There are generally two alternative ways to define a randomized plan in terms of I-
spaces. The first choice is to define a globally randomized plan, which is a probability
distribution over the set of all deterministic plans. During execution, this means that
an entire deterministic plan will be sampled in advance according to the probability
distribution. An alternative is to sample actions as they are needed at each I-state. This is
defined as follows. For the randomized case, let W (η1) and Z(η2) denote the sets of all
probability distributions over U (η1) and V (η2), respectively. A locally randomized plan
for P1 is defined as a function that yields some w ∈ W (η1) for each η1 ∈ I1. Likewise,
a locally randomized plan for P2 is a function that maps from I2 into Z(η2). Locally
randomized plans expressed as functions of I-states are often called behavioral strategies
in game theory literature.

A randomized saddle point on the space of locally randomized plans does not exist
for all sequential games [60]. This is unfortunate because this form of randomization
seems most natural for the way decisions are made during execution. At least for the
stage-by-stage model, a randomized saddle point always exists on the space of locally
randomized plans. For the open-loop model, randomized saddle points are only guaran-
teed to exist using a globally randomized plan (this was actually done in Section 10.5.1).
To help understand the problem, suppose that the game tree is a balanced, binary tree
with k stages (hence, 2k levels). For each player, there are 2k possible deterministic plans.
This means that 2k − 1 probability values may be assigned independently (the last one
is constrained to force them to sum to 1) to define a globally randomized plan over the
space of deterministic plans. Defining a locally randomized plan, there are k I-states for
each player, one for each search stage. At each stage, a probability distribution is defined
over the action set, which contains only two elements. Thus, each of these distributions
has only one independent parameter. A randomized plan is specified in this way using
k − 1 independent parameters. Since k − 1 is much less than 2k − 1, there are many
globally randomized plans that cannot be expressed as a locally randomized plan. Unfor-
tunately, in some games the locally randomized representation removes the randomized
saddle point.

This strange result arises mainly because players can forget information over time. A
player with perfect recall remembers its own actions and also never forgets any information
that it previously knew. It was shown by Kuhn that the space of all globally randomized
plans is equivalent to the space of all locally randomized plans if and only if the players
have perfect memory [565]. Thus, by sticking to games in which all players have perfect
recall, a randomized saddle point always exists in the space locally randomized plans.
The result of Kuhn even holds for the more general case of the existence of randomized
Nash equilibria on the space of locally randomized plans.
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The nondeterministic I-states can be used in game trees that involve more players.
Accordingly, deterministic, globally randomized, and locally randomized plans can be
defined. The result of Kuhn applies to any number of players, which ensures the existence
of a randomized Nash equilibrium on the space of locally randomized strategies if (and
only if) the players have perfect recall. It is generally preferable to exploit this fact and
decompose the game tree into smaller matrix games, as described in Section 10.5.1. It
turns out that the precise condition that allows this is that it must be ladder-nested [60].
This means that there are decision vertices, other than the root, at which 1) the player
that must make a decision knows it is at that vertex (the nondeterministic I-state is a
singleton set), and 2) the nondeterministic I-state will not leave the subtree rooted at
that vertex (vertices outside of the subtree cannot be circled when drawing the game
tree). In this case, the game tree can be decomposed at these special decision vertices and
replaced with the game value(s). Unfortunately, there is still the nuisance of multiple Nash
equilibria.

It may seem odd that nondeterministic I-states were defined without being derived from
a history I-space. Without much difficulty, it is possible to define a sensing model that
leads to the nondeterministic I-states used in this section. In many cases, the I-state can
be expressed using only a subset of the action histories. Let ũk and ṽk denote the action
histories of P1 and P2, respectively. The history I-state for the alternating-play model at
stage k is (ũk−1, ṽk−1) for P1 and (ũk, ṽk−1) for P2. The history I-state for the stage-by-
stage model is (ũk−1, ṽk−1) for both players. The nondeterministic I-states used in this
section can be derived from these histories. For other models, such as the one in Figure
11.31, a sensing model is additionally needed because only partial information regarding
some actions appears. This leads into the formulation covered in the next section, which
involves both sensing models and a state space.

11.7.2 Information spaces for games on state spaces

I-space concepts can also be incorporated into sequential games that are played over state
spaces. The resulting formulation naturally extends Formulation 11.1 of Section 11.1 to
multiple players. Rather than starting with two players and generalizing later, the full
generality of having n players is assumed up front. The focus in this section is primarily
on characterizing I-spaces for such games, rather than solving them. Solution approaches
depend heavily on the particular information models; therefore, they will not be covered
here.

As in Section 11.7.1, each player has its own frame of reference and therefore its own
I-space. The I-state for each player indicates its information regarding a common game
state. This is the same state as introduced in Section 10.5; however, each player may have
different observations and may not know the actions of others. Therefore, the I-state is
different for each decision maker. In the case of perfect state sensing, these I-spaces all
collapse to X.

Suppose that there are n players. As presented in Section 10.5, each player has its
own action space, Ui ; however, here it is not allowed to depend on x, because the state
may generally be unknown. It can depend, however, on the I-state. If nature actions may
interfere with the state transition equation, then (10.120) is used (if there are two players);
otherwise, (10.121) is used, which leads to predictable future states if the actions of all of
the players are given. A single nature action, θ ∈ �(x, u1, u2, . . . , un), is used to model
the effect of nature across all players when uncertainty in prediction exists.
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Any of the sensor models from Section 11.1.1 may be defined in the case of multiple
players. Each has its own observation space Y i and sensor mapping hi . For each player,
nature may interfere with observations through nature sensing actions, �i(x). A state-
action sensor mapping appears as yi = hi(x, ψi); state sensor mappings and history-based
sensor mappings may also be defined.

Consider how the game appears to a single player at stage k. What information might be
available for making a decision? Each player produces the following in the most general
case: 1) an initial condition, ηi

0; 2) an action history, ũi
k−1; and 3) and an observation

history, ỹi
k . It must be specified whether one player knows the previous actions that have

been applied by other players. It might even be possible for one player to receive the
observations of other players. If Pi receives all of this information, its history I-state at
stage k is

ηi
k = (ηi

0, ũ
1
k−1, ũ

2
k−1, . . . , ũ

n
k−1, ỹ

1
k, ỹ

2
k, ..., ỹ

n
k ). (11.84)

In most situations, however, ηi
k only includes a subset of the histories from (11.84). A

typical situation is

ηi
k = (ηi

0, ũ
i
k−1, ỹ

i
k), (11.85)

which means that Pi knows only its own actions and observations. Another possibility
is that all players know all actions that have been applied, but they do not receive the
observations of other players. This results in

ηi
k = (ηi

0, ũ
1
k−1, ũ

2
k−1, . . . , ũ

n
k−1, ỹ

i
k). (11.86)

Of course, many special cases may be defined by generalizing many of the examples in
this chapter. For example, an intriguing sensorless game may be defined in which the
history I-state consists only of actions. This could yield

ηi
k = (ηi

0, ũ
1
k−1, ũ

2
k−1, . . . , ũ

n
k−1), (11.87)

or even a more secretive game in which the actions of other players are not known:

ηi
k = (ηi

0, ũ
i
k−1). (11.88)

Once the I-state has been decided upon, a history I-space I i
hist for each player is defined

as the set of all history I-states. In general, I-maps and derived I-spaces can be defined to
yield alternative simplifications of each history I-space.

Assuming all spaces are finite, the concepts given so far can be organized into a sequen-
tial game formulation that is the imperfect state information counterpart of Formulation
10.4:

Formulation 11.4 (Sequential Game with I-Spaces)

1. A set of n players, P1, P2, . . . , Pn.

2. A nonempty, finite state space X.

3. For each Pi , a finite action space Ui . We also allow a more general definition, in which
the set of available choices depends on the history I-state; this can be written as Ui(ηi).

4. A finite nature action space �(x, u1, . . . , un) for each x ∈ X, and ui ∈ Ui for each i such
that 1 ≤ i ≤ m.

5. A state transition function f that produces a state, f (x, u1, . . . , un, θ ), for every x ∈ X,
θ ∈ �(x, u), and ui ∈ Ui for each i such that 1 ≤ i ≤ n.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

SENSORS AND INFORMATION SPACES 517

Figure 11.32: In the Battleship game, each player places several ships on a grid. The other player must
guess the locations of ships by asking whether a particular tile is occupied.

6. For each Pi , a finite observation space Y i .

7. For each Pi , a finite nature sensing action space �i(x) for each x ∈ X.

8. For each Pi , a sensor mapping hi which produces an observation, y = hi(x,ψi), for
each x ∈ X and ψi ∈ �i(x). This definition assumes a state-nature sensor mapping. A
state sensor mapping or history-based sensor mapping, as defined in Section 11.1.1, may
alternatively be used.

9. A set of K stages, each denoted by k, which begins at k = 1 and ends at k = K . Let
F = K + 1.

10. For each Pi , an initial condition ηi
0, which is an element of an initial condition space I i

0.

11. For each Pi , a history I-space I i
hist which is the set of all history I-states, formed from

action and observation histories, and may include the histories of other players.

12. For each Pi , let Li denote a stage-additive cost functional,

Li(x̃F , ũ1
K, . . . , ũ2

K ) =
K∑

k=1

l(xk, u
1
k, . . . , u

n
k ) + lF (xF ). (11.89)

Extensions exist for cases in which one or more of the spaces are continuous; see [60].
It is also not difficult to add goal sets and termination conditions and allow the stages to
run indefinitely.

An interesting specialization of Formulation 11.4 is when all players have identical
cost functions. This is not equivalent to having a single player because the players have
different I-states. For example, a task may be for several robots to search for a treasure, but
they have limited communication between them. This results in different I-states. They
would all like to cooperate, but they are unable to do so without knowing the state. Such
problems fall under the subject of team theory [227, 453, 533].

As for the games considered in Formulation 10.4, each player has its own plan. Since
the players do not necessarily know the state, the decisions are based on the I-state. The
definitions of a deterministic plan, a globally randomized plan, and a locally randomized
plan are essentially the same as in Section 11.7.1. The only difference is that more general
I-spaces are defined in the current setting. Various kinds of solution concepts, such as
saddle points and Nash equilibria, can be defined for the general game in Formulation 11.4.
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The existence of locally randomized saddle points and Nash equilibria depends on general
on the particular information model [60].

Example 11.27 (Battleship Game) Many interesting I-spaces arise from classical board
games. A brief illustration is provided here from Battleship, which is a sequential game
under the alternating-turn model. Two players, P1 and P2, each having a collection of
battleships that it arranges secretly on a 10 × 10 grid; see Figure 11.32.

A state is the specification of the exact location of all ships on each player’s grid.
The state space yields the set of all possible ship locations for both players. Each player
always knows the location of its own ships. Once they are placed on the grid, they are
never allowed to move.

The players take turns guessing a single grid tile, expressed as a row and column, that
it suspects contains a ship. The possible observations are “hit” and “miss,” depending on
whether a ship was at that location. In each turn, a single guess is made, and the players
continue taking turns until one player has observed a hit for every tile that was occupied
by a ship.

This is an interesting game because once a “hit” is discovered, it is clear that a player
should search for other hits in the vicinity because there are going to be several contiguous
tiles covered by the same ship. The only problem is that the precise ship position and
orientation are unknown. A good player essentially uses the nondeterministic I-state to
improve the chances that a hit will occur next. �

Example 11.28 (The Princess and the Monster) This is a classic example from game
theory that involves no sensing. A princess and a monster move about in a 2D environ-
ment. A simple motion model is assumed; for example, they take single steps on a grid.
The princess is trying not to be discovered by the monster, and the game is played in
complete darkness. The game ends when the monster and the princess are on the same
grid point. There is no form of feedback that can be used during the game; however, it is
possible to construct nondeterministic I-states for the players. For most environments, it
is impossible for the monster to be guaranteed to win; however, for some environments
it is guaranteed to succeed. This example can be considered as a special kind of pursuit-
evasion game. A continuous-time pursuit-evasion game that involves I-spaces is covered in
Section 12.4. �

Further reading

The basic concept of an information space can be traced back to work of Kuhn [565] in the context
of game trees. There, the nondeterministic I-state is referred to as an information set. After spreading
throughout game theory, the concept was also borrowed into stochastic control theory (see [97, 567]).
The term information space is used extensively in [60] in the context of sequential and differential game
theory. For further reading on I-spaces in game theory, see [60, 762]. In artificial intelligence literature,
I-states are referred to as belief states and are particularly important in the study of POMDPs; see the
literature suggested at the end of Chapter 12. The observability problem in control theory also results
in I-spaces [194, 310, 481, 913], in which observers are used to reconstruct the current state from the
history I-state. In robotics literature, they have been called hyperstates [398] and knowledge states [317].
Concepts closely related to I-spaces also appear as perceptual equivalence classes in [289] and also
appear in the information invariants framework of Donald [288]. I-spaces were proposed as a general
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way to represent planning under sensing uncertainty in [69, 607, 608]. For further reading on sensors in
general, see [354].

The Kalman filter is covered in great detail in numerous other texts; see for example, [228, 567, 913].
The original reference is [503]. For more on particle filters, see [45, 295, 352, 539].

Exercises

1. Forward projections in Ind et :

(a) Starting from a nondeterministic I-state, Xk(ηk), and applying an action uk , derive an expres-
sion for the nondeterministic one-stage forward projection by extending the presentation in
Section 10.1.2.

(b) Determine an expression for the two-stage forward projection starting from Xk(ηk) and
applying uk and uk+1.

2. Forward projections in Iprob:

(a) Starting from a probabilistic I-state, P (xk |ηk), and applying an action uk , derive an expression
for the probabilistic one-stage forward projection.

(b) Determine an expression for the two-stage forward projection starting from P (xk |ηk) and
applying uk and uk+1.

3. Determine the strong and weak backprojections on Ihist for a given history I-state, ηk.
These should give sets of possible ηk−1 ∈ Ihist .

4. At the end of Section 11.3.2, it was mentioned that an equivalent DFA can be constructed
from an NFA.

(a) Give an explicit DFA that accepts the same set of strings as the NFA in Figure 11.8b.

(b) Express the problem of determining whether the NFA in Figure 11.8b accepts any strings
as a planning problem using Formulation 2.1.

5. This problem involves computing probabilistic I-states for Example 11.14. Let the initial
I-state be

P (x1) = [1/3 1/3 1/3], (11.90)

in which the ith entry in the vector indicates P (x1 = i + 1). Let U = {0, 1}. For each action,
a state transition matrix can be speci�ed, which gives the probabilities P (xk+1|xk, uk). For
u = 0, let P (xk+1|xk, uk = 0) be




4/5 1/5 0
1/10 4/5 1/10

0 1/5 4/5



 . (11.91)

The j th entry of the ith row yields P (xk+1 = i | xk = j, uk = 0). For u = 1, let
P (xk+1 | xk, uk = 1) be




1/10 5/5 1/10

0 1/5 4/5
0 0 1



 . (11.92)

The sensing model is speci�ed by three vectors:

P (yk|xk = 0) = [4/5 1/5], (11.93)

P (yk|xk = 1) = [1/2 1/2], (11.94)
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Y

X

xG

(a) (b)

Figure 11.33: (a) A topological graph in which a point moves (note that two vertices are vertically aligned).
(b) An exercise that is a variant of Example 11.17.

and

P (yk|xk = 2) = [1/5 4/5], (11.95)

in which the ith component yields P (yk = i | xk). Suppose that k = 3 and the history I-state
obtained so far is

(η0, u1, u2, y1, y2, y3) = (η0, 1, 0, 1, 0, 0). (11.96)

The task is to compute the probabilistic I-state. Starting from P (x1), compute the following
distributions: P (x1|η1), P (x2|η1, u1), P (x2|η2), P (x3|η2, u2), P (x3|η3).

6. Explain why it is not possible to reach every nondeterministic I-state from every other one
for Example 11.7. Give an example of a nondeterministic I-state that cannot be reached
from the initial I-state. Completely characterize the reachability of nondeterministic I-states
from all possible initial conditions.

7. In the same spirit as Example 11.21, consider a point moving on the topological graph
shown in Figure 11.33. Fully characterize the connectivity of Ind et (you may exploit sym-
metries to simplify the answer).

8. Design an I-map for Example 11.17 that is not necessarily suf�cient but leads to a solution
plan de�ned over only three derived I-states.

9. Consider the discrete problem in Figure 11.33b, using the same sensing and motion model
as in Example 11.17.

(a) Develop a suf�cient I-map and a solution plan that uses as few derived I-states as possible.

(b) Develop an I-map that is not necessarily suf�cient, and a solution plan that uses as few
derived I-states as possible.

10. Suppose that there are two I-maps, κ1 : I1 → I2 and κ2 : I2 → I3, and it is given that κ1 is
suf�cient with respect to I1, and κ2 is suf�cient with respect to I2. Determine whether the
I-map κ2 ◦ κ1 is suf�cient with respect to I1, and prove your claim.

11. Propose a solution to Example 11.16 that uses fewer nondeterministic I-states.

12. Suppose that a point robot moves in R
2 and receives observations from three homing

beacons that are not collinear and originate from known locations. Assume that the robot
can calibrate the three observations on S

1.

(a) Prove that the robot can always recover its position in R
2.

(b) What can the robot infer if there are only two beacons?
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13. Nondeterministic I-state problems:

(a) Prove that the nondeterministic I-states for Example 11.23 are always a single connected
region whose boundary is composed only of circular arcs and line segments.

(b) Design an algorithm for ef�ciently computing the nondeterministic I-states from stage to
stage.

14. Design an algorithm that takes as input a simply connected rectilinear region (i.e., described
by a polygon that has all right angles) and a goal state, and designs a sequence of tray
tilts that guarantees the ball will come to rest at the goal. Example 11.24 provides an
illustration.

15. Extend the game-theoretic formulation from Section 11.7.2 of history I-spaces to continu-
ous time.

16. Consider the “where did I come from?” problem.

(a) Derive an expression for X1(ηk).

(b) Derive an expression for P (x1|ηk).

17. In the game of Example 11.27, could there exist a point in the game at which one player
has not yet observed every possible “hit” yet it knows the state of the game (i.e., the exact
location of all ships)? Explain.

18. When playing blackjack in casinos, many card-counting strategies involve remembering
simple statistics of the cards, rather than the entire history of cards seen so far. De�ne a
game of blackjack and card counting as an example of history I-states and an I-map that
dramatically reduces the size of the I-space, and an information-feedback plan.

Implementations

19. Implement the Kalman �lter for the case of a robot moving in the plane. Show the con�dence
ellipsoids obtained during execution. Be careful of numerical issues (see [567]).

20. Implement probabilistic I-state computations for a point robot moving in a 2D polygonal
environment. Compare the ef�ciency and accuracy of grid-based approximations to particle
�lter ing.

21. Design and implement an algorithm that uses nondeterministic I-states to play a good
game of Battleship, as explained in Example 11.27.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

12

Planning Under Sensing Uncertainty

The main purpose of Chapter 11 was to introduce information space (I-space) concepts
and to provide illustrative examples that aid in understanding. This chapter addresses
planning under sensing uncertainty, which amounts to planning in an I-space. Section
12.1 covers general-purpose algorithms, for which it will quickly be discovered that only
problems with very few states can be solved because of the explosive growth of the I-space.
In Chapter 6, it was seen that general-purpose motion planning algorithms apply only to
simple problems. Ways to avoid this were either to develop sampling-based techniques or
to focus on a narrower class of problems. It is intriguing to apply sampling-based planning
ideas to I-spaces, but as of yet this idea remains largely unexplored. Therefore, the majority
of this chapter focuses on planning algorithms designed for narrower classes of problems.
In each case, interesting algorithms have been developed that can solve problems that are
much more complicated than what could be solved by the general-purpose algorithms.
This is because they exploit some structure that is specific to the problem.

An important philosophy when dealing with an I-space is to develop an I-map that
reduces its size and complexity as much as possible by obtaining a simpler derived
I-space. Following this, it may be possible to design a special-purpose algorithm that
efficiently solves the new problem by relying on the fact that the I-space does have the full
generality. This idea will appear repeatedly throughout the chapter. The most common
derived I-space is Indet from Section 11.2.2; Iprob, from Section 11.2.3, will also arise.

After Section 12.1, the problems considered in the remainder of the chapter are in-
spired mainly by robotics applications. Section 12.2 addresses the localization problem,
which means that a robot must use sensing information to determine its location. This
is essentially a matter of maintaining derived I-states and computing plans that lead to
the desired derived I-space. Section 12.3 generalizes localization to problems in which
the robot does not even know its environment. In this case, the state space and I-space
take into account both the possible environments in which the robot might be and the
possible locations of the robot within each environment. This section is fundamental to
robotics because it is costly and difficult to build precise maps of a robot’s environment.
By careful consideration of the I-space, a complete representation may be safely avoided
in many applications.

Section 12.4 covers a kind of pursuit-evasion game that can be considered as a formal
version of the children’s game of “hide and seek.” The pursuer carries a lantern and must
illuminate an unpredictable evader that moves with unbounded speed. The nondeterminis-
tic I-states for this problem characterize the set of possible evader locations. The problem
is solved by performing a cell decomposition of Indet to obtain a finite, graph-search
problem. The method is based on finding critical curves in the I-space, much like the
critical-curve method in Section 6.3.4 for moving a line-segment robot.

Section 12.5 concludes the chapter with manipulation planning under imperfect state
information. This differs from the manipulation planning considered in Section 7.3.2

522
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because it was assumed there that the state is always known. Section 12.5.1 presents the
preimage planning framework, which was introduced two decades ago to address manip-
ulation planning problems that have bounded uncertainty models for the state transitions
and the sensors. Many important I-space ideas and complexity results were obtained from
this framework and the body of literature on which it was based; therefore, it will be
covered here. Section 12.5.2 addresses problems in which the robots have very limited
sensing information and rely on the information gained from the physical interaction of
objects. In some cases, these methods surprisingly do not even require sensing.

12.1 General methods

This section presents planning methods for the problems introduced in Section 11.1.
They are based mainly on general-purpose dynamic programming, without exploiting
any particular structure to the problem. Therefore, their application is limited to small
state spaces; nevertheless, they are worth covering because of their extreme generality.
The basic idea is to use either the nondeterministic or probabilistic I-map to express the
problem entirely in terms of the derived I-space, Indet or Iprob, respectively. Once the
derived information transition equation (recall Section 11.2.1) is defined, it can be imag-
ined that Indet or Iprob is a state space in which perfect state measurements are obtained
during execution (because the I-state is always known).

12.1.1 The information space as a big state space

Recall that any problem specified using Formulation 11.1 can be converted using derived
I-states into a problem under Formulation 10.1. By building on the discussion from the
end of Section 11.1.3, this can be achieved by treating the I-space as a big state space in
which each state is an I-state in the original problem formulation. Some of the components
were given previously, but here a complete formulation is given.

Suppose that a problem has been specified using Formulation 11.1, resulting in the
usual components: X, U , �, f , Y , h, xI , XG, and L. The following concepts will work
for any sufficient I-map; however, the presentation will be limited to two important cases:
κndet and κprob, which yield derived I-spaces Indet and Iprob, respectively (recall Sections
11.2.2 and 11.2.3).

The components of Formulation 10.1 will now be specified using components of the
original problem. To avoid confusion between the two formulations, an arrow will be
placed above all components of the new formulation. Figure 12.1 summarizes the coming
definitions. The new state space, "X, is defined as "X = Ider , and a state, "x ∈ "X, is a derived
I-state, "x = ηder . Under nondeterministic uncertainty, "xk means Xk(ηk), in which ηk is
the history I-state. Under probabilistic uncertainty, "xk means P (xk|ηk). The action space
remains the same: "U = U .

The strangest part of the formulation is the new nature action space, "�("x, "u). The
observations in Formulation 11.1 behave very much like nature actions because they are
not selected by the robot, and, as will be seen shortly, they are the only unpredictable
part of the new state transition equation. Therefore, "�("x, "u) ⊆ Y , the original observation
space. A new nature action, "θ ∈ "�, is just an observation, "θ("x, "u) = y. The set "�("x, "u)
generally depends on "x and "u because some observations may be impossible to receive
from some states. For example, if a sensor that measures a mobile robot position is never
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Item Notation Explanation

State "x = ηder Derived I-state
State space "X = Ider Derived I-space
Action space "U = U Original action space
Nature action space "� ⊆ Y Original observation space
State transition equation "f ("x, "u, "θ) Nature action is just y

Initial state "xI = η0 Initial I-state, η0 ∈ Ider

Goal set "XG Subsets of original XG

Cost functional "L Derived from original L

Figure 12.1: The derived I-space can be treated as an ordinary state space on which planning with perfect
state information can be performed.

wrong by more than 1 meter, then observations that are further than 1 meter from the true
robot position are impossible.

A derived state transition equation is defined with "f ("xk, "uk, "θk) and yields a new state,
"xk+1. Using the original notation, this is just a function that uses κ(ηk), uk , and yk to
compute the next derived I-state, κ(ηk+1), which is allowed because we are working with
sufficient I-maps, as described in Section 11.2.1.

Initial states and goal sets are optional and can be easily formulated in the new repre-
sentation. The initial I-state, η0, becomes the new initial state, "xI = η0. It is assumed that
η0 is either a subset of X or a probability distribution, depending on whether planning
occurs in Indet or Iprob. In the nondeterministic case, the new goal set "XG can be derived
as

"XG = {X(η) ∈ Ind et | X(η) ⊆ XG}, (12.1)

which is the set of derived I-states for which it is guaranteed that the true state lies in
XG. A probabilistic version can be made by requiring that all states assigned nonzero
probability by P (x|η) lie in XG. Instead of being nonzero, a threshold could be used. For
example, the goal may require being only 98% certain that the goal is reached.

The only remaining portion of Formulation 10.1 is the cost functional. We will develop
a cost model that uses only the state and action histories. A dependency on nature would
imply that the costs depend directly on the observation, y = "θ , which was not assumed in
Formulation 11.1. The general K-stage cost functional from Formulation 10.1 appears in
this context as

"L("xk, "uk) =
K∑

k=1

"l("xk, "uk) +"lF ("xF ), (12.2)

with the usual cost assumptions regarding the termination action.
The cost functional "L must be derived from the cost functional L of the original

problem. This is expressed in terms of states, which are unknown. First consider the case
of Iprob. The state xk at stage k follows the probability distribution P (xk|ηk), as derived
in Section 11.2.3. Using "xk , an expected cost is assigned as

"l("xk, "uk) = "l(ηk, uk) =
∑

xk∈X

P (xk|ηk)l(xk, uk) (12.3)
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and

"lF ("xF ) = "lF (ηF ) =
∑

xF∈X

P (xF |ηK )lF (xF ). (12.4)

Ideally, we would like to make analogous expressions for the case of Indet ; however,
there is one problem. Formulating the worst-case cost for each stage is too pessimistic.
For example, it may be possible to obtain high costs in two consecutive stages, but each of
these may correspond to following different paths in X. There is nothing to constrain the
worst-case analysis to the same path. In the probabilistic case there is no problem because
probabilities can be assigned to paths. For the nondeterministic case, a cost functional can
be defined, but the stage-additive property needed for dynamic programming is destroyed
in general. Under some restrictions on allowable costs, the stage-additive property is
preserved.

The state xk at stage k is known to lie in Xk(ηk), as derived in Section 11.2.2. For every
history I-state, ηk = "xk , and uk ∈ U , assume that l(xk, uk) is invariant over all xk ∈ Xk(ηk).
In this case,

"l("xk, "uk) = "l(ηk, uk) = l(xk, uk), (12.5)

in which xk ∈ Xk(ηk), and

"lF ("xF ) = "lF (ηF ) = lF (xF ), (12.6)

in which xF ∈ XF (ηF ).
A plan on the derived I-space, Indet or Iprob, can now also be considered as a plan

on the new state space "X. Thus, state feedback is now possible, but in a larger state
space "X instead of X. The outcomes of actions are still generally unpredictable due to the
observations. An interesting special case occurs when there are no observations. In this
case, the I-state is predictable because it is derived only from actions that are chosen by
the robot. In this case, the new formulation does not need nature actions, which reduces
it down to Formulation 2.3. Due to this, feedback is no longer needed if the initial I-state
is given. A plan can be expressed once again as a sequence of actions. Even though the
original states are not predictable, the future information states are! This means that the
state trajectory in the new state space is completely predictable as well.

12.1.2 Algorithms for nondeterministic I-spaces

Now that the problem of planning in Indet has been expressed using Formulation 10.1,
the methods of Section 10.2 directly apply. The main limitation of their use is that the new
state space "X is exponentially larger than X. If X contains n states, then "X contains 2n − 1
states. Thus, even though some methods in Section 10.2 can solve problems in practice
that involve a million states, this would only be about 20 states in the original state space.
Handling substantially larger problems requires developing application-specific methods
that exploit some special structure of the I-space, possibly by defining an I-map that leads
to a smaller derived I-space.

Value iteration

The value-iteration method from Section 10.2.1 can be applied without modification. In
the first step, initialize G∗

F using (12.6). Using the notation for the new problem, the
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dynamic programming recurrence, (10.39), becomes

G∗
k("xk) = min

"uk∈U

{
max
"θk

{
"l("xk, "uk) +G∗

k+1("xk+1)
}}

, (12.7)

in which "xk+1 = "f ("xk, "uk, "θk).
The main difficulty in evaluating (12.7) is to determine the set "�("xk, "uk), over which

the maximization occurs. Suppose that a state-nature sensor mapping is used, as defined
in Section 11.1.1. From the I-state "xk = Xk(ηk), the action "uk = uk is applied. This yields
a forward projection Xk+1(ηk, uk). The set of all possible observations is

"�("xk, "uk) = {yk+1 ∈ Y | ∃xk+1 ∈ Xk+1(ηk, uk) and ∃ψk+1 ∈ �

such that yk+1 = h(xk+1, ψk+1)}. (12.8)

Without using forward projections, a longer, equivalent expression is obtained:

"�("xk, "uk) = {yk+1 ∈ Y | ∃xk ∈ Xk(ηk), ∃θk ∈ �, and ∃ψk+1 ∈ �

such that yk+1 = h(f (xk, uk, θk), ψk+1)}. (12.9)

Other variants can be formulated for different sensing models.

Policy iteration

The policy iteration method of Section 10.2.2 can be applied in principle, but it is unlikely
to solve challenging problems. For example, if |X| = 10, then each iteration will require
solving matrices that have 1 million entries! At least they are likely to be sparse in many
applications.

Graph-search methods

The methods from Section 10.2.3, which are based on backprojections, can also be
applied to this formulation. These methods must initially set S = "XG. If S is initially
nonempty, then backprojections can be attempted using the general algorithm in Figure
10.6. Dijkstra’s algorithm, as given in Figure 10.8, can be applied to yield a plan that is
worst-case optimal.

The sensorless case

If there are no sensors, then better methods can be applied because the formulation reduces
from Formulation 10.1 to Formulation 2.3. The simpler value iterations of Section 2.3 or
Dijkstra’s algorithm can be applied to find a solution. If optimality is not required, then
any of the search methods of Section 2.2 can even be applied. For example, one can even
imagine performing a bidirectional search on "X to attempt to connect "xI to some "xG.

12.1.3 Algorithms for probabilistic I-spaces (POMDPs)

For the probabilistic case, the methods of Section 10.2 cannot be applied because Iprob

is a continuous space. Dynamic programming methods for continuous state spaces, as
covered in Section 10.6, are needed. The main difficulty is that the dimension of "X grows
linearly with the number of states in X. If there are n states in X, the dimension of "X
is n− 1. Since the methods of Section 10.6 suffer from the curse of dimensionality, the
general dynamic programming techniques are limited to problems in which X has only a
few states.
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Approximate value iteration

The continuous-space methods from Section 10.6 can be directly applied to produce an
approximate solution by interpolating over "X to determine cost-to-go values. The initial
cost-to-go value G∗

F over the collection of samples is obtained by (12.6). Following
(10.46), the dynamic programming recurrence is

G∗
k("xk) = min

"uk∈ "U

{
"l("xk, "uk) +

∑

"xk+1∈ "X
G∗

k+1("xk+1)P ("xk+1|"xk, "uk)
}
. (12.10)

If "�("x, "u) is finite, the probability mass is distributed over a finite set of points, y = "θ ∈
"�("x, "u). This in turn implies that P ("xk+1|"xk, "uk) is also distributed over a finite subset of
"X. This is somewhat unusual because "X is a continuous space, which ordinarily requires
the specification of a probability density function. Since the set of future states is finite,
this enables a sum to be used in (12.10) as opposed to an integral over a probability density
function. This technically yields a probability density over "X, but this density must be
expressed using Dirac functions.1 An approximation is still needed, however, because the
xk+1 points may not be exactly the sample points on which the cost-to-go function G∗

k+1
is represented.

Exact methods

If the total number of stages is small, it is possible in practice to compute exact repre-
sentations. Some methods are based on an observation that the cost-to-come is piecewise
linear and convex [497]. A linear-programming problem results, which can be solved us-
ing the techniques that were described for finding randomized saddle points of zero-sum
games in Section 9.3. Due to the numerous constraints, methods have been proposed that
dramatically reduce the number that need to be considered in some circumstances (see
the suggested reading on POMDPs at the end of the chapter).

An exact, discrete representation can be computed as follows. Suppose that the initial
condition space I0 consists of one initial condition, η0 (or a finite number of initial
conditions), and that there are no more than K stages at which decisions are made. Since
�(x, u) and �(x) are assumed to be finite, there is a finite number of possible final I-states,
ηF = (η0, ũK, ỹF ). For each of these, the distribution P (xF |ηF ) can be computed, which is
alternatively represented as "xF . Following this, (12.4) is used to compute G∗("xF ) for each
possible "xF . The number of these states is unfortunately exponential in the total number
of stages, but at least there are finitely many. The dynamic programming recurrence
(12.10) can be applied for k = K to roll back one stage. It is known that each possible
"xk+1 will be a point in "X at which a value was computed because values were computed
for possible all I-states. Therefore, interpolation is not necessary. Equation 12.10 can be
applied repeatedly until the first stage is reached. In each iteration, no interpolation is
needed because the cost-to-go G∗

k+1 was computed for each possible next I-state. Given
the enormous size of I, this method is practical only for very small problems.

The sensorless case

In the case of having no observations, the path through Iprob becomes predictable. Sup-
pose that a feasible planning problem is formulated. For example, there are complicated

1 These are single points that are assigned a nonzero probability mass, which is not allowed, for example, in the
construction of a continuous probability density function.
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constraints on the probability distributions over X that are permitted during the execution
of the plan. Since "X = Iprob is a continuous space, it is tempting to apply motion planning
techniques from Chapter 5 to find a successful path. The adaptation of such techniques
may be possible, but they must be formulated to use actions and state transition functions,
which was not done in Chapter 5. Such adaptations of these methods, however, will be
covered in Chapter 14. They could be applied to this problem to search the I-space and
produce a sequence of actions that traverses it while satisfying hard constraints on the
probabilities.

12.2 Localization

Localization is a fundamental problem in robotics. Using its sensors, a mobile robot must
determine its location within some map of the environment. There are both passive and
active versions of the localization problem:

Passive localization: The robot applies actions, and its position is inferred by computing
the nondeterministic or probabilistic I-state. For example, if the Kalman filter is used,
then probabilistic I-states are captured by mean and covariance. The mean serves as an
estimate of the robot position, and the covariance indicates the amount of uncertainty.

Active localization: A plan must be designed that attempts to reduce the localization
uncertainty as much as possible. How should the robot move so that it can figure out its
location?

Both versions of localization will be considered in this section.
In many applications, localization is an incremental problem. The initial configuration

may be known, and the task is to maintain good estimates as motions occur. A more ex-
treme version is the kidnapped-robot problem, in which a robot initially has no knowledge
of its initial configuration. Either case can be modeled by the appropriate initial condi-
tions. The kidnapped-robot problem is more difficult and is assumed by default in this
section.

12.2.1 Discrete localization

Many interesting lessons about realistic localization problems can be learned by first
studying a discrete version of localization. Problems that may or may not be solvable
can be embedded in more complicated problems, which may even involve continuous
state spaces. The discrete case is often easier to understand, which motivates its presen-
tation here. To simplify the presentation, only the nondeterministic I-space Indet will be
considered; see Section 12.2.3 for the probabilistic case.

Suppose that a robot moves on a 2D grid, which was introduced in Example 2.1. It has
a map of the grid but does not know its initial location or orientation within the grid. An
example is shown in Figure 12.2a.

To formulate the problem, it is helpful to include in the state both the position of the
robot and its orientation. Suppose that the robot may be oriented in one of four directions,
which are labeled N, E, W, and S, for “north,” “east,” “west,” and “south,” respectively.
Although the robot is treated as a point, its orientation is important because it does not
have a compass. If it chooses to move in a particular direction, such as straight ahead,
it does not necessarily know which direction it will be heading with respect to the four
directions.
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Figure 12.2: (a) This map is given to the robot for localization purposes. (b) The four possible actions
each take one step, if possible, and reorient the robot as shown.

Figure 12.3: (a) If a direction is blocked because of an obstacle, then the orientation changes, but the
position remains �x ed. In this example, the R action is applied. (b) Another map is given to the robot for
localization purposes. In this case, the robot cannot localize itself exactly.

Thus, a state, x ∈ X, is written as x = (p, d), in which p is a position and d is one
of the four directions. A set of states at the same position will be denoted with special
superscripts that point in the possible directions. For example, 3 indicates the set of states
for which p = 3 and the direction may be north (N) or east (E), because the superscript
points in the north and east directions.

The robot is given four actions,

U = {F, B, R, L}, (12.11)

which represent “forward,” “backward,” “right motion,” and “left motion,” respectively.
These motions occur with respect to the current orientation of the robot, which may be
unknown. See Figure 12.2b. For the F action, the robot moves forward one grid element
and maintains its orientation. For the B action, the robot changes its orientation by 180
degrees and then moves forward one grid element. For the R action, the robot turns right
by 90 degrees and then moves forward one grid element. The L action behaves similarly.
If it is not possible to move because of an obstacle, it is assumed that the robot changes
its orientation (in the case of B, R, or L) but does not change its position. This is depicted
in Figure 12.3a.

The robot has one simple sensor that can only detect whether it was able to move in
the direction that was attempted. The sensor space is Y = {0, 1}, and the sensor mapping
is h : X ×X → Y . This yields y = h(xk−1, xk) = 1 if xk−1 and xk place the robot at
different positions, and h(xk−1, xk) = 0 otherwise. Thus, the sensor indicates whether the
robot has moved after the application of an action.
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Nondeterministic uncertainty will be used, and the initial I-state η0 is always assumed
to be X (this can easily be extended to allow starting with any nonempty subset of X). A
history I-state at stake k in its general form appears as

η0 = (X, ũk−1, y2, . . . , yk). (12.12)

One special adjustment was made in comparison to (11.14). There is no observation
y1 because the sensor mapping requires a previous state to report a value. Thus, the
observation history starts with y2. An example history I-state for stage k = 5 is

η5 = (X, R, R, F, L, 1, 0, 1, 1), (12.13)

in which η0 = X, ũ4 = (R, R, F, L), and (y2, y3, y4, y5) = (1, 0, 1, 1).
The passive localization problem starts with a given map, such as the one shown

in Figure 12.2a, and a history I-state, ηk , and computes the nondeterministic I-state
Xk(ηk) ⊆ X. The active localization problem is to compute some k and sequence of
actions, (u1, . . . , uk−1), such that the nondeterministic I-state is as small as possible. In
the best case, Xk(ηk) might become a singleton set, which means that the robot knows its
position and orientation on the map. However, due to symmetries, which will be presented
shortly in an example, it might not be possible.

Solving the passive localization problem

The passive problem requires only that the nondeterministic I-states are computed cor-
rectly as the robot moves. A couple of examples of this are given.

Example 12.1 (An Easy Localization Problem) Consider the example given in Figure
12.2a. Suppose that the robot is initially placed in position 1 facing east. The initial
condition is η0 = X, which can be represented as

η0 = 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 , (12.14)

the collection of all 20 states in X. Suppose that the action sequence (F, L, F, L) is applied.
In each case, a motion occurs, which results in the observation history (y2, y3, y4, y5) =
(1, 1, 1, 1).

After the first action, u1 = F, the history I-state is η2 = (X, F, 1). The nondeterministic
I-state is

X2(η2) = 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 , (12.15)

which means that any position is still possible, but the successful forward motion re-
moved some orientations from consideration. For example, 1 is not possible because
the previous state would have to be directly south of 1, which is an obstacle.

After the second action, u2 = L,

X3(η3) = 3 ∪ 5 , (12.16)

which yields only two possible current states. This can be easily seen in Figure 12.2a by
observing that there are only two states from which a forward motion can be followed by
a left motion. The initial state must have been either 1 or 3 .

After u3 = F is applied, the only possibility remaining is that x3 must have been 3 .
This yields

X4(η4) = 4 , (12.17)
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which exactly localizes the robot: It is at position 4 facing north. After the final action
u4 = L is applied it is clear that

X5(η5) = 5 , (12.18)

which means that in the final state, x5, the robot is at position 1 facing west. Once the
exact robot state is known, no new uncertainty will accumulate because the effects of all
actions are predictable. Although it was not shown, it is also possible to prune the possible
states by the execution of actions that do not produce motions. �

Example 12.2 (A Problem that Involves Symmetries) Now extend the map from
Figure 12.2a so that it forms a loop as shown in Figure 12.2b. In this case, it is impossible
to determine the precise location of the robot. For simplicity, consider only actions that
produce motion (convince yourself that allowing the other actions cannot fix the problem).

Suppose that the robot is initially in position 1 facing east. If the action sequence
(F, L, F, L, . . . ) is executed, the robot will travel around in cycles. The problem is that
it is also possible to apply the same action sequence from position 3 facing north. Every
action successfully moves the robot, which means that, to the robot, the information
appears identical. The other two cases in which this sequence can be applied to travel in
cycles are 1) from 5 heading west, and 2) from 7 heading south. A similar situation occurs
from 2 facing east, if the sequence (L, F, L, F, . . . ) is applied. Can you find the other
three starting states from which this sequence moves the robot at every stage? Similar
symmetries exist when traveling in clockwise circles and making right turns instead of
left turns.

The state space for this problem contains 32 states, obtained from four directions at
each position. After executing some motions, the nondeterministic I-state can be reduced
down to a symmetry class of no more than four possible states. How can this be proved?
One way is to use the algorithm that is described next. �

Solving the active localization problem

From the previous two examples, it should be clear how to compute nondeterministic
I-states and therefore solve the passive localization problem on a grid. Now consider
constructing a plan that solves the active localization problem. Imagine using a computer
to help in this task. There are two general approaches:

Precomputed Plan: In this approach, a planning algorithm running on a computer accepts
a map of the environment and computes an information-feedback plan that immediately
indicates which action to take based on all possible I-states that could result (a derived
I-space could be used). During execution, the actions are immediately determined from
the stored, precomputed plan.

Lazy Plan: In this case the map is still given, but the appropriate action is computed just
as it is needed during each stage of execution. The computer runs on-board of the robot
and must compute which action to take based on the current I-state.

The issues are similar to those of the sampling-based roadmap in Section 5.6. If faster
execution is desired, then the precomputed plan may be preferable. If it would consume
too much time or space, then a lazy plan may be preferable.

Using either approach, it will be helpful to recall the formulation of Section 12.1.1,
which considers Indet as a new state space, "X, in which state feedback can be used. Even
though there are no nature sensing actions, the observations are not predictable because
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the state is generally unknown. This means that "θ is unknown, and future new states, "xk+1,
are unpredictable once "xk and "uk are given. A plan must therefore use feedback, which
means that it needs information learned during execution to solve the problem. The state
transition function "f on the new state space was illustrated for the localization problem in
Examples 12.1 and 12.2. The initial state "xI is the set of all original states. If there are no
symmetries, the goal set "XG is the set of all singleton subsets of X; otherwise, it is the set
of all smallest possible I-states that are reachable (this does not need to be constructed in
advance). If desired, cost terms can be defined to produce an optimal planning problem.
For example, "l("x, "u) = 2 if a motion occurs, or "l("x, "u) = 1 otherwise.

Consider the approach of precomputing a plan. The methods of Section 12.1.2 can
generally be applied to compute a plan, π : "X → U , that solves the localization problem
from any initial nondeterministic I-state. The approach may be space-intensive because
an action must be stored for every state in "X. If there are n grid tiles, then | "X| = 2n − 1.
If the initial I-state is always X, then it may be possible to restrict π to a much smaller
portion of "X. From any "x ∈ "XG, a search based on backprojections can be conducted. If
the initial I-state is added to S, then the partial plan will reliably localize the robot. Parts
of "X for which π is not specified will never be reached and can therefore be ignored.

Now consider the lazy approach. An algorithm running on the robot can perform a
kind of search by executing actions and seeing which I-states result. This leads to a
directed graph over "X that is incrementally revealed through the robot’s motions. The
graph is directed because the information regarding the state generally improves. For
example, once the robot knows its state (or symmetry class of states), it cannot return
to an I-state that represents greater uncertainty. In many cases, the robot may get lucky
during execution and localize itself using much less memory than would be required for
a precomputed plan.

The robot needs to recognize that the same positions have been reached in different
ways, to ensure a systematic search. Even though the robot does not necessarily know its
position on the map, it can usually deduce whether it has been to some location previously.
One way to achieve this is to assign (i, j ) coordinates to the positions already visited. It
starts with (0, 0) assigned to the initial position. If F is applied, then suppose that position
(1, 0) is reached, assuming the robot moves to a new grid cell. If R is applied, then (0, 1)
is reached if the robot is not blocked. The point (2, 1) may be reachable by (F, F, R)
or (R, F, F). One way to interpret this is that a local coordinate frame in R

2 is attached
to the robot’s initial position. Let this be referred to as the odometric coordinates. The
orientation between this coordinate frame and the map is not known in the beginning, but
a transformation between the two can be computed if the robot is able to localize itself
exactly.

A variety of search algorithms can now be defined by starting in the initial state "xI and
trying actions until a goal condition is satisfied (e.g., no smaller nondeterministic I-states
are reachable). There is, however, a key difference between this search and the search
conducted by the algorithms in Section 2.2.1. Previously, the search could continue from
any state that has been explored previously without any additional cost. In the current
setting, there are two issues:

Reroute paths: Most search algorithms enable new states to be expanded from any
previously considered states at any time. For the lazy approach, the robot must move to a
state and apply an action to determine whether a new state can be reached. The robot is
capable of returning to any previously considered state by using its odometric coordinates.
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This induces a cost that does not exist in the previous search problem. Rather than being
able to jump from place to place in a search tree, the search is instead a long, continuous
path that is traversed by the robot. Let the jump be referred to as a reroute path. This will
become important in Section 12.3.2.

Information improvement: The robot may not even be able to return to a previous
nondeterministic I-state. For example, if the robot follows (F, F, R) and then tries to
return to the same state using (B, L, F), it will indeed know that it returned to the same
state, but the state remains unknown. It might be the case, however, that after executing
(F, F, R), it was able to narrow down the possibilities for its current state. Upon returning
using (B, L, F), the nondeterministic I-state will be different.

The implication of these issues is that the search algorithm should take into account the
cost of moving the robot and that the search graph is directed. The second issue is really
not a problem because even though the I-state may be different when returning to the
same position, it will always be at least as good as the previous one. This means that if η1

and η2 are the original and later history I-states from the same position, it will always be
true that X(η2) ⊆ X(η1). Information always improves in this version of the localization
problem. Thus, while trying to return to a previous I-state, the robot will find an improved
I-state.

Other information models

The model given so far in this section is only one of many interesting alternatives. Suppose,
for example, that the robot carries a compass that always indicates its direction. In this
case, there is no need to keep track of the direction as part of the state. The robot can
use the compass to specify actions directly with respect to global directions. Suppose
that U = {N, E, W, S}, which denote the directions, “north,” “east,” “west,” and “south,”
respectively. Examples 12.1 and 12.2 now become trivial. The first one is solved by
applying the action sequence (E, N). The symmetry problems vanish for Example 12.2,
which can also be solved by the sequence (E, N) because (1, 2, 3) is the only sequence of
positions that is consistent with the actions and compass readings.

Other interesting models can be made by giving the robot less information. In the
models so far, the robot can easily infer its current position relative to its starting position.
Even though it is not necessarily known where this starting position lies on the map, it can
always be expressed in relative coordinates. This is because the robot relies on different
forms of odometry. For example, if the direction is E and the robot executes the sequence
(L, L, L), it is known that the direction is S because three lefts make a right. Suppose
that instead of a grid, the robot must explore a graph. It moves discretely from vertex
to vertex by applying an action that traverses an edge. Let this be a planar graph that
is embedded in R

2 and is drawn with straight line segments. The number of available
actions can vary at each vertex. We can generally define U = S

1, with the behavior that
the robot only rotates without translating whenever a particular direction is blocked (this
is a generalization of the grid case). A sensor can be defined that indicates which actions
will lead to translations from the current vertex. In this case, the model nicely generalizes
the original model for the grid. If the robot knows the angles between the edges that arrive
at a vertex, then it can use angular odometry to make a local coordinate system in R

2 that
keeps track of its relative positions.

The situation can be made very confusing for the robot. Suppose that instead of U = S
1,

the action set at each vertex indicates which edges can be traversed. The robot can traverse
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an edge by applying an action, but it does not know anything about the direction relative
to other edges. In this case, angular odometry can no longer be used. It could not, for
example, tell the difference between traversing a rhombus, trapezoid, or a rectangle. If
angular odometry is possible, then some symmetries can be avoided by noting the angles
between the edges at each vertex. However, the new model does not allow this. All vertices
that have the same degree would appear identical.

12.2.2 Combinatorial methods for continuous localization

Now consider localization for the case in which X is a continuous region in R
2. Assume

that X is bounded by a simple polygon (a closed polygonal chain; there are no interior
holes). A map of X in R

2 is given to the robot. The robot velocity ẋ is directly commanded
by the action u, yielding a motion model ẋ = u, for which U is a unit ball centered at
the origin. This enables a plan to be specified as a continuous path in X, as was done
throughout Part II. Therefore, instead of specifying velocities using u, a path is directly
specified, which is simpler. For models of the form ẋ = u and the more general form
ẋ = f (x, u), see Section 8.4 and Chapter 13, respectively.

The robot uses two different sensors:

1. Compass: A perfect compass solves all orientation problems that arose in Section 12.2.1.

2. Visibility: The visibility sensor, which was shown in Figure 11.15, provides perfect
distance measurements in all directions.

There are no nature sensing actions for either sensor.
As in Section 12.2.1, localization involves computing nondeterministic I-states. In

the current setting there is no need to represent the orientation as part of the state space
because of the perfect compass and known orientation of the polygon in R

2. Therefore, the
nondeterministic I-states are just subsets of X. Imagine computing the nondeterministic
I-state for the example shown in Figure 11.15, but without any history. This is H (y) ⊆ X,
which was defined in (11.6). Only the current sensor reading is given. This requires
computing states from which the distance measurements shown in Figure 11.15b could
be obtained. This means that a translation must be found that perfectly overlays the edges
shown in Figure 11.15b on top of the polygon edges that are shown in Figure 11.15a. Let
∂X denote the boundary of X. The distance measurements from the visibility sensor must
correspond exactly to a subset of ∂X. For the example, these could only be obtained from
one state, which is shown in Figure 11.15a. Therefore, the robot does not even have to
move to localize itself for this example.

As in Section 8.4.3, let the visibility polygon V (x) refer to the set of all points visible
from x, which is shown in Figure 11.15a. To perform the required computations efficiently,
the polygon must be processed to determine the different ways in which the visibility
polygon could appear from various points in X. This involves carefully determining
which edges of ∂X could appear on ∂V (x). The state space X can be decomposed into
a finite number of cells, and over each region the invariant is that same set of edges is
used to describe V (x) [138, 418]. An example is shown in Figure 12.4. Two different
kinds of rays must be extended to make the decomposition. Figure 12.5 shows the case in
which a pair of vertices is mutually visible and an outward ray extension is possible. The
other case is shown in Figure 12.6, in which rays are extended outward at every reflex
vertex (a vertex whose interior angle is more than π , as considered in Section 6.2.4).
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Figure 12.4: An example of the visibility cell decomposition. Inside of each cell, the visibility polygon is
composed of the same edges of ∂X.

Figure 12.5: Rays are extended outward, whenever possible, from each pair of mutually visible vertices.
The case on the right is a bitangent, as shown in Figure 6.10; however, here the edges extend outward
instead of inward as required for the visibility graph.

Figure 12.6: A re�e x vertex: If the interior angle at a vertex is greater than π, then two outward rays are
extended from the incident edges.

The resulting decomposition generates O(n2r) cells in the worse case, in which n is the
number of edges that form ∂X and r is the number of reflex vertices (note that r < n).
Once the measurements are obtained from the sensor, the cell or cells in which the edges
or distance measurements match perfectly need to be computed to determine H (y) (the
set of points in X from which the current distance measurements could be obtained). An
algorithm based on the idea of a visibility skeleton is given in [418], which performs these
computations in time O(m+ lg n+ s) and uses O(n5) space, in which n is the number
of vertices in ∂X, m is the number of vertices in V (x), and s = |H (y)|, the size of the
nondeterministic I-state. This method assumes that the environment is preprocessed to
perform rapid queries during execution; without preprocessing, H (y) can be computed in
time O(mn).

What happens if there are multiple states that match the distance data from the visibility
sensor? Since the method in [418] only computes H (y) ⊆ X, some robot motions must be
planned to further reduce the uncertainty. This provides yet another interesting illustration
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x1

Figure 12.7: Consider this example, in which the initial state is not known [300].

Figure 12.8: The four possible initial positions for the robot in Figure 12.7 based on the visibility sensor.

Figure 12.9: These motions completely disambiguate the state.

of the power of I-spaces. Even though the state space is continuous, an I-state in this case
is used to disambiguate the state from a finite collection of possibilities.

The following example is taken from [300].

Example 12.3 (Visibility-Based Localization) Consider the environment shown in Fig-
ure 12.7, with the initial state as shown. Based on the visibility sensor observation, the
initial state could be any one of the four possibilities shown in Figure 12.8. Thus, H (y1)
contains four states, in which y1 is the initial sensor observation. Suppose that the motion
sequence shown in Figure 12.9 is executed. After the first step, the position of the robot
is narrowed down to two possibilities, as shown in Figure 12.10. This occurs because the
corridor is longer for the remaining two possibilities. After the second motion, the state
is completely determined because the short side corridor is detected. �
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Figure 12.10: There are now only two possible states.

The localization problem can be solved in general by using the visibility cell decom-
position, as shown in Figure 12.4. Initially, X1(η1) = H (y1) is computed from the initial
visibility polygon, which can be efficiently performed using the visibility skeleton [418].
Suppose that X1(η1) contains k states. In this case, k translated copies of the map are
overlaid so that all of the possible states in X1(η1) coincide. A motion is then executed
that reduces the amount of uncertainty. This could be performed, by example, by crossing
a cell boundary in the overlay that corresponds to one or more, but not all, of the k

copies. This enables some possible states to be eliminated from the next I-state, X2(η2).
The overlay is used once again to obtain another disambiguating motion, which results in
X3(η3). This process continues until the state is known. In [300], a motion plan is given
that enables the robot to localize itself by traveling no more than k times as far as the
optimal distance that would need to be traveled to verify the given state. This particular
localization problem might not seem too difficult after seeing Example 12.3, but it turns
out that the problem of localizing using optimal motions is NP-hard if any simple polygon
is allowed. This was proved in [300] by showing that every abstract decision tree can
be realized as a localization problem, and the abstract decision tree problem is already
known to be NP-hard.

Many interesting variations of the localization problem in continuous spaces can be
constructed by changing the sensing model. For example, suppose that the robot can
only measure distances up to a limit; all points beyond the limit cannot be seen. This
corresponds to many realistic sensing systems, such as infrared sensors, sonars, and range
scanners on mobile robots. This may substantially enlarge H (y). Suppose that the robot
can take distance measurements only in a limited number of directions, as shown in
Figure 11.14b. Another interesting variant can be made by removing the compass. This
introduces the orientation confusion effects observed in Section 12.2.1. One can even
consider interesting localization problems that have little or no sensing [754, 755], which
yields I-spaces that are similar to that for the tray tilting example in Figure 11.28.

12.2.3 Probabilistic methods for localization

The localization problems considered so far have involved only nondeterministic uncer-
tainty. Furthermore, it was assumed that nature does not interfere with the state transition
equation or the sensor mapping. If nature is involved in the sensor mapping, then future
I-states are not predictable. For the active localization problem, this implies that a localiza-
tion plan must use information feedback. In other words, the actions must be conditioned
on I-states so that the appropriate decisions are taken after new observations are made. The
passive localization problem involves computing probabilistic I-states from the sensing
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and action histories. The formulation and solution of localization problems that involve
nature and nondeterministic uncertainty will be left to the reader. Only the probabilistic
case will be covered here.

Discrete problems

First consider adding probabilities to the discrete grid problem of Section 12.2.1. A state
is once again expressed as x = (p, d). The initial condition is a probability distribution,
P (x1), over X. One reasonable choice is to make P (x1) a uniform probability distribution,
which makes each direction and position equally likely. The robot is once again given
four actions, but now assume that nature interferes with state transitions. For example,
if uk = F , then perhaps with high probability the robot moves forward, but with low
probability it may move right, left, or possibly not move at all, even if it is not blocked.

The sensor mapping from Section 12.2.1 indicated whether the robot moved. In the
current setting, nature can interfere with this measurement. With low probability, it may
incorrectly indicate that the robot moved, when in fact it remained stationary. Conversely,
it may also indicate that the robot remained still, when in fact it moved. Since the sensor
depends on the previous two states, the mapping is expressed as

yk = h(xk, xk−1, ψk). (12.19)

With a given probability model, P (ψk), this can be expressed as P (yk|xk, xk−1).
To solve the passive localization problem, the expressions from Section 11.2.3 for

computing the derived I-states are applied. If the sensor mapping used only the current
state, then (11.36), (11.38), and (11.39) would apply without modification. However, since
h depends on both xk and xk−1, some modifications are needed. Recall that the observations
start with y2 for this sensor. Therefore, P (x1|η1) = P (x1|y1) = P (x1), instead of applying
(11.36).

After each stage, P (xk+1|ηk+1) is computed from P (xk|ηk) by first applying (11.38) to
take into account the action uk . Equation (11.39) takes into account the sensor observation,
yk+1, but P (yk+1|xk+1, ηk, uk) is not given because the sensor mapping also depends on
xk−1. It reduces using marginalization as

P (yk|ηk−1, uk−1, xk) =
∑

xk−1∈X

P (yk|ηk−1, uk−1, xk−1, xk)P (xk−1|ηk−1, uk−1, xk). (12.20)

The first factor in the sum can be reduced to the sensor model,

P (yk|ηk−1, uk−1, xk−1, xk) = P (yk|xk−1, xk), (12.21)

because the observations depend only on xk−1, xk , and the nature sensing action, ψk . The
second term in (12.20) can be computed using Bayes’ rule as

P (xk−1|ηk−1, uk−1, xk) = P (xk|ηk−1, uk−1, xk−1)P (xk−1|ηk−1, uk−1)
∑

xk−1∈X

P (xk|ηk−1, uk−1, xk−1)P (xk−1|ηk−1, uk−1)
, (12.22)

in which P (xk|ηk−1, uk−1, xk−1) simplifies to P (xk|uk−1, xk−1). This is directly obtained
from the state transition probability, which is expressed as P (xk+1|xk, uk) by shifting the
stage index forward. The term P (xk−1|ηk−1, uk−1) is given by (11.38). The completes the
computation of the probabilistic I-states, which solves the passive localization problem.

Solving the active localization problem is substantially harder because a search occurs
on Iprob. The same choices exist as for the discrete localization problem. Computing an
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(a) (b)

(c) (d)

Figure 12.11: Four frames from an animation that performs probabilistic localization of an indoor mobile
robot using sonars [352].

information-feedback plan over the whole I-space Iprob is theoretically possible but im-
practical for most environments. The search-based idea that was applied to incrementally
grow a directed graph in Section 12.2.1 could also be applied here. The success of the
method depends on clever search heuristics developed for this particular problem.

Continuous problems

Localization in a continuous space using probabilistic models has received substantial
attention in recent years [260, 450, 625, 828, 888, 962]. It is often difficult to localize
mobile robots because of noisy sensor data, modeling errors, and high demands for
robust operation over long time periods. Probabilistic modeling and the computation of
probabilistic I-states have been quite successful in many experimental systems, both for
indoor and outdoor mobile robots. Figure 12.11 shows localization successfully being
solved using sonars only. The vast majority of work in this context involves passive
localization because the robot is often completing some other task, such as reaching
a particular part of the environment. Therefore, the focus is mainly on computing the
probabilistic I-states, rather than performing a difficult search on Iprob.

Probabilistic localization in continuous spaces most often involves the definition of the
probability densities p(xk+1|xk, uk) and p(yk|xk) (in the case of a state sensor mapping).
If the stages represent equally spaced times, then these densities usually remain fixed for
every stage. The state space is usually X = SE(2) to account for translation and rotation,
but it may be X = R

2 for translation only. The density p(xk+1|xk, uk) accounts for the
unpredictability that arises when controlling a mobile robot over some fixed time interval.
A method for estimating this distribution for nonholonomic robots by solving stochastic
differential equations appears in [1004].
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The density p(yk|xk) indicates the relative likelihood of various measurements when
given the state. Most often this models distance measurements that are obtained from a
laser range scanner, an array of sonars, or even infrared sensors. Suppose that a robot
moves around in a 2D environment and takes depth measurements at various orientations.
In the robot body frame, there are n angles at which a depth measurement is taken. Ideally,
the measurements should look like those in Figure 11.15b; however, in practice, the data
contain substantial noise. The observation y ∈ Y is an n-dimensional vector of noisy depth
measurements.

One common way to define p(y|x) is to assume that the error in each distance mea-
surement follows a Gaussian density. The mean value of the measurement can easily be
calculated as the true distance value once x is given, and the variance should be determined
from experimental evaluation of the sensor. If it is assumed that the vector of measure-
ments is modeled as a set of independent, identically distributed random variables, a
simple product of Guassian densities is obtained for p(y|x).

Once the models have been formulated, the computation of probabilistic I-states directly
follows from Sections 11.2.3 and 11.4.1. The initial condition is a probability density
function, p(x1), over X. The marginalization and Bayesian update rules are then applied
to construct a sequence of density functions of the form p(xk|ηk) for every stage, k.

In some limited applications, the models used to express p(xk+1|xk, uk) and p(yk|xk)
may be linear and Gaussian. In this case, the Kalman filter of Section 11.6.1 can be
easily applied. In most cases, however, the densities will not have this form. Moment-
based approximations, as discussed in Section 11.4.3, can be used to approximate the
densities. If second-order moments are used, then the so-called extended Kalman filter
is obtained, in which the Kalman filter update rules can be applied to a linear-Gaussian
approximation to the original problem. In recent years, one of the most widely accepted
approaches in experimental mobile robotics is to use sampling-based techniques to directly
compute and estimate the probabilistic I-states. The particle-filtering approach, described
in general in Section 11.6.2, appears to provide good experimental performance when
applied to localization. The application of particle filtering in this context is often referred
to as Monte Carlo localization; see the references at the end of this chapter.

12.3 Environment uncertainty and mapping

After reading Section 12.2, you may have already wondered what happens if the map is
not given. This leads to a fascinating set of problems that are fundamental to robotics.
If the state represents configuration, then the I-space allows tasks to be solved without
knowing the exact configuration. If, however, the state also represents the environment,
then the I-space allows tasks to be solved without even having a complete representation
of the environment! This is obviously very powerful because building a representation
of a robot’s environment is very costly and subject to errors. Furthermore, it is likely to
become quickly outdated.

12.3.1 Grid problems

To gain a clear understanding of the issues, it will once again be helpful to consider discrete
problems. The discussion here is a continuation of Section 12.2.1. In that section, the state
represented a position, p, and a direction, d. Now suppose that the state is represented as
(p, d, e), in which e represents the particular environment that contains the robot. This
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will require defining a space of environments, which is rarely represented explicitly. It is
often expressed as a constraint on the types of environments that can exist. For example,
the set of environments could be defined as all connected 2D grid-planning problems. The
set of simply connected grid-planning problems is even further constrained.

One question immediately arises: When are two maps of an environment equivalent?
Recall the maps shown in Figures 12.2a and 12.3b. The map in Figure 12.3b appears
the same for every 90-degree rotation; however, the map in Figure 12.2a appears to be
different. Even if it appears different, it should still be the same environment, right?
Imagine mapping a remote island without having a compass that indicates the direction
to the north pole. An orientation (which way is up?) for the map can be chosen arbitrarily
without any harm. If a map of the environment is made by “drawing” on R

2, it should seem
that two maps are equivalent if a transformation in SE(2) (i.e., translation and rotation)
can be applied to overlay one perfectly on top of the other.

When defining an environment space, it is important to clearly define what it means
for two environments to be equivalent. For example, if we are required to build a map by
exploration, is it required to also provide the exact translation and orientation? This may
or may not be required, but it is important to specify this in the problem description. Thus,
we will allow any possibility: If the maps only differ by a transformation in SE(2), they
may or may not be defined as equivalent, depending on the application.

To consider some examples, it will be convenient to define some finite or infinite sets
of environments. Suppose that planning on a 2D grid is once again considered. In this
section, assume that each grid point p has integer coordinates (i, j ) ∈ Z× Z, as defined
in Section 2.1. Let E denote a set of environments. Once again, there are four possible
directions for the robot to face; let D denote this set. The state space is

X = Z× Z×D × E. (12.23)

Assume in general that an environment, e ∈ E, is specified by indicating a subset of Z× Z

that corresponds to the positions of all of the white tiles on which the robot can be placed.
All other tiles are black, which means that they are obstacles. If any subset of Z× Z is
allowed, then E = pow(Z× Z). This includes many useless maps, such as a checkerboard
that spans the entire plane; this motivates some restrictions on E. For example, E can be
restricted to be the subset of pow(Z× Z) that corresponds to all maps that include a white
tile at the origin, (0, 0), and for which all other white tiles are reachable from it and lie
within a bounded region.

Examples will be given shortly, but first think about the kinds of problems that can be
formulated:

1. Map building: The task is to visit every reachable tile and construct a map. Depending on
how E is defined, this may identify a particular environment in E or a set of environments
that are consistent with the exploration. This may also be referred to as simultaneous
localization and mapping, or SLAM, because constructing a complete map usually implies
that the robot position and orientation are eventually known [486, 970]. Thus, the complete
state, x ∈ X, as given in (12.23) is determined by the map-building process. For the grid
problem considered here, this point is trivial, but the problem becomes more difficult for
the case of probabilistic uncertainty in a continuous environment. See Section 12.3.5 for
this case.

2. Determining the environment: Imagine that a robot is placed into a building at random
and then is switched on. The robot is told that it is in one of a fixed (i.e., 10) number of
buildings. It must move to determine which one. As the number of possible environments
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e1 e2 e3

e4 e5 e6

Figure 12.12: A set of possible 2D grid environments. In each case, the “up” direction represents north
and the white circle represents the origin, p = (0, 0).

is increased, the problem appears to be more like map building. In fact, map building can
be considered as a special case in which little or no constraints are initially imposed on
the set of possible environments.

3. Navigation: In this case, a goal position is to be reached, even though the robot has no
map. The location of the goal relative to the robot can be specified through a sensor. The
robot is allowed to solve this problem without fully exploring the environment. Thus,
the final nondeterministic I-state after solving the task could contain numerous possible
environments. Only a part of the environment is needed to solve the problem.

4. Searching: In this case, a goal state can only be identified when it is reached (or detected
by a short-range sensor). There are no additional sensors to help in the search. The
environment must be systematically explored, but the search may terminate early if the
goal is found. A map does not necessarily have to be constructed. Searching can be
extended to pursuit-evasion, which is covered in Section 12.4.

Simple examples of determining the environment and navigation will now be given.

Example 12.4 (Determining the Environment) Suppose that the robot is told that it
was placed into one of the environments shown in Figure 12.12. Let the initial position of
the robot be (0, 0), which is shown as a white circle. Let the initial direction be east and the
environment be e3. These facts are unknown to the robot. Use the same actions and state
transition model as in Section 12.2.1. The current state space includes the environment,
but the environment never changes. Only information regarding which environment the
robot is in will change. The sensing model again only indicates whether the robot has
changed its position from the application of the last action.

The initial condition is X, because any position, orientation, and environment are possi-
ble. Some nondeterministic I-states will now be determined. Let (u1, u2, u3) = (F, R, R).
From this sequence of actions, the sensor observations (y2, y3, y4) report that the robot has
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e7 e8 e9

Figure 12.13: Add these environments to the set depicted in Figure 12.12. Each is essentially equivalent
to an environment already given and generally does not affect the planning problem.

not yet changed its position. The orientation was changed to west, but this is not known
to the robot (it does, however, know that it is now pointing in the opposite direction with
respect to its initial orientation). What can now be inferred? The robot has discovered
that it is on a tile that is bounded on three sides by obstacles. This means that e1 and
e6 are ruled out as possible environments. In the remaining four environments, the robot
deduces that it must be on one of the end tiles: 1) the upper left of e2, 2) the upper right of
e2, 3) the bottom of e3, 4) the rightmost of e3, 5) the top of e4, 6) the lower left of e5, or
7) the upper left of e5. It can also make strong inferences regarding its orientation. It even
knows that the action u4 = R would cause it to move because all four directions cannot
be blocked.

Apply (u4, u5) = (R, F). The robot should move two times, to arrive in the upper left
of e3 facing north. In this case, any of e2, e3, e4, or e5 are still possible; however, it now
knows that its position at stage 4 could not have been in the upper left of e5. If the robot
is in e3, it knows that it must be in the upper left, but it still does not know its orientation
(it could be north or west). The robot could also be in the lower left or lower right of e2.

Now let (u6, u7) = (R, F), which moves the robot twice. At this point, e4 and e5 are
ruled out, and the set of possible environments is {e2, e3} (one orientation from e2 is also
ruled out). If u8 = R is applied, then the sensor observation y9 reports that the robot does
not move. This rules out e2. Finally, the robot can deduce that it is in the upper right of
e3 facing south. It can also deduce that in its initial state it was in the lower left of e3

facing east. Thus, all of the uncertainty has been eliminated through the construction of
the nondeterministic I-states.

Now consider adding the environments shown in Figure 12.13 to the set and starting
the problem over again. Environment e7 is identical to e1, except that the origin is moved,
and e8 is identical to e2, except that it is rotated by 180 degrees. In these two cases, there
exist no inputs that enable the robot to distinguish between e1 and e7 or between e2 and
e8. It is reasonable to declare these environments to be pairwise equivalent. The only
distinction between them is the way that the map is drawn.

If the robot executes the same action sequence as given previously, then it will also not
be able to distinguish e3 from e9. It is impossible for the robot to deduce whether there is
a white tile somewhere that is not reachable. A general environment space may include
such variations, and this will prevent the robot from knowing the precise environment.
However, this usually presents no additional difficulty in solving a planning problem.
Therefore, it might make sense to declare e3 and e9 to be equivalent. The fact that tasks
can be achieved without knowing the precise environment is very important. In a sense,
the environment is observed at some “resolution” that is sufficient for solving a problem;
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further details beyond that are unimportant. Since the robot can ignore unnecessary details,
cheaper and more reliable systems can often be built. �

Example 12.5 (Reaching a Goal State) Suppose once again that the set of environments
shown in Figure 12.12 is given. This time, also assume that the position p = (0, 0) and
orientation east are known. The environment is e4, but it is unknown to the robot. The
task is to reach the position (2, 0), which means that the robot must move two tiles to the
east. The plan (u1, u2) = (F, F) achieves the goal without providing much information
about the environment. After u1 = F is applied, it is known that the environment is not
e3; however, after this, no additional information is gathered regarding the environment
because it is not relevant to solving the problem. If the goal had been to reach (2, 2), then
more information would be obtained regarding the environment. For example, if the plan
is (F, L, R, L), then it is known that the environment is e6. �

Algorithms for determining the environment

To determine the environment (which includes the map-building problem), it is sufficient
to reach and remember all of the tiles. If the robot must determine its environment from
a small set of possibilities, an optimal worst-case plan can be precomputed. This can
be computed on "X = Indet by using value iteration or the nondeterministic version of
Dijkstra’s algorithm from Section 10.2.3. When the robot is dropped into the environment,
it applies the optimal plan to deduce its position, orientation, and environment. If the set of
possible environments is too large (possibly infinite), then a lazy approach is most suitable.
This includes the map-building problem, for which there may be little or no assumptions
about the environment. A lazy approach to the map-building problem simply has to
ensure that every tile is visited. One additional concern may be to minimize the amount
of reroute paths, which were mentioned in Section 12.2.1. A simple algorithm that solves
the problem while avoiding excessive rerouting is depth-first search, from Section 2.2.2.

Algorithms for navigation

The navigation task is to reach a prescribed goal, even though no environment map
is given. It is assumed that the goal is expressed in coordinates relative to the robot’s
initial position and orientation (these are odometric coordinates). If the goal can only be
identified when the robot is on the goal tile, then searching is required, which is covered
next. As seen in Example 12.5, the robot is not required to learn the whole environment
to solve a navigation problem. The search algorithms of Section 2.2 may be applied. For
example, the A∗ method will find the optimal route to the goal, and a reasonable heuristic
underestimate of the cost-to-go can be defined by assuming that all tiles are empty.
Although such a method will work, the reroute costs are not being taken into account.
Thus, the optimal path eventually computed by A∗ may be meaningless unless other
robots will later use this information to reach the same goal in the same environment. For
the unfortunate robot that went first, a substantial amount of exploration steps might have
been wasted because A∗ is not designed for exploration during execution. Even though
the search algorithms in Section 2.2 assumed that the search graph was gradually revealed
during execution, as opposed to being given in advance, they allow the current state in the
search to jump around arbitrarily. In the current setting, this would require teleporting the
robot to different parts of the environment. Section 12.3.2 covers a navigation algorithm
that extends Dijkstra’s algorithm to work correctly when the costs are discovered during
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execution. It can be nicely applied to the grid-based navigation problem presented in this
section, even when the environment is initially unknown.

Algorithms for maze searching

A fascinating example of using an I-map to dramatically reduce the I-space was given
a long time ago by Blum and Kozen [121]. Map building requires space that is linear
in the number of tiles; however, it is possible to ensure that the environment has been
systematically searched using much less space. For 2D grid environments, the searching
problem can be solved without maintaining a complete map. It must systematically visit
every tile; however, this does not imply that it must remember all of the places that it has
visited. It is important only to ensure that the robot does not become trapped in an infinite
loop before covering all tiles. It was shown in [121] that any maze can be searched using
space that is only logarithmic in the number of tiles. This implies that many different
environments have the same representation in the machine. Essentially, an I-map was
developed that severely collapses Indet down to a smaller derived I-space.

Assume that the robot motion model is the same as has been given so far in this section;
however, no map of the environment is initially given. Whatever direction the robot is
facing initially can be declared to be north without any harm. It is assumed that any planar
2D grid is possible; therefore, there are identical maps for each of the four orientations.
The north direction of one of these maps might be mislabeled by arbitrarily declaring the
initial direction to be north, but this is not critical for the coming approach. It is assumed
that the robot is a finite automaton that carries a binary counter. The counter will be
needed because it can store values that are arbitrarily large, which is not possible for the
automaton alone.

To keep the robot from wandering around in circles forever, two important pieces of
information need to be maintained:

1. The latitude, which is the number of tiles in the north direction from the robot’s initial
position.

2. When a loop path is executed, it needs to know its orientation, which means whether the
loop travels clockwise or counterclockwise.

Both of these can be computed from the history I-state, which takes the same form as
in (12.12), except in the current setting, X is given by (12.23) and E is the set of all
bounded environments (bounded means that the white tiles can be contained in a large
rectangle). From the history I-state, let ũ′k denote the subsequence of the action history
that corresponds to actions that produce motions. The latitude, l(ũ′k), can be computed by
counting the number of actions that produce motions in the north direction and subtracting
those that produce motions in the south direction. The loop orientation can be determined
by angular odometry (which is equivalent to having a compass in this problem [288]).
Let the value r(ũ′k) give the number of right turns in ũ′k minus the number of left turns
in ũ′k . Note that making four rights yields a clockwise loop and r(ũ′k) = 4. Making four
lefts yields a counterclockwise loop and r(ũ′k) = −4. In general, it can be shown that for
any loop path that does not intersect itself, either r(ũ′k) = 4, which means that it travels
clockwise, or r(ũ′k) = −4, which means that it travels counterclockwise.

It was stated that a finite automaton and a binary counter are needed. The counter is
used to keep track of l(ũ′k) as the robot moves. It turns out that an additional counter
is not needed to measure the angular odometry because the robot can instead perform
mod-3 arithmetic when counting right and left turns. If the result is r(ũ′k) = 1 mod 3
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Figure 12.14: An example that has six obstacles.

Figure 12.15: The obstacles are connected together by extending a thin obstacle downward from their
unique points.

after forming a loop, then the robot traveled counterclockwise. If the result is r(ũ′k) = 2
mod 3, then the robot traveled clockwise. This observation avoids using an unlimited
number of bits, contrary to the case of maintaining latitude. The construction so far can
be viewed as part of an I-map that maps the history I-states into a much smaller derived
I-space.

The plan will be described in terms of the example shown in Figure 12.14. For any
environment, there are obstacles in the interior (this example has six), and there is an
outer boundary. Using the latitude and orientation information, a unique point can be
determined on the boundary of each obstacle and on the outer boundary. The unique point
is defined as the westernmost vertex among the southernmost vertices of the obstacle.
These are shown by small discs in Figure 12.15. By using the latitude and orientation
information, the unique point can always be found (see Exercise 4).

To solve the problem, the robot moves to a boundary and traverses it by performing
wall following. The robot can use its sensing information to move in a way that keeps
the wall to its left. Assuming that the robot can always detect a unique point along the
boundary, it can imagine that the obstacles are connected as shown in Figure 12.15. There
is a fictitious thin obstacle that extends southward from each unique point. This connects
the obstacles together in a way that appears to be an extension of the outer boundary.
In other words, imagine that the obstacles are protruding from the walls, as opposed to
“floating” in the interior. By refusing to cross these fictitious obstacles, the robot moves
around the boundary of all obstacles in a single closed-loop path. The strategy so far
does not ensure that every cell will be visited. Therefore, the modification shown in Fi-
gure 12.16 is needed to ensure that every tile is visited by zig-zag motions. It is interesting
to compare the solution to the spanning-tree coverage planning approach in Section 7.6,



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

PLANNING UNDER SENSING UNCERTAINTY 547

(a) (b)

Figure 12.16: (a) A clockwise loop produced by wall following. (b) An alternative loop that visits all of the
tiles in the interior.

Figure 12.17: The Automated Cross-Country Unmanned Vehicle (XUV) is equipped with laser radar and
other sensors, and uses Stentz’s algorithm to navigate (courtesy of General Dynamics Robotic Systems).

which assumed a complete map was given and the goal was to optimize the distance
traveled.

If there is some special object in the environment that can be detected when reached
by the robot, then the given strategy is always guaranteed to find it, even though at the
end, it does not even have a map!

The resulting approach can be considered as an information-feedback plan on the I-
space. In this sense, Blum and Kozen were the “planner” that found a plan that solves any
problem. Alternative plans do not need to be computed from the problem data because
the plan can handle all possible environments without modification. This is the power of
working directly with an I-space over the set of environments, as opposed to requiring
state estimation.

12.3.2 Stentz’s algorithm (D∗)

Imagine exploring an unknown planet using a robotic vehicle. The robot moves along
the rugged terrain while using a range scanner to make precise measurements of the
ground in its vicinity. As the robot moves, it may discover that some parts were easier
to traverse than it originally thought. In other cases, it might realize that some direction
it was intending to go is impassable due to a large bolder or a ravine. If the goal is to
arrive at some specified coordinates, this problem can be viewed as a navigation problem
in an unknown environment. The resulting solution is a lazy approach, as discussed in
Section 12.2.1.

This section presents Stentz’s algorithm [914], which has been used in many outdoor
vehicle navigation applications, such as the vehicle shown in Figure 12.17. The algorithm
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can be considered as a dynamic version of the backward variant of Dijkstra’s algorithm.
Thus, it maintains cost-to-go values, and the search grows outward from the goal, as
opposed to cost-to-come values from xI in the version of Dijkstra’s algorithm in Section
2.3.3. The method applies to any optimal planning problem. In terms of the state transition
graph, it is assumed that the costs of edge transitions are unknown (equivalently, each cost
l(x, u) is unknown). In the navigation problem, a positive cost indicates the difficulty of
traveling from state x to state x ′ = f (x, u).

To work with a concrete problem, imagine that a planet surface is partitioned into a high-
resolution grid. The state space is simply a bounded set of grid tiles; hence, X ⊆ Z× Z.
Each grid tile is assigned a positive, real value, c(x), that indicates the difficulty of its
traversal. The actions U (x) at each grid point can be chosen using standard grid neighbors
(e.g., four-neighbors or eight-neighbors). This now defines a state transition graph over X.
From any x ′ ∈ X and u′ ∈ U (x ′) such that x = f (x ′, u′), the cost term is assigned using
c as l(x ′, u′) = c(x). This model is a generalization of the grid in Section 12.3.1, in which
the tiles were either empty or occupied; here any positive real value is allowed. In the
coming explanation, the costs may be more general than what is permitted by starting from
c(x), and the state transition graph does not need to be derived from a grid. Some initial
values are assigned arbitrarily for all l(x, u). For example, in the planetary exploration
application, the cost of traversing a level, unobstructed surface may be uniformly assumed.

The task is to navigate to some goal state, xG. The method works by initially con-
structing a feedback plan, π , on a subset of X that includes both xI and xG. The plan,
π , is computed by iteratively applying the procedure in Figure 12.18 until the optimal
cost-to-go is known at xI . A priority queue, Q, is maintained as in Dijkstra’s algorithm;
however, Stentz’s algorithm allows the costs of elements in Q to be modified due to
information sensed during execution. Let Gbest (x) denote the lowest cost-to-go associated
with x during the time it spends in Q. Assume that Q is sorted according to Gbest . Let
Gcur (x) denote its current cost-to-go value, which may actually be more than Gbest (x)
if some cost updates caused it to increase. Suppose that some u ∈ U (x) can be applied
to reach a state x ′ = f (x, u). Let Gvia(x, x ′) denote the cost-to-go from x by traveling
via x ′,

Gvia(x, x ′) = Gcur (x ′) + l(x, u). (12.24)

If Gvia(x, x ′) < Gcur (x), then it indicates that Gcur (x) could be reduced. If Gcur (x ′) ≤
Gbest (x), then it is furthermore known that Gcur (x ′) is optimal. If both of these conditions
are met, then Gcur (x) is updated to Gvia(x, x ′).

After the iterations of Figure 12.18 finish, the robot executes π , which generates
a sequence of visited states. Let xk denote the current state during execution. If it is
discovered that if π(xk) = uk would be applied, the received cost would not match the
cost l(xk, uk) in the current model, then the costs need to be updated. More generally,
the robot may have to be able to update costs within a region around xk that corresponds
to the sensor field of view. For the description below, assume that an update, l(xk, uk),
is obtained for xk only (the more general case is handled similarly). First, l(xk, uk) is
updated to the newly measured value. If xk happened to be dead (visited, but no longer
in Q), then it is inserted again into Q, with cost Gcur (xk). The steps in Figure 12.18 are
performed until Gcur (xk) ≤ Gbest (x) for all x ∈ Q. Following this, the plan execution
continues until either the goal is reached or another cost mismatch is discovered. At any
time during execution, the robot motions are optimal given the current information about
the costs [914].
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STENTZ’S ALGORITHM

1. Remove x from Q, which is the state with the lowest Gbest (x) value.

2. If Gbest (x) < Gcur (x), then x has increased its value while on Q. If x can improve its cost
by traveling via a neighboring state for which the optimal cost-to-go is known, it should
do so. Thus, for every u ∈ U (x), test for x ′ = f (x, u) whether Gvia(x, x ′) < Gcur (x) and
Gcur (x ′) ≤ Gbest (x). If so, then update Gcur (x) := Gvia(x, x ′) and π (x) := u.

3. This and the remaining steps are repeated for each x ′ such that there exists u′ ∈ U (x ′) for
which x = f (x ′, u′). If x ′ is unvisited, then assign π (x ′) := u′, and place x ′ onto Q with
cost Gvia(x ′, x).

4. If the cost-to-go from x ′ appears incorrect because π (x ′) = u′ but Gvia(x ′, x) 	= Gcur (x ′),
then an update is needed. Place x ′ onto Q with cost Gvia(x ′, x).

5. If π (x ′) 	= u′ but Gvia(x ′, x) < Gcur (x ′), then from x ′ it is better to travel via x than to
use π (x ′). If Gcur (x) = Gbest (x), then π (x ′) := u′ and x ′ is inserted into Q because the
optimal cost-to-go for x is known. Otherwise, x (instead of x ′) is inserted into Q with its
current value, Gcur (x).

6. One final condition is needed to avoid generating cycles in π . If x ′ is dead (visited, but
no longer in Q), it may need to be inserted back into Q with cost Gcur (x ′). This must be
done if π (x ′) 	= u′, Gvia(x, x ′) < Gcur (x), and Gcur (x) > Gbest (x)

Figure 12.18: Stentz’s algorithm, often called D∗ (pronounced “dee star”), is a variant of Dijkstra’s algorithm
that dynamically updates cost values as the cost terms are learned during execution. The steps here are
only one iteration of updating the costs after a removal of a state from Q.

(a) (b) (c)

Figure 12.19: An example of executing Stentz’s algorithm (courtesy of Tony Stentz).

Figure 12.19 illustrates the execution of the algorithm. Figure 12.19a shows a synthetic
terrain that was generated by a stochastic fractal. Darker gray values indicate higher cost.
In the center, very costly terrain acts as a barrier, for which an escape route exists in the
downward direction. The initial state is the middle of the left edge of the environment,
and the goal state is the right edge. The robot initially plans a straight-line path and then
incrementally updates the path in each step as it moves. In Figure 12.19b, the robot has
encountered the costly center and begins to search for a way around. Finally, the goal is
reached, as shown in Figure 12.19c. The executed path is actually the result of executing
a series of optimal paths, each of which is based on the known information at the time a
single action is applied.

Interpretation in terms of I-spaces

An alternative formulation will now be given to help understand the connection to I-spaces
of a set of environments. The state space, as defined previously, could instead be defined
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as a configuration space, C = Z× Z. Let q ∈ C denote a configuration. Suppose that
each possible environment corresponds to one way to assign costs to all of the edges in
a configuration transition graph. The set E of all possible environments for this problem
seems to be all possible ways to assign costs, l(q, u). The state space can now be defined
as C × E, and for each state, x = (q, e) ∈ X, the configuration and complete set of costs
are specified. Initially, it is guessed that the robot is in some particular e ∈ E. If a cost
mismatch is discovered, this means that a different environment model is now assumed
because a transition cost is different from what was expected. The costs should actually
be written as l(x, u) = l(q, e, u), which indicates the dependency of the costs on the
particular environment is assumed.

A nondeterministic I-state corresponds to a set of possible cost assignments, along
with their corresponding configurations. Since the method requires assigning costs that
have not yet been observed, it takes a guess and assumes that one particular environment
in the nondeterministic I-state is the correct one. As cost mismatches are discovered, it
is realized that the previous guess lies outside of the updated nondeterministic I-state.
Therefore, the guess is changed to incorporate the new cost information. As this process
evolves, the nondeterministic I-state continues to shrink. Note, however, that in the end,
the robot may solve the problem while being incorrect about the precise e ∈ E. Some tiles
are never visited, and their true costs are therefore unknown. A default assumption about
their costs was made to solve the problem; however, the true e ∈ E can only be known if
all tiles are visited. It is only true that the final assumed default values lie within the final
nondeterministic I-state.

12.3.3 Planning in unknown continuous environments

We now move from discrete to continuous environments but continue to use nondeter-
ministic uncertainty. First, several bug algorithms [507, 670, 508] are presented, which
represent a family of motion plans that solve planning problems using ideas that are
related in many ways to the maze exploration ideas of Section 12.3.1. In addition to bug
algorithms, the concept of competitive ratios is also briefly covered.

The following model will be used for bug algorithms. Suppose that a point robot is
placed into an unknown 2D environment that may contain any finite number of bounded
obstacles. It is assumed that the boundary of each obstacle and the outer boundary (if
it exists) are piecewise-analytic (here, analytic implies that each piece is smooth and
switches its curvature sign only a finite number of times). Thus, the obstacles could be
polygons, smooth curves, or some combination of curved and linear parts. The set E of
possible environments is overwhelming, but it will be managed by avoiding its explicit
construction. The robot configuration is characterized by its position and orientation.

There are two main sensors:2

1. A goal sensor indicates the current Euclidean distance to the goal and the direction to the
goal, expressed with respect to an absolute “north.”

2. A local visibility sensor provides the exact shape of the boundary within a small distance
from the robot. The robot must be in contact or almost in contact to observe part of the
boundary; otherwise, the sensor provides no useful information.

2 This is just one possible sensing model. Alternative combinations of sensors may be used, provided that they enable
the required motions and decisions to be executed in the coming motion strategies.
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xGxI

Figure 12.20: An illustration of the Bug1 strategy.

The goal sensor essentially encodes the robot’s position in polar coordinates (the goal is
the origin). Therefore, unique (x, y) coordinates can be assigned to any position visited
by the robot. This enables it to incrementally trace out obstacle boundaries that it has
already traversed. The local visibility sensor provides just enough information to allow
wall-following motions; the range of the sensor is very short so that the robot cannot learn
anything more about the structure of the environment.

Some strategies will now be considered for the robot. Each of these can be considered
as an information-feedback plan on a nondeterministic I-space.

The Bug1 strategy

A strategy called Bug1 was developed in [670] and is illustrated in Figure 12.20. The
execution is as follows:

1. Move toward the goal until an obstacle or the goal is encountered. If the goal is reached,
then stop.

2. Turn left and follow the entire perimeter of the contacted obstacle. Once the full perimeter
has been visited, then return to the point at which the goal was closest, and go to Step 1.

Determining that the entire perimeter has been traversed may seem to require a pebble or
marker; however, this can be inferred by finding the point at which the goal sensor reading
repeats.

The worst case is conceptually simple to understand. The total distance traveled by the
robot is no greater than

d + 3

2

M∑

i=1

pi, (12.25)

in which d is the Euclidean distance from the initial position to the goal position, pi is
the perimeter of the ith obstacle, and M is the number of obstacles. This means that the
boundary of each obstacle is followed no more than 3/2 times. Figure 12.21 shows an
example in which each obstacle is traversed 3/2 times. This bound relies on the fact that
the robot can always recall the shortest path along the boundary to the point from which
it needs to leave. This seems reasonable because the robot can infer its distance traveled
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xI xG

Figure 12.21: A bad example for Bug1. The perimeter of each obstacle is spanned one and a half times.

xGxI

Figure 12.22: An illustration of the Bug2 strategy.

along the boundary from the goal sensor. If this was not possible, then the 3/2 would have
to be replaced by 2 because the robot could nearly traverse the full boundary twice in the
worst case.

The Bug2 strategy

An alternative to Bug1 is the Bug2 strategy, which is illustrated in Figure 12.22. The robot
always attempts to move along a line that connects the initial and goal positions. When
the robot is on this line, the goal direction will be either the same as from the initial state
or it will differ by π radians (if the robot is on the other side of the goal). The first step
is the same as for Bug1. In the second step, the robot follows the perimeter only until
the line is reached and it is able to move in the direction toward the goal. From there,
it goes to Step 1. As expressed so far, it is possible that infinite cycles occur. Therefore,
a small modification is needed. If the robot detects that it is about to leave from a point
on the boundary from which it has already visited, it instead continues further along the
boundary until arriving at a point on the line that it has not yet visited. From there, it
leaves the line and goes to Step 1.

For the Bug2 strategy, the total distance traveled is no more than

d + 1

2

M∑

i=1

nipi, (12.26)
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xI xG

Figure 12.23: A bad case for Bug2. Only part of the resulting path is shown. Points from which the robot
can leave the boundary are indicated.

xI xG

Figure 12.24: An illustration of the VisBug strategy with unlimited radius.

in which ni is the number of times the ith obstacle crosses the line segment between the
initial position and the goal position. An example that illustrates the trouble caused by the
crossings is shown in Figure 12.23.

Using range data

The VisBug [669] and TangentBug [508, 595] strategies incorporate distance measure-
ments made by a range or visibility sensor to improve the efficiency. The TangentBug
strategy will be described here and is illustrated in Figure 12.24. Suppose that in addi-
tion to the sensors described previously, it is also equipped with a sensor that produces
measurements as shown in Figure 12.25. The strategy is as follows:

1. Move toward the goal, either through the interior of the space or by wall following, until
it is realized that the robot is trapped in a local minimum or the goal is reached. This is
similar to the gradient-descent motion of the potential-field planner of Section 5.4.3. If
the goal is reached, then stop; otherwise, go to the next step.

2. Execute motions along the boundary. First, pick a direction by comparing the previous
heading to the goal direction. While moving along the boundary, keep track of two
distances: df and dr . The distance df is the minimal distance from the goal, observed
while traveling along the boundary. The distance dr is the length of the shortest path from
the current position to the goal, assuming that the only obstacles are those visible by the
range sensor. The robot stops following the boundary if dr < df . In this case, go to Step
1. If the robot loops around the entire obstacle without this condition occurring, then the
algorithm reports that the goal is not reachable.
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Figure 12.25: The candidate motions with respect to the range sensor are the directions in which there is
a discontinuity in the depth map. The distances from the robot to the small circles are used to select the
desired motion.

A one-parameter family of TangentBug algorithms can be made by setting a depth limit
for the range sensor. As the maximum depth is decreased, the robot becomes more short-
sighted and performance degrades. It is shown in [508] that the distance traveled is no
greater than

d +
M∑

i=1

pi +
M∑

i=1

pimi, (12.27)

in which mi is the number of local minima for the ith obstacle and d is the initial distance
to the goal. The bound is taken over M obstacles, which are assumed to intersect a disc
of radius d, centered at the goal (all others can be ignored). A variant of the TangentBug,
called WedgeBug, was developed in [595] for planetary rovers that have a limited field of
view.

Competitive ratios

A popular way to evaluate algorithms that utilize different information has emerged from
the algorithms community. The idea is to compute a competitive ratio, which places
an on-line algorithm in competition with an algorithm that receives more information
[677, 893]. The idea can generally be applied to plans. First a cost is formulated, such as
the total distance that the robot travels to solve a navigation task. A competitive ratio can
then be defined as

max
e∈E

Cost of executing the plan that does not know e in advance.

Cost of executing the plan that knows e in advance
. (12.28)

The maximum is taken over all e ∈ E, which is usually an infinite set, as in the case of the
bug algorithms. A competitive ratio for a navigation problem can be made by comparing
the optimal distance to the total distance traveled by the robot during the execution of the
on-line algorithm. Since E is infinite, many plans fail to produce a finite competitive ratio.
The bug algorithms, while elegant, represent such an example. Imagine a goal that is very
close, but a large obstacle boundary needs to be explored. An obstacle boundary can be
made arbitrarily large while making the optimal distance to the goal very small. When
evaluated in (12.28), the result over all environments is unbounded. In some contexts, the
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(a) (b)

Figure 12.26: (a) A lost cow must � nd its way to the gate, but it does not know in which direction the
gate lies. (b) If there is no bound on the distance to the gate, then a doubling spiral strategy works well,
producing a competitive ratio of 9.

ratio may still be useful if expressed as a function of the representation. For example,
if E is a polygon with n edges, then an O(

√
n) competitive ratio means that (12.28) is

bounded over all n by c
√

n for some c ∈ R. For competitive ratio analysis in the context
of bug algorithms, see [377].

A nice illustration of competitive ratio analysis and issues is provided by the lost-
cow problem [61]. As shown in Figure 12.26a, a short-sighted cow is following along
an infinite fence and wants to find the gate. This makes a convenient one-dimensional
planning problem. If the location of the gate is given, then the cow can reach it directly
by traveling directly. If the cow is told that the gate is no more than distance 1 away, then
it can move one unit in one direction and return to try the other direction if the gate has
not been found. The competitive ratio in this case (the set of environments corresponds to
all gate placements) is 3. What if the cow is not even told how far away the gate may be?
In this case, the best strategy is a spiral search, which is to zig-zag back and forth while
iteratively doubling the distance traveled in each direction, as shown in Figure 12.26b. In
other words: left one unit, right one unit, left two units, right two units, left four units,
and so on. The competitive ratio for this strategy turns out to be 9, which is optimal. This
approach resembles iterative deepening, which was covered in Section 2.2.2.

12.3.4 Optimal navigation without a geometric model

This section presents gap navigation trees (GNTs) [943, 945], which are a data structure
and associated planning algorithm for performing optimal navigation in the continuous
environments that were considered in Section 12.3.3. It is assumed in this section that the
robot is equipped with a gap sensor, as depicted in Figure 11.16 of Section 11.5.1. At
every instant in time, the robot has available one action for each gap that is visible in the
gap sensor. If an action is applied, then the robot moves toward the corresponding gap.
This can be applied over continuous time, which enables the robot to “chase” a particular
gap. The robot has no other sensing information: It has no compass and no ability to
measure distances. Therefore, it is impossible to construct a map of the environment that
contains metric information.

Assume that the robot is placed into an unknown but simply connected planar envi-
ronment, X. The GNT can be extended to the case of multiply connected environments;
however, in this case there are subtle issues with distinguishability, and it is only possible
to guarantee optimality within a homotopy class of paths [944]. By analyzing the way that
critical events occur in the gap sensor, a tree representation can be built that indicates how
to move optimally in the environment, even though precise measurements cannot be taken.
Since a gap sensor cannot even measure distances, it may seem unusual that the robot can
move along shortest paths without receiving any distance (or metric) information. This
will once again illustrate the power of I-spaces.
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Gap

Gap chasing action
Point of boundary contact

Robot position

Figure 12.27: A gap-chasing action is applied, which moves the robot straight in the direction of the gap
until the boundary is contacted. Once this occurs, a new part of the environment becomes visible.

Disappear

Appear

(a) (b)

Figure 12.28: (a) The robot crosses a ray that extends from an in�ectional tangent. (b) A gap appears or
disappears from the gap sensor, depending on the direction.

The appearance of the environment relative to the position of the robot is encoded as
a tree that indicates how the gaps change as the robot moves. It provides the robot with
sufficient information to move to any part of the environment while traveling along the
shortest path. It is important to understand that the tree does not correspond to some static
map of the environment. It expresses how the environment appears relative to the robot
and may therefore change as the robot moves in the environment.

The root of the tree represents the gap sensor. For each gap that currently appears in the
sensor, an edge is connected to the root. Let these edges be called root edges. Each root
edge corresponds to an action that can be applied by the robot. By selecting a root edge,
the action moves the robot along a straight line toward that gap. Thus, there is a simple
control model that enables the robot to move precisely toward a particular point along the
boundary, ∂X, as shown in Figure 12.27.

Let V (x) be the visibility region, which is the set of all points in X that are visible
from x. Let X \ V (x) be called the shadow region, which is the set of all points not
visible from x. Let each connected component of the shadow region be called a shadow
component. Every gap in the gap sensor corresponds to a line segment in X that touches
∂X in two places (for example, see Figure 11.15a). Each of these segments forms a
boundary between the visibility region and a shadow component. If the robot would like
to travel to this shadow component, the shortest way is to move directly to the gap. When
moving toward a gap, the robot eventually reaches ∂X, at which point a new action must
be selected.

Critical gap events

As the robot moves, several important events can occur in the gap sensor:

1. Disappear: A gap disappears because the robot crosses an inflection ray as shown in
Figure 12.28. This means that some previous shadow component is now visible.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

PLANNING UNDER SENSING UNCERTAINTY 557

Figure 12.29: (a) The robot crosses a ray that extends from a bitangent. (b) Gaps split or merge, depending
on the direction.

Figure 12.30: If a gap disappears, it is simply removed from the GNT.

2. Appear: A gap appears because the robot crosses an inflection ray in the opposite direc-
tion. This means that a new shadow component exists, which represents a freshly hidden
portion of the environment.

3. Split: A gap splits into two gaps because the robot crosses a bitangent ray, as shown in
Figure 12.29 (this was also shown in Figure 12.5). This means that one shadow component
splits into two shadow components.

4. Merge: Two gaps merge into one because the robot crosses a bitangent ray in the oppose
direction. In this case, two shadow components merge into one.

This is a complete list of possible events, under a general position assumption that
precludes environments that cause degeneracies, such as three gaps that merge into one
or the appearance of a gap precisely where two other gaps split.

As each of these gap events occurs, it needs to be reflected in the tree. If a gap disappears,
as shown in Figure 12.30, then the corresponding edge and vertex are simply removed. If
a merge event occurs, then an intermediate vertex is inserted as shown in Figure 12.31.
This indicates that if that gap is chased, it will split into the two original gaps. If a split
occurs, as shown in Figure 12.32, then the intermediate vertex is removed. The appearance
of a gap is an important case, which generates a primitive vertex in the tree, as shown in
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Figure 12.31: If two gaps merge, an intermediate vertex is inserted into the tree.

Figure 12.32: If two gaps split, the intermediate vertex is removed.

Figure 12.33: The appearance of a gap results in a primitive vertex, which is denoted by a square.
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Figure 12.34: A simple environment for illustrating the gap navigation tree.
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Figure 12.35: Building a representation of the environment in Figure 12.34 using the gap navigation tree.
The sequence is followed from left to right. For convenience, the “R” or “L” inside of each vertex indicates
whether the shadow component is to the right or left of the gap, respectively. This information is not needed
by the algorithm, but it helps in understanding the representation.

Figure 12.33. Note that a primitive vertex can never split because chasing it will result in
its disappearance.

A simple example will now be considered.

Example 12.6 (Gap Navigation Tree) Suppose that the robot does not know the envi-
ronment in Figure 12.34. It moves from cells 1 to 7 in order and then returns to cell 1. The
following sequence of trees occurs: T1, . . . , T7, T ′

6, . . . , T ′
1, as shown in Figure 12.35. The

root vertex is shown as a solid black disc. Vertices that are not known to be primitive are
shown as circles; primitive vertices are squares. Note that if any leaf vertex is a circle, then
it means that the shadow region of R that is hidden by that gap has not been completely
explored. Note that once the robot reaches cell 5, it has seen the whole environment. This
occurs precisely when all leaf vertices are primitive. When the robot returns to the first
region, the tree is larger because it knows that the region on the right is composed of two
smaller regions to the right. If all leaves are squares, this means that the environment has
been completely explored. �
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Figure 12.36: Optimal navigation to a speci�ed part of the environment is achieved by “chasing” the
desired vertex in the GNT until it disappears. This will make a portion of the environment visible. In the
example, the gap labeled “h” is chased.

In the example, all of the interesting parts of the environment were explored. From this
point onward, all leaf vertices will be primitive vertices because all possible splits have
been discovered. In a sense, the environment has been completely learned, at the level of
resolution possible with the gap sensor. A simple strategy for exploring the environment
is to chase any gaps that themselves are nonprimitive leaf vertices or that have children
that are nonprimitive leaf vertices. A leaf vertex in the tree can be chased by repeatedly
applying actions that chase its corresponding gap in the gap sensor. This may cause the
tree to incrementally change; however, there is no problem if the action is selected to chase
whichever gap hides the desired leaf vertex, as shown in Figure 12.36. Every nonprimitive
leaf vertex will either split or disappear. After all nonprimitive leaf vertices have been
chased, all possible splits have been performed and only primitive leaves remain. In this
case, the environment has been completely learned.

Using the GNTs for optimal navigation

Since there is no precise map of the environment, it is impossible to express a goal state
using coordinates in R

2. However, a goal can be expressed in terms of the vertex that must
be chased to make the state visible. For example, imagine showing the robot an object
while it explores. At first, the object is visible, but a gap may appear that hides the object.
After several merges, a vertex deep in the tree may correspond to the location from which
the object is visible. The robot can navigate back to the object optimally by chasing the
vertex that first hid the object by its appearance. Once this vertex and its corresponding
gap disappear, the object becomes visible. At this time the robot can move straight toward
the object (assuming an additional sensor that indicates the direction of the object). It was
argued in [945] that when the robot chases a vertex in the GNT, it precisely follows the
paths of the shortest-path roadmap, which was introduced in Section 6.2.4. Each pair of
successive gap events corresponds to the traversal of a bitangent edge.

I-space interpretation

In terms of an I-space over the set of environments, the GNT considers large sets of envi-
ronments to be equivalent. This means that an I-map was constructed on which the derived
I-space is the set of possible GNTs. Under this I-map, many environments correspond to
the same GNT. Due to this, the robot can accomplish interesting tasks without requesting
further information. For example, if two environments differ only by rotation or scale, the
GNT representations are identical. Surprisingly, the robot does not even need to be con-
cerned about whether the environment boundary is polygonal or curved. The only impor-
tant concern is how the gaps events occur. For example, the environments in Figure 12.37
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Figure 12.37: These environments yield the same GNTs and are therefore equivalent at the resolution
of the derived I-space. The robot cannot measure distances and does not even care whether walls are
straight or curved; it is not relevant to the navigation task. Nevertheless, it executes optimal motions in
terms of the Euclidean distance traveled.

all produce the same GNTs and are therefore indistinguishable to the robot. In the same
way that the maze exploring algorithm of Section 12.3.1 did not need a complete map to
locate an object, the GNT does not need one to perform optimal navigation.

12.3.5 Probabilistic localization and mapping

The problems considered so far in Section 12.3 have avoided probabilistic modeling.
Suppose here that probabilistic models exist for the state transitions and the observations.
Many problems can be formulated by replacing the nondeterministic models in Section
12.3.1 by probabilistic models. This would lead to probabilistic I-states that represent
distributions over a set of possible grids and a configuration within each grid. If the
problem is left in its full generality, the I-space is enormous to the point that is seems
hopeless to approach problems in the manner used to far. If optimality is not required,
then in some special cases progress may be possible.

The current problem is to construct a map of the environment while simultaneously
localizing the robot with the respect to the map. Recall Figure 1.7 from Section 1.2. The
section covers a general framework that has been popular in mobile robotics in recent
years (see the literature suggested at the end of the chapter). The discussion presented here
can be considered as a generalization of the discussion from Section 12.2.3, which was
only concerned with the localization portion of the current problem. Now the environment
is not even known. The current problem can be interpreted as localization in a state space
defined as

X = C × E, (12.29)

in which C is a configuration space and E is the environment space. A state, xk , is
represented as xk = (qk, e); there is no k subscript for e because the environment is
assumed to be static). The history I-state provides the data to use in the process of
determining the state. As for localization in Section 12.2, there are both passive and active
versions of the problem. An incremental version of the active problem is sometimes called
the next-best-view problem [67, 240, 796]. The difficulty is that the robot has opposing
goals of: 1) trying to turn on the sensor at places that will gain as much new data as
possible, and 2) this minimization of redundancy can make it difficult to fuse all of the
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measurements into a global map. The passive problem will be described here; the methods
can be used to provide information for solving the active problem.

Suppose that the robot is a point that translates and rotates in R
2. According to Section

4.2, this yields C = R
2 × S

1, which represents SE(2). Let q ∈ C denote a configura-
tion, which yields the position and orientation of the robot. Assume that configuration
transitions are modeled probabilistically, which requires specifying a probability density,
p(qk+1|qk, uk). This can be lifted to the state space to obtain p(xk+1|xk, uk) by assum-
ing that the configuration transitions are independent of the environment (assuming no
collisions ever occur). This replaces qk and qk+1 by xk and xk+1, respectively, in which
xk = (qk, e) and xk+1 = (qk+1, e) for any e ∈ E.

Suppose that observations are obtained from a depth sensor, which ideally would
produce measurements like those shown in Figure 11.15b; however, the data are assumed
to be noisy. The probabilistic model discussed in Section 12.2.3 can be used to define
p(y|x). Now imagine that the robot moves to several parts of the environment, such
as those shown in Figure 11.15a, and performs a sensor sweep in each place. If the
configuration qk is not known from which each sweep yk was performed, how can the data
sets be sewn together to build a correct, global map of the environment? This is trivial
after considering the knowledge of the configurations, but without it the problem is like
putting together pieces of a jigsaw puzzle. Thus, the important data in each stage form
a vector, (yk, qk). If the sensor observations, yk , are not tagged with a configuration, qk ,
from which they are taken, then the jigsaw problem arises. If information is used to tightly
constrain the possibilities for qk , then it becomes easier to put the pieces together. This
intuition leads to the following approach.

The EM algorithm

The problem is often solved in practice by applying the expectation-maximization (EM)
algorithm [108]. In the general framework, there are three different spaces:

1. A set of parameters, which are to be determined through some measurement and estimation
process. In our problem, this represents E, because the main goal is to determine the
environment.

2. A set of data, which provide information that can be used to estimate the parameter. In
the localization and mapping problem, this corresponds to the history I-space IK . Each
history I-state ηK ∈ IK is ηK = (p(x), ũK−1, ỹK ), in which p(x) is a prior probability
density over X.

3. A set of hidden variables, which are unknown but need to be estimated to complete the
process of determining the parameters. In the localization and mapping problem, this is
the configuration space C.

Since both the parameters and the hidden variables are unknown, the choice between
the two may seem arbitrary. It will turn out that expressions can be derived to nicely
express the probability density for the hidden variables, but the parameters are much more
complicated.

The EM algorithm involves an expectation step followed by a maximization step.
The two steps are repeated as necessary until a solution with the desired accuracy is
obtained. The method is guaranteed to converge under general conditions [271, 977, 978].
In practice, it appears to work well even under cases that are not theoretically guaranteed
to converge [940].
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From this point onward, let E, IK , and C denote the three spaces for the EM algorithm
because they pertain directly to the problem. Suppose that a robot has moved in the
environment for K − 1 stages, resulting in a final stage, K . At each stage, k ∈ {1, . . . , K},
an observation, yk , is made using its sensor. This could, for example, represent a set of
distance measurements made by sonars or a range scanner. Furthermore, an action, uk , is
applied for k = 1 to k = K . A prior probability density function, p(x), is initially assumed
over X. This leads to the history I-state, ηk , as defined in (11.14).

Now imagine that K stages have been executed, and the task is to estimate e. From each
qk , a measurement, yk , of part of the environment is taken. The EM algorithm generates
a sequence of improved estimates of e. In each execution of the two EM steps, a new
estimate of e ∈ E is produced. Let êi denote this estimate after the ith iteration. Let q̃K

denote the configuration history from stage 1 to stage K . The expectation step computes
the expected likelihood of ηK given êi . This can be expressed as3

Q(e, êi−1) =E [p(ηK, q̃K | e)| ηK, êi−1]

=
∫

C
p(ηK, q̃K | e)p(q̃K | ηK, êi−1)dq̃K,

(12.30)

in which the expectation is taken over the configuration histories. Since ηK is given and
the expectation removes q̃k , (12.30) is a function only of e and êi−1. The term p(ηK, q̃K | e)
can be expressed as

p(ηK, q̃K | e) = p(q̃K | ηK, e)p(ηK |e), (12.31)

in which p(ηK ) is a prior density over the I-space, given nothing but the environment e.
The factor p(q̃K | ηK, e) differs from the second factor of the integrand in (12.30) only by
using e or êi−1. The main difficulty in evaluating (12.30) is to evaluate p(q̃k| ηK, êi−1)
(or the version that uses e). This is essentially a localization problem with a given map,
as considered in Section 12.2.3. The information up to stage k can be applied to yield
the probabilistic I-state p(qk| ηk, êi−1) for each qk; however, this neglects the information
from the remaining stages. This new information can be used to make inferences about old
configurations. For example, based on current measurements and memory of the actions
that were applied, we have better information regarding the configuration several stages
ago. In [941] a method of computing p(qk| ηk, êi−1) is given that computes two terms:
One is p(qk|ηk), and the other is a backward probabilistic I-state that starts at stage K and
runs down to k + 1.

Note that once determined, (12.30) is a function only of e and êi−1. The maximization
step involves selecting an êi that minimizes (12.30):

êi = argmax
e∈E

Q(e, êi−1). (12.32)

This optimization is often too difficult, and convergence conditions exist if êi is chosen
such that Q(êi , êi−1) > Q(êi−1, êi−1). Repeated iterations of the EM algorithm result in
a kind of gradient descent that arrives at a local minimum in E.

One important factor in the success of the method is in the representation of E. In the EM
computations, one common approach is to use a set of landmarks, which were mentioned
in Section 11.5.1. These are special places in the environment that can be identified by

3 In practice, a logarithm is applied to p(ηK, qk | e) because densities that contain exponentials usually arise. Taking
the logarithm makes the expressions simpler without affecting the result of the optimization. The log is not applied
here because this level of detail is not covered.
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sensors, and if correctly classified, they dramatically improve localization. In [941], the
landmarks are indicated by a user as the robot travels. Classification and positioning errors
can both be modeled probabilistically and incorporated into the EM approach. Another
idea that dramatically simplifies the representation of E is to approximate environments
with a fine-resolution grid. Probabilities are associated with grid cells, which leads to a
data structure called an occupancy grid [309, 688, 852]. In any case, E must be carefully
defined to ensure that reasonable prior distributions can be made for p(e) to initialize the
EM algorithm as the robot first moves.

12.4 Visibility-based pursuit-evasion

This section considers visibility-based pursuit-evasion [615, 932], which was described
in Section 1.2 as a game of hide-and-seek. The topic provides an excellent illustration of
the power of I-space concepts.

12.4.1 Problem formulation

The problem considered in this section is formulated as follows.

Formulation 12.1 (Visibility-Based Pursuit-Evasion)

1. A given, continuous environment region R ⊂ R
2, which is an open set that is bounded by

a simple closed curve. The boundary ∂R is often a polygon, but it may be any piecewise-
analytic closed curve.

2. An unbounded time interval T = [0,∞).

3. An evader, which is a moving point in R. The evader position e(t) at time t ∈ T is
determined by a continuous position function, ẽ : [0, 1] → R.4

4. A pursuer, which is a moving point in R. The evader position function ẽ is unknown to
the pursuer.

5. A visibility sensor, which defines a set V (r) ⊆ R for each r ∈ R.

The task is to find a path, p̃ : [0, 1] → R, for the pursuer for which the evader is guaranteed
to be detected, regardless of its position function. This means that ∃t ∈ T such that
e(t) ∈ V (p(t)). The speed of the pursuer is not important; therefore, the time domain may
be lengthened as desired, if the pursuer is slow.

It will be convenient to solve the problem by verifying that there is no evader. In
other words, find a path for the pursuer that upon completion guarantees that there are no
remaining places where the evader could be hiding. This ensures that during execution
of the plan, the pursuer will encounter any evader. In fact, there can be any number of
evaders, and the pursuer will find all of them. The approach systematically eliminates any
possible places where evaders could hide.

The state yields the positions of the pursuer and the evader, x = (p, e), which results
in the state space X = R × R ⊂ R

4. Since the evader position is unknown, the current
state is unknown, and I-spaces arise. The observation space Y is a collection of subsets of
R. For each p ∈ R, the sensor yields a visibility polygon, V (p) ⊆ R (this is denoted by
y = h(p, e) using notation of Section 11.1.1). Consider the history I-state at time t . The

4 Following from standard function notation, it is better to use ẽ(t) instead of e(t) to denote the position at time t ;
however, this will not be followed.
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Figure 12.38: (a) Suppose the pursuer comes near the end of a contaminated corridor. (b) If the pursuer
moves in a loop path, the nondeterministic I-state gradually changes, but returns to its original value. (c)
However, if a critical boundary is crossed, then the nondeterministic I-state fundamentally changes.

initial pursuer position p(0) is given (any position can be chosen arbitrarily, if it is not
given), and the evader may lie anywhere in R. The input history ũt can be expressed as
the pursuer history p̃t .5 Thus, the history I-state is

ηt = ((p(0), R), p̃t , ỹt ), (12.33)

in which (p(0), R) ⊂ X reflects the initial condition in which p(0) is known, and the
evader position e(0) may lie anywhere in R.

Consider the nondeterministic I-space, Indet . Since the pursuer position is always
known, the interesting part of R is the subset in which the evader may lie. Thus, the
nondeterministic I-state can be expressed as Xt (ηt ) = (p(t), E(ηt )), in which E(ηt ) is the
set of possible evader positions given ηt . As usual for nondeterministic I-states, E(ηt ) is
the smallest set that is consistent with all of the information in ηt .

Consider how E(ηt ) varies over time. After the first instant of time, V (p(0)) is observed,
and it is known that the evader lies in R \ V (p(0)), which is the shadow region (defined in
Section 12.3.4) from p(0). As the pursuer moves, E(ηt ) varies. Suppose you are told that
the pursuer is now at position p(t), but you are not yet told ηt . What options seem possible
for E(ηt )? These depend on the history, but the only interesting possibilities are that each
shadow component may or may not contain the evader. For some of these components,
we may be certain that it does not. For example, consider Figure 12.38. Suppose that
the pursuer initially believes that the end of the corridor may contain the evader. If it
moves along the smaller closed-loop path, the nondeterministic I-state gradually varies
but returns to the same value when the loop is completed. However, if the pursuer traverses
the larger loop, it becomes certain upon completing the loop that the corridor does not
contain the evader. The dashed line that was crossed in this example may inspire you
to think about cell decompositions based on critical boundaries, as in the algorithm in
Section 6.3.4. This idea will be pursued shortly to develop a complete algorithm for
solving this problem. Before presenting a complete algorithm, however, first consider
some interesting examples.

Example 12.7 (When Is a Problem Solvable?) Figure 12.39 shows four similar prob-
lems. The evader position is never shown because the problem is solved by ensuring that
no evader could be left hiding. Note that the speed of the pursuer is not relevant to the
nondeterministic I-states. Therefore, a solution can be defined by simply showing the
pursuer path. The first three examples are straightforward to solve. However, the fourth
example does not have a solution because there are at least three distinct hiding places (can

5 To follow the notation of Section 11.4 more closely, the motion model ṗ = u can be used, in which u represents the
velocity of the pursuer. Nature actions can be used to model the velocity of the evader to obtain ė. By integrating ṗ

over time, p(t) can be obtained for any t . This means that p̃t can be used as a simpler representation of the input
history, instead of directly referring to velocities.
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Figure 12.39: Three problems that can be easily solved with one pursuer, and a minor variant for which
no solution exists.

Figure 12.40: Each collection of corridors requires one more pursuer than the one before it because a
new pursuer must guard the junction.

you find them?). Let V (V (p)) denote the set of all points visible from at least one point in
V (p). The condition that prevents the problem from being solved is that there exist three
positions, p1, p2, p3, such that V (V (pi)) ∩ V (V (pj )) = ∅ for each i, j ∈ {1, 2, 3} with
i 	= j . As one hiding place is reached, the evader can sneak between the other two. In the
worst case, this could result in an endless chase with the evader always eluding discovery.
We would like an algorithm that systematically searches Indet and determines whether a
solution exists. �

Since one pursuer is incapable of solving some problems, it is tempting to wonder
whether two pursuers can solve any problem. The next example gives an interesting se-
quence of environments that implies that for any positive integer k, there is an environment
that requires exactly k pursuers to solve.

Example 12.8 (A Sequence of Hard Problems) Each environment in the sequence
shown in Figure 12.40 requires one more pursuer than the previous one [417]. The
construction is based on recursively ensuring there are three isolated hiding places, as
in the last problem of Figure 12.39. Each time this occurs, another pursuer is needed.
The sequence recursively appends three environments that require k pursuers, to ob-
tain a problem that requires k + 1. An extra pursuer is always needed to guard the
junction where the three environments are attached together. The construction is based
on the notion of 3-separability, from pursuit-evasion on a graph, which was developed
in [776]. �
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Figure 12.41: Recall Figure 11.15. Beyond each gap is a portion of the environment that may or may not
contain the evader.

The problem can be made more challenging by considering multiply connected en-
vironments (environments with holes). A single pursuer cannot solve any of the these
problems. Determining the minimum number of pursuers required to solve such a prob-
lem is NP-hard [417].

12.4.2 A complete algorithm

Now consider designing a complete algorithm that solves the problem in the case of a
single pursuer. To be complete, it must find a solution if one exists; otherwise, it correctly
reports that no solution is possible. Recall from Figure 12.38 that the nondeterministic
I-state changed in an interesting way only after a critical boundary was crossed. The
pursuit-evasion problem can be solved by carefully analyzing all of the cases in which
these critical changes can occur. It turns out that these are exactly the same cases as
considered in Section 12.3.4: crossing inflection rays and bitangent rays. Figure 12.38 is
an example of crossing an inflection ray. Figure 12.41 indicates the connection between
the gaps of Section 12.3.4 and the parts of the environment that may contain the evader.

Recall that the shadow region is the set of all points not visible from some p(t); this is
expressed as R \ V (p(t)). Every critical event changes the number of shadow components.
If an inflection ray is crossed, then a shadow component either appears or disappears,
depending on the direction. If a bitangent ray is crossed, then either two components
merge into one or one component splits into two. To keep track of the nondeterministic
I-state, it must be determined whether each component of the shadow region is cleared,
which means it certainly does not contain the evader, or contaminated, which means that
it might contain the evader. Initially, all components are labeled as contaminated, and as
the pursuer moves, cleared components can emerge. Solving the pursuit-evasion problem
amounts to moving the pursuer until all shadow components are cleared. At this point, it
is known that there are no places left where the evader could be hiding.

If the pursuer crosses an inflection ray and a new shadow component appears, it
must always be labeled as cleared because this is a portion of the environment that was
just visible. If the pursuer crosses a bitangent ray and a split occurs, then the labels are
distributed across the two components: A contaminated shadow component splits into two
contaminated components, and a cleared component splits into two cleared components.
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Environment Inflection rays

Bitangent rays Cell decomposition

Figure 12.42: The environment is decomposed into cells based on in�ections and bitangents, which are
the only critical visibility events.

If the bitangent ray is crossed in the other direction, resulting in a merge of components,
then the situation is more complicated. If one component is cleared and the other is
contaminated, then the merged component is contaminated. The merged component may
only be labeled as cleared if both of the original components are already cleared. Note
that among the four critical cases, only the merge has the potential to undo the work of
the pursuer. In other words, it may lead to recontamination.

Consider decomposing R into cells based on inflection rays and bitangent rays, as
shown in Figure 12.42. These cells have the following information-conservative property:
If the pursuer travels along any loop path that stays within a 2D cell, then the I-state
remains the same upon returning to the start. This implies that the particular path taken
by the pursuer through a cell is not important. A solution to the pursuit-evasion problem
can be described as a sequence of adjacent 2D cells that must be visited. Due to the
information-conservative property, the particular path through a sequence of cells can be
chosen arbitrarily.

Searching the cells for a solution is more complicated than searching for paths in
Chapter 6 because the search must be conducted in the I-space. The pursuer may visit
the same cell in R on different occasions but with different knowledge about which
components are cleared and contaminated. A directed graph, GI , can be constructed as
follows. For each 2D cell in R and each possible labeling of shadow components, a vertex
is defined in GI . For example, if the shadow region of a cell has three components, then
there are 23 = 8 corresponding vertices in GI . An edge exists in GI between two vertices
if: 1) their corresponding cells are adjacent, and 2) the labels of the components are
consistent with the changes induced by crossing the boundary between the two cells. The
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second condition means that the labeling rules for an appear, disappear, split, or merge
must be followed. For example, if crossing the boundary causes a split of a contaminated
shadow component, then the new components must be labeled contaminated and all other
components must retain the same label. Note that GI is directed because many motions in
the Indet are not reversible. For example, if a contaminated region disappears, it cannot
reappear as contaminated by reversing the path. Note that the information in this directed
graph does not improve monotonically as in the case of lazy discrete localization from
Section 12.2.1. In the current setting, information is potentially worse when shadow
components merge because contamination can spread.

To search GI , start with any vertex for which all shadow region components are labeled
as contaminated. The particular starting cell is not important. Any of the search algorithms
from Section 2.2 may be applied to find a goal vertex, which is any vertex of GI for which
all shadow components are labeled as cleared. If no such vertices are reachable from
the initial state, then the algorithm can correctly declare that no solution exists. If a goal
vertex is found, then the path in GI gives the sequence of cells that must be visited to
solve the problem. The actual path through R is then constructed from the sequence of
cells. Some of the cells may not be convex; however, their shape is simple enough that a
sophisticated motion planning algorithm is not needed to construct a path that traverses
the cell sequence.

The algorithm presented here is conceptually straightforward and performs well in
practice; however, its worst-case running time is exponential in the number of inflection
rays. Consider a polygonal environment that is expressed with n edges. There can be
as many as O(n) inflections and O(n2) bitangents. The number of cells is bounded by
O(n3) [415]. Unfortunately, GI has an exponential number of vertices because there can
be as many as O(n) shadow components, and there are 2n possible labelings if there
are n components. Note that GI does not need to be computed prior to the search. It
can be revealed incrementally during the planning process. The most efficient complete
algorithm, which is more complicated, solves the pursuit-evasion problem in time O(n2)
and was derived by first proving that any problem that can be solved by a pursuer using
the visibility polygon can be solved by a pursuer that uses only two beams of light [773].
This simplifies V (p(t)) from a 2D region in R to two rotatable rays that emanate from
p(t) and dramatically reduces the complexity of the I-space.

12.4.3 Other variations

Numerous variations of the pursuit-evasion problem presented in this section can be
considered. The problem becomes much more difficult if there are multiple pursuers.
A cell decomposition can be made based on changing shadow components; however,
some of the cell boundaries are algebraic surfaces due to complicated interactions between
the visibility polygons of different pursuers. Thus, it is difficult to implement a complete
algorithm. On the other hand, straightforward heuristics can be used to guide multiple
pursuers. A single pursuer can use the complete algorithm described in this section. When
this pursuer fails, it can move to some part of the environment and then wait while a second
pursuer applies the complete single-pursuer algorithm on each shadow component. This
idea can be applied recursively for any number of robots.

The problem can be made more complicated by placing a velocity bound on the
evader. Even though this makes the pursuer more powerful, it is more difficult to design
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(a) (b) (c) (d) (e)

Figure 12.43: Several evader detection models: (a) omnidirectional sensing with unlimited distance; (b)
visibility with a limited �eld of view; (c) a single visibility ray that is capable of rotating; (d) limited distance
and a rotating viewing cone, which corresponds closely to a camera model; and (e) three visibility rays that
are capable of rotating.

a complete algorithm that correctly exploits this additional information. No complete
algorithms currently exist for this case.

Figure 12.43 shows several alternative detection models that yield different definitions
of V (p(t)). Each requires different pursuit-evasion algorithms because the structure of the
I-space varies dramatically across different sensing models. For example, using the model
in Figure 12.43c, a single pursuer is required to move along the ∂X. Once it moves into the
interior, the shadow region always becomes a single connected component. This model is
sometimes referred to as a flashlight. If there are two flashlights, then one flashlight may
move into the interior while the other protects previous work. The case of limited depth,
as shown in Figure 12.43, is very realistic in practice, but unfortunately it is the most
challenging. The number of required pursuers generally depends on metric properties of
the environment, such as its minimum “thickness.” The method presented in this section
was extended to the case of a limited field of view in [383]; critical curves are obtained
that are similar to those in Section 6.3.4. See the literature overview at the end of the
chapter for more related material.

12.5 Manipulation planning with sensing uncertainty

One of the richest sources of interesting I-spaces is manipulation planning. As robots
interact with obstacles or objects in the world, the burden of estimating the state becomes
greater. The classical way to address this problem is to highly restrict the way in which
the robot can interact with obstacles. Within the manipulation planning framework of
Section 7.3.2, this means that a robot must grasp and carry objects to their desired
destinations. Any object must be lying in a stable configuration upon grasping, and it
must be returned to a stable configuration after grasping.

As the assumptions on the classical manipulation planning framework are lifted, it
becomes more difficult to predict how the robot and other bodies will behave. This
immediately leads to the challenges of uncertainty in predictability, which was the basis
of Chapter 10. The next problem is to design sensors that enable plans to be achieved in
spite of this uncertainty. For each sensing model, an I-space arises.

Section 12.5.1 covers the preimage planning framework [313, 662], under which many
interesting issues covered in Chapters 10 and 11 are addressed for a specific manipulation
planning problem. I-states, forward projections, backprojections, and termination actions
were characterized in this context. Furthermore, several algorithmic complexity results
regarding planning under uncertainty have been proved within this framework.

Section 12.5.2 covers methods that clearly illustrate the power of reasoning directly
in terms of the I-space. The philosophy is to allow nonprehensile forms of manipulation
(e.g., pushing, squeezing, throwing) and to design simple sensors, or even to avoid sensing
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altogether. This dramatically reduces the I-space while still allowing feasible plans to exist.
This contradicts the intuition that more information is better. Using less information leads
to greater uncertainty in the state, but this is not important in some problems. It is only
important is that the I-space becomes simpler.

12.5.1 Preimage planning

The preimage planning framework (or LMT framework, named after its developers,
Lozano-Pérez, Mason, and Taylor) was developed as a general way to perform ma-
nipulation planning under uncertainty [313, 662]. Although the concepts apply to general
configuration spaces, they will be covered here for the case in which C = R

2 and Cobs is
polygonal. This is a common assumption throughout most of the work done within this
framework. This could correspond to a simplified model of a robot hand that translates
in W = R

2, while possibly carrying a part. A popular illustrative task is the peg-in-hole
problem, in which the part is a peg that must be inserted into a hole that is slightly larger.
This operation is frequently performed as manufacturing robots assemble products. Using
the configuration space representation of Section 4.3.2, the robot becomes a point moving
in R

2 among polygonal obstacles.
The distinctive features of the models used in preimage planning are as follows:

1. The robot can execute compliant motions, which means that it can slide along the boundary
of Cobs. This differs from the usual requirement in Part II that the robot must avoid
obstacles.

2. There is nondeterministic uncertainty in prediction. An action determines a motion direc-
tion, but nature determines how much error will occur during execution. A bounded error
model is assumed.

3. There is nondeterministic uncertainty in sensing, and the true state cannot be reliably
estimated.

4. The goal region is usually an edge of Cobs, but it may more generally be any subset of
cl(Cfree), the closure of Cfree.

5. A hierarchical planning model is used, in which the robot is issued a sequence of motion
commands, each of which is terminated by applying uT based on the I-state.

Each of these will now be explained in more detail.

Compliant motions

It will be seen shortly that the possibility of executing compliant motions is crucial for
reducing uncertainty in the robot position. Let Ccon denote the obstacle boundary, ∂Cobs

(also, Ccon = ∂Cfree). A model of robot motion while q ∈ Ccon needs to be formulated. In
general, this is complicated by friction. A simple Coulomb friction model is assumed here;
see [684] for more details on modeling friction in the context of manipulation planning.
Suppose that the net force F is applied by a robot at some q ∈ Ccon. The force could be
maintained by using the generalized damper model of robot control [966].

The resulting motion is characterized using a friction cone, as shown in Figure 12.44a.
A basic principle of Newtonian mechanics is that the obstacle applies a reaction force (it
may be helpful to look ahead to Section 13.3, which introduces mechanics). If F points into
the surface and is normal to it, then the reaction force provided by the obstacle will cancel
F , and there will be no motion. If F is not perpendicular to the surface, then sliding may



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

572 DECISION-THEORETIC PLANNING

F

α α

α α

Slide RightSlide Left

Break Contact

Stick

F

(a) (b)

Figure 12.44: The compliant motion model. If a force F is applied by the robot at q ∈ Ccon, then it moves
along the boundary only if −F points outside of the friction cone.

q

q

(a) (b)

Figure 12.45: Nature interferes with both the con�gur ation transitions and the sensor observations.

occur. At one extreme, F may be parallel to the surface. In this case, it must slide along the
boundary. In general, F can be decomposed into parallel and perpendicular components.
If the parallel component is too small relative to the perpendicular component, then the
robot becomes stuck. The friction cone shown in Figure 12.44a indicates precisely the
conditions under which motion occurs. The parameter α captures the amount of friction
(more friction leads to larger α). Figure 12.44b indicates the behaviors that occur for
various directions of F . The diagram is obtained by inverting the friction cone. If F points
into the bottom region, then sticking occurs, which means that the robot cannot move. If F

points away from the obstacle boundary, then contact is broken (this is reasonable, unless
the boundary is sticky). For the remaining two cases, the robot slides along the boundary.

Sources of uncertainty

Nature interferes with both the configuration transitions and with the sensor. Let U =
[0, 2π), which indicates the direction in R

2 that the robot is commanded to head. Nature
interferes with this command, and the actual direction lies within an interval of S

1. As
shown in Figure 12.45a, the forward projection (recall from Section 10.1.2) for a fixed
action u ∈ U yields a cone of possible future configurations. (A precise specification of
the motion model is given using differential equations in Example 13.15.) The sensing
model, shown in Figure 12.45b, was already given in Section 11.5.1. The nature sensing
actions form a disc given by (11.67), and y = q + ψ , in which q is the true configuration,
ψ is the nature sensing action, and y is the observation. The result appears in Figure 11.11.
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Goal region

Since contact with the obstacle is allowed, the goal region can be defined to include edges
of Cobs in addition to points in Cfree. Most often, a single edge of Cobs is chosen as the goal
region.

Motion commands

The planning problem can now be described. It may be tempting to express the model
using continuous time, as opposed to discrete stages. This is a viable approach, but leads
to planning under differential constraints, which is the topic of Part IV and is considerably
more complicated. In the preimage-planning framework, a hierarchical approach is taken.
A restricted kind of plan called a motion command, µ, will be defined, and the goal
is achieved by constructing a sequence of motion commands. This has the effect of
converting the continuous-time decision-making problem into a planning problem that
involves discrete stages. Each time a motion command is applied, the robot must apply
a termination action to end it. At that point another motion command can be issued.
Thus, imagine that a high-level module issues motion commands, and a low-level module
executes each until a termination condition is met.

For some action u ∈ U , let Mu = {u, uT }, in which uT is the termination action. A
motion command is a feedback plan, µ : Ihist → Mu, in which Ihist is the standard history
I-space, based on initial conditions, the action history, and the sensing history. The motion
command is executed over continuous time. At t = 0, µ(η0) = u. Using a history I-state η

gathered during execution, the motion command will eventually yield µ(η) = uT , which
terminates it. If the goal was not achieved, then the high-level module can apply another
motion command.

Preimages

Now consider how to construct motion commands. Using the hierarchical approach, the
main task of terminating in the goal region can be decomposed into achieving intermediate
subgoals. The preimage P (µ, G) of a motion command µ and subgoal G ⊂ cl(Cfree) is
the set of all history I-states from which µ is guaranteed to be achieved in spite of all
interference from nature. Each motion command must recognize that the subgoal has
been achieved so that it can apply its termination action. Once a subgoal is achieved, the
resulting history I-state must lie within the required set of history I-states for the next
motion command in the plan. Let M denote the set of all allowable motion commands
that can be defined. This can actually be considered as an action space for the high-level
module.

Planning with motion commands

A high-level open-loop plan,6

π = (µ1, µ2, . . . , µk), (12.34)

can be constructed, which is a sequence of k motion commands. Although the precise path
executed by the robot is unpredictable, the sequence of motion commands is assumed to
be predictable. Each motion command µi for 1 < i < k must terminate with an I-state

6 Note that this open-loop plan is composed of closed-loop motion commands. This is perfectly acceptable using
hierarchical modeling.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

574 DECISION-THEORETIC PLANNING

η ∈ P (µi+1, Gi+1). The preimage of µ1 must include η0, the initial I-state. The goal is
achieved by the last motion command, µk .

More generally, the particular motion command chosen need not be predictable, and
may depend on the I-state during execution. In this case, the high-level feedback plan
π : Ihist →M can be developed, in which a motion command µ = π(η) is chosen based
on the history I-state η that results after the previous motion command terminates. Such
variations are covered in [283, 313, 591].

The high-level planning problem can be solved using discrete planning algorithms from
Chapters 2 and 10. The most popular method within the preimage planning framework is
to perform a backward search from the goal. Although this sounds simple enough, the set
of possible motion commands is infinite, and it is difficult to sample µ in a way that leads
to completeness. Another complication is that termination is based on the history I-state.
Planning is therefore quite challenging. It was even shown in [313], by a reduction from
the Turing machine halting problem [892], that the preimage in general is uncomputable
by any algorithm. It was shown in [735] that the 3D version of preimage planning, in
which the obstacles are polyhedral, is PSPACE-hard. It was then shown in [174] that it is
even NEXPTIME-hard.7

Backprojections

Erdmann proposed a practical way to compute effective motion commands by separating
the reachability and recognizability issues [313, 314]. Reachability refers to character-
izing the set of points that are guaranteed to be reachable. Recognizability refers to
knowing that the subgoal has been reached based on the history I-state. Another way to
interpret the separation is that the effects of nature on the configuration transitions is
separated from the effects of nature on sensing.

For reachability analysis, the sensing uncertainty is neglected. The notions of forward
projections and backprojections from Section 10.1.2 can then be used. The only difference
here is that they are applied to continuous spaces and motion commands (instead of u).
Let S denote a subset of cl(Cfree). Both weak backprojections, WB(S, µ), and strong
backprojections, SB(S, µ), can be defined. Furthermore, nondirectional backprojections
[285], WB(S) and SB(S), can be defined, which are analogous to (10.25) and (10.26),
respectively.

Figure 12.46 shows a simple problem in which the task is to reach a goal edge with
a motion command that points downward. This is inspired by the peg-in-hole problem.
Figure 12.47 illustrates several backprojections from the goal region for the problem in
Figure 12.46. The action is u = 3π/2; however, the actual motion lies within the shown
cone due to nature. First suppose that contact with the obstacle is not allowed, except
at the goal region. The strong backprojection is given in Figure 12.47a. Starting from
any point in the triangular region, the goal is guaranteed to be reached in spite of nature.
The weak backprojection is the unbounded region shown in Figure 12.47b. This indicates
configurations from which it is possible to reach the goal. The weak backprojection
will not be considered further because it is important here to guarantee that the goal is
reached. This is accomplished by the strong backprojection. From here onward, it will
be assumed that backprojection by default means a strong backprojection. Using weak

7 NEXPTIME is the complexity class of all problems that can be solved in nondeterministic exponential time. This
is beyond the complexity classes shown in Figure 6.40.
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Goal edge

Figure 12.46: A simple example that resembles the peg-in-hole problem.

(a) (b)

(c) (d)

Figure 12.47: Several backprojections are shown for the peg-in-hole problem.

backprojections, it is possible to develop an alternative framework of error detection and
recovery (EDR), which was introduced by Donald in [283].

Now assume that compliant motions are possible along the obstacle boundary. This has
the effect of enlarging the backprojections. Suppose for simplicity that there is no friction
(α = 0 in Figure 12.44a). The backprojection is shown in Figure 12.47c. As the robot
comes into contact with the side walls, it slides down until the goal is reached. It is not
important to keep track of the exact configuration while this occurs. This illustrates the
power of compliant motions in reducing uncertainty. This point will be pursued further in
Section 12.5.2. Figure 12.47d shows the backprojection for a different motion command.

Now consider computing backprojections in a more general setting. The backprojection
can be defined from any subset of cl(Cfree) and may allow a friction cone with parameter α.
To be included in a backprojection, points from which sticking is possible must be avoided.
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Goal edge

Figure 12.48: Erdmann’s backprojection algorithm traces out the boundary after constructing cones based
on friction.

Note that sticking is possible even if α = 0. For example, in Figure 12.46, nature may
allow the motion to be exactly perpendicular to the obstacle boundary. In this case, sticking
occurs on horizontal edges because there is no tangential motion. In general, it must be
determined whether sticking is possible at each edge and vertex of Cobs. Possible sticking
from an edge depends on u, α, and the maximum directional error contributed by nature.
The robot can become stuck at a vertex if it is possible to become stuck at either incident
edge.

Computing backprojections

Many algorithms have been developed to compute backprojections. The first algorithm
was given in [313, 314]. Assume that the goal region is one or more segments contained
in edges of Ccon. The algorithm proceeds for a fixed motion command, µ, which is based
on a direction u ∈ U as follows:

1. Mark every obstacle vertex at which sticking is possible. Also mark any point on the
boundary of the goal region if it is possible to slide away from the goal.

2. For every marked vertex, extend two rays with directions based on the maximum possible
deviations allowed by nature when executing u. This inverts the cone shown in Figure
12.45a. The extended rays are shown in Figure 12.48 for the frictionless case (α = 0).

3. Starting at every goal edge, trace out the boundary of the backprojection region. Every
edge encountered defines a half-plane of configurations from which the robot is guaranteed
to move into. In Figure 12.48, this corresponds to being below a ray. When tracing out the
backprojection boundary, the direction at each intersection vertex is determined based on
including the points in the half-plane.

The resulting backprojection is shown in Figure 12.49. A more general algorithm that
applies to goal regions that include polygonal regions in Cfree was given in [285] (some
details are also covered in [591]). It uses the plane-sweep principle (presented in Sec-
tion 6.2.2) to yield an algorithm that computes the backprojection in time O(n lg n), in
which n is the number of edges used to define Cobs. The backprojection itself has no more
than O(n) edges. Algorithms for computing nondirectional backprojections are given in
[142, 285]. One difficulty in this case is that the backprojection boundary may be quite
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Figure 12.49: The computed backprojection. Sliding is guaranteed from the steeper edge of the triangle;
hence, it is included in the backprojection. From the other top edge, sticking is possible.

complicated. An incremental algorithm for computing a nondirectional backprojection of
size O(n2) in time O(n2 lg n) is given in [142].

Once an algorithm that computes backprojections has been obtained, it needs to be
adapted to compute preimages. Using the sensing model shown in Figure 12.45b, a
preimage can be obtained by shrinking the subgoal region G. Let ε denote the radius of
the ball in Figure 12.45b. Let G′ ⊂ G denote a subset of the subgoal in which a strip
of thickness ε has been removed. If the sensor returns y ∈ G′, then it is guaranteed that
q ∈ G. This yields a method of obtaining preimages by shrinking the subgoals. If ε is too
large, however, this may fail to yield a successful plan, even though one exists.

The high-level plan can be found by performing a backward search that computes
backprojections from the goal region (reduced by ε). There is still the difficulty of M
being too large, which controls the branching factor in the search. One possibility is
to compute nondirectional backprojections. Another possibility is to discretize M. For
example, in [591, 593], M is reduced to four principle directions, and plans are computed
for complicated environments by using sticking edges as subgoals. Using discretization,
however, it becomes more difficult to ensure the completeness of the planning algorithm.

The preimage planning framework may seem to apply only to a very specific model,
but it can be extended and adapted to a much more general setting. It was extended to
semi-algebraic obstacle models in [176], which gives a planning method that runs in time
doubly exponential in the C-space dimension (based on cylindrical algebraic decompo-
sition, which was covered in Section 6.4.2). In [149], probabilistic backprojections were
introduced by assigning a uniform probability density function to the nature action spaces
considered in this section. This was in turn generalized further to define backprojections
and preimages as the level sets of optimal cost-to-go functions in [600, 608]. Dynamic
programming methods can then be applied to compute plans.

12.5.2 Nonprehensile manipulation

Manipulation by grasping is very restrictive. People manipulate objects in many interesting
ways that do not involve grasping. Objects may be pushed, flipped, thrown, squeezed,
twirled, smacked, blown, and so on. A classic example from the kitchen is flipping a
pancake over by a flick of the wrist while holding the skillet. These are all examples of
nonprehensile manipulation, which means manipulation without grasping.

The temptation to make robots grasp objects arises from the obsession with estimating
and controlling the state. This task is more daunting for nonprehensile manipulation
because there are times at which the object appears to be out of direct control. This leads
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to greater uncertainty in predictability and a larger sensing burden. By planning in the
I-space, however, it may be possible to avoid all of these problems. Several works have
emerged which show that manipulation goals can be achieved with little or no sensing at
all. This leads to a form of minimalism [177, 323, 684], in which the sensors are designed
in a way that simplifies the I-space, as opposed to worrying about accurate estimation. The
search for minimalist robotic systems is completely aligned with trying to find derived
I-spaces that are as small as possible, as mentioned in Section 11.2.1. Sensing systems
should be simple, yet still able to achieve the task. Preferably, completeness should not
be lost. Most work in this area is concerned primarily with finding feasible solutions, as
opposed to optimal solutions. This enables further simplifications of the I-space.

This section gives an example that represents an extreme version of this minimalism.
A sensorless manipulation system is developed. At first this may seem absurd. From the
forward projections in Section 10.1.2, it may seem that uncertainty can only grow if nature
causes uncertainty in the configuration transitions and there are no sensors. To counter the
intuition, compliant motions have the ability to reduce uncertainty. This is consistent with
the discussion in Section 11.5.4. Simply knowing that some motion commands have been
successfully applied may reduce the amount of uncertainty. In an early demonstration of
sensorless manipulation, it was shown that an Allen wrench (L-shaped wrench) resting
in a tray can be placed into a known orientation by simply tilting the tray in a few
directions [323]. The same orientation is achieved in the end, regardless of the initial
wrench configuration. Also, no sensors are needed. This can be considered as a more
complicated extension of the ball rolling in a tray that was shown in Figure 11.29. This is
also an example of compliant motions, as shown in Figure 12.44; however, in the present
setting F is caused by gravity.

Squeezing parts

Another example of sensorless manipulation will now be described, which was developed
by Goldberg and Mason in [396, 397, 398]; see also [684]. A Java implementation of the
algorithm appears in [133]. Suppose that convex, polygonal parts arrive individually along
a conveyor belt in a factory. They are to be used in an assembly operation and need to be
placed into a given orientation. Figure 12.50 shows a top view of a parallel-jaw gripper.
The robot can perform a squeeze operation by bringing the jaws together. Figure 12.50a
shows the part before squeezing, and Figure 12.50b shows it afterward. A simple model
is assumed for the mechanics. The jaws move at constant velocity toward each other, and
it is assumed that they move slowly enough so that dynamics can be neglected. To help
slide the part into place, one of the jaws may be considered as a frictionless contact (this
is a real device; see [177]). The robot can perform a squeeze operation at any orientation
in [0, 2π) (actually, only [0, π) is needed due to symmetry). Let U = [0, 2π) denote the
set of all squeezing actions. Each squeezing action terminates on its own after the part
can be squeezed no further (without crushing the part).

The planning problem can be modeled as a game against nature. The initial orientation,
x ∈ [0, 2π), of the part is chosen by nature and is unknown. The state space is S

1. For a
given part, the task is to design a sequence,

π = (u1, u2, . . . , un), (12.35)

of squeeze operations that leads to a known orientation for the part, regardless of its
initial state. Note that there is no specific requirement on the final state. After i motion



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

PLANNING UNDER SENSING UNCERTAINTY 579

d(θ)

(a) (b)

Figure 12.50: A parallel-jaw gripper can orient a part without using sensors.

b

aa

b

0 π/2 π

α

3π/2 2π

d(α)

Figure 12.51: The diameter function for a rectangle.

commands have terminated, the history I-state is the sequence

η = (u1, u2, . . . , ui) (12.36)

of squeezes applied so far. The nondeterministic I-space Indet will now be used. The
requirement can be stated as obtaining a singleton, nondeterministic I-state (includes only
one possible orientation). If the part has symmetries, then the task is instead to determine
a single symmetry class (which includes only a finite number of orientations)

Consider how a part in an unknown orientation behaves. Due to rotational symmetry, it
will be convenient to describe the effect of a squeeze operation based on the relative angle
between the part and the robot. Therefore, let α = u− x, assuming arithmetic modulo 2π .
Initially, α may assume any value in [0, 2π). It turns out that after one squeeze, α is always
forced into one of a finite number of values. This can be explained by representing the
diameter function d(α), which indicates the maximum thickness that can be obtained by
taking a slice of the part at orientation α. Figure 12.51 shows the slice for a rectangle.
The local minima of the distance function indicate orientations at which the part will
stabilize as shown in Figure 12.50b. As the part changes its orientation during the squeeze
operation, the α value changes in a way that gradually decreases d(α). Thus, [0, 2π) can
be divided into regions of attraction, as shown in Figure 12.52. These behave much like
the funnels in Section 8.5.1.

The critical observation to solve the problem without sensors is that with each squeeze
the uncertainty can grow no worse, and is usually reduced. Assume u is fixed. For the state
transition equation x ′ = f (x, u), the same x ′ will be produced for an interval of values
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Figure 12.52: There are four regions of attraction, each of which represents an interval of orientations.

for x. Due to rotational symmetry, it is best to express this in terms of α. Let s(α) denote
relative orientation obtained after a squeeze. Since α is a function of x and u, this can be
expressed as a squeeze function, s : S

1 → S
1, defined as

s(α) = f (x, u) − u. (12.37)

The forward projection with respect to an interval, A, of α values can also be defined:

S(A) =
⋃

α∈A

s(α). (12.38)

Any interval A ⊂ [0, 2π) can be interpreted as a nondeterministic I-state, based on the
history of squeezes that have been performed. It is defined, however, with respect to relative
orientations, instead of the original states. The algorithms discussed in Section 12.1.2
can be applied to Indet . A backward search algorithm is given in [397] that starts with
a singleton, nondeterministic I-state. The planning proceeds by performing a backward
search on Indet . In each iteration, the interval, A, of possible relative orientations increases
until eventually all of S

1 is reached (or the period of symmetry, if symmetries exist).
The algorithm is greedy in the sense that it attempts to force A to be as large as possible

in every step. Note from Figure 12.52 that the regions of attraction are maximal at the
minima of the diameter function. Therefore, only the minima values are worth considering
as choices for α. Let B denote the preimage of the function s. In the first step, the algorithm
finds the α for which B(α) is largest (in terms of length in S

1). Let α0 denote this relative
orientation, and let A0 = B(α0). For each subsequent iteration, let Ai denote the largest
interval in [0, 2π) that satisfies

|S(Ai−1)| < |Ai |, (12.39)

in which | · | denotes interval length. This implies that there exists a squeeze operation for
which any relative orientation in S(Ai−1) can be forced into Ai by a single squeeze. This
iteration is repeated, generating A−1, A−2, and so on, until the condition in (12.39) can
no longer be satisfied. It was shown in [397] that for any polygonal part, the Ai intervals
increase until all of S

1 (or the period of symmetry) is obtained.
Suppose that the sequence (A−k, . . . , A0) has been computed. This must be transformed

into a plan that is expressed in terms of a fixed coordinate frame for the robot. The k-step
action sequence (u1, . . . , uk) is recovered from

ui = s(βi−1) − ai − 1
2 (|Ai−k| − |S(Ai−k−1)|) + ui−1 (12.40)

and u−k = 0 [397]. Each ai in (12.40) is the left endpoint of Ai . There is some freedom
of choice in the alignment, and the third term in (12.40) selects actions in the middle to
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Figure 12.53: A two-step squeeze plan [397].

improve robustness with respect to orientation errors. By exploiting a proof in [197] that
no more than O(n) squeeze operations are needed for a part with n edges, the complete
algorithm runs in time O(n2).

Example 12.9 (Squeezing a Rectangle) Figure 12.53 shows a simple example of a
plan that requires two squeezes to orient the rectangular part when placed in any initial
orientation. Four different executions of the plan are shown, one in each column. After
the first squeeze, the part orientation is a multiple of π/2. After the second squeeze, the
orientation is known. Even though the execution looks different every time, no feedback
is necessary because the I-state contains no sensor information. �

Further reading

The material from this chapter could easily be expanded into an entire book on planning under sens-
ing uncertainty. Several key topics were covered, but numerous others remain. An incomplete set of
suggestions for further reading is given here.

Since Section 12.1 involved converting the I-space into an ordinary state space, many methods and
references in Chapter 10 are applicable. For POMDPs, a substantial body of work has been developed
in operations research and stochastic control theory [567, 658, 717, 900] and more recently in artificial
intelligence [497, 650, 651, 740, 775, 794, 806, 808, 838, 1002, 1003]. Many of these algorithms
compress or approximate Iprob, possibly yielding nonoptimal solutions, but handling problems that
involve dozens of states.

Localization, the subject of Section 12.2, is one of the most fundamental problems in robotics;
therefore, there are hundreds of related references. Localization in a graph has been considered [299, 344].
The combinatorial localization presentation was based on [300, 418]. Ambiguities due to symmetry also
appeared in [80]. Combinatorial localization with very little sensing is presented in [755]. For further
reading on probabilistic localization, see [43, 260, 424, 450, 488, 496, 552, 624, 625, 757, 828, 888, 889,
962]. In [935, 936], localization uncertainty is expressed in terms of a sensor-uncertainty field, which is
a derived I-space.

Section 12.3 was synthesized from many sources. For more on the maze searching method from
Section 12.3.1 and its extension to exploring a graph, see [121]. The issue of distinguishability and



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

582 DECISION-THEORETIC PLANNING

Figure 12.54: An environment for grid-based localization.

pebbles arises again in [89, 288, 289, 671, 843, 944]. For more on competitive ratios and combinatorial
approaches to on-line navigation, see [118, 262, 272, 334, 377, 510, 540, 677, 771, 814].

For more on Stentz’s algorithm and related work, see [546, 914]. A multi-resolution approach to terrain
exploration appears in [764]. For material on bug algorithms, see [508, 571, 595, 669, 670, 812, 884].
Related sensor-based planning work based on generalized Voronoi diagrams appears in [220, 221]; also
related is [831]. Gap navigation trees were introduced in [943, 944, 945]. For other work on minimal
mapping, see [487, 827, 875]. Landmark-based navigation is considered in [371, 593, 885].

There is a vast body of literature on probabilistic methods for mapping and localization, much of which
is referred to as SLAM [942]; see also [184, 223, 277, 720, 774, 982]. One of the earliest works is [898]. An
early application of dynamic programming in this context appears in [587]. A well-known demonstration
of SLAM techniques is described in [161]. For an introduction to the EM algorithm, see [108]; its
convergence is addressed in [271, 977, 978]. For more on mobile robotics in general, see [136, 298].

The presentation of Section 12.4 was based mainly on [417, 615]. Pursuit-evasion problems in general
were first studied in differential game theory [60, 425, 480]. Pursuit-evasion in a graph was introduced
in [776], and related theoretical analysis appears in [107, 583, 718]. Visibility-based pursuit-evasion was
introduced in [932], and the first complete algorithm appeared in [615]. An algorithm that runs in O(n2)
for a single pursuer in a simple polygon was given in [773]. Variations that consider curved environments,
beams of light, and other considerations appear in [210, 256, 306, 606, 621, 748, 890, 891, 931, 933, 981].
Pursuit-evasion in three dimensions is discussed in [617]. For versions that involve minimal sensing and
no prior given map, see [419, 506, 812, 843, 988]. The problem of visually tracking a moving target both
with [83, 403, 404, 605, 726, 731] and without [325, 473, 871] obstacles is closely related to pursuit-
evasion. For a survey of combinatorial algorithms for computing visibility information, see [759]. Art
gallery and sensor placement problems are also related [143, 758, 876]. The bitangent events also arise in
the visibility complex [799] and in aspect graphs [785], which are related visibility-based data structures.

Section 12.5 was inspired mostly by the works in [285, 313, 323, 398, 662, 967]. Many works are
surveyed in [684]. A probabilistic version of preimage planning was considered in [150, 151, 608].
Visual preimages are considered in [351]. Careful analysis of manipulation uncertainty appears in
[147, 148]. For more on preimage planning, see [591, 593]. The error detection and recovery (EDR)
framework uses many preimage planning ideas but allows more problems to be solved by permitting
fixable errors to occur during execution [283, 286, 287]. Compliant motions are also considered in
[142, 285, 489, 681, 683, 779]. The effects of friction in the C-space are studied in [318]. For more work
on orienting parts, see [177, 324, 396, 397, 813, 969]. For more forms of nonprehensile manipulation,
see [12, 14, 112, 320, 673, 674, 922]. A humorous paper, which introduces the concept of the “principle
of virtual dirt,” is [682]; the idea later appears in [842] and in the Roomba autonomous vacuum cleaner
from the iRobot Corporation.

Exercises

1. For the environment in Figure 12.1a, give the nondeterministic I-states for the action
sequence (L, L, F, B, F, R, F, F), if the initial state is the robot in position 3 facing north and
the initial I-state is η0 = X.

2. Describe how to apply the algorithm from Figure 10.6 to design an information-feedback
plan that takes a map of a grid and performs localization.
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Figure 12.55: A path followed by the robot in an initially unknown environment. The robot �nishes in the
lower right.

3. Suppose that a robot operates in the environment shown in Figure 12.54 using the same
motion and sensing model as in Example 12.1. Design an information-feedback plan that
is as simple as possible and successfully localizes the robot, regardless of its initial state.
Assume the initial condition η0 = X.

4. Prove that the robot can use the latitude and orientation information to detect the unique
point of each obstacle boundary in the maze searching algorithm of Section 12.3.1.

5. Suppose once again that a robot is placed into one of the six environments shown in
Figure 12.12. It is initially in the upper right cell facing north; however, the initial condition
is η0 = X. Determine the sequence of sensor observations and nondeterministic I-states
as the robot executes the action sequence (F, R, B, F, L, L, F).

6. Prove that the counter in the maze searching algorithm of Section 12.3.1 can be replaced
by two pebbles, and the robot can still solve the problem by simulating the counter. The
robot can place either pebble on a tile, detect them when the robot is on the same tile, and
can pick them up to move them to other tiles.

7. Continue the trajectory shown in Figure 12.23 until the goal is reached using the Bug2
strategy.

8. Show that the competitive ratio for the doubling spiral motion applied to the lost-cow
problem of Figure 12.26 is 9.

9. Generalize the lost-cow problem so that there are n fences that emanate from the current
cow location (n = 2 for the original problem).

(a) If the cow is told that the gate is along only one unknown fence and is no more than one unit
away, what is the competitive ratio of the best plan that you can think of?

(b) Suppose the cow does not know the maximum distance to the gate. Propose a plan that
solves the problem and establish its competitive ratio.

10. Suppose a point robot is dropped into the environment shown in Figure 12.42. Indicate
the gap navigation trees that are obtained as the robot moves along the path shown in
Figure 12.55.

11. Construct an example for which the worst case bound, (12.25), for Bug1 is obtained.

12. Some environments are so complicated that in the pursuit-evasion problem they require
the same region to be visited multiple times. Find a solution for a single pursuer with
omnidirectional visibility to the problem in Figure 12.56a.

13. Find a pursuit-evasion solution for a single pursuer with omnidirectional visibility to the
problem in Figure 12.56b, in which any number of pairs of “feet” may appear on the bottom
of the polygon.
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Figure 12.56: Two pursuit-evasion problems that involve recontamination.

14. Prove that for a polygonal environment, if there are three points, p1, p2, and p3, for which
V (V (p1)), V (V (p2)), and V (V (p3)) are pairwise-disjoint, then the problem requires more
than one pursuer.

15. Prove that the diameter function for the squeezing algorithm in Section 12.5.2 has no more
than O(n2) vertices. Give a sequence of polygons that achieves this bound. What happens
for a regular polygon?

16. Develop versions of (12.8) and (12.9) for state-nature sensor mappings.

17. Develop versions of (12.8) and (12.9) for history-based sensor mappings.

18. Describe in detail the I-map used for maze searching in Section 12.3.1. Indicate how this is
an example of dramatically reducing the size of the I-space, as described in Section 11.2.
Is a suf�cient I-map obtained?

19. Describe in detail the I-map used in the Bug1 algorithm. Is a suf�cient I-map obtained?

20. Suppose that several teams of point robots move around in a simple polygon. Each robot
has an omnidirectional visibility sensor and would like to keep track of information for each
shadow region. For each team and shadow region, it would like to record one of three
possibilities: 1) There are de�nitely no team members in the region; 2) there may possibly
be one or more; 3) there is de�nitely at least one.

(a) De�ne a nondeterministic I-space based on labeling gaps that captures the appropriate
information. The I-space should be de�ned with respect to one robot (each will have its
own).

(b) Design an algorithm that keeps track of the nondeterministic I-state as the robot moves
through the environments and observes others.

21. Recall the sequence of connected corridors shown in Figure 12.40. Try to adapt the
polygons so that the same number of pursuers is needed, but there are fewer polygon
edges. Try to use as few edges as possible.

Implementations

22. Solve the probabilistic passive localization problem of Section 12.2.3 for 2D grids. Imple-
ment your solution and demonstrate it on several interesting examples.

23. Implement the exact value-iteration method described in Section 12.1.3 to compute optimal
cost-to-go functions. Test the implementation on several small examples. How large can
you make K, �, and �?

24. Develop and implement a graph search algorithm that searches on Ind et to perform robot
localization on a 2D grid. Test the algorithm on several interesting examples. Try developing
search heuristics that improve the performance.
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25. Implement the Bug1, Bug2, and VisBug (with unlimited radius) algorithms. Design a good
set of examples for illustrating their relative strengths and weaknesses.

26. Implement software that computes probabilistic I-states for localization as the robot moves
in a grid.

27. Implement the method of Section 12.3.4 for simply connected environments and demon-
strate it in simulation for polygonal environments.

28. Implement the pursuit-evasion algorithm for a single pursuer in a simple polygon.

29. Implement the part-squeezing algorithm presented in Section 12.5.2.
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Overview of Part IV: Planning Under Differential Constraints

Part IV is a continuation of Part II. It is generally not necessary to read Part III before
starting Part IV. In the models and methods studied in Part II, it was assumed that a path
can be easily determined between any two configurations in the absence of obstacles. For
example, the sampling-based roadmap approach assumed that two nearby configurations
could be connected by a “straight line” in the configuration space. The constraints on the
path are global in the sense that the restrictions are on the set of allowable configurations.

The next few chapters introduce differential constraints, which restrict the allowable
velocities at each point. These can be considered as local constraints, in contrast to the
global constraints that arise due to obstacles. Some weak differential constraints, such
as smoothness requirements, arose in Chapter 8. Part IV goes much further by covering
differential consraints in full detail and generality.

Differential constraints arise everywhere. In robotics, most problems involve differ-
ential constraints that arise from the kinematics and dynamics of a robot. One approach
is to ignore them in the planning process and hope that the differential constraints can
be appropriately handled in making refinements. This corresponds to applying the tech-
niques of Part II in robotics applications and then using control techniques to ensure that
a computed path is executed as closely as possible. If it is practical, a better approach is
to consider differential constraints in the planning process. This yields plans that directly
comply with the natural motions of a mechanical system.

Chapter 13 is similar in spirit to Chapter 3. It explains how to construct and represent
models that have differential constraints, whereas Chapter 3 did the same for geometric
models. It also provides background and motivation for Part IV by giving a catalog
of numerous models that can be used in planning algorithms. Differential models are
generally expressed as ẋ = f (x, u), which is the continuous-time counterpart of the state
transition equation, xk+1 = f (xk, uk). Thus, the focus of Chapter 13 it to define transition
functions.

Chapter 14 covers sampling-based planning algorithms for problems that involve differ-
ential constraints. There is no chapter on combinatorial algorithms in this context because
they exist only in extremely limited cases. Differential constraints seem to destroy most
of the nice properties that are needed by combinatorial approaches. Rather than develop
complete algorithms, the focus is on resolution-complete planning algorithms. This is
complicated by the discretization of three spaces (state space, action space, and time),
whereas in Chapter 5 resolution completeness only involved discretization of the C-space.
The main topics are extending the incremental sampling and searching framework of
Section 5.4, extending feedback motion planning of Chapter 8, and developing decoupled
methods for trajectory planning.

588
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Chapter 15 overviews powerful ideas and tools that come mainly from control theory.
The planning methods of Chapter 14 can be greatly enhanced by utilizing the material
from Chapter 15. The two chapters are complementary in that Chapter 14 is mainly
algorithmic and Chapter 15 is mainly about mathematical techniques. The main topics of
Chapter 15 are system stability, optimality concepts (Hamilton-Jacobi-Bellman equation
and Pontryagin’s minimum principle), shortest paths for wheeled vehicles, nonholonomic
system theory, and nonholonomic steering methods. The term nonholonomic comes from
mechanics and refers to differential constraints that cannot be fully integrated to remove
time derivatives of the state variables.
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13

Differential Models

This chapter provides a continuous-time counterpart to the state transition equation,
xk+1 = f (xk, uk), which was crucial in Chapter 2. On a continuous state space, X (assumed
to be a smooth manifold), it will be defined as ẋ = f (x, u), which intentionally looks
similar to the discrete version. It will still be referred to as a state transition equation. It
will also be called a system (short for control system), which is a term used in control
theory. There are no obstacle regions in this chapter. Obstacles will appear again when
planning algorithms are covered in Chapter 14. In continuous time, the state transition
function f (x, u) yields a velocity as opposed to the next state. Since the transitions are
no longer discrete, it does not make sense to talk about a “next” state. Future states that
satisfy the differential constraints are obtained by integration of the velocity. Therefore,
it is natural to specify only velocities. This relies on the notions of tangent spaces and
vector fields, as covered in Section 8.3.

This chapter presents many example models that can be used in the planning algorithms
of Chapter 14. Section 13.1 develops differential constraints for the case in which X is the
C-space of one or more bodies. These constraints commonly occur for wheeled vehicles
(e.g., a car cannot move sideways). To represent dynamics, constraints on acceleration are
needed. Section 13.2 therefore introduces the phase space, which enables any problem
with dynamics to be expressed as velocity constraints on an enlarged state space. This
collapses the higher order derivatives down to being only first-order, but it comes at the
cost of increasing the dimension of the state space. Section 13.3 introduces the basics of
Newton-Euler mechanics and concludes with expressing the dynamics of a free-floating
rigid body. Section 13.4 introduces some concepts from advanced mechanics, including
the Lagrangian and Hamiltonian. It also provides a model of the dynamics of a kinematic
chain of bodies, which applies to typical robot manipulators. Section 13.5 introduces
differential models that have more than one decision maker.

13.1 Velocity constraints on the configuration space

In this section, it will be assumed that X = C, which is a C-space of one or more rigid
bodies, as defined in Section 4.2. Differential models in this section are all expressed as
constraints on the set of allowable velocities at each point in C. This results in first-order
differential equations because only velocities are constrained, as opposed to accelerations
or higher order derivatives.

To carefully discuss velocities, it will be assumed that C is a smooth manifold, as
defined in Section 8.3.2, in addition to a topological manifold, as defined in Section 4.1.2.
It may be helpful to keep the cases C = R

2 and C = R
3 in mind. The velocities are

straightforward to define without resorting to manifold technicalities, and the dimension
is low enough that the concepts can be visualized.

590
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13.1.1 Implicit vs. parametric representations

There are two general ways to represent differential constraints: parametric and implicit.
Many parallels can be drawn to the parametric and implicit ways of specifying functions
in general. Parametric representations are generally easier to understand and are simpler to
use in applications. Implicit representations are more general but are often more difficult
to utilize. The intuitive difference is that implicit representations express velocities that
are prohibited, whereas parametric representations directly express the velocities that
are allowed. In this chapter, a parametric representation is obtained wherever possible;
nevertheless, it is important to understand both.

13.1.1.1 Implicit representation

The planar case

For purposes of illustration, suppose that C = R
2. A configuration is expressed as q =

(x, y) ∈ R
2, and a velocity is expressed as (ẋ, ẏ). Each (ẋ, ẏ) is an element of the tangent

space Tq(R2), which is a two-dimensional vector space at every (x, y). Think about
the kinds of constraints that could be imposed. At each q ∈ R

2, restricting the set of
velocities yields some set U (q) ⊂ Tq(R2). The parametric and implicit representations
will be alternative ways to express U (q) for all q ∈ R

2.
Here are some interesting, simple constraints. Each yields a definition of U (q) as the

subset of Tq(R2) that satisfies the constraints.

1. ẋ > 0: In this case, imagine that you are paddling a boat on a swift river that flows in the
positive x direction. You can obtain any velocity you like in the y direction, but you can
never flow against the current. This means that all integral curves increase monotonically
in x over time.

2. ẋ ≥ 0: This constraint allows you to stop moving in the x direction. A velocity perpen-
dicular to the current can be obtained (for example, (0, 1) causes motion with unit speed
in the positive y direction).

3. ẋ > 0, ẏ > 0: Under this constraint, integral curves must monotonically increase in both
x and y.

4. ẋ = 0: In the previous three examples, the set of allowable velocities remained two-
dimensional. Under the constraint ẋ = 0, the set of allowable velocities is only one-
dimensional. All vectors of the form (0, ẏ) for any ẏ ∈ R are allowed. This means that no
motion in the x direction is allowed. Starting at any (x0, y0), the integral curves will be of
the form (x0, y(t)) for all t ∈ [0,∞), which confines each one to a vertical line.

5. aẋ + b ẏ = 0: This constraint is qualitatively the same as the previous one. The difference
is that now the motions can be restricted along any collection of parallel lines by choosing
a and b. For example, if a = b = 1, then only diagonal motions are allowed.

6. aẋ + b ẏ + c = 0: This constraint is similar to the previous one. The integral curves are
once again confined to lines, but the addition of the constant c 	= 0 implies that the (0, 0)
velocity vector is not allowed. Traveling along a line is allowed, but there is no way to
stop.

7. ẋ2 + ẏ2 ≤ 1: This constraint was used in Chapter 8. It has no effect on the existence of
solutions to the feasible motion planning problem because motion in any direction is still
allowed. The constraint only enforces a maximum speed.

8. ẋ2 + ẏ2 ≥ 1: This constraint allows motions in any direction and at any speed greater
than 1. It is impossible to stop or slow down below unit speed.
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Many other constraints can be imagined, including some that define very complicated
regions in R

2 for each U (q). Ignoring the fact that ẋ and ẏ represent derivatives, the
geometric modeling concepts from Section 3.1 can even be used to define complicated
constraints at each q. In fact, the constraints expressed above in terms of ẋ and ẏ are
simple examples of the semi-algebraic model, which was introduced in Section 3.1.2. Just
replace x and y from that section by ẋ and ẏ here.

If at every q there exists some open set O such that (0, 0) ∈ O and O ⊆ U (q), then
there is no effect on the existence of solutions to the feasible motion planning problem.
Velocities in all directions are still allowed. This holds true for velocity constraints on any
smooth manifold [925].

So far, the velocities have been constrained in the same way at every q ∈ R
2, which

means that U (q) is the same for all q ∈ R
2. Constraints of this kind are of the form

g(ẋ, ẏ) � 0, in which � could be =, <, >, ≤, or ≥, and gi is a function from R
2 to R.

Typically, the= relation drops the dimension of U (x) by one, and the others usually leave
it unchanged.

Now consider the constraint ẋ = x. This results in a different one-dimensional set,
U (q), of allowable velocities at each q ∈ R

2. At each q = (x, y), the set of allowable
velocities must be of the form (x, ẏ) for any ẏ ∈ R. This means that as x increases,
the velocity in the x direction must increase proportionally. Starting at any positive x

value, there is no way to travel to the y-axis. However, starting on the y-axis, the integral
curves will always remain on it! Constraints of this kind can generally be expressed as
g(x, y, ẋ, ẏ) � 0, which allows the dependency on x or y.

General configuration spaces

Velocity constraints can be considered in the same way on a general C-space. Assume that
C is a smooth manifold (a manifold was not required to be smooth in Chapter 4 because
derivatives were not needed there). All constraints are expressed using a coordinate
neighborhood, as defined in Section 8.3.2. For expressing differential models, this actually
makes an n-dimensional manifold look very much like R

n. It is implicitly understood that
a change of coordinates may occasionally be needed; however, this does not complicate
the expression of constraints. This makes it possible to ignore many of the manifold
technicalities and think about the constraints as if they are applied to R

n.
Now consider placing velocity constraints on C. Imagine how complicated velocity

constraints could become if any semi-algebraic model is allowed. Velocity constraints on
C could be as complicated as any Cobs. It is not even necessary to use algebraic primitives.
In general, the constraints can be expressed as

g(q, q̇) � 0, (13.1)

in which � could once again be =, <, >, ≤, or ≥. The same expressive power can be
maintained even after eliminating some of these relations. For example, any constraint of
the form (13.1) can be expressed as a combination of constraints of the form g(q, q̇) = 0
and g(q, q̇) < 0. All of the relations are allowed here, however, to make the formulations
simpler.

Constraints expressed in the form shown in (13.1) are called implicit. As explained
in Chapters 3 and 4, it can be very complicated to obtain a parametric representation of
the solutions of implicit equations. This was seen, for example, in Section 4.4, in which
it was difficult to characterize the set of configurations that satisfy closure constraints.
Nevertheless, we will be in a much better position in terms of developing planning
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algorithms if a parametric representation of the constraints can be obtained. Fortunately,
most constraints that are derived from robots, vehicles, and other mechanical systems can
be expressed in parametric form.

13.1.1.2 Parametric constraints

The parametric way of expressing velocity constraints gives a different interpretation to
U (q). Rather than directly corresponding to a velocity, each u ∈ U (q) is interpreted as an
abstract action vector. The set of allowable velocities is then obtained through a function
that maps an action vector into Tq(C). This yields the configuration transition equation
(or system)

q̇ = f (q, u), (13.2)

in which f is a continuous-time version of the state transition function that was developed
in Section 2.1. Note that (13.2) actually represents n scalar equations, in which n is the
dimension of C. The system will nevertheless be referred to as a single equation in the
vector sense. Usually, U (q) is fixed for all q ∈ C. This will be assumed unless otherwise
stated. In this case, the fixed action set is denoted as U .

There are two interesting ways to interpret (13.2):

1. Subspace of the tangent space: If q is fixed, then f maps from U into Tq(C). This
parameterizes the set of allowable velocities at q because a velocity vector, f (q, u), is
obtained for every u ∈ U (q).

2. Vector field: If u is fixed, then f can be considered as a function that maps each q ∈ C
into Tq(C). This means that f defines a vector field over C for every fixed u ∈ U .

Example 13.1 (Two Interpetations of q̇ = f (q, u)) Suppose that C = R
2, which yields

a two-dimensional velocity vector space at every q = (x, y) ∈ R
2. Let U = R, and q̇ =

f (q, u) be defined as ẋ = u and ẏ = x.
To obtain the first interpretation of q̇ = f (q, u), hold q = (x, y) fixed; for each u ∈ U ,

a velocity vector (ẋ, ẏ) = (u, x) is obtained. The set of all allowable velocity vectors at
q = (x, y) is

{(ẋ, ẏ) ∈ R
2 | ẏ = x}. (13.3)

Suppose that q = (1, 2). In this case, any vector of the form (u, 1) for any u ∈ R is
allowable.

To obtain the second interpretation, hold u fixed. For example, let u = 1. The vector
field (ẋ, ẏ) = (1, x) over R

2 is obtained. �

It is important to specify U when defining the configuration transition equation. We
previously allowed, but discouraged, the action set to depend on q. Any differential
constraints expressed as q̇ = f (q, u) for any U can be alternatively expressed as q̇ = u

by defining

U (q) = {q̇ ∈ R
n | ∃u ∈ U such that q̇ = f (q, u)} (13.4)

for each q ∈ C. In this definition, U (q) is not necessarily a subset of U . It is usually more
convenient, however, to use the form q̇ = f (q, u) and keep the same U for all q. The
common interpretation of U is that it is a set of fixed actions that can be applied from any
point in the C-space.
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In the context of ordinary motion planning, a configuration transition equation did not
need to be specifically mentioned. This issue was discussed in Section 8.4. Provided that
U contains an open subset that contains the origin, motion in any direction is allowed.
The configuration transition equation for basic motion planning was simply q̇ = u. Since
this does not impose constraints on the direction, it was not explicitly mentioned. For the
coming models in this chapter, constraints will be imposed on the velocities that restrict
the possible directions. This requires planning algorithms that handle differential models
and is the subject of Chapter 14.

13.1.1.3 Conversion from implicit to parametric form

There are trade-offs between the implicit and parametric ways to express differential
constraints. The implicit representation is more general; however, the parametric form is
more useful because it explicitly gives the possible actions. For this reason, it is often
desirable to derive a parametric representation from an implicit one. Under very general
conditions, it is theoretically possible. As will be explained shortly, this is a result of the
implicit function theorem. Unfortunately, the theoretical existence of such a conversion
does not help in actually performing the transformations. In many cases, it may not be
practical to determine a parametric representation.

To model a mechanical system, it is simplest to express constraints in the implicit
form and then derive the parametric representation q̇ = f (q, u). So far there has been no
appearance of u in the implicit representation. Since u is interpreted as an action, it needs
to be specified while deriving the parametric representation. To understand the issues, it
is helpful to first assume that all constraints in implicit form are linear equations in q̇ of
the form

g1(q)q̇1 + g2(q)q̇2 + · · · + gn(q)q̇n = 0, (13.5)

which are called Pfaffian constraints. These constraints are linear only under the assump-
tion that q is known. It is helpful in the current discussion to imagine that q is fixed at
some known value, which means that each of the gi(q) coefficients in (13.5) is a constant.

Suppose that k Pfaffian constraints are given for k ≤ n and that they are linearly
independent.1 Recall the standard techniques for solving linear equations. If k = n, then
a unique solution exists. If k < n, then a continuum of solutions exists, which forms an
(n− k)-dimensional hyperplane. It is impossible to have k > n because there can be no
more than n linearly independent equations.

If k = n, only one velocity vector satisfies the constraints for each q ∈ C. A vector
field can therefore be derived from the constraints, and the problem is not interesting
from a planning perspective because there is no choice of velocities. If k < n, then n− k

components of q̇ can be chosen independently, and then the remaining k are computed to
satisfy the Pfaffian constraints (this can be accomplished using linear algebra techniques
such as singular value decomposition [401, 961]). The components of q̇ that can be chosen
independently can be considered as n− k scalar actions. Together these form an (n− k)-
dimensional action vector, u = (u1, . . . , un−k). Suppose without loss of generality that
the first n− k components of q̇ are specified by u. The configuration transition equation

1 If the coefficients are placed into an k × n matrix, its rank is k.
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can then be written as

q̇1 = u1 q̇n−k+1 = fn−k+1(q, u)

q̇2 = u2 q̇n−k+2 = fn−k+2(q, u)

...
... (13.6)

q̇n−k = un−k q̇n = fn(q, u),

in which each fi is a linear function of u and is derived from the Pfaffian constraints
after substituting ui for q̇ i for each i from 1 to n− k and then solving for the remaining
components of q̇. For some values of q, the constraints may become linearly dependent.
This only weakens the constraints, which means the dimension of u can be increased at
any q for which independence is lost. Such points are usually isolated and will not be
considered further.

Example 13.2 (Pfaffian Constraints) Suppose that C = R
3, and there is one constraint

of the form (13.5)

2q̇1 − q̇2 − q̇3 = 0. (13.7)

For this problem, n = 3 and k = 1. There are two action variables because n− k = 2.
The configuration transition equation is

q̇1 = u1

q̇2 = u2

q̇3 = −2u1 + u2,

(13.8)

in which the last component was obtained by substituting u1 and u2, respectively, for q̇1

and q̇2 in (13.7) and then solving for q̇3.
The constraint given in (13.7) does not even depend on q. The same ideas apply for

more general Pfaffian constraints, such as

(cos q3)q̇1 − (sin q3)q̇2 − q̇3 = 0. (13.9)

Following the same procedure, the configuration transition equation becomes

q̇1 = u1

q̇2 = u2

q̇3 = −(cos q3)u1 + (sin q3)u2.

(13.10)

�
The ideas presented so far naturally extend to equality constraints that are not linear

in ẋ. At each q, an (n− k)-dimensional set of actions, U (q), is guaranteed to exist if
the Jacobian ∂(g1, . . . , gk)/∂(q̇1, . . . , q̇n) (recall (6.28) or see [511]) of the constraint
functions has rank k at q. This follows from the implicit function theorem [511].

Suppose that there are inequality constraints of the form g(q, q̇) ≤ 0, in addition to
equality constraints. Using the previous concepts, the actions may once again be assigned
directly as q̇ i = ui for all i such that 1 ≤ i ≤ n− k. Without inequality constraints, there
are no constraints on u, which means that U = R

n. Since u is interpreted as an input to
some physical system, U will often be constrained. In a physical system, for example,
the amount of energy consumed may be proportional to u. After performing the q̇ i = ui

substitutions, the inequality constraints indicate limits on u. These limits are expressed in
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L

ρ

φ

θ

(x, y)

Figure 13.1: The simple car has three degrees of freedom, but the velocity space at any con�gur ation is
only two-dimensional.

terms of q and the remaining components of q̇, which are the variables q̇n−k+1, . . . , q̇n.
For many problems, the inequality constraints are simple enough that constraints directly
on U can be derived. For example, if u1 represents scalar acceleration applied to a car,
then it may have a simple bound such as |u1| ≤ 1.

One final complication that sometimes occurs is that the action variables may already
be specified in the equality constraints: g(q, q̇, u) = 0. In this case, imagine once again
that q is fixed. If there are k independent constraints, then by the implicit function theorem,
q̇ can be solved to yield q̇ = f (q, u) (although theoretically possible, it may be difficult
in practice). If the Jacobian ∂(f1, . . . , fn)/∂(u1, . . . , uk) has rank k at q, then actions can
be applied to yield any velocity on a k-dimensional hyperplane in Tq(C). If k = n, then
there are enough independent action variables to overcome the constraints. Any velocity
in Tq(C) can be achieved through a choice of u. This is true only if there are no inequality
constraints on U .

13.1.2 Kinematics for wheeled systems

The most common family of examples in robotics arises from wheels that are required to
roll in the direction they are pointing. Most wheels are not designed to slide sideways. This
imposes velocity constraints on rolling vehicles. As a result, there are usually less action
variables than degrees of freedom. Such systems are therefore called underactuated.
It is interesting that, in many cases, vehicles can execute motions that overcome the
constraint. For example, a car can parallel park itself anywhere that it could reach if all four
wheels could turn to any orientation. This leads to formal concepts such as nonholonomic
constraints and small-time local controllability, which are covered in Section 15.4.

13.1.2.1 A simple car

One of the easiest examples to understand is the simple car, which is shown in Figure 13.1.
We all know that a car cannot drive sideways because the back wheels would have to slide
instead of roll. This is why parallel parking is challenging. If all four wheels could be
turned simultaneously toward the curb, it would be trivial to park a car. The complicated
maneuvers for parking a simple car arise because of rolling constraints.

The car can be imagined as a rigid body that moves in the plane. Therefore, its C-
space is C = R

2 × S
1. Figure 13.1 indicates several parameters associated with the car.
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A configuration is denoted by q = (x, y, θ). The body frame of the car places the origin
at the center of rear axle, and the x-axis points along the main axis of the car. Let s

denote the (signed) speed2 of the car. Let φ denote the steering angle (it is negative for the
wheel orientation shown in Figure 13.1). The distance between the front and rear axles is
represented as L. If the steering angle is fixed at φ, the car travels in a circular motion, in
which the radius of the circle is ρ. Note that ρ can be determined from the intersection of
the two axes shown in Figure 13.1 (the angle between these axes is φ).

Using the current notation, the task is to represent the motion of the car as a set of
equations of the form

ẋ = f1(x, y, θ, s, φ)

ẏ = f2(x, y, θ, s, φ)

θ̇ = f3(x, y, θ, s, φ).

(13.11)

In a small time interval, �t , the car must move approximately in the direction that the
rear wheels are pointing. In the limit as �t tends to zero, this implies that dy/dx = tan θ .
Since dy/dx = ẏ/ẋ and tan θ = sin θ/ cos θ , this condition can be written as a Pfaffian
constraint (recall (13.5)):

− ẋ sin θ + ẏ cos θ = 0. (13.12)

The constraint is satisfied if ẋ = cos θ and ẏ = sin θ . Furthermore, any scalar multiple of
this solution is also a solution; the scaling factor corresponds directly to the speed s of
the car. Thus, the first two scalar components of the configuration transition equation are
ẋ = s cos θ and ẏ = s sin θ .

The next task is to derive the equation for θ̇ . Let w denote the distance traveled by the
car (the integral of speed). As shown in Figure 13.1, ρ represents the radius of a circle
that is traversed by the center of the rear axle, if the steering angle is fixed. Note that
dw = ρdθ . From trigonometry, ρ = L/ tan φ, which implies

dθ = tan φ

L
dw. (13.13)

Dividing both sides by dt and using the fact that ẇ = s yields

θ̇ = s

L
tan φ. (13.14)

So far, the motion of the car has been modeled, but no action variables have been
specified. Suppose that the speed s and steering angle φ are directly specified by the action
variables us and uφ , respectively. The convention of using a u variable with the old variable
name appearing as a subscript will be followed. This makes it easy to identify the actions
in a configuration transition equation. A two-dimensional action vector, u = (us, uφ), is
obtained. The configuration transition equation for the simple car is

ẋ = us cos θ

ẏ = us sin θ

θ̇ = us

L
tan uφ.

(13.15)

2 Having a signed speed is somewhat unorthodox. If the car moves in reverse, then s is negative. A more correct
name for s would be velocity in the x direction of the body frame, but this is too cumbersome.
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As expressed in (13.15), the transition equation is not yet complete without specifying
U , the set of actions of the form u = (us, uφ). First suppose that any us ∈ R is possible.
What steering angles are possible? The interval [−π/2, π/2] is sufficiently large for the
steering angle uφ because any other value is equivalent to one between −π/2 and π/2.
Steering angles of π/2 and −π/2 are problematic. To derive the expressions for ẋ and
ẏ, it was assumed that the car moves in the direction that the rear wheels are pointing.
Imagine you are sitting on a tricycle and turn the front wheel perpendicular to the rear
wheels (assigning uφ = π/2). If you are able to pedal, then the tricycle should rotate in
place. This means that ẋ = ẏ = 0 because the center of the rear axle does not translate.

This strange behavior is not allowed for a standard automobile. A car with rear-wheel
drive would probably skid the front wheels across the pavement. If a car with front-wheel
drive attempted this, it should behave as a tricycle; however, this is usually not possible
because the front wheels would collide with the front axle when turned to φ = π/2.
Therefore, the simple car should have a maximum steering angle, φmax < π/2, and we
require that |φ| ≤ φmax . Observe from Figure 13.1 that a maximum steering angle implies
a minimum turning radius, ρmin. For the case of a tricycle, ρmin = 0. You may have
encountered the problem of a minimum turning radius while trying to make an illegal
U-turn. It is sometimes difficult to turn a car around without driving it off of the road.

Now return to the speed us . On level pavement, a real vehicle has a top speed, and its
behavior should change dramatically depending on the speed. For example, if you want
to drive along the minimum turning radius, you should not drive at 140km/hr. It seems
that the maximum steering angle should reduce at higher speeds. This enters the realm
of dynamics, which will be allowed after phase spaces are introduced in Section 13.2.
Following this, some models of cars with dynamics will be covered in Sections 13.2.4
and 13.3.3.

It has been assumed implicitly that the simple car is moving slowly to safely neglect
dynamics. A bound such as |us | ≤ 1 can be placed on the speed without affecting the
configurations that it can reach. The speed can even be constrained as us ∈ {−1, 0, 1}
without destroying reachability. Be careful, however, about a bound such as 0 ≤ us ≤ 1.
In this case, the car cannot drive in reverse! This clearly affects the set of reachable
configurations. Imagine a car that is facing a wall and is unable to move in reverse. It may
be forced to hit the wall as it moves.

Based on these considerations regarding the speed and steering angle, several interesting
variations are possible:

Tricycle: U = [−1, 1] × [−π/2, π/2]. Assuming front-wheel drive, the “car” can rotate
in place if uφ = π/2 or uφ = π/2. This is unrealistic for a simple car. The resulting model
is similar to that of the simple unicycle, which appears later in (13.18).

Simple Car [599]: U = [−1, 1] × (−φmax, φmax). By requiring that |uφ| ≤ φmax < π/2,
a car with minimum turning radius ρmin = L/ tan φmax is obtained.

Reeds-Shepp Car [817, 924]: Further restrict the speed of the simple car so that us ∈
{−1, 0, 1}.3 This model intuitively makes us correspond to three discrete “gears”: reverse,
park, or forward. An interesting question under this model is: What is the shortest possible
path (traversed in R

2 by the center of the rear axle) between two configurations in the
absence of obstacles? This is answered in Section 15.3.

3 In many works, the speed us = 0 is not included. It appears here so that a proper termination condition can be
defined.
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Figure 13.2: (a) The Pioneer 3-DX8 (courtesy of ActivMedia Robotics: MobileRobots.com), and many
other mobile robots use a differential drive. In addition to the two drive wheels, a caster wheel (as on
the bottom of an of�ce chair) is placed in the rear center to prevent the robot from toppling over. (b) The
parameters of a generic differential-drive robot.

Dubins Car [296]: Remove the reverse speed us = −1 from the Reeds-Shepp car to
obtain us ∈ {0, 1} as the only possible speeds. The shortest paths in R

2 for this car are
quite different than for the Reeds-Shepp car; see Section 15.3.

The car that was shown in Figure 1.12a of Section 1.2 is even more restricted than the
Dubins car because it is additionally forced to turn left.

Basic controllability issues have been studied thoroughly for the simple car. These will
be covered in Section 15.4, but it is helpful to develop intuitive notions here to assist in
understanding the planning algorithms of Chapter 14. The simple car is considered non-
holonomic because there are differential constraints that cannot be completely integrated.
This means that the car configurations are not restricted to a lower dimensional subspace
of C. The Reeds-Shepp car can be maneuvered into an arbitrarily small parking space,
provided that a small amount of clearance exists. This property is called small-time local
controllability and is presented in Section 15.1.3. The Dubins car is nonholonomic, but
it does not possess this property. Imagine the difficulty of parallel parking without using
the reverse gear. In an infinitely large parking lot without obstacles, however, the Dubins
car can reach any configuration.

13.1.2.2 A differential drive

Most indoor mobile robots do not move like a car. For example, consider the mobile
robotics platform shown in Figure 13.2a. This is an example of the most popular way to
drive indoor mobile robots. There are two main wheels, each of which is attached to its
own motor. A third wheel (not visible in Figure 13.2a) is placed in the rear to passively
roll along while preventing the robot from falling over.

To construct a simple model of the constraints that arise from the differential drive,
only the distance L between the two wheels, and the wheel radius, r , are necessary.
See Figure 13.2b. The action vector u = (ur, ul) directly specifies the two angular wheel
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(a) (b)

Figure 13.3: (a) Pure translation occurs when both wheels move at the same angular velocity; (b) pure
rotation occurs when the wheels move at opposite velocities.

velocities (e.g., in radians per second). Consider how the robot moves as different actions
are applied. See Figure 13.3. If ul = ur > 0, then the robot moves forward in the direction
that the wheels are pointing. The speed is proportional to r . In general, if ul = ur , then
the distance traveled over a duration t of time is rtul (because tul is the total angular
displacement of the wheels). If ul = −ur 	= 0, then the robot rotates clockwise because the
wheels are turning in opposite directions. This motivates the placement of the body-frame
origin at the center of the axle between the wheels. By this assignment, no translation
occurs if the wheels rotate at the same rate but in opposite directions.

Based on these observations, the configuration transition equation is

ẋ = r

2
(ul + ur ) cos θ

ẏ = r

2
(ul + ur ) sin θ

θ̇ = r

L
(ur − ul).

(13.16)

The translational part contains cos θ and sin θ parts, just like the simple car because the
differential drive moves in the direction that its drive wheels are pointing. The translation
speed depends on the average of the angular wheel velocities. To see this, consider the
case in which one wheel is fixed and the other rotates. This initially causes the robot to
translate at 1/2 of the speed in comparison to both wheels rotating. The rotational speed
θ̇ is proportional to the change in angular wheel speeds. The robot’s rotation rate grows
linearly with the wheel radius but reduces linearly with respect to the distance between
the wheels.

It is sometimes preferable to transform the action space. Let uω = (ur + ul)/2 and uψ =
ur − ul . In this case, uω can be interpreted as an action variable that means “translate,”
and uψ means “rotate.” Using these actions, the configuration transition equation becomes

ẋ = ruω cos θ

ẏ = ruω sin θ

θ̇ = r

L
uψ.

(13.17)

In this form, the configuration transition equation resembles (13.15) for the simple car (try
setting uψ = tan uφ and us = ruω). A differential drive can easily simulate the motions
of the simple car. For the differential drive, the rotation rate can be set independently of
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Figure 13.4: The shortest path traversed by the center of the axle is simply the line segment that connects
the initial and goal positions in the plane. Rotations appear to be cost-free.

θr

y

x

Figure 13.5: Viewed from above, the unicycle model has an action uω that changes the wheel orien-
tation θ.

the translational velocity. The simple car, however, has the speed us appearing in the θ̇

expression. Therefore, the rotation rate depends on the translational velocity.
Recall the question asked about shortest paths for the Reeds-Shepp and Dubins cars.

The same question for the differential drive turns out to be uninteresting because the
differential drive can cause the center of its axle to follow any continuous path in R

2. As
depicted in Figure 13.4, it can move between any two configurations by: 1) first rotating
itself to point the wheels to the goal position, which causes no translation; 2) translating
itself to the goal position; and 3) rotating itself to the desired orientation, which again
causes no translation. The total distance traveled by the center of the axle is always the
Euclidean distance in R

2 between the two desired positions.
This may seem like a strange effect due to the placement of the coordinate origin.

Rotations seem to have no cost. This can be fixed by optimizing the total amount of wheel
rotation or time required, if the speed is held fixed [65]. Suppose that ur, ul ∈ {−1, 0, 1}.
Determining the minimum time required to travel between two configurations is quite
interesting and is covered in Section 15.3. This properly takes into account the cost of
rotating the robot, even if it does not cause a translation.

13.1.2.3 A simple unicycle

Consider the simple model of a unicycle, which is shown in Figure 13.5. Ignoring balancing
concerns, there are two action variables. The rider of the unicycle can set the pedaling
speed and the orientation of the wheel with respect to the z-axis. Let σ denote the pedaling
angular velocity, and let r be the wheel radius. The speed of the unicycle is s = rσ . In this
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d1 (x, y)
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L
φ

Figure 13.6: The parameters for a car pulling trailers.

model, the speed is set directly by an action variable us (alternatively, the pedaling rate
could be an action variable uσ , and the speed is derived as s = ruσ ). Let ω be the angular
velocity of the unicycle orientation in the xy plane (hence, ω = θ̇). Let ω be directly set
by an action variable uω. The configuration transition equation is

ẋ = us cos θ

ẏ = us sin θ

θ̇ = uω.

(13.18)

This is just the differential drive equation (13.17) with L = 1 and the substitution us =
ruσ . Thus, a differential drive can simulate a unicycle. This may seem strange; however, it
is possible because these models do not consider dynamics. Note that the unicycle can also
simulate the simple-car model. Therefore, the tricycle and unicycle models are similar.

13.1.2.4 A car pulling trailers

An interesting extension of the simple car can be made by attaching one or more trailers.
You may have seen a train of luggage carts on the tarmac at airports. There are many
subtle issues for modeling the constraints for these models. The form of equations is very
sensitive to the precise point at which the trailer is attached and also on the choice of
body frames. One possibility for expressing the kinematics is to use the expressions in
Section 3.3; however, these may lead to complications when analyzing the constraints. It
is somewhat of an art to find a simple expression of the constraints. The model given here
is adapted from [730].4

Consider a simple car that pulls k trailers as shown in Figure 13.6. Each trailer is
attached to the center of the rear axle of the body in front of it. The important new
parameter is the hitch length di which is the distance from the center of the rear axle of
trailer i to the point at which the trailer is hitched to the next body. Using concepts from
Section 3.3.1, the car itself contributes R

2 × S
1 to C, and each trailer contributes an S

1

component to C. The dimension of C is therefore k + 3. Let θi denote the orientation of
the ith trailer, expressed with respect to the world frame.

4 The original model required a continuous steering angle.
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The configuration transition equation is

ẋ = s cos θ0

ẏ = s sin θ0

θ̇0 = s

L
tan φ

θ̇1 = s

d1
sin(θ1 − θ0)

...

θ̇ i = s

di




i−1∏

j=1

cos(θj−1 − θj )



 sin(θi−1 − θi)

...

θ̇ k = s

dk




k−1∏

j=1

cos(θj−1 − θj )



 sin(θk−1 − θk).

(13.19)

An interesting variation of this model is to allow the trailer wheels to be steered. For a
single trailer, this leads to a model that resembles a firetruck [165].

13.1.3 Other examples of velocity constraints

The differential models seen so far were obtained from wheels that roll along a planar
surface. Many generalizations are possible by considering other ways in which bodies can
contact each other. In robotics, many interesting differential models arise in the context
of manipulation. This section briefly covers some other examples of velocity constraints
on the C-space. Once again, dynamics is neglected for now. Such models are sometimes
classified as quasi-static because even though motions occur, some aspects of the model
treat the bodies as if they were static. Such models are often realistic when moving at
slow enough speeds.

13.1.3.1 Pushing a box

Imagine using a differential drive robot to push a box around on the floor, as shown in
Figure 13.7a. It is assumed that the box is a convex polygon, one edge of which contacts
the front of the robot. There are frictional contacts between the box and floor and also
between the box and robot. Suppose that the robot is moving slowly enough so that
dynamics are insignificant. It is assumed that the box cannot move unless the robot is
moving. This prohibits manipulations such as “kicking” the box across the room. The
term stable pushing [12, 674, 684] refers to the case in which the robot moves the box as
if the box were rigidly attached to the robot.

As the robot pushes the box, the box may slide or rotate, as shown in Figures 13.7b
and 13.7c, respectively. These cases are considered illegal because they do not constitute
stable pushing. What motions of the robot are possible? Begin with the configuration
transition equation of the differential drive robot, and then determine which constraints
need to be placed on U to maintain stable pushing. Suppose that (13.17) is used. It is
clear that only forward motion is possible because the robot immediately breaks contact
with the box if the robot moves in the opposite direction. Thus, s must be positive (also,



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

604 PLANNING UNDER DIFFERENTIAL CONSTRAINTS

Robot Box

(a) Stable pushing (b) Illegal sliding (c) Illegal rotation

Figure 13.7: Lynch and Mason showed that pushing a box is very much like driving the simple car: (a)
With careful motions, the box will act as if it is attached to the robot. b) If it turns too sharply, however, the
box will slide away; this induces limits on the steering angle. c) The box may alternatively rotate from sharp
turns [674].

to fit the quasi-static model, s should be small enough so that dynamical effects become
insignificant). How should the rotation rate ψ be constrained? Constraints on ψ depend
on the friction model (e.g., Coulomb), the shape of the box, and the particular edge that is
being pushed. Details on these constraints are given in [674, 684]. This leads to an interval
[a, b] ⊆ [−π/2, π/2], in which a < 0 and b > 0, and it is required that ψ ∈ [a, b]. This
combination of constraints produces a motion model that is similar to the Dubins car. The
main difference is that the maximum steering angle in the left and right directions may be
different.

To apply this model for planning, it seems that the C-space should be R
2 × S

1 ×R
2 ×

S
1 because there are two rigid bodies. The manipulation planning framework of Section

7.3.2 can be applied to obtain a hybrid system and manipulation graph that expresses
the various ways in which the robot can contact the box or fail to contact the box. For
example, the robot may be able to push the box along one of several possible edges. If the
robot becomes stuck, it can change the pushing edge to move the box in a new direction.

13.1.3.2 Flying an airplane

The Dubins car model from Section 13.1.2 can be extended to 3D worlds to provide a
simple aircraft flight model that may be reasonable for air traffic analysis. First suppose
that the aircraft maintains a fixed altitude and is capable only of yaw rotations. In this case,
(13.15) could be used directly by imposing the constraint that s = 1 (or some suitable
positive speed). This is equivalent to the Dubins car, except that s = 0 is prohibited
because it would imply that the aircraft can instantaneously stop in the air. This model
assumes that the aircraft is small relative to the C-space. A more precise model should
take into account pitch and roll rotations, disturbances, and dynamic effects. These would
become important, for example, in studying the flight stability of an aircraft design. Such
concerns are neglected here.

Now consider an aircraft that can change its altitude, in addition to executing motions
like the Dubins car. In this case letC = R

3 × S
1, in which the extra R represents the altitude

with respect to flying over a flat surface. A configuration is represented as q = (x, y, z, θ).
Let uz denote an action that directly causes a change in the altitude: ż = uz. The steering
action uφ is the same as in the Dubins car model. The configuration transition equation is

ẋ = cos θ ż = uz
(13.20)

ẏ = sin θ θ̇ = uω.
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For a fixed value of u = (uz, uω) such that uz 	= 0 and uω 	= 0, a helical path results. The
central axis of the helix is parallel to the z-axis, and projection of the path down to the
xy plane is a circle or circular arc. Maximum absolute values should be set for uz and uω

based on the maximum possible altitude and yaw rate changes of the aircraft.

13.1.3.3 Rolling a ball

Instead of a wheel, consider rolling a ball in the plane. Place a ball on a table and try
rolling it with your palm placed flat on top of it. It should feel like there are two degrees
of freedom: rolling forward and rolling side to side. The ball should not be able to spin
in place. The directions can be considered as two action variables. The total degrees of
freedom of the ball is five, however, because it can achieve any orientation in SO(3)
and any (x, y) position in the plane; thus, C = R

2 × SO(3). Given that there are only
two action variables, is it possible to roll the ball into any configuration? It is shown in
[635, 494] that this is possible, even for the more general problem of one sphere rolling
on another (the plane is a special case of a sphere with infinite radius). This problem can
actually arise in robotic manipulation when a spherical object come into contact (e.g., a
robot hand may have fingers with spherical tips); see [105, 679, 728, 732].

The resulting transition equation was shown in [719] (also see [728]) to be

θ̇ = −u2

φ̇ = u1

cos θ

ẋ = −u1ρ sin ψ − u2ρ cos ψ

ẏ = −u1ρ cos ψ + u2ρ sin ψ

ψ̇ = −u1 tan θ.

(13.21)

In these equations, x and y are the position on the contact point in the plane, and θ and
φ are the position of the contact point in the ball frame and are expressed using spherical
coordinates. The radius of the ball is ρ. Finally, ψ expresses the orientation of the ball
with respect to the contact point.

13.1.3.4 Trapped on a surface

It is possible that the constraints cause the configuration to be trapped on a lower dimen-
sional surface. Let C = R

2, and consider the system

ẋ = yu ẏ = −xu, (13.22)

for (x, y) ∈ R
2 and u ∈ U = R. What are the integral curves for a constant action u 	= 0?

From any point (x, y) ∈ R
2, the trajectory follows a circle of radius

√
x2 + y2 centered at

the origin. The speed along the circle is determined by |u|, and the direction is determined
by the sign of u. Therefore, (13.22) indicates that the configuration is confined to a circle.
Other than that, there are no further constraints.

Suppose that the initial configuration is given as (x0, y0). Since the configuration is
confined to a circle, the C-space could alternatively be defined as C = S

1. Each point

on S
1 can be mapped to the circle that has radius r =

√
x2

0 + y2
0 and center at (0, 0). In

this case, there are no differential constraints on the velocities, provided that motions are
trapped on the circle. Any velocity in the one-dimensional tangent space at points on the
circle is allowed. This model is equivalent to (13.22).
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Now consider the possible trajectories that are constrained to traverse a circle,

h(x, y) = x2 + y2 − r2 = 0. (13.23)

This means that for all time t ,

h(x(t), y(t)) = x(t)2 + y(t)2 − r2 = 0. (13.24)

To derive a constraint on velocities, take the derivative with respect to time, which yields

dh(x, y)

dt
= 2xẋ + 2yẏ = 0. (13.25)

This is an example of a Pfaffian constraint, as given in (13.5). The parametric form of
this differential constraint happens to be (13.22). Any velocity vector that is a multiple
of (y,−x) satisfies (13.25). When expressed as a differential constraint, the radius r does
not matter. This is because it is determined from the initial configuration.

What just occurred here is a special case of a completely integrable differential model.
In general, if the model q̇ = f (q, u) can be expressed as the time derivative of constraints
of the form h(q) = 0, then the configuration transition equation is said to be completely
integrable. Obtaining an implicit differential model from constraints of the form hi(q) = 0
is not difficult. Each constraint is differentiated to obtain

dhi(q)

dt
= 0. (13.26)

For example, such constraints arise from closed kinematic chains, as in Section 4.4, and
the implicit differential model just expresses the condition that velocities must lie in the
tangent space to the constraints. It may be difficult, however, to obtain a parametric form
of the differential model. Possible velocity vectors can be computed at any particular q,
however, by using the linear algebra techniques described in Section 7.4.1.

It is even quite difficult to determine whether a differential model is completely inte-
grable, which means that the configurations are trapped on a lower dimensional surface.
For some systems, to be described by (13.41), this will be solved by the Frobenius Theorem
in 15.4.2. If such systems are not completely integrable, they are called nonholonomic;
otherwise, they are called holonomic. In general, even if a model is theoretically inte-
grable, actually performing the integration is another issue. In most cases, it is difficult or
impossible to integrate the model.

Therefore, it is sometimes important to work directly with constraints in differential
form, even if they are integrable. Furthermore, methods for planning under differential
constraints can be applied to problems that have constraints of the form h(q) = 0. This,
for example, implies that motion planning for closed kinematic chains can be performed
by planning algorithms designed to handle differential constraints.

13.2 Phase space representation of dynamical systems

The differential constraints defined in Section 13.1 are often called kinematic because
they can be expressed in terms of velocities on the C-space. This formulation is useful for
many problems, such as modeling the possible directions of motions for a wheeled mobile
robot. It does not, however, enable dynamics to be expressed. For example, suppose that
the simple car is traveling quickly. Taking dynamics into account, it should not be able to
instantaneously start and stop. For example, if it is heading straight for a wall at full speed,
any reasonable model should not allow it to apply its brakes from only one millimeter
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away and expect it to avoid collision. Due to momentum, the required stopping distance
depends on the speed. You may have learned this from a drivers education course.

To account for momentum and other aspects of dynamics, higher order differential
equations are needed. There are usually constraints on acceleration q̈, which is defined
as dq̇/dt . For example, the car may only be able to decelerate at some maximum rate
without skidding the wheels (or tumbling the vehicle). Most often, the actions are even
expressed in terms of higher order derivatives. For example, the floor pedal of a car may
directly set the acceleration. It may be reasonable to consider the amount that the pedal
is pressed as an action variable. In this case, the configuration must be obtained by two
integrations. The first yields the velocity, and the second yields the configuration.

The models for dynamics therefore involve acceleration q̈ in addition to velocity q̇ and
configuration q. Once again, both implicit and parametric models exist. For an implicit
model, the constraints are expressed as

gi(q̈, q̇, q) = 0. (13.27)

For a parametric model, they are expressed as

q̈ = f (q̇, q, u). (13.28)

13.2.1 Reducing degree by increasing dimension

Taking into account constraints on higher order derivatives seems substantially more
complicated. This section explains a convenient trick that converts constraints that have
higher order derivatives into a new set of constraints that has only first-order derivatives.
This involves the introduction of a phase space, which has more dimensions than the
original C-space. Thus, there is a trade-off because the dimension is increased; however,
it is widely accepted that increasing the dimension of the space is often easier than dealing
with higher order derivatives. In general, the term state space will refer to either C-spaces
or phase spaces derived from them.

13.2.1.1 The scalar case

To make the discussion concrete, consider the following differential equation:

ÿ − 3ẏ + y = 0, (13.29)

in which y is a scalar variable, y ∈ R. This is a second-order differential equation because
of ÿ. A phase space can be defined as follows. Let x = (x1, x2) denote a two-dimensional
phase vector, which is defined by assigning x1 = y and x2 = ẏ. The terms state space and
state vector will be used interchangeably with phase space and phase vector, respectively,
in contexts in which the phase space is defined. Substituting the equations into (13.29)
yields

ÿ − 3x2 + x1 = 0. (13.30)

So far, this does not seem to have helped. However, ÿ can be expressed as either ẋ2 or
ẍ1. The first choice is better because it is a lower order derivative. Using ẋ2 = ÿ, the
differential equation becomes

ẋ2 − 3x2 + x1 = 0. (13.31)
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Is this expression equivalent to (13.29)? By itself it is not. There is one more constraint,
x2 = ẋ1. In implicit form, ẋ1 − x2 = 0. The key to making the phase space approach work
correctly is to relate some of the phase variables by derivatives.

Using the phase space, we just converted the second-order differential equation (13.29)
into two first-order differential equations,

ẋ1 = x2

ẋ2 = 3x2 − x1,
(13.32)

which are obtained by solving for ẋ1 and ẋ2. Note that (13.32) can be expressed as
ẋ = f (x), in which f is a function that maps from R

2 into R
2.

The same approach can be used for any differential equation in implicit form,
g(ÿ, ẏ, y) = 0. Let x1 = y, x2 = ẏ, and ẋ2 = ÿ. This results in the implicit equations
g(ẋ2, x2, x1) = 0 and ẋ1 = x2. Now suppose that there is a scalar action u ∈ U = R rep-
resented in the differential equations. Once again, the same approach applies. In implicit
form, g(ÿ, ẏ, y, u) = 0 can be expressed as g(ẋ2, x2, x1, u) = 0.

Suppose that a given acceleration constraint is expressed in parametric form as ÿ =
h(ẏ, y, u). This often occurs in the dynamics models of Section 13.3. This can be converted
into a phase transition equation or state transition equation of the form ẋ = f (x, u), in
which f : R

2 ×R → R
2. The expression is

ẋ1 = x2

ẋ2 = h(x2, x1, u).
(13.33)

For a second-order differential equation, two initial conditions are usually given. The
values of y(0) and ẏ(0) are needed to determine the exact position y(t) for any t ≥ 0. Using
the phase space representation, no higher order initial conditions are needed because any
point in phase space indicates both y and ẏ. Thus, given an initial point in the phase and
u(t) for all t ≥ 0, y(t) can be determined.

Example 13.3 (Double Integrator) The double integrator is a simple yet important
example that nicely illustrates the phase space. Suppose that a second-order differential
equation is given as q̈ = u, in which q and u are chosen from R. In words, this means
that the action directly specifies acceleration. Integrating5 once yields the velocity q̇ and
performing a double integration yields the position q. If q(0) and q̇(0) are given, and u(t ′)
is specified for all t ′ ∈ [0, t), then q̇(t) and q(t) can be determined for any t > 0.

A two-dimensional phase space X = R
2 is defined in which

x = (x1, x2) = (q, q̇). (13.34)

The state (or phase) transition equation ẋ = f (x, u) is

ẋ1 = x2

ẋ2 = u.
(13.35)

To determine the state trajectory, initial values x1(0) = q0 (position) and x2(0) = q̇0

(velocity) must be given in addition to the action history. If u is constant, then the
state trajectory is quadratic because it is obtained by two integrations of a constant
function. �

5 Wherever integrals are performed, it will be assumed that the integrands are integrable.
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13.2.1.2 The vector case

The transformation to the phase space can be extended to differential equations in which
there are time derivatives in more than one variable. Suppose that q represents a configura-
tion, expressed using a coordinate neighborhood on a smooth n-dimensional manifold C.
Second-order constraints of the form g(q̈, q̇, q) = 0 or g(q̈, q̇, q, u) = 0 can be expressed
as first-order constraints in a 2n-dimensional state space. Let x denote the 2n-dimensional
phase vector. By extending the method that was applied to the scalar case, x is de-
fined as x = (q, q̇). For each integer i such that 1 ≤ i ≤ n, xi = qi . For each i such
that n+ 1 ≤ i ≤ 2n, xi = q̇ i . These substitutions can be made directly into an implicit
constraint to reduce the order to one.

Suppose that a set of n differential equations is expressed in parametric form as q̈ =
h(q, q̇, u). In the phase space, there are 2n differential equations. The first n correspond to
the phase space definition ẋi = xn+i , for each i such that 1 ≤ i ≤ n. These hold because
xn+i = q̇ and ẋi is the time derivative of q̇ i for i ≤ n. The remaining n components of
ẋ = f (x, u) follow directly from h by substituting the first n components of x in the place
of q and the remaining n in the place of q̇ in the expression h(q, q̇, u). The result can be
denoted as h(x, u) (obtained directly from h(q, q̇, u)). This yields the final n equations
as ẋi = hi(x, u), for each i such that n+ 1 ≤ i ≤ 2n. These 2n equations define a phase
(or state) transition equation of the form ẋ = f (x, u). Now it is clear that constraints
on acceleration can be manipulated into velocity constraints on the phase space. This
enables the tangent space concepts from Section 8.3 to express constraints that involve
acceleration. Furthermore, the state space X is the tangent bundle (defined in (8.9) for R

n

and later in (15.67) for any smooth manifold) of C because q and q̇ together indicate a
tangent space Tq(C) and a particular tangent vector q̇ ∈ Tq(C).

13.2.1.3 Higher order differential constraints

The phase space idea can even be applied to differential equations with order higher
than two. For example, a constraint may involve the time derivative of acceleration q(3),
which is often called jerk. If the differential equations involve jerk variables, then a 3n-
dimensional phase space can be defined to obtain first-order constraints. In this case, each
qi , q̇ i , and q̈i in a constraint such as g(q(3), q̈, q̇, q, u) = 0 is defined as a phase variable.
Similarly, kth-order differential constraints can be reduced to first-order constraints by
introducing a kn-dimensional phase space.

Example 13.4 (Chain of Integrators) A simple example of higher order differential
constraints is the chain of integrators.6 This is a higher order generalization of Example
13.3. Suppose that a kth-order differential equation is given as q(k) = u, in which q and u

are scalars, and q(k) denotes the kth derivative of q with respect to time.
A k-dimensional phase space X is defined in which

x = (q, q̇, q̈, q(3), . . . , q(k−1)). (13.36)

The state (or phase) transition equation ẋ = f (x, u) is ẋi = xi+1 for each i such that 1 ≤
i ≤ n− 1, and ẋn = u. Together, these n individual equations are equivalent to q(k) = u.

The initial state specifies the initial position and all time derivatives up to order
k − 1. Using these and the action u, the state trajectory can be obtained by a chain of
integrations. �

6 It is called this because in block diagram representations of systems it is depicted as a chain of integrator blocks.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

610 PLANNING UNDER DIFFERENTIAL CONSTRAINTS

You might be wondering whether derivatives can be eliminated completely by in-
troducing a phase space that has high enough dimension. This does actually work. For
example, if there are second-order constraints, then a 3n-dimensional phase space can
be introduced in which x = (q, q̇, q̈). This enables constraints such as g(q, q̇, q̈) = 0 to
appear as g(x) = 0. The trouble with using such formulations is that the state must follow
the constraint surface in a way that is similar to traversing the solution set of a closed
kinematic chain, as considered in Section 4.4. This is why tangent spaces arose in that
context. In either case, the set of allowable velocities becomes constrained at every point
in the space.

Problems defined using phase spaces typically have an interesting property known
as drift. This means that for some x ∈ X, there does not exist any u ∈ U such that
f (x, u) = 0. For the examples in Section 13.1.2, such an action always existed. These
were examples of driftless systems. This was possible because the constraints did not
involve dynamics. In a dynamical system, it is impossible to instantaneously stop due to
momentum, which is a form of drift. For example, a car will “drift” into a brick wall if it is
3 meters way and traveling 100 km/hr in the direction of the wall. There exists no action
(e.g., stepping firmly on the brakes) that could instantaneously stop the car. In general,
there is no way to instantaneously stop in the phase space.

13.2.2 Linear systems

Now that the phase space has been defined as a special kind of state space that can handle
dynamics, it is convenient to classify the kinds of differential models that can be defined
based on their mathematical form. The class of linear systems has been most widely
studied, particularly in the context of control theory. The reason is that many powerful
techniques from linear algebra can be applied to yield good control laws [194]. The ideas
can also be generalized to linear systems that involve optimality criteria [28, 573], nature
[97, 567], or multiple players [60].

Let X = R
n be a phase space, and let U = R

m be an action space for m ≤ n. A linear
system is a differential model for which the state transition equation can be expressed as

ẋ = f (x, u) = Ax + Bu, (13.37)

in which A and B are constant, real-valued matrices of dimensions n× n and n×m,
respectively.

Example 13.5 (Linear System Example) For a simple example of (13.37), suppose
X = R

3, U = R
2, and let



ẋ1

ẋ2

ẋ3



 =



0

√
2 1

1 −1 4
2 0 1








x1

x2

x3



+



1 0
0 1
1 1




(

u1

u2

)
. (13.38)

Performing the matrix multiplications reveals that all three equations are linear in the state
and action variables. Compare this to the discrete-time linear Gaussian system shown in
Example 11.25. �

Recall from Section 13.1.1 that k linear constraints restrict the velocity to an (n− k)-
dimensional hyperplane. The linear model in (13.37) is in parametric form, which means
that each action variable may allow an independent degree of freedom. In this case,
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m = n− k. In the extreme case of m = 0, there are no actions, which results in ẋ = Ax.
The phase velocity ẋ is fixed for every point x ∈ X. If m = 1, then at every x ∈ X a
one-dimensional set of velocities may be chosen using u. This implies that the direction
is fixed, but the magnitude is chosen using u. In general, the set of allowable velocities at
a point x ∈ R

n is an m-dimensional linear subspace of the tangent space Tx(Rn) (if B is
nonsingular).

In spite of (13.37), it may still be possible to reach all of the state space from any
initial state. It may be costly, however, to reach a nearby point because of the restriction
on the tangent space; it is impossible to command a velocity in some directions. For the
case of nonlinear systems, it is sometimes possible to quickly reach any point in a small
neighborhood of a state, while remaining in a small region around the state. Such issues
fall under the general topic of controllability, which will be covered in Sections 15.1.3
and 15.4.3.

Although not covered here, the observability of the system is an important topic in
control [194, 481]. In terms of the I-space concepts of Chapter 11, this means that a
sensor of the form y = h(x) is defined, and the task is to determine the current state, given
the history I-state. If the system is observable, this means that the nondeterministic I-state
is a single point. Otherwise, the system may only be partially observable. In the case of
linear systems, if the sensing model is also linear,

y = h(x) = Cy, (13.39)

then simple matrix conditions can be used to determine whether the system is observable
[194]. Nonlinear observability theory also exists [481].

As in the case of discrete planning problems, it is possible to define differential models
that depend on time. In the discrete case, this involves a dependency on stages. For the
continuous-stage case, a time-varying linear system is defined as

ẋ = f (x(t), u(t), t) = A(t)x(t) + B(t)u(t). (13.40)

In this case, the matrix entries are allowed to be functions of time. Many powerful control
techniques can be easily adapted to this case, but it will not be considered here because
most planning problems are time-invariant (or stationary).

13.2.3 Nonlinear systems

Although many powerful control laws can be developed for linear systems, the vast
majority of systems that occur in the physical world fail to be linear. Any differential
models that do not fit (13.37) or (13.40) are called nonlinear systems. All of the models
given in Section 13.1.2 are nonlinear systems for the special case in which X = C.

One important family of nonlinear systems actually appears to be linear in some sense.
Let X be a smooth n-dimensional manifold, and let U ⊆ R

m. Let U = R
m for some

m ≤ n. Using a coordinate neighborhood, a nonlinear system of the form

ẋ = f (x) +
m∑

i=1

gi(x)ui (13.41)
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for smooth functions f and gi is called a control-affine system or affine-in-control system.7

These have been studied extensively in nonlinear control theory [481, 848]. They are linear
in the actions but nonlinear with respect to the state. See Section 15.4.1 for further reading
on control-affine systems.

For a control-affine system it is not necessarily possible to obtain zero velocity because
f causes drift. The important special case of a driftless control-affine system occurs if
f ≡ 0. This is written as

ẋ =
m∑

i=1

gi(x)ui. (13.42)

By setting ui = 0 for each i from 1 to m, zero velocity, ẋ = 0, is obtained.

Example 13.6 (Nonholonomic Integrator) One of the simplest examples of a driftless
control-affine system is the nonholonomic integrator introduced in control literature by
Brockett in [144]. It some times referred to as Brockett’s system, or the Heisenberg system
because it arises in quantum mechanics [114]. Let X = R

3, and let the set of actions
U = R

2. The state transition equation for the nonholonomic integrator is

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1.

(13.43)

�

Many nonlinear systems can be expressed implicitly using Pfaffian constraints, which
appeared in Section 13.1.1, and can be generalized from C-spaces to phase spaces. In
terms of X, a Pfaffian constraint is expressed as

g1(x)ẋ1 + g2(x)ẋ2 + · · · + gn(x)ẋn = 0. (13.44)

Even though the equation is linear in ẋ, a nonlinear dependency on x is allowed.
Both holonomic and nonholonomic models may exist for phase spaces, just as in

the case of C-spaces in Section 13.1.3. The Frobenius Theorem, which is covered in
Section 15.4.2, can be used to determine whether control-affine systems are completely
integrable.

13.2.4 Extending models by adding integrators

The differential models from Section 13.1 may seem realistic in many applications because
actions are required to undergo instantaneous changes. For example, in the simple car,
the steering angle and speed may be instantaneously changed to any value. This implies
that the car is capable of instantaneous acceleration changes. This may be a reasonable
approximation if the car is moving slowly (for example, to analyze parallel-parking
maneuvers). The model is ridiculous, however, at high speeds.

7 Be careful not to confuse control-affine systems with affine control systems, which are of the form ẋ = Ax + Bu+
w, for some constant matrices A, B and a constant vector w.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DIFFERENTIAL MODELS 613

Suppose a state transition equation of the form ẋ = f (x, u) is given in which the
dimension of X is n. The model can be enhanced as follows:

1. Select an action variable ui .

2. Rename the action variable as a new state variable, xn+1 = ui .

3. Define a new action variable u′i that takes the place of ui .

4. Extend the state transition equation by one dimension by introducing ẋn+1 = u′i .

This enhancement will be referred to as placing an integrator in front of ui . This procedure
can be applied incrementally as many times as desired, to create a chain of integrators
from any action variable. It can also be applied to different action variables.

13.2.4.1 Better unicycle models

Improvements to the models in Section 13.1 can be made by placing integrators in front
of action variables. For example, consider the unicycle model (13.18). Instead of directly
setting the speed using us , suppose that the speed is obtained by integration of an action ua

that represents acceleration. The equation ṡ = ua is used instead of s = us , which means
that the action sets the change in speed. If ua is chosen from some bounded interval, then
the speed is a continuous function of time.

How should the transition equation be represented in this case? The set of possible
values for ua imposes a second-order constraint on x and y because double integration is
needed to determine their values. By applying the phase space idea, s can be considered
as a phase variable. This results in a four-dimensional phase space, in which each state is
(x, y, θ, s). The state (or phase) transition equation is

ẋ = s cos θ θ̇ = uω
(13.45)

ẏ = s sin θ ṡ = ua,

which should be compared to (13.18). The action us was replaced by s because now speed
is a phase variable, and an extra equation was added to reflect the connection between
speed and acceleration.

The integrator idea can be applied again to make the unicycle orientations a continuous
function of time. Let uα denote an angular acceleration action. Let ω denote the angular
velocity, which is introduced as a new state variable. This results in a five-dimensional
phase space and a model called the second-order unicycle:

ẋ = s cos θ ṡ = ua

ẏ = s sin θ ω̇ = uα (13.46)

θ̇ = ω,

in which u = (ua, uα) is a two-dimensional action vector. In some contexts, s may be
fixed at a constant value, which implies that ua is fixed to ua = 0.

13.2.4.2 A continuous-steering car

As another example, consider the simple car. As formulated in (13.15), the steering
angle is allowed to change discontinuously. For simplicity, suppose that the speed is
fixed at s = 1. To make the steering angle vary continuously over time, let uω be an
action that represents the velocity of the steering angle: φ̇ = uω. The result is a four-
dimensional state space, in which each state is represented as (x, y, θ, φ). This yields a
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continuous-steering car,

ẋ = cos θ θ̇ = tan φ

L (13.47)
ẏ = sin θ φ̇ = uω,

in which there are two action variables, us and uω. This model was used for planning in
[851].

A second integrator can be applied to make the steering angle a C1 smooth function of
time. Let ω be a state variable, and let uα denote the angular acceleration of the steering
angle. In this case, the state vector is (x, y, θ, φ, ω), and the state transition equation is

ẋ = cos θ φ̇ = ω

ẏ = sin θ ω̇ = uα (13.48)

θ̇ = tan φ

L
.

Integrators can be applied any number of times to make any variables as smooth as desired.
Furthermore, the rate of change in each case can be bounded due to limits on the phase
variables and on the action set.

13.2.4.3 Smooth differential drive

A second-order differential drive model can be made by defining actions ul and ur that
accelerate the motors, instead of directly setting their velocities. Let ωl and ωr denote the
left and right motor angular velocities, respectively. The resulting state transition equation
is

ẋ = r

2
(ωl + ωr ) cos θ ω̇l = ul

ẏ = r

2
(ωl + ωr ) sin θ ω̇r = ur (13.49)

θ̇ = r

L
(ωr − ωl).

In summary, an important technique for making existing models somewhat more real-
istic is to insert one or more integrators in front of any action variables. The dimension
of the phase space increases with the introduction of each integrator. A single integrator
forces an original action to become continuous over time. If the new action is bounded,
then the rate of change of the original action is bounded in places where it is differentiable
(it is Lipschitz in general, as expressed in (8.16)). Using a double integrator, the original
action is forced to be C1 smooth. Chaining more integrators on an action variable further
constrains its values. In general, k integrators can be chained in front of an original action
to force it to be Ck−1 smooth and respect Lipschitz bounds.

One important limitation, however, is that to make realistic models, other variables may
depend on the new phase variables. For example, if the simple car is traveling fast, then
we should not be able to turn as sharply as in the case of a slow-moving car (think about
how sharply you can turn the wheel while parallel parking in comparison to driving on
the highway). The development of better differential models ultimately requires careful
consideration of mechanics. This provides motivation for Sections 13.3 and 13.4.
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13.3 Basic Newton-Euler mechanics

Mechanics is a vast and difficult subject. It is virtually impossible to provide a thorough
introduction in a couple of sections. Here, the purpose instead is to overview some of the
main concepts and to provide some models that may be used with the planning algorithms
in Chapter 14. The presentation in this section and in Section 13.4 should hopefully
stimulate some further studies in mechanics (see the suggested literature at the end of the
chapter). On the other hand, if you are only interested in using the differential models,
then you can safely skip their derivations. Just keep in mind that all differential models
produced in this section end with the form ẋ = f (x, u), which is ready to use in planning
algorithms.

There are two important points to keep in mind while studying mechanics:

1. The models are based on maintaining consistency with experimental observations about
how bodies behave in the physical world. These observations depend on the kind of
experiment. In a particular application, many effects may be insignificant or might not
even be detectable by an experiment. For example, it is difficult to detect relativistic effects
using a radar gun that measures automobile speed. It is therefore important to specify
any simplifying assumptions regarding the world and the kind of experiments that will be
performed in it.

2. The approach is usually to express some laws that translate into constraints on the allow-
able velocities in the phase space. This means that implicit representations are usually
obtained in mechanics, and they must be converted into parametric form. Furthermore,
most treatments of mechanics do not explicitly mention action variables; these arise from
the intention of controlling the physical world. From the perspective of mechanics, the
actions can be assumed to be already determined. Thus, constraints appear as g(ẋ, x) = 0,
instead of g(ẋ, x, u) = 0.

Several formulations of mechanics arrive at the same differential constraints, but from
different mathematical reasoning. The remainder of this chapter overviews three schools
of thought, each of which is more elegant and modern than the one before. The easiest
to understand is Newton-Euler mechanics, which follows from Newton’s famous laws of
physics and is covered in this section. Lagrangian mechanics is covered in Section 13.4.1
and arrives at the differential constraints using very general principles of optimization
on a space of functions (i.e., calculus of variations). Hamiltonian mechanics, covered
in Section 13.4.4, defines a higher dimensional state space on which the differential
constraints can once again be obtained by optimization.

13.3.1 The Newtonian model

The most basic formulation of mechanics goes back to Newton and Euler, and parts of
it are commonly studied in basic physics courses. Consider a world W defined as in
Section 3.1, except here a 1D world W = R is allowed, in addition to 2D and 3D worlds.
A notion of time is also needed. The space of motions that can be obtained in the space-
time continuum can be formalized as a Galilean group [39]; however, the presentation
here will utilize standard intuitive notions of time and Euclidean space. It is also assumed
that any relativistic effects due to curvature of the time-space continuum are nonexistent
(Newton and Euler did not know about this, and it is insignificant for most small-scale
mechanical systems on or near the earth).
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Inertial coordinate frames

Central to Newton-Euler mechanics is the idea that points in W are expressed using an
inertial coordinate frame. Imagine locating the origin and axes of W somewhere in our
universe. They need to be fixed in a way that does not interfere with our observations of
the basic laws of motion. Imagine that we are playing racquetball in an indoor court and
want to model the motion of the ball as it bounces from wall to wall. If the coordinate
frame is rigidly attached to the ball, it will appear that the ball never moves; however,
the walls, earth, and the rest of the universe will appear to spin wildly around the ball
(imagine we have camera that points along some axis of the ball frame – you could quickly
become ill trying to follow the movie). If the coordinate frame is fixed with respect to the
court, then sensible measurements of the ball positions would result (the movie would
also be easier to watch). For all practical purposes, we can consider this fixed coordinate
frame to be inertial. Note, however, that the ball will dance around wildly if the coordinate
frame is instead fixed with respect to the sun. The rotation and revolution of the earth
would cause the ball to move at incredible speeds. In reality, inertial frames do not exist;
nevertheless, it is a reasonable assumption for earth-based mechanical systems that an
inertial frame may be fixed to the earth.

The properties that inertial frames should technically possess are 1) the laws of motions
appear the same in any inertial frame, and 2) any frame that moves at constant speed
without rotation with respect to an inertial frame is itself inertial. As an example of the
second condition, suppose that the racquetball experiment is performed inside of a big
truck that is driving along a highway. Ignoring vibrations, if the truck moves at constant
speed on a straight stretch of road, then an inertial coordinate frame can be fixed to the
truck itself, and the ball will appear to bounce as if the court was not moving. If, however,
the road curves or the truck changes its speed, the ball will not bounce the right way. If
we still believe that the frame attached to the truck is inertial, then the laws of motion will
appear strange. The inertial frame must be attached to the earth in this case to correctly
model the behavior of the truck and ball together.

Closed system

Another important aspect of the Newton-Euler model is that the system of bodies for
which motions are modeled is closed, which means that no bodies other than those that
are explicitly modeled can have any affect on the motions (imagine, for example, the
effect if we forget to account for a black hole that is a few hundred meters away from the
racquetball court).

Newton’s laws

The motions of bodies are based on three laws that were experimentally verified by
Newton and should hold in any inertial frame:

1. An object at rest tends to stay at rest, and an object in motion tends to stay in motion with
fixed speed, unless a nonzero resultant8 force acts upon it.

2. The relationship between a body mass m, its acceleration a, and an applied force f is
f = ma.

3. The interaction forces between two bodies are of equal magnitude and in opposite direc-
tions.

8 This is the sum of all forces acting on the point.
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Based on these laws, the differential constraints on a system of moving bodies can be
modeled.

13.3.2 Motions of particles

The Newton-Euler model is described in terms of particles. Each particle is considered
as a point that has an associated mass m. Forces may act on any particle. The motion of
a rigid body, covered in Section 13.3.3, is actually determined by modeling the body as
a collection of particles that are stuck together. Therefore, it is helpful to first understand
how particles behave.

13.3.2.1 Motion of a single particle

Consider the case of a single particle of mass m that moves in W = R. The force becomes
a scalar, f ∈ R. Let q(t) denote the position of the particle in W at time t . Using this
notation, acceleration is q̈, and Newton’s second law becomes f = mq̈. This can be solved
for q̈ to yield

q̈ = f/m. (13.50)

If f is interpreted as an action variable u, and if m = 1, then (13.50) is precisely the
double integrator q̈ = u from Example 13.3. Phase variables x1 = q and x2 = q̇ can be
introduced to obtain a state vector x = (q, q̇). This means that for a fixed u, the motion
of the particle from any initial state can be captured by a vector field on R

2. The state
transition equation is

ẋ1 = x2

ẋ2 = u

m
,

(13.51)

in which x1 = q, x2 = q̇, and u = f . Let U = [−fmax, fmax], in which fmax represents
the maximum magnitude of force that can be applied to the particle. Forces of arbitrarily
high magnitude are not allowed because this would be physically unrealistic.

Now generalize the particle motion to W = R
2 and W = R

3. Let n denote the di-
mension of W , which may be n = 2 or n = 3. Let q denote the position of the particle
in W . Once again, Newton’s second law yields f = mq̈, but in this case there are n

independent equations of the form fi = mq̈i . Each of these may be considered as an
independent example of the double integrator, scaled by m. Each component fi of the
force can be considered as an action variable ui . A 2n-dimensional state space can be
defined as x = (q, q̇). The state transition equation for n = 2 becomes

ẋ1 = x3 ẋ3 = u1/m
(13.52)

ẋ2 = x4 ẋ4 = u2/m,

and for n = 3 it becomes

ẋ1 = x4 ẋ4 = u1/m

ẋ2 = x5 ẋ5 = u2/m (13.53)

ẋ3 = x6 ẋ6 = u3/m.
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mg

fu

flfr

Figure 13.8: There are three thrusters on the lunar lander, and it is under the in�uence of lunar gravity. It
is treated as a particle; therefore, no rotations are possible. Four orthogonal forces may act on the lander:
Three arise from thrusters that can be switched on or off, and the remaining arises from the acceleration
of gravity.

For a fixed action, these equations define vector fields on R
4 and R

6, respectively. The
action set should also be bounded, as in the one-dimensional case. Suppose that

U = {u ∈ R
n | ‖u‖ ≤ fmax}. (13.54)

Now suppose that multiple forces act on the same particle. In this case, the vector sum

F =
∑

f (13.55)

yields the resultant force over all f taken from a collection of forces. The resultant force
F represents a single force that is equivalent, in terms of its effect on the particle, to the
combined forces in the collection. This enables Newton’s second law to be formulated
as F = mq̈. The next two examples illustrate state transition equations that arise from a
collection of forces, some of which correspond to actions.

Example 13.7 (Lunar Lander) Using the Newton-Euler model of a particle, an example
will be constructed for which X = R

4. A lunar lander is modeled as a particle with mass
m in a 2D world shown in Figure 13.8. It is not allowed to rotate, implying that C = R

2.
There are three thrusters on the lander, which are on the left, right, and bottom of the
lander. The forces acting on the lander are shown in Figure 13.8. The activation of each
thruster is considered as a binary switch. Each has its own associated binary action
variable, in which the value 1 means that the thruster is firing and 0 means the thruster
is dormant. The left and right lateral thrusters provide forces of magnitude fl and fr ,
respectively, when activated (note that the left thruster provides a force to the right, and
vice versa). The upward thruster, mounted to the bottom of the lander, provides a force
of magnitude fu when activated. Let g denote the scalar acceleration constant for gravity
(this is approximately 1.622 m/s2 for the moon).

From (13.55) and Newton’s second law, F = mq̈. In the horizontal direction, this
becomes

mq̈1 = ulfl − urfr , (13.56)
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mg

θ

L

Figure 13.9: The pendulum is a simple and important example of a nonlinear system.

and in the vertical direction,

mq̈2 = uufu −mg. (13.57)

Opposing forces are subtracted because only the magnitudes are given by fl , fr , fu, and
g. If they were instead expressed as vectors in R

2, then they would be added.
The lunar lander model can be transformed into a four-dimensional phase space in

which x = (q1, q2, q̇1, q̇2). By replacing q̈1 and q̈2 with ẋ3 and ẋ4, respectively, (13.56)
and (13.57) can be written as

ẋ3 = 1

m
(ulfl − urfr ) (13.58)

and

ẋ4 = u2fu

m
− g. (13.59)

Using ẋ1 = x3 and ẋ2 = x4, the state transition equation becomes

ẋ1 = x3 ẋ3 = fs

m
(ulfl − urfr )

(13.60)
ẋ2 = x4 ẋ4 = uufu

m
− g,

which is in the desired form, ẋ = f (x, u). The action space U consists of eight elements,
which indicate whether each of the three thrusters is turned on or off. Each action vector
is of the form (ul, ur, uu), in which each component is 0 or 1. �

The next example illustrates the importance of Newton’s third law.

Example 13.8 (Pendulum) A simple and very important model is the pendulum shown
in Figure 13.9. Let m denote the mass of the attached particle (the string is assumed to have
no mass). Let g denote the acceleration constant due to gravity. Let L denote the length
of the pendulum string. Let θ denote the angular displacement of the pendulum, which
characterizes the pendulum configuration. Using Newton’s second law and assuming the
pendulum moves in a vacuum (no wind resistance), the constraint

mLθ̈ = −mg sin θ (13.61)
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is obtained. A 2D state space can be formulated in which x1 = θ and x2 = θ̇ . This leads
to

ẋ1 = x2

ẋ2 = − g

L
sin x1,

(13.62)

which has no actions (the form of (13.62) is ẋ = f (x)).
A linear drag term kLθ̇ can be added to the model to account for wind resistance. This

yields

mLθ̈ = −mg sin θ − kLθ̇, (13.63)

which becomes

ẋ1 = x2

ẋ2 = − g

L
sin x1 − k

m
x2

(13.64)

in the state space form.
Now consider applying a force uf on the particle, in a direction perpendicular to the

string. This action can be imagined as having a thruster attached to the side of the particle.
This adds the term uf to (13.63). Its sign depends on the choice of the perpendicular
vector (thrust to the left or to the right). The state transition equation ẋ = f (x, u) then
becomes

ẋ1 = x2

ẋ2 = − g

L
sin x1 − k

m
x2 + 1

mL
uf .

(13.65)

�

Although sufficient information has been given to specify differential models for a
particle, several other concepts are useful to introduce, especially in the extension to
multiple particles and rigid bodies. The main idea is that conservation laws can be derived
from Newton’s laws. The linear momentum (or just momentum) d of the particle is defined
as

d = mq̇. (13.66)

This is obtained by integrating f = mq̈ with respect to time.
It will be convenient when rigid-body rotations are covered to work with the moment

of momentum (or angular momentum). A version of momentum that is based on moments
can be obtained by first defining the moment of force (or torque) for a force f acting at a
point q ∈ W as

n = q × f, (13.67)

in which× denotes the vector cross product in R
3. For a particle that has linear momentum

d, the moment of momentum e is defined as

e = q × d. (13.68)

It can be shown that

de

dt
= n, (13.69)
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which is equivalent to Newton’s second law but is expressed in terms of momentum.
For the motion of a particle in a closed system, the linear momentum and moment of
momentum are conserved if there are no external forces acting on it. This is essentially a
restatement of Newton’s first law.

This idea can alternatively be expressed in terms of energy, which depends on the same
variables as linear momentum. The kinetic energy of a particle is

T = 1

2
mq̇ · q̇, (13.70)

in which · is the familiar inner product (or dot product). The total kinetic energy of a
system of particles is obtained by summing the kinetic energies of the individual particles.

13.3.2.2 Motion of a set of particles

The concepts expressed so far naturally extend to a set of particles that move in a closed
system. This provides a smooth transition to rigid bodies, which are modeled as a collection
of infinitesimal particles that are “stuck together,” causing forces between neighboring
particles to cancel. In the present model, the particles are independently moving. If a pair
of particles collides, then, by Newton’s third law, they receive forces of equal magnitude
and opposite directions at the instant of impact.

It can be shown that all momentum expressions extend to sums over the particles [684].
For a set of particles, the linear momentum of each can be summed to yield the linear
momentum of the system as

D =
∑

d. (13.71)

The total external force can be determined as

F =
∑

fi, (13.72)

which is a kind of resultant force for the whole system. The relationship dD/dt = F

holds, which extends the case of a single particle. The total mass can be summed to yield

M =
∑

m, (13.73)

and the center of mass of the system is

p = 1

M

∑
mq, (13.74)

in which m and q are the mass and position of each particle, respectively. The expressions
D = Mṗ and F = Mp̈ hold, which are the analogs of d = mq̇ and f = mq̈ for a single
particle.

So far the translational part of the motion has been captured; however, rotation of the
system is also important. This was the motivation for introducing the moment concepts.
Let the total moment of force (or total torque) be

N =
∑

q × f, (13.75)

and let the moment of momentum of the system be

E =
∑

q × d. (13.76)

It can be shown that dE/dt = N , which behaves in the same way as in the single-particle
case.
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r

p

fA

Figure 13.10: A force f acting on A at r produces a moment about p of r × f .

The ideas given so far make a system of particles appear very much as a single particle.
It is important, however, when conducting a simulation of their behavior to consider the
collisions between the particles. Detecting these collisions and calculating the resulting
impact forces ensures that correct motions are obtained.

As the number of particles tends to infinity, consider the limiting case of a rigid body.
In this case, the particles are “sewn” together, which cancels their internal forces. It will
be sufficient only to handle the forces that act on the boundary of the rigid body. The
expressions for the motion of a rigid body are given in Section 13.3.3. The expressions
can alternatively be obtained using other concepts, such as those in Section 13.4.

13.3.3 Motion of a rigid body

For a free-floating 3D rigid body, recall from Section 4.2.2 that its C-space C has six
dimensions. Suppose that actions are applied to the body as external forces. These directly
cause accelerations that result in second-order differential equations. By defining a state
to be (q, q̇), first-order differential equations can be obtained in a twelve-dimensional
phase space X.

Let A ⊆ R
3 denote a free-floating rigid body. Let σ (r) denote the body density at

r ∈ A. Let m denote the total mass of A, which is defined using the density as

m =
∫

A
σ (r)dr, (13.77)

in which dr = dr1dr2dr3 represents a volume element in R
3. Let p ∈ R

3 denote the
center of mass of A, which is defined for p = (p1, p2, p3) as

pi = 1

m

∫

A
riσ (r)dr. (13.78)

Suppose that a collection of external forces acts on A (it is assumed that all internal
forces in A cancel each other out). Each force f acts at a point on the boundary, as shown
in Figure 13.10 (note that any point along the line of force may alternatively be used).
The set of forces can be combined into a single force and moment that both act about the
center of mass p. Let F denote the total external force acting on A. Let N denote the total
external moment about the center of mass of A. These are given by

F =
∑

f (13.79)
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and

N =
∑

r × f (13.80)

for the collection of external forces. The terms F and N are often called the resultant
force and resultant moment of a collection of forces. It was shown by Poinsot that every
system of forces is equivalent to a single force and a moment parallel to the line of action
of the force. The result is called a wrench, which is the force-based analog of a screw; see
[684] for a nice discussion.

Actions of the form u ∈ U can be expressed as external forces and/or moments that act
on the rigid body. For example, a thruster may exert a force on the body when activated.
For a given u, the total force and moment can be resolved to obtain F (u) and N(u).

Important frames

Three different coordinate frames will become important during the presentation:

1. Inertial frame: The global coordinate frame that is fixed with respect to all motions of
interest.

2. Translating frame: A moving frame that has its origin at the center of mass of A and its
axes aligned with the inertial frame.

3. Body frame: A frame that again has its origin at the center of mass of A, but its axes are
rigidly attached to A. This is the same frame that was used to define bodies in Chapter 3.

The translational part

The state transition equation involves 12 scalar equations. Six of these are straightforward
to obtain by characterizing the linear velocity. For this case, it can be imagined that the
body does not rotate with respect to the inertial frame. The linear momentum is D = mṗ,
and Newton’s second law implies that

F (u) = dD

dt
= mp̈. (13.81)

This immediately yields half of the state transition equation by solving for p̈. This yields a
3D version of the double integrator in Example 13.3, scaled by m. Let (p1, p2, p3) denote
the coordinates of p. Let (v1, v2, v3) denote the linear velocity the center of mass. Three
scalar equations of the state transition equation are ṗi = vi for i = 1, 2, 3. Three more
are obtained as v̇i = Fi(u)/m for i = 1, 2, 3. If there are no moments and the body is
not rotating with respect to the inertial frame, then these six equations are sufficient to
describe its motion. This may occur for a spacecraft that is initially at rest, and its thrusters
apply a total force only through the center of mass.

The rotational part

The six equations derived so far are valid even ifA rotates with respect to the inertial frame.
They are just the translational part of the motion. The rotational part can be decoupled
from the translational part by using the translating frame. All translational aspects of the
motion have already been considered. Imagine that A is only rotating while its center of
mass remains fixed. Once the rotational part of the motion has been determined, it can
be combined with the translational part by simply viewing things from the inertial frame.
Therefore, the motion of A is now considered with respect to the translating frame, which
makes it appear to be pure rotation.
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Figure 13.11: The angular velocity is de�ned as a rotation rate of the coordinate frame about an axis.

Unfortunately, characterizing the rotational part of the motion is substantially more
complicated than the translation case and the 2D rotation case. This should not be sur-
prising in light of the difficulties associated with 3D rotations in Chapters 3 and 4.

Following from Newton’s second law, the change in the moment of momentum is

N (u) = dE

dt
. (13.82)

The remaining challenge is to express the right-hand side of (13.82) in a form that can be
inserted into the state transition equation.

Differential rotations

To express the change in the moment of momentum in detail, the concept of a differential
rotation is needed. In the plane, it is straightforward to define ω = θ̇ ; however, for SO(3),
it is more complicated. One choice is to define derivatives with respect to yaw-pitch-
roll variables, but this leads to distortions and singularities, which are problematic for
the Newton-Euler formulation. Instead, a differential rotation is defined as shown in
Figure 13.11. Let v denote a unit vector in R

3, and let θ denote a rotation that is analogous
to the 2D case. Let ω denote the angular velocity vector,

ω = v
dθ

dt
. (13.83)

This provides a natural expression for angular velocity.9 The change in a rotation matrix
R with respect to time is

Ṙ = ω × R. (13.84)

This relationship can be used to derive expressions that relate ω to yaw-pitch-roll angles
or quaternions. For example, using the yaw-pitch-roll matrix (3.42) the conversion from

9 One important issue to be aware of is that the integral of ω is not path-invariant (see Example 2.15 of [994]).
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ω to the change yaw, pitch, and roll angles is




γ̇

β̇

α̇



 = 1

cos β




cos α sin α 0

− sin α cos β cos α cos β 0
cos α sin β sin α sin β − cos β








ω1

ω2

ω3



 . (13.85)

Inertia matrix

An inertia matrix (also called an inertia tensor or inertia operator) will be derived by
considering A as a collection of particles that are rigidly attached together (all contact
forces between them cancel due to Newton’s third law). The expression σ (r)dr in (13.77)
represents the mass of an infinitesimal particle of A. The moment of momentum of the
infinitesimal particle is r × ṙσ (r)dr . This means that the total moment of momentum of
A is

E =
∫

A(q)
(r × ṙ) σ (r)dr. (13.86)

By using the fact that ṙ = ω × r , the expression becomes

E =
∫

A(q)
r × (ω × r) σ (r)dr. (13.87)

Observe that r now appears twice in the integrand. By doing some algebraic manipulations,
ω can be removed from the integrand, and a function that is quadratic in the r variables is
obtained (since r is a vector, the function is technically a quadratic form). The first step is
to apply the identity a × (b × c) = (a · c)b − (a · b)c to obtain

E =
∫

A(q)

(
(r · r)ω − (r · ω)r

)
σ (r)dr. (13.88)

The angular velocity can be moved to the right to obtain

E =
(∫

A(q)

(
(r · r)I3 − rrT

)
σ (r)dr

)
ω, (13.89)

in which the integral now occurs over a 3 × 3 matrix and I3 is the 3 × 3 identity matrix.
Let I be called the inertia matrix and be defined as

I (q) =
(∫

A(q)

(
(r · r)I3 − rrT

)
σ (r)dr

)
. (13.90)

Using the definition,

E = Iω. (13.91)

This simplification enables a concise expression of (13.82) as

N (u) = dE

dt
= d(Iω)

dt
= I

dω

dt
+ dI

dt
ω, (13.92)

which makes use of the chain rule.
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Simplifying the inertia matrix

Now the inertia matrix will be considered more carefully. It is a symmetric 3 × 3 matrix,
which can be expressed as

I (q) =



I11(q) I12(q) I13(q)
I12(q) I22(q) I23(q)
I13(q) I23(q) I33(q)



 . (13.93)

For each i ∈ {1, 2, 3}, the entry Iii(q) is called a moment of inertia. The three cases are

I11(q) =
∫

A(q)
(r2

2 + r2
3 )σ (r)dr, (13.94)

I22(q) =
∫

A(q)
(r2

1 + r2
3 )σ (r)dr, (13.95)

and

I33(q) =
∫

A(q)
(r2

1 + r2
2 )σ (r)dr. (13.96)

The remaining entries are defined as follows. For each i, j ∈ {1, 2, 3} such that i 	= j , the
product of inertia is

Hij (q) =
∫

A(q)
rirjσ (r)dr, (13.97)

and Iij (q) = −Hij (q).
One problem with the formulation so far is that the inertia matrix changes as the

body rotates because all entries depend on the orientation q. Recall that it was derived
by considering A as a collection of infinitesimal particles in the translating frame. It is
possible, however, to express the inertia matrix in the body frame of A. In this case, the
inertia matrix can be denoted as I because it does not depend on the orientation of A
with respect to the translational frame. The original inertia matrix is then recovered by
applying a rotation that relates the body frame to the translational frame: I (q) = RI , in
which R is a rotation matrix. It can be shown (see Equation (2.91) and Section 3.2 of
[994]) that after performing this substitution, (13.92) simplifies to

N (u) = I
dω

dt
+ ω × (Iω). (13.98)

The body frame of A must have its origin at the center of mass p; however, its
orientation has not been constrained. For different orientations, different inertia matrices
will be obtained. Since I captures the physical characteristics of A, any two inertia
matrices differ only by a rotation. This means for a given A, all inertia matrices that can be
defined by different body frame orientations have the same eigenvalues and eigenvectors.
Consider the positive definite quadratic form xT Ix = 1, which represents the equation of
an ellipsoid. A standard technique in linear algebra is to compute the principle axes of an
ellipsoid, which turn out to be the eigenvectors of I . The lengths of the ellipsoid axes are
given by the eigenvalues. An axis-aligned expression of the ellipsoid can be obtained by
defining x ′ = Rx, in which R is the matrix formed by columns of eigenvectors. Therefore,
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there exists an orientation of the body frame in which the inertia matrix simplifies to

I =



I11 0 0
0 I22 0
0 0 I33



 (13.99)

and the diagonal elements are the eigenvalues. If the body happens to be an ellipsoid,
the principle axes correspond to the ellipsoid axes. Moment of inertia tables are given in
many texts [693]; in these cases, the principle axes are usually chosen as the axis of the
body frame because they result in the simplest expression of I .

Completing the state transition equation

Assume that the body frame of A aligns with the principle axes. The remaining six
equations of motion can finally be given in a nice form. Using (13.99), the expression
(13.98) reduces to [684]




N1(u)
N2(u)
N3(u)



 =



I11 0 0
0 I22 0
0 0 I33








ω̇1

ω̇2

ω̇3



+




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0








I11 0 0
0 I22 0
0 0 I33








ω1

ω2

ω3



 .

(13.100)

Multiplying out (13.100) yields

N1(u) = I11ω̇1 + (I33 − I22)ω2ω3

N2(u) = I22ω̇2 + (I11 − I33)ω3ω1

N3(u) = I33ω̇3 + (I22 − I11)ω1ω2.

(13.101)

To prepare for the state transition equation form, solving for ω̇ yields

ω̇1 =
(
N1(u) + (I22 − I33)ω2ω3

)
/I11

ω̇2 =
(
N2(u) + (I33 − I11)ω3ω1

)
/I22

ω̇3 =
(
N3(u) + (I11 − I22)ω1ω2

)
/I33.

(13.102)

One final complication is that ω needs to be related to angles that are used to express an
element of SO(3). The mapping between these depends on the particular parameterization
of SO(3). Suppose that quaternions of the form (a, b, c, d) are used to express rotation.
Recall that a can be recovered once b, c, and d are given using a2 + b2 + c2 + d2 = 1.
The relationship between ω and the time derivatives of the quaternion components is
obtained by using (13.84) (see [693], p. 433):

ḃ = ω3c − ω2d

ċ = ω1d − ω3b

ḋ = ω2b − ω1c.

(13.103)

This finally completes the specification of ẋ = f (x, u), in which

x = (p1, p2, p3, v1, v2, v3, b, c, d, ω1, ω2, ω3) (13.104)
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is a twelve-dimensional phase vector. For convenience, the full specification of the state
transition equation is

ṗ1 = v1 ḃ = ω3c − ω2d

ṗ2 = v2 ċ = ω1d − ω3b

ṗ3 = v3 ḋ = ω2b − ω1c (13.105)

v̇1 = F1(u)/m ω̇1 =
(
N1(u) + (I22 − I33)ω2ω3

)
/I11

v̇2 = F2(u)/m ω̇2 =
(
N2(u) + (I33 − I11)ω3ω1

)
/I22

v̇3 = F3(u)/m ω̇3 =
(
N3(u) + (I11 − I22)ω1ω2

)
/I33.

The relationship between inertia matrices and ellipsoids is actually much deeper than
presented here. The kinetic energy due to rotation only is elegantly expressed as

T = 1
2ωT Iω. (13.106)

A fascinating interpretation of rotational motion in the absence of external forces was
given by Poinsot [39, 684]. As the body rotates, its motion is equivalent to that of the
inertia ellipsoid, given by (13.106), rolling (without sliding) down a plane with normal
vector Iω in R

3.

The 2D case

The dynamics of a 2D rigid body that moves in the plane can be handled as a special case
of a 3D body. Let A ⊂ R

2 be a 2D body, expressed in its body frame. The total external
forces acting on A can be expressed in terms of a two-dimensional total force through the
center of mass and a moment through the center of mass. The phase space for this model
has six dimensions. Three come from the degrees of freedom of SE(2), two come from
linear velocity, and one comes from angular velocity.

The translational part is once again expressed as

F (u) = dD

dt
= mp̈. (13.107)

This provides four components of the state transition equation.
All rotations must occur with respect to the z-axis in the 2D formulation. This means

that the angular velocity ω is a scalar value. Let θ denote the orientation of A. The
relationship between ω and θ is given by θ̇ = ω, which yields one more component of the
state transition equation.

At this point, only one component remains. Recall (13.92). By inspecting (13.101)
it can be seen that the inertia-based terms vanish. In that formulation, ω3 is equivalent
to the scalar ω for the 2D case. The final terms of all three equations vanish because
ω1 = ω2 = 0. The first terms of the first two equations also vanish because ω̇1 = ω̇2 = 0.
This leaves N3(u) = I33ω̇3. In the 2D case, this can be notationally simplified to

N (u) = dE

dt
= d(Iω)

dt
= I

dω

dt
= I ω̇, (13.108)

in which I is now a scalar. Note that for the 3D case, the angular velocity can change, even
when N(u) = 0. In the 2D case, however, this is not possible. In both cases, the moment
of momentum is conserved; in the 2D case, this happens to imply that ω is fixed. The
sixth component of the state transition equation is obtained by solving (13.108) for ω̇.
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The state transition equation for a 2D rigid body in the plane is therefore

ṗ1 = v1 v̇1 = F1(u)/m

ṗ2 = v2 v̇2 = F2(u)/m (13.109)

θ̇ = ω ω̇ = N(u)/I.

A car with tire skidding

This section concludes by introducing a car model that considers it as a skidding rigid body
in the plane. This model was suggested by Jim Bernard. The C-space is C = R

2 × S
1, in

which q = (x, y, θ). Suppose that as the car moves at high speeds, the tires are able to
skid laterally in a direction perpendicular to the main axis of the car (i.e., parallel to the
rear axle). Let ω denote the angular velocity of the car. Let v denote the lateral skidding
velocity, which is another state variable. This results in a five-dimensional state space in
which each state is a vector of the form (x, y, θ, ω, v).

The position of the rear axle center can be expressed as

ẋ = s cos θ − v sin θ

ẏ = s sin θ + v cos θ,
(13.110)

which yields two components of the state transition equation. Let ω = θ̇ denote the angular
velocity, which yields one more component of the state transition equation. This leaves
only two equations, which are derived from 2D rigid body mechanics (which will be
covered in Section 13.3.3). The state transition is

ẋ = s cos θ − v sin θ

ẏ = s sin θ + v cos θ

θ̇ = ω

ω̇ = (aff − bfr )/I

v̇ = −sω + (ff + fr )/m,

(13.111)

in which ff and fr are the front and rear tire forces, m is the mass, I is the moment of
inertia, and a and b are the distances from the center of mass to the front and rear axles,
respectively. The first force is

ff = cf

(
(v + aω)/s + φ

)
, (13.112)

in which cf is the front cornering stiffness, and φ is the steering angle. The second force
is

fr = cr (v − bω)/s, (13.113)

in which cr is the rear cornering stiffness. The steering angle can be designated as an action
variable: uφ = φ. An integrator can be placed in front of the speed to allow accelerations.
This increases the state space dimension by one.

Reasonable values for the parameters for an automotive application are: m = 1460 kg,
cf = 17000, cr = 20000, a = 1.2 m, b = 1.5 m, I = 2170 kg/m2, and s = 27 m/sec.
This state transition equation involves a linear tire skidding model, which is a poor
approximation in many applications. Nonlinear tire models provide better approximations
to the actual behavior of cars [93]. For a thorough introduction to the dynamics of cars,
see [825].
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13.4 Advanced mechanics concepts

Newton-Euler mechanics has the advantage that it starts with very basic principles, but it
has frustrating restrictions that make modeling more difficult for complicated mechanical
systems. One of the main limitations is that all laws must be expressed in terms of an
inertial frame with orthogonal axes. This section introduces the basic ideas of Lagrangian
and Hamiltonian mechanics, which remove these restrictions by reducing mechanics to
finding an optimal path using any coordinate neighborhood of the C-space. The optimality
criterion is expressed in terms of energy. The resulting techniques can be applied on any
coordinate neighborhood of a smooth manifold. The Lagrangian formulation is usually
best for determining the motions of one or more bodies. Section 13.4.1 introduces the
basic Lagrangian concepts based on the calculus of variations. Section 13.4.2 presents a
general form of the Euler-Lagrange equations, which is useful for determining the mo-
tions of numerous dynamical systems, including chains of bodies. The Lagrangian is also
convenient for systems that involve additional differential constraints, such as friction or
rolling wheels. These cases are briefly covered in Section 13.4.3. The Hamiltonian formu-
lation in Section 13.4.4 is based on a special phase space and provides an alternative to the
Lagrangian formulation. The technique generalizes to Pontryagin’s minimum principle, a
powerful optimal control technique that is covered in Section 15.2.3.

13.4.1 Lagrangian mechanics
13.4.1.1 Calculus of variations

Lagrangian mechanics is based on the calculus of variations, which is the subject of
optimization over a space of paths. One of the most famous variational problems involves
constraining a particle to travel along a curve (imagine that the particle slides along a
frictionless track). The problem is to find the curve for which the ball travels from one
point to the other, starting at rest, and being accelerated only by gravity. The solution is a
cycloid function called the Brachistochrone curve [844]. Before this problem is described
further, recall the classical optimization problem from calculus in which the task is to find
extremal values (minima and maxima) of a function. Let x̃ denote a smooth function from
R to R, and let x(t) denote its value for any t ∈ R. From standard calculus, the extremal
values of x̃ are all t ∈ R for which ẋ = 0. Suppose that at some t ′ ∈ R, x̃ achieves a
local minimum. To serve as a local minimum, tiny perturbations of t ′ should result in
larger function values. Thus, there exists some d > 0 such that x(t ′ + ε) > x(t ′) for any
ε ∈ [−d, d]. Each ε represents a possible perturbation of t ′.

The calculus of variations addresses a harder problem in which optimization occurs
over a space of functions. For each function, a value is assigned by a criterion called a
functional.10 A procedure analogous to taking the derivative of the function and setting it to
zero will be performed. This will be arrived at by considering tiny perturbations of an entire
function, as opposed to the ε perturbations mentioned above. Each perturbation is itself a
function, which is called a variation. For a function to minimize a functional, any small
enough perturbation of it must yield a larger functional value. In the case of optimizing
a function of one variable, there are only two directions for the perturbation: ±ε. See
Figure 13.12. In the calculus of variations, there are many different “directions” because
of the uncountably infinite number of ways to construct a small variation function that

10 This is the reason why a cost functional has been used throughout the book. It is a function on a space of functions.
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t

x(t)

Figure 13.12: The variation is a “small” function that is added to x̃ to perturb it.

perturbs the original function (the set of all variations is an infinite-dimensional function
space; recall Example 8.5).

Let x̃ denote a smooth function from T = [t0, t1] into R. The functional is defined by
integrating a function over the domain of x̃. Let L be a smooth, real-valued function of
three variables, a, b, and c.11 The arguments of L may be any a, b ∈ R and c ∈ T to yield
L(a, b, c), but each has a special interpretation. For some smooth function x̃, L is used to
evaluate it at a particular t ∈ T to obtain L(x, ẋ, t). A functional � is constructed using
L to evaluate the whole function x̃ as

�(x̃) =
∫

T

L(x(t), ẋ(t), t)dt. (13.114)

The problem is to select an x̃ that optimizes �. The approach is to take the derivative of
� and set it equal to zero, just as in standard calculus; however, differentiating � with
respect to x̃ is not standard calculus. This usually requires special conditions on the class
of possible functions (e.g., smoothness) and on the vector space of variations, which are
implicitly assumed to hold for the problems considered in this section.

Example 13.9 (Shortest-Path Functional) As an example of a functional, consider

L(x, ẋ, t) =
√

1 + ẋ2. (13.115)

When evaluated on a function x̃, this yields the arc length of the path. �

Another example of a functional has already been seen in the context of motion
planning. The cost functional (8.39) assigns a cost to a path taken through the state space.
This provided a natural way to formulate optimal path planning. A discrete, approximate
version was given by (7.26).

Let h be a smooth function over T , and let ε ∈ R be a small constant. Consider
the function defined as x(t) + εh(t) for all t ∈ [0, 1]. If ε = 0, then (13.114) remains
the same. As ε is increased or decreased, then �(x̃ + εh) may change. The function h is
like the “direction” in a directional derivative. If for any smooth function h, their exists
some ε > 0 such that the value �(x̃ + εh) increases, then x̃ is called an extremal of �.
Any small perturbation to x̃ causes the value of � to increase. Therefore, x̃ behaves like
a local minimum in a standard optimization problem.

11 Unfortunately, L is used here to represent a cost function, on which a functional � will be based. This conflicts
with using l as a cost function and L as the functional in motion planning formulations. This notational collision
remains because L is standard notation for the Lagrangian. Be careful to avoid confusion.
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Let g = εh for some ε > 0 and function h. The differential of a functional can be
approximated as [39]

�(x̃ + g) −�(x̃) =
∫

T

(
L(x(t) + g(t), ẋ(t) + ġ(t), t) − L(x(t), ẋ(t), t)

)
dt + · · ·

=
∫

T

(
∂L

∂x
g + ∂L

∂ẋ
ġ

)
dt + · · ·

=
∫

T

(
∂L

∂x
g − d

dt

∂L

∂ẋ
g

)
dt +

(
∂L

∂ẋ
g

) ∣∣∣∣
t1

t0

+ · · · ,

(13.116)

in which · · · represents higher order terms that will vanish in the limit. The last step follows
from integration by parts:

(
∂L

∂ẋ
g

) ∣∣∣∣
t1

t0

=
∫

T

∂L

∂ẋ
ġdt +

∫

T

d

dt

∂L

∂ẋ
hdt, (13.117)

which is just uv = ∫ vdu+ ∫ udv. Consider the value of (13.116) as ε becomes small,
and assume that h(t0) = h(t1) = 0. For x̃ to be an extremal function, the change expressed
in (13.116) should tend to zero as the variations approach zero. Based on further technical
assumptions, including the Fundamental Lemma of the Calculus of Variations (see Section
12 of [39]), the Euler-Lagrange equation,

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0, (13.118)

is obtained as a necessary condition for x̃ to be an extremum. Intuition can be gained
by studying the last line of (13.116). The integral attains a zero value precisely when
(13.118) is satisfied. The other terms vanish because h(t0) = h(t1) = 0, and higher order
terms disappear in the limit process.

The partial derivatives of L with respect to ẋ and x are defined using standard calculus.
The derivative ∂L/∂ẋ is evaluated by treating ẋ as an ordinary variable (i.e., as ∂L/∂b

when the variables are named as in L(a, b, c)). Following this, the derivative of ∂L/∂ẋ

with respect to t is taken. To illustrate this process, consider the following example.

Example 13.10 (A Simple Variational Problem) Let L be a functional defined as

L(x, ẋ, t) = x3 + ẋ2. (13.119)

The partial derivatives with respect to x and ẋ are

∂L

∂x
= 3x2 (13.120)

and

∂L

∂ẋ
= 2ẋ. (13.121)

Taking the time derivative of (13.121) yields

d

dt

∂L

∂ẋ
= 2ẍ (13.122)

Substituting these into the Euler-Lagrange equation (13.118) yields

d

dt

∂L

∂ẋ
− ∂L

∂x
= 2ẍ − 3x2 = 0. (13.123)
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This represents a second-order differential constraint that constrains the acceleration as
ẍ = 3x2/2. By constructing a 2D phase space, the constraint could be expressed using
first-order differential equations. �

13.4.1.2 Hamilton’s principle of least action

Now sufficient background has been given to return to the dynamics of mechanical
systems. The path through the C-space of a system of bodies can be expressed as the
solution to a calculus of variations problem that optimizes the difference between kinetic
and potential energy. The calculus of variations principles generalize to any coordinate
neighborhood of C. In this case, the Euler-Lagrange equation is

d

dt

∂L

∂q̇
− ∂L

∂q
= 0, (13.124)

in which q is a vector of n coordinates. It is actually n scalar equations of the form

d

dt

∂L

∂q̇i

− ∂L

∂qi

= 0. (13.125)

The coming presentation will use (13.124) to obtain a phase transition equation. This
will be derived by optimizing a functional defined as the change in kinetic and potential
energy. Kinetic energy for particles and rigid bodies was defined in Section 13.3.1. In
general, the kinetic energy function must be a quadratic function of q̇. Its definition can
be interpreted as an inner product on C, which causes C to become a Riemannian manifold
[158]. This gives the manifold a notion of the “angle” between velocity vectors and leads
to well-defined notions of curvature and shortest paths called geodesics. Let K(q, q̇)
denote the kinetic energy, expressed using the manifold coordinates, which always takes
the form

K(q, q̇) = 1
2 q̇T M(q)q̇, (13.126)

in which M(q) is an n× n matrix called the mass matrix or inertia matrix.
The next step is to define potential energy. A system is called conservative if the forces

acting on a point depend only on the point’s location, and the work done by the force
along a path depends only on the endpoints of the path. The total energy is conserved
under the motion of a conservative system. In this case, there exists a potential function
φ : W → R such that F = ∂φ/∂p, for any p ∈ W . Let V (q) denote the total potential
energy of a collection of bodies, placed at configuration q.

It will be assumed that the dynamics are time-invariant. Hamilton’s principle of least
action states that the trajectory, q̃ : T → C, of a mechanical system coincides with ex-
tremals of the functional,

�(q̃) =
∫

T

(
K(q(t), q̇(t)) − V (q(t))

)
dt, (13.127)

using any coordinate neighborhood of C. The principle can be seen for the case of C = R
3

by expressing Newton’s second law in a way that looks like (13.124) [39]:

d

dt
(mq̇) − ∂V

∂q
= 0, (13.128)

in which the force is replaced by the derivative of potential energy. This suggests applying
the Euler-Lagrange equation to the functional

L(q, q̇) = K(q, q̇) − V (q), (13.129)
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in which it has been assumed that the dynamics are time-invariant; hence, L(q, q̇, t) =
L(q, q̇). Applying the Euler-Lagrange equation to (13.127) yields the extremals.

The advantage of the Lagrangian formulation is that the C-space does not have to be
C = R

3, described in an inertial frame. The Euler-Lagrange equation gives a necessary
condition for the motions in any C-space of a mechanical system. The conditions can be
expressed in terms of any coordinate neighborhood, as opposed to orthogonal coordinate
systems, which are required by the Newton-Euler formulation. In mechanics literature,
the q variables are often referred to as generalized coordinates. This simply means the
coordinates given by any coordinate neighborhood of a smooth manifold.

Thus, the special form of (13.124) that uses (13.129) yields the appropriate constraints
on the motion:

d

dt

∂L

∂q̇
− ∂L

∂q
= d

dt

∂K(q, q̇)

∂q̇
− ∂K(q, q̇)

∂q
+ ∂V (q)

∂q
= 0. (13.130)

Recall that this represents n equations, one for each coordinate qi . Since K(q, q̇) does not
depend on time, the d/dt operator simply replaces q̇ by q̈ in the calculated expression for
∂K(q, q̇)/∂q̇. The appearance of q̈ seems appropriate because the resulting differential
equations are second-order, which is consistent with Newton-Euler mechanics.

Example 13.11 (A Falling Particle) Suppose that a particle with mass m is falling in R
3.

Let (q1, q2, q3) denote the position of the particle. Let g denote the acceleration constant
of gravity in the −q3 direction. The potential energy is V (q) = mgq3. The kinetic energy
is

K(q, q̇) = 1
2mq̇ · q̇ = 1

2m(q̇2
1 + q̇2

2 + q̇2
3). (13.131)

The Lagrangian is

L(q, q̇) = K(q, q̇) − V (q) = 1
2m(q̇2

1 + q̇2
2 + q̇2

3) −mgq3 = 0. (13.132)

To obtain the differential constraints on the motion of the particle, use (13.130). For
each i from 1 to 3,

d

dt

∂L

∂q̇
= d

dt
(mq̇i) = mq̈i (13.133)

Since K(q, q̇) does not depend on q, the derivative ∂K/∂qi = 0 for each i. The derivatives
with respect to potential energy are

∂V

∂q1
= 0

∂V

∂q2
= 0

∂V

∂q3
= mg. (13.134)

Substitution into (13.130) yields three equations:

mq̈1 = 0 mq̈2 = 0 mq̈3 +mg = 0. (13.135)

These indicate that acceleration only occurs in the−q3 direction, and this is due to gravity.
The equations are consistent with Newton’s laws. As usual, a six-dimensional phase space
can be defined to obtain first-order differential constraints. �

The “least” part of Hamilton’s principle is actually a misnomer. It is technically only a
principle of “extremal” action because (13.130) can also yield motions that maximize the
functional.
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13.4.1.3 Applying actions

Up to this point, it has been assumed that no actions are applied to the mechanical system.
This is the way the Euler-Lagrange equation usually appears in physics because the goal
is to predict motion, rather than control it. Let u ∈ R

n denote an action vector. Actions
can be applied to the Lagrangian formulation as generalized forces that “act” on the right
side of the Euler-Lagrange equation. This results in

d

dt

∂L

∂q̇
− ∂L

∂q
= u. (13.136)

The actions force the mechanical system to deviate from its usual behavior. In some
instances, the true actions may be expressed in terms of other variables, and then u is
obtained by a transformation (recall transforming action variables for the differential drive
vehicle of Section 13.1.2). In this case, u may be replaced in (13.136) by φ(u) for some
transformation φ. In this case, the dimension of u need not be n.

13.4.1.4 Procedure for deriving the state transition equation

The following general procedure can be followed to derive the differential model us-
ing Lagrangian mechanics on a coordinate neighborhood of a smooth n-dimensional
manifold:

1. Determine the degrees of freedom of the system and define the appropriate n-dimensional
smooth manifold C.

2. Express the kinetic energy as a quadratic form in the configuration velocity components:

K(q, q̇) = 1

2
q̇T M(q)q̇ = 1

2

n∑

i=1

n∑

j=1

mij (q)q̇ i q̇j . (13.137)

3. Express the potential energy V (q).

4. Let L(q, q̇) = K(q, q̇) − V (q) be the Lagrangian function, and use the Euler-Lagrange
equation (13.130) to determine the differential constraints.

5. Convert to phase space form by letting x = (q, q̇). If possible, solve for ẋ to obtain
ẋ = f (x, u).

Example 13.12 (2D Rigid Body Revisited) The equations in (13.109) can be alterna-
tively derived using the Euler-Lagrange equation. Let C = R

2 × S
1, and let (q1, q2, q3) =

(x, y, θ) to conform to the notation used to express the Lagrangian.
The kinetic energy is the sum of kinetic energies due to linear and angular velocities,

respectively. This yields

K(q, q̇) = 1
2mq̇ · q̇ + 1

2I q̇2
3, (13.138)

in which m and I are the mass and moment of inertia, respectively. Assume there is no
gravity; hence, V (q) = 0 and L(q, q̇) = K(q, q̇).
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Suppose that generalized forces u1, u2, and u3 can be applied to the configuration
variables. Applying the Euler-Lagrange equation to L(q, q̇) yields

d

dt

∂L

∂q̇1
− ∂L

∂q1
= d

dt
(mq̇1) = mq̈1 = u1

d

dt

∂L

∂q̇2
− ∂L

∂q2
= d

dt
(mq̇2) = mq̈2 = u2

d

dt

∂L

∂q̇3
− ∂L

∂q3
= d

dt
(I q̇3) = I q̈3 = u3.

(13.139)

These expressions are equivalent to those given in (13.109). One difference is that con-
version to the phase space is needed. The second difference is that the action variables in
(13.139) do not refer directly to forces and moments. They are instead interpreted as gen-
eralized forces that act on the configuration variables. A conversion should be performed
if the original actions in (13.109) are required. �

13.4.2 General lagrangian expressions

As more complicated mechanics problems are considered, it is convenient to express the
differential constraints in a general form. For example, evaluating (13.130) for a kinematic
chain of bodies leads to very complicated expressions. The terms of these expressions,
however, can be organized into standard forms that appear simpler and give some intuitive
meanings to the components.

Suppose that the kinetic energy is expressed using (13.126), and let mij (q) denote an
entry of M(q). Suppose that the potential energy is V (q). By performing the derivatives
expressed in (13.136), the Euler-Lagrange equation can be expressed as n scalar equations
of the form [858]

n∑

j=1

mij (q)q̈j +
n∑

j=1

n∑

k=1

hijk(q)q̇j q̇k + gi(q) = ui (13.140)

in which

hijk = ∂mij

∂qk

− 1

2

∂mjk

∂qi

. (13.141)

There is one equation for each i from 1 to n. The components of (13.140) have physical
interpretations. The mii coefficients represent the inertia with respect to qi . The mij

represent the affect on qj of accelerating qi . The hijj q̇
2
j terms represent the centrifugal

effect induced on qi by the velocity of qj . The hijkq̇j q̇k terms represent the Coriolis effect
induced on qi by the velocities of qj and qk . The gi term usually arises from gravity.

An alternative to (13.140) is often given in terms of matrices. It can be shown that the
Euler-Lagrange equation reduces to

M(q)q̈ + C(q, q̇)q̇ + g(q) = u, (13.142)

which represents n scalar equations. This introduces C(q, q̇), which is an n× n Coriolis
matrix. It turns out that many possible Coriolis matrices may produce equivalent different
constraints. With respect to (13.140), the Coriolis matrix must be chosen so that

n∑

j=1

cij q̇j =
n∑

j=1

n∑

k=1

hijkq̇j q̇k. (13.143)
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Using (13.141),
n∑

j=1

cij q̇j =
n∑

j=1

n∑

k=1

(
∂mij

∂qk

− 1

2

∂mjk

∂qi

)
q̇j q̇k. (13.144)

A standard way to determine C(q, q̇) is by computing Christoffel symbols. By subtracting
1
2

∂mjk

∂qi
from the inside of the nested sums in (13.144), the equation can be rewritten as

n∑

j=1

cij q̇j =
1

2

n∑

j=1

n∑

k=1

∂mij

∂qk

q̇j q̇k +
1

2

n∑

j=1

n∑

k=1

(
∂mij

∂qk

− ∂mjk

∂qi

)
q̇j q̇k. (13.145)

This enables an element of C(q, q̇) to be written as

cij =
n∑

k=1

cijkq̇k, (13.146)

in which

cijk = 1

2

(
∂mij

∂qk

+ ∂mik

∂qj

− ∂mjk

∂qi

)
. (13.147)

This is called a Christoffel symbol, and it is obtained from (13.145). Note that cijk = cikj .
Christoffel symbols arise in the study of affine connections in differential geometry and are
usually denoted as �i

jk . Affine connections provide a way to express acceleration without
coordinates, in the same way that the tangent space was expressed without coordinates
in Section 8.3.2. For affine connections in differential geometry, see [135]; for their
application to mechanics, see [158].

13.4.2.1 Conversion to a phase transition equation

The final step is to convert the equations into phase space form. A 2n-dimensional phase
vector is introduced as x = (q, q̇). The task is to obtain ẋ = f (x, u), which represents
2n scalar equations. The first n equations are ẋi = xn+i for i from 1 to n. The final n

equations are obtained by solving for q̈.
Suppose that the general form in (13.142) is used. Solving for q̈ yields

q̈ = M(q)−1(u− C(q, q̇)q̇ − g(q)). (13.148)

The phase variables are then substituted in a straightforward manner. Each q̈i for i from
1 to n becomes ẋn+i , and M(q), C(q, q̇), and g(q) are expressed in terms of x. This
completes the specification of the phase transition equation.

Example 13.13 (Two-Link Manipulator) Figure 13.13 shows a two-link manipulator
for which there are two revolute joints and two links, A1 and A2. Hence, C = S

1 × S
1.

Let q = (θ1, θ2) denote a configuration. Each of the two joints is controlled by a motor
that applies a torque ui . Let u1 apply to the base, and let u2 apply to the joint between A1

and A2. Let d1 be the link length of A1. Let �i be the distance from the Ai origin to its
center of mass. For each Ai , let mi and Ii be its mass and moment of inertia, respectively.

The kinetic energy of A1 is

K1(q̇) = 1
2m1�1θ̇

2
1 + 1

2I1θ̇
2
1, (13.149)

and the potential energy of A1 is

V1(q) = m1g�1 sin θ1. (13.150)
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θ1

θ2

1

d1

2

A1

A2

p

x

y

Figure 13.13: Parameter values for a two-link robot with two revolute joints.

The kinetic energy of A2 is

K2(q̇) = 1
2p · p + 1

2I2(θ̇1 + θ̇2)2, (13.151)

in which p denotes the position of the center of mass of A1 and is given from (3.53) as

p1 = d1 cos θ1 + �2 cos θ2

p2 = d1 sin θ1 + �2 sin θ2.
(13.152)

The potential energy of A2 is

V2(q) = m2g(d1 sin θ1 + �2 sin θ2). (13.153)

At this point, the Lagrangian function can be formed as

L(q, q̇) = K1(θ̇1) +K2(θ̇1, θ̇2) − V1(θ1) − V2(θ1, θ2) (13.154)

and inserted into (13.118) to obtain the differential constraints in implicit form, expressed
in terms of q̈, q̇, and q. Conversion to the phase space is performed by solving the implicit
constraints for q̈ and assigning x = (q, q̇), in which x is a four-dimensional phase vector.

Rather than performing the computations directly using (13.118), the constraints can
be directly determined using (13.140). The terms are

M(q) =
(

m11 m12

m21 m22

)
, (13.155)

in which

m11 = I1 +m1�
2
1 + I2 +m2(d2

1 + �2
2 + 2d1�2 cos θ2)

m12 = m21 = I2 +m2(l2
2 + d1�2 cos θ2)

m22 = I2 +m2�
2
2,

(13.156)
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and

c111 = 1

2

∂m11

∂θ1
= 0

c112 = c121 = 1

2

∂m11

∂θ2
= −m2l1�2p2

c122 = ∂m12

∂θ2
− 1

2

∂m22

∂θ1
= −m2l1�2p2

c211 = ∂m21

∂θ1
− 1

2

∂m11

∂θ2
= m2l1�2p2

c212 = c221 = 1

2

∂m22

∂θ1
= 0

c222 = 1

2

∂m22

∂θ2
= 0.

(13.157)

The final term is defined as

g1 = (m1�1 +m2d1)gp1 +m1l2p2

g2 = m2�2gp2.
(13.158)

The dynamics can alternatively be expressed using M(q), C(q, q̇), and g(q) in (13.142).
The Coriolis matrix is defined using (13.143) to obtain

C(q, q̇) = −m2l1�2p2

(
θ̇2 θ̇1 + θ̇2

θ̇1 0

)
, (13.159)

in which p2 is defined in (13.152) and is a function of q. For convenience, let

r = m2l1�2p2. (13.160)

The resulting expression, which is now a special form of (13.142), is

m11θ̈1 +m12θ̈2 − 2rθ̇1θ̇2 − rθ̇
2
2 + g1(q) = u1

m22θ̈1 +m21θ̈2 + rθ̇
2
1 + g2(q) = u2.

(13.161)

The phase transition equation is obtained by letting x = (θ1, θ2, θ̇1, θ̇2) and substituting
the state variables into (13.161). The variables θ̈1 and θ̈2 become ẋ3 and ẋ4, respectively.
The equations must be solved for ẋ3 and ẋ4. An extension of this model to motors that
have gear ratios and nonnegligible mass appears in [858]. �

The example provided here barely scratches the surface on the possible systems that
can be elegantly modeled. Many robotics texts cover cases in which there are more links,
different kinds of joints, and frictional forces [368, 728, 858, 908, 994].

The phase transition equation for chains of bodies could alternatively be derived using
the Newton-Euler formulation of mechanics. Even though the Lagrangian form is more
elegant, the Newton-Euler equations, when expressed recursively, are far more efficient
for simulations of multibody dynamical systems [368, 865, 994].

13.4.3 Extensions of the Euler-Lagrange equations

Several extensions of the Euler-Lagrange equation can be constructed to handle com-
plications that arise in addition to kinetic energy and potential energy in a conservative
field. Each extension usually involves adding more terms to (13.129) to account for the



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

640 PLANNING UNDER DIFFERENTIAL CONSTRAINTS

new complication. Problems that can be handled in this way are closed kinematic chains,
nonholonomic constraints, and nonconservative forces (such as friction).

13.4.3.1 Incorporating velocity constraints

The Lagrangian formulation of Section 13.4.1 can be extended to allow additional con-
straints placed on q and q̇. This is very powerful for developing state transition equations
for robots that have closed kinematic chains or wheeled bodies. If there are closed chains,
then the configurations may be restricted to lie in a subset of C. If a parameterization of the
solution set is possible, then C can be redefined over the reduced C-space. This is usually
not possible, however, because such a parametrization is difficult to obtain, as mentioned
in Section 4.4. If there are wheels or other contact-based constraints, such as those in
Section 13.1.3, then extra constraints on q and q̇ exist. Dynamics can be incorporated into
the models of Section 13.1 by extending the Euler-Lagrange equation.

The coming method will be based on Lagrange multipliers. Recall from standard
calculus that to optimize a function h defined over R

n, subject to an implicit constraint
g(x) = 0, it is sufficient to consider only the extrema of

h(x) + λg(x), (13.162)

in which λ ∈ R represents a Lagrange multiplier [511]. The extrema are found by solving

∇h(x) + λ∇g(x) = 0, (13.163)

which expresses n equations of the form

∂h

∂xi

+ λ
∂g

∂xi

= 0. (13.164)

The same principle applies for handling velocity constraints on C.
Suppose that there are velocity constraints on C as considered in Section 13.1. Consider

implicit constraints, in which there are k equations of the form gi(q, q̇) = 0 for i from
1 to k. Parametric constraints can be handled as a special case of implicit constraints by
writing

gi(q, q̇) = q̇ i − fi(q, u) = 0. (13.165)

For any constraints that contain actions u, no extra difficulties arise. Each ui is treated
as a constant in the following analysis. Therefore, action variables will not be explicitly
named in the expressions.

As before, assume time-invariant dynamics (see [792] for the time-varying case).
Starting with L(q, q̇) defined using (13.130), let the new criterion be

Lc(q, q̇, λ) = L(q, q̇) +
k∑

i=1

λigi(q, q̇). (13.166)

A functional �c is defined by substituting Lc for L in (13.114).
The extremals of �c are given by n equations,

d

dt

∂Lc

∂q̇i

− ∂Lc

∂qi

= 0, (13.167)

and k equations,

d

dt

∂Lc

∂λ̇i

− ∂Lc

∂λi

= 0. (13.168)
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The justification for this is the same as for (13.124), except now λ is included. The
equations of (13.168) are equivalent to the constraints gi(q, q̇) = 0. The first term of each
is zero because λ̇ does not appear in the constraints, which reduces them to

∂Lc

∂λi

= 0. (13.169)

This already follows from the constraints on extremals of L and the constraints gi(q, q̇) =
0. In (13.167), there are n equations in n+ k unknowns. The k Lagrange multipliers
can be eliminated by using the k constraints gi(q, q̇) = 0. This corresponds to Lagrange
multiplier elimination in standard constrained optimization [511].

The expressions in (13.167) and the constraints gi(q, q̇) may be quite complicated,
which makes the determination of a state transition equation challenging. General forms
are given in Section 3.8 of [792]. An important special case will be considered here.
Suppose that the constraints are Pfaffian,

gi(q, q̇) =
n∑

j=1

gij (q)q̇j = 0, (13.170)

as introduced in Section 13.1. This includes the nonholonomic velocity constraints due to
wheeled vehicles, which were presented in Section 13.1.2. Furthermore, this includes the
special case of constraints of the form gi(q) = 0, which models closed kinematic chains.
Such constraints can be differentiated with respect to time to obtain

d

dt
gi(q) =

n∑

j=1

∂gi

∂qj

q̇j =
n∑

j=1

gij (q)q̇j = 0, (13.171)

which is in the Pfaffian form. This enables the dynamics of closed chains, considered in
Section 4.4, to be expressed without even having a parametrization of the subset of C that
satisfies the closure constraints. Starting in implicit form, differentiation is required to
convert them into the Pfaffian form.

For the important case of Pfaffian constraints, (13.167) simplifies to

d

dt

∂L

∂q̇i

− ∂L

∂qi

+
k∑

j=1

λjgji(q) = 0, (13.172)

The Pfaffian constraints can be used to eliminate the Lagrange multipliers, if desired.
Note that gji represents the ith term of the j th Pfaffian constraint. An action variable ui

can be placed on the right side of each constraint, if desired.
Equation (13.172) often appears instead as

d

dt

∂L

∂q̇i

− ∂L

∂qi

=
k∑

l=1

λjgji(q, q̇), (13.173)

which is an alternative but equivalent expression of constraints because the Lagrange
multipliers can be negated without affecting the existence of extremals. In this case, a nice
interpretation due to D’Alembert can be given. Expressions that appear on the right of
(13.173) can be considered as actions, as mentioned in Section 13.4.1. As stated previously,
such actions are called generalized forces in mechanics. The principle of virtual work is
obtained by integrating the reaction forces needed to maintain the constraints. These
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reaction forces are precisely given on the right side of (13.173). Due to the cancellation
of forces, no true work is done by the constraints (if there is no friction).

Example 13.14 (A Particle on a Sphere) Suppose that a particle travels on a unit
sphere without friction or gravity. Let (q1, q2, q3) ∈ R

3 denote the position of the point.
The Lagrangian function is the kinetic energy,

L(q, q̇) = 1
2m(q̇2

1 + q̇2
2 + q̇2

3), (13.174)

in which m is the particle mass. For simplicity, assume that m = 2.
The constraint that the particle must travel on a sphere yields

g1(q) = q2
1 + q2

2 + q2
3 − 1 = 0. (13.175)

This can be put into Pfaffian form by time differentiation to obtain

2q1q̇1 + 2q2q̇2 + 2q3q̇3 = 0. (13.176)

Since k = 1, there is a single Lagrange multiplier λ1. Applying (13.172) yields three
equations,

q̈i − 2qiλ1 = 0, (13.177)

for i from 1 to 3. The generic form of the solution is

c1q1 + c2q2 + c3q3 = 0, (13.178)

in which the ci are real-valued constants that can be determined from the initial position
of the particle. This represents the equation of a plane through the origin. The intersec-
tion of the plane with the sphere is a great circle. This implies that the particle moves
between two points by traveling along the great circle. These are the shortest paths
(geodesics) on the sphere. �

The general forms in Section 13.4.2 can be extended to the constrained case. For
example, (13.142) generalizes to

M(q)q̈ + C(q, q̇)q̇ + g(q) +G(q)T λ = u, (13.179)

in which G is a n× k matrix that represents all of the gji Pfaffian coefficients. In this
case, the Lagrange multipliers can be computed as [728]

λ = (G(q)M(q)−1G(q)T
)−1

G(q)M(q)−1
(
u− C(q, q̇)q̇

)
, (13.180)

assuming G is time-invariant.
The phase transition equation can be determined in the usual way by performing the

required differentiations, defining the 2n phase variables, and solving for ẋ. The result
generalizes (13.148).

13.4.3.2 Nonconservative forces

The Lagrangian formulation has been extended so far to handle constraints on C that
lower the dimension of the tangent space. The formation can also be extended to allow
nonconservative forces. The most common and important example in mechanical systems
is friction. The details of friction models will not be covered here; see [684]. As examples,
friction can arise when bodies come into contact, as in the joints of a robot manipulator,
and as bodies move through a fluid, such as air or water. The nonconservative forces can
be expressed as additional generalized forces, expressed in an n× 1 vector of the form
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B(q, q̇). Suppose that an action vector is also permitted. The modified Euler-Lagrange
equation then becomes

d

dt

∂L

∂q̇
− ∂L

∂q
= u− B(q̇, q). (13.181)

A common extension to (13.142) is

M(q)q̈ + C(q, q̇)q̇ +N (q, q̇) = u, (13.182)

in which N(q, q̇) generalizes g(q) to include nonconservative forces. This can be gener-
alized even further to include Pfaffian constraints and Lagrange multipliers,

M(q)q̈ + C(q, q̇)q̇ +N (q, q̇) +G(q)T λ = u. (13.183)

The Lagrange multipliers become [728]

λ = (G(q)M(q)−1G(q)T
)−1

G(q)M(q)−1
(
u− C(q, q̇)q̇ −N (q, q̇)

)
. (13.184)

Once again, the phase transition equation can be derived in terms of 2n phase variables
and generalizes (13.148).

13.4.4 Hamiltonian mechanics

The Lagrangian formulation of mechanics is the most convenient for determining a
state transition equation for a collection of bodies. Once the kinetic and potential ener-
gies are determined, the remaining efforts are straightforward computation of derivatives
and algebraic manipulation. Hamiltonian mechanics provides an alternative formulation
that is closely related to the Lagrangian. Instead of expressing second-order differential
constraints on an n-dimensional C-space, it expresses first-order constraints on a 2n-
dimensional phase space. This idea should be familiar from Section 13.2. The new phase
space considered here is an example of a symplectic manifold, which has many important
properties, such as being orientable and having an even number of dimensions [39]. The
standard phase vector is defined as x = (q, q̇); however, instead of q̇, n variables will
be introduced and denoted as p. Thus, a transformation exists between (q, q̇) and (p, q).
The p variables are related to the configuration variables through a special function over
the phase space called the Hamiltonian. Although the Hamiltonian formulation usually
does not help in the determination of ẋ = f (x, u), it is covered here because its gen-
eralization to optimal control problems is quite powerful. This generalization is called
Pontryagin’s minimum principle and is covered in Section 15.2.3. In the context of me-
chanics, it provides a general expression of energy conservation laws, which aids in
proving many theoretical results [39, 399].

The relationship between (q, q̇) and (p, q) can be obtained by using the Legendre
transformation [39, 399]. Consider a real-valued function f of two variables, x, y ∈ R.
Its total differential [511] is

df = u dx + v dy, (13.185)

in which

u = ∂f

∂x
and v = ∂f

∂y
. (13.186)
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Consider constructing a total differential that depends on du and dy, instead of dx and
dy. Let g be a function of u and y defined as

g(u, y) = ux − f. (13.187)

The total differential of g is

dg = x du+ u dx − df. (13.188)

Using (13.185) to express df , this simplifies to

dg = x du− v dy. (13.189)

The x and v variables are now interpreted as

x = ∂g

∂u
v = −∂g

∂y
, (13.190)

which appear to be a kind of inversion of (13.186). This idea will be extended to vector
form to arrive the Hamiltonian formulation.

Assume that the dynamics do not depend on the particular time (the extension to
time-varying dynamics is not difficult; see [39, 399]). Let L(q, q̇) be the Lagrangian
function defined (13.129). Let p ∈ R

n represent a generalized momentum vector (or
adjoint variables), which serves the same purpose as u in (13.185). Each pi is defined as

pi = ∂L

∂q̇i

. (13.191)

In some literature, p is instead denoted as λ because it can also be interpreted as a vector
of Lagrange multipliers. The Hamiltonian function is defined as

H (p, q) = p · q̇ − L(q, q̇) =
n∑

i=1

piq̇i − L(q, q̇) (13.192)

and can be interpreted as the total energy of a conservative system [399]. This is a vector-
based extension of (13.187) in which L and H replace f and g, respectively. Also, p and
q are the vector versions of u and x, respectively.

Considered as a function of p and q only, the total differential of H is

dH =
n∑

i=1

∂H

∂pi

dpi +
n∑

i=1

∂H

∂qi

dqi . (13.193)

Using (13.192), dH can be expressed as

dH =
n∑

i=1

q̇ i dpi +
n∑

i=1

pi dq̇i −
n∑

i=1

∂L

∂q̇i

dq̇i −
n∑

i=1

∂L

∂qi

dqi . (13.194)

The dq̇i terms all cancel by using (13.191), to obtain

dH =
n∑

i=1

q̇ i dpi −
n∑

i=1

∂L

∂qi

dqi . (13.195)

Using (13.118),

ṗ = ∂L

∂qi

. (13.196)
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This implies that

dH =
n∑

i=1

q̇ i dpi −
n∑

i=1

ṗi dqi . (13.197)

Equating (13.197) and (13.193) yields 2n equations called Hamilton’s equations:

q̇ i =
∂H

∂pi

ṗi =
∂H

∂qi

, (13.198)

for each i from 1 to n. These equations are analogous to (13.190).
Hamilton’s equations are equivalent to the Euler-Lagrange equation. Extremals in

both cases yield equivalent differential constraints. The difference is that the Lagrangian
formulation uses (q, q̇) and the Hamiltonian uses (p, q). The Hamiltonian results in
first-order partial differential equations. It was assumed here that the dynamics are time-
invariant and the motions occur in a conservative field. In this case, dH = 0, which
corresponds to conservation of total energy. In the time-varying case, the additional equa-
tion ∂H/∂t = −∂L/∂t appears along with Hamilton’s equations. As stated previously,
Hamilton’s equations are primarily of interest in establishing basic results in theoretical
mechanics, as opposed to determining the motions of particular systems. For example,
the Hamiltonian is used to establish Louisville’s theorem, which states that phase flows
preserve volume, implying that a Hamiltonian system cannot be asymptotically stable
[39]. Asymptotic stability is covered in Section 15.1.1. Pontryagin’s minimum principle,
an extension of Hamilton’s equations to optimal control theory, is covered in 15.2.3.

13.5 Multiple decision makers

Differential models can be extended to model the interaction of multiple decision makers.
This leads to continuous-time extensions of sequential decision making, from Formulation
10.1, and sequential games, from Formulation 10.4. A differential version of the state
transition equation can be made for these extensions.

13.5.1 Differential decision making

To make a differential game against nature that extends Formulation 10.1 to continuous
time, suppose that nature actions θ(t) are chosen from �. A differential model can be
defined as

ẋ = f (x, u, θ ). (13.199)

The state space X and action space U are used in the same way as throughout this chapter.
The difference only comes in the state transition equation. State-dependent nature action
spaces may also be used.

As observed repeatedly throughout Part III, nature can be modeled nondeterministically
or probabilistically. In the nondeterministic case, (13.199) is equivalent to a differential
inclusion [54]:

ẋ ∈ {ẋ ′ | ∃θ ∈ � such that ẋ ′ = f (x, u, θ )}. (13.200)

Possible future values for ẋ can be computed using forward projections. Reachable sets,
which will be introduced in Section 14.2.1, can be defined that characterize the evolution of
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future possible states over time. Plans constructed under this model usually use worst-case
analysis.

Example 13.15 (Nondeterministic Forward Projection) As a simple example of us-
ing (13.199), consider expressing the uncertainty model used in the preimage planning
framework of Section 12.5.1.

At each time t ≥ 0, nature chooses some θ ∈ �(t). The state transition equation is

ẋ = x + u+ θ. (13.201)

The cone shown in Figure 12.45 is just the nondeterministic forward projection under the
application of a constant u ∈ U . �

In the probabilistic case, restrictions must be carefully placed on the nature action
trajectory (e.g., a Weiner process [911]). Under such conditions, (13.199) becomes a
stochastic differential equation. Planning in this case becomes continuous-time stochastic
control [570], and the task is to optimize the expected cost.

Example 13.16 (A Simple Car and Nature) Uncertainty can be introduced into any of
the models of this chapter. For example, recall the simple car, (13.15). Suppose that nature
interferes with the steering action so that it is not precisely known in which direction the
car will drive. Let � = [−θmax, θmax], in which θmax ∈ (0, π/2) represents the maximum
amount of steering angle error that can be caused by nature. The simple-car model can be
modified to account for this error as

ẋ = us cos θ

ẏ = us sin θ

θ̇ = us

L
tan(uφ + γ ),

(13.202)

in which the domain of tan must be extended to R or other suitable restrictions must be
imposed. At each time t , a nature action12 γ ∈ � causes the true heading of the car to
be perturbed from the commanded direction uφ . Under nondeterministic uncertainty, the
maximum amount that the car deviates from the commanded direction must be determined
by the planning algorithm. A probability density function p(γ ) can be assigned to obtain
a probabilistic model. When integrated over time, (13.202) yields probability density
functions over future car configurations [1004]. �

In a similar way, parameters that account for nature can be introduced virtually any-
where in the models of this chapter. Some errors may be systematic, which reflect mistakes
or simplifications made in the modeling process. These correspond to a constant nature
action applied at the outset. In this case, nature is not allowed to vary its action over time.
Other errors could correspond to noise, which is expected to yield different nature actions
over time.

13.5.2 Differential game theory

The extension of sequential game theory to the continuous-time case is called differential
game theory (or dynamic game theory [60]), a subject introduced by Isaacs [480]. All of
the variants considered in Sections 9.3, 9.4, 10.5 are possible:

12 The notation γ is used instead of θ to avoid conflicting with the car orientation variable θ in this particular example.
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1. There may be any number of players.

2. The game may be zero-sum or nonzero-sum.

3. The state may or may not be known. If the state is unknown, then interesting I-spaces
arise, similar to those of Section 11.7.

4. Nature can interfere with the game.

5. Different equilibrium concepts, such as saddle points and Nash equilibria, can be defined.

See [60] for a thorough overview of differential games. Two players, P1 and P2, can be
engaged in a differential game in which each has a continuous set of actions. Let U and
V denote the action spaces of P1 and P2, respectively. A state transition equation can be
defined as

ẋ = f (x, u, v), (13.203)

in which x is the state, u ∈ U , and v ∈ V .
Linear differential games are an important family of games because many techniques

from optimal control theory can be extended to solve them [60].

Example 13.17 (Linear Differential Games) The linear system model (13.37) can be
extended to incorporate two players. Let X = R

n be a phase space. Let U = R
m1 and

V = R
m2 be an action spaces for m1, m2 ≤ n. A linear differential game is expressed as

ẋ = Ax + Bu+ Cv, (13.204)

in which A, B, and C are constant, real-valued matrices of dimensions n× n, n×m1, and
n×m2, respectively. The particular solution to such games depends on the cost functional
and desired equilibrium concept. For the case of a quadratic cost, closed-form solutions
exist. These extend techniques that are developed for linear systems with one decision
maker; see Section 15.2.2 and [60].

The original work of Isaacs [480] contains many interesting examples of pursuit-
evasion differential games. One of the most famous is described next.

Example 13.18 (Homicidal Chauffeur) In the homicidal chauffeur game, the pursuer
is a Dubins car and the evader is a point robot that can translate in any direction. Both exist
in the same world, W = R

2. The speeds of the car and robot are s1 and s2, respectively.
It is assumed that |s1| > |s2|, which means that the pursuer moves faster than the evader.
The transition equation is given by extending (13.15) to include two state variables that
account for the robot position:

ẋ1 = s1 cos θ1 ẋ2 = s2 cos v

ẏ1 = s1 sin θ1 ẏ2 = s2 sin v (13.205)

θ̇1 = s1

L
tan uφ.

The state space is X is R
4 × S

1, and the action spaces are U = [−φmax, φmax] and
V = [0, 2π).

The task is to determine whether the pursuer can come within some prescribed distance
ε of the evader:

(x1 − x2)2 + (y1 − y2)2 < ε2. (13.206)
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If this occurs, then the pursuer wins; otherwise, the evader wins. The solution depends
on the L, s1, s2, ε, and the initial state. Even though the pursuer moves faster, the evader
may escape because it does not have a limited turning radius. For given values of L, s1,
s2, and ε, the state space X can be partitioned into two regions that correspond to whether
the pursuer or evader wins [60, 480]. To gain some intuition about how this partition may
appear, imagine the motions that a bullfighter must make to avoid a fast, charging bull
(yes, bulls behave very much like a fast Dubins car when provoked). �

Another interesting pursuit-evasion game arises in the case of one car attempting to
intercept another [697].

Example 13.19 (A Game of Two Cars) Imagine that there are two simple cars that
move in the same world, W = R

2. Each has a transition equation given by (13.15). The
state transition equation for the game is

ẋ1 = us cos θ1 ẋ2 = vs cos θ2

ẏ1 = us sin θ1 ẏ2 = vs sin θ2 (13.207)

θ̇1 = us

L1
tan uφ θ̇2 = s

vs

L2
tan vφ.

The pursuit-evasion game becomes very interesting if both players are restricted to be
Dubins cars. �

Further reading

This chapter was synthesized from numerous sources. Many important, related subjects were omitted.
For some mechanics of bodies in contact and manipulation in general, see [684]. Three-dimensional
vehicle models were avoided because they are complicated by SO(3); see [436]. For computational
issues associated with simulating dynamical systems, see [249, 865].

For further reading on velocity constraints on the C-space, see [599, 728] and Sections 15.3 to
15.5. For more problems involving rolling spheres, see [530] and references therein. The rolling-ball
problem is sometimes referred to as the Chaplygin ball. A nonholonomic manipulator constructed from
rolling-ball joints was developed and analyzed in [732]. The kinematics of curved bodies in contact was
studied in [635, 719]. For motion planning in this context, see [103, 105, 225, 679]. Other interesting
nonholonomic systems include the snakeboard [476, 632], roller racer [559], rollerblader [216], Trikke
[215], and examples in [114] (e.g., the Chaplygin sled).

Phase space representations are a basic part of differential equations, physics, and control theory; see
[44, 194].

Further reading in mechanics is somewhat complicated by two different levels of treatment. Classical
mechanics texts do not base the subject on differential geometry, which results in cumbersome formu-
lations and unusual terminology (e.g., generalized coordinates). Modern mechanics texts overcome this
problem by cleanly formulating everything in terms of geodesics on Riemannian manifolds; however,
this many be more difficult to absorb for readers without background in differential geometry. An ex-
cellent source for modern mechanics is [39]. One of the most famous texts for classical mechanics is
[399]. For an on-line book that covers the calculus of variations, including constrained Lagrangians, see
[793]. The constrained Lagrangian presentation is based on Chapter 3 of [792], Section 2.4 of [399], and
parts of [407]. Integral constraints on the Lagrangian are covered in [793], in addition to algebraic and
differential constraints. Lagrangian mechanics under inequality constraints is considered in [792]. The
presentation of the Hamiltonian in Section 13.4.4 is based on Chapter 7 of [399] and Section 15 of [39].
For advanced, modern treatments of mechanics in the language of affine connections and Christoffel
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θ1

m1g

L1

L2

θ2

m2q

Figure 13.14: A double pendulum.

symbols, see [3, 158, 680]. Another source, which is also heavily illustrated, is [361]. For further reading
on robot dynamics, see [30, 206, 728, 858, 908, 994]. For dynamics of automobiles, see [391].

For further reading on differential game theory, primary sources are [60, 426, 480]; see also [34,
58, 786, 985, 991, 992, 993, 997]. Lower bounds for the algorithmic complexity of pursuit-evasion
differential games are presented in [824].

Exercises

1. Let C = R
4. There are two Pfaf�an constraints, q̇1 + q̇2 + q̇3 + q̇4 = 0 and q̇2 − q̇4 = 0. De-

termine the appropriate number of action variables and express the differential constraints
in the form q̇ = f (q, u).

2. Introduce a phase space and convert 2ÿ − 10ẏ2 + 5y = 0 into the form ẋ = f(x).

3. Introduce a phase space and convert y(4) + y = 0 into the form ẋ = f(x).

4. Derive the con�gur ation transition equation (13.19) for a car pulling trailers.

5. Use the main idea of Section 13.2.4 to develop a smooth-steering extension of the car
pulling trailers, (13.19).

6. Suppose that two identical differential-drive robots are connected together at their centers
with a rigid bar of length d. The robots are attached at each end of the rod, and each
attachment forms a revolute joint. There are four wheels to control; however, some combi-
nations of wheel rotations cause skidding. Assuming that skidding is not allowed, develop
a motion model of the form q̇ = f(q, u), in which C and U are chosen to re�ect the true
degrees of freedom.

7. Extend the lunar lander model to a general rigid body with a thruster that does not apply
forces through the center of mass.

8. Develop a model for a 3D rotating rigid body �red out of a canon at a speci�ed angle above
level ground under gravity. Suppose that thrusters are placed on the body, enabling it to
be controlled before it impacts the ground. Develop general phase transition equations.
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9. Add gravity with respect to q2 in Example 13.12 and derive the new state transition equation
using the Euler-Lagrange equation.

10. Use the constrained Lagrangian to derive the equations of motion of the pendulum in
Example 13.8.

11. De�ne a phase space, and determine an equation of the form ẋ = f (x) for the double
pendulum shown in Figure 13.14.

12. Extend Example 13.13 to obtain the dynamics of a three-link manipulator. The third link,
A3, is attached to the other two by a revolute joint. The new parameters are θ3, d2, �3, m3,
and I3.

13. Solve Example 13.14 by parameterizing the sphere with standard spherical coordinates
and using the unconstrained Lagrangian. Verify that the same answer is obtained.

14. Convert the equations in (13.161) into phase space form, to obtain the phase transition
equation in the form ẋ = f (x, u). Express the right side of the equation in terms of the
basic parameters, such as mass, moment of inertia, and lengths.

15. De�ne the Hamiltonian for a free-�oating 2D rigid body under gravity and develop
Hamilton’s equations.

Implementations

16. Make a 3D spacecraft (rigid-body) simulator that allows any number of binary thrusters to
be placed in any position and orientation.

17. Make a simulator for the two-link manipulator in Example 13.13.
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Sampling-Based Planning
Under Differential Constraints

After Chapter 13, it seems that differential constraints arise nearly everywhere. For exam-
ple, they may arise when wheels roll, aircraft fly, and when the dynamics of virtually any
mechanical system is considered. This makes the basic model used for motion planning
in Part II invalid for many applications because differential constraints were neglected.
Formulation 4.1, for example, was concerned only with obstacles in the C-space.

This chapter incorporates the differential models of Chapter 13 into sampling-based
motion planning. The detailed modeling (e.g., Lagrangian mechanics) of Chapter 13 is not
important here. This chapter works directly with a given system, expressed as ẋ = f (x, u).
The focus is limited to sampling-based approaches because very little can be done with
combinatorial methods if differential constraints exist. However, if there are no obstacles,
then powerful analytical techniques may apply. This subject is complementary to motion
planning with obstacles and is the focus of Chapter 15.

Section 14.1 provides basic definitions and concepts for motion planning under differ-
ential constraints. It is particularly important to explain the distinctions made in literature
between nonholonomic planning, kinodynamic planning, and trajectory planning, all of
which are cases of planning under differential constraints. Another important point is that
obstacles may be somewhat more complicated in phase spaces, which were introduced
in Section 13.2. Section 14.2 introduces sampling over the space of action trajectories,
which is an essential part of later planning algorithms.

Section 14.3 revisits the incremental sampling and searching framework of Section 5.4
and extends it to handle differential constraints. This leads to several sampling-based
planning approaches, which are covered in Section 14.4. Familiar choices such as dynamic
programming or the RDTs of Section 5.5 appear once again. The resulting planning
methods can be used for a wide variety of problems that involve differential constraints
on C-spaces or phase spaces.

Section 14.5 briefly covers feedback motion planning under differential constraints.
Approximate, optimal plans can be obtained by a simple adaptation of value iteration from
Section 8.5.2. Section 14.6 describes decoupled methods, which start with a collision-
free path that ignores differential constraints, and then perform refinements to obtain the
desired trajectory. Such approaches often lose completeness and optimality, but they offer
substantial computational savings in many settings. Section 14.7 briefly surveys numerical
techniques for optimizing a trajectory subjected to differential constraints; the techniques
can be used to improve solutions computed by planning algorithms.

651
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14.1 Introduction

14.1.1 Problem formulation

Motion planning under differential constraints can be considered as a variant of classical
two-point boundary value problems (BVPs) [443]. In that setting, initial and goal states
are given, and the task is to compute a path through a state space that connects initial and
goal states while satisfying differential constraints. Motion planning involves the addi-
tional complication of avoiding obstacles in the state space. Techniques for solving BVPs
are unfortunately not well-suited for motion planning because they are not designed for
handling obstacle regions. For some methods, adaptation may be possible; however, the
obstacle constraints usually cause these classical methods to become inefficient or incom-
plete. Throughout this chapter, the BVP will refer to motion planning with differential
constraints and no obstacles. BVPs that involve more than two points also exist; however,
they are not considered in this book.

It is assumed that the differential constraints are expressed in a state transition equation,
ẋ = f (x, u), on a smooth manifold X, called the state space, which may be a C-space C
or a phase space of a C-space. A solution path will not be directly expressed as in Part
II but is instead derived from an action trajectory via integration of the state transition
equation.

Let the action space U be a bounded subset of R
m. A planning algorithm computes

an action trajectory ũ, which is a function of the form ũ : [0,∞) → U . The action
at a particular time t is expressed as u(t). To be consistent with standard notation for
functions, it seems that this should instead be denoted as ũ(t). This abuse of notation was
intentional, to make the connection to the discrete-stage case clearer and to distinguish
an action, u ∈ U , from an action trajectory ũ. If the action space is state-dependent, then
u(t) must additionally satisfy u(t) ∈ U (x(t)) ⊆ U . For state-dependent models, this will
be assumed by default. It will also be assumed that a termination action uT is used, which
makes it possible to specify all action trajectories over [0,∞) with the understanding that
at some time tF , the termination action is applied.

The connection between the action and state trajectories needs to be formulated. Starting
from some initial state x(0) at time t = 0, a state trajectory is derived from an action
trajectory ũ as

x(t) = x(0) +
∫ t

0
f (x(t ′), u(t ′))dt ′, (14.1)

which integrates the state transition equation ẋ = f (x, u) from the initial condition x(0).
Let x̃(x(0), ũ) denote the state trajectory over all time, obtained by integrating (14.1).
Differentiation of (14.1) leads back to the state transition equation. Recall from Section
13.1.1 that if u is fixed, then the state transition equation defines a vector field. The state
transition equation is an alternative expression of (8.14) from Section 8.3, which is the
expression for an integral curve of a vector field. The state trajectory is the integral curve
in the present context.

The problem of motion planning under differential constraints can be formulated as
an extension of the Piano Mover’s Problem in Formulation 4.1. The main differences in
this extension are 1) the introduction of time, 2) the state or phase space, and 3) the state
transition equation. The resulting formulation follows.
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Formulation 14.1 (Motion Planning Under Differential Constraints)

1. A world W , a robot A (or A1, . . . ,Am for a linkage), an obstacle region O, and a
configuration space C, which are defined the same as in Formulation 4.1.

2. An unbounded time interval T = [0,∞).

3. A smooth manifold X, called the state space, which may be X = C or it may be a phase
space derived from C if dynamics is considered; see Section 13.2. Let κ : X → C denote
a function that returns the configuration q ∈ C associated with x ∈ X. Hence, q = κ(x).

4. An obstacle region Xobs is defined for the state space. If X = C, then Xobs = Cobs.
For general phase spaces, Xobs is described in detail in Section 14.1.3. The notation
Xfree = X \Xobs indicates the states that avoid collision and satisfy any additional global
constraints.

5. For each state x ∈ X, a bounded action space U (x) ⊆ R
m ∪ {uT }, which includes a

termination action uT and m is some fixed integer called the number of action variables. If
the termination action is applied, it is assumed that f (x, uT ) = 0 (and no cost accumulates,
if a cost functional is used). Let U denote the union of U (x) over all x ∈ X.

6. A system is specified using a state transition equation ẋ = f (x, u), defined for every
x ∈ X and u ∈ U (x). This could arise from any of the differential models of Chapter 13.

7. A state xI ∈ Xfree is designated as the initial state.

8. A set XG ⊂ Xfree is designated as the goal region.

9. A complete algorithm must compute an action trajectory ũ : T → U , for which the state
trajectory x̃, resulting from (14.1), satisfies: 1) x(0) = xI , and 2) there exists some t > 0
for which u(t) = uT and x(t) ∈ XG.

Additional constraints may be placed on ũ, such as continuity or smoothness over time. At
the very least, ũ must be chosen so that the integrand of (14.1) is integrable over time. Let
U denote the set of all permissible action trajectories over T = [0,∞). By default, U is
assumed to include any integrable action trajectory. If desired, continuity and smoothness
conditions can be enforced by introducing new phase variables. The method of placing
integrators in front of action variables, which was covered in Section 13.2.4, can usually
achieve the desired constraints. If optimizing a criterion is additionally important, then the
cost functional given by (8.39) can be used. The existence of optimal solutions requires
that U is a closed set, in addition to being bounded.

A final time does not need to be stated because of the termination action uT . As usual,
once uT is applied, cost does not accumulate any further and the state remains fixed. This
might seem strange for problems that involve dynamics because momentum should keep
the state in motion. Keep in mind that the termination action is a trick to make the formula-
tion work correctly. In many cases, the goal corresponds to a subset of X in which the veloc-
ity components are zero. In this case, there is no momentum and hence no problem. If the
goal region includes states that have nonzero velocity, then it is true that a physical system
may keep moving after uT has been applied; however, the cost functional will not measure
any additional cost. The task is considered to be completed after uT is applied, and the sim-
ulation is essentially halted. If the mechanical system eventually collides due to momen-
tum, then this is the problem of the user who specified a goal state that involves momentum.

The overwhelming majority of solution techniques are sampling-based. This is moti-
vated primarily by the extreme difficultly of planning under differential constraints. The
standard Piano Mover’s Problem from Formulation 4.1 is a special case of Formula-
tion 14.1 and is already PSPACE-hard [820]. Optimal planning is also NP-hard, even
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for a point in a 3D polyhedral environment without differential constraints [174]. The
only known methods for exact planning under differential constraints in the presence
of obstacles are for the double integrator system q̈ = u, for C = R [750] and C = R

2

[173].
Section 14.1.2 provides some perspective on motion planning problems under differ-

ential constraints that fall under Formulation 14.1, which assumes that the initial state is
given and future states are predictable. Section 14.5 briefly addresses the broader problem
of feedback motion planning under differential constraints.

14.1.2 Different kinds of planning problems

There are many ways to classify motion planning problems under differential constraints.
Some planning approaches rely on particular properties of the system; therefore, it is
helpful to characterize these general differences. The different kinds of problems described
here are specializations of Formulation 14.1. In spite of differences based on the kinds
of models described below, all of them can be unified under the topic of planning under
differential constraints.

One factor that affects the differential model is the way in which the task is decomposed.
For example, the task of moving a robot usually requires the consideration of mechanics.
Under the classical robotics approach that was shown in Figure 1.19, the motion planning
problem is abstracted away from the mechanics of the robot. This enables the motion
planning ideas of Part II to be applied. This decomposition is arbitrary. The mechanics
of the robot can be considered directly in the planning process. Another possibility
is that only part of the constraints may be considered. For example, perhaps only the
rolling constraints of a vehicle are considered in the planning process, but dynamics are
handled by another planning module. Thus, it is important to remember that the kinds
of differential constraints that appear in the planning problem depend not only on the
particular mechanical system, but also on how the task is decomposed.

14.1.2.1 Terms from planning literature

Nonholonomic planning

The term nonholonomic planning was introduced by Laumond [596] to describe the
problem of motion planning for wheeled mobile robots (see [598, 636] for overviews).
It was informally explained in Section 13.1 that nonholonomic refers to differential
constraints that cannot be completely integrated. This means they cannot be converted into
constraints that involve no derivatives. A more formal definition of nonholonomic will be
given in Section 15.4. Most planning research has focused on velocity constraints on C,
as opposed to a phase space X. This includes most of the models given in Section 13.1,
which are specified as nonintegrable velocity constraints on the C-space C. These are
often called kinematic constraints, to distinguish them from constraints that arise due to
dynamics.

In mechanics and control, the term nonholonomic also applies to nonintegrable velocity
constraints on a phase space [114, 115]. Therefore, it is perfectly reasonable for the term
nonholonomic planning to refer to problems that also involve dynamics. However, in
most applications to date, the term nonholonomic planning is applied to problems that
have kinematic constraints only. This is motivated primarily by the early consideration of
planning for wheeled mobile robots. In this book, it will be assumed that nonholonomic



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

SAMPLING-BASED PLANNING UNDER DIFFERENTIAL CONSTRAINTS 655

planning refers to planning under nonintegrable velocity constraints on C or any phase
space X.

For the purposes of sampling-based planning, complete integrability is actually not
important. In many cases, even if it can be theoretically established that constraints are
integrable, it does not mean that performing the integration is practical. Furthermore,
even if integration can be performed, each constraint may be implicit and therefore not
easily parameterizable. Suppose, for example, that constraints arise from closed kine-
matic chains. Usually, a parameterization is not available. By differentiating the closure
constraint, a velocity constraint is obtained on C. This can be treated in a sampling-based
planner as if it were a nonholonomic constraint, even though it can easily be integrated.

Kinodynamic planning

The term kinodynamic planning was introduced by Canny, Donald, Reif, and Xavier [292]
to refer to motion planning problems for which velocity and acceleration bounds must
be satisfied. This means that there are second-order constraints on C. The original work
used the double integrator model q̈ = u for C = R

2 and C = R
3. A scalar version of this

model appeared Example 13.3. More recently, the term has been applied by some authors
to virtually any motion planning problem that involves dynamics. Thus, any problem that
involves second-order (or higher) differential constraints can be considered as a form of
kinodynamic planning. Thus, if x includes velocity variables, then kinodynamic planning
includes any system, ẋ = f (x, u).

Note that kinodynamic planning is not necessarily a form of nonholonomic planning;
in most cases considered so far, it is not. A problem may even involve both nonholonomic
and kinodynamic planning. This requires the differential constraints to be both noninte-
grable and at least second-order. This situation often results from constrained Lagrangian
analysis, covered in Section 13.4.3. The car with dynamics which was given Section
13.3.3 is both kinodynamic and nonholonomic.

Trajectory planning

The term trajectory planning has been used for decades in robotics to refer mainly to the
problem of determining both a path and velocity function for a robot arm (e.g., PUMA
560). This corresponds to finding a path in the phase space X in which x ∈ X is defined
as x = (q, q̇). Most often the problem is solved using the refinement approach mentioned
in Section 1.4 by first computing a path through Cfree. For each configuration q along
the path, a velocity q̇ must be computed that satisfies the differential constraints. An
inverse control problem may also exist, which involves computing for each t , the action
u(t) that results in the desired q̇(t). The refinement approach is often referred to as time
scaling of a path through C [459]. In recent times, trajectory planning seems synonymous
with kinodynamic planning, assuming that the constraints are second-order (x includes
only configuration and velocity variables). One distinction is that trajectory planning still
perhaps bears the historical connotations of an approach that first plans a path through Cfree.

14.1.2.2 Terms from control theory

A significant amount of terminology that is appropriate for planning has been developed
in the control theory community. In some cases, there are even conflicts with planning
terminology. For example, the term motion planning has been used to refer to nonholo-
nomic planning in the absence of obstacles [158, 730]. This can be considered as a
kind of BVP. In some cases, this form of planning is referred to as the steering problem
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(see [599, 728]) and will be covered in Section 15.5. The term motion planning is reserved
in this book for problems that involve obstacle avoidance and possibly other constraints.

Open-loop control laws

Differential models, such as any of those from Chapter 13, are usually referred to as
control systems or just systems, a term that we have used already. These are divided into
linear and nonlinear systems, as described in Sections 13.2.2 and 13.2.3, respectively.
Formulation 14.1 can be considered in control terminology as the design of an open-loop
control law for the system (subjected to nonconvex constraints on the state space). The
open-loop part indicates that no feedback is used. Only the action trajectory needs to be
specified over time (the feedback case is called closed-loop; recall Section 8.1). Once
the initial state is given, the state trajectory can be inferred from the action trajectory.
It may also be qualified as a feasible open-loop control law, to indicate that it satisfies
all constraints but is not necessarily optimal. It is then interesting to consider designing
an optimal open-loop control law. This is extremely challenging, even for problems that
appear to be very simple. Elegant solutions exist for some restricted cases, including
linear systems and some wheeled vehicle models, but in the absence of obstacles. These
are covered in Chapter 15.

Drift

The term drift arose in Section 13.2.1 and implies that from some states it is impossible to
instantaneously stop. This difficulty arises in mechanical systems due to momentum. Infi-
nite deceleration, and therefore infinite energy, would be required to remove all kinetic en-
ergy from a mechanical system in an instant of time. Kinodynamic and trajectory planning
generally involve drift. Nonholonomic planning problems may be driftless if only velocity
constraints exist on the C-space; the models of Section 13.1.2 are driftless. From a planning
perspective, systems with drift are usually more challenging than driftless systems.

Underactuation

Action variables, the components of u, are often referred to as actuators, and a system is
called underactuated if the number of actuators is strictly less than the dimension of C.
In other words, there are less independent action variables than the degrees of freedom
of the mechanical system. Underactuated nonlinear systems are typically nonholonomic.
Therefore, a substantial amount of nonholonomic system theory and planning for non-
holonomic systems involves applications to underactuated systems. As an example of an
underactuated system, consider a free-floating spacecraft in R

3 that has three thrusters. The
amount of force applied by each thruster can be declared as an action variable; however,
the system is underactuated because there are only three actuators, and the dimension of
C is six. Other examples appeared Section 13.1.2. If the system is not underactuated, it is
called fully actuated, which means that the number of actuators is equal to the dimension
of C. Kinodynamic planning has mostly addressed fully actuated systems.

Symmetric systems

Finally, one property of systems that is important in some planning algorithms is symme-
try.1 A system ẋ = f (x, u) is symmetric if the following condition holds. If there exists

1 Sometimes in control theory, the term symmetry applies to Lie groups. This is a different concept and means that
the system is invariant with respect to transformations in a group such as SE(3). For example, the dynamics of a
car should not depend on the direction in which the car is pointing.
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Cobs

Xobs

X

C
Figure 14.1: An obstacle region Cobs ⊂ C generates a cylindrical obstacle region Xobs ⊂ X with respect to
the phase variables.

an action trajectory that brings the system from some xI to some xG, then there exists
another action trajectory that brings the system from xG to xI by visiting the same points
in X, but in reverse time. At each point along the path, this means that the velocity can
be negated by a different choice of action. Thus, it is possible for a symmetric system
to reverse any motions. This is usually not possible for systems with drift. An example
of a symmetric system is the differential drive of Section 13.1.2. For the simple car, the
Reeds-Shepp version is symmetric, but the Dubins version is not because the car cannot
travel in reverse.

14.1.3 Obstacles in the phase space

In Formulation 14.1, the specification of the obstacle region in Item 4 was intentionally
left ambiguous. Now it will be specified in more detail. If X = C, then Xobs = Cobs, which
was defined in (4.34) for a rigid robot and in (4.36) for a robot with multiple links. The
more interesting case occurs if X is a phase space that includes velocity variables in
addition to configuration information.

Any state for which its associated configuration lies in Cobs must also be a member of
Xobs . The velocity is irrelevant if a collision occurs in the world W . In most cases that
involve a phase space, the obstacle region Xobs is therefore defined as

Xobs = {x ∈ X | κ(x) ∈ Cobs}, (14.2)

in which κ(x) is the configuration associated with the state x ∈ X. If the first n variables
of X are configuration parameters, then Xobs has the cylindrical structure shown in
Figure 14.1 with respect to the other variables. If κ is a complicated mapping, as opposed
to simply selecting the configuration coordinates, then the structure might not appear
cylindrical. In these cases, (14.2) still indicates the correct obstacle region in X.

14.1.3.1 Additional constraints on phase variables

In many applications, additional constraints may exist on the phase variables. These are
called phase constraints and are generally of the form hi(x) ≤ 0. For example, a car or
hovercraft may have a maximum speed for safety reasons. Therefore, simple bounds on
the velocity variables will exist. For example, it might be specified that ‖q̇‖ ≤ q̇max for
some constant q̇max ∈ (0,∞). Such simple bounds are often incorporated directly into
the definition of X by placing limits on the velocity variables.
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NASA/Lockheed Martin X-33 Re-entry trajectory

Figure 14.2: In the NASA/Lockheed Martin X-33 re-entry problem, there are complicated constraints on
the phase variables, which avoid states that cause the craft to overheat or vibrate uncontrollably. (Courtesy
of NASA)

In other cases, however, constraints on velocity may be quite complicated. For example,
the problem of computing the re-entry trajectory of the NASA/Lockheed Martin X-33
reusable spacecraft2 (see Figure 14.2) requires remaining within a complicated, narrow
region in the phase space. Even though there are no hard obstacles in the traditional sense,
many bad things can happen by entering the wrong part of the phase space. For example,
the craft may overheat or vibrate uncontrollably [162, 203, 665]. For a simpler example,
imagine constraints on X to ensure that an SUV or a double-decker tour bus (as often
seen in London, for example) will not tumble sideways while turning.

The additional constraints can be expressed implicitly as hi(x) ≤ 0. As part of de-
termining whether some state x lies in Xfree or Xobs , it must be substituted into each
constraint to determine whether it is satisfied. If a state lies in Xfree, it will generally be
called violation-free, which implies that it is both collision-free and does not violate any
additional phase constraints.

14.1.3.2 The region of inevitable collision

One of the most challenging aspects of planning can be visualized in terms of the region
of inevitable collision, denoted by Xric. This is the set of states from which entry into Xobs

will eventually occur, regardless of any actions that are applied. As a simple example,
imagine that a robotic vehicle is traveling 100 km/hr toward a large wall and is only
2 meters away. Clearly the robot is doomed. Due to momentum, collision will occur
regardless of any efforts to stop or turn the vehicle. At low enough speeds, Xric and Xobs

are approximately the same; however, Xric grows dramatically as the speed increases.
Let U∞ denote the set of all trajectories ũ : [0,∞) → U for which the termination

action uT is never applied (we do not want inevitable collision to be avoided by simply
applying uT ). The region of inevitable collision is defined as

Xric = {x(0) ∈ X | for any ũ ∈ U∞ , ∃t > 0 such that x(t) ∈ Xobs}, (14.3)

in which x(t) is the state at time t obtained by applying (14.1) from x(0). This does not
include cases in which motions are eventually blocked, but it is possible to bring the
system to a state with zero velocity. Suppose that the Dubins car from Section 13.1.2 is

2 This project was canceled in 2001, but similar crafts have been under development.
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Figure 14.3: The region of inevitable collision grows quadratically with the speed.

used and the car is unable to back its way out of a dead-end alley. In this case, it can avoid
collision by stopping and remaining motionless. If it continues to move, it will eventually
have no choice but to collide. This case appears more like being trapped and technically
does not fit under the definition of Xric. For driftless systems, Xric = Xobs .

Example 14.1 (Region of Inevitable Collision) Figure 14.3 shows a simple illustration
of Xric. Suppose that W = R, and the robot is a particle (or point mass) that moves
according to the double integrator model q̈ = u (for mass, assume m = 1). For simplicity,
suppose that u represents a force that must be chosen from U = [−1, 1]. The C-space
is C = R, the phase space is X = R

2, and a phase (or state) is expressed as x = (q, q̇).
Suppose that there are two obstacles in C: a point and an interval. These are shown in Figure
14.3 along the q-axis. In the cylinder above them, Xobs appears. In the slice at q̇ = 0,
Xric = Xobs = Cobs. As q̇ increases, Xric becomes larger, even though Xobs remains fixed.
Note that Xric only grows toward the left because q̇ > 0 indicates a positive velocity,
which causes momentum in the positive q direction. As this momentum increases, the
distance required to stop increases quadratically. From a speed of q̇ = v, the minimum
distance required to stop is v2/2, which can be calculated by applying the action u = −1
and integrating q̈ = u twice. If q̇ > 0 and q is to the right of an obstacle, then it will safely
avoid the obstacle, regardless of its speed. If q̇ < 0, then Xric extends to the right instead
of the left. Again, this is due to the required stopping distance. �

In higher dimensions and for more general systems, the problem becomes substantially
more complicated. For example, in R

2 the robot can swerve to avoid small obstacles. In
general, the particular direction of motion becomes important. Also, the topology of Xric

may be quite different from that of Xobs . Imagine that a small airplane flies into a cave
that consists of a complicated network of corridors. Once the plane enters the cave, there
may be no possible actions that can avoid collision. The entire part of the state space
that corresponds to the plane in the cave would be included in Xric. Furthermore, even
parts of the state space from which the plane cannot avoid entering the cave must be in-
cluded.

In sampling-based planning under differential constraints, Xric is not computed because
it is too complicated.3 It is not even known how to make a “collision detector” for Xric. By

3 It may, however, be possible to compute crude approximations of Xric and use them in planning.
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working instead with Xobs , challenges arise due to momentum. There may be large parts
of the state space that are never worth exploring because they lie in Xric. Unfortunately,
there is no practical way at present to accurately determine whether states lie in Xric. As
the momentum and amount of clutter increase, this becomes increasingly problematic.

14.2 Reachability and completeness

This section provides preliminary concepts for sampling-based planning algorithms. In
Chapter 5, sampling over C was of fundamental importance. The most important consid-
eration was that a sequence of samples should be dense so that samples get arbitrarily
close to any point in Cfree. Planning under differential constraints is complicated by the
specification of solutions by an action trajectory instead of a path through Xfree. For
sampling-based algorithms to be resolution complete, sampling and searching performed
on the space of action trajectories must somehow lead to a dense set in Xfree.

14.2.1 Reachable sets

For the algorithms in Chapter 5, resolution completeness and probabilistic completeness
rely on having a sampling sequence that is dense on C. In the present setting, this would
require dense sampling on X. Differential constraints, however, substantially complicate
the sampling process. It is generally not reasonable to prescribe precise samples in X that
must be reached because reaching them may be impossible or require solving a BVP.
Since paths in X are obtained indirectly via action trajectories, completeness analysis
begins with considering which points can be reached by integrating action trajectories.

14.2.1.1 Reachable set

Assume temporarily that there are no obstacles: Xfree = X. Let U be the set of all permis-
sible action trajectories on the time interval [0,∞). From each ũ ∈ U , a state trajectory
x̃(x0, ũ) is defined using (14.1). Which states in X are visited by these trajectories? It may
be possible that all of X is visited, but in general some states may not be reachable due to
differential constraints.

Let R(x0,U) ⊆ X denote the reachable set from x0, which is the set of all states that are
visited by any trajectories that start at x0 and are obtained from some ũ ∈ U by integration.
This can be expressed formally as

R(x0,U) = {x1 ∈ X | ∃ũ ∈ U and ∃t ∈ [0,∞) such that x(t) = x1}, (14.4)

in which x(t) is given by (14.1) and requires that x(0) = x0.
The following example illustrates some simple cases.

Example 14.2 (Reachable Sets for Simple Inequality Constraints) Suppose that X =
C = R

2, and recall some of the simple constraints from Section 13.1.1. Let a point in R
2

be denoted as q = (x, y). Let the state transition equation be ẋ = u1 and ẏ = u2, in which
(u1, u2) ∈ U = R

2.
Several constraints will now be imposed on U , to define different possible action spaces.

Suppose it is required that u1 > 0 (this was ẋ > 0 in Section 13.1.1). The reachable set
R(q0,U) from any q0 = (x0, y0) ∈ R

2 is an open half-plane that is defined by the set of
all points to the right of the vertical line x = x0. In the case of u1 ≤ 0, then R(q0,U) is
a closed half-plane to the left of the same vertical line. If U is defined as the set of all
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(u1, u2) ∈ R
2 such that u1 > 0 and u2 > 0, then the reachable set from any point is a

quadrant.
For the constraint au1 + bu2 = 0, the reachable set from any point is a line in R

2 with
normal vector (a, b). The location of the line depends on the particular q0. Thus, a family
of parallel lines is obtained by considering reachable states from different initial states.
This is an example of a foliation in differential geometry, and the lines are called leaves
[874].

In the case of u2
1 + u2

2 ≤ 1, the reachable set from any (x0, y0) is R
2. Thus, any state

can reach any other state. �

So far the obstacle region has not been considered. Let Ufree ⊆ U denote the set of
all action trajectories that produce state trajectories that map into Xfree. In other words,
Ufree is obtained by removing from U all action trajectories that cause entry into Xobs

for some t > 0. The reachable set that takes the obstacle region into account is denoted
R(x0,Ufree), which replaces U by Ufree in (14.4). This assumes that for the trajectories in
Ufree, the termination action can be applied to avoid inevitable collisions due to momentum.
A smaller reachable set could have been defined that eliminates trajectories for which
collision inevitably occurs without applying uT .

The completeness of an algorithm can be expressed in terms of reachable sets. For any
given pair xI , xG ∈ Xfree, a complete algorithm must report a solution action trajectory if
xG ∈ R(xI ,Ufree), or report failure otherwise. Completeness is too difficult to achieve, ex-
cept for very limited cases [173, 750]; therefore, sampling-based notions of completeness
are more valuable.

14.2.1.2 Time-limited reachable set

Consider the set of all states that can be reached up to some fixed time limit. Let the
time-limited reachable set R(x0,U, t) be the subset of R(x0,U) that is reached up to and
including time t . Formally, this is

R(x0,U , t) = {x1 ∈ X | ∃ũ ∈ U and ∃t ′ ∈ [0, t] such that x(t ′) = x1}. (14.5)

For the last case in Example 14.2, the time-limited reachable sets are closed discs of radius
t centered at (x0, y0). A version of (14.5) that takes the obstacle region into account can
be defined as R(x0,Ufree, t).

Imagine an animation of R(x0,U, t) that starts at t = 0 and gradually increases t . The
boundary of R(x0,U, t) can be imagined as a propagating wavefront that begins at x0. It
eventually reaches the boundary of R(x0,U) (assuming it has a boundary; it does not if
R(x0,U) = X). The boundary of R(x0,U, t) can actually be interpreted as a level set of
the optimal cost-to-come from x0 for a cost functional that measures the elapsed time.
The boundary is also a kind of forward projection, as considered for discrete spaces in
Section 10.1.2. In that context, possible future states due to nature were specified in the
forward projection. In the current setting, possible future states are determined by the
unspecified actions of the robot. Rather than looking k stages ahead, the time-limited
reachable set looks for duration t into the future. In the present context there is essentially
a continuum of stages.

Example 14.3 (Reachable Sets for Simple Cars) Nice illustrations of reachable sets
can be obtained from the simple car models from Section 13.1.2. Suppose that X = C =
R

2 × S
1 and Xobs = ∅.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

662 PLANNING UNDER DIFFERENTIAL CONSTRAINTS

Wrong!

(a) (b)

Figure 14.4: (a) The time-limited reachable set for the Dubins car facing to the right; (b) this is not the
time-limited reachable set for the Reeds-Shepp car!

Recall that the Dubins car can only drive forward. From an arbitrary configuration, the
time-limited reachable set appears as shown in Figure 14.4a. The time limit t is small
enough so that the car cannot rotate by more than π/2. Note that Figure 14.4a shows
a 2D projection of the reachable set that gives translation only. The true reachable set
is a 3D region in C. If t > 2π , then the car will be able to drive in a circle. For any
q, consider the limiting case as t approaches infinity, which results in R(q,U). Imagine
a car driving without reverse on an infinitely large, flat surface. It is possible to reach
any desired configuration by driving along a circle, driving straight for a while, and
then driving along a circle again. Therefore, R(q,U) = C for any q ∈ C. The lack of a
reverse gear means that some extra maneuvering space may be needed to reach some con-
figurations.

Now consider the Reeds-Shepp car, which is allowed to travel in reverse. Any time-
limited reachable set for this car must include all points from the corresponding reachable
set for the Dubins car because new actions have been added to U but none have been
removed. It is tempting to assert that the time-limited reachable set appears as in Fig-
ure 14.4b; however, this is wrong. In an arbitrarily small amount of time (or space) a car
with reverse can be wiggled sideways. This is achieved in practice by familiar parallel-
parking maneuvers. It turns out in this case that R(q,U, t) always contains an open set
around q, which means that it grows in all directions (see Section 15.3.2). The property
is formally referred to as small-time controllability and is covered in Section 15.4. �

14.2.1.3 Backward reachable sets

The reachability definitions have a nice symmetry with respect to time. Rather than
describing all points reachable from some x ∈ X, it is just as easy to describe all points
from which some x ∈ X can be reached. This is similar to the alternative between forward
and backward projections in Section 10.1.2.

Let the backward reachable set be defined as

B(xf ,U) = {x0 ∈ X | ∃ũ ∈ U and ∃t ∈ [0,∞) such that x(t) = xf }, (14.6)

in which x(t) is given by (14.1) and requires that x(0) = x0. Note the intentional similarity
to (14.4). The time-limited backward reachable set is defined as

B(xf ,U , t) = {x0 ∈ X | ∃ũ ∈ U and ∃t ′ ∈ [0, t] such that x(t ′) = xf }, (14.7)

which once again requires that x(0) = x0 in (14.1). Completeness can even be defined in
terms of backward reachable sets by defining a backward-time counterpart to U .

At this point, there appear to be close parallels between forward, backward, and
bidirectional searches from Chapter 2. The same possibilities exist in sampling-based
planning under differential constraints. The forward and backward reachable sets indicate
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T

U

T

U

A trajectory in U A trajectory in Ud

Figure 14.5: The discrete-time model results in Ud ⊂ U , which is obtained by partitioning time into regular
intervals and applying a constant action over each interval. The action is chosen from a � nite subset
Ud of U.

the possible states that can be reached under such schemes. The algorithms explore subsets
of these reachable sets.

14.2.2 The discrete-time model

This section introduces a simple and effective way to sample the space of action tra-
jectories. Section 14.2.3 covers the more general case. Under differential constraints,
sampling-based motion planning algorithms all work by sampling the space of action
trajectories. This results in a reduced set of possible action trajectories. To ensure some
form of completeness, a motion planning algorithm should carefully construct and refine
the sample set. As in Chapter 5, the qualities of a sample set can be expressed in terms of
dispersion and denseness. The main difference in the current setting is that the algorithms
here work with a sample sequence over U , as opposed to over C as in Chapter 5. This is
required because solution paths can no longer be expressed directly on C (or X).

The discrete-time model is depicted in Figure 14.5 and is characterized by three aspects:

1. Time T is partitioned into intervals of length �t . This enables stages to be assigned, in
which stage k indicates that (k − 1)�t units of time have elapsed.

2. A finite subset Ud of the action space U is chosen. If U is already finite, then this selection
may be Ud = U .

3. The action u(t) ∈ Ud must remain constant over each time interval.

The first two discretize time and the action spaces. The third condition is needed to relate
the time discretization to the space of action trajectories. Let Ud denote the set of all action
trajectories allowed under a given time discretization. Note that Ud completely specifies
the discrete-time model.

For some problems, U may already be finite. Imagine, for example, a model of firing
one of several thrusters (turn them on or off) on a free-floating spacecraft. In this case no
discretization of U is necessary. In the more general case, U may be a continuous set. The
sampling methods of Section 5.2 can be applied to determine a finite subset Ud ⊆ U .

Any action trajectory in Ud can be conveniently expressed as an action sequence
(u1, u2, . . . , uk), in which each ui ∈ Ud gives the action to apply from time (i − 1)�t to
time i�t . After stage k, it is assumed that the termination action is applied.
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Two stages Four stages

Figure 14.6: A reachability tree for the Dubins car with three actions. The kth stage produces 3k new
vertices.

14.2.2.1 Reachability graph

After time discretization has been performed, the reachable set can be adapted to Ud

to obtain R(x0,Ud ). An interesting question is: What is the effect of sampling on the
reachable set? In other words, how do R(x0,U) and R(x0,Ud ) differ? This can be addressed
by defining a reachability graph, which will be revealed incrementally by a planning
algorithm.

Let Tr (x0,Ud ) denote a reachability tree, which encodes the set of all trajectories from x0

that can be obtained by applying trajectories in Ud . Each vertex of Tr (x0,Ud ) is a reachable
state, x ∈ R(x0,Ud ). Each edge of Tr (x0,Ud ) is directed; its source represents a starting
state, and its destination represents the state obtained by applying a constant action u ∈ Ud

over time �t . Each edge e represents an action trajectory segment, e : [0, �t] → U . This
can be transformed into a state trajectory, x̃e, via integration using (14.1), from 0 to �t of
f (x, u) from the source state of e.

Thus, in terms of x̃e, Tr can be considered as a topological graph in X (Tr will be used
as an abbreviation of Tr (x0,Ud )). The swath S(Tr ) of Tr is

S(Tr ) =
⋃

e∈E

⋃

t∈[0,�t]

xe(t), (14.8)

in which xe(t) denotes the state obtained at time t from edge e. (Recall topological graphs
from Example 4.6 and the swath from Section 5.5.1.)

Example 14.4 (Reachability Tree for the Dubins Car) Several stages of the reachabil-
ity tree for the Dubins car are shown in Figure 14.6. Suppose that there are three actions
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(straight, right-turn, left-turn), and �t is chosen so that if the right-turn or left-turn action is
applied, the car travels enough to rotate by π/2. After the second stage, there are nine leaves
in the tree, as shown in Figure 14.6a. Each stage produces 3k new leaves. In Figure 14.6b,
81 new leaves are added in stage k = 4, which yields a total of 81 + 27 + 9 + 3 + 1
vertices. In many cases, the same state is reachable by different action sequences. The
swath after the first four stages is the set of all points visited so far. This is a subset of C
that is the union of all vertices and all points traced out by x̃e for each e ∈ E. �

From Example 14.4 it can be seen that it is sometimes possible to arrive at the same
state using two or more alternative action trajectories. Since each action trajectory can
be expressed as an action sequence, the familiar issue arises from classical AI search of
detecting whether the same state has been reached from different action sequences. For
some systems, the reachability problem can be dramatically simplified by exploiting this
information. If the same state is reached from multiple action sequences, then only one
vertex needs to be represented.

This yields a directed reachability graph Gr (x0,Ud ), which is obtained from Tr (x0,Ud )
by merging its duplicate states. If every action sequence arrives at a unique state, then the
reachability graph reduces to the reachability tree. However, if multiple action sequences
arrive at the same state, this is represented as a single vertexGr . From this point onward, the
reachability graph will be primarily used. As for a reachability tree, a reachability graph can
be interpreted as a topological graph in X, and its swath S(Gr ) is defined by adapting (14.8).

The simplest case of arriving at the same state was observed in Example 2.1. The
discrete grid in the plane can be modeled using the terminology of Chapter 13 as a system
of the form ẋ = u1 and ẏ = u2 for a state space X = R

2. The discretized set Ud of actions
is {(1, 0), (0, 1), (−1, 0), (0,−1)}. Let �t = 1. In this case, the reachability graph becomes
the familiar 2D grid. If (0, 0) is the initial state, then the grid vertices consist of all states
in which both coordinates are integers.

Through careless discretization of an arbitrary system, such a nice grid usually does not
arise. However, in many cases a discretization can be carefully chosen so that the states
become trapped on a grid or lattice. This has some advantages in sampling-based planning.
Section 14.4.1 covers a method that exploits such structure for the system q̈ = u. It can
even be extended to more general systems, provided that the system can be expressed as
q̈ = g(q, q̇, u) and it is not underactuated. It was shown recently that by a clever choice
of discretization, a very large class of nonholonomic systems4 can also be forced onto
a lattice [765]. This is usually difficult to achieve, and under most discretizations the
vertices of the reachability graph are dense in the reachable set.

It is also possible to define backward versions of the reachability tree and reachability
graph, in the same way that backward reachable sets were obtained. These indicate initial
states and action sequences that will reach a given goal state and are no more difficult to
define or compute than their forward counterparts. They might appear more difficult, but
keep in mind that the initial states are not fixed; thus, no BVP appears. The initial states can
be obtained by reverse-time integration of the state transition equation; see Section 14.3.2.

14.2.2.2 Resolution completeness for ẋ = u

Sampling-based notions of completeness can be expressed in terms of reachable sets and
the reachability graph. The requirement is to sample U in a way that causes the vertices

4 The class is all driftless, nilpotent systems. The term nilpotent will be defined in Section 15.5.
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of the reachability graph to eventually become dense in the reachable set, while also
making sure that the reachability graph is systematically searched. All of the completeness
concepts can be expressed in terms of forward or backward reachability graphs. Only the
forward case will be described because the backward case is very similar.

To help bridge the gap with respect to motion planning as covered in Part II, first
suppose: 1) X = C = R

2, 2) a state is denoted as q = (x, y), 3) U = [−1, 1]2, and 4) the
state transition equation is ẋ = u1 and ẏ = u2. Suppose that the discrete-time model is
applied to U . Let �t = 1 and

Ud = {(−1, 0), (0,−1), (1, 0), (0, 1)}, (14.9)

which yields the Manhattan motion model from Example 7.4. Staircase paths are produced
as was shown in Figure 7.40. In the present setting, these paths are obtained by integrating
the action trajectory. From some state xI , the reachability graph represents the set of all
possible staircase paths with unit step size that can be obtained via (14.1).

Suppose that under this model, Xfree is a bounded, open subset of R
2. The connection to

resolution completeness from Chapter 5 can be expressed clearly in this case. For any fixed
�t , a grid of a certain resolution is implicitly defined via the reachability graph. The task
is to find an action sequence that leads to the goal (or a vertex close to it in the reachability
graph) while remaining in Xfree. Such a sequence can be found by a systematic search,
as considered in Section 2.2. If the search is systematic, then it will correctly determine
whether the reachability graph encodes a solution. If no solution exists, then the planning
algorithm can decrease �t by a constant factor (e.g., 2), and perform the systematic
search again. This process repeats indefinitely until a solution is found. The algorithm
runs forever if no solution exists (in practice, of course, one terminates early and gives
up). The approach just described is resolution complete in the sense used in Chapter 5,
even though all paths are expressed using action sequences.

The connection to ordinary motion planning is clear for this simple model because the
action trajectories integrate to produce motions that follow a grid. As the time discretiza-
tion is improved, the staircase paths can come arbitrarily close to some solution path.
Looking at Figure 14.5, it can be seen that as the sampling resolution is improved with
respect to U and T , the trajectories obtained via discrete-time approximations converge
to any trajectory that can be obtained by integrating some ũ. In general, convergence
occurs as �t and the dispersion of the sampling in U are driven to zero. This also holds
in the same way for the more general case in which ẋ = u and X is any smooth manifold.
Imagine placing a grid down on X and refining it arbitrarily by reducing �t .

14.2.2.3 Resolution completeness for ẋ = f (x, u)

Beyond the trivial case of ẋ = u, the reachability graph is usually not a simple grid.
Even if X is bounded, the reachability graph may have an infinite number of vertices,
even though �t is fixed and Ud is finite. For a simple example, consider the Dubins car
under the discretization �t = 1. Fix uφ = −φmax (turn left) for all t ∈ T . This branch
alone generates a countably infinite number of vertices in the reachability graph. The
circumference of the circle is 2πρmin, in which ρmin is the minimum turning radius. Let
ρmin = 1. Since the circumference is an irrational number, it is impossible to revisit the
initial point by traveling k seconds for some integer k. It is even impossible to revisit
any point on the circle. The set of vertices in the reachability graph is actually dense in
the circle. This did not happen in Figure 14.6 because �t and the circumference were
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rationally related (i.e., one can be obtained from the other via multiplication by a rational
number). Consider what happens in the current example when ρmin = 1/π and �t = 1.

Suppose that ẋ = f (x, u) and the discrete-time model is used. To ensure convergence
of the discrete-time approximation, f must be well-behaved. This can be established by
requiring that all of the derivatives of f with respect to u and x are bounded above and
below by a constant. More generally, f is assumed to be Lipschitz, which is an equivalent
condition for cases in which the derivatives exist, but it also applies at points that are
not differentiable. If U is finite, then the Lipschitz condition is that there exists some
c ∈ (0,∞) such that

‖f (x, u) − f (x ′, u)‖ ≤ c‖x − x ′‖ (14.10)

for all x, x ′ ∈ X, for all u ∈ U , and ‖ · ‖ denotes a norm on X. If U is infinite, then the
condition is that there must exist some c ∈ (0,∞) such that

‖f (x, u) − f (x ′, u′)‖ ≤ c(‖x − x ′‖ + ‖u− u′‖), (14.11)

for all x, x ′ ∈ X, and for all u, u′ ∈ U . Intuitively, the Lipschitz condition indicates
that if x and u are approximated by x ′ and u′, then the error when substituted into
f will be manageable. If convergence to optimal trajectories with respect to a cost
functional is important, then Lipschitz conditions are also needed for l(x, u). Under such
mild assumptions, if �t and the dispersion of samples of Ud is driven down to zero,
then the trajectories obtained from integrating discrete action sequences come arbitrarily
close to solution trajectories. In other words, action sequences provide arbitrarily close
approximations to any ũ ∈ U . If f is Lipschitz, then the integration of (14.14) yields
approximately the same result for ũ as the approximating action sequence.

In the limit as �t and the dispersion of Ud approach zero, the reachability graph
becomes dense in the reachable set R(xI ,U). Ensuring a systematic search for the case of
a grid was not difficult because there is only a finite number of vertices at each resolution.
Unfortunately, the reachability graph may generally have a countably infinite number of
vertices for some fixed discrete-time model, even if X is bounded.

To see that resolution-complete algorithms nevertheless exist if the reachability graph
is countably infinite, consider triangular enumeration, which proves that N×N is count-
able, in which N is the set of natural numbers. The proof proceeds by giving a sequence
that starts at (0, 0) and proceeds by sweeping diagonally back and forth across the first
quadrant. In the limit, all points are covered. The same idea can be applied to obtain
resolution-complete algorithms. A sequence of discrete-time models can be made for
which the time step �t and the dispersion of the sampling of U approach zero. Each
discretization produces a reachability graph that has a countable number of vertices.

A resolution-complete algorithm can be made by performing the same kind of zig-
zagging that was used to show that N×N is countable. See Figure 14.7; suppose that U

is finite and Ud = U . Along the horizontal axis is a sequence of improving discrete-time
models. Each model generates its own reachability graph, for which a systematic search
eventually explores all of its vertices. Imagine this exploration occurs one step at a time,
in which one new vertex is reached in each step. The vertical axis in Figure 14.7 indicates
the number of vertices reached so far by the search algorithm. A countably infinite set of
computers could explore all of reachability graphs in parallel. With a single computer, it
can still be assured that everything is eventually explored by zig-zagging as shown. Thus
a resolution-complete algorithm always exists if U is finite. If U is not finite, then Ud

must also be refined as the time step is decreased. Of course, there are numerous other
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Figure 14.7: By systematically alternating between exploring different reachability graphs, resolution com-
pleteness can be achieved, even if each reachability graph has a countably in�nite number of vertices.

ways to systematically explore all of the reachability graphs. The challenging task is to
find a way that leads to good performance in practice.

The discussion so far has assumed that a sampling-based algorithm can uncover a
subgraph of the reachability graph. This neglects numerical issues such as arithmetic
precision and numerical integration error. Such issues can additionally be incorporated
into a resolution completeness analysis [198].

14.2.3 Motion primitives

The discrete-time model of Section 14.2.2 is just one of many possible ways to discretize
the space of action trajectories. It will now be considered as a special case of specifying
motion primitives. The restriction to constant actions over fixed time intervals may be too
restrictive in many applications. Suppose we want to automate the motions of a digital
actor for use in a video game or film. Imagine having a database of interesting motion
primitives. Such primitives could be extracted, for example, from motion capture data
[35, 556]. For example, if the actor is designed for kung-fu fighting, then each motion
sequence may correspond to a basic move, such a kick or punch. It is unlikely that such
motion primitives correspond to constant actions over a fixed time interval. The durations
of the motion primitives will usually vary.

Such models can generally be handled by defining a more general kind of discretization.
The discrete-time model can be used to formulate a discrete-time state transition equation
of the form

xk+1 = fd (xk, uk), (14.12)

in which xk = x((k − 1)�t), xk+1 = x(k�t), and uk is the action in Ud that is applied
from time (k − 1)�t to time k�t . Thus, fd is a function fd : X × Ud → X that represents
an approximation to f , the original state transition function. Every constant action u ∈ Ud

applied over �t can be considered as a motion primitive.
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Hover Forward flight

Steady left turn

Steady right turn

Figure 14.8: A maneuver automaton, proposed by Frazzoli [362], captures the constraints on allowable
sequences of motion primitives.

Now generalize the preceding construction to allow more general motion primitives.
Let ũp denote a motion primitive, which is a function from an interval of time into U .
Let the interval of time start at 0 and stop at tF (ũp), which is a final time that depends
on the particular primitive. From any state x ∈ Xfree, suppose that a set Up(x) of motion
primitives is available. The set may even be infinite, in which case some additional
sampling must eventually be performed over the space of motion primitives by a local
planning method. A state transition equation that operates over discrete stages can be
defined as

xk+1 = fp(xk, ũ
p

k ), (14.13)

in which ũ
p

k is a motion primitive that must be chosen fromUp(xk). The time discretization
model and (14.12) can be considered as a special case in which the motion primitives
are all constant over a fixed time interval [0, �t). Note that in (14.13) the stage index
k does not necessarily correspond to time (k − 1)�t . The index k merely represents the
fact that k − 1 motion primitives have been applied so far, and it is time to decide on
the kth motion primitive. The current time is determined by summing the durations of all
k − 1 primitives applied so far. If a set Up(x) of primitives is given for all x ∈ X, then
a reachability graph and its swath can be defined by simple extensions of the discrete-
time case. The discrete-time model Ud can now be interpreted as a special set of motion
primitives.

For some motion primitives, it may not be possible to immediately sequence them
without applying transitional motions. For example, in [364], two different kinds of motion
primitives, called trim trajectories and maneuvers, are defined for autonomous helicopter
flight. The trim trajectories correspond to steady motions, and maneuvers correspond to
unsteady motions that are needed to make transitions between steady motions. Transitions
from one trim trajectory to another are only permitted through the execution of a maneuver.
The problem can be nicely modeled as a hybrid system in which each motion primitive
represents a mode [362] (recall hybrid system concepts from Sections 7.3, 8.3.1, and
10.6). The augmented state space is X ×M , in which M is a set of modes. The transition
equation (14.13) can be extended over the augmented state space so that motion primitives
can change modes in addition to changing the original state. The possible trajectories for
the helicopter follow paths in a graph called the maneuver automaton. An example from
[362] is shown in Figure 14.8. Every edge and every vertex corresponds to a mode in the
maneuver automaton. Each edge or vertex actually corresponds to a parameterized family
of primitives, from which a particular one is chosen based on the state. A similar state
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machine is proposed in [455] for animating humans, and the motion primitives are called
behaviors.

Discretizations based on general motion primitives offer great flexibility, and in many
cases dramatic performance improvements can be obtained in a sampling-based planning
algorithm. The main drawback is that the burden of establishing resolution completeness
is increased.

14.3 Sampling-based motion planning revisited

Now that the preliminary concepts have been defined for motion planning under differ-
ential constraints, the focus shifts to extending the sampling-based planning methods of
Chapter 5. This primarily involves extending the incremental sampling and searching
framework from Section 5.4 to incorporate differential constraints. Following the general
framework, several popular methods are covered in Section 14.4 as special cases of the
framework. If an efficient BVP solver is available, then it may also be possible to extend
sampling-based roadmaps of Section 5.6 to handle differential constraints.

14.3.1 Basic components

This section describes how Sections 5.1 to 5.3 are adapted to handle phase spaces and
differential constraints.

14.3.1.1 Distance and volume in X

Recall from Chapter 5 that many sampling-based planning algorithms rely on measuring
distances or volumes in C. If X = C, as in the wheeled systems from Section 13.1.2, then
the concepts of Section 5.1 apply directly. The equivalent is needed for a general state
space X, which may include phase variables in addition to the configuration variables.
In most cases, the topology of the phase variables is trivial. For example, if x = (q, q̇),
then each q̇ i component is constrained to an interval of R. In this case the velocity
components are just an axis-aligned rectangular region in R

n/2, if n is the dimension of
X. It is straightforward in this case to extend a measure and metric defined on C up to X

by forming the Cartesian product.
A metric can be defined using the Cartesian product method given by (5.4). The usual

difficulty arises of arbitrarily weighting different components and combining them into
a single scalar function. In the case of C, this has involved combining translations and
rotation. For X, this additionally includes velocity components, which makes it more
difficult to choose meaningful weights.

Riemannian metrics

A rigorous way to define a metric on a smooth manifold is to define a metric tensor (or
Riemannian tensor), which is a quadratic function of two tangent vectors. This can be
considered as an inner product on X, which can be used to measure angles. This leads
to the definition of the Riemannian metric, which is based on the shortest paths (called
geodesics) in X [135]. An example of this appeared in the context of Lagrangian mechanics
in Section 13.4.1. The kinetic energy, (13.70), serves as the required metric tensor, and
the geodesics are the motions taken by the dynamical system to conserve energy. The
metric can be defined as the length of the geodesic that connects a pair of points. If the
chosen Riemannian metric has some physical significance, as in the case of Lagrangian
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mechanics, then the resulting metric provides meaningful information. Unfortunately, it
may be difficult or expensive to compute its value.

The ideal distance function

The ideal way to define distance on X is to use a cost functional and then define the
distance from x ∈ Xfree to x ′ ∈ Xfree as the optimal cost-to-go from x to x ′ while remaining
in Xfree. In some cases, it has been also referred to as the nonholonomic metric, Carnot-
Caratheodory metric, or sub-Riemannian metric [599]. Note that this not a true metric, as
mentioned in Section 5.1.2, because the cost may not be symmetric. For example, traveling
a small distance forward with Dubins car is much shorter than traveling a small distance
backward. If there are obstacles, it may not even be possible to reach configurations behind
the car.

This concept of distance should be somewhat disturbing because it requires optimally
solving the motion planning problem of Formulation 14.1. Thus, it cannot be practical
for efficient use in a motion planning algorithm. Nevertheless, understanding this ideal
notion of distance can be very helpful in designing practical distance functions on X.
For example, rather than using a weighted Euclidean metric (often called Mahalanobis
metric) for the Dubins car, a distance function can be defined based on the length of the
shortest path between two configurations. These lengths are straightforward to compute,
and are based on the optimal curve families that will be covered in Section 15.3. This
distance function neglects obstacles, but it should still provide better distance information
than the weighted Euclidean metric. It may also be useful for car models that involve
dynamics.

The general idea is to get as close as possible to the optimal cost-to-go without having
to perform expensive computations. It is often possible to compute a useful underestimate
of the optimal cost-to-go by neglecting some of the constraints, such as obstacles or
dynamics. This may help in applying A∗ search heuristics.

Defining measure

As mentioned already, it is straightforward to extend a measure on C to X if the topology
associated with the phase variables is trivial. It may not be possible, however, to obtain
an invariant measure. In most cases, C is a transformation group, in which the Haar
measure exists, thereby yielding the “true” volume in a sense that is not sensitive to
parameterizations of C. This was observed for SO(3) in Section 5.1.4. For a general state
space X, a Haar measure may not exist. If a Riemannian metric is defined, then intrinsic
notions of surface integration and volume exist [135]; however, these may be difficult to
exploit in a sampling-based planning algorithm.

14.3.1.2 Sampling theory

Section 14.2.2 already covered some of the sampling issues. There are at least two
continuous spaces: X, and the time interval T . In most cases, the action space U is
also continuous. Each continuous space must be sampled in some way. In the limit, it is
important that any sample sequence is dense in the space on which sampling occurs. This
was required for the resolution completeness concepts of Section 14.2.2.

Sampling of T and U can be performed by directly using the random or deterministic
methods of Section 5.2. Time is just an interval of R, and U is typically expressed as a
convex m-dimensional subset of R

m. For example, U is often an axis-aligned rectangular
subset of R

m.
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Some planning methods may require sampling on X. The definitions of discrepancy
and dispersion from Section 5.2 can be easily adapted to any measure space and metric
space, respectively. Even though it may be straightforward to define a good criterion,
generating samples that optimize the criterion may be difficult or impossible.

A convenient way to avoid this problem is to work in a coordinate neighborhood
of X. This makes the manifold appear as an n-dimensional region in R

n, which in
many cases is rectangular. This enables the sampling concepts of Section 5.2 to be
applied in a straightforward manner. While this is the most straightforward approach, the
sampling quality depends on the particular parameterization used to define the coordinate
neighborhood. Note that when working with a coordinate neighborhood (for example, by
imagining that X is a cube), appropriate identifications must be taken into account.

14.3.1.3 Collision detection

As in Chapter 5, efficient collision detection algorithms are a key enabler of sampling-
based planning. If X = C, then the methods of Section 5.3 directly apply. If X includes
phase constraints, then additional tests must be performed. These constraints are usually
given and are therefore straightforward to evaluate. Recall from Section 4.3 that this is
not efficient for the obstacle constraints on C due to the complicated mapping between
obstacles in W and obstacles in C.

If only pointwise tests are performed, the trajectory segment between the points is not
guaranteed to stay in Xfree. This problem was addressed in Section 5.3.4 by using distance
information from collision checking algorithms. The same problem exists for the phase
constraints of the form hi(x) ≤ 0. In this general form there is no additional information
that can be used to ensure that some neighborhood of x is contained in Xfree. Fortunately,
the phase constraints are not complicated in most applications, and it is possible to ensure
that x is at least some distance away from the constraint boundary. In general, careful
analysis of each phase constraint is required to ensure that the state trajectory segments
are violation-free.

In summary, determining whether x ∈ Xfree involves

1. Using a collision detection algorithm as in Section 5.3 to ensure that κ(x) ∈ Cfree.

2. Checking x to ensure that other constraints of the form hi(x) ≤ 0 have been satisfied.

Entire trajectory segments should theoretically be checked. Often times, in practice, only
individual points are checked, which is more efficient but technically incorrect.

14.3.2 System simulator

A new component is needed for sampling-based planning under differential constraints
because of (14.1). Motions are now expressed in terms of an action trajectory, but collision
detection and constraint satisfaction tests must be performed in X. Therefore, the system,
ẋ = f (x, u) needs to be integrated frequently during the planning process. Similar to the
modeling of collision detection as a “black box,” the integration process is modeled as
a module called the system simulator. See Figure 14.9. Since the systems considered in
this chapter are time-invariant, the starting time for any required integration can always
be shifted to start at t = 0. Integration can be considered as a module that implements
(14.1) by computing the state trajectory resulting from a given initial state x(0), an action
trajectory ũt , and time t . The incremental simulator encapsulates the details of integrating
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Figure 14.9: Using a system simulator, the system �x = f (x, u) is integrated from x(0) using ũt : [0, t ] → U
to produce a state trajectory x̃t : [0, t ] → X. Sometimes x̃ is speci�ed as a parameterized path, but most
often it is approximated as a sequence of samples in X.

the state transition equation so that they do not need to be addressed in the design of
planners. However, that information from the particular state transition equation may still
be important in the design of the planning algorithm.

Closed-form solutions

According to (14.1), the action trajectory must be integrated to produce a state trajectory. In
some cases, this integration leads to a closed-form expression. For example, if the system
is a chain of integrators, then a polynomial expression can easily be obtained for x(t). For
example, suppose q is a scalar and q̈ = u. If q(0) = q̇(0) = 0 and a constant action u = 1
is applied, then x(t) = t2/2. If ẋ = f (x, u) is a linear system (which includes chains of
integrators; recall the definition from Section 13.2.2), then a closed-form expression for
the state trajectory can always be obtained. This is based on matrix exponentials and is
given in many control theory texts (e.g, [194]).

Euler method

For most systems, the integration must be performed numerically. A system simulator
based on numerical integration can be constructed by breaking t into smaller intervals and
iterating classical methods for computing numerical solutions to differential equations.
The Euler method is the simplest of these methods. Let �t denote a small time interval over
which the approximation will be made. This can be considered as an internal parameter
of the system simulator. In practice, this �t is usually much smaller than the �t used in
the discrete-time model of Section 14.2.2. Suppose that x(0) and u(0) are given and the
task is to estimate x(�t).

By performing integration over time, the state transition equation can be used to
determine the state after some fixed amount of time �t has passed. For example, if x(0)
is given and u(t ′) is known over the interval t ′ ∈ [0, �t], then the state at time �t can be
determined as

x(�t) = x(0) +
∫ �t

0
f (x(t), u(t))dt. (14.14)

The integral cannot be evaluated directly because x(t) appears in the integrand and is
unknown for time t > 0.

Using the fact that

f (x, u) = ẋ = dx

dt
≈ x(�t) − x(0)

�t
, (14.15)

solving for x(�t) yields the classic Euler integration method

x(�t) ≈ x(0) +�t f (x(0), u(0)). (14.16)

The approximation error depends on how quickly x(t) changes over time and on the length
of the interval �t . If the planning algorithm applies a motion primitive ũp, it gives tF (ũp)
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as the time input, and the system simulator may subdivide the time interval to maintain
higher accuracy. This allows the developer of the planning algorithm to ignore numerical
accuracy issues.

Runge-Kutta methods

Although Euler integration is efficient and easy to understand, it generally yields poor
approximations. Taking a Taylor series expansion of x̃ at t = 0 yields

x(�t) = x(0) +�t ẋ(0) + (�t)2

2!
ẍ(0) + (�t)3

3!
x(3)(0) + · · · . (14.17)

Comparing to (14.16), it can be seen that the Euler method just uses the first term of the
Taylor series, which is an exact representation (if x̃ is analytic). Thus, the neglected terms
reflect the approximation error. If x(t) is roughly linear, then the error may be small;
however, if ẋ(t) or higher order derivatives change quickly, then poor approximations are
obtained.

Runge-Kutta methods are based on using higher order terms of the Taylor series
expansion. One of the most widely used and efficient numerical integration methods is the
fourth-order Runge-Kutta method. It is simple to implement and yields good numerical
behavior in most applications. Also, it is generally recommended over Euler integration.
The technique can be derived by performing a Taylor series expansion at x( 1

2�t). This
state itself is estimated in the approximation process.

The fourth-order Runge-Kutta integration method is

x(�t) ≈ x(0) + �t

6
(w1 + 2w2 + 2w3 + w4), (14.18)

in which
w1 = f (x(0), u(0))

w2 = f (x(0) + 1
2�t w1, u( 1

2�t))

w3 = f (x(0) + 1
2�t w2, u( 1

2�t))

w4 = f (x(0) +�t w3, u(�t)).

(14.19)

Although this is more expensive than Euler integration, the improved accuracy is usually
worthwhile in practice. Note that the action is needed at three different times: 0, 1

2�t , and
�t . If the action is constant over [0, �t), then the same value is used at all three times.

The approximation error depends on how quickly higher order derivatives of x̃ vary
over time. This can be expressed using the remaining terms of the Taylor series. In
practice, it may be advantageous to adapt �t over successive iterations of Runge-Kutta
integration. In [249], for example, it is suggested that �t is scaled by (�t/�x)1/5, in
which �x = ‖x(�t) − x(0)‖, the Euclidean distance in R

n.

Multistep methods

Runge-Kutta methods represent a popular trade-off between simplicity and efficiency.
However, by focusing on the integration problem more carefully, it is often possible to
improve efficiency further. The Euler and Runge-Kutta methods are often referred to as
single-step methods. There exist multi-step methods, which rely on the fact that a sequence
of integrations will be performed, in a manner analogous to incremental collision detection
in Section 5.3.3. The key issues are ensuring that the methods properly initialize, ensuring
numerical stability over time, and estimating error to adaptively adjust the step size. Many
books on numerical analysis cover multi-step methods [52, 443, 865]. One of the most
popular families is the Adams methods.
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Two-Point
Boundary-Value
Solver

ũt

xI

xG

Figure 14.10: Some methods in Chapter 15 can solve two-point boundary value problems in the absence
of Xobs. This is dif�cult to obtain for most systems, but it is more powerful than the system simulator. It is
very valuable, for example, in making a sampling-based roadmap that satis�es differential constraints.

Multistep methods require more investment to understand and implement. For a par-
ticular application, the decision to pursue this route should be based on the relative costs
of planning, collision detection, and numerical integration. If integration tends to dom-
inate and efficiency is critical, then multi-step methods could improve running times
dramatically over Runge-Kutta methods.

Black-box simulators

For some problems, a state transition equation might not be available; however, it is
still possible to compute future states given a current state and an action trajectory. This
might occur, for example, in a complex software system that simulates the dynamics of a
automobile or a collection of parts that bounce around on a table. In computer graphics
applications, simulations may arise from motion capture data. Some simulators may even
work internally with implicit differential constraints of the form gi(x, ẋ, u) = 0, instead
of ẋ = f (x, u). In such situations, many sampling-based planners can be applied because
they rely only on the existence of the system simulator. The planning algorithm is thus
shielded from the particular details of how the system is represented and integrated.

Reverse-time system simulation

Some planning algorithms require integration in the reverse-time direction. For some
given x(0) and action trajectory that runs from −�t to 0, the backward system simulator
computes a state trajectory, x̃ : [−t, 0] → X, which when integrated from−�t to 0 under
the application of ũt yields x(0). This may seem like an inverse control problem [858]
or a BVP as shown in Figure 14.10; however, it is much simpler. Determining the action
trajectory for given initial and goal states is more complicated; however, in reverse-time
integration, the action trajectory and final state are given, and the initial state does not
need to be fixed.

The reverse-time version of (14.14) is

x(−�t) = x(0) +
∫ −�t

0
f (x(t), u(t))dt = x(0) +

∫ �t

0
−f (x(t), u(t))dt, (14.20)

which relies on the fact that ẋ = f (x, u) is time-invariant. Thus, reverse-time integration
is obtained by simply negating the state transition equation. The Euler and Runge-Kutta
methods can then be applied in the usual way to −f (x(t), u(t)).

14.3.3 Local planning

The methods of Chapter 5 were based on the existence of a local planning method (LPM)
that is simple and efficient. This represented an important part of both the incremen-
tal sampling and searching framework of Section 5.4 and the sampling-based roadmap
framework of Section 5.6. In the absence of obstacles and differential constraints, it is
trivial to define an LPM that connects two configurations. They can, for example, be
connected using the shortest path (geodesic) in C. The sampling-based roadmap approach
from Section 5.6 relies on this simple LPM.
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In the presence of differential constraints, the problem of constructing an LPM that
connects two configurations or states is considerably more challenging. Recall from
Section 14.1 that this is the classical BVP, which is difficult to solve for most systems.
There are two main alternatives to handle this difficulty in a sampling-based planning
algorithm:

1. Design the sampling scheme, which may include careful selection of motion primitives,
so that the BVP can be trivially solved.

2. Design the planning algorithm so that as few as possible BVPs need to be solved. The
LPM in this case does not specify precise goal states that must be reached.

Under the first alternative, the BVP solver can be considered as a black box, as shown
in Figure 14.10, that efficiently connects xI to xG in the absence of obstacles. In the case
of the Piano Mover’s Problem, this was obtained by moving along the shortest path in C.
For many of the wheeled vehicle systems from Section 13.1.2, steering methods exist that
could serve as an efficient BVP solver; see Section 15.5. Efficient techniques also exist
for linear systems and are covered in Section 15.2.2.

If the BVP is efficiently solved, then virtually any sampling-based planning algorithm
from Chapter 5 can be adapted to the case of differential constraints. This is achieved by
using the module in Figure 14.10 as the LPM. For example, a sampling-based roadmap
can use the computed solution in the place of the shortest path through C. If the BVP solver
is not efficient enough, then this approach becomes impractical because it must typically
be used thousands of times to build a roadmap. The existence of an efficient module as
shown in Figure 14.10 magically eliminates most of the complications associated with
planning under differential constraints. The only remaining concern is that the solutions
provided by the BVP solver could be quite long in comparison to the shortest path in the
absence of differential constraints (for example, how far must the Dubins car travel to
move slightly backward?).

Under the second alternative, it is assumed that solving the BVP is very costly. The
planning method in this case should avoid solving BVPs whenever possible. Some plan-
ning algorithms may only require an LPM that approximately reaches intermediate goal
states, which is simpler for some systems. Other planning algorithms may not require the
LPM to make any kind of connection. The LPM may return a motion primitive that appears
to make some progress in the search but is not designed to connect to a prescribed state.
This usually involves incremental planning methods, which are covered in Section 14.4
and extends the methods of Sections 5.4 and 5.5 to handle differential constraints.

14.3.4 General framework under differential constraints

The framework presented here is a direct extension of the sampling and searching frame-
work from Section 5.4.1 and includes the extension of Section 5.5 to allow the selection
of any point in the swath of the search graph. This replaces the vertex selection method
(VSM) by a swath-point selection method (SSM). The framework also naturally extends
the discrete search framework of Section 2.2.4. The components are are follows:

1. Initialization: Let G(V,E) represent an undirected search graph, for which the vertex set
V contains a vertex for xI and possibly other states in Xfree, and the edge set E is empty.
The graph can be interpreted as a topological graph with a swath S(G).

2. Swath-point Selection Method (SSM): Choose a vertex xcur ∈ S(G) for expansion.
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XGxI xI
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BVP

(a) (b)

xI

xG
BVP xG

xI

BVP

(c) (d)

Figure 14.11: (a) Forward, unidirectional search for which the BVP is avoided. (b) Reaching the goal
precisely causes a BVP. (c) Backward, unidirectional search also causes a BVP. (d) For bidirectional
search, the BVP arises when connecting the trees.

3. Local Planning Method (LPM): Generate a motion primitive ũp : [0, tF ] → Xfree such
that u(0) = xcur and u(tF ) = xr for some xr ∈ Xfree, which may or may not be a vertex in
G. Using the system simulator, a collision detection algorithm, and by testing the phase
constraints, ũp must be verified to be violation-free. If this step fails, then go to Step 2.

4. Insert an Edge in the Graph: Insert ũp into E. Upon integration, ũp yields a state
trajectory from xcur to xr . If xr is not already in V , it is added. If xcur lies in the interior of an
edge trajectory for some e ∈ E, then e is split by the introduction of a new vertex at xcur .

5. Check for a Solution: Determine whetherG encodes a solution path. In some applications,
a small gap in the state trajectory may be tolerated.

6. Return to Step 2: Iterate unless a solution has been found or some termination condition
is satisfied. In the latter case, the algorithm reports failure.

The general framework may be applied in the same ways as in Section 5.4.1 to obtain
unidirectional, bidirectional, and multidirectional searches. The issues from the Piano
Mover’s Problem extend to motion planning under differential constraints. For example,
bug traps cause the same difficulties, and as the number of trees increases, it becomes
difficult to coordinate the search.

The main new complication is due to BVPs. See Figure 14.11. Recall from Sec-
tion 14.1.1 that for most systems it is important to reduce the number of BVPs that must
be solved during planning as much as possible. Assume that connecting precisely to a
prescribed state is difficult. Figure 14.11a shows the best situation, in which forward,
unidirectional search is used to enter a large goal region. In this case, no BVPs need to
be solved. As the goal region is reduced, the problem becomes more challenging. Figure
14.11b shows the limiting case in which XG is a point {xG}. This requires the planning
algorithm to solve at least one BVP.
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Figure 14.11c shows the case of backward, unidirectional search. This has the effect
of moving the BVP to xI . Since xI is precisely given (there is no “initial region”), the
BVP cannot be avoided as in the forward case. If an algorithm produces a solution ũ for
which x(0) is very close to xI , and if XG is large, then it may be possible to salvage the
solution. The system simulator can be applied to ũ from xI instead of x(0). It is known that
x̃(x(0), ũ) is violation-free, and x̃(xI , ũ) may travel close to x̃(x(0), ũ) at all times. This
requires f to vary only a small amount with respect to changes in x (this would be implied
by a small Lipschitz constant) and also for ‖xI − x(0)‖ to be small. One problem is that
the difference between points on the two trajectories usually increases as time increases.
If it is verified by the system simulator that x̃(xI , ũ) is violation-free and the final state
still lies in XG, then a solution can be declared.

For bidirectional search, a BVP must be solved somewhere in the middle of a trajectory,
as shown in Figure 14.11d. This complicates the problem of determining whether the two
trees can be connected. Once again, if the goal region is large, it may be possible remove
the gap in the middle of the trajectory by moving the starting state of the trajectory
produced by the backward tree. Let ũ1 and ũ2 denote the action trajectories produced by
the forward and backward trees, respectively. Suppose that their termination times are
t1 and t2, respectively. The action trajectories can be concatenated to yield a function
ũ : [0, t1 + t2] → U by shifting the domain of ũ2 from [0, t2] to [t1, t1 + t2]. If t ≤ t1,
then u(t) = u1(t); otherwise, u(t) = u2(t − t1). If there is a gap, the new state trajectory
x̃(xI , ũ) must be checked using the system simulator to determine whether it is violation-
free and terminates in XG. Multi-directional search becomes even more difficult because
more BVPs are created. It is possible in principle to extend the ideas above to concatenate
a sequence of action trajectories, which tries to remove all of the gaps.

Consider the relationship between the search graph and reachability graphs. In the
case of unidirectional search, the search graph is always a subset of a reachability graph
(assuming perfect precision and no numerical integration error). In the forward case, the
reachability graph starts at xI , and in the backward case it starts at xG. In the case of
bidirectional search, there are two reachability graphs. It might be the case that vertices
from the two coincide, which is another way that the BVP can be avoided. Such cases are
unfortunately rare, unless xI and xG are intentionally chosen to cause this. For example,
the precise location of xG may be chosen because it is known to be a vertex of the
reachability graph from xI . For most systems, it is difficult to force this behavior. Thus, in
general, BVPs arise because the reachability graphs do not have common vertices. In the
case of multi-directional search, numerous reachability graphs are being explored, none
of which may have vertices that coincide with vertices of others.

14.4 Incremental sampling and searching methods

The general framework of Section 14.3.4 will now be specialized to obtain three important
methods for planning under differential constraints.

14.4.1 Searching on a lattice

This section follows in the same spirit as Section 5.4.2, which adapted grid search tech-
niques to motion planning. The difficulty in the current setting is to choose a discretization
that leads to a lattice that can be searched using any of the search techniques of Section 2.2.
The section is inspired mainly by kinodynamic planning work [290, 292, 444].
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Figure 14.12: The reachability graph will be obtained by switching between these vector � elds at every
�t. The middle one produces horizontal phase trajectories, and the others produce parabolic curves.

14.4.1.1 A double-integrator lattice

First consider the double integrator from Example 13.3. Let C = Cfree = R and q̈ = u.
This models the motion of a free-floating particle in R, as described in Section 13.3.2. The
phase space is X = R

2, and x = (q, q̇). Let U = [−1, 1]. The coming ideas can be easily
generalized to allow any acceleration bound amax > 0 by letting U = [−amax, amax];
however, amax = 1 will be chosen to simplify the presentation.

The differential equation q̈ = u can be integrated once to yield

q̇(t) = q̇(0) + ut, (14.21)

in which q̇(0) is an initial speed. Upon integration of (14.21), the position is obtained as

q(t) = q(0) + q̇(0) t + 1
2ut2, (14.22)

which uses two initial conditions, q(0) and q̇(0).
A discrete-time model exists for which the reachability graph is trapped on a lattice.

This is obtained by letting Ud = {−1, 0, 1} and �t be any positive real number. The
vector fields over X that correspond to the cases of u = −1, u = 0, and u = 1 are shown
in Figure 14.12. Switching between these fields at every �t and integrating yields the
reachability graph shown in Figure 14.13.

This leads to a discrete-time transition equation of the form xk+1 = fd (xk, uk), in
which uk ∈ Ud , and k represents time t = (k − 1)�t . Any action trajectory can be spec-
ified as an action sequence; for example a six-stage action sequence may be given by
(−1, 1, 0, 0,−1, 1). Start from x1 = x(0) = (q1, q̇1). At any stage k and for any action
sequence, the resulting state xk = (qk, q̇k) can be expressed as

qk = q1 + i 1
2 (�t)2

q̇k = q̇1 + j�t,
(14.23)

in which i, j are integers that can be computed from the action sequence. Thus, any action
sequence leads to a state that can be expressed using integer coordinates (i, j ) in the
plane. Starting at x1 = (0, 0), this forms the lattice of points shown in Figure 14.13. The
lattice is slanted (with slope 1) because changing speed requires some motion. If infinite
acceleration were allowed, then q̇ could be changed instantaneously, which corresponds
to moving vertically in X. As seen in (14.21), q̇ changes linearly over time. If q 	= 0, then
the configuration changes quadratically. If u = 0, then it changes linearly, except when
q̇ = 0; in this case, no motion occurs.
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q̇

q

Figure 14.13: The reachability graph from the origin is shown after three stages (the true state trajectories
are actually parabolic arcs when acceleration or deceleration occurs). Note that a lattice is obtained, but
the distance traveled in one stage increases as | �q| increases.

The neighborhood structure is not the same as those in Section 5.4.2 because of drift.
For u = 0, imagine having a stack of horizontal conveyor belts that carry points to the
right if they are above the q-axis, and to the left if they are below it (see Figure 14.12b).
The speed of the conveyor belt is given by q̇. If u = 0, the distance traveled along q is
q̇�t . This causes horizontal motion to the right in the phase plane if q̇ > 0 and horizontal
motion to the left if q̇ < 0. Observe in Figure 14.13 that larger motions result as |q̇|
increases. If q̇ = 0, then no horizontal motion can occur. If q 	= 0, then the q̇ coordi-
nate changes by ± 1

2u(�t)2. This slowing down or speeding up also affects the position
along q.

For most realistic problems, there is an upper bound on speed. Let vmax > 0 be a
positive constant and assume that |q̇| ≤ vmax . Furthermore, assume that C is bounded
(all values of q ∈ C are contained in an interval of R). Since the reachability graph is a
lattice and the states are now confined to a bounded subset of R

2, the number of vertices
in the reachability graph is finite. For any fixed �t , the lattice can be searched using
any of the algorithms of Section 2.2. The search starts on a reachability graph for which
the initial vertex is xI . Trajectories that are approximately time-optimal can be obtained
by using breadth-first search (Dijkstra’s algorithm could alternatively be used, but it is
more expensive). Resolution completeness can be obtained by reducing �t by a constant
factor each time the search fails to find a solution. As mentioned in Section 5.4.2, it is not
required to construct an entire grid resolution at once. Samples can be gradually added,
and the connectivity can be updated efficiently using the union-find algorithm [245, 826].
A rigorous approximation algorithm framework will be presented shortly, which indicates
how close the solution is to optimal, expressed in terms of input parameters to the
algorithm.

Recall the problem of connecting to grid points, which was illustrated in Figure 5.14b.
If the goal region XG contains lattice points, then exact arrival at the goal occurs. If it
does not contain lattice points, as in the common case of XG being a single point, then
some additional work is needed to connect a goal state to a nearby lattice point. This
actually corresponds to a BVP, but it is easy to solve for the double integrator. The set of
states that can be reached from some state xG within time �t lie within a cone, as shown
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(a) Backward reachable set from xG (b) Forward reachable set from xI

Figure 14.14: The initial and goal states can be connected to lattice points that call within cones in X that
represent time-limited reachable sets.

in Figure 14.14a. Lattice points that fall into the cone can be easily connected to xG by
applying a constant action in U . Likewise, xI does not even have to coincide with a lattice
point. Thus, it is straightforward to connect xI to a lattice point, obtain a trajectory that
arrives at a lattice point near xG, and then connect it exactly to xG.

14.4.1.2 Extensions and other considerations

Alternative lattices for the double integrator

Many alternative lattices can be constructed over X. Different discretizations of U and
time can be used. Great flexibility is allowed if feasibility is the only concern, as opposed to
optimality. Since C = R, it is difficult to define an obstacle avoidance problem; however,
the concepts will be soon generalized to higher dimensions. In this case, finding a feasible
trajectory that connects from some initial state to a goal state may be the main concern.
Note, however, that if xI and xG are states with zero velocity, then the state could hover
around close to the q-axis, and the speeds will be so slow that momentum is insignificant.
This provides some incentive for at least reducing the travel time as much as possible,
even if the final result is not optimal. Alternatively, the initial and goal states may not have
zero velocity, in which case, any feasible solution may be desired. For example, suppose
the goal is to topple a sports utility vehicle (SUV) as part of safety analysis.

To get a feeling for how to construct lattices, recall again the analogy to conveyor belts.
A lattice can be designed by placing horizontal rows of sample points at various values
of q̇. These could, for example, be evenly spaced in the q̇ direction as in Figure 14.13.
Imagine the state lies on a conveyor belt. If desired, a move can be made to any other
conveyor belt, say at q̇ ′, by applying a nonzero action for some specific amount of time. If
q̇ ′ > q̇, then u > 0; otherwise, u < 0. If the action is constant, then after time |q̇ − q̇ ′|/u
has passed, the state will arrive at q̇ ′. Upon arrival, the position q on the conveyor belt
might not coincide with a sample point. This is no problem because the action u = 0 can be
applied until the state drifts to the next sample point. An alternative is to choose an action
from U that drives directly to a lattice point within its forward, time-limited reachable set.
Recall Figure 14.14; the cone can be placed on a lattice point to locate other lattice points
that can be reached by application of a constant action in U over some time interval.

Recall from Figure 14.13 that longer distances are traveled over time �t as |q̇| increases.
This may be undesirable behavior in practice because the resolution is essentially much
poorer at higher speeds. This can be compensated for by placing the conveyor belts closer
together as |q̇| increases. As the speed increases, a shorter time interval is needed to
change belts, and the distance traveled can be held roughly the same for all levels. This
corresponds to the intuition that faster response times are needed at higher speeds.
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A multi-resolution version can also be made [819]. The simple problem considered
so far can actually be solved combinatorially, without any approximation error [750];
however, the lattice-based approach was covered because it can be extended to much
harder problems, as will be explained next.

Multiple, independent double integrators

Now consider generalizing to a vector of n double integrators. In this case, C = R
n

and each q ∈ C is an n-dimensional vector. There are n action variables and n double
integrators of the form q̈i = ui . The action space for each variable is Ui = [−1, 1] (once
again, any acceleration bound can be used). The phase space X is R

2n, and each point is
x = (q1, . . . , qn, q̇1, . . . , q̇n). The ith double integrator produces two scalar equations of
the phase transition equation: ẋi = xn+i and ẋn+i = ui .

Even though there are n double integrators, they are decoupled in the state transition
equation. The phase of one integrator does not depend on the phase of another. Therefore,
the ideas expressed so far can be extended in a straightforward way to obtain a lattice over
R

2n. Each action is an n-dimensional vector u. Each Ui is discretized to yield values −1,
0, and 1. There are 3n edges emanating from any lattice point for which q̇ i 	= 0 for all i.
For any double integrator for which q̇ i = 0, there are only two choices because ui = 0
produces no motion. The projection of the reachability graph down to (xi, xn+i) for any
i from 1 to n looks exactly like Figure 14.13 and characterizes the behavior of the ith
integrator.

The standard search algorithms can be applied to the lattice over R
2n. Breadth-first

search once again yields solutions that are approximately time-optimal. Resolution com-
pleteness can be obtained again by bounding X and allowing �t to converge to zero.
Now that there are more dimensions, a complicated obstacle region Xobs can be removed
from X. The traversal of each edge then requires collision detection along each edge of
the graph. Note that the state trajectories are linear or parabolic arcs. Numerical integra-
tion is not needed because (14.22) already gives the closed-form expression for the state
trajectory.

Unconstrained mechanical systems

A lattice can even be obtained for the general case of a fully actuated mechanical system,
which for example includes most robot arms. Recall from (13.4) that any system in the
form q̇ = f (q, u) can alternatively be expressed as q̇ = u, if U (q) is defined as the image
of f for a fixed q. The main purpose of using f is to make it easy to specify a fixed action
space U that maps differently into the tangent space for each q ∈ C.

A similar observation can be made regarding equations of the form q̈ = h(q, q̇, u), in
which u ∈ U and U is an open subset of R

n. Recall that this form was obtained for general
unconstrained mechanical systems in Sections 13.3 and 13.4. For example, (13.148)
expresses the dynamics of open-chain robot arms. Such equations can be expressed as
q̈ = u′ by directly specifying the set of allowable accelerations. Each u will map to a new
action u′ in an action space given by

U ′(q, q̇) = {q̈ ∈ R
n | ∃u ∈ U such that q̈ = h(q, q̇, u)} (14.24)

for each q ∈ C and q̇ ∈ R
n.

Each u′ ∈ U ′(q, q̇) directly expresses an acceleration vector in R
n. Therefore, using

u′ ∈ U (q, q̇), the original equation expressed using h can be now written as q̈ = u′. In its
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Figure 14.15: (a) The set, U′(q, �q), of new actions and grid-based sampling. (b) Reducing the set by some
safety margin to account for its variation over time.

new form, this appears just like the multiple, independent double integrators. The main
differences are

1. The set U ′(q, q̇) may describe a complicated region in R
n, whereas U in the case of the

true double integrators was a cube centered at the origin.

2. The set U ′(q, q̇) varies with respect to q and q̇. Special concern must be given for this
variation over the time sampling interval �t . In the case of the true double integrators, U

was fixed.

The first difference is handled by performing grid sampling over R
n and making an edge

in the reachability graph for every grid point that falls into U ′(q, q̇); see Figure 14.15a.
The grid resolution can be improved along with �t to obtain resolution completeness. To
address the second problem, think of U ′(q(t), q̇(t)) as a shape in R

n that moves over time.
Choosing u′ close to the boundary of U ′(q(t), q̇(t)) is dangerous because as t increases,
u′ may fall outside of the new action set. It is often possible to obtain bounds on how
quickly the boundary of U ′(q, q̇) can vary over time (this can be determined, for example,
by differentiating h with respect to q and q̇). Based on the bound, a thin layer near the
boundary of U ′(q, q̇) can be removed from consideration to ensure that all attempted
actions remain in U ′(q(t), q̇(t)) during the whole interval �t . See Figure 14.15b.

These ideas were applied to extend the approximation algorithm framework to the case
of open-chain robot arms, for which h is given by (13.148). Suppose that U is an axis-
aligned rectangle, which is often the case for manipulators because the bounds for each
ui correspond to torque limits for each motor. If q and q̇ are fixed, then (13.140) applies
a linear transformation to obtain q̈ from u. The rectangle is generally sheared into a par-
allelepiped (a n-dimensional extension of a parallelogram). Recall such transformations
from Section 3.5 or linear algebra.

Approximation algorithm framework

The lattices developed in this section were introduced in [292] for analyzing the kinody-
namic planning problem in the rigorous approximation algorithm framework for NP-hard
problems [768]. Suppose that there are two or three independent double integrators. The
analysis shows that the computed solutions are approximately optimal in the following
sense. Let c0 and c1 be two positive constants that define a function

δ(c0, c1)(q̇) = c0 + c1‖q̇‖. (14.25)
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Let tF denote the time at which the termination action is applied. A state trajectory is
called δ(c0, c1)-safe if for all t ∈ [0, tF ], the ball of radius δ(c0, c1)(q̇) that is centered at
q(t) does not cause collisions with obstacles in W . Note that the ball radius grows linearly
as the speed increases. The robot can be imagined as a disk with a radius determined
by speed. Let xI , xG, c0, and c1 be given (only a point goal region is allowed). Suppose
that for a given problem, there exists a δ(c0, c1)-safe state trajectory (resulting from
integrating any ũ ∈ U) that terminates in xG after time topt . It was shown that by choosing
the appropriate �t (given by a formula in [292]), applying breadth-first search to the
reachability lattice will find a (1 − ε)δ(c0, c1)-safe trajectory that takes time at most
(1 + ε)topt , and approximately connects xI to xG (which means that the closeness in X

depends on ε). Furthermore, the running time of the algorithm is polynomial in 1/ε and
the number of primitives used to define polygonal obstacles.5 One of the key steps in
the analysis is to show that any state trajectory can be closely tracked using only actions
from Ud and keeping them constant over �t . One important aspect is that it does not
necessarily imply that the computed solution is close to the true optimum, as it travels
through X (only the execution times are close). Thus, the algorithm may give a solution
from a different homotopy class from the one that contains the true optimal trajectory.
The analysis was extended to the general case of open-chain robot arms in [290, 444].

Backward and bidirectional versions

There is a perfect symmetry to the concepts presented so far in this section. A reachability
lattice similar to the one in Figure 14.13 can be obtained by integrating backward in time.
This indicates action sequences and associated initial states from which a fixed state can be
reached. Note that applying the ideas in the reverse direction does not require the system
to be symmetric. Given that the graphs exist in both directions, bidirectional search can
be performed. By using the forward and backward time-limited reachability cones, the
initial and goal states can be connected to a common lattice, which is started, for example,
at the origin.

Underactuated and nonholonomic systems

Many interesting systems cannot be expressed in the form q̈ = h(q, q̇, u) with n inde-
pendent action variables because of underactuation or other constraints. For example,
the models in Section 13.1.2 are underactuated and nonholonomic. In this case, it is not
straightforward to convert the equations into a vector of double integrators because the
dimension of U (q, q̇) is less than n, the dimension of C. This makes it impossible to
use grid-based sampling of U (q, q̇). Nevertheless, it is still possible in many cases to
discretize the system in a clever way to obtain a lattice. If this can be obtained, then a
straightforward resolution-complete approach based on classical search algorithms can
be developed. If X is bounded (or a bounded region is obtained after applying the phase
constraints), then the search is performed on a finite graph. If failure occurs, then the
resolution can be improved in the usual way to eventually obtain resolution completeness.
As stated in Section 14.2.2, obtaining such a lattice is possible for a large family of non-
holonomic systems [765]. Next, a method is presented for handling reachability graphs
that are not lattices.

5 One technical point: It is actually only pseudopolynomial [768] in amax , vmax , c0, c1, and the width of the bounding
cube in W . This means that the running time is polynomial if the representations of these parameters are treated as
having constant size; however, it is not polynomial in the actual number of bits needed to truly represent them.
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14.4.2 Incorporating state space discretization

If the reachability graph is not a lattice, which is typically the case with underactuated and
nonholonomic systems, then state space discretization can be used to force it to behave
like a lattice. If there are no differential constraints, then paths can be easily forced to
travel along a lattice, as in the methods of Section 7.7.1. Under differential constraints, the
state cannot be forced, for example, to follow a staircase path. Instead of sampling X and
forcing trajectories to visit specific points, X can be partitioned into small cells, within
which no more than one vertex is allowed in the search graph. This prevents a systematic
search algorithm from running forever if the search graph has an infinite number of vertices
in some bounded region. For example, with the Dubins car, if u is fixed to an integer, an
infinite number of vertices on a circle is obtained, as mentioned in Section 14.2.2. The ideas
in this section are inspired mainly by the Barraquand-Latombe dynamic programming
method [74], which has been mainly applied to the models in Section 13.1.2. In the current
presentation, however, the approach is substantially generalized. Here, optimality is not
even necessarily required (but can be imposed, if desired).

Decomposing X into cells

At the outset, X is decomposed into a collection of cells without considering collision
detection. Suppose that X is an n-dimensional rectangular subset of R

n. If X is more
generally a smooth manifold, then the rectangular subset can be defined in a coordinate
neighborhood. If desired, identifications can be used to respect the topology of X; however,
coordinate changes are technically needed at the boundaries to properly express velocities
(recall Section 8.3).

The most common cell decomposition is obtained by splitting X into n-dimensional
cubes of equal size by quantizing each coordinate. This will be called a cubical partition.
Assume in general that X is partitioned into a collection D of n-dimensional cells. Let
D ∈ D denote a cell, which is a subset of X. It is assumed here that all cells have dimension
n. In the case of cubes, this means that points on common boundaries between cubes are
declared to belong to only one neighboring cube (thus, the cells may be open, closed, or
neither).

Note that X is partitioned into cells, and not Xfree, as might be expected from the
methods in Chapter 6. This means that collision detection and other constraints on X are
ignored when defining D. The cells are defined in advance, just as grids were declared
in Section 5.4.2. In the case of a cubical partition, the cells are immediately known upon
quantization of each coordinate axis.

Searching

The algorithm fits directly into the framework of Section 14.3.4. A search graph is
constructed incrementally from xI by applying any systematic search algorithm. It is
assumed that the system has been discretized in some way. Most often, the discrete-time
model of Section 14.2.2 is used, which results in a fixed �t and a finite set Ud of actions.

In the basic search algorithms of Section 2.2.1, it is important to keep track of which
vertices have been explored. Instead of applying this idea to vertices, it is applied here to
cells. A cell D is called visited if the search graph that has been constructed so far contains
a vertex in D; otherwise, D is called unvisited. Initially, only the cell that contains xI is
marked as visited. All others are initialized to unvisited. These labels are used to prune
the reachability graph during the search, as shown in Figure 14.16.
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(a) (b)

Figure 14.16: (a) The �rst four stages of a dense reachability graph for the Dubins car. (b) One possible
search graph, obtained by allowing at most one vertex per cell. Many branches are pruned away. In this
simple example, there are no cell divisions along the θ-axis.

CELL-BASED SEARCH(xI , xG)
1 Q.insert(xI );
2 G.init(xI );
3 while Q 	= ∅ and xG is unvisited
4 xcur → Q.pop();
5 for each (ũt , x) ∈ reached(xcur )
6 if x is unvisited
7 Q.insert(x);
8 G.add vertex(x);
9 G.add edge(ũt );
10 Mark cell that contains x as visited;
11 Return G;

Figure 14.17: Searching by using a cell decomposition of X.

The basic algorithm outline is shown in Figure 14.17. Let Q represent a priority queue
in which the elements are vertices of the search graph. If optimization of a cost functional
is required, then Q may be sorted by the cost accumulated along the path constructed
so far from xI to x. This cost can be assigned in many different ways. It could simply
represent the time (number of �t steps), or it could count the number of times the action
has changed. As the algorithm explores, new candidate vertices are encountered. They
are only saved in the search graph and placed into Q if they lie in a cell marked unvisited
and are violation-free. Upon encountering such a cell, it becomes marked as visited.
The reached function generates a set of violation-free trajectory segments. Under the
discrete-time model, this means applying each u ∈ Ud over time �t and reporting only
those states reached without violating the constraints (including collision avoidance).

As usual, the BVP issue may arise if XG is small relative to the cell size. If XG is large
enough to include entire cells, then this issue is avoided. If xG is a single point, then it
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may only be possible to approximately reach xG. Therefore, the algorithm must accept
reaching xG to within a specified tolerance. This can be modeled by defining XG to be
larger; therefore, tolerance is not explicitly mentioned.

Maintaining the cells

There are several alternatives for maintaining the cells. The main operation that needs to be
performed efficiently is point location [266]: determine which cell contains a given state.
The original method in [74] preallocates an n-dimensional array. The collision-checking
is even performed in advance. Any cell that contains at least one point in Xobs can be
labeled as occupied. This allows cells that contain collision configurations to be avoided
without having to call the collision detection module. For a fixed dimension, this scheme
finds the correct cell and updates the labels in constant time. Unfortunately, the space
requirement is exponential in dimension.

An alternative is to use a hash table to maintain the collection of cells that are labeled
as visited. This may be particularly valuable if optimality is not important and if it is
expected that solutions will be found before most of the cells are reached. The point
location problem can be solved efficiently without explicitly storing a multi-dimensional
array.

Suppose that the cubical decomposition is not necessarily used. One general approach
is to defineD as the Voronoi regions of a collection P of m samples {p1, . . . , pm} in X. The
“name” of each cell corresponds uniquely to a sample in P . The cell that contains some
x ∈ X is defined as the nearest sample in P , using some predetermined metric on X. As a
special case, the cubical decomposition defines the cells based on a Sukharev grid (recall
Figure 5.5a). If the dimension of X is not too high, then efficient nearest-neighbor schemes
can be used to determine the appropriate cell in near-logarithmic time in the number of
points in P (in practice, Kd-trees, mentioned in Section 5.5.2, should perform well). For
maintaining a cubical decomposition, this approach would be cumbersome; however, it
works for any sample set P . If no solution is found for a given P , then the partition could
be improved by adding more samples. This allows any dense sequence to be used to guide
the exploration of X while ensuring resolution completeness, which is discussed next.

Resolution issues

One of the main complications in using state discretization is that there are three spaces
over which sampling occurs: time, the action space, and the state space. Assume the
discrete-time model is used. If obtaining optimal solutions is important, then very small
cells should be used (e.g., 50 to 100 per axis). This limits its application to state spaces of
a few dimensions. The time interval �t should also be made small, but if it is too small
relative to the cell size, then it may be impossible to leave a cell. If only feasibility is the
only requirement, then larger cells may be used, and �t must be appropriately increased.
A course quantization of U may cause solutions to be missed, particularly if �t is large.
As �t decreases, the number of samples in Ud becomes less important.

To obtain resolution completeness, the sampling should be improved each time the
search fails. Each time that the search is started, the sampling dispersion for at least one
of the three spaces should be decreased. The possibilities are 1) the time interval �t may
be reduced, 2) more actions may be added to Ud , or 3) more points may be added to P

to reduce the cell size. If the dispersion approaches zero for all three spaces, and if XG

contains an open subset of Xfree, then resolution completeness is obtained. If XG is only
a point, then solutions that come within some ε > 0 must be tolerated.
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Uses minimum turning radius

Pruned away from
the search graph

D

(a) (b)

Figure 14.18: (a) The Dubins car is able to turn around if it turns left as sharply as possible. (b) Unfor-
tunately, the required vertex is pruned because one cell along the required trajectory already contains a
vertex. This illustrates how missing a possible action can cause serious problems many stages later.

Recall that resolution completeness assumes that f has bounded derivatives or at least
satisfies a Lipschitz condition (14.11). The actual rate of convergence is mainly affected by
three factors: 1) the rate at which f varies with respect to changes in u and x (characterized
by Lipschitz constants), 2) the required traversal of narrow regions in Xfree, and 3) the
controllability of the system. The last condition will be studied further for nonholonomic
systems in Section 15.4. For a concrete example, consider making a U-turn with a Dubins
car that has a very large turning radius, as shown in Figure 14.18. A precise turn may
be required to turn around, and this may depend on an action that was chosen many
stages earlier. The Dubins car model does not allow zig-zagging (e.g., parallel parking)
maneuvers to make local corrections to the configuration.

Backward and bidirectional versions

As usual, both backward and bidirectional versions of this approach can be made. If the
XG is large (or the goal tolerance is large) and the BVP is costly to solve, then the backward
version seems less desirable if the BVP is hard. The forward direction is preferred because
the BVP can be avoided altogether.

For a bidirectional algorithm, the same collection D of cells can be used for both
trees. The problem could be considered solved if the same cell is reached by both trees;
however, one must be careful to still ensure that the remaining BVP can be solved. It
must be possible to find an action trajectory segment that connects a vertex from the
initial-based tree to a vertex of the goal-based tree. Alternatively, connections made to
within a tolerance may be acceptable.

14.4.3 RDT-based methods

The rapidly exploring dense tree (RDT) family of methods, which includes the RRT,
avoids maintaining a lattice altogether. RDTs were originally developed for handling
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SIMPLE RDT WITH DIFFERENTIAL CONSTRAINTS(x0)
1 G.init(x0);
2 for i = 1 to k do
3 xn ← nearest(S(G), α(i));
4 (ũp, xr ) ← local planner(xn, α(i));
5 G.add vertex(xr );
6 G.add edge(ũp);

Figure 14.19: Extending the basic RDT algorithm to handle differential constraints. In comparison to
Figure 5.16, an LPM computes xr , which becomes the new vertex, instead of α(i). In some applications,
line 4 may fail, in which case lines 5 and 6 are skipped.

differential constraints, even though most of their practical application has been to the
Piano Mover’s Problem. This section extends the ideas of Section 5.5 from C to X and
incorporates differential constraints. The methods covered so far in Section 14.4 produce
approximately optimal solutions if the graph is searched using dynamic programming
and the resolution is high enough. By contrast, RDTs are aimed at returning only feasible
trajectories, even as the resolution improves. They are often successful at producing a
solution trajectory with relatively less sampling. This performance gain is enabled in part
by the lack of concern for optimality.

Let α denote an infinite, dense sequence of samples in X. Let ρ : X ×X → [0,∞]
denote a distance function on X, which may or may not be a proper metric. The distance
function may not be symmetric, in which case ρ(x1, x2) represents the directed distance
from x1 to x2.

The RDT is a search graph as considered so far in this section and can hence be
interpreted as a subgraph of the reachability graph under some discretization model. For
simplicity, first assume that the discrete-time model of Section 14.2.2 is used, which leads
to a finite action set Ud and a fixed time interval �t . The set Up of motion primitives is all
action trajectories for which some u ∈ Ud is held constant from time 0 to �t . The more
general case will be handled at the end of this section.

Paralleling Section 5.5.1, the RDT will first be defined in the absence of obstacles.
Hence, let Xfree = X. The construction algorithm is defined in Figure 14.19; it may be
helpful to compare it to Figure 5.16, which was introduced on C for the Piano Mover’s
Problem. The RDT, denoted by G, is initialized with a single vertex at some x0 ∈ X. In
each iteration, a new edge and vertex are added to G. Line 3 uses ρ to choose xn, which
is the nearest point to α(i) in the swath of G. In the RDT algorithm of Section 5.5, each
sample of α becomes a vertex. Due to the BVP and the particular motion primitives in
Up, it may be difficult or impossible to precisely reach α(i). Therefore, line 4 calls an
LPM to determine a primitive ũp ∈ Up that produces a new state xr upon integration from
xn. The result is depicted in Figure 14.20. For the default case in which Up represents
the discrete-time model, the action is chosen by applying all u ∈ U over time �t and
selecting the one that minimizes ρ(xr, α(i)). One additional constraint is that if xn has
been chosen in a previous iteration, then ũp must be a motion primitive that has not been
previously tried from xn; otherwise, duplicate edges would result in G or time would
be wasted performing collision checking for reachability graph edges that are already
known to be in collision. The remaining steps add the new vertex and edge from xn. If
xn is contained in the trajectory produced by an edge e, then e is split as described in
Section 5.5.1.
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Figure 14.20: If the nearest point S lies in the state trajectory segment associated to an edge, then the
edge is split into two, and a new vertex is inserted into G.

Efficiently finding nearest points

The issues of Section 5.5.2 arise again for RDTs under differential constraints. In fact, the
problem is further complicated because the edges in G are generally curved. This prevents
the use of simple point-segment distance tests. Furthermore, an exact representation of the
state trajectory is usually not known. Instead, it is approximated numerically by the system
simulator. For these reasons, it is best to use the approximate method of determining the
nearest point in the swath, which is a straightforward extension of the discussion in
Section 5.5.2; recall Figure 5.22. Intermediate vertices may be inserted if the applied
motion primitive yields a state trajectory that travels far in Xfree. If the dimension is low
enough (e.g., less than 20), then efficient nearest-neighbor algorithms (Section 5.5.2) can
be used to offset the cost of maintaining intermediate vertices.

Handling obstacles

Now suppose that Xobs 	= ∅. In Section 5.5.1, the RDT was extended until a stopping
configuration qs was reached, just in front of an obstacle. There are two new complications
under differential constraints. The first is that motion primitives are used. If �t is small,
then in many cases the time will expire before the boundary is reached. This can be
alleviated by using a large �t and then taking only the violation-free portion of the
trajectory. In this case, the trajectory may even be clipped early to avoid overshooting
α(i). The second complication is due to Xric. If momentum is substantial, then pulling the
tree as close as possible to obstacles will increase the likelihood that the RDT becomes
trapped. Vertices close to obstacles will be selected often because they have large Voronoi
regions, but expansion is not possible. In the case of the Piano Mover’s Problem, this was
much less significant because the tree could easily follow along the boundary. In most
experimental work, it therefore seems best to travel only part of the way (perhaps half) to
the boundary.

Tree-based planners

Planning algorithms can be constructed from RDTs in the same way as in Section 5.5.
Forward, backward, and bidirectional versions can be made. The main new complication
is the familiar BVP that the other sampling-based methods of this section have also
suffered from. If it is expensive or even impossible to connect nearby states, then the usual
complications arise. If XG contains a sizable open set, then a forward, single-tree planner
with a gentle bias toward the goal could perform well while avoiding the BVP. However,
if XG is a point, then a tolerance must be set on how close the RDT must get to the goal



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

SAMPLING-BASED PLANNING UNDER DIFFERENTIAL CONSTRAINTS 691

before it can declare that it has a solution. For systems with drift, the search time often
increases dramatically as this tolerance decreases.

Bidirectional search offers great performance advantages in many cases, but the BVP
exists when attempting connections between the two trees. One possibility is to set
the tolerance very small and then concatenate the two action trajectories, as described
in Section 14.3.4. If it succeeds, then the planning algorithm successfully terminates.
Unfortunately, the performance once again depends greatly on the tolerance, particularly
if the drift is substantial. Recent studies have shown that using a bidirectional RDT
with a large connection tolerance and then closing the gap by using efficient variational
techniques provides dramatic improvement in performance [200, 579]. Unfortunately,
variational techniques are not efficient for all systems because they must essentially solve
the BVP by performing a gradient descent in the trajectory space; see Section 14.7.

Distance function issues

The RDT construction algorithm is heavily influenced by the distance function ρ. This
was also true for RDTs applied to the Piano Mover’s Problem; however, it becomes more
critical and challenging to design a good metric in the presence of differential constraints.
For example, the metric given by Example 5.3 is inappropriate for measuring the distance
between configurations for the Dubins car. A more appropriate metric is to use length of
the shortest path from q to q ′ (this length is easy to compute; see Section 15.5). Such
a metric would be more appropriate than the one in Example 5.3 for comparing the
configurations, even for car models that involve dynamics and obstacles.

Although many challenging problems can be solved using weighted Euclidean metrics
[614], dramatic improvements can be obtained by exploiting particular properties of
the system. This problem might seem similar to the choice of a potential function for
the randomized potential field planer of Section 5.4.3; however, since RDTs approach
many different samples in α(i), instead of focusing only on the goal, the performance
degradation is generally not as severe as the local minimum problem for a potential field
planner. There are many more opportunities to escape in an RDT. Metrics that would fail
miserably as a potential function often yield good performance in an RDT-based planner.

The ideal distance function, as mentioned in Section 14.3, is to use the optimal cost-to-
go, denoted here as ρ∗. Of course, computing ρ∗ is at least as hard as solving the motion
planning problem. Therefore, this idea does not seem practical. However, it is generally
useful to consider ρ∗ because the performance of RDT-based planners generally degrades
as ρ, the actual metric used in the RDT, and ρ∗ diverge. An effort to make a crude
approximation to ρ∗, even if obstacles are neglected, often leads to great improvements in
performance. An excellent example of this appears in [365], in which value iteration was
used to compute the optimal cost-to-go in the absence of obstacles for an autonomous
helicopter using the maneuver automaton model of Figure 14.8.

Ensuring resolution completeness

Suppose that the discrete-time model is used. If α is dense in X, then each RDT vertex
is visited a countably infinite number of times after it is constructed. By ensuring that the
same motion primitive is never applied twice from the same vertex, all available motion
primitives will eventually be tried. This ensures that the full reachability graph is explored
for a fixed �t . Since the reachability graph is not necessarily finite, obtaining resolution
completeness is more challenging. The scheme described in Figure 14.7 can be applied
by periodically varying �t during execution, and using smaller and smaller of values of
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�t in later iterations. If U is finite, refinements can also be made to Ud . This leads to a
resolution-complete RDT.

Designing good motion primitives

Up to this point, only the discrete-time model has been considered. Although it is the most
straightforward and general, there are often many better motion primitives that can be used.
For a particular system, it may be possible to design a nice family of trajectories off-line in
the absence of obstacles and then use them as motion primitives in the RDT construction.
If possible, it is important to carefully analyze the system under consideration to try to
exploit any special structure it may have or techniques that might have been developed for
it. For motion planning of a vehicle, symmetries can be exploited to apply the primitives
from different states. For example, in flying a helicopter, the yaw angle and the particular
position (unless it is close to the ground) may not be important. A family of trajectories
designed for one yaw angle and position should work well for others.

Using more complicated motion primitives may increase the burden on the LPM. In
some cases, a simple control law (e.g., PID [51]) may perform well. Ideally, the LPM
should behave like a good steering method, which could be obtained using methods in
Chapter 15. It is important to note, though, that the RDT’s ability to solve problems
does not hinge on this. It will greatly improve performance if there are excellent motion
primitives and a good steering method in the LPM. The main reason for this is that
the difficulties of the differential constraints have essentially been overcome once this
happens (except for the adverse effects of drift). Although having good motion primitives
can often improve performance in practice, it can also increase the difficulty of ensuring
resolution completeness.

14.4.4 Other methods

Extensions of virtually any other method in Chapter 5 can be made to handle differential
constraints. Several possibilities are briefly mentioned in this section.

Randomized potential fields

The randomized potential field method of Section 5.4.3 can be easily adapted to handle
differential constraints. Instead of moving in any direction to reduce the potential value,
motion primitives are applied and integrated to attempt to reduce the value. For example,
under the discrete-time model, each u ∈ Ud can be applied over �t , and the one for which
the next state has the lowest potential value should be selected as part of the descent.
Random walks can be tried whenever no such action exists, but once again, motion in any
direction is not possible. Random actions can be chosen instead. The main problems with
the method under differential constraints are 1) it is extremely challenging to design a
good potential function, and 2) random actions do not necessarily provide motions that are
similar to those of a random walk. Section 15.1.2 discusses Lyapunov functions, which
serve as good potential functions in the presence of differential constraints (but usually
neglect obstacles). In the place of random walks, other planning methods, such as an RDT,
could be used to try to escape local minima.

Other tree-based planners

Many other tree-based planners can be extended to handle differential constraints. For
example, an extension of the expansive space planner from Section 5.4.4 to kinodynamic
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planning for spacecrafts appears in [469]. Recently, a new tree-based method, called
the path-directed subdivision tree, has been proposed for planning under differential
constraints [575]. The method works by choosing points at random in the swath, applying
random actions, and also using a space-partition data structure to control the exploration.

Sampling-based roadmap planners

As stated already, it is generally difficult to construct sampling-based roadmaps unless
the BVP can be efficiently solved. The steering methods of Section 15.5 can serve this
purpose [934, 861]. In principle, any of the single-query methods of Section 14.4 could
be used; however, it may be too costly to use them numerous times, which is required in
the roadmap construction algorithm.

14.5 Feedback planning under differential constraints

14.5.1 Problem definition

Formulation 14.1 assumed that feedback is not necessary. If the initial state is given,
then the solution takes the form of an action trajectory, which upon integration yields
a time-parametrized path through Xfree. This extended the Piano Mover’s Problem of
Section 4.3.1 to include phase spaces and differential constraints. Now suppose that
feedback is required. The reasons may be that the initial state is not given or the plan
execution might not be predictable due to disturbances or errors in the system model.
Recall the motivation from Section 8.1.

With little effort, the feedback motion planning framework from Chapter 8 can be
extended to handle differential constraints. Compare Formulations 8.2 and 14.1. Feed-
back motion planning under differential constraints is obtained by making the following
adjustments to Formulation 8.2:

1. In Formulation 8.2, X = Cfree, which automatically removed Cobs from C by definition.
Now let X be any C-space or phase space, and let Xobs be defined as in Formulation 8.2.
This leads to Xfree, as defined in Formulation 14.1.

2. In Formulation 8.2, the state transition equation was ẋ = u, which directly specified
velocities in the tangent space Tx(X). Now let any system, ẋ = f (x, u), be used instead.
In this case, U (x) is no longer a subset of Tx(X). It still includes the special termination
action uT .

3. Formulation 14.1 includes xI , which is now removed for the feedback case to be consistent
with Formulation 8.2.

4. A feedback plan is now defined as a function π : Xfree → U . For a given state x ∈ Xfree,
an action π (x) is produced. Composing π with f yields a velocity in Tx(X) given by
ẋ = f (x, π (x)). Therefore, π defines a vector field on Xfree.

Let tF denote the time at which uT is applied. Both feasible and optimal planning can be
defined using a cost functional,

L(x̃tF , ũtF ) =
∫ tF

0
l(x(t), u(t))dt + lF (x(tF )), (14.26)

which is identical to that given in Section 8.4.1. This now specifies the problem of feedback
motion planning under differential constraints.
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The most important difference with respect to Chapter 8 is that ẋ = u is replaced with
ẋ = f (x, u), which allows complicated differential models of Chapter 13 to be used.
The vector field that results from π must satisfy the differential constraints imposed
by ẋ = f (x, u). In Section 8.4.4, simple constraints on the allowable vector fields were
imposed, such as velocity bounds or smoothness; however, these constraints were not as
severe as the models in Chapter 13. For example, the Dubins car does not allow motions
in the reverse direction, whereas the constraints in Section 8.4.4 permit motions in any
direction.

14.5.2 Dynamic programming with interpolation

As observed in Section 14.4, motion planning under differential constraints is extremely
challenging. Additionally requiring feedback complicates the problem even further. If
Xobs = ∅, then a feedback plan can be designed using numerous techniques from control
theory. See Section 15.2.2 and [194, 526, 848]. In many cases, designing feedback plans is
no more difficult than computing an open-loop trajectory. However, if Xobs 	= ∅, feedback
usually makes the problem much harder.

Fortunately, dynamic programming once again comes to the rescue. In Section 2.3,
value iteration yielded feedback plans for discrete state spaces and state transition equa-
tions. It is remarkable that this idea can be generalized to the case in which U and X

are continuous and there is a continuum of stages (called time). Most of the tools re-
quired to apply dynamic programming in the current setting were already introduced in
Section 8.5.2. The main ideas in that section were to represent the optimal cost-to-go
G∗ by interpolation and to use a discrete-time approximation to the motion planning
problem.

The discrete-time model of Section 14.2.2 can be used in the current setting to obtain
a discrete-stage state transition equation of the form xk+1 = fd (xk, uk). The cost func-
tional is approximated as in Section 8.5.2 by using (8.65). This integral can be evaluated
numerically by using the result of the system simulator and yields the cost-per-stage as
ld (xk, uk). Using backward value iteration, the dynamic programming recurrence is

G∗
k(xk) = min

uk∈Ud

{
ld (xk, uk) +G∗

k+1(xk+1)
}
, (14.27)

which is similar to (2.11) and (8.56). The finite set Ud of action samples is used if U is not
already finite. The system simulator is applied to determine whether some points along
the trajectory lie in Xobs . In this case, ld (xk, uk) = ∞, which prevents actions from being
chosen that violate constraints.

As in Section 8.5.2, a set P ⊂ X of samples is used to approximate G∗ over X.
The required values at points in X \ P are obtained by interpolation. For example, the
barycentric subdivision scheme of Figure 8.20 may be applied here to interpolate over
simplexes in O(n lg n) time, in which n is the dimension of X.

As usual, backward value iteration starts at some final stage F and proceeds backward
through the stage indices. Termination occurs when all of the cost-to-go values stabilize.
The initialization at stage F yields G∗

F (x) = 0 for x ∈ XG ∩ P ; otherwise, G∗
F (x) = ∞.

Each subsequent iteration is performed by evaluating (14.27) on each x ∈ P and using
interpolation to obtain G∗

k+1(xk+1).
The resulting stationary cost-to-go function G∗ can serve as a navigation function over

Xfree, as described in Section 8.5.2. Recall from Chapter 8 that a navigation function is
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converted into a feedback plan by applying a local operator. The local operator in the
present setting is

π (x) = min
u∈Ud

{
ld (x, u) +G∗(x)

}
, (14.28)

which yields an action for any state in Xfree that falls into an interpolation neighborhood
of some samples in P .

Unfortunately, the method presented here is only useful in spaces of a few dimensions.
If X = C, then it may be applied, for example, to the systems in Section 13.1.2. If
dynamics are considered, then in many circumstances the dimension is too high because
the dimension of X is usually twice that of C. For example, if A is a rigid body in the
plane, then the dimension of X is six, which is already at the usual limit of practical use.

It is interesting to compare the use of dynamic programming here with that of Sections
14.4.1 and 14.4.2, in which a search graph was constructed. If Dijkstra’s algorithm is
used (or even breadth-first search in the case of time optimality), then by the dynamic
programming principle, the resulting solutions are approximately optimal. To ensure
convergence, resolution completeness arguments were given based on Lipschitz conditions
on f . It was important to allow the resolution to improve as the search failed to find a
solution. Instead of computing a search graph, value iteration is based on computing
cost-to-go functions. In that same way that both forward and backward versions of the
tree-based approaches were possible, both forward and backward value iteration can be
used here. Providing resolution completeness is more difficult, however, because xI is not
fixed. It is therefore not known whether some resolution is good enough for the intended
application. If xI is known, then G∗ can be used to generate a trajectory from xI using the
system simulator. If the trajectory fails to reach XG, then the resolution can be improved
by adding more samples to P and Ud or by reducing �t . Under Lipschitz conditions
on f , the approach converges to the true optimal cost-to-go [94, 170, 568]. Therefore,
value iteration can be considered resolution complete with respect to a given xI . The
convergence even extends to computing optimal feedback plans with additional actions
that are taken by nature, which is modeled nondeterministically or probabilistically. This
extends the value iteration method of Section 10.6.

The relationship between the methods based on a search graph and on value iteration
can be brought even closer by constructing Dijkstra-like versions of value iteration, as
described at the end of Section 8.5.2. These extend Dijkstra’s algorithm, which was viewed
for the finite case in Section 2.3.3 as an improvement to value iteration. The improvement
to value iteration is made by recognizing that in most evaluations of (14.27), the cost-to-go
value does not change. This is caused by two factors: 1) From some states, no trajectory
has yet been found that leads to XG; therefore, the cost-to-go remains at infinity. 2) The
optimal cost-to-go from some state might already be computed; no future iterations would
improve the cost.

A forward or backward version of a Dijkstra-like algorithm can be made. Consider the
backward case. The notion of a backprojection was used in Section 8.5.2 to characterize
the set of states that can reach another set of states in one stage. This was used in (8.68) to
define the frontier during the execution of the Dijkstra-like algorithm. There is essentially
no difference in the current setting to handle the system ẋ = f (x, u). Once the discrete-
time approximation has been made, the definition of the backprojection is essentially the
same as in (8.66) of Section 8.5.2. Using the discrete-time model of Section 14.2.2, the
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backprojection of a state x ∈ Xfree is

B(x) = {x ′ ∈ Xfree | ∃u ∈ Ud such that x = fd (x ′, u)}. (14.29)

The backprojection is closely related to the backward time-limited reachable set from
Section 14.2.1. The backprojection can be considered as a discrete, one-stage version,
which indicates the states that can reach x through the application of a constant action
u ∈ Ud over time �t . As mentioned in Section 8.5.2, computing an overapproximation
to the frontier set may be preferable in practice. This can be obtained by approximating
the backprojections, which are generally more complicated under differential constraints
than for the case considered in Section 8.5.2. One useful simplification is to ignore
collisions with obstacles in defining B(x). Also, a simple bounding volume of the true
backprojection may be used. The trade-offs are similar to those in collision detection,
as mentioned in Section 5.3.2. Sometimes the structure of the particular system greatly
helps in determining the backprojections. A nice wavefront propagation algorithm can
be obtained, for example, for a double integrator; this is exploited in Section 14.6.3. For
more on value iteration and Dijkstra-like versions, see [610].

14.6 Decoupled planning approaches

14.6.1 Different ways to decouple the big problem

As sampling-based algorithms continue to improve along with computation power, it be-
comes increasingly feasible in practice to directly solve challenging planning problems
under differential constraints. There are many situations, however, in which computing
such solutions is still too costly due to expensive numerical integration, collision detec-
tion, and complicated obstacles in a high-dimensional state space. Decoupled approaches
become appealing because they divide the big problem into modules that are each easier
to solve. For versions of the Piano Mover’s Problem, such methods were already seen in
Chapter 7. Section 7.1.3 introduced the velocity-tuning method to handle time-varying ob-
stacles, and Section 7.2.2 presented decoupled approaches to coordinating multiple robots.

Ideally, we would like to obtain feedback plans on any state space in the presence of
obstacles and differential constraints. This assumes that the state can be reliably measured
during execution. Section 14.5 provided the best generic techniques for solving the prob-
lem, but they are unfortunately limited to a few dimensions. If there is substantial sensing
uncertainty, then the feedback plan must be defined on the I-space, which was covered
in Chapter 11. Back in Section 1.4, Figure 1.19 showed a popular model of decoupling
the big planning problem into a sequence of refinements. A typical decoupled approach
involves four modules:

1. Use a motion planning algorithm to find a collision-free path τ : [0, 1] → Cfree.

2. Transform τ into a new path τ ′ so that velocity constraints on C (if there are any) are
satisfied. This might, for example, ensure that the Dubins car can actually follow the path.
At the very least, some path-smoothing is needed in most circumstances.

3. Compute a timing function σ : [0, tF ] → [0, 1] for τ ′ so that τ ′ ◦ σ is a time-parameterized
path through Cfree with the following requirement. The state trajectory x̃ must satisfy
ẋ = f (x(t), u(t)) and u(t) ∈ U (x(t)) for all time, until uT is applied at time tF .

4. Design a feedback plan (or feedback control law) π : X → U that tracks x̃. The plan
should attempt to minimize the error between the desired state and the measured state
during execution.
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PLAN-AND-TRANSFORM APPROACH

1. Compute a path τ : [0, 1] → Cfree using a motion planning algorithm, such as one from
Part II.

2. Choose some s1, s2 ∈ [0, 1] such that s1 < s2 and use an LPM to attempt to replace the
portion of τ from τ (s1) to τ (s2) with a path γ that satisfies the differential constraints.

3. If τ now satisfies the differential constraints over all [0, 1], then the algorithm terminates.
Otherwise, go to Step 2.

Figure 14.21: A general outline of the plan-and-transform approach.

Given recent techniques and computation power, the significance of this approach may
diminish somewhat; however, it remains an important way to decompose and solve prob-
lems. Be aware, however, that this decomposition is arbitrary. If every module can be
solved, then it is sufficient for producing a solution; however, such a decomposition is not
necessary. At any step along the way, completeness may be lost because of poor choices
in earlier modules. It is often difficult for modules to take into account problems that may
arise later.

Various ways to merge the modules have been considered. The methods of Section 14.4
solve either: 1) the first two modules simultaneously, if paths that satisfy q̇ = f (q, u)
are computed through Cfree, or 2) the first three modules simultaneously, if paths that
satisfy ẋ = f (x, u) are computed through Xfree. Section 14.5 solved all four modules
simultaneously but was limited to low-dimensional state spaces.

Now consider keeping the modules separate. Planning methods from Part II can be
applied to solve the first module. Section 14.6.2 will cover methods that implement the
second module. Section 14.6.3 will cover methods that solve the third module, possibly
while also solving the second module. The fourth module is a well-studied control problem
that is covered in numerous texts [526, 848, 858].

14.6.2 Plan and transform

For the decoupled approach in this section, assume that X = C, which means there are
only velocity constraints, as covered in Section 13.1. The system may be specified as
q̇ = f (q, u) or implicitly as a set of constraints of the form gi(q, q̇) = 0. The ideas in this
section can easily be extended to phase spaces. The method given here was developed
primarily by Laumond (see [599]) and was also applied to the simple car of Section 13.1.2
in [590]; other applications of the method are covered in [599].

An outline of the plan-and-transform approach is shown in Figure 14.21. In the first
step, a collision-free path τ : [0, 1] → Cfree is computed by ignoring differential con-
straints. The path is then iteratively modified until it satisfies the constraints. In each
iteration, a subinterval [s1, s2] ⊆ [0, 1] is selected by specifying some s1, s2 ∈ [0, 1] so
that s1 < s2. These points may be chosen using random sequences or may be chosen de-
terministically. The approach may use binary subdivision to refine intervals and gradually
improve the resolution on [0, 1] over the iterations.

For each chosen interval [s1, s2], an LPM is used to compute a path segment γ :
[0, 1] → Cfree that satisfies the conditions γ (0) = τ (s1) and γ (1) = τ (s2). It might be the
case that the LPM fails because it cannot connect the two configurations or a collision
may occur. In this case, another subinterval is chosen, and the process repeats. Each time
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qG

qI

τ(s1) τ(s2)

τ

Figure 14.22: An initial path that ignores differential constraints.

γ

τ(s1) τ(s2)

Figure 14.23: A path for the Dubins car can always be found by connecting a bitangent to two circles
generated by the minimum turning radius. The path is not necessarily optimal; see Section 15.3.1 for
optimal paths.

the LPM succeeds, τ is updated to τ ′ as

τ ′(s) =





τ (s) if s < s1

γ ((s − s1)/(s2 − s1)) if s ∈ [s1, s2]
τ (s) if s > s2.

(14.30)

The argument to γ reparameterizes it to run from s1 to s2, instead of 0 to 1.

Example 14.5 (Plan-and-Transform for the Dubins Car) For a concrete example,
suppose that the task is to plan a path for the Dubins car. Figure 14.22 shows a path τ that
might be computed by a motion planning algorithm that ignores differential constraints.
Two sharp corners cannot be traversed by the car. Suppose that s1 and s2 are chosen at
random, and appear at the locations shown in Figure 14.22. The portion of τ between
τ (s1) and τ (s2) needs to be replaced by a path that can be executed by the Dubins car.
Note that matching the orientations at τ (s1) and τ (s2) is important because they are part
of the configuration.

A replacement path γ is shown in Figure 14.23. This is obtained by implementing the
following LPM. For the Dubins car, a path between any configurations can be found by
drawing circles at the starting and stopping configurations as shown in the figure. Each
circle corresponds to the sharpest possible left turn or right turn. It is straightforward
to find a line that is tangent to one circle from each configuration and also matches the
direction of flow for the car (the circles are like one-way streets). Using γ , the path τ

is updated to obtain τ ′, which is shown in Figure 14.24, and satisfies the differential
constraints for the Dubins car. This problem was very simple, and in practice dozens of
iterations may be necessary to replace path segments. Also, if randomization is used, then
intervals of the form [0, s] and [s, 1] must not be neglected. �
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qG

qI

τ(s1) τ(s2)

Figure 14.24: Upon replacement, the resulting path τ′ can be followed by the Dubins car.

Example 14.5 seemed easy because of the existence of a simple local planner. Also,
there were no obstacles. Imagine that τ instead traveled through a narrow, zig-zagging
corridor. In this case, a solution might not even exist because of sharp corners that cannot
be turned by the Dubins car. If there had been an single obstacle that happened to intersect
the loop in Figure 14.24, then the replacement would have failed. In general, there is no
guarantee that the replacement segment is collision-free. It is important for the LPM to
construct path segments that are as close as possible to the original path. For the Dubins
car, this is not possible in many cases. For example, moving the Dubins car a small
distance backward requires moving along the circles shown in Figure 14.23. Even as the
distance between two configurations is reduced, the distance that the car needs to travel
does not approach zero. This is true even if the shortest possible paths are used for the
Dubins car.

What property should an LPM have to ensure resolution completeness of the plan-
and-transform approach? A sufficient condition is given in [599]. Let ρ denote a metric
on X. An LPM is said to satisfy the topological property if and only if the following
statement holds: For any ε > 0, there exists some δ > 0 such that for any pair q, q ′ ∈ Cfree

having ρ(q, q ′) < δ implies that ρ(τ (s), q) < ε for all s ∈ [0, 1]. If an LPM satisfies the
topological property, then any collision-free path through Cfree can be transformed into
one that satisfies the differential constraints. Suppose that a path τ has some clearance of
at least ε in Cfree. By dividing the domain of τ into intervals so that the change in q is no
more than δ over each interval, then the LPM will produce collision-free path segments
for replacement.

It turns out that for the Reeds-Shepp car (which has reverse) such an LPM can be
designed because it is small-time locally controllable, a property that will be covered in
Sections 15.1.3 and 15.4. In general, many techniques from Chapter 15 may be useful for
analyzing and designing effective LPMs.

An interesting adaptation of the plan-and-transform approach has been developed for
problems that involve k implicit constraints of the form gi(q, q̇) = 0. An outline of the
multi-level approach, which was introduced in [861], is shown in Figure 14.25 (a similar
approach was also introduced in [335]). The idea is to sort the k constraints into a
sequence and introduce them one at a time. Initially, a path is planned that ignores the
constraints. This path is first transformed to satisfy g1(q, q̇) = 0 and avoid collisions by
using the plan-and-transform method of Figure 14.21. If successful, then the resulting
path is transformed into one that is collision-free and satisfies both g1(q, q̇) = 0 and
g2(q, q̇) = 0. This process repeats by adding one constraint each time, until either the
method fails or all k constraints have been taken into account.
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MULTI-LEVEL APPROACH

1. Compute a path τ : [0, 1] → Cfree using a standard motion planning algorithm (as in
Part II), and let i = 1.

2. Transform τ into a collision free path that satisfies gj (q, q̇) = 0 for all j from 1 to i.

3. If the transformation failed in Step 2, then terminate and report failure.

4. If i < k, the number of implicit velocity constraints, then increment i and go to Step 2.
Otherwise, terminate and successfully report τ as a path that satisfies all constraints.

Figure 14.25: The multi-level approach considers implicit constraints one at a time.

14.6.3 Path-constrained trajectory planning

This section assumes that a path τ : [0, 1] → Cfree has been given. It may be computed
by a motion planning algorithm from Part II or given by hand. The remaining task is to
determine the speed along the path in a way that satisfies differential constraints on the
phase space X. Assume that each state x ∈ X represents both a configuration and its time
derivative, to obtain x = (q, q̇). Let n denote the dimension of C; hence, the dimension of
X is 2n. Once a path is given, there are only two remaining degrees of freedom in X: 1) the
position s ∈ [0, 1] along the domain of τ , and 2) the speed ṡ = ds/dt at each s. The full
state, x, can be recovered from these two parameters. As the state changes, it must satisfy
a given system, ẋ = f (x, u). It will be seen that a 2D planning problem arises, which
can be solved efficiently using many alternative techniques. Similar concepts appeared
for decoupled versions of time-varying motion planning in Section 7.1. The presentation
in the current section is inspired by work in time-scaling paths for robot manipulators
[459, 878, 881], which was developed a couple of decades ago. At that time, computers
were much slower, which motivated the development of strongly decoupled approaches.

14.6.3.1 Expressing systems in terms of s, ṡ, and s̈

Suppose that a system is given in the form

q̈ = h(q, q̇, u), (14.31)

in which there are n action variables u = (u1, . . . , un). It may be helpful to glance ahead
to Example 14.6, which will illustrate the coming concepts for the simple case of double
integrators q̈ = u. The acceleration in C is determined from the state x = (q, q̇) and action
u. Assume u ∈ U , in which U is an n-dimensional subset of R

n. If h is nonsingular at
x, then an n-dimensional set of possible accelerations arises from choices of u ∈ U . This
means it is fully actuated. If there were fewer than n action variables, then there would
generally not be enough freedom to follow a specified path. Therefore, U must be n-
dimensional. Which choices of u, however, constrain the motion to follow the given path
τ? To determine this, the q, q̇, and q̈ variables need to be related to the path domain s and
its first and second time derivatives ṡ and s̈, respectively. This leads to a subset of U that
corresponds to actions that follow the path.

Suppose that s, ṡ, s̈, and a path τ are given. The configuration q ∈ Cfree is

q = τ (s). (14.32)
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Assume that all first and second derivatives of τ exist. The velocity q̇ can be determined
by the chain rule as

q̇ = dτ

ds

ds

dt
= dτ

ds
ṡ, (14.33)

in which the derivative dτ/ds is evaluated at s. The acceleration is obtained by taking
another derivative, which yields

q̈ = d

dt

(
dτ

ds
ṡ

)

= d2τ

ds2

ds

dt
ṡ + dτ

ds
s̈

= d2τ

ds2
ṡ2 + dτ

ds
s̈,

(14.34)

by application of the product rule. The full state x = (q, q̇) can be recovered from (s, ṡ)
using (14.32) and (14.33).

The next step is to obtain an equation that looks similar to (14.31), but is expressed in
terms of s, ṡ, and s̈. A function h′(s, ṡ, u) can be obtained from h(q, q̇, u) by substituting
τ (s) for q and the right side of (14.33) for q̇:

h′(s, ṡ, u) = h(τ (s),
dτ

ds
ṡ, u). (14.35)

This yields

q̈ = h′(s, ṡ, u). (14.36)

For a given state x (which can be obtained from s and ṡ), the set of accelerations that
can be obtained by a choice of u in (14.36) is the same as that for the original system in
(14.31). The only difference is that x is now constrained to a 2D subset of X, which are
the states that can be reached by selecting values for s and ṡ.

Applying (14.34) to the left side of (14.36) constrains the accelerations to cause motions
that follow τ . This yields

d2τ

ds2
ṡ2 + dτ

ds
s̈ = h′(s, ṡ, u), (14.37)

which can also be expressed as

dτ

ds
s̈ = h′(s, ṡ, u) − d2τ

ds2
ṡ2, (14.38)

by moving the first term of (14.34) to the right. Note that n equations are actually
represented in (14.38). For each i in which dτi/ds 	= 0, a constraint of the form

s̈ = 1

dτi/ds
h′i(s, ṡ, ui) − d2τi

ds2
ṡ2 (14.39)

is obtained by solving for s̈.

14.6.3.2 Determining the allowable accelerations

The actions in U that cause τ to be followed can now be characterized. An action u ∈ U

follows τ if and only if every equation of the form (14.39) is satisfied. If dτi/ds 	= 0 for all
i from 1 to n, then n such equations exist. Suppose that u1 is chosen, and the first equation
is solved for s̈. The required values of the remaining action variables u2, . . . , un can be
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Cfree

τ(1)

τ(0) τ(2/3)

τ(1/3)

Figure 14.26: A bad path for path-constrained trajectory planning.

obtained by substituting the determined s̈ value into the remaining n− 1 equations. This
means that the actions that follow τ are at most a one-dimensional subset of U .

If dτi/ds = 0 for some i, then following the path requires that q̇i = 0. Instead of
(14.39), the constraint is that hi(q, q̇, u) = 0. Example 14.6 will provide a simple illustra-
tion of this. If dτi/ds = 0 for all i, then the configuration is not allowed to change. This
occurs in the degenerate (and useless) case in which τ is a constant function.

In many cases, a value of u does not exist that satisfies all of the constraint equations.
This means that the path cannot be followed at that particular state. Such states should
be removed, if possible, by defining phase constraints on X. By a poor choice of path τ

violating such a phase constraint may be unavoidable. There may exist some s for which
no u ∈ U can follow τ , regardless of ṡ.

Even if a state trajectory may be optimal in some sense, its quality ultimately depends
on the given path τ : [0, 1] → Cfree. Consider the path shown in Figure 14.26. At τ (1/3),
a “corner” is reached. This violates the differentiability assumption and would require
infinite acceleration to traverse while remaining on τ . For some models, it may be possible
to stop at τ (1/3) and then start again. For example, imagine a floating particle in the plane.
It can be decelerated to rest exactly at τ (1/3) and then started in a new direction to exactly
follow the curve. This assumes that the particle is fully actuated. If there are nonholonomic
constraints on C, as in the case of the Dubins car, then the given path must at least satisfy
them before accelerations can be considered. The solution in this case depends on the
existence of decoupling vector fields [159, 226].

It is generally preferable to round off any corners that might have been produced by a
motion planning algorithm in constructing τ . This helps, but it still does not completely
resolve the issue. The portion of the path around τ (2/3) is not desirable because of high
curvature. At a fixed speed, larger accelerations are generally needed to follow sharp turns.
The speed may have to be decreased simply because τ carelessly requires sharp turns in
C. Imagine developing an autonomous double-decker tour bus. It is clear that following
the curve around τ (2/3) may cause the bus to topple at high speeds. The bus will have to
slow down because it is a slave to the particular choice of τ .

14.6.3.3 The path-constrained phase space

Recall the approach in Section 14.4.1 that enabled systems of the form q̈ = h(q, q̇, u) to be
expressed as q̈ = u′ for some suitable U ′(q, q̇) ⊆ U (this was illustrated in Figure 14.15).
This enabled many systems to be imagined as multiple, independent double integrators
with phase-dependent constraints on the action space. The same idea can be applied here
to obtain a single integrator.

Let S denote a 2D path-constrained phase space, in which each element is of the form
(s, ṡ) and represents the position and velocity along τ . This parameterizes a 2D subset
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of the original phase space X. Each original state vector is x = (q, q̇) = (τ (s), dτ/ds ṡ).
Which accelerations are possible at points in S? At each (s, ṡ), a subset of U can be
determined that satisfies the equations of the form (14.39). Each valid action yields an
acceleration s̈. Let U ′(s, ṡ) ⊆ R denote the set of all values of s̈ that can be obtained from
an action u ∈ U that satisfies (14.39) for each i (except the ones for which dτi/ds = 0).
Now the system can be expressed as s̈ = u′, in which u′ ∈ U ′(s, ṡ). After all of this
work, we have arrived at the double integrator. The main complication is that U ′(s, ṡ)
can be challenging to determine for some systems. It could consist of a single interval,
disjoint intervals, or may even be empty. Assuming that U ′(s, ṡ) has been characterized,
it is straightforward to solve the remaining planning problem using techniques already
presented in this chapter. One double integrator is not very challenging; hence, efficient
sampling-based algorithms exist.

An obstacle region Sobs ⊂ S will now be considered. This includes any states that
belong to Xf ree. Given s and ṡ, the state x can be computed to determine whether
any constraints on X are violated. Usually, τ is constructed to avoid obstacle collision;
however, some phase constraints may also exist. The obstacle region Sobs also includes
any points (s, ṡ) for which U ′(s, ṡ) is empty. Let Sf ree denote S \ Sobs .

Before considering computation methods, we give some examples.

Example 14.6 (Path-Constrained Double Integrators) Consider the case of two dou-
ble integrators. This could correspond physically to a particle moving in R

2. Hence,
C =W = R

2. Let U = [−1, 1]2 and q̈ = u for u ∈ U . The path τ will be chosen to force
the particle to move along a line. For linear paths, dτ/ds is constant and d2τ/ds2 = 0.
Using these observations and the fact that h′(s, ṡ, u) = u, (14.39) simplifies to

s̈ = ui

dτi/ds
, (14.40)

for i = 1, 2.
Suppose that τ (s) = (s, s), which means that the particle must move along a diagonal

line through the origin of C. This further simplifies (14.40) to s̈ = u1 and s̈ = u2. Hence
any u1 ∈ [−1, 1] may be chosen, but u2 must then be chosen as u2 = u1. The constrained
system can be written as one double integrator s̈ = u′, in which u′ ∈ [−1, 1]. Both u1 and
u2 are derived from u′ as u1 = u2 = u′. Note that U ′ does not vary over S; this occurs
because a linear path is degenerate.

Now consider constraining the motion to a general line:

τ (s) = (a1s + b1, a2s + b2), (14.41)

in which a1 and a2 are nonzero. In this case, (14.40) yields s̈ = u1/a1 and s̈ = u2/a2.
Since each ui ∈ [−1, 1], each equation indicates that s̈ ∈ [−1/ai, 1/ai]. The acceleration
must lie in the intersection of these two intervals. If |a1| ≥ |a2|, then s̈ ∈ [−1/a1, 1/a1].
We can designate u′ = u1 and let u2 = u′a2/a1. If |a1| > |a2|, then s̈ ∈ [−1/a2, 1/a2],
u′ = u2, and u1 = u′a1/a2.

Suppose that a1 = 0 and a2 	= 0. The path is

τ (s) = (q1, a2s + b2), (14.42)

in which q1 is fixed and the particle is constrained to move along a vertical line in
C = R

2. In this case, only one constraint, s̈ = u2, is obtained from (14.40). However, u1

is independently constrained to u1 = 0 because horizontal motions are prohibited.
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If n independent, double integrators are constrained to a line, a similar result is obtained.
There are n equations of the form (14.40). The i ∈ {1, . . . , n} for which |ai | is largest
determines the acceleration range as s̈ ∈ [−1/ai, 1/ai]. The action u′ is defined as u′ = ui ,
and the uj for j 	= i are obtained from the remaining n− 1 equations.

Now assume τ is nonlinear, in which case (14.39) becomes

s̈ = ui

dτi/ds
− d2τi

ds2
ṡ2, (14.43)

for each i for which dτi/ds 	= 0. Now the set U ′(s, ṡ) varies over S. As the speed ṡ

increases, it becomes less likely that U ′(s, ṡ) is nonempty. In other words, it is less likely
that a solution exists to all equations of the form (14.43). In a physical system, that means
that staying on the path requires turning too sharply. At a high speed, this may require an
acceleration q̈ that lies outside of [−1, 1]n. �

The same ideas can be applied to systems that are much more complicated. This
should not be surprising because in Section 14.4.1 systems of the form q̈ = h(q, q̇)
were interpreted as multiple, independent double integrators of the form q̈ = u′, in which
u′ ∈ U ′(q, q̇) provided the possible accelerations. Under this interpretation, and in light of
Example 14.6, constraining the motions of a general system to a path τ just further restricts
U ′(q, q̇). The resulting set of allowable accelerations may be at most one-dimensional.

The following example indicates the specialization of (14.39) for a robot arm.

Example 14.7 (Path-Constrained Manipulators) Suppose that the system is described
as (13.142) from Section 13.4.2. This is a common form that has been used for controlling
robot arms for decades. Constraints of the form (14.39) can be derived by expressing q,
q̇, and q̈ in terms of s, ṡ, and s̈. This requires using (14.32), (14.33), and (14.34). Direct
substitution into (13.142) yields

M(τ (s))

(
d2τ

ds2
ṡ2 + dτ

ds
s̈

)
+ C

(
τ (s),

dτ

ds
ṡ
)dτ

ds
ṡ + g(τ (s)) = u. (14.44)

This can be simplified to n equations of the form

αi(s)s̈ + βi(s)ṡ2 + γi(s)ṡ = ui. (14.45)

Solving each one for s̈ yields a special case of (14.39). As in Example 14.6, each equation
determines a bounding interval for s̈. The intersection of the intervals for all n equations
yields the allowed interval for s̈. The action u′ once again indicates the acceleration in the
interval, and the original action variables ui can be obtained from (14.45). If dτi/ds = 0,
then αi(s) = 0, which corresponds to the case in which the constraint does not apply.
Instead, the constraint is that the vector u must be chosen so that q̇ i = 0. �

14.6.3.4 Computing optimal solutions via dynamic programming

Dynamic programming with interpolation, as covered in Section 14.5, can be applied
to solve the problem once it is formulated in terms of the path-constrained phase space
S ⊂ R

2. The domain of τ provides the constraint 0 ≤ s ≤ 1. Assume that only forward
progress along the path is needed; moving in the reverse direction should not be necessary.
This implies that ṡ > 0. To make S bounded, an upper bound, ṡmax , is usually assumed,
beyond which it is known that the speed is too high to follow the path.
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ṡ
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ṡmax

Sobs
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0 1
0

ṡ

s0 1

(a) (b)

Figure 14.27: (a) Planning occurs in the path-constrained phase space. (b) Due to the forward-progress
assumption, value iteration can be reduced to a quick wavefront propagation across regularly spaced
vertical lines in S.

This results in the planning problem shown in Figure 14.27a. The system is expressed
as s̈ = u′, in which u′ ∈ U ′(s, ṡ). The initial phase in S is (0, ṡi) and the goal phase
is (1, ṡg). Typically, ṡi = ṡg = 0. The region shown in Figure 14.27 is contained in the
first quadrant of the phase space because only positive values of s and ṡ are allowed (in
Figure 14.13, q and q̇ could be positive or negative). This implies that all motions are to
the right. The actions determine whether accelerations or decelerations will occur.

Backward value iteration with interpolation can be easily applied by discretizing S and
U ′(s, ṡ). Due to the constraint ṡ > 0, making a Dijkstra-like version of the algorithm is
straightforward. A simple wavefront propagation can even be performed, starting at s = 1
and progressing backward in vertical waves until s = 0 is reached. See Figure 14.27b. The
backprojection (14.29) can be greatly simplified. Suppose that the s-axis is discretized
into m+ 1 regularly spaced values s0, . . . , sm at every �s, for some fixed �s > 0. Thus,
sk = (k�s)/m. The index k can be interpreted as the stage. Starting at k = m, the final
cost-to-go G∗

m(sm, ṡm) is defined as 0 if the corresponding phase represents the goal,
and ∞ otherwise. At each sk , the ṡ values are sampled, and the cost-to-go function is
represented using one-dimensional linear interpolation along the vertical axis. At each
stage, the dynamic programming computation

G∗
k(sk, ṡk) = min

u′∈U ′(sk,ṡk )

{
l′d (sk, ṡk, u

′) +G∗
k+1(sk+1, ṡk+1)

}
(14.46)

is performed at each ṡ sample. This represents a special form of (14.27). Linear interpo-
lation over discretized ṡ values is used to evaluate G∗

k+1(sk+1, ṡk+1). The cost term l′d is
obtained from ld by computing the original state x ∈ X from s and ṡ; however, if the tra-
jectory segment enters Sobs , it receives infinite cost. The computations proceed until stage
k = 1, at which time the optimal cost-to-go G∗

1(s1, ṡ1) is computed. The optimal trajectory
is obtained by using the cost-to-go function at each stage as a navigation function.

The dynamic programming approach is so general that it can even be extended to
path-constrained trajectory planning in the presence of higher order constraints [882]. For
example, if a system is specified as q(3) = h(q, q̇, q̈, u), then a 3D path-constrained phase
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BANG-BANG APPROACH

1. From the final state (1, 0), apply reverse-time integration to s̈ = u′min(s, ṡ). Continue
constructing the curve numerically until either the interior of Sobs is entered or ṡ = 0. In
the latter case, the algorithm terminates with failure.

2. Let (scur , ṡcur ) = (0, 0).

3. Apply forward integration s̈ = u′max(s, ṡ) from (scur , ṡcur ) until either the interior of Sobs

is entered or the curve generated in Step 1 is crossed. In the latter case, the problem is
solved.

4. Starting at the point where the trajectory from Step 3 crossed the limit curve, find next
tangent point (stan, ṡtan) to the right along the limit curve. From (stan, ṡtan), perform reverse
integration on s̈ = u′min(s, ṡ) until the curve from Step 3 is hit. Let (scur , ṡcur ) = (stan, ṡtan)
and go to Step 3.

Figure 14.28: The bang-bang approach � nds a time-optimal, path-constrained trajectory with less search-
ing than the dynamic programming approach.

space results, in which each element is expressed as (s, ṡ, s̈). The actions in this space are
jerks, yielding s(3) = u′ for u′ ∈ U ′(s, ṡ, s̈).

14.6.3.5 A bang-bang approach for time optimality

The dynamic programming approach is already very efficient because the search is con-
fined to two dimensions. Nevertheless, trajectories that are time optimal can be computed
even more efficiently if Sobs has some special structure. The idea is to find an alternat-
ing sequence between two motion primitives: one of maximum acceleration and one of
maximum deceleration. This kind of switching between extreme opposites is often called
bang-bang control and arises often in the development of time-optimal control laws (look
ahead to Example 15.4). The method explained here was introduced in [123, 881]. One
drawback of obtaining time-optimal trajectories is that they cannot be tracked (the fourth
module from Section 14.6.1) if errors occur because the solutions travel on the boundary
of the reachable set.

The approach was developed for robot arms, as considered in Example 14.7. Suppose
that Sobs is a single connected component that is bounded above by ṡmax , and on the sides
it is bounded by s = 0 and s = 1. It is assumed that S arises only due to the vanishing
of the interval of allowable values for s̈ (in this case, U ′(s, ṡ) becomes empty). It is also
assumed that the lower boundary of Sobs can be expressed as a differentiable function
φ : [0, 1] → S, called the limit curve, which yields the maximum speed ṡ = φ(s) for every
s ∈ [0, 1]. The method is extended to handle multiple obstacles in [881], but this case is
not considered here. Assume also that dτi/ds 	= 0 for every i; the case of dτi/ds = 0 can
also be handled in the method [880].

Let u′min(s, ṡ) and u′max(s, ṡ) denote the smallest and largest possible accelerations, re-
spectively, from (s, ṡ) ∈ S. If (s, ṡ) 	∈ Sobs , then u′min(s, ṡ) < u′max(s, ṡ). At the limit curve,
u′min(s, φ(s)) = u′max(s, φ(s)). Applying the only feasible action in this case generates a
velocity that is tangent to the limit curve. This is called a tangent point, (stan, ṡtan), to φ.
Inside of Sobs , no accelerations are possible.

The bang-bang approach is described in Figure 14.28, and a graphical illustration
appears in Figure 14.29. Assume that the initial and goal phases are (0, 0) and (1, 0),
respectively. Step 1 essentially enlarges the goal by constructing a maximum-deceleration
curve that terminates at (1, 0). A trajectory that contacts this curve can optimally reach
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s

ṡ

0 1

Sobs

Figure 14.29: An illustration of the bang-bang approach to computing a time-optimal trajectory. The
solution trajectory is obtained by connecting the dots.

(1, 0) by switching to maximum deceleration. Steps 3 and 4 construct a maximum-
acceleration curve followed by a maximum-deceleration curve. The acceleration curve
runs until it pierces the limit curve. This constraint violation must be avoided. Therefore,
a deceleration must be determined that departs earlier from the acceleration curve and just
barely misses entering the interior of Sobs . This curve must become tangent to the limit
curve; therefore, a search is made along the limit curve for the next possible tangent point.
From there, reverse-time integration is used in Step 4 to generate a deceleration curve
that contacts the acceleration curve. A portion of the solution has now been obtained in
which an acceleration is followed by a deceleration that arrives at a tangent point of φ.
It is possible that Step 4 is not reached because the curve that connects to the goal is
contacted. Starting from the tangent point, Steps 3 and 4 are repeated until the goal curve
is contacted.

14.7 Gradient-based trajectory optimization

This section provides a brief overview of a complementary problem to motion planning.
Suppose that an algorithm in this chapter returns a feasible action trajectory. How can
the solution be improved? Trajectory optimization refers to the problem of perturbing the
trajectory while satisfying all constraints so that its quality can be improved. For example,
it may be desirable to shorten a trajectory computed by an RRT, to remove some of the
arbitrary changes in actions due to randomization. Trajectory optimization is considered
complementary to motion planning because it usually requires an initial guess, which
could be provided by a planning algorithm. Trajectory optimization can be considered
as a kind of BVP, but one that improves an initial guess, as opposed to determining
trajectories from scratch.

The optimization issue also exists for paths computed by sampling-based algorithms for
the Piano Mover’s Problem; however, without differential constraints, it is much simpler
to shorten paths. The plan and transform method of Section 14.6.2 can be applied, and the
LPM just connects pairs of configurations along the shortest path in C. In the presence of
differential constraints, the BVP must be faced.

In the most general setting, it is very difficult to improve trajectories. There are numer-
ous methods from optimization literature; see [100, 153, 667] for overviews. The purpose
of this section is to encourage further study by briefly mentioning the various kinds of
methods that have been developed, instead of explaining them in detail. The methods fall
under the area of nonlinear programming (NLP) (or nonlinear optimization), as opposed to
linear programming, which was used to find randomized security strategies in Section 9.3.
The optimization actually occurs in a space of possible trajectories, each of which is a
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function of time. Therefore, the calculus of variations, which was used in Section 13.4.1,
becomes relevant to characterize extrema. The functional � from that setting becomes
the cost functional L in the current setting. The system ẋ = f (x, u) forms an additional
set of constraints that must be satisfied, but u can be selected in the optimization.

To enable numerical computation methods, a family of trajectories is specified in terms
of a parameter space. The optimization can then be viewed as an incremental search
in the parameter space while satisfying all constraints. The direction of motion in each
step is determined by computing the gradient of a cost functional with respect to the
parameters while constrained to move in a direction tangent to the constraints. Hence,
much of nonlinear programming can be considered as an application of Newton’s method
or gradient descent. As in standard optimization, second-order derivatives of the cost
functional can be used to indicate when the search should terminate. The numerical issues
associated with these methods are quite involved; several NLP software packages, such
as the NAG Fortran Library or packages within Matlab, are available.

Nonlinear optimal control theory can be considered as a variant of NLP. The dynamic
programming recurrence becomes a differential equation in the continuous-time setting,
and Hamilton’s equations (13.198) generalize to Pontryagin’s minimum principle. These
are covered in Section 15.2. The extra variables that arise in the minimum principle can be
considered as Lagrange multipliers of a constrained optimization, in which ẋ = f (x, u)
is the constraint. The differential equations arising from dynamic programming or the
minimum principle are difficult to solve analytically; therefore, in most cases, numerical
techniques are used. The case of numerical dynamic programming was covered in Section
14.5.

Shooting methods constitute the simplest family of trajectory optimization methods. As
a simple example, suppose that an action trajectory ũ : [0, tF ] → R has been computed
of the form

u(t) = w1 + w2t, (14.47)

in which w1 and w2 are some fixed parameters. Consider perturbing w1 and w2 by some
small amount and applying the integration in (14.1). If f satisfies Lipschitz conditions,
then a small perturbation should produce a small change in x̃. The resulting new trajectory
can be evaluated by a cost functional to determine whether it is an improvement. It
might, for example, have lower maximum curvature. Rather than picking a perturbation at
random, the gradient of the cost functional with respect to the parameters can be computed.
A small step in the parameter space along the negative gradient direction should reduce the
cost. It is very likely, however, that perturbing w1 and w2 will move the final state x(tF ).
Usually, a termination condition, such as x(tF ) = xG, must be enforced as a constraint
in the optimization. This removes degrees of freedom from the optimization; therefore,
more trajectory parameters are often needed.

Suppose more generally that a motion planning algorithm computes an action sequence
based on the discrete-time model. Each action in the sequence remains constant for
duration �t . The time duration of each action can instead be defined as a parameter to
be perturbed. Each action variable ui over each interval could also be perturbed using
by (14.47) with the initial condition that w1 = ui and w2 = 0. The dimension of the
search has increased, but there are more degrees of freedom. In some formulations, the
parameters may appear as implicit constraints; in this case, a BVP must be solved in
each iteration. The minimum principle is often applied in this case [100]. More details on
formulating and solving the trajectory optimization problem via shooting appear in [153].
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Several difficulties are encountered when applying the shooting technique to trajec-
tory optimization among obstacles. Each perturbation requires integration and collision-
checking. For problems involving vehicles, the integrations can sometimes be avoided by
exploiting symmetries [199]. For example, a path for the Dubins car can be perturbed
by changing a steering angle over a short amount of time, and the rest of the trajectory
can simply be transformed using a matrix of SE(2). A critical problem is that following
the negative gradient may suggest shortening the path in a way that causes collision. The
problem can be alleviated by breaking the trajectory into segments, as in the plan-and-
transform approach; however, this yields more optimizations. Another possible solution is
to invent a penalty function for the obstacles; however, this is difficult due to local minima
problems and the lack of representing the precise boundary of Xobs .

Another difficulty with shooting is that a small change in the action near the starting
time may lead to great changes in the states at later times. One way to alleviate this problem
is by multiple shooting (as opposed to single shooting, which has been described so far).
In this case, the trajectory is initially broken into segments. These could correspond to
the time boundaries imposed by a sequence of motion primitives. In this case, imagine
perturbing each motion primitive separately. Extra constraints are needed in this case to
indicate that all of the trajectory pieces must remain connected. The multiple shooting
method can be generalized to a family of methods called transcription or collocation
(see [100] for references). These methods again split the trajectory into segments, but
each connection constraint relates more points along the trajectory than just the segment
endpoints. One version of transcription uses implicit constraints, which require using
another BVP solver, and another version uses parametric constraints, which dramatically
increases the dimension of the search. The latter case is still useful in practice by employing
fast, sparse-matrix computation methods.

One of the main difficulties with trajectory optimization methods is that they can
become stuck in a local minimum in the space of trajectories. This means that their
behavior depends strongly on the initial guess. It is generally impossible for them to find a
trajectory that is not homotopic to the initial trajectory. They cannot recover from an initial
guess in a bad homotopy class. If Xobs is complicated, then this issue becomes increasingly
important. In many cases, variational techniques might not even find an optimal solution
within a single homotopy class. Multiple local minima may exist if the closure of Xfree

contains positive curvature. If it does not, the space is called nonpositively curved (NPC)
or CAT(0), which is a property that can be derived directly from the metric on X [141].
For these spaces, the locally optimal trajectory with respect to the metric is always the
best within its homotopy class.

Further reading

The characterization and computation of reachable sets has been growing in interest [102, 104, 709,
710, 917, 955]. One motivation for studying reachability is verification, which ensures that a control
system behaves as desired under all possible disturbances. This can actually be modeled as a game
against nature, in which nature attempts to bring the system into an undesirable state (e.g., crashing
an airplane). For recent progress on characterizing Xric, see [357]. The triangularization argument for
completeness appears in a similar context in [294]. The precise rate of convergence, expressed in terms of
dispersion and Lipschitz conditions, for resolution-complete sampling-based motion planning methods
under differential constraints is covered in [198]. For the computational complexity of control problems,
see [116, 769]. For further reading on motion primitives in the context of planning, see [362, 364,
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365, 395, 790, 797, 850]. For further reading on dynamical simulation and numerical integration, see
[333, 443, 865].

Section 14.4.1 was based on [290, 292, 444]. For more works on kinodynamic planning, see [205, 239,
291, 358, 362, 614, 783, 999]. Section 14.4.2 was inspired by [74]. Section 14.4.3 was drawn from [614].
For more work on RRTs under differential constraints, see [140, 201, 226, 326, 362, 395, 512, 949]. For
other works on nonholonomic planning, see the survey [599] and [68, 279, 336, 337, 356, 359, 485, 582,
636, 675]. Combinatorial approaches to nonholonomic planning have appeared in [13, 131, 349].

Section 14.5 was developed by adapting value iteration to motion planning problems. For general
convergence theorems for value iteration with interpolation, see [170, 294, 402, 568, 570]. In [170],
global constraints on the phase space are actually considered. The use of these techniques and the
development of Dijkstra-like variants are covered in [610]. Related work exists in artificial intelligence
[725] and control theory [946].

Decoupled approaches to planning, as covered in Section 14.6, are very common in robotics literature.
For material related to the plan-and-transform method, see [335, 599, 861]. For more on decoupled
trajectory planning and time scaling, see [355, 459, 460, 846, 878, 879, 882, 883], and see [106, 122,
123, 788, 881, 895, 880] for particular emphasis on time-optimal trajectories.

For more on gradient-based techniques in general, see [100] and references therein. Classical texts on
the subject are [153, 667]. Gradient-based approaches to path deformation in the context of nonholonomic
planning appear in [199, 345, 578].

The techniques presented in this chapter are useful in other fields beyond robotics. For aerospace
applications of motion planning, see [88, 204, 439, 440, 789]. Motion planning problems and techniques
have been gaining interest in computer graphics, particularly for generating animations of virtual humans
(or digital actors); works in this area include [35, 88, 395, 502, 547, 557, 560, 594, 620, 652, 715, 805,
980]. In many of these works, motion capture is a popular way to generate a database of recorded motions
that serves as a set of motion primitives in the planning approach.

Exercises

1. Characterize Xric for the case of a point mass in W = R
2, with each coordinate modeled as

a double integrator. Assume that u1 = 1 and u2 may take any value in [−1, 1]. Determine
Xric for:

(a) A point obstacle at (0, 0) in W.

(b) A segment from (0,−1) to (0, 1) in W.

Characterize the solutions in terms of the phase variables q1(0), q2(0), q̇1(0), and q̇2(0).

2. Extending the double integrator:

(a) Develop a lattice for the triple integrator q (3) = u that extends naturally from the double-
integrator lattice.

(b) Describe how to develop a lattice for higher order integrators q (n) for n > 3.

3. Make a � gure similar to Figure 14.6b, but for three stages of the Reeds-Shepp car.

4. Determine expressions for the upper and lower boundaries of the time-limited reachable
sets shown in Figure 14.14. Express them as parabolas, with q̇ as a function of q.

5. A reachability graph can be made by “rolling” a polyhedron in the plane. For example,
suppose a solid, regular tetrahedron is placed on a planar surface. Assuming high friction,
the tetrahedron can be � ipped in one of four directions by pushing on the top. Construct
the three-stage reachability graph for this problem.

6. Construct a four-stage reachability graph similar to the one shown in Figure 14.6b, but for
the case of a differential drive robot modeled by (13.17). Use the three actions (1, 0), (0, 1),
and (1, 1). Draw the graph in the plane and indicate the con�gur ation coordinates of each
vertex.
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7. Section 14.2.2 explained how resolution-complete algorithms exist for planning under dif-
ferential constraints. Suppose that in addition to continuous state variables, there are dis-
crete modes, as introduced in Section 7.3, to form a hybrid system. Explain how resolution-
complete planning algorithms can be developed for this case. Extend the argument shown
in Figure 14.7.

Implementations

8. Compare the performance and accuracy of Euler integration to fourth-order Runge-Kutta
on trajectories generated for a single, double, and triple integrator. For accuracy, compare
the results to solutions obtained analytically. Provide recommendations of which one to
use under various conditions.

9. Improve Figure 14.13 by making a plot of the actual trajectories, which are parabolic in
most cases.

10. In Figure 14.13, the state trajectory segments are longer as |ẋ| increases. Develop a lattice
that tries to keep all segments as close to the same length as possible by reducing �t as
|ẋ| increases. Implement and experiment with different schemes and report on the results.

11. Develop an implementation for computing approximately time-optimal state trajectories
for a point mass in a 2D polygonal world. The robot dynamics can be modeled as two
independent double integrators. Search the double-integrator lattice in X = R

4 to solve the
problem. Animate the computed solutions.

12. Experiment with RDT methods applied to a spacecraft that is modeled as a 3D rigid body
with thrusters. Develop software that computes collision-free trajectories for the robot.
Carefully study the issues associated with choosing the metric on X.

13. Solve the problem of optimally bringing the Dubins car to a goal region in a polygonal world
by using value iteration with interpolation.

14. Select and implement a planning algorithm that computes pushing trajectories for a dif-
ferential drive robot that pushes a box in a polygonal environment. This was given as an
example of a nonholonomic system in Section 13.1.3. To use the appropriate constraints
on U , see [674].

15. Select and implement a planning algorithm that computes trajectories for parking a car
while pulling a single trailer, using (13.19). Make an obstacle region in W that corresponds
to a tight parking space and vary the amount of clearance. Also, experiment with driving
the vehicle through an obstacle course.

16. Generate a 3D rendering of reachability graphs for the airplane model in (13.20). Assume
that in each stage there are nine possible actions, based on combinations of �ying to the
right, left, or straight and decreasing, increasing, or maintaining altitude.

17. Implement the dynamic programming algorithm shown in Figure 14.27 for the two-link
manipulator model given in Example 13.13.

18. Implement the bang-bang algorithm shown in Figure 14.28 for the two-link manipulator
model given in Example 13.13.

19. For the Dubins car (or another system), experiment with generating a search graph based
on Figure 14.7 by alternating between various step sizes. Plot in the plane, the vertices
and state trajectories associated with the edges of the graph. Experiment with different
schemes for generating a resolution-complete search graph in a rectangular region and
compare the results.

20. Use value iteration with interpolation to compute the optimal cost-to-go for the Reeds-
Shepp car. Plot level sets of the cost-to-go, which indicate the time-limited reachable sets.
Compare the result to Figure 14.4.
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15

System Theory and Analytical Techniques

This chapter is complementary to Chapter 14 in that it provides tools and concepts that
can be used to develop better local planning methods (LPMs). Most of the material
was developed in the field of control theory, which focuses mainly on characterizing
the behavior of particular classes of systems, and controlling them in the absence of
obstacles. The two-point boundary value problem (BVP), which was a frequent nuisance
in Chapter 14, can be better understood and solved for many systems by using the ideas of
this chapter. Keep in mind that throughout this chapter there are no obstacles. Although
planning for this case was trivial in Part II, the presence of differential constraints brings
many challenges.

The style in this chapter is to provide a brief survey of concepts and techniques, with the
hope of inspiring further study in other textbooks and research literature. Modern control
theory is a vast and fascinating subject, of which only the surface can be scratched in
one chapter. Section 15.1 introduces stability and controllability concepts, both of which
characterize possible arrivals in a goal state. Stability characterizes how the integral curves
of a vector field behave around a goal point, and controllability indicates whether an action
trajectory exists that arrives at a specified goal.

Section 15.2 revisits dynamic programming one last time. Here it becomes a partial
differential equation expressed in terms of the optimal cost-to-go function. In some cases,
it actually has a closed-form solution, as opposed to its main use in computer science,
which is to obtain algorithm constraints. The powerful Pontryagin’s minimum principle,
which can be derived from dynamic programming, is also covered.

The remainder of the chapter is devoted to nonholonomic systems, which often arise
from underactuated mechanical systems. Section 15.3 expresses the shortest paths between
any pair of points for the Dubins car, the Reeds-Shepp car, and a differential drive, all
of which were introduced in Section 13.1.2. The paths are a beautiful solution to the
BVP and are particularly valuable as an LPM; for example, some have been used in
the plan-and-transform method of Section 14.6.2. Section 15.4 addresses some basic
properties of nonholonomic systems. The most important issues are determining whether
nonholonomic constraints are actually integrable (which removes all ẋi variables) and
characterizing reachable sets that arise due to nonholonomic constraints. Section 15.5
attempts to do the same as Section 15.3, but for more challenging nonholonomic systems.
In these cases, the BVP problem may not be solved optimally, and some methods may
not even reach the goal point precisely. Nevertheless, when applicable, they can be used
to build powerful LPMs in a sampling-based motion planning algorithm.

15.1 Basic system properties

This section provides a brief overview of two fundamental concepts in control theory:
stability and controllability. Either can be considered as characterizing how a goal state

712
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xG

O1

O1

xI

xG

O2

(a) (b)

Figure 15.1: Lyapunov stability: (a) Choose any open set O1 that contains xG, and (b) there exists some
open set O2 from which trajectories will not be able to escape O1. Note that convergence to xG is not
required.

is reached. Stability usually involves feedback and may only converge to the goal as time
approaches infinity. Controllability assesses whether an action trajectory exists that leads
exactly to a specified goal state. In both cases, there is no obstacle region in X.

15.1.1 Stability

The subject of stability addresses properties of a vector field with respect to a given point.
Let X denote a smooth manifold on which the vector field is defined; X may be a C-space
or a phase space. The given point is denoted as xG and can be interpreted in motion
planning applications as the goal state. Stability characterizes how xG is approached from
other states in X by integrating the vector field.

The given vector field f is considered as a velocity field, which is represented as

ẋ = f (x). (15.1)

This looks like a state transition equation that is missing actions. If a system of the form
ẋ = f (x, u) is given, then u can be fixed by designing a feedback plan π : X → U . This
yields ẋ = f (x, π(x)), which is a vector field on X without any further dependency on
actions. The dynamic programming approach in Section 14.5 computed such a solution.
The process of designing a stable feedback plan is referred to in control literature as
feedback stabilization.

Equilibrium points and Lyapunov stability

At the very least, it seems that the state should remain fixed at xG, if it is reached. A point
xG ∈ X is called an equilibrium point (or fixed point) of the vector field f if and only if
f (xG) = 0. This does not, however, characterize how trajectories behave in the vicinity
of xG. Let xI ∈ X denote some initial state, and let x(t) refer to the state obtained at time
t after integrating the vector field f from xI = x(0).

See Figure 15.1. An equilibrium point xG ∈ X is called Lyapunov stable if for any
open neighborhood1 O1 of xG there exists another open neighborhood O2 of xG such
that xI ∈ O2 implies that x(t) ∈ O1 for all t > 0. If X = R

n, then some intuition can
be obtained by using an equivalent definition that is expressed in terms of the Euclidean
metric. An equilibrium point xG ∈ R

n is called Lyapunov stable if, for any t > 0, there
exists some δ > 0 such that ‖xI − xG‖ < δ implies that ‖x(t) − xG‖ < ε. This means

1 An open neighborhood of a point x means an open set that contains x.
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that we can choose a ball around xG with a radius as small as desired, and all future states
will be trapped within this ball, as long as they start within a potentially smaller ball of
radius δ. If a single δ can be chosen independently of every ε and x, then the equilibrium
point is called uniform Lyapunov stable.

Asymptotic stability

Lyapunov stability is weak in that it does not even imply that x(t) converges to xG as
t approaches infinity. The states are only required to hover around xG. Convergence
requires a stronger notion called asymptotic stability. A point xG is an asymptotically
stable equilibrium point of f if:

1. It is a Lyapunov stable equilibrium point of f .

2. There exists some open neighborhood O of xG such that, for any xI ∈ O, x(t) converges2

to xG as t approaches infinity.

For X = R
n, the second condition can be expressed as follows: There exists some δ >

0 such that, for any xI ∈ X with ‖xI − xG‖ < δ, the state x(t) converges to xG as t

approaches infinity. It may seem strange that two requirements are needed for asymptotic
stability. The first one bounds the amount of wiggling room for the integral curve, which
is not captured by the second condition.

Asymptotic stability appears to be a reasonable requirement, but it does not imply
anything about how long it takes to converge. If xG is asymptotically stable and there exist
some m > 0 and α > 0 such that

‖x(t) − xG‖ ≤ me−αt‖xI − xG‖, (15.2)

then xG is also called exponentially stable. This provides a convenient way to express the
rate of convergence.

For use in motion planning applications, even exponential convergence may not seem
strong enough. This issue was discussed in Section 8.4.1. For example, in practice, one
usually prefers to reach xG in finite time, as opposed to only being “reached” in the limit.
There are two common fixes. One is to allow asymptotic stability and declare the goal to
be reached if the state arrives in some small, predetermined ball around xG. In this case,
the enlarged goal will always be reached in finite time if xG is asymptotically stable. The
other fix is to require a stronger form of stability in which xG must be exactly reached in
finite time. To enable this, however, discontinuous vector fields such as the inward flow
of Figure 8.5b must be used. Most control theorists are appalled by this because infinite
energy is usually required to execute such trajectories. On the other hand, discontinuous
vector fields may be a suitable representation in some applications, as mentioned in
Chapter 8. Note that without feedback this issue does not seem as important. The state
trajectories designed in much of Chapter 14 were expected to reach the goal in finite time.
Without feedback there was no surrounding vector field that was expected to maintain
continuity or smoothness properties. Section 15.1.3 introduces controllability, which is
based on actually arriving at the goal in finite time, but it is also based on the existence of
one trajectory for a given system ẋ = f (x, u), as opposed to a family of trajectories for a
given vector field x = f (x).

2 This convergence can be evaluated using the metric ρ on X.
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Time-varying vector fields

The stability notions expressed here are usually introduced in the time-varying setting
ẋ = f (x, t). Since the vast majority of planning problems in this book are time-invariant,
the presentation was confined to time-invariant vector fields. There is, however, one
fascinating peculiarity in the topic of finding a feedback plan that stabilizes a system.
Brockett’s condition implies that for some time-invariant systems for which continuous,
time-varying feedback plans exist, there does not exist a continuous time-invariant feed-
back plan [145, 158, 996]. This includes the class of driftless control systems, such as the
simple car and the unicycle. This implies that to maintain continuity of the vector field, a
time dependency must be introduced to allow the vector field to vary as xG is approached!
If continuity of the vector field is not important, then this concern vanishes.

Domains of attraction

The stability definitions given so far are often called local because they are expressed
in terms of a neighborhood of xG. Global versions can also be defined by extending
the neighborhood to all of X. An equilibrium point is globally asymptotically stable if
it is Lyapunov stable, and the integral curve from any x0 ∈ X converges to xG as time
approaches infinity. It may be the case that only points in some proper subset of X converge
to xG. The set of all points in X that converge to xG is often called the domain of attraction
of xG. The funnels of Section 8.5.1 are based on domains of attraction. Also related is
the backward reachable set from Section 14.2.1. In that setting, action trajectories were
considered that lead to xG in finite time. For the domain of attraction only asymptotic
convergence to xG is assumed, and the vector field is given (there are no actions to choose).

Limit cycles

For some vector fields, states may be attracted into a limit cycle. Rather than stabilizing
to a point, the state trajectories converge to a loop path in X. For example, they may
converge to following a circle. This occurs in a wide variety of mechanical systems in
which oscillations are possible. Some of the basic issues, along with several interesting
examples for X = R

2, are covered in [44].

15.1.2 Lyapunov functions

Suppose a velocity field ẋ = f (x) is given along with an equilibrium point, xG. Can the
various forms of stability be easily determined? One of the most powerful methods to
prove stability is to construct a Lyapunov function. This will be introduced shortly, but
first some alternatives are briefly mentioned.

If f (x) is linear, which means that f (x) = Ax for some constant n× n matrix A and
X = R

n, then stability questions with respect to the origin, xG = 0, are answered by
finding the eigenvalues of A [194]. The state x = 0 is asymptotically stable if and only if
all eigenvalues of A have negative real parts. Consider the scalar case, ẋ = ax, for which
X = R and a is a constant. The solution to this differential equation is x(t) = x(0) eat ,
which converges to 0 only if a < 0. This can be easily extended to the case in which
X = R

n and A is an n× n diagonal matrix for which each diagonal entry (or eigenvalue)
is negative. For a general matrix, real or complex eigenvalues determine the stability
(complex eigenvalues cause oscillations). Conditions also exist for Lyapunov stability.
Every equilibrium state of ẋ = Ax is Lyapunov stable if the eigenvalues of A all have
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nonpositive real parts, and the eigenvalues with zero real parts are distinct roots of the
characteristic polynomial of A.

If f (x) is nonlinear, then stability can sometimes be inferred by linearizing f (x) about
xG and performing linear stability analysis. In many cases, however, this procedure is
inconclusive (see Chapter 6 of [158]). Proving the stability of a vector field is a challenging
task for most nonlinear systems. One approach is based on LaSalle’s invariance principle
[39, 158, 588] and is particularly useful for showing convergence to any of multiple goal
states (see Section 5.4 of [848]). The other major approach is to construct a Lyapunov
function, which is used as an intermediate tool to indirectly establish stability. If this
method fails, then it still may be possible to show stability using other means. Therefore,
it is a sufficient condition for stability, but not a necessary one.

Determining stability

Suppose a velocity field ẋ = f (x) is given along with an equilibrium point xG. Let φ

denote a candidate Lyapunov function, which will be used as an auxiliary device for
establishing the stability of f . An appropriate φ must be determined for the particular
vector field f . This may be quite challenging in itself, and the details are not covered
here. In a sense, the procedure can be characterized as “guess and verify,” which is the
way that many solution techniques for differential equations are described. If φ succeeds
in establishing stability, then it is promoted to being called a Lyapunov function for f .

It will be important to characterize how φ varies in the direction of flow induced by f .
This is measured by the Lie derivative,

φ̇(x) =
n∑

i=1

∂φ

∂xi

fi(x). (15.3)

This results in a new function φ̇(x), which indicates for each x the change in φ along the
direction of ẋ = f (x).

Several concepts are needed to determine stability. Let a function h : [0,∞) → [0,∞)
be called a hill if it is continuous, strictly increasing, and h(0) = 0. This can be considered
as a one-dimensional navigation function, which has a single local minimum at the goal,
0. A function φ : X → [0,∞) is called locally positive definite if there exists some open
set O ⊆ X and a hill function h such that φ(xG) = 0 and φ(x) ≥ h(‖x‖) for all x ∈ 0. If
O can be chosen as O = X, and if X is bounded, then φ is called globally positive definite
or just positive definite. In some spaces this may not be possible due to the topology
of X; such issues arose when constructing navigation functions in Section 8.4.4. If X

is unbounded, then h must additionally approach infinity as ‖x‖ approaches infinity to
yield a positive definite φ [848]. For X = R

n, a quadratic form xT Mx, for which M is a
positive definite matrix, is a globally positive definite function. This motivates the use of
quadratic forms in Lyapunov stability analysis.

The Lyapunov theorems can now be stated [158, 848]. Suppose that φ is locally positive
definite at xG. If there exists an open set O for which xG ∈ O, and φ̇(x) ≤ 0 on all x ∈ O,
then f is Lyapunov stable. If −φ̇(x) is also locally positive definite on O, then f is
asymptotically stable. If φ and −φ̇ are both globally positive definite, then f is globally
asymptotically stable.

Example 15.1 (Establishing Stability via Lyapunov Functions) Let X = R. Let ẋ =
f (x) = −x5, and we will attempt to show that x = 0 is stable. Let the candidate Lyapunov
function be φ(x) = 1

2x2. The Lie derivative (15.3) produces φ̇(x) = −x6. It is clear that
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φ and −φ̇ are both globally positive definite; hence, 0 is a global, asymptotically stable
equilibrium point of f . �

Lyapunov functions in planning

Lyapunov functions are closely related to navigation functions and optimal cost-to-go
functions in planning. In the optimal discrete planning problem of Sections 2.3 and 8.2,
the cost-to-go values can be considered as a discrete Lyapunov function. By applying
the computed actions, a kind of discrete vector field can be imagined over the search
graph. Each applied optimal action yields a reduction in the optimal cost-to-go value,
until 0 is reached at the goal. Both the optimal cost-to-go and Lyapunov functions ensure
that the trajectories do not become trapped in a local minimum. Lyapunov functions
are more general than cost-to-go functions because they do not require optimality. They
are more like navigation functions, as considered in Chapter 8. The requirements for a
discrete navigation function, as given in Section 8.2.2, are very similar to the positive
definite condition given in this section. Imagine that the navigation function shown in
Figure 8.3 is a discrete approximation to a Lyapunov function over R

2. In general, a
Lyapunov function indicates some form of distance to xG, although it may not be optimal.
Nevertheless, it is based on making monotonic progress toward xG. Therefore, it may
serve as a distance function in many sampling-based planning algorithms of Chapter 14.
Since it respects the differential constraints imposed by the system, it may provide a better
indication of how to make progress during planning in comparison to a Euclidean metric
that ignores these considerations. Lyapunov functions should be particularly valuable in
the RDT method of Section 14.4.3, which relies heavily on the distance function over X.

15.1.3 Controllability

Now suppose that a system ẋ = f (x, u) is given on a smooth manifold X as defined
throughout Chapter 13 and used extensively in Chapter 14. The system can be considered
as a parameterized family of vector fields in which u is the parameter. For stability, it
was assumed that this parameter was fixed by a feedback plan to obtain some ẋ = f (x).
This section addresses controllability, which indicates whether one state is reachable from
another via the existence of an action trajectory ũ. It may be helpful to review the reachable
set definitions from Section 14.2.1.

Classical controllability

Let U denote the set of permissible action trajectories for the system, as considered in
Section 14.1.1. By default, this is taken as any ũ for which (14.1) can be integrated.
A system ẋ = f (x, u) is called controllable if for all xI , xG ∈ X, there exists a time
t > 0 and action trajectory ũ ∈ U such that upon integration from x(0) = xI , the result is
x(t) = xG. Controllability can alternatively be expressed in terms of the reachable sets of
Section 14.2.1. The system is controllable if xG ∈ R(xI ,U) for all xI , xG ∈ X.

A system is therefore controllable if a solution exists to any motion planning problem
in the absence of obstacles. In other words, a solution always exists to the two-point
boundary value problem (BVP).

Example 15.2 (Classical Controllability) All of the vehicle models in Section 13.1.2
are controllable. For example, in an infinitely large plane, the Dubins car can be driven
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between any two configurations. Note, however, that if the plane is restricted by obstacles,
then this is not necessarily possible with the Dubins car. As an example of a system
that is not controllable, let X = R, ẋ = u, and U = [0, 1]. In this case, the state cannot
decrease. For example, there exists no action trajectory that brings the state from xI = 1
to xG = 0. �

Many methods for determining controllability of a system are covered in standard
textbooks on control theory. If the system is linear, as given by (13.37) with dimensions
m and n, then it is controllable if and only if the n× nm controllability matrix

M = [B ... AB
... A2B

... · · · ... An−1B
]

(15.4)

has full rank [194]. This is called the Kalman rank condition [504]. If the system is
nonlinear, then the controllability matrix can be evaluated on a linearized version of
the system. Having full rank is sufficient to establish controllability from a single point
(see Proposition 11.2 in [848]). If the rank is not full, however, the system may still be
controllable. A fascinating property of some nonlinear systems is that they may be able
to produce motions in directions that do not seem to be allowed at first. For example, the
simple car given in Section 13.1.2 cannot slide sideways; however, it is possible to wiggle
the car sideways by performing parallel-parking maneuvers. A method for determining
the controllability of such systems is covered in Section 15.4.

For fully actuated systems of the form q̈ = h(q, q̇, u), controllability can be determined
by converting the system into double-integrator form, as considered in Section 14.4.1. Let
the system be expressed as q̈ = u′, in which u′ ∈ U ′(q, q̇). If U ′(q, q̇) contains an open
neighborhood of the origin of R

n, and the same neighborhood can be used for any x ∈ X,
then the system is controllable. If a nonlinear system is underactuated, as in the simple
car, then controllability issues become considerably more complicated. The next concept
is suitable for such systems.

STLC: Controllability that handles obstacles

The controllability concept discussed so far has no concern for how far the trajectory travels
in X before xG is reached. This issue becomes particularly important for underactuated
systems and planning among obstacles. These concerns motivate a natural question: Is
there a form of controllability that is naturally suited for obstacles? It should declare
that if a state is reachable from another in the absence of differential constraints, then it
is also reachable with the given system ẋ = f (x, u). This can be expressed using time-
limited reachable sets. Let R(x,U, t) denote the set of all states reachable in time less
than or equal to t , starting from x. A system ẋ = f (x, u) is called small-time locally
controllable (STLC) from xI if there exists some t > 0 such that xI ∈ int(R(xI ,U, t ′))
for all t ′ ∈ (0, t] (here, int denotes the interior of a set, as defined in Section 4.1.1). If
the system ẋ = f (x, u) is STLC from every xI ∈ X, then the whole system is said to be
STLC.

Consider using this definition to answer the question above. Since int(R(xI ,U, t ′)) is
an open set, there must exist some small ε > 0 for which the open ball B(xI , ε) is a
strict subset of int(R(xI ,U, t ′)). See Figure 15.2. Any point on the boundary of B(xI , ε)
can be reached, which means that a step of size ε can be taken in any direction, even
though differential constraints exist. With obstacles, however, we have to be careful that
the trajectory from xI to the surface of B(xI , ε) does not wander too far away.
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xI

B(xI , ε)

int(R(xI ,U , t′))

Figure 15.2: If the system is STLC, then motions can be made in any direction, in an arbitrarily small
amount of time.

Suppose that there is an obstacle region Xobs , and a violation-free state trajectory x̃

is given that terminates in xG at time tF and does not necessarily satisfy a given sys-
tem. If the system is STLC, then it is always possible to find another trajectory, based
on x̃, that satisfies the differential constraints. Apply the plan-and-transform method
of Section 14.6.2. Suppose that intervals for potential replacement are chosen using
binary recursive subdivision. Also suppose that an LPM exists that computes that short-
est trajectory between any pair of states; this trajectory ignores obstacles but respects
the differential constraints. Initially, [0, tF ] is replaced by a trajectory from the LPM,
and if it is not violation-free, then [0, tF ] is subdivided into [0, tF /2] and [tF /2, tF ],
and replacement is attempted on the smaller intervals. This idea can be applied re-
cursively until eventually the segments are small enough that they must be violation-
free.

This final claim is implied by the STLC property. No matter how small the intervals
become, there must exist a replacement trajectory. If an interval is large, then there
may be sufficient time to wander far from the original trajectory. However, as the time
interval decreases, there is not enough time to deviate far from the original trajectory.
(This discussion assumes mild conditions on f , such as being Lipschitz.) Suppose that
the trajectory is protected by a collision-free tube of radius ε. Thus, all points along the
trajectory are at least ε from the boundary of Xfree. The time intervals can be chosen small
enough to ensure that the trajectory deviations are less than ε from the original trajectory.
Therefore, STLC is a very important property for a system to possess for planning in
the presence of obstacles. Section 15.4 covers some mathematical tools for determining
whether a nonlinear system is STLC.

A concept closely related to controllability is accessibility, which is only concerned
with the dimension of the reachable set. Let n be the dimension of X. If there exists some
t > 0 for which the dimension of R(xI ,U, t) is n, then the system is called accessible
from xI . Alternatively, this may be expressed as requiring that int(R(xI ,U, t)) 	= ∅.

Example 15.3 (Accessibility) Recall the system from Section 13.1.3 in which the state
is trapped on a circle. In this case X = R

2, and the state transition equation was specified
by ẋ = yu and ẏ = −xu. This system is not accessible because the reachable sets have
dimension one. �

A small-time version of accessibility can also be defined by requiring that there ex-
ists some t such that int(R(xI ,U, t ′)) 	= ∅ for all t ′ ∈ (0, t]. Accessibility is particularly
important for systems with drift.
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15.2 Continuous-time dynamic programming

Dynamic programming has been a recurring theme throughout most of this book. So far,
it has always taken the form of computing optimal cost-to-go (or cost-to-come) functions
over some sequence of stages. Both value iteration and Dijkstra-like algorithms have
emerged. In computer science, dynamic programming is a fundamental insight in the de-
velopment of algorithms that compute optimal solutions to problems. In its original form,
however, dynamic programming was developed to solve the optimal control problem [86].
In this setting, a discrete set of stages is replaced by a continuum of stages, known as time.
The dynamic programming recurrence is instead a partial differential equation, called the
Hamilton-Jacobi-Bellman (HJB) equation. The HJB equation can be solved using numer-
ical algorithms; however, in some cases, it can be solved analytically.3 Section 15.2.2
briefly describes an analytical solution in the case of linear systems. Section 15.2.3 covers
Pontryagin’s minimum principle, which can be derived from the dynamic programming
principle, and generalizes the optimization performed in Hamiltonian mechanics (recall
Section 13.4.4).

15.2.1 Hamilton-Jacobi-Bellman equation

The HJB equation is a central result in optimal control theory. Many other principles
and design techniques follow from the HJB equation, which itself is just a statement
of the dynamic programming principle in continuous time. A proper derivation of all
forms of the HJB equation would be beyond the scope of this book. Instead, a time-
invariant formulation that is most relevant to planning will be given here. Also, an informal
derivation will follow, based in part on [97].

15.2.1.1 The discrete case

Before entering the continuous realm, the concepts will first be described for discrete
planning, which is often easier to understand. Recall from Section 2.3 that if X, U , and
the stages are discrete, then optimal planning can be performed by using value iteration
or Dijkstra’s algorithm on the search graph. The stationary, optimal cost-to-go function
G∗ can be used as a navigation function that encodes the optimal feedback plan. This was
suggested in Section 8.2.2, and an example was shown in Figure 8.3.

Suppose that G∗ has been computed under Formulation 8.1 (or Formulation 2.3). Let
the state transition equation be denoted as

x ′ = fd (x, u). (15.5)

The dynamic programming recurrence for G∗ is

G∗(x) = min
u∈U (x)

{
l(x, u) +G∗(x ′)

}
, (15.6)

which may already be considered as a discrete form of the Hamilton-Jacobi-Bellman
equation. To gain some insights into the coming concepts, however, some further manip-
ulations will be performed.

Let u∗ denote the optimal action that is applied in the min of (15.6). Imagine that u∗ is
hypothesized as the optimal action but needs to be tested in (15.6) to make sure. If it is

3 It is often surprising to computer scientists that dynamic programming in this case does not yield an algorithm. It
instead yields a closed-form solution to the problem.
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truly optimal, then

G∗(x) = l(x, u∗) +G∗(fd (x, u∗)). (15.7)

This can already be considered as a discrete form of the Pontryagin minimum principle,
which will appear in Section 15.2.3. By rearranging terms, a nice interpretation is obtained:

G∗(fd (x, u∗)) −G∗(x) = −l(x, u∗). (15.8)

In a single stage, the optimal cost-to-go drops by l(x, u∗) when G∗ is used as a navigation
function (multiply (15.8) by−1). The optimal single-stage cost is revealed precisely when
taking one step toward the goal along the optimal path. This incremental change in the
cost-to-go function while moving in the best direction forms the basis of both the HJB
equation and the minimum principle.

15.2.1.2 The continuous case

Now consider adapting to the continuous case. Suppose X and U are both continuous,
but discrete stages remain, and verify that (15.5) to (15.8) still hold true. Their present
form can be used for any system that is approximated by discrete stages. Suppose that the
discrete-time model of Section 14.2.2 is used to approximate a system ẋ = f (x, u) on a
state space X that is a smooth manifold. In that model, U was discretized to Ud , but here
it will be left in its original form. Let �t represent the time discretization.

The HJB equation will be obtained by approximating (15.6) with the discrete-time
model and letting �t approach zero. The arguments here are very informal; see [97, 573,
913] for more details. Using discrete-time approximation, the dynamic programming
recurrence is

G∗(x) = min
u∈U (x)

{
ld (x, u) +G∗(x ′)

}
, (15.9)

in which ld is a discrete-time approximation to the cost that accumulates over stage k and
is given as

ld (x, u) ≈ l(x, u)�t. (15.10)

It is assumed that as �t approaches zero, the total discretized cost converges to the
integrated cost of the continuous-time formulation.

Using the linear part of a Taylor series expansion about x, the term G∗(x ′) can be
approximated as

G∗(x ′) ≈ G∗(x) +
n∑

i=1

∂G∗

∂xi

fi(x, u)�t. (15.11)

This approximates G∗(x ′) by its tangent plane at x. Substitution of (15.11) and (15.10)
into (15.9) yields

G∗(x) ≈ min
u∈U (x)

{
l(x, u) �t +G∗(x) +

n∑

i=1

∂G∗

∂xi

fi(x, u) �t

}
. (15.12)

Subtracting G∗(x) from both sides of (15.12) yields

min
u∈U (x)

{
l(x, u) �t +

n∑

i=1

∂G∗

∂xi

fi(x, u) �t

}
≈ 0. (15.13)
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Taking the limit as �t approaches zero and then dividing by �t yields the HJB equation:

min
u∈U (x)

{
l(x, u) +

n∑

i=1

∂G∗

∂xi

fi(x, u)

}
= 0. (15.14)

Compare the HJB equation to (15.6) for the discrete-time case. Both indicate how the
cost changes when moving in the best direction. Substitution of u∗ for the optimal action
into (15.14) yields

n∑

i=1

∂G∗

∂xi

fi(x, u∗) = −l(x, u∗). (15.15)

This is just the continuous-time version of (15.8). In the current setting, the left side
indicates the derivative of the cost-to-go function along the direction obtained by applying
the optimal action from x.

The HJB equation, together with a boundary condition that specifies the final-stage
cost, sufficiently characterizes the optimal solution to the planning problem. Since it is
expressed over the whole state space, solutions to the HJB equation yield optimal feedback
plans. Unfortunately, the HJB equation cannot be solved analytically in most settings.
Therefore, numerical techniques, such as the value iteration method of Section 14.5, must
be employed. There is, however, an important class of problems that can be directly solved
using the HJB equation; see Section 15.2.2.

15.2.1.3 Variants of the HJB equation

Several versions of the HJB equation exist. The one presented in (15.14) is suitable for
planning problems such as those expressed in Chapter 14. If the cost-to-go functions are
time-dependent, then the HJB equation is

min
u∈U (x)

{
l(x, u, t) + ∂G∗

∂t
+

n∑

i=1

∂G∗

∂xi

fi(x, u, t)

}
= 0, (15.16)

and G∗ is a function of both x and t . This can be derived again using a Taylor expansion,
but with x and t treated as the variables. Most textbooks on optimal control theory present
the HJB equation in this form or in a slightly different form by pulling ∂G∗/∂t outside of
the min and moving it to the right of the equation:

min
u∈U (x)

{
l(x, u, t) +

n∑

i=1

∂G∗

∂xi

fi(x, u, t)

}
= −∂G∗

∂t
. (15.17)

In differential game theory, the HJB equation generalizes to the Hamilton-Jacobi-
Isaacs (HJI) equations [60, 480]. Suppose that the system is given as (13.203) and a
zero-sum game is defined using a cost term of the form l(x, u, v, t). The HJI equations
characterize saddle equilibria and are given as

min
u∈U (x)

max
v∈V (x)

{
l(x, u, v, t) + ∂G∗

∂t
+

n∑

i=1

∂G∗

∂xi

fi(x, u, v, t)

}
= 0 (15.18)

and

max
v∈V (x)

min
u∈U (x)

{
l(x, u, v, t) + ∂G∗

∂t
+

n∑

i=1

∂G∗

∂xi

fi(x, u, v, t)

}
= 0. (15.19)
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There are clear similarities between these equations and (15.16). Also, the swapping of
the min and max operators resembles the definition of saddle points in Section 9.3.

15.2.2 Linear-quadratic problems

This section briefly describes a problem for which the HJB equation can be directly
solved to yield a closed-form expression, as opposed to an algorithm that computes
numerical approximations. Suppose that a linear system is given by (13.37), which requires
specifying the matrices A and B. The task is to design a feedback plan that asymptotically
stabilizes the system from any initial state. This is an infinite-horizon problem, and no
termination action is applied.

An optimal solution is requested with respect to a cost functional based on matrix
quadratic forms. Let Q be a nonnegative definite4 n× n matrix, and let R be a positive
definite n× n matrix. The quadratic cost functional is defined as

L(x̃, ũ) = 1

2

∫ ∞

0

(
x(t)T Qx(t) + u(t)T Ru(t)

)
dt. (15.20)

To guarantee that a solution exists that yields finite cost, several assumptions must be made
on the matrices. The pair (A, B) must be stabilizable, and (A, Q) must be detectable; see
[28] for specific conditions and a full derivation of the solution presented here.

Although it is not done here, the HJB equation can be used to derive the algebraic
Riccati equation,

SA+ AT S − SBR−1BT S +Q = 0, (15.21)

in which all matrices except S were already given. Methods exist that solve for S, which
is a unique solution in the space of nonnegative definite n× n matrices.

The linear vector field

ẋ = (A− BR−1BT S
)
x (15.22)

is asymptotically stable (the real parts of all eigenvalues of the matrix are negative). This
vector field is obtained if u is selected using a feedback plan π defined as

π (x) = −R−1BT Sx. (15.23)

The feedback plan π is in fact optimal, and the optimal cost-to-go is simply

G∗(x) = 1
2xT Sx. (15.24)

Thus, for linear systems with quadratic cost, an elegant solution exists without resorting
to numerical approximations. Unfortunately, the solution techniques do not generalize to
nonlinear systems or linear systems among obstacles. Hence, the planning methods of
Chapter 14 are justified.

However, many variations and extensions of the solutions given here do exist, but
only for other problems that are expressed as linear systems with quadratic cost. In every
case, some variant of Riccati equations is obtained by application of the HJB equation.
Solutions to time-varying systems are derived in [28]. If there is Gaussian uncertainty
in predictability, then the linear-quadratic Gaussian (LQG) problem is obtained [567].

4 Nonnegative definite means xT Qx ≥ 0 for all x ∈ R, and positive definite means xT Rx > 0 for all x ∈ R
n.
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Linear-quadratic problems and solutions even exist for differential games of the form
(13.204) [60].

15.2.3 Pontryagin’s minimum principle

Pontryagin’s minimum principle5 is closely related to the HJB equation and provides con-
ditions that an optimal trajectory must satisfy. Keep in mind, however, that the minimum
principle provides necessary conditions, but not sufficient conditions, for optimality. In
contrast, the HJB equation offered sufficient conditions. Using the minimum principle
alone, one is often not able to conclude that a trajectory is optimal. In some cases, how-
ever, it is quite useful for finding candidate optimal trajectories. Any trajectory that fails
to satisfy the minimum principle cannot be optimal.

To understand the minimum principle, we first return to the case of discrete planning.
As mentioned previously, the minimum principle is essentially given by (15.7). This can
be considered as a specialization of the HJB equation to the special case of applying the
optimal action u∗. This causes the min to disappear, but along with it the global properties
of the HJB equation also vanish. The minimum principle expresses conditions along
the optimal trajectory, as opposed to the cost-to-go function over the whole state space.
Therefore, it can at best assure local optimality in the space of possible trajectories.

The minimum principle for the continuous case is essentially given by (15.15), which
is the continuous-time counterpart to (15.7). However, it is usually expressed in terms of
adjoint variables and a Hamiltonian function, in the spirit of Hamiltonian mechanics from
Section 13.4.4.

Let λ denote an n-dimensional vector of adjoint variables, which are defined as

λi = ∂G∗

∂xi

. (15.25)

The Hamiltonian function is defined as

H (x, u, λ) = l(x, u) +
n∑

i=1

λifi(x, u), (15.26)

which is exactly the expression inside of the min of the HJB equation (15.14) after using
the adjoint variable definition from (15.25). This can be compared to the Hamiltonian
given by (13.192) in Section 13.4.4 (p from that context becomes λ here). The two are
not exactly the same, but they both are motivated by the same basic principles.

Under the execution of the optimal action trajectory ũ∗, the HJB equation implies that

H (x(t), u(t)∗, λ(t)) = 0 (15.27)

for all t ≥ 0. This is just an alternative way to express (15.15). The fact that H remains
constant appears very much like a conservation law, which was the basis of Hamiltonian
mechanics in Section 13.4.4. The use of the Hamiltonian in the minimum principle is
more general.

5 This is often called Pontryagin’s maximum principle, because Pontryagin originally defined it as a maximization
[804]. The Hamiltonian used in most control literature is negated with respect to Pontryagin’s Hamiltonian; therefore,
it becomes minimized. Both names are in common use.
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Using the HJB equation (15.14), the optimal action is given by

u∗(t) = argmin
u∈U (x)

{H (x(t), u(t), λ(t))} . (15.28)

In other words, the Hamiltonian is minimized precisely at u(t) = u∗(t).
The missing piece of information so far is how λ evolves over time. It turns out that a

system of the form

λ̇ = g(x, λ, u∗) (15.29)

can be derived by differentiating the Hamiltonian (or, equivalently, the HJB equation)
with respect to x. This yields two coupled systems, ẋ = f (x, u∗) and (15.29). These can
in fact be interpreted as a single system in a 2n-dimensional phase space, in which each
phase vector is (x, λ). This is analogous to the phase interpretation in Section 13.4.4 for
Hamiltonian mechanics, which results in (13.198).

Remember that λ is defined in (15.25) just to keep track of the change in G∗. It would
be helpful to have an explicit form for (15.29). Suppose that u∗ is selected by a feedback
plan to yield u∗ = π∗(x). In this case, the Hamiltonian can be interpreted as a function of
only x and λ. Under this assumption, differentiating the Hamiltonian (15.26) with respect
to xi yields

∂l(x, π∗(x))

∂xi

+
n∑

j=1

∂λj

∂xi

fj (x, π∗(x)) +
n∑

j=1

λj

∂fi(x, π∗(x))

∂xj

. (15.30)

This validity of this differentiation requires a technical lemma that asserts that the deriva-
tives of π(x) can be disregarded (see Lemma 3.3.1 of [97]). Also, it will be assumed that
U is convex in the arguments that follow, even though there exist proofs of the minimum
principle that do not require this.

The second term in (15.30) is actually λ̇i , although it is hard to see at first. The total
differential of λi with respect to the state is

dλi =
n∑

j=1

∂λi

∂xj

dxi. (15.31)

Dividing both sides by dt yields

dλi

dt
=

n∑

j=1

∂λi

∂xj

dxi

dt
=

n∑

j=1

∂λi

∂xj

ẋi . (15.32)

Each ẋi is given by the state transition equation: ẋi = fi(x, π∗(x)). Therefore,

λ̇ = dλi

dt
= d

dt

∂G∗

∂xi

=
n∑

j=1

∂λi

∂xj

fj (x, π∗(x)). (15.33)

Substituting (15.33) into (15.30) and setting the equation to zero (because the Hamiltonian
is zero along the optimal trajectory) yields

∂l(x, π∗(x))

∂xi

+ λ̇i +
n∑

j=1

λj

∂fi(x, π∗(x))

∂xj

= 0. (15.34)
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Solving for λ̇i yields

λ̇i = −∂l(x, π∗(x))

∂xi

−
n∑

j=1

λj

∂fi(x, π∗(x))

∂xj

. (15.35)

Conveniently, this is the same as

λ̇i = −∂H

∂xi

, (15.36)

which yields the adjoint transition equation, as desired.
The transition equations given by ẋ = f (x, u) and (15.36) specify the evolution of the

system given by the minimum principle. These are analogous to Hamilton’s equations
(13.198), which were given in Section 13.4.4. The generalized momentum in that context
becomes the adjoint variables here.

When applying the minimum principle, it is usually required to use the fact that the
optimal action at all times must satisfy (15.28). Often, this is equivalently expressed as

H (x(t), u∗(t), λ(t)) ≤ H (x(t), u(t), λ(t)), (15.37)

which indicates that the Hamiltonian increases or remains the same whenever deviation
from the optimal action occurs (the Hamiltonian cannot decrease).

Example 15.4 (Optimal Planning for the Double Integrator) Recall the double inte-
grator system from Example 13.3. Let q̈ = u, C = R, and U = [−1, 1] ∪ {uT }. Imagine
a particle that moves in R. The action is a force in either direction and has at most unit
magnitude. The state transition equation is ẋ1 = x2 and ẋ2 = u, and X = R

2. The task
is to perform optimal motion planning between any two states xI , xG ∈ X. From a given
initial state xI , a goal state xG must be reached in minimum time. The cost functional is
defined in this case as l(x, u) = 1 for all x ∈ X and and u ∈ U such that u 	= uT .

Using (15.26), the Hamiltonian is defined as

H (x, u, λ) = 1 + λ1x2 + λ2u. (15.38)

The optimal action trajectory is obtained from (15.28) as

u∗(t) = argmin
u∈[−1,1]

{1 + λ1(t)x2(t) + λ2(t)u(t)} . (15.39)

If λ2(t) < 0, then u∗(t) = 1, and if λ2(t) > 0, then u∗(t) = −1. Thus, the action may be
assigned as u∗(t) = −sgn(λ2(t)), if λ2(t) 	= 0. Note that these two cases are the “bangs”
of the bang-bang control from Section 14.6.3, and they are also the extremal actions used
for the planning algorithm in Section 14.4.1. At the boundary case in which λ2(t) = 0,
any action in [−1, 1] may be chosen.

The only remaining task is to determine the values of the adjoint variables over time.
The adjoint transition equation is obtained from (15.36) as λ̇1 = 0 and λ̇2 = −λ1. The
solutions are λ1(t) = c1 and λ2(t) = c2 − c1t , in which c1 and c2 are constants that can
be determined at t = 0 from (15.38) and (15.39). The optimal action depends only on the
sign of λ2(t). Since its solution is the equation of a line, it can change signs at most once.
Therefore, there are four possible kinds of solutions, depending on the particular xI and
xG:

1. Pure acceleration, u∗(t) = 1, is applied for all time.

2. Pure deceleration, u∗(t) = −1, is applied for all time.
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3. Pure acceleration is applied up to some time t ′ and is followed immediately by pure
deceleration until the final time.

4. Pure deceleration is applied up to some time t ′ followed immediately by pure acceleration
until the final time.

For the last two cases, t ′ is often called the switching time, at which point a dis-
continuity in ũ∗ occurs. These two are bang-bang solutions, which were described in
Section 14.6.3. �

This was one of the simplest possible examples, and the optimal solution was easily
found because the adjoint variables are linear functions of time. Section 15.3 covers
optimal solutions for the Dubins car, the Reeds-Shepp car, and the differential drive, all
of which can be established using the minimum principle combined with some geometric
arguments. As systems become more complicated, such analysis is unfortunately too
difficult. In these cases, sampling-based methods, such as those of Chapter 14, must be
used to determine optimal trajectories.

One common complication is the existence of singular arcs along the solution trajec-
tory. These correspond to a degeneracy in H with respect to u over some duration of time.
This could be caused, for example, by having H independent of u. In Example 15.4, H

became independent of u when λ2(t) = 0; however, there was no singular arc because
this could only occur for an instant of time. If the duration had been longer, then there
would be an interval of time over which the optimal action could not be determined. In
general, if the Hessian (recall definition from (8.48)) of H with respect to u is a positive
definite matrix, then there are no singular arcs (this is often called the Legendre-Clebsch
condition). The minimum principle in this case provides a sufficient condition for local
optimality in the space of possible state trajectories. If the Hessian is not positive definite
for some interval [t1, t2] with t1 < t2, then additional information is needed to determine
the optimal trajectory over the singular arc from x∗(t1) to x∗(t2).

Note that all of this analysis ignores the existence of obstacles. There is nothing to
prevent the solutions from attempting to enter an obstacle region. The action set U (x) and
cost l(x, u) can be adjusted to account for obstacles; however, determining an optimal
solution from the minimum principle becomes virtually impossible, except in some special
cases.

There are other ways to derive the minimum principle. Recall from Section 13.4.4 that
Hamilton’s equations can be derived from the Euler-Lagrange equation. It should not be
surprising that the minimum principle can also be derived using variational principles [97,
792]. The minimum principle can also be interpreted as a form of constrained optimization.
This yields the interpretation of λ as Lagrange multipliers. A very illuminating reference
for further study of the minimum principle is Pontryagin’s original works [804].

Time optimality

Interesting interpretations of the minimum principle exist for the case of optimizing the
time to reach the goal [427, 904]. In this case, l(x, u) = 1 in (15.26), and the cost term
can be ignored. For the remaining portion, let λ be defined as

λi = −∂G∗

∂xi

, (15.40)
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instead of using (15.25). In this case, the Hamiltonian can be expressed as

H (x, u, λ) =
n∑

i=1

λifi(x, u) =
〈
−∂G∗

∂x
, f (x, u)

〉
, (15.41)

which is an inner product between f (x, u) and the negative gradient of G∗. Using (15.40),
the Hamiltonian should be maximized instead of minimized (this is equivalent to Pon-
tryagin’s original formulation [804]). An inner product of two vectors increases as their
directions become closer to parallel. Optimizing (15.41) amounts to selecting u so that ẋ

is as close as possible to the direction of steepest descent of G∗. This is nicely interpreted
by considering how the boundary of the reachable set R(x0,U, t) propagates through X.
By definition, the points on ∂R(x0,U, t) must correspond to time-optimal trajectories.
Furthermore, ∂R(x0,U, t) can be interpreted as a propagating wavefront that is perpen-
dicular to −∂G∗/∂x. The minimum principle simply indicates that u should be chosen
so that ẋ points into the propagating boundary, as close to being orthogonal as possible
[427].

15.3 Optimal paths for some wheeled vehicles

For some of the wheeled vehicle models of Section 13.1.2, the shortest path between any
pair of configurations was completely characterized. In this section, X = C = R

2 × S
1,

which corresponds to the C-space for a rigid body in the plane. For each model, the path
length in C must be carefully defined to retain some physical significance in the world
W = R

2 in which the vehicle travels. For example, in the case of the simple car, the
distance in W traveled by the center of the rear axle will be optimized. If the coordinate
frame is assigned appropriately, this corresponds to optimizing the path length in the R

2

subspace of C while ignoring orientation. Keep in mind that the solutions given in this
section depend heavily on the particular cost functional that is optimized.

Sections 15.3.1–15.3.3 cover the shortest paths for the Dubins car, the Reeds-Shepp
car, and a differential-drive model, respectively. In each case, the paths can be elegantly
described as combinations of a few motion primitives. Due to symmetries, it is sufficient
to describe the optimal paths from a fixed initial configuration qI = (0, 0, 0) to any goal
configuration qG ∈ C. If the optimal path is desired from a different qI ∈ C, then it can
be recovered from rigid-body transformations applied to qI and qG (the whole path can
easily be translated and rotated without effecting its optimality, provided that qG does not
move relative to qI ). Alternatively, it may be convenient to fix qG and consider optimal
paths from all possible qI .

Once qI (or qG) is fixed, C can be partitioned into cells that correspond to sets of
placements for qG (or qI ). Inside of each cell, the optimal curve is described by a fixed
sequence of parameterized motion primitives. For example, one cell for the Dubins car
indicates “turn left,” “go straight,” and then “turn right.” The curves are ideally suited for
use as an LPM in a sampling-based planning algorithm.

This section mainly focuses on presenting the solutions. Establishing their correctness is
quite involved and is based in part on Pontryagin’s minimum principle from Section 15.2.3.
Other important components are Filipov’s existence theorem (see [904]) and Boltyanskii’s
sufficient condition for optimality (which also justifies dynamic programming) [132].
Substantially more details and justifications of the curves presented in Sections 15.3.1 and
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Symbol Steering: u

S 0
L 1
R −1

Figure 15.3: The three motion primitives from which all optimal curves for the Dubins car can be con-
structed.

15.3.2 appear in [904, 905, 924]. The corresponding details for the curves of Section 15.3.3
appear in [65].

15.3.1 Dubins curves

Recall the Dubins version of the simple car given in Section 13.1.2. The system was
specified in (13.15). It is assumed here that the car moves at constant forward speed,
us = 1. The other important constraint is the maximum steering angle φmax , which results
in a minimum turning radius ρmin. As the car travels, consider the length of the curve
in W = R

2 traced out by a pencil attached to the center of the rear axle. This is the
location of the body-frame origin in Figure 13.1. The task is to minimize the length of this
curve as the car travels between any qI and qG. Due to ρmin, this can be considered as a
bounded-curvature shortest-path problem. If ρmin = 0, then there is no curvature bound,
and the shortest path follows a straight line in R

2. In terms of a cost functional of the form
(8.39), the criterion to optimize is

L(q̃, ũ) =
∫ tF

0

√
ẋ(t)2 + ẏ(t)2dt, (15.42)

in which tF is the time at which qG is reached, and a configuration is denoted as q =
(x, y, θ). If qG is not reached, then it is assumed that L(q̃, ũ) = ∞.

Since the speed is constant, the system can be simplified to

ẋ = cos θ

ẏ = sin θ

θ̇ = u,

(15.43)

in which u is chosen from the interval U = [− tan φmax, tan φmax]. This implies that
(15.42) reduces to optimizing the time tF to reach qG because the integrand reduces
to 1. For simplicity, assume that tan φ = 1. The following results also hold for any
φmax ∈ (0, π/2).

It was shown in [296] that between any two configurations, the shortest path for the
Dubins car can always be expressed as a combination of no more than three motion
primitives. Each motion primitive applies a constant action over an interval of time.
Furthermore, the only actions that are needed to traverse the shortest paths are u ∈
{−1, 0, 1}. The primitives and their associated symbols are shown in Figure 15.3. The S

primitive drives the car straight ahead. The L and R primitives turn as sharply as possible
to the left and right, respectively. Using these symbols, each possible kind of shortest path
can be designated as a sequence of three symbols that corresponds to the order in which
the primitives are applied. Let such a sequence be called a word . There is no need to have
two consecutive primitives of the same kind because they can be merged into one. Under
this observation, ten possible words of length three are possible. Dubins showed that only
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α

γ

d
Rα

Sd

Lγ

qGqI
α

γ

Rγ

Rα

qG
qI

Lβ

β

RαSdLγ RαLβRγ

Figure 15.4: The trajectories for two words are shown in W = R
2.

these six words are possibly optimal:

{LRL, RLR, LSL, LSR, RSL, RSR}. (15.44)

The shortest path between any two configurations can always be characterized by one of
these words. These are called the Dubins curves.

To be more precise, the duration of each primitive should also be specified. For L or R,
let a subscript denote the total amount of rotation that accumulates during the application
of the primitive. For S, let a subscript denote the total distance traveled. Using such
subscripts, the Dubins curves can be more precisely characterized as

{Lα Rβ Lγ , Rα Lβ Rγ , Lα Sd Lγ , Lα Sd Rγ , Rα Sd Lγ , Rα Sd Rγ }, (15.45)

in which α, γ ∈ [0, 2π), β ∈ (π, 2π), and d ≥ 0. Figure 15.4 illustrates two cases. Note
that β must be greater than π (if it is less, then some other word becomes optimal).

It will be convenient to invent a compressed form of the words to group together paths
that are qualitatively similar. This will be particularly valuable when Reeds-Shepp curves
are introduced in Section 15.3.2 because there are 46 of them, as opposed to 6 Dubins
curves. Let C denote a symbol that means “curve,” and represents either R or L. Using
C, the six words in (15.44) can be compressed to only two base words:

{CCC, CSC}. (15.46)

In this compressed form, remember that two consecutive Cs must be filled in by distinct
turns (RR and LL are not allowed as subsequences). In compressed form, the base words
can be specified more precisely as

{Cα Cβ Cγ , Cα Sd Cγ }, (15.47)

in which α, γ ∈ [0, 2π), β ∈ (π, 2π), and d ≥ 0.
Powerful information has been provided so far for characterizing the shortest paths;

however, for a given qI and qG, two problems remain:

1. Which of the six words in (15.45) yields the shortest path between qI and qG?

2. What are the values of the subscripts, α, β, γ , and d for the particular word?

To use the Dubins curves as an LPM, these questions should be answered efficiently.
One simple approach is to try all six words and choose the shortest one. The parameters
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y

x

LSR R SL

RSL L SR

LSL

RSR

LRL

RLR

Figure 15.5: A slice at θ = π of the partition into word-invariant cells for the Dubins car. The circle is
centered on the origin.

Figure 15.6: Level sets of the Dubins metric are shown in the plane. Along two circular arcs, the metric is
discontinuous (courtesy of Philippe Souères).

for each word can be determined by tracing out minimum-radius circles from qI and
qG, as shown in Figure 14.23. Another way is to use the precise characterization of the
regions over which a particular word is optimal. Suppose that qG is fixed at (0, 0, 0).
Based on the possible placements of qI , the C-space can be partitioned into cells for
which the same word is optimal. The cells and their boundaries are given precisely
in [904]. As an example, a slice of the cell decomposition for θ = π is shown in
Figure 15.5.

In addition to use as an LPM, the resulting cost of the shortest path may be a useful
distance function in many sampling-based planning algorithms. This is sometimes called
the Dubins metric (it is not, however, a true metric because it violates the symmetry
axiom). This can be considered as the optimal cost-to-go G∗. It could have been computed
approximately using the dynamic programming approach in Section 14.5; however, thanks
to careful analysis, the exact values are known. One interesting property of the Dubins
metric is that it is discontinuous; see Figure 15.6. Compare the cost of traveling π/2 using
the R primitive to the cost of traveling to a nearby point that would require a smaller
turning radius than that achieved by the R primitive. The required action does not exist
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in U , and the point will have to be reached by a longer sequence of primitives. The
discontinuity in G∗ is enabled by the fact that the Dubins car fails to possess the STLC
property from Section 15.1.3. For STLC systems, G∗ is continuous.

15.3.2 Reeds-Shepp curves

Now consider the shortest paths of the Reeds-Shepp car. The only difference in comparison
to the Dubins car is that travel in the reverse direction is now allowed. The same criterion
(15.42) is optimized, which is the distance traveled by the center of the rear axle. The
shortest path is equivalent to the path that takes minimum time, as for the Dubins car. The
simplified system in (15.43) can be enhanced to obtain

ẋ = u1 cos θ

ẏ = u1 sin θ

θ̇ = u1u2,

(15.48)

in which u1 ∈ {−1, 1} and u2 ∈ [− tan φmax, tan φmax]. The first action variable, u1, se-
lects the gear, which is forward (u1 = 1) or reverse (u1 = −1). Once again, assume for
simplicity that u2 ∈ [−1, 1]. The results stated here apply to any φmax ∈ (0, π/2).

It was shown in [817] that there are no more than 48 different words that describe the
shortest paths for the Reeds-Shepp car. The base word notation from Section 15.3.1 can
be extended to nicely express the shortest paths. A new symbol, “ | ”, is used in the words
to indicate that the “gear” is shifted from forward to reverse or reverse to forward. Reeds
and Shepp showed that the shortest path for their car can always be expressed with one of
the following base words:

{C|C|C, CC|C, C|CC, CSC, CCβ |Cβ C, C|Cβ Cβ |C,

C|Cπ/2SC, CSCπ/2|C, C|Cπ/2SCπ/2|C}.
(15.49)

As many as five primitives could be needed to execute the shortest path. A subscript of
π/2 is given in some cases because the curve must be followed for precisely π/2 radians.
For some others, β is given as a subscript to indicate that it must match the parameter of
another primitive. The form given in (15.49) is analogous to (15.46) for the Dubins car.
The parameter ranges can also be specified, to yield a form analogous to (15.47). The
result is shown in Figure 15.7. Example curves for two cases are shown in Figure 15.9.

Now the base words will be made more precise by specifying the particular motion
primitive. Imagine constructing a list of words analogous to (15.44) for the Dubins car.
There are six primitives as shown in Figure 15.8. The symbols S, L, and R are used again.
To indicate the forward or reverse gear, + and − superscripts will be used as shown in
Figure 15.8.6

Figure 15.10 shows 48 different words, which result from uncompressing the base
words expressed using C, S, and “ | ” in (15.49). Each shortest path is a word with length
at most five. There are substantially more words than for the Dubins car. Each base word
in (15.49) expands into four or eight words using the motion primitives. To uncompress

6 This differs conceptually from the notation used in [904]. There, r− corresponds to L− here. The L here means
that the steering wheel is positioned for a left turn, but the car is in reverse. This aids in implementing the rule that
R and L cannot be consecutive in a word.
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Base α β γ d

Cα|Cβ |Cγ [0, π] [0, π] [0, π] −
Cα|CβCγ [0, β] [0, π/2] [0, β] −
CαCβ |Cγ [0, β] [0, π/2] [0, β] −
CαSdCγ [0, π/2] − [0, π/2] (0,∞)
CαCβ |CβCγ [0, β] [0, π/2] [0, β] −
Cα|CβCβ |Cγ [0, β] [0, π/2] [0, β] −
Cα|Cπ/2SdCπ/2|Cγ [0, π/2] − [0, π/2] (0,∞)
Cα|Cπ/2SdCγ [0, π/2] − [0, π/2] (0,∞)
CαSdCπ/2|Cγ [0, π/2] − [0, π/2] (0,∞)

Figure 15.7: The interval ranges are shown for each motion primitive parameter for the Reeds-Shepp
optimal curves.

Symbol Gear: u1 Steering: u2

S+ 1 0
S− −1 0
L+ 1 1
L− −1 1
R+ 1 −1
R− −1 −1

Figure 15.8: The six motion primitives from which all optimal curves for the Reeds-Shepp car can be
constructed.

α

γ

qG
qI

β

R+
α R+

γ

L−
β

Figure 15.9: An example of the R+
α L−

β R+
γ curve. This uses reverse to generate a curve that is shorter than

the one in Figure 15.4b for the Dubins car.

each base word, the rule that R and L cannot be applied consecutively is maintained. This
yields four possibilities for the first six compressed words. The remaining three involve
an intermediate S primitive, which allows eight possible sequences of Rs and Ls for each
one. Two of the 48 words were eliminated in [924]. Each of the remaining 46 words can
actually occur for a shortest path and are called the Reeds-Shepp curves.

For use as an LPM, the problem appears once again of determining the particular word
and parameters for a given qI and qG. This was not difficult for Dubins curves, but now
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Base word Sequences of motion primitives
C|C|C (L+R−L+)(L−R+L−)(R+L−R+)(R−L+R−)
CC|C (L+R+L−)(L−R−L+)(R+L+R−)(R−L−R+)
C|CC (L+R−L−)(L−R+L+)(R+L−R−)(R−L+R+)
CSC (L+S+L+)(L−S−L−)(R+S+R+)(R−S−R−)

(L+S+R+)(L−S−R−)(R+S+L+)(R−S−L−)
CCβ |Cβ C (L+R+

β L−
β R−)(L−R−

β L+
β R+)(R+L+

β R−
β L−)(R−L−

β R+
β L+)

C|Cβ Cβ |C (L+R−
β L−

β R+)(L−R+
β L+

β R−)(R+L−
β R−

β L+)(R−L+
β R+

β L−)
C|Cπ/2SC (L+R−

π/2S
−R−)(L−R+

π/2S
+R+)(R+L−

π/2S
−L−)(R−L+

π/2S
+L+)

(L+R−
π/2S

−L−)(L−R+
π/2S

+L+) (R+L−
π/2S

−R−)(R−L+
π/2S

+R+)
CSCπ/2|C (L+S+L+

π/2R
−)(L−S−L−

π/2R
+)(R+S+R+

π/2L
−)(R−S−R−

π/2L
+)

(R+S+L+
π/2R

−)(R−S−L−
π/2R

+)(L+S+R+
π/2L

−)(L−S−R−
π/2L

+)
C|Cπ/2SCπ/2|C (L+R−

π/2S
−L−

π/2R
+)(L−R+

π/2S
+L+

π/2R
−)

(R+L−
π/2S

−R−
π/2L

+)(R−L+
π/2S

+R+
π/2L

−)

Figure 15.10: The 48 curves of Reeds and Shepp. Sussmann and Tang [924] showed that (L−R+L−) and
(R−L+R−), which appear in the � rst row, can be eliminated. Hence, only 46 words are needed to describe
the shortest paths.

there are 46 possibilities. The naive approach of testing every word and choosing the
shortest one may be too costly. The precise cell boundaries in C over which each word
applies are given in [904]. The cell boundaries are unfortunately quite complicated, which
makes the point location algorithm difficult to implement. A simple way to prune away
many words from consideration is to use intervals of validity for θ . For some values
of θ , certain compressed words are impossible as shortest paths. A convenient table of
words that become active over ranges of θ is given in [904]. Once again, the length of the
shortest path can serve as a distance function in sampling-based planning algorithms. The
resulting Reeds-Shepp metric is continuous because the Reeds-Shepp car is STLC, which
will be established in Section 15.4.

15.3.3 Balkcom-Mason curves

In recent years, two more families of optimal curves have been determined [65, 213].
Recall the differential-drive system from Section 13.1.2, which appears in many mobile
robot systems. In many ways, it appears that the differential drive is a special case of the
simple car. The expression of the system given in (13.17) can be made to appear identical
to the Reeds-Shepp car system in (15.48). For example, letting r = 1 and L = 1 makes
them equivalent by assigning uω = u1 and uψ = u2. Consider the distance traveled by a
point attached to the center of the differential-drive axle using (15.42). Minimizing this
distance for any qI and qG is trivial, as shown in Figure 13.4 of Section 13.1.2. The center
point can be made to travel in a straight line in W = R

2. This would be possible for the
Reeds-Shepp car if ρmin = 0, which implies that φmax = π/2. It therefore appeared for
many years that no interesting curves exist for the differential drive.

The problem, however, with measuring the distance traveled by the axle center is that
pure rotations are cost-free. This occurs when the wheels rotate at the same speed but with
opposite angular velocities. The center does not move; however, the time duration, energy
expenditure, and wheel rotations that occur are neglected. By incorporating one or more
of these into the cost functional, a challenging optimization arises. Balkcom and Mason
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Symbol Left wheel: ul Right wheel: ur

⇑ 1 1
⇓ −1 −1
� −1 1
� 1 −1

Figure 15.11: The four motion primitives from which all optimal curves for the differential-drive robot can
be constructed.

bounded the speed of the differential drive and minimized the total time that it takes to
travel from qI to qG. Using (13.16), the action set is defined as U = [−1, 1] × [−1, 1], in
which the maximum rotation rate of each wheel is one (an alternative bound can be used
without loss of generality). The criterion to optimize is

L(q̃, ũ) =
∫ tF

0

√
ẋ(t)2 + ẏ(t)2 + |θ̇ (t)|dt, (15.50)

which takes θ into account, whereas it was neglected in (15.42). This criterion is once
again equivalent to minimizing the time to reach qG. The resulting model will be referred
to as the Balkcom-Mason drive. An alternative criterion is the total amount of wheel
rotation; this leads to an alternative family of optimal curves [213].

It was shown in [65] that only the four motion primitives shown in Figure 15.11
are needed to express time-optimal paths for the differential-drive robot. Each primitive
corresponds to holding one action variable fixed at its limit for an interval of time. Using
the symbols in Figure 15.11 (which were used in [65]), words can be formed that describe
the optimal path. It has been shown that the word length is no more than five. Thus,
any shortest paths may be expressed as a piecewise-constant action trajectory in which
there are no more than five pieces. Every piece corresponds to one of the primitives in
Figure 15.11.

It is convenient in the case of the Balkcom-Mason drive to use the same symbols for
both base words and for precise specification of primitives. Symmetry transformations
will be applied to each base word to yield a family of eight words that precisely specify
the sequences of motion primitives. Nine base words describe the shortest paths:

{�, ⇓, ⇓�, �⇓�, ⇑�π⇓, �⇓�, ⇓��, �⇓�⇑, ⇑�⇓�⇑}. (15.51)

This is analogous to the compressed forms given in (15.46) and (15.49). The motions are
depicted in Figure 15.12.

Figure 15.13 shows 40 distinct Balkcom-Mason curves that result from applying sym-
metry transformations to the base words of (15.51). There are 72 entries in Figure 15.13,
but many are identical. The transformation T1 indicates that the directions of ⇑ and ⇓
are flipped from the base word. The transformation T2 reverses the order of the motion
primitives. The transformation T3 flips the directions of � and �. The transformations
commute, and there are seven possible ways to combine them, which contributes to a row
of Figure 15.13.

To construct an LPM or distance function, the same issues arise as for the Reeds-
Shepp and Dubins cars. Rather than testing all 40 words to find the shortest path, simple
tests can be defined over which a particular word becomes active [65]. A slice of the
precise cell decomposition and the resulting optimal cost-to-go (which can be called the
Balkcom-Mason metric) are shown in Figure 15.14.
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Figure 15.12: Each of the nine base words is depicted [65]. The last two are only valid for small motions;
they are magni�ed � ve times and the robot outline is not drawn.

Base T1 T2 T3 T2 ◦ T1 T3 ◦ T1 T3 ◦ T2 T3 ◦ T2 ◦ T1

A. � � � � � � � �

B. ⇓ ⇑ ⇓ ⇓ ⇑ ⇑ ⇓ ⇑
C. ⇓� ⇑� �⇓ ⇓� �⇑ ⇑� �⇓ �⇑
D. �⇓� �⇑� �⇓� �⇓� �⇑� �⇑� �⇓� �⇑�

E. ⇑�π⇓ ⇓�π⇑ ⇓�π⇑ ⇑�π⇓ ⇑�π⇓ ⇓�π⇑ ⇓�π⇑ ⇑�π⇓
F. �⇓� �⇑� �⇓� �⇓� �⇑� �⇑� �⇓� �⇑�

G. ⇓�⇑ ⇑�⇓ ⇑�⇓ ⇓�⇑ ⇓�⇑ ⇑�⇓ ⇑�⇓ ⇓�⇑
H. �⇓�⇑ �⇑�⇓ ⇑�⇓� �⇓�⇑ ⇓�⇑� �⇑�⇓ ⇑�⇓� ⇓�⇑�

I. ⇑�⇓�⇑ ⇓�⇑�⇓ ⇑�⇓�⇑ ⇑�⇓�⇑ ⇓�⇑�⇓ ⇓�⇑�⇓ ⇑�⇓�⇑ ⇓�⇑�⇓
Figure 15.13: The 40 optimal curve types for the differential-drive robot, sorted by symmetry class [65].

15.4 Nonholonomic system theory

This section gives some precision to the term nonholonomic, which was used loosely in
Chapters 13 and 14. Furthermore, small-time controllability (STLC), which was defined
in Section 15.1.3, is addressed. The presentation given here barely scratches the surface
of this subject, which involves deep mathematical principles from differential geometry,
algebra, control theory, and mechanics. The intention is to entice the reader to pursue
further study of these topics; see the suggested literature at the end of the chapter.

15.4.1 Control-affine systems

Nonholonomic system theory is restricted to a special class of nonlinear systems. The
techniques of Section 15.4 utilize ideas from linear algebra. The main concepts will
be formulated in terms of linear combinations of vector fields on a smooth manifold
X. Therefore, the formulation is restricted to control-affine systems, which were briefly
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Figure 15.14: A slice of the optimal curves is shown for qI = (x, y, π
4 ) and qG = (0, 0, 0) [65]. Level sets of

the optimal cost-to-go G∗ are displayed. The coordinates correspond to a differential drive with r = L = 1
in (13.16).

introduced in Section 13.2.3. For these systems, ẋ = f (x, u) is of the form

ẋ = h0(x) +
m∑

i=1

hi(x)ui, (15.52)

in which each hi is a vector field on X.
The vector fields are expressed using a coordinate neighborhood of X. Usually, m < n,

in which n is the dimension of X. Unless otherwise stated, assume that U = R
m. In some

cases, U may be restricted.
Each action variable ui ∈ R can be imagined as a coefficient that determines how much

of hi(x) is blended into the result ẋ. The drift term h0(x) always remains and is often such
a nuisance that the driftless case will be the main focus. This means that h0(x) = 0 for all
x ∈ X, which yields

ẋ =
m∑

i=1

hi(x)ui. (15.53)

The driftless case will be used throughout most of this section. The set h1, . . . , hm, is
referred to as the system vector fields. It is essential that U contains at least an open set
that contains the origin of R

m. If the origin is not contained in U , then the system is no
longer driftless.7

Control-affine systems arise in many mechanical systems. Velocity constraints on the
C-space frequently are of the Pfaffian form (13.5). In Section 13.1.1, it was explained
that under such constraints, a configuration transition equation (13.6) can be derived that
is linear if q is fixed. This is precisely the driftless form (15.53) using X = C. Most
of the models in Section 13.1.2 can be expressed in this form. The Pfaffian constraints
on configuration are often called kinematic constraints because they arise due to the

7 Actually, if the convex hull of U contains an open set that contains the origin, then a driftless system can be
simulated by rapid switching.
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kinematics of bodies in contact, such as a wheel rolling. The more general case of (15.52)
for a phase space X arises from dynamic constraints that are obtained from Euler-Lagrange
equation (13.118) or Hamilton’s equations (13.198) in the formulation of the mechanics.
These constraints capture conservation laws, and the drift term usually appears due to
momentum.

Example 15.5 (A Simplified Model for Differential Drives and Cars) Both the simple-
car and the differential-drive models of Section 13.1.2 can be expressed in the form (15.53)
after making simplifications. The simplified model, (15.48), can be used to conveniently
express versions of both of them by using different restrictions to define U . The third
equation of (15.48) can be reduced to θ̇ = u2 without affecting the set of velocities that
can be achieved. To conform to (15.53), the equations of (15.48) can be written in a
linear-algebra form as




ẋ

ẏ

θ̇



 =



cos θ

sin θ

0



 u1 +



0
0
1



 u2. (15.54)

This makes it clear that there are two system vector fields, which can be combined by
selecting the scalar values u1 and u2. One vector field allows pure translation, and the other
allows pure rotation. Without restrictions on U , this system behaves like a differential
drive because the simple car cannot execute pure rotation. Simulating the simple car
with (15.54) requires restrictions on U (such as requiring that u1 be 1 or −1, as in
Section 15.3.2). This is equivalent to the unicycle from Figure 13.5 and (13.18).

Note that (15.54) can equivalently be expressed as



ẋ

ẏ

θ̇



 =



cos θ 0
sin θ 0

0 1




(

u1

u2

)
(15.55)

by organizing the vector fields into a matrix. �
In (15.54), the vector fields were written as column vectors that combine linearly using

action variables. This suggested that control-affine systems can be alternatively expressed
using matrix multiplication in (15.55). In general, the vector fields can be organized into
an n×m matrix as

H (x) = [h1(x) h2(x) · · · hm(x)
]
. (15.56)

In the driftless case, this yields

ẋ = H (x) u (15.57)

as an equivalent way to express (15.53)
It is sometimes convenient to work with Pfaffian constraints,

g1(x)ẋ1 + g2(x)ẋ2 + · · · + gn(x)ẋn = 0, (15.58)

instead of a state transition equation. As indicated in Section 13.1.1, a set of k independent
Pfaffian constraints can be converted into a state transition equation with m = (n− k)
action variables. The resulting state transition equation is a driftless control-affine system.
Thus, Pfaffian constraints provide a dual way of specifying driftless control-affine systems.
The k Pfaffian constraints can be expressed in matrix form as

G(x) ẋ = 0, (15.59)
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which is the dual of (15.57), and G(x) is a k × n matrix formed from the gi coefficients
of each Pfaffian constraint. Systems with drift can be expressed in a Pfaffian-like form by
constraints

g0(x) + g1(x)ẋ1 + g2(x)ẋ2 + · · · + gn(x)ẋn = 0. (15.60)

15.4.2 Determining whether a system is nonholonomic

The use of linear algebra in Section 15.4.1 suggests further development of algebraic
concepts. This section briefly introduces concepts that resemble ordinary linear algebra
but apply to linear combinations of vector fields. This provides the concepts and tools
needed to characterize important system properties in the remainder of this section. This
will enable the assessment of whether a system is nonholonomic and also whether it
is STLC. Many of the constructions are named after Sophus Lie (pronounced “lee”),
a mathematician who in the nineteenth century contributed many ideas to algebra and
geometry that happen to be relevant in the study of nonholonomic systems (although that
application came much later).

15.4.2.1 Completely integrable or nonholonomic?

Every control-affine system must be one or the other (not both) of the following:

1. Completely integrable: This means that the Pfaffian form (15.59) can be obtained by
differentiating k equations of the form fi(x) = 0 with respect to time. This case was
interpreted as being trapped on a surface in Section 13.1.3. An example of being trapped
on a circle in R

2 was given in (13.22).

2. Nonholonomic: This means that the system is not completely integrable. In this case, it
might even be possible to reach all of X, even if the number of action variables m is much
smaller than n, the dimension of X.

In this context, the term holonomic is synonymous with completely integrable, and nonin-
tegrable is synonymous with nonholonomic. The term nonholonomic is sometimes applied
to non-Pfaffian constraints [591]; however, this will be avoided here, in accordance with
mechanics literature [114].

The notion of integrability used here is quite different from that required for (14.1). In
that case, the state transition equation needed to be integrable to obtain integral curves
from any initial state. This was required for all systems considered in this book. By
contrast, complete integrability implies that the system can be expressed without even
using derivatives. This means that all integral curves can eventually be characterized by
constraints that do not involve derivatives.

To help understand complete integrability, the notion of an integral curve will be
generalized from one to m dimensions. A manifold M ⊆ X is called an integral manifold
of a set of Pfaffian constraints if at every x ∈ M , all vectors in the tangent space Tx(M)
satisfy the constraints. For a set of completely integrable Pfaffian constraints, a partition
of X into integral manifolds can be obtained by defining maximal integral manifolds
from every x ∈ X. The resulting partition is called a foliation, and the maximal integral
manifolds are called leaves [874].
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Example 15.6 (A Foliation with Spherical Leaves) As an example, suppose X = R
n

and consider the Pfaffian constraint

x1ẋ1 + x2ẋ2 + · · · xnẋn = 0. (15.61)

This is completely integrable because it can be obtained by differentiating the equation
of a sphere,

x2
1 + x2

2 + · · · x2
n − r2 = 0, (15.62)

with respect to time (r is a constant). The particular sphere that is obtained via integration
depends on an initial state. The foliation is the collection of all concentric spheres that are
centered at the origin. For example, if X = R

3, then a maximal integral manifold arises
for each point of the form (0, 0, r). In each case, it is a sphere of radius r . The foliation is
generated by selecting every r ∈ [0,∞). �

The task in this section is to determine whether a system is completely integrable.
Imagine someone is playing a game with you. You are given an control-affine system
and asked to determine whether it is completely integrable. The person playing the game
with you can start with equations of the form hi(x) = 0 and differentiate them to obtain
Pfaffian constraints. These can then be converted into the parametric form to obtain the
state transition equation (15.53). It is easy to construct challenging problems; however,
it is very hard to solve them. The concepts in this section can be used to determine
only whether it is possible to win such a game. The main tool will be the Frobenius
theorem, which concludes whether a system is completely integrable. Unfortunately, the
conclusion is obtained without producing the integrated constraints hi(x) = 0. Therefore,
it is important to keep in mind that “integrability” does not mean that you can integrate it
to obtain a nice form. This is a challenging problem of reverse engineering. On the other
hand, it is easy to go in the other direction by differentiating the constraints to make a
challenging game for someone else to play.

15.4.2.2 Distributions

A distribution8 expresses a set of vector fields on a smooth manifold. Suppose that a
driftless control-affine system (15.53) is given. Recall the vector space definition from
Section 8.3.1 or from linear algebra. Also recall that a state transition equation can be
interpreted as a vector field if the actions are fixed and as a vector space if the state is instead
fixed. For U = R

m and a fixed x ∈ X, the state transition equation defines a vector space
in which each hi evaluated at x is a basis vector and each ui is a coefficient. For example,
in (15.54), the vector fields h1 and h2 evaluated at q = (0, 0, 0) become [1 0 0]T and
[0 0 1]T , respectively. These serve as the basis vectors. By selecting values of u ∈ R

2, a
2D vector space results. Any vector of the form [a 0 b]T can be represented by setting
u1 = a and u2 = b. More generally, let ((x) denote the vector space obtained in this way
for any x ∈ X.

The dimension of a vector space is the number of independent basis vectors. Therefore,
the dimension of ((x) is the rank of H (x) from (15.56) when evaluated at the particular
x ∈ X. Now consider defining ((x) for every x ∈ X. This yields a parameterized family
of vector spaces, one for each x ∈ X. The result could just as well be interpreted as a
parameterized family of vector fields. For example, consider actions for i from 1 to m of

8 This distribution has nothing to do with probability theory. It is just an unfortunate coincidence of terminology.
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X x

Tx(X)

T (X)

�
�(x)

Figure 15.15: The distribution ( can be imagined as a slice of the tangent bundle T(X). It restricts the
tangent space at every x ∈ X.

the form ui = 1 and uj = 0 for all i 	= j . If the action is held constant over all x ∈ X,
then it selects a single vector field hi from the collection of m vector fields:

ẋ = hi(x). (15.63)

Using constant actions, an m-dimensional vector space can be defined in which each
vector field hi is a basis vector (assuming the hi are linearly independent), and the ui ∈ R

are the coefficients:

u1h1(x) + u2h2(x) + · · · + umhm(x). (15.64)

This idea can be generalized to allow the ui to vary over X. Thus, rather than having u

constant, it can be interpreted as a feedback plan π : X → U , in which the action at x is
given by u = π(x). The set of all vector fields that can be obtained as

π1(x)h1(x) + π2(x)h2(x) + · · · + πm(x)hm(x) (15.65)

is called the distribution of the set {h1, . . . , hm} of vector fields and is denoted as (. If
( is obtained from an control-affine system, then ( is called the system distribution. The
resulting set of vector fields is not quite a vector space because the nonzero coefficients
πi do not necessarily have a multiplicative inverse. This is required for the coefficients of
a vector field and was satisfied by using R in the case of constant actions. A distribution is
instead considered algebraically as a module [472]. In most circumstances, it is helpful to
imagine it as a vector space (just do not try to invert the coefficients!). Since a distribution
is almost a vector space, the span notation from linear algebra is often used to define it:

( = span{h1, h2, . . . , hm}. (15.66)

Furthermore, it is actually a vector space with respect to constant actions u ∈ R
m. Note

that for each fixed x ∈ X, the vector space ((x) is obtained, as defined earlier. A vector
field f is said to belong to a distribution ( if it can be expressed using (15.65). If for all
x ∈ X, the dimension of((x) is m, then( is called a nonsingular distribution (or regular
distribution). Otherwise, ( is called a singular distribution, and the points x ∈ X for
which the dimension of ((x) is less than m are called singular points. If the dimension of
((x) is a constant c over all x ∈ X, then c is called the dimension of the distribution and
is denoted by dim((). If the vector fields are smooth, and if π is restricted to be smooth,
then a smooth distribution is obtained, which is a subset of the original distribution.

As depicted in Figure 15.15, a nice interpretation of the distribution can be given in
terms of the tangent bundle of a smooth manifold. The tangent bundle was defined for
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X = R
n in (8.9) and generalizes to any smooth manifold X to obtain

T (X) =
⋃

x∈X

Tx(X). (15.67)

The tangent bundle is a 2n-dimensional manifold in which n is the dimension of X. A
phase space for which x = (q, q̇) is actually T (C). In the current setting, each element of
T (X) yields a state and a velocity, (x, ẋ). Which pairs are possible for a driftless control-
affine system? Each ((x) indicates the set of possible ẋ values for a fixed x. The point x

is sometimes called the base and ((x) is called the fiber over x in T (X). The distribution
( simply specifies a subset of Tx(X) for every x ∈ X. For a vector field f to belong to (,
it must satisfy f (x) ∈ ((x) for all x ∈ X. This is just a restriction to a subset of T (X). If
m = n and the system vector fields are independent, then any vector field is allowed. In
this case, ( includes any vector field that can be constructed from the vectors in T (X).

Example 15.7 (The Distribution for the Differential Drive) The system in (15.54)
yields a two-dimensional distribution:

( = span{[cos θ sin θ 0]T , [0 0 1]T }. (15.68)

The distribution is nonsingular because for any (x, y, θ) in the coordinate neighborhood,
the resulting vector space ((x, y, θ) is two-dimensional. �
Example 15.8 (A Singular Distribution) Consider the following system, which is given
in [481]:




ẋ1

ẋ2

ẋ3



 = h1(x)u1 + h2(x)u2 + h3(x)u3

=



x1

1 + x3

1



 u1 +



x1x2

(1 + x3)x2

x2



 u2 +



x1

x1

0



 u3.

(15.69)

The distribution is

( = span{h1, h2, h3}. (15.70)

The first issue is that for any x ∈ R
3, h2(x) = h1(x)x2, which implies that the vector fields

are linearly dependent over all of R
3. Hence, this distribution is singular because m = 3

and the dimension of �(x) is 2 if x1 	= 0. If x1 = 0, then the dimension of �(x) drops to
1. The dimension of ( is not defined because the dimension of �(x) depends on x. �

A distribution can alternatively be defined directly from Pfaffian constraints. Each
gi(x) = 0 is called an annihilator because enforcing the constraint eliminates many vector
fields from consideration. At each x ∈ X, ((x) is defined as the set of all velocity vectors
that satisfy all k Pfaffian constraints. The constraints themselves can be used to form
a codistribution, which is a kind of dual to the distribution. The codistribution can be
interpreted as a vector space in which each constraint is a basis vector. Constraints can
be added together or multiplied by any c ∈ R, and there is no effect on the resulting
distribution of allowable vector fields.

15.4.2.3 Lie brackets

The key to establishing whether a system is nonholonomic is to construct motions that
combine the effects of two action variables, which may produce motions in a direction that
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q(0) q(∆ t)

q(2∆ t)

x

y

q(2∆t)

q(4∆t)

q(3∆ t)

y

x

(a) (b)
Figure 15.16: (a) The effect of the � rst two primitives. (b) The effect of the last two primitives.

seems impossible from the system distribution. To motivate the coming ideas, consider
the differential-drive model from (15.54). Apply the following piecewise-constant action
trajectory over the interval [0, 4�t]:

u(t) =






(1, 0) for t ∈ [0,�t)
(0, 1) for t ∈ [�t, 2�t)
(−1, 0) for t ∈ [2�t, 3�t)
(0,−1) for t ∈ [3�t, 4�t] .

(15.71)

The action trajectory is a sequence of four motion primitives: 1) translate forward, 2)
rotate forward, 3) translate backward, and 4) rotate backward.

The result of all four motion primitives in succession from qI = (0, 0, 0) is shown in
Figure 15.16. It is fun to try this at home with an axle and two wheels (Tinkertoys work
well, for example). The result is that the differential drive moves sideways!9 From the
transition equation (15.54) such motions appear impossible. This is a beautiful property of
nonlinear systems. The state may wiggle its way in directions that do not seem possible.
A more familiar example is parallel parking a car. It is known that a car cannot directly
move sideways; however, some wiggling motions can be performed to move it sideways
into a tight parking space. The actions we perform while parking resemble the primitives
in (15.71).

Algebraically, the motions of (15.71) appear to be checking for commutativity. Recall
from Section 4.2.1 that a group G is called commutative (or Abelian) if ab = ba for
any a, b ∈ G. A commutator is a group element of the form aba−1b−1. If the group is
commutative, then aba−1b−1 = e (the identity element) for any a, b ∈ G. If a nonidentity
element of G is produced by the commutator, then the group is not commutative. Similarly,
if the trajectory arising from (15.71) does not form a loop (by returning to the starting
point), then the motion primitives do not commute. Therefore, a sequence of motion
primitives in (15.71) will be referred to as the commutator motion. It will turn out that
if the commutator motion cannot produce any velocities not allowed by the system

9 It also moves slightly forward; however, this can be eliminated by either lengthening the time of the third primitive
or by considering the limit as � approaches zero.
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−g

−f

g

f
x(∆t)

x(2∆ t)

x(0)

x(3∆ t)

Figure 15.17: The velocity obtained by the Lie bracket can be approximated by a sequence of four motion
primitives.

distribution, then the system is completely integrable. This means that if we are trapped
on a surface, then it is impossible to leave the surface by using commutator motions.

Now generalize the differential drive to any driftless control-affine system that has two
action variables:

ẋ = f (x)u1 + g(x)u2. (15.72)

Using the notation of (15.53), the vector fields would be h1 and h2; however, f and g are
chosen here to allow subscripts to denote the components of the vector field in the coming
explanation.

Suppose that the commutator motion (15.71) is applied to (15.72) as shown in Fig-
ure 15.17. Determining the resulting motion requires some general computations, as
opposed to the simple geometric arguments that could be made for the differential drive.
If would be convenient to have an expression for the velocity obtained in the limit as
�t approaches zero. This can be obtained by using Taylor series arguments. These are
simplified by the fact that the action history is piecewise constant.

The coming derivation will require an expression for ẍ under the application of a
constant action. For each action, a vector field of the form ẋ = h(x) is obtained. Upon
differentiation, this yields

ẍ = dh

dt
= ∂h

∂x

dx

dt
= ∂h

dx
ẋ = ∂h

dx
h(x). (15.73)

This follows from the chain rule because h is a function of x, which itself is a function of
t . The derivative ∂h/∂x is actually an n× n Jacobian matrix, which is multiplied by the
vector ẋ. To further clarify (15.73), each component can be expressed as

ẍi = d

dt
hi(x(t)) =

n∑

j=1

∂hi

∂xj

hj . (15.74)

Now the state trajectory under the application of (15.71) will be determined using the
Taylor series, which was given in (14.17). The state trajectory that results from the first
motion primitive u = (1, 0) can be expressed as

x(�t) = x(0) +�t ẋ(0) + 1
2 (�t)2 ẍ(0) + · · ·

= x(0) +�t f (x(0)) + 1

2
(�t)2 ∂f

∂x

∣∣∣
x(0)

f (x(0)) + · · · ,
(15.75)
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which makes use of (15.73) in the second line. The Taylor series expansion for the second
primitive is

x(2�t) = x(�t) +�t g(x(�t)) + 1

2
(�t)2 ∂g

∂x

∣∣∣
x(�t)

g(x(�t)) + · · · . (15.76)

An expression for g(x(�t)) can be obtained by using the Taylor series expansion in (15.75)
to express x(�t). The first terms after substitution and simplification are

x(2�t) = x(0) +�t g + (�t)2

(
1

2

∂f

∂x
f + ∂g

∂x
f + 1

2

∂g

∂x
g

)
+ · · · . (15.77)

To simplify the expression, the evaluation at x(0) has been dropped from every occurrence
of f and g and their derivatives.

The idea of substituting previous Taylor series expansions as they are needed can be
repeated for the remaining two motion primitives. The Taylor series expansion for the
result after the third primitive is

x(3�t) = x(0) +�t g + (�t)2

(
∂g

∂x
f − ∂f

∂x
g + 1

2

∂g

∂x
g

)
+ · · · . (15.78)

Finally, the Taylor series expansion after all four primitives have been applied is

x(4�t) = x(0) + (�t)2

(
∂g

∂x
f − ∂f

∂x
g

)
+ · · · . (15.79)

Taking the limit yields

lim
�t→0

x(4�t) − x(0)

(�t)2
= ∂g

∂x
f − ∂f

∂x
g, (15.80)

which is called the Lie bracket of f and g and is denoted by [f, g]. Similar to (15.74), the
ith component can be expressed as

[f, g]i =
n∑

j=1

(
fj

∂gi

∂xj

− gj

∂fi

∂xj

)
. (15.81)

The Lie bracket is an important operation in many subjects, and is related to the Poisson
and Jacobi brackets that arise in physics and mathematics.

Example 15.9 (Lie Bracket for the Differential Drive) The Lie bracket should indicate
that sideways motions are possible for the differential drive. Consider taking the Lie
bracket of the two vector fields used in (15.54). Let f = [cos θ sin θ 0]T and g =
[0 0 1]T . Rename h1 and h2 to f and g to allow subscripts to denote the components of
a vector field.

By applying (15.81), the Lie bracket [f, g] is

[f, g]1 = f1
∂g1

∂x
− g1

∂f1

∂x
+ f2

∂g1

∂y
− g2

∂f1

∂y
+ f3

∂g1

∂θ
− g3

∂f1

∂θ
= sin θ

[f, g]2 = f1
∂g2

∂x
− g1

∂f2

∂x
+ f2

∂g2

∂y
− g2

∂f2

∂y
+ f3

∂g2

∂θ
− g3

∂f2

∂θ
= − cos θ

[f, g]3 = f1
∂g3

∂x
− g1

∂f3

∂x
+ f2

∂g3

∂y
− g2

∂f3

∂y
+ f3

∂g3

∂θ
− g3

∂f3

∂θ
= 0.

(15.82)

The resulting vector field is [f, g] = [sin θ − cos θ 0]T , which indicates the sideways
motion, as desired. When evaluated at q = (0, 0, 0), the vector [0 − 1 0]T is obtained.
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This means that performing short commutator motions wiggles the differential drive
sideways in the −y direction, which we already knew from Figure 15.16. �

Example 15.10 (Lie Bracket of Linear Vector Fields) Suppose that each vector field
is a linear function of x. The n× n Jacobians ∂f/∂x and ∂g/∂x are constant.

As a simple example, recall the nonholonomic integrator (13.43). In the linear-algebra
form, the system is




ẋ1

ẋ2

ẋ3



 =



1
0
−x2



 u1 +



0
1
x1



 u2. (15.83)

Let f = h1 and g = h2. The Jacobian matrices are

∂f

∂x
=



0 0 0
0 0 0
0 −1 0



 and
∂g

∂x
=



0 0 0
0 0 0
1 0 0



 . (15.84)

Using (15.80),

∂g

∂x
f − ∂f

∂x
g =




0 0 0
0 0 0
1 0 0








1
0
−x2



−



0 0 0
0 0 0
0 −1 0








0
1
−x1



 =



0
0
2



 . (15.85)

This result can be verified using (15.81).
�

15.4.2.4 The Frobenius theorem

The Lie bracket is the only tool needed to determine whether a system is completely
integrable (holonomic) or nonholonomic (not integrable). Suppose that a system of the
form (15.53) is given. Using the m system vector fields h1, . . . , hm there are (m2 ) Lie
brackets of the form [hi, hj ] for i < j that can be formed. A distribution ( is called
involutive [135] if for each of these brackets there exist m coefficients ck ∈ R such
that

[hi, hj ] =
m∑

k=1

ckhk. (15.86)

In other words, every Lie bracket can be expressed as a linear combination of the system
vector fields, and therefore it already belongs to (. The Lie brackets are unable to escape
( and generate new directions of motion. We did not need to consider all n2 possible
Lie brackets of the system vector fields because it turns out that [hi, hj ] = −[hj , hi] and
consequently [hi, hi] = 0. Therefore, the definition of involutive is not altered by looking
only at the (m2 ) pairs.

If the system is smooth and the distribution is nonsingular, then the Frobenius theorem
immediately characterizes integrability:

A system is completely integrable if and only if it is involutive.

Proofs of the Frobenius theorem appear in numerous differential geometry and control
theory books [135, 158, 481, 848]. There also exist versions that do not require the
distribution to be nonsingular.

Determining integrability involves performing Lie brackets and determining whether
(15.86) is satisfied. The search for the coefficients can luckily be avoided by using linear
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algebra tests for linear independence. The n×m matrix H (x), which was defined in
(15.56), can be augmented into an n× (m+ 1) matrix H ′(x) by adding [hi, hj ] as a new
column. If the rank of H ′(x) is m+ 1 for any pair hi and hj , then it is immediately
known that the system is nonholonomic. If the rank of H ′(x) is m for all Lie brackets,
then the system is completely integrable. Driftless linear systems, which are expressed
as ẋ = Bu for a fixed matrix B, are completely integrable because all Lie brackets are
zero.

Example 15.11 (The Differential Drive Is Nonholonomic) For the differential drive
model in (15.54), the Lie bracket [f, g] was determined in Example 15.9 to be
[sin θ − cos θ 0]T . The matrix H ′(q), in which q = (x, y, θ), is

H ′(q) =



cos θ 0 sin θ

sin θ 0 − cos θ

0 1 0



 . (15.87)

The rank of H ′(q) is 3 for all q ∈ C (the determinant of H ′(q) is 1). Therefore, by the
Frobenius theorem, the system is nonholonomic. �

Example 15.12 (The Nonholonomic Integrator Is Nonholonomic) We would hope
that the nonholonomic integrator is nonholonomic. In Example 15.10, the Lie bracket was
determined to be [0 0 2]T . The matrix H ′(q) is

H ′(q) =



1 0 0
0 1 0
−x2 x1 2



 , (15.88)

which clearly has full rank for all q ∈ C. �

Example 15.13 (Trapped on a Sphere) Suppose that the following system is given:



ẋ1

ẋ2

ẋ3



 =



x2

−x1

0



 u1 +



x3

0
−x1



u2, (15.89)

for which X = R
3 and U = R

2. Since the vector fields are linear, the Jacobians are
constant (as in Example 15.10):

∂f

∂x
=



0 1 0
−1 0 0
0 0 0



 and
∂g

∂x
=



0 0 1
0 0 0
−1 0 0



 . (15.90)

Using (15.80),

∂g

∂x
f − ∂f

∂x
g =

(
0 0 1
0 0 0
−1 0 0

)(
x2

−x1

0

)
−
(

0 1 0
−1 0 0
0 0 0

)(
x3

0
−x1

)
=
(

0
x3

−x2

)
. (15.91)

This yields the matrix

H ′(x) =



x2 −x1 0
x3 0 −x1

0 x3 −x2



 . (15.92)
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The determinant is zero for all x ∈ R
3, which means that [f, g] is never linearly indepen-

dent of f and g. Therefore, the system is completely integrable.10

The system can actually be constructed by differentiating the equation of a sphere. Let

f (x) = x2
1 + x2

2 + x2
3 − r2 = 0, (15.93)

and differentiate with respect to time to obtain

x1ẋ1 + x2ẋ2 + x3ẋ3 = 0, (15.94)

which is a Pfaffian constraint. A parametric representation of the set of vectors that
satisfy (15.94) is given by (15.89). For each (u1, u2) ∈ R

2, (15.89) yields a vector that
satisfies (15.94). Thus, this was an example of being trapped on a sphere, which we
would expect to be completely integrable. It was difficult, however, to suspect this using
only (15.89). �

15.4.3 Determining controllability

Determining complete integrability is the first step toward determining whether a driftless
control-affine system is STLC. The Lie bracket attempts to produce motions in directions
that do not seem to be allowed by the system distribution. At each q, a velocity not in
((q) may be produced by the Lie bracket. By working further with Lie brackets, it is
possible to completely characterize all of the directions that are possible from each q.
So far, the Lie brackets have only been applied to the system vector fields h1, . . . , hm.
It is possible to proceed further by applying Lie bracket operations on Lie brackets. For
example, [h1, [h1, h2]] can be computed. This might generate a vector field that is linearly
independent of all of the vector fields considered in Section 15.4.2 for the Frobenius
theorem. The main idea in this section is to apply the Lie bracket recursively until no
more independent vector fields can be found. The result is called the Lie algebra. If the
number of independent vector fields obtained in this way is the dimension of X, then it
turns out that the system is STLC.

15.4.3.1 The Lie algebra

The notion of a Lie algebra is first established in general. Let V be any vector space with
coefficients in R. In V , the vectors can be added or multiplied by elements of R; however,
there is no way to “multiply” two vectors to obtain a third. The Lie algebra introduces a
product operation to V . The product is called a bracket or Lie bracket (considered here as
a generalization of the previous Lie bracket) and is denoted by [·, ·] : V × V → V .

To be a Lie algebra obtained from V , the bracket must satisfy the following three
axioms:

1. Bilinearity: For any a, b ∈ R and u, v,w ∈ V ,

[au+ bv,w] = a[u,w] + b[v,w]

[u, av + bw] = a[u,w] + b[u,w].
(15.95)

2. Skew symmetry: For any u, v ∈ V ,

[u, v] = −[v, u]. (15.96)

This means that the bracket is anti-commutative.

10 This system is singular at the origin. A variant of the Frobenius theorem given here is technically needed.
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3. Jacobi identity: For any u, v,w ∈ V ,

[[u, v], w] + [[v,w], u] + [[w, u], v] = 0. (15.97)

Note that the bracket is not even associative.

Let L(V ) denote the Lie algebra of V . This is a vector space that includes all elements of
V and any new elements that can be obtained via Lie bracket operations. The Lie algebra
L(V ) includes every vector that can be obtained from any finite number of nested Lie
bracket operations. Thus, describing a Lie algebra requires characterizing all vectors that
are obtained under the algebraic closure of the bracket operation. Since L(V ) is a vector
space, this is accomplished by finding a basis of independent vectors of which all elements
of L(V ) can be expressed as a linear combination.

Example 15.14 (The Vector Cross Product) Let V be the vector space over R
3 that is

used in vector calculus. The basis elements are often denoted as ı̂, ĵ, and k̂. A bracket for
this vector space is simply the cross product

[u, v] = u× v. (15.98)

It can be verified that the required axioms of a Lie bracket are satisfied.
One interesting property of the cross product that is exploited often in analytic geometry

is that it produces a vector outside of the span of u and v. For example, let W be the
two-dimensional subspace of vectors

W = span{ı̂,ĵ}. (15.99)

The cross product always yields a vector that is a multiple of k̂, which lies outside of V if
the product is nonzero. This behavior is very similar to constructing vector fields that lie
outside of ( using the Lie bracket in Section 15.4.2. �

Example 15.15 (Lie Algebra on Lie Groups) Lie groups are the most important appli-
cation of the Lie algebra concepts. Recall from Section 4.2.1 the notion of a matrix group.
Important examples throughout this book have been SO(n) and SE(n). If interpreted as a
smooth manifold, these matrix groups are examples of Lie groups [64]. In general, a Lie
group G is both a differentiable manifold and a group with respect to some operation ◦ if
and only if:

1. The product a ◦ b, interpreted as a function from G×G → G, is smooth.

2. The inverse a−1, interpreted as a function from G to G, is smooth.

The two conditions are needed to prevent the group from destroying the nice properties
that come with the smooth manifold. An important result in the study of Lie groups is that
all compact finite-dimensional Lie groups can be represented as matrix groups.

For any Lie group, a Lie algebra can be defined on a special set of vector fields. These
are defined using the left translation mapping Lg : x �→ gx. The vector field formed from
the differential of Lg is called a left-invariant vector field. A Lie algebra can be defined
on the set of these fields. The Lie bracket definition depends on the particular group. For
the case of GL(n), the Lie bracket is

[A,B] = AB − BA. (15.100)

In this case, the Lie bracket clearly appears to be a test for commutativity. If the matrices
commute with respect to multiplication, then the Lie bracket is zero. The Lie brackets for
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SO(n) and SE(n) are given in many texts on mechanics and control [158, 848]. The Lie
algebra of left-invariant vector fields is an important structure in the study of nonlinear
systems and mechanics. �

15.4.3.2 Lie algebra of the system distribution

Now suppose that a set h1, . . . , hm of vector fields is given as a driftless control-affine
system, as in (15.53). Its associated distribution ( is interpreted as a vector space with
coefficients in R, and the Lie bracket operation was given by (15.81). It can be ver-
ified that the Lie bracket operation in (15.81) satisfies the required axioms for a Lie
algebra.

As observed in Examples 15.9 and 15.10, the Lie bracket may produce vector fields
outside of (. By defining the Lie algebra of ( to be all vector fields that can be obtained
by applying Lie bracket operations, a potentially larger distribution L(() is obtained.
The Lie algebra can be expressed using the span notation by including h1, . . . , hm and all
independent vector fields generated by Lie brackets. Note that no more than n independent
vector fields can possibly be produced.

Example 15.16 (The Lie Algebra of the Differential Drive) The Lie algebra of the
differential drive (15.54) is

L(() = span{[cos θ sin θ 0]T , [0 0 1]T , [sin θ − cos θ 0]T }. (15.101)

This uses the Lie bracket that was computed in (15.82) to obtain a three-dimensional Lie
algebra. No further Lie brackets are needed because the maximum number of independent
vector fields has been already obtained. �
Example 15.17 (A Lie Algebra That Involves Nested Brackets) The previous example
was not very interesting because the Lie algebra was generated after computing only one
bracket. Suppose that X = R

5 and U = R
2. In this case, there is room to obtain up to

three additional, linearly independent vector fields. The dimension of the Lie algebra may
be any integer from 2 to 5.

Let the system be




ẋ1

ẋ2

ẋ3

ẋ4

ẋ5




=





1
0
x2

x3

x4




u1 +





0
1
0
0
0




u2. (15.102)

This is a chained-form system, which is a concept that becomes important in Section 15.5.2.
The first Lie bracket produces

[h1, h2] = [0 0 − 1 0 0]T . (15.103)

Other vector fields that can be obtained by Lie brackets are

[h1, [h1, h2]] = [0 0 0 1 0]T (15.104)

and

[h1, [h1, [h1, h2]]] = [0 0 0 0 1]T . (15.105)

The resulting five vector fields are independent over all x ∈ R
5. This includes h1, h2,

and the three obtained from Lie bracket operations. Independence can be established by
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placing them into a 5 × 5 matrix,




1 0 0 0 0
0 1 0 0 0
x2 0 −1 0 0
x3 0 0 1 0
x4 0 0 0 1




, (15.106)

which has full rank for all x ∈ R
5. No additional vector fields can possibly be independent.

Therefore, the five-dimensional Lie algebra is

L(() = span{h1, h2, [h1, h2], [h1, [h1, h2]], [h1, [h1, [h1, h2]]]}. (15.107)

�
15.4.3.3 Philip Hall basis of a Lie algebra

Determining the basis of a Lie algebra may be a long and tedious process. The com-
binations of Lie brackets in Example 15.17 were given; however, it is not known in
advance which ones will produce independent vector fields. Numerous Lie brackets may
be needed, including some that are nested, such as [[h1, h2], h3]. The maximum depth
of nested Lie bracket operations is not known a priori. Therefore, a systematic search
must be performed (this can in fact be modeled as a discrete planning problem) by start-
ing with h1, . . . , hm and iteratively generating new, independent vector fields using Lie
brackets.

One popular approach is to generate the Philip Hall basis (or P. Hall basis) of the Lie
algebra L((). The construction of the basis essentially follows breadth-first search, in
which the search depth is defined to be the number of nested levels of bracket operations.
The order (or depth) d of a Lie product is defined recursively as follows. For the base
case, let d(hi) = 1 for any of the system vector fields. For any Lie product [φ1, φ2], let

d([φ1, φ2]) = d(φ1) + d(φ2). (15.108)

Thus, the order is just the nesting depth (plus one) of the Lie bracket operations. For
example, d([h1, h2]) = 2 and d([h1, [h2, h3]]) = 3.

In addition to standard breadth-first search, pruning should be automatically performed
to ensure that the skew symmetry and Jacobi identities are always utilized to eliminate
redundancy. A P. Hall basis is a sequence, PH = (φ1, φ2, . . .), of Lie products for which:

1. The system vector fields hi are the first m elements of PH.

2. If d(φi) < d(φj ), then i < j .

3. Each [φi, φj ] ∈ PH if and only if: a) φi, φj ∈ PH and i < j , and b) either φj = hi for
some i or φj = [φl, φr ] for some φl, φr ∈ PH such that l ≤ i.

It is shown in many algebra books (e.g., [863]) that this procedure results in a basis for
the Lie algebra L((). Various algorithms for computing the basis are evaluated in [301].

Example 15.18 (P. Hall Basis Up to Depth Three) The P. Hall basis sorts the Lie
products into the following sequence, which is obtained up to depth d = 3:

h1, h2, h3,
[h1, h2], [h2, h3], [h3, h1],
[h1, [h1, h2]], [h1, [h1, h3]], [h2, [h1, h2]], [h2, [h1, h3]],
[h2, [h2, h3]], [h3, [h1, h2]], [h3, [h1, h3]], [h3, [h2, h3]] .
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So far, the only Lie product eliminated by the Jacobi identity is [h1, [h2, h3]] because

[h1, [h2, h3]] = [h2, [h1, h3]] − [h3, [h1, h2]]. (15.109)

Note that all of the Lie products given here may not be linearly independent vector fields.
For a particular system, linear independence tests should be performed to delete any
linearly dependent vector fields from the basis. �

When does the sequence PH terminate? Recall that dim(L(()) can be no greater than
n, because Lx(() ⊆ Tx(X). In other words, at every state x ∈ X, the number of possible
independent velocity vectors is no more than the dimension of the tangent space at x.
Therefore, PH can be terminated once n independent vector fields are obtained because
there is no possibility of finding more. For some systems, there may be a depth k after
which all Lie brackets are zero. Such systems are called nilpotent of order k. This occurs,
for example, if all components of all vector fields are polynomials. If the system is not
nilpotent, then achieving termination may be difficult. It may be the case that dim(L(())
is strictly less than n, but this is usually not known in advance. It is difficult to determine
whether more Lie brackets are needed to increase the dimension or the limit has already
been reached.

15.4.3.4 Controllability of driftless systems

The controllability of a driftless control-affine system (15.53) can be characterized using
the Lie algebra rank condition (or LARC). Recall the definition of STLC from Sec-
tion 15.1.3. Assume that either U = R

m or U at least contains an open set that contains
the origin of R

m. The Chow-Rashevskii theorem [114, 158, 848] states:

A driftless control-affine system, (15.53), is small-time locally controllable (STLC) at a
point x ∈ X if and only if dim(Lx(()) = n, the dimension of X.

If the condition holds for every x ∈ X, then the whole system is STLC. Integrability
can also be expressed in terms of dim(L(()). Assume as usual that m < n. The three
cases are:

1. dim(L(()) = m the system is completely integrable;
2. m < dim(L(()) < n the system is nonholonomic, but not STLC;
3. dim(L(()) = n the system is nonholonomic and STLC.

(15.110)

Example 15.19 (Controllability Examples) The differential drive, nonholonomic inte-
grator, and the system from Example 15.17 are all STLC by the Chow-Rashevskii theorem
because dim(L(()) = n. This implies that the state can be changed in any direction, even
though there are differential constraints. The state can be made to follow arbitrarily close
to any smooth curve in X. A method that achieves this based on the Lie algebra is given
in Section 15.5.1. The fact that these systems are STLC assures the existence of an LPM
that satisfies the topological property of Section 14.6.2. �

15.4.3.5 Handling control-affine systems with drift

Determining whether a system with drift (15.52), is STLC is substantially more difficult.
Imagine a mechanical system, such as a hovercraft, that is moving at a high speed. Due
to momentum, it is impossible from most states to move in certain directions during an
arbitrarily small interval of time. One can, however, ask whether a system is STLC from
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a state x ∈ X for which h0(x) = 0. For a mechanical system, this usually means that it
starts at rest. If a system with drift is STLC, this intuitively means that it can move in
any direction by hovering around states that are close to zero velocity for the mechanical
system.

The Lie algebra techniques can be extended to determine controllability for systems
with drift; however, the tools needed are far more complicated. See Chapter 7 of [158] for
more complete coverage. Even if dim(L(()) = n, it does not necessarily imply that the
system is STLC. It does at least imply that the system is accessible, which motivates the
definition given in Section 15.1.3. Thus, the set of achievable velocities still has dimension
n; however, motions in all directions may not be possible due to drift. To obtain STLC,
a sufficient condition is that the set of possible values for ẋ contains an open set that
contains the origin.

The following example clearly illustrates the main difficultly with establishing whether
a system with drift is STLC.

Example 15.20 (Accessible, Not STLC) The following simple system clearly illustrates
the difficulty caused by drift and was considered in [744]. Let X = R

2, U = R, and the
state transition equation be

ẋ1 = u

ẋ2 = x2
1 .

(15.111)

This system is clearly not controllable in any sense because x2 cannot be decreased. The
vector fields are h0(x) = [0 x2

1 ]T and h1(x) = [1 0]T . The first independent Lie bracket
is

[h1, [h0, h1]] = [0 − 2]. (15.112)

The two-dimensional Lie algebra is

L(() = span{h1, [h1, [h0, h1]]}, (15.113)

which implies that the system is accessible. It is not STLC, however, because the bracket
[h1, [h0, h1]] was constructed using h0 and was combined in an unfortunate way. This
bracket is indicating that changing x2 is possible; however, we already know that it is not
possible to decrease x2. Thus, some of the vector fields obtained from Lie brackets that
involve h0 may have directional constraints. �

In Example 15.20, [h1, [h0, h1]] was an example of a bad bracket [926] because it
obstructed controllability. A method of classifying brackets as good or bad has been
developed, and there exist theorems that imply whether a system with drift is STLC
by satisfying certain conditions on the good and bad brackets. Intuitively, there must
be enough good brackets to neutralize the obstructions imposed by the bad brackets
[158, 926].

15.5 Steering methods for nonholonomic systems

This section briefly surveys some methods that solve the BVP for nonholonomic systems.
This can be considered as a motion planning problem under differential constraints but
in the absence of obstacles. For linear systems, optimal control techniques can be used,
as covered in Section 15.2.2. For mechanical systems that are fully actuated, standard
control techniques such as the acceleration-based control model in (8.47) can be applied.
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If a mechanical system is underactuated, then it is likely to be nonholonomic. As observed
in Section 15.4, it is possible to generate motions that appear at first to be prohibited.
Suppose that by the Chow-Rashevskii theorem, it is shown that a driftless system is STLC.
This indicates that it should be possible to design an LPM that successfully connects any
pair of initial and goal states. The next challenge is to find an action trajectory ũ that
actually causes xI to reach xG upon integration in (14.1). Many methods in Chapter 14
could actually be used, but it is assumed that these would be too slow. The methods in
this section exploit the structure of the system (e.g, its Lie algebra) and the fact that there
are no obstacles to more efficiently solve the planning problem.

15.5.1 Using the P. Hall basis

The steering method presented in this section is due to Lafferriere and Sussmann [577]. It
is assumed here that a driftless control-affine system is given, in which X is a Lie group,
as introduced in Example 15.15. Furthermore, the system is assumed to be STLC. The
steering method sketched in this section follows from the Lie algebra L((). The idea is
to apply piecewise-constant motion primitives to move in directions given by the P. Hall
basis. If the system is nilpotent, then this method reaches the goal state exactly. Otherwise,
it leads to an approximate method that can be iterated to get arbitrarily close to the goal.
Furthermore, some systems are nilpotentizable by using feedback [445].

The main idea is to start with (15.53) and construct an extended system

ẋ =
s∑

i=1

bi(x)vi, (15.114)

in which each vi is an action variable, and bi is a vector field in PH, the P. Hall basis.
For every i ≤ m, each term of (15.114) is bi(x)vi = hi(x)ui , which comes from the
original system. For i > m, each bi represents a Lie product in PH, and vi is a fictitious
action variable. It is called fictitious because the velocity given by bi for i > m cannot
necessarily be achieved by using a single action variable of the system. In general, s may
be larger than n because at each x ∈ X a different subset of PH may be needed to obtain n

independent vectors. Also, including more basis elements simplifies some of the coming
computations.

Example 15.21 (Extended System for the Nonholonomic Integrator) The extended
system for the nonholonomic integrator (15.83) is




ẋ1

ẋ2

ẋ3



 =



1
0
−x2



 v1 +



0
1
x1



 v2 +



0
0
2



 v3. (15.115)

The first two terms correspond to the original system. The last term arises from the Lie
bracket [h1, h2]. Only one fictitious action variable is needed because the three P. Hall
vector fields are independent at every x ∈ X.

It is straightforward to move this system along a grid-based path in R
3. Motions in the

x1 and x2 directions are obtained by applying v1 = u1 and v2 = u2, respectively. To move
the system in the x3 direction, the commutator motion in (15.71) should be performed.
This corresponds to applying v3. The steering method described in this section yields a
generalization of this approach. Higher degree Lie products can be used, and motion in
any direction can be achieved. �
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Suppose some xI and xG are given. There are two phases to the steering method:

1. Determine an action trajectory ṽ for the extended system, for which x(0) = xI and
x(tF ) = xG for some tF > 0.

2. Convert ṽ into an action trajectory ũ that eliminates the fictitious variables and uses the
actual m action variables u1, . . . , um.

The first phase is straightforward. For the extended system, any velocity in the tangent
space, Tx(X), can be generated. Start with any smooth path τ : [0, 1] → X such that
τ (0) = xI and τ (1) = xG. The velocity τ̇ (t) along the path τ is a velocity vector in
Tτ (t)(X) that can be expressed as a linear combination of the bi(τ (t)) vectors using linear
algebra. The coefficients of this combination are the vi values. The second phase is much
more complicated and will be described shortly. If the system is nilpotent, then ũ should
bring the system precisely from xI to xG. By the way it is constructed, it will also be clear
how to refine ũ to come as close as desired to the trajectory produced by ṽ.

Formal calculations

The second phase is solved using formal algebraic computations. This means that the
particular vector fields, differentiation, manifolds, and so on, can be ignored. The con-
cepts involve pure algebraic manipulation. To avoid confusion with previous definitions,
the term formal will be added to many coming definitions. Recall from Section 4.4.1 the
formal definitions of the algebra of polynomials (e.g., F[x1, . . . , xn]). Let A(y1, . . . , ym)
denote the formal noncommutative algebra11 of polynomials in the variables y1, . . . , ym.
The yi here are treated as symbols and have no other assumed properties (e.g, they are
not necessarily vector fields). When polynomials are multiplied in this algebra, no sim-
plifications can be made based on commutativity. The algebra can be converted into a Lie
algebra by defining a Lie bracket. For any two polynomials p, q ∈ A(y1, . . . , ym), define
the formal Lie bracket to be [p, q] = pq − qp. The formal Lie bracket yields an equiv-
alence relation on the algebra; this results in a formal Lie algebra L(y1, . . . , ym) (there
are many equivalent expressions for the same elements of the algebra when the formal
Lie bracket is applied). Nilpotent versions of the formal algebra and formal Lie algebra
can be made by forcing all monomials of degree k + 1 to be zero. Let these be denoted
by Ak(y1, . . . , ym) and Lk(y1, . . . , ym), respectively. The P. Hall basis can be applied to
obtain a basis of the formal Lie algebra. Example 15.18 actually corresponds to the basis
of L3(h1, h2, h3) using formal calculations.

The exponential map

The steering problem will be solved by performing calculations on Lk(y1, . . . , ym). The
formal power series of A(y1, . . . , ym) is the set of all linear combinations of monomials,
including those that have an infinite number of terms. Similarly, the formal Lie series of
L(y1, . . . , ym) can be defined.

The formal exponential map is defined for any p ∈ A(y1, . . . , ym) as

ep = 1 + p + 1

2!
p2 + 1

3!
p3 + · · · . (15.116)

11 Intuitively, being an algebra means that polynomials can be added and multiplied; for all of the required axioms,
see [472].
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In the nilpotent case, the formal exponential map is defined for any p ∈ Ak(y1, . . . , ym)
as

ep =
k∑

i=0

pi

i!
. (15.117)

The formal series is truncated because all terms with exponents larger than k vanish.
A formal Lie group is constructed as

Gk(y1, . . . , ym) = {ep | p ∈ Lk(y1, . . . , ym)}. (15.118)

If the formal Lie algebra is not nilpotent, then a formal Lie group G(y1, . . . , ym) can be
defined as the set of all ep, in which p is represented using a formal Lie series.

The following example is taken from [577]:

Example 15.22 (Formal Lie Groups) Suppose that the generators x and y are given.
Some elements of the formal Lie group G(x, y) are

ex = I + x + 1
2x2 + 1

6x3 + · · · , (15.119)

e[x,y] = I + [x, y] + 1
2 [x, y]2 + · · · , (15.120)

and

ex−y+3[x,y] = I + x − y + 3[x, y] + · · · , (15.121)

in which I is the formal Lie group identity. Some elements of the formal Lie group
G2(x, y) are

ex = I + x + 1
2x2, (15.122)

e[x,y] = I + [x, y], (15.123)

and

ex−y+3[x,y] = I + x − y + 3[x, y] + 1
2 (x − y)2. (15.124)

�
To be a group, the axioms given in Section 4.2.1 must be satisfied. The identity is I ,

and associativity clearly follows from the series representations. Each ep has an inverse,
e−p, because epe−p = I . The only remaining axiom to satisfy is closure. This is given by
the Campbell-Baker-Hausdorff-Dynkin formula (or CBHD formula), for which the first
terms for any p, q ∈ G(y1, . . . , ym) are

exp(p) exp(q) = exp(p + q + 1
2 [p, q] + 1

12 [[p, q], q] − 1
12 [[p, q], p]

+ 1
24 [p, [q, [p, q]]] + · · · ), (15.125)

in which exp(x) alternatively denotes ex for any x. The formula also applies to
Gk(y1, . . . , ym), but it becomes truncated into a finite series. This fact will be utilized
later. Note that epeq 	= ep+q , which differs from the standard definition of exponentiation.

The CBHD formula is often expressed as

epeqe−p = exp

( ∞∑

i=0

Adi
p q

i!

)
, (15.126)



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

SYSTEM THEORY AND ANALYTICAL TECHNIQUES 757

in which Ad0
p q = q, and Adi

p q = [p, Adi−1
p q]. The operator Ad provides a compact

way to express some nested Lie bracket operations. Additional terms of (15.125) can be
obtained using (15.126).

The Chen-Fliess series

The P. Hall basis from Section 15.4.3 applies in general to any Lie algebra. Let B1, . . . , Bs

denote a P. Hall basis for the nilpotent formal Lie algebra Lk(y1, . . . , ym). An important
theorem in the study of formal Lie groups is that every S ∈ Gk(y1, . . . , ym) can be
expressed in terms of the P. Hall basis of its formal Lie algebra as

S = ezsBs ezs−1Bs−1 · · · ez2B2ez1B1 , (15.127)

which is called the Chen-Fliess series. The zi are sometimes called the backward P. Hall
coordinates of S (there is a forward version, for which the terms in (15.127) go from 1 to
s, instead of s to 1).

Returning to the system vector fields

Now the formal algebra concepts can be applied to the steering problem. The variables
become the system vector fields: yi = hi for all i from 1 to m. For the P. Hall basis elements,
each Bi becomes bi . The Lie group becomes the state space X, and the Lie algebra is
the familiar Lie algebra over the vector fields, which was introduced in Section 15.4.3.
Consider how an element of the Lie group must evolve over time. This can be expressed
using the differential equation

Ṡ(t) = S(t)(v1b1 + v2b2 + · · · + vsbs), (15.128)

which is initialized with S(0) = I . Here, S can be interpreted as a matrix, which may, for
example, belong to SE(3).

The solution at every time t > 0 can be written using the Chen-Fliess series, (15.127):

S(t) = ezs (t)bs ezs−1(t)bs−1 · · · ez2(t)b2ez1(t)b1 . (15.129)

This indicates that S(t) can be obtained by integrating b1 for time z1(t), followed by b2

for time z2(t), and so on until bs is integrated for time zs(t). Note that the backward P.
Hall coordinates now vary over time. If we determine how they evolve over time, then the
differential equation in (15.128) is solved.

The next step is to figure out how the backward P. Hall coordinates evolve. Differenti-
ating (15.129) with respect to time yields

Ṡ(t) =
s∑

j=1

ezsbs · · · ezj+1bj+1 żj bj e
zj bj · · · ez1b1 . (15.130)

The Chen-Fliess-Sussmann equation

There are now two expressions for Ṡ, which are given by (15.128) and (15.130). By
equating them, s equations of the form

s∑

j=1

pj,kżj = vk (15.131)

are obtained, in which pj,k is a polynomial in zi variables. This makes use of the series
representation for each exponential; see Example 15.23.
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The evolution of the backward P. Hall coordinates is therefore given by the Chen-
Fliess-Sussmann (CFS) equation:

ż = Q(z)v, (15.132)

in which Q(z) is an s × s matrix, and z(0) = 0. The entries in Q(z) are polynomials;
hence, it is possible to integrate the system analytically to obtain expressions for the zi(t).

A simple example is given, which was worked out in [301]:

Example 15.23 (The CFS Equation for the Nonholonomic Integrator) The extended
system for the nonholonomic integrator was given in (15.115). The differential equation
(15.128) for the Lie group is

Ṡ(t) = S(t)(v1b1 + v2b2 + v3b3), (15.133)

because s = 3.
There are two expressions for its solution. The Chen-Fliess series (15.129) becomes

S(t) = ez3(t)b3ez2(t)b2ez1(t)b1 . (15.134)

The initial condition S(0) = I is satisfied if zi(0) = 0 for i from 1 to 3. The second
expression for Ṡ(t) is (15.130), which in the case of the nonholonomic integrator becomes

Ṡ(t) = ż3(t)b3e
z3(t)b3ez2(t)b2ez1(t)b1

+ ez3(t)b3 ż2(t)b2e
z2(t)b2ez1(t)b1

+ ez3(t)b3ez2(t)b2 ż1(t)b1e
z1(t)b1 .

(15.135)

Note that

S−1(t) = e−z1(t)b1e−z2(t)b2e−z3(t)b3 . (15.136)

Equating (15.133) and (15.135) yields

S−1Ṡ = v1b1 + v2b2 + v3b3 = e−z1b1e−z2b2e−z3b3 ż3b3e
z3b3ez2b2ez1b1

+ e−z1b1e−z2b2 ż2b2e
z2b2ez1b1

+ e−z1b1 ż1b1e
z1b1 ,

(15.137)

in which the time dependencies have been suppressed to shorten the expression. The formal
Lie series expansions, appropriately for the exponentials, are now used. For i = 1, 2,

ezibi = (I + zibi + 1
2z2

i b
2
i ) (15.138)

and

e−zibi = (I − zibi − 1
2z2

i b
2
i ). (15.139)

Also,

ez3b3 = (I + z3b3) (15.140)

and

e−z3b3 = (I − z3b3). (15.141)

The truncation is clearly visible in (15.140) and (15.141). The b2
3 terms are absent because

b3 is a polynomial of degree two, and its square would be of degree four.
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Substitution into (15.137), performing noncommutative multiplication, and applying
the Lie bracket definition yields

ż1b1 + ż2(b2 − z1b3) + ż3b3 = v1b1 + v2b2 + v3b3. (15.142)

Equating like terms yields the Chen-Fliess-Sussmann equation

ż1 = v1

ż2 = v2

ż3 = v3 + z1v2.

(15.143)

Recall that ṽ is given. By integrating (15.143) from z(0) = 0, the backward P. Hall
coordinate trajectory z̃ is obtained. �

Using the original action variables

Once the CFS equation has been determined, the problem is almost solved. The action
trajectory ṽ was determined from the given state trajectory ṽ and the backward P. Hall
coordinate trajectory z̃ is determined by (15.143). The only remaining problem is that the
action variables from vm+1 to vs are fictitious because their associated vector fields are
not part of the system. They were instead obtained from Lie bracket operations. When
these are applied, they interfere with each other because many of them may try to use the
same ui variables from the original system at the same time.

The CBHD formula is used to determine the solution in terms of the system action
variables u1, . . . , um. The differential equation now becomes

Ṡ(t) = S(t)(u1h1 + u2h2 + · · · + umhm), (15.144)

which is initialized with S(0) = I and uses the original system instead of the extended
system.

When applying vector fields over time, the CBHD formula becomes

exp(tf ) exp(tg) =

exp(tf + tg + t2

2
[f, g] + t3

12
[[f, g], g] − t3

12
[[f, g], f ] + t4

24
[f, [g, [f, g]]] + · · · ).

(15.145)

If the system is nilpotent, then this series is truncated, and the exact effect of sequentially
combining constant motion primitives can be determined. This leads to a procedure for
determining a finite sequence of constant motion primitives that generate a motion in the
same direction as prescribed by the extended system and the action trajectory ṽ.

15.5.2 Using sinusoidal action trajectories

The steering method presented in this section is based on initial work by Brockett [144]
and a substantial generalization of it by Murray and Sastry [730]. The approach applies
to several classes of systems for which the growth of independent vector fields occurs as
quickly as possible. This means that when the P. Hall basis is constructed, no elements
need to be removed due to linear dependency on previous Lie products or system vector
fields. For these systems, the approach applies sinusoids of integrally related frequencies
to some action variables. This changes some state variables while others are automatically
fixed. For more details beyond the presentation here, see [599, 728, 730, 848].
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15.5.2.1 Steering the nonholonomic integrator

The main idea of the method can be clearly illustrated for the nonholonomic integrator,

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1,

(15.146)

which was considered throughout Section 15.5.1. This case will be explained in detail,
and the methods obtained by generalizing the principles will subsequently be stated. The
presentation given here is based on [730, 848].

As was previously indicated, growing independent vector fields as quickly as possible
is important. For the nonholonomic integrator, [h1, h2], is linearly independent of h1 and
h2, as observed in Example 15.12; thus, it satisfies this property. Consider steering the
system from some xI = x(0) to some xG = x(1) while optimizing the cost functional

∫ 1

0

(
u1(t)2 + u2(t)2

)
dt. (15.147)

The problem can be solved by using the constrained Lagrangian formulation, which
was given in Section 13.4.3. The first step is to eliminate the u variables. From (15.146),
the cost can be expressed in terms of ẋ1 and ẋ2 by using ẋ1 = u1 and ẋ2 = u2. The third
equation in (15.146) can be written as

ẋ3 = x1ẋ2 − x2ẋ1 (15.148)

and will be interpreted as a constraint on the Lagrangian, which is combined using a
(scalar) Lagrange multiplier as explained in Section 13.4.3. Define the Lagrangian as

L(x, ẋ) = (ẋ2
1 + ẋ2

2 ) + λ
(
ẋ3 − x1ẋ2 + x2ẋ1

)
, (15.149)

in which the first term comes from the integrand of (15.147), and the second term comes
from (15.148).

The Euler-Lagrange equation (13.118) yields

ẍ1 + λẋ2 = 0

ẍ2 − λẋ1 = 0

λ̇ = 0.

(15.150)

Note that λ̇ = 0 implies that λ(t) is constant for all time. To obtain a differential equation
that characterizes the optimal action trajectory, use the fact that for i = 1, 2, ẋi = ui and
ẍi = u̇i . This yields the equations u̇1 = −λu̇2 and u̇2 = λu̇1. These can be represented as
second-order linear differential equations. Based on its roots, the solution is

u1(t) = u1(0) cos λt − u2(0) sin λt

u2(t) = u1(0) sin λt + u2(0) cos λt.
(15.151)

Given initial and goal states, the optimal action trajectory is found by determining
u1(0), u2(0), and λ. Suppose that xI = x(0) = (0, 0, 0) and xG = x(1) = (0, 0, a) for
some a ∈ R. Other cases can be obtained by applying transformations in SE(3) to the
solution.
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The state trajectories for x1 and x2 can be obtained by integration of (15.151) because
ui = ẋi for i = 1 and i = 2. Starting from x1(0) = x2(0) = 0, this yields

x1(t) = 1

λ

(
u1(0) sin λt + u2(0) cos λt − u2(0)

)

x2(t) = 1

λ

(− u1(0) cos λt + u2(0) sin λt + u1(0)
)
.

(15.152)

To maintain the constraint that x1(1) = x2(1) = 0, λ must be chosen as λ = 2kπ for some
integer n. Integration of ẋ3 yields

x3(t) =
∫ 1

0

(
x1u2 − x2u1

)
dt = 1

λ

(
u2

1(0) + u2
2(0)
) = a. (15.153)

The cost is
∫ 1

0

(
u2

1(t) + u2
2(t)
)
dt = u2

1(0) + u2
2(0) = λa. (15.154)

The minimum cost is therefore achieved for k = −1, which yields λ = 2π and ‖u‖ = 2πa.
This fixes the magnitude of u(0), but any direction may be chosen.

The steering problem can be solved in two phases:

1. Apply any action trajectory to steer x1 and x2 to their desired values while neglecting to
consider x3.

2. Apply the solution just developed to steer x3 to the goal while x1 and x2 return to their
values obtained in the first phase.

This idea can be generalized to other systems.

15.5.2.2 First-order controllable systems

The approach developed for the nonholonomic integrator generalizes to systems of the
form

ẋi = ui for i from 1 to m

ẋij = xiuj − xjui for all i, j so that i < j and 1 ≤ j ≤ m (15.155)

and

ẋi = ui for i from 1 to m

ẋij = xiuj for all i, j such that i < j and 1 ≤ j ≤ m. (15.156)

Brockett showed in [144] that for such first-order controllable systems, the optimal action
trajectory is obtained by applying a sum of sinusoids with integrally related frequencies
for each of the m action variables. If m is even, then the trajectory for each variable is
a sum of m/2 sinusoids at frequencies 2π , 2 · 2π, . . . , (m/2) · 2π . If m is odd, there are
instead (m− 1)/2 sinusoids; the sequence of frequencies remains the same. Suppose m

is even (the odd case is similar). Each action is selected as

ui =
m/2∑

k=1

aik sin 2πkt + bik cos 2πkt. (15.157)
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The other state variables evolve as

xij = xij (0) + 1

2

m/2∑

k=1

1

k
(ajkbik − aikbjk), (15.158)

which provides a constraint similar to (15.153). The periodic behavior of these action
trajectories causes the xi variables to return to their original values while steering the xij

to their desired values. In a sense this is a vector-based generalization in which the scalar
case was the nonholonomic integrator.

Once again, a two-phase steering approach is obtained:

1. Apply any action trajectory that brings every xi to its goal value. The evolution of the xij

states is ignored in this stage.

2. Apply sinusoids of integrally related frequencies to the action variables. Choose each
ui(0) so that xij reaches its goal value. In this stage, the xi variables are ignored because
they will return to their values obtained in the first stage.

This method has been generalized even further to second-order controllable systems:

ẋi = ui for i from 1 to m

ẋij = xiuj for all i, j such that i < j and 1 ≤ j ≤ m (15.159)

ẋijk = xijuk for all (i, j, k) ∈ J ,

in which J is the set of all unique triples formed from distinct i, j, k ∈ {1, . . . , m} and
removing unnecessary permutations due to the Jacobi identity for Lie brackets. For this
problem, a three-phase steering method can be developed by using ideas similar to the
first-order controllable case. The first phase determines xi , the second handles xij , and the
third resolves xijk . See [730, 848] for more details.

15.5.2.3 Chained-form systems

Example 15.17 considered a special case of a chained-form system. The system in (15.102)
can be generalized to any n as

ẋ1 = u1 ẋ4 = x3u1

ẋ2 = u2
... (15.160)

ẋ3 = x2u1 ẋn = xn−1u1.

This can be considered as a system with higher order controllability. For these systems,
a multi-phase approach is obtained:

1. Apply any action trajectory for u1 and u2 that brings x1 and x2 to their goal values. The
evolution of the other states is ignored in this stage.

2. This phase is repeated for each k from 3 to n. Steer xk to its desired value by applying

u1 = a sin 2πkt and u2 = b cos 2πkt, (15.161)

in which a and b are chosen to satisfy the constraint

xk(1) = xk(0) +
( a

4π

)(k−2) b

(k − 2)!
. (15.162)

Each execution of this phase causes the previous k − 1 state variables to return to their
previous values.



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

SYSTEM THEORY AND ANALYTICAL TECHNIQUES 763

For a proof of the correctness of the second phase, and more information in general,
see [730, 848]. It may appear that very few systems fit the forms given in this section;
however, it is sometimes possible to transform systems to fit this form. Recall that the
original simple car model in (13.15) was simplified to (15.54). Transformation methods
for putting systems into chained form have been developed. For systems that still cannot
be put in this form, Fourier techniques can be used to obtain approximate steering methods
that are similar in spirit to the methods in this section. When the chained-form system is
expressed using Pfaffian constraints, the result is often referred to as the Goursat normal
form. The method can be extended even further to multi-chained-form systems.

15.5.3 Other steering methods

The steering methods presented so far are perhaps the most widely known; however,
several other alternatives exist. Most of these follow in the spirit of the methods in
Sections 15.5.1 and 15.5.2 by exploiting the properties of a specific class of systems.
Some alternatives are briefly surveyed here. This is an active field of research; it is likely
that new methods will be developed in the coming years.

Differentially flat systems

Differential flatness has become an important concept in the development of steering
methods. It was introduced by Fliess, Lévine, Martin, and Rouchon in [346]; see also
[729]. Intuitively, a system is said to be differentially flat if a set of variables called
flat outputs can be found for which all states and actions can be determined from them
without integration. This specifically means that for a system ẋ = f (x, u) with X = R

n

and U = R
m, there exist flat outputs of the form

y = h(x, u, u̇, . . . , u(k)) (15.163)

such that there exist functions g and g′ for which

x = g(y, ẏ, . . . , y(j )) (15.164)

and

u = g′(y, ẏ, . . . , y(j )). (15.165)

One example is the simple car pulling trailers, expressed in (13.19); the flat outputs are
the position in W = R

2 of the last trailer. This property was used for motion planning in
[581]. Recent works on the steering of differentially flat systems include [581, 816, 836].

Decoupling vector fields

For mechanical systems in which dynamics is considered, the steering problem becomes
complicated by drift. One recent approach is based on establishing that a system is
kinematically controllable, which means that the system is STLC on the C-space, if
traversed using trajectories that start and stop at zero velocity states [159]. The method
finds decoupling vector fields on the C-space. Any path that is the integral curve of a
decoupling vector field in the C-space is executable by the full system with dynamics. If
a mechanical system admits such vector fields, then it was proved in [159] that a steering
method for C can be lifted into one for X, the phase space of the mechanical system. This
idea was applied to generate an efficient LPM in an RRT planner in [226].
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Averaging methods

By decomposing the state trajectory into a low-frequency part that accounts for the long-
range evolution of states and a high-frequency part that accounts for small oscillations
over short ranges, averaging methods enable perturbations to be systematically made to
state trajectories. This yields other steering methods based on sinusoidal action trajectories
[114, 423, 626, 627].

Variational techniques

As might be expected, the general-purpose gradient-based optimization techniques of
Section 14.7 can be applied to the steering of nonholonomic systems. Such methods
are based on Newton iterations on the space of possible state trajectories. This leads
to a gradient descent that arrives at a local optimum while satisfying the differential
constraints. For details on applying such techniques to steer nonholonomic systems, see
[278, 336, 599, 902, 927].

Pontryagin’s minimum principle

The minimum principle can be helpful in developing a steering method. Due to the close
connection between the Euler-Lagrange equation and Hamilton’s equations, as mentioned
in Section 13.4.4, this should not be surprising. The Euler-Lagrange equation was used in
Section 15.5.2 to determine an optimal steering method for the nonholonomic integrator. A
steering methodology based on the minimum principle is described in [848]. The optimal
curves of Section 15.3 actually represent steering methods obtained from the minimum
principle. Unfortunately, for the vast majority of problems, numerical techniques are
needed to solve the resulting differential equations. It is generally expected that techniques
developed for specific classes, such as the nilpotent, chained-form, or differentially flat
systems, perform much better than general-purpose numerical techniques applied to the
Euler-Lagrange equation, Hamilton’s equations or Pontryagin’s minimum principle.

Dynamic programming

The numerical dynamic programming approach of Section 14.5 can be applied to provide
optimal steering for virtual any system. To apply it here, the obstacle region Xfree is
empty. The main drawback, however, is that the computational cost is usually too high,
particularly if the dimension of X is high. On the other hand, it applies in a very general
setting, and Lie group symmetries can be used to apply precomputed trajectories from
any initial state. This is certainly a viable approach with systems for which the state space
is SE(2) or SO(3).

Further reading

The basic stability and controllability concepts from Section 15.1 appear in many control textbooks,
especially ones that specialize in nonlinear control; see [526, 848] for an introduction to nonlinear
control. More advanced concepts appear in [158]. For illustrations of many convergence properties in
vector fields, see [44]. For linear system theory, see [194]. Brockett’s condition and its generalization
appeared in [145, 996]. For more on stabilization and feedback control of nonholonomic systems, see
[158, 848, 964]. For Lyapunov-based design for feedback control, see [280].

For further reading on the Hamilton-Jacobi-Bellman equation, see [87, 97, 495, 792, 913]. For
numerical approaches to its solution (aside from value iteration), see [2, 255, 710]. Linear-quadratic
problems are covered in [28, 573]. Pontryagin’s original works provide an unusually clear explanation
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of the minimum principle [804]. For other sources, see [97, 412, 792]. A generalization that incorporates
state-space constraints appears in [928].

Works on which Section 15.3 is based are [65, 130, 213, 296, 817, 904, 905, 924]. Optimal curves have
been partially characterized in other cases; see [229, 904]. One complication is that optimal curves often
involve infinite switching [372, 1000]. There is also interest in nonoptimal curves that nevertheless have
good properties, especially for use as a local planning method for car-like robots [31, 360, 523, 797, 850].
For feedback control of car-like robots, see [114, 666].

For further reading on nonholonomic system theory beyond Section 15.4, there are many excellent
sources: [85, 114, 115, 158, 481, 728, 744, 848]. A generalization of the Chow-Rashevskii theorem
to hybrid systems is presented in [727]. Controllability of a car pulling trailers is studied in [597].
Controllability of a planar hovercraft with thrusters is considered in [672]. The term holonomic is
formed from two Greek words meaning “integrable” and “law” [137].

Section 15.5 is based mainly on the steering methods in [577] (Section 15.5.1) and [144, 730]
(Section 15.5.2). The method of Section 15.5.1 is extended to time-varying systems in [301]. A multi-
rate version is developed in [716]. In [483], it was improved by using a Lyndon basis, as opposed to the P.
Hall basis. Another steering method that involves series appears in [156, 157]. For more on chained-form
systems, see [860, 903]. For a variant that uses polynomials and the Goursat normal form, instead of
sinusoids, see [848]. For other steering methods, see the references suggested in Section 15.5.3.

Exercises

1. Characterize the stability at (0, 0) of the vector � eld on X = R
2, given by ẋ 1 = x2 and

ẋ 2 = −x 2
2 − x1. Use the Lyapunov function φ(x1, x2) = x 2

1 + x 2
2 .

2. Repeat Example 15.4, but instead use the cost term l(x, u) = u2.

3. Repeat Example 15.4, but instead for a triple integrator q (3) = u and U = [−1, 1].

4. Determine the precise conditions under which each of the four cases of Example 15.4
occurs. De�ne a feedback motion plan that causes time-optimal motions.

5. Note that some of the six optimal words for the Dubins car do not appear for the Reeds-
Shepp car. For each of these, illustrate why it does not appear.

6. Retrace the steps of the Taylor series argument for deriving the Lie bracket in Sec-
tion 15.4.2. Arrive at (15.81) by showing all steps in detail (smaller steps are skipped
in Section 15.4.2).

7. Determine whether the following system is nonholonomic and STLC:

q̇ 1 = u1 q̇ 4 = q 2
2 u1

q̇ 2 = u2 q̇ 5 = q 2
1 u2 (15.166)

q̇ 3 = q1u2 − q2u1.

8. Prove that linear systems ẋ = Ax + Bu for constant matrices A and B cannot be nonholo-
nomic.

9. Determine whether the following system is nonholonomic and STLC:





ẋ

ẏ

θ̇

ψ̇



 =





cos θ

sin θ

0
− sin ψ



 u1 +





0
0
1
1



 u2. (15.167)

10. Using the commutator motion and constant actions for the differential drive, develop a
lattice over its con�gur ation space.
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11. Consider a smooth nonlinear system that has only one action variable and an n-
dimensional state space for n > 1. Are such systems always completely integrable, always
nonholonomic, or is either possible?

12. Generalize Example 15.17 to R
n with two action variables. Determine whether the system

is STLC for any n > 5.

13. Show that the vector cross product on R
3 indeed produces a Lie algebra when used as a

bracket operation.

14. Derive the CFS equation for the following system:

q̇ 1 = u1 q̇ 3 = q1u2 − q2u1

q̇ 2 = u2 q̇ 4 = q 2
2 u1. (15.168)

Implementations

15. Implement software that computes the P. Hall basis up to any desired order (this is only
symbolic computation; the Lie brackets are not expanded).

16. Implement software that displays the appropriate optimal path for the Dubins car, between
any given qI and qG.

17. Apply the planning algorithm in Section 14.4.2 to numerically determine the Dubins curves.
Use Dijkstra’s algorithm for the search, and use a high-resolution grid. Can your software
obtain the same set of curves as Dubins?

18. Experiment with using Dubins curves as a local planning method (LPM) and metric in an
RRT-based planning algorithm. Does using the curves improve execution time? Do they
lead to better solutions?
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Latombe, and C. Tomasi. An intelligent
observer. In Preprints of International
Symposium on Experimental Robotics,
pages 94–99, 1995.

[84] K. E. Bekris, B. Y. Chen, A. Ladd,
E. Plaku, and L. E. Kavraki. Multi-
ple query probabilistic roadmap plan-
ning using single query primitives.
In Proceedings IEEE/RSJ International



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

BIBLIOGRAPHY 771

Conference on Intelligent Robots and
Systems, 2003.

[85] A. Bellaiche, F. Jean, and J. J. Risler.
Geometry of nonholonomic systems. In
J.-P. Laumond, editor, Robot Motion
Planning and Control, pages 55–92.
Springer-Verlag, Berlin, 1998.

[86] R. E. Bellman. Dynamic Programming.
Princeton University Press, Princeton,
NJ, 1957.

[87] R. E. Bellman and S. E. Dreyfus. Ap-
plied Dynamic Programming. Princeton
University Press, Princeton, NJ, 1962.

[88] I. Belousov, C. Esteves, J.-P. Laumond,
and E. Ferre. Motion planning for large
space manipulators with complicated
dynamics. In Proceedings IEEE/RSJ In-
ternational Conference on Intelligent
Robots and Systems, 2005.

[89] M. A. Bender, A. Fernandez, D. Ron,
A. Sahai, and S. Vadhan. The power of a
pebble: Exploring and mapping directed
graphs. In Proceedings Annual Sympo-
sium on Foundations of Computer Sci-
ence, 1998.

[90] A. Benveniste, M. Metivier, and
P. Prourier. Adaptive Algorithms and
Stochastic Approximations. Springer-
Verlag, Berlin, 1990.

[91] J. O. Berger. Statistical Decision Theory.
Springer-Verlag, Berlin, 1980.

[92] M. Bern. Triangulations and mesh
generation. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Dis-
crete and Computational Geometry, 2nd
Ed., pages 563–582. Chapman and
Hall/CRC Press, New York, 2004.

[93] J. Bernard, J. Shannan, and M. Vander-
ploeg. Vehicle rollover on smooth sur-
faces. In Proceedings SAE Passenger
Car Meeting and Exposition, Dearborn,
MI, 1989.

[94] D. P. Bertsekas. Convergence in dis-
cretization procedures in dynamic pro-
gramming. IEEE Transactions on Au-
tomatic Control, 20(3):415–419, June
1975.

[95] D. P. Bertsekas. Dynamic Programming:
Deterministic and Stochastic Models.
Prentice-Hall, Englewood Cliffs, NJ,
1987.

[96] D. P. Bertsekas. Nonlinear Program-
ming. Athena Scientific, Belmont, MA,
1999.

[97] D. P. Bertsekas. Dynamic Programming
and Optimal Control, Vol. I, 2nd Ed.
Athena Scientific, Belmont, MA, 2001.

[98] D. P. Bertsekas. Dynamic Programming
and Optimal Control, Vol. II, 2nd Ed.
Athena Scientific, Belmont, MA, 2001.

[99] D. P. Bertsekas and J. N. Tsitsiklis.
Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA, 1996.

[100] J. T. Betts. Survey of numerical meth-
ods for trajectory optimization. Journal
of Guidance, Control, and Dynamics,
21(2):193–207, March–April 1998.

[101] A. Beygelzimer, S. M. Kakade, and
J. Langford. Cover trees for nearest
neighbor. University of Pennsylvania,
Available from http://www.cis.upenn.
edu/∼skakade/papers/ml/cover tree.pdf,
2005.

[102] A. Bhatia and E. Frazzoli. Incremental
search methods for reachability analy-
sis of continuous and hybrid systems.
In R. Alur and G. J. Pappas, editors, Hy-
brid Systems: Computation and Control,
pages 67–78. Springer-Verlag, Berlin,
2004. Lecture Notes in Computer Sci-
ence, 2993.

[103] S. Bhattacharya and S. K. Agrawal. De-
sign, experiments and motion planning
of a spherical rolling robot. In Proceed-
ings IEEE International Conference on
Robotics & Automation, pages 1207–
1212, 2000.

[104] A. Bicchi, A. Marigo, and B. Piccoli.
On the reachability of quantized con-
trol systems. IEEE Transactions on Au-
tomatic Control, 47(4):546–563, April
2002.

[105] A. Bicchi, D. Prattichizzo, and S. Sastry.
Planning motions of rolling surfaces. In
Proceedings IEEE Conference Decision
& Control, 1995.

[106] Z. Bien and J. Lee. A minimum-time tra-
jectory planning method for two robots.
IEEE Transactions on Robotics & Au-
tomation, 8(3):414–418, June 1992.

[107] D. Bienstock and P. Seymour. Mono-
tonicity in graph searching. Journal of
Algorithms, 12:239–245, 1991.

[108] J. Bilmes. A gentle tutorial on the EM
algorithm and its application to param-
eter estimation for Gaussian mixture
and hidden Markov models. Technical
Report ICSI-TR-97-021, International



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

772 BIBLIOGRAPHY

Computer Science Institute (ICSI),
Berkeley, CA, 1997.

[109] R. L. Bishop and S. I. Goldberg. Ten-
sor Analysis on Manifolds. Dover, New
York, 1980.

[110] H. S. Black. Stabilized feedback am-
plifiers. Bell Systems Technical Journal,
13:1–18, 1934.

[111] D. Blackwell and M. A. Girshik. The-
ory of Games and Statistical Decisions.
Dover, New York, 1979.

[112] S. Blind, C. McCullough, S. Akella,
and J. Ponce. Manipulating parts with
an array of pins: A method and a ma-
chine. International Journal of Robotics
Research, 20(10):808–818, December
2001.

[113] A. Bloch. Murphy’s Law and Other Rea-
sons Why Things Go Wrong. Price Stern
Sloan Adult, New York, 1977.

[114] A. M. Bloch. Nonholonomic Mechan-
ics and Control. Springer-Verlag, Berlin,
2003.

[115] A. M. Bloch and P. E. Crouch. Nonholo-
nomic control systems on Riemannian
manifolds. SIAM Journal on Control and
Optimization, 33:126–148, 1995.

[116] V. D. Blondel and J. N. Tsitsiklis. A
survey of computational complexity re-
sults in systems and control. Automatica,
36(9):1249–1274, September 2000.

[117] A. Blum, S. Chawla, D. Karger, T. Lane,
A. Meyerson, and M. Minkoff. Ap-
proximation algorithms for orienteering
and discounted-reward TSP. In Proceed-
ings IEEE Symposium on Foundations of
Computer Science, 2003.

[118] A. Blum, P. Raghavan, and B. Schieber.
Navigating in unfamiliar geometric ter-
rains. In Proceedings ACM Symposium
on Computational Geometry, pages
494–504, 1991.

[119] A. L. Blum and M. L. Furst. Fast planing
through planning graph analysis. In Pro-
ceedings International Joint Conference
on Artificial Intelligence, pages 1636–
1642, 1995.

[120] L. Blum, F. Cucker, and M. Schub abd
S. Smale. Complexity and Real Compu-
tation. Springer-Verlag, Berlin, 1998.

[121] M. Blum and D. Kozen. On the power
of the compass (or, why mazes are eas-
ier to search than graphs). In Proceed-
ings Annual Symposium on Foundations

of Computer Science, pages 132–142,
1978.

[122] J. E. Bobrow. Optimal robot path plan-
ning using the minimum-time criterion.
IEEE Transactions on Robotics & Au-
tomation, 4(4):443–450, August 1988.

[123] J. E. Bobrow, S. Dubowsky, and J. S.
Gibson. Time-optimal control of robotic
manipulators along specified paths. In-
ternational Journal of Robotics Re-
search, 4(3):3–17, 1985.

[124] H. Bode. Feedback: The history of an
idea. In R. Bellman and R. Kalaba, ed-
itors, Selected Papers on Mathematical
Trends in Control Theory, pages 106–
123. Dover, New York, 1969.

[125] R. Bohlin. Path planning in practice; lazy
evaluation on a multi-resolution grid.
In Proceedings IEEE/RSJ International
Conference on Intelligent Robots and
Systems, 2001.

[126] R. Bohlin. Robot Path Planning. PhD
thesis, Chalmers University, Gothen-
burg, Sweden, 2002.

[127] R. Bohlin and L. Kavraki. Path planning
using Lazy PRM. In Proceedings IEEE
International Conference on Robotics &
Automation, 2000.
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subdivision algorithm in configuration
space for findpath with rotation. IEEE
Transactions on Systems, Man, & Cy-
bernetics, SMC-15(2):224–233, 1985.

[147] R. C. Brost. Automatic grasp planning
in the presence of uncertainty. Inter-
national Journal of Robotics Research,
7(1):3–17, 1988.

[148] R. C. Brost. Analysis and Planning of
Planar Manipulation Tasks. PhD thesis,
Carnegie Mellon University, Pittsburgh,
PA, 1991.

[149] R. C. Brost and A. D. Christiansen. Prob-
abilistic analysis of manipulation tasks:
A research agenda. In Proceedings IEEE
International Conference on Robotics &
Automation, volume 3, pages 549–556,
1993.

[150] R. C. Brost and A. D. Christiansen. Prob-
abilistic analysis of manipulation tasks:
A computational framework. Technical
Report SAND92-2033, Sandia National
Laboratories, Albuquerque, NM, Jan-
uary 1994.

[151] R. C. Brost and A. D. Christiansen. Prob-
abilistic analysis of manipulation tasks:
A computational framework. Interna-
tional Journal of Robotics Research,
15(1):1–23, February 1996.

[152] J. Bruce and M. Veloso. Real-time ran-
domized path planning for robot naviga-
tion. In Proceedings IEEE/RSJ Interna-
tional Conference on Intelligent Robots
and Systems, 2002.

[153] A. E. Bryson and Y.-C. Ho. Applied Op-
timal Control. Hemisphere Publishing
Corp., New York, 1975.

[154] M. Buckland. AI Techniques for Game
Programming. Premier Press, Portland,
OR, 2002.

[155] S. J. Buckley. Fast motion planning for
multiple moving robots. In Proceedings



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

774 BIBLIOGRAPHY

IEEE International Conference on
Robotics & Automation, pages 322–326,
1989.

[156] F. Bullo. Series expansions for the evo-
lution of mechanical control systems.
SIAM Journal on Control and Optimiza-
tion, 40(1):166–190, 2001.

[157] F. Bullo. Series expansions for analytic
systems linear in control. Automatica,
38(9):1425–1432, September 2002.

[158] F. Bullo and A. D. Lewis. Geomet-
ric Control of Mechanical Systems.
Springer-Verlag, Berlin, 2004.

[159] F. Bullo and K. M. Lynch. Kinematic
controllability for decoupled trajectory
planning in underactuated mechanical
systems. IEEE Transactions on Robotics
and Automation, 17(4):402–412, 2001.

[160] J. W. Burdick. Kinematic Analysis and
Design of Redundant Manipulators.
PhD thesis, Stanford University, Stan-
ford, CA, 1988.

[161] W. Burgard, A. B. Cremers, D. Fox,
D. Hähnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun. The interactive
museum tour-guide robot. In Proceed-
ings AAAI National Conference on Arti-
ficial Intelligence, pages 11–18, 1998.

[162] J. J. Burken, P. Lu, and Z. Wu. Re-
configurable flight control designs with
application to the X-33 vehicle. Tech-
nical Report TM-1999-206582, NASA,
Washington, DC, 1999.

[163] B. Burns and O. Brock. Sampling-based
motion planning using predictive mod-
els. In Proceedings IEEE International
Conference on Robotics & Automation,
2005.

[164] R. R. Burridge, A. A. Rizzi, and D. E.
Koditschek. Sequential composition of
dynamically dexterous robot behaviors.
International Journal of Robotics Re-
search, 18(6):534–555, 1999.

[165] L. G. Bushnell, D. M. Tilbury, and
S. S. Sastry. Steering three-input non-
holonomic systems: the fire truck exam-
ple. International Journal of Robotics
Research, 14(4):366–381, 1995.

[166] Z. J. Butler, A. A. Rizzi, and R. L. Hollis.
Contact sensor-based coverage of rec-
tilinear environments. In IEEE Sympo-
sium on Intelligent Control, 1999.

[167] Z. J. Butler and D. Rus. Distributed
motion planning for modular robots

with unit-compressible modules. Inter-
national Journal of Robotics Research,
22(9):699–716, 2003.

[168] S. Cambon, F. Gravot, and R. Alami.
A robot task planner and merges sym-
bolic and geometric reasoning. In Pro-
ceedings European Conference on Arti-
ficial Intelligence, 2004.

[169] S. Cameron. A comparison of two
fast algorithms for computing the dis-
tance between convex polyhedra. IEEE
Transactions on Robotics & Automation,
13(6):915–920, December 1997.

[170] F. Camilli and M. Falcone. Approxima-
tion of optimal control problems with
state constraints: Estimates and applica-
tions. In B. S. Mordukhovich and H. J.
Sussmann, editors, Nonsmooth Analy-
sis and Geometric Methods in Deter-
ministic Optimal Control, pages 23–57.
Springer-Verlag, Berlin, 1996. Mathe-
matics and its Applications, Vol. 78.

[171] J. Canny. Constructing roadmaps of
semi-algebraic sets I. Artificial Intelli-
gence Journal, 37:203–222, 1988.

[172] J. Canny. Computing roadmaps of gen-
eral semi-algebraic sets. The Computer
Journal, 36(5):504–514, 1993.

[173] J. Canny, A. Rege, and J. Reif. An exact
algorithm for kinodynamic planning in
the plane. Discrete and Computational
Geometry, 6:461–484, 1991.

[174] J. Canny and J. Reif. New lower bound
techniques for robot motion planning
problems. In Proceedings IEEE Sympo-
sium on Foundations of Computer Sci-
ence, pages 49–60, 1987.

[175] J. F. Canny. The Complexity of Robot
Motion Planning. MIT Press, Cam-
bridge, MA, 1988.

[176] J. F. Canny. On computability of fine
motion plans. In Proceedings IEEE In-
ternational Conference on Robotics &
Automation, pages 177–182, 1989.

[177] J. F. Canny and K. Y. Goldberg. “RISC”
industrial robots: Recent results and cur-
rent trends. In Proceedings IEEE Inter-
national Conference on Robotics & Au-
tomation, pages 1951–1958, 1994.

[178] J. F. Canny and M. Lin. An opportunis-
tic global path planner. Algorithmica,
10:102–120, 1993.

[179] S. Carpin and E. Pagello. On paral-
lel RRTs for multi-robot systems. In



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

BIBLIOGRAPHY 775

Proceedings 8th Conference of the Ital-
ian Association for Artificial Intelli-
gence, pages 834–841, 2002.

[180] S. Carpin and G. Pillonetto. Merging the
adaptive random walks planner with the
randomized potential field planner. In
Proceedings IEEE International Work-
shop on Robot Motion and Control,
pages 151–156, 2005.

[181] S. Carpin and G. Pillonetto. Robot mo-
tion planning using adaptive random
walks. IEEE Transactions on Robotics
& Automation, 21(1):129–136, 2005.

[182] A. Casal. Reconfiguration Planning for
Modular Self-Reconfigurable Robots.
PhD thesis, Stanford University, Stan-
ford, CA, 2002.

[183] S. Caselli and M. Reggiani. ERPP: An
experience-based randomized path plan-
ner. In Proceedings IEEE International
Conference on Robotics & Automation,
2000.

[184] J. Castellanos, J. Montiel, J. Neira, and
J. Tardós. The SPmap: A probabilis-
tic framework for simultaneous localiza-
tion and mapping. IEEE Transactions on
Robotics & Automation, 15(5):948–953,
1999.

[185] D. Challou, D. Boley, M. Gini, and
V. Kumar. A parallel formulation of
informed randomized search for robot
motion planning problems. In Proceed-
ings IEEE International Conference on
Robotics & Automation, pages 709–714,
1995.

[186] D. D. Champeaux. Bidirectional heuris-
tic search again. Journal of the ACM,
30(1):22–32, January 1983.

[187] D. D. Champeaux and L. Sint.
An improved bidirectional heuristic
search algorithm. Journal of the ACM,
24(2):177–191, April 1977.

[188] H. Chang and T. Y. Li. Assembly
maintainability study with motion plan-
ning. In Proceedings IEEE International
Conference on Robotics & Automation,
pages 1012–1019, 1995.

[189] S. Charentus. Modeling and Control of
a Robot Manipulator Composed of Sev-
eral Stewart Platforms. PhD thesis, Uni-
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C0 function, 318
C∞ function, 318
C∞ manifold, see smooth manifold
C∞ structure, see smooth structure
Ck function, 318
GL(n), 120
K-step information-feedback plan, 469
L1 metric, see Manhattan metric
L2 metric, see Euclidean metric
L∞ metric, 155
Lp metric, 155
Lp norm, 155
SE(n), see special Euclidean group
C, see configuration space
Cobs, see obstacle region, in the C-space
Xobs , see obstacle region, in the state space
Xric , see obstacle region, in the state space
ε-goodness, 199
Ihist , see history information space
Ind et , see nondeterministic information space
Iprob , see probabilistic information space
k-cell, 221
k-neighborhood, 183
(t,m,s)-nets, 172
(t,s)-sequences, 172
1-complex, 110
1-neighborhood, 183, 313
2-neighborhood, 183
3D triangles, 74

A∗ algorithm, 31, 185, 671
Abelian group, see commutative group
acceleration vector, 336
acceleration-based control, 336–337
accelerometer, 497
accessibility (of a roadmap), 207
accessible system, 719, 753
accumulation point, 107
Ackerman function, 251
action history, 330, 467
action sequence, 663
action trajectory, 330, 652
active localization problem, 530
active-passive decomposition, 283, 284
actuators, 656
Adams methods, 674
adding integrators to a model, 612–614
adjoint transition equation, 726
adjoint variables, 644, 724
admissible configurations, 275

affine space, 141
affine-in-control system, see affine nonlinear control

system
AGVs, see automated guided vehicles
airport terminal, 310
algebraic primitive, 71, 72, 108, 136–138
algebraic Riccati equation, 723
algebraic set, 71
algebraic variety, see variety
alive states, 28, 46, 47, 352
Allen wrench, 578
Alpha Puzzle, 5
alphabet, 484
Amato, 5
ambient isotopy, 289
ambient space, 289
analytic function, 316
angular momentum, see moment of momentum
angular velocity, 497, 600, 601, 624, 625, 628, 629
annihilator, 742
antipodal points, 114
approximate cell decomposition, 203
approximate cover, 341–342
approximate optimal motion planning, 296–297
approximation algorithm, 683–684
Ariadne’s Clew algorithm, 188
arrangement, 255
Asimo, 11
assembly planning, 265–266
asteroids game, 114
asymptotic convergence to a goal, 329
asymptotic solution plan, 329
asymptotic stability, 714
atan2, 82
atlas, see smooth structure
automated farming, 292
automated guided vehicles, 269
automotive assembly, 6
autonomous differential equations, 318
average cost-per-stage model, 430, 432
average dispersion, 204
averaging methods, 764
axioms of rationality, 397
axis-aligned bounding box, 175

B-splines, 74–75
backprojection, 352, 415–416, 695–696, 705

in preimage planning, 574–577
backward action space, 33
backward P. Hall coordinates, 757–759

811
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backward reachable set, 662–663
backward search, 33–34, 182, 310, 574, 577, 580

with backprojections, 427–428
backward state transition equation, 34, 42, 44
backward system simulator, 675
backward value iteration, 38–39

for reinforcement learning, 441–442
for sequential games, 451–452
on a nondeterministic I-space, 525–526
on a probabilistic I-space, 527
path-constrained, 704–706
running time, 39
under differential constraints, 694–696
with average cost-per-stage, 434–435
with discounted cost, 433–434
with nature and continuous spaces, 455–456
with nondeterministic uncertainty, 419–424
with probabilistic uncertainty, 420–424

bad bracket, 753
Balkcom-Mason curves, 734–735
Balkcom-Mason drive, 735
Balkcom-Mason metric, 735
bang-bang approach, 706–707
Barraquand-Latombe nonholonomic planner, 685–688
base point (on a manifold), 742
base point of a path, 117
basis, 315

of open sets, 107
Basu-Pollack-Roy roadmap algorithm, 247
Battle of the Sexes, 389
Battleship game, 518
Bayes’ rule, 365, 377, 477, 538
Bayesian classifier, 375–377

naive, 377
behavioral strategies, 514
behaviors, see motion primitives
best-first search, 32
bidirectional search, 34, 60, 189, 303, 526, 662, 677,

678, 684, 688, 691
balanced, 195–196
for sampling-based planning, 182

bijective sensor, 465
bilinear programming, 390
binding constraints, 53
bitangent line, 216
bitangent ray, 557
bitmap, 75
black-box simulators, 675
Blum and Furst, 54
Blum and Kozen, 545, 547
body density, 622
body frame, 77, 147, 149, 290, 303, 623, 626–628
bond angle, 92
bond length, 92
Borel sets, 159
boundary grid point, 183
boundary of a set, 107
boundary point, 107
boundary representation, 66
boundary sensors, 497
bounded set, 109
bounded-acceleration model, 337

bounded-velocity model, 337
Boustrophedon decomposition, 292–294
Brachistochrone curve, 630
bracket, 748
breadth-first search, 29
bridge-test sampling, 202
broad-phase collision detection, 174
Brockett, 612, 759, 761
Brockett’s condition, 715
Brockett’s system, see nonholonomic integrator
bug algorithms, 550–555
bug trap, 182
Bug1 strategy, 551–552
Bug2 strategy, 552–553
BVP, see two-point boundary value problem

C-space, see configuration space
caffeine, 14
calculus of variations, 362, 630–636, 764
Campbell-Baker-Hausdorff-Dynkin formula, 756
candidate Lyapunov function, 716
Candorcet paradox, 397
Canny, 243
Canny’s roadmap algorithm, 243–247, 255, 260, 268,

281
car pulling trailers, 12, 602–603
Caratheodory, solution sense of, 319
card-counting strategies, 521
Carnot-Caratheodory metric, 671
Cartesian product, 111
carton folding, 287–288
causal links, 53
CBHD formula, 756
cell decomposition, 208, 218–232, 537, 569

under differential constraints, 685
center of mass, 622
Central Limit Theorem, 165
chain of integrators, 609
chained-form system, 750, 762–763
change of coordinates, 322–324
chart, see coordinate neighborhood
chasing a gap, 560
Chazelle, 207
Chen-Fliess series, 757
Chen-Fliess-Sussman equation, 757–759
chi-square test, 166
Chow-Rashevskii theorem, 752
Christoffel symbol, 637
Church-Turing thesis, 16
classification rule, 375
classifier, 375–377
cleared region, 567
closed kinematic chains, 97, 139–149

motion planning for, 279–287
closed set, 106
closed system (in mechanics), 616
closed-loop

control law, 656
plan, 305

see also feedback plan
closure of a set, 107, 161
closure space, 280
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codistribution, 742
coherent models, 176
Collins decomposition, see cylindrical algebraic

decomposition
collision detection, 173–180

broad-phase, 174
checking a path segment, 177–180
hierarchical methods, 174–176
incremental methods, 176–177
narrow-phase, 174
two-phase, 174

collision pairs, 130
collision-detection, 672
collocation, 709
combinatorial motion planning, 206–254

cell decompositions, 218–232
introductory concepts, 206–208
polygonal case, 208–218
see also Canny’s roadmap algorithm
see also cylindrical algebraic decomposition

combinatorial roadmaps, 196
commutative group, 117, 743
commutative ring, 141
commutator, 743
commutator motion, 742–746, 754
compass, 496, 534
compatible coordinate neighborhoods, 323
competitive ratio, 498, 554–555
complementary pair, 49
complete exclusion axiom, 59
completely integrable, 606, 739–740
completeness

overview, 153
see also probabilistic completeness
see also resolution completeness

complex, 219–221
complexity class, 247
complexity of motion planning, 247–254

lower bounds, 247–250
upper bounds, 252–254

compliant motions, 571–572, 575
composition of funnels, 340–345, 579, 715
compressed mode, 273
computational algebraic geometry, 232–247
Conchoid of Nicomedes, 229, 255
conditional Bayes’ risk, 373
conditional Bayes’ rule, 365
conditional expectation, 366
conditional independence, 365
conditional plan, see feedback plan
conditional probability, 364–365
configuration space, 105–149

obstacle, see obstacle region, C-space
of 2D rigid bodies, 120–123
of 3D rigid bodies, 123–127
of chains of bodies, 128
of trees of bodies, 128
velocity constraints on, 590–606

conformations, 91, 291
connected space, 115
connectivity-preserving roadmap, 207
connector in a roadmap, 200

conservative approximations, 490–492
conservative system, 633
constant vector field, 317
constant-sum game, 406
contaminated region, 567
continuous Dijkstra paradigm, 295
continuous function, 109
continuous-steering car, 613–614
contractible space, 119
control system, 590, 656
control-affine system, 612, 736–739
controllability matrix, 718
controllability of a system, 717–719

linear case, 718
small-time local, see small-time local controllability

controlled Markov process, 411
convex hull, 175, 320
convex polygon, 67–68
convex set, 67
convolution, 132
cooperative game theory, 405
coordinate neighborhood, 322
coordinates, 322
coordination space, 267
Coriolis matrix, 636
cost functional, 37, 297, 300, 412, 431, 517, 694

approximating, 350
quadratic, 723

cost-based learning, see reinforcement learning
cost-to-come, 30, 40–42, 661
cost-to-come iteration, see forward value iteration
cost-to-go, 31, 38–39, 298, 307, 309, 310, 312, 313,

331, 334, 335, 340, 346–348, 350–354, 455, 671,
691, 694, 695, 705

see also stationary cost-to-go function
cost-to-go iteration, see backward value iteration
Coulomb friction, 571
counting measure, 159–160
covariance matrix, 493
cover of a set, 341

approximate, 342
coverage planning, 292–294
Coxeter-Freudenthal-Kuhn triangulation, 347
critical curves, 228
critical gap events, 556–559
critical point of a function, 244, 338
cube complex, 269–270
cubical partition, 685
CW-complex, 219
cycloid function, 630
cylinder over a cell, 223, 228, 240
cylindrical algebraic decomposition, 236–243, 260, 268

for motion planning, 242–243
cylindrical decomposition, 223
cylindrical joint, 86

D∗ algorithm, see Stentz’s algorithm
D’Alembert, 641
Davenport-Schinzel sequence, 250–252
Davis-Putnam procedure, 58
dead states, 28, 29, 31, 352
decision maker, 4, 360



P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

814 INDEX

decision problem, 234
decision theory, 360
decision vertex (in a game tree), 443
decision-theoretic learning, see reinforcement learning
decoupled planning, 265, 696–707
decoupling vector fields, 702, 763
deformation retract, 215
degrees of freedom, 78
delayed-observation sensor, 466
Denavit-Hartenberg parameters, 87–88, 90, 123, 128,

138, 149
dense sequence, 162, 660
dense set, 161, 162
dependent events, 364
depth-first search, 30
depth-mapping sensors, 499
derivation (on a manifold), 326
derived information space, 472–480, 489–494

for continuous time, 494
derived information transition equation, 474
determining the environment, 541–544
deterministic finite automaton, 26, 483

language, 26
deterministic plan, 444, 450, 514
DFA, see deterministic finite automaton
DH parameters, see Denavit-Hartenberg parameters
Dial’s algorithm, 313
diameter function, 579
dielectric constant, 291
diffeomorphic spaces, 318
diffeomorphism, 318
differentiable manifold, see smooth manifold
differentiable structure, see smooth structure
differential constraints, see differential models
differential drive, 752

Balkcom-Mason, see Balkcom-Mason drive
model, 599–601
second-order, 614
showing it is nonholonomic, 747

differential game, 646–648
against nature, 645
pursuit-evasion, 647

differential inclusion, 320, 645
differential models, 590–648

conversion from implicit to parametric, 594–596
implicit representation, 591–593
parametric representation, 593–594

differential rotations, 624–625
differentially flat systems, 763
digital actor, 10
Dijkstra’s algorithm, 23, 30–31, 46–48, 310–313, 332,

334, 335, 352, 353, 456, 548, 549, 680, 695, 705
extension of to continuous spaces, 351–354
with nondeterministic uncertainty, 428–429
with probabilistic uncertainty, 429–430

dimension
of a manifold, 111
of a vector space, 315

directed roadmap, 260
Dirichlet boundary condition, 340
disconnection proof, 203
discount factor, 431

discounted cost model, 430–432
discrepancy, 170–173, 671–672

range space, 170
relation to dispersion, 171

discrete feasible planning, 24
discrete-time model, 663–668
discretization of C, 183
dispersion, 167–170, 346, 671–672

relation to discrepancy, 171
distance between sets, 174
distance function, 174
distribution (of vector fields), 740–742

regular, 741
singular, 741–742

disturbed odd/even sensor, 466
disturbed sign sensor, 466
DM, see decision maker
domain of attraction, 715
dominated action, 363
dominated plan, 300
Donald, 518, 575
double integrator, 608, 614, 617, 623, 654, 655, 659

lattice, 678–684
optimal planning for, 726–727

doubly connected edge list, 70, 208, 209, 213, 214
drift, 610, 612, 656, 737
driftless, 612, 656
driftless system, 610, 737

controllability, 752
drug design, 14, 289–291
Dubins car, 599, 647, 657, 658, 662, 664, 666, 671, 676,

685, 686, 688, 691, 694, 696, 699, 702
plan-and-transform approach, 698
reachability tree of, 664–665

Dubins curves, 729–732
Dubins metric, 731
dynamic constraints, 738
dynamic game, see differential game
dynamic programming, 23

applied to steering, 764
continuous-time, 720–728
see also Dijkstra’s algorithm
see also Hamilton-Jacobi-Bellman equation
see also value iteration

dynamics
of a particle, 617–621
of a rigid body, 622–629
of a set of particles, 621–622
of a two-link manipulator, 637–639
of chains of bodies, 636–639
of constrained bodies, 640–642
with nonconservative forces, 642–643

efficient algorithm, 248, 250, 252
elongated mode, 273
EM algorithm, 562–564
embedding of a manifold, 111
energy function, 287, 289, 291
equilibrium point of a vector field, 713
Erdmann, 574, 576
error detection and recovery (EDR), 575
Euclidean metric, 155
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Euclidean motion model, 298
Euclidean norm, 155
Euclidean shortest paths, 295–296
Euler angles, 101
Euler approximation, 349
Euler integration, see numerical integration, Euler
Euler-Lagrange equation, 632–636, 727, 738, 760, 764

with conservative forces, 643
event space, 364
exact motion planning, see combinatorial motion

planning
exit face, 332
exotic R

4, 324
expansive-space planner, 189
expectation of a random variable, 366
expected-case analysis, 370, 418, 471
exploration vs. exploitation, 437
exponential map, 755–757
exponentially stable system, 714
EXPTIME, 248
extended Kalman filter, 510, 540
extended system, 754
exterior point, 107
extremal function, 631

falling particle, 634
fast Fourier transforms, 350
Faure sequence, 172
feasible planning

discrete, 24
with feedback, 307–308

feasible space (for closure constraints), 280
feature space, 375
feature vector, 375, 376
feedback control law, see feedback plan
feedback motion planning

complete, optimal, 334–335
complete, some dynamics, 335–340
definitions, 328–331
motivation, 304–306
sampling-based, 340–354
under differential constraints, 693–696

feedback plan, 306–307, 416–419
cost of, 418–419
graph representation of, 417–418
information feedback, 469–470
over a cover, 342–343
sensor feedback, 480

feedback planning
continuous, see feedback motion planning
discrete, 306–313

feedback policy, see feedback plan
feedback stabilization, 713
fiber over a base, 742
fictitious action variable, 754
field, 139–140

algebraically closed, 237
Filipov, solution sense of, 320, 328
fine motion planning, see manipulation planning
finite state machine, 26
firetruck, 603
first-order controllable systems, 761–762

first-order theory of the reals, 234
fixed point of a vector field, 713
fixed-path coordination, 267–268
fixed-roadmap coordination, 268–270
flashlight example, 50–51

Boolean expression for, 59
planning graph of, 56

flashlight sensor, 570
flat cylinder, 113
flat outputs, 763
flat torus, 114
flexible materials, 100
flying an airplane, 604–605
folding problems, 287–292
foliation, 661, 739
force, 616, 617, 620–623, 628, 629, 633

resultant, 618, 621
force sensor, 497
formal Lie algebra, 755–757
forward projection, 413, 661

differential, 646
nondeterministic, 413
probabilistic, 414–415
under a fixed plan, 417

forward search, 28–33
A∗ algorithm, 31–32
best first, 32
breadth-first, 29–30
depth-first, 30
Dijkstra’s algorithm, 30–31
general, discrete, 28–29
iterative deepening, 32–33

forward value iteration, 40–42
four-bar mechanism, 146
frame axiom, 58
Fraunhofer Chalmers Centre, 7
Frazzoli, 669
free space, 129
free variables, 233
frequentist, 399
frequentist risk, 399
friction cone, 571
Frobenius theorem, 746
frontier set, 352, 428, 695
fully actuated system, 656
function space, 316, 488, 631
functional, 630, 631

shortest-path, 631
fundamental group, 117–119

higher order, 119
of a simply connected space, 118
of RP

2, 118–119
of S

1, 118
of T

n, 118
Fundamental Lemma of the Calculus of Variations, 632

Gabriely and Rimon, 293
gain constant, 337
game

alternating-play model, 444, 513
extensive form, 442
ladder-nested, 515
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game (cont.)
normal form, 442
open-loop model, 445, 513
sequential, see sequential game
stage-by-stage model, 445, 513
unusual information model, 513–514
see also game theory

game against nature, 368–378
sequential, 408–419, 455–459

game graph, 449
game theory, 360, 378–393, 403–404, 442–455,

512–518
information spaces in, 512–518
nonzero-sum, see nonzero-sum game
sequential, see sequential game
zero-sum, see zero-sum game

game tree, 442–449
information space over, 512–515

gap navigation tree, 555–561
gap sensor, 499
gap theorems, 238
garage configuration, 269
Gaussian sampling, 201–202
Geiger counter sensor, 498
general linear group, 120
general position, 211, 557
generalized coordinates, 634
generalized cylinder, 75
generalized damper model, 571
generalized forces, 635, 636, 641
generalized momentum, 644
generalized Voronoi diagram, see maximum-clearance

roadmap
generator of a lattice, 169
geodesics, 633, 670
geometric modeling, 66–76
Gilbert-Johnson-Keerthi algorithm, 202
gingerbread face, 72, 235, 241
globally asymptotically stable, 715
globally positive definite, 716
globally randomized plan, 514
GNT, see gap navigation tree
goal recognizability, 481, 574
goal sensor, 550
Goldberg and Mason, 578
golden ratio, 173
Goursat normal form, 763
Grübler’s formula, 149
gradient descent, 309, 331, 338
graph search

on an information space, 526
grasped configurations, 276
gray-scale map, 75, 549
great circle, 157
grid, 263

2D planning on, 25
feedback plan on, 308
infinite sequence, 169–170
localization on, see localization, discrete
multi-resolution, 170
navigation function on, 310–313
neighborhoods, 183

partial, 170
resolution issues, 185–186
set of environments, 540–547
standard, see standard grid
Sukharev, see Sukharev grid
see also lattice

grid point, 183
grid resolution, 167
group, 117

see also fundamental group
see also matrix groups

group axioms, 117
group of n-dimensional rotation matrices, 121
guaranteed reachable, 422
guard in a roadmap, 200
gyroscope, 496

Haar measure, 160–161
hairy ball theorem, 329
half-edge, 70, 209
half-plane, 68
half-space, 71
Halton sequence, 172
Hamilton’s equations, 645, 727, 738, 764
Hamilton’s principle of least action, 633–634
Hamilton-Jacobi-Bellman equation, 425, 720–723
Hamilton-Jacobi-Isaacs equation, 722
Hamiltonian function, 643, 644, 724
Hamiltonian mechanics, see mechanics, Hamiltonian
Hammersley point set, 172
harmonic potential function, 339–340
Hausdorff axiom, 108
Hausdorff space, 108
Heisenberg system, see nonholonomic integrator
helicopter flight, 669
Hessian, 338
hide and seek, 9
hide-and-seek

see also pursuit-evasion game
hierarchical inclusion of a plan, 19, 571
hierarchical planning, 19, 277
higher order controllability, 762
Hilbert space, 316
hill function, 716
history, 467
history information space, 467–469, 489

at stage k, 468
at time t , 489

history information state, 468
history-based sensor mapping, 487, 488
hitch length, 602
holonomic, 606, 739
homeomorphic spaces, 109
homeomorphism, 109–110, 318, 322
homicidal chauffeur, 647–648
homing sensor, 498
homogeneous transformation matrix, 79, 82, 84, 86,

88–90, 100, 102, 120, 137, 138
homology, 119
homotopic paths, 116
homotopy group, see fundamental group
humanoid, 11, 94
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hybrid state space, 271
hybrid system, 270–274, 320

motion planning, 271
with nature, 456–459

I-map, see information mapping
I-space, see information space
I-state, see information state
ibuprofen, 14
ideal distance function, 671
identification of points, 112
identity sensor, 465, 495
implicit function theorem, 595
implicit velocity constraints, 592
improper prior, 400
incomparable actions, 363
incremental distance computation, 176
incremental sampling and searching

adapting search algorithms, 182–186
general framework, 180–182
under differential constraints, 678–693

independent events, 364
independent-joint motion model, 298
inertia matrix, 625–627, 633
inertia operator, see inertia matrix
inertia tensor, see inertia matrix
inertial coordinate frame, 616, 623, 630, 634
infimum, 361
infinite reflection (in a game), 403
infinite-horizon problem, 430–435
inflection ray, 556
information mapping, 472–475

sufficient, 473–475
information space, 462–518

continuous examples, 494–507
continuous time, 488–489
conversion to a state space, 471–472, 523–525
discrete examples, 480–487
for game theory, 512–518
in continuous state spaces, 487–507
limited memory, 479–480
sensor feedback, 480
see also history information space
see also nondeterministic information space
see also probabilistic information space

information state, 463
information transition equation, 471

derived, 473–475
information transition function, 471
information-conservative property, 568
information-feedback plan, 469
initial condition space, 468, 488
input string, 484
integrable system, 606
integral curve, 318–319
integral manifold, 739
integration, see numerical integration
interior of a set, 106
interior point, 106
interpolation neighbors, 346
interpolation region (for value iteration), 347, 455
interval homeomorphisms, 109

intractable problem, 248
inverse Ackerman function, 252
inverse control problem, 675
inverse kinematics problem, 99
involutive distribution, 746
Isaacs, 646, 647
isomorphic graphs, 110
isomorphic groups, 124
isomorphism, 109
iterative deepening, 32–33

Jacobi identity, 749, 751, 752, 762
Jacobian, 244
jerk (third time derivative), 609, 706
joint encoder, 497
junction of links, 94

Kagami, 11
Kalman filter, 508–510
Kalman rank condition, 718
Kd-tree, 193–194, 344, 687
Khalil-Kleinfinger parameterization, 95
Khatib, 331
kidnapped-robot problem, 528
kinematic chain, 83
kinematic constraints, 654, 737
kinematic singularities, 286
kinematically controllable, 763
kinematics for wheeled systems, 596–603
Kineo CAM, 6, 12
kinetic energy, 621, 628, 633–638, 642
kinodynamic planning, 655, 678–684
Klein bottle, 114
knot, 289
knot simplification, 289
knot vector, 75
Koditschek, 309, 338
Kolmogorov complexity, 51, 250
Kuffner, 5, 182
Kuhn, 514, 518
Kutzbach criterion, 149

L-shaped corridor example, 481–483
label-correcting algorithms, 47–48
ladder robot, see line-segment robot
Lafferriere and Sussmann, 754
Lagrange multiplier, 640
Lagrangian function, 634, 635, 638, 642, 644
Lagrangian mechanics, see mechanics, Lagrangian, 105
landmark region detector, 498
landmark sensors, 497–498
language, 26, 486
LARC, see Lie algebra rank condition
latitude in a grid, 545
Latombe, 105
lattice, 169, 172

for unconstrained mechanical systems, 682–683
from double integrator, see double-integrator lattice
grid, see grid

Laumond, 12, 654
lawn mowing, 292
layered graph, 55
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layered plan, 57
learning phase, 436
leaves of a foliation, 661, 739
Lebesgue integral, 160
Lebesgue measure, 159
left translation, 749
left-invariant vector field, 749
left-turn predicate, 218
Legendre transformation, 643
Legendre-Clebsch condition, 727
Leibniz rule, 326
Lennard-Jones radii, 291
Lens spaces, 114
level-set method, 354
LG, see linear Gaussian system
Lie, 739
Lie algebra, 748–751

cross product example, 749
of the system distribution, 750–751
on Lie groups, 749–750
see also Philip Hall basis

Lie algebra rank condition, 752
Lie bracket, 742–746, 748

Taylor series approximation of, 744–745
Lie derivative, 716
Lie group, 120, 749
ligand, 289
limit curve, 706
limit cycle, 715
limit point of a set, 107
Lin-Canny, 203
line-segment robot, 225–232
line-sweep principle, see plane-sweep principle
linear combination, 315
linear complementarity problem, 390
linear differential game, 647
linear interpolation, 347
linear momentum, 620
linear programming, 362, 385, 707
linear sensing models, 494–496
linear space, 314
linear system, 610–611

observability, 611
time-varying, 611

linear transformations, 99
linear-Gaussian system, 508, 509, 540
linear-quadratic problems, 723–724
linear-quadratic-Gaussian (LQG) system, 510, 723
link, 83
linkage, 83
linkage graph, 147
Lipschitz condition, 179, 319, 667, 678, 688, 695, 708
Lipschitz constant, 179, 319
LMT framework, see preimage planning, 571
local operator, 308–309, 311, 330–332, 338, 424, 695

continuous space, 331
local planning method, 180–182, 187–189, 191, 197,

199, 270, 707, 712, 719, 728, 730, 731, 733, 735,
752, 754, 763

in plan-and-transform, 697–699
under differential constraints, 675–677, 689, 692

local visibility sensor, 550

localization, 528–564
active, 528, 531–533
combinatorial, 534–537
discrete, 528–534
passive, 528, 530–531
probabilistic, 537–540
symmetries, 531

locally positive definite, 716
locally randomized plan, 514
Logabex LX4 robot, 287
logic-based planning, 48–60

as satisfiability, 58–60
converting to state space, 51–52
in plan space, 53–54
operator, 49
via a planning graph, 54–58

logical predicate, see predicate
loop path, 117
lost-cow problem, 555, 583
low-discrepancy sampling, 170–173
low-dispersion sampling, 167–170
lower envelope, 250–252, 385
lower pairs, 86
lower value of a game, 380, 445, 451
Lozano-Pérez, 105
Lozano-Pérez, Mason, and Taylor, 571
LPM, see local planning method
lunar lander, 618–619
Lyapunov function, 340, 715–717

in planning, 717
Lyapunov stability, 713–714

uniform, 714
Lynch and Mason, 604

Möbius band, 113, 114, 119, 152
Mahalanobis metric, 671
maneuver, 669
maneuver automaton, 669
Manhattan metric, 155
Manhattan motion model, 297–298
manifold, 110–115

embedding, 111
higher dimensional, 114–115
one-dimensional, 112
two-dimensional, 113–114
with boundary, 111
see also smooth manifold

manipulation graph, 276–277
manipulation planning, 274–279

nonprehensile, see nonprehensile manipulation
under uncertainty, 570–581

manipulator, 89, 97, 101, 274–279, 288, 637–639, 700,
704

map building, 540–564
marginalization, 365, 414, 477, 478, 538
Markov chain, 411
Markov decision process, 411
Markov game, 454
Markov process, 411
mass matrix, 633
matching pennies, 367–368
Matlab, 708
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matrix game, 379
matrix groups, 120–122
matrix subgroup, 120
maximal ball, 202
maximum-clearance navigation function, 312–313
maximum-clearance roadmap, 215
maze searching, 545–547
MDP, see Markov decision process
Mealy/Moore machines, 26
means-end analysis, 60
measurable function, 160
measurable sets, 159
measure axioms, 159
measure space, 154
measure theory, 158–161, 671

see also Haar measure
measure zero, 159
mechanics, 615–645

Hamiltonian, 643–645
Lagrangian, 630–643
Newton-Euler, 615–629
see also dynamics

medial-axis sampling, 202
Mersenne twister, 165
metric space, 154–156

Cartesian products of, 155–156
definition, 154
for motion planning, 156–158
from SE(2), 156
from SE(3), 158
from SO(2), 156
from SO(3), 156–157
from T

n, 158
nonpositively curved, 709
Riemannian manifold, 670–671
robot displacement metric, 157
subspaces of, 155

metric tensor, 670
metrics, see metric space
metrizable, 154
mine sweeping, 292
minimalism, 578
minimax, 369
minimum turning radius, 598
Minkowski difference, 131, 208, 253
Minkowski sum, 131
mixed Nash equilibrium, see Nash equilibrium,

randomized
mixed strategy, see randomized strategy
mod sensor, 464
mode space, 270, 271
mode transition function, 271
mode-dependent dynamics, 270
moment of a density, 493
moment of force, see torque, 621
moment of inertia, 626
moment of momentum, 620, 621, 624, 628
moment-based approximations, 492–494
momentum, 620
monomial, 140
monotone polygon, 223
Monte-Carlo localization, see localization, probabilistic

morphing a path, 116
Morse function, 339
Morse theory, 338
motion capture, 710
motion command, 573
motion library, see motion primitives
motion planning, 656
motion primitive, 668–670, 692
multi-body dynamics, see dynamics, of multiple bodies
multi-chained-form systems, 763
multi-level approach, 699
multi-linear interpolation, 347
multi-resolution grid, 169
multiobjective optimization, 362–363
multiple observations, 374
multiple query, 154, 196
multiple shooting, 709
multiple-robot motion planning, 263–270
multiple-robot optimality, 299–301
multiply connected, 117
Murphy’s Law, 369
Murray and Sastry, 759
mutex condition, 55–56
mutex relation, 56

NAG Fortran Library, 708
naive Bayes, 374
narrow-phase collision detection, 174
NASA/Lockheed Martin X-33, 658
Nash equilibrium, 386–392, 404, 512, 517

admissible, 388
in a sequential game, 452–453
nonuniqueness, 388–390
randomized, 390–392, 514

nature, 360, 368
nature action space, 368
nature observation action, 373
nature sensing action, 465, 466, 487, 495–496, 503–506
nature sensing actions, 464
navigation function, 29, 44, 308–313

continuous space, 331
in the sense of Rimon-Koditschek, 338–339
stochastic, 457

navigation problem, 542, 544–545
negative literal, 49
neighborhood function, 200
neighborhood of a cover, 341
Neumann boundary condition, 340
neuro-dynamic programming, see reinforcement

learning
Newton’s laws, 616–621, 623–625, 633, 634
Newton-Euler mechanics, see mechanics, Newton-Euler
next-best-view problem, 561
NF2 (a navigation function), 312
NFA, see nondeterministic finite automaton
nicotine, 14
nilpotent, 754
nilpotent system, 752
nilpotentizable, 754
Nilsson, 60
Nixederreiter-Xing sequence, 172
nonconservative forces, 642–643
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nonconvex
polygon, 68–69, 73
polyhedron, 73
set, 67

noncooperative game, 360
noncritical regions, 229
nondeterministic finite automaton, 483–486
nondeterministic information space, 475–477

approximations, 490–492
examples, 480–486
planning on, 525–526

nondeterministic Turing machine, 248
nondeterministic uncertainty, 369–371

criticisms of, 402–403
nondirectional backprojections, 574
nondominated, see Pareto optimal
nonholonomic, 606, 654, 736, 739
nonholonomic constraints, 596
nonholonomic integrator, 612, 746, 752, 754, 758

showing it is nonholonomic, 747
steering, 760–761

nonholonomic metric, 671
nonholonomic planning, 12, 654–655
nonholonomic system, 684
nonholonomic system theory, 736–753
noninformative prior, 400–401
nonintegrable, 739
nonlinear optimization, 707
nonlinear programming, 707–709
nonlinear system, 611–612

affine in control, 736–739
affine-in-control, 612

nonparametric methods, 402
nonpositively curved space, 709
nonprehensile manipulation, 577–581
nonrigid transformations, 99
nonzero-sum game, 386–393

with more than two players, 392–393
with two players, 386–391
see also Nash equilibrium

NP (complexity class), 248
null sensor, 465
numerical continuation, 282
numerical integration

Euler, 673–674
multistep methods, 674–675
Runge-Kutta, 349, 674
single-step methods, 674

NURBS, 74–75

OBB, 175
observability, 611
observation space, 372, 463, 464
observations, 371–374
obstacle region, 76, 129

in the C-space, 129–139
1D case, 131
general case, 136–139
polygonal case, 132–134
polyhedral case, 135

in the state space, 657–660
in the world, 66–76

polygonal case, 208–218
time-varying, 258–263

obstacles, 66
occupancy grid, 75, 564
Ochiai unknot benchmark, 290
octane transformations, 91–93
odd/even sensor, 464
odometric coordinates, 532, 544
odometry sensors, 500
on-line algorithm, 17, 554–555
open ball, 107
open set, 73, 106
open-loop

control law, 656
plan, 305

operator, 49
optical character recognition, 376–377
optimal motion planning, 295–301
optimal planning

discrete, 36–48
fixed-length plans, 38–42
unspecified length, 42–46

optimization, 361–363
orientation sensor, 496
oriented bounding box, 175
orienteering problem, 301
origami, 287
orthogonal group, 120
outdoor navigation, 299

painting, 292
parallel manipulator, 279
parallel-jaw gripper, 578
parameter estimation, 377–378
parameterization, 112, 322
Pareto optimal, 299–301, 362–363, 388, 392, 399
parking a car, 12, 599, 614, 662, 711, 718, 743
part configuration space, 274
partial grid, 170
partial plan, 53
partially observable Markov decision process, see

POMDP
particle, 617

dynamics, 617–621
falling, 634
on a sphere, 642

particle filtering, 511–512, 540
path, 115
path connected, 115
path tuning, 263
path-constrained phase space, 702
path-directed subdivision tree, 693
pattern classification, 375–377
pebble, 498
peg-in-hole problem, 571, 574, 575
pendulum, 619–620

double, 650
Pennsylvania Turnpike, 363
perfect recall, 514
permissible action trajectories, 653
Pfaffian constraints, 594–595, 597, 606, 612, 641, 642,

737–740, 742, 748, 763
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pharmacophore, 289
phase constraints, 657
phase space, 606–614

obstacles, 657–660
path-constrained, 702–703

phase transition equation, 608, 609
phase vector, 607
Philip Hall basis, 751–752, 754–755, 757, 759
Piano Mover’s Problem, 130–131, 652, 676, 677,

689–691, 693, 696, 707
piecewise-linear obstacle motion, 258, 263
pitch rotation, 80, 81
plan-and-transform method, 697–699
plan-based state transition graph, 418
plan-space planning, 54
plane-sweep principle, 213–214

radial sweep, 218, 335
planetary navigation, 299
planner, 18
planning graph, 54–58
planning under sensing uncertainty, 522–581

general methods, 523–528
manipulation, 570–581
pursuit-evasion, see visibility-based

pursuit-evasion
see also SLAM
see also localization

Poinsot, 623, 628
point robot, 208
point-location problem, 347, 687
policy iteration, 424–427

for reinforcement learning, 442
on an information space, 526
with average cost-per-stage, 435
with discounted cost, 434

polygonal model, 67–69, 208–218
face, 209
half-edge, 209
representation, 208–209

polyhedral model, 70–71
polynomial, 140–141

coefficient, 140
in formal Lie algebra, 755
term, 140
total degree, 140

polynomial-time reducible, 248
POMDP, 486–487, 526–528
Pontryagin’s minimum principle, 425, 708, 724–728,

764
time-optimality case, 727–728

portiernia, 272–273
position sensor, 496
positive definite function, 716
positive literal, 49
possibilistic uncertainty, see nondeterministic

uncertainty
posterior, 365
potential energy, 633–638
potential function, 158, 187, 633

attractive term, 187
continuous state space, 330
discrete, 308

repulsive term, 187
see also navigation function

PQP (Proximity Query Package), 203
predicate, 49

for geometric models, 69–70
preimage of a function, 109
preimage of a motion command, 573
preimage of an observation, 465
preimage planning, 571–577
Princess and the Monster, 518
principle of least action, see Hamilton’s principle of

least action
principle of optimality, see dynamic programming
principle of virtual work, 641
principle subresultant coefficients, 240
prior distribution, 365, 399–401
prioritized planning, 266
prismatic joint, 83, 86, 89
Prisoner’s Dilemma, 389–390, 404
PRM, see sampling-based roadmap
probabilistic completeness, 153
probabilistic information space, 477–480

approximations, 492–494
examples, 486–487
planning on, 526–528

probabilistic information state
computation of, 507–512

probabilistic roadmap, see sampling-based
roadmap

probabilistic uncertainty, 369–371
criticisms of, 398–402

probability function, 364
probability measure, 160
probability space, 364
probability theory, 363–366
problem solving, 23, 430
product of inertia, 626
projection sensors, 496–497, 500–503
projective geometry, 80
projective space, 114
protein cavity, 94
protein folding, 14, 292
proximity sensor, 497
pseudometric, 158, 259
pseudorandom number generation, 165–166

linear congruential, 165
PSPACE, 248
Puma 560 robot, 89
pure strategy, 367
pursuit-evasion game, 518, 647, 648

visibility-based, see visibility-based pursuit-evasion
pushing a box, 603–604

Q-factor, 441
Q-learning, 441–442
quadratic cost functional, 723
quadratic potential function, 331
quantified variables, 233
quantifier, 233
quantifier-elimination problem, 234, 235
quantifier-free formula, 233
quasi-static, 603
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quaternion, 124–127
from a rotation matrix, 127

quotient topology, 112

radar map, 227–228
radial sweep, 218, 335
random loop generator, 283, 285–286
random sampling, 164–167

of SO(3), 164
of directions, 165
tests, 166–167

random variable, 365–366
random-walk planner, 189
randomized algorithm, 252
randomized lower value, 384, 447, 452
randomized plan, 444, 445, 450
randomized potential field, 186–188, 331

under differential constraints, 692
randomized saddle point, 384
randomized security plan, 447
randomized strategy, 366–368
randomized upper value, 384
randomized value, 384, 447
range scanner, 499
range space (for discrepancy), 170
rapidly exploring dense tree, 189–196, 260, 268, 281,

287
exploration, 189–192
finding nearest points, 192–194
making planners, 194–196
under differential constraints, 688–692

rapidly exploring random tree, see rapidly exploring
dense tree

Rapoport, 404
rational decision maker, 379, 395, 397
RDT, see rapidly exploring dense tree
reachability graph, 665
reachability tree, 664–665
reachable set, 660–663

backward, 715
for simple car models, 661–662

reactive plan, see feedback plan
real algebraic numbers, 237–238
reality television, 394–395
reckless driving, 13
recognizability, 481, 574
reconfigurable robot, 273
recontamination, 568
reduced visibility graph, see shortest-path roadmap
Reeds-Shepp car, 598, 657, 662, 699
Reeds-Shepp curves, 732–734
refinement of a plan, 19, 696
reflex vertex, 216
region of inevitable collision, 658–660
regret, 371, 381
regret matrix, 371
reinforcement learning, 435–442

evaluating a plan, 437–441
general framework, 436–437
terminology, 435–436

reinforcement planning, see reinforcement learning
relative value iteration, 435

repulsive vertex, 333
reroute path, 533
resolution, 167
resolution completeness, 153, 167, 186, 269, 666,

687–688, 691–692
under differential constraints, 665–668

resultant
force, 623
moment, 623

retraction method, see maximum-clearance roadmap
reverse-time system simulation, 675
revolute joint, 83–87, 89, 94, 100, 102
reward, 435
reward function, 362
reward functional, 435
reward space, 396
Riemannian manifold, 633
Riemannian metric, 670–671
Riemannian tensor, 670
rigid-body dynamics, see dynamics, of a rigid body
rigid-body transformations, see transformations, rigid

body
Rimon, 309, 338
risk

conditional Bayes’, 373
frequentist, 399

RLG, see random loop generator
roadmap

directed, 260
general requirements, 207–208
maximum-clearance, see maximum-clearance

roadmap
sampling-based, see sampling-based roadmap
shortest-path, see shortest-path roadmap

Robbins-Monro algorithm, see stochastic iterative
algorithm

robot displacement metric, 157
robot-robot collisions, 264
Rock-Paper-Scissors, 404, 406
roll rotation, 81
rolling a ball, 605
rotation

2D, 78–80
3D with quaternions, 124–126
3D with yaw-pitch-roll, 80–82

RRT, see rapidly exploring dense tree
Rubik’s cube, 3, 5, 15, 26
Runge-Kutta, see numerical integration, Runge-Kutta,

349
Russell and Norvig, 23

saddle point, see sequential game, saddle point, and
zero-sum game, saddle point

sample point of a cell, 211
sample sequence, 161
sample set, 161
sample space (of a probability space), 364
sampling-based neighborhood graph, 343
sampling-based planning

for closed chains, 281–287
philosophy, 153–154
time-varying, 259–260
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sampling-based planning (cont.)
under differential constraints, 670–693
with feedback, 340–354, 693–696

sampling-based roadmap
ε-goodness, 199
analysis, 199–200
basic method, 196–200
boundary sampling, 201
bridge-test sampling, 202
Guassian sampling, 201–202
medial-axis sampling, 202
preprocessing phase, 197–198
query phase, 198
vertex enhancement, 201
visibility roadmap, 200

sampling-based roadmaps, 196–202
under differential constraints, 693

Sard’s Theorem, 339
SB, see strong backprojection
scalarization, 300
scaling an object, 100
screw transformation, 88
sealing cracks, 6
search algorithms, 263

adaptation to continuous spaces, 182–186
under differential constraints, 676–678,

685–687
unified view, 35–36
see also backward search
see also bidirectional search
see also forward search

search graph, 35, 180, 676
searching an environment, 542
second-order controllable systems, 762
second-order differential drive, 614
second-order unicycle, 613
section (of a cylinder), 240
sector (of a cylinder), 240
security plan, 445–447, 451
security strategy, 380

randomized, 384
selective sensor, 464–465
semi-algebraic decomposition, 235
semi-algebraic model, 71–73
semi-algebraic set, 71
sensing history, 467
sensor feedback, 480
sensor mapping, 463–464, 488–489
sensor observation, 462
sensor-based planning, see planning under sensing

uncertainty
sensorless manipulation, 578
sensorless planning, 481–483, 506–507
sensors

continuous, 494–500
discrete, 463–466

sequential game, 442–455
against nature, see game against nature, sequential
information space of, 512–518
Markov assumption, 409
more than two players, 454–455
on state spaces, 449–455

saddle point, 447–451, 512–515, 517–518
zero-sum with nature, 453–454

shadow component, 556
shadow region, 556
shearing transformation, 100
shooting methods, 708
shortest-path functional, 631
shortest-path roadmap, 216–218, 560
SICK LMS-200, 499
sigma algebra, 159
sign assignment, 235
sign sensor, 464
sign-invariant region, 235
silhouette curves, 243, 245
silhouette method, see Canny’s roadmap algorithm
simple polygon, 73
simple-car model, 596–599

two-car game, 648
with nature, 646

simple-unicycle model, 601–602
simplicial complex, 219–221
simply connected space, 117
Simpson paradox, 397
simulation-based dynamic programming, see

reinforcement learning
simulation-based methods, 436
simulation-based planning, see reinforcement learning
simultaneous localization and mapping, see SLAM, 541
single query, 154, 180
single shooting, 709
singular 0-simplex, 220
singular 1-simplex, 220
singular k-simplex, 221
singular arcs, 727
singular complex, 219–221
singular distribution, 741
singular matrix, 244
singular point of a distribution, 741
singular simplex, 220
singular value decomposition (SVD), 425
situation calculus, 58
skew symmetry, 748, 751
SLAM, 540–564

probabilistic, 561–564
sliding-mode control, 320
sliding-tile puzzle, 3, 5, 26
small-time local controllability, 596, 599, 699, 718–719,

732, 734, 736, 739, 748, 752–754, 763
smooth differential drive, 614
smooth distribution, 741
smooth function, 318
smooth manifold, 111, 321–328, 741

RP
n, 325

R
n, 324

S
n, 324–325

Riemannian, 670–671
smooth structure, 323
smoothness of a function, 318
Sobol sequence, 172
Sod’s Law, 369
Sokoban, 249
solid representation, 66
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solution in the sense of Filipov, 320
solution trajectory, 319, 328
span of vector fields, 741
spanning tree, 293
spanning-tree covering, 293–294
spatial constraints, 289
special Euclidean group, 122, 127
special orthogonal group, 121
speedometer, 497
spherical coordinates, 327
spherical joint, 89, 94
spherical linear interpolation, 157
spine curve, 75
spiral search, 555
squeeze function, 580
squeezing parts, 578–581
SSM, see swath-point selection method
stability of a system, 713–717

asymptotic, see asymptotic stability
Lyapunov, see Lyapunov stability
time-varying case, 715
uniform, 714

stable configuration space, 276
stage-dependent plan, 417
standard grid, 168
star algorithm, 132–133
star-shaped regions, 339
state estimation, 473
state history, 330
state mapping, 487
state space, 24
state trajectory, 306, 330, 652
state transition equation, 24, 608, 609
state transition function, 24
state transition graph, 24
state transition matrix, 414
state-nature mapping, 487, 488
state-sensor mapping, 488
state-space discretization, 685–688
stationary cost-to-go function, 43, 421–423
stationary differential equations, 318
statistical decision theory, 374
steering methods, 676, 753–764

piecewise-constant actions, 754–759
sinusoidal action trajectories, 759–763

steering problem, 655
Stentz’s algorithm, 299, 547–550
stereographic projection, 242, 325
sticking, 572, 575–577
STLC, see small-time local controllability
stochastic control theory, see game against nature,

sequential, 408
stochastic differential equation, 646
stochastic fractal, 191
stochastic iterative algorithm, 440
stochastic shortest-path problem, 459
strange topology, 108
strategy, 372
STRIPS, 23, 48–53
strong backprojection, 415, 416, 574
structure problem, 292
sub-Riemannian metric, 671

subgroup, 120
subjective probabilities, 400
subspace topology, 108
sufficient information mapping, 474
sufficient statistic, 474
Sukharev grid, 168
superquadric, 75
supremum, 167, 362
Sussmann and Tang, 734
swath, 190, 191, 664, 665, 669, 676
swath-point selection method, 191, 676
Swiss cheese, 116
switching boundary, 319
switching time, 727
symmetric systems, 656–657
symmetric Turing machine, 249
symmetry class, 531
symplectic manifold, 643
system, 590, 656

determining whether controllable,
748–753

determining whether nonholonomic,
739–748

distribution, 741
linear, see linear system
nonholonomic, see nonholonomic system

theory
nonlinear, see nonlinear system
simulator, 672–675
see also differential models

system vector fields, 737
systematic search, 27

tangent bundle, 316, 609, 742
tangent point, 706
tangent space, 316, 321–322, 326

on a manifold, 325–328
TangentBug, 553
Tarski sentence, 233
Tarski-Seidenberg Theorem, 237
Taylor series, 721, 722, 744, 745
TD, see temporal difference
team theory, 517
temporal difference, 438–441
temporal logic, 301
termination action, 43, 469
THC, 14
theory of computation, 247
time scaling, 262, 655
time-invariant, 611
time-limited reachable set, 661
time-monotonic path, 258, 260–262
time-optimal trajectory planning, 706–707
time-varying motion planning, 257–263

algebraic obstacle motion, 260
bounded speed, 260–262
unbounded speed, 257–260

timing function, 262
tire skidding, 629
Tit-for-Tat, 404
topological complexity, 354
topological graph, 109–110, 664
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topological manifold, see manifold
topological property, 699, 752
topological space, 105–110

connected, 115, 116
identification, 112
metrizable, 154
path connected, 115
simply connected, 117

topologist’s sine curve, 115
topology

manifold, see manifold
topological space, see topological space

torque, 620, 621, 637
torus, 114, 118, 142, 143, 145
total differential, 643, 644
tower exponentiation, 251
Towers of Hanoi, 303
trailers, 602–603
trajectory, 318
trajectory optimization, 707–709
trajectory planning, 655

path-constrained, 700–707
transcription, 709
transfer mode, 276
transfer path, 276
transformations

2D chain, 83–86
2D rigid body, 77–80
3D chain, 86–93
3D rigid body, 80–82
general concepts, 76–77
kinematic tree, 93–99
nonrigid, 99–101

transit path, 276
transition configurations (mode change), 276
translating a disc, 78
trapezoidal decomposition, see vertical

decomposition
trapped on a surface, 605–606
Traveling Salesman Problem, 292
tray tilting, 506–507, 578
triangle fan, 74
triangle inequality, 154
triangle model, 74
triangle strip, 74
triangular enumeration, 667
triangulation, 207, 219, 222–223, 255, 333
tricycle, 598
trim trajectory, 669
trivial operator, 55
trivial topology, 108
Turing machine, 16, 247
two-point boundary value problem, 652, 655,

660, 665, 670, 675–678, 680, 686, 688–691,
693, 707–709, 712, 717, 753

Type A contact, see Type EV contact
Type B contact, see Type VE contact
Type EE contact, 135, 138
Type EV contact, 133, 134, 136–138, 152
Type FV contact, 135, 138
Type VE contact, 133, 134, 136–138, 151, 152
Type VF contact, 135, 138

Udupa, 105
uncertainty

brief overview, 358–359
due to partial predictability, 358, 408–442
due to sensing, 358, 462–518, 522–581

underactuated system, 596, 656, 665, 684
unicycle, 601–602, 613–614
uniform random, 164
union-find algorithm, 185, 198
unique point, 546
unit complex number, 123
unit quaternions, 125
unknot, 289
unsupervised classification, 375
unvisited states, 28
upper envelope, 385
upper value of a game, 380, 445, 450
utility function, 397–398
utility of money, 398
utility theory, 393–398

vacuum cleaning, 292
value iteration, 38

backward, see backward value iteration, 38–39
convergence issues, 421–423
forward, 40–42
relative, 435
with interpolation, 346–348

van der Corput sequence, 162–163, 169, 170, 172, 180,
197

variation of a function, 630
variety, 139, 141–142

for 2D chains, 142–146
for general linkages, 147–149

vector field, 314–320, 328, 593
equilibrium point, 713
normalized, 330
over a cell complex, 332–333
piecewise-smooth, 319–320

vector space, 314–316
R

n over R, 315
of functions, 315–316

velocity field, 318
velocity-tuning method, 262–263
vertex selection method, 180–182, 187–189,

191
vertical decomposition, 209–214, 221, 263

3D, 224–225
violation-free state, 658
virtual human, 10
VisBug, 553
visibility graph, see shortest-path roadmap
visibility polygon, 534
visibility region, 556
visibility roadmap, 200
visibility sensor, 499, 534
visibility skeleton, 535
visibility-based pursuit-evasion, 564–570

a sequence of hard problems, 566
complete algorithm, 567–569
problem formulation, 564–567
variations, 569–570
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Voronoi diagram, 166
Voronoi region, 166, 173, 176, 177, 510
Voronoi vertex, 167
VSM, see vertex selection method

wall clock, 500
wall following, 546
warping a path, 116
wavefront, 295
wavefront propagation, 311–312, 354
wavelet, 295
way point, 334
WB, see weak backprojection
weak backprojection, 415, 416, 456, 574,

575
weighted-region problem, 299
Weiner process, 646

Whitney’s embedding theorem, 111, 112
with probability one, 162
word (sequence of motion primitives), 729
world, 66, 615
world frame, 77
worst-case analysis, 369, 418, 471
wrench (from mechanics), 623

yaw rotation, 80

zero-sum game, 378–386
matrix representation of, 379
randomized saddle point, 384–386
randomized value of, 384
regret in, 381
saddle point, 381–382
value of, 381
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