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PREFACE

A cellular automaton is a discrete model studied in computability theory, mathematics,
physics, complexity science, theoretical biology and microstructure modeling. It consists of a
regular grid of cells, each in one of a finite number of states, such as "On" and "Off". The grid
can be in any finite number of dimensions. For each cell, a set of cells called its neighborhood
(usually including the cell itself) is defined relative to the specified cell. This book presents
current research from across the globe in the study of cellular automata, including using
cellular automata to solve optimization problems; modeling drug release science using
cellular automata; using the cellular automata model to study the dispersion of aphids and
ladybugs in a block of citric trees; and the reversibility of cellular automata.

Chapter 1 - One of the main problems in science extent that always are interested is
optimization. The optimization problem is important subject that needs in many of science
problems. “Optimization models” are a type of algorithm intended to provide the best
possible solution to some problem facing an organization. Where the problem itself is so
complex that finding the best possible solution could cost more than the benefit of doing so,
the optimization models generally do not attempt to find the best possible solution, but
instead seek to find extremely good solutions within reasonable cost and time parameters.
This in fact is the more common situation.

A lot of different methods are proposed for solving optimization problem that each one
has some advantages and disadvantages.

Regard to this subject that recently Cellular Automata was developed in investigation of
complex systems, the approach in this study was getting the way for using cellular automata
to solve the optimization problems. Due to its ability in simulating the local information while
taking neighboring effects into account, the cellular automata technique is a powerful tool for
optimization.

Cellular automata can be described in several ways. The description, which is perhaps
most useful for physics, is to think of a CA as an entirely discrete version of a physical field.
Space, time, field variables, and even the dynamical laws can be completely formulated in
terms of operations on a finite set of symbols.

Cellular Automata (CAs) are one of the simplest models of highly parallel systems based
on local rules. They were initially proposed as models of systems and processes made up of
identical, simple, and locally interacting components. Researchers in this field used the
simple models to study pattern formation and self-organization processes. It has been
discovered that very complex pattern of behavior can be produced out of a set of a very
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simple rules. Recently it has been suggested that cellular automata and other simple programs
may better model nature’s most essential mechanisms better than traditional mathematical
equations.

One of the fundamental features of cellular automata, which make them highly useful
computational tools for large systems, is their inherent parallelism. By assigning a simple
processor to every so many cells of a large system of cells, one can increase the detail or the
size of the system without increasing the time it takes to update the entire system. There does
not seem to be a theoretical limitation or an overhead associated with splitting the problem
into small pieces and distributing it. Thus, cellular automata simulations are very useful for
massively parallel computers that are equipped with the proper hardware requirements.

In their modern implementation, cellular automata are viewed as simple mathematical
idealizations of natural systems, and are used successfully to represent a variety of
phenomena such as diffusion of gaseous systems, solidification and crystal growth in solids,
and hydrodynamic flow and turbulence. In most of the previous applications, they are used to
represent macroscopic behavior of a system, which are governed by partial differential
equations of the continuum under consideration. This is generally accomplished using simple
rules that represent the micro-mechanics of the medium [3].

In view of the above discussion, it is believed that CAs represent suitable tools for
solving optimization problem.

Some useful efforts to adopt the cellular automata's concept, structure and dynamic for
obtaining a suitable ability of optimization problem solving were performed, that their results
compare with the other main optimization method such as neural network, and published in
the relative journals.

Flexible and adaptable structure with complex physical system, reasonable calculation
time, simplicity in implementing and ability to find good solutions near as comparable with
global minimum are the most privileges of this method compare with former works.

In this chapter, the new and innovative procedures for extending the ability of
optimization problem solving will review and describe.

Chapter 2 - Pharmaceutical science is a multidisciplinary field, in which fundamental and
applied sciences unite to study all aspects related to drugs and pharmaceutical products.
Amongst the specialities of this field, drug delivery focuses on altering the method of
administration of therapeutic molecules to improve their effectiveness and safety. Various
strategies exist to limit the toxicity or decrease the frequency of administration of an active
ingredient. For example, polymeric biodegradable matrices are able to sustain and control the
release of the drug. These systems are drug-reservoirs which are usually implanted
subcutaneously or intramuscularly to discharge their load over a few weeks to a few months.
The polymer implants may be fashioned in all kinds of shape: from films or larger blocks to
micro- or nanosized particles.

The engineering of these formulations is complex and requires the combined expertise of
polymer science, physical chemistry, and biology. In this context, cellular automata have
emerged as interesting tools to model the various phenomena involved in the successful
design and performance of these drug delivery systems. The following mini-review proposes
a look at the different models available to depict the phenomena implicated in the release of
drugs from biodegradable polymeric matrices.

Chronologically, the first aspect approached with the use of cellular automata was
polymer erosion. The present work describes the various models proposed over the years, and
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emphasizes on the differences between them, from the probabilistic two-dimensional systems
of the 1990’s to the more comprehensive models proposed recently. In the second part of the
manuscript, the authors focus on drug diffusion in the matrix, which is a phenomenon
elegantly modeled by cellular automata. The various techniques used to describe molecular
Brownian motion through confined space are also presented. Special attention is awarded to
the role of the cellular automata to highlight the importance of these aspects on drug release,
and to demonstrate that adequate modeling can achieve better understanding of these complex
pharmaceutical systems.

Throughout this work, the authors wish to present a critical view of the objectives
achieved through the use of cellular automata as model and bring to light the impending
improvements which remain to be accomplished to consolidate their role in drug delivery
science.

Chapter 3 - In this chapter the authors have adopted the Cellular Automata model (CA) to
study the dispersion of the aphids and ladybugs in the block of citric trees. The main aim of
this investigation has been to develop a simple and specific methodology to study Citrus
Sudden Death (CSD). CSD is a disease that has affected sweet orange trees grafted on
Rangpur lime in the state of S3o Paulo - Brazil. Some studies suggest that this disease has
been caused by a virus and it is transmitted by insects known as aphids (vector). The ladybug
was selected among the most known enemies of aphids in citrus in Brazil. In order to
elaborate a predator-prey type of model to study the interaction between aphids (preys) and
ladybugs (predators) in citriculture the authors have used a fuzzy rule-based system (FRBS).
Qualitative information from specialists permit to propose rules that relate the state variables
with their own variations. The states of the variables of the system (inputs) are the density of
preys and the potentiality of predators and their variations are the outputs. To study the
temporal evolution of the disease the authors have adopted a (CA) model. Therefore, the
authors take into account the effect of he wind in the space covered by the aphid, since the
wind is important for the flight of the aphid. Simulations were performed and compared
between blocks with the presence of aphids and the absence of ladybugs, and the presence of
both aphids and ladybugs. Numerical simulations allow us to foresee the behavior of the
system, hence creating a spectrum of possibilities and proposing control techniques for
different initial scenarios.

After this introduction, the chapter proceeds as follows: Section 1 develops brief reviews
of Citrus Sudden Death, Cellular Automata and the concept of fuzzy set and fuzzy rule-based
system. Section 2 details cellular automata model. Simulations results are in Section 3.

Chapter 4 - Cellular automata have been utilized for modeling and simulation of systems
involving spatial arrangements. Examples include physical, social, urban and economic
systems. The simulations are effected by means of local transition rules.

Cellular automata have also been employed as computation devices. For that purpose,
genetic algorithms and simulated annealing were applied in order to determine suitable
transition rules that would permit the cellular automaton to perform certain computational
tasks. That approach constituted a form of optimization process.

However, in recent years optimization in a more general sense was presented in order to
determine optimal configurations or arrangements of a cellular automaton. The latter may
represent a physical or engineering system to be reformed or redesigned with a view to
chosen objectives.
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In the present approach, no specific transition rule is sought, but local transitions are
guided by an evolutionary method suitably embedded into the automaton. Problems of spatial
optimization have recently been treated by the author according to this methodology. In
particular, location - allocation problems have been presented related to groundwater
management, as well as land use management problems with or without allocation of
resources.

The present communication proposes the application of an alternative evolutionary
process based on mutating one by one all the components of the basic chromosome and
selecting the best appearing result. This constitutes a local search to be combined with the
special cell-based genetic algorithm described above. A general cellular — genetic framework
is given for an algorithm suitable for spatial optimization problems. In an example problem,
the superior performance of the proposed algorithm is shown.

Chapter 5 - Cellular Automata are often used as methodology to approach complex
optimization problems in the Artificial Intelligence area, where some parts of the problem can
be performed in a parallel way. In many cases, the complex nature of the problem can require
high computational effort, so techniques that increase the performance are welcome. A
possible solution that would allow us to accelerate the computation is to provide of a custom
hardware processor designed for implementing several automaton running in parallel. To
evaluate this alternative, the authors have designed and verified a reconfigurable processor
that runs a stand-alone Cellular Automaton; hence many of these can work in parallel on the
same chip. In order to obtain a valid prototype of the reconfigurable processor, the authors
have considered the Conway’s Game of Life as example of a simple Cellular Automaton.

Chapter 6 - Form generation or morphogenesis has a crucial role in both artificial and
natural development. This chapter presents results from simulations in which a genetic
algorithm (GA) was used to evolve cellular automata (CA) in order to generate predefined 2D
and 3D shapes. The 2D shapes initially considered were a square, a diamond, a triangle and a
circle, whereas for the 3D case the shapes chosen were a cube and a sphere. The CA's rule
was defined as a lookup table where the input was determined by the interaction
neighborhood's cell state values, and the output established whether or not a cell was to be
reproduced at the empty objective cell. Four different 2D interaction neighborhoods were
considered: von Neumann, Moore, 2-Radial, and Margolus; a 3D Margolus neighborhood
was used to generate the sphere and the cube. In all cases, the GA worked by evolving the
chromosomes consisting of the CA rule table's output bits and a section of bits coding for the
number of iterations that the model was to run. After the final chromosomes were obtained
for all shapes, the CA model was allowed to run starting with a single cell in the middle of the
lattice until the allowed number of iterations was reached and a shape was formed. The
transition rules that formed some of these basic shapes and others were later combined with
an Artificial (gene) Regulatory Network (ARN) to make up genomes that controlled the
activation sequence of the CA's rules to generate predefined patterns. The ARN was also
evolved by a GA in order to produce cell patterns through the selective activation and
inhibition of genes. Morphogenetic gradients were used to provide cells with positional
information that constrained cellular replication. After a genome was evolved, a single cell in
the middle of the CA lattice was allowed to reproduce until a desired cell pattern consisting of
the combination of basic forms was generated.

Chapter 7 - To study discrete dynamical systems of different types --- deterministic,
statistical and quantum --- the authors develop various approaches.The authors introduce the
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concept of a system of discrete relations on an abstract simplicial complex and develop
algorithms for analysis of compatibility and construction of canonical decompositions of such
systems.

To illustrate these techniques the authors describe their application to some cellular
automata. Much attention is paid to study symmetries of the systems. In the case of
deterministic systems, they reveal some important relations between symmetries and
dynamics. The authors demonstrate that moving soliton-like structures arise inevitably in
deterministic dynamical system whose symmetry group splits the set of states into a finite
number of group orbits. The authors develop algorithms and programs exploiting discrete
symmetries to study microcanonical ensembles and search phase transitions in mesoscopic
lattice models. The authors propose an approach to quantization of discrete systems based on
introduction of gauge connection with values in unitary representations of finite groups --- the
elements of the connection are interpreted as amplitudes of quantum transitions. The authors
discuss properties of a quantum description of finite systems. In particular, they demonstrate
that a finite quantum system can be embedded into a larger classical system. Computer
algebra and computational group theory methods were useful tools in their study.

Chapter 8 - The authors establish a on-to-one correspondence between the configurations
in the Wolfram cellular automaton, which is abbreviated to the WCA, and the paths in the de
Bruijn quiver. Extending the correspondence to that between the associative algebra whose
underlying vector space is generated by the configurations in the WCA and the path algebra
of the de Bruijn quiver, the authors obtain the global transition of the associative algebra
associated with the WCA. Thus the authors translate the problem concerning reversibility of
the WCA into that concerning surjectivity of the endomorphism on the associative algebra.
They then show that the induced problem concerning the endomorphism can be solved in
terms of the adjacency matrix of the WCA, which is defined from that of the de Bruijn quiver
through the one-to-one correspondence. Indeed, the authors give a necessary and sufficient
condition for reversibility of the WCA. By virtue of the necessary and sufficient condition,
the authors classify all 16 reversible rules in the ECA imposing periodic boundary conditions.

Chapter 9 - This paper deals with the emergence of computation in complex systems. The
Turing universality (i.e. the ability to encompass the whole computation power of the class of
Turing machines) of cellular automata which are the simplest representation of complex
systems is considered.

The authors aim to construct an automatic system for the discovery of Turing-universal
cellular automata. In this chapter, some steps towards this objective are presented, as is the
search for self-localized patterns of non-resting states called gliders. An evolutionary method
to search for gliders, based on a specific fitness functions taking into account the presence of
periodic patterns and gliders, led to the discovery of a large number of gliders. Among the
automata accepting gliders that were discovered, some would surprisingly generate glider
guns for nearly every evolution of a random cell configuration. The first of them that was
discovered is picked up as a potential candidate for a universal automaton.

Patterns that are able to stop unwanted streams of gliders are called eaters, they are
searched for and used with gliders and glider guns to demonstrate the universality of an
automaton.

Chapter 10 - This work presents a numerical implementation of a system that considers
an encryption process of signals compressed by means of the Haar wavelet transform. An
evaluation of the pseudorandom generator used in the encryption scheme, which is based on a
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cellular automaton, is carried out with some variants. In addition, the multifractal properties
of the representative matrix of the generator are discussed.

Chapter 11 —The authors study factor subshifts, column factors and the canonical factor
of cellular automata in a large setting, that is as endomorphisms of subshifts. Homogeneity of
cellular automata makes them share some dynamical properties with their canonical factor;
the authors review some of them.
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Chapter 1

CA UPGRADING FOR EXTENDING THE
OPTIMIZATION PROBLEM SOLVING ABILITY

Amir Hosein Fadaei and Saeed Setayeshi
Faculty of Nuclear Eng. & Physics, Amirkabir University of Technology
(Tehran Polytechnique), Tehran, Iran

ABSTRACT

One of the main problems in science extent that always are interested is
optimization. The optimization problem is important subject that needs in many of
science problems. “Optimization models” are a type of algorithm intended to provide the
best possible solution to some problem facing an organization. Where the problem itself
is so complex that finding the best possible solution could cost more than the benefit of
doing so, the optimization models generally do not attempt to find the best possible
solution, but instead seek to find extremely good solutions within reasonable cost and
time parameters. This in fact is the more common situation.

A lot of different methods are proposed for solving optimization problem that each
one has some advantages and disadvantages.

Regard to this subject that recently Cellular Automata [l]was developed in
investigation of complex systems [2], the approach in this study was getting the way for
using cellular automata to solve the optimization problems. Due to its ability in
simulating the local information while taking neighboring effects into account, the
cellular automata technique is a powerful tool for optimization.

Cellular automata can be described in several ways. The description, which is
perhaps most useful for physics, is to think of a CA as an entirely discrete version of a
physical field. Space, time, field variables, and even the dynamical laws can be
completely formulated in terms of operations on a finite set of symbols.

Cellular Automata (CAs) are one of the simplest models of highly parallel systems
based on local rules. They were initially proposed as models of systems and processes
made up of identical, simple, and locally interacting components. Researchers in this
field used the simple models to study pattern formation and self-organization processes.
It has been discovered that very complex pattern of behavior can be produced out of a set
of a very simple rules. Recently it has been suggested that cellular automata and other
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simple programs may better model nature’s most essential mechanisms better than
traditional mathematical equations.

One of the fundamental features of cellular automata, which make them highly
useful computational tools for large systems, is their inherent parallelism. By assigning a
simple processor to every so many cells of a large system of cells, one can increase the
detail or the size of the system without increasing the time it takes to update the entire
system. There does not seem to be a theoretical limitation or an overhead associated with
splitting the problem into small pieces and distributing it. Thus, cellular automata
simulations are very useful for massively parallel computers that are equipped with the
proper hardware requirements.

In their modern implementation, cellular automata are viewed as simple
mathematical idealizations of natural systems, and are used successfully to represent a
variety of phenomena such as diffusion of gaseous systems, solidification and crystal
growth in solids, and hydrodynamic flow and turbulence. In most of the previous
applications, they are used to represent macroscopic behavior of a system, which are
governed by partial differential equations of the continuum under consideration. This is
generally accomplished using simple rules that represent the micro-mechanics of the
medium [3].

In view of the above discussion, it is believed that CAs represent suitable tools for
solving optimization problem.

Some useful efforts to adopt the cellular automata's concept, structure and dynamic
for obtaining a suitable ability of optimization problem solving were performed, that their
results compare with the other main optimization method such as neural network, and
published in the relative journals.

Flexible and adaptable structure with complex physical system, reasonable
calculation time, simplicity in implementing and ability to find good solutions near as
comparable with global minimum are the most privileges of this method compare with
former works.

In this chapter, the new and innovative procedures for extending the ability of
optimization problem solving will review and describe.

1. INTRODUCTION

Cellular automata (CA) form a general class of models of dynamical systems which are
appealingly simple and yet capture a rich variety of behavior. This has made them a favorite
tool for studying the generic behavior of and modeling complex dynamical systems.
Historically CA are also intimately related to the development of concepts of computers and
computation. This connection continues to be a theme often found in discussions of CA.
Moreover, despite the wide differences between CA and conventional computer architectures,
CA are convenient for computer simulations in general and parallel computer simulations in
particular[2].

Thus CA have gained importance with the increasing use of simulations in the
development of our understanding of complex systems and their behavior.

Space and time are both discretized, and the variables are often simplified to include only
a few possible states at each site. Various cellular automata can be designed to model key
properties of physical and biological systems.

John von Neumann was a central figure in the theory and development of automated
computing machines. Originally, CA was introduced around 1950 (at the suggestion of
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SlanislawUlam) in order to provide a simple model of self-reproducing automata. The
successful (and profound) aim of this research was to show that certain essential features of
biology could be captured in computational form. Much of von Neumann's work was
completed and extended by Burks [4]. This line of CA research was followed through the 60's
by related studies on construction, adaptation, and optimization as well as by investigations
on the purely mathematical properties of CA.

A burst of CA activity occurred in the 70's with the introduction of John Conway's game
of “life” [5]. Life was motivated as a simple model of an ecology containing 24 cells, which
live and die according to a few simple rules. This most familiar example of a CA displays rich
patterns of activity and is capable of supporting many intricate structures. In addition to its
delightful behavior, the popularity of this model was driven in part by the increasing
availability of computers, but the computers of the day fell well short of what was to come.

Space (i)

Neighborhood of cell i

AL/

Figure 1. Space and time in a 1-dimensional CA
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t=0
g L -
9 =
& \‘\
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Figure 2. Space and time in a 2-dimensional CA
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Cellular automata can be described in several ways. The description, which is perhaps
most useful for physics, is to think of a CA as an entirely discrete version of a physical field.
Space, time, field variables, and even the dynamical laws can be completely formulated in
terms of operations on a finite set of symbols. The points (or cells) of the space consist of the
vertices of a regular, finite-dimensional lattice, which may extend to infinity, though in
practice, periodic boundary conditions are often assumed [6].

Time progresses in finite steps and is the same at all points in space. Each point has
dynamical state variables, which range over a finite number of values. The time evolution of
each variable is governed by a local, deterministic dynamical law (usually called a rule): the
value of a cell at the next time step depends on the current state of a finite number of
“nearby” cells called the neighborhood. Finally, the rule acts on all points simultaneously in
parallel and is the same throughout space for all times [7]. Figures 1 and 2 show 1D & 2D
examples of CA, respectively.

The concept of cellular automata begins from the concept of space and the locality of
influence. We assume that the system we would like to represent is distributed in space, and
that nearby regions of space have more to do with each other than regions far apart. The idea
that regions nearby have greater influence upon each other is often associated with a limit
(such as the speed of light) to how fast information about what is happening in one place can
move to another place. Once we have a system spread out in space, we mark off the space
into cells. We then use a set of variables to describe what is happening at a given instant of
time in a particular cell.

s(i, J, kst) = s(X;, ¥55 2, 50) 0

wherel, j, k are integers (i, j, K€ Z), and this notation is for a three-dimensional space (3-d).
We can also describe automata in one or two dimensions (1-d or 2-d) or higher than three
dimensions. The time dependence of the cell variables is given by an iterative rule:

s(i g ki) =R ({sG —i.j - j.k —kst=D})G.j .k e2Z) 2

where the rule R is shown as a function of the values of all the variables at the previous time,
at positions relative to that of the cell (i, j, kit - 1). The rule is assumed to be the same
everywhere in the space, there is no space index on the rule. Differences between what is
happening at different locations in the space are due only to the values of the variables, not
the update rule. The rule is also homogeneous in time; i.e., the rule is the same at different
times.

The locality of the rule shows up in the form of the rule. It is assumed to give the value of
a particular cell variable at the next time only in terms of the values of cells in the vicinity of
the cell at the previous time. The set of these cells is known as its neighborhood. For example,
the rule might depend only on the values of twenty-seven cells in a cube centered on the
location of the cell itself. The indices of these cells are obtained by independently
incrementing or decrementing once, or leaving the same, each of the indices:

s(i,j, ki) =R (s(i £1,0,j +1,0,k +1,0;t —1)) 3)
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where the informal notation i = 1,0 is the set {i - 1,i,i + 1}. In this case there are a total of
twenty-seven cells upon which the update rule R(S) depends. The neighborhood could be
smaller or larger than this example [2].

For describing more complicated system, more variables can be defined for each cell;
more information is described in the next sections in details.

Cellular automata have high ability to simulate dynamic behavior of the complex
systems. It is clear that the main case in applying Cellular Automata is the consistency with
the system.It was mentioned that the CA can show the evolutionary procedure of a complex
system; it means that there is a highly strong relation between the CA structure and the nature
of the system. One important question can be arisen in this step:

How Can We Guide the System by CA?

If the answer of this question will find, we will gain the ability of guiding the system to
our desire condition. In this chapter this question will be answered and the manner of guiding
the system to optimal point described. Thus for obtaining the presented goal, several step
should be passed.

In the second section the concept of complex system and its feature are presented to
realize the nature of the systems. In the third section the optimization is presented
conceptually, and the optimization procedure by CA is provided in section 4. Conclusion
throughout the course of this study will be summarized in section 6.

2. COMPLEX SYSTEMS

The study of complex systems in a unified framework has become recognized in recent
years as a new scientific discipline, the ultimate of interdisciplinary fields. It is strongly
rooted in the advances that have been made in diverse fields ranging from physics to
anthropology, from which it draws inspiration and to which it is relevant.

Many of the systems that surround us are complex. The goal of understanding their
properties motivates much if not all of scientific inquiry. Despite the great complexity and
variety of systems, universal laws and phenomena are essential to our inquiry and to our
understanding. The idea that all matter is formed out of the same building blocks is one of the
original concepts of science. The modern manifestation of this concept—atoms and their
constituent particles—is essential to our recognition of the commonality among systems in
science. The universality of constituents complements the universality of mechanical laws
(classical or quantum) that govern their motion. In biology, the common molecular and
cellular mechanisms of a large variety of organisms form the basis of our studies. However,
even more universal than the constituents are the dynamic processes of variation and selection
that in some manner cause organisms to evolve. Thus, all scientific endeavors are based, to a
greater or lesser degree, on the existence of universality, which manifests itself in diverse
ways.

In this context, the study of complex systems as a new endeavor strives to increase our
ability to understand the universality that arises when systems are highly complex.
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Figure 3. Schematic view of a sample system

A dictionary definition of the word “complex” is: “consisting of interconnected or
interwoven parts.”Whythe nature of a complex system is inherently related to its parts?
Simple systems are also formed out of parts. To explain the difference between simple and
complex systems, the terms “interconnected” or “interwoven” are somehow essential.
Qualitatively, to understand the behavior of a complex system we must understand not only
the behavior of the parts but how they act together to form the behavior of the whole. It is
because we cannot describe the whole without describing each part, and because each part
must be described in relation to other parts, that complex systems are difficult to understand.
This is relevant to another definition of “complex”: “not easy to understand or analyze.”
These qualitative ideas about what a complex system is can be made more quantitative.
Articulating them in a clear way is both essential and fruitful in pointing the way toward
progress in understanding the universal properties of these systems.

For many years, professional specialization has led science to progressive isolation of
individual disciplines. How is it possible that well-separated fields such as molecular biology
and economics can suddenly become unified in a single discipline? How does the study of
complex systems in general pertain to the detailed efforts devoted to the study of particular
complex systems? In this regard one must be careful to acknowledge that there is always a
dichotomy between universality and specificity.

A study of universal principles does not replace detailed description of particular
complex systems. However, universal principles and tools guide and simplify our inquiries
into the study of specifics. For the study of complex systems, universal simplifications are
particularly important. Sometimes universal principles are intuitively appreciated without
being explicitly stated. However, a careful articulation of such principles can enable us to
approach particular systems with a systematic guidance that is often absent in the study of
complex systems[2].

We can find many complex systems around us, such as our family in social systems or a
human body from physiological point of view or other examples.

Now by thinking about the complex systems, what are the complex systems and what are
their properties?

As before mentioned, simplest definition of the complex system is “hard to description”.
The interconnections of the subsystems are very complicated in the complex systems;
whereas each subsystem can’t define independent of the whole.

Several characteristics are defined for each complex system that can be used for
classification or description of them and are listed as below:

e Elements (and their number)

e Interactions (and their strength)

e Formation/Operation (and their time scales)
e Diversity/Variability
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¢ Environment (and its demands)
e Activity (ies) (and it’s [their] objective[s])

The properties of complex systems can be quantified using analyzing their characteristics.
The common calculation tools use of numerical description of the system for evaluating it;
therefore, the system should be described numerically to identify itsbehavior. Transfer
function is a Mathematical relation that is describingthe behavior of the system; and will be
presented in the next in details.

In system identification procedure, each dynamic system can be described using transfer
function. Transfer function is a relation that presents the nature of the system and can be used
as a representation of the system. In the dynamic analysis, each system has an input and an
output, the relation between the input and output is described by transfer function. If we
summarize a sample system, which is shown in Figure 1, the X(s) is the set of input variables
and Y(s) is an output variables, the transfer function can be defined as follow:

H(s) = 5o )

It is clear that transfer function has all the characteristics of the system in its nature.
Finding the transfer function for dynamic system is the main part of identification procedures.

For optimizing the system, we should know the nature of the system; therefore we should
find the transfer function. With obtaining the transfer function guiding the system to desired
state will be possible, that the details of this procedure will described in the next sections.

3. OPTIMIZATION

Optimization is the act of obtaining the best result under given circumstances. In design,
construction, and maintenance of any engineering system, engineers have to take many
technological and managerial decisions at several stages. The ultimate goal of all such
decisions is either to minimize the effort required or to maximize the desired benefit. Since
the effort required or the benefit desired in any practical situation can be expressed as a
function of certain decision variables, optimization can be defined as the process of finding
the conditions that give the maximum or minimum value of a function.

Figure 4. The sample surface for describing the nature of optimization
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Optimization can be taken to mean minimization since the maximum of a function can be
found by seeking the minimum of the negative of the same function. There is no single
method available for solving all optimization problems efficiently. Hence a number of
optimization methods have been developed for solving different types of optimization
problems.

The nature of optimization problem can be described by considering a sample surface,
that the maximum or minimum place of that is requested. Check the Figure 4, and find a good
answer for the following questions:

e  Which place is good for starting?

¢ How could moved for finding the best path?

e  What is the benefit of passed path as experience for continuing?
e  What is the best searching procedure?

¢  Where is the desired place?

e and....

Now with summation of the whole themes that are coming from your intrinsic answers,
the concept and required cased for understanding and describing the optimization procedure
will be clear.

The optimum seeking methods are also known as mathematical programming techniques
and are generally studied as a part of operations research[8]. Operations research is a branch
of mathematics concerned with the application of scientific methods and techniques to
decision making problems and with establishing the best or optimal solutions.

Mathematical programming techniques are useful in finding the minimum of a function
of several variables under a prescribed set of constraints. Stochastic process techniques can be
used to analyze problems described by a set of random variables having known probability
distributions. Statistical methods enable one to analyze the experimental data and build
empirical models toobtain the most accurate representation of the physical situation. This
book deals with the theory and application of mathematical programming techniques suitable
for the solution of engineering design problems.

3.1. History

The existence of optimization methods can be traced to the days of Newton, Lagrange,
and Cauchy. The development of differential calculus methods of optimization was possible
because of the contributions of Newton and Leibnitz to calculus. The foundations of calculus
of variations, which deals with the minimization of functionals, were laid by Bernoulli, Euler,
Lagrange, and Weirstrass. The method of optimization for constrained problems, which
involves the addition of unknown multipliers, became known by the name of its inventor,
Lagrange. Cauchy made the first application of the steepest descent method to solve
unconstrained minimization problems. Despite these early contributions, very little progress
was made until the middle of the twentieth century, when high-speed digital computers made
implementation of the optimization procedures possible and stimulated further research on
new methods. Spectacular advances followed, producing a massive literature on optimization
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techniques. This advancement also resulted in the emergence of several well-defined new
areas in optimization theory.

It is interesting to note that the major developments in the area of numerical methods of
unconstrained optimization have been made in the United Kingdom only in the 1960s. The
development of the simplex method by Dantzig in 1947 for linear programming problems and
the annunciation of the principle of optimality in 1957 by Bellman for dynamic programming
problems paved the way for development of the methods of constrained optimization. Work
by Kuhn and Tucker in 1951 on the necessary and sufficiency conditions for the optimal
solution of programming problems laid the foundations for a great deal of later research in
nonlinear programming. The contributions of Zoutendijk and Rosen to nonlinear
programming during the early 1960s have been very significant. Although no single
technique has been found to be universally applicable for nonlinear programming problems,
work of Carroll and Fiacco and McCormick allowed many difficult problems to be solved by
using the well-known techniques of unconstrained optimization. Geometric programming was
developed in the 1960s by Duffin, Zener, and Peterson. Gomory did pioneering work in
integer programming, one of the most exciting and rapidly developing areas of optimization.
The reason for this is that most real-world applications fall under this category of problems.
Dantzig and Charnes and Cooper developed stochastic programming techniques and solved
problems by assuming design parameters to be independent and normally distributed[8].

The desire to optimize more than one objective or goal while satisfying thephysical
limitations led to the development of multiobjective programmingmethods. Goal
programming is a well-known technique for solving specific types of multiobjective
optimization problems. The goal programming wasoriginally proposed for linear problems by
Charnes and Cooper in 1961. Thefoundations of game theory were laid by von Neumann in
1928 and since thenthe technique has been applied to solve several mathematical economics
andmilitary problems. Only during the last few years has game theory been appliedto solve
engineering design problems.

Simulated annealing, genetic algorithms, and neural network methods representa new
class of mathematical programming techniques that have comeinto prominence during the last
decade. Simulated annealing is analogous tothe physical process of annealing of solids. The
genetic algorithms are searchtechniques based on the mechanics of natural selection and
natural genetics.Neural network methods are based on solving the problem using the
efficientcomputing power of the network of interconnected "neuron" processors.

3.2. Objective Function

The conventional design procedures aim at finding an acceptable or adequate design
which merely satisfies the functional and other requirements of the problem. In general, there
will be more than one acceptable design, and thepurpose of optimization is to choose the best
one of the many acceptable designs available. Thus a criterion has to be chosen for comparing
the different alternative acceptable designs and for selecting the best one. The criterion, with
respect to which the design is optimized, when expressed as a function of the design
variables, is known as the objective function. The choice of objective function is governed by
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the nature of problem. Defining the suitable objective function is the main part of
optimization problem solving; specially in complicated system optimizing.

An optimization problem involving multiple objective functions is known as a
multiobjective programming problem. With multiple objectives there arises a possibility of
conflict, and one simple way to handle the problem is to construct an overall objective
function as a linear combination of the conflicting multiple objective functions. Thus if g;(x)
and g,(x) denote two objective functions, construct a new (overall) objective function for
optimization as

g(x) = a19:(x) + ag,(x) (5)

where a; and a, are constants whose values indicate the relative importance of one objective
function relative to the other.

Needless to say that the converge procedure of multiobjective optimization problem that
uses linear combination is very dependent on the nature of the problem and also
determination of weight for each object. In the different system, several variables are selected
as the dependent variable in optimization procedure. It is clear that these parameters have
different behavior, cost, values and weight; in decision making procedure, these parameters
should be compared and finally the suitable values of them be selected based on defined
desired situation. Comparing the different variables for reaching the desired situation isn’t
possible with attentiononly in their values, in the other word, the nature of this variable and
their effects on the system situation should be take in to account in the comparing procedure.

3.3. System Optimization

Based on mentioned cases, it is clear that each system consists of several independent
variables and usually one dependent variable. The independent variables define the basic
characteristics of the system, and the dependent variable is used as indicator for describing
the system situation. If an assumed system is described with the following equation:

FX@®) = Hx (), x2(), o, x5 () (6)
x1(t)
X2 .(t)

X() = ) (7
X (1)

f(x(t)) is the dependent variable of the system that can be used for describing its situation,
X(t) is the set of independent variables and the H(.) function is the relation that describe the
effect of independent variables in the system situation. Needless to say that, the f(x(t))
function is the same as system transfer function and can be presented the complexity and
inner relation of the system. Complex systems,regard to situation of the system that is
expressed by independent variables, show different behavior. If the f variable is assumed one
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dimensional, Figure 5 can be used for describing the conceptual situation of the system based
on different independent variables condition.

Figure 5 is schematically shown the dependent variable behavior versus changing the set
of independent variables. Each physical system can be described by this definition, one
indicator and several independent variables for presenting the condition of the system. This is
very interesting that each system can be defined based on desired indicator while the
subjected indicator can be selected among several dependent parameters based on desirable
object, i.e., there are several different way to describe the system and selecting one of those
ways dependent on required task of the system in analyzing procedure.

If we suppose a sample electrical circuit (shown in Figure 2) as a complex system, it will
be clear that the elements are the individual parts of the system and cannot be analyzed
separately. This system such as each complex system has several independent variables and a
dependent variable to define and recognize. The set of x variables are defined as independent
variables of the system and can be composed of:

e The circuit structure

e The type of sub-elements

e The number of each type of sub-elements

e  The state of inter-connected between sub-elements
e and...

Based on intended task for the circuit, one dependent parameter can be defined, such as
voltage or current, and called as f(x).It can be seen from Figure 6 that there are many different
configuration for subjected circuit; 2 sample configurations are shown in Figure 6. Each
configuration has its proprietary characteristic and is shown with X; ,i=1,...n. X; represents
the set of independent variables for defining the situation of the system in i state.

With defining the suitable task for this circuit, we can obtain the best set of independent
variables for reaching to the desired goal. Suppose that we want to have the high voltage as an
output of this system, so voltage will be the dependent variable of the system and the sub-
elements should be arranged for producing the high voltage in the output. Therefore different
configuration of the system (circuit) should be analyzed for obtaining the best for desired
task.

x(t)

Figure 5. The behavior of the system versus different set of independent variables
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Figure 6. sample electrical circuit

In the system optimization problem, reaching to one desired situation of the system that
analytically can be described by one or several parameters of the system is goaled.
Recognitionand realization of the system perform based on following some main parameters
that are defined as indicator. Therefore finding the suitable parameter that can be shown and
described the behavior of the system is very important; needless to say that this parameter
will be assumed as dependent variable of the system.

Now, we return to define the system parameters. In each system one desirable task is
defined as its main work. Certainly, improving the quality and design of the system to
perform its task as better as before would be high interested. If the independent variables of
the system present the situation of the system that can be changed for obtaining the better
revenue, thus, finding the best set of independent variables for guiding the dependent variable
to desired value is called system optimization procedure.

4. OPTIMIZATION BY CA

It was mentioned that in designing procedure of different system the optimization is one
the main cases that should be considered to obtain the best situation. In this section the new
innovative method to solve the optimization problem using the cellular automata as a base
tool is introduced.

Cellular automata is a calculation and simulation tool that can model the complex
behavior of different system. Certainly,asserting that all of the systems and phenomena can be
explained by mathematical relation isn’t wrong. Therefore each system can be presented by a
complex mathematical equation. Regard to the high ability of CA for simulating of complex
behavior, each complex system can be modeled by CA. Needless to say that the main case in
this issue is to define the suitable structure for consisting the system and CA.

There are two main concepts in cellular automata that are neighboring and transition rule.
Also, in the optimization problem, there are two different procedures, which are decision
making and changing procedure of independent variables.

In this chapter we try to define a new method to extending the optimization problem
solving ability to CA using all of the CA’s ability but step to step because of its complexity.
Two different methods are introduced and described in the following, which are [9]:

1. Optimization by CA+SA
2. Optimization by CA
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The main different between these two methods is in the circumstance of the system
following. In the other word, independent variable is needed as indicator for recognizing the
situation of the system. The method of obtaining the cost variable (independent variable) is
one of the causes of different in two methods. The procedure of decision making in
optimization procedure is one of the other cases that lead to different. In the first method the
independent variable is obtained globally and the whole system is modeled and its equations
solved tofind the output, whereas, in the second method all the system and variables are
calculated locally, these cases will described in the next sections in more details.

These two methods are explained and finally used to solve the important complicated
optimization problem to proof the validation of them.

4.1. Optimization by CA+SA

This section introduces a design methodology in the context of finding new and
innovative design principles by means of optimization techniques. In this method Cellular
Automata (CA) and Simulated Annealing (SA) were combined and used for solving the
optimization problem. This method contains two principles that are neighboring concept from
CA and accepting each displacement basis on decreasing of objective function and Boltzman
distribution from SA that plays role of transition rule. Simulated Annealing Procedure will
explain in the next section for best describing the method.

4.1.1. Simulated annealing

Undoubtedly the most developed of the stochastic optimization methods is SA [10, 11].
Casually, it appears to be very simple method to implement; however, the reality is that to
obtain both a robust, i.e. consistently locate the family of near-optimum decisions, and
efficient, i.e. minimizes number of histories that must be examined to locate the family of
near-optimum decisions, some thought must be given. SA is based upon the analogy of a
solid slowly cooling to its lowest energy state, i.e. annealing.

Given a minimization objective, let E denote the value of the objective function for the
currently accepted decision variables, and E denote the value of the objective function after
some perturbations are made to the currently accepted decision variables. Whether the
perturbed decision variables are accepted, implying they now become the currently accepted
decision variables, is determined by the following rules.

if E'<E or if E'>E and random[0,1]<e € =
then E=E"

otherwise E =E )

So if the perturbed decision variables produce a lower objective function value, then they
become the currently accepted decision variables. However, if the perturbed decision variable
produces a higher objective function value, they only become the currently accepted decision
variables if a random number between zero and one exceeds the expression noted in Eq. (8);
otherwise, the currently accepted decision variables are unaltered.
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The conditional acceptance of inferior solutions allows the search algorithm to escape
local minimums, and as we shall see when utilizing penalty functions, traverse the infeasible
decision space. The parameter T plays the analog of material temperature in annealing. At
high temperatures, many inferior solutions are accepted, allowing the search space to be
extensively transverse in search of the vicinity of the global minimum. As temperature
decreases, the probability of acceptance of inferior solutions decreases, since if the cooling
schedule is done appropriately one should now be within the vicinity of the family of global
optimum solutions. What the initial temperature should be and how fast cooling should occur
determine the robustness and efficiency of the SA implementation. Fortunately, both of these
attributes can be determined based upon the specific behavior of the optimization problem
that is being solved as the search progresses [12, 13].

Another item that must be addressed is at what temperature cooling should be ended and
the optimization search terminated. This can be triggered by a combination of lower
temperature limit, maximum number of histories, and lack of improvement in the objective
function value.

4.1.2. Procedure

In this section, as before mentioned, a new method for solving optimization problem has
been introduced [14]. Proposed method contains two concepts that are Cellular Automata and
Simulated Annealing. By combining of these concepts high ability for solving optimization
problem will be got. To solve the optimization problem define and calculate the objective
function are needed. In Eqs9 to 11 a typical objective function is introduced, needless to say
that reach to optimum value of objective function is approached in optimization procedure.

EX X ) =H R X ),-...R; (X))

©)
X, =f,(P({i,j.k}t) a0
P(fi,J.k}5t) =V (S (fi, .k }it)) an

where:
E is an objective function value,
X, 1s an optimization variable,
g is a number of optimization variable,
R, 1s a function that follow X, variable for optimization,

p is a cell value at t,

f o is a function that follow X, variable based on local information (cells values),

S is state of cell,

V is a function that describes the dynamic relation in the system and between cells,
{i,],k}is asetof cell,

H is an objective function based on linear combination of {R,(X,),l =1,...0}
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In this method three variables were defined for each cell that are cell state (S), cell value
(P) and cell properties (L(u), u=1,...,v that v is the number of cell properties that are used in
dynamic calculation of system). It is clear that the dynamic behavior of under consideration
system is described by V function. P variable is the output value for each cell that is
explaining cell condition resulted from studying the behavior of the system. The objective
variable could be obtained from cell values by special relation that is named as f. In this
procedure, V function describes the inner relation of the system between independent
variables to create the dependent variable. P variable can be summarized as an independent
variable of the system for each cell. By analyzing the P variables, system indicator, which is
universally defined by E, can be calculated.

The main part of the optimization procedure is to define a suitable method for changing
the independent variables whereas the system passing the short way until reaching to the
optimum value. In this proposed method, a new evolution procedure based on S.A. and CA’
neighboring is introduced that is imparting from local characteristics of the system to evolve.

Cell state is the independent variable that should be changed for optimizing the system.
Changing procedure of the cell state to reach the optimum value is described in Eq12 to 15.

—AE
S({i'j'k'yt=1) if ((AE<0) OR ((AE >0)AND (Random[0,1]<e T (=D y))

QE i, j.kht-1))=

S({i,j.k}t-1)  otherwise

(13)
AE =E | iy ~ B lsqinn (14)

where:

{i’,j',k'}is a set of cells when one of selected cell state is replacing with one of its
neighbors that is selected randomly,

T (t) is a temperature,

K is Boltzman constant, and

& is a constant that is named Annealing coefficient.

According to the mentioned equations, Q function determines the evolution procedure of
cell state. This function analyzes the cell state replacement influence on objective function
and determines the next value of cell state based on it.

Note that in this method several initial conditions should be defined that are:

SO=S({|,J,k},O) T(O) 4
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Figure 7. Flowchart of CASA optimization method

Cellular Automata depicts physical structure of problem and neighboring of each
element. Therefore the adaptation of CA and problem Structure is necessary. The role of
Simulated Annealing is to escape the result from local minimum and guide it to global
minimum as near as possible ( Eq13). The procedures of this method are as follow and shown

in the Figure 7 schematically.

1. Define an linear objective function that involves all goals with their suitable weights
(Eq9)
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2. Define a suitable CA structure and neighboring of each cell for modeling the
problem

3. Distribute all of elements in the CA randomly using a pre-define set of elements (
S,=S({i,j.k}10))

4. Evaluate a value of objective function

5. Generate the sequence of cell number randomly, it means that if CA has N cells
should produce sequence of N number that are 1,2,...,N and distribute randomly

6. Repeat (7) and (8) until all cells update (N iterations)

7. Select one of cell number from generated sequence basis on iteration number and
displace it with one of its neighbor that selected randomly

8. Evaluate a value of objective function and run simulated annealing for judging about
acceptability of displacement, if displacement is acceptable then the new statement of
CA unchanged even if not acceptable then statement of CA change to last statement
(Eq 13)

9. Repeat (5) to (8) until converge the CA, i.e., when objective function receive to local
optimum and the statement of CA be unchanged through calculation.

One of the main advantages of this method is to have short computation time.

In this study proposed procedure is applied to solve the fuel management optimization
problem in VVER-1000 reactor. Procedure and results of this study has been taken in next
sections.

4.1.3. A Sample problem solving

Proposed method was used for solving fuel management optimization problem in VVER-
1000 Russian reactor [15, 16]. Since the fuel management problem contains a huge amount of
calculation for finding the best configuration for fuel assemblies in reactor core this method
has been introduced for reducing the volume of calculation. In this study reducing of power
peaking factor and increasing the cycle length inside the reactor core of Bushehr NPP is
considered as the objective function. The result is the optimum configuration, which is in
agreement with the pattern proposed by the designer.

In fuel management optimization, minimization of power peaking factor & maximization
of initial excess reactivity are considerable objects. It means that the fuel assemblies should
be arranged in the core in such a manner that the neutron flux is flattened as high possible and
also has a maximum initial excess reactivity. Flatness of neutron flux causes to increase
reactor safety margin and well distribute of fuel burnup; increasing the excess reactivity can
increase the life time of reactor that is important case in economic. Therefore in this study,
minimum value of power peaking factor and maximum value of initial excess reactivity in
VVER-1000 reactor core are approached.

Objective function is as follow (Eqs16 to 18), needless to say that this objective function
can be changed and the other parameters exceeded on:

E(F,,K,)=A/2R (F,)+B /2R, (K_) (16)

R, (F)=(F -1) 17
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RZ(Kef)=(1_Kel )2 (18)

Where, A, B are constants, and F, andK, are obtained by performing the dynamic

calculation in the core. It is clear that F, and K, are as X and X, in the optimization

procedure and can be obtained by solving dynamic relation of the system. Diffusion equation
is validated for describing the dynamic relation equation in the nuclear reactor core;
thereforediffusion equationand power distribution can be considered as V functionand P
variable, respectively.

Figure 8. Physical structure of CA

1.6 % Enriched

24:2.4% Enriched

36:3.6% Enriched
(3.7%+3.3%)

24 B:20:2.4% Enriched
with 0.02 glec BA

24B20:2.4% Enriched
with 0.02 glec BA

Figure 9. Core shape of VVER-1000 reactor proposed by designer
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At the first step mapping of the fuel management problem onto the CA & SA is depicted.
For this, at first defining the suitable structure of CA that adapt to the physical structure of
VVER-1000 reactor core is needed. VVER-1000 reactor core has hexagonal shape (Figure 8)
thus hexagonal cell for making CA structure is defined. Physical structure of CA is as shown
in Figure 8. Since the VVER-100 reactor core has 1/6 symmetry (Figure 9). The second step
is to define the neighboring of each cell in CA. In this problem each cell is neighbored with 6
cells that are around it (Figure 10), needless to say, that the cells in periphery of CA structure
have less than 6 neighbors.

In this study, the positions of 7 fuel assemblies in the periphery of the core and the central
one are fixed as boundary conditions (Figure 11); therefore should determine the best
positions for remaining 20 assemblies.

After defining the CA structure and neighboring is needed to make the set of elements
that should distribute in core as fuel assemblies. Therefore enrichment of each fuel assembly
and burnable absorber that may be in one fuel assembly should be prepared as a set of
elements by user. In this study the set of elements that the designer of VVER-1000 reactor
proposed was used. In the next step elements that prepared are distributed over the cells
randomly, i.e. each fuel assembly in the set of elements is located in one cell of CA, here we
are 20 fuel assemblies and 20 empty cells. Note that in this study the kind of fuel assemblies
that are mentioned in table 1 are selected as cell states. Therefore 6 number of fuel
assemblies' kind are made the collection of cells states that are presented in table 1.

Since there are 20 cells in CA should be generated the sequence of 1, 2, ..., 20 randomly,
that updating of each cell is performed basis on this sequence.

Figure 10. Cell in CA structure and its neighbors. (a) Cell with 6 neighbors, (b) cell with 4 neighbors in

periphery of CA structure
16

24 24b20 24b36 36 36b36

Figure 11. Structure of CA with initial condition
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Table 1. Type of fuel assemblies in VVER-1000 reactor core
(Cell States collection for CA)

No. Fuel Assembly's Description
Abbreviation

P=1 16 Fuel Assemblies of 1.6% enriched fuel rods

P=2 24 Fuel Assemblies of 2.4% enriched fuel rods

P=3 36 Fuel Assemblies of 3.7% & 3.3% enriched fuel rods

P=4 24B20 Fuel Assemblies of 2.4% enriched fuel rods & burnable
absorber rods with a density of 20 kg/m’

P=5 24B36 Fuel Assemblies of 2.4% enriched fuel rods & burnable
absorber rods with a density of 36 kg/m’

P=6 36B36 Fuel Assemblies of 3.7% & 3.3% enriched fuel rods &
burnable absorber rods with a density of 36 kg/m’

At this step one of the cells is selected, basis on sequence made, and displaced fuel
assembly in this cell with fuel assembly that is one of its neighbors, which is selected
randomly. Then neutronic calculation is performed by new pattern and objective function is
calculated. The new and old value of objective function is given to simulated procedure for
making a decision about acceptability of new pattern, if new pattern is acceptable then
remains unchanged, if not acceptable new pattern is displaced with old pattern. This
procedure is introduced as transition rule for CA.

This procedure continued until converged, i.e. when the value of objective function
remains constant.

The method outlined in this paper could be applied to the other objective functions,
which are not considered here.

We have applied the CA model accompanied by SA to find the optimum-loading pattern
for first cycle of Bushehr NPP and compare it with the pattern proposed by the designer [4].

Proposed method has program that use FORTRAN software as base media. This program
has several subroutines that are:

e CA structure
e Simulated Annealing
e Neutronic calculation

CA structure subroutine contains structure of Cellular Automata and state of each cell.
Besides this section perform the random displacement for each cell with its neighbors.

Simulated Annealing subroutine performs the algorithm, which escape the network from
local minimum and guide to global minimum. In fact, in this subroutine evaluation of the
acceptability of each displacement in CA's state is performed.

In Figures 12 to 15 evolution of the calculation by CA and SA program from initial state
to final state, when it is converged to an acceptable solution, is shown. As it is expected the
solution found by CA & SA is global minimum of energy function.
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Figure 12. CA & SA process for first loading of Bushehr NPP — first iteration (Temperature=100°K,
E=78.2172, F,=1.58 & K, = 1.1603)
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Figure 13. CA & SA process for first loading of Bushehr NPP — 17th iteration (Temperature=52.040°K,
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Figure 14. CA & SA process for first loading of Bushehr NPP — 58th iteration (Temperature=9.7602°K,
E=22.5429, F, = 1.33 & K_ = 1.1569)
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Figure 15. CA & SA process for first loading of Bushehr NPP — last iteration (Temperature=4.3140°K,
E=15.9319, F,=1.30 &K, = 1.1625)
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Start SA's subroutine with initial point at a small temperature (T;, = 100°K) and reduce it
gradually in each step (annealing coefficient = 0.96). In this way reaching to the global
minimum is assured in acceptable time. Figures 12 to 15 show the process of reaching to the
global minimum. Note that in section (a) of these figures red cell is selected cell for updating
and yellow cells are its neighbors, in section (b) accepted replacement of cell and selected
neighbor is shown.

In the table 2, we have calculated Fr andK for the two core configurations which has

been discussed. Evolution of energy and objective parameters in proposed method for fuel
management optimization of VVER-1000 reactor core had been shown in Figures 16 & 17,
respectively.
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Figure 16. Evolution of energy in the CA & SA procedure for first loading of Bushehr NPP
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If the objective parameters of the end configuration, that were given by proposed method,
Figure 15 (F, = 1.30, K, = 1.1625), are compared to the parameters of the configuration

proposed by VVER Russian Designer (Figure 18), which are F, = 1.39 &K, = 1.1577, we

will conclude that the solution found by the proposed method is closer to optimum.

As shown in table 2 calculated result by combination of CA & SA for loading
optimization as compared to the configuration, which proposed by VVER-1000, have lower
power peaking factor and greater initial excess reactivity; therefore this method has good
reliability for finding the optimum core configuration.

Needless to say, that by improving the objective function and exceeding the parameters
that have important role in fuel management and loading pattern the final result improved.
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Figure 18. Configuration that is proposed by VVER for first loading of Bushehr NPP — (F,=1.39 &
K, =1.1577)

Table 2. Comparison of results

Method Fe K o No. of Iterations

CASA 1.30 | 1.1625 77
VVER-1000 | 1.39 | 1.1577 -
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4.2. Optimization by CA

In the previous section, the new method that is used from CA accompanying with
simulated annealing for solving optimization problem was introduced. In that method the total
ability of CA for simulating the behavior and finally guiding the system to the optimal
weren’t used. In this section the other method is introduced that is used from the CA without
any other concept [17]. The main characteristics of the CA, neighboring and locality, are used
in this method and the system be evolved to an optimal point based on local information.

4.2.1. Procedure

In this new method, physical structure in a problem and the neighboring of each element
should be simulated by cellular automata; therefore adaptation of the CA structure with
considered system in a problem is necessary.

To solve an optimization problem, one needs to define and calculate an objective
function. In the optimization procedure, the optimum value of the objective function is
approached. Since updating of each cell in CA depends on the state of its neighboring cells,
the main component of this method is in fact the definition of the objective function using
neighboring cells parameters. Therefore, each variable that is to be optimized should be
defined using neighboring cells parameters which are based on local information. This means
that a transition rule function, that describes the local relationship in CA, should be used for
defining the objective function.In the proposed method, procedure of cells updating should be
performed in a manner that cause to guide the system to desirable situation. Each cell is
updated based on defined transition rule in the CA, if we want to guide the system to desired
situation we should consider a suitable transition rule that changes the cell state based on
local information and evolves the system to the optimum state.

Based on mentioned cases in the previous sections, each system has a special structure
with its relations. In this method, the structure and the relation of the different parts of the
system should be obtained whereas lead to the best desired state, therefore defined CA with
its transition rule should be contained all of the characteristics of the subjected system.

In the proposed method, two parameters are considered for each cell which are state and
kind. The cell state is describes the value of parameter that will be used for defining the
objective function. Note that this parameter is obtained by calculating the dynamic behavior
of system. The cell kind describes the value of parameter that has been changed for obtaining
the optimum solution. In other words this is an independent variable parameter that changes
the value of the objective function. In fact the final solution of optimization is a set of cell
kinds for the system that are led to the optimum value in objective function.

Briefly, each system has a treatment that is described with a relation. This relation has
some independent variables as an input and a dependent variable as an output. Input and
output variables are defined as cell kinds and cell states, respectively. Needless to say that, the
goal of optimization procedure is to find the best value of independent variables (cell kinds)
that are led to optimum value of the objective function. Finally the set of cell kinds (cell kind
for all of cells) is approached for optimization problem. In the proposed method for kind of
each cell, m different values are possible. Needless to say that, if there are q cells in the
system, m? different conditions (set of cell kinds) are possible in optimization procedure;
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finding the best possible condition that is led to optimum value of objective function is
approached.

In Eqgs.19 and 20 a typical objective function based on local information and the
procedure of changing cell kinds are introduced.

E(X,,uX ) =min{H, (R, ,(),-sR, ,(5)); P = 1,....m}

=H, (R, (5),...R,, (5))

(19)

Rg,p(s(la.l:kat))zfg (S({I yﬂjvﬁk'}’t _l)anl,p({i 9J7k}9t _1)) (20)
n({iaj7k};t):n|,y({i:j:k};t _l) (21)
n({i,j,k};()):no (22)

In these equations, E is an objective function, X, is an optimization variable, g is the
number of optimization variable, R, (s)is a function that follow X, variable based on local

information by neighboring states for the p 'th cell kind for (i,j,k) cell ,f  is a rule function
that follow X, variable based on local information by neighboring states, {i ', j ,k '} is a set of

cell and its neighbors, n({i,j,k};t) is a set of cells kind at time t, n({i,j,k};t) is a set of cells
kind at time t that the kind of 1 th cell was changed to y, 1 is a number of cell that is marked
with (i,j,k),H, is an objective function for p 'th kind of cell, m is the number of possible

kinds of cell, y is the best cell kind for (i,j,k) cell, and s is the state of the cell.
The schematic flowchart of this method is introduced in Figure 19 and its procedure is as
follow:

1. Define a linear objective function that involves all goals with their suitable weights

2. Define a suitable CA structure and neighboring of each cell for modeling the
problem

3. Define a set of cells kind as an initial condition for CA (ng), randomly

Generate the sequence of cell numbers randomly, i.e., if CA has N cells, we should

produce the sequence of N numbers 1,2,...,N, and distribute them randomly

Repeat the forthcoming steps (6) to (10) until all cells are updated (N iterations)

Select one of the cell numbers from the generated sequence

Repeat steps (8) to (9) for all of cell kinds (m iterations)

Evaluate the value of rule functions (f,,....f )

>

A N e

Calculate H from R, (s) based on the important degree and other relationships

depending on the optimization variables
10. Determine the best cell kind (y) by finding the minimum value of H ,p=1,....m

(The cell kind that is caused to minimum value of objective function is selected as a
final solution in this iteration)
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11. Repeat steps (4) to (10) until convergence is achieved, i.e., until the objective
function arrives at a local optimum and the set of cell kinds that are led to optimum
value of objective function.

The mentioned procedure can be described and understood clearly in a sample problem

solving procedure, sothis proposed procedure for optimization is applied for solving the fuel
management optimization problem in VVER-1000 reactor, too.

Definz Desirable Linzar

Obi ective Funclion

}

Define Svitabla CA
Structurs & Neighboring
Di=fine Initial Conditions

N,

!

Caleslate Objective
Fopelion EQY .. X))

Selzct One of the

Iy Cellz Fandomby

Eralvak the rele fnctions for different call
khinds f,...f,

!

Calculzte H_ from R, (5}

¥
Find the minimum value of
H, p=l..m
¥

Drete rmine the bestcall kind (4 besad on & | valnes

ConveEsnce?

Figure 19. Flowchart of CA optimization method
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4.2.2. A Sample problem solving

In this section, like to previous solved problem, the fuel management optimization
procedure with power peaking factor because of its dependence on safety considerations the
initial excess reactivity that can impress the cycle length of the reactor core are considered.
The objective function and transition rule in this study are defined as follow:

E (FR 2 Kef ) = mln{H p (Rl)p (S)a Rz,p (S )); p = 19'“’ m } (23)
whereR, (s)and R, (s) are the functions that follow F; and K parameters, respectively .

The value of m depends on the defined structure and cell kinds, and that will be described in
the next section. Due to the nature of CA, updating of the cells should be performed based on
local information, therefore f, and f, were defined for relating R,  (s) and R, (s) functions to

local information. f andf,were found by performing data analysis procedure in the reactor

core model. Depending on problem structure, different lattices are defined; the parameter z
represents the number of cells in the selected lattice (the number of neighbors+1).

R, G0 =f (s({i’,jht-1),p)

:Z ‘{(5(“ i I}k ;t=1) |n|>p({i,j,k);t—l))_(s({i N l}w ;t=1) |n|_p({i,j,k};t—1))}
k=lw =k +1 (24)

Here, the set {i, j'}, shows the k 'th cell and its neighbors. In this study the state of each
cell was defined as cell power in the reactor core. As mentioned before, the function R, (s)

should follow the power peaking factor, decreasing this parameter means that the fuel
assemblies should be arranged in the core in such a manner that the neutron flux is flattened
as much as possible, therefore this function was defined based on the flatness of the neutron
flux or power (Eq. 24).
R, (G j:0) =F,(s({i’,j }:t=1), p)
Z(S({I ‘9 J I}k 5t _1) |n|.p({i,j,k};l—1))
k=1

Sz B Dl )

(25)

Based on data analysis, the relationship that is shown in Eq. 25 follows the K,
parameter; this means that by decreasing this function K, parameter is increased.

Processing of the data for decision making in optimization procedure is performed by the
functionH . This function is defined based on the significance of each parameter in the

optimization procedure. In some of optimization procedure, the objective variables have
different nature in the behavior, values and cost; therefore making the suitable objective
function is very difficult. In the procedure of defining the comparison weight for optimization
variables, different methods can be used; the main point in this issue is to obtain the similar
base for all parameters to gain the comparison ability. The procedure of making suitable
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objective function in optimization is very complicated and spacious and there isn’t
appropriate opportunity for describing in more details in this chapter.Anyway for this
problem the function was innovatively defined and described as follow:

Ho (R (8)R, () =A*exp(R, ,(s))+B *exp(R,,(s)") (26)

The parameters A and B are selected based on the important degree of the related
parameter in the optimization. R, (s) andR, (s)" are normalized values of R, (s)and

R,,(s), respectively, so that their values remain between 0 and 1:

. 1 . o B
Rop(®) _(max{Rw(s),p:1,,..,m}—min{Rg~p(s),p:1,...,m}) R ) mm{Rg-P(S)’p_1"“’m})(27)

After calculating the function H (R, (s),R,,(s)) for p=l,....m, the decision for

selecting the best kind of cell in the optimization procedure is made by finding the minimum
value of H, (Eq. 23).

In this method, the power is defined as the state of each cell, therefore one needs to
simulate the reactor core and perform neutronic calculations. For performing neutronic core
calculations WIMS-D4 and CITATION codes should linked, for this purpose a FORTRAN
software was employed [16].

Such as previous section the CA structure select based on the system structure and since
the VVER-1000 reactor core has 1/6 symmetry (Figure 9), therefore we only need to model
1/6 of the core.

In this method the set of fuel assemblies (cell kinds) that is led to optimum value of
objective function is approached. It is clear that, the kind of cell describes an enrichment of
fuel that is placed in that cell. In this study, the kind of 7 cells in the periphery of the core and
the central one are fixed (Figure 11) as initial condition; therefore the best kind for remaining
20 cells should be determined.

After defining the CA structure and the neighborhood of the cells, one needs to define the
initial conditions for the cells. This can be performed randomly. Therefore kind of each cell
(enrichment of fuel) selected from set of different enrichment of fuel assemblies that is shown
in table 1. In this study 5 th and 6 th kinds of fuel assemblies only for defining boundary
condition and the other for optimization procedure are used, therefore m=4 in this problem.

In the next step, the sequence of 1,2,...,20 should be generated randomly (updating of
each cell is performed basis on this sequence). At this step one cell is selected, basis on
sequence made, then using Eqs21 to 25 and performing neutronic calculation, objective
function is calculated and the cell is updated ( best kind of cells, suitable enrichment, for this
cell is determined).

This procedure continued until converged, i.e. when the value of objective function
remains constant.The method outlined in this paper could be applied to the other objective
functions, which are not considered here.

We have applied the CA model to find the optimum-loading pattern for first cycle of
Bushehr NPP and compare it with the pattern proposed by the designer (VVER-1000).
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First fuel assembly’s group constants prepared by WIMS D-4 code which are functions
of temperature, burnup and power. The results are used in input file of CITATION code [15,
16].

Proposed method has program that use FORTRAN software as base media. This program
has two subroutines that are:

e CA structure
e Neutronic calculation

CA structure subroutine contains structure of Cellular Automata, kind and state of each
cell. Besides this section perform the random selection of each cell and it’s updating.

Neutronic calculation subroutine calls WIMS and CITATION codes for core calculation
and finding the power distribution over reactor core.

Figures 20 to 23 show the evolution of the calculation by CA program from initial state
to final state, where it is converged to an acceptable solution. In this way reaching to the
global minimum is assured in acceptable time. As it is expected the solution found by
proposed method is near to global minimum of energy function.

Evolution of two considered parameters in fuel management optimization procedure of
VVER-1000 reactor core in proposed method had been shown in Figure 24.
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Figure 20. CA process for first loading of Bushehr NPP — first iteration ( K, =1.4966 and K, =1.1625)
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If the F, and K parameters of the end configuration that given by proposed method,
Figure 24 (F, =1.3130 and K, = 1.2304), is compared to the energy of the configuration
proposed by VVER Russian Designer (Figure 18), which are F, =1.39 and K =1.1577, we

will conclude that the solution found by the proposed method is closer to optimum.
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(a) core shape before displacing (b) core shape after displacing

Figure 21. CA process for first loading of Bushehr NPP —12th iteration ( F, =1.5929 and K, =1.1777)
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Figure 22. CA process for first loading of Bushehr NPP — 29th iteration ( K, =1.3069 and K, =1.2302)
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Figure 23. CA process for first loading of Bushehr NPP — last iteration ( F; =1.3130 and K, =1.2304)
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Figure 24. Evolution of Fj and K parameters in the CA procedure for first loading of Bushehr NPP

As shown in table 3 calculated result by CA method for loading optimization as
compared to the configuration, which proposed by VVER-1000, has lower power peaking
factor and higher initial excess reactivity; therefore this method has good reliability for
finding the optimum core configuration.

Needless to say that by improving the objective function and exceeding the parameters
that have important role in fuel management and loading pattern the final result improved.
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Table 3. Comparison of results

Method Fe K o No. of Iterations

CA 1.31 | 1.2304 | 47
VVER-1000 | 1.39 | 1.1577 | -

5. CONCLUSION

In this study, we introduce two new conceptual methods for optimization using cellular
Automata. These methods were applied to loading pattern optimizations of VVER-1000
reactor and compared with the configuration, which proposed by designer. The final results,
which have obtained in this way, are closer to the optimum solution.

In this section to demonstrate the advantages of proposed methods Hopfield Neural
Network with Simulated Annealing algorithm was used for validating proposed methods.

Neural network models, with massively parallel structures, accompanied by simulated
annealing method are powerful enough to find the best solution in reasonable time. Hopfield
neural network operates as a local minimum searching algorithm; for improving obtained
result from neural network, simulated annealing is used. Simulated annealing, because of its
stochastic nature, can escape the result of Hopfield neural network from local minimum and
guide to global minimum.

Based on mentioned method in Reference [18] as LONSA, fuel management
optimization was performed using HNN with SA. The objective function for this method was
defined as Eq. 28.

2
E4=D/2(F -1)" —H /2(K, -1)’ (28)

where D=1000 and H=1000.
The other details information for LONSA is described in belonging paper that is cited in
reference.

The results of this problem that was obtained from Hopfield neural network and
simulated annealing algorithm [3] are shown in table 4 and Figures 25 & 26.

Table 4. Comparison of results

Method Fq K No. of Iterations
CASA 1.30 | 1.1625 77
Hopfield N.N. | 1.35 | 1.1606 376
Hopfield & SA | 1.32 | 1.1620 409
CA 1.31 | 1.2304 47
VVER-1000 1.39 | 1.1577 -
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Figure 26. Final configuration that obtained using Hopfield neural network with simulated annealing

for first loading of Bushehr NPP — (7= =1.32 & K« = 1.1620)

Because of the stochastic nature of mentioned methods, the results are very dependent on
this procedure. In Neural network, the neuron selecting procedure for update is stochastic, and
therefore the results are affected from this procedure. The simulated annealing procedure has
the same nature, too. The replacing procedure obeys from the defined stochastic procedure.
Also, the proposed method based on CA accompanied by SA has the stochastic nature. Cell
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selection, cell replacement and some other procedure are stochastic, and therefore the results
are very dependent on those procedures.

In the methods that are based on stochastic procedure, the results comparison isn’t a
reliable method to validation. In this study, for checking the methods, we compare the quality
of the set of results that are obtained from the subjected methods. Figure 27 & 28 show the
quality of the performed optimization by HNN+SA and CA+SA in the 50 different iterations.
The minimization of the F, parameter is considered in the analytic assessment. As observed

from the obtained results, the probability of finding the better results in the CA+SA method
are very higher in comparing with HNN+SA method, thus the proposed method have good
reliability in comparing with the other current methods.

In the second proposed methods, optimization by CA, the stochastic procedure has no
effects on the procedure or maybe very week effects. But this method has a main part that can
be very difficult to implement. Defining the cost function based on transition rule and local
information whereas the cell updating lead to improve the cost function is the important stage
of this method that need to analytical analyzing the system.
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Consequently, based on mentioned cases, by comparing the proposed methods with

neural network and simulated annealing that are classical methods in optimization, the
reliability, velocity and quality of solution were checked, and the benefits of these methods
have been demonstrated.

[10]

[11]

[12]

[13]

[14]

[15]
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MODELING DRUG RELEASE USING CELLULAR
AUTOMATA: EVOLUTION AND TRENDS
IN PHARMACEUTICAL SCIENCES

Nicolas Bertrand and Grégoire Leclair’
Faculty of Pharmacy, University of Montreal, Montreal, Canada

ABSTRACT

Pharmaceutical science is a multidisciplinary field, in which fundamental and
applied sciences unite to study all aspects related to drugs and pharmaceutical products.
Amongst the specialities of this field, drug delivery focuses on altering the method of
administration of therapeutic molecules to improve their effectiveness and safety.
Various strategies exist to limit the toxicity or decrease the frequency of administration of
an active ingredient. For example, polymeric biodegradable matrices are able to sustain
and control the release of the drug. These systems are drug-reservoirs which are usually
implanted subcutaneously or intramuscularly to discharge their load over a few weeks to
a few months. The polymer implants may be fashioned in all kinds of shape: from films
or larger blocks to micro- or nanosized particles.

The engineering of these formulations is complex and requires the combined
expertise of polymer science, physical chemistry, and biology. In this context, cellular
automata have emerged as interesting tools to model the various phenomena involved in
the successful design and performance of these drug delivery systems. The following
mini-review proposes a look at the different models available to depict the phenomena
implicated in the release of drugs from biodegradable polymeric matrices.

Chronologically, the first aspect approached with the use of cellular automata was
polymer erosion. The present work describes the various models proposed over the years,
and emphasizes on the differences between them, from the probabilistic two-dimensional
systems of the 1990’s to the more comprehensive models proposed recently. In the
second part of the manuscript, the authors focus on drug diffusion in the matrix, which is
a phenomenon elegantly modeled by cellular automata. The various techniques used to
describe molecular Brownian motion through confined space are also presented. Special
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these aspects on drug release, and to demonstrate that adequate modeling can achieve
better understanding of these complex pharmaceutical systems.

Throughout this work, the authors wish to present a critical view of the objectives
achieved through the use of cellular automata as model and bring to light the impending
improvements which remain to be accomplished to consolidate their role in drug delivery
science.

1. INTRODUCTION

Cellular automaton (CA) models were first introduced by Von Neumann in 1948 as
discrete dynamic models to simulate complex systems [1]. CA models are constituted of three
basic components: a grid, numerous cells and local intuitive rules. The grid determines the
spatial relationship between the cells. Cells are defined by their discrete state. Local rules
dictate how cell can evolve according to their present state and the states of their neighbours.
Local rules are iteratively applied for each cell and the grid is updated accordingly. A CA
model in its simplest form was popularized in 1970 when Conway’s Game of Life was
presented in the Scientific American popular science journal [2].

The first application of a CA model in pharmaceutical sciences dates from 1990 by
Zygourakis [3]. This author reported the use of a CA model to simulate the release of drug
from a biodegradable polymeric drug device. Since then, several models have been defined to
simulate complex systems. Table 1 provides a summary of all the reviewed models.
Zygourakis’ first model and most of the CA models developed since then share a few
common points: (1) The CA grid is usually Cartesian and is defined in 2 or 3 dimensions; (2)
A cell represents a defined region of quantifiable size; (3) Cell state is discretized and depicts
the content of this spatial region (polymer, solvent, drug, etc.); and (4) intuitive rules are
defined based on expected or known physical principles. The possibility to discretize and
simplify equations figures among the advantages offered by this modeling design over the
traditional numerical models. This feature also guarantees the predictive nature of CAs
compared to models in which the data is fitted over experimental observations. Furthermore,
the spatial representation used in CAs circumvents most of the restrictive shape assumptions
governing models which use equations. It also allows the caption of images and movies
throughout the simulations, which often broaden the understanding of the system under study.

Multiple variations of CA models exist. For instance, the Game of Life is based on a
deterministic model were cells are defined by a unique nature at each iteration. This
deterministic model is cell-type based. The nature of a cell at a given iteration is determined
by its nature and the nature of the neighbouring cells at all previous iterations. In this type of
model, the illusion of object movement, reduction or expansion is created by defining
appropriate rules regulating the nature of each cell. As pharmaceutical concepts are often
difficult to define deterministically, a reduced number of stochastic rules are often utilized
instead of multiple deterministic rules. This allows the simulation of more complex processes
using fewer iterations and a coarser simulation space.



Table 1. List of reviewed CA models published between 1990 and 2009

Author Year Erosion Cell distribution Neighbours Diffusion Initial Drug release Dimensions
Journal [Ref] porosity
Zygourakis
Chemical 1990  When LE < Threshold  Initial state: - - Randomly Drug cells 2D
Engineering LE | according to Bernouilli trials distributed eroded
Science [3] probabi]istic or circles of
deterministic rules specific
diameter
Biomaterials 1996 ~ When LE < Threshold Initial state: Von Neumann - Randomly - 2D
[4] Bernouilli trials distributed
LE: 1st order Erlang LE | linearly with circles of
N specific
diameter
Gopferich
Macromol [5] 1993 When LE < Threshold Cristallinity: Eroded neighbour - - - 2D
Bernouilli trial YorN?
LE start to | when LE: 1st order Erlang
neighbour eroded
AIChE 1995  When LE < Threshold Cristallinity: Eroded neighbour - - Amorphous 2D:
Journal [6] Bernouilli trial YorN? polymer cells Rotationally
AND in contact with LE: Ist order Erlang eroded symmetric
surface
J Control 1995  When LE < Threshold  Cristallinity: - Numerical None Monomer 2D
Release [7] Bernouilli trial resolution of release
LE: Ist order Erlang Fick's law
Macromol [8] 1997  When LE < Threshold  Cristallinity: Contact with - None - 2D

AND in contact with
surface

Bernouilli trial
LE: 1st order Erlang

surface Y or N.




Table 1. (Continued)

Author Year Erosion Cell distribution Neighbours Diffusion Initial Drug release Dimensions
Journal[Ref] porosity
Barat
Sim Model: 2006  No erosion, only Initial state: No effect on Random walk None Drug cells 2D
Practice & excipient dissolution Bernouilli trials erosion (compartimental diffusing outside
Theory [14] ) of limits
J Pharm 2008  When LE < Threshold LE: 1st order No effect on Random walk Method not Drug cells 3D
Biomed Anal Erlang erosion specified diffusing outside
[15] of limits
Theory Biosci 2008  When LE < Threshold LE: 1st order No effect on Random walk Method not Drug cells 3D
[16] Erlang erosion specified diffusing outside
of limits
Vlugt-Wensink
J Control 2006  When time > LE In clusters - Random walk None Drug cells 3D
Release [17] diffusing outside
of limits

Hildgen
Int J Pharm 2007  When random number >  Log normal Von Neumann Random walk Pores Drug cells 3D
[18] probability of non- distribution and Pxe |exponentially generated by diffusing outside

erosion (Pxg) modified log with N random walk  of limits

normal

Yu
Sim Model: 2008  When LE < Threshold LE: 1st order Eroded neighbour - None Number of Drug 3D
Practice & Erlang YorN? cells eroded
Theory [19]
Laaksonen
Biomaterials 2009  When random number < Initial state: Von Neumann Random walk None Drug cells 2D
[20] probability of erosion Bernouilli trials Pg 1 linearly with (comp- diffusing outside

(Pg) N artimental) of limits
Int J Pharm 2009  Polymer density | Initial state: Von Neumann Random walk None Drug cells 2D
[21] randomly & with Bernouilli trials (comp- diffusing outside

swelling artimental) of limits

When polymer density Pg 1 linearly with

reaches 0 N

LE: Life expectancy; N: number of water-containing neighbouring cells; Pg: Probability of erosion, Pyg: Probability of non-erosion (1-Pg), Y: Yes, N: No.
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Another variation of the original CA model includes compartment-like models. Instead of
focussing on cell types, these latter models focus on the amount of a given object present in a
given cell. In some cases this quantity is discretized, in other cases it is a real number value.
Rules are defined to regulate the mass transfer from one cell to the others. Therefore these CA
models are in some ways similar to pharmacokinetics compartmental models: cells behave
like compartments and local rules are similar to transfer micro-constants. This approach is
convenient to simulate diffusion as it models easily the concepts associated with
concentration gradients.

Finally some models are hybrid: CA rules are first used to simulate a complex process
such as dissolution and erosion. The different dependant variables of the model (for example
the diffusion coefficient) are then evaluated at each iteration. These dependant variables can
then be utilized to resolve complex differential equations such as Fick’s diffusion laws.

Since 1990, various CA models have been developed to address three pharmaceutical
problems: (1) degradation, erosion and dissolution of biodegradable polymers; (2) dissolution
of drug substances; and (3) diffusion of drugs out of a polymeric device. The next section
proposes to provide an historical review of these models. The third and fourth sections
summarize the sequence of events resulting to drug release from a polymeric device and how
these events can be modeled using CAs. Finally, a critical review on the calibration as well as
the predictive value of these CA models is provided in the fifth section of this chapter.

2. HISTORICAL REVIEW

In 1990, Zygourakis defined a simple but efficient CA model [3]. This 2D model
comprised 2048 x 2048 cells. Four cell states were defined: (1) polymer, (2) drug, (3) solvent
and (4) pore void. Cubic tablets were modeled with different drug loading and porosity.
Porosity and drug circle of known size were distributed over a lattice of polymer. The model
evolved according to two rules: (1) a pore cell was filled with solvent if it had at least one
solvent neighbour; (2) a polymer or drug cell was replaced with solvent after a
deterministically or stochastically computed number of iterations if it had at least one solvent
neighbour. A drug release event was accounted every time a drug cell was replaced by
solvent. This model was good to evaluate drug release from a surface erosion controlled drug
delivery device. The model could simulate the penetration of solvent in the device through
porosity. However, it could not simulate the diffusion of drug throughout the device. The
model simply assumed that as soon as the drug was dissolved, it was released.

In 1996, Zygourakis presented a slightly improved CA model based on his previous
model [4]. A 250 x 250 cell lattice was filled with different solid components, porosity void
or solvent. Each solid component (drug or polymer) cell in the lattice was assigned a life
expectancy which could either be constant or could vary according to a Poisson distribution.
At every iteration, the life expectancy of a solid cell was reduced by the number of
neighbouring solvent cells. Once life expectancy reached zero, the cell was replaced with
solvent. For drug cells, this counted as a release event. The benefit of this model in
comparison to the previous one was to allow the modeling of ternary and even more complex
systems; however, only binary systems were evaluated. This model also took into account the
number of neighbouring solvent cells to determine the dissolution time of a given solid cell.
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In the meantime (1993), Gopferich and Langer developed another CA model to simulate
the erosion of a cylindrical polymeric device [5]. Taking advantage of the symmetrical
properties of cylinders, they modelled only half of a cross-section of the device using a 100 x
100 cell simulation space. Three cell states were defined: (1) slow-eroding crystalline
polymer; (2) fast-eroding amorphous polymer; and (3) solvent. Randomly distributed binary
systems of known crystalline-to-amorphous ratio could be modeled. This model was based on
a single rule: once a polymer-containing cell was exposed to a solvent cell, it was replaced by
solvent after a stochastically determined number of iteration (life expectancy). Life
expectancy was based on a first-order Erlang probability function specific for each
component.

In 1995, this model was fine tuned to simulate drug release from coated and non-coated
cylinder devices [6]. To quantify drug release, it was necessary to take into account that the
volume of a cylinder is proportional to the squared radius. Non-constant cells of rectangular
geometry were used for this model. The x-length of these cells was a function of its distance
from the center of the device. This simplification allowed a more accurate simulation of a 3D
process using a 2D grid. It should be noted that drug was not a cell state in these two latter
models; it was simply assumed that drug was uniformly distributed within the polymer and
would be released at the same rate as polymer would erode.

Also in 1995, a significant addition to this model was made which took into account the
diffusion of monomers out of the polymeric matrix [7]. A similar CA model was designed to
simulate the morphological changes during surface erosion of a polymeric matrix. This
allowed the calculation of porosity distribution throughout the matrix. Eroded polymer cells
were assumed to be replaced by their equivalent monomer. Diffusion was not simulated using
a CA model, but rather calculated according to Fick’s first law, using the porosity calculated
from the CA model to determine the effective diffusion coefficient. This strategy integrated
two radically different approaches into a single hybrid model.

In parallel, Gopferich widened his perspective of erosion in 1997 to examine bulk
polymer erosion [8]. The life expectancy model developed earlier [S] was modified by
discriminating between polymer degradation (breakage of chemical bonds) and polymer
erosion (disappearance of polymer cells). Hence, the start of the life expectancy decay of
polymer cells was synchronous; cells with expired life expectancies were considered as
degraded, but erosion only occurred when degraded cells were in contact with the surface (via
contiguous solvent cells). This feature assured homogenous degradation throughout the
polymer bulk, and was subsequently used in other work to explain different experimental
observations [9, 10]. However, by design, the model lost the ability to portray surface erosion.

In 1994, Kier and Cheng published the details of an innovative CA model of water. This
model was designed to simulate molecular-scale events. The 2D simulation space was a
boundless region of 40 x 40 cells representing the surface of a torus. Only two cell states were
defined: (1) empty and (2) water molecule. Water molecules would move within the
simulation space according to three stochastic rules: (1) a water molecule would freely move
to one of the neighbouring cell if all its first level and second level neighbourhood were
empty; (2) two or more vicinal water molecules formed a cluster; clusters were static, but
molecules could detach from a cluster according to a breaking probability rule; and finally (3)
if a water molecule had another water molecule in its second level neighbourhood, a joining
probability would determine if it would interact with it and form a cluster. This relatively
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simple single component model was surprisingly efficient to calculate different physical
properties of water such as hydrogen bounding, viscosity and vapour pressure.

The basic CA model of water has been fine tuned by this research group [11-13]. By
using similar rules between molecules of different types, many more physical processes can
be simulated: solubility, oil-water partitioning, dissolution, micelle formation, percolation and
diffusion. This molecular dynamic approach is an elegant way of resolving key physical
problems which are pertinent to pharmaceutical sciences. On the other hand, this molecular
dynamics strategy has not been used as of yet to design CA models of drug release from drug
delivery devices.

In 2006, Barat published a Monte Carlo model of drug dissolution [14]. This model was
used to simulate the dissolution of two-component compacts in a standard experimental
context (United States Pharmacopeia type 2 dissolution apparatus). By design, this model had
some CA flavour in its definition of the simulation space, a 2D lattice of cells. Defined cell
types included drug, excipient, leaking drug, leaking excipient, static layer of solvent and
bulk solvent. In addition to cell type, each cell could contain a defined number of excipients
and drug particles representing the concentration of these components within the cell. Drug
and excipient particles migrated from leaking cells to static layer cells, between static layer
cells and eventually from static layer cells to bulk solvent cells. Stochastic rules based on
diffusion equations were used to quantify the number of particles migrating from on cell to
another.

The latter model of drug dissolution was complexified in 2008 [15, 16]. Release of
proteins (i.e. drug) from a polymeric microsphere was simulated using a compartment-like
CA model. A 3D simulation space was used. On the one hand, a polymeric microsphere was
modeled by filling the simulation space with polymeric cells, porosity void space and also
protein cells. From this polymeric sphere model, erosion was simulated according to
stochastic rules as described previously by Gopferich [5]. Alternatively, diffusion of
dissolved protein through the porosity was modeled using random walk rules. A release event
was calculated when a dissolved protein escaped the region of the simulated space occupied
by the polymeric microsphere.

Meanwhile in 2006, another group published a CA-like, stochastic model [17]. In this
work, polymer erosion of a definite number of neighbouring cells was used as a requisite
binary condition to allow diffusion of a macromolecular drug; diffusion was only possible if
pores were large enough. For this reason, clusters of a definite number of cells were attributed
randomly determined life-expectancies instead of individual cells. The number of cells in a
cluster was a function of both the polymer cross-linking density and protein hydrodynamic
diameter. The 50 x50 x 50, three-dimensional lattice was then used to model drug diffusion
through contiguous empty pores. This model is distinctive because the usage of clusters to
model one phenomenon allows representation of different size-scales for erosion and
diffusion.

In 2007, Hildgen published a CA model inspired by the pioneer works described above
[18]. In this work, a three-dimensional environment (300 x 300 x 300 cells) was defined, and
cells were attributed the specific states of polymer, drug and porosity. Erosion was modeled
in a stochastic perspective by attributing a non-erosion probability (the complementary
probability of an erosion event) for each cell. For polymer cells, this probability decreased
exponentially with each solvent-containing neighbour. Different polymer cells were attributed
distinct non-erosion probabilities according to a log normal distribution. In order to



46 Nicolas Bertrand and Grégoire Leclair

realistically depict the drug delivery devices, particular attention was given to the
representation of porosity. This feature significantly improved modeling of drug diffusion by
a random walk. Drug was considered released when it escaped the volume defined by the
polymer cells.

Similarly, a 3D extension of Gopferich’s CA model was also proposed by Yu et al. in
2008 to simulate drug release from erosion-controlled polymeric devices [19].

In 2009, Laaksonen proposed of CA model to simulate drug release from diffusion-
controlled polymeric devices [20]. The 2D simulation space (125 x 125 cells) was populated
with six different types of cells: (1) water; (2) solid drug; (3) dissolved drug; (4) solid
polymer; (5) wet polymer; and (6) wet polymer with dissolved drug. Stochastic rules were
defined to control the probability that a solid cell would change into a wet cell upon contact
with any type of wet cells. Another stochastic rule determined the probability of erosion of a
wet polymer cell. To address drug diffusion, all cells containing drug were defined as
compartments containing a finite amount of drug. The drug dissolved in wet cells would be
submitted to a random walk through any neighbouring wet cells.

In another recent study, the same group modified their model by introducing polymer-
swelling as a dominant parameter in the stochastic CA [21]. In this model, the polymer cells
were considered as compartments and both the erosion probability and swelling probability
were dependent on the polymer “density” of each polymer cell. Swelling decreased density of
a given cell by augmenting the density of one of its solvent-containing neighbour, while
erosion decreased the density without affecting neighbouring cells.

3. MODELING MATRIX EROSION

Many physical phenomena are implicated in drug release from polymeric drug delivery
system (PDDS), and throughout the last twenty years, scientists have put efforts into
modeling them using CAs. The following section will focus on erosion which represents the
loss of mass from a polymer matrix [22]. The objective will be to put forward how the CAs in
literature convene with the current experimentally-obtained understanding of this complex
phenomenon.

Firstly, as pharmaceutical sciences regroup an array of specialities, an important amount
of experimental observations are available when initiating the design of a model. Most of the
time, the initial configuration of the model decides which parameters will be addressed and
which will be left out. Hence, the initial representation of the PDDS in the CA will be
discussed in detail. Secondly, as shown in Figure 1, for an intricate system of entangled
polymer chains, polymer erosion results from three distinct physical events: (1) water ingress
in the polymeric structure; (2) polymer degradation, involving the breaking (i.e. hydrolysis)
of chemical bonds and the decrease in polymer chain length and (3) the diffusion of the
polymer chains or oligo/monomers out of the polymer matrix. The integration of these three
events in CAs is discussed in further detail.
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Step 0. Initial state

Step 1. Wateringressin the bulk

Polymer degradation

Step2. (decrease in chain length)

Loss of polymer bulk

SteP 3 (diffusion of oligopmers/monomers)

Figure 1. The four steps leading to polymeric erosion

3.1. Describing the Primary State of the Matrix

The principal part of the bulk of a PDDS consists of polymer. Polymers are high
molecular-weight molecules composed of covalently linked repeating units (monomers). The
polymer matrix is held together by the entanglement of the chains and hydrophobic
interactions between molecules. The cohesive forces of the bulk depend on the type of
polymer (i.e. the type of monomers), the length of the chains (i.e. molecular weight of the
polymer), and the crystallinity of the bulk [23, 24]. This last parameter is defined by the
amount of local organization between the intra- and intermolecular chemical groups. In a
crystalline polymer, the chains (or part of the chains) are ordered in a very tight fashion and
the forces holding the matrix together are hard to overcome. In an amorphous polymer, no
local organization is discernible, and less energy is required to break intermolecular
interactions. Experimentally, effects of polymer type, molecular weight and crystallinity on
erosion were thoroughly studied in various works [25-28].

These parameters were amongst the first to be integrated in CA, and still figure as the
core of the known erosion models. In his work, Zygourakis defined polymer cells with
different erosion rates by attributing life expectations for each cell, with long life expectations
corresponding to slow erosion rates [4]. This trend was refined by Gopferich and Langer [5]
who assigned “crystalline” and “amorphous” types to each polymer pixels. The cells of each
type had life expectations distributed according to two distinct Erlang distributions. Similar
approaches were used in more recent models [14, 19]. In others, erosion was determined
stochastically by distributing erosion probabilities instead of life expectations [18, 20, 21]. In
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most of these works, the distribution of each cell type during matrix generation is made
arbitrarily for each pixel without consideration for the other cells in its vicinity. This
stochastic conception might deviate from the more organized distribution of crystalline
domains often observed experimentally [24, 26, 27].

Another important component of all PDDS is the active ingredient. In reservoir-type
controlled release systems, the active agent is physically immobilized in a water insoluble
polymeric scaffold that delays its contact with the aqueous environment. To date, the systems
designed comprise of various types of molecules which extend from low-molecular weight
drugs [18, 29] to macromolecular peptides and proteins [30]. In most of these formulations,
the active ingredient is molecularly dispersed in the polymer and therefore a limited amount
of drug-drug interactions occur. However, in certain systems, the drug is not homogeneously
distributed [31-33]. Hence, the presence of drug-rich clusters or drug crystals requires the
characterization of intrinsic parameters for the active ingredient, such as solubility (the
maximum amount of drug which can be dissolved in solution), crystallinity (the strength of
cohesive forces between drug molecules) and polymorphic state (a measure of cohesive
forces, in non-crystalline states). In this type of PDDS, other formulation-specific
considerations also exist, like drug-cluster size and shape.

For the reasons mentioned above, dissolution of the drug is rarely the rate-limiting step in
models describing erosion-controlled drug release, and drug is usually distributed randomly in
the matrix, as single pixels [20, 21]. However, Zygourakis [4] and Hildgen [18] have
proposed models which can distribute drug as spherical clusters of specific diameters as if
they were crystals or a hydrophilic drug encapsulated by the double-emulsion method.
Although the influence of this feature on release rates in simple erosion models is minor for
realistic drug loadings (< 20-30%) [4], it becomes interesting when the models combines
polymer erosion and drug diffusion (see Section 4 below) [18].

It is noteworthy that as pharmaceutical research evolves, other formulation-dependent
factors emerge. A few, such as the compatibility of the drug with the polymer [34] are
system-specific and, until now, have not been implemented in any model. Others, like the
porosity in the matrix, have only recently been examined experimentally [35-37], but were
straightforwardly integrated in cellular automaton models since the beginnings [3, 4, 15, 18].

Porosity in the matrix was already featured in the first CAs. In Zygourakis’ models, a
specific quantity of circular pores was integrated in the drug-polymer blend as randomly
distributed empty cells [3, 4]. Although this type of porosity was consistent with a surface
eroding matrix, once again its effect on drug release rates was somehow limited (at least for
realistically low drug loadings) [4]. In Gopferich’s hybrid model, the role of porosity was
acknowledged as a numerical variable which fluctuated according to polymer erosion and was
integrated in the numerical resolution of Fick’s diffusion law, but no initial porosity was
attributed to the initial matrix [7]. In other models, the influence of randomly distributed
porosity on drug release is studied quantitatively without detail on the pore shape [15, 16]. To
the best of our knowledge, Hildgen was the first to consider randomly shaped pores. In this
model, the pores were distributed in the form of connecting tunnels following a self-avoiding
random walk throughout the matrix. This method was chosen amongst others because of its
more realistic depiction of experimental features of porosity (surface area, surface fractal
dimension, etc). The three-dimensional environment and integration of the drug diffusion
process provided accurate burst-release and polymer bulk erosion modeling [18].
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3.2. Step 1 of Polymer Erosion: Water Penetration in the Matrix

When PDDS are immerged in aqueous biological fluids their surface is wetted and
capillary forces fill the pores connecting to the surface with water. The water uptake of
matrices varies with the hydrophobicity of the surface and polymer bulk. The quantity, shape
and size of pores connected to the external aqueous environment are also influential
parameters. Experimentally, these factors are hard to study. For example, indirect
measurement of the contact angle of an aqueous droplet on a polymer film could provide and
estimation of the hydrophobicity of a PDDS surface [38], but could hardly supply a direct
water uptake kinetic. Likewise, pore measurements obtained with various gas adsorption
techniques only offer an approximation of the volume available to water: the high surface
tensions of aqueous solutions would certainly prevent liquid penetration in the tightest pores
[36, 37].

Nonetheless, it is the water taken up by the polymer mass that will lead to the further
steps of drug release and dictate if the polymer undergoes surface or bulk erosion [8, 9, 39].
Since polymer hydrolysis occurs when the polymer chains are in contact with the aqueous
media, percolation of the water through the polymer is essential in order to have degradation
(and further erosion) inside the mass of polymer. If the water ingress in the matrix is slow or
if the polymer is poorly resistant to hydrolysis, the surface of the polymer will erode much
faster than the water front will penetrate inside the core, and surface erosion will occur [8, 9].

This concept was poorly understood when the first CAs were designed, and polymers
were believed to undergo either surface or bulk erosion without considerations for the shape
of the systems studied. For this reason, the early models [3-5, 7] were strictly designed to
model one type of erosion. In the mid-nineties, Gopferich adapted his Monte-Carlo model to
better represent polymer bulk erosion, by discriminating between polymer degradation and
erosion [8]. After a randomly-determined life-expectancy, polymer underwent degradation
(fell in the “degraded” state) but could not be eroded (changed to “eroded” state) until at least
one of its neighbour contained water. Although pioneering at the time, this design was
imperfect because water penetration in the matrix was depicted as a consequence of erosion
rather than its cause. In recent models, the representation of water penetration inside the
matrix was more realistically portrayed through accurate depiction of porosity [18] or
polymer swelling [21]. Indeed, Laaksonen et al. [21] proposed an interesting model where
penetration of water was achieved by determining a “wet polymer” state. When in contact
with a water-containing neighbour, each polymer cell had a probability of absorbing a part of
the surrounding milieu and thereby changed its state. Once in the wet form, the polymer
underwent erosion or swelled in neighbouring cells, and the water was free to continue its
progression throughout the matrix independently.

3.3. Step 2 of Polymer Erosion: Polymer Degradation

By definition, the chemical bounds forming a biodegradable polymer must be degradable
under physiological conditions. Although polyesters are the most studied and better
characterized class of biodegradable polymers [24], numerous other types of polymers have
been used [22, 40]. Evidently, distinct types of chemical structures offer different polymer
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degradation kinetics. As the bonds are hydrolysed, the long polymeric chains are cleaved into
shorter molecules, and the average molecular weight decreases accordingly. Various works
have studied the way the molar weight of polymers declines in different conditions and
evidenced the distinctions between polymer chain scission and loss of material in the medium
[8,9, 26, 27].

While trying to accurately model bulk erosion (See above), Gopferich was the first to
recognize the distinction between the steps of degradation and erosion [8]. The decrease in
molecular weight was determined to be a necessary condition for polymer erosion. In his
simulations, although the decrease in the cell’s life expectancy started simultaneously, it was
established that polymer could not erode until it was in contact with the surface. Hence a
latency period could occur between the life termination of a cell and its deletion from the
matrix. This period corresponds to the time taken by the water to percolate throughout the
matrix.

This refinement was lost in most contemporary models which frequently combined the
degradation and erosion processes in the same mathematical parameter, whether it is life-
expectancy or a probability of erosion. Separation of polymer degradation from erosion in
two distinct events would permit more accurate representation of different experimental
observations. Amongst other things, the influence of molecular weight on the erosion kinetics
could be more straightforwardly depicted. Indeed, in a polymeric matrix, the degradation of
one particular chemical bound is independent of its position in the macromolecule. However,
the initial polymeric chain length and the location of the scission event will affect erosion
kinetics by altering the cohesive forces and mobility of the degraded products. In current
models, this detail remains restrained in a simple erosion parameter, but the spatial
representation defined in CAs could be usefully employed to monitor this phenomenon.

Likewise, another aspect that could interestingly take advantage of the cell lattice in CAs
is the characterization of the acidic autocatalysis occurring in the bulk of certain bioerodible
polymers. During this process, the acid degradation products are trapped inside the polymeric
network and catalyze the hydrolysis reaction occurring in the matrix. This results in
heterogeneous degradation kinetics of the polymer according to its location in the PDDS and
its proximity to the surface [41]. CAs could be exploited to define position-dependent
degradation kinetics.

3.4. Step 3 of Polymer Erosion: Loss of Polymer Bulk

Most bioerodible matrices used as PDDS consist of enmeshed polymer chains held
together by hydrophobic interactions. Upon decrease in the molecular weight of the
molecules the cohesion forces maintaining the matrix together are reduced, and the chains can
gradually disengage from the main bulk. This loss of polymer can occur either because
degradation leads to the formation of soluble oligomers or monomers which are able to
diffuse out of the mass, or because solid, insoluble portions of polymer detach from the main
part and are cleared in the circulation.

Current erosion models do not ponder into all those details, and customarily erosion is
represented by the “deletion” of a polymer cell and its replacement by a solvent pixel. Models
use either deterministic life expectancies (often randomly distributed in the matrix) [3-6, 15,
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16] or stochastic erosion events based on a series of erosion probabilities [18, 20, 21]. To
represent the fact that polymer erosion occurs more rapidly when the polymer is surrounded
in water, certain models shorten the time required for the erosion by weighing the number of
solvent-containing neighbours (N). The most frequent method of doing so implies a linear
relation between the time needed for erosion and the number of neighbours containing solvent
[4, 19-21]. Another option proposed by Hildgen [18] adjusts the probability of undergoing
erosion exponentially with the number or neighbours. To achieve this easily, the stochastic
event is transformed in a non-erosion probability which exponentially decreases with n. The
relevance of this feature has not yet been established, but certainly allows the erosion event to
remain stochastic for maximum values of n (4 or 6 for Von Neumann neighbourhood in two
and three-dimensions, respectively) in polymer cells with high intrinsic erosion probabilities.

4. MODELING DRUG DIFFUSION

Similar to erosion, drug diffusion plays an important role during drug release from a
polymeric matrix. On a molecular basis, Brownian motion of molecules in solution is rather
uncomplicated as it involves a random movement in space. When a concentration gradient
exists between two regions, this disordered movement results in a positive net flux of
molecules from the concentrated to the more diluted environment. Diffusion or mass transfer
is well described using Fick’s first law (Equation 1). In this differential equation, the diffusive
flux (J) is a function of the effective diffusion coefficient (D) and the concentration gradient
(oC/ox)

D, oc
OX (1)

This simple equation is useful for simple systems; however, it becomes impossible to find
a solution for inhomogeneous and irregularly shaped 3D polymeric devices where both Deg
and C are functions of time and position. This problem was elegantly solved by Gopferich
and Langer [7] using a hybrid model. The CA part of the model was used to simulate
polymeric erosion. Erosion leaves pores in the polymeric device and porosity could easily be
evaluated by counting the number of pore cells. The numerical part of the model used Fick’s
second law for one-dimensional diffusion through porous materials (Equation 2). As porosity
£(X,t) could be evaluated using the CA part of the model, finding a numerical solution to

this equation became possible.

Leany =< 2 Dy (©)4(x t)aC(X L)

)

This complex approach, initially proposed to model monomer diffusion, has been adapted
to address drug release [29]. However, although these models offer simulations which acutely
correlate with experimentation, their numerical approach is somehow remote from direct CAs
models, and has been extensively reviewed elsewhere [42, 43].
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The more straightforward approach to model diffusion using CAs depicts movement of
molecules throughout the lattice with random walks. Random walks are the resulting
trajectory of a sequence of disordered steps, in all directions. The average distance strayed
from the point of origin (R,y) is proportional to the number of steps (n) and the size of the
steps (0) according to Equation 3 [44].

R, =+nxo 3)

When movement occurs in three dimensions, it can be easily correlated with the diffusion
coefficient [44].
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Figure 2. Random walk resolution of the diffusion process

In most CAs using random walks, one step occurs when the individual state of adjacent
cells are exchanged with each other. Likewise, in compartmental-like models, the content
from one cell is translated to an adjacent cell. The distance traveled in one step is dependent
on the lattice scale and on the volume represented by each cell, but is usually well correlated
with numerical resolutions of Fick’s law (Figure 2) [45].
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Subtle differences exist between models using random walks to model diffusion. For
example, the models can be traditional CAs (with defined states) [18] or compartment-like
[15, 16, 20, 21], have different type of neighbourhood (Von Neumann’s or Moore’s) [14, 16]
or the diffusion rules can include a probability for a cell to remain in the same location [20,
21, 46]. Somehow, the models can also be deterministic [47]. The pertinence of all these
features remain unknown and since diffusion is usually intertwined with other phenomenon
(such as erosion or swelling), it is difficult to ponder which choices are more relevant.

5. EVALUATING THE PREDICTIVE VALUE OF MODELS

Unlike certain theoretical specialities, the field of pharmaceutical sciences is supported
by a number of easily-accessible experimental observations. For this reason, it is often
appealing to compare the predictive results of a simulation with actual data obtained from
experiments, and detect the strength and weaknesses of the modeling approach. However,
since CAs offer discretization of time and space and the lattices are usually dimensionless,
units obtained in simulations remain arbitrary. Hence, the scientists usually face problems to
correlate in silico simulations with in vitro data.

In the models described above, numerous approaches have been used. The simpler
method circumvents the problem by providing simulations results which are normalized and
uncorrelated with any experimental sets of data [3, 4, 19, 20]. Other methods determine
empirically certain constants or initial parameters used in the model. For example, Gopferich
determine the life expectancies used in the model by experimentally measuring the erosion
rates of polymer [5-8]. Although this approach becomes complex when different phenomena
are intertwined in a model, certain authors succeed in establishing satisfactory parallels
between experiments and simulations [21]. Other authors willingly abandon the initial
dimensionless features of the CAs by integrating simple equations to convert one of the
parameters used in the model into a known constant. For example, they might use the number
of steps and step size in a random walk to obtain the diffusion coefficient [18]. Otherwise
they simply define the units used in the model parameters [14-16]. It is noteworthy, that all
these methods are usually time-consuming because a large number of simulations are required
to tweak each of these parameters and obtain optimal results. Also, the major drawback of all
these approaches is that they all rely on the a priori assumption that the model clearly
represents reality, which is not necessarily the case.

In the same line of thoughts, one major imperfection of most models trying to relate their
simulations with experimental observations is the lack of an objective assessment for the
correlation between data. Indeed, most works rely on subjective visual observations to
suggest that their model adequately represent experiments. This method seems inadequate
when it is compared to other common types of model which use goodness-of-fit statistics.
Although the same objective functions cannot be used with CAs which are predictive and not
descriptive, Hildgen proposes an alternative with his model [18]. A weighted mean squared-
difference between experimental observation and simulation is used to provide a relative error
evaluation of the model and compare it to an objective index [48]. Widespread application of
methods providing unbiased evaluation of the discrepancies between simulation and
experiments could be useful to compare models. It could also be used within a given model to
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determine which physical phenomena involved are most important to adequately model drug
release.

6. CONCLUSION

The first CA model of a pharmaceutical polymeric device was introduced in 1990 by
Zygourakis. Since then, several other models were developed. As of now, the release from 3D
complex polymeric devices can be modelled using CAs while taking into account most
critical independent variables such as porosity, solubility, polymer degradation, percolation,
diffusion and spatial organisation.

However, the design of such models of drug release is very complex considering the
large number of different independent variables. Even though the current models take most of
these variables into account, it is not clear if the interdependence between the different
variables has been adequately addressed. Therefore, these models certainly remain more
descriptive than predictive. Furthermore, the treatment of the modeled phenomena is often a
macro-scale empirical approximation of well-known molecular events.

Future trends in this field of research should focus on the modeling of fundamental
molecular-scale events. The modeling of such events has been elegantly described by Kier in
his different papers [11-13]. However, this approach was not scaled-up to describe polymeric
drug delivery devices. Also, the development of these CA models requires very good
computer programming skills and is far from being a simple task. There are certainly a lot of
improvements that can be made to commoditize this technology and make it accessible to a
larger number of pharmaceutical scientists. This could most likely be achieved by developing
an easy to use yet flexible interface for the design of CA models of drug release from
polymeric drug delivery devices. The implementation of such software would increase the
scientific interest and accelerate the research in this field.
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ABSTRACT

In this chapter we have adopted the Cellular Automata model (CA) to study the
dispersion of the aphids and ladybugs in the block of citric trees. The main aim of this
investigation has been to develop a simple and specific methodology to study Citrus
Sudden Death (CSD). CSD is a disease that has affected sweet orange trees grafted on
Rangpur lime in the state of Sdo Paulo - Brazil. Some studies suggest that this disease has
been caused by a virus and it is transmitted by insects known as aphids (vector). The
ladybug was selected among the most known enemies of aphids in citrus in Brazil. In
order to elaborate a predator-prey type of model to study the interaction between aphids
(preys) and ladybugs (predators) in citriculture we have used a fuzzy rule-based system
(FRBS) [9]. Qualitative information from specialists permit to propose rules that relate
the state variables with their own variations. The states of the variables of the system
(inputs) are the density of preys and the potentiality of predators and their variations are
the outputs. To study the temporal evolution of the disease we have adopted a (CA)
model. Therefore, we take into account the effect of he wind in the space covered by the
aphid, since the wind is important for the flight of the aphid [10]. Simulations were
performed and compared between blocks with the presence of aphids and the absence of
ladybugs, and the presence of both aphids and ladybugs. Numerical simulations allow us
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to foresee the behavior of the system, hence creating a spectrum of possibilities and
proposing control techniques for different initial scenarios.

After this introduction, the chapter proceeds as follows: Section 1 develops brief
reviews of Citrus Sudden Death, Cellular Automata and the concept of fuzzy set and
fuzzy rule-based system. Section 2 details cellular automata model. Simulations results
are in Section 3.

1. PRELIMINARIES

1.1. Citrus Sudden Death

Brazil is currently the world greatest exporter of frozen and concentrated orange juice
(74.6% of the production is exported). This leadership is directly connected to the quality and
productivity of our orchards when compared to our competitors. Brazil is also the biggest
world producer of orange juice with 49.3% of the total. The state of Sao Paulo is responsible
for 97% of the Brazilian export and it is the biggest core of the Brazilian citric complex (of
which 313 cities come from of the state of Sdo Paulo and 7 come from Minas Gerais). Sado
Paulo has the biggest citrus orchard complex in the world and it is responsible for more than
80% of the national production of the citric fruits. This agribusiness has been now facing a
new threat: Citrus Sudden Death (CDS) [2].

In 1999 CSD was officially identified by the first time in the city of Comendador Gomes
(state of Minas Gerais) and by the year of 2001 was detected by Fundecitrus (Fundo de
Defesa da Citricultura — Araraquara/SP — Brazil) in the city of Colémbia (state of Sdo Paulo).
It means a threat for the national citriculture as long as it affects all commercial varieties of
the sweet orange grafted on Rangpur lime which represent 85% of the orchard complexes of
Sao Paulo and Minas Gerais [2].

CSD is a disease combining canopy/rootstock and it can lead sweet orange grafted on
Rangpur lime or Volkamer lemon rootstocks to death [1]. Researches have shown that the
ducts which lead nutrients generated by the photosynthesis to the roots become clogged and
degenerated. The roots putrefy without nutrients and the tree decays and dies.

The initial signs of CSD are characterized by a generalized foliar discoloration. The trees
also show partial defoliation, fewer new shoots and the absence of internal ones. These signs
intensify as the disease develops and culminates with the death of the tree. The roots of the
affected trees are characterized by the death of a large portion of the root system. The
diagnostic confirmation of CSD has been done through the characteristic yellow stain in the
phloem of the Rangpur lime or Volkamer lemon rootstocks [1].

According to [2] after the first signs of the disease, the number of symptomatic trees may
reach between 60% and 100% of the block trees in less than 2 years. Normally, there is a rise
of new symptomatic trees when the rainy season begins in the spring (from September to
November) until the beginning of the summer (December and January). This number is
reduced in the period between fall and winter (from March to August).

The CSD causing agent has not been confirmed yet. Researchers believe that insects
known as aphids transmit the suspect virus responsible for CSD [12]. We have used the
hypothesis that the aphids are the transmitters of the virus that causes CSD in this work.
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The colonization of the orange trees is done by aphids that settle in the orchard. The
aphids leave the block where they live when the block is saturated. The aphid flight in
tropical weather is performed by winged aphids after several generations of insects without
wings where are confined in the same habitat. Their flight is constant with an average of 6 to
12h or until their complete exhaustion for a day at most. The aphids follow horizontally the
wind direction and lands on a new tree [3,13].

This flight depends on the local wind action [3]. Therefore the wind is a decisive factor
for the insect dispersion and consequently for the disease once a test bite of an infected aphids
is enough to transmit the virus to the tree.

The ladybug (predator) was selected among the most known enemies of aphids in citrus
in Brazil. The main purpose of the study is to understand the dispersion of the aphids and
ladybugs in the block of citric tree through the simulation model of Cellular Automata.
Therefore, we intend to use the knowledge of the experts about the interaction between aphids
and ladybugs, aiming for incorporating them sparingly into a simulation model with Cellular
Automata.

1.2. Cellular Automata

Cellular Automata (CA) was introduced in the 1950s by the mathematician John von
Neumann who considered the suggestions from Stanislaw Ulam and tried to model the natural
process of self-reproduction [14].

Biological systems are ripe for modeling with CA methods. The spatial and temporal
patterns are diverse and fascinating. Our knowledge of the details of a particular mechanism
is often full of gaps and, unlike physics, there are few “laws” such as the Navier-Stokes
equations or laws of Newton. Thus simplified models can be useful in precluding certain
mechanisms as being impossible or at least unlikely. The speed by which calculations can be
made allows the investigator to examine a huge number of parameter ranges that would be
otherwise impractical for more “realistic” simulations [5]. In particular it can be employed in
the ecological context to represent heterogeneous and dynamic habitat structures [4].

In short, CA consists of a simulation which is discrete in time, space and state of the
systems. The idea of these models consists in considering each position (or region) of the
spatial dominion as a cell which is attributed to a state. The state of each cell is modified
regarding both its own state and the state of its neighbors during the former time stage
through a series of simple rules that try to imitate the physical or the biological laws, which
are, in our case, the ones that rules the system. In this approach the system state variables, as
well as the time, are discrete.

We have used a Cellular Automata model to study the dispersion of the aphids and
ladybugs in the block of citric tree. The system is represented in space through a cell lattice
that interacts obeying some rules for the changing of the state among the cells. Each cell
represents a tree that can be with the absence of aphids and ladybugs, the presence of aphids
and the absence of ladybugs and the presence of aphids and ladybugs [11].
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1.3. Fuzzy Rule-Based System

Fuzzy sets and fuzzy logic have become one of the emerging areas in contemporary
technologies of information processing. Fuzzy Logic was first developed by [15] in the mid-
1960s to represent uncertain and imprecise knowledge. It provides an approximate but
effective means of describing the behavior of the system that is too complex, ill-defined, or
not easily analyzed mathematically.

A fuzzy subset is characterized by a membership function mapping the elements of a
domain, space, or universe of discourse X to the unit interval [0,1]. [15] That is,

W X = [0,1]. Thus, a fuzzy set A in X may be represented as a set of ordered pairs of a
generic element X € X and its grade of membership: A= {(y,(X)/X)/X e X} . Clearly, a

fuzzy set is a generation of the concept of a set whose membership function takes on only two
values {0,1}, that is, the characteristic function of A, y, : X — {0,1}.

Fuzzy variables are processed using a fuzzy rule-based system.

Fuzzy rule-based system (FRBS). Basically, fuzzy rule-based systems have four
components: an input processor (fuzzification), a collection of linguistic rules called rule
base; a fuzzy inference method and an output processor (defuzzification). These components
process real-valued inputs in order to provide real-valued outputs. Figure 1 illustrates a
FRBS.

The fuzzification is the process in which the input values of the system are translated into
fuzzy sets of their respective universes. It is a mapping of the dominion of the real numbers
led to the fuzzy dominion. Expert knowledge plays an important role to build the membership
functions for each fuzzy set associated with the inputs.

The rule base characterizes the objectives and strategies used by specialists in the area
through of a linguistic rule set. It is composed by a collection of fuzzy conditional
propositions in the form if-then rules. An expert can articulate associations of linguist
inputs/outputs.

The fuzzy inference method performs an approximate reasoning using the compositional
rule of inference. A particular form of fuzzy inference of interest here is the Mamdani method
[8]. In this case, it aggregates the rules through the logical operator OR, modeled by the
maximum operator and, in each rule, the logical operators AND and THEN are modeled by
the minimum operator [7]. The logic of decision to be made, incorporated to the structure of
inference of the rule base, uses fuzzy implications [8] to simulate the decisions that are
wanted. It generates actions inferred from consequents a set of input conditions — antecedents.

Finally, in defuzzification, the value of the output linguistic variable inferred from the
fuzzy rule is translated to a real value. The output processor task is to provide real-valued
outputs using defuzzification which is a process that chooses a real number that is
representative of the inferred fuzzy set. A typical defuzzification scheme, the one adopted in
this paper, is the centroid or center of mass method [11].

According to [4] fuzzy set approaches have been developed for special purposes where
the information basis has been vague and imprecise. Under these conditions fuzzy techniques
allow more accurate conclusions in comparison to the other approaches which cannot be
applied successfully because of lack of data.
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rule base
input : ouput
_@ output processor
xER" YER"
input fuzzy inference
— machine
fuzzy set fuzzy set

Figure 1. Structure of fuzzy rule-based system. Source: [6]

We suggest [7] and [8] for a detailed study of the fundamentals of fuzzy set and the
systems theory and applications.

In the following section we have introduced the fuzzy model which is the main purpose
of this chapter.

2. CELLULAR AUTOMATA MODEL

According to the observation made in section 2, the wind is a decisive factor for the
insect dispersion and the information about the time of aphid flight is imprecise. In [10] we
have adopted the CA model to study the temporal evolution of the disease. We take into
account the effect of the wind in the space covered by the aphid. We have adopted the FRBS
in order to establish the relationship between the space covered by the aphid and the intensity
of the wind. In this work we have considered the hypothesis and the results of [10] to
determine that the space covered by the aphid.

The attribute of each cell is described by two simultaneous values, one is the population
density of aphids and the other is the potential of predation. Therefore, the attribute of
dynamic system in the moment 1t is described by two matrixes. These matrixes are updated
every single moment. Each cell of lattice represents a plant, that is, a tree.

The interaction between aphids and ladybugs occurs inside each cell through the
predator-prey dynamic given by FRBS model of [9].

It is important to remember that the trees are shared uniformly by lines and columns in
the block of citric trees.

Some hypotheses are essential to establish the rules of CA model:

e Brief contacts between the bodies of adults without wings facilitate the production of
a greater number of winged descendents, in other words, it is supposed to come forth
winged aphids when the population of these ones reaches its carrying capacity.

e The winged aphids create new colonies in other trees;

e Ladybugs are very inefficient in the capture of aphids as long as they only distinguish
the presence of aphids when they are very close to their preys;

According to the previous hypotheses, we establish the further rules of movement:
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1. Ladybugs capture aphids which are closer to them. The search is done among the
“nearest neighbors”. Each cell in two-dimensional square lattice has eight nearest
neighbors conveniently addressed as points on the compass. The four neighbors
sharing a common face are: N, E, S, and W. Those that can be reached diagonally
are: NE, SE, NW, and SW. If they find aphids in one of these cells, the choice is
random. Otherwise, the search is done until they find food (i.e. aphids).

2. Only adult ladybugs move among cells.

3. Winged aphids leave overcrowded cells and occupy other cells according to the
dynamic of the flight established in [10], which is, according to the intensity of the
wind.

We have used a Cellular Automata model to study the dispersion of the aphids and
ladybugs in the block of citric tree. The system is represented in space through a cell lattice
that interacts obeying the previous rules for the changing of the state among the cells. Each
cell represents one tree that can be in one of the three states: presence of aphids and absence
of ladybugs (gray), presence of aphids and ladybugs (black) and absence of aphids and
ladybugs (white).

3. SIMULATIONS WITH CELLULAR AUTOMATA MODEL

In the numerical simulations the initial trees with aphids, ladybugs or both are chosen
randomly. The initial number of insects in each tree is random as well. The block consists in
10x20 trees arranged homogenously.

The dispersion of the insects is plotted for a period of five days at each following figure.

Simulation 1: There are initially three trees with the presence of aphids and ladybugs
(black) and seven trees with the presence of aphids and the absence of ladybugs (gray).

EES MRES rE
BTN T

WA R kR CRER

Figure 2. Presence of predator in the block. Initial condition: three trees with the presence of aphids and
ladybugs and seven trees with the presence of aphids
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Simulation 2: In this example we have accomplished two simulations. In the first one,

there are aphids in one tree in the block and in the second, there are aphids and ladybugs.

Figure 3. Absence of predator in the block. Initial condition: one tree with the presence of aphids

Figure 4. Presence of predator in the block. Initial condition: one tree with the presence of aphids and

ladybugs
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Simulation 3: Similar to the example 2, we have accomplished two simulations. There are
aphids in five trees in the first one and in the second simulation, there are ladybugs in the
same five trees in the block.
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Figure 6. Presence of predator in the block. Initial condition: five trees with the presence of aphids and
ladybugs
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Simulation 4: This last example is similar to the example 3, but now there are ten trees

under the conditions of the previous example.

Figure 7. Absence of predator in the block. Initial condition: ten trees with the presence of aphids
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Figure 8. Presence of predator in the block. Initial condition: ten trees with the presence of aphids and

ladybugs
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Figure 9. Percentage of trees with the presence of predators and the absence of predators

In the graphic (Figure 9) we have compared the difference between the quantity of tree
with the presence of aphids and ladybugs and the trees with the presence of aphids and
absence of ladybugs in the block.

CONCLUSIONS

We have evaluated the dynamics of aphids population with the presence of ladybugs
(aphids predators). It is possible to observe this difference: the ladybugs are not capable of
eliminating the entire population of aphids which is expected in a predator-prey model. It is
considered impossible to eradicate the population of aphids, though it is probable to control
its spread velocity. When we compare the simulations that have been done with Cellular
Automata in each example and graph above.

Finally, the Cellular Automata approach developed in this work enhances understanding
and contributes to investigate and to predict the spread of the insects which transmit the
suspect virus responsible for Citrus Sudden Death.
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Chapter 4

CELLULAR AUTOMATA OPTIMIZATION
VIA EVOLUTIONARY METHODS

Epaminondas Sidiropoulos
Faculty of Engineering, Aristotle University of Thessaloniki, Greece

ABSTRACT

Cellular automata have been utilized for modeling and simulation of systems
involving spatial arrangements. Examples include physical, social, urban and economic
systems. The simulations are effected by means of local transition rules.

Cellular automata have also been employed as computation devices. For that
purpose, genetic algorithms and simulated annealing were applied in order to determine
suitable transition rules that would permit the cellular automaton to perform certain
computational tasks. That approach constituted a form of optimization process.

However, in recent years optimization in a more general sense was presented in
order to determine optimal configurations or arrangements of a cellular automaton. The
latter may represent a physical or engineering system to be reformed or redesigned with a
view to chosen objectives.

In the present approach, no specific transition rule is sought, but local transitions are
guided by an evolutionary method suitably embedded into the automaton. Problems of
spatial optimization have recently been treated by the author according to this
methodology. In particular, location - allocation problems have been presented related to
groundwater management, as well as land use management problems with or without
allocation of resources.

The present communication proposes the application of an alternative evolutionary
process based on mutating one by one all the components of the basic chromosome and
selecting the best appearing result. This constitutes a local search to be combined with the
special cell-based genetic algorithm described above. A general cellular — genetic
framework is given for an algorithm suitable for spatial optimization problems. In an
example problem, the superior performance of the proposed algorithm is shown.
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INTRODUCTION

Cellular automata are two-dimensional constructs consisting of cells placed on a grid and
endowed with a neighborhood structure. Each cell assumes a state, and a local transition rule
determines the change of a cell’s state from one discrete step to the next. It is important to
emphasize that, according to the local rule, the transition from one state to another depends on
the state of the cell in question and on the states of its neighboring cells. This kind of
transition is applied to all cells in an evolution of the cellular automaton through successive
time steps. These iterated local interactions yield interesting global results in an emergent
fashion.

The special structure and the transition from the local to the global render the cellular
automaton suitable for modeling and simulation to various physical as well as social and
economic systems. Indeed, cellular automata have been used as the modeling framework for
such diverse phenomena, both natural and anthropogenic, as forest fire propagation
(Karafyllidis, 2004), urban development (Jennerette, G. D. and Wu, J., 2001), adsorption -
diffusion processes (Chopard et al., 1989), fish migration (Schonfisch and Kinder, 2002), and
soil erosion (D’ Ambrosio et al. 2001).

In all those applications, the specification of suitable transition rules is the key issue. This
fact is also true of another category of problems, which concern the design or regulation of a
cellular automaton so that it optimizes the modeled system in a given sense. An early example
of this idea is the derivation of transition rules such that the cellular automata can perform
certain computational tasks (Mitchel et al., 1994).

Along the same line, topology optimization is an area of structural analysis in which,
through cellular automata modeling, specific local transition rules are determined so as to
achieve optimal arrangements. Finite element tessellations provide the cells and their
neighborhoods. The transition rules are obtained through an optimization algorithm based on
the finite element modeling (Abdalla, M. M. et al., 2006).

A more recent development is the application of the same paradigm in the water
resources field. The operation of a reservoir system is modeled as a cellular automaton
(Afshar and Shahidi, 2010). The objective of the optimization procedure is to regulate the
water releases so as to satisfy as best as possible preset water demands. The problem is
reduced to a local level thus allowing cellular local interaction and derivation of a suitable
local transition rule.

According to a different, more general point of view, one does not seek to devise a
specific rule or set of rules to apply for the evolution of the cellular automaton. Instead, the
transitions of the cellular automaton will be guided through an evolutionary optimization
process. The mode of transition will have a local character, as it suits cellular automata, but
the transition operator will not be constant. It will be dictated each time by the evolutionary
optimization process, until the overall combination of cell states satisfies certain preset goals.

In general terms, the optimization problem consists in determining the states of all cells
in a cellular automaton, so as to achieve given objectives, possibly under given constraints.
Land use planning problems fit naturally to this formulation: The area under study is divided
into land blocks and it is desired to assign a land use to each block, so as to satisfy
economical and ecological goals. The problem of allocating resources among the land blocks
may also be treated under the same framework.
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A problem of this category in the context of groundwater allocation and simultaneous
water well location was presented by Sidiropoulos and Tolikas (2008). In their approach the
authors embedded a genetic algorithm into the cellular automaton, so that the genetic
algorithm guided the evolution of the cellular automaton through successive iterative steps. A
related problem was presented by Sidiropoulos and Fotakis (2009). It concerned groundwater
allocation among land blocks arranged in the form of a cellular automaton. Pumping and
transportation cost was to be minimized. A specially designed genetic algorithm was again
embedded into the cellular automaton. This genetic algorithm preserved local features of the
automaton. A more conventional genetic algorithm was also employed that did not include
local features but it was shown to be less efficient.

In this communication the above special algorithm is complemented by a local search
procedure yielding better optimization results. The whole scheme is discussed and presented
under a more general framework.

CELLULAR FORMULATION

A cellular automaton is formally represented as a discrete set of sites, each one of which
is occupied by a cell:

L={G)1<i<L1<j<J} (1)

For each cell a neighborhood is defined as:
N@,j) = {(i + AL, j+Aj))eL|Aie{-1,0,1},Aje {—1,0,1}} 2
The above represents the Moore neighborhood including eight neighboring sites and the
central site itself. The von Neuman type neighborhood consisting of the four North — South

and East — West sites and the central site itself can be represented as:

N@,j)={1+ALj+A)elL|Aie{-1,0,1},Aje {-1,0,1}

and Ai-Aj=(1-|Ai|)(1-|Aj)} v

Let 6" (i, j) €S be the state of cell (i,j) at time step t, where S is the set of possible states,
typically a discrete set. Also, let

o’ (NG, 1) = {c" (kD[ (k,) e NG, })} )

be the set of states assumed by the cells of the neighborhood of (i,j) at time step t.
Then the transition of the cell (i,j) to time step t+1 may be denoted as

6" (i, §) = 2(c" (NG, ) ?
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where 1 is the transition function that depends only on the states of the neighboring cells. The
function Tt is applied to each one of the cells of the automaton and in each case the states at
time t enter the argument of the function t. This mode of transition is characterized as
synchronous updating. Let

KY ={c"(i,j)l () eL} (6)

be the set of states of all cells at time t. Then the application of t to the cells of the automaton
via Equation (5) will lead K of Equation (6) to K™V . Therefore, the overall effect of the
local transition rule (5) may be considered as the application of an operator O to K :

K =O[K"] (7)

The category of problems to be treated involves a cellular automaton representation and
an optimization of the cell state distribution. For a genetic algorithm solution, the application
of genetic operators will result in modifications of the cellular mosaic, eventually leading to
optimal distributions or configurations. In the next section the operator of Equation (7) will be
made more specific for the case of transitions via genetic algorithms.

CoMBINED CELLULAR — GENETIC FORMULATION

The typical problem of spatial optimization involves an array of land blocks. The
distribution of land uses among these blocks is sought, such that it satisfies certain preset
goals. The objective function of such a problem depends on the land uses to be assigned to the
blocks. A problem of this type involving resource allocation among land blocks has been
presented by Sidiropoulos and Fotakis (2009).

The land blocks in this type of a problem may be considered as cells with a well defined
neighborhood structure and the land use or any other relevant characteristic of the block may
be identified with the state of that block. Based on this consideration a combined genetic —
cellular formulation of the problem and of an algorithm for its solution is given below.

Let (x;y;) be the coordinates of the centers of the land blocks, where 1<i<Iand
1< j< 1. Then the blocks may be numbered consecutively using the index

k=(G-DI+i ®)
Obviously, by taking one row after the other, k =1,2,...,1-J

The same index can now be applied to the state of the cell (i,j), as well as to the
corresponding neighborhood, as the latter was defined by Equation (2):

o(k)=0(,j), N(k)=N(, )

where k is given in terms of i and j via Equation (8).
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The state of the whole cellular automaton may now be represented in the form of a one -
dimensional array:

C={o(k)|k=12,..1-J,0(k) e {1,2,.,m}} (9)

The objective function F(.) of the spatial optimization problem depends on the
distribution of the states, i.e. in terms of Equation (9),

F=F(C) (10)

A natural genetic algorithm for the solution of the problem would have the representation
(9) as its typical chromosome, i.e.

C, ={o,()[k=12,.,1-3} (11)

where the index p runs through the population of the chromosomes: p=1,2,..,P with P being
the size of the population.

This kind of algorithm was used by Strange et al. (2001) in a land use optimization
treatment under cellular formulation and, also, by Seppelt and Voinov (2003) in the context of
ecosystem optimization. The encoding of the type (11), although cellular in nature, does not
entail the local aspect of the cellular automaton. The present approach is based on an
alternative chromosome structure, namely,

D, ={n, |n, eN(k), k=12,...1-J}, p=1,2,..P. (12)

In the latter representation, for each cell ¢, a neighboring cell is selected. Eventually, the
state of this neighboring cell will be adopted by the cell in question.

In order to evaluate the chromosomes of the above type (12), D, is considered as an
operator acting on a base mosaic of the type (9). Indeed, by taking

o'(k)=o(n,)
A new array is formed
Cp ={o'(k)|k=1,2,..,1-J},p=1,2,...P. (13)
Thus, the effect of D, can be written as an operator acting on C:

C,=C®D, (14)

Then, by applying Equation (10), the values of the chromosomes (12) would become
equal to
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v, =F(C]),p=1.2,..P (15)

If the problem is one of maximization, then the best chromosome is the one with the
largest value. Let pbest be such that

Vet = Max{F(C1)} (16)

1<p<P

pbest

Then C
(12).
Consequently, the configuration C

is the best cellular arrangement induced by the population of chromosomes

!

sbest 18 taken as the new base configuration. This is

precisely the result of the major algorithmic step that takes one configuration to the next.
Each such step includes a generation of the genetic algorithm. This effect can be expressed as
follows, if the successive discrete steps are indexed by a superscript t:

cP =0[C""] (17)

Equation (17), in operator form, summarizes the effect of Equations (11) through (16)
and identifies in specific terms the general operator formulation of the previous section
(Equation 7).

Equation (15) expresses the evaluation of the chromosomes, necessary for the genetic
operator of selection. Subsequently, the genetic operators of crossover and mutation are
applied to the population of chromosomes of the type (12) and a new population of
chromosomes results. These new chromosomes are of the form (12) and are applied to the
new base configuration in the sense of Equation (14) and so on. It is noted again that the
above discrete time step t coincides with a generation of the genetic algorithm.

The above procedure can be summarized by through the particular steps of the following
cell- based genetic algorithm (CBGA):

(a) An initial mosaic of the type (9) is formed by means of random number generation. It
becomes the base configuration.

(b) A random initial population of chromosomes of the type (12) is formed.

(c) A number of P new mosaics are formed by applying each one of the chromosomes to
the base configuration in the sense of (14).

(d) The best of the mosaics of (c) becomes the new base configuration.

(e) Stopping criteria are applied and if they are satisfied the algorithm is terminated.

(f) The chromosomes of the population are subjected to the standard genetic operators of
selection, crossover and mutation.

(g) A new population of chromosomes results and the algorithm is directed to (c).

A stopping criterion is formulated as follows: While running the algorithm from
generation to generation, a record is kept of the best five base configurations obtained up to
the current generation. The record is updated each time just after step (d) above. In the
updated record the degree of similarity is computed between the best and the worst member
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of the record. The degree of similarity between two mosaics is defined as the percentage of
homologous cells having the same state. If the degree of similarity exceeds a given level or if
the maximum number of generations has been reached, the algorithm is terminated.

A modified version of CBGA is obtained if the new base configuration of step (d) is not
the best one produced by the current population of chromosomes, but the best one achieved
up to the current generation. The latter is to be found in the updated record of the best
configurations.

LOCAL SEARCH ALGORITHM

It is well known that genetic algorithms are good at reaching the area of the optimum
quite rapidly but are rather slow in determining the position of the optimum more precisely.
For this reason genetic algorithms are very often supplemented by local search algorithms.
The latter perform neighborhood searches in an effort to achieve improvement and local
tuning of search results. Hart et al. (2005) give both the principles and the techniques of such
algorithms pointing out that, starting from an initial solution, solutions neighboring to a given
one are generated until a better point in the solution space is found.

In a problem of spatial optimization, neighboring solutions can be generated by
modifying the states in one or more cells of the cellular automaton that models the spatial
field. In contrast to the genetic algorithm presented in the previous section, it was found more
advantageous in the local search to perform updating in an asynchronous fashion. More
specifically, the following local search algorithm is proposed:

The algorithm starts with an initial base configuration of the type (9). For each each cell
k, its neighborhood N(k) is considered and all states of the neighborhood cells are modified
randomly and asynchronously. The resulting mosaics are evaluated and the best one is singled
out. Finally the overall best one is found and if it is better than the initial one, it takes its place
as the base configuration.

In pseudocode form:

Let I, and f;, be the base configuration and its value, respectively.

Let 1(0) =, and f(0) = f,

Fork=1to IJ

1(k)=1(k-1) and f(k)=f(k-1)

Let sk be the size of the neighborhood N(k)

For j=1 to s
Let kj be the jth site of N(k)
Let rj be a random integer between 1 and m
Replace the state at kj with 1y
Let 1,; be the corresponding modified chromosome
Let fk(j)=F(lij) be the value of I;

End For

Let f,, = lrggzk({ﬂ((J)}

If fkh>f(k) then f(k): fin
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End For
Let f, = ]mkaﬁ{f(k)}

If fi>f, then I, = 1, and f;, = f;..

The process is repeated until a stopping criterion is satisfied.
In the present approach the local search algorithm was used to improve the results of the
genetic algorithm.

RESULTS AND DISCUSSION

A specific example problem of spatial resource allocation is presented here. A 10x10
grid includes 100 blocks that receive water from 3 wells. The wells are placed in the
following positions:

le:17a yW1:57 XW2:18a YW2:O: Xw3:15: YW3:0

The hydraulic conductivities in the areas around the wells are k;=0.7x10>m/s,

k2=0.5x10"m/s, ky=1.2x10>m/s. The thickness of the aquifer was taken equal to b=50 m,
the radius of influence R = 15 m and the radii of the wells all equal to ry, = 0.10 m.

The objective of the problem is to assign one wells to each one of the blocks, so that the
cost of pumping and transportation will be minimized. The objective function of the problem
has been given in detail by Sidiropoulos and Fotakis (2009). A hydrodynamic model of the
underlying aquifer has also been given, showing that the effects of the wells on the objective
function are interdependent and, therefore, non-separable.

For the solution of the problem three algorithms were tried: (1) The natural genetic
algorithm characterized by the chromosome of Equation (11), (2) the CBGA and (3) the
modified CBGA, supplemented by the local search algorithm. Figures 1, 2 and 3 show the
respective resulting configurations. The configuration of Figure 1 was reached after 500
generations and the one of Figure 2 after 700 generations. The configuration of Figure 3 was
obtained in two stages. First the modified CBGA took 300 generations to reach a similarity
degree of 98% and then the local search algorithm was employed using the best result of the
genetic algorithm as a starting configuration. The depicted configuration was reached after 22
steps of the local search algorithm. The best value of the objective function was obtained
from the combined application of modified CBGA and local search. The natural genetic
algorithm lags behind in efficiency and in quality of final result in comparison to CBGA.
Moreover, it is observed that the mosaic shown in Figure 3 presents not only compact, but
also contiguous areas.

It is noted here that the present approach does not involve any assumptions on weak
interactions among land blocks (Seppelt and Voinov, 2003) and, also, no objective functions
of local nature are used. The typical chromosome of CBGA introduces a kind of local
structure, but the objective function applies to the totality of the cellular automaton.

The issue of obtaining emergent results from the local to the global level has been
addressed by Fotakis (2009) and Fotakis and Sidiropoulos (2009). Questions of multi-
objective spatial optimization have been treated by Fotakis (2009).
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Figure 3. modified CBGA with local search

In conclusion, there are many more spatial optimization problems that call for extensive
applications of the algorithms presented in this short communication.
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Chapter 5
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ABSTRACT

Cellular Automata are often used as methodology to approach complex optimization
problems in the Artificial Intelligence area, where some parts of the problem can be
performed in a parallel way. In many cases, the complex nature of the problem can
require high computational effort, so techniques that increase the performance are
welcome. A possible solution that would allow us to accelerate the computation is to
provide of a custom hardware processor designed for implementing several automaton
running in parallel. To evaluate this alternative, we have designed and verified a
reconfigurable processor that runs a stand-alone Cellular Automaton; hence many of
these can work in parallel on the same chip. In order to obtain a valid prototype of the
reconfigurable processor, we have considered the Conway’s Game of Life as example of
a simple Cellular Automaton.

Keywords: Cellular Automata; Conway’s Game of Life; Parallelism; Reconfigurable
Computing.

1. INTRODUCTION

Cellular Automata (CA) are computational systems often used as methodology
satisfactorily applied for solving combinatorial optimization problems in the Artificial
Intelligence area [1][2][3]. However, a CA used for solving a large problem may have a very
high computational cost, even when it is run on a high-performance machine. Taking into

* Corresponding author: jangomez@unex.es



82 Juan A. Gomez-Pulido, Miguel A. Vega-Rodriguez and Juan M. Sanchez-Pérez

account that many optimization problems could be tackled by parallel methodologies [3], we
have developed a specific purpose processor that runs a CA in a stand-alone way in order to
implement a set of CA working in parallel in the same chip, using the reconfigurable
hardware technology. This way the computer, besides allowing the monitoring and control of
the CA-based system, can be used for any another task with the whole potential of their
resources. The combination of parallelism and hardware implementation allows increasing
the speed of the system regarding the one implemented by software and performed on a
general purpose computer. Moreover, the possibility to release to the host of the effort in
running the algorithm is also a sufficiently interesting thing as to attempt this alternative.

In this work we describe the hardware implementation, using reconfigurable devices, of a
simple CA for solving the Conway’s Game of Life, because this simple case can show us the
ability of the used tools to model this kind of systems. This simple CA is just used as basis of
a multi-CA system on chip.

The rest of the paper is organized as follows: Section 2 describes briefly the “Game of
Life” characteristics. In Section 3, we introduce the reconfigurable computing technology.
Then, Section 4 shows the tools and techniques used for the development of the
reconfigurable processor. Finally, Section 5 presents the experimental results, while Section 6
exposes the conclusions and the future work.

2. A SIMPLE CELLULAR AUTOMATON

We use The Game of Life (also named Life) as example of simple CA to be implemented
by means of a specific-purpose hardware processor. Life was formulated by the British
mathematician John Horton Conway in 1970 [4]. From then on it constitutes an example of
CA very divulged in academic environments.

Under the user point of view, Life shows a pattern easily evolving in pretty forms, but for
the researcher the advantage of Life consists of its meaning as a basic example of self-
organization principle from some few rules. We should not forget the interesting ability of
Life to compute any algorithm, which can be used, for example, to approach certain
combinatorial optimization problems.

The behavior of Life is simple. From starting positions the patterns evolve indefinitely, or
until reaching a stop condition. In some cases the evolution could imply a very high number
of iterations, maintaining busy the computer during days. Life does not need any direct
instruction from the user, since the pattern evolution is determined by the initial state and for
the rules of the game. It runs on a grid of square cells which enlarges to infinity in all
directions in discrete times that are the iterations of the algorithm. Each cell has eight
neighbors (the adjacent cells) and can be in one of two states: it is either live (state on) or
dead (state off). When iteration ends, all the cells are updated in parallel at the same time (the
on-off transitions occur simultaneously).

We use two possible cases of CA to implement the hardware processor, regarding to the
fixed size of the grid of square cells: 20x20 or 30x30. The variable DIM takes the value 20 or
40 for these cases. For any of these cases, we have an initial pattern of 12 live cells forming a
cross around the center of the grid. The evolution of the first iterations of an example of
simple Life can be observed in Figure 1.
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Figure 1. Evolution of the first iterations of the Game of Life

3. RECONFIGURABLE COMPUTING

Reconfiguration of circuitry at runtime to suit the application at hand has created a
promising paradigm of computing that blurs traditional frontiers between software and
hardware. This powerful computing paradigm, named reconfigurable computing, is based on
the use of programmable logic devices, mainly field programmable gate arrays (FPGAs) [5]
incorporated in board-level systems. FPGAs have the benefits of the hardware speed and the
software flexibility; also, they have a price/performance ratio much more favourable than
ASICs (Application-Specific Integrated Circuits). For these reasons, FPGAs are a good
alternative for many real applications in image and signal processing, multimedia, robotics,
telecommunications, cryptography, networking and computation in general [6].

Furthermore, as the reconfigurable computing is becoming an increasingly important
computing paradigm, more and more tools are appearing in order to facilitate the FPGA
programmability using higher-level HDLs (Hardware Description Languages). In this line,
several research projects have been developed to bring new high-level languages, most
notably, SpecC [7], SystemC [8] or Ocapi-xl [9]. And on the other hand, several companies
are proposing their own high-level HDLs, such as Handel-C [10]. The main advantage of all
these new hardware description languages is their simplicity, where the hardware design can
be defined and evaluated using a pseudo-C programming style. In this way, FPGA devices are
making it possible for thousands of computer engineers to have access to digital design
technology in an easier way, obtaining a better performance with a similar flexibility to
software. In addition, ASIC engineers are now ‘reconfiguring’ themselves as FPGA engineers
for economic reasons and adding to the growing legions of FPGA designers around the world.

In our research works we use real hardware resources. The details of the used prototyping
boards are shown in Table 1.
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Table 1. Hardware resources used in this work, arranged by reconfigurable
versus general-purpose hardware with similar technology in
order to do an effective comparison of results

Technology Reconfigurable computing General purpose processor
CMOS | Year FPGA device Board Processor Computer
[www xilinx.com]
130 2002 | Xilinx Virtex2 Pro - Digilent XUPV2P Intel Pentium4 | 1 GB RAM,
nm xc2vp30-7t896 [www.digilentinc.com] | 2.4GHz Win2003
65nm | 2006 | Xilinx Virtex5 LT330 - | PLDA PCIXSYSV5 Intel Core2 2 GBRAM,
xc5vIx330-11f1760 [www.plda.com] Duo E4500 WinXP
2.2GHz

4. CELLULAR AUTOMATA RECONFIGURABLE PROCESSOR

The followed process for the development of a processor based on reconfigurable
technology that implements Life implies some stages that we explain next, and that they are
shown in Figure 2.

4.1. Modeling of the Algorithm

The first stage of the process consists of the modeling of the CA using high-level
hardware description languages. For this purpose we have used Handel-C. This language
allows us a hardware programming similar to the C language programming, but with real
parallel programming capabilities. We have programmed two codes in Handel-C:

e Debug code. This code has the purpose of testing the algorithm to verify its
performance before the hardware implementation. It generates a text file which is
processed using an interpreter for watching the cells behavior in the screen.

e Hardware code (Figure 2.a). This code is based on the last one, modified in some few
sentences. It generates a schematic symbol (Figure 2.b) for using in the Xilinx ISE
design tool [11], as part of the controller used in the top schematic sheet of the CA
processor (Figure 2.c).

4.2. Processor Design

In this stage the processor is designed according to the prototyping board features that it
will be used. In this way, elements like switches, graphic displays, led, etc must be designed
(Figure 2.c¢) in the top level view of the final processor schematic sheet. Also, the clock signal
coming from the oscillator mounted on the board should be adapted by means of a clock
manager to suit it to the timing restrictions of the synthesized circuit.
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Figure 2. The process to develop the custom reconfigurable processor consists of five stages

4.3. Hardware Implementation

During the synthesis process, detailed and valuable information is obtained (Figure 2.d):
occupied resources of the FPGA, maximum frequency allowed for clock source, power
consumption, placed and routed layout, etc. After synthesis, the FPGA configuration file is
obtained. This file is used to download the configuration bit-stream onto the FPGA mounted
on the prototyping board (Figure 2.¢) through a communication cable. Once the download is
done, the board is ready to begin to be used as a CA custom processor.
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Figure 3. Graphical tool reading the data file generated from the software version of the CA to show its
evolution

Table 2. Information related to the synthesis of the CA processor

Xilinx Virtex2 Pro | Xilinx Virtex5 LT330
FPGA device xc2vp30-7ff896 xc5vIx330-1ff1760
Cellular Automaton size DIM=20 | DIM=30 | DIM=20 | DIM=30
Maximum frequency allowed 12MHz | 14MHz | 27MHz | 31 MHz
On-board oscillator frequency 10 MHz | 10 MHz | 25 MHz | 25 MHz
Occupied resources 25 % 37 % 3% 5%
Max. number of parallel CA on chip | 4 2 33 20

5. EXPERIMENTAL RESULTS

Table 2 shows the more important information reported during the synthesis process of
the hardware design. This information is used, among other things, to select the frequency of
the oscillator mounted on the prototyping board, to show the power consumption, and to
estimate the maximum number of parallel CA running on chip, according to the occupied
resources of the FPGA device. The elapsed time for the 100,000 iterations of the
reconfigurable hardware processor has been measured by means of led signals.

In order to evaluate the real performance of the processor, a software version of the CA
has been developed. This software consists of a C code exactly carrying out the same
operations described in the Handel-C code used for hardware modeling, and optimized to
reach the maximum possible speed. The obtained executable file has been executed on the
two personal computers shown in Table 1. We can see in Figure 3 a graphical tool that
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displays the output results of the software. This utility is not the software we use to compare
with the reconfigurable processor, because it spends a lot of time writing data results to the
hard disk, but it is a useful tool for the user to see the CA evolution.

The result of the time analysis for both implementations (hardware and software)
establishes the real performance and the effectiveness of the hardware implementation.

Time (sec) for 100,000 iterations of only ohe Cellular
Automaton
(DIM=20)
OFPGA
mPC
42.00
16.00
5.80 3.20
. g .
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ws. Intel Penfumd 1.7GHz Irtel Core2 Duo 2GHz

Time (sec) for 100,000 iterations of as many Cellular
Automata as they fit in one FPGA chip

(DIM=20})
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EFC

1056.60
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é 4 autumatal 33 automata

| E— T 1
Techradlogy 130 nrm (2002): Xlinx Yirtex2 Pro - Technology 65 nm (20067: Xilinx: VidexS vs.
vs. Intel Penfumd 1.7 GHz Irtel Core2 Dun 2GHz

Figure 4. (Continued)
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Figure 4. Summary of the time analysis obtained from the custom reconfigurable processor and from
the software version for the different FPGA devices and computers considered. In all the cases the CA
has executed 100,000 iterations. The graphs on the top are for DIM=20 and below for DIM=30. Also,
the graphs on the left side correspond to one CA, since the graphs on the right side correspond to
several CA running in parallel

In Figure 4 the summary of the time analysis is shown. The measures are compared
between FPGA devices (running the CA hardware processor) and general-purpose processors
(running the software version) of similar technologies (as CMOS features and year of launch),
as it is described in Table 1. Two cases of CA sizes have been considered (DIM=20 and
DIM=30), where the CA executes 100,000 iterations anyway. The graphs on the top are for
DIM=20 and below for DIM=30. Also, the graphs on the left side correspond to a CA running
alone, since the graphs on the right side correspond to several CA running in parallel.
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When considering the case of more than one CA running in parallel, we calculate the
maximum number of CA able to fit the FPGA device, according to the reported occupied
resources during the synthesis phase. This way, the software version executes the 100,000
iterations of the CA multiplied by the same number of parallel CA in the FPGA device, in
order to do a realistic comparison.

Analyzing the graphs we can verify that the software solution is clearly more
advantageous for the older FPGA technology, even considering parallel CA, for one reason:
the FPGA processor design does not enclose a high level of parallelism in its operations.
Nevertheless, for the newer FPGA technology used, the hardware results are better than
software results in all cases (although the efficiency slightly reduces when the CA size
increases).

There are many methods to increase more the FPGA performance. A secure way is to
update the cells of the CA at the end of the iteration in parallel, although we have not yet
proven this possibility. Also, we can increase the clock frequency modifying the processor
architecture, optimizing the synthesis parameters and considering FPGA devices with a larger
speed grade than the used one.

The most effective way to increase a lot the performance is to distribute many parallel
CA in more than one FPGA device. Pursuing this idea, the performance linearly increases.
For example, if we consider a prototyping board mounting four Xilinx Virtex5 LT330 FPGA
devices, we can put to work 33 CA in each one (if DIM=20), so the whole system could have
up to 33 x 4=132 CA running in parallel, executing the 100,000 iterations in 16 seconds. At
the same time, an Intel Core2 Duo E4500 2.2 GHz processor would need to execute 100,000
x 132 = 13,200,000 iterations to emulate the reconfigurable hardware platform, spending 3.2
seconds x 132 = 7 minutes. Taking into account the very low power consumption of the
FPGA devices (less than 1 watt) in relation to the general-purpose processors (around 100
watt), a multi-FPGA board emerges as a low cost and high performance computing platform
for running CA in intensive computing scenarios.

6. CONCLUSIONS AND FUTURE WORK

The interest of a hardware solution based on FPGAs lies in the possibility of accelerating
algorithms where many Cellular Automata can run in parallel inside FPGA devices and the
possibility of freeing the computer resources (which otherwise would be dedicated almost
exclusively to computing the solution to the problem over too great a period of time). The low
cost, low power consumption and high timing performance offered by the FPGA solution can
compete even against general-purpose clusters.

For this reason, the possibility to have CA processing in a stand-alone way by means of a
specifically designed processor for this purpose is the sufficiently interesting thing as to
explore in depth this computational alternative. In this sense, our forthcoming research is to
connect two or more FPGA devices to process algorithms in parallel using Cellular Automata
as basic element, increasing this way the overall performance. This research line can offer
better performance results where the reconfigurable processor overcomes anyway to the
computer.



90 Juan A. Gomez-Pulido, Miguel A. Vega-Rodriguez and Juan M. Sanchez-Pérez

ACKNOWLEDGMENTS

This work has been partially funded by the Spanish Ministry of Education and Science
and FEDER under contract TIN2008-06491-C04-04 (the MSTAR project).

REFERENCES

[1] El Dessouki, W., Fathi, Y. & Rouphail, N. (2001). Meta-Optimization Using Cellular
Automata with Application to the Combined Trip Distribution and Assignment System
Optimal Problem, Computer-Aided Civil and Infrastructure Engineering, 16, 384-398.

[2] Tovar, A., Patel, N., Kaushik, A. & Renaud, J. (2007). Optimality Conditions of the
Hybrid Cellular Automata for Structural Optimization, Journal of the American
Institute of Aeronautics and Astronautics, 45, 673-683.

[3] Qian, F. & Hirata, H. (1996). A Parallel Learning Cellular Automata for Combinatorial
Optimization Problems, in Proc. of IEEE International Conference on Evolutionary
Computation, 553-558.

[4] Gardner, M. (1970). Matematical Games: The Fantastic Combinations of John
Conway's New Solitaire Game of Life, Scientific American, 223, 120-123.

[5] Hauck, S. & DeHon, A. (eds.), (2008). Reconfigurable Computing, The Theory and
Practice of FPGA-Based Computation (Morgan Kaufmann).

[6] Vega, M. A, Sanchez, J. M. & Gomez, J. A. (2005). Advances in FPGA Tools and
Techniques, Microprocessors and Microsystems, 29, 47-50.

[7] Gajski, D., Jianwen, Z., Domer, R., Gerstlauer, A. & Shuqing, Z. (2000). SpecC:
Specification Language and Methodology (Springer-Verlag, New York).

[8] Arnout, G. (2000). SystemC, in Proc. of the 2000 ACM Conference on Asia South
Pacific Design Automation, 573-578.

[9] Vernalde, S., Schaumont, P. & Bolsens, 1. (1999). An Object Oriented Programming
Approach for Hardware Design, in Proc. of the IEEE Computer Society Workshop on
VLSI'99 (IEEE Press), 68.

[10] Ramamritham, K. & Arya, K. (2004). System Software for Embedded Applications, in
Proc. 17th IEEE International Conference on VLSI Design (IEEE Press), 22.



In: Cellular Automata ISBN: 978-1-61761-592-4
Editor: Thomas M. Li, pp. 91-117 (© 2011 Nova Science Publishers, Inc.

Chapter 6

EVOLVING CELLULAR AUTOMATA FOR FORM
GENERATION IN ARTIFICIAL DEVELOPMENT

Arturo Chavoya*
Universidad de Guadalajara, Periférico Norte 799-L308,
Zapopan, Jal., México CP 45100

Abstract

Form generation or morphogenesis has a crucial role in both artificial and natural
development. This chapter presents results from simulations in which a genetic algo-
rithm (GA) was used to evolve cellular automata (CA) in order to generate predefined
2D and 3D shapes. The 2D shapes initially considered were a square, a diamond, a tri-
angle and a circle, whereas for the 3D case the shapes chosen were a cube and a sphere.
The CA's rule was defined as a lookup table where the input was determined by the
interaction neighborhood’s cell state values, and the output established whether or not
a cell was to be reproduced at the empty objective cell. Four different 2D interaction
neighborhoods were considered: von Neumann, Moore, 2-Radial, and Margolus; a 3D
Margolus neighborhood was used to generate the sphere and the cube. In all cases,
the GA worked by evolving the chromosomes consisting of the CA rule table’s output
bits and a section of bits coding for the number of iterations that the model was to run.
After the final chromosomes were obtained for all shapes, the CA model was allowed
to run starting with a single cell in the middle of the lattice until the allowed number of
iterations was reached and a shape was formed. The transition rules that formed some
of these basic shapes and others were later combined with an Artificial (gene) Regu-
latory Network (ARN) to make up genomes that controlled the activation sequence of
the CA’s rules to generate predefined patterns. The ARN was also evolved by a GA in
order to produce cell patterns through the selective activation and inhibition of genes.
Morphogenetic gradients were used to provide cells with positional information that
constrained cellular replication. After a genome was evolved, a single cell in the mid-
dle of the CA lattice was allowed to reproduce until a desired cell pattern consisting of
the combination of basic forms was generated.

Keywords: cellular automata, form generation, artificial development, genetic algo-
rithm, artificial regulatory network
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1. Introduction

Artificial development is the study of computer models of cellular growth, with the objec-
tive of understanding how complex structures and forms can emerge from a small group of
undifferentiated initial cells. In biological systems, development is a fascinating and very
complex process that involves following an extremely intricate program coded in the or-
ganism’s genome. To present day, we still marvel at how from a single initial cell —the
zygote— a whole functional organism of trillions of coordinated cells can emerge.

One of the crucial stages in the development of an organism is that of form generation
or morphogenesis, where the fundamental body patterns of the individual are generated. It
is now evident that gene regulatory networks play a central role in the development and
metabolism of living organisms [1]. It has been discovered in recent years that the diverse
cell patterns created during the developmental stages are mainly due to the selective activa-
tion and inhibition of very specific regulatory genes.

Artificial Regulatory Networks (ARNs) are computer models that seek to emulate the
gene regulatory networks found in nature. ARNSs have previously been used to study differ-
ential gene expression either as a computational paradigm or to solve particular problems
[2, 3, 4, 5, 6]. On the other hand, evolutionary computation techniques have been exten-
sively used in the pastin a wide range of applications, and in particular they have previously
been used to evolve ARNs to perform specific tasks [7, 8].

Over the years, artificial models of cellular growth have been proposed with the ob-
jective of understanding the intricacies of the development process, including some that
involve the use of cellular automata [9, 10, 11, 12, 13, 14]. In this chapter an artificial de-
velopment model that generates cellular patterns in 2D and 3D by means of the selective
activation and inhibition of development genes under the constraints of morphogenetic gra-
dients is presented. Cellular growth is achieved through the expression of structural genes,
which are in turn controlled by an ARN evolved by a Genetic Algorithm (GA). The ARN
establishes the time at which cells can reproduce and determines which structural gene to
use at each time step. At the same time, morphogenetic gradients constrain the position at
which cells can replicate. The combination of the ARN and the structural genes make up
the artificial cell's genome.

In order to test the functionality of the ARN found by the GA, a cellular growth testbed
based on the Cellular Automata (CA) paradigm was first developed, so that the GA chromo-
somes representing the proposed ARN models could be evaluated in their role to produce
the desired patterns [15]. Cellular automata have previously been used to study form gener-
ation, as they provide an excellent framework for modeling local interactions that give rise
to emergent properties in complex systems [16, 17].

2. Cellular Growth Testbed

In order to evaluate the performance of the development programs obtained in the the 2D
and 3D models, their evolved genomes were applied to a cellular growth testbed designed
to generate simple geometrical shapes [15]. This growth model is based on the extensively
studied CA paradigm.
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Cellular automata are simple mathematical models that can be used to study self-
organization in a wide variety of complex systems [18]. CA are characterized by a regular
lattice of N identical cells, an interaction neighborhood templata finite set of cell states
>, and a space- and time-independent transitionqudich is applied to every cell in the
lattice at each time step [17].

In the CA models presented in this chapter, a cell can become active only if there is
already an active cell in the interaction neighborhood. Thus, a new active cell can only be
derived (reproduced) from a previously active cell in the interaction neighborhood, i.e. no
spontaneous generation is allowed, as in actual biological systems.

Two different regular lattices with non-periodic boundaries were tried, a 2D and a 3D
lattice. For 2D neighborhoods, a 3333 cell lattice was used, whereas for the 3D neigh-
borhood a cubic lattice of side length 17 was chosen. The set of cell states was defined as
> ={0,1}, where 0 can be interpreted as an empty cell and 1 as an occupied or active cell.
For 2D shapes, four different interaction neighborhood templateere considered, while
only one neighborhood was studied in 3D. The interaction neighborhoods are described in
the following subsections. The CA's rulgwas defined as a lookup table that determined,
for each local neighborhood, the state (empty, occupied) of the objective cell at the next
time step [19, 20]. For a binary-state CA, these update states are termed the rule table’s
“output bits”. The lookup table input was defined by the binary state value of cells in the
local interaction neighborhood, where 0 meant an empty cell and 1 meant an occupied cell.

All the neighborhoods considered in the cellular growth testbedoarter interaction
neighborhoods, since the objective cell is not considered as part of the interaction neighbor-
hood. This simplification was made given that the CA rule is applied only to empty cells,
implicitly assuming that all rules that have the state value 1 in the objective cell also have
the value 1 as output. That is, a cell that is already occupied by an active cell has no place
to hold another active cell.

Figure 1 shows an example of the relationship between a CA neighborhood template
and the corresponding lookup table. For each neighborhood configuration, the output bit
determines whether or not a cell is to be placed at the corresponding objective cell position.
In this example, if there is only an active cell at the objective cell’s right position, then the
objective cell is to be filled with an active cell (second row of the lookup table in Fig. 1).
The actual output bit values used have to be determined for each different shape and are
found using a genetic algorithm.

2.1. 2D Neighborhoods
Four types of 2D interaction neighborhoods were used: von Neumann, Moore, 2-Radial,
and Margolus neighborhoods (Fig. 2).

2.1.1. Von Neumann Neighborhood

In the von Neumann neighborhood the cells at the top, left, bottom, and right of the objective
cell make up the interaction neighborhood. The CA lookup table inpigtdefined by the
binary values of cellgjnin3n} of the neighborhood indicated in Fig. 2(a).
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Figure 1. Relationship between a cellular automaton neighborhood template and the corre-
sponding lookup table. The output bit values shown are only for illustration purposes.
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Figure 2. 2D interaction neighborhoods. (a) Von Neumann. (b) Moore. (c) 2-Radial. (d)
Margolus. The objective cell is depicted in gray.

2.1.2. Moore Neighborhood

In the Moore neighborhood the nearest eight cells around the objective cell define the
interaction neighborhood. The lookup table input is defined by the binary values of
ngnTnangnangngny of the neighboring cells shown in Fig. 2(b).

2.1.3. 2-Radial Neighborhood

This interaction neighborhood is composed by all the cells within a radius of two cells of
length from the objective cell. Formally,
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N = {(cx,cy) 100Gy € {~2,-1,0,1,2} A /2 + 2 < 2} —{(0,0)}

The lookup table input is defined by the binary values of
NoN1N5N5N4N5NENTNENGN1NL L, Whereng to ny, are as indicated in Fig. 2(c).

2.1.4. Margolus Neighborhood

In the Margolus neighborhood there is an alternation of the block of cells considered at
each step of the CA algorithm. At odd steps, the cells at the top, upper left, and left of the
objective cell constitute the interaction neighborhood, while at even steps the neighborhood
is formed by the mirror cells of the previous block (see Fig. 2(d)). The lookup table input
is defined by the binary values qfijnin3, whereq is defined as 0 for odd steps of the CA
algorithm and as 1 for even steps, aygin{ andn3 are the binary values of the neighboring
cells indicated in Fig. 2(d).

2.2. 3D Neighborhood

The template chosen for working in 3D was the Margolus neighborhood, which has been
previously used with success in modeling 3D shapes [21, 22]. As in the 2D case, each cell
belongs to different blocks at odd and even steps. The lookup table input is defined by the
values of ¢ngninsnsninang, whereg is defined as in the 2D case ang to ng are as
indicated in Fig. 3.

Odd
steps

Even
steps

Figure 3. 3D Margolus neighborhood. The objective cell is depicted as a darker cube.

2.3. NetLogo Models

NetLogo is a programmable modeling environment based on StarLogo that can be used to
simulate natural and social phenomena [23]. It works by giving instructions to hundreds
or thousands of independent “agents” all operating concurrently. It is well suited to study
emergent properties in complex systems that result from the interaction of simple but often
numerous entities.
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For all simulations, the CA algorithm at study was implemented as a NetLogo model.
For each of the neighborhoods studied and for each of the models proposed, a NetLogo
model was built. Each cell position is defined by its Cartesian coordinates with the origin
at the center of the lattice. Starting with an active cell in the middle of the lattice, the CA
algorithm was applied allowing active cells to reproduce according to the CA rule table and
until the indicated number of iterations was attained.

3. Morphogenetic Gradients

Ever since Turing'’s influential article on the theoretical effect of diffusing chemical sub-
stances on an organism’s pattern development [24], the role of these molecules has been
confirmed in a number of biological systems. These organizing substances have been
termedmorphogengiue to their role in driving morphogenetic processes. In the devel-
opment models presented in this chapter, morphogenetic gradients were generated similar
to those found in the eggs of the fruit fiprosophila where orthogonal gradients offer a
sort of Cartesian coordinate system [25]. These gradients provide reproducing cells with
positional information in order to facilitate the spatial generation of patterns. The artificial
morphogenetic gradients were set up as suggested in [10], where morphogens diffuse from
a source towards a sink, with uniform morphogen degradation throughout the gradient.

Before cells were allowed to reproduce in the cellular growth testbed, morphogenetic
gradients were generated by diffusing the morphogens from one of the CA boundaries for
1000 time steps. Initial morphogen concentration level was set at 255 arbitrary units, and
the source was replenished to the same level at the beginning of each cycle. The sink was
set up at the opposite boundary of the lattice, where the morphogen level was always set to
zero. At the end of each time step, morphogens were degraded at a rate of 0.005 throughout
the CA lattice.

For the 2D model, two orthogonal gradients in the CA lattice were defined, one gener-
ated from left to right and the other from top to bottom (Fig. 4).

Top to Bottom
250

Left to Right
200

A /
o /

50

Morphogen concentration

0

-6 -2 -8 -4 0 4 8 2 16

Position

() (b)

Figure 4. 2D morphogenetic gradients. (a) Left to Right. (b) Top to Bottom. (c) Morphogen
concentration graph.
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In the case of the 3D model, three orthogonal gradients were defined in the CA lattice,
one for each of the main Cartesian axes (Fig. 5). In the 3D figures presented in this chapter
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Figure 5. 3D morphogenetic gradients. Positions with highest morphogen concentration
are depicted in white; darker tones mean lower concentratiaslLeft to right (x-axis.
(b) Back to front {/-axi9. (c) Top to bottom g-axis.

the following conventions are used: in the 3D insets the positiegis extends to right, the
positivey-axis is towards de back of the page, the posithaxis points to the top, and the
axes are rotated 45 degrees to the left to show a better perspective.

4. Genomes

Genomes are the repository of genetic informationin living organisms. They are encoded as
one or more chains of DNA, and they regularly interact with other macromolecules, such as
RNA and proteins. Artificial genomes are typically coded as strings of discrete data types.

The genomes used in the following models were defined as binary strings starting with a

series of regulatory genes, followed by a number of structural genes.

Two different artificial genomes are proposed in this chapter, one for 2D and one for
3D. In both cases, genomes were defined as binary strings starting with a series of ten
regulatory genes that constitutes an artificial regulatory network, followed by a series of
structural genes, which contain the CA's lookup tables that control cell reproduction.

In the first genome, each regulatory gene consists of a series of eight inhibitor/enhancer
sites, a series of five regulatory protein coding regions, and two morphogen threshold
activation sites that determine the allowed positions for cell reproduction (Fig. 6). In-
hibitor/enhancer sites are composed of a 12-bit function defining region and a regulatory
site. The parameter values used for the number of inhibitor/enhancer sites and the number
of function defining bits are those that gave the best results under the conditions tested [26].
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Figure 6. Genome structure and regulatory gene detail for the 2D model. Regulatory genes
make up an artificial regulatory network, whereas structural genes contain the lookup tables
that control cell reproduction.

The genome for the 3D model is an extension of the first genome and its structure
is shown in Fig. 7. The difference lies in the incorporation of an additional morphogen
activation site at the end of each regulatory gene to account far-thés.
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Figure 7. Genome structure and regulatory gene detail for the 3D model. A morphogen
threshold activation site was added at the end of each regulatory gene.

Structural genes are always associated with the corresponding regulatory genes, that
is, structural gene number 1 is associated with regulatory gene number 1 and its related
translated protein, and so on. A structural gene was defined as being active if and only
if the regulatory protein translated by the associated regulatory gene was above a certain
concentration threshold. The value chosen for the threshold was 0.5 as the sum of all protein
concentrations is always 1.0, making it impossible for two or more regulatory proteins to
be with a concentration above 0.5 units at the same time. As a result, one structural gene
at most can be expressed at a particular time step in a cell. A structural gene is interpreted
as a CA rule table by reading its bits as output bits of the CA rule. If a structural gene
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is active, then the CA lookup table coded in it is used to control cell reproduction. If no
protein concentration is above the 0.5 threshold, then cell reproduction cannot occur.

The gene regulatory networks presented in this chapter are an extension of the model
originally proposed by Banzhaf [4]. However, unlike the ARN developed by this author,
genes implemented in the present models are not preceded by promoter sequences and there
are no unused intergene regions. Promoters in biology indicate where regulatory binding
sites begin. In Banzhaf's model, a genome is a randomly generated bit string where the
beginning of a gene is signaled by a fixed arbitrary 8-bit sequence. As a result, this promoter
sequence can occur with a probability 0f2~ 0.0039= 0.39% and the number of genes
is proportional to the length of the genome.

For the present model, it was decided that unused bit sequences between genes would
be a waste of space and an additional source of variation in the evolution experiments, since
the number of regulatory genes could vary from genome to genome. Furthermore, this
approach would make relating a fixed number of structural genes to a varying number of
regulatory genes difficult. As a result it would be possible to have less regulatory genes
than structural genes, which went against the concept of one regulatory gene controlling
one structural gene.

In the two models presented, all regulatory genes are adjacent and have predefined
initial and end positions. Furthermore, the number of regulatory genes is fixed and the
number of regulatory sites is more than two and they can behave either as an activator or an
inhibitor, depending on the configuration of the function defining bits associated with the
regulatory site [26]. If there are more 1s than Os in the function defining region, then the
site functions as an activator, but if there are more Os than 1s, then the site behaves as an
inhibitor. Finally, if there is an equal number of 1s and 0s, then the regulatory site is turned
off. This means that the regulatory site role as an activator or as an inhibitor can be evolved
by the GA. Furthermore, if the number of function defining bits is even, then the regulatory
site can be turned on and off. The number of regulatory sites was extended with respect to
the original model in order to more closely follow what happens in nature, where biological
regulatory genes involved in development typically have several regulatory sites associated
with them [1].

In addition to the inhibitor/activator sites, each regulatory gene contains a series of five
regulatory protein coding regions which “translate” a protein using the majority rule, i.e. for
each bit position in the protein coding regions, the number of 1s and Os is counted and the
bit that is in majority is translated into the regulatory protein. An odd number of regulatory
protein coding regions sites was chosen by Banzhaf in order to avoid ties when applying
the majority rule.

The regulatory sites and the individual protein coding regions all have the same size of
32 bits. Thus the protein translated from the coding regions can be compared on a bit by bit
basis with the regulatory sites from the inhibitors and activators, and the degree of matching
can be measured. As in [4], the comparison was implemented by an XOR operation, which
results in a “1” if the corresponding bits are complementary.

Each translated protein is compared with the inhibitor and activator sites of all the reg-
ulatory genes in order to determine the degree of interaction in the regulatory network. The
influence of a protein on an activator or inhibitor site is exponential with the number of
matching bits. The strength of excitati@m or inhibition in for genei withi =1,....nis
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wheren is the total number of regulatory genesandw are the total number of activator
and inhibitor sites, respectivelg; is the concentration of proteij B is a constant that fine-
tunes the strength of matchinq*j andu;; are the number of matches between projeand
the activator and inhibitor sites of gemerespectively, andi, ., andup,,, are the maximum
matches achievable between a protein and an activator or inhibitor site, respectively [4].

Once theen andin values are obtained for all regulatory genes, the corresponding
change in concentrationfor proteini in one time step is found using
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Hzé(en—ini)ci, 3

whered is a constant that regulates the degree of protein concentration change. Parameters
B andd were set to 10 and 10 x 10P, respectively, as previously reported [27].

Protein concentrations are updated and if a new protein concentration results in a nega-
tive value, the protein concentration is set to zero. Protein concentrations are then normal-
ized so that total protein concentration is always the unity. At time step 0O, all ten proteins
start out with the same concentration level, i.e. with a value of 0.1 units.

As for structural genes, they code for the particular shape grown by the reproducing
cells and were obtained using the methodology presented in [15]. Briefly, in order to pro-
duce predefined 2D and 3D shapes, a gene was evolved by a GA in the cellular growth
testbed described in Section 2. The GA worked by evolving the CA rule table’s output bits.

In the series of simulations presented in this chapter, the number of structural genes
is always less than the number of regulatory genes. Thus, some proteins both regulate
concentration for other proteins and directly control structural gene expression, while others
only have a regulatory role. Structural gene expression is visualized in the cellular growth
testbed as a distinct external color for the cell. Thus, cells with different external color
represent differentiated cells that express a specific structural gene. The color associated
with a structural gene is assigned to a cell when itis created as a result of the activation of
that particular structural gene.

The morphogen threshold activation sites are the last elements of the regulatory gene
and they can provide reproducing cells with positional information as to where they are al-
lowed to grow in the CA lattice. There is one site for each of the orthogonal morphogenetic
gradients described in Section 3.. These sites are 9 bits in length, where the first bit defines
the allowed direction (above or below the threshold) of cellular growth, and the next 8 bits
code for the morphogen threshold activation level, which ranges from @ to12= 255.

If the site’s high order bit is 0, then cells are allowed to replicate below the morphogen
threshold level coded in the lower order eight bits; if the value is 1, then cells are allowed
to reproduce above the threshold level. Since in a regulatory gene there is one site for each
of the orthogonal morphogenetic gradients, for each set of morphogen threshold activation
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levels, the high order bits define in which of the four relative quadrants or eight relative oc-
tants, cells expressing the associated structural gene can reproduce in the 2D or 3D model,
respectively.

5. Genetic Algorithm

Genetic algorithms are search and optimization methods based on ideas borrowed from
natural genetics and evolution [28]. A GA starts with a population of chromosomes rep-
resenting vectors in search space. Each chromosome is evaluated according to a fithess
function and the best individuals are selected. A new generation of chromosomes is created
by applying genetic operators on selected individuals from the previous generation. The
process is repeated until the desired number of generations is reached or until the desired
individual is found.

The GA presented in this chapter uses tournament selection as described in [29] with
single-point crossover and mutation as genetic operators. Single-point crossover consists
of randomly selecting two chromosomes with a certain probability called crossover rate,
and then randomly selecting a single bit position in the chromosome structure. From this
point on, the remaining fragments of the two chromosomes are exchanged. The resulting
chromosomes then replace the original ones in the chromosome population. On the other
hand, mutation consists of randomly flipping one bit in a chromosome from 0 to 1 or vice
versa. The probability of each bit to be flipped is called the mutation rate.

After several calibration experiments, the parameter values described next were consid-
ered to be appropriate. The initial population consisted of either 500 binary chromosomes
chosen at random for evolving the form generating genes, or 1000 chromosomes for the
simulations involving the ARN models. Tournaments were run with sets of 3 individu-
als randomly selected from the population. Crossover rate was 0.60 in all cases, whereas
the mutation was 0.015 for the evolution of structural genes, and 0.15 for the evolution of
ARNSs. The crossover rate of 0.60 was chosen because it was reported to give the best re-
sults when trying to evolve a binary string representing a CA using a GA [30]. As for the
mutation rate, it was decided to use a value one order of magnitude higher in the evolution
of the ARN models than the one used in the same report because it was found that single
bits could have a considerable influence on the final behavior of the ARN. In particular, in
one simulation the flipping of a single bit almost doubled the fitness value of an evolving
genome [27]. Finally, the number of generations was set at 50 in all cases, since there was
no significant improvement after this number of generations.

5.1. Chromosome structure

The GA experiments were run with two different types of chromosomes, the kind used for
the evolution of a form generating gene (structural genes in the artificial genomes), and the
one used for evolving the ARN models.
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Table 1. Size in bits for chromosomes used in evolving a form generating gene. Pa-
rameters are as defined in the text.

Neighborhood | | [a|b |2 xa+b
VonNeumann| 4|14 20
Moore 8|14 260
2-Radial 12114 4100
2D Margolus 3|12|5 21
3D Margolus 7124 260

5.1.1. Chromosome structure for form generation

The chromosome structure used for evolving a form generating gene is shown in Fig. 8.
Thecontrol fieldcodes for the number of steps in base 2 that the CA algorithm is allowed to
run, whereas thaction fieldrepresents the CA lookup table’s output bits in lexicographical
order of neighborhood.

]
L )
.
Control Action
field field

Figure 8. Chromosome structure for evolving a form generating gene.

For the initial simulations, when testing different neighborhood templates, chromosome
size varied depending on the neighborhood type and the maximum number of iterations
allowed for the CA. For this type of chromosome, size in bits was defined as

(2 xa) +b, @)

wherel is the number of cells in the local interaction neighborhood (excluding the objective
cell, which is always assumed to be 0, i.e. the CA rule is applied only to empty cils),

the number of alternating steps in the CA algorithm (2 for the Margolus neighborhood and
1 for all the others), ant is the number of bits of the maximum number of iterations in
base 2 that the CA is allowed to run. Table 1 shows the chromosome size for the various
neighborhoods considered.

The control field size was chosen so that the shape formed on any CA run could not
overflow the boundaries of the CA lattice. As mentioned in Section 2., the lattices consisted
of a square of 3% 33 and a cube of 1% 17 x 17 cells, with the initial active cell at the
central position. To have an active cell reach one of the lattice boundaries, the CA algorithm
would be required to run for at least 16 steps in the square lattice, and 8 steps in the cubic
lattice. On this ground, for all 2D neighborhoods, except 2D Margolus, the control field
size was chosen to be 4, so that the CA algorithm would iterate for at nfostl2= 15
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steps. For the Margolus neighborhoods, due to the alternation of the cell blocks forming the
interaction neighborhood, the CA algorithm would require twice as many steps for an active
cell to reach one of the lattice boundaries. For this reason, the chromosome’s control field
size was defined as 5 for the 2D Margolus neighborhood and 4 in the 3D Margolus case, so
that the upper limit of iterations would be’2- 1 = 31 and 2 — 1 = 15 steps, respectively.

The chromosome’s action field coding for the CA rule table is of lendth a. For
the Moore neighborhood, that represents a rule spacé®6&210’7, and for the 2-Radial
neighborhood the rule space size % ~ 10'?33 In both cases the search space is far
too large for any sort of exhaustive evaluation. And if we also take into account the bits
introduced by the control field, the search space grows larger. Even for the smallest of
the neighborhoods considered, the von Neumann and the 2D Margolus neighborhoods, the
search space is not negligible, since it contains over one million possibilities.

Inthe case of the 3D CA, the 3D Margolus neighborhood was chosen over, for example,
a 3D Moore neighborhood, since in the latter case the interaction neighborhood would
consist of the nearest 26 cells, giving a CA lookup table%f2 6.7 x 10’ rows, as opposed
to the 2 x 2 = 256 rows required by the 3D Margolus template.

5.1.2. Chromosome structure for pattern generation

When evolving the ARNs with the goal of synchronizing the expression of structural genes,
the chromosomes used for the GA runs were simply the ARN chains themselves. Chromo-
some sizes were 5300 and 5390 bits for the 2D and 3D models, respectively.

The ARN binary string for the 3D model represents a search spac@#t=2 3.6 x
101622 vectors. Evidently, search space grows exponentially with the size of regulatory
genes. But even in the case of the ARN for the 2D model, the search space has a size of
25300~ 2 9% 109, which is still too large to be explored deterministically. It should be
evident that the search space for any of the ARN models considered is far too large for any
method of exhaustive assessment. Therefore, the use of an evolutionary search algorithm
for finding an appropriate synchronization of gene expression is amply justified.

5.2. Fitness function

As in the case of the chromosome structure, there were two different fithess functions used,
depending on whether one o more structural genes were considered.

5.2.1. One structural gene

The fitness function for the simulations involving the evolution of one structural gene is the
same as the function used by de Gatris for evolving CA [16]:

: 1
INnsS— 50uts
- 277 5

whereinsis the number of filled cells inside the desired shapgtsis the number of filled

cells outside the desired shape, atesis the total number of cells inside the desired shape.
Thus, a fitness value of 1 represents a perfect match.

Fithess=
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During the course of a GA experiment, each chromosome produced in a generation was
fed to the corresponding NetLogo model, which was allowed to run for as many iterations as
indicated in the chromosome’s control field. Fitness was evaluated after the model stopped
and a shape was formed. This process continued until the maximum number of generations
was reached and then the best individual was selected.

5.2.2. Multiple structural genes

In the case of the evolution of ARNs that synchronized the expression of more than one
structural gene, the fitness function used by the GA was defined as

. ¢ ins — fouts
Fitness= 1 > M, (6)
C.L des

wherec is the number of different colored shapes, each corresponding to an expressed
structural geneins; is the number of filled cells inside the desired shapéth the correct

color, outs is the number of filled cells outside the desired shapaut with the correct

color, anddes is the total number of cells inside the desired shapé& consequence, a
fitness value of 1 represents again a perfect match. This fitness function is an extension of
the one used in [16], where the shape produced by only one “gene” was considered. To
account for the expression of several structural genes, the combined fitness values of all
structural gene products were introduced in the fitness function used.

During a GA run, each chromosome produced in a generation was fed to the corre-
sponding NetLogo model, where the previously evolved structural genes were attached and
the cells were allowed to reproduce controlled by the ARN found by the GA. Fitness was
evaluated at the end of 100 time steps in the cellular growth testbed, where a colored pat-
tern could develop. This process continued until the maximum number of generations was
reached or when an individual with a fithess value of 1 was obtained.

6. Form Generation

In all cases, the GA described in Section 5. was used to evolve the lookup table and the
number of iterations for the desired shapes. Starting with one active cell in the middle of
the CA lattice in the NetLogo model, cells were allowed to reproduce (sprout an active
cell from a previously active cell) using the lookup table found by the GA and for as many
iterations as indicated in the chromosome’s control field. Since the CA algorithm used
asynchronous updating with the order of reproduction of cells randomly selected, a partic-
ular shape and fitness could slightly change on different runs of the CA algorithm for the
same chromosome. For this reason, fithess mean and standard deviation from 100 runs of
the CA algorithm are reported for all final chromosomes.

6.1. 2D shapes

The desired shapes are shown in Figure 9. These shapes were chosen for their simplicity
and familiarity. The square has a side length of 21 cells, the diamond has a length of 11
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cells from the center to any of its corners, the triangle has a base and a height of 23 and 21
cells, respectively, and finally the circle has a radius of 11 cells.

(b)

(©) (d)

Figure 9. Desired shapes. (a) Square. (b) Diamond. (c) Triangle. (d) Circle.

Table 2 presents the fithess mean and standard deviation from 100 runs in the NetLogo
model of the final chromosomes for all the shapes and neighborhoods considered. A com-
parative chart of the mean fitness values presented in Table 2 is shown in Figure 10, grouped
by interaction neighborhood.

Table 2. Fitness meanX) and standard deviation (©) from 100 runs of the CA algo-
rithm for the final chromosomes.

Von Neumann Moore 2-Radial Margolus

Shape X o X o X o X o

Square | 0.738| 0.008 | 0.993| 0.003| 0.887| 0.015| 1.000| 0.000
Diamond| 1.000| 0.000 | 0.805| 0.040| 0.773| 0.028| 0.880| 0.018
Triangle | 0.580| 0.000 | 0.950| 0.011| 0.909| 0.023| 0.860| 0.010
Circle 0.868| 0.000 | 0.932| 0.013| 0.875| 0.017| 0.928| 0.006
Average | 0.797| 0.002 | 0.920| 0.017| 0.861| 0.021| 0.917| 0.008

At the initial stages of this work, it was assumed that, since all shapes considered had
dimensions such that the outer active cells could be reached in 10 steps, the number of itera-
tions should be fixed at 10 steps for the von Neumann, Moore and 2-Radial neighborhoods,
and 20 steps for the Margolus neighborhood. However, it was later decided that, in order to
avoid a preconceived notion of how the evolved chromosomes should work, the GA should
also find the optimum number of iterations needed to generate a particular shape. For this
reason the control field was introduced in the chromosome definition. Table 3 presents the
evolved number of iterations (coded in the control field) of the final chromosomes for all
shapes and neighborhoods.
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Figure 10. Mean fithess comparative chart for all neighborhoods and shapes.

Table 3. Evolved number of iterations for the final chromosomes for all neighborhoods
and shapes.

Shape Von Neumann | Moore | 2-Radial | Margolus
Square 15 10 11 20
Diamond 10 12 9 19
Triangle 12 10 10 19
Circle 13 9 10 18

Figures 11 to 14 show results from some of the best runs for the four types of shapes
obtained using the four models, corresponding to each of the neighborhoods studied. For
ease of visualization, cells that fall outside the desired shape are shown in light gray [31].

6.2. 3D shapes

The desired 3D shapes are presented in Figure 15. The cube has a side length of 5 cells,
whereas the sphere has a radius of 4 cells. Fitness mean and standard deviation from 100
runs in the NetLogo model for 3D shapes, as well as the evolved number of iterations for
the final chromosomes, are presented in Table 4.

Figure 16 shows shapes from some of the best runs obtained using the 3D Margolus
model. As in the 2D case, cells outside the desired shape are shown in light gray [15].

Table 4. Fitness meanX) and standard deviation (©) from 100 runs of the CA algo-
rithm for 3D shapes. The evolved number of iterationsiger.) is also presented.

Shape X o Iter.
Cube | 0.9690| 0.0165| 4
Sphere| 0.8579| 0.0163| 6
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Figure 11. Square shape. Cells outside the desired shape are shown in light gray. Neighbor-
hood description is followed by fithess value. (a) Von Neumann (0.751). (b) Moore (0.998).
(c) 2-Radial (0.917). (d) Margolus (1.000).

(d)

Figure 12. Diamond shape. Cells outside the desired shape are shown in light gray. Neigh-
borhood description is followed by fitness value. (a) Von Neumann (1.000). (b) Moore
(0.878). (c) 2-Radial (0.826). (d) Margolus (0.912).

6.3. Chosen neighborhoods for pattern generation

From the above results it was decided to use the Moore and the 3D Margolus neighborhoods
for the generation of 2D and 3D cell patterns, respectively, in the simulations that involved
the ARNSs. Furthermore, in order to reduce simulation times, a smallerl3x 13 regular

lattice with non-periodic boundaries was used for the pattern generation simulations in 3D.
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(b)

(©) (d)

Figure 13. Triangle shape. Cells outside the desired shape are shown in light gray. Neigh-
borhood description is followed by fitness value. (a) Von Neumann (0.580). (b) Moore
(0.973). (c) 2-Radial (0.951). (d) Margolus (0.879).

(b)

(d)

Figure 14. Circle shape. Cells outside the desired shape are shown in light gray. Neighbor-
hood description is followed by fitness value. (a) Von Neumann (0.868). (b) Moore (0.953).
(c) 2-Radial (0.901). (d) Margolus (0.939).

Asynchronous updating of cells was originally chosen for the CA implementation, as it
had been reported to give more biological-like results [32]. However, in the pattern genera-
tion simulations presented in the next section, synchronous updating was used for the sake
of reproducibility.
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(a) (b)

Figure 15. Desired 3D shapes. (a) Cube. (b) Sphere.

(a) (b)

Figure 16. Shapes obtained using the 3D Margolus neighborhood model. Cells outside the
desired shape are shown in light gray. Shape description is followed by fitness value. (a)
Cube (0.9920), and (b) Sphere (0.8911).

7. Pattern Generation

The GA described in Section 5. was used in all cases to evolve the genome for the desired
colored patterns, where each color represented a different structural gene being expressed.
The goal was to combine different colored shapes expressed by structural genes in order to
obtain a predefined pattern. After a genome was obtained, an initial active cell was placed in
the middle of the CA lattice and was allowed to reproduce controlled by the gene activation
sequence found by the GA and under the restrictions imposed by the morphogenetic fields.
In order to grow the desired pattern with a predefined color and position for each cell, the
regulatory genes inthe ARN had to evolve to be activated in an appropriate sequence and for
a specific number of iterations inside the allowed space defined by the morphogenetic fields.
Not all GA experiments produced a genome capable of generating the desired pattern.

The artificial development models were applied to what is known ag-thach flag
problem The problem of generating a French flag pattern was first introduced by Wolpert
in the late 1960s when trying to formulate the problem of cell pattern development and
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Figure 17. Growth of a 2D French flag pattern. Morphogenetic fields for each gene are
shown in light blue. (a) Initial cell. (b) Central white square with morphogenetic field for
gene 1 (square). (c) White central square and left blue square with morphogenetic field for
gene 2 (extend to left). (d) Finished flag pattern with morphogenetic field for gene 3 (extend
to right). (e) Graph of the protein concentration change from the genome expressing the
French flag pattern; the unlabeled lines correspond to proteins from regulatory genes that
are not associated with structural genes.

regulation in living organisms [33], and it has been used since then by some authors to
study the problem of artificial pattern development [34]. In order to grow a French flag
pattern in 2D, three different structural genes were first evolved. The first gene drove the
creation of the central white square, while the next two genes extended the central square
to the left and to the right, expressing the blue and the red color, respectively. The last two
structural genes were evolved as described in Section 6. (results not shown) and they do not
code specifically for a square; instead they extend a vertical line of cells to the left or to the
right for as many time steps as they are activated [35].

Figure 17 shows a 2% 9 French flag grown from the expression of the three structural
genes mentioned above. The graph of the corresponding regulatory protein concentration
change over time is shown in 17(e). Starting with an initial white cell (a), a white central
square is formed from the expression of gene number 1 (b), the left blue square is then
grown (c), followed by the right red square (d). The evolved morphogenetic fields are
shown for each of the three structural genes. Since the pattern obtained was exactly as
desired, the fitness value assigned to the corresponding genome was 1.

In order to grow a solid 3D French flag pattern, three different structural genes were
used. Expression of the first gene creates the white central cube, while the other two genes
drive cells to extend the lateral walls to the left and to the right simultaneously, expressing
the blue and the red color, respectively. These two last genes were evolved previously and
they do not necessarily code for a cube, since they only extend a wall of cells to the left
and to the right for as many time steps as they are activated, and when unconstrained, they
produce a symmetrical pattern along thaxis. The independent expression of these three
genes is shown in Fig. 18.
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Figure 18. Expression of the three genes used to create a 3D French flag pattern. (a) Create
central white cube. (b) Extend blue lateral walls. (c) Extend red lateral walls. The last two
genes were activated after the creation of a white central cube

The two genes that extended the lateral walls were activated after a central white cube
was first produced. In order to generate the desired French flag pattern, cells expressing one
of these two genes should only be allowed to reproduce on each side of the white central
cube (left for the blue cube and right for the red cube). This behavior was to be achieved
through the use of genomes where the morphogen threshold activation sites evolved to allow
growth only in the desired portions of the 3D CA lattice [36].

Figure 19 shows a @ 3 x 3 solid French flag pattern grown from the expression of
the three structural genes mentioned above. The graph of the corresponding ARN protein
concentration change is shown in Fig. 19(e). Starting with an initial white cell (a), a white
central cube is formed from the expression of gene number 1 (b), the right red cube is then
grown (c), followed by the left blue cube (d). The evolved morphogenetic fields where
cells are allowed to grow are depicted in the figure as a translucent volume for each of the
three structural genes. Note that for the genes that extend the wall of cells to the sides, the
corresponding morphogenetic fields limited growth to the desired direction (red to the right
and blue to the left) and produced the desired French flag pattern.

8. Discussion

At the initial stages of the work, the generation of several shapes both convex and non-
convex was tried. In geometry, a convex shape has the property that the line segment that
joins any two points in the shape is contained within the shape. Given the discrete nature of
cell positions in the lattice, convex shapes are harder to define in a CA. We could say that
convex shapes in a CA are those where all the filled cells in the shape are circumscribed by
the perimeter of a real-valued convex shape with no space left for complete empty cells.
Among the non-convex shapes that were tried, there was a star shape and an L-shaped
form. However, it was soon discovered that non-convex shapes are difficult to obtain in
a CA with a single rule table and with no provision for allowing filled cells to revert to
the empty state. Basically the problem of forming non-convex shapes in a CA with these
restrictions is that the same rule table is applied to all cells. Since cells forming a single
shape in a CA with a single transition rule are all the same and they only have limited local
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Figure 19. Growth of a 3D French flag pattern. (a) Initial cell. (b) Central white cube
with morphogenetic field for gene 1 (cube). (c) Central white cube and right red cube with
morphogenetic field for gene 3 (extend red lateral walls). (d) Finished flag pattern with mor-
phogenetic field for gene 2 (extend blue lateral walls). (e) Graph of protein concentration
change from the genome expressing the French flag pattern; the unlabeled lines correspond
to proteins from regulatory genes that are not associated with structural genes.

information, there is no coordination among cells to differentiate into cells with different
roles. Given that cell death and cell displacement are not allowed in the model for the sake
of simplicity, once an empty cell becomes occupied or filled, it remains in that state for the
rest of the simulation. To compound the problem, a filled cell can only be introduced in the
lattice if there is already a filled cell in the neighborhood template.

For the above reasons, all single shapes selected in the end both in 2D and 3D were
of the convex type. However, the problem of forming a non-convex pattern in the cellular
growth testbed could be solved through the use of cell differentiation, by means of the
selective expression of structural genes containing different rule tables.

Results obtained in setting up the framework for single shape generation in 2D showed
that although there was not one model that could generate all four shapes with a high de-
gree of accuracy, it was evident that some models were more appropriate than others in
building a particular shape. For instance, the von Neumann model was patrticularly effi-
cient in generating the diamond shape, which is no surprise given the spatial disposition of
the neighborhood template itself. However, for the other shapes, the von Neumann model
had the worst performance in form generation, possibly due to its “blindness” towards the
adjacent diagonally positioned cells.

As for the other neighborhoods, even though the Moore neighborhood template could
be viewed as a subset of the 2-Radial neighborhood template, the final chromosomes ob-
tained with the Moore model had higher fitness values for all four shapes. One possible
explanation is that the 2-Radial model had a far larger search space than the Moore model,
which could make it difficult for the GA to find the fithess maxima. Furthermore, unlike the
other neighborhoods where all cells in the outer neighborhood were directly adjacent to the
central cell, in the 2-Radial template some cells could be introduced in the lattice without an
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intermediate cell to be present. In particular the four cells farthest from the neighborhood
center could in principle generate a filled cell at the objective cell. This nonetheless gave
no apparent advantage to this neighborhood over the other templates.

Although some of the shapes evolved in the cellular growth testbed are not strictly
convex, the cells that are not inside the convex shapes are mainly generated by means of
the random asynchronous selection of cell reproduction. The shapes shown in the figures of
Section 6. are only the product of individual runs. Different runs normally rendered slightly
different shapes, and that is the reason for using a probabilistic approach of summarizing
the results from 100 runs.

On the average, of the four neighborhoods studied, the most promising models in shape
generation were those corresponding to the Moore and the Margolus templates, both with
practically the same average fitness (see Table 2). The results obtained with the Margolus
template were in most cases comparable to those derived with the Moore neighborhood,
even though the former had a chromosome size that was less than a tenth in length than
that of the latter. The only case where the Moore neighborhood showed some advantage
over the Margolus neighborhood was in the generation of the triangle. Nevertheless, it is
possible that the Moore neighborhood would be better at forming more complex shapes
than the Margolus template, given its much larger search space. It is for this reason that the
Moore neighborhood was chosen as template for the evaluation of the ARN models in the
cellular growth testbed. In the 3D case, results showed that the combination of a GA and
CA with a 3D Margolus interaction neighborhood was an appropriate choice for modeling
3D shape generation.

As for letting the number of iterations evolve in the cellular growth testbed when gener-
ating a predefined shape, this decision turned out to be correct, as the number of iterations
needed to create the shapes was not always the same as those intuitively expected. However,
in the simulations that best approached the shapes desired, the number of iterations evolved
were close to or exactly the same as those expected. It was decided nonetheless that one
should not to influence the results with preconceived notions of the expected outcome.

On the other hand, simulations involving the ARN models show that a GA can give
reproducible results in evolving an ARN to grow predefined simple 2D and 3D cell patterns
starting with a single cell. In particular, it was found that using this ARN model it was
feasible to reliably synchronize up to three structural genes to generate a French flag pattern.

One restriction of the ARN models presented is that all cells synchronously follow the
same genetic program, as a sort of biological clock. This has obvious advantages for syn-
chronizing the behavior of developing cells, but it would also be desirable that cells had an
individual program —possibly a separate ARN— for reacting to local unexpected changes
in their environment. Morphogenetic fields provide a means to extract information from
the environment, but an independent program would lend more flexibility and robustness to
a developing organism. After all, living organisms do contain a series of gene regulatory
networks for development and metabolism control. One could even envision either a hier-
archy of ARNs, where some ARNSs could be used to regulate others ARNSs, or a network of
ARNSs, where all ARNs could influence and regulate each other.
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9. Conclusion

The CA-based cellular growth testbed presented proved to be suitable for obtaining simple
convex 2D and 3D shapes. Although it was hard to find a CA model that consistently
generated convex shapes with a single rule table and no reversion to the empty cell state
from the filled cell state, it was found that the expression of different rule tables through the
synchronization of an activation sequence in an ARN model could readily do it.

The results presented in this chapter show that a GA can give reproducible results in
evolving an ARN to grow predefined simple cellular patterns starting with a single cell. In
particular, simulations showed that the combination of a GA and CA with a Moore and a 3D
Margolus interaction neighborhood was a feasible choice for modeling pattern generation
in 2D and 3D, respectively.

More work is needed to explore pattern formation of more complex forms, both in 2D
and 3D. Itis also desirable to study pattern formation allowing cell death and cell displace-
ment, as in actual cellular growth. Furthermore, in order to build a more accurate model of
the growth process, the use of a more realistic physical environment may be necessary.

One of the long-term goal of this work is to study the emergent properties of the artificial
development process. Itis conceivable that highly complex structures will one day be built
from the interaction of myriads of simpler entities controlled by a development program.
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STRUCTURAL AND SYMMETRY ANALYSIS OF
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Abstract

To study discrete dynamical systems of different types — deterministic, statistical and
guantum — we develop various approaches.We introduce the concept of a system of
discrete relations on an abstract simplicial complex and develop algorithms for anal-
ysis of compatibility and construction of canonical decompositions of such systems.
To illustrate these techniques we describe their application to some cellular automata.
Much attention is paid to study symmetries of the systems. In the case of determin-
istic systems, we reveal some important relations between symmetries and dynamics.
We demonstrate that moving soliton-like structures arise inevitably in deterministic
dynamical system whose symmetry group splits the set of states into a finite number
of group orbits. We develop algorithms and programs exploiting discrete symmetries
to study microcanonical ensembles and search phase transitions in mesoscopic lattice
models. We propose an approach to quantization of discrete systems based on intro-
duction of gauge connection with values in unitary representations of finite groups —
the elements of the connection are interpreted as amplitudes of quantum transitions.
We discuss properties of a quantum description of finite systems. In particular, we
demonstrate that a finite quantum system can be embedded into a larger classical sys-
tem. Computer algebra and computational group theory methods were useful tools in
our study.

Keywords: discrete relations, cellular automata, symmetries of discrete systems, discrete
gauge principle, quantization, computer algebra
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1. Introduction

There are many reasons — physical, mathematical, and conceptual — to study discrete
structures. Discrete systems are important in applicationaanostructures, for exam-

ple, by their nature are discrete, not continuous, formations. From a fundamental point
of view, there are many philosophical and physical arguments that discreteness better de-
scribes physicsat small distances than continuity which arises only as approximation or
as a logical limit in considering large collections of discrete structures. As a recent de-
velopment, let us mention much-discussed E. Verlinde's thermodynamic (entropic) deriva-
tion [1] of gravity and Newton’s law of inertia from G. 't Hooft'iolographic principle

[2]. The holographic principle conjectures that it is possible to describe physical events in
a three-dimensional volume fully by a theory on its temporally varying two-dimensional
boundary —holographic screern— containingfinite number of discrete degrees of free-
dom. Entropy of these degrees of freedom, i.e., number of ¥jtés proportional to the

areaA of the screenN = A—C3.2 In more speculative sense, the whole universe is a finite
two-dimensional information structure on tlsesmological horizonand observable three
dimensions are only an effective description at macroscopic scales and at low energies.
Verlinde shows that the laws of Newton and the Einstein equations come out directly and
unavoidably from the holographic principle. The gravity appears to beraropic force
arising in systems with many degrees of freedom by the statistical tendency to increase its
entropy — like osmasis or elasticity of polymers. Verlinde derived his results combining
hoIography(N = é—i) the equipartition rule (assumption on even distribution of energy
over N bits), 1st law of thermodynamidslE = T'dS — Fdz) and several additional stan-
dard relations. To introduce thermodynamics, i.e., to constaebnical partition function

there is no need to know details of microscopic dynamics. It suffices to know anaugy

and number of states. Of course, the fundamental problem about laws governing bit dy-
namics on holographic screens remains unsolved. Since Planck scales are experimentally
unavailable — the Planck length is abalfi—3®> meters, i.e., far below the spacial resolu-
tion of particle accelerators (nowadays abo0t '®* meters) — the construction and study

of various discrete dynamical models is one of the possible approaches.

In this chapter we consider three types of discrete dynamical systems: deterministic,
mesoscopic statistical and quantum.

We begin with a general discussion of dyscrete dynamical systems. The most funda-
mental concepts are a discrete time and a set of states evolving in the time. A space is
considered as a derived concept providing the set of states with the specific structure of a
set of functions on the points of space with values in some set of local states. We give an
illustration of how a space-time may arise in simple models of discrete dynamics. Then we
discuss symmetries of space and local states and how these symmetries can be combined
into a single group of symmetries of the system as a whole.

We introduce the concept of a systemdifcrete relations on an abstract simplicial

10f course, the question of “whether the real world is discrete or continuous” and even “finite or infinite”
is rathermetaphysicali.e., neither empirical observations nor logical arguments can validate one of the two
adoptions — this is a matter of belief or taste.

2In theories withemergent spacéhis relation may be used as definition of area: each fundamental bit
occupies by definition one unit of area.
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complex[3, 4], and explain how any system of discrete relations — subsets of Cartesian
products of finite sets — acquires the structure of an abstract simplicial complex. This
general concept covers many discrete mathematical structures. In particular, it can be con-
sidered as generalization of cellular automata or as a set-theoretical analog of systems of
polynomial equations — if all factors of the Cartesian product are sets with the same num-
ber of elements and this number psime power, than any relation can be expressed by
polynomial equation. We describe algorithms for analysingpatibilityand constructing
canonical decompositionsf discrete relations. As an illustration, we give results of ap-
plication of the algorithms to some cellular automata, namely, Conway’s autorGore

of Life and Wolfram’'selementary cellular automataFor many of the latter automata the
canonical decomposition allows to obtain either general solutions in closed form or impor-
tant information on their global behavior.

Symmetry is a property of fundamental importance for any mathematical or physical
structure. Many real world discrete systems, e.g., carbon nanostructures like graphenes and
fullerenes, are highly symmetric formations. Symmetries play essential role in the dynam-
ics of the systems. In this chapter we consider connection between symmetries of discrete
dynamical systems on graphs — 1-dimensional simplicial complexes — and their dynamics
[5, 6]. Inthe case ofleterministic dynamical systepsuch as cellular automata, non-trivial
connections between the lattice symmetries and dynamics are revealed. In particular, we
show that formation of moving soliton-like structures — typical examples are “spaceships”
in cellular automata — is a direct result of the existence of non-trivial symmetry.

We developed also algorithms exploiting symmetries for computing microcanonical
partition functions and for searching phase transitionsiesoscopic lattice models

We consider a class of discrete dynamical models allowing quantum description [7].
Our approach to quantization consists in introduction of gauge connection with values in
unitary representation (not necessarily 1-dimensional) of some groapsshal symmetries
— the elements of the connection are interpreted as amplitudes of quantum transitions. The
standard quantization is a special case of this construction — Feynman’s path amplitude
e’/ Ldt can be interpreted as parallel transport with values in (1-dimensional) fundamental
representatiofy (1) of the group of phase transformations. For discrete systems it is natural
to take afinite group as thejuantizinggroup, in this case all manipulations — in contrast
to the standard quantization — remain within the framework of constructive discrete math-
ematics requiring no more than the ringalfjebraic integergand sometimes the quotient
field of this ring). On the other hand, the standard quantization can be approximated by
taking 1-dimensional representations of large enough finite groups.

Any approach to quantization leads ultimately to unitary operators acting on a Hilbert
space. We discuss peculiarities of quantum description of finite systems, under the assump-
tion that the operators describing quantum behavior are elements of unitary representations
of finite groups. We show that in this case any quantum problem can be embedded into a
classical one with a larger space of representation.

Computer algebra and computational group theory [8] methods turned out to be quite
useful tools in our study of discrete systems.
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2. Discrete Dynamics

Generally,discrete dynamical systeia a setS = {s,...,sy,} of distinguishable states
evolving indiscrete time ¢ 7 =2 7Z = {...,—1,0,1,...}, i.e.,evolutionor historyis an
element of the sef = S7. Dynamicsis determined by somevolution ruleconnecting

the current statg; € S of the system with its prehistory; 1, s;_o, s;_3, ... Different
types of evolution rules are possible. We shall consider here the following types of discrete
dynamics.

e Evolution rule ofdeterministic dynamical systeimafunctional relation This means
that the current state is a function of the prehistory:

st = F (st—1,8t—2,5t-3,...). Q)
Cellular automaton is a typical example of deterministic dynamical system.

e Statistical lattice models a sort of non-deterministic dynamical system. This is a
special case dflarkov chain In statistical lattice model transition from one state to
any other is possible with probability controlled by a Hamiltonian.

e Quantum systeris another important type of non-deterministic dynamical system.
The probabilities of transitions between states are expressed in terms of complex-
valued transition amplitudes.

Symmetries play an important — central in the case of quantum systems — role in
dynamical systems. So we assume the existence of a non-trivial gkoup{w; = 1, wo,
..., Wny, }2 acting on the set of staté& W < Sym (S). Action of the groupW splits the
set of statesS into orbits of different sizes:S = | |O; (disjoint union).
7

2.1. Discrete Dynamical Models with Space

In applications the set of state$ usually has a special structure of a set of functions on
some space.The following constructions form the basis for all types of dynamical systems
we consider in this chapter:

1. Spaceis a discrete (basically finite) set of poin¥ = {xi,xa,...,xy,} provided
with the structure of an abstract reguléryalent) graph.

2. Space symmetry groupcG = {g1 =1,g2,...,8n,} IS the graph automorphism
group:G = Aut(X) < Sym (X). We assume thdt actstransitivelyon X.

3. Local space symmetry group defined as thatabilizer of a vertexx; in the space
groupG: g € Gjoc = Stabg (x) meansx;g = x;.4 Due to the transitivity all such
subgroups are isomorphic and we shall denote the isomorphism clasg byThis
is subgroup of the space symmetry grop;. < G.

3We denote the identity elements fiyfor all groups throughout this chapter.
“We write group actionsn the right This, more intuitive, convention is adopted in ba@\P andMagma
— the most widespread computer algebra systems with advanced facilities for computational group theory.
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4. Pointsz € X take values in a finite séf = {0, 09, ..., on, } Of local states.

5. Internal symmetry group' = {71 = 1,72,..., v~} isagroupl’ < Sym (3) acting
on the set of local states.

6. States of the whole systemme functionsr(z) € £X = S, and the set of evolutions
takes the fornt = (EX)T =

7. We define thevhole symmetrgroupsW unifying spaceG and internal”’ symmetries
as equivalence classes of split group extensions of the form

15T WoG—1,

whereI'® is the set ofl-valued functions orX. (More detailed description of this
construction see in Sect. 2.1.3.)

The separation of the sétinto “space” and “local states” is not fundamental — it is model-

and interpretation-dependent. An example of a system with a somewhat non-standard no-
tion of space is a quantum computer. Here the spadégthe set ofNx qubits, the set of

local states> is {0, 1}. The whole set of state$ = {0, 1}* contain®2Vx elements.

2.1.1. Example of Discrete Model with Emergent Space-time.

Modern fundamental theories, in particular the string theory, provide evidence that space
is an emergent phenomenon [9], arising from more basic concepts. We demonstrate here
that if we have a concept of time then discrete space-time structures may arise under very
simple and general assumptions. It is sufficient to have a time-labelled sequence of events
and ability to distinguish different types of the events. Then space dimensions arise as the
counters of events of different types.

Let us consider a set of states (symbalsy {01, 09, ..., 0n+1} and assume that it is
possible to observe the sequences (histories) sg, s1 - - - s¢, Wheres; € X. Let us define
a space-time point as equivalence class of sequences with equal numbers of occurrences
of each symbol, i.e.p is a “commutative monomial” of the total degreedescribed by
N + 1 non-negative integerg) = (n1,...,nN41), N1+ -+ nnt1 = t, n; € Z>o IS
multiplicity of symbol o; in the historyh. The concepts of “causality” and “light cones”
arises naturally. The “speed of light limitation” is simply impossibility to get more than
symbols (“perceptions”) it observations — in terms of monomials the “past light cone” is
the set of divisors of the monomial the “future light cone” is the set of its multiples, see
Fig. 1.

The union of all possible histories form @usal network. As to modelling continu-
ous Euclidean spaces by this structure, the system of discrete points can be embedded into
a continuum in many different ways: as a set of discrete points into a continuous space
of arbitrary non-zero dimensiénas a network into a three-dimensional spacto sepa-
rate space from the space-time one should introduce a rule identifying points at different

SFor example, the map— a1n1+- - -+anvr1nni1 € RY, whereo; are independentirracionals, provides
one-to-one embedding of the set of points ifitb.
8A network, as a locally finite 1-dimensional simplicial complex, can always be embeddeRinto
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Figure 1. Space-time point is equivalence class of paths with equal numbers of
N1, N2y« - -, MN41-

times. The identification can be any causality-respecting projection onto the-sebnst.

To construct an illustrative discrete model of this section we use the following projection.
Let us identify the symbolsr; with N + 1 unit vectors forming regular simplex in an
N-dimensional Euclidean space. These systems of vectors (network generating sets) look

/
like : K /(. for N = 1,2, 3, respectively. The space lattices generated

by these sets in four time steps= 4) for the casesV = 2 and N = 3 are shown in the
figure

< N

With these prerequisites, let us construct a simple physical model in 1-dimensional
space (N= 1). We haveX = {01,092} = {—, <}, t = n1 +n2 € Z>o. Letus add a
little physics by imposing the structure 8ernoulli trials on the sequencés= sgps; - - - s¢.
Namely, let us introduce probabilitieg andps (p2 + p1 = 1) for possible outcomes;
ando,, of a single trial. The probability of a separate histérys described by thbinomial
distribution

ny +ny)!
(14 1)l @
ning.

From this model we can see that the behavior of a discrete system may differ essentially

P (nl, ng) =
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from the behavior of its continuous approximation. Applying Stirling’s approximation to
(2) and introducing new variables = ny — ny, v = p1 — p2 — let us call them “space”
and “velocity”, respectively — we obtain

P(z,t)~ P (z,t) m[ { ( xl__vi > } 3)

This is thefundamental solutiorf the heat (also known agliffusion or Fokker—Planck’
equation:
opP x,t opP x,t 1—02) 52P x,t
@) | P _(1-0")9Pa.0) @
ot oz 2 Oz
Note that expression (3) — due to the velocity limitd < v < 1 in our model — contains
“relativistic” fragment 2= vl Note also that atv| = 1 equation (4) is reduced to the

V1—0?

AP (z,1) N OP (x,t)
ot ox

Now let us set a problem as is typical in mechanics: find extremal trajectories connect-
ing two fixed points(0,0) and (X, 7"). As a version of the “least action principle”, we
adopt here the search of trajectories of maximum probability. The probability of trajectory
connecting the point§), 0) and (X, 7") and passing through some intermediate p@int)
is the followingconditional probability

wave equation

=0. (5)

P(z,t)P(X —x,T —t)
P0,0)—(z,)—(x1) = PX.T)

= T — 1) (F55)! ()
= (G ey S ©

The conditional probability computed for approximation (3) takes the form

L

—(x — == X - .
(0,0)=(z,t) ~(X,T) VEA = oDIT(T —t) p 2(1 — 2 )tT(T — t)
One can see essential differences between (6) and (7):

e exact probabilities (6) doot dependn the velocityv (or, equivalently, on the prob-
abilitiesp, p, of a single trial), whereas (7) contaiagtificial dependence,

e it is easy to check that expression (6) allomsnytrajectories with thesame max-
imum probability whereas extremals of (7) adeterministic trajectories namely,
straight linesz = %t. This is a typical example of emergence of deterministic be-
haviour as a result of the law of large numbers approximation.

"The name of the equation depends on interpretation of the funétion ¢).
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2.1.2. Space Symmetries in More Detail.

A spaceX in our models has the structure of a graph. Graphs — we shall call them also
lattices— are sulfficient for all our purposes. In particular, they are adequate to introduce
gauge and quantum structures. The symmetry group of the Spacéhe graph automor-
phism groupG = Aut (X). The automorphism groumf a graph withn vertices may

have up ton! elements. Nevertheless, the most efficient currently algorithm designed by
B. McKay [10] determines the graph automorphisms by constructing compact set (no more
thann — 1 elements, but usually much less) of generators of the group.

Very often dynamics of a model is expressed in terms of rules defined on the neigh-
borhoods of lattice vertices. For this sort of models with locally defined evolution rules —
typical examples are cellular automata and the Ising model — the above mentioned group
of local symmetriesGy,. is essential. Local rules are defined orbits of G,,. on edges
from theneighborhood®f pointsx. Fig. 2 shows the symmetry grougsandG,. < G
for some carbon and hydrocarbon molecules.

Tetrahedrane C,H, Cubane CyHg Dodecahedrane CyyHap
G = Sym(4) G = Zy x Sym(4) G = Zy x Alt(5)
Gloc = Dg = S\an(g) Glroc = Dg Gloc = Dg
[ ]
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] ° ° @ ) .o
7 ] [ L ] L ..‘ .
o o—9o° ¢ Do
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. [ ) o
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[ ] @ ® . L) °
o . . LI ¢
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Fullerene Cg Toric graphene n x m
G =7y x Alt(5) G =D, x Dy, G=(Zx7Z)xDg
Gloc = ZZ G/m’ = ZZ n,m — o0 Gloz‘ = DU
n==0
og 0
%e® ¢ ... e o o o
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Figure 2. Symmetries of 3-valent (hydro)carbon nanostructures.

%5

Let us consider the role of the local groGh,. in more detail using thbuckyballf;-‘:..'{;:
as an example. The incarnations of this 3-valent graph include in particular:
e theCaley graph of the icosahedral grofip\lt(5) (in mathematics);

e themolecule of fulleren€’sy (in carbon chemistry).

8The classical book by F. Klein [11] is devoted entirely to this group.
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The symmetry group of the buckyball G = Aut (X) = Zy x Alt(5). The neighborhood

of a vertexz; takes the form

The set of neighborhood edges contains three elements:

. The stabilizer ofz; is Gio. = Stabg (z;) = Zo.

E; = {el,i = (xia 5171,1‘) y €2, = (xia x2,i) y €3,i = (-Tia w?),i)} .

The set of orbits of5;,. on F; consists of two orbits:

Q ={wi; ={e14, €2}, wa; = {esi}},

i.e., the stabilizer does not move the edge, x3;) and swapsx;, z1 ;) and (z;, z2,) .

This asymmetry results from different roles the edges play in the structure of the buckyball:
(xi,z1,) and(z;, x2;) are edges of a pentagon adjacenttq whereagz;, x3 ;) separates

two hexagons; in the carbon moleculg, the edge(z;, x3 ;) corresponds to the double
bond, whereas others are the single bonds.

Naturally formulated local rules determining behavior of a system must respect decom-
positions of neighborhoods into the orbits of the group of local symmetries. For example,
the Hamiltonian of the Ising model on the buckyball must depend on two, generally differ-
ent, coupling constantg,» and.J;. Moreover, the coupling constants may be of different
types — ferromagnetic or antiferromagnetic — and this may lead to interesting behavior of
the model. Such natural Hamiltonian should take the form

1
Hyueky = —3 D sl (s1i+s20) + Jzszil =B si, (8)

2

wheres;, 51, 2.4, 53 € X = {—1,1}. In a similar way the local rule for a cellular au-
tomaton on the buckyball must have the form

ZC; = f(wivwla“xzi"rg’i) ’

where functionf must be symmetric with respect to variables; andz. ;, i.e.,
I (@i, w14, 224, 23,0) = f (245, 02,4, 1,4, T3,4) -

2.1.3. Unification of Space and Internal Symmetries.

Having the groupss andI” acting onX and:, respectively, we can combine them into a
single groupW < Sym (EX) which acts on the state$ = ¥X of the whole system. The
groupW can be identified, as a set, with tBartesian product'* @ G, wherel'* is the set

of I'-valued functions orX. That is, every element € W can be represented in the form

u = (a(z), a), wherea(z) € I'* anda € G. A priori there are different possible ways

to combineG andT into a single group. So selection of possible combinations should be
guided by some natural (physical) reasons. General arguments convince that the required
combinationW should be asplit extensiorof the groupG by the groupl'®. In physics, it
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is usually assumed that the space and internal symmetries are independe, isethe
direct productl'™* x G with action on:* and multiplication rules:

o(x)(a(x), a) = o(x)a(x) action,
(a(z), a)(B(z), b)) = (a(x)p(z), ab) multiplication 9)

Another standard construction is theath product’x G having a structure of the semidi-
rect product™® x G with action and multiplication

(Oé ($), CL) (ﬂ(l’), b) = (a (a:)ﬁ(a:a), ab) (10)

These examples are generalized by the following
Statement. There are equivalence classes of split group extensions

1 -TX - W—-G—1 (11)

determined by antihomomorphists: G — G. The equivalence is described by arbitrary
functions : G — G. The explicit formulas for main group operations -actionon ©%,
multiplicationand inversion— are

o(z)(a(z), a) = o(zu(a))a(zk(a)), (12)
(a(x), a)(B(x), b) = (a (wn(ab)_lu(b)m(a)) 8 (wm(ab)_lfi(b)), ab) , (13)
(a(z), a)' = <a (.,”Uli (a_l)_1 u(a)_l/i(a)>_l, a_1> . (14)

This statement follows from the general description of the structure of split extensions
of a groupG by a groupH: all such extensions are determined by the homomorphisms
from G to Aut (H) (see, e.g., [12]). Specializing this description to the case wihies
the set ofl'-valued function onX andG acts on arguments of these functions we obtain
our statement. Thequivalenceof extensions with the same antihomomorfignibut with
different functionss is expressed by the commutative diagram

1 IS W G 1
;{ , (15)
1 rx w/ G 1

where the mappind( takes the formkK : (a(z), a) — (a(zk(a)), a).

Note that the standardirect andwreathproducts are obtained from this general con-
struction by choosing antihomomorphisméz) = 1 andu(a) = a~*, respectively. As to
thearbitrary function, the choices:(a) = 1 andx(a) = a1, respectively, are generally
used in the literature.

®The term ‘antihomomorphism’ means thata) (b)) = u(ba).
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In our computer programs (written in C) the groWpis specified by two group& and
I' and two functiong:(a) andx(a) implemented as arrays. Itis convenient in computations
to use the following specializationi(a) = o~ andx(a) = a*. For such a choice formulas
(12)-14 take the form

o(z)(a(z), a) = o(za™)a (:J:ak) , (16)
(a(@), @) (B(x), 1) = (a(w(ab)*mam) 3 (a(ab) Mb), ab),  (17)
(a(z), )t = <a (xa2k+m)_1, a_1> . (18)

Herek is arbitrary integer, butmn is restricted only to two valuesn = 0 andm = 1, i.e.,

such specialization does not cover other than, respectigigbct andwreathtypes of split
extentions. On the other hand, the antihomomorphigifag = 1 andu(a) = a~! exist

for any group, while others depend on the particular structure of a group. Note that actions
of G on any functionf(x) are calledtrivial andnatural for u(a) = 1 andu(a) = a~ !,
respectively.

3. Structural Analysis of Discrete Relations

The methods of compatibility analysis, such as the Grobner basis computation or reduction
to involutive form, are widely used to study systems of polynomial and differential equa-
tions. In this section we develop similar techniques for discrete systems, in particular, for
cellular automata.

Let us consider the Cartesian prodigt = ¥; x ¥ x - - - x ¥, i.€., the set of ordered
n-tuples(oy, o9, ...,0,), with o; € ¥, for eachi. By definition, n-ary relation is any
subset of then-dimensional hyperparallelepiped®. We assume that; are finite sets of
gi = |X;| elements that we shall catates.

We can treat, dimensions of the hyperparallelepip&f as elements of a set of points
X = {z1,z9,...,2,}. To make this initially amorphous set into a “space” (or “space-
time”) we should provideX with a structure determining how “close” to each other are
different points. The relevant mathematical abstraction of such a structure is an abstract
simplicial complex. The natural concept of space assumes the homogeneity of its points.
This means that there exists a symmetry group acting transitivelyXome., providing
possibility to “move” any point into any other. The homogeneity is possible only iball
are equivalent. Let us denote the equivalence class.bWe can represent canonically
inthe form% = {0,...,¢— 1}, ¢ = |X|.

If the number of states is a prime power= p™, we can additionally equip the s&t
with the structure of the Galois fieldl,. Using the functional completeness of polynomials
— this means thaanyfunction can be represented as polynomial — over finite fields [13],
we can represent arfyary relation onx as a set of zeros of some polynomial belonging to
theringF, [x1, . . ., zx]. Thus, the set of relations can be regarded as a system of polynomial
equations. Although this description is not necessary (and does not watkaife different
sets orq is not prime power), it is useful due to our habit to employ polynomials wherever
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possible and capability of applying different advanced tools of polynomial algebra, such as,
for example, the Grobner bases.

An abstract simplicial compleXsee, e.g., [14])X = (X, A) is determined by a set
of points X = {z1,z9,...,2,} and an assemblA of subsets ofX, which are called
simplices, such that (a) for all, € X {z;} € A and (b) ift C 6 € A, thent € A. The
subsets of a simplex — they are also simplices due to (b) — are chltms. Condition
(a) means that all one-element subsets are simplices. Clearly, the structure of the complex
K, i.e., the set), is uniquely determined by the simplices that amaximalby inclusion.
Dimensionof a simplexd is the numberdimd = |§| — 1. This definition is motivated
by the fact thatk + 1 points immersed in the general position into the Euclidean space
R"=* form ak-dimensional convex polyhedron. The dimension of a compiteis defined
as the maximum dimension of all simplices ii: dim K = max dim é. From the point

of view of abstract combinatorial topology, no matter how tehe complex can be immersed
into the spaceR™ — it is essential only how its simplices are connected with each other.
However, it follows from the Nobeling—Pontryagin theorem that any (locally finite) abstract
k-dimensional complex can be geometrically realized in the sfRée!. We will show
below that, for anyh-ary relationR C X7, one can regularly and uniguely construct some
abstract simplicial complex.

3.1. Basic Definitions and Constructions

In addition tok-simplices, which are singled out sets/ofi- 1 points, we need to consider
arbitrary sets of point. For brevity, we shall call sets containtrpints byk-sets. Dealing

with systems of relations defined on different sets of points, it is necessary to establish
correspondence between the points and dimensions of the hyperulihis is achieved

by using exponential notation. The notatidi®:} fixes = as the set of values of the point

z;. For thek-setd = {x1, ..., z}, we introduce the notatioR? = X{=1} x ... x nizs},

The sets is called thedomainof the relationR®. We will call the whole hypercub&? a

trivial relation. Accordingly,R’ C % denotes a relation given on the set of poifits

3.1.1. Relations

Thus, we have:

Definition 1 (relation). Arelation R° on the set of point$ = {z1,...,z;} is any
subset of the hypercub®’; i.e., R’ C 9.
The relationR® can be regarded as the Boolean-valued funcién 2% — {0, 1}. We can
think of z;'s as variables taking values k and write the relation as

a=R°(z1,...,21), a€{0,1}.

An important special case of relations:

Definition 2 (functional relation). Arelation R° on the set of points
§ = {x1,...,x} is calledfunctionalif there is a positioni € (1,...,%) such that
for anyoi, ..., 041,041y, 0k, S, T € X
from (0'1, < 051,68, 04415 - - .,O'k) € R® and(al, ey 041, Ty O 1y - .,Jk) € R’
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it follows that¢ = 7.
In terms of variables the functional relatidef can be written in the form

x;=F(z1,...,2i-1,%iy1,...,2), Where F: pICAREEI R )

We need to be able to extend relations from subsets of points to larger sets:
Definition 3 (extension of relation). For given set of poinisits subsetr C § and
relation R™ on the subset, we define thextensiorof R as the relation

R = R™ x 29\,

This definition, in particular, allows the relatior?’, ..., R defined on different do-
mains to be extended to the common domain, i.e., to the uRian- - - U ¢,,.

Logical implications of the relations are defined in a natural way:

Definition 4 (consequence of relation). A relati@p¥ is called aconsequencef the
relationR’ if R’ C Q° C ¥:i.e.,Q° is arbitrarysupersebf the setR’.

The relationR’ may have many different consequences: their total number (including
R itself and the trivial relatiorE?) is evidently equal te/= |-’

It is natural to single out the consequences that can be reduced to relations on smaller
sets of points:

Definition 5 (proper consequence). fontrivial relation@” is called theproper conse-
quenceof the relationR? if 7 is apropersubset of (i.e.,~ C §) and the relatior)” x 20\
is a consequence at°.

We call relations that have no proper consequencepriinge relations

3.1.2. Compatibility of Systems of Relations

The compatibility of a system of relations can naturally be defined by the intersection of
their extensions to the common domain:

Definition 6 (base relation). Thbase relatiorof the system of relations
R% ..., R isthe relation

R’ = (R x 2%\, wheres = J ;.
=1 =1

Let us make two comments for the polynomial cgse p”, where the standard tool for the
compatibility analysis is the Grobner basis method:

e The compatibility condition determined by thmase relatiorcan be represented by a
singlepolynomial, unlike the Grdbner basis, which is normally a system of polyno-
mials.

e Any possible Grobner basis of polynomials representing the relatiths. . ., R
corresponds to some combination of consequences didke relation.
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3.1.3. Decomposition of Relations

If a relation has proper consequences, we can try to express it as far as possible in terms of

these consequences, i.e., relations on smaller sets of points. To this end we introduce
Definition 7 (canonical decomposition). Theanonical decompositioof a relationR?

with proper consequencé®’!, . . ., Q% is the relation

R =P (ﬁ Q% x 25\52') , (19)
i=1

where the factoP? is defined by the following
Definition 8 (principal factor). Theprincipal factor of the relationR’ with proper
consequence@®, ..., Q% is the relation

P§ _ R(SU (E(S \ ﬁ Qéi > 25\51') )
=1

The principal factor is the maximally “free” — i.e., the closest to the trivial — relation that,
together with the proper consequences, makes it possible to recover the initial relation.
If the principal factor in the canonical decomposition s trivial, the relation is completely
reduced to relations on smaller sets of points.
Definition 9 (reducible relation). A relatior?’ is said to bereducibleif it can be
represented as

RO = () Q% x 2\, (20)
i=1

whered; areproper subsetsf 6.

This definition makes it possible to impose a “topology” — i.e., the structure of an
abstract simplicial complex with the corresponding theories of homologies, cohomologies,
etc. — on ararbitrary n-ary relationR C ¥". This is achieved by

e naming the dimensions of the hypercubg as the “pointszy, ..., z, € X,
e decomposing? (which can now be denoted by¥) into irreducible components,

¢ and defining thenaximal simplice®f the setA as thedomainsof irreducible com-
ponents of the relatiofX .

3.1.4. On Representation of Relations in Computer

A few words are needed about computer implementation of relations. To spekiyra
relation R* we should mark its points within the-dimensional hypercube (or hyperparal-
lelepiped)X*, i.e., define aharacteristic functiony : ©* — {0,1}, with x(¢) = 1 or

0 according as € RF or & ¢ R*. HereGd = (og,01,...,05_1) is a point of the hy-
percube. The simplest way to implement the characteristic function is to enumerate all the
¢"* hypercube points in some standard, e.g., lexicographic order. Then the relation can be
represented by a string gf bits aga - - -ak_y Inaccordance with the table:
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o o1 .. Og_2  Ok_1 iz x(7)
0 0 0 0 0 g
1 0 0 0 1 o
g—2 q—-1 ... ¢g—1 q—1|¢" -2 Qgk_o
g—1 ¢g—1 ... g—1 qg—1| ¢ -1 Qgk_q

We call this stringbit table of relation. SymbolicallyBitTable [i;] := (& € R*). Note
thata is the (“little-endian”) representation of the numbgrin the radixq:

ig=00+01q+ -+ 0+ +op1g" .
In the case of hyperparallelepip&§ = £; x %5 x - - - x ¥j, one should use theulti-radix
representatiorof integers:

ig=00+o1Xq+ +0 Xqq ¢+t k-1 Xqq2 - Qr-1,

where0 < 0; < gi+1, 1 €[0,...,k—1].
The characteristic function (bit table) can be represented asitiaey integer

X:a0+a12—|—"'+ai2i+---+aqk_12qk_1. (22)

Most manipulations with relations are reduced to very efficient bitwise computer com-
mands. Of course, symmetric or sparse (or, vice versa, dense) relations can be represented
in a more economical way, but these are technical details of implementation.

3.2. lllustration: Application to Some Cellular Automata
3.2.1. J.Conway's Game of Life

The “Life family” is a set of 2-dimensional, binary (i.e¥, = {0,1}; ¢ = 2) cellular au-
tomata similar taConway’s Life which rule is defined on 9-cell (33) Moore neighborhood
and is described as follows. A cell is “born” if it has exactly 3 “alive” neighbors, “survives”

if it has 2 or 3 such neighbors, and “dies” otherwise. This rule is symbolized in terms of
the “birth”/*survival” lists as B3/S23. Another examples of automata from this family are
HighLife (the rule B36/S23), anBay&Night (the rule B3678/S34678). The site [15] con-
tains collection of more than twenty rules from the Life family with Java applet to run these
rules and descriptions of their behavior.

Generalizing this type of local rules, we defing-aalent Life ruleas abinaryrule on a
k-valent neighborhood (we adopt that, . . ., z; are neighbors ot of the central cell
xp+1) described by twarbitrary subsets of the se€ft0, 1, ..., k}. These subsetB, S C
{0, 1, ..., k} contain conditions for the one-time-step transitions; — z;_, of the forms
0 — 1 andl — 1, respectively. Since the number of subsets of any finitetsist2/4l and
differentpairs B/S definedifferentrules, the number of different rules defined by two sets
B andS is equal to2*+1 x 251, Thus, the total number df-valent rules described by the
“birth"/“survival” lists is

Nps ) = 22912, (22)
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There is another way to characterize this type of local rules. Let us considalent
rules symmetric with respect to the grofipm (k) of all permutations of outer points of
the neighborhood. We shall call such rulesymmetric. It is not difficult to count the total
number of differeng-ary k-symmetric rules:

k+q—1
Ng, sym(k) = q( ), (23)

We see that (23) evaluated@t= 2 coincides with (22), i.e.Ny sym®) = Np/s, k- Since
k-valent Life rules are obviouslig-symmetric we have the following
Proposition. For any k the set of-symmetric binary rules coincides with the sekevalent
Life rules.

This proposition implies in particular that one can always express fasymmetric
binary rule in terms of the “birth”/“survival” lists.

The local relation ofConway’s Life automatonR?,; is defined on the 10-set =

{z1,..., 210}
@ @
® ® @
®

Here the pointz;y = zj is the next-time-step of the poiny. By construction, elements of
the 10-dimensional hypercul}®® belong to the relation o€onway’s Lifeautomaton, i.e.,
(z1,...,710) € R%,;, inthe following cases:

=

. ( lemi :3> A (z10 = 1),

N

. (Z?:l X, = 2) A\ (:1:'9 = 1’10),
3. 210 = 0, if none of the above conditions holds.

The number of elements of the relatidtf,; is |RS, | = 512. The relationR,.,, as is

the case for any cellular automaton fisictional: the state ok is uniquely determined

by the states of other points. The state Bet= {0, 1} can beadditionally endowed with

the structure of the fielf,. We accompany the below analysis of the structuré%@fL by

description in terms of polynomials frof, [z, . . ., z1¢] . This is done only for illustrative

purposes and for comparison with the Grobner basis method. In fact, we transform the

relations into polynomials only for output. Transformation of any relation into polynomial

form can be performed by computationally very cheap multivariate version of the Lagrange

interpolation. In the case = 2, the polynomial which set of zeros corresponds to a relation

is constructed uniquely. i = p™ > 2, there is a freedom in the choice of nonzero values

of constructed polynomial, and the same relation can be represented by many polynomials.
The polynomial representin@%L takes the form

Per, = x10 + xg (7 4+ g + I3 4 Iy) + II7 + I3, (24)
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wherell, = IIj (x1,...,xg) is the kth elementary symmetric polynomidéfined forn
variablesry, . . ., z,, by the formula:
Hk (xl,...,wn): Z xilxi2~--:cik.

1<i1 <ip << <n
Hereafter, we will use the following notation:
szﬂk(wl,...,xg), 2Eﬂk(1‘1,...,f‘i,...,x8),
) =g (@1, .. Tiy ooy Tjy oo, T8) -

Applying the computer program tB(SCL, we find that the relatioanSCL is reducibleand has
the decomposition

7
S\{z ANES
R(SCL :RQ\{ 9}m (ﬂ R, { k}> ’ (25)
k=1
where (i1, ...,i7) is arbitrary 7-element subset of the g@t...,8). For brevity, we

dropped in (25) the trivial factors{=u } entering into the general formula (20).
The eight relationst\{“”i} (1 <4 < 8; for decomposition (25), it suffices to take any
seven of them) have the following polynomial form:

zor1g (MG + I + II5 + I1}) + 219 (IT§ + T4 + 1) + 29 (IT% + IO + I + II5) = 0.
Accordingly, the reIationg\{Ig} has the form
xlo(H7+H6+H3+H2+1) + 117 + 115 = 0.

The reIationst\{xi} andR‘;\{“} areirreduciblebutnot prime, and can be expanded in
accordance with formula (19). Continuing the decomposition iterations, we finally obtain
the following system of relations (in the polynomial form) that are satisfieddonway’s
Life:

zow1o (I +111) + 210 (T4 + 1) + z9 (ITh + I + 1T, + 1I5) = 0, (26)
x1o (I3 + 11 + 1) + 117 + I3 0, (27)

(:ngl() + $10> (ng + H;j + Hij + 1) = O7 (28)

zo (M + Ty +11+1) = 0, (29)

T10Tiy TiyTigTiy = 0. (30)

One can easily interpret the simplest relations (30): if the poigtis in the state 1, then at
least one pointin any set of four points surroundingmust be in the state 0.

The above analysis of the relatidef,, takes< 1 sec on a 1.8GHz AMD Athlon note-
book with 960Mb.

To compute the Grobner basis we must add to polynomial (24) ten polynomials

x?—kxi, 1=1,...,10

corresponding to the relatiarf = x that holds for all elements of any finite field,.
Computation of the Grobner basis ovér with the help ofMaple 9 gives the following:
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e pure lexicographic order with variable orderingy > z9 > --- > x; does not
provide any new information leaving initial polynomial (24) unchanged,;

e pure lexicographic order with variable ordering > x5 > --- > x19 reproduces
relations (26)—(30) (modulo several polynomial reductions violating the symmetry
of polynomials); the computation takes 1 h 22 min;

e degree-reverse-lexicographic order also reproduces system (26)—(30) (same com-
ment as above); the times are: 51 min for the variable ordering =5 > - - - > 10,
and 33 min for the orderingg = zg = ... > 7.

3.2.2. Elementary Cellular Automata

Simplest binary, nearest-neighbor, 1-dimensional cellular automata were redeneentary
cellular automataby S. Wolfram, who has extensively studied their properties [16]. A
large collection of results concerning these automata is presented in Wolfram'’s online atlas
[17]. In the exposition below we use Wolfram’s notations and terminology. The elementary
cellular automata are simpler th&@onway'’s Life and we may pay more attention to the
topological aspects of our approach.

Local rules of the elementary cellular automata are defined on the#=s€lp, ¢, r, s}

q

@ @
which can be pictured by the icon -

s = f(p,q,r). There are totall;@23 = 256 such functions, each of which can be indexed
with an 8-bit binary number.

Our computation with relations representing the local rules shows that the total number
256 of them is divided into 118 reducible and 138 irreducible relations. Only two of the
irreducible relations appeared to be prime, namely, the rules 105 and 150 in Wolfram’s nu-
meration. This numeration is based on the “big-endian” — i.e., opposite to our convention
(21) — representation of binary numbers. Note, that the prime rules 105 and 150 have
linear polynomial forms:s = p 4+ ¢ + r + 1 ands = p + ¢ + r, respectively.

We consider the elementary automata on a space-time lattice with integer coordinates
(z,t),i.e.,x € Zorx € Z,, (spatialm-periodicity),t € Z. We denote a state of the point
on the lattice byu(z,t) € ¥ = {0,1}. Generally the points are connected as is shown in
the picture

®
. Alocal rule is a binary function of the form

The absence of horizontal ties expresses the independence of “space-like” points in cellular
automata.

Reducible Automata. The analysis shows that some automata with reducible local rela-
tions can be represented as unions of automata defined on disconnected subcomplexes:
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e Two automata 0 and 255 are determined by unary relatioes0 ands = 1 on the
disconnected set of points:

Note that unary relations are usually calleperties.

e Sixautomata 15, 51, 85, 170, 204 and 240 are, in fact, disjoint collections of spacially
zero-dimensional automata, i.e., single cells evolving in time. As an example, let us
® @ ©
consider the automaton 15. The local relation is defined on the S% and its
%t table is 0101010110101010. This relation is reduced to the relation on the face

© With bit table 0110. The spacetime lattice is splitin the following way:

The bit table 0110 means that the poiptands can be only in opposite states, and
we can write immediately the general solution for the automaton 15:

u(z,t) =alr —t)+t mod 2,
whereu(z,0) = a(x) is an arbitrary initial condition.

e Eachofthe ten automata5, 10, 80, 90, 95, 160, 165, 175, 245, 250 is decomposed into
two identical automata. As an example let us consider the rule 90. This automaton
is distinguished as producing the fractal of topological dimension 1 and Hausdorff
dimensionin 3/ In2 =~ 1.58 known as theSierpinski sievéor gasketor triangle). Its

& @ O
local relation on the set o is represented by the bit table 1010010101011010.
The relation is reduced to the relation with the bit table

®

@
10010110 on the face o - (31)

It can be seen from the structure of face (31) that the spacetime lattice is split into
two identical independent complexes as is shown
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To find a general solution of the automaton 90 it is convenient to use the polynomial
form of relation (31)s + p + » = 0. With this linear expression, the general solution
is easily constructed:

Lt
u(z,t) = a(x —t+2k) mod 2, u(z,0) = a(z).
% ()

Using Proper Consequences. Proper consequences — even if they are not functional —
can provide useful information on the behavior of a cellular automaton.

For example, 64 automafa(with both reducible and irreducible local relations) have
proper consequences with the bit table

1101 (32)
on, at least, one of the faces
® @ @
® ©® @ . (33)

The algebraic forms of relation (32) on faces (33)ase-s = 0, ¢gs+s =0, rs+s =0,
respectively.

Relation (32) isnot functional, and hence can not describe any deterministic evolution.
Nevertheless, it imposes severe restrictions on the behavior of the automata having such
proper consequences. The features of the behavior resulting from relation (32) are clearly
seen from many of computational results presented in the atlas [17]. A typical pattern
from this atlas is reproduced in Fig. 3, where several evolutions of the automaton 168
are presented. In the figure, 0's and 1's are denoted by the empty and filled square cells,

" B " FoERSNLEET Y O CLEENET M UMW OET ORSEEEEEES" O O§

Figure 3. Rule 168. Several random initial conditions

9The complete list of these automata in Wolfram’s numeration is as follows: 2, 4, 8, 10, 16, 32, 34, 40, 42,
48,64,72,76, 80, 96,112, 128, 130, 132, 136, 138, 140, 144, 160, 162, 168,171, 174-176, 186, 187, 190-192,
196, 200, 205, 206, 208, 220, 222-224, 234-239, 241-254.
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respectively. Note that the authors of the figure use a spatially periodic conditiarZs.

The local relation of the automaton 168 — its polynomial fornpig: +qr +pr+s =0
— has the proper consequence+ s = 0. Relation (32) means that if, say as for the
rule 168, is in the state 1 thenmay be in both states 0 or 1, but if the staterdg 0, then
the state ok must be 0:

r=1=s=0Vs=1,
r=0=s=0.

One can see that all evolutions in Fig. 3 consist of diagonals x(, — ¢ directed leftward
and downward. Each diagonal begins with a several units, but after the first appearance of
zero all subsequent points along the diagonal are zeros.

Canonical Decomposition vs. Gobner Basis. In this paragraph we compare our canon-

ical decomposition (19) with Grobner basis in the polynomial case. Let us begin with two
examples of elementary cellular automata. The Grobner bases are computed in the total
degree and reverse lexicographical order of monomials. The trivial polynoptialsp,

q> + ¢, r? + r ands? + s are omitted in the Grobner bases descriptions.

e Automaton 30 is remarkable by its chaotic behavior and is even used as a random
number generator iMathematica
Relation:1001010101101010 or gr +s+r+ g+ p = 0.
Canonical Decomposition:

Proper consequences:

@ @ ® ®
face ® ©)
bit table 11011110 11011110
polynomial qs +pq+q rs+pr+r.

Principal factor:1011111101111111 or grs+pqr+rs+qgs+pr+pqg+s—+p = 0.
Grobner basis: {¢gr +s+r+q+p, ¢s+pg+q, rs+pr+r}.

Thus for the rule 30 the polynomials of the canonical decomposition coincide (mod-
ulo obvious polynomial substitutions) with the Grobner basis.

e Automaton 110is, like a Turing machineyniversal, i.e., it can simulate any compu-
tational process, in particular, any other cellular automaton.
Relation:1100000100111110 or pgr +qr+s—+1r+q = 0.

Canonical Decomposition:

Proper consequences:
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@ @ @ @® @ ®
face ® ® ®
bit table 11011111 11011111 10010111

polynomial pgs+qgs+pg+q prs+rs+pr+r qgrs+s+r+gq.
Principal factor:1111111111111110 or pgqrs = 0.
Grobner basis:
{prs+rs+pr+r, gs+rs+r+q, qr+rs+s+q, pr+pq+ps}.

For automaton 110, the polynomials of the Grobner basis are not identical with the
polynomials of the canonical decomposition. The system of relations defined by the
Grobner basis is:

RPE = 11011111 = (prs+rs+pr+7=0),
RYT = 10011111 = (gs +rs +7 + ¢ =0),
R = 10110111 = (gr +rs+s+q=0),
RPT™H = 1110101110111110 = (pr + pg + ps = 0) .

In general, the folowing differences between our approach and the Grobner basis method
can be mentioned.

e In contrast to a Grobner basis, a base relation, defined as intersection of conditions,
agrees with the standard in logic and set theory notion of compatibility.

¢ In contrast to a canonical decomposition a Grobner basis may look beyond the poly-
nomial context as a collection of accidental supersets.

e There is some analogy between Grobner bases and canonical decompositions — in
fact, they coincide in about half of cases in our computations.

e Canonical decomposition is more efficient for problems with polynomials of arbitrary
degree — the above computation with Conway'’s automaton is an example.

e For small degree problems with large numbeof indeterminates the Grobner basis
outperforms canonical decomposition — the number of polynomials of bounded de-
gree is a polynomial function of, whereas the algorithm of canonical decomposition
scans exponential numbet of the hypercube points.

4. Soliton-like Structures in Deterministic Dynamics

Symmetries of deterministic systems impose severe restrictions on the system dynamics
[6]. In particular, for the first ordét functional relations:

"This means that evolution relation (1) takes the form= F' (s;—1).
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e dynamical trajectoriepass group orbits inon-decreasingrder of orbit sizes,
e periodictrajectories lie within orbits of theame size.

One of the characteristic features of dynamical systems with non-trivial symmetries is for-
mation of moving form-preserving structures.

Let us begin with a simple example. Consider a cib&hose vertices take values
in two-element set, sa¥ = {0, 1}. By the way, as is clear from Fig. 4, a cube can be
interpreted as a simplest “finite model of graphene”. The 48-element symmetry group of a

a a b a

b a b a

Figure 4. The graph of cube forms 4-gonal (6 tetragons) lattice in siifeaad 6-gonal (4
hexagons) lattice in torug?.

cube has the structufé = Z, x Sym (4) . The group is generated by 3 elements:
1. 120° rotation around diagonal of the cube;
2. 90° rotation around axis passing through the centers of opposite cube faces;
3. reflection interchanging opposite faces of the cube.

Total number of states of the model]EX\ = 28 = 256. If we assume that the groupis
trivial, thenW = T'X x G = 1 x G = G. The groupW splits the set2* into 22 orbits in

Sizeoforbits |1 2 4 6 8 12 24
Numberoforbits)] 2 1 2 2 5 4 6

Let us consider aeterministicdynamical system on the cube, namely, symmetric bi-

nary 3-valent cellular automaton with the rule 86. The number 86 is the “little endian”
representation of the bit string 01101010 taken from the last column of the rule table with
Sym (3)-symmetric combinations of values fof ;, z ;, 3 ;

accordance with the table:

8

PR R RRRLOO-

=
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8

8
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Here z; is value ofith vertex of the cubey ;, x2;, x3; are values of the cube vertices
adjacent to théth one andz] is the next time value ofth vertex. The rule can also be rep-
resented irConway’s Life style “Birth7“Survival” notation as B123/S0, or as polynomial
over the fieldF,

x = x; + I3 + o + I,

wherell; = x1; + w2, + 34, o = 100, + 1,23 + 22,23, 13 = 21 ;20,23 are
elementary symmetric functions.

The phase portrait of the automaton is shown in Fig. 5, where the group orbits are
represented by circles containing the ordinal numbes$orbits within. The numbers over
orbits and within cycles are sizes of the orbits (recall that all orbits belonging to the same
cycle have equal sizes — see the beginning of this section). The rational nprimokcates
theweightof the corresponding element of the phase portrait. In fact,a probability for
randomly chosen state to appear in an isolated cycle or to be caught by an attyastor:
(size of basil/(total number of statés Heresize of basiris sum of sizes of orbits involved
in the struture.

24 24

12 12
(DD p%%zo.go

_ 9 o
p= g5 ~028
p= 15 ~0.16
p =3 ~0.09

Figure 5. Rule 86. Equivalence classes of trajectories on hexahedron.

Generalizing this example, we see that if the symmetry grddsplits the state set
¥X of deterministicdynamical system intéinite number of orbits, then after some lapse of
time any trajectory comesnevitablyto a cycle over some finite sequence of orbits. This
just means formation agoliton-like structuresNamely, let us consider evolution

Oty ('75) — Oty ('75) = At1t0 (Uto (.1‘)) . (34)

If the states at the momentg and¢; belong to thesame orbit o, (z) € O; andoy,(z) €
0;, O; C ¥X; then evolution (34) can be replaced by tweup action

o, (z) = ot (x)w, we W,

12These numbers are specified by the computer program in the course of computation.
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i.e., the initial state (“shape’d, () is reproduced after somerdovemeritin the space=X.
The following are several examples (including continuous cases) of cycles over group
orbits:

e traveling wavesr (z — vt) in mathematical physics — the Galilei group;

e “generalized coherent statéis quantum physics — unitary representations of com-
pact Lie groups;

e “spaceshipsin cellular automata — lattice symmetries.

Let us consider the “glider” — one of the “spaceships'@onway'’s Lifeautomaton.

The spaceX of Conway'’s Lifeis a square lattice. For the finiteness, we shall assume
that the lattice is closed into th& x N torus. In the general cas€ # 4 the symmetry
group of X is the semidirect product of two-dimensional translati@ifs= Zy x Zy and
the dihedral groups = Z4 % Zs:

G=T?xDg, if N=3,5,6,...,00. (35)

In the caseV = 4 the translation subgroup? = Z4 x Z, is not normalandG has a bit
more complicated structure [7]:

normal closure of T2
G= ((((ZQ X Dg) X Zg) X Zg) X Zg) NZQ. (36)

The extra symmetrys in (36) can be explained by th&; symmetry of the four-vertex
Dynkin diagramD, = H< associated with the caggé = 4.

The set of local (cell) states @onway’s Lifeis 3 = {“dead”, “alive” } = {0, 1}. Since
the local rule ofConway’s Lifeis not symmetric with respect to the transpositibs- 1 of
the local states, the internal symmetry group is trivial, ifes= {1} and hencd™® = {1}.
Thus, we haveW = I'* x G = 1 x G = G. The natural action ofV on functions
o(z) € ¥ takes the formr (z)w = o (zg~'), wherew = (1, g), g € G.

Fig. 6 shows four steps of evolution of the glider. The figure demonstrates how the
evolution is reduced to the group actioN. > 4 is assumed.

(on] a9 g3 gy a5
| |
|
|

Figure 6. Example of soliton-like structure. “Glider” i@onway’s Lifeis cycle intwo
orbits of the groupG = T2 x Dg: configurationsss and o, are obtained fromr; and
o9, respectively, bythe samecombination of downwardahift, 90° clockwiserotation and
reflectionin respect to vertical.
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Comments on Reversibility in Discrete Systems.

A typical deterministic dynamical systemiiseversible— it's phase portraimodulogroup

orbits looks like in Fig. 5. We see there several isolated and limit cycles (fixed points are
regarded as cycles of unit length) accompanied by influxes flowing into the limit cycles. In
contrast to continuous systems, any discrete system “forgets” influxes after some time and
appears in either isolated or limit cycles. After loss of information about influxes both types
of cycles became physically indistinguishable and the system behaves just like reversible.
This might be a hint for explanation of observable reversibility of the fundamental laws of
nature.

In this connection we would like to mention recent works of G. 't Hooft. One of the
difficulties of quantum gravity is a conflict between irreversibility of gravity — information
loss at the black hole horizon — with reversibility and unitarity of the standard quantum
mechanics. In several papers of recent years (see, e.g., [18, 19]) 't Hooft developed an
approach to reconciling both theories. The approach is based on the following assumptions

e physical systems hawdiscrete degrees of freedaam tiny (Planck) distance scales;

¢ the states of these degrees of freedom f@mmordial basis of Hilbert space (with
nonunitary evolution);

e primordial states fornequivalence classe$wo states are equivalent if they evolve
into the same state after some lapse of time;

¢ the equivalence classes by construction form basis of Hilbert space with unitary evo-
lution described by time-reversible Schrodinger equation.

In our terminology this corresponds to transition to limit cycles: in a finite time of evolution
the limit cycle becomes physically indistinguishable from reversible isolated cycle — the
system “forgets” its pre-cycle history.

This type of irreversibility hardly can be observed experimentally (assuming, of course,
that considered models may have at all any relation to physical reality). The system should
probably spend time of order the Planck unit (0~** sec) out of a cycle and potentially
infinite time on the cycle. Nowadays, the shortest experimentally fixed time is difot
sec or102% Planck units.

5. Mesoscopic Lattice Models

Discrete symmetry analysis simplifies manipulations witicrocanonical ensemblesnd
search ophase transitions This allows to reveal subtle details in behaviorroésoscopic
models.

5.1. Statistical Mechanics

As we mentioned earlier, the state of deterministic dynamical system at any point of time is
determined uniquely by previous states of the system. A Markov chain — for which tran-
sition from any state to any other is possible with some probability — is a typical example
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of non-deterministiclynamical system. In this section we apply symmetry approach to the
lattice models in statistical mechanics. These models can be regarded as special instances
of Markov chains Stationary distribution®f the Markov chains are studied by the methods
of statistical mechanics.

The main tool of conventional statistical mechanics is the Gibésonical ensemble
— imaginary collection of identical systems placed in a huge thermostat with temperature
T. The statistical properties of canonical ensemble are encoded ratimnical partition

function
Z=3 e FolksT, (37)

cexX

Here XX is the set of microstateds,, is energy of microstate, &z is Boltzmann’s con-
stant. The canonical ensemble is essentially asymptotic concept: its formulation is based
on approximation called “thermodynamic limit”. For this reason, the canonical ensemble
approach is applicable only to large (strictly speaking, infinite) homogeneous systems.

5.2. Mesoscopy

Nowadays much attention is paid to study systems which are too large for a detailed mi-
croscopic description but too small for essential features of their behavior to be expressed
in terms of classical thermodynamics. This discipline —often caitezsoscopy— covers

wide range of applications from nuclei, atomic clusters and nanotechnological structures to
multi-star systems [20, 21, 22]. To studyesoscopisystems one should use more funda-
mentalmicrocanonical ensembleastead of canonical one. A microcanonical ensemble is a
collection of identical isolated systems at fixed energy. Its definition does not include any
approximating assumptions. In fact, the only key assumption of a microcanonical ensemble
is that all its microstates are equally probable. This leads tetitopyformula

Sp = kpInQp, (38)
or, equivalently, to thenicrocanonical partition function
Op = e%8/ks, (39)

HereQ g is the number of microstates at fixed enefgy > Qg = |S¥|. In what follows
E

we will omit Boltzmann'’s constant assumig = 1. Note that in the thermodynamic limit

the microcanonical and canonical descriptions are equivalent and the link between them is
provided by the Laplace transform. On the other hand, mesoscopic systems demonstrate
experimentally and computationally observable peculiarities of behavior like heat flows
from cold to hot, negative specific heat or “convex intruders” in the entropy versus energy
diagram, etc. These anomalous — from the point of view of canonical thermostatistics —
features have natural explanation within microcanonical statistical mechanics [22].

5.2.1. Lattice Models.

In this section we apply symmetry analysis to study mesoscopic lattice models. Our ap-
proach is based on exact enumeration of group orbits of microstates. Since statistical studies
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are based essentially on different simplifying assumptions, it is important to control these
assumptions by exact computation, wherever possible. Moreover, we might hope to reveal
subtle details in behavior of system under consideration with the help of exact computation.

As an example, let us consider the Ising model. The model consisgin$placed on
a lattice. The set of vertex valuesis= {—1, 1} and the interaction Hamiltonian is given
by

H=-J) sisj—BY s, (40)
(4.5) i

wheres;, s; € X; J is a coupling constant{ > 0 and.J < 0 correspond tderromag-
netic andantiferromagneticcases, respectively); the first sum runs over all edgeg) of
the lattice; B is an external “magnetic” field. The second suth = ) s; is called the

magnetizationTo avoid unnecessary technical details we will considér only the gase)
(assuming/ = 1) and B = 0 in what follows.

Let us remind that if the local symmetry group,,. decomposes the sets of edges
of lattice neighborhoods into nontrivial orbits, then the interaction Hamiltonian should be
modified (see, e.g., Eq. (8) on page 127).

Since Hamiltonian and magnetization are constants on the group orbits, we can count
numbers of microstates corresponding to particular values of these functions — and hence
compute all needed statistical characteristics — simply by summation of sizes of appropriate
orbits.

Fig. 7 shows microcanonical partition function for the Ising model on the dodecahedron
.. .

Here total number of microstat¢§x| = 1048576, number of lattice verticed'x = 20,
energyF is value of Hamiltonian.
Of course, other characteristics of the system can be computed easily in this way.

5.3. Phase Transitions

Needs of nanotechnological science and nuclear physics attract special attention to phase
transitions in finite systems. Unfortunately classical thermodynamics and the rigorous the-
ory of critical phenomena in homogeneous infinite systems fails at the mesoscopic level.
Several approaches have been proposed to identify phase transitions in mesoscopic sys-
tems. Most accepted of them is search'adnvex intruders”[23] in the entropy versus
energy diagram. In the standard thermodynamics there is a relation
2

eS| 11 1)

oE?%|, T2 Cy
whereCy, is the specific heat at constant volume.

Relation (41) implies thaﬁQS/aEQ{V < 0 and hence the entropy versus energy di-

agram must be concave. Nevertheless, in mesoscopic systems there might be intervals of
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Figure 7. I1sing model on dodecahedron. Microcanonical distribution.

energy where?QS/aE2|V > 0. These intervals correspond to first-order phase transitions
and are calledconvex intruders”. From the point of view of standard thermodynamics
one can say about phenomenomegative heat capacity, of course, if one accepts that it
makes sense to define the variabileandCy, as temperature and the specific heat at these
circumstances. In [24] it was demonstrated via computation with exactly solvable lattice
models that the convex intruders flatten and disappear in the models with local interactions
as the lattice size grows, while in the case of long-range interaction these peculiarities sur-
vive even in the limit of an infinite system (both finite and long-range interacting infinite
systems are typical cases of systems catledextensiven statistical mechanics).
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Figure 8. Ising model on dodecahedron. “Convex intruders” on entropy vs. energy diagram
indicatemesoscopiphase transitions.
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A convex intruder can be found easily by computer for the discrete systems we discuss
here. Let us consider three adjacent values of enéigy, E;, F;+1 and corresponding
numbers of microstateQ g, ,, g, Qg,,,. In our discrete case the rat%% is al-
ways rational numbep/q and we can write the convexity condition for entropy in terms of
numbers of microstates as easily evaluated inequality

O <, Qf (42)

i—1 Eiy1®

AsaruleE;; — E; = E; — E;_; and inequality (42) takes the form

Q?ﬂz < QEi—IQEi-H'
This form means that within convex intruder the number of states with the erférip/ess
thangeometric meanf numbers of states at the neighboring energy levels.

Fig. 8 shows the entropy vs. energy diagram for the Ising model on dodecahedron. The
diagram has apparent convex intrudein the specific energy intervit1.2, —0.9]. Exact
computation reveals also a subtle convex intruBen the interval[—0.8, —0.6].

6. Gauge Connection and Quantization

All most successful contemporary theories in fundamental physics are gauge theories.
There are also numerous applications of gauge theories in mathematics (topological quan-
tum field theory, invariants of 3- and 4-manifolds, monoidal categories, Hopf algebras and
guantum groups, etc. [25]).

In fact, the gauge principle expresses the very general idea that in spite of the fact that
any observable data are represented in different “reference frames” at different points in
spacé? and time, there should be some way to compare these data.

6.1. Discrete Gauge Principle

At the set-theoretic level, i.e., in the form suitable for both discrete and continuous cases,
the main concepts of the gauge principle can be reduced to the following. We have

e aset7, discrete or continuousme, 7 = Zor7 = R;

e asetX, space

e the sets/ andX are combined into a space-time = X x 7
e aset), local states

e agroupl’ < Sym (X) acting onX, internal symmetries

¢ identification of data describing the states frairmakes sense oniypodulosymme-
tries fromI” — this is arbitrariness in the choice of aeference framé

3Consideration only time evolution of general set of stafekeads to the trivial gauge structures. Gauge
theories of interest are possible if there exists underlying space structuré, ke3x.
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e there is naa priori connection between data (i.e., between reference frames) at dif-
ferent pointse, y € M — we should impose thisonnectionor parallel transporf)
explicitly asT"-valued function on edges (pairs of points) of abstract graph:

s() =o(@)r(z,y), 7(z,y) €L, o(x),¢(y) € ;
the connectiomr (z, y) has the obvious property (z, y) = 7 (y, z) " ;

e a connectionr (z, y) is calledtrivial if it can be expressed in terms of a function on
verticesof the graph (z,y) = p (¢)p (y) ', p(z),p(y) €T;

e invariance with respect to the gauge symmetries depending on time and space leads
to the transformation rule for connection

m(2,y) = v(x) 7 (2, y)v(y), v(@),v(y) €T, (43)

e the curvatureof connectionr(z, ) is defined as the conjugacy cla$sf the holo-
nomyalong a cycle of a graph:

(21, X, ..., x) = w(w1, x2)W (T2, X3) - - T ( Ty T1);
the curvature of trivial connection is obviously triviak(x1, . . ., zx) = 1;

e the gauge principle does not tell us anything about the evolution of the connection
itself, so gauge invariant relation describing dynamics of connectiyauge field
should be added.

Let us give two illustrations of how these concepts work in continuous case.

Electrodynamics. Abelian prototype of all gauge theories

Here the set\ is 4-dimensional Minkowski space with poinis = (z*) and the set of
states is Hilbert space of complex scalar (Schrodinger equation) or spinor (Dirac equation)
fieldsy (x). The symmetry group of the Lagrangians and physical observables is the unitary
groupT’ = U(1). The elements of X can be represented as*(®).

Let us consider the parallel transport for two closely situated space-time points:

m(x, x + Ax) = ¢ WP@TTAT),
Specializing transformation rule (43) to this particular case
7'(x,x + Az) = *@r(z, z + Az)e " @+AD),
substituting approximations
m(z, x4+ Az) = e PETTAY) &1 i A(z) Az,

7z, @+ Az) = e PEITAT) 1 A (2)Ax,

1The conjugacy equivalence means thitcs, . .., %) ~ v *n(x1, ..., z)y foranyy € T
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e ia(z+Az) o o—ia(z) (1—iVa(z)Ax),
and taking into account commutativity #f = U(1) we obtain
da(x)
oxt
The 1-formA taking values in the Lie algebra @f(1) and its differentialt’ = (F),,) = dA
are identified with the electromagnetiector potentiabnd thefield strength, respectively.

To provide the gauge invariance of the equations for fie{d ) we should replace partial by
covariant derivatives

A'(z) = A(x) + Va(z) or, in components, A;L(x) =A,(z) + (44)

8y — Dy, = 0, —iA,(x)

in those equations.
Finally, evolution equations for the gauge fielt{z) should be added. In the case of
electromagnetics these are Maxwell’'s equations:

dFf = 0 firstpair (45)
dxF = 0 second pair. (46)

Here x is the Hodge conjugation(Hodge star operatoy. Note that equation (46) corre-
sponds tovacuum Maxwell’s equationdn the presence of theurrent J the second pair
takes the form = d = F' = J. Note also that thérst pair is essentiallya priori statement,
it reflects simply the fact thak’, by definition, is the differential of an exterior form.

Non-Abelian Gauge Theories in Continuous Space-time

Only minor modifications are needed for the case of non-Abelian Lie gidupAgain
expansion of th@'-valued parallel transport for two close space-time poingdx + Az
with taking into account thatr(xz,z) = 1 leads to introduction of a Lie algebra valued
1-form A = (A,) :

m(z,x+ Ax) ~ 1+ A,(x)Az”.

Infinitesimal manipulations with formula (43)

0
() oy + Ba)fa+ ) — (o) 0+ Aue)det) () + L o)
lead to the following transformation rule
_ _10v(x
A x) = 1(2) " Ay () + () LD, (7)

The curvature 2-form
F=dA+[ANA]

is interpreted as thphysical strength fieldin particular, therivial connection

=N _1070(2)
Au(z) = v0(2) 1W
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is flat, i.e., its curvaturd”’ = 0.
There are different approaches to construct dynamical equations for gauge fields [25].
The most important example ¥ang-Mills theorybased on the Lagrangian

Lyy = TI'[F/\*F] .
The Yang-Mills equations of motion read

dF +[ANF] = 0, (48)
dxF+[AANxF] = 0. (49)

Here again equation (48) & priori statement — th&ianci identity. Note that Maxwell’s
eguations are a special case of Yang-Mills equations.

Itis instructive to see what the Yang-Mills Lagrangian looks like in the discrete approx-
imation. Replacing the Minkowski spackt by a hypercubic lattice one can see that the
discrete version oLy is proportional to) . o (), where the summation is performed
over all faces of a hypercubic constituent of the lattice;

gzzmmmm—x@@D—X@WD%

wherep (T') andp' (") are fundamental representationlofind its dual, respectively; is
the charactery; is the gauge group holonomy around the fgce

The Yang-Mills theory uses Hodge operation convertinfprms to(n — k)-forms inn-
dimensional spaceith metricg,,,. In topological applications so-calldgF theoryplays an
important role since it does not require a metric. In this theory, an additional dynamical field
B is introduced. The Lie algebra valu¢d — 2)-form B and the2-form F' are combined
into the Lagrangial g = Tr [B A F1.

6.2. Quantum Behavior and Gauge Connection

The Aharonov-Bohm effect (Fig. 9) is one of the most remarkable illustrations of interplay
between quantum behavior and gauge connection. Charged particles moving through the
region containing perfectly shielded thin solenoid produce different interference patterns on
a screen depending on whether the solenoid is turned on or off. There is no electromagnetic
force acting on the particles, but working solenoid produtés)-connection adding or
subtracting phases of the particles and thus changing the interference pattern.

In the discrete time Feynman’s path amplitude [26] is decomposed into the product of
elements of the fundamental representatigh) = U(1) of the circle, i.e., of the Lie group
[ =S'=R/Z:

Ayy = exp (i5) = exp <z /Ldt) —etbon | gtli-1p GiLT-1T (50)

By the notationL;_; ; we emphasize that the Lagrangian is in fact a function defined on
pairs of points (graph edges) — this is compatible with physics where the typical La-
grangians are depend on thest order derivatives. Thus we can interpret the expression
m(t—1,t) = etli-11 ¢ p(I') = U(1) asU(1)-parallel transport.

A natural generalization of this is to suppose that:
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nterference
pattern

Electrons 0 Solenoid

Double-slit barrier Screen

Figure 9. Aharonov—Bohm effect. Magnetic flux is confined within the perfectly shielded
solenoid; interference pattern is shifted in spite of absence of electromagnetic forces acting
on the patrticles.

e groupI’ may differ fromS!,
¢ dimension of unitary representatigrn(I") may differ from 1.

So let us replace expression (50) for Feynman'’s path amplitude by the following parallel
transport along the path

Ap(p) =P (aT,T_l) P (at,t—l) .. p (al,()) . (51)

Herea;, ; are elements of some grolip— we shall call itquantizing group— andp is

an unitary representation ®f. Note that in (50) the order of factors is not important due to
commutativity ofU(1). Butin (51) we must use the revetSerder for consistency with the
temporal ordering of non-commutative operators. For discrete and especially finite systems
it is natural to take a finite group as the quantizing group, in this case all manipulations
— in contrast to the standard quantization — remain within the framework of constructive
discrete mathematics requiring no more than the ringlgébraic integergand sometimes

the quotient field of this ring). On the other hand, the standard quantization can be approx-
imated by taking 1-dimensional representations of large enough finite groups.

6.2.1. lllustrative Example Inspired by Free Particle.

In quantum mechanics — as is clear from thever vanishingexpressiorexp (+5) for

the path amplitude — transitions from one to any other state are possible in principle. But
we shall consider computationally more tractable models with restricted sets of possible
transitions.

15This awkwardness stems from the tradition to write operator actions on the left (cf. footnote 4 on page
122).
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Let us consider quantization of a free particle moving in one dimension. Such a particle
-2
is described by the Lagrangidh = mg- Assuming that there are only transitions to the
closest points in the discretized space we come to the following rule for the one-time-step
transition amplitudes

z+1 i m{(z+1)—x}” im
w eh 2 = e 2h
1 2
x i m(z—x)
&z 6ﬁ 2 = 1
w . 1y _.2
T — 1 e}%m{(z 21) 1‘} . ez%i

That is, we have evolution rule as an(1)-valued functionR defined on pairs of points
(graph edges). Symbolically:
R(zx—2z) = 1 € U(Q1),

R(r—z—1)=R(x—x+1) = w=e ¢ U(1). (52)
Now let us assume thatin (52) is an element of some representation of a finite graup:
pla), a € T'={y =1,...,vm}. Rearrangingnultinomial coefficients— trinomial in
this concrete case — it is not difficult to write the sum amplitude over all paths from the
space-time point0, 0) to the point(x, t)

t

7! t! -
A;(w)zz(ﬂ)!(%)'XT!(t—T)!w' (53)

=0 2 .

Note thatz must lie in the limits determined by = € [—¢,¢].

One of the most expressive peculiarities of quantum-mechanical behaviomdesireic-
tive interference— cancellation of non-zero amplitudes attached to different paths converg-
ing to the same point. By construction, the sum of amplitudes in our model is a function
A(w) depending on distribution of sources of the particles, their initial phases, gauge fields
acting along the paths, restrictions — like, e.g., “slits”— imposed on possible paths, etc. In
the case of 1-dimensional representation the functi¢w) is a polynomial with algebraic
integer coefficients and is a root of unity. Thus the condition for destructive interference
can be expressed by the system of polynomial equatiet{sc) = 0 andw? = 1. For
concreteness let us consider the cyclic grdug- Zys = {y1, -, Y& - -+, Yar}- Any of
its M irreducible representations takes the fgsify ) = w*~!, wherew is one of theMth
roots of unity. For simplicity letw be theprimitive root w = e27/M

Fig. 10 shows all possible transitions (with their amplitudes) from the poiint three
time steps. We see that the polynomi#ll; = 3w + 3w® = 3w (w? + 1) contains the
cyclotomic polynomia®, (w) = w?+1 as a factor. The smallest group associatedl {ow)
— and hence providing the destructive interference —£is which we shall consider as
quantizing group for the model.

Fig. 11 shows interference patterns — normalized squared amplitudes (“probabilities”)
— from two sources placed in the positions= —4 andx = 4 for 20 time steps. The upper
and lower graph show interference pattern when sources are in the same (2and in
the opposite (A¢= 7) phases, respectively.
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Figure 10. Amplitudes for all possible paths in three time steps.
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Figure 11. Groug,. Interference from two sources at points -4 and 4. Number of time
stepsI’ = 20. Phase differenced¢ = ¢4 — ¢_4 between sources afeandr.

6.2.2. Local Quantum Models on Regular Graphs

The above model — with quantum transitions allowed only within the neighborhood of a
vertex of a 1-dimensional lattice — can easily be generalized to arbitrary regular graph.
Our definition oflocal quantum model o&-valent graphuncludes the following:

1.

2.

SpaceX = {z1,---,zn,} iS ak—valent graph.

Set of local transitiond; = {eq i, €15, - - , ex,i} is the set ofk adjacent to the vertex
x; edgese,, ; = (z; — x,,;) completed by the edge) ; = (z; — ;).

We assume that trepace symmetrgroupG = Aut (X) acts transitively on the set
{E17 T 7ENX}-

Gioc = Stabg (z;) < G is thestabilizerof x;.

. Qi ={woi, w14, -+, wp ) is theset of orbitsof G, on E;.

. Quantizing group is a finite groupI = {1, -+, var}-
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7. Evolution rule R is a function onE; with values in some representatipr{I’). The
rule R prescribey (I')-weights to the one-time-step transitions framto elements
of the neighborhood of;. From the symmetry consideratiof®smust be a function
on orbits from(2;, i.e., R (e1,,i9) = R (em.i) for g € Gige.

To illustrate these constructions, let us consider the local quantum model on the graph of
buckyball (see detailed consideration of this graph at page 126). Here the space

{z1, -+ ,x60} has the symmetry groud = Aut (X) = Z, x Alt(5). The set of local
transitions takes the form; = {eo;, e1, €2, e3,}, where

eo; = (@i — i),
€1 = (361 - 961,1) )
ez = (@ — 224),
es; = (x5 — x3;)

The stabilizer ofx; is Gi,. = Stabg (z;) = Zy. The set of orbits of5,. on E; contains 3
orbits:

O = {wo,; = {eo},wi,i = {e14 €2} w2 = {es,i}},
i.e., the stabilizer does not move the edges— =z;) and(z; — x3,;) and
swaps(z; — 1) and(z; — z2;) .
The evolution rule takes the form:

R(zi —xi) = p(ao),

(i = x24) = pla1),
(

xz‘—>$3,i) = 0(042),

R(:L‘l — 1’171') = R
R
whereay, aq, as € T'. If we take a 1-dimensional representation and maye— using
gauge invariance — to the identity elementlof we see that the rul& depends on two
elementsy = p(a1) andw = p (ag). Thus the amplitudes in the quantum model on the
buckyball take the formA(v, w) depending on two roots of unity. To search nontrivial
quantizing groups one should check (by, e.g., Grébner basis computation) compatibility of
the system of polynomial equation$(v, w) = ®;(v) = ®;(w) = 0, where®;(v) and
®;(w) are cyclotomic polynomials.

6.3. General Discussion of Quantization in Finite Systems

As is well known, Feynman’s approach is equivalent to the traditional matrix formulation

of quantum mechanics, where the time evolutign) — |¢7) of a system from the initial

state vector to the final is described by the evolution matfix |¢7) = U |¢p). The
evolution matrix can be represented as the product of matrices corresponding to the single
time steps:U = Up.p_1---Uss_1---Urp. In fact, Feynman’s quantization — i.e.,

the rules “multiply subsequent events” and “sum up alternative histories” — is simply a
rephrasing of matrix multiplication. This is clear from the below illustration presenting
two-time-step evolution of a two-state system (singiéit) in both Feynman’s and matrix
forms — the general case of many time steps and many states can easily be obtained (by
induction for example).
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biiai1 + bizazr  biiaiz + bizage
barai1 + basaz1r  baiaiz + bazags

Uil 7//12]

U21 U222
We see that in accordance with Feynman'’s rules the transition from,¢e.do, ¢; is de-
termined by the expressidniaio + bioage. But this is just the element;, of the matrix

productlU = BA performing evolutiory)) = U |¢), where|¢) = [ﬁj and|y) = [Zj

Of course, such reduction of sums over histories to matrices is applicable to the case of
transitions along paths being gauge connections as in (51). In this case matrix elements of
anNx x Nx evolution matrixU are themselves matrices from the representatidn. We
can ignore this particular block structure of the matrix and congidas anN x N matrix
over the fieldC, whereN = Nx x dim p (T").

In guantum mechanics, the evolution matriéésre unitary operators acting in Hilbert
spaces of state vectors (called also “wave functions”, “amplitudes” etc.). Quantum mechan-
ical particles are associated with unitary representations of some groups. According to their
dimensions, these representations are called “singlets”, “doublets”, etc. Multidimensional
representations describe thpin. A quantum mechanical experiment is reduced to com-
parison of the system state vectgr) with some sample state vectft). According to the
Born rule, the probability to observe coincidence of the states is equébte)|*, where
(-|-) isthe inner product in the Hilbert space. To see what these constructions may look like
in the constructive finite background, let us assume that evolution operators are elements of
a representation of a finite group.

6.3.1. Permutations and Linear Representations

Having a finite groupG = {e; = 1,...,e,}, we can easily describe all its transitive ac-
tions on finite sets [27]. Any such s& = {w,...,w,} IS in one-to-one correspondence
with the right (or left) cosetf some subgroup! < G, i.e.,Q = H\ G (or G/H) is the
homogeneous spacer G-space). Action ofZ on () is faithful if the subgroupH does not
containnormal sugroup®f G. We can write actions in terms of permutations

Wi Ha .
= ~ e G == 1 ceey .

Maximum transitive sef is the group itself, i.e., in the above constructiih= {1}. The
action on) = G is calledregular and can be represented by permutations

I(g) = (:g) i=1,...,m. (54)
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To introduce “numerical” (“statistical”) description, let us assume thgs are basis ele-
ments of a linear vector spaééover a fieldF

H = Span (w1, -+, wn) , (55)

i.e., we prescribé’-valued “weights” to the elements; € 2. Then we can write permuta-
tions in the matrix form:

7(g9) — p(g) = [p(9)i], where p(g)ij = buwgaw;i Gj=1,...,n; (56)

1, if a=
5aﬂz{’ Ta=05 for a.geq

0, if a#p
The so defined functiop is called apermutation representatianThe matrix form of (54)
H(g) - P(g) = [P(g)l]] ; P(g)l_] = 5ei975j7 Zv] = 17 -.e MM (57)

is called theregular representationlt is assumed thak' is an algebraically closed field —
usually the field of complex numbef3. But in the case of finite groups the quotient field
of the ring A of algebraic integer$® [12] is sufficient for all reasonable purposes A-s a
constructivesubset ofC.

Let us recall some relevant background information about linear representations of finite
groups [28].

1. Anylinearrepresentation of a finite grou@ is unitary since there is always an unique
invariant inner product-|-) making any space of representatidfiinto a Hilbert
space.

2. All possibleirreducible unitary representations of the groGpare contained in the
regular representation (57). More specifically, all matrices (57) can simultaneously
be reduced by some unitary transformatioto the form

[A(g)

As(g)
d2 '

$-1P(g)S = Alg). . (58)

.AAw_

Herer is the number of different irreducible representatidnsof the groupG. This
number coincides with the number obnjugacy classé$ in G. The numbed; is

The ring of algebraic integers consists of the rootsmudnic polynomials with integer coefficients. A
polynomial is calledmonicif its leading coefficient is unit.

The jth conjugacy clasg’; C G consists of all group elements of the forgim ! c; g, wherec; € C; is
some (arbitrary) representative of the clags G,j =1,...,7.
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simultaneously the dimension df; and its multiplicity in the regular representation,
soitis obvious thatl? + d3 + - - - + d? = |G| = m. It can be proved also that awy
divides the number of elements 6f. d; | m.

3. Any irreducible representatiofy; is determined uniquely (up to isomorphism) by its
charactery;. The character is a function ol defined asy;(a) = TrA;(a), a €
G. The character is aentral or classfunction, i.e., it is constant on the conjugacy
classes:y;(a) = xj(¢'ag), a,g € G. Any class functionp(a) on G is a linear
combination of the charactesg, . . ., xs.

4. Allvalues ofy; and eigenvalues of; are elements of the ring of algebraic inte-
gers, moreover the eigenvalues avets of unity.

5. A convenient form of describing all irreducible representation of a finite giGup
the character table The columns of this table correspond to the conjugacy classes
of G while its rows correspond to the characters of the inequivalent irreducible
representations af.

1 Co e Cr
il 1 1 .. 1
X2 | xa(c1) xo(c2) - xoler)
Xr | xr(e1)  xr(e2) -+ xr(er)

The jth column is indicated by a representativec C; of the jth conjugacy class
C;. Conventionally we take; = 1 andy; to be thetrivial character corresponding
to the trivial 1-dimensional representation.

6.3.2. Interpretation of Quantum Description in Finite Background

Let us discuss sketchy (more detailed presentation see in [29]) constructive approach to the
interpretation of quantum description.

Summarizing the above, we see that dynamics of finite quantum model of any type is
reduced ultimately to a single finite-dimensional unitéary & matrix U describing transi-
tions between initial and final vectors in sorhalimensional Hilbert spac#.. In the finite
background the matrik’ is an element of unitary representatidnof a finite groupG, i.e.,
the number of all possible evolutions is equakto= |G|. We shall assume, as is accepted
in quantum mechanics, tha is direct sum of irreducible representations from (58).
The decomposition of the Hilbert space into irreducible components is an important part of
the mathematical formulation of quantum mechanics. Such dependence on the choice of
the basis in the Hilbert space may seem unusual for a physical theory. But, in fact, a basis
in which the Hilbet space is reduced — we shall call such a baséstum basis— simply
reflects the structure of underlying symmetry group.

We can construct &'-spaceQ = {wy,...,w,}*in such a way that its permutation
representation (56) contaids as subrepresentation (obviously> k). That is, the space

181n the case thaf\ is reducible representation, the $&may be intransitive union of transitive-spaces.
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‘H. is subspace of the Hilbert spagg, of the permutation representation. We shall call the
basis{w, . ..,w,} inthe spacé{,, thepermutation basisTransitions from the permutation

to quantum basis for matricés and vectorsﬂ> € H,, are given by the formulas

U, = S7'U,S, (59)

90) = 57 (60)
Now we can embed any evolutidh with the matrixA in the spacé into the evolution
U in the spacé+,,. In the quantum basis the matrix bf takes the form

~ A0

where A is an(n — k) x (n — k) matrix. Due to the form of (61) the evolutiobi de-
scribed byA is completely independent of the components of vectorg(gfrelated toA.
The “hidden variables” that can come from the additional components describe degrees of

freedom reflecting indistinguishability a#;’s lying in the same group orbit. The evolution
U is simply a permutation ab;’s and can not manifest anything quantum.

lllustration. A quantum model with the group Sym (3). The groupG = Sym (3)

is the group of all permutations of three objects. This is the smallest non-commutative
group. Its 6 elements form the following 3 conjugate clas€gs= {1 = ()}, Cy =

{a1 = (12),a9 = (23),a3 = (13)}, C3 = {by = (123),b2 = (132)}. We used here the
cyclic notationfor permutations. The group has three nonequivalentirreducible representa-
tions described by the character table

‘ 1 a; bl
vi|l1 1 1
vl1 -1 1
X3 2 0 -1

Let us take for example the 2-dimensional representafiowith the characterys. The
representation is given by the following set®f 2 matrices:

A1) = B ‘j] |

0 o—2mi/3 0 e2mi/3
A(al) = |:egm'/3 0 :| ) A(CLQ) = [1 0] ) A(a3) = [6—2771‘/3 0 ] ’

e271'i/3 0 e—2mi/3 0
A(bl) = [ 0 e—27ri/3:| ) A<b2) = [ 0 e27ri/3>:| :

The regular permutation representationSyfm (3) is 6-dimensional. But 3-dimensional
faithful permutation representation induced by the action on the homogeneous space
Sym (2) \ Sym (3) = Q = {wy,wq, w3} also containsA. Since any permutation repre-
sentation contains trivial 1-dimension subrepresentation, the only possible choice of the

addition A is the representation corresponding to the first row of the above character table.
Thus, forU, we have
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N 100
U,1)=10 1 of,
00 1

N 0 e 2m/3 B 0 N 0 e2mi/3
Ugla)) = [2™/3 0 0],U(a2) = |1 U,las) = |e=2@/3 0 0],
0

0 0 1 0 0 1

eQm’/S 0 0 e—27ri/3 0 0
ﬁq(bl){ 0 e 2m/3 0}, ﬁq(bg>|: 0 e2mi/3 o].

0 0 1

In the permutation basis we have

N 100 N 010 N 1 0 0]
U1)=10 1 0|, Uylar)=|1 0 0f, Up(ag){o 0 1},
001 001 01 0]
001 010 00 1]
ﬁp(ag){o 1 0], ﬁp(bl){o 0 1], Up(bQ){l 0 0
100 100 01 0

The most general unitary matrix of transition from the permutation to the quantum basis
takes the form

; 1 1 et

(692

S = e—ﬁ eQW 3 e‘Q’fi/  e¥l, wherea,§ are arbitrary real parameters.  (62)
e—2mi/3  g2mi/3 B

Any quantum evolution of the forniy) = U |¢), where|¢) = [z;] and|y) = [i;]

andU is one of the matriced\; can be extended to the evoluti(ﬁq> =U, ‘(Eq> where

B o1 B (0
‘¢q> = |:¢2:| and‘z/zq> = {%} , ¢3 is arbitrary additional component. Then, applying the
?3 V3

transformationS, we come to the classical evolution with the mattiy = SU, S~ which
simply permutes the components of the initial vector

‘$p> =5 ’$q> 7 e?™i/3¢) + e 236, + &Py

o P1+ 2 + i
e—27ri/3¢1 +e?7ri/3¢2 +eﬁi¢3

without performing any algebraic manipulations with the components.
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7. Conclusion

In this chapter we discuss the general concept of discrete dynamical system and its special-
ization involving underlying space structures. We apply various constructive approaches to
study discrete and finite dynamical systems.

We construct a family of groups unifying space and internal symmetries in a natural
way. This construction generalizes the standard direct and wreath products.

We introduce the concept of a system of discrete relations on an abstract simplicial
complex. This system can be treated as a natural generalization of cellular automata or as a
set-theoretical analog of systems of polynomial equations.

We developed and implemented algorithms for analyzing compatibility of systems of
discrete relations and for constructing canonical decompositions of discrete relations.

Applying the technique described above to some cellular automata — a particular case
of discrete relations — we obtained a number of results. The most interesting among them,
in our opinion, is the demonstration of how the presence of non-trivial proper consequences
may determine the global behavior of an automaton.

We suggest an algorithmic approach — based on discrete symmetry analysis and im-
plemented in C — for construction and investigation of discrete dynamical models — de-
terministic, mesoscopic and quantum. We hope that our approach can be used in various
practical applications, such as, for example, simulation of nanostructures with nontrivial
symmetry properties.

We demonstrate that soliton-like moving structures — like “spaceships” in cellular au-
tomata, “traveling waves” in mathematical physics and “generalized coherent states” in
guantum physics — arise inevitably in deterministic dynamical systems whose symmetry
group splits the set of states into finite number of group orbits.

We formulate the gauge principle in the form most suitable for discrete and finite sys-
tems. We also propose a method — based on introduction of unitary gauge connection of
a special kind — for quantizing discrete systems and construct simple models for studying
properties of suggested quantization.

We show that if unitary operators describing dynamics of finite quantum system form
finite group, then the system can be embedded into a classical system with a simple behav-
ior. We hope that discrete and finite background allowing comprehensive study may lead
to deeper understanding of the quantum behavior and its connection with symmetries of
systems.

To study more complicated models we are developing C programs based on computer
algebra and computational group theory methods.
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Chapter 8

REVERSIBILITY OF CELLULAR AUTOMATA

Atsushi Nobe'and Fumitaka Yura
Department of Mathematics, Faculty of Education, Chiba University
School of Systems Information Science, Future University-Hakodate

Abstract

We establish a on-to-one correspondence between the configurations in the Wol-
fram cellular automaton, which is abbreviated to the WCA, and the paths in the de
Bruijn quiver. Extending the correspondence to that between the associative algebra
whose underlying vector space is generated by the configurations in the WCA and
the path algebra of the de Bruijn quiver, we obtain the global transition of the asso-
ciative algebra associated with the WCA. Thus we translate the problem concerning
reversibility of the WCA into that concerning surjectivity of the endomorphism on the
associative algebra. We then show that the induced problem concerning the endomor-
phism can be solved in terms of the adjacency matrix of the WCA, which is defined
from that of the de Bruijn quiver through the one-to-one correspondence. Indeed, we
give a necessary and sufficient condition for reversibility of the WCA. By virtue of
the necessary and sufficient condition, we classify all 16 reversible rules in the ECA
imposing periodic boundary conditions.

PACS02.10.0x, 02.30.1k, 05.65.+b, 87.17.-d

Keywords: cellular automata, path algebras of quivers, discrete integrable systems.

1. Introduction

For the last several decades there has been increasing interest in the study of discrete dy-
namical systems including cellular automata, which take discrete values in discrete time
steps, from the viewpoints of solvability and integrability. Such studies on cellular au-
tomata,eg., traffic flow models [32, 33, 14, 15, 16, 17] and the Toda type cellular au-
tomata [25, 28, 29, 3, 30], have had great success. In this context, one of the most inter-
esting and well-studied systems is a family of cellular automata called the box-ball system

*E-mail address: nobe@faculty.chiba-u.jp
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[41, 40, 36, 6, 46, 45, 22] originated from the soliton cellular automaton introduced by
Takahashi and Satsuma in 1990 [37]. Each member of the box-ball system is a kind of
filter type cellular automaton and has solitonical natiie, in its time evolution, solitarily
propagating waves behave like particles when they collide each other. A remarkable and
important feature of the box-ball system is that each member can be directly connected
with the partial differential equation called a soliton equation such as the KdV equation, the
KP equation, and the Toda equation in terms of a procedure called the ultradiscretization
[40, 10, 11]. Here “directly connected” means that the evolution equation of a member
of the box-ball system can be obtained from a soliton equation by applying the ultradis-
cretization procedure, which consists of two processes of changing of variables upon in-
troduction of a parameter and taking a limit of the parameter. Moreover, through the ul-
tradiscretization procedure, almost all integrable properties such as soliton solutions and
sufficiently many conserved quantities are completely preserved [40, 41, 11, 9, 12]. Im-
posing periodic boundary conditions to the box-ball system, such property is still preserved
[46, 45, 18, 19, 20, 21, 23]. Therefore each member of the box-ball systems is considered
to be an ultimate discretization of an integrable system and called a integrable cellular au-
tomaton. Nowadays it is well known that the box-ball system is deeply connected with
various mathematical structures such as the crystals of quantum algebra [6, 4], the Riemann
hypothesis [39], tropical algebraic curves [7, 8, 12], and so on.

Although there exist various integrable dynamical systems other than the soliton equa-
tions, as far as the authors know, integrable cellular automata are scarcely known except
for the box-ball system. Of course, the definition of integrability of cellular automata has
not been fixed yet and to define it is too much for the authors; however, we may call a
cellular automaton which has the general solution for arbitrary initial condition with ap-
propriate boundary conditions to be integrable. To search generic cellular automata for
integrable one is too hard to be made because there exist infinitely many cellular automata
around us. Therefore it is natural for us to restrict ourselves to a certain subclass of cel-
lular automata. Noticing that, in general, reversibility of a dynamical system with respect
to the time evolution is a necessary condition for its integrability, it is natural to consider
that an integrable cellular automaton must be reversitde,the inverse time evolution is
uniquely determined. Therefore we expect to find integrable cellular automata among re-
versible ones. In order to carry this out, we must establish a criterion to decide whether
a given cellular automaton is reversible or not. Note that, for our purpose, an algorithm
to examine reversibility of a given cellular automaton under a certain initial condition is
not sufficient. Since integrability of a dynamical system does not depend on its system
size or initial condition, we essentially want to decide reversibility of a family consisting
of infinitely many cellular automata under arbitrary initial condition. Thus we have been
developed an algebraic method to examine reversibility of cellular automata [34, 35].

In this chapter, we give a procedure which bijectively associates a family of cellular au-
tomatato a family of quivers (oriented graphs), and by using the one-to-one correspondence
we extend the time evolution of a family of cellular automata to that of an associative alge-
bra generated by the configurations of the cellular automata. The procedure we discuss here
was firstly introduced by the authors in 2004 [34]. Then the process to decide reversibility
of cellular automata can be reduced to a purely algebraic process in the associative algebra,;
some of them are easily carried out and we can examine reversibility of a family consisting
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of infinitely many cellular automata. The procedure we give here is a powerful tool to study
cellular automata, however, it is applicable only to one-dimensional cellular automata, be-
cause the correspondence between a cellular automaton and a quiver depends essentially
on “the order” of the local configurations of the cellular automaton. Nevertheless, the au-
thors believe that our method is worth to study. Because although the updating rule of
one-dimensional cellular automaton, which is composed of regular array of finite-valued
cells updated locally in discrete time steps, is quite simple, a cellular automaton in general
shows complicated behavior [42, 43, 44]. As we will see later, boundary conditions play
an important role for reversibility of cellular automata. Among several choices of boundary
conditions we choose the periodic one because it can be considered to be the most natural
one. Since time evolution of a cellular automaton with periodic boundary conditions can be
regarded as a mapping from a finite set into itself, if the mapping is surjective then the rule
is reversible. A reversible cellular automaton preserves all information of the initial config-
urations in any time step, hence its reversibility suggests existence of conserved quantities
[35]. We give an example of the time evolution of a reversible cellular automaton in Figure

Figure 1. Time evolution of the reversible elementary cellular automaton referred to the
rule 154 (see example 12) with periodic boundary conditions. In the initial configuration
the values of cells are chosen randomly O or 1. Cells with value 1 are shown by black and
those with value 0 by blanks. The configurations at successive time steps are shown on
successive lines from top to bottom.

This chapter is organized as follows. In section 2., we introduce a notion of quivers
and the path algebras of the quivers. In particular, we define a family of quivers called the
de Bruijn quiver and study it precisely. In this process, we introduce the adjacency matrix
of the de Bruijn quiver, and show that the many properties of the de Bruijn quiver can be
computed by using the adjacency matrix. We then define cellular automata and study it in
section 3. Especially, we establish a one-to-one correspondence between a family of cellu-
lar automata called the Wolfram cellular automaton and the de Bruijn quiver. In section 4.,
we study reversibility of the Wolfram cellular automaton in terms of the one-to-one corre-
spondence to the de Bruijn quiver. We then give a necessary and sufficient condition for
reversibility of the Wolfram cellular automaton. We also give two necessary conditions for
reversibility of the Wolfram cellular automaton, which are useful to examine reversibility of
a givenrule. We classify all reversible rules in a subclass of the Wolfram cellular automaton
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called the elementary cellular automaton in section 5. Section 6. is devoted to concluding
remarks.

2. Quivers

A quiver @ = (Qo, @1, s,t) is a quadruple consisting of two sef¥, @; and two maps
s,t: Q1 — Qg. ElementsinQy and inQ, are called vertices and arrows, respectively. The
mapss andt associate to each arrow € 1 its sources(a) € Qo and target(«) € Qo,
respectively. We usually denote an arrewe ), of sourcea = s(a) € Qo and target
b= t(a) € Qy by

(alafb).

Although a quiver is nothing but an oriented graph, we prefer using the term quiver to graph.
Because all graphs we treat here are oriented and the orientation of graphs is essential in
the correspondence to cellular automata. Moreover, the path algebra of a quiver, which will
be defined soon (see definition 1), plays an important role in the study of reversibility of
cellular automata.

Leta,b € Qq. A path of lengthn > 1 with sources and targeb is a sequence

(alajag -+ - aylb),

whereay, € Q; forall 1 < k < n, and we haves(a;) = a, t(ar) = s(ags1) for

1 <k <n-1andt(e,) = b. We denote by),, the set of all paths in Q of length. We
also associate with each vertexc )y a path of lengtm = 0, called the stationary path at
a, and denoted by

gq = (alla).

A path of lengthn > 1 is called a cycle whenever its source and target coincide. A cycle of
length1 is called a loop.

Definition 1. (see for example [2]) Le be a quiver. Also lefX be an algebraically closed
field. The path algebr& @ of @ is the K-algebra whose underlying -vector space has
as its basis the set of all pattig|ajas - - - oy, |b) of lengthn > 0 in @ and such that the
product of two basis vector@|ajas - - - o, |b) and(c|F1 5z - - - Bi|d) of KQ is defined by

(alarag - - - anlb) (c|B1B2 - - - Br|d) = dpe (alona - - - 152 - - - Br|d)

whered,. denotes the Kronecker delta. The product of basis elements is then extended to
arbitrary elements oi () by distributivity.

Example 1. Let @ be the quiver

a1

ap @) Qu a3

a2
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consisting of two verticeag, a; and four arrowsy; (i = 0, 1, 2, 3), two of whichag, a3 are
loops. The defining basis of the path algel¢8) is the set of all words oR«, a1, a2, a3}
with the identification

gl = O3 = 10 — X1 (] — Qg = Qi3 = (30 ) — (3] — 0.

Therefore, K@ is isomorphic to the quotient of the free associative algebra in four
non-commuting indeterminatek (to, t1, t2,t3) in terms of the two-sided ideall =
(tota, tots, tito, tit1, tata, tats, tato, tat1)

KQ ~ K(to, t1,t2,t3)/J,
the K-linear isomorphism being a map such that
eg+er—1 and oa; —t; fori=0,1,2,3,
where we abbreviate,, to €;, and hereafter we often use such abbreviation.

A quiver is said to be finite if botl), and@ are finite sets. To each arrdw|«|b) in a
quiverQ, we associate a formal reverdga—!|a) with the sources(a~!) = b and the target
t(a™!) = a. Awalk of lengthn > 1 fromatobin Q is a sequence = af'aj?---afr
with 7; € {—1,1}, s(a]') = a, t(of") = bandi(a]’) = s(eg ') fori =1,2,...,n. A
quiver is said to be connected if each pair of vertices is joined by a walk.

Definition 2. Let@Q be afinite and connected quiver. The two-sided ideal of the path algebra
K@ generated by the arrows (@ is called the arrow ideal of ) and is denoted by .

There is a direct sum decomposition

KQ=KQo® Rq,
Ro = KQn

>1

of K-vector space& Q andRg, whereK@,, (n = 0,1, ...) is the subspace dk () gener-
ated by the sef),, of all paths of lengtm. For eachn > 1 we have

6= €D Kan.
m>n
ThereforeRf, is the ideal ofK' () generated by the set of all paths of length not less than
Consequently, we have tH€-vector space isomorphisrl’fi‘ﬁé/Rgrl ~ KQ,.

2.1. De Bruijn Quiver

Now we introduce a two-parameter family of quivers called the de Bruijn quiver [26]. Let
[, > 1 be natural numbers. Each member of the de Bruijn quiver, denoté®{ by') =

(Qo, Q1, s, 1), can be defined as follows. The @ of the vertices in3(1, r) contains!
elementsig, a1, - - -, a,._q, and the se€); of the arrows inB3(1, r) containsr'*+! elements
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ag,aq, - -+, ou1_g. An arrow a; connects the vertices; to ay, i.e, s(o;) = a; and
t(a;) = ag, if the following holds

j= VJ and k=i (modrb), (1)

r

where| | : Q — Z is the floor function.
It immediately follows several properties of the de Bruijn quiver.

Lemma 1. Each membeB(!, r) of the de Bruijn quiver has the following properties:

1. The vertexa; is the source of the arrowsa,..;, oy.j11, Qjt2, ==y Qpjppr—1 fOr
j=0,1,..., 7t —1.

2. The vertexay, is the target of the arrowsay, oy, agpigg, =+ Q1) fOr
k=0,1,...,rt— 1.

3. Every successive paty;, ;) of arrows in a path satisfies

j=r-ir-i+1l,-,r-i+r—1 (modrth).

4. The vertexa,i_; is the source (or equivalently the target) of the Iompﬂ_li for
—1 r—1

i=0,1,...,r—1.

5. There exists a unique path of lendtivhich connects arbitrary two vertices B(l, r).

(Proof) The statements 1 and 2 are a direct consequence from the definition of the
de Bruijn quiver. Indeed, assunag to be the source of an arrow;. Then, from (1), we
have

t=r-3,r-3+1,---,r-j4+r—1
Similarly, assume; to be the target of an arrow;. Then, from (1), we have
i=korl+k2rt koo (r =1t 4 k.

3. Assume(a;, o) to be a successive pair of arrows in a pattifi, r). Then there
exist0 < k < r! — 1 which satisfies

t(a;) = s(aj) = ax € Qo,

where Q) is the set of all vertices ifB({,r). From the statements 1 and 2, there exist
0<s<r—1land0 <t <r—1suchthat

j=r-k+s and i=t-r'+k.
Eliminating k, we obtain

j:r.(i—t-rl>+szr-i+s (modr!th).
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4. Assumex; to be a loop inB(l, ). Then the paifc;, ;) of arrows is successive
in a path. Therefore, from the statement 3, we have

j=r-j+i mod (#)
foracertaind <i <r — 1. Putj = ('t — 1)i/(r — 1). Then we have

e rl+1—1.+.
r- i =r————i+1
J r—1

=(1+r+r2+~-'+rl+rl+1)i

= (1+r+r2+---+rl)i (mod 1)
Pl 1

SR

From the statement 1 (or equivalently 2), the source (or equivalently the targef)the
loop «; satisfies

Pl
j=———i=r-k+i.
r—1
Thus we obtain
_rl—l_
- r—ll'

5. Let us consider the path of length
(ajlaigas, - - iy, lax)
whose source and target arganday,, respectively. From the statement 3 we have

-1 =7 io + 821 (modrtth),

1o =7 ii_3 +s_2  (modriTl),

i1=1r-1y+ 81 (modrl“‘l)7

where0 < s1,---,8_9,51 < r — 1. Therefore we inductively have
-1
i =77 i + Z s, (modrith).
m=1
Sincek = 4;_; (modr!), we have

-1
E=rtdg+ Z ™ s (modrt).
m=1
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Note that, by appropriate choice ef, - -, s;_9, s;_1, the termZﬁ;il rm~lg_.. stands
for an arbitrary integer from 0 to'—! — 1. By the statement 1, for a giveipwe can choose
ip from among the following- integers

rej,r-j+1,---,r-j+r—1

Thereforek stands for an arbitrary integer from 0itb—1. Thus, fora giver) < j < rl—1,
there exists a uniqueamongp, 1, ..., ! — 1. This is nothing but arbitrary two vertices to
be connected with by a unique path of length 5(i, r). O

Example 2. Assumer = 1. Then we obtai3(l, 1) = (Qo = {ao}, Q1 = {ao}, s, t). The
de Bruijn quiver5(l, 1) can be realized as a planner graph as follows.

o%) @)

The defining basis of the path algebkaB(l, 1) is {eo, ap, a2, -+, af, - - - }. Therefore,
KB(l,1) is isomorphic to the polynomial algebia|[t] in one indeterminaté, the isomor-
phism being induced by th& -linear map such that

gg— 1 and g — t.

Example 3. Assumer = 2. Then we obtaiB(l,2) = (Qo = {ap, a1, - ,a9_1},Q1 =

{ag, a1, ,a9+1_1},s,t). The condition (1) can be summarized in the following table.
i 0 1 2 -~ 202 2l —1 L L R R |
i(mod2) |0 1 2 ... 202 2l —1 0 1 |
7
BJ 0 0 1 - 2711 o-l_q|o=1 oi=1 ... 9l

This table says that the vertex whose index is in the bottom row is connected with the vertex
whose index is in the second row in terms of the arrow whose index is in the top row.
The case wheh= 1 is given in example 1. The quivé#(2, 2) can be drawn as follows.

az
071 Qe
(675} ago O ol |5 Oag (674

a1 Qs
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The defining basis of the path algebr&5(/,2) is the set of all words on
{ao, at,.. .,0421+1_1} with the identification;o,; = 0 except for suchi, j) that

§=2i,2i+1 (mod2*Y)  (i=0,1,..., 2" —1).
Thus KB(l,2) is isomorphic to the quotient of the free associative algebra
K (to,t1, -, tyur1_1) in 271 non-commuting indeterminateg, t1, - - - , toie1_ iN terms
of the two-sided ideall = (t;t;), wherei, j ranges ovei0, 1,...,2!*1 — 1} except for
§ = 2i,2i+1 (mod2+?)
KB(Z, 2) >~ K<t0, Ifl, T ,t21+1_1>/J.

The K-linear isomorphism is a map such that
Y gj—1  and  a;—t; fori=0,1,...,2% -1,
=0

Example 4. Assumer = 3. Then we obtaiB(l,3) = (Qo = {ao, a1, - ,a3_1},Q1 =

ag, a1, ,Qgi41_1 ), S, t). The condition (1) can be summarized in the following table.
3 1
i 01 2 3 ... 3_-2 3t—1 38 341 342
i(mod3) o 1 2 3 ... 3—-2 3_-1 0 1 2

T

EJ 000 0 1 - 3-1_1 3-l_q|g-1 31 31
2.3-1 2.30 2.341 2.3t4+2 ... 3Hl_q

3—1 0 1 2 A L |

2.3-1_11]2.3-1 92.3-1 9.3-1 ... 3l_1

As in the case oB3(I, 1) andB(, 2), we can draw the quivds(l, 3) as a planner graph
for genericl. The simplest quiveB(1, 3) can be drawn as follows.

g

Qg ao O Qu Qy
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The defining basis of the path algebr&5(/,3) is the set of all words on
{ao, at,.. .,0431+1_1} with the identification;o,; = 0 except for suchi, j) that

j=3i,3i+1,3i+2 (mod3+!)  (i=0,1,...,3" —1).

Thus KB(l,3) is isomorphic to the quotient of the free associative algebra
K {tg,t1,- -+, ty+1_1) in 371 non-commuting indeterminateg, t1, - - - , t5i11_ iN terms

of the two-sided ideal/ = (t;¢;), wherei, j ranges ovef0, 1, .. ., 31 — 1} except for

j =3i,3i+1,3i + 2 (mod 3i+1)

KB(Z, 3) ~ K<t0, t1, te ,t3l+1_1>/J.
The K-linear isomorphism is a map such that

31
Y ej1  and et fori=0,1,...,3+ — 1L
=0

2.2. Adjacency Matrices

The adjacency matrix of a finite quivé) over the path algebr& @ is defined as follows.

Definition 3. (see for example [5]) Lef) = (Qo, Q1, s, t) be a finite quiver. Assume that
@ containsn vertices. The adjacency matrix ¢f is then x n matrix M = M(Q) €
Mat(n, KQ) whose entry;; is

uij:a—I—,@—i—---—i-’YGKQ

if s(a) = s(8) =---=s(y) =a; andt(a) = t(B) = --- = t(vy) = a; fora;,a; € Qo
anda, 3,---,v € Qq; otherwisey;; = 0.

By definition, each entry of\ is O or a linear combination of paths of length 1Gh
with coefficients 1, and every path of length 1 ¢happears in an entry a1 just once.
Remember that the product of elements in the path alg&lipaof the quiver( is defined
as a connection of the paths corresponding to the elements. Thus, for any integéx,
each entry of thei-th power of M is O or a linear combination of paths of lengthwith
coefficients 1, and every path of lengtrappears in an entry o¥4™ just once. In particular,
the trace ofM™ is the linear combination of all cycles of lengthin @ with coefficients 1.
Note that the number of nonzero terms in thi row (resp. column) of the adjacency
matrix of a quiver corresponds to that of arrows emanating from (resp. sinking into) the
i-th vertex in the quiver. By definition and lemma 1, the adjacency matrix of the de Bruijn
quiver can be characterized as follows.

Proposition1. 1. Letu;; be the(j, k)-entry of the adjacency matrix of the de Bruijn
quiverB(l, r). Then we have

o; if j = |i/r] andk =i (modr?)
0 otherwise.
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2. There exist exactly nonzero entries in each row and column of the adjacency matrix
of the de Bruijn quiver, respectively. O

By using the adjacency matrix, we can easily prove several properties of the de Bruijn
quiver.

Proposition 2. Letn > [ be an integer. Then each memi##i, ) of the de Bruijn quiver
hasr"~! paths of lengtt which connect arbitrary two vertices i(7, ).

(Proof) There exist a unique path of lengdtlzonnecting arbitrary two vertices in
B(1,7) (see lemma 1). Therefor ttieth powerM! of the adjacency matrix d8(l, ) has no
empty entry and every entry contains a monomial of degieevy, a1, - - - , v € Q1,
where(Q) is the set of all arrows ifB(l, r).

Let us consider the product of the adjacency matrices:

M M = ML

Since every column aM contains exactly nonzero entries, every entry 8f'+! contains
a homogeneous-term polynomial of degreé+ 1 in o, o, - - -, ou+1_¢. Therefore there
existr paths of length + 1 connecting arbitrary two vertices ii({, ). Induction on the
power of M completes the proof. O

Corollary 1. Letn > [ be a natural number. Then each memBéf, ) of the de Bruijn
quiver has” cycles of lengtm.

(Proof) By virtue of proposition 2, for every vertex (1, ), there exist™~ cy-
cles of lengthn emanating from it; and there exist vertices inB3(1, ). Therefore there
existr™"~! x ! = " cycles of lengt in B(I, r). O

Corollary 2. Letn > [ be a natural number. Then each memBé, ) of the de Bruijn
quiver has-"t! paths of length.

(Proof) By virtue of proposition 2, there exist"~! paths of lengthn connecting
arbitrary two vertices ir3(1, 7); and there exist possiblé x r! choices of two vertices in
B(l,r). Therefore there exist*~! x r2! = "+ paths of length in B(1, 7). O

We can obtain the explicit form of the trace of any power of the adjacency matrix of the
de Bruijn quiver.

Proposition 3. Let M be the adjacency matrix of the de Bruijn quivg(l, ). Then the
trace of then-th power of M is

tr (M") = Z Qo Xy *** Qg1
j07j17"'7j7l—2€{011 ----- 7"l+1_1}
wherej; ranges over{0, 1,...,r*! — 1} with each successive pafy;, j;+1) satisfying
Jis1 =r-gi,rji+ 1, rji+r—1(modrt)fori=0,1,...,n—1and we assume

In :jO-
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(Proof) By definition of the adjacency matritg; (M™) is the linear combination of
all cycles of lengthn in B(Z, r) with coefficient 1. Thus we obtain the following form

tI' (Mn) = Z CKJAOOéjl o ajn—l ‘

J0,J1, sin—2€{0,1,...rH1 -1}

On the other hand, lemma 1 says that every successivé¢qait;) of arrows in a cycle in
B(l,r) satisfies

j=r-ir-i+1,---,r-i+r—1 (modrth).
Therefore each subscrigt ranges over{0, 1,...,7*1 — 1} with each successive pair
(ji, jiy1) satisfyingjsi1 = - ji,r-ji + 1,- -+, 7+ ji +r — 1 (modri+t). O

Example 5. Let @ be the de Bruijn quiveB(l, 1). Then the adjacency matrikt of B(l, 1)
is the following1 x 1 matrix

M = (O[O).
The trace of thea-th power of M is
tr (M") = ag.

Example 6. Let @) be the de Bruijn quiveB(l, 2). Then the adjacency matrikt of B(l, 2)
is the following2! x 2! matrix

g o1 0 0 PP 0 0
0 0 a9 o3 e e 0 0
o 0 0 0 0 te te Qol_o Qo1 _q
M_ Qgl a21+1 0 0 0 0
0 0 a21+2 Qoglyg - te 0 0
0 0 0 0 s s Qol+1_9  Olol+1_q

The trace of thei-th power of M is

tr (M") = Z Qjo gy~ " Q15

J0sJ1y s dn—2€{0,1,...,20F1 -1}

wherej; ranges over{0, 1,...,2+1 — 1} with each successive pafy;, j;+1) satisfying
Jiv1 = 24i, 24; + 1 (mod 2! fori = 0,1,...,n — 1.
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Example 7. Let @ be the de Bruijn quiveB(l, 3). Then the adjacency matrikt of B(l, 3)
is the following3! x 3! matrix

(&7s) (6751 a9 0 te e 0 0 0

0 0 0 Qs S e 0 0 0
0 0 0 0 e s Qgi_3 Qgi_3 Qgi_q

Qgl Oégl+1 0431+2 0 e e 0 0 0

e T
0 0 0 0 ettt Oggl_g Q9.31_9 Q9.31_1

CYQ,SZ (X2,3l+1 (X2,31+2 0 e e 0 0 0

0 0 0 @2,3l+3 e s 0 0 0
0 0 0 0 s s Qgi+1_3 OQgi+1_9 Olgi+1_q

The trace of thei-th power of M is
tr (M") = Z QjoQjy " Q15

J0sd1y s dn—2€{0,1,...,30F1 -1}
wherej; ranges over{0, 1,...,3"1 — 1} with each successive paiy;, j;+1) satisfying
Jiv1 = 375, 37i + 1,35 + 2 (mod 3+ fori = 0,1,...,n — 1.

3. Cellular Automata

LetC = (F, , B) be a fiber bundle
m: FE — B,

whereFE is the total spaceB is the base space, and £ — B is the projection. If the base
spaceB and all the fibers”, = 7—!(z) overx € B are discrete spaces the fiber bundle
is called a cell. Asection: B — E of C

mos(z)=ux forx € B

is called a global configuration of the céll.
Let {Ux} ea be an open covering d8 ands,, : Uy — E be a local section ofyy:

mosy(z) == forxz € U,.

We callsy a local configuration. LeF(E') be the set of all global configurations of the cell
C. Also letT") (E) be the set of all local configurations @n, .

Leto : B — {Ux}xen, o(z) = Uy > z, whereU, is a coordinate neighborhood
of z. In terms ofo, we fix a coordinate neighborhodd, of x € B. A continuous map
Ty : T\(E) — F, = 7—!(x) is called the local transition of the cell' on the coordinate
neighborhoods(z) = U, of . The induced mag@’ : I'(E) — I'(E) from the local
transitions{T) } »c is called the global transition of the cefl. If all local transitions are
isomorphic then the global transitidfi is said to be homogeneous.



178 Atsushi Nobe and Fumitaka Yura

Definition 4. A cellular automaton is a quadruplé = (C, {Ux} xea, o, T') consisting of
acellC = (E,n, B), open covering{Uy} ea Of B, amapo : B — {Uj}eca, and the
global transition?" : T'(E') — T'(FE) induced from the local transitions dii, for A € A. If
the global transition is homogeneous théns called a homogeneous cellular automaton.

Example 8. AssumeFE = Z x {0,1}, B = Z, andr(z, f) =  forz € Bandf € {0,1}.
Then the cellC’ = (E, w, B) is a trivial bundle. Take the coordinate neighborhedd) =
Uyofx e B

Uy={x—1,z,z+1}.
Then we have
Sk(x_l) :(.T—l,fm_ﬂ, SA(x) = (xa fz)7 S>\(£C+1) = ($+1,f$+1)7

wheref,_1, fz, fac+1 € {Ov 1}'
If we set

T)\(S)\) :fm—l +f$+f$+1 :fm EFQJ fOI’xEU,\,

where the addition is considered modulo 2, then the inducedmigthe global transition

of C. Therefore, sincd’, is independent of, A = (C, {Ux}aea, 0, T) is @ homogeneous
cellular automaton and is nothing but Wolfram’s elementary cellular automaton referred to
the rule 150.

If we assume the cell’ and the open covering)y to be as in example 8, we obtain all
256 rules in the elementary cellular automaton, which is often abbreviated to the ECA, by
appropriate choices of the local transition. Indeed, let

TA(SA) = 5(f$—17f$7f$+1) = fTLB € Fma

then, sincef,_1, feo, fre1, fz € {0,1}, there exist 256 possibilities of choosing :
{0,1}2 — {0, 1}. If we assign the number

. 9. 1. 0:
p= E (S(Z(], i1, Z2)22 i0+2114+2%9
i07i1,i26{0,1}

to the local transitiorf, given byd, we obtain Wolfram’s ECA referred to the rute
Choosing a higher dimensional base sp&oaf a cellC', we obtain a cellular automaton
of dimensionn > 1.

Example 9. AssumeE = Z? x {0,1}, B = Z?, andrn ((x,y), f) = (x,y) for (x,y) € B
and f € {0,1}. Then the cellC’ = (E,n, B) is a trivial bundle. Take the coordinate
neighborhoodr (z,y) = U of (z,y) € B

U>\ = {(1‘+’L,y+]) € B ‘ Zvj € {_17071}}
Then we have

SA(x—’_Zay—’_J) = ((x+zay+j)7f($+z,y+])) foriaj € {_1707 1}7
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wheref ;1,15 € {0,1}.
If we set
TA(SA) = R(f(l‘-i—i,y-i-j)) = .fT(x,y) € F(a:,y) for (1'7 y) € Uy,
where
1 1
Vit fo=1, > farigry =3400fo=0, > fariysj) =3
R(f5) = ij=—1 ij=—1
0 otherwise

then the induced map' is the global transition of”. Therefore, sinc’ is independent
of A\, A = (C,{Ux}xen,o,T) is a homogeneous cellular automaton and is nothing but
Conway'’s game of life.

3.1. Wolfram Cellular Automaton

Now we consider a family of cellular automata called the Wolfram cellular automaton,

which is abbreviated to the WCA hereafter [42, 43, 44]. Let> 1 be natural numbers.

Each member of the WCA, denotedby(l, r) = (C(r), {Ux(1) }rea, 0, T'), can be defined

as follows. The cellC(r) of W(I,r) is a trivial bundle given by the total spadeé =

Z x {0,1,...,r — 1}, the base spacB = Z, and the projectionr(z, f) = z for f €

{0,1,...,7 — 1}. The coordinate neighborhoadz) of z € B is given as follows
o(x)=Ux(l)={z+e(0),z+e(1), -,z +e(l)},

wheree : Z — 7 is defined by

2
Note that there exigt+ 1 points inU) (1) and hence

e(l) = V*TlJ .

Let us consider the local configuration, on the coordinate neighborhodd, (/) of
x € Binthe cellC(r)

e(i) = — VJ +1 fori € Z.

S)\(Q? + 6(0)) = (‘T + 6(0)7 fa:—l—e(O))v
SA(‘T + 6(1)) = (‘T + 6(1)7 fx—l—e(l))v

8)\($ + e(l)) - (1’ + e(l)v f$+e(l))7

wheref, ey, fotet), > foreqy € {0, 1, ..., 7 — 1}. For simplicity, we often write this
as follows

S\ = (fac—i—e(())fx—i—e(l) o 'fac+e(l))

l
= Z ija:—i—e(l—j) )
=0
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where a number between round (resp. square) bracketsisthey (resp. decimal) expres-
sion. Then the local transitigh) is given as follows

TX(SA)('KE) = 5(fx+e(0)a fa:—i—e(l)v T 7fx+e(l)) - .]?J: € Fy,

wheres : {0,1,...,7— 1}l = {0,1,...,r—1}andf, € {0,1,...,r —1}. We assume
that the map does not depend an, and hence each membenof(l, r) is homogeneous.
There exist‘*! possibilities of choosing, hence we assign the number

.. . l Jir .
p= > 8o, in, -+ ig)ri=o it

10,1, 4 €{0,1,..,r—1}

to the local transition given by; and the member ofV(l, ) given by the local transition
referred to the number is called the rule.

3.2. Correspondence to de Bruijn Quiver

Lemma 2. There exists a one-to-one correspondence between the local configusation
(fete(0) fote(r) fatew) INW(L, ) and the arrowy; in B(l, r) given by

!
i=> 1 foreu—j)-
=0

(Proof) The numbef stands for the decimal number whoseary expression is

fote©) foter) * forey- Sincei ranges overo, 1,.. ., 1 — 1} without redundancy
When fo1e0)s fote(1)s 5 fateqr) rANge over0, 1, ..., r —1}, the correspondence is one-
to-one. O

Lemma 3. There exists a one-to-one correspondence between the local configusation
(fote(0) forer) * * foteqy) IN W(l, ) and the paifa;, ax) of vertices inB(l, ), wherej
andk are given as follows

! -1
J= Z 7Jn_lfac—‘,—e(l—m) and k= Z Tmfac—i—e(l—m)-
m=1 m=0

(Proof) By virtue of lemma 2, assumeg to be the vertex corresponding q:

l
i = Z 7amf;r—&-e(l—m)'
m=0

By definition of the de Bruijn quive3(l, r), if we assume; to be the source at; then we

have
i 1
7= H =D " fore-my.

m=1
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On the other hand, if we assumg to be the target ofy; then we have

k=i (modrl)

Z a:—i—e(l m)

=0

This completes the proof. O

Above lemmas 2 and 3 say that there exists a one-to-one correspondence between a con-
figurations,\ = (fx+e(0)f$+e(1) - 'f:c+e(l)) in W(l, T’) and a patf(awrj \ai\a;) in B(l, T‘),
wherei = i (modr!). We denote the correspondencely : I'y(E) — KB(l,r),

S\ = (fgc+e(0 fm—l—e(l f:c—i—e ) (aLz‘/rHaz’\ai)v (2

wherei = 3\ 19 foieoy).
Let
Up(l) ={z+e0),z+e(l), - ,z+e(l—1)} = Ur()\{z+ e(l)},
Us() ={z +e(1),z+e(2), -,z +e(l)} = Ux(D\{z +e(0)}.

Also let the restrictions to Uy (/) andUx(1) be sy andsy, respectively. These restrictions
s andsy of the local configuratios ), are called configurations of length O.

Example 10. Let us consider the WCAV (2, 2), which is nothing but the ECA. Then we
haveE = Z x {0,1}, B = Z, ando(z) = Ux(2) = {z — 1,z,z + 1}. All the possible
local configurations are as follows

s$x = (fo-1fafet1) = (000), (001), (010), (011),
(100), (101), (110), (111).

The correspondence between the local configurationd/iiz, 2) and the arrows and the
vertices in the de Bruijn quiveB(2, 2) can be summarized in the following table.

sy | (000) (001) (010) (011) (100) (101) (110) (111)
sy | (00) (00) (01) (01) (10) (10) (11) (11)
sy | (00) (01) (10) (11) (00) (01) (10) (11)

arrow (a7y) aq a9 a3 QY Qg Qg (0%
source| ag ag aq aq as as as as
target a aq as as agp aq as as

Leto(x +j) = Uy,(I)forj =0,1,...,n— 1. Then we have

SX; (m +Jj+ 6(0)) - (1‘ +Jj+ 6(0)7 fx+j+e(0)>
S>\j($ +7+ 6(1)) = (.1‘ +J+ 6(1)7 fx+j+e(1))

SX; (.%' +J+ e(l)) = (‘T +Jj+ e(l)v fac—i—j—f—e(l))
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forj=0,1,...,n—1,andhencey; = (fotjte(0)fotjte() " frtjteq)) FOr simplicity,
we denote a restrictioﬂUm(l)UUM(l)U...UUA N0 of a global configuratios in W(l, r) to

an open sety,(I) UU, (1) U---U Uy, ,(I) by sx,x,--x,_, and call it a configuration of
lengthn > 0. We often write

n—1
SXoA1 - Ap—1 = H(f:c—i—j—i—e(O) fa:+j+e(1) T fx+j+e(l))
=0

- (fa:+e(0) fx+1+e(0) T fa:—i—n—l—l—e(l))

171
H [ kax+j+e(z—k)] :
k=0

j=0 Lk=

We can extend), ...\, , ton = 0asifn = 0thensy ...\, , = sx,. Then, by virtue
of lemma 3, there exists a one-to-one correspondence betweand vertexa; for j =
anzl rm_lfe(l_m) in B(l,r). Similarly, there also exists a one-to-one correspondence
betweensy and vertexa;, for k = Zlngio 7" fe(i—m) IN B, 7).

Remember that the global configuratiom )V (I, r) is induced from the local configu-
rationss) for A € A. Thus a one-to-one correspondence between the global configurations

in W(l,r)and paths in3(l, r) is induced from the mag/, for A € A.

Theorem 1. For any integem > 0, there exists a one-to-one correspondence between a
configurationsy,, ., _, of lengthn in W(l, r) and a patiia,;, /| [ip iy - - - i,y |z, )
of lengthn in B(1, ), wherei, = i, (modr!) andi; = 34 o 7™ forjyeq)-

(Proof) Note thato(z) = U,,({) is the coordinate neighborhood ef € B in
W(l,r):

UAQ(Z) ={z+e(0),z+e), -, z+e()}

Then, by virtue of lemma 2, there exists a unique arreyy corresponding to the local
configurations,,, wherei is given as follows

l
ip = Z rmf;r+e(l—m)'
m=0

Leta; be the target ofy;,. Then, by virtue of lemma 3j is uniquely determined as follows

-1
= " frelim)-
m=0

On the other handj is also the source of an arrow, for

-1 1
'il = Z frm"‘lfx—}—e(l—m) + f$+e(l+1) = Z rmfx+e(l—m+1) .
m=0

m=0
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Noting the following

l
. +1
-0 = Z r fm—l—e(l—m)

m=0

l
= " foreomeny  (Modrith),
m=1

we have
iv=71-i0+ foreqrry (modrttl).

This implies that the arrowy;, is joined with the arrowy;, via the vertexa; (see lemma
1). By virtue of lemma 2, there exists a unique local configuratignon the coordinate
neighborhood

olxa+1)=Ux)={z+1+¢€0),z+1+e(l),---,z+1+e(l)}

of z+1 € B; ands),, corresponds to the vertex, . Thus the restriction ), of the global
transitions to Uy, (1) U Uy, (1) corresponds to the path, «;, .

Thus we inductively obtain the one-to-one correspondence between a configuration
SxoAr-Aa_y Of lengthn in W(l,r) and a path(a;, /||, - - - i, az, ) of length
ninB(l,r). O

We denote the one-to-one correspondence given in theorentl:dy(E) — KB(l,r)

H :8xgonn1 = (Fae0)  forn—1te)) = (@fig/r||ig -+ iy i laz, ), (3)

. l k
wherei; = > o7 fotjte—k)-

Example 11. Let us consider the WCAV (2, 2) as in example 10. Assume = 3 and
consider configurations of length Then the coordinate neighborhoods are

o(x) =Uy(2)={z—1,z,z+ 1},
o(x+1)=Uy(2) ={z,x+ 1,z + 2},
o(x+2)=U2)={z+1,2+2,2+3},

and hence we hav&,,(2) U Uy,(2) UU,(2) = {z — 1,z,2+ 1,2 + 2,2 + 3}. The
configurationsy, x, », Of length 3 takes 32 binary numbers fro{®0000) to (11111).

The correspondence between the configurations of length/8(i, 2) and the paths of
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length 3 inB(2, 2) is given in the following table.

(00000) (00001) (00010) (00011)
(ao‘aoaoao‘ao) (ao\agaoal\al) (ao\aoalo@\ag) (ao\aoalag\ag)
(00100) (00101) (00110) (00111)
(CL()‘OthQO@‘CL()) (ao\a1a2a5\a1) (ao\alagaﬁ\ag) (ao\alagaﬂag)
(01000) (01001) (01010) (01011)
(al\a2a4a0\ag) (al\a2a4a1\a1) (al\a2a5a2\a2) (al\a2a5a3\a3)
(01100) (01101) (01110) (01111)
(al\a3a6a4\ag) (al\agaﬁag,\al) (al\a3a7a6\a2) (al\a3a7a7\a3)
(10000) (10001) (10010) (10011)
(ag\a4aoa0\ag) (ag\a4a0a1\a1) (ag\a4a1a2\a2) (ag\a4a1a3\a3)
(10100) (10101) (10110) (10111)
(QQ‘O&5C%2064‘0,0) (ag\a5a2a5\a1) (aQ\a5a3a6\a2) (ag\a5a3a7\a3)
(11000) (11001) (11010) (11011)
(ag\a6a4a0\ag) (ag\a6a4a1\a1) (ag\a(;ag,ag\ag) (ag\a6a5a3\a3)
(11100) (11101) (11110) (11111)

(a3|047046044|a0)

(as|azogas|ar)

(as|laroraglas)

(a3|a7a7a7|a3)

A binary number stands for the configuration of length 3 which corresponds to the directly
lower path in the above table.

Through the one-to-one correspondence given above, we can define the configuration
algebrarkOV (1, r) of W(I, r) over an algebraically closed fiel .

Definition 5. Let W(I, r) be the WCA. Also letK be an algebraically closed field. The
configuration algebra W (I, r) of W(l, r) is the K-algebra whose underlying-vector
space has as its basis the set of all configuratiogs,....,, , of lengthn > 0 in W(I,r)
and such that the product of two basis vectegsy,...x,,_, ands, ., ...u,,_, 0f KW(l,r)is
defined by

= 55—5#_()8)\1/\2"')\7#10/11"'Mm—l .

SAoA1An—1Spop1 - pm—1 PV

The product of basis elements is then extended to arbitrary elemerd3vfl, r) by dis-
tributivity.

The one-to-one correspondence (3) between a configuragjan...,,, , of lengthn in
W(l,r)and a pati{a,;,r| |, i, - - -, _,|az, ) of lengthn in B(l, r) for n > 0 given in
theorem 1 induces a bijection from the set of all configuratioms the basis o W(I, r))
to the set of all paths e, the basis oK 5(l, r)). We also denote the isomorphism from the
configuration algebra ofV (1, r) to the path algebra aB(l, r) induced from the bijection
(3)byH : KW(l,r)— KB(l,1):

H(cs+dt) = ca+df, H(st) = af, H(0) =0,
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wheres andt are configurations of lengtin andn in KW(I, r), respectively; and and3
are paths of lengtln andn in KB(1, r) which correspond to the configuratiossndt in
terms of (3), respectively.

Remark 1. The global transitio” : I'(E') — T'(F) in the WCAW(, r) does not concern
the one-to-one correspondentle: KW(l,r) — KB(l,r).

3.3. Global Transition of Configuration Algebra

Now we consider the global transitichi : T'(E) — T'(E) of the WCAW(I,r). We ex-
tend the global transitiofl” to an endomorphism on the configuration algelf&\ (i, r)

of W(l,r) as follows. Denote the subspace W (I, r) generated by the set of all con-
figurations of lengthn > 0 by KW(l,r),. The global transitioril” : T'(E) — T'(E)

of W(l,r) maps a configuration of length into a configuration of the same length and
the basis ofK (I, r),, consists of all configurations of lengthy; therefore,T" induces an
endomorphism ok W(l, r),, for anyn > 0. Thus we obtain an endomorphism on the
configuration algebr& W(l, r), which is also denoted by

T(cs+dt) = cT'(s) + dT(t),  T(st) =T(s)T(t), T(0)=0,

wherec, d € K ands andt are configurations of lengtiw andn in KW(, r), respectively.
We callT € End(KW(I, r)) the global transition of the configuration algebkaV (i, r).

Then we can also define an endomorphinon the path algebr& (1, r) of the de
Bruijn quiver in order the following diagram to commute

KW(l,r) —— KW(l,r)
KB(l,r) —— KB(,r).

We callT € End(KB(l,r)) the global transition of the path algebféB3(1, ) associated
with W(l, ).

Example 12. Let us consider the WCA/V(2,2) as in example 11. Consider the local
transition referred tp = 154:

5(0,0,0)=0, 6(0,0,1)=1, §(0,1,0)=0, §(0,1,1) =1,
5(1,0,0)=1, 6(1,0,1)=0, §(1,1,0) =0, §(1,1,1) = 1.

Applying the global transition7 induced from the above local transition to, say
(---00010111001 - - -) + (- --00111101011 - - -) € KW(2, 2), we obtain

(---00010111001 ---) + (---00111101011 ---)
L, (---110011011---) + (---111100001 - - -).
This corresponds to the following transition of the path algehi&(2, 2)

(- apoiasasazaragason - ) + (- - oqogararagosaasas - )

— (- agauaiazapasas - -+ ) + (- - - araragoapapar - ).
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3.4. Transition Matrices

Let us define the adjacency matrix of the WCA via the isomorphism between the configu-
ration algebra of the WCA and the path algebra of the de Bruijn quiver.

Definition 6. Let M be the adjacency matrix of the de Bruijn quive(l, r). Also let fi
be the(j, k)-entry of M for j, k = 1,2,...,7!. Then the adjacency matrixt = (1jx) of
the WCAW(, r) is defined as follows

i = H (@) forj k=1,2,...,7r

whereH : KW(l,r) — KB(l,r)is theK-algebra isomorphisminduced from the bijection
(3) between the configurations W(l, r) and the paths iB8(l, ) of the same length.

Lemma 4. Let M = (ji;) andM = (u;x) be as in definition 6. Then we have

] if i = o .
o forj, k=1,2,...,r,
Hak {o if fij, = 0 ’

where i = Zé Or‘fm—&-e(l—j)a S = (fm-‘re(O fx—‘re(l fa&—f—e(l ) and H
(f:c-i—e(O fx-‘re(l fa:—i—e ) (aLz/rJ‘az‘aZ)
(Proof) Sincef : (f:c—i—e fm—l—e(l f:c—i—e ) (al_z/rj |Oéi‘af)1 if ﬂjk = a; then
pir = H ()
(f:c—l—e(O f:c—i—e(l fa:—i—e )

Z ij$+e(lj)j| = [Z] :
=0

Obviously, H ~* maps0 € KB(l,r)into0 € KW(I,r). O
We can obtain the explicit form of the trace of any power of the adjacency matrix of the
WCA as a direct consequence of proposition 3 and lemma 4.

Proposition 4. Let M be the adjacency matrix of the WCA/(I, r). Then the trace of the
n-th power of M is

tr (M™) = > o)1) - - - [in—1],

30,315 dn—2€{0,1,...,rl 1 -1}

where j; ranges over{O, 1,...,7 "1 — 1} with each successive pafy;, j;1) satisfying
Jis1 =r-gi,rji+ 1, r-ji+r—1(modrt)fori=0,1,...,n—1and we assume
Jn = Jo- O

We then define the transition matrix of the WCA by applying the global transition to
the adjacency matrix of the WCA.

Definition 7. Let M = (u;) be the adjacency matrix of the WCW/([,r). Also let
T € End(KW(l,r)) be the global transition ofV(l, ). We callT' (M) := (T'(1;x)) the
transition matrix oW (1, r).
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Example 13. Let A be the WCAW(I, 2). Then the adjacency matri1 is the following
2! x 2! matrix

[op  [1] 0 0 0 0
0 0 (2] (3] 0 0
M = 0 0 0 0 {21_2] [21_1}
2] 28 +1) 0 0 0 0 )
0 0 20 +2] [28+3] .- .- 0 0
0 0 0 0 cee e [2l+1 — 9] [2l+1 —1]
where we abbreviate the local configuratien = (fCC—i-E(U)fm—I—e(l) .. 'fz+e(l)) to

[Zézo rjfac—f—e(l—j)} :

If we put! = 2 we obtain

o 1] 0 0
0 0 [2] [3]
M= [4 [5] 0 0
0 0 [6] [7]

(000) = [0]
(100) = [4]

(0),  (001) = [1]
(1), (101) = [5]

— —
— —

we obtain the following transition matri¥’ (M) of W(2, 2).

0 (1) 0 0

_ [ o o (0 1)
M=l © o o]
00 0 O

where the numbef0) and (1) in the entries aref,) = (5(fs—1, fz, for1)) @andé :
{0,1}% — {0, 1} is the local transition.

Remark 2. By definition of the adjacency matri®1, every local configuration of length
obtained by applying the global transitidnto some configuration in the WCA appeatrs in
T(M)™ justonce. Conversely, every terms in the entrie¥'0M )" is a local configuration
of lengthn obtained by applying’ to some configuration in the WCA.

Since the global transitioft is a K -algebra endomorphism ddW (I, r), we have
T (tr (M™)) = tr (T(M)"™).

Thus the global transition of the trace of theth power of the adjacency matri1 is the
trace of then-th power of the transition matri¥’(M).
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4. Reversibility of Cellular Automata

Now let us consider reversibility of cellular automata. If the global transiffonI'(E) —
I'(E) of a cellular automatorl = (C, {Ux}aea, o, T') is bijective then the cellular automa-
ton A is said to be reversible. Hereafter, we study reversibility of the WA\, ) via the
correspondence to the de Bruijn quivg(l, r).

Under the above definition of reversibility of cellular automata, however, almost all ones
are not reversible. This is because the W®A(, r) is so large as to contain all possible
configurations of arbitrary length. Therefore, we may redu¢€, r) to a certain subclass
of it to detect the behavior of each cellular automaton with respect to the global transition
imposing appropriate boundary conditions. Noticing that the global transioef)V (1, r)
is an endomorphism on the configuration algebr&/ (1, r) = ;7 , KW(I, ), we have

T (é KW(lv T)n) = éT (KW(lv r)n) s
n=0

n=0

where KW(l,r),, is the sub-vector space dfW(l,r) consisting of configurations of
lengthn. Thus it is natural to consider reversibility of a subclassWf((, ) consisting
of configurations of a certain length.

In order to detect the behavior of a subclass of the WA, ) consisting of config-
urations of lengthn with respect to the global transition, we need to impose appropriate
boundary conditions. Although there can be many kinds of boundary conditions, the most
natural one may be periodic boundary conditions. Therefore, hereafter, we consider the
WCA consisting of configurations of a certain length imposing the periodic boundary con-
ditions.

4.1. Periodic Reductions of WCA

Let W(l,r) = (C(r),{Ux(1)} ren, o, T') be the WCA. Letn be a natural number not less
than!. Let B,, be the subspacg/nZ = {0,,1,...,n — 1} of the base spacB = Z of the
cell C(r). Assume the coordinate neighborhao(:) of = € B, is given as follows

o(z) =Ux(l) ={e(z),e(x +1),---,e(z+ 1)}, 4)

wheree : Z — Z is defined by

e(i)

- EJ +1 (modn) fori € Z.

We call suchw(l, r) that the base space is restricted2g with the choice (4) ob the n-
periodic reduction of the WCA, and abbreviate it to h&VCA and denote it byV (i, r),,.
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Let s,z .-z, , D€ a configuration of length in then-WCA. Then we have
0 (0) = Ux, (1) = {e(0), e(1), - -~ e(D)},
J(l) = U (l - {6(1 76(2) ' 76(1 + l)}v

on—1-1)=0Ux,__,()={e(n—1l-1),e(n—1),--- e(n—1)}

on—1)=U,, ,(1)={e(n—1),é(n),---,e(n—1+1)}
andsy; = (fe(j)fe(j+1) ** fe(+1))s 1€

= (e(4), fa(z))
sy (e(7 + 1)) = (e(j + 1), fe(j+1))

»

>
<

—

@l
—
.
N~—
N~—

SX; (é(] + l)) = (é(] + l)a fé(j+l))7
wherefe(jy, fe(j+1)s > fegi) €10,1,...,7—1}forj =0,1,...,n — 1. Then we have

n—1

SXoA1 A1 = H(fe(j fe(]—f—l fe(]—i—l )

7=0
= (fé(O)fé(l fen 1) fe(n 1+l))

We have the following lemma.

Lemma 5. A configurationsy,y,...n,_, of lenthn in then-WCA W(l, r),, is isomorphic
to the configuration, ,...n,,_,_, of lengthn — [ in the WCAW(L, r):

-
3)\0)\1...)\”_1 ~ S>\0>\1"'>\n—l—1'

(Proof) By definition ofe : Z — Z, we have

fé(n—l+i) = fé(i—l) fori = 17 27 ERX l.

Therefore there exists an identificatiofn,..x,_, = (fe0)fe)  fen—141) =
(feo)fer) = - fen=1)) = SxoAr--An_i_1- O

Let the subspace of the configuration algebi&aV (I, r) spanned by the configurations
in n-WCA be KW(l,r)’,. It directly follows from lemma 5 that the following proposition
holds.

Proposition 5. The subspac&W(I,r),, of KW(I,r) consisting of the configurations of
lengthn in the n-WCA W(, ) is isomorphic to the subspadéW(l, r),—; of KW(l,r)
consisting of the configurations of length— [ in the WCAW(I,r):

KW, r)l, ~ KW(,7)n_
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(Proof) The basis ok W(I, )], consists ofr™ configurations of length in the
n-WCA W(I,7),,. On the other hand, the basis B (I, r),,_; consists ofr("~D+ = »
configurations of lengtm — [ in the WCAW(L, r) not reduced taV(l, r),, (see corollary
1, 2 and theorem 1). By virtue of lemma 5, there exists a bijection between the above bases

SxoArAno1 = (fe(o)fer) -+ fetm—140)) = (fe0) "+ fen=1)) = SxoA1-An_i_1>
which can be extended to the desired isomorphism. O
Note we have

S T (fé(O) e 'fé(z—1)) = S\p_1-

Then, by theorem 1, the following proposition holds.
Proposition 6. A configurationsy,y, ..., , of lengthn in the n-WCA is mapped into a
cycle of lengthn in the de Bruijn quiver3(l, r) in terms of theK-algebra isomorphism
H:KW(l,r)— KB(l,r)

$xor-Anot = (fe)fe1) -+ fem—1)) = (@igr||Qigeu; -~ i lagiosr]) s
wherei; = Zk:O r fé(j+l_k) forj=0,1,...,n— 1. O
Remark 3. Since we assume > [, by virtue of corollary 1, there exist® cycles of length

nin B(l,r). Onthe other hand, we havg x,..x,_, = (fz0)fz(1) - - - fe(n—1)), and eacly
ranges ovef0, 1,...,r — 1}. Therefore, there exist* configurations in the:-WCA.

Example 14. Let us consider th8-WCA W (2, 2)3 (cf. example 11). Then the coordinate
neighborhoods are

0(0) =Ux(2) = {2,0,1} = B3

o(1) =Ux(2) ={0,1,2} = B3

0(2) =Uy,(2) ={1,2,0} = Bs.
Thus the coordinate neighborhoods are the restricted base #pdtself, and the configu-

ration of length3 is sy, x,x, = (fof1f2fof1) = (fofif2) = s,
The correspondence betwezhconfigurations inV (2, 2)3 and23 cycles of length 3 in

B(2,2) is given in the following table.

(00000) = (000) (00100) = (001) (01001) = (010) (01101) = (011)
(aolaoananlag)  (aolonoaylag)  (ar|asaganlar)  (a1]asasas|ar)
(10010) =~ (100) (10110) ~ (101) (11011) ~ (110) (11111)~ (111)

(aslouaiaslag)  (as]asazaglas)  (as|lasosas|as)  (as|larazar|as)

All configurations inWW(2, 2); appear in the tracer (M?) of the third power of the
adjacency matrixM of W(2, 2)s:

tr (M?) = [0][0][0] + [1][2][4] + [2][4][1] + [3][6][5]
+ [4][1][2] + [5][3][6] + [6](5] (3] + [7)[7]7]
= (000) + (001) + (011) + (100) + (110) + (010) + (001) + (111).

Note that the configurations in the first and second lines of the alboya®) are the
configurations of length 3 iV (2, 2), which is not reduced tdV(2, 2);3 (see proposition 5).
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4.2. Reversibility of n-WCA

Let us consider the global transitidn: KW(l,r) — KW(l, r) of the configuration alge-
bra KW(l,r). Also denote the restriction df’ on the subspac&W(I,r), of KW(l,r)
by the samé"; and call it the global transition oK' W(I, r),.. By definition, the restricted
K -algebra endomorphisth satisfiesl’ (KW(l,r).,) € KW(l,r),,. Therefore, we define
reversibility of then-WCA W(I, r),, as follows.

Definition 8. The n-WCA W(l, r),, is reversible if and only if the global transitioh €
End (KW(l,r)},) is surjective.

Let M be the adjacency matrix of the WCA W(I,r),. Note the tracer(M") of
the n-th power of M to be the sum of all configurations W (I, r),,. Then we obtain the
following theorem concerning reversibility of the WCA.

Theorem 2. Let M be the adjacency matrix of the WCA W(l,r),. ThenW(l,r), is
reversible if and only if the following holds

T (tr(M™)) = tr (T(M)") = tr(M"), (5)
wheretr(M™) is the trace of the:-th power of M andT'(M) is the transition matrix.

(Proof) The tracer(M") of then-th power of M consists of the sum of all config-
urations in then-WCA W(l, r),.. Therefore, ifT" surjective then (5) holds. Conversely, if
(5) holds therI” (tr(M™)) consists of the sum of all configurations#v(Z, r),,. Therefore
T is surjective. O

Example 15. Let us consider th8-WCA W(2,2)3 as in example 14. Choose the local
transition referred tp = 154 as in example 13:

(0), (011) = [3]
(0),  (111) =[7]

= (1),
= (1).
Then, sincél’ € End (KW(l, 7)), we obtain

T (tr(M?)) = tr (T(M)?)
= (000) + (001) 4 (011) + (100) + (110) 4 (010) + (001) + (111)
= tr(M?).
Thus the transitior” conservesr(M?) and hence it is reversible.

On the contrary, thd-WCA W (2, 2), with the same local transition is not reversible.
Indeed, we can calculaf€ (tr(M*)) as follows

T (tr(M™)) =3(0000) + (0011) + 2(0101) + (0110) + (0111) + (1001)
+2(1010) 4 (1011) + (1100) + (1101) + (1110) + (1111),

and hencd’ (tr(M*)) # tr(M*) = Z?igl[i].
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4.3. Necessary Conditions for Reversibility oh-WCA

Now we give two necessary conditions for reversibility of a rule in tR&VCA. At first, we
show two lemmas concerning the number of configurations denoted bynamy number
(1) € {(0),(1),---,(r — 1)} in the transition matrixI'(M) to give the first necessary
condition for reversibility of then-WCA.

Lemma 6. Let M be the adjacency matrix of the WCA W(I,r),. LetT(M) be the
transition matrix ofW(l,r),. Let N;(m) be the number of configurations of length 1
denoted by an-nary numbex:) in T(M)™ form > 1 andi = 0,1,...,r — 1. Then we
have

Ni(m) = mr™ 1 N;(1) fori=0,1,...,r—1andm > L.

(Proof) Sincen > [, every entry irll’(M)™ is not 0. Let the(s, j)-entry inT'(M)
beb;; € {0,(0),(1),---,(r —1)}. Note that there exist nonzero elements in each row
of T(M). Let;; be the(i, j)-entry of T(M)™ for m > I. Then we have'(M)™+1 =

T(M)"T(M) = (221:1 uikbkj>. Noting that there exist™~! terms in everyu;; (see
proposition 2), we obtain the following recurrence equationfg(m)
Ni(m + 1) = rN;(m) + 7' Ny(1) x ™!
=rN;(m) 4+ r"™N;(1).
Because there existnonzerab; in every column ofl’(M) and there exist™ ! terms in

every;;, the(i)'s in N;(m + 1) from T'(M) is r N;(m) and fromT (M)™ is 7! N;(1) x
r™~!, Solving the above recurrence equation completes the proof. O

Lemma 7. Let M be the adjacency matrix of theWCA W(l, r),,. LetT' (M) be the tran-
sition matrix of W(l, r),.. Let L;(m) be the number of configurations of length 1 denoted
by anr-nary numbexi) in tr (T'(M)™) form > 1 andi = 0,1, ..., — 1. Then we have

Li(m) = mr™ =IN;(1)  fori=0,1,...,r —1andm > I,
whereN;(1) is the number ofi)’'sin T'(M) fori =0,1,...,r — 1.
(Proof) Let 1;; be the same as in the proof of lemma 6. Also lgf €
{(0),(1),---,(r — 1)} be the(i, j)-entry in T(M)'. Note all entrie3cl,-j in ZT(M)’ to
be nonzero. Then we have (T(M)™H) = tr (T(M)™T(M)') = S0 Y51 HikChi-

Since there exist* configurations of lengthin 7' (M) and there exist'*! nonzero entries
in T'(M), the number of eacti) contained intr (T(M)m+l) is

2l
.
Ix —— ="
i+l

Therefore we obtain
Li(m +1) = Ny(m) + Ir' " Ny (1) x ™!
=mr™ N (1) + Ir™ TN (1)
= (m + Z)T’m_lNi(l),
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where we use lemma 6. O
Then we obtain the first necessary condition for reversibility of a rule imth&CA
W(l, r), concerning the number of annary number:) € {(0), (1),---,(r — 1)} inthe

transition matrixl’(M).

Theorem 3. Let M be the adjacency matrix of the WCA W(I, r),, with the local transi-
tion referred to the rule. Also letT (M) be the transition matrix ofV(l, r),, . If the rule
referred togis reversible then the transition matrfiX M) contains exactly configurations
of length 1 denoted by an-nary numbe:) fori = 0,1,...,r — 1.

(Proof) Them(> [)-th power M™ of the adjacency matrix\ contains allr™
configurations inV (1, r),, in its diagonal part. Therefore the number(@f’s in tr (M™)
is m x ™. On the other hand, by lemma 7, the number(dfs in tr (T'(M)™) is
nr™m~=1N;(1), whereN;(1) is the number ofi)'s in T(M) fori = 0,1,---,7 — 1. By
virtue of theorem 2, if the rule referred tois reversible then we have

L = LN (D).

Therefore we obtaiiV;(1) = r. O
We also obtain another necessary condition for reversibility of a rule innth#CA
W(l, r)n, which is useful to examine non-reversibility of a given rule(l, r),,.

Theorem 4. Let M be the adjacency matrix of the WCA W(I, r),, with the local tran-
sition referred to the rule. Also letT' (M) be the transition matrix oV (i, r),, . If there
exists a natural number. such that then-th power” (M)™ of the transition matrix con-
tains a configuration of length plurally then the rule referred tpis not reversible except
for finite n.

(Proof) Without loss of generality, we can assume thgj)-entry of T (M)™ is of
the form

H(VlVQVm)‘i‘,

wherer is a natural number greater than 1 andws, - - - , v, € {(0), (1), -, (r — 1)}.
Because if théi, j)-entry of T (M)™ has the above form then ti&, ;) entry of " (M)
has the form

K(&1&o - Guiva - vm) + -,

where(¢,&, - - - &) isthe(1, i)-entry of T (M) and¢;, &, - - - , & € {(0), (1), -, (r—1)}.
(Note every entry of”’ (M)l to be nonzero.)

Now we assume théj, 1)-entry of T (M)! to be (¢1¢s - - - ), whereCy, (o, -+, ( €
{(0),(1), -+, (r —1)}. Then the(1, 1)-entry of T (M)™*! has the form

k(e - vmCiGa- Q) + -
Hence the(1, 1)-entry of 7' (M)™ " ** has the form

ky(ive - vm G Q)+
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for k > 1, wherey > 1 is a natural number, because fe1)-entry of T (M) is never 0.

Thus the trace of” (M)m+l+k contains a configuration plurally for any > 0, therefore

the rule referred te is not reversible forn > m + 1. O
From example 15 and theorem 4, we see that reversibility ohtNéCA W(l, r),, de-

pends not only on its structure as a cellular automatofl, r) = (C(r), {Ux(1) }ren, 0, T')

but also on its periock. Thus it is important to study whethé®(l, r),, is reversible for

a given natural numben not less thanl. In the next section, we show that theWCA

W(2,2),, imposing periodic boundary conditions has 16 choices of the local transitions

which are reversible for infinitely many natural numbers

5. Reversible Rules in ECA

In this subsection, we concentrate on the study of reversibility ofth&CA W(2, 2),,,
which is nothing but the ECA imposing periodic boundary conditions firstly intro-
duced by Wolfram [42]. Let the local transitioi, of a local configurations, =
(fe(w) fo(z+1) fo(zr)) ON the coordinate neighborhoodz) = Uy = {é(z), &(z+1), e(z+

2)} be

8(fo(x)s fo(wtr)s fe@sa)) = Jas

wheres : {0,1}® — {0, 1}. Since we assume the local transitidn {0, 1} — {0,1} to
be homogeneous, there exist 256 choices af W(2, 2),,, each of which is referred the
number

o 2. Lol o0
b= S i in, it
i0,i1,i2€{0,1}

and called the rule.
The global transitiori” of W(2, 2),, is induced from the local transition, and can be
expressed by using the transition matfix\1)

(5(0,0,0)) (50,0,1)) 0 0
0 0 (3(0,1,0)) (5(0,1,1))
(5(1,0,0)) (5(1,0,1)) 0 0
0 0 (5(1,1,0)) (6(1,1,1))

(M) =

5.1. Equivalence Classes of Rules

By virtue of theorem 3, one of the necessary condition for reversibility)42, 2),, is that
“the number of(0)’sin T'(M) is exactly 4”. Therefore, there exigt’y, = 70 choices of the
rulesp satisfying the necessary condition. Thus we may search 70 rules for reversible ones.
Since the number 70 of rules is still so large, we introduce an equivalence relation among
the rules and consider their equivalence classes.

Let us consider the graph automorphism (2, 2) — B(2, 2) of the de Bruijn quiver
3(2, 2) = (QO = (ag, s ,ag), Q1= (ao, s ,CM7), S, t) as follows

g(ai, aj) = (ag_i, a7_j) fori=0,1,2, 3andj =0,1,...,7,
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where the subscripts af anda are considered modulo 4 and 8, respectively.

ao ay
@) O
AN I
(67} ag O (%) (073 O@ (07%4 (07%4 @O gl Qo OCLO (674}
N4 N4
O , O
al — a2

The graph automorphisminduces an automorphism on the set of the local configura-
tions s, in then-WCA W(2, 2),, which is also denoted by

0:sx = (fofif2) = (fofifa),

wheref; = 1 — f; fori = 0,1,2. The action ofp on the local transitior’ in W(2,2),,
can be defined by

(0-Tx) (sx) = T (o(sn)) -
Thenyp acts orp as follows
0 p= D (1 —ig 1 —ip, 1 —ig)2¥ 02t
i0,i1,i2€{0,1}
= D iy ir,ig)2T (o)
10,i1,i2€{0,1}

There exist 16 rules invariant under the action of the graph automorp#iiamd 6 of them,

p = 60,90,102, 153,165, 195, satisfy the necessary condition in theorem 3 for reversibility.
Remaining70 — 6 = 64 rules can be identified with each other under the actiop. athus
we may consider the following2 + 6 = 38 rules

240, 232, 228, 226, 225, 216, 212, 210, 209, 204, 202, 201, 198, 197, 195, 184,
180, 178, 177, 172, 170, 169, 166, 165, 156, 154, 153, 150, 142, 120, 116, 114,
108, 106, 102, 92, 90, 60.

Let us introduce two more automorphisms acting on the set of the pulesV (2, 2),,.
One is the reflection which acts on the local configurations as follows

w: sy = (fofif2) = (fafifr)-
Defining the action ofv onT)
(w-Ty) (sx) = T (w(sn))

it follows the action ofw on p

S o el L o0s
w-p= g d(io, i1, 10)22 io+2 i1 +2%s
10,41,i2€{0,1}
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There exist 8 rulesy = 232, 204, 201, 178, 165, 150, 108, 90, invariant under the action of
w among the above 38 rules. There also exist 2 rytes; 209, 116, invariant under the

action of p o w among them. Remaining’ — 10 = 28 rules can be identified with each
other under the action of. Thus we may consider the followingt + 10 = 24 rules.

240, 232, 228, 226, 225, 216, 212, 209, 204, 201, 198, 197,
195, 180, 178, 165, 154, 150, 120, 116, 114, 108, 102, 90.

The other automorphism is the conjugatieracting on the fiberr, overxz € B, as
follows

T:fofozl_fa:-
Defining the action of- onT)

(T-T)) (s2) =1 =T (7(s1)),
it follows the action ofr onp

Top= Y {181 —ig 1 —ir, 1 —ig)} 2202 20
i0,11,i2€{0,1}
=235 —p-p.

There exist 6 rulegy = 240, 232, 212, 204, 178, 150, invariant under the action af among
the above 24 rules. There also exist 2 rules+= 226, 198, invariant under the action of
w o 7 among them. Remainingd — 8 = 16 rules can be identified with each other under
the action ofr. Thus we may consider the followirgH 8 = 16 rules.

240, 232, 228, 226, 225, 212, 209, 204, 201, 198, 197, 195, 178, 165, 154, 150.

Let us consider the orbit decomposition of the NCA W(2, 2),, in terms of the group
G = (o,w,7) ~7Z/27 x 7/27 x 7/27 generated by, w, 7 which satisfy the generating
relations

0’=w=7r2=1, ow=wo, or=rT0, WT=TW.

Define the action oz on the set of all rules inV(2, 2),, as above. Also define the equiva-
lence relation~ between the rules referred &oandb as follows

a~b — a=g-b forged.

Then we obtain the quotient s&Y (2, 2),,/ ~.
Now we show that the action of the grodpdoes not affect reversibility of the rules in
W(2,2),.

Proposition 7. Let the group be as above. Then a rule in theWCA W(2, 2),, referred
top = g-a,whereg € G, isreversible if and only if the rule referred to= a is reversible.
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(Proof) The rulep = a in W(2, 2),, is reversible if and only if the global transition
induced from the local transition referred fo= a acts as a permutation on the set of all
cycles of lengthn in B(2,2). Therefor, we have only to show thate G also acts as a
permutation on the set of all cycles of lengthn 5(2, 2).

Since the generatar of G is an automorphism of8(2, 2)%, ¢ induces a permutation
among all paths i3(2, 2). The generator of G also induces the same action 82, 2)
asp, because the action efon the set of all configurations is the samegas

T 8x = (fofif2) = (fofifo),

wheref; =1 — f; fori = 0, 1, 2. In addition, the generatas of G also acts or3(2, 2) =
(Qo, Q1, s,t) as an automorphism:

Ww:iap < az, a1 <> 0y, 3 <> Qg,

whereQo = (ag,---,a3), Q1 = (ao,---,ar), and other vertices and arrows are fiked
Hencew induces a permutation among all pathd3(2, 2). This completes the proof. O

By simple observation, we see that the rule referred to the odd numgezater than
128 is not reversible. Therefore we have only to consider the following 10 rules

240, 232, 228, 226, 212, 204, 198, 178, 154, 150.

The rule referred t@ = 240 is reversible because its global transition is nothing but the
left shift; and the rule referred to = 204 is also reversible because its global transition is
the identity. Moreover, reversibility of the rule referredde= 150 has already proved [24];
i.e., the following proposition holds.

Proposition 8. Each rule inW(2,2),/ ~ whose representative is referredgo= 150 is
reversible if and only ifn ¢ 3Z.

(Proof) Let M be the adjacency matrix o/ (2, 2),,. Let T (M) be the transition
matrix of W(2, 2),, whose local transition is referred o= 150:
0 (1) 0 0
0 0 (1) (0)

M) = (1) (0) 0 0
0 0 (0) (1)
Then we obtain
(00) (01) (11) (10)
11) (10) (00) (01
T(M)* = 2103 2113 201; 200;)’
(01) (00) (10) (11)
(000) + (111) (00 )+(110)‘(o11)+(1oo) (010) + (101)
TM)P = (001) 4 (110) (000) + (111) | (010) + (101) (011) + (100) ®)
(011) + (100) (010) + (101) | (000) + (111) (001) + (110)
(010) + (101) o11)+(100)‘(001)+(110) (000) + (111)

Let us prove the following lemma.

The action ofp on B(2, 2) as a planner graph is realized as the rotatiorrby
2The action ofw on B(2, 2) as a planner graph is realized as the reflection with respect to the line passing
through the verticeao andas.
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Lemma 8. The 3m-th powerT(M)3™ of the transition matrix of the»-WCA W(2,2),,
with the choice of the local transition referred go= 150 is of the recursive form

M3m NSm)

3m __
T(M) B <N3m MSm

where the2 x 2 matricesMs,,, and N3, are given as follows

M3m — <M3m V3m> 7 N3m — <§3m CSm) ’

Vsam H3m CSm §3m

and the entriegs, ., 3, £3m, and(s,, are the sum o3 different configurations of length
3min W(2,2), .

(Proof of lemma) By virtue of (6), the statement is true far= 1. Assume it is
true for3m. Then we have

M N Ms N
3m+3 _ [ Mam  Nam 3 V3
M) - <N3m M3m) <N3 M3)

_ < M3, M3 + N3y N3 | Msp, N3 + N3, M )
N3y Ms + M3y N3 | Nay N3 + Mz, M

It immediately follows that the statement is true forn + 3. O
By virtue of lemma 8, we have

0) (1) 0 0
M3y, NBm) 00 (1) (0)
N3y Msy, (1) (0) 0 0
0 0 (0) (1)
= p13m(0) + &3m (1) + v3m (1) + C3m (0)
+ C3m(1) + VSm(O) + £3m(0) + MBm(l)-

tr (T(M)*™ ) = tr (

Itis clear that al2®™*! terms intr (T'(M)3™*!) do not coincide with each other. There-
fore, the rule referred tp = 150 is reversible fom = 3Z + 1. Similarly, we obtain

(00) (01) (11) (10)
tr (T(M)P"7) = (ij Mzm> (10) (11) (01) (00)
(01) (00) (10) (11)

(

+ 3 (01) 4 113 (10) 4 C3m(11) + €30, (01)
+ f3m(11) + CSm(OO) + M3m(01 + V3m(10)
+ C?)m(lo) + €3m(00) + V3m(00 + M3m(11)7

and hence the rule referred po= 150 is reversible fom = 3Z + 2. Non-reversibility for
n = 37 is immediate consequence from lemma 8 . O



Reversibility of Cellular Automata 199

5.2. Reversibility of Rule 154
Now we search the following 7 rules for reversible ones

232, 228, 226, 212, 198, 178, 154. @)
At first we show that the rule referred o= 154 is reversible fom € 27 + 1.

Proposition 9. Each rule inW(2,2),/ ~ whose representative is referredgo= 154 is
reversible if and only ifn € 27Z + 1.

Remark 4. The equivalence class whose representatipe-is154 consists of the following
8 rules

w-154 =210, 7-154=166, p-154=89, (wr)-154 = 180,
(ow)-154 =75, (o7)-154 =101, (owr) 154 = 45.

Now we study the property of the transition matfix(M) with the local transition
referred top = 154:

0) (1) 0 o0

[0 0 (0) (1)
TM=1a) © o o
0 0 (0) (1)

By virtue of proposition 4, we obtain the explicit formula of the trace of thh power of
(M)

tr (T'(M)") = > 6([7a])8([7]) - - - 6([jn—2)d([jn-1]),
j07j17"'7j7z—2€{071 7777 7}
wherej; ranges oveK0, 1, ..., 7} with each successive pay;, ji+1) satisfyingj;+1 =
2ji,24; +1 (mod&) fori = 0,1,...,n — 1 and we assumg, = jo. For example, we have

r (TM?) = > a(GoDs(Li)é (o))

Jo,j1€{0,1,...,7}

:5([ 1a([o])a([o]) + 6([1])a([2])5([4])
([ Da([4)a([1]) + 6([3])a([6])d([5]) + o([4])a([1])a([2])
+6([5])a([3])a([6]) + 6([6])a([5])([3]) + &([7)a([7])a([7])
= (000) + (101) 4 (011) + (100) 4 (110) + (010) 4 (001) + (111)

Lemma 9. Supposen € 2Z + 1 andm > 2. Let A,, = (a;j(m)) be them-th power
T (M)™ of the transition matrix with the local transition referred go= 154. Then every
row sum is the sum of all configurations in thReWCA W (2, 2),,:

4
> ai(n) = > (fofi -+ fam1)  fori=1,2,34.
j: vaflu"'afn—lE{O,l}
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(Proof) Because every row of the transition matfikM) contains g0) and a(1),
all configurations of length appear in every row ofi,, justonce. Itis easy to understand to
consider the corresponding de Bruijn quivgf2, 2). Leta be an arbitrary vertex i3(2, 2).
Two arrowsa and 3 emanate from the vertex One of the arrow is labeled by (0) and the
other by (1) this is because the fact that every ro’'¢f\1) contains &0) and a(1). Then
the labeling of two paths from the vertexnever coincide with each other. There exst
paths of lengthm emanating fronuw, and hence there exigt" labeling of paths each of
which bijectively corresponds to a local configurationAr, . O

Lemma 10. Supposen € 2Z +1 andm > 2. Let A,, = (a;;(m)) be asinlemma 9. Then
the entriesy;; (m) of A,,, satisfy

1. ar3(m) = azz(m),

2. agz(m) = asz(m),

3. apy(m) = asa(m), and

4. aro(m) + ara(m) = ass(m) + asa(m).

(Proof) 1. Note that the powers, and A; of T'(M) are as follows

(00) (01) (10) (11)
A _ | (o) (00) (10) (11)
271 (10) (11) (00) (01) |’
(01) (00) (10) (11)
(000) 4 (101) (001) + (100) (010) + (110) (011) + (111)
Ao — | (020) 4 (101) (011) + (100) (000) + (110) (001) + (111)
371 (001) + (100) (000) + (101) (010) + (110) (011) + (111)
(010) 4 (101) (011) + (100) (000) + (110) (001) + (111)

It is easy to seei13(3) = as3(3). Assume the property s(m) = assz(m) is true for
m € Z + 1 andm > 1. Then we have

a13(m + 2) = {a11(m) + a12(m) + ara(m)} (10) + a13(m)(00)
= {c— aiz(m)} (10) + a13(m)(00),

wherec is the row sume = Y | a1;(m). By the assumptiom3(m) = ass(m) of
induction, we have

aiz(m+ 2) = {c¢— agz(m)} (10) + azz(m)(00)
= {a31(’m) + agz(m) + a34(m)} (10) + agg(m)(OO)
= agg(m + 2),

where we use the faet= )" | a3;(m) from lemma 9.
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2. The propertyios(3) = aq3(3) is also true, and we assume it is true for Then we
have

~—

azs(m + 2) = {az1(m) + age(m
= {c—ag(m)} (10
= {c—as3(m)} (10
= {a41(m) + a42(m
= aq3(m + 2).

+ aza(m)} (10) + az3(m)(00)
+ az3(m)(00)
+ a43(m)(00)
+ agq(m)} (10) 4 aq3(m)(00)

~— —

3. The propertyio,(3) = a44(3) is also true, and we assume it is true for Then we
have

age(m ~+ 2) = {ag1(m) + aga(m
={c—ags(m)} (1
={c—as3(m)} (1
= {aq1(m) + as2(m
= ag(m + 2),

~—

+ az4(m)} (11) 4+ az3(m)(01)
+ ag3(m)(01)
+ a43(m)(01)
+ asa(m)} (11) + aq3(m)(01)

1
1

~— —

where we use the faabs(m) = a43(m) from the statement 2.
4. The propertyi12(3) + a14(3) = a22(3) + a24(3) is also true, and we assume it is
true form. The we have

arz(m + 2) + aja(m + 2)
= a11(m)(01) + {a12(m) + a14(m)} (00) + a13(m)(11)
+ {a11(m) + ai2(m) + a14(m)} (11) + a13(m)(01)
11

= {a11(m) + a13(m)} {(01) + (1)} + {a12(m) + a1a(m)} {(00) + (11)}
= {c— ara(m) — ara(m)} {(01) + (A1)} + {ar2(m) + ara(m)} {(00) + (11)}
= {c = aga(m) —aga(m)} {(01) + (1)} + {ag2(m) + aza(m)}{(00) + (11)}
= {az1(m) + a23(m)} {(01) + (11)} + {az2(m) + az4(m)} {(00) + (11)}
= aga(m + 2) + ag4(m + 2)

Thus we finish the proof. O

By using the above two lemmas, we can easily prove proposition 9.
(Proof of proposition 9) Assume € 27Z + 1. Then, from lemma 10, we have

tr A, = a11(n) + aze(n) + assz(n) + aqa(n)
= a11(n) + aza(n) + a13(n) + az(n)
=ai1(n) + a12(n) + a1z(n) + aia(n).

This is nothing but the total sum of the entries in the first rowAf. From lemma 9, it
follows that

tr A, = Z (fofi-- fno1) = tr (M™),
fosfr, fn—1€{0,1}
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whereM is the adjacency matrix of the-WCA (2, 2),,. Thus each rule iV (2,2),/ ~
represented by = 154 is reversible fom € 27 + 1 (see theorem 2).

Assumen € 27 and consider
(01)
(00)
(11)
(00)

Since thg1, 1), (2, 2), and(3, 3)-entries ofA, are all(00), the same entries iA,,,, contain
the configuration(0000 - - -00) of length 2m for any m > 1, respectively. Therefore we
have

tr Agy # > (fofi -+ fam—1) = tr (M>™)
f07f17"' 7f2'm716{071}

This completes the proof of proposition 9. O

5.3. Complete List of Reversible Rules

Next we show that the remaining 6 rules referre@ te 232, 228, 226, 212, 198, 178 are not
reversible. Non-reversibility of the-WCA W(l, r),, is easily checked in terms of theorem
4 concerning the transition matrik (M).

Let us consider the transition matrik (M) with the local transition referred tp =
232:

(0) (0) 0o 0
_ o 0o (0 (1)
TM=1w a) o o

Then we have

(00) (00) (00) (01)

(00) (01) (11) (11)
T(M)* = (00) (00) (10) (11))’

(10) (11) (11) (11)

2(000) (000) + (001)  (000) + (011) (001) 4 (011)

Ty — | (000)+ (110) (000) + (111) (010) + (111) (011) + (111)
(M)"= (000) + (100)  (000) + (101) (000) + (111) (001) 4 (111)

(100) + (110) (100) + (111) (110) + (111) 2(111)

We see that thél, 1)-entry of T'(M)? is 2(000). Therefore, by virtue of theorem 4, each
rule in the equivalence class representegby 232 is not reversible forn > 3.
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Similarly, for the rule referred tp = 228, we obtain

TN TN TN TN N N N

— — — /N /S S

~— N N N S

228 is not reversible fon > 4.

The (1, 3)-entry of T(M)3 is 2(001), therefore each rule in the equivalence class repre-
For the rule referred tp = 226, we obtain

sented by

TN TN TN TN N e e

— — /N

— N N N N

(0001) +2(0101) + (0111),
and hence each rule in the equivalence class represented=bg26 is not reversible for

n > 4.

Then the(2, 2)-entry of T'(M)* is
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204

Proceed further. For the rule referredde= 212, we obtain

Py

— — — /o~

~— N N S e N

Therefore each rule in the equivalence class represented-by212 is not reversible for

n > 4.

For the rule referred tp = 198, we obtain

TN TN TN TN N N

— — — /S N

— N N N N

Then the(3, 3)-entry of T'(M)* is

(0011) 4 2(0101) + (0011),

and hence each rule in the equivalence class represented=by98 is not reversible for

n > 4.
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Finally, for the rule referred tp = 178, we obtain

0) (1) 0o 0

0 0 (0) (0)
TM=1m @ o ol

0 0 (0) (1

(00) (01) (10) (10)

_ | (01) (01) (00) (O1)

TM’=110) (11) (10) (10))’

(01) (01) (10) (11)

(000) + (101) (001) + (101) (010) + (100) (010) + (101)
Py — | (010)+(001) (011)+(001)  2(010)  (010) + (011)
MPT=1(100)+ (101)  2(101)  (110)+ (100) (110) + (101)

(010) + (101) (011) + (101) (010) + (110) (010) + (111)

Therefore each rule in the equivalence class represented-byl 78 is not reversible for
n > 4.

Summarizing the above facts, we finally obtain the following theorem concerning re-
versibility of ECA imposing periodic boundary conditions.

Theorem 5. There exist exactly 16 reversible rules in theWCA W(2, 2),, which are
referred to the numbers in the following table.

Representative w T 0o wr ow 7t owr Period

150 105 ne€3%+1,3Z+ 2
154 210 166 89 180 75 101 45ne€2Z+1

170 240 85 15 necN

204 51 necN

In the above table, each element®f= (p, w, 7) maps the representative ¥ (2, 2),,/ ~
into a rule below it. The rules are reversible only for the penioof the base space listed in
the rightmost column. O

Remark 5 (see [35]).The rule referred tgp = 154 has the property called linearizabil-
ity. Therefore, we can obtain a formula computing the period with respect to the global
transition for any initial configuration. Moreover, we can prove that there exist infinitely
many linearizable:-WCA W(l, r),; we can also obtain a formula computing the period
with respect to its global transition for any initial configuration.

6. Conclusion

We establish a on-to-one correspondence between the configurations in the WCA, which
is a family consisting of infinitely many cellular automata, and the paths in the de Bruijn
quiver, which is also a family consisting of infinitely many quivers. Extending the corre-
spondence to that between the configuration algebra of the WCA and the path algebra of
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the de Bruijn quiver both of which are associative algebras, we obtain the global transi-
tion of the configuration algebra of the WCA. Thus we translate the problem concerning
reversibility of the WCA into that concerning surjectivity of the endomorphism, which is
induced from the local transition of the WCA, on the configuration algebra of the WCA.
We then show that the induced problem concerning the endomorphism can be solved in
terms of the adjacency matrix of the WCA, which is defined from that of the de Bruijn
quiver through the one-to-one correspondence. Indeed, we give a necessary and sufficient
condition for reversibility of the WCA. By virtue of the necessary and sufficient condition,

we classify all 16 reversible rules in the ECA imposing periodic boundary conditions.

As we have referred to in section 1., we search the WCA for reversible cellular au-
tomata, and we consequently obtain several reversible rules in the ECA. Although we could
not refer to here, there exists a family consisting of infinitely many reversible rules in the
WCA called the linearizable cellular automata and abbreviated to the LCA [35]. The most
simple example of the LCA is nothing but the reversible ECA referred to rule 154. Since
the initial value problem for each member of the LCA imposing periodic boundary condi-
tions can be solved.,e., a formula computing the period with respect to the global transition
for arbitrary initial configuration is obtained, we believe that each member of the LCA is
a candidate for integrable cellular automaton. In order to establish the integrability of the
LCA, to precisely study its property is a further problem. The method which associates a
family of cellular automata to an associative algebra is a powerful tool in order to examine
the property of the family of cellular automata. The authors think that the quantum cellular
automata [27] can also be studied by using the method we have developed here. We shall
report on this subject in a forth coming paper.
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Chapter 9

FROM GLIDERS TO UNIVERSALITY OF CELLULAR
AUTOMATA : ANOTHER 2D 2-STATE UNIVERSAL
AUTOMATON

Emmanuel Sapin*
CNED

Abstract

This paper deals with the emergence of computation in complex systems. The
Turing universality (i.e. the ability to encompass the whole computation power of the
class of Turing machines) of cellular automata which are the simplest representation
of complex systems is considered.

We aim to construct an automatic system for the discovery of Turing-universal
cellular automata. In this chapter, some steps towards this objective are presented,
as is the search for self-localized patterns of non-resting states called gliders. An
evolutionary method to search for gliders, based on a specific fithess functions taking
into account the presence of periodic patterns and gliders, led to the discovery of a
large number of gliders. Among the automata accepting gliders that were discovered,
some would surprisingly generate glider guns for nearly every evolution of a random
cell configuration. The first of them that was discovered is picked up as a potential
candidate for a universal automaton.

Patterns that are able to stop unwanted streams of gliders are called eaters, they are
searched for and used with gliders and glider guns to demonstrate the universality of
an automaton.

PACS05.45-a, 52.35.Mw, 96.50.Fm.
Keywords: Cellular Automata, Glider, Glider Gun, AND.

1. Introduction

The theories of complexity are the understanding of how independent agents are interacting
in a system to influence each other and the whole system [35]. A complex system can be

*E-mail address: emmanuelsapin@hotmail.com
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described as a system composed of interconnected parts in which the whole exhibits more
properties that the sum of the parts [41, 42, 43]. Surprising computational tasks could result
from interactions of independent agents in complex systems as emergence of computation
is a hot topic in the science of complexity [17]. A promising environment to study emergent
computation is cellular automata [18] which are the simplest mathematical representation
of complex systems [36] and an important modelling paradigm in the natural sciences and
an extremely useful approach in the study of complex systems [44]. They are uniform
frameworks in which the simple agents are cells evolving through time on the basis of a
local function, called the transition rules [1].

Emerging computation in cellular automata has different forms. Some have studied
specific computation like density and synchronization tasks [15, 16, 21, 25, 20] and pattern
recognition [33]. While others have consider&dring-universal automat2, 10, 11, 12,

13, 39, 45] i.e. automata encompassing the whole computational power of the class of
Turing machines [37]. Some have asked the question of the frequency of universal cellular
automata as Wolfram [3]. In order to find universal automata, we aim to construct an
automatic system for the discovery of Turing-universal cellular automata.

The first 2D 2-state automaton proved Turing-universal was the Game of Life of Con-
way et al. [6]. Its demonstration of universality uses the presence of mobile self-localized
patterns of non-resting states [39], callgliders and their generators calleglider guns
which, when evolving alone, periodically recover their original shape after emitting a num-
ber of gliders. Considering the ability of gliders to lead to universality, one of the possible
first steps towards an automatic system for the discovery of Turing-universal automata is
the search for gliders presented in this chapter.

The search for gliders was notably explored by Adamatkgl. with a phenomenolog-
ical search [22], Wuensche who used his Z-parameter and entropy [23] and Eppstein [24].
Lohnet al.[27], Ventrella [28] has searched for gliders using stochastic algorithms. Here,
a search for gliders by evolutionary algorithms is described and the discovered gliders are
described thanks to a classification taking into account periods and velocities.

This search for gliders allows the discovery of an automaton c&ledth glider guns:
during the evolution of a random configuration of cells by this automaton glider guns
emerge. This chapter presents a demonstration of the Turing universalty of

After a second section that introduces some formalisations and notations, Section 3
presents the Game of Life while the search for gliders is described in Section 4. Section 5
deals with the demonstration of universality®f The last section summarizes the presented
results and discusses directions for future research.

2. Formalisations and Notations

2.1. Setof Cellular Automata

A cellular automaton of dimensiothis a 4-tuple £9,SV,5: S**1 — S) where :

e Sis a finite set of states.

e V is afinite ordered subset @ of cardinaln called a neighbourhood.
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e 5: 91 . Sis thelocal transition ruleof the cellular automaton.

In the following, we will consider only the automata with the following characteristics:

e d=2.

e S={0,1}

¢ V will be the Moore neighbourhood i.e. the eight direct neighbours of the element
(x,y) calledcell, thereforen = 8.

The space(Z?,{0,1},Moore neighbourhood),¥3: S — S} of these automata is called
the spaceE. The next formalisations will be given for automata®bfbut could be general-
ized for automata with higher dimensions and more states.

2.2. Evolution of Cellular Automata

A configuration at time € N, or generatiort, of an automatom\ € ‘£ is an application
¢/ : Z? — {0,1}. The imagee(x,y) is called the state of the celt§). Cells in states 0 and
1 are respectively called dead and alive. The sequerfoe.§ is said the evolution of the
cellular automatorh from the configuratiore; if and only if:

et (xy) =8(c(x+1,y— 1), ¢ (x+1,y), ¢ (x+ 1,y+1),c (x,y - 1),
(6 Y), (%Y + 1), (x = 1y — 1), ¢ (x— Ly), ¢ (x— Ly +1)).
For readability, in the following, the arguments of the functidwill appear in this dispo-
sition:
cfa(xy) =3(cf(x+1,y-1), fx+1y), f(x+Ly+1),
xy-1), dxy), (xy+1),
c(x—1y-1), x-1y), ¢f'(x~1y+1)).

The functiond determines what will become to a cell at the next generation depending
on its neighbourhood.

Figure 1, in which cells in states 0 and 1 are represented respectively by white and black
coloured squares, shows the first four generations of two sequerfoesy( only the second
one is the evolution an automaton.

2.3. Isotropy

An automaton Z2,{0,1} ,Moore neighbourhood; S’ — S) is saidsotropicif and only if
for all binary numbersy, X2, X3, X4, X5, X5, X7, Xg andxg we get:

X1, X2, X3, X3, X2, X1, X7,X8, X9, X1, X4, X7,
O| X4,Xs5,Xs, | =0 Xe,X5,Xa, | =0 Xa,%X5,%X, | =0O| X2,X5,Xg, | =

X7, %8, X9 X9, X8, X7 X1,X2,X3 X3, X6, X9
X9, X6, X3, X7, X4, X1, X9, X8, X7, X3, X6, X9,

) X8, X5, X2, =0 Xg, X5, X2, =0 X6, X5, X4, =9 X2,Xs5, X8, .
X7, X4, X1 X9, X6, X3 X3, X2, X1 X1, X4, X7

The subset of isotropic automata is called the spAceE.
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e 1R E 1

Figure 1. Two sequences();>o for t equals 0, 1, 2 and 3. Only the sequence at the bottom
is the evolution of a cellular automaton that is the R-pentomino of the Game of Life [6].
States 0 and 1 are shown respectively by white and black coloured squares.

2.4. Number of Automata

The number of automata iB is the number of possible transition rul8s 1 — S. There
are 2 = 512 different rectangular 9-cell neighbourhood states (including the central cell)
therefore the spac& contains 2'2 automata. An automaton of can be described by
telling what will be the new state of a cell at the next generation depending on its neigh-
bourhood as shown figure 2.

The number of automata dfdepends on in how many subsets of isotropic neighbour-
hood states the 512 different rectangular 9-cell neighbourhood states can be put. Let:

X1,X2, X3,
X4, %5, X6,
X7, X8, X9

be a rectangular 9-cell neighbourhood states. Its isotropic neighbourhood states are :

X3, X2, X1, X7,X8, X9, X1, X4, X7, X9, X8, X3, X7,Xa4,X1,
X6, X5, X4, ) X4,Xs5, X, ) X2,Xs5, X8, s X8, X5, X2, ) X8, X5, X2, )

X9, X8, X7 X1,X2,X3 X3, X6, X9 X7, X4, X1 X9, X6, X3

X9, X8, X7, X3, X6, X9,
X67X57X47 ) X27X57X87 .
X3, X2, X1 X1, X4, X7

An exhaustive study shows that, depending on the values of the nine binary numbers
X1, X2, X3, X4, X5, X8, X7, Xg andXxg, the eight isotropic neighbourhood states could be:

¢ all different from one another or
e equal to one another or
e equal two-by-two or

e equal four-by-four.
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All the 512 different rectangular 9-cell neighbourhood states can be put in 102 subsets

and 1 are represented respectively by white and black coloured squares. These figures show
of isotropic neighbourhood states, meaning that there &tédifferent automata irn. In

the subsets of isotropic neighbourhood states in wiick: 1.
its neighbourhood is in. The subset of isotropic neighbourhood states is represented by one

elements. Figures 3, 4, 5, 6 show subsets of 1, 2, 4 and 8 elements in which cells in states 0
element on figure 7 that shows an automatod.of

That leads to having subsets of isotropic neighbourhood states with a different number of
will be at the next generation, depending on which subset of isotropic neighbourhood states

order to describe an automaton ffone just needs to be able to tell what the state of a cell
In the following the state O will be the quiescent state. There atéahd 2°! automata of

Among the states of a cellular automaton, sometime, a statalledquiescent stat§38],
‘£ and I for which 0 is the quiescent state.

2.5. Quiescent State
is such that:



216 Emmanuel Sapin

{a 3 EEEy{ o ){ =%}

Figure 3. The four subsets of one isotropic neighbourhood state in wheh. The first
subset is composed with the element (0,0,0,0,1,0,0,0,0) as states 0 and 1 are shown respec-
tively by white and black coloured squares.
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Figure 6. The eighteen subsets of eight isotropic neighbourhood states.
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Figure 7. An automaton of the spaée

2.6. Patterns
2.6.1. Definition

A pattern Pis an applicatiorR — S, with R a given rectangular subset af andSequal to
{0,1}.

A pattern is included in a configuratiof* of an automatorA of the spacek if the
restriction ofc® to R (or a translation oR in Z?) is equal toP. A pattern is included in a
configurationc* of an isotropic automatoA of the spacd if the restriction ofcf* to R (or
composition of a translation and symetriesRin Z?) is equal toP. Figure 8 shows the
R-pentomino of Game of Life after applying symetries.

Figure 8. The R-pentomino of Game of Life after applying symetries.

The sequencéP?)i~o is an evolution ofP in the automator if P is included in the
configurationPy' andPy is zero outside of the associated rectangl&f

2.6.2. Glider
A glider G of the automator\ is a finite cycle of patterng, Pi, ..., Pr_1] such that:

o If (P%)i>0 is an evolution ofPy in the automatom, then(PZ;)i>o is an evolution of
P in the automatod, fori=1toT — 1.
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e There exists two integei8x andDy, such thaix,y) # (0,0) and for all integers and
y we get:
GR(x,y) = Gp(x+Dx,y-+Dy).
The numbeiT is called the period of the glider.

Dy andDy are respectively the deplacements along X-axis and Y-axis. The movement
is how much the glider moves during a period. The definition of the movement depends on
the chosen neighbourhood. Considering Moore neighbourhood, the movement is defined
by the maximum betwegDy| and|Dy|.

The definition of the velocitys of a glider is the movement divides by the peridd

A glider can beorthogonal diagonalor oblique:

e If Dy equals 0 oDy equals 0G is said an orthogonal glider.
e If D] equalsDy|, Gis said a diagonal glider.
¢ If Gis neither diagonal nor orthogond, is said an oblique glider.

The figure 9 shows orthogonal and diagonal gliders of the Game of Life.

Evolution of a diagonal glider: =
um
um
=
| ]
I.=\
n
i
||
| |
IIK
Evolution of an orthogonal gllder m—— ““ LS
I IIV I—IIv el
IIII IIII EEEE

Figure 9. Evolutions of orthogonal and diagonal gliders for generations from 0 to 5 of the
Game of Life. For the diagonal gliddr = 4, Dy = —1 andDy = —1 and for the orthogonal
gliderT =4,Dy = 0andDy = 1.

2.7. Glider Gun

A patternG is a glider gun of the automatorA if and only if the evolution ofG in the
automatorA is such that there exists a non-zero natural nuntkserch that for all natural
numbers, we get:

e Forallintegerscandy, Gfj,, 5, (X.y) = 1 if Gi¢(x,y) =1.
e Let P be a pattern for which for all integexsandy we get:
P(X,Y) = Gls1)xt (%:Y) — G (X,Y)-
The patterrP is such that:
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— there exists two integepsandy such thaP@(x,y) =1.
— For allintegersc andy such thaP4\(x,y) =1 we get(x,y) is in a glider included
inP.

The numbet is called the period of the glider gun. The gliders included in the pattern
P is said emitted byG. Figure 10 shows the gosper gun of the Game of Life.

Generation 0 - Generation 1 - Generation 2
L] u N 'y
e B -] ul El- - H o2 " = - H
H B ula ™ay = weE B3R "u"m - HIE" e
" " s = L L]
L1 u _ 1] _
Generation 3 Generation 4 Generation 5
" wnin -
"8 w"E = [ H "% » ""EE EEa - H . H - H
T =g uag m N - u NN T wn - u
- | " m . || | | n AEEEN - ] n L]
] L] L] u mE m s snlinn =m
L | " _n |} -
1 1 _ un _ | -~
Generation 6 Generation 7 -
8 . kB = "l 2% om
| | ] | | II. [ ] ] | ] ll " l.- |}
[ =1 n = mm [ -t B It
uw n - g = =
EEm  Em =
m - - -
Generation 29 am
m u
L " . H
- uh [ u
[ L ] "_m
N B m (R
(]
b n »
[l ] g

Generation 30

Figure 10. Evolutions of the Gosper gun of the Game of Life.

The period of Gosper Gun s 30 so for all integzindy, Géiofe(x,y) =1if Géife(x,y) =
1. Figure 11 shows the patteR) in which for all integers andy, we get:

P(IJ_ife(ij) _ GOSperGutlge(X»Y) — GosperGubife(ny).

| .

Figure 11. The patterR}'".

All the living cells of POLife are included in a glider of Game of Life.
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3. Game of Life

The Game of Life, discovered by Conway in 1970 and popularised by Gardner in [2], is
the most well known universal automaton. The transition rule of the Game of Life will be
described and then the simulation of the AND and NOT gates of the Game of Life will be
breifly exposed.

3.1. Transition Rule

The Game of Life is an automaton &f(Z2,{0,1},Moore neighbourhood; S + S). The
state of a cell of the Game of Life at the next generation depends on its own state and the
sum of cells in state 1 among its eight direct neighbours.

The behaviour of the cells of the Game of Life is inspired by the ones of real cells as a
cell could die if there not enough cells surrounding it or if there too many. So if a cell in
state 1 has 0 or 1 neighbours in state 1 then this cell will be in state 0 at the next generation.
If a cell in state 1 has more than 3 neighbours in state 1 then the state of this cell will be 0
at the next generation. A birth happens if a cell has three neighbours in state 0 so if a cell in
state 0 has 3 neighbours in state 1 then the state of this cell will be 1 at the next generation.

These rules can be formulized saying that the Game of Life is the automaton
of I (7Z2{0,1},Moore neighbourhood,: S — S) such that for all binary numbers
X1, X2, X3, X4, X5, X5, X7, Xg @andxg we get:

X1, X2, X3, 1 if Xp4+Xo +X3+ X4+ X5+ X+ X7 +Xg + X9 = 3
6( X4, X5, X6, > =4q1 if X1 +Xo+X3+ X4+ X6+ X7 +Xg +Xg = 2
X7, X8, X9 0 otherwise

3.2. AND Gate

Conway et al. [6] have shown the universality of the Game of Life using logic gates. In
this simulation, Conway used streams of gliders as voltage to carry information. A stream
emitted by a gun is a series of gliders periodically spaced whereas in a stream carrying
information a glider may exist or not depending on the logic value 0 or 1 that is presented.
Collisions between different streams are used to realize an AND gate and then a NOT
gate.
The AND gate is based on a special collision between two stre@ansdB of gliders,
called in [6] vanishing reaction and shown in figure 12, which has the following result:

e If a glider is present in both streams, the two gliders annihilate each other completely
before the next gliders arrive.

e If a glider is present in strear or B but not in the other stream, the glider which is
present continue its run.

¢ If no glider is present in stream&sandB nothing happens.
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Figure 12. Collision between two streams of gliders.

Glider gun Glider gun

Vanishing reaction

Figure 13. AND gate simulated by the Game of Life [6].

An AND gate is simulated in figure 13 with two input streay@ndB. The glider gun
used by this simulation is the gosper gun [6] and emits a new glider every 30 generations.
This gun creates a glider stream that "crashes” stréanif a glider is present in stream
A, the two gliders are destroyed by this collision, otherwise the glider emitted by the gun
continues its run. The stream resulting from this first collision, at right angle to stieam
is A. This stream crashes stre@producing a stream aligned with the stre&ywhich is
the result of the operatioA and B The synchronization and the position of the different
components are critical to the proper function of the simulation.

3.3. NOT Gate

The NOT Gate is based on a collision between a gligland a strearh emitted by a gun,
called in [6] kickback reaction, which destroys the glider of the streiand turns back

the gliderg. Conway shown that this collision allows to build guns emitting streams with
gliders spaced by any multiple of 4 of how many gliders are spaced in a stream emitted by



222 Emmanuel Sapin
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Figure 14. Kickback reaction between two streams step by step.

the gosper gun. Streams emitted by this kind of guns and the kickback reaction is used in
the simulation of a NOT gate.

The kickback reaction between a stred@mand a streanB emitted by a gun has the
following result:

e If a glider is present in strearA, this glider is destroyed and the glider of stream
B turns back in the opposite direction as shown figure 14. This glider collides with
the second glider of strea® and they destroyed each other creating a block of four
stable cells as shown figure 14. The third glider of strdauwollides with this block
and they destroy each other. Finally, these collisions have destroyed three gliders of
the streanB.

e If a glideris not present in streafnothing happens and gliders of stre@uontinue
their run.

In the simulation of a NOT gate as shown figure 15, the input stream is a spaced stream
in which each bit is followed by a glider. This stream collides with a stream of gliders
emitted by a gun. The result of this collision depends on the value of the firgyhif the
streamA:

e If A; equals 1, this glider collides with a glider emitted by the gosper gun and is
destroyed. The glider emitted by the gun is kickback and destroys the two next gliders
emitted by the gun. So the fourth glider emitted by the gun survives. Then, the stream
emitted by the gosper gun represents the values 1000.

e If Ay equals 0, the glider emitted by the gosper gun continue its run. The glider
following A; collides with the second glider emitted by the gun which is kickback and
destroys the two next gliders emitted by the gun which are the third and fourth gliders
emitted by the gosper gun. Then the stream emitted by the gosper gun represents the
values 0001.

As the stream emitted by the gosper gun repres&@A,, a vanishing collision with
a spaced stream is realized to obtain an output stream lined up with the input stream and
containingAy.

In order to simulate a NAND gate with a cellular automaton with the method of demon-
stration of the game of life, the given automaton needs to accept
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Figure 15. NOT gate simulated by the Game of Life [6].

e aglider gun,
e avanishing reaction,

o the three steps of a kickback reaction.

4. Gliders

In order to search for new automata accepting gliders evolutionary computing is used.
An evolutionary algorithm [14] incorporates aspects of natural selection or survival of the
fittest. It maintains a population of structures (usually randomly generated to begin with)
that evolve according to rules of selection, recombination, mutation, and survival referred
to as genetic operators. A shared "environment” determines the fithess or performance of
each individual in the population. The fittest individuals are more likely to be selected for
reproduction (retention or duplication), while recombination and mutation modify those
individuals, yielding potentially superior ones.

The first subsection describes the evolutionary algorithm that found the gliders de-
scribed in the second subsection.

4.1. Evolutionary Algorithm

Search SpaceAn evolutionary algorithm is used in order to find automata accepting glid-
ers in the spacé described in Section 2. An automaton of this space can be described
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Figure 16. Result of the evolution of a random configuration of cells by an automata dis-
covered by an evolutionary algorithm.

by telling what will become of a cell in the next generation, depending on its neigh-
bours. An individual is an automaton coded as a bitstring of 102 booleans (cf. fig-
ure 7) representing the value of a cell at the next generation for each neighbourhood.

Fitness Function Several fithess function were tried for our algorithm. A first function
was used but its results were not the expected results so this function was modified in
order to obtain the final fitness function.

The first fitness function attempts to maximise the number of gliders that appear
during the evolution of a random configuration of cells by the tested automaton. The
discovered automata accepted gliders but a random configuration of cell evolving
by these rules grows infinitely. Figure 16 shows a typical evolution of a random
configuration of cells by a discovered rule. A second fitness function is tried.

So the evolutionary algorithm attempts to maximise the number of gliddéhe num-

ber of periodic patterns that appear during the evolution of a random configuration of
cells by the tested automaton. (A more detailed description of the gliders and periodic
patterns detector (inspired by Bays [7]) can be found in [8].)

Initialisation The 102 bits of each individual are initialised at random.

Genetic Operators The mutation function simply consists of mutating one bit among 102,
while the recombination is a single point crossover with a locus situated exactly on
the middle of the genotype. This locus was chosen since the first 51 neighbourhoods
determine the birth of cells, while the other 51 determine how they survive or die.

Evolution Engine It is very close to aj{+ A) Evolution Strategy [14], although on a bit-
string individual, and therefore without adaptive mutation : the population is made of
20 parents that are selected randomly to create 20 children by mutation only and 10
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Figure 17. Distribution of the period of the discovered orthogonal gliders.

others by recombination. As in a straight ES+, the 20 best individuals among the 20
parents + 30 children are selected to create the next generation.

Stopping Criterion The algorithm stops after 200 generations, which, on a 800Mhz PC
Athlon, takes around 20 minutes to complete.

4.2. Result

This study takes into account the gliders found after one hundred hours of execution of
our algorithm on a 800Mhz PC Athlon. 4660 Gliders of different movements, velocities,
periods and directions were found. No oblique glider was found. Orthogonal gliders are
studied first then diagonal gliders are studied.

4.2.1. Orthogonal Gliders

3993 orthogonal gliders were discovered. The distribution of the period of these gliders is
shown figure 17.

Each glider has a movement of a given number of cells during its period. The lower
glider period is 1. Gliders of period 1, as shown in figure 18 for few of them, have a
movement of one cell per period. The most common period is 2 and some gliders of period
2 with a movement of 1 and 2 are shown figures 19 and 20. Gliders of period 3 are less
common than gliders of period 2 and figures 21 and 22 show gliders of period 3 moving
one and three cells during their period. The odd periods are the most common. That can
be explained because some of the gliders that were discovered recover a symmetry of their
original shape after half of their period has ellapsed as shown figure 23 for a glider of period
4 and movement 4.
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Figure 18. Gliders of period 1 at generations 0 and 1.
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Figure 19. Gliders of period 2 and a movement of 2 at generations 0, 1 and 2.

The tabular 24 shows for each period and movement during a period, the number of
gliders that were discovered.

The movement during a period has to be at least 1 considering the definition of a glider,
and can not be higher than the period because it is impossible for a glider to have a move-
ment higher than 1 cell per generation, this is calledgheed of ligh{7].

Tabular 24 shows three main categories of orthogonal gliders:

First Category Gliders of the first category have a period higher than one and have a move-
ment of one cell during their period. It is the first column on tabular 24. The number
of discovered gliders of this category deacreses gradually when the period increases.

Second CategoryGliders of the second Category have a movemenh oglls during a
period ofn. It is the diagonal on tabular 24. The number of discovered gliders of this
type with odd periods is higher than the number of discovered gliders of this category
with even periods and deacreses when the period increases.

Third Category Gliders of the third category have a movemengafell during a period of
n. Only gliders with odd periods can be of this category. The number of discovered
gliders of this category decreases when the period increases.

The distribution of the velocity of orthogonal gliders is shown figure 25.

The velocity of a glider is its movement divided by its period, thus an integer divided
by its period. Therefore for a glider of peridd, the velocity can only b% whereD is an
integer between 1 anyd.

47.5 percent of the discovered gliders have a velocity of 1 that is the highest velocity.

4.2.2. Diagonal Gliders

668 diagonal gliders were discovered. The distribution of the period of these gliders is
shown in figure 26.

N L 1 51 ok el

Figure 20. Gliders of period 2 and velocigyat generations 0, 1 and 2.
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Figure 21. A glider of period 3 and a movement of 3 at generations 0, 1, 2 and 3.
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Figure 22. Gliders of period 3 and a movement of 1 at generations 0, 1, 2 and 3.

Each glider has a movement of a given number of cells during its period. The lower
glider period is 2 and the two gliders of this period are shown in figure 27. There are 102
gliders of period 3 that are discovered and a sample of them is shown figure 28. The most
common period is 4 and some gliders of period 4 with a movement of 1 are shown figure 29.
As for orthogonal gliders, the odd periods are the most common and that can be explained
with the same reasons. The number of discovered gliders decreases regularly when the
period increases but there are less gliders of period 9 than gliders of period 11 and more
gliders of period 14 than gliders of period 12.

The tabular 30 shows for each period, and movement during a period, the number of
gliders that were discovered.

The movement during a period has to be at least 1 and, considering the definition of a
diagonal glider, it can not be higher than the half of the period. The movement of discovered
diagonal glidersis not as high as the movement of the discovered orthogonal gliders as only
a glider of period 16 have a movement higher than 4 and only two gliders has a movement
of 4.

The distribution of the velocity of these gliders is shown figure 25.

The velocity of a glider is its movement divided by its period, so an integer divided by
its period. So for a glider of periodl, the velocity can only b% whereD is an integer
between 1 and\.

5. Universality

The algorithm described above provided several automata accepting gliders. Among the
discovered automata, some would surprisingly generate glider guns for nearly every evolu-
tion of a random cell configuration. The first of them discoveiRg),described in the first
subsection, is picked up as a potential candidate for a universal automaton.

The demonstration of its universality is inspired by the demonstration of universality of
the Game of Life. In the demonstration of universality of the Game of Life an AND gate is

TR T

Figure 23. A glider of period 4 at generations 0, 1, 2, 3 and 4.
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Figure 24. Numbers of orthogonal gliders that were discovered for each period and move-
ment. A blank cell means gliders of this combination can not exist.

simulated. To simulate an AND gate with the same method, one needs an eRgefTine
search for eater is described in the first subsection and an eater was found in an au®maton
very close tdRy. The second step is to find a configuration of glider guns and eaters that can
simulate a NAND Gate. In the Game of Life, it was done thanks to the kickback reaction.
The kickback reaction was searched foRmithout being found. Another configuration of
gliders and glider guns, described in the second subsectiddsimulated an NAND gate.

The third subsection describes how to use this simulation AND Gate to simulate one

cell of the Game of Life. The final step described in the last subsection is to tile the plan of
the Game of Life by identical simulation of cells in order to prove the universaliti oAl

these steps are described in the following subsection.
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Figure 25. Distribution of the velocity of the discovered orthogonal gliders.
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Figure 27. Gliders of period 2 at generations 0, 1 and 2.
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Figure 28. Gliders of period 3 at generations 0, 1, 2 and 3.

5.1. TheRy Automaton: an Experimental Result

The 102 different neighbourhoods & can be visually presented as in figure 32, and
figure 33 shows the glider gu®, that appeared spontaneously from a random configuration
of cells.

5.2. Looking for an “Eater”

The automatorR, that was discovered in the previous section accepts gliders and a glider
gunGq. The gunG fires one glider toward each cardinal point whereas the Game of Life
one fires just one glider. In order to use the glider ghylike the Game of Life, three glider
streams must be removed. An eater can be used to suppressed stream (cf. figure 34) so an
eater is searched for.

Eaters are periodic patterns that, after the absorption of a glider, resume their original
shape and position quickly enough to absorb another arriving glider (cf. figure 34).

5.2.1. Evolutionary Algorithm

An eater was manualy search forRg. As no eater was found iRy, the search space of au-
tomata became all automata accepting the glider@grSo an automatoR is searched for

in this space that accepts both the glider gikynand an eater. This space was determined by
deterministically finding which of the 102 neighbourhoods of automd®gwere needed

for gunGq to operate normally. It turns out th& uses 81 different neigbourhoods mean-
ing that the output of the 21 other neighbourhoods, shown in figure 37, could be changed.
This, our search space of automata contaihe?ements.

An eater being a periodic pattern, a collection of 10 small periodic patteriRs ap-
pearing frequenthyand using onlyneighbourhoods among the 81 ones necessarygor
were chosen. figure 35 shows this collection. Those periodic patterns were therefore sure
to appear in all of the 2 automata implementinGo.

e e lo L

Figure 29. Gliders of period 4 at generations 0, 1, 2, 3 and 4.
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Figure 30. Numbers of diagonal gliders that were discovered for each period and movement.
A blank cell means gliders of this combination can not exist.

Finally, in order to find an eater, one needs to perform on the established collection of
periodic patterns what could be called a crash test: each periodic pattern is positioned in
front of a stream of gliders, and its fithess is simply the number of crashes it survives.

The number of possibilities being quite large (10 patterns to be tested in different rel-
ative positions with reference to the stream of gliders amofigdifferent automata), a
second evolutionary algorithm was therefore created, with the following characteristics:

Individual Structure An individual is made of;

e a 21 bit bitstring determining one automaton amorg@ossible ones,

e an integer between 1 and 10, describing one pattern among the 10 chosen peri-
odic patterns,

¢ the relative position of the pattern relatively to the stream of gliders, coded by
two integersx andy, varying betweerf—8,8] and|[0,1].
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Figure 31. Distribution of the velocity of the discovered diagonal gliders.
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Figure 32. The transition rule of the cellular automatn

Individuals are initialised witlRy, a random integer between 1 and 10, and randomly
within their interval forx andy.

Fitness Function Number of gliders stopped by an individual.

Genetic Operators The only operator is a mutator, since no really “intelligent” recombi-
nation function could be elaborated. The mutator is therefore called on all created
offsprings and can either:
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Figure 33. An evolution of a random configuration of cell By showingGg.
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Figure 34. Eater in the Game of Life.
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233



234 Emmanuel Sapin

E10d

CCIEIETE TR 100
CEICIEEE
FJE JECIETE T )

Figure 37. A black cell on the right of the neighbourhood indicates a future central
cell. TheR automaton can then be represented by 0000000001 1100011101 1111111111
11100100101111111100000000111011111011100001000101 1010000000 0000000000
00. The neighbourhoods which are in a box are the ones for which the corresponding value
is different forRy and the neighbourhoods in the hatching aera is not use@gby

e choose any pattern among the 10 available,
e Mmutate one bit in the bitstring,

e move the position of the pattern byl within the defined boundaries farand
y.

Evolution Engine It is this time closer to an Evolutionary Programming Engine, since it
has no crossover, although the EP tournament was not implemented. 25 children are
created by mutation of 25 parents. Among the 50 resulting individuals, the 25 best
are selected to create the next generation.

Stopping Criterion Discovery of an eater that would survive 50 000 collisions.

5.2.2. The Eater of theR Automaton : an Experimental Result

This algorithm allowed to discover the automatBraccepting both the glider gugg and
an eater shown figure 36.
Figure 37 shows that the automatBrs different fromRy by just by three bits.
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Figure 39. The glider gun G generation by generation.

The role of the modified bit betwedRandR, is shown figure 38 as the discovered eater
evolving by the ruleRy. In this figure, the first cell with one of the three neighboorhoods
that change betweeR andR; is calledA. This cell becomes state 1 witRy at the next
generation whereas it becomes state 0 WithSo the evolution of the eater is different in
Ro.

The eater is used to suppress the three extraneous streams of gliders produced by the
glider gunGg in order to build the gurs shown figure 39.

5.3. NAND Gate

In this simulation, binary numbers are implemented as a finite streams of gliders, where
gliders represent 1s and missing gliders represent 0s. This simulation is based on collisions
between streams of gliders. These collisions will be listed then they will be used to built
new patterns then how to buildAND Gate from these patterns will be described.
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Figure 40. A 5-thining oR, viewed every 4 generations.

5.3.1. Collisions

Several collisions between streams of gliders are described in this section. Four collisions
- namely thining collision, process collision, vanishing collision, and duplicative collision -
are at right angles whereas the last one is a frontal collision:

Thining Collision A thinning collisions is a collision of two streams of gliders which de-
stroy one of the streams but let a glider survive every periodic number of generations
in the other one. A collision is n-thinning if one glider persurvives. Figure 40
shows a 5-thinning collision between two streams emited by two guns. So in the
survived stream gliders are spaced by 45 cells.

Process CollisionA process collisionis a collision of two perpendicular streams of gliders
which destroys one of the streams but lets the other one survive. After the collision,
the gliders of the surviving stream are of another kind, caléede glidersas shown
in Figure 41. The front cells of the large gliders are identical to those of the standard
gliders. Therefore, the speed and spacing of the large gliders is identical to the speed
and spacing of the original standard gliders. Large gliders can be seen as being fat
standard gliders.

Vanishing Collision A vanishing collision is a collision of two streams of gliders or large
gliders which destroy the two streams. If there is a missing glider or a missing large
glider in one stream then the corresponding glider in the other stream survives. The
result is the following for the two streams:

o If there is a glider in each stream, after the collision there is a missing glider in
each stream
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Figure 41. Process collision between two gliders.
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Figure 42. Vanishing collision between two gliders.

¢ If there is a missing glider in the one of the two streams, after the collision the
corresponding glider survives in the other stream

o If there is a missing glider in each stream, after the collision there is a missing
glider in each stream

So the stream becomes the result of the operatidandB and the strearB becomes
B andA. If the streamA is a full stream then it becomé&whereas the streais

destroyed.

Frontal Collision A frontal collision is a collision of two identical streams of large gliders
which produces two orthogonal standard streams of gliders equal to the input streams
as shown figure 43.

Duplicative Collision A duplicative collisionis a collision of two streams of gliders which
destroys one stream, calléd but lets the other one, call®| survive as shown Fig
44. If there is a missing glider in streaBithen the corresponding glider in strean
survives. So strearB is unchanged by this collision and the result is the following

for streamA:

e If there is a missing glider in stream, after the collision there is a missing
glider in streamA

e Ifthere are a glider in streatand a glider in strearB, after the collision there
is a missing glider in strearA
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Figure 43. Frontal collision between two large gliders.
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Figure 44. Duplicative collision between two gliders.

e If there are a glider in strearA and a missing glider in streaf, after the
collision there is a glider in strea

So the stream& become the result of the operatidrandB. If the streamA is a full
stream then it becomé&whereas the streaBisurvives.

5.3.2. New Pattern

Unfortunately, the cellular automaton implementing a cell of the Game of Life would be
too difficult to explain by showing groups of cells on a grid, let alone a CA implementing a
cell of the Game of Life. Therefore, a much clearer analytical description was needed, that
should also allow replicability of the contents of this paper.

In order to simplify the representation of a CA, one can replace its building blocks by an
analytical description, made of a letter referring to the pattern followed by three parameters
(D,x,y) whereD denotes a directiorNorth, East, South,West) andx, y the coordinates
of a specific cell of the pattern (cf. [9]). An arrow is added in graphic descriptions to help
visualising the CA. The analytical description of a glider stream and an eater are given so
the complex glider gun and the large glider gun are built.

Glider Stream Figure 45 shows a glider strea8(E, x,y), wherex andy are the coordi-
nates of the white cell whence an arrow is shooting.
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Figure 45. A glider stream and its analytical representaB@ x,y).

Figure 46. Complex gun dR, viewed at generation X,y are the coordinates of the white
cell, whence an arrow is shooting.

Eater The eater of figure 36 can be identifiedB@&N, x,y), whereN denotes its northward
orientation andk,y denote the position of the white cell.

Complex Glider Gun The glider gun of figure 33 shoots gliders spaced only every nine
cells. Unfortunately the duplicative collision needs gliders that are more closely
spaced. In order to build a gun shooting such gliders, the thinning collision shown
in Fig 40 is used. So the complex gun, shown in figure 46, shoots gliders spaced by
45 cells, which gives more slack to work on streams. Figure 46 shows instances of
this gun, used later on in this paper, namélg(Sx,y) andGb(Sx,y). The complex
guns in other cardinal directions are obtained by rotation.

Large Glider Gun Thanks to a process collision, a large gur) éhooting a large glider
every 45 cells is made of two complex guBsshooting their stream perpendicularly
(cf. figure 47).

5.3.3. Assembling Patterns into &OT Gate

On figure 48, &NANDgate is built thanks to the patterns of the previous section. On this fig-
ure, the stream (S(S208,197)) is shown as a dotted line. A complex g@b(E,179,200)
creates a complementary duplicate streanowards the East. The two outputs are redi-
rected by complex gunSb(W, 253 142), Gb(S212,65)andGa(S273,262)until they are

‘ Emited large glider ‘

Gb(E,16,80)» \

: L

Gb(N,78,11)

>

Figure 47. Schematics of a large glider glufE, 16,80), made of two compleGb guns,
with a expulsed glider at the right.
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Figure 48. Complementation of strealn the analytical representation for the NOT gate
is {L(E, 16, 80),Gb(S, 212, 65)Gb(W, 241, 36),Gb(WV, 253, 142)L(W, 379, 80),Ga(S,
159, 234) Gh(E, 179, 200)Ga(S, 273, 262)S(S, |, 210, 184)E(N, 219, 78}.

vertical again. Then, they are complemented into large gliders by the two guns of large
glidersL(E, 16,80) andL(W, 379,80). When the frontal collision between the two streams

of large gliders occurs, a complementary stre@in created towards the same direction as
the originalA stream while the other one is “eaten” BYN,216,65).

5.4. Simulation of One Cell of the Game of Life

A single cell of the Game of Life can be implemented as a boolean function computing the
value of a cellS at generatiom+ 1 from its value at the generationand the ones of its
eight neighbour€; . . .Cg at generatiom.

The rules of the Game of Life are the following: a “living” cell dies at the next gener-
ation unless it has two or three neighbours. A dead cell comes alive at the next generation
iff it has three neighbours in the current generation.

Supposing that the addition @, + ...+ Cg gives a four bit numbensnaning. Eight
neighbours at the state 1 give the number 1000 and thesliétequal to 1 just for this case.

A cell at state 0 or 1 surrounded by eight neighbours becomes a cell at state 0 at the next
generation. If the bihz is ignored so eight neighbours give the number 000 and the value
of a cell surrounded by zero neighbour is always 0 at the next generation. So thechit

be ignored.

The rules of the Game of Life can be simply expressed by the formula
Shi1=M.N1.(Sy+no), which can be translated into a combinationNAND gates. This
function, implementing a cell of the Game of Life, is implemented in the figure 49.

5.5. Simulation of the Game of Life

In order to simulate the Game of Life, one must first findRa simulation of a cell of the
Game of Life, and then a way to tile a surface with any number of interconnected cells.
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i : ‘ Complex gun ‘

Figure 49. Simulation of a cell of the Game of Life By

In order to simulate the Game of Life iR, proof must now be given that it is possible

to tile a surface of identical cells, each interconnected with their 8 neighbours. In order
to interconnect a cell with their neighbours, proof must be given that two streams in any
position can be redirected in order to become the input streams of any circuit. It means the
synchronisation and the intersection of stream must be possible that is the subject of the
first subsections. The last subsection shows the tile of the plan of the Game of Life.
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Figure 50. Cuning combinaison of Nand Gate that realises a stream intersection without
interference.
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Figure 51. Stream temporisation for synchronisation purposes.

5.5.1. Intersection of Streams

Thanks to complex guns, gliders in a stream are separated by 45 cells. This means that it is
possible to have two streams cross each other without any interference. If, for a synchroni-
sation reason, interference cannot be avoided, [4] shows how a stream intersection can be
realised without interference by an cunning combinatioNéfND gates as shown in the
figure 50.

5.5.2. Synchronisation

It is important to be able to delay one stream w.r.t another, in order to synchronise them
properly just before they enter a logic gate, for instance. This can be done precisely by
diverting four times the stream to be delayed with orthogonal guns (cf. figure 51).

5.5.3. Simulation of the Game of Life inR

A single cell of the Game of Life can be implemented as a boolean function computing
the value of a celS at generatiom+ 1 from the value of its eight neighbou@; ...Cg at
generatiom.

All cells being identical, the inputs of a cell must physically correspond to the outputs of
its neighbours. Therefore, the way a cell receives the state of its neighbours can be induced
from the way it sends its own state to its neighbours, which is what is described below and
in figure 52.
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Figure 52. Diagram of the tiling of the plan of the Game of Life.

It is straightforward for a cell to send its state to its cardinal neighb@ut€,,Cs, C;.
Sending its state to neighbouts, C3, Cs, Cg is however more tricky, since those neighbours
are situated diagonally. This is done by passing the information to their neighGaumsd
C;. Therefore, one can see in figure 52 that the statéthe cell is sent three times ©,
and three times t€;, so thatC, (resp.C;) can keep one stream for its own use, and pass
the two others to its horizontal neighbou€, andCs (resp.Cs andCsg).

Shbeing itself a top neighbour of cel;, one sees how the state ©f is passed over to
C4 andCs in the same way thak, will pass over the information of the state 8o C; and
Cs.

6. Conclusion

This paper deals with the emergence of computation in complex systems with local inter-
actions. Evolutionary search methods are used to find gliders. The algorithm succeeded in
finding thousands of gliders.

Glider guns appear in the evolution of a random configuration of cells by the transition
rule of one of the automaton. The cellular automaton caRexdas picked up as a potential
candidate for a universal automaton.



244 Emmanuel Sapin

The demonstration of universality & is inspired by the demonstration of universality
of the Game of Life. However a NAND gate can not be simulated by the same method. The
demonstration of universality dR used a complicated combinaison of guns to simulate a
NAND gate. A cell of the Game of Life is simulated iRthen the plan of the Game of Life
is tiled by identical simulation of cells in order to prove the universalityRof

An extensive bibliographic research seems to show that the autonfatsrihe first
another 2D 2 state dynamical universal (in the Turing sense) automaton, other than the
famous the Game of Life, discovered in

The proof of universality of the automatddcan be generalized on other automata ac-
cepting glider guns. Some discovered automata accept glider guns thus they are potential
candidates for universal automata. Therefore this research provides an element of the an-
swer to the frequence of universal automata related to emergence of computation in complex
systems with simple local behaviour.

Further goals are now to find whether other universal automata than the Game of Life
andR exist, and how common they are. Then, another domain that seems worth exploring
is how this approach could be extended to automata with more than 2 states or more than
two dimensions.

Finally, the study of the construction of an automatic system of selection / discovery of
this type of automata based on evolutionary algorithms is far more interesting. The discov-
ery of universal cellular automata can lead to a new classification of cellular automata.

Future work could also be to calculate for each automaton some rule-based parameters,
e.g., Langton’s lamda [5]. All automata exhibing glider guns may have similar values for
these parameters that could lead to a better understanding of the link between the rule tran-
sition and the emergence of computation in cellular automata and therefore the emergence
of computation in complex systems with simple components.
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Chapter 10

A NUMERICAL |MPLEMENTATION OF AN
ENCRYPTION SYSTEM OF COMPRESSED SIGNALS
WITH A CELLULAR AUTOMATA APPROACH

J. S. Murguia-® *, M. Mejia—Carlog, H. C. Rosl, and G. Flores-Erai&
@ UASLP, Universidad Autonoma de San Luis Potosi
San Luis Potosi, S.L.P., México
b IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica
San Luis Potosi, S.L.P., México

Abstract

This work presents a numerical implementation of a system that considers an en-
cryption process of signals compressed by means of the Haar wavelet transform. An
evaluation of the pseudorandom generator used in the encryption scheme, which is
based on a cellular automaton, is carried out with some variants. In addition, the mul-
tifractal properties of the representative matrix of the generator are discussed.

PACS05.40.-a., 05.45.-a., 05.45.Tp.

Keywords: Cellular automata, Compression, Encryption system, Haar wavelet transform,
Multifractal spectrum, Pseudo-random generator.

1. Introduction

Different fields, such as electrical engineering, physics, and mathematics, have shown a
growing interest in protecting and manipulating huge amounts of data. With the recent
advances in technology, the processing of different kinds of information is a source of
interest to many people having as their main goals transferring or storing the data in a
secure way. Thus, there is still a driving need to look for efficient algorithms to compress
and efficiently and safely transmit the processing of different kinds of data.

*E-mail address: ondeleto@uaslp.mx



250 J. S. Murguia, M. Mejia—Carlos, H. C. Rosu et al.

On the one hand, different compression schemes, which can either be lossless or lossy,
work by squeezing redundancy out of data, reducing substantially the initial size of the
analyzed signals. In these issues, the wavelet transform has proved to be a powerful tool
to efficiently process signals that involve large amounts of information. In particular, it has
been noticed that this transform is a flexible mathematical tool employed in a great variety
of applications and its numerical implementation is often easy to perform [16].

On the other hand, to maintain the information protected, several cryptosystems have
been proposed using the encryption-decryption processes. The requirements to fulfill the
security needs of different kind of signals have led to the development of good encryption
techniques. [1, 4].

Actually, there exists a large number of encryption systems whose main objective is to
protect information through an algorithm that makes use of one or more keys.

2. Elementary Cellular Automata

The elementary cellular automata (ECA) can be considered as discrete dynamical systems
that evolve in discrete time steps. The state space of a CA of§iiethe set) = ZJ) of
all sequences aW cells that take values froi;, = {0, 1, ..., k—1}, where its evolution is
defined by the repeated iteration of an evolution operatorZ{fV — Z]kv. In this paper, we
considerk = 2 whereZ is the set of integers. An automaton state Z% has coordinates
(z); = x; € Zy with i € 7Z, and the automaton state at tirhe> 0 is denoted by:! € 72
and its evolution is defined iteratively by the rutét! = A(z!). Starting from the initial
statez?, the automaton generates the forward space-time pattem Z%XN with state
(x)t = 2! = A'(2") reached at fromx? aftert € N time steps.N denotes the set of
nonnegative integers.

One can see that the time, space, and states of this system take only discrete values.
The ECA considered evolves according to the local rdffe! = Ap(zf_,, 2t 2l,,) =
[z¢ | + z!Jmod 2, which corresponds to the rule 90. The following is the lookup table of
rule 90.

Number 7 6 5 4 3 2 1 0
Neighborhood| 111 | 110 | 101 | 100 | 011 | 010 | 001 | 000
Rule result 0 1 0 1 1 0 1 0

The third row shows the future state of the cell if itself and its neighbors are in the
arrangement shown above in the second row. In fact, a rule is numbered by the unsigned
decimal equivalent of the binary expression in the third row. When the same rule is applied
to update cells of ECA, such ECA are called uniform ECA; otherwise the ECA are called
non-uniform or hybrids. It is important to observe that the evolution rules of ECA are
determined by two main factors, the rule and the initial conditions.

3. Encryption System

We consider the encryption scheme used in [2], where the synchronization phenomenon
of cellular automata has been applied to devise the two families of permutations and an
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asymptotically perfect pseudorandom number generator. In fact, Mejia and Urias [3] con-
structed an ergodic and mixing transformation of binary sequences in terms of a cellular
automaton, which is the basic element of the pseudorandom generator number. The class
of block cryptosystem considered transforms a plain text sequemde a sequence,

called the ciphertext. The transformatian — c is selected from an indexed family of
permutationsV = {¢x : M — Clk € K} by choosing an indek from the set of in-
dicesK. The setsM, C and K are all sets of binary words of lengtN, i.e., Z)¥, where

Zy = {0,1}. The words inM andC are called thelearblocksandcipherblocks, respec-

tively, whereas the words in the set of indicEsare theencyphering keys. To disclose from

the sequence of cipherblocks, the cryptosystem also provides the family of inverse permu-
tations® = {¢y : C — M|k € K} such that for everk € K one haan = ¢y (¢x(m)).

In this process, we demand to know the seed that was used to generate the pseudorandom
sequence of keys, i.e., the encryption and decryption processes use the same deterministic
generator that is initialized with a common seed. Notice that the plain text to be encrypted

is generally much longer than the lengththat is accepted by the family of permutations

U. In this case, we proceed to divide it into succession of blaeks m', m?, ... each of
length V, and these blocks are then encrypted sequentially by using a differei’Key

each blockm’. If the cipher text is intercepted, this encryption system must avoid that the
intruder be able to infer any information about the text. In this case it is relevant to select
as random as possible the succession of permutations, because the intruder must have to
agree on a very long sequence of keys that determines the permutations [2]. This problem
is solved by using a pseudorandom generator of keys. Figure 1 illustrates the complete
encryption scheme.

11
E D
PRNG PRNG
kt Kt
m t Ct c t m t
o » Y > o —>{ O >
channel

Figure 1. The complete encryption scheme with its main components: the indexed families
of permutations and the pseudorandom generator of keys.

In order to explain how the main components were implemented in this encryption
system, we briefly describe some necessary concepts.
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3.1. Synchronization in Cellular Automata

Before describing the phenomenon of synchronization in coupled linear ECA, we require
the following concept.

3.1.1. Unidirectional coupling

The unidirectional coupling of two cellular automata can be implemented when the partic-
ular set of coupled coordinates is copied from the driver cellular automata to the replica
cellular automata. We illustrate the coupling of two CA in a drive/response configuration
through the following situation. First, a set of coupling coordinates is specified by means
of a coupling sequende = (ko, k1, - .., kn—1), such that;; = 1 if the i-th coordinate is a
coupling coordinate, anél; = 0 otherwise. As a result, the sequericéetermines which
coordinates from the driver’s configuration are to be copied onto the replica’s configuration.
Now, suppose that the evolution operatordsand let the initial states of the driver and the
response systems bé andy?, respectively. If the states at timteare 2! andy?’, respec-
tively, then the state of the driver CA at tinfe+ 1) is .A(z!), and the state of the response
CAattime(t+1)is

Yyt =1 -KAY) + kA, (1)
wherel = (1,1,...,1) is the vector of sizeV whose entries are all 1's. Addition and
multiplication of vectors in (1) are performed coordinate-wise. Two CA coupled unidirec-
tionally in this manner constitute eoupled pair(.A, k) in a drive/response configuration.
Figure 2 illustrates an unidirectional coupling wifi = 15, where.A corresponds to the

evolution of the rule 90, and the coupling sequeikclkas the coupled coordinatés, k1¢,
andk;lg.

k oof1fJoooooooft]oft]oo oof1ffoooooooft]oft]oo
x' [Afo[1]aJoJol1JoTi1]of1]ojoTi] »* [A[xl[a[1]1]1]1]o]1]o]o]o]1]0]
xt [oJo[IaI[AAJo o [L [ [oJo[i][1]o] y*! [A]1jue[1]0JoJo i 0o Jorf1ja]1]1]

X" = 4 () yH=kAx)+(1- k)A@p")
(a) (b)
Figure 2. A coupled pair of CA withv = 15. (a) Driver CA that evolves autonomously

from z* to z**1. (b) Replica CA that evolves fromt to y'*1. In this example, there are
three coordinates of the driver coupled onto the replica.
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3.1.2. Synchronization

A coupled pair( A, k) synchronizes when the difference between the two state veetors

y', corresponding to the driver and the replica CA, respectively, eventually equals the null
vector0 = (0,0,...,0) after a certain number of steps at tirheln Reference [1] it has

been shown that a pair of linear ECA, where the local tdjecorresponds to the automaton

rule 90, synchronizes if every pair of consecutive coupled coordinates are separated by a
block of N = 2¥ — 1 sites uncoupled. In the coupled system the configuration of the driver
evolves autonomously under local ru&@le = Ar(xi—1, zi, xi41), While the configuration

of the replica cellular automata in each coupled coordiraeolves according t@f*l =

2! and each uncoupled coordinat®llows the local ruley! ™ = Az (yi—1, vi, yi1) [1].

As was pointed out in [1, 2], the system consisting of the evolution automaton rule 90
Ay, acting on binary sequences of length= 2* — 1 subjected to fixed boundary condition
reaches, at a time< 2%, an orbit that depends only on the boundary and is independent of
the initial configuration. This property is crucial to construct the main components of the

encryption system. For more details see [1, 2].

3.2. The Basic Unit Cipher

With the synchronization phenomenon of CA, it is possible to implement in a flexible way
the cryptography primitives, the pseudorandom generator of keys (funkjiand the in-
dexed families of permutatiom® and®. To construct these primitives we will take into
account the following fact. Let® be an initial infinite sequence, i.e.,

2= (2%, 28,29, a2, ) 2

that evolves according the local ruléy («!_,, 2}, 2t ) = [z!_; + 2}] mod 2, from
t=0tot =N =2 —1, wherei # 0 andi # N + 1, sincez) andz’y, are externally
assigned at each tine

0 [0 [T 0 7T L 0 T
cX (X Xy B, e e e X N1 N XN Xnpp® *
I OO O 1 TR I
X Po P Pt X g O P e
1|2 (2 i 2 1 222
X Mo ¥ Kt s X Xna N K| X e
X C
N[ Nt Nt N1 N1 NNt N N
X Ko K X e X g Oy K| e
N NNNN N N N|[.N _N
“x, X, X, e e X e X Xl X e
P " !
X C
y (a) (b)

Figure 3. (a) Space-time pattern from an infinite initial state according to the evolution of
the rule 90, AL (z!_, 2t,z!, ) = [#!_, + #!] mod 2. (b) Primitives defined by the basic
unit cypher. The functiond and¥ are determined by iterating the CA backward in time,
whereas the functiof® is computed by running the CA forward in time.
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Figure 3 (a) shows the space-time pattern from the infinite initial state (2), according to
the evolution of the automaton rule. From the coupled coordinateandY, , ;, we define
the basic unit cipher (BUC) as the x N square pattern in the lattice that consists of ifie
time-running wordgz?, 1, ..., zY), ..., (z}, 2%, ..., z¥). The first time-running word
is distinguished by the namié = (1,22, ..., 2)¥). The words surrounding the square are
x = (20, 2},...,z)"") onthe left sidec = (z}_ 1, 2%, ..., 2N ,,) on the right side,
t = (z1,23,..., %) onthe top, andn = (T, 2Nt ... 2N T) at the bottom.

The family of permutation® and ®, and theh function, are defined with the help of
the BUC, where we can identify the five main wordsy, m, c andt = h(x,y).

Permutation ¢ = Uy (m) The word located on the right side of the BUE, =
(21 TN g1 - .,x%;}), is a cipher-block word; it is obtained using the indexed
family permutation¥y, i.e.,,c = ¥y (m). This permutation determine the cipher-

blocks, when the ECA is iterated backward in time using the input wardadm.

Permutation m = ®,(c) The wordm is a plain text sequence, and is localized at the
bottom of the BUC,m = (2,2, ..., 2%). To compute the inverse permutation
m = $4(c), i.e., to bringc back tom, the automaton is made to run forward in time,
using the input worde andx.

Function t = h(x,y) The two words located on the left side of the BU&L,andy, are

the input of the functiont = h(x,y). These words ar& = (2,2}, ..., 20 1),
andy = (29, 21,...,2Y). The result of functior is on the top of the BUC and
is identified ast = (29, 23, ...,2%_,). To generate this function, the automaton is

also iterated backwards in time, using as input watdmdy.

The objects implemented in the BUC are shown in Figure 3(b). Notice that the se-
quences ofy andm share the symbat), whereag andc the symbolx?VH. The back-
ward evolution of the ECA is illustrated in Figure 4, which is employed as an operation to
devise the permutatiowr and functiont = h.

FotgFotF ol c A
- ol
B of

&

Figure 4. Backward evolution of the ECA.
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4. Pseudo Random Sequences Generator

To implement numerically the PRNG in its basic form, we follow its algorithm, which is
shown in Fig. 5. At first, the key generator requires two seeds; x5!, of V bits, and
y = x&, of (N + 1) bits, which are the input of the function= h(x, y). Considering the

seedx = (20, zf,...,2) ) andy = (29, z1,..., ), thus, the first number generated
of N bits is the sequence output of functibnt = {t1, t2, t3, . .., tx}. Now, this sequence

is fed back to the input, which becomes the next valupénd the previous value of
becomes the initial bits of the new, where the missing bit is the least significant bit (LSB)
of the previousgy, which becomes the most significant bit (MSB) of this sequence, and the
same procedure is iterated repeatedly.

Seed 1 Seed 2
| N bits | (N+D)bits
| I
| l
| |
| MSB ‘
{ xg*l } xg

N bits N bits I
+ — - + — -
1 bit

\N bits (N+1) bits

LSB
t (N+1) bits

N bits

h

lN bits

%7

Figure 5. Basic form of the pseudo-random number generator. MSB and LSB correspond
to the most significant bit and the least significant bit, respectively.

As was said above, in order to compute the function h(x,y) it is required that the
cellular automaton runs backward in time. Such situation is depicted in Figure 6, where
the symbol of a circledt+ represents a XOR gate and the connectivity of gates follows
the automaton rule. However, this way to compute the pseudo-random sequences is not
efficient since it requires the application of the local rule of the automaton at all points in
a lattice of the order ofN2, whereN is the number of bits considered in the generation
process.

To overcome this, Mejia and Urias [3] formulated an efficient algorithm that gets rid
of the intermediate variables and produces Boolean expressions for the coordinates of the
output sequence = h(x,y) in terms of the inpufx, y). This algorithm offers a Boolean
representation ofi, without intermediate steps, in terms of some “triangles” in the under-
lying lattice.
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t, ...

Figure 6. Generation of a pseudo-random key with inputy ) and output = h(x,y).

With the aim of computing the pseudo random sequences bfts, in Reference [15]
the sequence matrid ; has been introduced.

This matrix has dimensions d2N + 1) x (2N + 1) and is formed by the matri-
cesHy, andHy,, which constitute the top and bottom parts Hfy, that is, Hy =
(Hy,;Hy,). The matrix Hy, has dimensions ofV x (2N + 1) elements and it
is generated initially from two vectorsy = [v1,0,...,0, vnt2, ..., 0] andw =
[0, wo, O, ..., wN+1, 0, wWNys, ..., 0], where the components, vy 42, wa, wx1 and
wn+3 have a value of 1, ani¥ is the number of bits, i.ey andw are vectors with{2N +1)
elements. The vectossandw constitute the two first rows of the matrB i, and the other
(N —2) rows are generated by applying an addition modulo 2 operation of the two previous
rows, with the elements of the previous row shifted to the right by one position. The matrix
H, has dimensionsN + 1) x (2N + 1), and it is composed by an identity matrix in the
first (N 4 1) columns and zeros in the rest. As an exampleNo# 7, we have that the top
and bottom matrices are the following:

10000O0OO0OO0O1O0O0OO0OO0OO0OO
010000O0O1O01O0O0O0TO0OQ 0
10100O0O0O0O0OO0OT1O0O0OO0O

H;, =1 0001000101010 00O0 ], (3)
1010100O01O0O0O01O0O0
01 0001O010O0O01O0T10Q0
1000101O0O0O0O0O0OO0TO01
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1 00 0O0O0OOOOOOOOUGOO

01 00O0OO0OOUOOOSODOOO0ODDOQO

001 0O0OO0OO0OO0OTO0DOSODOOO DO

0O0010O0OO0O0OO0DO0ODSO0DO0ODO0OOQO0DDO0

Hy, = 0 000O1O0O0OO0OO0OO0OOOOOTO0OTG O/ )

00 0O0OO0OT1O0O0TO0DO0O0DO0OO0OOQO0ODO0

00 0O0OO0OOT1TUO0OO0OOO0OOOOODDOQO

00 0O0OO0OO0OOTTUOOSGOOOO0ODDO

then the matrixH; is
10 000O0O0OO0OT1TO0OO0OO0OO0OTO 0O
01 0000O0O10T1O0O0O0TO0OTF®O
101 000O0O0OO0OO0OT1O0O0O0O 0
00010O0OO0OD1O01O0T1TO0QO0TO0
101 010001O0O0O0T1O0O0
01 00010100O0T1O0T1F0
H 100010100O0O0O0O0O0T1
H7:<H7t>— 10 0000O0O0OO0OOOO0OOO 0O (5)

& 0100 00O0O0OO0OO0OO0OOO®O0O
001 00O0O0O0OO0OO0OO0OOO®O0O0
00010O0O0OO0OO0OO0OO0OOO®O0O0
000O0T1O0O0OO0OO0OO0OTO0OOO0OO0O0
000O0O0OT1O0O0OO0OO0OTO0OOOO0O0
000O0O0OOT1TO0OO0OO0OO0OOOO0O0
000O0O0OOOT1O0O0OO0OOO®O0O0

Notice thatH , computes the pseudo random key sequence, whéfgashe feedback
sequence. Therefore, once selected the numvbefbits of sequences, we can generate the
pseudo random sequencesfits with the help of the matriH y

Upir = HyUg, k=1,2,... (6)

whereU,, = [x y|? corresponds to the firstinputs of functianandUy,, ; is composed
by the next inputs oh; note thatUy, is formed by the generated pseudo random key and
the feedback sequence.

4.1. Modified Generator

As it was pointed out in Ref. [3], a generating scheme consisting of three coupled transfor-
mationsh is proposed to attain an asymptotically unpredictable generator under a random
search attack. This proposal is shown in Figure 7, and it is explained briefly. Inside the new
generator two copies of the basic transformatioare iterated autonomously from their
initial words generating two sequence®y, } x>0 and{qx}x>0. The third copy, called the
z-map, is iterated in a slightly different manner, the functioin the z-map is driven by

the autonomoug-map andg-map according ta:; = h(px, gx). The three maps generate
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pseudo random sequences, but only theequence is released. In order to prevent pre-
dictability, the first two words are generated, used and destroyed inside this key generator,
therefore they are not available externally. Since the sequencasdg, have a length of

N bits each and the required inputs of theransformation must be one @f bits and the

other of(IV + 1) bits, the missing bit is obtained by applying an addition modulo 2 opera-
tion between the two respective LSB's that become the MSB's of their respective previous
inputs of the maps. Of course, there exists different manners to generate this missing bit,
but we consider this way. The above scheme has just been been proposed a few years ago,
but it was only recently implemented by us and studied in terms of the matrix sequence in
[15]. With this approach, the new pseudo-random keys are computed as

Xy =Hpy,Vy 7)
where Xy = {1, z2, ..., zy}?, Hy, is the top matrix of Hy, and Vy =
{p1, ..., PN, Q1, - - -, an+1} 7. For example, consideriny = 7, we have
P
b2
p3
P4
T 1 0 0 0O0OO0OO0OOT1TUO0OTUO0OTO0OTO0OOQO0OTUO0 s
To 01 00 0 0 01 01 0O0O0O0OTUO0 Pe
T3 1 01 00 O OOUOO0OT1TTO0UO0TUO0TUO0 p7
X:=| 22 |=l00010001010T1000 o | =H, Vs,
Ts5 1 01 01 0O0O0OOT1TTUO0OTUO0OO0OT1TO0UDO Q2
Tg 01 00O0O1O0OT1O0O0OUO0OT1TO0T1TFO0 qs3
T7 1 0 001 01 0O0O0OO0OO0OO0O0I1 q4
qs
g6
qr

qs
(8)
where we calculatg; andg; as it was explained above.

4.2. Performance Analysis

Since the PRNG is practically the main part of an encryption system, it has been evaluated
with some common statistical tests and for completeness, it is also evaluated by the NIST
test suite [19].

We applied the following tests: one-dimensional histogram to observe the distribution
of data, the correlation between data, and the Fourier transform to check the spectral prop-
erties.

A sequence of one million integers of 15 bits was generated from an unbiased choice
of the seed. Figure 8 shows its histogram and its respective profile in the ranye 66)].

We can observe that this statistical property follows a Gaussian distribution type, which we
consider as a good result for our purposes.
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Seed 1 Seed 2
q . q ]

N bits N bits
(N-1) bits w Ms8 MSB (N-1) bits

\ 1
| 1bit it |
) \
/ \
L LsB

(] ]

(N-1) bits (N-1) bits

MSB

N bits
—T1 ]

1hit

' Y 10011

h
(N-1) bits

Y

Figure 7. A generating scheme consisting of three coupled transformations.

v T T T T T T
0 5000 10000 15000 20000 25000 30000
Numbers of 15 bis

Figure 8. Histogram and its profile of a sequence of 1 million integers of 15 bits.

On the other hand, Figure 9 shows the estimated correlation between successive keys
in a sequence. A uniform distribution can be easily observed, showing that there is no
correlation between successive keys, suggesting they are random variables.

In terms of frequency, we calculated the Fourier transform of a sequence of 100000
samples. Figure 10 shows the normalized Fourier transform of the considered sequence
and its profile. One can see that the data have a spread spectrum, i.e., they are uniformly
distributed in all frequencies. The same analysis was carried out for more samples obtaining

similar results.
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30000
25000 45
20000 J5E

15000 42

x(n-1)

10000 4

5000

15000
A(n)

Figure 9. Distribution of the random numbers foandn — 1.

x 1072 Fourier transform

6
Frequency X107

Figure 10. Fourier transform, with its respective profile, of one sample of 5000 data in the
interval 55000 — 60000.

With the previous tests, we can conclude that the generated sequences are well-behaved
random, the data distribution is uniform, uncorrelated, and its frequency spectrum is ex-
tended.

In our study, the PRNG is also evaluated by the NIST suite. The main reason is that this
suite has several appealing properties [19, 20]. For instance, it is uniform, it is composed
by a number of well known tests and, for all of them, an exhaustive mathematical treatment
is available. In addition, the source code of all tests in the suite is publicly available and
it is regularly updated [19]. In fact, Reference [19] mentions that the NIST suite may be
useful as a first step in determining whether or not a generator is suitable for a particular
cryptographic application. The NIST suite is a statistical package consisting of 15 tests
that focus on a variety of different types of non-randomness that could exist in a sequence.
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These tests are listed in Table 1. Details of the tests can be found in Reference [19].

Table 1. List of NIST Statistical Tests.

Number Test name

1 The Frequency (Monobit) Test

2 Frequency Test within a Block

3 The Runs Test

4 Tests for the Longest-Run-of-Ones in a Block
5 The Binary Matrix Rank Test

6 The Discrete Fourier Transform (Spectral) Test
7 The Non-overlapping Template Matching Test
8 The Overlapping Template Matching Test

9 Maurer’s “Universal Statistical” Test

10 The Linear Complexity Test

11 The Serial Test

12 The Approximate Entropy Test

13 The Cumulative Sums (Cusums) Test

14 The Random Excursions Test

15 The Random Excursions Variant Test

In order to investigate the performance of the generator, we have consigered00
samples ofl0° bit sequences, where each sequencey of 15 bits, has been generated
from a randomly chosen seed using one and three transformations.

We have computed th&—values corresponding to each sequence for all the tests of
NIST suite. As it was pointed out in [19], —value corresponds to the probability (un-
der the null hypothesis of randomness) that the chosen statistical test will assume values
that are equal to or worse than the observed statistical test value when considering the null
hypothesis. For the analysis ¢f—values obtained from various statistical tests, we have
fixed the significance level at = 0.01, which means that about 1% of the sequences are
expected to fail. A sequence passes a statistical test whenevér-thalue > « and fails
otherwise. For each statistical test, the proportion of sequences that pass is computed and
analyzed accordingly. It is not sufficient to look solely at the acceptance rates and declare
that the generator be random if they seem fine. If the test sequences are truly random,
the P—values calculated are expected to appear uniforrfji]. For the interpretation
of test results, NIST has adopted two approaches, (1) the examination of the proportion
of sequences that pass a statistical test and (2) the distributiégh-ofalues to check for
uniformity. The respective results are shown in Figures 11-12, and it is observed that by
using one transformation, the generator does not pass all tests, see Figure 11 (a), but nev-
ertheless it is uniformly distributed, Figure 11 (b). In fact, it has been observed that this
PRNG can generate high-quality random numbers using one or three transformations as the
size of keys is increased, i.e., the longer the length of the generated numbers the better is
the quality of the random numbers we obtain [15].
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Figure 11. (a) Proportions (TOP), and (B}-values: (BOTTOM), corresponding t&v =
15 bits and one transformation. Dashed line separates the success and failure regions.
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Figure 12. (a) Proportions (TOP), and (B}-values (BOTTOM), corresponding t&v =
15 bits and three transformations. Dashed line separates the success and failure regions.

4.3. Multifractal Properties of the Matrix Hy

Since the evolution of the sequence matix, is based on the evolution of the CA rule
90, the structure of the patterns of bits of the latter are directly reflected in the structure
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of the entries ofH . There is recent literature on the multifractal properties of cellular
automata for some set of rules, see [11, 12, 13, 14]. In Reference [14], we used the technique
of detrended fluctuation analysis based on the discrete wavelet transform (WMF-DFA) to
guantify the intrinsic multifractal behavior of the ECAs for rules 90, 105, and 150. Here,

in the same spirit as in Reference [14, 15], we analyze the sum of ones in the sequences
of the rows of the matrixH 5 with the db-4 wavelet, a wavelet function that belongs to the
Daubechies family [16].
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Figure 13. (a) Time series of the row signalldfj23. Only the first2® points are shown of

the whole set oR!? — 1 data points. Profiles of the row signal of #)y, and (c)Hy. (d)
Generalized Hurst exponehtq). (€) Ther exponenty(q) = gh(q)—1. (f) The singularity
spectrumf(a) = qd;—(qq) — 7(q). The calculations of the multifractal quantitiés ~, and

f(«) are performed with the wavelet-based WMF-DFA. Dotted points correspond to the
row signal ofH y .

The results for one row sunt 23, is illustrated in Figure 13, and we confirm the
multifractality of the time series since we getraspectrum with two slopes in both cases.
The strength of the multifractality is roughly measured with the widih = a0 — @min
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of the parabolic singularity spectrurf(«) on thea axis. The widthAay,,,, = 1.16 —

0.212 = 0.948, and the most “frequent” singularity occursahs,, . = 0.694. We notice

that the strongest singularity;.,;n, and the weakest singularity,..x, are very similar as

well as the most “frequent” singularity. These results are in a good agreement with those
obtained in Reference [14] for the rule 90, although the spectra of the top matrix present a
slight shifting to the right. In fact, this behavior is more evident in the row signaEaf
(Figure 13(c)), where their corresponding spectra (dotted points) are shown in Figure 13

(f).

5. Wavelet Analysis

5.1. Introduction

Fourier analysis is a well established and suited tool for several kinds of signals, whose
statistical properties do not vary with time. The Fourier technique decomposes a signal into
harmonic components, where the basis functions are trigopnometric. Another alternative to
the Fourier approach for analyzing signals is the wavelet transform(WT) [16]. The WT
has been introduced and developed to study a large class of phenomena such as image
processing, data compression, chaos, fractals, etc. The basis functions of the WT have the
key property of localization in time (or space) and in frequency, contrary to what happens
with the trigonometric functions. In fact, the WT works as a mathematical microscope on

a specific part of a signal to extract local structures and singularities [16]. In addition, an
important property of the WT is that it can be turned into sparse expansions, which means
that any signal can be quite accurately represented by a small part of the derived coefficients.
This property makes WT an effective tool for data compression, situation which interests
us.

5.2. Wavelet Transform

Concerning data compression, we consider the orthogonal discrete wavelet trans-
form(DWT). This is only one of the different forms of wavelet transforms [16], by which
the wavelets are associated to orthonormal baség @®).

The representation of a function or procesg) with the DWT is given in terms of
shifted and dilated versions of the wavelet functio(t) and its associated scaling function
©(t) [16, 17]. Within this framework and considering that the scaling and wavelet functions

Pmn(t) = 2m/290(2mt —n), Y (t) = 2m/21/}(2mt -n), mneZ 9)

form an orthonormal basis, one can write the expansian(of as follows

M-1
x(t) = Z (amo,n‘:@mo,n(t) + Z dm,nwm,n(t)> g (10)

n m=mg

where the scaling or approximation coefficients ,, and the wavelet or detail coeffi-
cientsd,, , are defined as
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P / 2O omnBdts  don = / () mn()dt, (11)

with m andn denoting the dilation and translation indices, respectively.

To calculatea,, , andd,, ,, Mallat developed the fast wavelet transform (FWT) in
which the multiresolution analysis (MRA) approach is involved [16, 17]. The FWT al-
gorithm connects, in an elegant way, wavelets and filter banks, where the multiresolution
signal decomposition of a sigh&f, based on successive decomposition, is represented by
a series of approximations and details which become increasingly coarse. At the beginning,
the signal is split into two parts, an approximation and a detail part, that together yield
the original signal. The subdivision is such that the approximation signal contains the low
frequencies, while the detail signal collects the remaining high frequencies. By repeated
application of this subdivision rule on the approximation, details of increasingly coarse
resolution are separated out, while the approximation itself grows coarser and coarser.

The FWT calculates the scaling and wavelet coefficients at seafeom the scaling
coefficients at the next finer scate + 1 using the following formulas

U = > Dk = 2n]am 1k, (12)
k

dm,n - Zg[k - Qn]am-f—l,ka (13)
k

whereh[n]| andg[n] are typically called low pass and high pass filters in the associated
analysis filter bank. In fact, the signatg, ,, andd,, ,, are the convolutions af,, 1, with
the filtersh[n| andg[n] followed by a downsampling of factor 2, respectively [16].
Conversely, a reconstruction of the original scaling coefficients , can be made
from the following combination of the scaling and wavelet coefficients at a coarse scale

U1 = Y (B[2k = nlam i + g[2k — n]dm.r) - (14)
k

This corresponds to the synthesis filter bank. This part can be viewed as the discrete
convolutions between the upsampled sigagl; and the filtersi[n] andg[n|, that is, fol-
lowing an upsampling of factor 2 the convolutions between the upsampled signal and the
filters h[n] andg[n] are calculated. The number of levels depends on the length of the sig-
nal, i.e., a signal witl2” values can be decomposed ir{th + 1) levels. To initialize the
FWT, we consider a discrete time sign&l = {x[1], z[2],...,z[N]} of length N = 2%,
The first application of (12) and (13), beginning with, ;1 , = z[n], defines the first level
of the FWT of X. The process goes on, always adopting(the+ 1)th scaling coefficients
to calculate the /h"th scaling and wavelet coefficients. Iterating (12) and (13)times,
the transformed signal consists df sets of wavelet coefficients at scales= 1, ..., M,
and a signal set of scaling coefficients at scife There are exactl§(“~) wavelet coeffi-
cientsd,, , at each scaler, and2(“~M) scaling coefficients ;s ,. The maximum number
of iterations isM,,.x = L. A three-level decomposition process of the FWT is shown in
Figure 14.
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Figure 14. The approximation-detail structure of a three-level FWT.
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An important property of the DWT is that the total energy of the sighaimay be
expressed as follows

N
Ex =Y |xn] Z lan!|? + Z Z . (15)
n=1 m=1n=1
This is similar to Parseval’s relation in terms of wavelets, where the signal energy can be
calculated in terms of the different resolution levels of the corresponding wavelet trans-
formed signal. The property (15) plays a fundamental role in the compression scheme as
we will see in the following section.

It is worth to say that the orthonormal Haar wavelet basis was used to perform the
FWT, because there is the advantage of implementing a simple algorithm and it is easier to
understand. In addition, the algorithm with this wavelet function is memory efficient and
reversible without the edge effects that other wavelets present. Other wavelet bases have a
slightly higher computational overhead and are conceptually more complex.

The Haar wavelet function is defined ast) = ¢(2t) — (2t — 1), wherep(t) = 1 for
all t € [0, 1], and some functions are shown in Figure 15.

The Haar filters associated in the FWT algorithm &hé0], h[1]) = (1,1)/v/2 and

(901, g[1]) = (1, -1)/V2.

5.3. Compression Scheme

The complete compression method that we employ herein is shown in Figure 16. First of
all, the original signal is segmented into blocks of equal size, and the FWT, with the Haar
wavelet, is applied to each block of a length &f samples, withm < n. Next, each
transformed block is submitted to an elimination process of the transformed coefficients
which lie below a threshold value. The key step here is to choose a threshold through
an energy criterium. We look at the normalized cumulative energy applied to the ordered
transformed coefficients. This is achieved by ordering the magnitude of the transformed
coefficients in decreasing order, that is,

lyi] > |y2| > -+ > |yn|
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Figure 15. Some functions belonging to the Haar wavelet family.

where |y;| denotes the largest coefficient of the transformed sigpal, is the next
largest, and so forth. The quantity of interest is the normalized cumulative energy defined
as

n 2

Lokl (16)
Y, N 5
2 k=1 |yl

where the denominator is the total energy of the transformed signé&i-. A graph of
&yn indicates how many non-zero coefficients are present. The better the representation,
the faster the curve will climb towards one. To select the threshold value we consider the
magnitude of the coefficient for which the energy percentage in (16) is obtained. With
an established threshold value any coefficient in the wavelet transformed data whose
magnitude is less than will be reset to zero. After thresholding, the non-zero values of
the transformed signal are grouped in one vector, which should have a smaller number of
coefficients than the original transformed signal. The amount of the obtained compression
can be controlled by varying the threshold parameter

Now, we compute a significance map that stores the location information by scanning
the thresholded coefficients and outputting a “1” if a significant coefficient is scanned and
a “0” if an insignificant coefficient is scanned. The significance map allows us to group the
significant coefficients (i.e., nonzero coefficients) in a separate file, and it can be compressed
efficiently using, for example, a variable-length code based on run length encoding.
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Figure 16. Basic compression scheme based on the wavelet energy.

6. Numerical Implementation

Figure 17 shows a block diagram that depicts the numerical implementation of the CE
system. This system was implemented using the graphical programming language of Lab-
VIEW, a trademark of National Instruments, and it consists of two stages. In the first stage,
the top block carries out the compression and encryption of information, as described above.
Notice that the resulting signal after the compression stage is formed by two signals, the
coefficients that survived the threshold, which is the only information that is encrypted, and
a binary vector indicating the original positions of the coefficients. The encrypted signal
and the binary position vector are available to be transmitted through a channel.

In the second stage, the bottom block performs the reverse process, i.e., the encrypted
information received is decrypted, and the decompression stage takes place to the decrypted
signal adapted with the binary position vector getting a reconstructed signal.

In such a numerical implementation, we analyzed two different types of speech signals,
which will be denoted as1 ands2. Both signals were recorded as wav files with a bit
resolution of 16 bits and a sampling frequency8dfHz and44.1 kHz, respectively. Thus,

a total of65, 536 samples okl (about of8 seconds), anél62, 144 samples ok2 (about6
seconds) were analyzed.

Figure 18 shows the virtual instrument (V1) with the results obtained for the sighal
considering an energy criterium 60%. In part (a) the signadl is shown, and we have the
transformed signal in part (b). In part (c) is shown the encrypted wavelet coefficients that
survive in the compression stage, with a smaller number of samples than the original signal,
and finally in part (d) the recovered signal is displayed.

In a similar way, Figure 19 shows the VI with the results obtained for the sigpal
considering the same energy criteriumoof.

Tables 2 and 3 show the compression performance for different energy percentages
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Figure 17. Data compression encryption scheme.

considered in signalsl ands2, respectively. Based on these results, we achieved good
compression rates for both signals with the Haar wavelet function. When listening to the
reconstructed signal, there is not much degradation in the sound quality and the speech
is discernible. Of course, we observe that for a higher energy percentage a better sound
quality is obtained.

Table 2. Compression rates for signak1.

Percentage of energy Number of coefficients Compression ratio

99% 13913 4.71:1
95% 5431 12:1

90 % 3231 20.28:1
85% 2246 290.18:1
80 % 1627 40.28:1

7. Conclusion

In this chapter we have described the implementation of a numerical system that integrates
the stages of compression and encryption of voice signals. The compression scheme was
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Figure 18. Analysis of the voice signal considering an energy criterium 60%. (a)
Original signals1, (b) Haar wavelet transform of the signal, (c) representation of the
encrypted coefficients, and (d) the recovered signal.

Table 3. Compression rates for signak2.

Percentage of energy Number of coefficients Compression ratio

99% 48580 5.4:1
95% 18769 13.97:1
90 % 10143 25.84:1
85% 6448 40.65:1
80 % 4458 58.8:1

based on the Haar wavelet transform, while for the encryption process we considered a ver-
sion of the encryption system proposed in [4]. We have studied, implemented and reviewed
the pseudo-random number generator employed in the encryption system, which is based
on a rule-90 cellular automaton. This generator in its basic form (using one transformation),
and its modified version (with three transformations) is analyzed by means of a sequence
matrix Hy . The intrinsic multifractal properties of the sequence matrix in the two versions

of the generator are briefly discussed. In addition, the performance of the generated pseudo
random sequences is evaluated using some basic tests and the NIST statistical tests. We
observe some statistical problems using one transformation, but as was discussed in [15],
this PRNG can generate high-quality random numbers using one or three transformations
as the size of keys is increased.
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Figure 19. Analysis of the voice signa® considering an energy criterium 60%. (a)
Original signals2, (b) Haar wavelet transform of the sign&l, (c) representation of the
encrypted coefficients, and (d) the recovered signal.

On the other hand, the Haar discrete wavelet transform compression gets good rates
because a high concentration of energy was presented in a few coefficients of the trans-
formed voice signal. At the same time, the encryption system shows a remarkable security
and flexibility to encrypt the information it contains. We believe that this system can be a
useful tool in current multimedia applications. In addition, the implemented system is sim-
ple, fast, and could be embedded easily in an existing communication system with minimal
requirements.

Furthermore, it is believed that the proposed system could have a better performance if
the following proposals are carried out or developed: a) optimization in the selection of the
threshold, which allows us better compression rates, b) an efficient implementation of the
discrete wavelet transform on a FPGA, c) involving the threshold value with the initial seed
for the generation of keys.
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Chapter 11

CANONICAL FACTOR OF CELLULAR AUTOMATA *

Pierre Guillon'
Department of Mathematics
University of Turku

Abstract

We study factor subshifts, column factors and the canonical factor of cellular au-
tomata in a large setting, that is as endomorphisms of subshifts. Homogeneity of
cellular automata makes them share some dynamical properties with their canonical
factor; we review some of them.

Introduction

In symbolic spaces, that is spaces of infinite words, it is common to relate topological
notions to language notions, with help of the correspondence between the finite words and
the cylinders which form a base of the Tychonoff topology. Many properties of topological
dynamics can hence be seen when looking at how some patterns of the configuration evolve.

In the case of one-dimensional cellular automata, the homogeneity of the dynamics
is such that a pattern of bounded length is enough, in many cases, to derive a property
over patterns of any length (which correspond to open sets of arbitrarily small diameter).
Interesting results can be obtained by decomposing the evolution of the cells with respect
to the evolution of a finite pattern. We give some of them, which consist in classical facts in
the theory of cellular automata, and present here a slight generalization to cellular automata
defined over SFTs.

In the first section, we give the main definitions of topological and symbolic dynamics.
In the second and third sections, we define the fundamental notion of the article, that is
the trace, and give some general facts for dynamical systems and cellular automata. In
the last three sections, we deal with the three topological notions that are equicontinuity,
expansivity and entropy of systems, and present how they are linked to the notion of trace.

*This work has been supported by the Academy of Finland project 131558.
TE-mail address: piegui@utu.fi
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1. Definitions

Dynamical and symbolic systems. A dynamical systemis (here) a paif X, F'), where
X is a compact metric space attd : X — X a continuous self-map oK. We shall
often omit X when it can be understood from the context.sBbsystemof (X, F) is its
restriction(Y, F') to some closed-invariant subset” C X.

A dynamical system induces an action of the moriBidn X', whereT = N in general,
or T = 7 if the dynamical system is bijective. In the sequel, we will UBeas being
implicitly fixed from the definition of the dynamical systermd. it can stand for eitheN or
Z if we are dealing with a bijective dynamical system, only footherwise).

A morphism between two dynamical systeniX, F) and(Y, G) is a continuous map
®: X — Y suchthatb F' = G®. Ifitis surjective, it is called dactor map, and(Y, G)
is afactor of (X, F'). Ifitis bijective, it is called aconjugacy, and(X, F)) and (Y, GG) are
conjugateto one another. If X, F') = (Y, G), it is called anendomorphism and can be
seen itself as a dynamical system. If, besides, it is bijective, it is callealgmmorphism,
and can be seen as a bijective dynamical system.

A symbolic systemis a dynamical systemiX, F') where X is totally disconnected.
Equivalently, X admits arbitrarily fine clopen partitions (covers of disjoint nonempty closed
open sets of any diameter). In that case it is known that, up to homeomorpKisran be
seen as a subset df¥, for some finite alphabet, endowed with the product topology of
the discrete topology. We will restrict our study to symbolic systems of the fotnF'),
whereYX ¢ AM andM = Z orM = N.

A point z € AM is called aconfiguration. ForI C M, we notez; the restriction of:
to I. I can be for example a closed-open interval nated J (or another type of interval,
noted similarly), in which case we may allow abuse in the indexes (such as assuming that
z3:i1k] € AF). Note also that, fok € N, A* is the same agdJ**J. Fork € N, we note
(k) = {i e M||i| < k}, thatisJ—Fk, kK or JO, kK whetherM is Z or N.

Shifts. We define thehift on AM as the particular symbolic systendefined forz € AM
andi € M by o(z); = z;4+1. Itis bijective if M = Z (hence we will assum@& = M).

A subshiftis a subsysteni%, o) of the shift(AM, o), i.e. its restriction to some closed
sety ¢ AM which is invariant byo? for anyi € M. For the sake of simplicity, we shall
write thatX is the subshift. Thdanguage over] ¢ M of X is £;(X) = {z;|z € £}.
¥ is characterized by itlanguage £L(X) = ey Lx(X), where Ly (X) = Ljo3(%),
consisting of all the finite patterns that appear in some of its configuratiorscIN \ {0}
andF C A* are suchthat = {z € AM|Vi € M,y ;.17 ¢ F'}, then we say thatitis an
subshift of finite type (or SFT) oforder k.

Fixed a subshif ¢ AM, thecylinder of finite support I ¢ M andcentral pattern
u € Alisthe clopen selu] = {z € ¥|z; = u}. Thecentral cylinders [u], foru € A
andk € N, actually form a base for the topology. Whene A* for somek € N, we can
notefu]; = o~ '[u] = {z € E’in,HkJ =u}.

Cellular automata. A cellular automaton over some surjective subshit ¢ AM is an
endomorphism of itj.e. a dynamical system which commutes with the shift map.
Hedlund’s theorem gives a characterization emphasizing the locality aspect of the map.
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Theorem 1 ([1]). LetX ¢ AM andT" ¢ BM be two subshifts anéd a morphism from:
intoT'. Then there exists a finiteeighborhood 7 € M and alocal rule ¢ : £;(¥X) — B
such that for any configuratiom € ¥ and any celi € M, ®(z); = ¢(xi41).

Proof. As clopen sets, each of th&| preimagesb—([b]), for b € B, can be decomposed
into a finite union of cylinders. Lef be a neighborhood containing all the supports of these
cylinders. By construction®(x), depends only on the values of. By shift-invariance,
foranyi € M, ®(z); = o'®(x)g = ®o’(x)o depends only on the values of(z);. O

In particular, any cellular automatoR over a subshift. ¢ AM admits ananchor
m € N, ananticipation n € N and alocal rule f : Lj_,, i (X) — A such that for any
configurationz € ¥ and any celi € Z, F(z); = f(zj_mn)- If M = Z, we can suppose
the anchor and anticipation equal, in which case wecal m = n radius of the cellular
automaton. IfM = N, we can suppose the anchor toean which case we calt = n
radius.

We will say that® is aletter-to-letter factor map if we can take a trivial neighborhood

I ={0}.

Inverse limits.  The following remark justifies more or less the “factor” terminology.

Remark 1. If @ is a factor map of Y, G) onto (X, F'), then(Y, G) is conjugate to the sys-
tem(X, F)®e(Y,G) = (X®aY, FxG),whereX@4¢Y = {(z,y) € X x Y| ®(y) = =}
andF x G : (z,y) — (F(x),G(y)).

Furthermore, by a direct induction it can be seen théakif, F;)o<i<; is a finite collec-
tion of dynamical systems,c N and(®; : X;11 — X;)o<i<; a corresponding collection
of factor maps, the®(¢i)0<i<l(Xi, F;) = (Xo, Fo) ®a, - - - ®a,_, (Xi, F7) is conjugate to
(X1, F}). The inverse limit represents some kind of infinite generalization ofsthepera-
tion.

The inverse limit of the sequencéX;, F;);cn of dynamical systems with respect to
the sequencé®; : X, - X;)ien Of factor maps is the syster®(¢i)ieN(Xi,Fi) =
(Q(@,);en Xis [ien Fi) defined by:

® Xi = {(mi)ieN c HX’

(®i)ien ieN

Vie N, ®;(xiq1) = xz}
[1F: @i)ien = (Fi(@i))ien -
ieN

It basically represents the minimal system which admits all the systems in the sequence as
factors, and with the relevant commutations between factor maps.

2. Traces

2.1. Factor Subshifts

Definition 1 (Trace). Let (X, F') be a symbolic system arRla clopen partition ofX . For
any pointz € X, there exists a unique clopen sefx) € P that containsr.
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e Thetrace map of F' relatively to partition? is defined by:

TZ?: X — pPT
z = (P(F'(x)))er -

e Thetrace of F relatively toP is its image set? = TF% (X).

If we seeP™ as a symbolic space over alphaligtthen the tracd’. is continuous
since the preimag€l'F) ~!([u]) of any cylinderu] of P of support/ C T, withu € P/,
is a finite intersectiof),. ; F'~*(u,) of open sets. Besides, we easily remark that, for any
x € X andanyt € T:

TpF'(z) = (P(F**()))ser = o'TE (2) -

Hence the tracef (implicitly endowed with the shift map) is &actor subshifof F.

Conversely, any factor map of F onto a subshiff> c AT, o) is, up to letter re-
naming, the trace map df relatively to the partitior? = { ®~!([a])|a € A}. Hence the
factor subshifts of a symbolic system are essentially its traces.

Remark 2. If P and P’ are two clopen partitions of a spac& such thatP is finer than
P’, then we have a decompositiaiy = I17T7, wherell : 77 — 77 is the letter-to-letter
factor map of local rule:

T P — P
U — VwhereU CV.

Example 3. LetY ¢ AM be a subshift an a clopen partition ofs: that distinguishes the
letters, i.e. at least as fine as the partiti¢a]| a € A} into cylinders of widthl. Remark 2
gives us a letter-to-letter factor map : 77 () — ¥ whose local rule maps a trace to the
central letter of some corresponding configuration, ife= (7.7)~! is a conjugacy of the
trace 7.7 (X) onto X.

2.2. Generators

A generator of a symbolic systent’ over X is a countable family of clopen partitions
(P;)ien such that any factor maf of F' onto some subshift ¢ BT can be written
U = U/'7P: for somei € N and some factor mag’. It is aletter-to-letter generator if,
besidesy’ can be taken a letter-to-letter factor map.

This dynamical notion of generator is linked to the topological notion of base, since the
traces relatively to some base of partitions form a generator.

Proposition 1. Any base of clopen partitions is a letter-to-letter generator.

Proof. Let (p;)icn @ base of clopen partitions anid a factor map onto some subshift. By
previous remarks, we can assume tiiat= T/ for some clopen partitiorP of X. Let
i € N be some index of a partitioR; finer thanP. By Remark 2, there is a letter-to-letter
factor map® : 7" — 7, such thatl’;, = ®T%". O

We can also link the previously-defined notion of generator with that of inverse limit.
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Proposition 2. If F'is the inverse limit of a sequen¢;);cn of subshifts, then it admits a
generator(P;);cx Whose traceﬁi is conjugate tax; foranyi € N.

Proof. By definition of the product topologyX admits the family(P;);cn as a base of
partitions, whereP; is defined as the preimage by the projectiop ;i of the partition into
cylinders of widthi + 1 of the subshiftly ® ... ® X;:

Pi= {mjac ()| v € Lina(Bo® ... @)} .

Since this projectionr jo ;i does not depend on other systems of the base, we can see that

the tracerﬁi is conjugate to the tracg!") (Bo®...®%;),itself conjugate td) ® . . . ® %,
by Example 3, and hence ¥y by Remark 1. O

The converse is true as soon as we order the traces from the finest to the coarsest.

Proposition 3. If (P;);cn is a fineness-increasing sequence of partitionsXafthen any
symbolic systen{X, F') is essentially the inverse limitY, G) of the family of traces
(Tﬁi)ieN (relatively to the canonical projections).

Proof. The morphism:
Y

= (Tzft(x))zeN

is bijective sinced ! ((y;)ien) = ﬂieN(Tﬁi)‘l(yi) is an intersection of closed sets, that
is decreasing if and only iff € Y, and whose diameter converges towaids O

d: X
T

Corollary 4. For any generato(P;);en of a symbolic systeiX, F'), there is an increasing
sequencék;);cn of integers such thatX, F') is the inverse limit O(T?ki)ieN.

Proof. Let Q; the partition into balls of radiu@ . Let us build, by recurrence ohe N,

. P, . "
indexesk; and factor maps of—F]”+1 onto T?“ Initially, we can takek, = 0. Sup-

pose now that € N andk; are already built. By Proposition 1, there is a decomposition
TFP’“Z = \I/iTI? ‘, wherer; € N andV¥; is a letter-to-letter factor map OfFQ ontor.". We
can suppose without loss of generality that> ¢ (otherwise take the maximum withand

compose with a projection). By hypothesis, there exist an iridex € N and a factor map
P, ) , Py, _ P,
W of 7, ontor,"t, suchthatl's" = W/T,."+'. Hence, we havé)." = W, U/T,. "+,

(2

Remark that the produdt],. ¥; is a conjugacy of the inverse limit of the sequence
(Tl?z)ieN onto the inverse limit of the sequenC@F}“)iEN, of inverse conjugacy

o [Lien ¥;- By Proposition 3( X, F') is conjugate to the former, hence to the latter. [J
2.3. Column Factors

If Fis a symbolic system oveX ¢ AM, a visually intuitive candidate as a generator is the
canonical base consisting of the cylinders.
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Definition 2 (Column factor).
e Thecolumn factor over the finite supporf C M is the tracer. = TL(X), where:

TH: & — (ADT
x = (F(2))er .

e Thecentral column factor of radiusr € N is the tracerfﬁ.

A central column factor corresponds to an observation of the system evolution through
some finite window. The central cylinders being a base of partitions, we can see, as implic-
itly stated in [2], that the family of central column factors is a letter-to-letter generator and
the symbolic system is an inverse limit of it; hence we can essentially restrict our study of
factor subshifts to column factors.

3. Traces of Cellular Automata

The particular case of cellular automata allows shift-invariance to link any column fac-
tor to some central column factor. Formally, & is a cellular automaton over some
surjective subshift ¢ AM, then for any celli € M and any finite supporf C M,

i = TL(o% (X)) = TL(X) = 7}, up to reindexing of the letters in the words.

Canonical factor. The canonical factor was first defined for onesided cellular automata
over full shifts in [3]. It corresponds to a trace whose width is equal to the radius of the
cellular automatoni,e. the minimal width that cannot be overpassed by information, since
if we cut by this width the configuration into a right and a left part, a cell of the left part
of the configuration cannot see, in its neighborhood, any of the cells in the right part. Note
that our definition of anchor and anticipation, contrary to some other versions, forces the
neighborhood of a cell to contain the cell itself.

Definition 3 (Canonical factor). Let F' be a cellular automaton of anchorn € N and
anticipationn € N on some SFT of order (m + n). Theleft canonical factor of F' is
the tracer;! whose width is the anchor.. Similarly, itsright canonical factor is 7. Its
canonical factor is the widest between the two, i7€., wherer = max(m, n) is the radius.

Note that this definition is actually relevant for any cellular automaton over any surjec-
tive SFT; if the anchor is more than the order, then it can be increased, and vice-versa.

Overlap.
Definition 4 (Overlap).

e Let] aninterval ofM, J an interval of T andz = (27) je a (finite or infinite) word
on alphabetA!, wherez? = (2]);c; foranyj € J. ForanyI’ C I, we write the

projectionny (z) = ((2])ier)jer-
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e Letk € N\ {0}, J aninterval of T andz = (27) ey, w = (w’) e, two (finite or
infinite) words on alphabett”. If 7y, ;3(2) = 7j0,4-15(w), then we say that these
words areoverlapping and we define theioverlap z ® w € A*1 such that for any

i€JO,kK,jeJ, (20w)] =z fi<kand(zow)! =w]_,ifi=k.

e If ¥ and I' are two subsets of(4*)/, we define theiroverlap Yo T =
{zow|z €S, weT andry 13(2) = mj0-15(w)}.

e If | € N, we define thé-overlap of ¥ ¢ (A4*)” by recurrence:xl”) = ¥ and for
[ >0, =3l o,

e We say thaty c (A%)’ is sdf-overlapping if it is equal to the projections
T3ii+kg (S1) of its 1-overlap for0 < i < 1.

The overlap operation is associative, which allows easy manipulation. In particular, we
can note thatif, I’ € N andX. ¢ (4%)7, then(z)lF1 = ni+71,

Of course, the overlap operation is increasingzit- I, then foranyl € N, ©.! ¢ Tl
We can also make the following remark.

Remark 4. If k € N'\ {0}, J aninterval ofM and¥ c (4%)”7, thenx! is the biggest set
' ¢ (AF+1)7 such that for anyi € JO, 1K, my;443(T) C &, i.e.:

U {u e (AM=171vVi € J0,IK 7y 415 (u) € 2} :

Let us now see that the self-overlapping property is preserved by the overlap operation.

Lemma 1. If k € N\ {0}, J aninterval of T and¥ C (A*)” a self-overlapping set, then
its 1-overlapx!! is also self-overlapping.

Proof. Let us show thatr o 1< (S12) = 751 411 (2#) = 1. By definition, we already
have the inclusion.

Conversely, let: € X; let us show that € 750 4 (Z/?) (the other projection can be
obtained symmetrically). Note that, by definitiony; 1< (2) is a word of ¥, hence by
hypothesis ofr jo 1,5 (SY), there exists’ € S such thatr jo 5 (2) = 731 4 (2). Hence
2@ 2 e () 2 is a projection o2 2], O

Proposition 5. Letk € N\ {0}, J an interval of T andl € N. If ¥ c (4*)7 is self-
overlapping, then it is equal to the projectiom§i7i+kJ(E[l]) of itsi-overlap, for0 < i <.

Proof. Letus show this property by recurrenceloa N. The casé = O is trivial. Let! > 0,
k € N\ {0} andX C A* which is self-overlapping; let us show th&t= y; ;45 (X1
for0 <i <+ 1. By Lemma 1, we know that!! is self-overlapping; thus we can apply
the recurrence hypothesi&l!l = 75, ; 41 5(ZFY), for0 < i < 1+ 1. But sinceX
equals any projection of width of [/, it also equals any projection afl‘+1l. O

For two configurations:, y € AM and a celi € M, we define thgoint = @®; y as the
configurationz such that, = z if £ < ¢ andz, = y; if & > i. We say thatr andy are
k-overlappingin celli € M, wherek € N, if x3; 4+ = yJi,i++J- In that case, we can see
that it is also the case af andz &; y, or yet ofx &, y andy.
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Traces and overlapping. The following proposition formalizes the fact that, if we impose
some trace of widthn + n, the evolution of some configuration can be decomposed into a
left and a right part in the sense that cells of each side do not see the other one.

Proposition 6. If (X, F') is a cellular automaton of anchom € N and anticipationn € N
on a SFT of orde(m + n), J an interval of T, i € M andz,y € ¥ two configurations
such thalT;p]i”‘J“"”“”J (z)y = Tﬁ]i’”m”‘] (y)s. Then for any step € J, Fi(x ®; y) =
F (@) @; F7 (y).

Proof. We can see by recurrence p& NN .J that the neighborhoofl’ (z &; Y) Jh—m,k4n]
of any cell k € M corresponds to the neighborhodd () ji—m kt+ng if £ < m,
F7(y) jk—m,k+nJ Otherwise, hence the application of the rule is unaltereg.df.J \ N, we
can apply the map” to what was obtained in the previous point. O

We can also write a variant of the previous proposition that distinguishes left and right.

Proposition 7. Let (3, F') a cellular automaton of anchormm € N and anchorn € N,

k € N, J aninterval of T andz, y two configurations that coincide on some finite segment
. . . —m,0]

TJo.k] = Yjo,xJ and on the extremity right and left canonical factdfg (%) 30,73 =

I~ (y) ; and TIHF () ; = TIFFHI () ;. Then the traces corresponding to the

whole segment will coincider) ™+ () ; = I~k *1d ()

Proof. First, if 270.00] = ¥J0,00] and Ty ™% (z); = T4~ (y) 5, then a direct recur-
rence onj € N N J allows to see that’ (z) j—m,c0] = F?(¥) J-m,c03- If 5 € J\ N, we

can apply the map™ to what was obtained in the previous point. The same can be done on
the right side withfgk’“”‘]. Combining these two points, we get the expected resulil

Proposition 8. If (X, F) is a cellular automaton and: € N, thenrk is self-overlapping
and foranyl € N, (rf)ll ¢ 7+,

Proof. Letz € X be a configuration. Then for any celle JO,IK, 7y, ;45375 () =
TJ"*J (1), henceTk(z) is in the overlapping7X)[. Conversely, for any cell €
J0,IK, 7jii+ky (TET) = 7, hencerf is overlapping. O

As a result, overlapping of sufficiently wide column factors are still column factors.

Proposition 9. Let F' be a cellular automaton of anchan € N and anticipationn € N
on some SFE of order (m +n), 1 € N andk > m +n. Then(rE)l = 75,

Proof. From Proposition 8, we just have to show that the overlapgirfg) ! is included
in the tracer:™, which can be done by recurrence b N. The casé = 0 is trivial.
Now assume that it is true for soniec N. Let 2z be a word of(7£)[*1], which is equal

by recurrence hypothesis (cfr}’i”)[l]. Then there exist two configurations y such that
TpH (@) = my0a(2) and TR R () = 7y g (2).
By hypothesisk 41 — 1 > m + n, hence Proposition 6 giveEr " (z @1 y) = 2. O

Combining Propositions 9 and 3 allows to rebuild the cellular automaton from its suffi-
ciently wide traces.
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Corollary 10. A cellular automatonF' of anchorm € N and anticipationn € N is es-
sentially the inverse limit of the overlaggry " +1)*), .y of the trace whose width is the
diameterm + n + 1 of the neighborhood.

Compatibility.
Definition 5 (Compatible subshift).

e A word (or configuration) z;)je; C (A*)7, withk € NandJ C T, is compatible
with the cellular automatori®, F') of anchorm € N, anticipationn € N, and local
rule f : Loins1 (%) — Aifforany stepj € J, 27 € Lx(X) and ifj + 1 € J then
forany celli € ym, k —nJ, 2! = f(zji_mﬂ.JrnJ).

e Asubshiftt ¢ (A¥)M is compatible with (X, F) if all of its configurations are.

Note that this definition is really relevant whérnis at least equal to the diameter bf
In that casey. represents a candidate for being the trace of wigtim the sense that all the
central cells respect the local rule Bf

Remark 5. Any column factorF. of widthk € N* of a cellular automator¥ is compatible
with F.

Conversely, it can be shown that any compatible self-overlapping subshiftis a “column
subfactor”.

Proposition 11. If £ € N andX c (A¥)M is a subshift which is self-overlapping and
compatible with some cellular automatdn over some SFT of orden + n, with anchor
m € N, anticipationn € N, thenX is included in the trace-" ™.

Proof. SupposeM = Z (the construction is similar whel = N) andz € X. Being self-
overlapping, we can inductively build a sequeried);cn of words, withz? = » and for any
1€N, 2l e BPandz! = 7y ppo (2711). Forj € N, we definer’ as the unique element
of the decreasing intersecticmleN[zﬂ_l. The compatibility and a direct recurrence give
that for any celi € Z, 2™ = f(a,_,, ;,..7), wheref is the local rule off". In particular,

we can then see thaf. (z°) = 2. O

The previous result is still true if we take widet andn, since they can then still be
considered as the anchor and anticipation of the same cellular automaton, and their sum can
still be considered as the order of the same subshift.

4. Equicontinuity

Let (X, F') be a dynamical systera,c R \ {0}. A pointz € X is saids-unstableif for
any radiusy > 0, there is a poiny € Bs(x) and a step € T for whichd(F*(x), F'(y)) >
e. Otherwise the point is saietstable A point which ise-stable for any= > 0 is said
equicontinuous

A dynamical systen¥’ is saide-sensitiveif all of its points ares-unstable for some
e > 0. Itis saidalmost equicontinuousif its set of equicontinuous points is a residual.
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It is equicontinuousif for any radiuse > 0, there exists a radius > 0 such that for all
pointsx,y € X with d(z,y) < ¢ and all stepg € T we haved(F*(z), F'(y)) < . Due

to the compactness of the underlying space, it is possible to invert the two quantifiers in the
definition of equicontinuity: a dynamical systemis equicontinuous if and only if all of its
points are. Moreover, in the case of bijective systems, it is known that the definitions with
T = Z andT = N coincide.

Blocking words. The topological notion of equicontinuity can, in a one-dimensional
space, be expressed symbolically in terms of blocking words, which prevent the information
transmission.

A word w € A* is (i, k)-blocking (or simply k-blocking), withi € M,k € N, for
the symbolic systeniS, F) if Va,y € [w];, Vt € T, F'(z) 0,3 = F*(y)joxj. Exceptin
trivial cases, we will have + £ < |w|.

Of course, a word isk-blocking whenever one of its subwords is. Moreoverk-a
blocking word isi-blocking for anyl < k.

From the definition, we can see a strong link between word blockingness and point
stability.

Remark 6. Let (X, F') be a symbolic system aride N. Then the following are true.
e A configurationz € ¥ is 2~*-stable if and only ifz ;) is k-blocking for somé € N.
e [is2 *-sensitive if and only if it admits né-blocking word.

¢ A configuration is equicontinuous if and only if it admitsblocking central patterns
foranyk € N.

Blocking words are particularly relevant in cellular automata, in which case a particu-
lar blocking width is enough to have any. More formally,(i, F') is a cellular automa-
ton of anchorm and anticipatiom, w an (i, m)-blocking (resp. (i, n)-blocking) word
andz € [w];, then for any configurationy € X such thatyj; ] = ZJicc] (r€SP.
YK —oowl+i] = TK—oo,wl+i]) and any step € T, we haveF" (y)jo.co] = F'(%)J0,00]
(resp. F*(y) K —oom] = F'(%)K—oon])- IN other words, the information cannot be trans-
mitted through cells that have known a blocking word as wide as the radius.

Remark 7. If (X c AM, F) is a cellular automaton of anchom € N and anticipation
neN,i,j €M,k >m,l>n,uan (i, k)-blocking word,w a (3, [)-blocking word, andv
such thatthe concatenatianvv is in the languagec(X), thenuww is (i, [u|4+i+|w|—j+1)-
blocking.

The previous remark strongly uses the one-dimensional structure of the space to con-
catenate blocking words, as do the results following from it.
The next result comes essentially from [2].

Proposition 12. Let (X, F') be a cellular automaton of radius. ThenF is equicontinuous
if and only if there exists somlec N such that any word of,; () is r-blocking.
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Proof. If for any I we can find some word of! which is not(max(m, n))-blocking, then

by the increasing property of blocking words and compactness, we can build a configuration
which does not admit anfmax(m, n))-blocking central pattern, which thus is not equicon-
tinuous by Remark 6. Conversely, if any wordwE £;(X) is (i, r)-blocking and(j.,, r)-
blocking for some,,, j,, € Z, thenany; € N and any word ofv € /J21+q+maxu€£l(2) i (2)

is, by Remark 7(1 + dwy,,; + |le,|w|_lJ] — Jwyiw—110yy T 7)-blOCking, and in particular,
thanks to the increasing propertyblocking. All widths of blockingness are obtained by

all sufficiently large words, and Remark 6 gives that all the configurations are equicontinu-
ous. O

A dynamical systeni{ X, F') is nonwandering (resp. transitive) if for any nonempty
opensel/ C X (resp. and/ C X), there is some point € U and some stepe T \ {0}
such thatF*(z) € U (resp. F'(z) € V). In the case of bijective systems, it is known that
the definitions withT = Z or T = N coincide. Moreover, thanks to the cylinder base,
it is easy to see that a subshtitis nonwandering (resp. transitive) if and only if for any
wordu € L(X) (resp. and € L(X)), there exists a words such thatuwu € L(X) (resp.
uwv € L(X)). Of course itis the case for the full shift, and for many others.

We can actually apply infinitely the previous remark. ket A* andU; = |J;,[ul;
for i € N. If ¥ is nonwandering, then by induction (and thanks to compactness) the in-
tersection(),cy U is nonempty. If¥ is transitive, then eacl; is dense and (thanks to
Baire’s theorem) so is the intersectiffy . U;. If M = Z, the same can be done with
Vi = U;slul-; for I € N, and(,c\ Ui N V. Applying this to the blocking words, we get
the well-known dichotomy between sensitivity and density of equicontinuous points.

Theorem 2. Let (X, F') be a nonsensitive cellular automaton of radiusif ¥ is nonwan-
dering, thenF' admits some equicontinuous configuration. Moreovey, i§ transitive, then
F'is quasiequicontinuous.

The converse comes directly from the definition: a sensitive system cannot have any
equicontinuous point. Theorem 2 gives us the following.

Corollary 13. If F'is a sensitive cellular automaton, then it cannot have arylocking
words, hence itig"-sensitive.

Proof of Theorem 2. Suppose that. € A* is an (i, k)-blocking word for ', with k& > r,
andU = Miex Usiluly if M = N, U = My (Ujiluly 0 Uj lul-5) it M = Z. By
Remarks 7 and 6, any configurationl@fis equicontinuous. We have already seen that such
a setlU is nonempty ifY is nonwandering, and is densedifis transitive. O

Preperiodicity. We say that a dynamical systefi, F') is preperiodic if there exist a
periodp € N\ {0} and a preperiog € N such thatF'?*? = F?. In particular, if, besides,
F is surjective, therf is periodic. Itis also well known that, for subshifts, this condition is
equivalent to finiteness.

Remark 8. The stability of a configuration: of some symbolic systefu, F') can be ex-
pressed in terms of traces: is 2~ *-stable, withk € N*, if and only if there exists some
radius! € N such thatfﬁ([x(l)]) is a singleton. SimilarlyF" is equicontinuous if and only
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if for any radiusk € N* there exists another radiuse N* such that for any word: € A%,
the traceTfp’€> ([u]) is a singleton.

Proposition 14. A symbolic systerty, F) is equicontinuous if and only if all of its traces
are finite.

Proof. Let F' be an equicontinuous symbolic system ahd= N. There exists a radius
I € N such that for anyu € A%, T3 ([u]) is a singleton. Consequentl%}m) =

Uneaw T}M([u])’ < ’A<l>’_

Conversely, ifr}'C> is finite, then, as a subshift, it i, ¢)-preperiodic, for somg € N\ {0}
andqg € N. Any pointxz € A is e-stable, since any poing of the neighborhood

Nicprq FH(B(F'(2))) satisfiesrt € N, d(F*(x), F'(y)) < e. O

In the case of cellular automata, all the traces have as a projection the trace of width
1. Consequently, the period and preperiod are uniform on all the traces, which slightly
generalizes a classical result [2, 4].

Corollary 15. Any cellular automaton is equicontinuous if and only if it is preperiodic.

Proof. Let I be an equicontinuous cellular automaton on a subghift AM. From Propo-
sition 14,7} is preperiodici.e. there are € N\ {0}, ¢ € N such that for any configuration
x € X, FP1i(x)y = Fi(x)o. We conclude by strong shift-invariance.

Conversely, it is well known that any preperiodic dynamical system is equicontinudus.

Regarding sensitivity, it is transmitted from the system to all of its sufficiently fine
traces.

Proposition 16. Let (X, F') a e-sensitive symbolic system aftla partition of diameter
less thare. Thenr7. is a sensitive subshift.

Proof. Letz € ¥ andd > 0. By continuity, there existd’ > 0 such that for any config-
urationy € B (z), we haved(TE (z), TE(y)) < é. The sensitivity ofF' gives us some
configurationy € By (x) and some step € T such thatd(F(z), F'(y)) > . SinceP
has a smaller diameter, we g&f (z); # TF (y)s, i.e. d(o'TE (z),o'TE (y)) = 1, with
A(TE (), TE(y)) < 6. 0

5. Expansivity

Expansivity represents a very strong instability property: the tiniest difference between two
initial points will eventually become big in their evolution. LétX, F') be a dynamical
system and > 0. F' is e-expansiveif for any two pointsz # y € X, there exists some
stept € T at whichd(F*(z), F'(y)) > e.

It is not difficult to see that, for symbolic systems, this property implies tﬁﬁt is
injective wheneverP is a partition of diameter less than Any of these partitions can
be seen as a generator by itself. In other words, the system is conjuggfe @f course,
subshifts are expansive, and expansivity is a topological notion, so we get that the expansive
systems are essentially the subshifts.
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We say that a symbolic syste(®, F), with ¥ = AM, is right-expansive with width
k € N\ {0} if for any two configurationsr,y € ¥ such thatrjo .. # ¥jo,00], there
exists a steg € T with F*(2)jo,7 # F'(y))jokg- f M = N, then this is equivalent
to expansivity. Otherwise, we can symmetrically deflei-expansivity. We say that a
cellular automaton is expansive wittidth % if it is right-expansive and left-expansive with
width &; this coincides with the definitions over dynamical systems.

Note that if (¥, F) is right-expansive with widtlk, then for anyl > k, the tracer. is
conjugate tork via the projectionr o 1 5. Otherwise there would exist, y with TE(z) =
TE(y) but T%(z) # Th(y) and thusz # y. In other particular, ifM = Z, we can see
that the family of clopen partition${ [u]| u € AJ=%*J}),cn composed of the cylinders
arbitrarily large to the left, but bounded on the right, represents a generator. Of course, the
same is true in the left-expansive case.

Proposition 17. Any right-expansive (resp. left-expansive) cellular automaton of anchor
m € N and anticipationn € N on some surjective SFT of order (resp. m) is right-
expansive with width (resp. left-expansive with widt).

Proof. Let (3, F) be such a cellular automaton and assume that there are two configurations
z,y € ¥ and some cell € N such thatr; # y; butTj(z) = T}(y). Letk € N. SinceX is

a surjective SFT of ordet, there exist two configurations® ¢ o=*(z) andy* € o *(y)

such that for any cells < n, z¥ = y¥. These two configurations are distinct but their
tracesTr "o~ *(z) = TE™™ % (y) are equal thanks to Proposition 6; hence the cellular
automaton is not right-expansive. The left side can be proved symmetrically. O

Combining the left and right sides, we can bound the width of expansivity for cellular
automatal” by its radiusr; the trace maf’;, whose width is the radius is then bijective and
F is conjugate tay,.

Expansivity of cellular automata represents a large domain of open questions, which is,
in particular, the base of the justification of Nasu’s textile systems [5]. This theory allowed
to prove (cf[6, 7]) that any expansive cellular automaton over sofic mixing subshifts is
conjugate to an SFT (equivalently;, is an SFT). In the case wheéh = N, it is even
conjugate to a full shift (of the fornBYN, whereB is an alphabet).

6. Entropy
Theentropy of some subshift can be defined in the following way:
H(E) = Tim 28
n—o0 n

Theentropy of some symbolic systerfiX, F') can be defined in the following way:

log

L)
F) = li P = lim i .
P = g ) =
If Fis a cellular automaton with ancher and anticipatiom, then the overlapping
gives us the expression:
H(F) = lim H((rptnthk

k—oo
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(2k)

If £ € N, then the trace,; " of width 2k is essentially included i|ﬁr§k>)2; we get the
(2K)

very rough bound# (7, ) < 27‘[(7';7@). On the other hand, it is well known that entropy
does not increase through factor map&F') > H(Tﬁ), which gives the following fact.
Remark 9. A cellular automaton has null entropy if and only if each of its traces does.

The entropy of a cellular automaton can also be bounded by that of its right and left
canonical factors.

Proposition 18. Any cellular automatoriX, F') of anchor and anticipatiomn, n € N has
an entropy which is less or equal to the sum of that of its left and right canonical factors:

H(F) < H(7F') + H(Tp) -
Proof. Let! € N andk > m + n. Then by Proposition 7, there is an injection:
(b : L‘l(rf’i) — ﬁl(TgZ) X ﬁk—m—n (2) X ﬁl(T};)
z = (ZJ)0§j<l — (ﬂ-JU,mJ(z)v zgmk_n(]a FJk—n,kJ (Z)) )

which gives the following cardinality inequality:

TP < 1L 1Lhmmmn (D) 14

Taking the logarithm, and deleting the term which is negligible with respettue get the
entropy relatively to any partition into cylinders of width> m + n:

H(Tl‘y]o’k‘]) <H(E)+H(E) . O

In particular, for a cellular automaton of raditiswe get the boundsi(71.) < H(F) <
2H(7]).
In the onesided case, we find again the following known equality.

Corollary 19 ([8]). A CA(X, F') of anchor0 and anticipationr € N has an entropy which
is equal to that of its canonical factor:

H(F) = H(T}) .

The same is true for expansive cellular automata, since they are conjugate to their canon-
ical factor. Moreover, we saw in the previous section that any t’ré(%‘] of width k greater
than the radiug is conjugate to the canonical factof,, which gives us that any cellular
automata which are expansive in some side has the same entropy than its canonical factor

Proposition 20. A left-expansive (resp. right-expansive) cellular automatonf radius
r € N has entropyH (F') = H(1}).

In particular, we find the result of [9]: any permutive cellular automaton (whose local
rule acts as a permutation over the first or last cell of the neighborhood) is either onesided
or expansive in some side, hence its entropy is equal to that of its canonical factor.

This simplification of the entropy expression in particular cases brings a natural hope
of generalization.

Question 1 ([9]). Does there exist a (computable) widtre N such thatH (F') = H(r}@)?
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Conclusion

Cellular automata are precisely the dynamical systems which can be defined from one of
their factor subshifts: each cellular automaton is the inverse limit of overlaps of some sub-
shift. It shares many properties with it, from the extreme case of expansivity, when it exactly
behaves like the subshift, to equicontinuity or preperiodicity, when the subshift satisfies so
strong properties that it constrains the whole system.

It is now natural to ask which other properties of the global system can be observed
in the dynamics of the subshift itself. For instance, this article did not deal much with
transitivity and its variants (mixingness...), which are preserved by factor maps. Hence
any trace of a transitive cellular automaton is transitive. But, conversely,i a cellular
automaton of anchom and anticipatiornn, needF be transitive whenever its canonical
factor is? Other such questions can be asked: is the entropyeafual to that of this trace?
does it factor onto some other cellular automatdwhenever the two corresponding traces
do?

Cellular automata can also be defined over higher-dimensional networks, saghoas
the Cayley graph of any monoid. Everything in the article can be generalized to virtually
cyclic monoids or groups, but in more complex contexts, the canonical factor does not play
the same role, since it does not disconnect the space of cells. Indeed, the ability to stick
together two (or a finite number of) parts of space-time diagrams to get a new one is the
crucial point which makes one-dimensional dynamics so particular. It is a base argument
in many other results [10, 11], whose generalization remains open in higher-dimensional
cases. Itis already known that the density and existence of equicontinuous points (Theorem
2) knows a two-dimensional counter-example [12].
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