MEASURINAG
COMPUTER PERFORMANGE

A practitioner’s guide

i L:: LT - r. f: H'-.‘ 1 I: I
(e Vi ﬁtﬂ‘ PR

maore information - www.cambridge.org/0521641055

This page intentionally left blank

Measuring computer performance

A practitioner’s guide

Measuring computer performance sets out the fundamental techniques used in analyzing and
understanding the performance of computer systems. Throughout the book, the emphasis is
on practical methods of measurement, simulation and analytical modeling.

The author discusses performance metrics and provides detailed coverage of the strategies
used in benchmark programs. He gives intuitive explanations of the key statistical tools needed
to interpret measured performance data. He also describes the general ‘design of experiments’
technique, and shows how the maximum amount of information can be obtained for the
minimum effort. The book closes with a chapter on the technique of queueing analysis.

Appendices listing common probability distributions and statistical tables are included,
along with a glossary of important technical terms. This practically oriented book will be of
great interest to anyone who wants a detailed, yet intuitive, understanding of computer sys-
tems performance analysis.

Measuring
computer performance

A practitioner’s guide

David J. Lilja

Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis

% CAMBRIDGE
;:; UNIVERSITY PRESS

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK

40 West 20th Street, New York, NY 10011-4211, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcén 13, 28014 Madrid, Spain

Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org
© Cambridge University Press 2004
First published in printed format 2000

ISBN 0-511-03627-2 eBook (Adobe Reader)
ISBN 0-521-64105-5 hardback

To Sarah
for her unwavering love, support,
and encouragement; and to Andrew,

for helping me to remember what’s really important.

Contents

Preface
Acknowledgements
1 Introduction

1.1 Measuring performance

1.2 Common goals of performance analysis
1.3 Solution techniques

1.4 Summary

1.5 Exercises

2 Metrics of performance
2.1 What is a performance metric?
2.2 Characteristics of a good performance metric
2.3 Processor and system performance metrics
2.4 Other types of performance metrics
2.5 Speedup and relative change
2.6 Means versus ends metrics
2.7 Summary
2.8 For further reading
2.9 Exercises

3 Average performance and variability

3.1 Why mean values?
3.2 Indices of central tendency
3.3 Other types of means

vii

x1
XV

N B S

9

10
12
19
19
21
23
23
24

(NS T (O I\
O O\ WD

viii Contents

3.4 Quantifying variability 35
3.5 Summary 39
3.6 For further reading 40
3.7 Exercises 41
4 Errors in experimental measurements 43
4.1 Accuracy, precision, and resolution 43
4.2 Sources of errors 45
4.3 A model of errors 46
4.4 Quantifying errors 47
4.5 Summary 57
4.6 For further reading 57
4.7 Exercises 58
5 Comparing alternatives 61
5.1 Comparing two alternatives 62
5.2 Comparing more than two alternatives 71
5.3 Summary 80
5.4 For further reading 80
5.5 Exercises 81
6 Measurement tools and techniques 82
6.1 Events and measurement strategies 82
6.2 Interval timers 86
6.3 Program profiling 92
6.4 Event tracing 97
6.5 Indirect and ad hoc measurements 104
6.6 Perturbations due to measuring 105
6.7 Summary 107
6.8 For further reading 108

6.9 Exercises 109

ix Contents

7 Benchmark programs

7.1
7.2
7.3
7.4
7.5
7.6

Types of benchmark programs
Benchmark strategies
Example benchmark programs
Summary

For further reading

Exercises

8 Linear-regression models

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Least-squares minimization

Confidence intervals for regression parameters
Correlation

Multiple linear regression

Verifying linearity

Nonlinear models

Summary

For further reading

Exercises

9 The design of experiments

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Types of experiments
Terminology

Two-factor experiments
Generalized m-factor experiments
n2" experiments

Summary

For further reading

Exercises

10 Simulation and random-number generation

10.1 Simulation-efficiency considerations

10.2 Types of simulations
10.3 Random-number generation

111

112
117
125
132
135
137

139

139
142
145
148
150
151
155
155
156

157

158
158
159
168
172
177
177
178

181

182
183
190

X Contents

10.4 Verification and validation of simulations 203
10.5 Summary 212
10.6 For further reading 213
10.7 Exercises 214
11 Queueing analysis 217
11.1 Queueing-network models 218
11.2 Basic assumptions and notation 220
11.3 Operational analysis 221
11.4 Stochastic analysis 225
11.5 Summary 235
11.6 For further reading 237
11.7 Exercises 237
Appendix A Glossary 239
Appendix B Some useful probability distributions 242
Appendix C Selected statistical tables 249

Index 258

xi

Preface

“Education is not to reform students or amuse them or to make them expert technicians. It is
to unsettle their minds, widen their horizons, inflame their intellects, teach them to think
straight, if possible.”

Robert M. Hutchins

Goals

Most fields of science and engineering have well-defined tools and techniques for
measuring and comparing phenomena of interest and for precisely communicat-
ing results. In the field of computer science and engineering, however, there is
surprisingly little agreement on how to measure something as fundamental as the
performance of a computer system. For example, the speed of an automobile can
be readily measured in some standard units, such as meters traveled per second.
The use of these standard units then allows the direct comparison of the speed of
the automobile with that of an airplane, for instance. Comparing the perfor-
mance of different computer systems has proven to be not so straightforward,
however.

The problems begin with a lack of agreement in the field on even the seemingly
simplest of ideas, such as the most appropriate metric to use to measure perfor-
mance. Should this metric be MIPS, MFLOPS, QUIPS, or seconds, for instance?
The problems then continue with many researchers obtaining and reporting
results using questionable and even, in many cases, incorrect methodologies.
Part of this lack of rigor in measuring and reporting performance results is
due to the fact that tremendous advances have been made in the performance
of computers in the past several decades using an ad hoc ‘seat-of-the-pants’
approach. Thus, there was little incentive for researchers to report results in a
scientifically defensible way. Consequently, these researchers never taught their
students sound scientific methodologies to use when conducting their own
experiments.

One of the primary goals of this text is to teach the fundamental concepts
behind the tools and techniques used in computer-systems performance analysis.

xii

Preface

While specific programs or tools are sometimes mentioned as example imple-
mentations of the concepts presented, the goal is to teach the basic ideas, not the
details of specific implementations. It is purposefully not a goal to make you an
expert in using a specific software tool or system instrumentation package. My
belief is that, if you understand the fundamental ideas behind these tools and
techniques, including the basic assumptions inherent in the tool and in any
statistical methods used to interpret the measured data, you can easily figure
out how to use a specific tool or technique. True proficiency with individual tools
can come only when you deeply understand the concepts on the basis of which
they are developed.

So, if you want to learn how to use the latest and greatest version of the hottest
simulation package, for instance, go buy its user’s manual. If you want to
develop a deeper understanding of the field of performance analysis, however,
keep reading. When you then decide to use that exciting new software package,
you will understand how to interpret its results in a meaningful way. Also you
will, I hope, have developed some insight into the potential benefits and hazards
that it may present.

Philosophy

The question of which topics to include in a text, and, perhaps more importantly,
which topics to omit, has as many different answers as there are potential
authors. So does the related question of how to treat each topic. Some authors
would prefer to take a more mathematically rigorous approach to the topics than
I have used in this text, perhaps, or they may choose to emphasize different
aspects of the selected topics. Many, perhaps even most, texts on computer-
systems performance analysis tend to focus on analytical modeling techniques
from a rather mathematical point of view. While this is an important topic with
an extensive body of literature, I chose in this text to instead emphasize practical
tools and techniques that I have found to be useful in analyzing and evaluating
the performance of a variety of different types of computer systems.
Furthermore, standard statistical tools, such as the analysis-of-variance
(ANOVA) tests and the design-of-experiments concepts, have not found their
way into the fabric of the computer-systems research community. This lack of
statistical rigor has been a major weakness in the field of computer-systems
performance-analysis. Consequently, I have chosen to present many practical
statistical tools and techniques that are not commonly taught in a performance
analysis course. While many of these ideas are presented in introductory prob-
ability and statistics courses, I have found that a surprisingly large number of
computer engineering and computer science students never really learned these
tools and techniques. Many, in fact, have never even been exposed to the ideas.

xiii

Preface

Instead of providing detailed mathematical derivations of these tools and
techniques, though, I prefer to provide a more intuitive sense of why we might
choose a certain type of statistical analysis, for instance. I want you to learn how
to apply the appropriate tools and techniques so that you will become more
thorough and careful in the experiments and analyses you perform. There are
many other textbooks available if you then want to continue your studies into
the deeper mathematical underpinnings of these tools and techniques.

Organization

The first chapter begins with an introduction to the basic ideas of measurement,
simulation, and analytical modeling. It also describes some of the common goals
of computer-systems performance analysis. The problem of choosing an appro-
priate metric of performance is discussed in Chapter 2, along with some basic
definitions of speedup and relative change.

The next three chapters provide an intuitive development of several important
statistical tools and techniques. Chapter 3 presents standard methods for quan-
tifying average performance and variability. It also introduces the controversy
surrounding the problem of deciding which of several definitions of the mean
value is most appropriate for summarizing a set of measured values. The model
of measurement errors developed in Chapter 4 is used to motivate the need for
statistical confidence intervals. The ideas of accuracy, precision, and resolution
of measurement tools are also presented in this chapter. Techniques for compar-
ing various system alternatives in a statistically valid way are described in
Chapter 5. This presentation includes an introduction to the analysis of variance
(ANOVA), which is one of the fundamental statistical analysis techniques used
in subsequent chapters.

While Chapters 3-5 focus on the use and interpretation of measured data, the
next two chapters emphasize tools and techniques for actually obtaining these
data. Chapter 6 begins with a discussion of the concept of events. It also
describes several different types of measurement tools and techniques, including
interval timers, basic block counting, execution-time sampling, and indirect mea-
surement. The underlying ideas behind the development of benchmark programs
are presented in Chapter 7, along with a brief description of several standard
benchmark suites.

Chapter 8 uses a discussion of linear regression modeling to introduce the idea
of developing a mathematical model of a system from measured data. Chapter 9
presents techniques for designing experiments to maximize the amount of infor-
mation obtained while minimizing the amount of effort required to obtain this
information.

xiv

Preface

Up to this point, the text has focused on gathering and analyzing measure-
ments of existing computer systems. The fundamental problems involved in
simulating systems are discussed in Chapter 10. The standard simulation strate-
gies are presented along with a description of how the sequences of random
numbers that are often needed to drive simulations can be generated. Finally,
Chapter 11 concludes the text with a presentation of the fundamental analytical
modeling techniques derived from queuing theory.

A glossary of some of the more important terms used in the text is presented in
Appendix A. Several common probability distributions that are frequently used
in simulation modeling are described in Appendix B. Appendix C tabulates
critical values used in many of the statistical tests described in the earlier chap-
ters.

While suggestions for further reading are provided at the end of each chapter,
they by no means comprise an exhaustive bibliography of the field of computer-
systems performance analysis. Rather, they are intended to guide the curious
reader towards additional information that I have found to be both useful and
interesting in my own research, in teaching my performance-analysis course, and
in preparing this text.

Some exercises are provided at the end of each chapter to help the reader focus
on some interesting aspects of the chapter’s topic that are not covered in detail
within the text. They also should help provide instructors using this book within
a course with some ideas for further homework and project assignments.

Suggestions for using this text

This book is intended to be used as the primary text in a one-semester course for
advanced undergraduate and beginning graduate students in computer science
and engineering who need to understand how to rigorously measure the perfor-
mance of computer systems. It should also prove useful as a supplemental text
for students in other computer science and engineering courses who need to
understand performance. It would make a good supplement for a course on
high-performance computer architecture or high-speed computer networking,
for instance.

This text will also be useful as a reference text for professional engineers and
scientists who use computers in their daily work, or who design systems that
incorporate computers as their primary control elements. Application experts
from any discipline should also find this book useful in helping to understand
how to analyze the performance of their systems and applications.

XV

Acknowledgements

“The reason universities have students is so they can teach the professors.”
John Wheeler, “No Ordinary Genius,” p. 44.

I have had the pleasure of teaching a course on computer-systems performance

analysis many times over the past several years. One of the advantages of this
teaching has been the opportunity to practice many of the concepts and ideas
presented in this text on (mostly) willing subjects. With that in mind, I would like
to thank all of the students who have enrolled in this course over the years. Their
insightful comments and feedback, both direct and indirect, helped me test out
many of the following explanations and derivations. I especially would like to
thank the students who enrolled in EE/CS 5863 in Spring quarter 1999. They
gamefully waded their way through an early draft of this text as they tried to
keep up with the course itself. Their comments and feedback on what did and did
not work in the text are very much appreciated. Any remaining lack of clarity
and errors are entirely my fault, however.

I also would like to thank Philip Meyler of Cambridge University Press for his
comments on an early draft and for his efforts in helping transform the manu-
script into an actual textbook; Steven Holt for his thorough and careful copy-
editing; and all of the other individuals at the Press for their efforts in shepherd-
ing this book through the entire publication process.

1.1

Introduction

‘Performance can be bad, but can it ever be wrong?’
Jim Kohn, SGI/Cray Research, Inc.

Measuring performance

If the automobile industry had followed the same development cycles as the
computer industry, it has been speculated that a Rolls Royce car would cost
less than $100 with an efficiency of more than 200 miles per gallon of gasoline.
While we certainly get more car for our money now than we did twenty years
ago, no other industry has ever changed at the incredible rate of the computer
and electronics industry.

Computer systems have gone from being the exclusive domain of a few scien-
tists and engineers who used them to speed up some esoteric computations, such
as calculating the trajectory of artillery shells, for instance, to being so common
that they go unnoticed. They have replaced many of the mechanical control
systems in our cars, thereby reducing cost while improving efficiency, reliability,
and performance. They have made possible such previously science-fiction-like
devices as cellular phones. They have provided countless hours of entertainment
for children ranging in age from one to one hundred. They have even brought
sound to the common greeting card. One constant throughout this proliferation
and change, however, has been the need for system developers and users to
understand the performance of these computer-based devices.

While measuring the cost of a system is usually relatively straightforward
(except for the confounding effects of manufacturers’ discounts to special cus-
tomers), determining the performance of a computer system can oftentimes seem
like an exercise in futility. Surprisingly, one of the main difficulties in measuring
performance is that reasonable people often disagree strongly on how perfor-
mance should be measured or interpreted, and even on what ‘performance’
actually means.

1.2

Introduction

Performance analysis as applied to experimental computer science and engi-
neering should be thought of as a combination of measurement, interpretation,
and communication of a computer system’s ‘speed’ or ‘size’ (sometimes referred
to as its ‘capacity’). The terms speed and size are quoted in this context to
emphasize that their actual definitions often depend on the specifics of the situa-
tion. Also, it is important to recognize that we need not necessarily be dealing
with complete systems. Often it is necessary to analyze only a small portion of
the system independent of the other components. For instance, we may be inter-
ested in studying the performance of a certain computer system’s network inter-
face independent of the size of its memory or the type of processor.
Unfortunately, the components of a computer system can interact in incredibly
complex, and frequently unpredictable, ways. One of the signs of an expert
computer performance analyst is that he or she can tease apart these interactions
to determine the performance effect due only to a particular component.

One of the most interesting tasks of the performance analyst can be figuring
out how to measure the necessary data. A large dose of creativity may be needed
to develop good measurement techniques that perturb the system as little as
possible while providing accurate, reproducible results. After the necessary
data have been gathered, the analyst must interpret the results using appropriate
statistical techniques. Finally, even excellent measurements interpreted in a sta-
tistically appropriate fashion are of no practical use to anyone unless they are
communicated in a clear and consistent manner.

Common goals of performance analysis

The goals of any analysis of the performance of a computer system, or one of its
components, will depend on the specific situation and the skills, interests, and
abilities of the analyst. However, we can identify several different typical goals of
performance analysis that are useful both to computer-system designers and to
users.

e Compare alternatives. When purchasing a new computer system, you may be
confronted with several different systems from which to choose. Furthermore,
you may have several different options within each system that may impact
both cost and performance, such as the size of the main memory, the number
of processors, the type of network interface, the size and number of disk
drives, the type of system software (i.c., the operating system and compilers),
and on and on. The goal of the performance analysis task in this case is to
provide quantitative information about which configurations are best under
specific conditions.

1.2 Common goals of performance analysis

e Determine the impact of a feature. In designing new systems, or in upgrading
existing systems, you often need to determine the impact of adding or remov-
ing a specific feature of the system. For instance, the designer of a new pro-
cessor may want to understand whether it makes sense to add an additional
floating-point execution unit to the microarchitecture, or whether the size of
the on-chip cache should be increased instead. This type of analysis is often
referred to as a before-and-after comparison since only one well-defined com-
ponent of the system is changed.

e System tuning. The goal of performance analysis in system tuning is to find the
set of parameter values that produces the best overall performance. In time-
shared operating systems, for instance, it is possible to control the number of
processes that are allowed to actively share the processor. The overall perfor-
mance perceived by the system users can be substantially impacted both by
this number, and by the time quantum allocated to each process. Many other
system parameters, such as disk and network buffer sizes, for example, can
also significantly impact the system performance. Since the performance
impacts of these various parameters can be closely interconnected, finding
the best set of parameter values can be a very difficult task.

o Identify relative performance. The performance of a computer system typically
has meaning only in the context of its performance relative to something else,
such as another system or another configuration of the same system. The goal
in this situation may be to quantify the change in performance relative to
history — that is, relative to previous generations of the system. Another
goal may be to quantify the performance relative to a customer’s expectations,
or to a competitor’s systems, for instance.

e Performance debugging. Debugging a program for correct execution is a fun-
damental prerequisite for any application program. Once the program is
functionally correct, however, the performance analysis task becomes one of
finding performance problems. That is, the program now produces the correct
results, but it may be much slower than desired. The goal of the performance
analyst at this point is to apply the appropriate tools and analysis techniques
to determine why the program is not meeting performance expectations. Once
the performance problems are identified, they can, it is to be hoped, be cor-
rected.

e Set expectations. Users of computer systems may have some idea of what the
capabilities of the next generation of a line of computer systems should be.
The task of the performance analyst in this case is to set the appropriate
expectations for what a system is actually capable of doing.

In all of these situations, the effort involved in the performance-analysis task
should be proportional to the cost of making the wrong decision. For example, if

1.3

Introduction

you are comparing different manufacturers’ systems to determine which best
satisfies the requirements for a large purchasing decision, the financial cost of
making the wrong decision could be quite substantial, both in terms of the cost
of the system itself, and in terms of the subsequent impacts on the various parts
of a large project or organization. In this case, you will probably want to perform
a very detailed, thorough analysis. If, however, you are simply trying to choose a
system for your own personal use, the cost of choosing the wrong one is minimal.
Your performance analysis in this case may be correctly limited to reading a few
reviews from a trade magazine.

Solution techniques

When one is confronted with a performance-analysis problem, there are three
fundamental techniques that can be used to find the desired solution. These are
measurements of existing systems, simulation, and analytical modeling. Actual
measurements generally provide the best results since, given the necessary mea-
surement tools, no simplifying assumptions need to be made. This characteristic
also makes results based on measurements of an actual system the most believ-
able when they are presented to others. Measurements of real systems are not
very flexible, however, in that they provide information about only the specific
system being measured. A common goal of performance analysis is to character-
ize how the performance of a system changes as certain parameters are varied. In
an actual system, though, it may be very difficult, if not impossible, to change
some of these parameters. Evaluating the performance impact of varying the
speed of the main memory system, for instance, is simply not possible in most
real systems. Furthermore, measuring some aspects of performance on an actual
system can be very time-consuming and difficult. Thus, while measurements of
real systems may provide the most compelling results, their inherent difficulties
and limitations produce a need for other solution techniques.

A simulation of a computer system is a program written to model important
features of the system being analyzed. Since the simulator is nothing more than a
program, it can be easily modified to study the impact of changes made to almost
any of the simulated components. The cost of a simulation includes both the time
and effort required to write and debug the simulation program, and the time
required to execute the necessary simulations. Depending on the complexity of
the system being simulated, and the level of detail at which it is modeled, these
costs can be relatively low to moderate compared with the cost of purchasing a
real machine on which to perform the corresponding experiments.

The primary limitation of a simulation-based performance analysis is that it is
impossible to model every small detail of the system being studied. Consequently,

1.3 Solution techniques

simplifying assumptions are required in order to make it possible to write the
simulation program itself, and to allow it to execute in a reasonable amount of
time. These simplifying assumptions then limit the accuracy of the results by
lowering the fidelity of the model compared with how an actual system would
perform. Nevertheless, simulation enjoys tremendous popularity for computer-
systems analysis due to its high degree of flexibility and its relative ease of
implementation.

The third technique in the performance analyst’s toolbox is analytical model-
ing. An analytical model is a mathematical description of the system. Compared
with a simulation or a measurement of a real machine, the results of an analytical
model tend to be much less believable and much less accurate. A simple analy-
tical model, however, can provide some quick insights into the overall behavior
of the system, or one of its components. This insight can then be used to help
focus a more detailed measurement or simulation experiment. Analytical models
are also useful in that they provide at least a coarse level of validation of a
simulation or measurement. That is, an analytical model can help confirm
whether the results produced by a simulator, or the values measured on a real
system, appear to be reasonable.

Example. The delay observed by an application program when accessing mem-
ory can have a significant impact on its overall execution time. Direct measure-
ments of this time on a real machine can be quite difficult, however, since the
detailed steps involved in the operation of a complex memory hierarchy structure
are typically not observable from a user’s application program. A sophisticated
user may be able to write simple application programs that exercise specific
portions of the memory hierarchy to thereby infer important memory-system
parameters. For instance, the execution time of a simple program that repeatedly
references the same variable can be used to estimate the time required to access
the first-level cache. Similarly, a program that always forces a cache miss can be
used to indirectly measure the main memory access time. Unfortunately, the
impact of these system parameters on the execution time of a complete applica-
tion program is very dependent on the precise memory-referencing characteris-
tics of the program, which can be difficult to determine.

Simulation, on the other hand, is a powerful technique for studying memory-
system behavior due to its high degree of flexibility. Any parameter of the mem-
ory, including the cache associativity, the relative cache and memory delays, the
sizes of the cache and memory, and so forth, can be easily changed to study its
impact on performance. It can be challenging, however, to accurately model in a
simulator the overlap of memory delays and the execution of other instructions
in contemporary processors that incorporate such performance-enhancing fea-
tures as out-of-order instruction issuing, branch prediction, and nonblocking
caches. Even with the necessary simplifying assumptions, the results of a detailed

Introduction

simulation can still provide useful insights into the effect of the memory system
on the performance of a specific application program.

Finally, a simple analytical model of the memory system can be developed as
follows. Let 7, be the time delay observed by a memory reference if the memory
location being referenced is in the cache. Also, let 7., be the corresponding delay
if the referenced location is not in the cache. The cache hit ratio, denoted h, is the
fraction of all memory references issued by the processor that are satisfied by the
cache. The fraction of references that miss in the cache and so must also access
the memory is 1 — /. Thus, the average time required for all cache hits is iz, while
the average time required for all cache misses is (1 — /)t,,. A simple model of the
overall average memory-access time observed by an executing program then is

aye = hie + (1 = Bty (1.1)

To apply this simple model to a specific application program, we would need
to know the hit ratio, 4, for the program, and the values of 7, and ¢, for the
system. These memory-access-time parameters, ¢, and z,,, may often be found in
the manufacturer’s specifications of the system. Or, they may be inferred through
a measurement, as described above and as explored further in the exercises in
Chapter 6. The hit ratio, &, for an application program is typically more difficult
to obtain. It is often found through a simulation of the application, though.
Although this model will provide only a very coarse estimate of the average
memory-access time observed by a program, it can provide us with some insights
into the relative effects of increasing the hit ratio, or changing the memory-
timing parameters, for instance. &

The key differences among these solution techniques are summarized in Table
1.1. The flexibility of a technique is an indication of how easy it is to change the
system to study different configurations. The cost corresponds to the time, effort,
and money necessary to perform the appropriate experiments using each tech-
nique. The believability of a technique is high if a knowledgeable individual has a
high degree of confidence that the result produced using that technique is likely
to be correct in practice. It is much easier for someone to believe that the
execution time of a given application program will be within a certain range
when you can demonstrate it on an actual machine, for instance, than when
relying on a mere simulation. Similarly, most people are more likely to believe
the results of a simulation study than one that relies entirely on an analytical
model. Finally, the accuracy of a solution technique indicates how closely results
obtained when using that technique correspond to the results that would have
been obtained on a real system.

The choice of a specific solution technique depends on the problem being
solved. One of the skills that must be developed by a computer-systems perfor-
mance analyst is determining which technique is the most appropriate for the

1.4

1.5

1.5 Exercises

Table 1.1. A comparison of the performance-analysis solution techniques

Solution technique

Analytical Simulation Measurement
Characteristic modeling
Flexibility High High Low
Cost Low Medium High
Believability Low Medium High
Accuracy Low Medium High

given situation. The following chapters are designed to help you develop pre-
cisely this skill.

Summary

Computer-systems performance analysis often feels more like an art than a
science. Indeed, different individuals can sometimes reach apparently contradic-
tory conclusions when analyzing the same system or set of systems. While this
type of ambiguity can be quite frustrating, it is often due to misunderstandings of
what was actually being measured, or disagreements about how the data should
be analyzed or interpreted. These differences further emphasize the need to
clearly communicate all results and to completely specify the tools, techniques,
and system parameters used to collect and understand the data. As you study the
following chapters, my hope is that you will begin to develop an appreciation for
this art of measurement, interpretation, and communication in addition to devel-
oping a deeper understanding of its mathematical and scientific underpinnings.

Exercises

1. Respond to the question quoted at the beginning of this chapter,
‘Performance can be bad, but can it ever be wrong?

2. Performance analysis should be thought of as a decision-making process.
Section 1.2 lists several common goals of a performance-analysis experiment.
List other possible goals of the performance-analysis decision-making pro-
cess. Who are the beneficiaries of each of these possible goals?

8

Introduction

3. Table 1.1 compares the three main performance-analysis solution techniques
across several criteria. What additional criteria could be used to compare
these techniques?

4. Identify the most appropriate solution technique for each of the following
situations.

(a) Estimating the performance benefit of a new feature that an engineer is
considering adding to a computer system currently being designed.

(b) Determining when it is time for a large insurance company to upgrade to
a new system.

(¢) Deciding the best vendor from which to purchase new computers for an
expansion to an academic computer lab.

(d) Determining the minimum performance necessary for a computer system
to be used on a deep-space probe with very limited available electrical
power.

Metrics of performance

2.1

‘Time is a great teacher, but unfortunately it kills all its pupils.’

Hector Berlioz

What is a performance metric?

Before we can begin to understand any aspect of a computer system’s perfor-
mance, we must determine what things are interesting and useful to measure. The
basic characteristics of a computer system that we typically need to measure are:

e a count of how many times an event occurs,
e the duration of some time interval, and
e the size of some parameter.

For instance, we may need to count how many times a processor initiates an
input/output request. We may also be interested in how long each of these
requests takes. Finally, it is probably also useful to determine the number of
bits transmitted and stored.

From these types of measured values, we can derive the actual value that we
wish to use to describe the performance of the system. This value is called a
performance metric.

If we are interested specifically in the time, count, or size value measured, we
can use that value directly as our performance metric. Often, however, we are
interested in normalizing event counts to a common time basis to provide a speed
metric such as operations executed per second. This type of metric is called a rate
metric or throughput and is calculated by dividing the count of the number of
events that occur in a given interval by the time interval over which the events
occur. Since a rate metric is normalized to a common time basis, such as seconds,
it is useful for comparing different measurements made over different time
intervals.

Choosing an appropriate performance metric depends on the goals for
the specific situation and the cost of gathering the necessary information. For

10

2.2

Metrics of performance

example, suppose that you need to choose between two different computer sys-
tems to use for a short period of time for one specific task, such as choosing
between two systems to do some word processing for an afternoon. Since the
penalty for being wrong in this case, that is, choosing the slower of the two
machines, is very small, you may decide to use the processors’ clock frequencies
as the performance metric. Then you simply choose the system with the fastest
clock. However, since the clock frequency is not a reliable performance metric
(see Section 2.3.1), you would want to choose a better metric if you are trying to
decide which system to buy when you expect to purchase hundreds of systems for
your company. Since the consequences of being wrong are much larger in this
case (you could lose your job, for instance!), you should take the time to perform
a rigorous comparison using a better performance metric. This situation then
begs the question of what constitutes a good performance metric.

Characteristics of a good performance metric

There are many different metrics that have been used to describe a computer
system’s performance. Some of these metrics are commonly used throughout the
field, such as MIPS and MFLOPS (which are defined later in this chapter),
whereas others are invented for new situations as they are needed. Experience
has shown that not all of these metrics are ‘good’ in the sense that sometimes
using a particular metric can lead to erroneous or misleading conclusions.
Consequently, it is useful to understand the characteristics of a ‘good’ perfor-
mance metric. This understanding will help when deciding which of the existing
performance metrics to use for a particular situation, and when developing a new
performance metric.

A performance metric that satisfies all of the following requirements is gen-
erally useful to a performance analyst in allowing accurate and detailed compar-
isons of different measurements. These criteria have been developed by observing
the results of numerous performance analyses over many years. While they
should not be considered absolute requirements of a performance metric, it
has been observed that using a metric that does not satisfy these requirements
can often lead the analyst to make erroneous conclusions.

1. Linearity. Since humans intuitively tend to think in linear terms, the value of
the metric should be linearly proportional to the actual performance of the
machine. That is, if the value of the metric changes by a certain ratio, the
actual performance of the machine should change by the same ratio. This
proportionality characteristic makes the metric intuitively appealing to most
people. For example, suppose that you are upgrading your system to a system

11

2.2 Characteristics of a good performance metric

whose speed metric (i.e. execution-rate metric) is twice as large as the same
metric on your current system. You then would expect the new system to be
able to run your application programs in half the time taken by your old
system. Similarly, if the metric for the new system were three times larger than
that of your current system, you would expect to see the execution times
reduced to one-third of the original values.

Not all types of metrics satisfy this proportionally requirement. Logarithmic
metrics, such as the dB scale used to describe the intensity of sound, for
example, are nonlinear metrics in which an increase of one in the value of
the metric corresponds to a factor of ten increase in the magnitude of the
observed phenomenon. There is nothing inherently wrong with these types of
nonlinear metrics, it is just that linear metrics tend to be more intuitively
appealing when interpreting the performance of computer systems.

. Reliability. A performance metric is considered to be reliable if system A

always outperforms system B when the corresponding values of the metric for
both systems indicate that system A should outperform system B. For exam-
ple, suppose that we have developed a new performance metric called WIPS
that we have designed to compare the performance of computer systems when
running the class of word-processing application programs. We measure sys-
tem A and find that it has a WIPS rating of 128, while system B has a WIPS
rating of 97. We then can say that WIPS is a reliable performance metric for
word-processing application programs if system A always outperforms system
B when executing these types of applications.

While this requirement would seem to be so obvious as to be unnecessary to
state explicitly, several commonly used performance metrics do not in fact
satisfy this requirement. The MIPS metric, for instance, which is described
further in Section 2.3.2, is notoriously unreliable. Specifically, it is not unusual
for one processor to have a higher MIPS rating than another processor while
the second processor actually executes a specific program in less time than
does the processor with the higher value of the metric. Such a metric is
essentially useless for summarizing performance, and we say that it is unreli-
able.

. Repeatability. A performance metric is repeatable if the same value of the

metric is measured each time the same experiment is performed. Note that this
also implies that a good metric is deterministic.

. Easiness of measurement. If a metric is not easy to measure, it is unlikely that

anyone will actually use it. Furthermore, the more difficult a metric is to
measure directly, or to derive from other measured values, the more likely

12

23

2.3.1

Metrics of performance

it is that the metric will be determined incorrectly. The only thing worse than a
bad metric is a metric whose value is measured incorrectly.

5. Consistency. A consistent performance metric is one for which the units of the
metric and its precise definition are the same across different systems and
different configurations of the same system. If the units of a metric are not
consistent, it is impossible to use the metric to compare the performances of
the different systems. While the necessity for this characteristic would also
seem obvious, it is not satisfied by many popular metrics, such as MIPS
(Section 2.3.2) and MFLOPS (Section 2.3.3).

6. Independence. Many purchasers of computer systems decide which system to
buy by comparing the values of some commonly used performance metric. As
a result, there is a great deal of pressure on manufacturers to design their
machines to optimize the value obtained for that particular metric, and to
influence the composition of the metric to their benefit. To prevent corruption
of its meaning, a good metric should be independent of such outside influences.

Processor and system performance metrics

A wide variety of performance metrics has been proposed and used in the com-
puter field. Unfortunately, many of these metrics are not good in the sense
defined above, or they are often used and interpreted incorrectly. The following
subsections describe many of these common metrics and evaluate them against
the above characteristics of a good performance metric.

The clock rate

In many advertisements for computer systems, the most prominent indication of
performance is often the frequency of the processor’s central clock. The implica-
tion to the buyer is that a 250 MHz system must always be faster at solving the
user’s problem than a 200 MHz system, for instance. However, this performance
metric completely ignores how much computation is actually accomplished in
each clock cycle, it ignores the complex interactions of the processor with the
memory subsystem and the input/output subsystem, and it ignores the not at all
unlikely fact that the processor may not be the performance bottleneck.
Evaluating the clock rate against the characteristics for a good performance
metric, we find that it is very repeatable (characteristic 3) since it is a constant for
a given system, it is easy to measure (characteristic 4) since it is most likely
stamped on the box, the value of MHz is precisely defined across all systems
so that it is consistent (characteristic 5), and it is independent of any sort of

13

2.3.2

2.3 Processor and system performance metrics

manufacturers’ games (characteristic 6). However, the unavoidable shortcomings
of using this value as a performance metric are that it is nonlinear (characteristic
1), and unreliable (characteristic 2). As many owners of personal computer
systems can attest, buying a system with a faster clock in no way assures that
their programs will run correspondingly faster. Thus, we conclude that the pro-
cessor’s clock rate is not a good metric of performance.

MIPS

A throughput or execution-rate performance metric is a measure of the amount of
computation performed per unit time. Since rate metrics are normalized to a
common basis, such as seconds, they are very useful for comparing relative
speeds. For instance, a vehicle that travels at 50 m s~ will obviously traverse
more ground in a fixed time interval than will a vehicle traveling at 35 m s~ .
The MIPS metric is an attempt to develop a rate metric for computer systems
that allows a direct comparison of their speeds. While in the physical world speed
is measured as the distance traveled per unit time, MIPS defines the computer
system’s unit of ‘distance’ as the execution of an instruction. Thus, MIPS, which
is an acronym for millions of instructions executed per second, is defined to be

MIPS = 2.1)

te x 10°
where ¢, is the time required to execute n total instructions.

Defining the unit of ‘distance’ in this way makes MIPS easy to measure (char-
acteristic 4), repeatable (characteristic 3), and independent (characteristic 6).
Unfortunately, it does not satisfy any of the other characteristics of a good
performance metric. It is not linear since, like the clock rate, a doubling of the
MIPS rate does not necessarily cause a doubling of the resulting performance. It
also is neither reliable nor consistent since it really does not correlate well to
performance at all.

The problem with MIPS as a performance metric is that different processors
can do substantially different amounts of computation with a single instruction.
For instance, one processor may have a branch instruction that branches after
checking the state of a specified condition code bit. Another processor, on the
other hand, may have a branch instruction that first decrements a specified count
register, and then branches after comparing the resulting value in the register
with zero. In the first case, a single instruction does one simple operation,
whereas in the second case, one instruction actually performs several operations.
The failing of the MIPS metric is that each instruction corresponds to one unit of
‘distance,” even though in this example the second instruction actually performs
more real computation. These differences in the amount of computation per-

14

233

Metrics of performance

formed by an instruction are at the heart of the differences between RISC and
CISC processors and render MIPS essentially useless as a performance metric.
Another derisive explanation of the MIPS acronym is meaningless indicator of
performance since it is really no better a measure of overall performance than is
the processor’s clock frequency.

MFLOPS

The MFLOPS performance metric tries to correct the primary shortcoming of
the MIPS metric by more precisely defining the unit of ‘distance’ traveled by a
computer system when executing a program. MFLOPS, which is an acronym for
millions of floating-point operations executed per second, defines an arithmetic
operation on two floating-point (i.e. fractional) quantities to be the basic unit
of ‘distance.” MFLOPS is thus calculated as

f

MFLOPS = ———
to x 108

(2.2)

where f is the number of floating-point operations executed in ¢, seconds. The
MFLOPS metric is a definite improvement over the MIPS metric since the results
of a floating-point computation are more clearly comparable across computer
systems than is the execution of a single instruction. An important problem with
this metric, however, is that the MFLOPS rating for a system executing a pro-
gram that performs no floating-point calculations is exactly zero. This program
may actually be performing very useful operations, though, such as searching a
database or sorting a large set of records.

A more subtle problem with MFLOPS is agreeing on exactly how to count the
number of floating-point operations in a program. For instance, many of the
Cray vector computer systems performed a floating-point division operation
using successive approximations involving the reciprocal of the denominator
and several multiplications. Similarly, some processors can calculate transcen-
dental functions, such as sin, cos, and log, in a single instruction, while others
require several multiplications, additions, and table look-ups. Should these
operations be counted as a single floating-point operation or multiple floating-
point operations? The first method would intuitively seem to make the most
sense. The second method, however, would increase the value of f in the
above calculation of the MFLOPS rating, thereby artificially inflating its
value. This flexibility in counting the total number of floating-point operations
causes MFLOPS to violate characteristic 6 of a good performance metric. It is
also unreliable (characteristic 2) and inconsistent (characteristic 5).

15

234

2.3 Processor and system performance metrics

SPEC

To standardize the definition of the actual result produced by a computer system
in ‘typical’ usage, several computer manufacturers banded together to form the
System Performance Evaluation Cooperative (SPEC). This group identified a set
of integer and floating-point benchmark programs that was intended to reflect
the way most workstation-class computer systems were actually used.
Additionally, and, perhaps, most importantly, they also standardized the meth-
odology for measuring and reporting the performance obtained when executing
these programs.
The methodology defined consists of the following key steps.

1. Measure the time required to execute each program in the set on the system
being tested.

2. Divide the time measured for each program in the first step by the time
required to execute each program on a standard basis machine to normalize
the execution times.

3. Average together all of these normalized values using the geometric mean (see
Section 3.3.4) to produce a single-number performance metric.

While the SPEC methodology is certainly more rigorous than is using MIPS or
MFLOPS as a measure of performance, it still produces a problematic perfor-
mance metric. One shortcoming is that averaging together the individual normal-
ized results with the geometric mean produces a metric that is not linearly related
to a program’s actual execution time. Thus, the SPEC metric is not intuitive
(characteristic 1). Furthermore, and more importantly, it has been shown to be
an unreliable metric (characteristic 2) in that a given program may execute faster
on a system that has a lower SPEC rating than it does on a competing system
with a higher rating.

Finally, although the defined methodology appears to make the metric inde-
pendent of outside influences (characteristic 6), it is actually subject to a wide
range of tinkering. For example, many compiler developers have used these
benchmarks as practice programs, thereby tuning their optimizations to the char-
acteristics of this collection of applications. As a result, the execution times of the
collection of programs in the SPEC suite can be quite sensitive to the particular
selection of optimization flags chosen when the program is compiled. Also, the
selection of specific programs that comprise the SPEC suite is determined by a
committee of representatives from the manufacturers within the cooperative. This
committee is subject to numerous outside pressures since each manufacturer has a
strong interest in advocating application programs that will perform well on their
machines. Thus, while SPEC is a significant step in the right direction towards
defining a good performance metric, it still falls short of the goal.

16

235

Metrics of performance

QUIPS

The QUIPS metric, which was developed in conjunction with the HINT bench-
mark program, is a fundamentally different type of performance metric. (The
details of the HINT benchmark and the precise definition of QUIPS are given in
Section 7.2.3). Instead of defining the effort expended to reach a certain result as
the measure of what is accomplished, the QUIPS metric defines the quality of the
solution as a more meaningful indication of a user’s final goal. The quality is
rigorously defined on the basis of mathematical characteristics of the problem
being solved. Dividing this measure of solution quality by the time required to
achieve that level of quality produces QUIPS, or guality improvements per sec-
ond.

This new performance metric has several of the characteristics of a good
performance metric. The mathematically precise definition of ‘quality’ for the
defined problem makes this metric insensitive to outside influences (characteristic
6) and makes it entirely self-consistent when it is ported to different machines
(characteristic 5). It is also easily repeatable (characteristic 3) and it is linear
(characteristic 1) since, for the particular problem chosen for the HINT bench-
mark, the resulting measure of quality is linearly related to the time required to
obtain the solution.

Given the positive aspects of this metric, it still does present a few potential
difficulties when used as a general-purpose performance metric. The primary
potential difficulty is that it need not always be a reliable metric (characteristic
2) due to its narrow focus on floating-point and memory system performance. It
is generally a very good metric for predicting how a computer system will per-
form when executing numerical programs. However, it does not exercise some
aspects of a system that are important when executing other types of application
programs, such as the input/output subsystem, the instruction cache, and the
operating system’s ability to multiprogram, for instance. Furthermore, while the
developers have done an excellent job of making the HINT benchmark easy to
measure (characteristic 4) and portable to other machines, it is difficult to change
the quality definition. A new problem must be developed to focus on other
aspects of a system’s performance since the definition of quality is tightly coupled
to the problem being solved. Developing a new problem to more broadly exercise
the system could be a difficult task since it must maintain all of the characteristics
described above.

Despite these difficulties, QUIPS is an important new type of metric that
rigorously defines interesting aspects of performance while providing enough
flexibility to allow new and unusual system architectures to demonstrate their
capabilities. While it is not a completely general-purpose metric, it should prove
to be very useful in measuring a system’s numerical processing capabilities.

17

2.3.6

2.3 Processor and system performance metrics

It also should be a strong stimulus for greater rigor in defining future perfor-
mance metrics.

Execution time

Since we are ultimately interested in how quickly a given program is executed,
the fundamental performance metric of any computer system is the time required
to execute a given application program. Quite simply, the system that produces
the smallest total execution time for a given application program has the highest
performance. We can compare times directly, or use them to derive appropriate
rates. However, without a precise and accurate measure of time, it is impossible
to analyze or compare most any system performance characteristics.
Consequently, it is important to know how to measure the execution time of a
program, or a portion of a program, and to understand the limitations of the
measuring tool.

The basic technique for measuring time in a computer system is analogous to
using a stopwatch to measure the time required to perform some event. Unlike a
stopwatch that begins measuring time from 0, however, a computer system
typically has an internal counter that simply counts the number of clock ticks
that have occurred since the system was first turned on. (See also Section 6.2.) A
time interval then is measured by reading the value of the counter at the start of
the event to be timed and again at the end of the event. The elapsed time is the
difference between the two count values multiplied by the period of the clock
ticks.

As an example, consider the program example shown in Figure 2.1. In this
example, the init_timer () function initializes the data structures used to access
the system’s timer. This timer is a simple counter that is incremented continu-
ously by a clock with a period defined in the variable clock cycle. Reading the
address pointed to by the variable read_count returns the current count value of
the timer.

To begin timing a portion of a program, the current value in the timer is read
and stored in start_count. At the end of the portion of the program being
timed, the timer value is again read and stored in end count. The difference
between these two values is the total number of clock ticks that occurred during
the execution of the event being measured. The total time required to execute this
event is this number of clock ticks multiplied by the period of each tick, which is
stored in the constant clock_cycle.

This technique for measuring the elapsed execution time of any selected por-
tion of a program is often referred to as the wall clock time since it measures the
total time that a user would have to wait to obtain the results produced by the
program. That is, the measurement includes the time spent waiting for input/

18 Metrics of performance

main()

{
int 1i;
float a;

init_timer () ;

/* Read the starting time. */
start_count = read_count;

/* Stuff to be measured */
for (i1=0;i< 1000;i++){
a=1* a / 10;

/* Read the ending time. */
end_count = read_count;

elapsed_time = (end_count - start_count) * clock_cycle;

3

Figure 2.1. An example program showing how to measure the execution time of a portion
of a program.

output operations to complete, memory paging, and other system operations
performed on behalf of this application, all of which are integral components
of the program’s execution. However, when the system being measured is time-
shared so that it is not dedicated to the execution of this one application pro-
gram, this elapsed execution time also includes the time the application spends
waiting while other users’ applications execute.

Many researchers have argued that including this time-sharing overhead in the
program’s total execution time is unfair. Instead, they advocate measuring per-
formance using the total time the processor actually spends executing the pro-
gram, called the total CPU time. This time does not include the time the program
is context switched-out while another application runs. Unfortunately, using
only this CPU time as the performance metric ignores the waiting time that is
inherent to the application as well as the time spent waiting on other programs.
A better solution is to report both the CPU time and the total execution time so
the reader can determine the significance of the time-sharing interference. The
point is to be explicit about what information you are actually reporting to allow
the reader to decide for themselves how believable your results are.

19

24

2.5

2.5 Speedup and relative change

In addition to system-overhead effects, the measured execution time of an
application program can vary significantly from one run to another since the
program must contend with random events, such as the execution of background
operating system tasks, different virtual-to-physical page mappings and cache
mappings from explicitly random replacement policies, variable system load in a
time-shared system, and so forth. As a result, a program’s execution time is
nondeterministic. It is important, then, to measure a program’s total elapsed
execution time several times and report at least the mean and variance of the
times. Errors in measurements, along with appropriate statistical techniques to
quantify them, are discussed in more detail in Chapter 4.

When it is measured as described above, the elapsed (wall clock) time mea-
surement produces a performance metric that is intuitive, reliable, repeatable,
easy to measure, consistent across systems, and independent of outside influ-
ences. Thus, since it satisfies all of the characteristics of a good performance
metric, program execution time is one of the best metrics to use when analyzing
computer system performance.

Other types of performance metrics

In addition to the processor-centric metrics described above, there are many
other metrics that are commonly used in performance analysis. For instance,
the system response time is the amount of time that elapses from when a user
submits a request until the result is returned from the system. This metric is often
used in analyzing the performance of online transaction-processing systems, for
example. System throughput is a measure of the number of jobs or operations
that are completed per unit time. The performance of a real-time video-proces-
sing system, for instance, may be measured in terms of the number of video
frames that can be processed per second. The bandwidth of a communication
network is a throughput measure that quantifies the number of bits that can be
transmitted across the network per second. Many other ad hoc performance
metrics are defined by performance analysts to suit the specific needs of the
problem or system being studied.

Speedup and relative change

Speedup and relative change are useful metrics for comparing systems since they
normalize performance to a common basis. Although these metrics are defined in
terms of throughput or speed metrics, they are often calculated directly from
execution times, as described below.

20

Metrics of performance

Speedup. The speedup of system 2 with respect to system 1 is defined to be a
value S, such that R, =S, | R;, where R; and R, are the ‘speed” metrics being
compared. Thus, we can say that system 2 is .S, ; times faster than system 1. Since
a speed metric is really a rate metric (i.e. throughput), R, = D, /T, where D, is
analogous to the ‘distance traveled’ in time 7' by the application program when
executing on system 1. Similarly, R, = D,/T,. Assuming that the ‘distance tra-
veled’ by each system is the same, D; = D, = D, giving the following definition
for speedup:

R, D/T, T

Speedup of system 2 w.r.t. system 1 = 8,1 = R, DT, T,
1 1 2

(2.3)

If system 2 is faster than system 1, then 7, < T and the speedup ratio will be
larger than 1. If system 2 is slower than system 1, however, the speedup ratio will
be less than 1. This situation is often referred to as a slowdown instead of a
speedup.

Relative change. Another technique for normalizing performance is to express
the performance of a system as a percent change relative to the performance of
another system. We again use the throughput metrics R; and R, as measures of
the speeds of systems 1 and 2, respectively. The relative change of system 2 with
respect to system 1, denoted A, ;, (that is, using system 1 as the basis) is then
defined to be

Ry, — R,

X (2.4)

Relative change of system 2 w.r.t. system 1 = A, | =
Again assuming that the execution time of each system is measured when

executing the same program, the ‘distance traveled’ by each system is the same
so that Ry = D/T; and R, = D/T,. Thus,

A _Ry—Ry D/T,-D/T\ T\—-T,
=R T p/T, T,

=8, —1. (2.5)

Typically, the value of A, ; is multiplied by 100 to express the relative change
as a percentage with respect to a given basis system. This definition of relative
change will produce a positive value if system 2 is faster than system 1, whereas a
negative value indicates that the basis system is faster.

Example. As an example of how to apply these two different normalization
techniques, the speedup and relative change of the systems shown in Table 2.1
are found using system 1 as the basis. From the raw execution times, we can
easily see that system 4 is the fastest, followed by systems 2, 1, and 3, in that
order. However, the speedup values give us a more precise indication of exactly
how much faster one system is than the others. For instance, system 2 has a

21

2.6

2.6 Means versus ends metrics

Table 2.1. An example of calculating speedup and relative change using system 1 as
the basis

System Execution time Speedup Relative change
X Tx (S) Sx,l A)c,] (DA))

1 480 1 0

2 360 1.33 +33

3 540 0.89 - 11

4 210 2.29 +129

speedup of 1.33 compared with system 1 or, equivalently, it is 33% faster. System
4 has a speedup ratio of 2.29 compared with system 1 (or it is 129% faster). We
also see that system 3 is actually 11% slower than system 1, giving it a slowdown
factor of 0.89. <&

Means versus ends metrics

One of the most important characteristics of a performance metric is that it be
reliable (characteristic 2). One of the problems with many of the metrics dis-
cussed above that makes them unreliable is that they measure what was done
whether or not it was useful. What makes a performance metric reliable, however,
is that it accurately and consistently measures progress towards a goal. Metrics
that measure what was done, useful or not, have been called means-based metrics
whereas ends-based metrics measure what is actually accomplished.

To obtain a feel for the difference between these two types of metrics, consider
the vector dot-product routine shown in Figure 2.2. This program executes N
floating-point addition and multiplication operations for a total of 2N floating-
point operations. If the time required to execute one addition is 7, cycles and one
multiplication requires 7, cycles, the total time required to execute this program
is t; = N(t, + t,) cycles. The resulting execution rate then is

i = 1; 1 < N; i++)

s = s + x[i] * yI[il;

Figure 2.2. A vector dot-product example program.

22

Metrics of performance

2N

= = FLOPS/cycle. 2.6
Nty +1t) tpo+t, /ey (2.6)

R,

Since there is no need to perform the addition or multiplication operations for
elements whose value is zero, it may be possible to reduce the total execution
time if many elements of the two vectors are zero. Figure 2.3 shows the example
from Figure 2.2 modified to perform the floating-point operations only for those
nonzero elements. If the conditional if statement requires f;; cycles to execute,
the total time required to execute this program is ¢, = N[t + /(¢4 + £,)] cycles,
where f is the fraction of N for which both x[i] and y[i] are nonzero. Since the
total number of additions and multiplications executed in this case is 2Nf, the
execution rate for this program is

2N 2
R, = A = A FLOPS/cycle. 2.7

Nt + /(e +)] e+, + 1)

If #¢ 1s four cycles, ¢, is five cycles, ¢, is ten cycles, f is 10%, and the proces-
sor’s clock rate is 250 MHz (i.e. one cycle is 4 ns), then 7, = 60N ns and
tp = N[44+0.1(5+10)] x4 ns = 22N ns. The speedup of program 2 relative
to program 1 then is found to be S, | = 60N /22N = 2.73.

Calculating the execution rates realized by each program with these assump-
tions produces R; =2/(60 ns) =33 MFLOPS and R, =2(0.1)/(22 ns) =
9.09 MFLOPS. Thus, even though we have reduced the total execution time
from ¢, = 60N ns to t, = 22N ns, the means-based metric (MFLOPS) shows
that program 2 is 72% slower than program 1. The ends-based metric (execution
time), however, shows that program 2 is actually 173% faster than program 1.
We reach completely different conclusions when using these two different types
of metrics because the means-based metric unfairly gives program 1 credit for all
of the useless operations of multiplying and adding zero. This example highlights
the danger of using the wrong metric to reach a conclusion about computer-
system performance.

i = 1; 1 < N; 1i++)
if (x[i] !'= 0 && y[i] !'= 0)

s = s + x[1] * y[i];

Figure 2.3. The vector dot-product example program of Figure 2.2 modified to calculate
only nonzero elements.

23 2.8 For further reading

2.7

Summary

Fundamental to measuring computer-systems performance is defining an appro-

priate metric. This chapter identified several characteristics or criteria that are
important for a ‘good’ metric of performance. Several common performance
metrics were then introduced and analyzed in the context of these criteria. The
definitions of speedup and relative change were also introduced. Finally, the
concepts of ends-based versus means-based metrics were presented to clarify
what actually causes a metric to be useful in capturing the actual performance
of a computer system.

2.8

For further reading

e The following paper argues strongly for total execution time as the best mea-

sure of performance:

James E. Smith, ‘Characterizing Computer Performance with a Single
Number,” Communications of the ACM, October 1988, pp. 1202-1206.

The QUIPS metric is described in detail in the following paper, which also
introduced the idea of means-based versus ends-based metrics:

J. L. Gustafson and Q. O. Snell, ‘HINT: A New Way to Measure Computer
Performance,” Hawaii International Conference on System Sciences, 1995,
pp. 11:392-401.

Some of the characteristics of the SPEC metric are discussed in the following
papers:

Ran Giladi and Niv Ahituv, ‘SPEC as a Performance Evaluation Measure,’
IEEE Computer, Vol. 28, No. 8, August 1995, pp. 33-42.

Nikki Mirghafori, Margret Jacoby, and David Patterson, ‘Truth in SPEC
Benchmarks,” ACM Computer Architecture News, Vol. 23, No. 5,
December 1995, pp. 34-42.

Parallel computing systems are becoming more common. They present some
interesting performance measurement problems, though, as discussed in

Lawrence A. Crowl, ‘How to Measure, Present, and Compare Parallel
Performance,” IEEE Parallel and Distributed Technology, Spring 1994,
pp- 9-25.

24

29

Metrics of performance

Exercises

1. (a) Write a simple benchmark program to estimate the maximum effective

MIPS rating of a computer system. Use your program to rank the per-
formance of three different, but roughly comparable, computer systems.

(b) Repeat part (a) using the maximum effective MFLOPS rating as the
metric of performance.

(c¢) Compare the rankings obtained in parts (a) and (b) with the ranking
obtained by comparing the clock frequencies of the different systems.

(d) Finally, compare your rankings with those published by authors using
some standard benchmark programs, such as those available on the
SPEC website.

. What makes a performance metric ‘reliable?’
. Classify each of the following metrics as being either means-based or ends-

based; MIPS, MFLOPS, execution time, bytes of available memory, quality
of a final answer, arithmetic precision, system cost, speedup, and reliability of
an answer.

. Devise an experiment to determine the following performance metrics for a

computer system.

(a) The effective memory bandwidth between the processor and the data
cache if all memory references are cache hits.

(b) The effective memory bandwidth if all memory references are cache
misses.

. What are the key differences between ‘wall clock time’ and ‘CPU time?

Under what conditions should each one be used? Is it possible for these
two different times to be the same?

. The execution time required to read the current time from an interval counter

is a minimum of at least one memory-read operation to obtain the current
time value and one memory-write operation to store the value for later use. In
some cases, it may additionally include a subroutine call and return operation.
How does this timer ‘overhead’ affect the time measured when using such an
interval timer to determine the duration of some event, such as the total
execution time of a program?

. Calculate the speedup and relative change of the four systems shown in Table

2.1 when using System 4 as the basis. How do your newly calculated values
affect the relative rankings of the four systems?

3.1

25

Average performance and variability

‘The continued fantasy that there is, will be, or should be a single computer architecture for all
problem spaces (or a single yardstick to measure such things) continues to fascinate me. Why
should computing be different from everything else in Human experience?’

Keith Bierman, in comp.benchmarks

Why mean values?

The performance of a computer system is truly multidimensional. As a result, it
can be very misleading to try to summarize the overall performance of a com-
puter system with a single number. For instance, a computer system may be
optimized to execute some types of programs very well. However, this specializa-
tion may cause it to perform very poorly when executing a different class of
applications. Since the measured execution times of the different classes of appli-
cations running on this system will have a very wide range, trying to summarize
the performance of this system over all classes of applications using a single mean
value can result in very misleading conclusions.

Nevertheless, human nature being what it is, people continue to want a simple
way to compare different computer systems. As a result, there continues to be a
very strong demand to reduce the performance of a computer system to a single
number. The hope is that this single number will somehow capture the essential
performance of the system so that comparing performance can be reduced to
simply comparing a single mean value for each system. While this is an impos-
sible goal, mean values can be useful for performing coarse comparisons.
Furthermore, the performance analyst may be pressured to calculate mean
values, and will certainly see others use mean values to justify some result or
conclusion. Consequently, it is important to understand how to correctly calcu-
late an appropriate mean value, and how to recognize when a mean has been
calculated incorrectly or is being used inappropriately.

As you read this chapter, keep in mind that the computer industry is very
competitive, with considerable amounts of money at stake. Each manufacturer

26

3.2

3.2.1

Average performance and variability

wants their system to have a better performance than their competitors’ systems,
so they invest a great deal of time and effort in comparing the performances of
their system with those of their competitors’. This intense competition pressures
them to put the best possible ‘spin’ on their performance numbers. The seemingly
simple question of choosing the correct mean to use, which you would probably
assume should be made on purely mathematical grounds, is a good example of
the controversy that can develop as a result of these competitive pressures. The
discussion of benchmark programs in Chapter 7 will further highlight the
pressures performance analysts face to put results in the most favorable light
possible.

Indices of central tendency

The previous chapter pointed out the importance of making several measure-
ments of a program’s execution time since the execution time is subject to a
variety of nondeterministic effects. The problem then is to summarize all of
these measurements into a single number that somehow specifies the center of
the distribution of these values. In addition, you may wish to summarize the
performance of a system using a single value that is somehow representative of
the execution times of several different benchmark programs running on that
system. There are three different indices of central tendency that are commonly
used to summarize multiple measurements: the mean, the median, and the mode.

The sample mean

The sample arithmetic mean, or average, is the most commonly used measure of
central tendency. If the possible values that could be measured are thought of as
a random process on the discrete random variable X, the expected value of X,
denoted E[X], is defined to be

E[X] = inl’i (3.1
i=1

where p; is the probability that the value of the random variable X is x;, and there
are n total values. This value is also referred to as the first moment of the random
variable X.

Using the term ‘sample’ when discussing the mean value emphasizes the fact
that the values used to calculate the mean are but one possible sample of values
that could have been measured from the experimental process. This sample
mean, denoted X, is our approximation of the true mean of the underlying

27

3.2.2

3.2 Indices of central tendency

random variable X. This true mean is typically denoted p. Its true value cannot
actually be known since determining this value would require an infinite number
of measurements. The best we can do is approximate the true mean with the
sample mean. In Chapter 4 we discuss techniques for quantifying how close the
sample mean is to the true mean. When there is no chance of confusing whether
we mean sample mean or true mean, we simply use the more convenient term
‘mean.’

Given n different measurements that we wish to average together, we typically
assume that the probabilities of obtaining any of the »n values are all equally
likely. Thus, our estimate of the sample mean, commonly referred to as the
arithmetic mean, 1s

IR
A= ;in. (3.2)
i=1

As an example of how to calculate a mean, consider the five measurements
shown in Table 3.1. The average value is simply the sum of the n = 5 measure-
ments divided by #n, giving x, = 15.8.

The sample median

By design, one of the properties of the sample mean is that it gives equal weight
to all measurements. As a result, one value that is significantly different from the
other values, called an outlier, can have a large influence on the computed value
of the resulting mean. For example, if we add a sixth measurement with the value
200 to the five measurements in Table 3.1, the new value for the mean is
X4 = 46.5. This value is substantially higher than most of the measurements
and does not seem to capture our ‘sense’ of the central tendency of the six
measurements.

The median is an index of central tendency that reduces the skewing effect of
outliers on the value of the index. It is found by first ordering all of the n
measurements. The middle value is then defined to be the median of the set of
measurements. If n is even, the median is defined to be the mean of the middle
two values. Using this definition, the median of the five values in Table 3.1 is 16.
If the sixth measurement of 200 is also included in this set of measurements, the
median becomes the mean of x; and x5 which is 17. So, while adding the sixth
value to the set of measurements increases the mean from 15.8 to 46.5, the
median increases only from 16 to 17. Thus, given the large outlier in these
measurements, the median appears to more intuitively capture a sense of the
central tendency of these data than does the mean.

28

3.23

3.24

Average performance and variability

Table 3.1. Sample execution-time measurements
used to demonstrate the calculation of the mean

and median
Measurement Execution time
X1 10
X2 20
X3 15
X4 18
X5 16

The sample mode

The mode is simply the value that occurs most frequently. Note that the mode
need not always exist for a given set of sample data. In the example data of Table
3.1, no one value occurs more than once, so there is no mode. Furthermore, the
mode need not be unique. If there are several x; samples that all have the same
value, for instance, there would be several modes, specifically each of those x;
sample values.

Selecting among the mean, median, and mode

One nice property of the arithmetic mean is that it gives equal weight to all of the
measured values. As a result, it incorporates information from the entire sample
of data into the final value. However, this property also makes the mean more
sensitive to a few outlier values that do not cluster around the rest of the samples.
The median and mode, on the other hand, do not efficiently use all of the
available information, but, as a result, they are less sensitive to outliers. So the
question becomes that of which index of central tendency is most appropriate for
a given situation. The answer to this question lies in the type of data being
analyzed, and in its general characteristics.

Categorical data are those that can be grouped into distinct types or cate-
gories. For example, the number of different computers in a organization man-
ufactured by different companies would be categorical data. The mode would be
the appropriate index to use in this case to summarize the most common type of
computer the organization owns. The mean and median really do not make sense
in this context.

If the sum of all measurements is a meaningful and interesting value, then the
arithmetic mean is an appropriate index. The sum of all of the values shown in
Table 3.1 is the total time required to execute all five of the programs tested,

29

3.3

3.3.1

3.3 Other types of means

which is an interesting and meaningful value. Thus, the mean of these measure-
ments is also meaningful. However, the sum of the MFLOPS ratings that could
be calculated using these execution times is not a meaningful value.
Consequently, it is inappropriate to calculate an arithmetic mean for
MFLOPS (this issue is discussed further in Section 3.3.2).

Finally, if the sample data contain a few values that are not clustered together
with the others, the median may give a more meaningful or intuitive indication of
the central tendency of the data than does the mean. As an example, assume that
we wish to determine how much memory is installed in the workstations in our
laboratory. We investigate and find that 25 machines contain 16 MBytes of
memory, 38 machines contain 32 Mbytes, four machines contain 64 Mbytes,
and one machine contains 1024 Mbytes. The sum of these values is the total
amount of memory in all of the machines, which is calculated to be 2,896
Mbytes. Since this sum is a meaningful value by itself, the mean value of 42.6
Mbytes per machine is also a meaningful value. However, 63 of the 68 machines
have 32 Mbytes of memory or less, making the mean value somewhat misleading.
Instead, the median value of 32 Mbytes gives a value that is more indicative of
the ‘typical’ machine.

Other types of means

To complicate matters further, once we have decided that the mean is the appro-
priate index of central tendency to use for the current situation, we must decide
which type of mean to use! So far we have discussed the arithmetic mean, but, in
fact, there are two other means that are commonly used to summarize computer-
systems performance — the harmonic mean and the geometric mean.
Unfortunately, these means are sometimes used incorrectly, which can lead to
erroneous conclusions.

Characteristics of a good mean

It is possible to apply the formulas described below to calculate a mean value
from any set of measured values. However, depending on the physical meaning
of these measured values, the resulting mean value calculated need not make any
sense. In particular, as discussed in Chapter 2, there are several characteristics
that are important for a good performance metric. Since a mean value is calcu-
lated directly from the more basic performance metrics described in Chapter 2,
any such mean value should also satisfy all of those characteristics.

For instance, if time values are to be averaged together, then the resulting
mean value should be directly proportional to the total weighted time. Thus, if the

30

3.3.2

Average performance and variability

total execution time were to double, so would the value of the corresponding
mean, as desired. Conversely, since a rate metric is calculated by dividing the
number of operations executed by the total execution time, a mean value calcu-
lated with rates should be inversely proportional to the total weighted time. That
is, if the total execution time were to double, the value of the corresponding mean
of the rates should be reduced to one-half of its initial value. Given these basic
assumptions, we can now determine whether the arithmetic mean, geometric
mean, and harmonic mean produce values that correctly summarize both execu-
tion times and rates.

Throughout the following discussion, we assume that we have measured the
execution times of n benchmark programs' on the same system. Call these times
T;, 1 < i < n. Furthermore, we assume that the total work performed by each of
the n benchmark programs is constant. Specifically, we assume that each bench-
mark executes F floating-point operations. This workload then produces an
execution rate for benchmark program i of M; = F/T; floating-point operations
executed per second. We relax this constant-work assumption in Section 3.3.5
when we discuss how to calculate weighted means.

The arithmetic mean

As discussed above, the arithmetic mean is defined to be

_ 1<
= (33)
i=1

where the x; values are the individual measurements being averaged together. In
our current situation, x; = 7; so that the mean execution time is

1 n
=- ; T.. (3.4)

This equation produces a value for T, that is directly proportional to the total
execution time. Thus, the arithmetic mean is the correct mean to summarize
execution times.

If we use the arithmetic mean to summarize the execution rates, we find

ZM ZF/T sz (3.5)

YA benchmark program is any program that is used to measure the performance of a computer system.
Certain programs are sometimes defined as a standard reference that can be used for comparing per-
formance results. See Chapter 7 for more details.

31

3.33

3.3 Other types of means

This equation produces a result that is directly proportional to the sum of the
inverse of the execution times. However, in terms of the characteristics described
in Section 3.3.1, we need a value that is inversely proportional to the sum of the
times. We conclude, then, that the arithmetic mean is inappropriate for summar-
izing rates.

The harmonic mean

The second type of mean that is commonly used by performance analysts is the

harmonic mean. 1t is defined to be

_ n

X =—r——— (3.6)
i 1/

where, as before, the x; values represent the n separate values that are being

averaged together.

If we use the harmonic mean to summarize execution-time values, then x; = T
and we obtain the following expression:
— n
Th=—=——.

> 1T,

This value is obviously not directly proportional to the total execution time, as
required in terms of the properties of a good mean in Section 3.3.1. Thus, we
conclude that the harmonic mean is inappropriate for summarizing execution-

(3.7)

time measurements.
We find that the harmonic mean is the appropriate mean to use for summar-
izing rates, however. In this case, x; = M; = F/T;, giving
n _ n _ In
i UM YL TYF YL T

This value, which is simply the total number of operations executed by all of the

My = (3.8)

programs measured divided by the sum of all of the execution times, is obviously
inversely proportional to the total execution time. Thus, the harmonic mean is
appropriate for summarizing rate measurements.

Example. Consider the measurements shown in Table 3.2. The arithmetic
mean of the execution times is easily calculated using the sum of the total
times. The execution rates are calculated by dividing the total number of float-
ing-point operations executed in each program by its corresponding execution
time. The harmonic mean of these rates is then found by calculating the value
My=5 /(ﬁ—i—;ﬁ +ﬁ +ﬁ+ 31@). Notice that this value is the same as that
obtained by taking the ratio of the total number of floating-point operations
executed by all of the programs to the sum of their execution times (within the
error due to rounding off). &

32

3.34

Average performance and variability

Table 3.2. An example of calculating the harmonic mean

Measurement (i) T; (s) F (109 FLOP) M; (MFLOPS)
1 321 130 405

2 436 160 367

3 284 115 405

4 601 252 419

5 482 187 388

X 2124 844

Ta 425

My 396

The geometric mean

Some performance analysts have advocated the geometric mean as the appro-
priate mean to use when summarizing normalized numbers. In fact, it is the mean
that is used to summarize the normalized execution times measured in the SPEC
benchmark (see Section 2.3.4). It also has been suggested that it is the most
appropriate mean to use when summarizing measurements with a wide range
of values since a single value has less influence on the geometric mean than it
would on the value of the arithmetic mean.

The geometric mean is defined to be the nth root of the product of the n
individual x; values. That is,

" 1/n
Ko =R = (]‘[x,-) . (3.9)
i=1

Unfortunately, as we will see below, the geometric mean is not an appropriate
mean to summarize either times or rates, irrespective of whether they are normal-
ized.

Proponents of the geometric mean say that one of its key advantages is that it
maintains consistent relationships when comparing normalized values regardless
of the basis system used to normalize the measurements. To test this assertion,
we compare the performance of three different computer systems when executing
five different benchmark programs. The programs are run on the different sys-
tems, producing the execution-time measurements shown in Table 3.3. Using the
geometric mean of these measurements to compare these systems shows that S;
performs the best, followed by S, and §j, in that order. Normalizing the mea-
surements using S; as the basis produces the same rank ordering of systems, as

33

3.3 Other types of means

Table 3.3. Execution times of five benchmark programs executed on three different
systems

Program S S, 83

1 417 244 134
2 83 70 70
3 66 153 135
4 39,449 33,527 66,000
5 772 368 369
Geometric mean 587 503 499
Rank 3 2 1

shown in Table 3.4. Similarly, Table 3.5 shows that the same ordering is again
preserved when all of the measurements are normalized relative to system S,.

Unfortunately, although the geometric mean produces a consistent ordering of
the systems being compared, it is the wrong ordering. Table 3.6 shows the sums
of the execution times of the benchmark programs for each system along with the
arithmetic means of these execution times. When these times are used to rank the
performances of the three different systems, we see that S, performs the best;
that is, it produces the shortest execution time, followed by S; and then S;. Since
the execution time is the measure of performance in which we are ultimately most
interested, it is apparent that the geometric mean produced the wrong ordering.
We conclude that, although the geometric mean is consistent regardless of the
normalization basis, it is consistently wrong.

It is easy to see why the geometric mean produces the wrong ordering when it
is used to average together execution times. In this case, x; = T;, and

n 1/n
Tg = (]_[Ti> . (3.10)
i=1

This value is obviously not directly proportional to the total execution time.
Similarly, averaging together execution rates with the geometric mean produces

n 1/n " p 1/n
Mg = (HM) = <]‘[Ti) (3.11)

i=1

which is not inversely proportional to the total execution time. Both T and Mg
violate the characteristics of a good mean value, forcing the conclusion that the
geometric mean is inappropriate for summarizing both execution times and
rates, irrespective of whether they are normalized.

34

Average performance and variability

Table 3.4. The execution times of the benchmark programs in
Table 3.3 normalized with respect to that of Sy

Program Sy S, S3

1 1.0 0.59 0.32
2 1.0 0.84 0.85
3 1.0 2.32 2.05
4 1.0 0.85 1.67
5 1.0 0.48 0.45
Geometric mean 1.0 0.86 0.84
Rank 3 2 1

Table 3.5. The execution times of the benchmark programs
Table 3.3 normalized with respect to that of S,

n

Program S Sy S;

1 1.71 1.00 0.55
2 1.19 1.00 1.00
3 0.43 1.00 0.88
4 1.18 1.00 1.97
5 2.10 1.00 1.00
Geometric mean 1.17 1.00 0.99
Rank 3 2 1

Table 3.6. The total and average execution times of the
benchmark programs in Table 3.3.

Program S| S, S5

1 417 244 134
2 83 70 70
3 66 153 135
4 39,449 33,527 66,000
5 772 368 369
Total time 40,787 34,362 66,798
Arithmetic mean 8157 6872 13,342

Rank 2 1 3

35

3.3.5

3.4

3.4 Quantifying variability

Weighted means

The above definitions for the arithmetic and harmonic means implicitly assume
that each of the n individual measurements being averaged together is equally
important in calculating the mean. In many situations, however, this assumption
need not be true. For instance, you may know that half of the time you use your
computer system you are running program 1, with the remaining time split
evenly between four other application programs. In this case, then, you would
like the mean value you calculate to reflect this mix of application-program
usage.

This type of weighted mean can easily be calculated by assigning an appro-
priate fraction, or weight, to the measurement associated with each program.
That is, a value w; is assigned to program i such that w; is a fraction representing
the relative importance of program i in calculating the mean value, and

dowi=1 (3.12)
i=1

In the situation mentioned above, program 1 is used half of the time, so w; = 0.5.
The other four programs are used equally in the remaining half of the time,
giving w, = w3 = wy = ws = 0.125. Given these weights, the formula for calcu-
lating the arithmetic mean becomes

Kaw = D Wix; (3.13)
i=1

and the harmonic mean becomes
_ 1
XHw = 7 .

ijl Wi/ X;

We ignore the geometric mean in this discussion since it is not an appropriate

(3.14)

mean for summarizing either execution times or rates.

Quantifying variability

While mean values are useful for summarizing large amounts of data into a
single number, they unfortunately hide the details of how these data are actually
distributed. It is often the case, however, that this distribution, or the variability
in the data, is of more interest than the mean value.

A histogram is a useful device for displaying the distribution of a set of mea-
sured values. To generate a histogram, first find the minimum and maximum
values of the measurements. Then divide this range into b subranges. Each of

36

Average performance and variability

these subranges is called a histogram cell or bucket. Next, count the number of
measurements that fall into each cell. A plot of these counts on the vertical axis
with the cells on the horizontal axis in a bar-chart format is the histogram. It is
also possible to normalize the histogram by dividing the count in each cell by the
total number of measurements. The vertical axis then represents the fraction of
all measurements that falls into that cell.

One difficulty in constructing a histogram is determining the appropriate size
for each cell. There is no hard and fast rule about the range of values that should
be grouped into a single cell, but a good rule of thumb is that the width of the
cells should be adjusted so that each cell contains a minimum of four or
five measurements. (This rule of thumb comes indirectly from our typical
assumptions about the distribution of measurement errors, which is discussed
in Chapter 4.)

Example. Consider an experiment in which the performance analyst measures
the sizes of messages sent on two different computer networks. The average
message size for network A was calculated to be 14.9 kbytes, while the average
for network B was found to be 14.7 kbytes. On the sole basis of these mean
values, the analyst may conclude that the characteristics of the message traffic
carried on each network are roughly similar. To verify this conclusion, the
message-size measurements are grouped into histogram cells, each with a
width of 5 kbytes, as shown in Table 3.7. That is, the first cell is the number
of messages within the range 0—5 kbytes, the second cell counts the number of
messages within the range 5-10 kbytes, and so forth. As shown in the plots of
these two histograms in Figures 3.1 and 3.2, the messages on the two networks
have completely different distributions, even though they have almost identical
means. &

This example demonstrates the problem with relying on a single value to
characterize a group of measurements. It also shows how the additional detail
in a histogram can provide further insights into the underlying system behavior.
However, while the two histograms in this example are obviously substantially
different, visually comparing two histograms can be imprecise. Furthermore,
histograms can often provide too much detail, making it difficult to quantita-
tively compare the spread of the measurements around the mean value. What is
needed, then, is a single number that somehow captures how ‘spread out’ the
measurements are. In conjunction with the mean value, this index of dispersion
provides a more precise metric with which to summarize the characteristics of a
group of measurements. The question then becomes one of choosing an appro-
priate metric to quantify this dispersion.

Perhaps the simplest metric for an index of dispersion is the range. The range is
found by taking the difference of the maximum and minimum of the measured
values:

37

3.4 Quantifying variability

Table 3.7. The number of messages of the indicated sizes sent
on two different networks

Message size (kbytes) Network A Network B
0<x; <5 11 39
5<x;<10 27 25
10 <x; <15 41 18
15 <x; <20 32 5
20 < x; <25 21 19
25 <x; <30 12 42
30 <x; <35 4 0
40
= 30b
5 f
s
é -
5 201
5|
E I
g -
Z r
10F
07\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0 5 10 15 20 25 30 35

Number of kbytes in message

Figure 3.1 A histogram plot of the data for network A from Table 3.7.

R (3.15)

Rmax = Vi

Although it is simple to calculate, the range does not use all of the available
information in summarizing the dispersion. Thus, it is very sensitive to a few
extreme values that need not be representative of the overall set of measure-
ments. A slight improvement is to find the maximum of the absolute values of
the difference of each measurement from the mean value:

max

Amax = Vi

Ix; — XI. (3.16)

38

Average performance and variability

IS
=)

W
S

[y}
S

= LA B B

Number of messages sent

—_
S

5 10 15 20 25 30 35
Number of kbytes in message

S

Figure 3.2 A histogram plot of the data for network B from Table 3.7.

Again, however, this value does not efficiently take advantage of all of the
available information, and is overly sensitive to extreme values.

A better, and perhaps the most commonly accepted, index of dispersion is the
variance. The sample variance is our calculated estimate of the actual variance of
the underlying distribution from which our measurements are taken. It incorpo-
rates all of the information available about the difference of each measurement
from the mean value. It is defined to be

n =2
@ = i X (3.17)
n—1
where the x; are the n independent measurements, and x is the corresponding
arithmetic mean. Notice in this equation that only n — 1 of the differences x; — x
are independent. That is, the nth difference, x,, — X, could be computed given the
other n — 1 differences. Thus, the number of degrees of freedom in this equation,
which is the number of independent terms in the sum, is n — 1. As a result, the
sum of the squared differences in this equation is divided by n — 1 instead of n.

This equation defines the sample variance, but it is not particularly useful for
calculating the variance given a set of measurements. Furthermore, this defini-
tion requires our knowing the mean value, x, before calculating the variance.
This implies that two passes must be made through the data, once to calculate
the mean and a second pass to find the variance. This requirement makes it
difficult to calculate the variance ‘on the fly’ as the data are being generated,

39

3.5

3.5 Summary

for instance. To facilitate calculating the variance, we can expand Equation
(3.17) to give

n =\2 n
e 1
§ = iz (i —)7 _ — ;:1 (x7 — 2%x; + %)

n—1

5 5 (3.18)
_n Do Xi — (Z?:l X;)
N nn—1) '

This equation shows that, to calculate the variance, we need to make only a
single pass through the data to find the sum of the x; values and the sum of the x?
values. We can then use these sums to calculate both the mean and the variance.

One of the problems in using the variance to obtain an indication of how large
the dispersion of data is relative to the mean is that the units of the variance are
the square of the units of the values actually measured. In the above example, for
instance, the units of the individual measurements, and so, therefore, of the
mean, are bytes. The units of the variance, however, are bytes squared. This
squared relationship of the units of the variance to those of the mean makes it
difficult to compare the magnitude of the variance directly with the magnitude of
the mean.

A more useful metric for this type of comparison is the standard deviation,
which is defined as the positive square root of the variance. That is, the sample
standard deviation is

(3.19)

With this definition, the mean and standard deviation have the same units,
making comparisons easier. Finally, use of the coefficient of variation (COV)
eliminates the problem of specific units by normalizing the standard deviation
with respect to the mean. The coefficient of variation is defined to be

COV = s/ (3.20)

and so provides a dimensionless value that compares the relative size of the
variation in the measurements with the mean value of those measurements.

Summary

Several different types of means can be used to summarize a collection of mea-
surements with a single number. Although this summarization hides much of the
information provided by the n different measurements, human nature persists in
wanting to reduce performance to a single number to simplify the task of making

40

3.6

Average performance and variability

comparisons. Consequently, it is important for the performance analyst to
understand the definitions of the different means, and how to use each appro-
priately. The following points summarize how to select an appropriate mean for
a given situation.

e The arithmetic mean. The arithmetic mean is the appropriate choice whenever
the sum of the raw results has some physical meaning and is an ‘interesting’
value. For example, the sum of execution times is a total execution time, which
is both meaningful and interesting. Similarly, the total number of bytes sent by
messages on a communications network has physical meaning and by itself is
an interesting value. The arithmetic mean should not be used to summarize
rates.

e The harmonic mean. The harmonic mean is the appropriate mean for summar-
izing rates since it reduces to the total number of operations executed by all of
the test programs divided by the total time required to execute those opera-
tions, which is simply the definition of the total execution rate. It is not
appropriate to use the harmonic mean to summarize measurements that
should be summarized using the arithmetic mean, such as execution times.

e The geometric mean. Although it has been advocated as the best mean to use
for summarizing normalized values, the geometric mean is not appropriate for
summarizing either rates or times, irrespective of whether they are normalized.

e Normalization. Owing to the mathematical difficulties of averaging together
normalized values, it is best to first calculate the appropriate mean and then
perform the desired normalization.

In addition to these mean values, we introduced the median and the mode as
other measures of central tendency. As the middle value in a collection of mea-
surements, the median is useful when the measurements have a few outlying
values that tend to distort the intuitive sense of the measurement’s central ten-
dency. The mode is useful for quantifying the most common value among a set of
categorical measurements.

One of the problems with these single-value summaries of a collection of
measurements is that they hide their variability. A histogram is a useful graphical
representation for displaying this variability. The variance (or the standard
deviation) is a statistic that can be used to summarize in a single number the
variability shown in a histogram.

For further reading

e This paper describes the three types of means and argues for the use of the
geometric mean for averaging normalized numbers:

41

3.7

3.7 Exercises

P.J. Fleming and J. J. Wallace, ‘How Not To Lie With Statistics: The Correct
Way To Summarize Benchmark Results,” Communications of the ACM,
Vol. 29, No. 3, March 1986, pp. 218-221.

e The following paper, however, argues against the use of the geometric mean.
It also introduces several of the ideas of what constitutes a good mean that
were presented in this chapter:

James E. Smith, ‘Characterizing Computer Performance with a Single
Number,” Communications of the ACM, October 1988, pp. 1202-1206.

Taken together, these two papers provide an interesting glimpse into the
controversy that can arise among performance analysts over such fundamen-
tal concepts as selecting an appropriate mean with which to summarize a set
of measured values.

e Almost any introductory statistics text will provide a development of the basic
types of means and the variance.

Exercises

1. What aspects of a computer system’s performance is it reasonable to summar-
ize with a single number?

2. It has been said (Smith, 1988) that the geometric mean is consistent, but it is
consistently wrong. A mean is calculated according to a well-defined formula,
so in what sense can it be wrong?

3. Which measure of central tendency, the mean, median, or mode, should be
used to summarize the following types of data: size of messages in a commu-
nication network, number of cache hits and misses, execution time, MFLOPS,
MIPS, bandwidth, latency, speedup, price, image resolution, and communi-
cation throughput? For those for which the mean is the best choice, which
mean should be used (arithmetic, geometric, or harmonic)?

4. Table 3.8 shows the execution times measured for several different benchmark
programs when they are executed on three different systems. The last column
shows the number of instructions executed by each of the benchmark pro-
grams. Assuming that each benchmark should be equally weighted, calculate
the following values:

(a) the average execution time,

(b) the average MIPS rate, and

(c) the average speedup and relative change when using S; as the basis
system.

42

Average performance and variability

Table 3.8. The times measured on several different systems for a few benchmark

programs

Program S S S3 Number of instructions
1 33.4 28.8 28.3 1.45 x 10'°

2 19.9 22.1 25.3 7.97 x 10°

3 6.5 53 47 3.11 x 10°

4 84.3 75.8 80.1 3.77 x 10'°

5 101.1 99.4 70.2 4.56 x 10'°

(d) Are these average values reasonable summaries of the data presented?

Why or why not?

shown in Table 3.8.

. Repeat the above problem when benchmark program 1 represents 40% of the
expected workload, benchmark program 2 35%, benchmark program 3 15%,
and benchmark programs 4 and 5 each 5%.

. Determine the coefficient of variation of the execution times for each system

Errors in experimental measurements

41

43

‘To free a man of error is to give, not to take away. Knowledge that a thing is false is a truth.’

Schopenhauer

Accuracy, precision, and resolution

In trying to measure and understand the performance of computer systems, we
are constantly confronted by the nitty-gritty details of the real world.
Unfortunately, these annoying details effectively introduce uncertainty into our
measurements. We refer to these uncertainties in measurements as errors or noise.
To determine how much uncertainty exists in our measurements, and, therefore,
to determine what conclusions we can actually draw from them, we must use the
tools and techniques of probability and statistics to quantify the errors.

We learned in previous chapters that time is a fundamental quantity that needs
to be measured to determine almost any aspect of a computer system’s perfor-
mance. Any measurement tool, such as the interval timer, has three important
characteristics that determine the overall quality of its measurements. The first is
its accuracy. In the case of the timer, accuracy is an indication of the closeness of
the timer’s measurement to that of a standard measurement of time defined by a
recognized standards organization, such as the United States National Institute
of Standards and Technology. More generally, accuracy is the absolute differ-
ence between a measured value and the corresponding reference value. Note that
the reference value is an agreed-upon standard, such as the duration of a second,
the length of a meter, and so on, that is typically derived from some physical
phenomenon.

The second important characteristic of a measurement tool is its precision.
Precision relates to the repeatability of the measurements made with the tool.
It is sometimes easier to think of precision in terms of its inverse. Imprecision is
the amount of scatter in the measurements obtained by making multiple mea-
surements of a particular characteristic of the system being tested. A histogram
of these measurements shows the number of times each specific measurement

44

Errors in experimental measurements

occurred. The resulting distribution is an indication of the precision of the mea-
suring process. Highly precise measurements would be very tightly clustered
around a single measured value whereas imprecise measurements would tend
to have a broader distribution.

Finally, the measuring tool’s resolution is the smallest incremental change
that can be detected and displayed. The finite resolution of a measuring tool
introduces a quantization effect into the values it is used to measure. Most
interval timers, for example, are implemented using a counter driven by a
signal derived from the system clock. The resolution of this type of interval
timer is the period between clock ticks. Thus, the resolution of the timer limits
the accuracy of its measurements to be no better than plus or minus one clock
period.

To obtain an intuitive view of the differences between accuracy and precision,
Figure 4.1 shows a plot of several hypothetical measurements. The precision of
these measurements is indicated by the spread of the measurements around the
mean value. The accuracy, on the other hand, is the difference between the mean
of the measured values and the (unknown) ‘true’ value. Note that an inaccurate
measurement tool still may be very precise, as indicated by a very narrow spread
of the measurements made with the tool.

In the final value obtained by any measuring device, it is difficult to separate
the individual contributions to the error made by its accuracy, precision, and
resolution. Typically, we use the variance of the measurements to quantify their
precision. Quantifying the accuracy of measurements is much more difficult,
however. For instance, quantifying the accuracy of an interval timer would

<—— Accuracy —>|

Precision —— -—

NS

Mean value True value

Figure 4.1 A plot of hypothetical measurements showing the differences between accuracy
and precision.

45

4.2

4.2 Sources of errors

require us to verify the calibration of the clock source with a standard measure-
ment of time. Instead, we typically simply trust the accuracy of the clock source,
but use a confidence interval for the mean value (described in Section 4.4.1) to
quantify the precision of our measurements. For this specific technique to be
applicable, however, the model of the sources of the errors in our experiments
must correspond to the error distribution assumed in the derivation of the con-
fidence-interval formula, as described in Section 4.4.4.

Sources of errors

Beyond the measurement errors introduced by the accuracy, precision, and reso-
lution of our measuring device, there are many other sources of errors introduced
into the measurement process that can affect the final values actually recorded.
For instance, there is the time required to read and store the current time value.
Furthermore, the program statements added to a program to access the timer
change, or perturb, the program being measured. As a result, we are no longer
measuring quite the thing we want to measure, which is, after all, the unmodified
program.

Additional errors can be introduced into our measurements due to the unique
characteristics of the computer system itself. The time-sharing of a system among
multiple users and the processing of real-time events, such as interrupts to service
network interfaces, time-of-day clocks, user interactions, and so forth, affect the
program being measured. Additionally, other nondeterministic events, such as
cache misses, system exceptions, memory page faults, and so on, also perturb the
system. All of these factors interact in ways that can both increase and decrease
the duration of the interval being measured. As a result, multiple measurements
of the same event may all produce different measured values. From the perfor-
mance analyst’s point of view, these different measurements are all estimates of
the true value of the duration of the event being measured. The differences in
these measurements are unpredictable, however, and must be treated as ‘noise’ or
errors in the measurements.

It is useful to classify all of the different sources of error into two different
types, systematic errors, and random errors. Systematic errors are the result of
some experimental ‘mistake,” such as some change in the experimental environ-
ment or an incorrect procedure, that introduces a bias into the measurements. A
change in the temperature, for instance, may cause the clock period to drift, or
the experimenter may fail to restore the identical system state at the start of each
experiment. Systematic errors tend to be constant across all measurements, or
slowly varying with time. These errors affect the accuracy of the measurements.
It is up to the skill of the experimenter to control and eliminate systematic errors.

46

4.3

Errors in experimental measurements

Random errors, on the other hand, are completely unpredictable, nondetermi-
nistic, and need not be controllable. They are also unbiased in that a random
error has an equal probability of either increasing or decreasing a measurement.
Random errors may be the result of the measuring tool, the observer reading the
output of the tool, or the random processes within the system being studied. As
an example of a random error in a performance experiment, consider the resolu-
tion of the timer itself. Assume that the period of the timer is 7, for instance, and
that there are no other sources of error in the experiment. Then multiple mea-
surements of the same event would be expected to vary by plus or minus 7" with
equal probability since a continuous time interval is being quantized by the timer
measurement. (Timer quantization is discussed further in Section 6.2.2.) Random
errors affect the precision of the measurements and thereby determine the repeat-
ability of the results.

A model of errors

By carefully controlling the experimental environment, the experimenter tries to
minimize the impact of systematic errors on the accuracy of the measurements.
When these sources of error cannot be eliminated or controlled, the experi-
menter should at least be able to understand how these systematic errors bias
the results. Random errors, on the other hand, are, by definition, unpredict-
able. As a result, they have unpredictable effects on the outcomes of any
measurements.

While it is impossible to predict the precise effect of specific sources of
random errors, it is possible to develop a statistical model to describe their
overall effect on the experimental results. This model can then help us to
determine how to use appropriate statistical tools to quantify the precision
of our measurements.

Experimental errors are typically assumed to be Gaussian. That is, if multiple
measurements of the same value are made, these measurements will tend to
follow a Gaussian (also called normal) distribution centered on the actual
mean value x. We now develop a simple error model to obtain an intuitive
feel for why this may be a reasonable assumption for the distribution of errors
in a performance-measurement experiment.

First, assume that a single source of random error can change the value
actually measured for x up or down by +E or —F with equal probability.
That is, this random error source will cause us to measure x + E half of the
time and x — E half of the time. If there are two sources of random errors,
each of which has a 50% probability of shifting the value of x measured up or
down by FE, then there are four possible combinations of how these errors can

47

4.4

4.4 Quantifying errors

affect the final value measured. As shown in Table 4.1, these four combinations
result in three possible outcomes. If both errors shift the measured value in the
same direction, either positively or negatively, the final value measured will be
x + 2F or x — 2E, respectively. Each of these two outcomes occurs once for the
four possible combinations, so each outcome occurs, on average, 25% of the
time. In the case in which the two error sources cancel each other out, the
value actually measured is the true value x. Since these canceling errors occur
in two of the four cases, we expect to measure the actual value x half of the
time.

Extending this line of reasoning to include n sources of random error, we can
construct a lattice diagram of the possible measurement outcomes, as shown in
Figure 4.2. Any particular measurement can be thought of as the result of
taking a path down through this diagram beginning at the true value, x, at
the top. At each node in the lattice, there is a 50% chance of choosing either
the left or the right branch, such that going left corresponds to subtracting E
from the value at that node and going right corresponds to adding E. Since
there are n sources of error, the potential range of values that could be mea-
sured is [x — nE, x + nE] with a step of 2E between each of the n+ 1 possible
values.

Since some outcomes can be reached through several different paths, not all
possible measurements are equally likely to occur. In fact, the probability of
obtaining any particular measurement is proportional to the number of paths
that lead to that measurement. It is straightforward to show that this configura-
tion produces a binomial distribution for the possible measurement outcomes.
Furthermore, as the number of error sources, n, becomes large, the binomial
distribution approaches a Gaussian distribution. Consequently, this intuition,
combined with our experience, leads to the conclusion that experimental errors
can be reasonably modeled using a Gaussian distribution centered around the
true value.

Quantifying errors

In general, it is very difficult to quantify the accuracy of our measurements since
the accuracy is a function of the bias introduced into our measuring process due
to systematic errors. To quantify this bias requires us to calibrate our measure-
ment tools to some standard value, and to carefully control our experimental
procedure. We can use the model of random errors described above, however, to
quantify the precision, or repeatability, of our measurements using confidence
intervals.

48

441

44.1.1

Errors in experimental measurements

Table 4.1. Two sources of random error, each of which can shift a measurement with
equal probability by + E, can produce three possible measured values

Error 1 Error 2 Measured value Probability
—E —E x—2E !
—E +E by %
+E —-E by %
+E +E xX+2E !

x—2E x+2F

VAV VA VN

-« J)F—>» x +nk

w *———} CITOr Sources ———

|
S
&1

Final possible measurements

Figure 4.2 With n sources of error, the probability of obtaining any particular
measurement for the true value x is proportional to the number of paths that lead to that
measurement.

Confidence intervals for the mean

If the distribution of random errors in our measurements can be reasonably
approximated by a Gaussian distribution, we can use the unique properties of
this distribution to determine how well our estimate of the true value approx-
imates the actual true value. Specifically, we use statistical confidence intervals to
find a range of values that has a given probability of including the actual value.

Case 1: When the number of measurements is large (n > 30)

We use the sample mean of our » measurements, X, as the best approximation of
the true value x. If the {x, x5, ..., X,,} samples used to calculate X are all inde-
pendent and come from the same population with mean u and standard devia-

49

4.4 Quantifying errors

tion o, the central limit theorem then assures us that, for large values of n
(typically assumed to mean n > 30), the sample mean X is approximately
Gaussian distributed with mean p and standard deviation o/+/n. In this case,
we assume that the population mean, pu, is the true value x that we are trying to
measure. Thus, the x; values that we have measured occur with a probability that
follows the Gaussian distribution shown in Figure 4.3.

To quantify the precision of these measurements, we want to find two values,
¢1 and ¢,, such that the probability of the mean value being between ¢; and ¢, is
1 — «. This probability is simply the area under the curve between ¢; and c,. That
is,

Pric; < x<o]=1—-0. 4.1)
Typically, we choose ¢; and ¢, to form a symmetric interval such that

Prfx < ¢|] = Pr[x >] = % 4.2)

The interval [c, ¢,] is called the confidence interval for the mean value X, « is
called the significance level, and (1 —) x 100 is called the confidence level.
The normalization

X=X
Co/Jn

transforms X to follow the standard unit normal distribution, which is simply a
Gaussian distribution with mean =0 and variance o° = 1. Applying the
central-limit theorem, we find that

(4.3)

_ N
Cq :X—Zl_a/zjﬁ (44)
_ s
CH :X+Zlfa/2ﬁ (45)
X
I-a
al2 al2
cl c2

Figure 4.3 The probability that the actual value being measured, x, is within the confidence
interval (¢;, ¢;) is 1 —a.

50

4.4.1.2

Errors in experimental measurements

where X is the sample mean, s is the sample standard deviation, » is the number
of measurements, and z;_,, is the value of a standard unit normal distribution
that has an area of 1 — /2 to the left of z;_,/,. That is, for a random variable Z
that is normally distributed with mean 1 = 0 and variance o> = 1,

Pr[Z < Zlfot/Q] =1 —Ol/2 (46)

The value z,_,, is typically obtained from a precomputed table, such as that in
Appendix C.

Case 2: When the number of measurements is small (n < 30)

When the number of measurements is greater than approximately 30, the sample
variance s> provides a good estimate of the actual variance o> of the distribution.
In particular, if the value of s> does not vary from one set of measurements to
another, then the transformation z = (X — x)/(0/s/n) closely approximates a
standard normal distribution. As a result, the values from a standard normal
table can be used for z;_,/,, when calculating a confidence interval for experi-
ments with n > 30.

However, for a relatively small number of measurements, which is typically
assumed to mean n < 30, the sample variances s> calculated for several different
groups of measurements can vary significantly from group to group. In this case,
it can be shown that the distribution of the transformed value z = (x — x)/(o/
J/n) actually follows what is known as the ¢ distribution with n — 1 degrees of
freedom. In determining a confidence interval for X when n < 30, then, we find ¢,
and ¢, as follows:

N

€1 =X —l_g/2n-1 NG 4.7)
- s
=X+ l_qpn-1 7 (4.8)

where X is the sample mean, s is the sample standard deviation, n is the number
of measurements, and 7,_g».,—; is the value from the 7 distribution that has an
area of 1 —a/2 to the left of #,_5.,_; with n — 1 degrees of freedom. As before
the value 7,_,,.,_1 1s typically obtained from a table (see Appendix C.1).

The ¢ distribution is similar to the Gaussian distribution in that they are both
bell-shaped and symmetric around a mean of zero. The ¢ distribution tends to be
more ‘spread out’ (i.e. its variance is greater), however, since it is dependent on
two varying values, the sample mean and the sample standard deviation. In
addition, the variance of the ¢ distribution is always greater than unity and is
dependent on the number of measurements, n. The 7 distribution becomes the
same as the standard normal distribution as n becomes large.

51

4.4 Quantifying errors

Example. We want to determine, on the average, how long it takes to write a
file of a particular size to a disk drive. Knowing that this time can vary due to
random system effects that can change the specific values we measure, we make
the following measurements of the time, in seconds, required to write this file to a
disk eight different times: 8.0, 7.0, 5.0, 9.0, 9.5, 11.3, 5.2, and 8.5. We ecasily
compute the mean value to be X = 7.94 s. We also notice, though, that these
times have a relatively large range. We thus want to calculate a confidence
interval for this mean time to quantify the precision of our measurements for
estimating the mean.

We sum all of the measurements to find

le.:8+7+~~—|—8.5:63.5 (4.9)

. 63.5
an' =5~ =1794. (4.10)

X =

The sum of squares is then calculated to be
DX =847+ +85 =53623. (4.11)

The standard deviation is then

_ 2
o \/8(536.23) 635 . 4.12)

8(7)

Choosing a 90% confidence interval will ensure that there is a 90% chance that
the actual mean time, x, will be contained within the computed interval. A 90%
confidence interval corresponds to a = 0.10. Since there are n = 8 total measure-
ments, we must use the ¢ distribution with seven degrees of freedom. From the
table of ¢ distribution values we find

tl—a/Z;n—l = 1p95.7 = 1.895. (413)

On substituting these values for X, s, and ¢ 95,7 into Equations (4.7) and (4.8), we
find

1.895(2.14)

¢ =794 — 6.5 4.14
1 \/g ()
1.895(2.14)
=794+ ————-=94. 4.15
2 NG (4.15)
Similarly, we can calculate the 95% confidence interval for the mean time to be
S 2.365(2.14)

=794 —

cp=X—1 g — 6.1 4.16
1 0957 7 NG (4.16)

52

4.4.2

Errors in experimental measurements

S 2.365(2.14
6 =F + tosps = 794 4 200D

NG NG 9.7. (4.17)

Thus, we can say that there is a 90% chance that the actual mean time required
to write this particular size file is in the range (6.5, 9.4) seconds. We can also say
that there is a 95% chance that it is in the range (6.1, 9.7) seconds. Finally, by
calculating a 99% confidence interval, we find that there is a 99% chance that the
actual time is in the range (5.3,10.6) seconds. &

The intuition behind the formula. This example highlights a potential source of
confusion when trying to interpret what a confidence interval is actually telling
us. With 90% confidence, we calculated that the actual mean value is in the
interval (6.5, 9.4). When we increase our confidence to 95%, however, we find
that the interval increases to (6.1, 9.7). That is, when we increase our confidence
about the mean, we end up with a wider interval. However, this wider interval
would then seem to imply that we now know less about the actual mean than
when we used a lower confidence level. Increasing our confidence further to 99%
widens the interval around the mean to (5.3, 10.6), which suggests that we now
have even less precise knowledge about the actual mean. Thus, we seem to have a
contradiction — the higher our confidence about the mean, the less precise is the
information we seem to have.

The apparent contradiction here really comes from a misunderstanding about
what a confidence interval actually tells us. A 90% confidence interval, for
instance, means that there is a 90% chance that the actual mean is within that
interval. Increasing the confidence level to 95% means that we are increasing the
probability that the actual mean is in the resulting interval. Since we have not
changed the data values that we measured, our information about the mean is no
more precise for this interval than it is for the 90% interval. Thus, the only way
to increase the probability of the mean being within the new interval is to
increase its size. We must increase the size of the interval even further if we
want to ensure that there is only a 1% chance that the mean is not in the interval.
Consequently, the 99% confidence interval is even larger than the 90 or 95%
intervals.

Determining the number of measurements needed

We can see from the confidence-interval formula that the size of the interval is
inversely dependent on the square root of the number of measurements that we
make. Since we typically would like to minimize the number of measurements,
we can use this formula to determine how many measurements are necessary to
produce a confidence interval of a specified width.

53

443

4.4 Quantifying errors

Suppose that we wish to determine a confidence interval for X so that there is
a probability of 1 —a« that the actual value x is within the interval
(c1,¢2) = ((1 —)X, (1 + ¢)X). Then we have

e =(1 —e)?:f—zl,a/z\/iﬁ (4.18)

cz=(1+e)f=%+zl_a/z%ﬁ. (4.19)

Since ¢; and ¢, form a symmetric interval, we can use either equation to find

L % — Te. (4.20)

Solving for n gives

n= (Zl‘—i/zs)z 4.21)
ex

Note that this equation for determining the number of measurements, 7,
requires an estimate of the standard deviation of the measurements, s.
However, we cannot know anything about s until we make some measurements!
Consequently, the procedure is to make a relatively small number of measure-
ments to find an estimate for s. This estimate is then used in Equation (4.21) to
determine approximately how many measurements must be made to obtain an
interval of the desired size.

Example. In the example above, we found that the average time required to
write a file was 7.94 s with a standard deviation of 2.14 s. Approximately how
many measurements would be required if we wanted to be 90% confident that
the mean value is within 7% of the actual value?

For a 90% confidence interval, we know that @ = 0.10, so that 1 — «/2 = 0.95.
Additionally, to find the value within 7% of the actual value means that we are
allowed an error of £3.5%. Thus, e = 0.035. Then, from Equation (4.21), we find

5 2
b (zmx/zS) _ (1895(2M)> = 212.95. (4.22)

X 0.035(7.94)

Thus, we need to make approximately 213 measurements to be assured that there
1s a 90% chance that the true value is within this +3.5% interval. &

Confidence intervals for proportions

Oftentimes in analyzing the performance of computer systems we are interested
in discrete values, such as a count of the number of times several different events
occur. We then may want to find the fraction of the time each event occurs. In

54

Errors in experimental measurements

this case, we need to determine a confidence interval for the proportion p, where
p is the probability of success in each of n trials in a binomial experiment. We
estimate the true proportion p using the sample proportion p = m/n, where m is
the number of times the desired outcome occurs out of the n total events
recorded.

A binomial distribution with parameters p and »n has a mean of p and a
variance of p(1 — p)/n. If np > 10, we can approximate the binomial distribution
with a Gaussian distribution with mean p and variance p(1 — p)/n. Applying the
same analysis as that in Section 4.4.1, we find the confidence interval for the
proportion p to be
€1 =P = Zi—qp w (4.23)

p(1 —p)
n

=D+ Zi_ap (4.24)
where p = m/n, m is the number of outcomes of the type of interest, # is the total
number of events, and z;_,, is the value of a standard unit normal distribution
that has an area of 1 — /2 to the left of z;_, ;.

Example. We have a multitasked computer system that alternates execution
between several user programs and the operating system. We wish to determine
how much time the processor spends executing the operating system compared
with how much time it spends executing the users’ application programs.

To make this measurement, we configure the system to interrupt the processor
every 10 ms. The interrupt-service routine then maintains two counters. One
counter, n, is incremented every time the interrupt-service routine is executed
and thus counts how many times the interrupt occurs. The interrupt-service
routine also checks the return-address value stored on the stack to determine
whether the operating system was executing when the interrupt occurred. If it
was, then the second counter, m, is incremented. Running this experiment for
approximately 1 min results in m = 658 and n = 6, 000.

With this experimental configuration, the ratio p = m/n = 0.1097 approxi-
mates the fraction of the total time that the processor is executing the operating
system. A 95% confidence interval for this ratio is found to be (¢,) = (p —
z,P + z), where

50— 0.1097(1 = 0.1097
2= 2 /‘% - 1.96\/ (-) — 0.0079. (4.25)

The confidence interval is then (0.1018, 0.1176). Thus, with only a 5% chance of
being wrong, we can say the the processor spends 10.2-11.8% of its time execut-
ing the operating system. &

55

4.4.3.1

44.4

4.4 Quantifying errors

Determining the number of measurements needed

Using the same line of reasoning as in Section 4.4.2, we can determine how many
measurements are needed to obtain a confidence interval of a desired size for a
proportion. Similar to what we did with Equation (4.18), we extend Equation
(4.23) to give

p(1 —P)

(I—e)p=p—ziap , (4.26)
Rearranging gives us

P =7Z1_op P n_ﬁ). (4.27)
Solving for n produces

n= w (4.28)

(pe)’

As before, this calculation of #n requires taking a preliminary measurement to
estimate the value of p.

Example. How long must the experiment in the above example be run to know
with 95% confidence the fraction of time the processor spends executing the
operating system within a range of £0.5%?

An interval of £0.5% gives e = 0.005. If we use the value of p =0.1097
measured in the previous example as an estimate of the actual value of p, we
can use Equation (4.28) to find

o 2P = P) _ (1.960)(0.1097)(1 — 0.1097)

. . = 1,247,102. (4.29)
(ep) [0.005(0.1097)]

Since interrupts occur every 10 ms, n = 1,247,102 samples would require
approximately 3.46 h.

When we actually run this experiment again for approximately 3.5 h, we
obtain m = 142,892 and n = 1,300,203. This produces p = 0.1099, which leads
to a 95% confidence interval of (0.1094, 0.1104). Note that this interval is
40.46% of the sample mean value of 0.1099. &

Normalizing data for confidence intervals

The techniques described above produce confidence intervals for the mean of the
population from which the measurements are made. This mean is not necessarily
the ‘true value’ of x being sought, however. The mean value will be the same as

56

Errors in experimental measurements

the desired true value only if the measuring process used to gather the samples is
unbiased. It is important to remember that the confidence interval is an indica-
tion only of the precision of the measuring process, not its accuracy.

Furthermore, these confidence intervals assume that the errors in the measure-
ments are randomly distributed with the probability of obtaining specific mea-
surements following a normal (or Gaussian) distribution. If the measuring
process itself cannot ensure that the underlying error distribution is Gaussian,
then the data must be normalized. This normalization can be accomplished by
finding the arithmetic mean of four or more randomly selected measurements.
The central-limit theorem then assures us that these averaged values follow a
Gaussian distribution, so that the confidence intervals apply to the overall mean
of these average values.

Similarly, if it is impossible to measure the event of interest directly, then you
can measure the mean of the event several times and calculate a confidence
interval for the overall mean. For example, the duration of an event may be
too short to measure directly. Instead, you can measure the duration of m;
repetitions of the event to calculate the average time for one event as
X; = T;/m;, where T; is the time required to repeat the event m; times in succes-
sion. If this measurement process is repeated n times, we end up with the
sequence of values X;, X», ..., X,,. We can then apply the confidence interval for-
mula to these » mean values to calculate a confidence-interval for the mean of
these means.

It is important to realize that, by analyzing the mean values (i.e. the X;
values), we confound the data so that we can no longer calculate a confidence
interval for the isolated event. Instead, since we have aggregated the data, any
questions being asked regarding the population from which the measurements
were taken must now be asked in terms of the average values. That is, we can
obtain a confidence interval for the average values, but not the individual
values themselves.

While this normalization allows us to apply these standard statistical techni-
ques to measurements with any arbitrary underlying error distribution, the nor-
malization does exact a penalty. Specifically, the cost of this normalization is a
reduction in the number of measurements available for analysis. This reduction
results in a loss of information about the system being measured. For instance,
after aggregating the m; short-duration events above into a single long-duration
event, we can provide confidence intervals only for the mean value of the aggre-
gated events, not for the individual events themselves. The normalization process
also tends to smooth out the variance that would have been seen in the measure-
ments of the individual events. Thus, the variance calculated for the aggregated
values tends to be smaller than the actual variance of the individual events
themselves.

57

4.5

4.6

4.6 For further reading

Summary

Errors are inherent in our measurements of real computer systems. Systematic
errors tend to introduce a constant or slowly varying bias into our measure-
ments. Since these types of errors are due to experimental ‘mistakes,” they must
be controlled and eliminated through the skills of the experimenter. Random
errors, in contrast, are completely unpredicatable and cause unbiased changes
to the measured values. We typically model these random errors using a
Gaussian (normal) distribution. Alternatively, we can normalize our measure-
ments by adding together subsets of the raw data. The central-limit theorem
then assures us that the errors in these normalized values will follow a
Gaussian distribution. This Gaussian error model then allows us to use
confidence intervals for the mean to quantify the precision of our set of
measurements.

For further reading

e In his book

N. C. Barford, Experimental Measurements: Precision, Error, and Truth
(Second Edition), John Wiley and Sons, New York, 1985,

provides a good intuitive explanation of why random errors in physical sys-
tems can reasonably be modeled using a Gaussian (or normal) distribution.
This explanation is the basis of the error model presented in Section 4.3.
Although errors in computer systems do not always correspond to the physi-
cal intuition used by Barford, the central-limit theorem still allows us to model
our experimental errors with a Gaussian distribution. This result is important
since many common statistical techniques, including use of the confidence
intervals studied in this chapter, require the underlying error model to be
Gaussian.

e The statistical techniques discussed in this chapter have been commonly used
for many years. Two sources that do a nice job describing these techniques,
and interpretation of experimental data in general, are

John Mandel, The Statistical Analysis of Experimental Data, Interscience
Publishers, a division of John Wiley and Sons, New York, 1964,

Mary Gibbons Natrella, Experimental Statistics, National Bureau of
Standards Handbook 91, October 1966.

58

4.7

Errors in experimental measurements

Exercises

1.

As the confidence level used in estimating the mean is increased (i.e. a smaller
value of « is used), the size of the resulting confidence interval increases. A
larger confidence interval, however, would seem to imply that we know less
about the mean value, so that the confidence should actually be decreasing.
Explain this apparent contradiction.

2. How do we know what confidence level to choose?

(O8]

. Why is it unreasonable to always choose a 99% confidence level?
. Describe the differences among accuracy, resolution, and precision for a tool

used to measure distances, such as a tape measure.

. What is the single most important difference between a systematic error and

a random error?

. Consider an experiment in which we randomly toss a dart onto a line that

is one unit long and is subdivided into 1000 intervals. Assume that we are

perfect dart throwers so that the dart always hits the line between the end-

points at 0 and 1. The outcome of a single throw is the value at that point

on the line, such as 0.250, 0.654, and so on. If we throw the dart n = 100

times, we will obtain 100 values that are uniformly distributed in the range

[0, 1]. We can then calculate a 90% confidence interval for the mean of

these n values. We now repeat this experiment k=2,000 times. When we

are done, we will have calculated k different confidence intervals for the
mean value.

(a) How many of the k confidence intervals do we expect will include the
true mean of 0.5? (How do we know that 0.5 is the true mean? Notice
that, in a real experimental measurement, we do not actually know
the true mean. In fact, this mean is exactly what we are trying to
determine!)

(b) How many of the k confidence intervals do we expect will include the
true mean of 0.5 if we repeat the experiment using a 99% confidence
interval?

(c) How many of the k£ confidence intervals do we expect will include the
true mean of 0.5 if we repeat the experiment using a 60% confidence
interval?

(It is interesting to try this experiment using a random-number generator to
simulate the throwing of the darts. See Section 10.3 for more information
about random number generation.)

. Many compilers have several different levels of optimization that can be

selected to improve performance. Using some appropriate benchmark
program, determine whether these different optimization levels actually

59

4.7 Exercises

make a statistically significant difference in the overall execution time of
this program. Run the program n =4 times for each of the different
optimizations. Use a 90% and a 99% confidence level to determine
whether each of the optimizations actually improves the performance.
Explain your results.

. Using the following two techniques, measure the overhead of the interval

timer that you have available on your computer system to measure execution
time.
(a) Measure the timer overhead time directly:

fori=1tonl
start timer
read timer
stop timer

end
(b) Measure the timer overhead time in a loop:

for j=1tok
start timer
for i =1 ton2

read timer

end
stop timer

end

For (a), generate a histogram of the times required to read the timer, and
determine a 90% confidence interval for the mean time, for n1 = 10, 1,000,
and 100,000.

For (b), choose a reasonable value for n2 on the basis of your results from
part (a). Then generate a histogram of the average times required to read the
timer, and determine a 90% confidence interval for the mean time, for k =
10, 1,000, and 100,000.

Explain the differences you see between the results of (a) and (b). For
instance, consider what you are actually measuring with approach (b) com-
pared with approach (a).

. The use of a confidence interval for a mean value requires the distribution

of the errors in the measured samples to be normally (i.e. Gaussian) dis-
tributed. However, in the problem above, your histograms probably did
not look very normal. How then can we justify using confidence intervals
in this situation?

60

Errors in experimental measurements

10. In the example in Section 4.4.3, an interrupt-driven technique was used to

11.

determine how much time a processor spent executing in the operating-sys-
tem code. What would happen to the confidence interval in this example if
the interrupt period were reduced to one-half its original value, that is, if the
interrupts occurred twice as often?

How long would the program have to be run to reduce the size of the
confidence interval by a factor of ¢?

61

Comparing alternatives

“Measurements are not to provide numbers but insights.”
Ingrid Bucher

In Chapter 4 we learned that the measurements we make of a computer system
are subject to error and, thus, are said to be “noisy.” We also learned that, if the
errors in the measurements can reasonably be modeled with a Gaussian distribu-
tion, we can use confidence intervals to quantify the precision of the measure-
ments. Alternatively, if the errors in our measurements are not Gaussian, we can
normalize the set of measurements by computing the averages of groups of four
or more randomly selected measurements. We can then use confidence intervals
to characterize the variability of these average values.

While these confidence intervals tell us something about how much noise there
is in our measurements, we ultimately want to use these measurements to make a
decision about some aspect of the performance of one or more computer sys-
tems. For instance, we may want to compare the performance of some compo-
nent of two different systems, or we may want to determine how some change to
a system, such as installing a new operating system or enhancing a communica-
tions protocol, affects its performance. Since there is noise in any of the mea-
surements we make, however, we need a technique for determining whether any
changes we see are due to random fluctuations in the measurements or whether
they are actually significant in a statistical sense.

At this point, many statistics textbooks would introduce the concept of
hypothesis testing, which is a statistical technique for making decisions. With
this technique, mutually exclusive hypotheses are proposed as statements or
assumptions about the population or process that is being measured. One of
these hypotheses is called the null hypothesis. The goal of this hypothesis testing
is to determine whether it is likely that the null hypothesis is false, and, conse-
quently, that we have no evidence on the basis of which to reject the alternative
hypothesis.

62

5.1

Comparing alternatives

Whether these hypotheses are true or not cannot be known for certain without
making all possible measurements of the system being tested. Clearly, this
exhaustive measurement is impossible in most situations. Instead, we must be
satisfied with a random sample of measurements. Since it is randomly selected,
this sample is assumed to represent the behavior of the whole. We then calculate
some appropriate statistic as a function of the measurements. If the error dis-
tribution underlying the process we measured is of the type assumed by the
statistic, we can ensure that the calculated statistic will be distributed according
to a known function. Many functions that have been found to be useful for
hypothesis testing have been tabulated previously. Given our desired level of
significance, «, we can find the critical value of this statistic from the tabulated
distribution. Finally, we compare our calculated statistic with the critical value.
From this comparison, we can conclude whether the results of our measurements
are most likely due to random fluctuations (noise) or whether they are statisti-
cally significant so that we can reject the null hypothesis.

This type of hypothesis testing is very general. Furthermore, a creative experi-
menter can cleverly phrase the hypotheses to reduce the likelihood of being
wrong. However, one important criticism of hypothesis testing is that it provides
only a binary accept/reject result with no indication of how close the decision
may have been. In analyzing the performance of computer systems, however, we
often want to know not only whether the differences between two configurations
are statistically significant, but also the magnitude of that difference. As a result,
instead of using only the hypothesis-testing technique, this chapter describes how
to apply confidence intervals to compare two alternatives. This approach not
only allows us to determine whether there is a statistically significant difference
between the two alternatives, but also provides an indication of how large the
difference is. This type of information is often more intuitive and easier to under-
stand and explain to someone else than is the result of a hypothesis-testing
experiment.

This chapter also introduces a general statistical analysis technique called
analysis of variance (ANOVA). ANOVA partitions the total variation observed
in a set of measurements into several meaningful components. In Section 5.2, we
show how to use ANOVA to compare more than two alternatives. We extend the
ANOVA technique to more complex situations in Chapter 9.

Comparing two alternatives

The simplest approach to using confidence intervals to compare alternatives is to
determine whether the confidence intervals for the two sets of measurements
being compared overlap. If they do, then it is impossible to say that any differ-

63

5.1.1

5.1 Comparing two alternatives

ences seen in the mean value are not due to random (chance) fluctuations. If they
do not overlap, however, we conclude that there is no evidence to suggest that
there is not a statistically significant difference.

Note that careful phrasing of the second conclusion. When the confidence
intervals do not overlap, we cannot say with complete assurance that there
actually is a real difference between the alternatives. We can only say that
there is no reason to believe that there is not a difference. There is still the
probability «, however, that the differences we see are due simply to random
fluctuations in our measurements. Although this type of ambiguous conclusion is
often not very satisfying, it is unfortunately the best we can do given the statis-
tical nature of our measurements.

There are more powerful statistical tools for comparing two or more alterna-
tives, such as the analysis of variance (ANOVA) technique discussed in Section
5.2.1. Nevertheless, the confidence-interval approach for comparing two alter-
natives is quick, simple, and intuitively satisfying. Additionally, and, perhaps,
more importantly, comparison tests using confidence intervals are easy to explain
to someone else, such as your boss!

We examine three different cases in this subsection — a before-and-after com-
parison in which there is an obvious pairing to the measurements made before
and after some change, a comparison of noncorresponding or unpaired measure-
ments, and a comparison involving proportions.

Before-and-after comparisons

Before-and-after comparisons are commonly used to determine whether some
change made to a system has a statistically significant impact on its performance.
For example, we may be interested in determining whether adding a faster disk
drive to a system improves its performance on a set of application programs. Or
we may want to determine whether it is worthwhile to upgrade the system with
the latest version of its operating system. Or we may want to compare the
execution times of a set of application programs on two different systems to
determine whether one system is generally faster than the other.

In all of these types of situations, the before-and-after measurements are not
independent and the variances of these two sets of measurements are not neces-
sarily equal. In fact, measurements from each set are related and so form an
obvious corresponding pair. To determine whether there is a statistically signifi-
cant difference between the means of the two sets of measurements, we must find
a confidence interval for the mean of the differences of the paired observations. If
this interval includes zero, we conclude that the measured differences are not
statistically significant.

64

5.1.2

Comparing alternatives

Let by,b,,...,b, be the set of n before measurements and ay,a,,---,a,
be the set of corresponding after measurements. Then we simply need to
find a confidence interval for the n difference values,
d=a —-—b,dy=0ay,—by,...,d,=a,— b, Using the same derivation as in
Section 4.4.1, the confidence interval (c;, ¢;) for the mean of the differences
when n > 30 is given by

— S
cg=d— Zlfa/zJ—&% (5.1)
Cy :d+21_a/2\/—ﬁ (52)

where d is the arithmetic mean of the d; values and s, is the corresponding
standard deviation. As before, if the number of measurements is less than 30,
the z;_,,, value should be replaced by the #,_,/>.,—; value, which is a 7 distribu-
tion with n — 1 degrees of freedom.

Example. We want to compare the performance of a new, supposedly
improved, network communication protocol with that of the existing protocol.
We begin the comparison by measuring the time required to send n = 6 differ-
ently sized messages, first with the original protocol, and then with the new
protocol. Since we send the same size of message once with the original protocol
and once with the new protocol, there is an obvious correspondence between
pairs of measurements. These times and their corresponding differences are
shown in Table 5.1

On calculating the mean of the six differences, d; = b; — a;, we find d = —1.
The standard deviation of these differences is found to be s; = 4.15. Since there
are fewer than 30 total measurements, we must use the ¢ distribution. For a 95%
confidence level, we find #;_y/.,—1 = f)975.;5 = 2.571. We then calculate the con-
fidence interval for the mean difference to be (—5.36, 3.36).

By looking only at the mean difference of d = —1, we might guess that the new
protocol is slightly worse than the original protocol. However, since the confi-
dence interval for the mean difference includes 0, we can say with 95% confi-
dence that the differences we measured in the two cases are due to random
measurement errors. Thus, we conclude with 95% confidence that there is no
significant difference between these two communication protocols. &

Noncorresponding measurements

In many situations, there is no direct correspondence between pairs of measure-
ments. In fact, the number of measurements made to compare two different
systems need not even be the same. In this case, we say that the measurements

65

5.1 Comparing two alternatives

Table 5.1. The measured times required to send differently sized messages with two
different communication protocols

Measurement Original New

number protocol protocol Difference
(@) (b;) (a;) (di=b; —a)
1 85 86 -1

2 83 88 =5

3 94 90 4

4 90 95 =5

5 88 91 -3

6 87 83 4

are noncorresponding or unpaired. As before, there are two cases to consider. The
first case is when the numbers of measurements made for both systems are
sufficiently large (i.e. greater than or equal to 30) so that the underlying distribu-
tions may be assumed to be normal. If there are fewer than 30 values in at least
one set of measurements, however, the normal approximation no longer applies.
Instead, a ¢ distribution must be used, with an appropriate number of degrees of
freedom.

To compare two different systems, we first make »n; measurements of the first
system and n, measurements of the second system. Now, however, we cannot
simply apply the same calculation as that used when there is a direct correspon-
dence between the before and after measurements. Since the measurements can
be directly paired in the before-and-after situation, we could first calculate the
differences of each of the pairs of measurements. We then found the mean and
standard deviation of these differences.

In this current situation, however, there is no correspondence or pairing
between the measurements. As a result, we must first find the means, x; and
X,, and the standard deviations, s; and s,, for each set of measurements sepa-
rately. Then we calculate the difference of the means to be x = X; — X,. It can
then be shown that the standard deviation of this difference of mean values is the
sum of the standard deviations of each set of measurements, appropriately
weighted by the total number of measurements in each set. That is, the standard
deviation of the difference of the means is

S2 S2
Sy = L 4+2, (5.3)
n m

This calculation of the standard deviation of the difference of the means makes
intuitive sense if you recall that both mean values, x; and X,, are calculated from

66

Comparing alternatives

measurements with random errors. Thus, their difference would be expected to
have even more error. Since the standard deviation is an indication of the error in
the measurements, the error in the difference of the means should be the sum of
the error in each set of measurements, weighted appropriately by the total num-
ber of measurements in each set.

Now that we have an estimate of the difference of the mean values of each set
of measurements, X, and an estimate of its standard deviation, s,, we can apply
the same derivation as before to find the confidence interval, (¢, ¢;) for the
difference of the means to be given by

C1 :X_Zlfo{/}gx (54)

CH ZX+21,O{/2SX (55)

where X and s, are as defined above. If the resulting confidence interval includes
0, we can conclude that, at the confidence level chosen, there is no significant
difference between the two sets of measurements.

Recall that the above formula applies only when at least approximately 30
measurements have been made for each system, that is both n; > 30 and n, > 30.
In the case when either n; < 30 or n, < 30 so that the normal approximation
does not apply, we can again simply substitute #,_g».,,, for z;_y/» in Equations
(5.4) and (5.5) for (cy, ¢2). The only change in this case is that the number of
degrees of freedom to use in the ¢ distribution, ny; is not simply n; +n, — 2, as
might have been expected. Instead, it has been shown that the number of degrees
of freedom in this case is approximately

2
si, 8
+
ng m

TGy (8/m)
m—1 " (- 1)

ngr (56)

This value most likely will not be a whole number. Consequently, it should be
rounded to the nearest whole number.

Example. You are asked to compare the performance of two different com-
puter-system installations using a standard benchmark program. These are large,
complex systems that require a significant amount of time and effort on your
part to make the benchmark program run. By the time you have the benchmark
running on both systems, you have time to make only n; = 8§ measurements on
the first system and n, = 5 measurements on the second system. Your measure-
ments, and the resulting means and standard deviations for each set, are shown
in Table 5.2.

67

5.1 Comparing two alternatives

Table 5.2. The times measured when running a standard benchmark program on two
different computer-system installations, along with the corresponding means and
standard deviations

Time (s)
Measurement
number System 1 System 2
1 1,011 894
2 998 963
3 1,113 1,098
4 1,008 982
5 1,100 1,046
6 1,039
7 1,003
8 1,098
n; 8 5
X; 1,046.25 996.6
S 49.25 78.41

At first glance, it appears that system 2 is slightly faster than system 1.
However, the standard deviation of the measurements is relatively large com-
pared with the mean values. Furthermore, the standard deviation of system 2 is
larger than that of system 1. As a result, the difference between the mean values
may be due to measurement error, rather than to any real differences between the
systems themselves. To characterize this difference, you decide to construct a
90% confidence interval for the difference of the mean execution times.

First, you calculate the effective number of degrees of freedom, nye, for this
difference using Equation (5.6):

2
49.25% N 78.412
8 5
(49.25%/8)? N (78.41%/5)*
®—=1 5-1)

I 5.7

which is rounded to ng = 6. You then find the required value from the ¢ dis-
tribution table to be 7y gs5.¢ = 1.943.
The difference of the means is simply

¥ = 1046.25 — 996.60 = 49.65. (5.8)

The corresponding standard deviation is determined to be

68

Comparing alternatives

149.25% 78.412
=gt g =395, (5.9)

The confidence-interval values then can be calculated, giving

¢ = 49.65 — 1.943(39.15) = —26.42 (5.10)

¢y = 49.65 + 1.943(39.15) = 125.7. (5.11)

Since this confidence interval includes 0, we conclude that there is not a statis-
tically significant difference between the two systems. O

A special case. When only a small number of measurements have been made
(i.e. n; < 30 or n, < 30), but it is known that the errors in the measurements are
normally distributed and that the variances in both sets of measurements are
equal, then a slight variation of Equations (5.4) and (5.5) can be applied. This
special case also applies even if the variances are known or suspected to be
different so long as the errors in both sets of measurements are normal and
the number of measurements in each set is the same, that is, n; = n,. The result-
ing confidence interval for this special case is

- I 1
1 =X — I _g/2nySp }’l_1+l’l_2 (5.12)

_ /1 1
CH :x+[170(/2;ndfsp ;l+;2 (513)

where the number of the degrees of freedom for the ¢ distribution is ng = n; +
n, — 2 and the standard deviations of the individual sets of measurements are
pooled together as follows:

(5.14)

. s%(nl - 1)+s%(n2 -1
P ny +n, —2 '

The advantage of using this special-case formula is that it typically results in a
tighter confidence interval than that in the more general case.

Example. A few weeks after performing the comparison in the above example,
you are provided with some additional time to complete your measurements on
the second system. You measure three more values for the second system obtain-
ing values of 1,002, 989, and 994 s. Since now n; = n,, you can apply the special
case formula above.

With these three additional values, the mean and standard deviation of the
measurements for system 2 are found to be x, =996.0 and s, = 59.38. The
difference of the means is now X = 1046.25 — 996.0 = 50.25 and the pooled
standard deviation value is

69

513

5.1 Comparing two alternatives

49.25%(8 — 1 3828 — 1
sp:\/9 SB-D+IE-D _ 5455 (5.15)

8+8-2)
Since the effective number of degrees of freedom in this case is
nge =ny +ny, —2 =8+ 8 —2 = 14, the ¢ value appropriate for a 90% confidence
interval is #9s.14 = 1.761. The confidence interval is then found to be

1
¢ = 50.25 — (1.761)(54.55),/ = + = = 2.22 (5.16)

¢y = 50.25 + (1.761)(54. 55),/ —98.3. (5.17)

Thus, with these additional measurements, you can conclude, with 90% confi-
dence, that there is a slight, but statistically significant, difference between the
two systems. &

Comparing proportions

In determining whether the difference between two proportions is statistically
significant, we exploit the fact that measurements of proportions follow a bino-
mial distribution. In particular, let m; be the number of times that the event in
which we are interested occurs in system 1 out of a total of n; events measured in
the system. Then the ratio p; = m;/n; is the proportion of all events measured in
system 1 that are of interest to us. Similarly, let the corresponding values for the
second system be m, and n,, giving p, = m,/n,. From the characteristics of a
binomial distribution, we know that the estimate of the mean for system i is
simply p; with a variance of p;(1 — p;)/n;.

If both m; and m, are larger than about 10, we can approximate the distribu-
tion of these proportions using a normal distribution with mean p; and variance
of p;(1 — p;)/n;. This approximation allows us to use the same approach for
developing a confidence interval for the difference of the mean values p; and
P> as that we used for noncorresponding measurements described in Section 5.1.2.
The confidence interval for the difference of the mean values then is

€l =P~ Zi—a/2% (5.18)

€ =P+ Z1_gp5) (5.19)

where p = (p; —p,) and s, is the standard deviation of this difference.

»
Specifically, s, is again the weighted sum of the individual standard deviations:

5y = \/Pl(l - 1) +P2(1 —Pz).

ni n

(5.20)

70

Comparing alternatives

Example. In the example in Section 4.4.3 we used a sampling technique to
estimate the fraction of the time an application program spends executing in the
operating system. In particular, we assumed that the application program was
interrupted every 10 ms. Two different counters were maintained, one to count
the total number of interrupts, and another to count the number of times oper-
ating-system code was executing when the interrupt occurred.

After running the test for approximately 3.5 h, we found the count of the total
number of interrupts to be n; = 1,300,203 and the count of the total number of
interrupts that occurred when the operating system was executing to be
m; = 142,892. The ratio of these two values, p; = m;/n; = 0.1099, is then our
estimate of the fraction of the total time spent in the operating system when
executing this application.

We now have received an upgrade of the operating system that has been
installed on the system. We want to use the technique of comparing proportions
to determine whether this new operating system is more efficient than the old
one. After running the same application with the new operating system for
approximately 2 h 45 min, we find m, = 84,876 and n, = 999,382. Thus,
P2 = my/n, = 0.0849, indicating that, with the new operating system, the appli-
cation spends approximately 8.5% of its time executing in the operating system.

The difference of these two proportions gives p = p; = p, = 0.0250, with a
corresponding standard deviation of

=3911 x 107*. (5.21)

- \/0.1099(1 —0.1099) 0.0849(1 — 0.0849)
= 1300203 999382

The 90% confidence interval for the difference of these two proportions then is
given by

¢; = 0.0250 — 1.960(3.911 x 107%) = 0.0242 (5.22)

¢y = 0.0250 + 1.960(3.911 x 10™*) = 0.0257. (5.23)

Since this interval does not include zero, we can conclude, with 90% confidence,
that there is no evidence to suggest that there is not a statistically significant
difference between the performances of the two operating systems when execut-
ing this application program. &

Note the careful phrasing of this conclusion when the confidence interval does
not include zero. As mentioned at the beginning of this chapter, we cannot
unambiguously state that there is a real difference between the alternatives.
Rather, due to the effects of random fluctuations, we can only state that we
have no reason to believe otherwise.

71

5.2

5.2.1

5.2 Comparing more than two alternatives

Comparing more than two alternatives

The confidence-interval approach for comparing two alternatives described in
the previous section is simple to understand and, as a result, is intuitively appeal-
ing. It also is easy to explain the results of this type of comparison to someone
else. It is considered by statisticians to be a relatively weak method of compar-
ison, however. A more robust approach is the general technique called analysis of
variance (ANOV A). ANOVA separates the total variation in a set of measure-
ments into a component due to random fluctuations and a component due to
actual differences among the alternatives. Using ANOVA for comparing several
different alternatives is called a one-way classification or an analysis of a one-

factor experiment.

Analysis of variance (ANOVA)

Analysis of variance is a very general technique for dividing the total variation
observed in a collection of measurements into meaningful components. This
analysis assumes that the errors in the measurements for the different alternatives
are independent with a normal (Gaussian) distribution. It further assumes that
the variance in the measurement errors is the same for all of the alternatives. The
ANOVA procedure then separates the total variation observed in all of the
measurements into (i) the variation observed within each system, which is
assumed to be caused only by measurement error, and (i) the variation between
systems. This second component of variation can be due both to actual differ-
ences between the systems and to measurement error. The goal then is to deter-
mine whether the magnitude of component (ii) of the variation is significantly
larger in some appropriate statistical sense than the magnitude of component (i).
That is, are the differences among the mean values observed for the alternatives
due to real differences among the alternatives, or are they simply due to mea-
surement errors?

To answer this question, we make n measurements on each of k alternatives. It
is convenient to organize all kn of these measurements as shown in Table 5.3,
where y;; is the ith measurement made on the jth alternative. The column means

in this table, y 1, 7,,...,¥,..., Y, are the average values of all of the measure-
ments made within a single alternative. That is,
DY SRy

j=== (5.24)

The overall mean, y_, is the average of all measurements made on all alternatives:

72

Comparing alternatives

Table 5.3. Entry y; in this table is the ith measurement from the jth alternative when
using the ANOVA technique to compare k distinct alternatives

Alternatives
Overall
Measurements 1 2 .- J e k mean
1 i Y12 Yij Vik
2 21 V22 c Yoy cee Yok
i il Yi2 e Vij e Vik
n Vni Vn2 e Ynj e Yin
Column means Vi Va e V) e Vi .
Effects o o e a; e o
X X
y =1 i=1 l/ (525)
T kn

It is then useful to write each measurement, y;;, as the sum of the mean of all of
the measurements made of alternative j, y;, and a value ¢; that represents the
deviation of measurement y; from the mean. That is, we can write

Vi =¥+ ey (5.26)

Furthermore, we can extend this idea to represent each column mean as the
sum of the overall mean, y , and the deviation of the column mean from this
overall mean, «;, giving

yi=y.taj. (5.27)
Substituting Equation (5.27) into Equation (5.26) then gives

Intuitively, you can think of this expression as showing how far away each
measured value (y;) is from the overall mean value as we move horizontally
across alternatives in Table 5.3, represented by «;, and as we move vertically
among measurements within one alternative, represented by e;;.

The «; value for each alternative is commonly called the effect of that alter-
native. The «; values must satisfy the property

k
> =0. (5.29)
=1

73

5.2 Comparing more than two alternatives

Expressing the individual measurements in this fashion now allows us to split
the total variation in all of the measurements into two separate components: (1)
the variation due to the effects of the alternatives, and (2) the variation due to the
errors. The variation due to the effects of the alternatives, which should not be
confused with the variance, is defined to be the sum of the squares of the differ-
ences between the mean of the measurements for each alternative (i.e. the column
means) and the overall mean, times the number of measurements made for each
alternative. More precisely, this variation, which is denoted SSA4, is

k
SSA=nY (;-7.). (5.30)
j=1

Similarly, the variation due to errors, denoted SSE, is the sum of the squares
of the differences between the individual measurements and their corresponding
column means. Thus, we have

k n
SSE=Y"3 (v — 7)) (5.31)
J=1 i=1
Finally, the sum-of-squares total, denoted SST, is defined to be
k n
SST ="y —7.) (5.32)
J=1 =1

Thus, SST is the sum of the squares of the differences between each measure-
ment and the overall mean.
It can be shown that

SST = SSA + SSE. (5.33)

This expression shows that the total variation in all of the measured values can in
fact be split into the SSA4 and SSE components. Proving this relationship is done
by expanding the SST expression (Equation (5.32)) and noting that, due to the
constraint in Equation (5.29), the cross-product terms reduce to zero.

It is now helpful to pause and recall our overall goal in this analysis. At this
point, we have made n measurements on each of k alternatives. There is some
variation in the n measurements made for each alternative due to fluctuations
(i.e. random errors) inherent in these types of measurements. Similarly, we see
some differences among the mean values calculated for each alternative due to
these errors and, possibly, due to real differences among the alternatives. Our
goal, then, is to determine whether any of the observed differences among the
mean values of each alternative are due to real differences among the alterna-
tives, or whether they are simply due to measurement errors.

74

Comparing alternatives

To answer this question, we split the total variation in all of the measurements
with respect to the overall mean value into two separate components. The first,
SSA, is the variation of the mean value of each alternative compared with the
overall mean. It can be thought of as the variation across the ‘column means’
compared with the ‘overall mean’ in Table 5.3. The second component, SSE, is
the variation of each measurement for one alternative relative to the mean of all
of the measurements taken of that alternative. It can be thought of as the varia-
tion down the rows within a single column in Table 5.3. If the differences among
alternatives are due not simply to measurement error but rather to some real
difference among the alternatives, we would expect the variation across alter-
natives (which includes measurement errors), SSA4, to be ‘larger’ in some statis-
tical sense than the variation due only to errors within each alternative, SSE. To
make this type of determination, we need some appropriate statistical test.

One of the simplest comparisons we can make is to find the ratios of each of
the components of variation, SSA4 and SSE, to the total variation, SST. Thus,
SSA/SST is the fraction of the total variation explained by the differences
among alternatives. Similarly, SSE/SST is the fraction of the total variation
that is due to experimental error. However, the question of whether the fraction
of total variation explained by the alternatives is statistically significant still
remains.

The statistical test that has been shown to be appropriate for this comparison
is called the F-test. This test, which is based on the F distribution (see Appendix
C.2), is used to test whether two variances are significantly different. Since the F
statistic is computed as the ratio of two variances, values close to 1 will indicate
that no significant difference likely exists.

In our current situation, we compute the ratio of the variance across alter-
natives (i.e. corresponding to SSA) to the variance due to experimental error (i.e.
corresponding to SSE). If this ratio is greater than the critical value obtained
from the F distribution at a given significance level, we conclude that the differ-
ence in the variances is statistically significant. Thus, we can conclude that there
is a statistically significant difference among the alternatives beyond the differ-
ences due to experimental error.

Estimates of the variances of SSA and SSE are found by calculating their
corresponding mean-square values. The mean-square value is simply the total
variation for the component divided by the number of degrees of freedom for
that component. Since there are k alternatives being compared, there are k — 1
degrees of freedom in the SSA4 term. Thus, the estimate of the variance for this
term is

) _ S54

H=rT (5.34)

75

5.2 Comparing more than two alternatives

Similarly, the mean-square error is found by dividing the SSE term by the total
number of degrees of freedom for this component. Since each of the alternatives
had n total measurements, each alternative has n — 1 degrees of freedom. Thus,
the total number of degrees of freedom for SSE is k(n — 1), since there are k
alternatives. The estimate of the variance in the error then is

, SSE
Se =)
¢ k(n—1)

(5.35)

It is worthwhile to note that the total number of degrees of freedom for SST is
kn — 1 since there are kn total measurements. Furthermore, notice that the num-
ber of degrees of freedom for SSA, which is k — 1, plus the number of degrees of
freedom for SSE, which is k(n — 1), equals kn — 1. Thus,

df(SST) = df (SSA) + df (SSE) (5.36)

where df (-) is the number of degrees of freedom of the corresponding argument.
This relationship provides a good check to ensure that the proper numbers of
degrees of freedom are used with both SS4 and SSE.

Finally, the F statistic for this test is calculated as

F="2 (5.37)

Since this F statistic is the ratio of two variances, it actually requires two values
for the degrees of freedom, one from the numerator and one from the denomi-
nator. If this computed F value is larger than the value Fj;_y.(—1).ku—1y Obtained
from the table of critical F values, we can say that the variation due to actual
differences among the alternatives, SS4, is significantly higher than the variation
due to errors, SSE, at the « level of significance, or, equivalently, with a con-
fidence level of 1 — «.

For purposes of calculation, it is useful to rewrite the expressions for SST,
SSA, and SSE as follows:

k n 2
ZZ 2 I
j=1 i=1

S ()

SSA == (5.39)
n kn

SSE = SST — SSA (5.40)

where

76

Comparing alternatives

n

v.=)20 i (5.41)

j=1 i=1

The components of an ANOVA test are typically summarized in the format
shown in Table 5.4.

Example. As one aspect of comparing the performance of k = 3 different
computer systems, we have measured the time required for each system to per-
form a subroutine call and return operation. We decide to use the ANOVA
technique to compare the systems, so we organize the n = 5 measurements for
each system as shown in Table 5.5.

The first step in this analysis is to compute the sum of squares as follows:

0972 +0.0971 + - - - + 0.5298)?
SST = [(0.09722 + 0.09712 + - -- + 0.5208%) — L0972+ 00971 + - +0.5298)

3(5)
—0.8270
(5.42)
SSA =[(0.0972 + - - - + 0.0974)> + (0.1382 + - - - + 0.1383) + (0.7966+
0.0972 + 0.0971 + - - - + 0.5298)°
1+ 0.5208))5 — + ot) (5.43)
3(5)
=0.7585
SSE = SST — SSA = 0.8270 — 0.7585 = 0.0685. (5.44)

We can then compute the fractions of the total variation explained by each
component to be

SSA4 0.7585
55T = 08770 = 007 (5.43)
SSE 0.0685
SST = 0.8270 = 083 (5:46)

Thus, we can say that 91.7% of the total variation in the measurements is due to
differences among the systems, while 8.3% of the total variation is due to noise in
the measurements.

While this allocation of variation certainly suggests that there is a significant
difference among the systems, we next perform an F-zest to determine whether
this difference is statistically significant. The computations for this test are sum-
marized in Table 5.6. We find the computed F value to be larger than the F value
obtained from the table so we can conclude that, at the 0.05 level of significance,
the differences among the systems are statistically significant. &

77

5.2 Comparing more than two alternatives

Table 5.4. A summary of using an analysis of variance (ANOVA) test for comparing
several alternatives: if the computed F value is larger than the F value obtained from
the table, the variation due to actual differences among the alternatives, SSA, can be
considered statistically significant at the « level of significance

Source of variation Alternatives Error Total
Sum of squares SSA4 SSE SST
Degrees of freedom k—1 k(n—1) kn—1
Mean square 52 =SSA/(k—1) s2 = SSE/[k(n —1)]
Computed F value s§ /sg

F value from table Fli (k=1 k(n—1)]

Table 5.5. Measurements of the time (in microseconds) required to perform a
subroutine call and return on three different systems

Alternatives

Overall
Measurements 1 2 3 mean
1 0.0972 0.1382 0.7966
2 0.0971 0.1432 0.5300
3 0.0969 0.1382 0.5152
4 0.1954 0.1730 0.6675
5 0.0974 0.1383 0.5298
Column means 0.1168 0.1462 0.6078 0.2903
Effects -0.1735 -0.1441 0.3175

Table 5.6. The calculations for the ANOVA F-test for the data from Table 5.5, the F
value from the table was determined by interpolating the values shown in Appendix C.2

Source of variation Alternatives Error Total

Sum of squares SSA4 =0.7585 SSE = 0.0685 SST = 0.8270
Degrees of freedom k—1=2 k(n—1)=12 kn—1=14
Mean square 52 =0.7585/2 = 0.3793 s> = 0.0685/12 = 0.0057

Computed F value 0.3793/0.0057 = 66.4
F value from table Fio.05:2,12) = 3-89

78

5.2.2

Comparing alternatives

Contrasts

After completing an ANOVA test, we may find that there is a statistically sig-
nificant difference among the various alternatives. That is, by applying the F-test
we may find that the differences we see in measurements across the alternatives
are due to actual differences among the alternatives rather than to random
fluctuations in the measurements. However, this test does not tell us where the
differences occur.

For example, from the effects calculated in Table 5.5, we see that system 1 is,
on the average, 0.1735 us below the overall average, system 2 is 0.1441 us below,
and system 3 is 0.3175 ps above. The corresponding F-test in Table 5.6 confirms
that these deviations from the overall mean are significant for « = 0.05.
However, from this test alone we cannot determine whether system 1 is actually
faster than system 2, or whether this difference is due to measurement errors.

To make these more detailed comparisons between individual alternatives, we
can use the method of contrasts. A contrast, ¢, is a linear combination of the
effects, o, of the alternatives. Thus,

k
c=Y wa. (5.47)
=1
The weights in this linear combination must be chosen such that

k
Y w=0. (5.48)
Jj=1

These contrasts can be used to compare the effects of any subset of the alter-
natives. For example, if there are k = 3 alternatives in an experiment, choosing
wy =1, wy, = —1, and w3 =0 gives ¢ = (1)a; + (— 1)y + (0)az3 = @1 — ar. Note
that w; + w, + w3 = 0. Constructing an appropriate confidence interval for this
contrast then indicates whether the effect of alternative 1 is statistically different
than the effect of alternative 2.

Note that the weights, w;, can be chosen to be any values that satisfy Equation
(5.48). In practice, however, it typical to choose w;, = 1 and w; = —1, when we
wish to compare alternatives k and /. The remaining weights are all set to zero.

The confidence interval for the contrast ¢ = Z;‘zl wja; is found using the same
procedure as that we have used previously. Specifically, we need an estimate of
the standard deviation (or variance) of ¢ and an appropriate value from the ¢
table or from a normal distribution.

Although we do not present a formal derivation of this variance, intuitively
this variance is determined by assuming that the variation due to measurement
errors is equally distributed among all of the kn total measurements. Then, recall

79

5.2 Comparing more than two alternatives

from introductory statistics that, for any random variable X and some arbitrary
constant a, Var[aX] = a*Var[X]. Furthermore, if the random variables X, and
X, are independent, then Var[X| + X,] = Var[X|] + Var[X,]. Thus, since the
contrast ¢ = Z;;l wja;, the variance of ¢ is

k ;22
2 Zj:l(sze)

So==_r " 5.49

where s2 = SSE/k(n — 1) is the mean-square error. The number of degrees of
freedom for s is the same as the number of degrees of freedom for 52, namely
k(n —1).

The confidence interval, (¢;, ¢,) for the contrast ¢ is then given simply by

€1 = € — ll1—a/2:k(n—1)15¢ (5.50)

€y = ¢+ —ay2:k(n—1)Sc- (5.51)

Just like in previous situations, values from the normal distribution with u = 0
and o® = 1 can substituted for the l1—a/2:k(n—1y) distribution when the number of
degrees of freedom, k(n — 1), is greater than about 30.

Note that it is possible to use the F-fest to determine whether the value of a
contrast is statistically significant. Constructing a confidence interval for a con-
trast typically provides a more intuitive feel for the measured data, however, and
is usually all that is needed to obtain a good understanding of the results of an
experiment.

Example. From the data in Table 5.5, we found the effects of the three systems
to be oy = —0.1735, a, = —0.1441, and o3 =0.3175 ps. Using the weights
w; =1, w, = —1, and w3 = 0 gives us a contrast for the difference between the
effects of systems 1 and 2, where ¢jj_y = —0.1735 — (—0.1441) = —0.0294. The
standard deviation for all contrasts using this set of measurements is

O >IN \/zf_lw + (=1’ +0)
‘ kn ¢ 3(5)

= 0.0754(0.3651) = 0.0275.

(5.52)

For a 90% confidence interval we find #;;_y/2.k—1y) = 1.782, giving the confi-
dence interval [—0.0294 = (1.782)(0.0275)] = [—0.0784, 0.0196]. Since this confi-
dence interval includes zero, we conclude that there is no statistically significant
difference between the times required to perform a subroutine call and return
pair with systems 1 and 2.

In the same fashion, we can construct a contrast for the difference between the
effects of systems 1 and 3 by using w; =1,w, =0, and w3 = —1, giving
cri—3 = —0.4910 ps. The corresponding 90% confidence interval for this contrast
is found to be [—0.4910 F (1.782)(0.0275)] = [—0.540, —0.442] ps. Since this

80

53

5.4

Comparing alternatives

interval does not include zero, we thus conclude that we cannot say that there is
no statistically significant difference between these two systems. &

Summary

The need to compare several different alternatives is common in computer-
systems performance analysis. For instance, we may need to choose the best
computer system out of several different possibilities. The difficulty is that,
due to the errors that are inherent in our measurements, we cannot simply
compare the means of the measurements made of the various systems being
compared. For before-and-after comparisons in which there is an obvious direct
correspondence between measurements made on two different alternatives, we
can construct a confidence interval for the mean of the individual differences. If
this interval includes zero, we conclude that there is no statistically significant
difference between the two alternatives. In the case when there is no direct
correspondence between pairs of measurements, we construct a confidence inter-
val for the difference of the mean values of each set of measurements. As before,
we conclude that there is no statistically significant difference between the two
alternatives if this interval includes zero. We exploited the characteristics of the
binomial distribution to construct a confidence interval for the difference
between two proportions. Finally, we introduced the general ANOVA technique
for partitioning the total variation observed in a set of measurements into mean-
ingful components. This ANOVA technique is found to be useful when compar-
ing more than two alternatives.

For further reading

e Determining whether there is a statistically significant difference between
means is a concept that is covered well in most introductory statistics text-
books. One example is

Ronald E. Walpole and Raymond H. Myers, Probability and Statistics for
Engineers and Scientists (Second Edition), Macmillan Publishing, New
York, 1978.

e Also, the following text provides a good intuitive summary of one-factor
experimental design, as well as some good examples of comparing alternatives:

Raj Jain, The Art of Computer Systems Performance Analysis, John Wiley and
Sons, Inc., 1991.

81

9.5

5.5 Exercises

Exercises

1. Using the “before-and-after”” comparison technique with both a 90% and a
99% confidence level, determine whether turning a specific compiler optimi-
zation on makes a statistically significant difference. Repeat your analysis
using an ANOVA test with k = 2 alternatives. Explain your results.

2. A certain computer network rejects messages that any program attempts to
send on the network whenever the network runs out of buffer space to tem-
porarily store the outgoing messages. This occurs when the network tempora-
rily becomes very busy. Your measurements over the course of several days
showed that, out of 5,456,876 message requests, 4,342 of them were rejected
by the network. You are considering whether it is worthwhile to purchase
additional buffer memory to reduce the number of messages rejected. With
90% confidence, what message-rejection rate (measured as messages rejected
per 1,000,000 attempts) can be tolerated by the upgraded network while
showing a statistically significant improvement in performance?

3. Prove that SST = SSA + SSE in the ANOVA derivation.

4. Use an ANOVA test to compare the performances of three different, but
roughly comparable, computer systems measured in terms of the execution
time of an appropriate benchmark program. The ANOVA test shows only
whether there is a statistically significant difference among the systems, not
how large the difference really is. Use appropriate contrasts to compare the
differences between all possible pairs of the systems. Explain and interpret
your results.

Measurement tools and techniques

‘When the only tool you have is a hammer, every problem begins to resemble a nail.’
Abraham Maslow

The previous chapters have discussed what performance metrics may be useful
for the performance analyst, how to summarize measured data, and how to
understand and quantify the systematic and random errors that affect our
measurements. Now that we know what to do with our measured values,
this chapter presents several tools and techniques for actually measuring the
values we desire.

The focus of this chapter is on fundamental measurement concepts. The goal is
not to teach you how to use specific measurement tools, but, rather, to help you
understand the strengths and limitations of the various measurement techniques.
By the end of this chapter, you should be able to select an appropriate measure-
ment technique to determine the value of a desired performance metric. You also
should have developed some understanding of the trade-offs involved in using
the various types of tools and techniques.

6.1 Events and measurement strategies

There are many different types of performance metrics that we may wish to
measure. The different strategies for measuring the values of these metrics are
typically based around the idea of an event, where an event is some predefined
change in the system state. The precise definition of a specific event is up to the
performance analyst and depends on the metric being measured. For instance, an
event may be defined to be a memory reference, a disk access, a network com-
munication operation, a change in a processor’s internal state, or some pattern or
combination of other subevents.

82

83

6.1.1

6.1.2

6.1 Events and measurement strategies

Events-type classification

The different types of metrics that a performance analyst may wish to measure
can be classified into the following categories based on the type of event or events
that comprise the metric.

1. Event-count metrics. Metrics that fall into this category are those that are
simple counts of the number of times a specific event occurs. Examples of
event-count metrics include the number of page faults in a system with
virtual memory, and the number of disk input/output requests made by a

program.
2. Secondary-event metrics. These types of metrics record the values of some

secondary parameters whenever a given event occurs. For instance, to deter-
mine the average number of messages queued in the send buffer of a com-
munication port, we would need to record the number of messages in the
queue each time a message was added to, or removed from, the queue. Thus,
the triggering event is a message-enqueue or -dequeue operation, and the
metrics being recorded are the number of messages in the queue and the total
number of queue operations. We may also wish to record the size (e.g. the
number of bytes) of each message sent to later determine the average mes-

sage size.
3. Profiles. A profile is an aggregate metric used to characterize the overall

behavior of an application program or of an entire system. Typically, it is
used to identify where the program or system is spending its execution time.

Measurement strategies

The above event-type classification can be useful in helping the performance
analyst decide on a specific strategy for measuring the desired metric, since
different types of measurement tools are appropriate for measuring different
types of events. These different measurement tools can be categorized on the
basis of the fundamental strategy used to determine the actual values of the
metrics being measured. One important concern with any measurement strategy
is how much it perturbs the system being measured. This aspect of performance
measurement is discussed further in Section 6.6.
1. Event-driven. An event-driven measurement strategy records the information
necessary to calculate the performance metric whenever the preselected event
or events occur. The simplest type of event-driven measurement tool uses a
simple counter to directly count the number of occurrences of a specific event.
For example, the desired metric may be the number of page faults that occur
during the execution of an application program. To find this value, the per-
formance analyst most likely would have to modify the page-fault-handling

84

Measurement tools and techniques

routine in the operating system to increment a counter whenever the routine is
entered. At the termination of the program’s execution, an additional
mechanism must be provided to dump the contents of the counter.

One of the advantages of an event-driven strategy is that the system overhead
required to record the necessary information is incurred only when the event
of interest actually occurs. If the event never occurs, or occurs only infre-
quently, the perturbation to the system will be relatively small. This charac-
teristic can also be a disadvantage, however, when the events being monitored
occur very frequently.

When recording high-frequency events, a great deal of overhead may be
introduced into a program’s execution, which can significantly alter the pro-
gram’s execution behavior compared with its uninstrumented execution. As a
result, what the measurement tool measures need not reflect the typical or
average behavior of the system. Furthermore, the time between measurements
depends entirely on when the measured events occur so that the inter-event
time can be highly variable and completely unpredictable. This can increase
the difficulty of determining how much the measurement tool actually per-
turbs the executing program. Event-driven measurement tools are usually
considered most appropriate for low-frequency events.

. Tracing. A tracing strategy is similar to an event-driven strategy, except that,

rather than simply recording that fact that the event has occurred, some
portion of the system state is recorded to uniquely identify the event. For
example, instead of simply counting the number of page faults, a tracing
strategy may record the addresses that caused each of the page faults. This
strategy obviously requires significantly more storage than would a simple
count of events. Additionally, the time required to save the desired state,
either by storing it within the system’s memory or by writing to a disk, for
instance, can significantly alter the execution of the program being measured.

. Sampling. In contrast to an event-driven measurement strategy, a sampling

strategy records at fixed time intervals the portion of the system state neces-
sary to determine the metric of interest. As a result, the overhead due to this
strategy is independent of the number of times a specific event occurs. It is
instead a function of the sampling frequency, which is determined by the
resolution necessary to capture the events of interest.

The sampling of the state of the system occurs at fixed time intervals that are
independent of the occurrence of specific events. Thus, not every occurrence
of the events of interest will be recorded. Rather, a sampling strategy produces
a statistical summary of the overall behavior of the system. Consequently,
events that occur infrequently may be completely missed by this statistical
approach. Furthermore, each run of a sampling-based experiment is likely to
produce a different result since the samples occur asynchronously with respect

85

6.1 Events and measurement strategies

to a program’s execution. Nevertheless, while the exact behavior may differ,
the statistical behavior should remain approximately the same.

4. Indirect. An indirect measurement strategy must be used when the metric that
is to be determined is not directly accessible. In this case, you must find
another metric that can be measured directly, from which you then can
deduce or derive the desired performance metric. Developing an appropriate
indirect measurement strategy, and minimizing its overhead, relies almost
completely on the cleverness and creativity of the performance analyst.

The unique characteristics of these measurement strategies make them more or
less appropriate for different situations. Program tracing can provide the most
detailed information about the system being monitored. An event-driven mea-
surement tool, on the other hand, typically provides only a higher-level summary
of the system behavior, such as overall counts or average durations. The infor-
mation supplied both by an event-driven measurement tool and by a tracing tool
is exact, though, such as the precise number of times a certain subroutine is
executed. In contrast, the information provided by a sampling strategy is statis-
tical in nature. Thus, repeating the same experiment with an event-driven or
tracing tool will produce the same results each time whereas the results produced
with a sampling tool will vary slightly each time the experiment is performed.

The system resources consumed by the measurement tool itself as it collects
data will strongly affect how much perturbation the tool will cause in the system.
As mentioned above, the overhead of an event-driven measurement tool is
directly proportional to the number of occurrences of the event being measured.
Events that occur frequently may cause this type of tool to produce substantial
perturbation as a byproduct of the measurement process. The overhead of a
sampling-based tool, however, is independent of the number of times any specific
event occurs. The perturbation caused by this type of tool is instead a function of
the sampling interval, which can be controlled by the experimenter or the tool
builder. A trace-based tool consumes the largest amount of system resources,
requiring both processor resources (i.e. time) to record each event and potentially
enormous amounts of storage resources to save each event in the trace. As a
result, tracing tends to produce the largest system perturbation.

Each indirect measurement tool must be uniquely adapted to the particular
aspect of the system performance it attempts to measure. Therefore, it is impos-
sible to make any general statements about a measurement tool that makes use
of an indirect strategy. The key to implementing a tool to measure a specific
performance metric is to match the characteristics of the desired metric with the
appropriate measurement strategy. Several of the fundamental techniques that
have been used for implementing the various measurement strategies are
described in the following sections.

86

6.2

Measurement tools and techniques

Interval timers

One of the most fundamental measuring tools in computer-system performance
analysis is the interval timer. An interval timer is used to measure the execution
time of an entire program or any section of code within a program. It can also
provide the time basis for a sampling measurement tool. Although interval
timers are relatively straightforward to use, understanding how an interval
timer is constructed helps the performance analyst determine the limitations
inherent in this type of measurement tool.

Interval timers are based on the idea of counting the number of clock pulses
that occur between two predefined events. These events are typically identified by
inserting calls to a routine that reads the current timer count value into a pro-
gram at the appropriate points, such as shown previously in the example in
Figure 2.1. There are two common implementations of interval timers, one
using a hardware counter, and the other based on a software interrupt.

Hardware timers. The hardware-based interval timer shown in Figure 6.1
simply counts the number of pulses it receives at its clock input from a free-
running clock source. The counter is typically reset to 0 when the system is first
powered up so that the value read from the counter is the number of clock ticks
that have occurred since that time. This value is used within a program by
reading the memory location that has been mapped to this counter by the man-
ufacturer of the system.

Assume that the value read at the start of the interval being measured is x; and
the value read at the end of the interval is x,. Then the total time that has elapsed
between these two read operations is T, = (x; — x;)7T,, where T, is the period of
the clock input to the counter.

Software timers. The primary difference between a software-interrupt-based
interval timer, shown in Figure 6.2, and a hardware-based timer is that the
counter accessible to an application program in the software-based implementa-

TC
J u I_ Counter
Clock
o o o To the processor
memory bus
n bits

Figure 6.1 A hardware-based interval timer uses a free-running clock source to continuously
increment an n-bit counter. This counter can be read directly by the operating system or by
an application program. The period of the clock, T,, determines the resolution of the timer.

87

6.2 Interval timers

e T.

- -—»

LI Prescaler | J L T

(divide-by-m)

Clock

To processor's interrupt input

Figure 6.2 A software interrupt-based timer divides down a free-running clock to produce
a processor interrupt with the period T,. The interrupt service routine then maintains a
counter variable in memory that it increments each time the interrupt occurs.

tion is not directly incremented by the free-running clock. Instead, the hardware
clock is used to generate a processor interrupt at regular intervals. The interrupt-
service routine then increments a counter variable it maintains, which is the value
actually read by an application program. The value of this variable then is a
count of the number of interrupts that have occurred since the count variable
was last initialized. Some systems allow an application program to reset this
counter. This feature allows the timer to always start from zero when timing
the duration of an event.

The period of the interrupts in the software-based approach corresponds to
the period of the timer. As before, we denote this period T, so that the total time
elapsed between two readings of the software counter value is again
T. = (x, — x1)T,. The processor interrupt is typically derived from a free-run-
ning clock source that is divided by m through a prescaling counter, as shown in
Figure 6.2. This prescaler is necessary in order to reduce the frequency of the
interrupt signal fed into the processor. Interrupts would occur much too often,
and thus would generate a huge amount of processor overhead, if this prescaling
were not done.

Timer rollover. One important consideration with these types of interval timers
is the number of bits available for counting. This characteristic directly deter-
mines the longest interval that can be measured. (The complementary issue of the
shortest interval that can be measured is discussed in Section 6.2.2.) A binary
counter used in a hardware timer, or the equivalent count variable used in a
software implementation, is said to ‘roll over’ to zero as its count undergoes a
transition from its maximum value of 2" — 1 to the zero value, where n is the
number of bits in the counter.

If the counter rolls over between the reading of the counter at the start of the
interval being measured and the reading of the counter at the end, the difference
of the count values, x, — x;, will be a negative number. This negative value is
obviously not a valid measurement of the time interval. Any program that uses
an interval timer must take care to ensure that this type of roll over can never
occur, or it must detect and, possibly, correct the error. Note that a negative
value that occurs due to a single roll over of the counter can be converted to the
appropriate value by adding the maximum count value, 2", to the negative value

88

6.2.1

Measurement tools and techniques

obtained when subtracting x; from x,. Table 6.1 shows the maximum time
between timer roll overs for various counter widths and input clock periods.

Timer overhead

The implementation of an interval timer on a specific system determines how the
timer must be used. In general, though, we can think of using an interval timer to
measure any portion of a program, much as we would use a stopwatch to time a
runner on a track, for instance. In particular, we typically would use an interval
time within a program as follows:

x_start = read_timer();

<event being timed>

x_end = read_timer();

elapsed_time = (x_end - x_start) * t_cycle;

When it is used in this way, we can see that the time we actually measure
includes more than the time required by the event itself. Specifically, accessing
the timer requires a minimum of one memory-read operation. In some imple-
mentations, reading the timer may require as much as a call to the operating-
system kernel, which can be very time-consuming. Additionally, the value read
from the timer must be stored somewhere before the event being timed begins.
This requires at least one store operation, and, in some systems, it could
require substantially more. These operations must be performed twice, once
at the start of the event, and once again at the end. Taken altogether, these
operations can add up to a significant amount of time relative to the duration
of the event itself.

To obtain a better understanding of this timer overhead, consider the time
line shown in Figure 6.3. Here, T is the time required to read the value of the
interval timer’s counter. It may be as short as a single memory read, or as long
as a call into the operating-system kernel. Next, 7, is the time required to store
the current time. This time includes any time in the kernel after the counter has
been read, which would include, at a minimum, the execution of the return
instruction. Time 73 is the actual duration of the event we are trying to
measure. Finally, the time from when the event ends until the program actually
reads the counter value again is 74. Note that reading the counter this second
time involves the same set of operations as the first read of the counter so that
T,=T,.

Assigning these times to each of the components in the timing operation now
allows us to compare the timer overhead with the time of the event itself, which is
what we actually want to know. This event time, T, is time 75 in our time line, so
that T, = T5. What we measure, however, is T, = T, + T5; + T4. Thus, our

89

6.2 Interval timers

Table 6.1 The maximum time available before a binary interval timer with n bits and an
input clock with a period of T, rolls over is T.2"

Counter width, n

T, 16 24 32 48 64
10 ns 655 ps 168 ms 429 s 32.6 days 58.5 centuries
100 ns 6.55 ms 1.68 s 7.16 min 326 days 585 centuries
1 us 65.5 ms 16.8 s 1.1I9h 9.15 years 5,850 centuries
10 ps 655 ms 2.8 min 119 h 89.3 years 58,500 centuries
100 ps 6.55s 28.0 min 4.97 days 893 years 585,000 centuries
1 ms 1.09 min 4.66 h 49.7 days 89.3 centuries 5,850,000 centuries
T, T, T, T,
| | | | |
\ \ \ \ \
= = £ hal =
b= o g b= o
E £ E £ £
= 2 B =
2 E 5 2
5 : g 5
M >
[sa]

Figure 6.3 The overhead incurred when using an interval timer to measure the execution
time of any portion of a program can be understood by breaking down the operations
necessary to use the timer into the components shown here.

desired measurement is 7, =T, — (T, + T4) = Ty — (T} + T>), since T, = T.
We call T| + T, the timer overhead and denote it T, q.

If the interval being measured is substantially larger than the timer overhead,
then the timer overhead can simply be ignored. If this condition is not satisfied,
though, then the timer overhead should be carefully measured and subtracted
from the measurement of the event under consideration. It is important to
recognize, however, that variations in measurements of the timer overhead itself
can often be quite large relative to variations in the times measured for the event.
As a result, measurements of intervals whose duration is of the same order of
magnitude as the timer overhead should be treated with great suspicion. A good
rule of thumb is that the event duration, T,, should be 100-1,000 times larger
than the timer overhead, T 4.

90

6.2.2

Measurement tools and techniques

Quantization errors

The smallest change that can be be detected and displayed by an interval timer is
its resolution. This resolution is a single clock tick, which, in terms of time, is the
period of the timer’s clock input, 7,. This finite resolution introduces a random
quantization error into all measurements made using the timer.

For instance, consider an event whose duration is n ticks of the clock input,
plus a little bit more. That is, 7, = nT, + A, where n is a positive integer and
0 < A < T,. If, when one is measuring this event, the timer value is read
shortly after the event has actually begun, as shown in Figure 6.4(a), the
timer will count n clock ticks before the end of the event. The total execution
time reported then will be nT,. If, on the other hand, there is slightly less time
between the actual start of the event and the point at which the timer value is
read, as shown in Figure 6.4(b), the timer will count n + 1 clock ticks before
the end of the event is detected. The total time reported in this case will then be
n+ DHT..

In general, the actual event time is within the range nT, < T, < (n+ 1)T..
Thus, the fact that events are typically not exactly whole number factors of the
timer’s clock period causes the time value reported to be rounded either up or
down by one clock period. This rounding is completely unpredictable and is one
readily identifiable (albeit possibly small) source of random errors in our mea-
surements (see Section 4.2). Looking at this quantization effect another way, if we
made ten measurements of the same event, we would expect that approximately
five of them would be reported as n7, with the remainder reported as (n + 1)7. If
T, is large relative to the event being measured, this quantization effect can make
it impossible to directly measure the duration of the event. Consequently, we
typically would like T, to be as small as possible, within the constraints imposed
by the number of bits available in the timer (see Table 6.1).

e e A S O O N A
Clock
e U A R B N

Event

S S) A O A
Clock
S N N A) B O O A B B

Event

(b) Interval timer reports event duration of n = 14 clock ticks.

Figure 6.4 The finite resolution of an interval timer causes quantization of the reported
duration of the events measured.

91

6.2.3

6.2 Interval timers

Statistical measures of short intervals

Owing to the above quantization effect, we cannot directly measure events whose
durations are less than the resolution of the timer. Similarly, quantization makes
it difficult to accurately measure events with durations that are only a few times
larger than the timer’s resolution. We can, however, make many measurements
of a short duration event to obtain a statistical estimate of the event’s duration.

Consider an event whose duration is smaller than the timer’s resolution, that
is, T, < T,. If we measure this interval once, there are two possible outcomes. If
we happen to start our measurement such that the event straddles the active edge
of the clock that drives the timer’s internal counter, as shown in Figure 6.5(a), we
will see the clock advance by one tick. On the other hand, since 7, < T, it is
entirely possible that the event will begin and end within one clock period, as
shown in Figure 6.5(b). In this case, the timer will not advance during this
measurement. Thus, we have a Bernoulli experiment whose outcome is 1 with
probability p, which corresponds to the timer advancing by one tick while are
measuring the event. If the clock does not advance, though, the outcome is 0 with
probability 1 — p.

Repeating this measurement # times produces a distribution that approximates
a binomial distribution. (It is only approximate since, for a true binomial dis-

| . |

(a) Event T, straddles the active edge of the interval timer.

| T |

| e |

(b) Event T, begins and ends within the resolution of the interval timer.

Figure 6.5 When one is measuring an event whose duration is less than the resolution of
the interval timer, that is, 7, < T, there are two possible outcomes for each measurement.
Either the event happens to straddle the active edge of the timer’s clock, in which case the
counter advances by one tick, or the event begins and completes between two clock edges.
In the latter case, the interval timer will show the same count value both before and after
the event. Measuring this event multiple times approximates a binomial distribution.

92

6.3

Measurement tools and techniques

tribution, each of the n measurements must be independent. However, in a real
system it is possible that obtaining an outcome of 0 in one measurement makes it
more likely that one will obtain a 0 in the next measurement, for instance.
Nevertheless, this approximation appears to work well in practice.) If the num-
ber of outcomes that produce 1 is m, then the ratio m/n should approximate the
ratio of the duration of the event being measured to the clock period, T,/T..
Thus, we can estimate the average duration of this event to be

7.="r. 6.1)
n

We can then use the technique for calculating a confidence interval for a propor-
tion (see Section 4.4.3) to obtain a confidence interval for this average event
time."

Example. We wish to measure an event whose duration we suspect is less than
the 40 ps resolution of our interval timer. Out of n = 10,482 measurements of
this event, we find that the clock actually advances by one tick during m = 852 of
them. For a 95% confidence level, we construct the interval for the ratio m/n =
852/10,482 as follows:

852 % (1 - %)
0,453 F (196 — (0.0786, 0.0840). (6.2)

Scaling this interval by the timer’s clock period gives us the 95% confidence
interval (3.14, 3.36)us for the duration of this event. &

Program profiling

A profile provides an overall view of the execution behavior of an application
program. More specifically, it is a measurement of how much time, or the frac-
tion of the total time, the system spends in certain states. A profile of a program
can be useful for showing how much time the program spends executing each of
its various subroutines, for instance. This type of information is often used by a
programmer to identify those portions of the program that consume the largest
fraction of the total execution time. Once the largest time consumers have been
identified, they can, one assumes, be enhanced to thereby improve performance.

Similarly, when a profile of an entire system multitasking among several dif-
ferent applications is taken, it can be used by a system administrator to find
system-level performance bottlenecks. This information can be used in turn to

! The basic idea behind this technique was first suggested by Peter H. Danzig and Steve Melvin in an
unpublished technical report from the University of Southern California.

93

6.3.1

6.3 Program profiling

tune the performance of the overall system by adjusting such parameters as
buffer sizes, time-sharing quanta, disk-access policies, and so forth.

There are two distinct techniques for creating a program profile — program-
counter (PC) sampling and basic-block counting. Sampling can also be used to
generate a profile of a complete system.

PC sampling

Sampling is a general statistical measurement technique in which a subset (i.e. a
sample) of the members of a population being examined is selected at random.
The information of interest is then gathered from this subset of the total popula-
tion. It is assumed that, since the samples were chosen completely at random, the
characteristics of the overall population will approximately follow the same
proportions as do the characteristics of the subset actually measured. This
assumption allows conclusions about the overall population to be drawn on
the basis of the complete information obtained from a small subset of this
population.

While this traditional population sampling selects all of the samples to be
tested at (essentially) the same time, a slightly different approach is required
when using sampling to generate a profile of an executing program. Instead of
selecting all of the samples to be measured at once, samples of the executing
program are taken at fixed points in time. Specifically, an external periodic signal
is generated by the system that interrupts the program at fixed intervals.
Whenever one of these interrupts is detected, appropriate state information is
recorded by the interrupt-service routine.

For instance, when one is generating a profile for a single executing program,
the interrupt-service routine examines the return-address stack to find the
address of the instruction that was executing when the interrupt occurred.
Using symbol-table information previously obtained from the compiler or
assembler, this program-instruction address is mapped onto a specific subroutine
identifier, i. The value i is used to index into a single-dimensional array, H, to
then increment the element H; by one. In this way, the interrupt-service routine
generates a histogram of the number of times each subroutine in the program
was being executed when the interrupt occurred.

The ratio H;/n is the fraction of the program’s total execution time that it
spent executing in subroutine i, where n is the total number of interrupts that
occurred during the program’s execution. Multiplying the period of the interrupt
by these ratios provides an estimate of the total time spent executing in each
subroutine.

It is important to remember that sampling is a statistical process in which the
characteristics of an entire population (in our present situation, the execution

94

Measurement tools and techniques

behavior of an entire program or system) are inferred from a randomly selected
subset of the overall population. The calculated values of these inferences are,
therefore, subject to random errors. Not surprisingly, we can calculate a con-
fidence interval for these proportions to obtain a feel for the precision of our
sampling experiment.

Example. Suppose that we use a sampling tool that interrupts an executing
program every 7T, = 10 ms. Including the time required to execute the interrupt-
service routine, the program executes for a total of 8 s. If Hx = 12 of the n = 800
samples find the program counter somewhere in subroutine X when the interrupt
occurred, what is the fraction of the total time the program spends executing this
subroutine?

Since there are 800 samples in total, we conclude that the program spends
1.5% (12/800 = 0.015) of its time in subroutine X. Using the procedure from
Section 4.4.3, we calculate a 99% confidence interval for this proportion to be

015(1 —0.01
(61,62):0.015:F2.576\/00 5(80000 5)

= (0.0039, 0.0261). (6.3)

So, with 99% confidence, we estimate that the program spends between 0.39%
and 2.6% of its time executing subroutine X. Multiplying by the period of the
interrupt, we estimate that, out of the 8 s the program was executing, there is a
99% chance that it spent between 31 (0.0039 x 8) and 210 (0.0261 x 8) ms
executing subroutine X. O

The confidence interval calculated in the above example produces a rather
large range of times that the program could be spending in subroutine X. Put
in other terms, if we were to repeat this experiment several times, we would
expect that, in 99% of the experiments, from three to 21 of the 800 samples
would come from subroutine X. While this 7 : 1 range of possible execution
times appears large, we estimate that subroutine X still accounts for less than
3% of the total execution time. Thus, we most likely would start our program-
tuning efforts on a routine that consumes a much larger fraction of the total
execution time.

This example does demonstrate the importance of having a sufficient number
of samples in each state to produce reliable information, however. To reduce the
size of the confidence interval in this example we need more samples of each
event. Obtaining more samples per event requires either sampling for a longer
period of time, or increasing the sampling rate. In some situations, we can simply
let the program execute for a longer period of time. This will increase the total
number of samples and, hence, the number of samples obtained for each sub-
routine.

Some programs have a fixed duration, however, and cannot be forced to
execute for a longer period. In this situation, we can run the program multiple

95

6.3.2

6.3 Program profiling

times and simply add the samples from each run. The alternative of increasing
the sampling frequency will not always be possible, since the interrupt period is
often fixed by the system or the profiling tool itself. Furthermore, increasing the
sampling frequency increases the number of times the interrupt-service routine is
executed, which increases the perturbation to the program. Of course, each run
of the program must be performed under identical conditions. Otherwise, if the
test conditions are not identical, we are testing two essentially different systems.
Consequently, in this case, the two sets of samples cannot be simply added
together to form one larger sample set.

It is also important to note that this sampling procedure implicitly assumes
that the interrupt occurs completely asynchronously with respect to any events in
the program being profiled. Although the interrupts occur at fixed, predefined
intervals, if the program events and the interrupt are asynchronous, the inter-
rupts will occur at random points in the execution of the program being sampled.
Thus, the samples taken at these points are completely independent of each
other. This sample independence is critical to obtaining accurate results with
this technique since any synchronism between the events in the program and
the interrupt will cause some areas of the program to be sampled more often than
they should, given their actual frequency of occurrence.

Basic-block counting

The sampling technique described above provides a statistical profile of the
behavior of a program. An alternative approach is to produce an exact execution
profile by counting the number of times each basic block is executed. A basic
block is a sequence of processor instructions that has no branches into or out of
the sequence, as shown in Figure 6.6. Thus, once the first instruction in a block
begins executing, it is assured that all of the remaining instructions in the block
will be executed. The instructions in a basic block can be thought of as a com-
putation that will always be executed as a single unit.

A program’s basic-block structure can be exploited to generate a profile by
inserting into each basic block additional instructions. These additional instruc-
tions simply count the number of times the block is executed. When the program
terminates, these values form a histogram of the frequency of the basic-block
executions. Just like the histogram produced with sampling, this basic-block
histogram shows which portions of the program are executed most frequently.
In this case, though, the resolution of the information is at the basic-block level
instead of the subroutine level. Since a basic block executes as an indivisible unit,
complete instruction-execution-frequency counts can also be obtained from these
basic-block counts.

96 Measurement tools and techniques

1. $37: la $25, __iob
2. 1w $15, 0($25)
3. addu $9, $15, -1
4. sw $9, 0($25)
5. la $8, __iob
6. 1w $11, 0($8)
7. bge $11, 0, $38
8. move $4, $8

9. jal __filbuf
10. move $17, $2

11. $38: la $12, __iob

Figure 6.6 A basic block is a sequence of instructions with no branches into or out of the
block. In this example, one basic block begins at statement 1 and ends at statement 7. A
second basic block begins at statement 8 and ends at statement 9. Statement 10 is a basic
block consisting of only one instruction. Statement 11 begins another basic block since it is
the target of an instruction that branches to label $38.

One of the key differences between this basic-block profile and a profile gen-
erated through sampling is that the basic-block profile shows the exact execution
frequencies of all of the instructions executed by a program. The sampling pro-
file, on the other hand, is only a statistical estimate of the frequencies. Hence, if a
sampling experiment is run a second time, the precise execution frequences will
most likely be at least slightly different. A basic-block profile, however, will
produce exactly the same frequencies whenever the program is executed with
the same inputs.

Although the repeatability and exact frequencies of basic-block counting
would seem to make it the obvious profiling choice over a sampling-based pro-
file, modifying a program to count its basic-block executions can add a substan-
tial amount of run-time overhead. For instance, to instrument a program for
basic-block counting would require the addition of at least one instruction to
increment the appropriate counter when the block begins executing to each basic
block. Since the counters that need to be incremented must be unique for each
basic block, it is likely that additional instructions to calculate the appropriate
offset for the current block into the array of counters will be necessary.

In most programs, the number of instructions in a basic block is typically
between three and 20. Thus, the number of instructions executed by the instru-
mented program is likely to increase by at least a few percent and possibly as
much as 100% compared with the uninstrumented program. These additional
instructions can substantially increase the total running time of the program.

97

6.4

6.4 Event tracing

Furthermore, the additional memory required to store the counter array, plus the
execution of the additional instructions, can cause other substantial perturba-
tions. For instance, these changes to the program can significantly alter its
memory behavior.

So, while basic-block counting provides exact profile information, it does so at
the expense of substantial overhead. Sampling, on the other hand, distributes its
perturbations randomly throughout a program’s execution. Also, the total per-
turbation due to sampling can be controlled somewhat by varying the period of
the sampling interrupt interval. Nevertheless, basic-block counting can be a
useful tool for precisely characterizing a program’s execution profile. Many
compilers, in fact, have compile-time flags a user can set to automatically insert
appropriate code into a program as it is compiled to generate the desired basic-
block counts when it is subsequently executed.

Event tracing

The information captured through a profiling tool provides a summary picture
of the overall execution of a program. An often-useful type of information that is
ignored in this type of profile summary, however, is the time-ordering of events.
A basic-block-counting profile can show the type and frequency of each of the
instructions executed, for instance, but it does not provide any information
about the order in which the instructions were executed. When this sequencing
information is important to the analysis being performed, a program trace is the
appropriate choice.

A trace of a program is a dynamic list of the events generated by the program
as it executes. The events that comprise a trace can be any events that you can
find a way to monitor, such as a time-ordered list of all of the instructions
executed by a program, the sequence of memory addresses accessed by a pro-
gram, the sequence of disk blocks referenced by the file system, the sizes and
destinations of all messages sent over a network, and so forth. The level of detail
provided in a trace is entirely determined by the performance analyst’s ability to
gather the information necessary for the problem at hand.

Traces themselves can be analyzed to characterize the overall behavior of a
program, much as a profile characterizes a program’s behavior. However, traces
are probably more typically used as the input to drive a simulator. For instance,
traces of the memory addresses referenced by a program are often used to drive
cache simulators. Similarly, traces of the messages sent by an application pro-
gram over a communication network are often used to drive simulators for
evaluating changes to communication protocols.

98

6.4.1

Measurement tools and techniques

Trace generation

The overall tracing process is shown schematically in Figure 6.7. A tracing
system typically consists of two main components. The first is the application
being traced, which is the component that actually generates the trace. The
second main component is the trace consumer. This is the program, such as a
simulator, that actually uses the information being generated. In between the
trace generator and the consumer is often a large disk file on which to store the
trace. Storing the trace allows the consumer to be run many times against an
unchanging trace to allow comparison experiments without the expense of regen-
erating the trace. Since the trace can be quite large, however, it will not always be
possible or desirable to store the trace on an intermediate disk. In this case, it is
possible to consume the trace online as it is generated.

A wide range of techniques have been developed for generating traces. Several
of these approaches are summarized below.

1. Source-code modification. Perhaps the most straightforward approach for
generating a program trace is to modify the source code of the program to
be traced. For instance, the programmer may add additional tracing state-
ments to the source code, as shown in Figure 6.8. When the program is
subsequently compiled and executed, these additional program statements
will be executed, thereby generating the desired trace. One advantage of
this approach is that the programmer can trace only the desired events.
This can help reduce the volume of trace data generated. One major dis-
advantage is that inserting trace points is typically a manual process and is,
therefore, very time-consuming and prone to error.

2. Software exceptions. Some processors have been constructed with a mode that
forces a software exception just before the execution of each instruction. The

Disk
(Tt T \ (T TTTTTTTT \
Application i i i i Trace
> Compress + 1 Uncompress ————
Program 1 1 I 1 Consumer
N 1] 1 1 ’
N N2 / N e / P
N .

Online trace consumption.

Modified to generate a trace.

Figure 6.7 The overall process used to generate, store, and consume a program trace.

99 6.4 Event tracing

sum_x = 0.0;
trace(l);
sum_xx = 0.0;
trace(2);
for (i = 1; i <= n; i++)
trace(3);
{
sum_x += x[i];
trace(4);
sum_xx += (x[il*x[i]);
trace(b);
}
mean = sum_x / n;
trace(6);
var = ((n * sum_xx) - (sum_x * sum_x)) / (n * (n-1));
trace(7);
std_dev = sqrt(var);
trace(8);
Z_p = unit_normal(l - (0.5 * alpha));
trace(9);
half_int = z_p * std_dev / sqrt(n);
trace(10);

cl = mean - half_int;

trace(11);

c2 = mean + half_int;
trace(12);

(a) The original source program with calls to the tracing routine inserted.

trace(i)

{ print(i,time);}
(b) The trace routine simply prints the statement number, i, and the current time.

Figure 6.8 Program tracing can be performed by inserting additional statements into the
source code to call a tracing subroutine at appropriate points.

exception-processing routine can decode the instruction to determine its oper-
ands. The instruction type, address, and operand addresses and values can
then be stored for later use. This approach was implemented using the T-bit in
Digital Equipment Corporation’s VAX processor series and in the Motorola
68000 processor family. Executing with the trace mode enabled on these
processors slowed down a program’s execution by a factor of about 1,000.

100

6.4.2

Measurement tools and techniques

3. Emulation. An emulator is a program that makes the system on which it
executes appear to the outside world as if it were something completely dif-
ferent. For example, the Java Virtual Machine is a program that executes
application programs written in the Java programming language by emulating
the operation of a processor that implements the Java byte-code instruction
set. This emulation obviously slows down the execution of the application
program compared with direct execution. Conceptually, however, it is a
straightforward task to modify the emulator program to trace the execution
of any application program it executes.

4. Microcode modification. In the days when processors executed microcode to
execute their instruction sets through interpretation, it was possible to modify
the microcode to generate a trace of each instruction executed. One important
advantage of this approach was that it traced every instruction executed on
the processor, including operating-system code. This feature was especially
useful for tracing entire systems, including the interaction between the appli-
cation programs and the operating system. The lack of microcode on current
processors severely limits the applicability of this approach today.

5. Compiler modification. Another approach for generating traces is to modify
the executable code produced by the compiler. Similar to what must be done
for generating basic-block counts, extra instructions are added at the start of
each basic block to record when the block is entered and which basic block is
being executed then. Details about the contents of the basic blocks can be
obtained from the compiler and correlated to the dynamic basic-block trace to
produce a complete trace of all of the instructions executed by the application
program. It is possible to add this type of tracing facility as a compilation
option, or to write a post-compilation software tool that modifies the execu-
table program generated by the compiler.

These trace-generation techniques are by no means the only ways in which
traces can be produced. Rather, they are intended to give you a flavor of the
types of approaches that have been used successfully in other trace-generation
systems. Indeed, new techniques are limited only by the imagination and crea-
tivity of the performance analyst.

Trace compression

One obvious concern when generating a trace is the execution-time slowdown
and other program perturbations caused by the execution of the additional tra-
cing instructions. Another concern is the volume of data that can be produced in
a very short time. For example, say we wish to trace every instruction executed
by a processor that executes at an average rate of 10% instructions per second. If

101

6.4.2.1

6.4.2.2

6.4 Event tracing

each item in the trace requires 16 bits to encode the necessary information, our
tracing will produce more than 190 Mbytes of data per uninstrumented second of
execution time, or more than 11 Gbytes per minute! In addition to obtaining the
disks necessary to store this amount of data, the input/output operations
required to move this large volume of data from the traced program to the
disks create additional perturbations. Thus, it is desirable to reduce the amount
of information that must be stored.

Online trace consumption

One approach for dealing with these large data volumes is to consume the trace
online. That is, instead of storing the trace for later use, the program that will be
driven by the trace is run simultaneously with the application program being
traced. In this way, the trace is consumed as it is generated so that it never needs
to be stored on disk at all.

A potential problem with online trace consumption in a multitasked (i.e. time-
shared) system is the potential interdeterminate behavior of the program being
traced. Since system events occur asynchronously with respect to the traced
program, there is no assurance that the next time the program is traced the
exact same sequence of events will occur in the same relative time order. This
is a particular concern for programs that must respond to real-time events, such
as system interrupts and user inputs.

This potential lack of repeatability in generating the trace is a concern when
performing one-to-one comparison experiments. In this situation, the trace-con-
sumption program is driven once with the trace and its output values are
recorded. It is then modified in some way and then driven again with the same
trace. If the identical input trace is used both times, it is reasonable to conclude
that any change in performance observed is due to the change made to the trace-
consumption program. However, if it cannot be guaranteed that the trace is
identical from one run to the next, it is not possible to determine whether any
change in performance observed is due to the change made, or whether it is due
to a difference in the input trace itself.

Compression of data

A trace written to intermediate storage, such as a disk, can be viewed just like
any other type of data file. Consequently, it is quite reasonable to apply a data-
compression algorithm to the trace data as it is written to the disk. For example,
any one of the large number of compression programs based on the popular
Lempel-Ziv algorithm is often able to reduce the size of a trace file by 20-70%.
Of course, the tradeoff for this data compression is the additional time required
to execute the compression routine when the trace is generated and the time
required to uncompress the trace when it is consumed.

102

6.4.2.3

Measurement tools and techniques

Abstract execution

An interesting variation of the basic trace-compression idea takes advantage of
the semantic information within a program to reduce the amount of informa-
tion that must be stored for a trace. This approach, called abstract execution,
separates the tracing process into two steps. The first step performs a compiler-
style analysis of the program to be traced. This analysis identifies a small subset
of the entire trace that is sufficient to later reproduce the full trace. Only this
smaller subset is actually stored. Later, the trace-consumption program must
execute some special trace-regeneration routines to convert this partial trace
information into the full trace. These regeneration routines are automatically
generated by the tracing tool when it performs the initial analysis of the
program.

The data about the full trace that are actually stored when using the abstract-
execution model consist of information describing only those transitions that
may change during run-time. For example, consider the code fragment extracted
from a program to be traced shown in Figure 6.9. The compiler-style analysis
that would be performed on this code fragment would produce the control flow
graph shown in Figure 6.10. From this control flow graph, the trace-generation
tool can determine that statement 1 always precedes both statements 2 and 3.
Furthermore, statement 4 always follows both statements 2 and 3. When this
program is executed, the trace through this sequence of statements will be either
1-2—4, or 1-3—4. Thus, the only information that needs to be recorded during
run-time is which of statements 2 and 3 actually occurred. The trace-regeneration
routine is then able to later reconstruct the full trace using the previously
recorded control flow graph.

Measurements of the effectiveness of this tracing technique have shown that it
slows down the execution of the program being traced by a factor of typically 2—
10. This slowdown factor is comparable to, or slightly better than, those of most
other tracing techniques. More important, however, may be that, by recording
information only about the changes that actually occur during run-time, this
technique is able to reduce the size of the stored traces by a factor of ten to
several hundred.

1. if (1 > 5)
2 then a = a + i;
3. else b = b + 1;
4. i = i + 1;

Figure 6.9 A code fragment to be processed using the abstract execution tracing technique..

103 6.4 Event tracing

1.i>5

N

2Q.a=a+i 3.b=b+1

\/

4.i=i+1

l

Figure 6.10 The control flow graph corresponding to the program fragment shown in
Figure 6.9.

6.4.2.4 Trace sampling

Trace sampling is another approach that has been suggested for reducing the
amount of information that must be collected and stored when tracing a pro-
gram. The basic idea is to save only relatively small sequences of events from
locations scattered throughout the trace. The expectation is that these small
samples will be statistically representative of the entire program’s trace when
they are used. For instance, using these samples to drive a simulation should
produce overall results that are similar to what would be produced if the simula-
tion were to be driven with the entire trace.

Consider the sequence of events from a trace shown in Figure 6.11. Each
sample from this trace consists of k consecutive events. The number of events
between the starts of consecutive samples is the sampling interval, denoted by P.
Since only the samples from the trace are actually recorded, the total amount of
storage required for the trace can be reduced substantially compared with storing
the entire raw trace.

XX XXX XXXXXX e o o XXX XXXXXXXX e o o

k | k |

| P |

Figure 6.11 In trace sampling, k consecutive events comprise one sample of the trace. A
new sample is taken every P events (P is called the sampling interval).

104

6.5

Measurement tools and techniques

Unfortunately, there is no solid theoretical basis to help the experimenter
determine how many events should be stored for each sample (k), or how large
the sampling interval (P) should be. The best choices for k and P typically must be
determined empirically (i.e. through experimentation). Furthermore, the choice
of these parameters seems to be dependent on how the traces will be used. If the
traces are used to drive a simulation of a cache to estimate cache-miss ratios, for
instance, it has been suggested (see Laha et a/. (1988)) that, in a trace of tens of
millions of memory references, it is adequate to have several thousand events per
sample. The corresponding sampling interval then should be chosen to provide
enough samples such that 5-10% of the entire trace is recorded. These results,
however, appear to be somewhat dependent on the size of the cache being simu-
lated. The bottom line is that, while trace sampling appears to be a reasonable
technique for reducing the size of the trace that must be stored, a solid theoretical
basis still needs to be developed before it can be considered ‘standard practice.’

Indirect and ad hoc measurements

Sometimes the performance metric we need is difficult, if not impossible, to
measure directly. In this case, we have to rely on our ingenuity to develop an
ad hoc technique to somehow derive the information indirectly. For instance,
perhaps we are not able to directly measure the desired quantity, but we may be
able to measure another related value directly. We may then be able to deduce
the desired value from these other measured values.

For example, suppose that we wish to determine how much load a particular
application program puts on a system when it is executed. We then may want to
make changes to the program to see how they affect the system load. The first
question we need to confront in this experiment is that of establishing a defini-
tion for the ‘system load.’

There are many possible definitions of the system load, such as the number of
jobs on the run queue waiting to be executed, to name but one. In our case,
however, we are interested in how much of the processor’s available time is spent
executing our application program. Thus, we decide to define the average system
load to be the fraction of time that the processor is busy executing users’ appli-
cation programs.

If we had access to the source code of the operating system, we could directly
measure this time by modifying the process scheduler. However, it is unlikely
that we will have access to this code. An alternative approach is to directly
measure how much time the processor spends executing an ‘idle’ process that
we create. We then use this direct measurement of idle time to deduce how much

105

6.6

6.6 Perturbations due to measuring

time the processor must have been busy executing real application programs
during the given measurement interval.

Specifically, consider an ‘idle’ program that simply counts up from zero for a
fixed period of time. If this program is the only application running on a single
processor of a time-shared system, the final count value at the end of the mea-
surement interval is the value that indirectly corresponds to an unloaded pro-
cessor. If two applications are executed simultaneously and evenly share the
processor, however, the processor will run our idle measurement program half
as often as when it was the only application running. Consequently, if we allow
both programs to run for the same time interval as when we ran the idle program
by itself, its total count value at the end of the interval should be half of the value
observed when only a single copy was executed.

Similarly, if three applications are executed simultaneously and equally share
the processor for the same measurement interval, the final count value in our idle
program should be one-third of the value observed when it was executed by
itself. This line of thought can be further extended to »n application programs
simultaneously sharing the processor. After calibrating the counter process by
running it by itself on an otherwise unloaded system, it can be used to indirectly
measure the system load.

Example. In a time-shared system, the operating system will share a single
processor evenly among all of the jobs executing in the system. Each available
job is allowed to run for the time slice T,. After this interval, the currently
executing job is temporarily put to sleep, and the next ready job is switched in
to run. Indirect load monitoring takes advantage of this behavior to estimate the
system load. Initially, the load-monitor program is calibrated by allowing it to
run by itself for a time 7', as shown in Figure 6.12(a). At the end of this time, its
counter value, n, is recorded. If the load monitor and another application are run
simultaneously so that in total two jobs are sharing the processor, as shown in
Figure 6.12(b), each job would be expected to be executing for half of the total
time available. Thus, if the load monitor is again allowed to run for time 7', we
would expect its final count value to be n/2. Similarly, running the load monitor
with two other applications for time 7" would result in a final count value of n/3,
as shown in Figure 6.12(c). Consequently, knowing the value of the count after
running the load monitor for time 7 allows us to deduce what the average load
during the measurement interval must have been &

Perturbations due to measuring

One of the curious (and certainly most annoying!) aspects of developing tools to
measure computer-systems performance is that instrumenting a system or pro-

106

Measurement tools and techniques

T

(@) Load monitor 5 5 5 5 5 Count =

(b) Load monitor —é--_____%_______% _______ Count = n/2
Application 1 f------- -—- ------- .—-. _______

(¢) Load monitor f—— i ______ L U — Count = 1n/3
Application 1 --------%———————é————————% ———————
Application 2 [==-==-=--------ib———— b

: o : :

Figure 6.12 An example of using an indirect measurement technique to estimate the
average system load in a time-shared system. The solid lines indicate when each application
is running.

gram changes what we are trying to measure. Obtaining more information, or
obtaining higher resolution measurements, for instance, requires more instru-
mentation points in a program. However, more instrumentation causes there
to be more perturbations in the program than there are in its uninstrumented
execution behavior. These additional perturbations due to the additional instru-
mentation then make the data we collect less reliable. As a result, we are almost
always forced to use insufficient data to infer the behavior of the system in which
we are interested.

To further confound the situation, performance perturbations due to instru-
mentation are nonlinear and nonadditive. They are nonlinear in the sense that
doubling the amount of instrumentation in a program will not necessarily double
its impact on performance, for instance. Similarly, instrumentation perturbation
is nonadditive in the sense that adding more instrumentation can cancel out the
perturbation effects of other instrumentation. Or, in some situations, additional
instrumentation can multiplicatively increase the perturbations.

For example, adding code to an application program to generate an instruc-
tion trace can significantly change the spatial and temporal patterns of its mem-
ory accesses. The trace-generation code will cause a large number of extra store
instructions to be executed, for instance, which can cause the cache to be effec-
tively flushed at each trace point. These frequent cache flushes will then increase
the number of caches missed, which will substantially impact the overall perfor-
mance. If additional instrumentation is added, however, it may be possible that

107

6.7

6.7 Summary

the additional memory locations necessary for the instrumentation could change
the pattern of conflict misses in the cache in such a way as to actually improve
the cache performance perceived by the application. The bottom line is that
the effects of adding instrumentation to a system being tested are entirely
unpredictable.

Besides these direct changes to a program’s performance, instrumenting a
program can cause more subtle indirect perturbations. For example, an instru-
mented program will take longer to execute than will the uninstrumented pro-
gram. This increase in execution time will then cause it to experience more
context switches than it would have experienced if it had not been instrumented.
These additional context switches can substantially alter the program’s paging
behavior, for instance, making the instrumented program behave substantially
differently than the uninstrumented program.

Summary

Event-driven measurement tools record information about the system being
tested whenever some predefined event occurs, such as a page fault or a network
operation, for instance. The information recorded may be a simple count of the
number of times the event occurred, or it may be a portion of the system’s state
at the time the event occurred. A time-ordered list of this recorded state infor-
mation is called a trace. While event-driven tools record all occurrences of the
defined events, sampling tools query some aspect of the system’s state at fixed
time intervals. Since this sampling approach will not record every event, it pro-
vides a statistical view of the system. Indirect measurement tools are used to
deduce some aspect of a system’s performance that it is difficult or impossible to
measure directly.

Some perturbation of a system’s behavior due to instrumentation is unavoid-
able. Furthermore, and more difficult to compensate for, perhaps, is the unpre-
dictable relationship between the instrumentation and its impact on
performance. Through experience and creative use of measurement techniques,
the performance analyst can try to minimize the impact of these perturbations, or
can sometimes compensate for their effects.

It is important to bear in mind, though, that measuring a system alters it.
While you would like to measure a completely uninstrumented program, what
you actually end up measuring is the instrumented system. Consequently, you
must always remain alert to how these perturbations may bias your measure-
ments and, ultimately, the conclusions you are able to draw from your
experiments.

108

Measurement tools and techniques

6.8

For further reading

There is an extensive body of literature dealing with program tracing and a very
large variety of tools has been developed. Although the following references only
begin to scratch the surface of this field, they should provide you with some
useful starting points.

e The Lempel-Ziv data-compression algorithm, on which many data compres-

sion programs have been based, is described in
Terry A. Welch, ‘A Technique for High Performance Data Compression,’
IEEE Computer, Vol. 17, No. 6, June 1984, pp. 8-19.

e The abstract-execution idea, which was developed by James Larus, is

described in the following papers, along with some related ideas. These papers

also provide a good summary of the program-tracing process in general.

James R. Larus, ‘Efficient Program Tracing,” IEEE Computer, Vol. 26, No. 5,
May 1993, pp. 52-61.

James R. Larus, ‘Abstract Execution: A Technique for Efficiently Tracing
Programs,” Software Practices and Experience, Vol. 20, No. 12, December
1990, pp 1241-1258.

Thomas Ball and James R. Larus, ‘Optimally Profiling and Tracing
Programs,” ACM SIGPLAN-SIGACT Principles of Programming
Languages (POPL), January 1992, pp. 59-70.

e This paper talks about some of the problems encountered when trying to trace

applications running on multiprocessor systems, and describes the various

types of perturbations that can occur due to tracing.

Allen D. Malony and Daniel A. Reed, ‘Performance Measurement Intrusion
and Perturbation Analysis,” IEEE Transactions on Parallel Distributed
Systems, Vol. 3, No. 4, July 1992, pp. 433-450.

e Paradyn is an interesting set of performance tools for parallel- and distribu-

ted-computing systems. The following paper provides a good overview of

these tools:

Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna
Kunchithapadam, and Tia Newhall. ‘The Paradyn Parallel Performance
Measurement Tools,” IEEE Computer, Vol. 28, No. 11, November 1995,
pp. 37-46.

e The idea behind the indirect-load-measurement technique was presented in

Edward D. Lazowska, John Zahorjan, David R. Cheriton, and Willy
Zwaenepoel, ‘File Access Performance of Diskless Workstations,” /IEEE

Transactions on Software Engineering, Vol. 4, No. 3, August 1986, pp.
238-268.

109

6.9

6.9 Exercises

e The SimOS tool, described in the following paper, is an interesting example of
how to trace an entire computer system, including both the application pro-
gram and the operating system:

Mendel Rosenblum, Stephen A. Herrod, Emmett Witchel, and Anoop Gupta,
‘Complete Computer Simulation: The SimOS Approach,” IEEE Parallel
and Distributed Technology, Fall 1995.

e The idea of sampling traces to reduce the amount of trace information that
must be collected and stored is described in
Subhasis Laha, Janak H. Patel, and Ravishankar K. Iyer, ‘Accurate Low-

Cost Methods for Performance Evaluation of Cache Memory Systems,’
IEEE Transactions on Computers, Vol. 37, No. 11, November 1998, pp.
1325-1336.

Exercises

1. Determine the maximum time between rollovers for the interval timer avail-
able on your system.

2. What are the most important differences between tracing and basic-block
counting?

3. Develop a technique for measuring the time a processor spends waiting for
input/output requests.

4. Develop a technique for determining the associativity of a cache.

5. Measure the overhead of the interval timer on your system.

6. How would you measure the average number of jobs running on a time-
shared system?

7. What interrupt period is needed to ensure that each of the 12 subroutines of
a program that runs for 30 s has a 99% chance of having at least ten
samples? Assume that each subroutine executes for at least 5% of the
total time.

8. Use a program counter-sampling tool to compare the differences in perfor-
mance between two versions of some appropriate benchmark program.
Repeat your comparisons using a basic-block-counting tool. Compare and
contrast the results you obtain when using these two different types of tools
to profile the execution of this program. For instance, what are the funda-
mental differences between the techniques used by the basic-block-counting
tool and those used by the sampling tool? How do the differences between
these two tools affect your comparisons of the two versions of the bench-
mark program?

9. Compare the time penalties and the storage requirements of the various
trace-compression techniques.

110

Measurement tools and techniques

10.

11.

12.

13.

Are there any pathological situations in which these trace compression tech-
niques can backfire and actually expand the input data set?
Devise an experiment to determine the following parameters of a computer
system with a data cache:
(a) the memory delay observed by the processor on a data-cache hit, and
(b) the memory delay observed by the processor on a data-cache miss.
Then
(c) construct a simple model of the average memory delay observed by a
program, given its hit-or-miss ratio. Use the parameters you measured
above.
Write a test program that you can use to control the miss-ratio obtained in a
system with a data cache. Use this program to validate the model of the
average memory delay developed above. That is, measure the execution time
of your test program and compare it with the time predicted by your model.
What simplifications and approximations are you implicitly making? How
could you improve your model or your test program? Hint: think about
measuring the time required to scan through a large array with a fixed stride
(the stride is the number of elements between successive references to the
array — a stride of one accesses every element sequentially, a stride of two
accesses every second element, a stride of three accesses every third element,
and so on). By varying the stride, you should be able to determine the cache-
block size. Then, knowing the block size, you can determine the miss ratio.
Section 6.5 discussed a technique for indirectly measuring the system load.
(a) Write a program to perform this counting process.
(b) Calibrate your counter by running two copies of it simultaneously. Show
the results of your calibration with appropriate confidence intervals.
(c) Use your counter process to determine how the load on a system varies
over the course of day on a large time-shared system. For instance, you
might try measuring the system load for 1 min every hour on each of
several different days. Plot this system load as a function of time. Include
appropriate error bars for each of the data points on your plot to give an
indication of the variance in your measurements. (These error bars are
simply the end-points of the confidence interval for each measured data
point. Note that you must repeat the experiment several times to obtain
enough independent measurements to generate a confidence interval.)

111

Benchmark programs

‘It is not simply how busy you are, but why you are busy. The bee is praised; the mosquito is
swatted.’
Marie O’Conner

To measure the maximum speed of an automobile, it must be in motion.
Similarly, a computer must be executing some sort of program when you attempt
to measure any aspect of its performance. Since you are ultimately interested in
how the computer performs on your application programs, the best program to
run is, obviously, one of your own applications. Unfortunately, this is not always
possible since a substantial amount of time and effort may be required to port
your existing application to a new computer system. It will perhaps not be cost-
effective to port the application if the only goal is to measure the performance of
the new system. Or, it may be that you are evaluating computer systems to
determine which one is most appropriate for developing a completely new appli-
cation. Since the application does not yet exist, it would be impossible to use it as
your test program.

Owing to these practical and logistical difficulties in running your application
program on the system or systems being evaluated, you instead are often forced
to rely on making measurements while the computer system is executing some
other program. This surrogate program is referred to as a benchmark program
since it is used as a standard reference for comparing performance results.' The
hope is that this standardized benchmark program is in some way characteristic
of the applications that you plan to execute on the machine you are evaluating. If
it is, you can use the measurements obtained when executing the benchmark
program to predict how well the system will execute your application. The accu-
racy of these predictions determines the quality of a benchmark program, or a set
of such programs, for your specific needs.

' The term “benchmark™ was originally used by land surveyors to identify a mark made on some

permanent object showing the elevation at that point. This mark is then used as the standard reference
point in subsequent topological surveys.

71

711

71.2

Benchmark programs

Types of benchmark programs

Since different application domains have different execution characteristics, a
wide range of benchmark programs has been developed in the attempt to char-
acterize these different domains. Furthermore, different types of benchmarks
satisfy the needs of many different types of users. Designers of new computer
systems, for instance, often need benchmarks during the early stages of the
design process that are focused on exercising specific components of the system.
Since these early design stages typically rely on simulations to estimate perfor-
mance, these benchmarks must be relatively small and easy to use. A large
organization deciding which of several systems to purchase, on the other hand,
may be committing a large sum of money on the basis of results of their perfor-
mance tests. Consequently, they need much more complete benchmark programs
that more accurately characterize their application environment.

It is important to note that a benchmark program should be easy to use and
should be relatively simple to execute on a variety of different systems. If it is not
easy to use, it is likely that the benchmark will not be used at all. Additionally, a
benchmark that is difficult to use is more likely to be used incorrectly.
Furthermore, if it is not easy to port the benchmark to various systems, it is
probably a better use of the performance analyst’s time to port the actual appli-
cation of interest and measure its performance instead of spending time trying to
run the benchmark program.

The single-instruction-execution time

Improving performance has been a primary goal of computer designers ever
since the development of the first computer systems. Then, as now, however,
the definition of performance was elusive. One of the earliest and most com-
monly accepted measures of performance was the time required to perform a
single operation, such as an addition. Since almost all of a computer’s instruc-
tions required the same amount of time to execute, knowing the time required to
execute a single instruction was sufficient to completely characterize the perfor-
mance of the system. Quite simply, the machine with the fastest addition opera-
tion would produce the best overall performance when executing any application
program.

Instruction-execution mixes

To improve system performance, computer architects began to design processor-
instruction sets in which each instruction would take only the minimum number

113

7.1 Types of benchmark programs

of cycles required to complete its particular operation. For example, an instruc-
tion that accessed main memory might take longer than a simple arithmetic
operation that accessed only the registers within the processor. Similarly, an
addition instruction would be executed in less time than a multiplication or a
division instruction. These performance-improvement techniques caused proces-
sors and systems to become increasingly more complex. As a result, the execution
time of a single instruction was no longer adequate to summarize performance.

In response to this problem, in the late 1950s Jack C. Gibson proposed the
Gibson instruction mix as a performance metric. The basic idea of this instruction
mix is to categorize all of the instructions into different classes such that each
instruction in the same class requires the same number of processor cycles to
execute. The number of instructions of each class executed by a particular collec-
tion of programs is used to form a weighted average. This weighted average then
is the performance metric used to compare systems. Gibson proposed some
specific weights for a set of predefined instruction classes based on measurements
of programs running on IBM 704 and 650 systems.

Given this type of weighted average of the mix of instructions executed, the
total time required to execute a program can be expressed as

Throgram = N x CPI X Tjoek- (7.1)

In this expression, N is the total number of instructions executed by the program,
CPI is the weighted average of the number of processor clocks required to
execute all of the instructions in the program, and T, is the period of one
processor clock cycle. Note that CPI corresponds to Gibson’s instruction-mix
idea, except that the weights are determined for the specific program executed.
Note that, when it is used as a metric to summarize a system’s performance, a
lower CPI value implies better overall performance.

Example. Table 7.1 shows the percentages of instructions executed in each of
several classes by a particular processor executing a specific benchmark program.
The average CPI for this situation is calculated as

CPI = 2(0.334) + 3(0.232) + 3(0.181) + 4(0.103) + 5(0.078) + 7(0.072)

7.2
= 3.213. (7.2

If the processor’s clock cycle time is T, = 8 ns, the total execution time for
this program would be estimated to be T oeram = 23,842,128 x 3.213 x 8 x 107°
=0.61s. &

From the above discussion, it is easy to see that one of the problems with using
CPI to measure performance is that it depends on the mix of instructions actually
executed. That is, the CPI value for a specific system depends completely on the
particular application program executed. Furthermore, the number of instruc-
tions required to execute a program is not constant across all systems. Some

713

Benchmark programs

Table 7.1 The fractions of instructions executed in each class
out of the 23,842,128 total instructions executed for a particular
benchmark program

Instruction Fraction of Clocks required
class instructions
executed (%)

1 334 2
2 23.2 3
3 18.1 3
4 10.3 4
5 7.8 5
6 7.2 7

processors may require fewer instructions to execute the same program, although
each individual instruction may require additional clocks. Other factors, such as
the capability of the compiler to optimize the program’s mix of instructions, can
further distort this measure. Finally, simple instruction mixes ignore the impor-
tant performance effects of input/output operations, complex memory hierar-
chies, and so forth.

Synthetic benchmark programs

In spite of the problems of using the instruction mix to compare performance,
there is still something intuitively appealing about this type of weighted-average
measure. One problem with the Gibson mix mentioned above is that, over time,
it no longer reflected the mix of instructions executed by subsequent generations
of systems and application programs. While the instruction mix reports perfor-
mance based on the actual instructions executed by an application program, the
basic idea behind the development of a synthetic benchmark program is to write a
program that matches the expected or desired mix of instructions. In this sense, a
synthetic benchmark program is essentially the complement of Gibson’s
instruction-mix idea.

Specifically, synthetic benchmark programs are artificial programs that do no
real, useful work. Instead, the mixes of operations performed by these bench-
marks are carefully chosen to match the relative mix of operations observed in
some class of application programs. The hope is that, since the instruction mix is
the same as that of the real application programs, the performance obtained
when executing the synthetic program should provide an accurate indication
of what would be obtained when executing an actual application.

115

71.4

715

7.1 Types of benchmark programs

Although this idea is intuitively appealing, these programs do not actually
behave like real application programs. The primary problem is that these syn-
thetic benchmarks do not accurately model the impact on performance caused by
interactions among instructions that occur due to specific orderings of instruc-
tions. Different orderings of instructions can produce different patterns of
dependences among the instructions, which can significantly change the number
and type of pipeline stalls that occur, for instance. Similarly, the memory-refer-
encing patterns of real applications are very hard to duplicate in a synthetic
program. These patterns determine the memory locality, however, which pro-
foundly affects the performance of a hierarchical memory subsystem. As a result,
hardware and compilation optimizations can produce execution times on syn-
thetic benchmarks that are substantially different than the execution times pro-
duced on actual application programs, even though the relative mix of
instructions is the same in both cases.

The complexity of real application programs makes them difficult to use as
benchmark programs. One of the strong attractions of synthetic benchmarks is
that they abstract away many of the nitty-gritty details of real application pro-
grams. Unfortunately, experience has shown that it is exactly these details that
are the major determinants of computer-system performance.

Microbenchmarks

Microbenchmarks are small, specially designed programs used to test some spe-
cific portion of a system. For example, a small program written to test only the
processor—-memory interface, the input/output subsystem, or the floating-point-
execution unit, independent of the other components of the system, would be a
microbenchmark. Microbenchmarks are typically used to characterize the max-
imum possible performance that could be achieved if the overall system perfor-
mance were limited by that single component.

Carefully targeted microbenchmarks can be used to determine whether the
performance capabilities of all of the components within a system are balanced,
for instance. Or, as another example, they are often used to determine the per-
formance characteristics of a system’s components to provide values for impor-
tant parameters for a simulation of the system. Writing this type of benchmark
typically requires the programmer to have a deep understanding of the system
component to be tested.

Program kernels

While microbenchmarks are used to examine the behavior of a specific compo-
nent of a system, kernel benchmarks, on the other hand, are used to characterize

116

716

Benchmark programs

the central or essential portion of a specific type of application program. A kernel
benchmark program is a small program that has been extracted from a larger
application program. It may consist of the inner portion of a loop that consumes
a large fraction of the total execution time of a complete application program,
for instance. It is hoped that, since this loop is executed frequently, it is somehow
characteristic of the most important operations performed by the overall appli-
cation program.

Since a program kernel is typically small, consisting of perhaps only a dozen
lines of code, it should be easy to port to many different computer systems.
Measuring the performance of this small kernel on several different systems,
then, could provide some relative indication of how the different systems
would perform when executing the complete application. Unfortunately,
although these kernels can accurately predict how the different systems will
perform for the type of operations in the kernel itself, these small benchmarks
ignore major components of the system, such as the entire operating system, for
instance. Furthermore, and perhaps more importantly, they typically do not
stress the memory hierarchy in any realistic fashion. Unfortunately, it is exactly
the system components that are not well exercised by kernel benchmarks that
often become the performance bottlenecks. As a result, kernel benchmarks are of
only limited usefulness in making overall comparisons or predictions regarding
performance.

Application benchmark programs

To improve on the limited capabilities of kernel and synthetic benchmarks,
standardized sets of real application programs have been collected into various
application-program benchmark suites. These applications are complete, real pro-
grams that actually produce a useful result, in contrast to kernel and synthetic
benchmark programs. Collections of programs are often selected to emphasize
one particular class of applications, such as scientific and engineering applica-
tions, ‘typical’ engineering workstation applications, applications appropriate
for parallel-computer systems, and so forth.

These real application programs can more accurately characterize how actual
applications are likely to use a system than can the other types of benchmark
programs. However, to reduce the time required to run the entire set of pro-
grams, they often use artificially small input data sets. This constraint may limit
the applications’ ability to accurately model the memory behavior and input/
output requirements of a user’s application programs. However, even with these
limitations, these types of benchmark programs are the best to have been devel-
oped to date.

7.2

7.21

7.2 Benchmark strategies

In selecting an appropriate set of application benchmark programs, one must
be careful of avoiding ‘toy’ benchmarks. Although these programs are real
applications that produce an actual result, they are too small to accurately
characterize the application programs that are likely to be executed by the
users of a system. Examples of these types of benchmarks include quicksort,
the prime-number sieve, the N-queens problem, and the Towers of Hanoi. These
toy benchmarks were popular with processor designers during the mid-1980s
since they allowed an entire program to be executed on a simulated processor.
With advances in system performance leading to faster simulators, however,
these small benchmark programs have lost their usefulness.

Benchmark strategies

Most of the types of benchmark programs discussed in the previous section base
the measure of performance on the time required to execute the benchmark.
There are several other strategies that can be employed in a benchmark program,
however. Specifically, the three different strategies for using a benchmark pro-
gram to measure the performance of a computer system are the following.

1. Measure the time required to perform a fixed amount of computation.

2. Measure the amount of computation performed within a fixed period of time.

3. Allow both the amount of computation performed and the time to vary. Another
measure of performance that is a function both of the time elapsed and of the
amount of computation performed then must be defined.

Fixed-computation benchmarks

A common use of a benchmark program is to provide a vehicle for measuring a
computer system’s ‘speed.” In the physical world, speed is defined to be the
distance traveled per unit time. For example, the distance traveled by an object
within a measured time provides a rigorous definition of the rate at which the
object is traveling. For computer systems, however, we lack a mathematically
rigorous definition of the ‘distance traveled” by a computer system. Instead, we
finesse the analogy of distance traveled by making our measurements relative to
some basis system.

What we would like to do is define a computer system’s speed or execution
rate, denoted R;, to be Ry = W,/T,, where T} is the time required to execute the
computation ;. Unfortunately, for a given benchmark program, the value of
W, is not precisely or commonly definable. To compensate for this problem, we
define the execution rate of another system to be R, = W,/T,, where T is the

118

7.2.1.1

Benchmark programs

time required to execute the computation W, on this system. We then define the
speedup value S such that R; = SR,. This value allows us to say that the execu-
tion rate, or speed, of system 1 is S times faster than that of system 2.

Substituting for R; and R, into this equation gives the speedup of system 1
relative to system 2 as

_ R _W/Ty
R, Wy/T,

(7.3)

The problem with this definition of relative speedup, though, is that we still have
no way to measure the actual amounts of computation performed by each
machine, W, and W,. The discussion of MIPS and MFLOPS in Sections 2.3.2
and 2.3.3 pointed out the difficulties of accurately defining ¥, and W,. Instead,
we define the amount of computation performed by a specific program to be
constant regardless of how many instructions are actually required to execute the
program on either system. Thus, we simply define the amount of computation
completed by the system when executing the benchmark program to be W so
that W, = W, = W. Then the speedup of machine 1 relative to machine 2 is

R W/ T

Ry W/T, T\

(7.4

By defining the amount of computation performed when executing a specific
benchmark program to be constant, we can use the time required to perform this
computation as a relative measure of performance. Thus, we fix the amount of
computation to be performed in the benchmark program and use as a perfor-
mance metric the time required to actually perform this computation.

Amdahl’s law
The concept of fixing the amount of computation to be executed in a program
leads to an upper bound on how much the overall performance of any computer
system can be improved due to changes in only a single component of the system.
This idea was first proposed in 1967 in a short paper by Gene Amdahl in which
he pointed out the inherent limitations in trying to improve computer-system
performance by using multiple processors. Although this original paper con-
tained no formal analysis, the concept has come to be known as Amdahl’s law.
Amdahl’s argument is essentially that the overall performance improvement
observed in an application program is limited by that portion of the application
that is unaffected by whatever change was made to the system. In particular,
consider the execution time lines shown in Figure 7.1. The top line shows the
time required to execute some given program on the system before any changes
are made. Call this time T,4. Now assume that some change that reduces the
execution time for some operations in the program by a factor of ¢ is made to the

119

7.2 Benchmark strategies

aTyg (-4 |

Toua 'I

’ 1

new ’|
aTyyq (1 -a)Ty4q

Figure 7.1 The execution time of a program can be divided into a fraction « that is
unaffected by a system enhancement, and the fraction 1 — « that is improved by a factor of
q. Then, according to Amdahl’s law, the limit on the overall speedup obtained through this
enhancement is S < 1/a.

system . The program now runs in time 7T, Where Ty, < Toq, s shown in the
bottom line.

Since the change to the system improves the performance of only some opera-
tions in the program, there are many other operations in the program that are
unaffected by this change. Let @ be the fraction of all operations that are unaf-
fected by the enhancement. Then, as shown in the bottom line of Figure 7.1, the
new execution time, Ty, can be divided into two components. The first com-
ponent, aT,y4, is the execution time of that fraction of the program that is
unaffected by the change. The second component of T, which is the remaining
fraction 1 — « of the original execution time, has its performance improved by
the factor ¢. Thus, the time required for this component is (1 — «)7Tyq/q. The
overall speedup caused by this improvement is then found to be

Tog Ton 1

S = = = .
Tnew aTold +(1 _a)Told/q 1/(]+Ol(1 - 1/(1)

(7.5)

This equation is interesting by itself since it can be used to calculate the overall
speedup obtained due to some improvement in the system, assuming that ¢ and «
can be determined. However, it is interesting to ask what happens as the impact
on performance of the improvement becomes large, that is, as ¢ — oc.
It is easy to show that, in the limit as ¢ — o0, (1 — &)Tyq/g — 0. Thus, the
overall speedup, S, is bounded by 1/«. That is,
1 1

lim S=1i =—. 7.6
qggo qLHOlOI/q+a(1—1/q) o (7.6

This result says that, no matter how much one type of operation in a system is
improved, the overall performance is inherently limited by the operations that
still must be performed but are unaffected by the improvement. For example, the
best (ideal) speedup that could be obtained in a parallel computing system with p

120

722

Benchmark programs

processors is p. However, if 10% of a program cannot be executed in parallel, the
overall speedup when using the parallel machine is at most 1/a = 1/0.1 = 10,
even if an infinite number of processors were available. The constraint that 10%
of the total program must be executed sequentially limits the overall performance
improvement that could be obtained.

An obvious corollary to Amdahl’s law is that any system designer or program-
mer should concentrate on making the common case fast. That is, operations
that occur most often will have the largest value of «. Thus, improving these
operations will have the biggest impact on overall performance. Interestingly, the
common cases also tend to be the simplest cases. As a result, optimizing these
cases first tends to be easier than optimizing the more complex, but rarely used,
cases.

Fixed-time benchmarks

Benchmark programs that measure the amount of time required to perform a
fixed amount of computation tend to be the most popular. It is likely that this
popularity occurs because these types of benchmarks tend to fit our intuition of
what improvements in computer performance should mean. For example, if you
purchase a faster system, you generally expect that it should require less time to
execute your applications.

An alternative view argues that users with large problems to solve are willing
to wait a fixed amount of time to obtain a solution. The allowable time may be
determined simply by the users’ patience, or by some external factor. For
instance, a system that is used to compute a weather forecast is useless if it
takes more than 24 h to produce the next day’s forecast.

When a user with this type of application purchases a faster system, they often
want to solve a larger problem within the same amount of time as they were
willing to wait for a solution when using the previous (slower) system. Thus,
instead of holding the amount of computation performed by the benchmark
constant, the amount of time that the benchmark program is allowed to run is
held constant. Then the amount of computation performed by the system when
executing this benchmark program is allowed to vary. At the end of the allotted
execution time, the total amount of computation completed, which must be
carefully defined, is used as the measure of the relative speeds of the different
systems.

The SLALOM benchmark was the first to implement this fixed-time, variable-
computation strategy. It was based on a scientific application for calculating
radiosity. The measure of performance in this case was the accuracy of the
answer that could be computed in 1 min. This benchmark did not specify a
particular algorithm for computing the result, but rather defined the accuracy

121

7.2.2.1

7.2 Benchmark strategies

of the answer produced as the number of ‘patches,” or areas, into which a given
geometric shape was subdivided in the 1-min interval. The more patches pro-
duced, the more accurate the final answer.

One of the nice features of this type of benchmark is that it automatically
scales the problem being solved to the capabilities of the system being tested.
More powerful systems end up solving larger problems than do less powerful
machines. As result, these fixed-time benchmarks are useful for comparing sys-
tems with wide ranges of processing capabilities.

Some of the weaknesses of this benchmarking strategy, and SLALOM in
particular, are due to the loosely defined statement of the problem. Because
the benchmark defines only the problem to be solved without specifying the
steps to solve it, clever programmers are free to develop better algorithms for
solving the problem. The original complexity of SLALOM, for instance, was
O(n*). Improvements in the algorithm, however, reduced the complexity first to
O(n*), and, eventually, to O(nlogn). These algorithmic improvements resulted in
the self-contradictory situation of observing a substantial jump in performance
on one system, as measured by this benchmark, simply by executing the better
algorithm. The nonlinear complexity of the algorithm also makes the resultant
performance metric nonlinear. (See Section 2.2 for a discussion of what makes a
good performance metric.) Thus, it is impossible to say that a system that can
compute 2N patches in the given time is twice as powerful as a system that
computes only N.

Finally, SLALOM’s use of memory was not proportional to its computational
requirements. As a result, it was not unusual for a system to run out of memory
and have to abort the program before the entirety of the allotted time had
elapsed. Despite these problems, the SLALOM benchmark has provided impor-
tant insights for the development of subsequent benchmark programs.

Scaling Amdahl’s law

One of the major criticisms concerning Amdahl’s law has been that it emphasizes
the wrong aspect of the performance potential of parallel-computing systems.
The argument is that purchasers of parallel systems are most likely to fall into the
category of users who want to solve larger problems within the available time.
Following this line of argument leads to the following ‘scaled’ or ‘fixed-time’
version of Amdahl’s law.

It is common to judge the performance of an application executing on a
parallel system by comparing the parallel execution time with p processors, T,
with the time required to execute the equivalent sequential version of the appli-
cation program, T, using the speedup S, = T,/7T,. With the fixed-time inter-
pretation, however, the assumption is that there is no single-processor system
that is capable of executing an equivalent sequential version of the parallel

122

723

Benchmark programs

application. The single-processor may not have a large enough memory, for
example, or the time required to execute the sequential version would be unrea-
sonably long.

In this case, then, the parallel-execution time is divided into the parallel com-
ponent, 1—«, and the inherently sequential component, «, giving
T,=T, =aT, +(1 —a)T}, as shown in Figure 7.2. Note that T; is the time
required to produce the answer originally. That is, 7 is the time that the user
is willing to allow the application to run. Since no single-processor system exists
that is capable of executing an equivalent problem of this size, it is assumed that
the parallel portion of the execution time would increase by a factor of p if it were
executed on a hypothetical single-processor system. This gives a hypothetical
sequential execution time of 7] = aT; + (1 — a)pT].

The parallel speedup is found to be

s T ol + (1 —a)pT,

=T, T =p+a(l—p). (7.7)

Thus, with this fixed-time, variable-problem-size interpretation of Amdahl’s
law, the performance of a parallel machine is not limited by the portion that is
inherently sequential. Rather, as the system is made larger, the size of the pro-
blems that can be solved increases proportionally.

Variable-computation and variable-time benchmarks

Fixed-computation benchmarks generally fit our intuition about what improve-
ments in computer performance should do to the execution time of an applica-

aT, 1-a)T,
n-1, 1 1-o7 |

r N
af, (1-apT, |

Figure 7.2 In the fixed-time interpretation of Amdahl’s law, an application is always
allowed time 7 to execute. When the application is executed on a parallel system, the time
is divided into the inherently sequential component, «, and the parallel component, 1 — «.
It is assumed that the parallel portion of the execution time would increase by a factor of p
if it were executed on a hypothetical single-processor system. This gives a corresponding
speedup for the parallel system of S, = p + a(1 — p).

2 Kumar ef al. (1994) have proposed the isoefficiency function as a way of more precisely capturing the
idea of scaled speedup.

123

7.2 Benchmark strategies

tion program. Fixed-time benchmarks, on the other hand, allow the problem size
to scale up to match the capabilities of the system under test. The third and most
general benchmark-program strategy fixes neither the available time nor the
amount of computation to be done. These types of benchmarks instead try to
measure some other aspect of performance that is a function of the computation
and the execution time. This derived metric is then used as the measure of
performance when executing the benchmark.

The HINT benchmark is a good example of this variable-computation, vari-
able-time benchmark-program strategy. It rigorously defines the ‘quality’ of a
solution for a given mathematical problem that is to be solved by the benchmark
program. The solution’s quality, based on the problem’s definition, can be con-
tinually improved by doing additional computation. The ratio of this quality
metric to the time required to achieve that level of quality is then used as the
measure of performance. The HINT benchmark expresses this final performance
metric as QUIPS, or quality improvements per second.

The specific problem to be solved in the HINT benchmark is to find rational
bounds from above and below for

L1 —x)
o T+x ™

(7.8)

The problem statement for the benchmark specifies that a technique called inter-
val subdivision must be used to find these bounds. This technique divides the x
and y ranges into a number of intervals that are an integer power of two. It then
simply counts the number of squares that are in the area completely below the
curve, and those that completely contain the area, including the curve itself.
These two counts give the lower and upper bounds, respectively, on the area
under the curve.

The actual gquality of the solution is defined to be 1/(u — /), where u is the
estimate of the upper bound and / is the estimate of the lower bound. That is, u is
the number of squares that completely contain the area, while / is the number of
squares completely below the curve. The quality is then improved by splitting the
intervals into smaller subintervals and performing repeated interval subdivision
on these subintervals. An example of this process is shown in Figure 7.3.

By fixing neither the available time nor the total amount of computation to be
completed, this type of benchmark automatically scales to find the performance
limits of a wide range of systems. With the HINT benchmark, for instance, the
quality of the solution theoretically can be improved forever. Practical limits in a
computer system’s available memory, arithmetic precision, and instruction-
execution rate, however, limit the ultimate quality value that a particular system
can obtain. Consequently, this type of benchmark is useful for comparing the
limits of various computer systems in addition to the more typical performance

124

Benchmark programs

. Known to contribute
to lower bound

B Limited by
arithmetic refinement

B Available for
further refinement

[] Known not to contribute
to upper bound

0 1/4
etc.
Partition 2 Partition 3 Partition 4 Partition 5
Split error 256/256 Split error 87/256 Split error 47/256 Split error 27/256
Quality = 256/136 Quality = 256/96 Quality = 256/64 Quality = 256/64
=1.88... =2.66... =3.36... =4.00...

Figure 7.3 An example of the sequence of interval subdivisions used to bound the area of
the function f(x) = (1 — x)/(1 + x) in the HINT benchmark program. Reprinted from J. L.
Gustafson and Q. O. Snell, ‘HINT: A New Way to Measure Computer Performance,” in
Proceedings of the Twenty-Eighth Hawaii International Conference on System Sciences,
Wailea, Hawaii, January 3-6, 1995, Volume II, pp. 392-401.

125

73

7.31

7.3.1.1

7.3 Example benchmark programs

comparison of which machine produces the best (i.e. highest-quality) result in the
least amount of time.

Example benchmark programs

A variety of different benchmark programs has been developed over the years to
measure the performance of many different types of computer systems in differ-
ent application domains. This section summarizes some of the key features of
several of these benchmarks. Although this list is by no means complete, it
should provide some idea of how the various benchmarks are similar and
where they differ. It also provides some historical context for the development
of benchmark programs.

Scientific and engineering

The scientific and engineering research community has long driven the need for
high-performance computing. The computational needs of the USA’s national
laboratories, for instance, helped encourage the development of vector super-
computers, such as the Control Data CDC-6600, the CDC-7600, and the several
generations of systems developed by Seymour Cray and his associates at Cray
Research, Inc. As some of the primary users of these systems, the national
laboratories had a vested interest in developing benchmark programs for testing
their actual delivered performance.

Livermore loops

The Livermore Fortran kernels, also known more casually as the Livermore loops,
were developed at the Lawrence Livermore National Laboratory. These loops,
which eventually grew to consist of 24 kernels, were chosen to represent the most
critical sections of Fortran programs used in a broad range of numerical appli-
cation programs. Each loop is a common type of programming construct used by
computational scientists at the laboratory and spans the range of good to poor
programming practice.

Using program kernels instead of entire applications to measure performance
derived from the observation that most of the execution time in an application
was spent in one or two critical loops, or was distributed across numerous similar
loops. It was assumed that the performance that could be achieved for an entire
application executed on a specific system could be extrapolated by measuring the
execution time for the appropriate representative kernel. The performance metric
reported for the benchmark was the MFLOPS rate for each individual loop.
Additionally, the aggregate arithmetic, harmonic, and geometric means were

126

7.3.1.2

7.3.1.3

Benchmark programs

calculated for all of the loops taken together. Since running these small kernels
was much easier than running an entire application program, they became a
popular set of programs for comparing supercomputer systems.

NAS kernels

Another set of numerical benchmark programs developed primarily to test the
performance of vector supercomputers is the numerical aerodynamic simulation
(NAS) kernel benchmark. This benchmark developed at the NASA Ames
Research Center consists of seven kernels representative of the types of
Fortran programs developed for computational fluid-dynamics calculations.
These kernels perform such operations as a two-dimensional fast Fourier trans-
form (FFT) with complex numbers, Cholesky decomposition, matrix multiplica-
tion, and Gaussian elimination. Although several of the kernels do perform
nontrivial numbers of integer and logical operations, the performance metric is
again MFLOPS. This benchmark kernel was designed to focus on a computer
system’s vector performance and so specifically excluded input/output and oper-
ating system times from the measured execution time.

LINPACK

The LINPACK benchmark program is probably one of the most successful
benchmark programs developed in terms of both its longevity and the total
number and range of unique types of computer systems for which corresponding
performance results have been reported. This widespread use and recognition is
due primarily to the vigorous efforts of one of its developers, Dr Jack Dongarra.
It was originally developed in Fortran, but it has subsequently been ported to a
wide variety of different languages and is still in active use today.

This benchmark program uses LU factorization and back substitution to solve
a dense N x N system of linear equations. The actual computations used in the
solution of this system are contained within the basic linear-algebra subroutines
(BLAS). These subroutines have seen widespread usage themselves in actual
application programs beyond their use in this benchmark program. The final
performance metrics reported are the total execution time and the MFLOPS
rate.

An important feature of this benchmark is the addition of a ‘wrapper’ pro-
gram that generates the matrices to be used in the solution process. This wrapper
also computes the norms of the residual vectors to ensure that the solution
process produces a final answer that is within a prespecified tolerance. This
approach ensures that consistent execution of the benchmark is achieved. It
also ensures that any optimizations that may be made in order to improve its
performance (by a compiler, for instance) do not adversely affect the final
answer.

127

7.3.14

7.3.1.5

7.3 Example benchmark programs

PERFECT club

The PERFECT club benchmark suite is a set of 13 complete Fortran application
programs drawn from the fields of computational fluid dynamics, chemical and
physical modeling, engineering design, and signal processing. The programs were
selected to represent the range of computations that might be performed on a
high-performance computing system.

PERFECT is actually an acronym for performance evaluation of cost-effective
transformations. This name reflects one of the primary goals of assembling these
benchmarks, which was to evaluate the effectiveness of compiler transformations
for automatically converting a sequential program into a form suitable for execu-
tion on a parallel-computing system. The programs included instrumentation to
report the total elapsed execution time as well as the CPU time. Each program in
the benchmark set also included an internal test that compared critical values
produced by the program with known correct values to thereby validate the final
output.

SPEC CPU

The System Performance Evaluation Cooperative (SPEC) was founded in 1988
by a group of workstation manufacturers (Apollo/Hewlett-Packard, Digital
Equipment Corporation, MIPS, and Sun Microsystems) to provide a standar-
dized set of application benchmark programs and, perhaps more importantly, a
standardized methodology for running the programs and reporting the results.
The original benchmark set, SPEC89, consisted of four programs written in C
and six Fortran programs.

One of SPEC’s strengths has been its recognition that benchmarks ‘age’ as
computer-system performance increases. As a result, SPEC has frequently issued
new sets of benchmark programs that attempt to provide more realistic tests of
the capabilities of changing systems. Furthermore, SPEC has recognized that
different application domains require different types of benchmarks. To accom-
modate these needs, SPEC has expanded to include the Open Systems Group
(OSG), the High-Performance Group (HPG), and the Graphics Performance
Characterization Group (GPC).

The SPEC OSG is the successor to the original SPEC committee. The primary
focus of this group is on benchmark programs for characterizing component and
system-level performance of workstations and servers that run open operating
systems, such as the various flavors of UNIX. The benchmarks of the CPU
committee, which focus on the processor, memory hierarchy, and compiler com-
ponents of a computer system, are the follow-on to the original SPEC89 bench-
mark suite. This benchmark set actually consists of two sets of programs, the ten
floating-point intensive programs in CFP95, which are summarized in Table 7.2,

128

Benchmark programs

Table 7.2. The programs that comprise the SPEC CFP95 benchmark suite (reprinted
from the SPEC web site www.spec.org, used with permission.)

Benchmark Reference Application Description
Time (sec) areas
101.tomcatv 3,700 Fluid dynamics; Generation of a two-dimensional
geometric boundary-fitted coordinate system around
translation general geometric domains
102.swim 8,600 Weather Solves shallow-water equations using finite-
prediction difference approximations (the only single-
precision benchmark in CFP95)
103.su2cor 1,400 Quantum physics Masses of elementary particles are
computed in the quark—gluon theory
104.hydro2d 2,400 Astrophysics Hydrodynamical Navier-Stokes equations
are used to compute galactic jets
107.mgrid 2,500 Electromagnetism Calculation of a three-dimensional
potential field
110.applu 2,200 Fluid dynamics; Solves matrix system with pivoting
maths
125.turb3d 4,100 Simulation Simulates turbulence in a cubic area
141.apsi 2,100 Weather Calculates statistics on temperature and
prediction pollutants in a grid
145.fpppp 9,600 Chemistry Calculates multi-electron derivatives
146.wave 3,000 Electromagnetism Solves Maxwell’s equations on a Cartesian

mesh.

and the eight integer benchmarks in SPEC CINT95, which are summarized in

Table 7.3.

The SPEC documentation specifies a rigorous methodology for running the

benchmark programs. Each program in the set produces a value called the
SPECratio, which is the ratio of the SPEC reference time given for the bench-
mark divided by the total execution time of the benchmark measured on the
system under test. This reference time is supplied by SPEC (see Tables 7.2 and
7.3) and was obtained by running the programs on a Sun SPARCstation 10/40
with 128 MB of memory using the Sun SC3.0.1 compilers. The final composite
metric is then the geometric mean of the SPECratios for all of the programs in
either the CFP95 or the CINT95 subset. (However, see the discussion of the
geometric mean in Section 3.3.4.) Note that, by definition, the SPECint95 and
SPEC{p95 values for the Sun SPARCstation 10/40 must be 1.

The next generation of the SPEC CPU benchmarks is currently under devel-
opment. In addition, SPEC’s HPG has developed the SPEChpc96 benchmark set
to measure complete application-level performance for large high-performance

129

7.3.1.6

7.3 Example benchmark programs

Table 7.3. The programs that comprise the SPEC CINT95 benchmark suite (reproduced
from the SPEC web site: www.spec.org., used with permission)

Benchmark Reference Application area Description

Time (sec)
099.go 4600 Game playing; Plays the game Go against itself
Al
124.m88ksim 1900 Simulation Simulates the Motorola 88100 processor
running Dhrystone and a memory-testing
program
126.gcc 1700 Programming; Compiles pre-processed source into
compilation optimized SPARC assembly code
129.compress 1800 Compression Compresses large text files (about 16 MB)
using adaptive Limpel-Ziv coding
130.1i 1900 Language Lisp interpreter
interpreter
132.ijpeg 2400 Imaging Performs jpeg image compression with
various parameters
134.perl 1900 Shell interpreter ~ Performs text and numeric manipulations
(anagrams/prime-number factoring)
147.vortex 2700 Database Builds and manipulates three interrelated
databases

computing systems. Currently, this benchmark set includes two large programs
that have been used heavily in industry. The seismic program performs calcula-
tions of the type used by the oil industry to locate gas and oil deposits. The
GAMESS (general atomic and molecular electronic structure system) program
contains the types of routines for drug design and bonding analysis used by the
pharmaceutical and chemical industries.

Whetstone and Dhrystone

Good examples of synthetic benchmark programs include the Whetstone and the
Dhrystone. Even though these two programs are no longer used for serious
performance testing, they are interesting for their historical perspective. The
operations in the Whetstone benchmark were determined by studying the beha-
vior of 1970s-era scientific application programs written in ALGOL. Its primary
goal was to measure floating-point performance. One of its important compo-
nents, for instance, consists of several floating-point additions and multiplica-
tions, and several trigonometric operations. The primary focus of the Dhrystone
benchmark, on the other hand, was to measure integer performance using pri-
marily a variety of character-string-copy and string-compare operations.

130

7.3.2

Benchmark programs

Transaction processing

The Transaction Processing Council (TPC) was established to develop bench-
mark programs for systems that perform online transaction processing
(OLTP). These types of systems consist of numerous users making requests to
read and potentially update the records in a large shared database. OLTP sys-
tems include such applications as airline reservation systems, networks of auto-
matic teller machines (ATMs), and inventory-control systems.

One of the most important performance characteristics of OLTP applications
is the rate at which transactions can be processed within a given response-time
limit. For instance, a typical performance specification would be that 95% of all
transactions must complete in less than 1 s. Other critical requirements for these
systems include the need to always maintain consistent data, and the need to be
operational essentially all of the time.

The first benchmark from TPC, known as TPC-A4, was based on an early
DebitCredit benchmark that was meant to simulate the types of transactions
that would be likely to occur in an ATM-type of environment. A key feature
of this benchmark was that it did not specify the actual program to be executed.
Rather, it specified a high-level functional requirement. Furthermore, the num-
ber of simulated requests, and the size of the database serving the requests,
increased in proportion to the capability of the system being tested. Thus, this
benchmark fixed neither the amount of computation to be performed nor the
time for which the test was allowed to run. Rather, the performance requirement
was that 90% of the transactions must complete in less than 2 s. The final
performance metric reported by this benchmark was the number of transactions
completed per minute while satisfying this requirement.

The second benchmark from TPC, called TPC-B, was a batch-mode version of
TPC-A. That is, it eliminated the simulated terminals and the network over
which the terminals communicated. The commands were instead applied directly
to the database from a script in an off-line batch-mode configuration. (Given the
highly competitive nature of the OLTP business, it was a very controversial
decision to release the TPC-B benchmark.) The stated intent of this benchmark
was to model a database-server application environment.

The successor to the TPC-A benchmark for OLTP systems is TPC-C. This
benchmark is essentially a more complex version of TPC-A that simulates the
transactions against a database required in an order-entry environment. These
transactions include entering orders into the database, updating payment infor-
mation, inventory control, and so forth. Performance is again measured in trans-
actions per second. TPC-D, which focuses on decision-support systems,
continues the series of TPC benchmarks. Finally, the TPC-W benchmark has
been developed to simulate Web-based electronic-commerce applications.

131

733

7.3.3.1

7.3.3.2

7.3 Example benchmark programs

Servers and networks

Client—server computer systems are loosely defined as those in which several
independent computer systems (the clients) communicate over some network
with another computer system (the server) that responds to the clients’ requests,
such as to have access to shared files. Benchmarks for characterizing the perfor-
mance of client—server systems typically execute synthetic programs on the cli-
ents that send a stream of file-access commands, or other types of requests, to the
server. The mix of requests is usually determined by measuring the types of
requests that are generated in some given type of application environment.
The performance metric in this type of test is typically the number of requests
that can be served per unit time, or the average time required to respond to these
requests.

SFS/LADDIS

The SPEC System File Server (SFS) 1.1 benchmark was designed to measure the
throughput of UNIX servers running the Network File System (NFS) protocol.
The program has also been known by the name LADDIS which was an acronym
for the companies that collaborated to develop the program, specifically Legato,
Auspex, Digital, Data General, Interphase, and Sun.

The benchmark program itself runs on a client system to generate a variety of
NFS commands, such as lookup, read, write, create, and remove, that are sent to
a system running an NFS server. The specific mix of requests was chosen to
match the characteristics observed in several actual NFS installations. The server
sends a response to the client after the request has been satisfied. The client
continues to send additional requests at a faster rate until either the server’s
throughput begins to deteriorate, or its response time exceeds a predefined
threshold. The final performance metric is then the maximum number of NFS
operations that can be served per second.

SFS 2.0, which is a substantially improved version of SFS 1.1, was released in
late 1997 to replace SFS 1.1. This new version includes many enhancements, such
as a larger and updated workload that reflects the mix of operations observed in
more than 1,000 NFS application environments. It also includes support for both
TPC and UDP network transmission protocols. Because of these and other
differences, results obtained using SFS 2.0 cannot be compared directly with
those obtained with SFS 1.1.

SPECweb

With the explosive growth of the Internet and the World Wide Web has come a
need for benchmarks similar to SFS to measure the throughput rates of Web
servers. The SPECweb benchmark built on the framework of the SFS/LADDIS

132

734

74

Benchmark programs

Table 7.4. Some of the additional benchmarks developed for various application

domains
Benchmark Source Application domain
AIM AIM UNIX workstation and server tests
benchmarks Technology
Business Neal Nelson UNIX server throughput
Benchmark and Assoc.
GPC SPEC UNIX graphics subsystems
MacBench Ziff-Davis General Apple Macintosh performance
MediaStones Providenza Windows PC multimedia performance
and
Boekelheide
NetBench Ziff-Davis PC file server
PCBench Ziff-Davis MS-DOS PC benchmark
ServerBench Ziff-Davis PC subsystems (disk, processor, network)
SYSmarks BAPCo’ Retail PC software packages
WinBench Ziff-Davis Windows PC graphics and disks
WinStone Ziff-Davis Windows PC performance

benchmark discussed above, consists of client programs that continuously send
HTTP requests to a Web-server system. The rate at which these requests are sent
is gradually increased until the server can no longer respond within the prede-
fined response-time threshold. The maximum rate at which requests can be
served before the server’s response time begins to decrease is then the perfor-
mance metric reported.

Miscellaneous benchmarks

In addition to the benchmarks summarized above, many other benchmark pro-
grams have been developed for several other specific application domains,
including graphics performance, personal computers (PCs), and tests of multi-
media performance. Some of these benchmarks are summarized in Table 7.4.

Summary

Now that you have read this chapter, you should have some appreciation for the
fact that there is little to no agreement within the computer-performance-analysis
community on what constitutes a good benchmark program. Table 7.5 sum-
marizes the strategies that can be used in a benchmark program to exercise the

133

7.4 Summary

Table 7.5. Benchmark programs can employ these strategies to measure performance

Benchmark strategy Performance metric

Time Computation

Variable Fixed Total execution time

Fixed Variable Total amount of computation completed within the
given time

Variable Variable Third dimension derived from the statement of the

problem, such as quality

system under test. Probably the most common benchmark strategy is the fixed-
computation approach in which the total time required to execute all of the
computation specified in the benchmark program is used as the performance
metric. This strategy seems to most closely match our intuition of what we
mean when we say that the performance of a computer system has improved,
as measured by some given benchmark program. The complementary approach
is to fix the amount of time the system is allowed to execute the benchmark
program. The total amount of computation it completes in this fixed time period
then is used as the metric of performance. An advantage of this approach is that
it automatically scales the amount of computation in the problem to the perfor-
mance capabilities of the system being measured.

In the most flexible benchmark strategy, neither the amount of computation
that needs to be performed by the system, nor the amount of time it is allowed to
compute, is fixed. Instead, a third dimension is derived from some combination
of the execution time and the amount of computation completed within this time.
This derived quantity is then the metric of performance. In the HINT bench-
mark, for instance, the metric of performance is quality improvements per second
(abbreviated QUIPS), where the definition of ‘quality’ is rigorously defined as a
function of the problem being solved by the benchmark program. This variable-
time, variable-computation benchmark strategy seems to effectively capture all
of the best aspects of the other two strategies.

As summarized in Table 7.6, benchmark programs themselves can be classified
into several different types. In general, benchmarks based on instruction times or
instruction-execution profiles are inadequate for any real performance compar-
isons since they ignore critical aspects of a system’s overall performance.
Microbenchmarks are appropriate for analyzing one component of a system,
or one aspect of its performance, in isolation from the rest of the system.
Program kernels and toy benchmarks are often appealing since their small
sizes and limited execution times generally make them easy to run on a wide

134

Benchmark programs

Table 7.6. A wide variety of benchmark programs has been developed to satisfy a
range of specific needs and goals

Benchmark type Description
Instruction time Time required to execute one instruction
Instruction-execution Weighted average execution time
profile
Microbenchmark Small program that exercises one specific component of a system
Program kernels Central or essential loop extracted from a larger program
Toy benchmark Complete program that executes a small, often trivial, operation
Synthetic benchmark Program that matches the execution profile of a set of real

application programs
Application benchmark Reduced or scaled-down version of an actual application that
produces a useful result
Your application The best benchmark program
program

variety of systems. However, it is precisely their small sizes and limited execution
times that make them inappropriate for analyzing the entire capabilities of a
system.

Synthetic benchmarks also have a certain intellectual appeal in that they
attempt to capture the essential behavior of a variety of programs within a
class of applications in a single benchmark program. Although synthetic bench-
marks typically provide numerous parameters that can be used to adjust their
run-time characteristics, it is difficult to duplicate the actual low-level details of a
real application program in a synthetic benchmark. Unfortunately for the devel-
opers of synthetic benchmark programs, it is precisely these low-level details of
real applications that seem to have the biggest impact on system performance.
Thus, any results based on a synthetic benchmark should be treated with a great
deal of caution.

Although the best benchmark program will continue to be your particular mix
of applications, standardized application benchmark programs are often a rea-
sonable substitute. They provide the advantage of standardization in that they
can easily be used by many different performance analysts. As a result, they can
provide a common basis for comparing the performances of different systems
when they are measured by different individuals. Even though users of computer
systems want to run their real application programs, not some standard bench-
mark program, all of these various types of benchmark programs are neverthe-
less likely to remain an important component of the overall computer-systems-
performance-analysis picture.

135 7.5 For further reading

1.5

For further reading

The basic idea behind Amdahl’s law was first presented in

Gene M. Amdahl, ‘Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities,” AFIPS Conference Proceedings,
Spring Joint Computer Conference, April 1967, Atlantic City, NJ, pp.
483485,

with additional details described in:

Gene M. Amdahl, ‘Limits of Expectation,” International Journal of
Supercomputer Applications, Vol. 2, No. 1, Spring 1988, pp. 88-97.

The following papers discuss the many variations of Amdahl’s law:

J. L. Gustafson, ‘Reevaluating Amdahl’s Law,” Communications of the ACM,
May 1988, Vol. 31, No. 5, pp. 532-533,

Xiaofeng Zhou, ‘Bridging the Gap Between Amdahl’s Law and Sandia
Laboratory’s Results,” Communications of the ACM, August 1989,
Volume 32, No. 8, pp. 1014-1015,

Dilip Sarkar ‘Cost and Time-Cost Effectiveness of Multiprocessing,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 4, No. 6, June
1993, pp. 704-712.

This book discusses benchmarking and scalability of high-performance par-

allel-computing systems:

David J. Kuck, High Performance Computing: Challenges for Future Systems,
Oxford University Press, New York, 1996.

The following books provide good summaries of several common benchmark

programs:

Rich Grace, The Benchmark Book, Prentice Hall, Upper Saddle River, NJ,
1996,

J. Dongarra and W. Gentzsch (eds.), Computer Benchmarks, North-Holland
Publishers, 1993.

The details of the SLALOM benchmark are given in

John Gustafson, Diane Rover, Stephen Elbert, and Michael Carter, ‘The
Design of a Scalable, Fixed-Time Computer Benchmark,” Journal of
Parallel and Distributed Computing, Vol. 11, No. 8, August 1991, pp.
388-401.

The following three papers discuss the HINT benchmark. The first paper by

Sylvester describes in glowing terms how the HINT benchmark can be used to

compare the performances of client—server computing systems. The response

by Mashey then points out some of the flaws in this benchmark. The

Gustafson and Snell paper is the detailed description of the benchmark pro-

gram by its authors.

136

Benchmark programs

T. Sylvester, ‘HINT Benchmark Ideal for Fair C/S Testing,” Client—Server
Today, September 1994, pp. 83-84.

J. Mashey, ‘Counterpoint: Here’s a Good Hint on Performance,” Client—
Server Today, October 1994, pp. 53-55.

J. L. Gustafson and Q. O. Snell, ‘HINT: A New Way to Measure Computer
Performance,” Hawaii International Conference on System Sciences, 1995,
pp. 11:392-401.

This paper summarizes several different benchmark suites that have been

developed to characterize scientific application programs and shows the

results of executing these programs on a Cray Research parallel-vector super-
computer:

M. Berry, G. Cybenko, and J. Larson, ‘Scientific Benchmark
Characterizations,” Parallel Computing, Vol. 17, 1991, pp. 1173-1194.

These papers discuss some of the pros and cons of the popular SPEC bench-

mark suite:

Ran Giladi and Niv Ahituv, ‘SPEC as a Performance Evaluation Measure,’
IEEE Computer, Vol. 28, No. 8, August 1995, pp. 33-42,

Nikki Mirghafori, Margret Jacoby, and David Patterson, ‘Truth in SPEC
Benchmarks,” ACM Computer Architecture News, Vol. 23, No. 5,
December 1995, pp. 34-42.

A detailed example of how microbenchmark programs can be used to char-

acterize a particular aspect of a system’s performance is described in

Rafael H. Saavedra, R. Stockton Gaines, and Michael J. Carlton,
‘Characterizing the Performance Space of Shared-Memory Computers
Using Micro-Benchmarks,” University of Southern California
Department of Computer Science Technical Report no. USC-CS-93-547,
http://www.usc.edu/dept/cs/tech.html.

The Gibson mix is described in

J. C. Gibson, The Gibson Mix, IBM Systems Development Division,
Poughkeepsie, NY, technical report no. 00.2043.

The Whetstone and Dhrystone benchmarks are described in the following

papers:

H. J. Curnow and B. A. Wichmann, ‘A Synthetic Benchmark,” The Computer
Journal, Vol. 19, No. 1, 1976, p. 80,

R. P. Weicker, ‘Dhrystone: A Synthetic Systems Programming Benchmark,’
Communications of the ACM, Vol. 27, No. 10, October 1984, pp. 1013—
1030.

Chapter 2, ‘The Role of Performance,’ in the following computer architecture

text provides some useful insights into how benchmark programs have been

used in evaluating processor designs.

137

7.6

7.6 Exercises

David A. Patterson and John L. Hennessy, Computer Organization and
Design: The Hardware/Software Interface, (Second Edition), Morgan
Kaufmann Publishers, San Francisco, CA, 1998.

e The isoefficiency function is described in
V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel

Computing: Design and Analysis of Algorithms, Benjamin/Cummings
Publishing, Redwood City, CA, 1994.

e Finally, a great deal of information about the various benchmark sets is
available on the Web. These sites often allow access to the source code of
the benchmark programs themselves. A few examples are listed below.

Basic Linear Algebra Subroutines (BLAS),

http://www.cfm.brown.edu/people/cel07/blas.html.

HINT Benchmark,

http://www.scl.ameslab.gov/scl/HINT/HINT.html.

NAS Parallel Benchmarks,

http://science.nas.nasa.gov/Software/NPB/.

Parkbench Parallel Benchmarks,

http://www.netlib.org/parkbench/.

Perfect Club benchmarks,

http://www.csrd.uiuc.edu/benchmark/benchmark.html.

SPEC Benchmarks,

http://www.spec.org/.

Transaction Processing Performance Council (TPC) benchmarks,

http://www.tpc.org/.

Exercises

1. What are some possible measures of ‘computation’ in a computer system?
What are the strengths and limitations of each of these measures?

2. How could these measures of computation be used to develop a benchmark
program?

3. How do MFLOPS, MIPS, and QUIPS relate to benchmark programs?

138

Benchmark programs

. Compare the advantages and disadvantages of each of the different types of

benchmark programs.

. Explain the key differences between the two variations of Amdahl’s law dis-

cussed in this chapter.

. In designing a new computer system, we make an enhancement that improves

some mode of execution by a factor of ten. This enhanced mode is used 50%
of the time, measured as a percentage of the execution time when the
enhanced mode is in use. (Recall that Amdahl’s law uses the fraction of the
original, unenhanced execution time that could make use of the enhanced
mode. Thus, we cannot directly use this 50% measurement to compute the
net speedup using Amdahl’s law.)

(a) What is the speedup that we have obtained by using this fast mode?
(b) What percentage of the original execution time has been converted to

fast mode?

. Three different enhancements are being proposed for a new computer system.

Enhancement 1 produces a speedup of 30, enhancement 2 produces a speedup
of 20, and enhancement 3 produces a speedup of 10. Only one enhancement
can be in use at any time.

(a) If enhancements 1 and 2 are each usable for 30% of the (unenhanced)
execution time, what fraction of this time must enhancement 3 be used to
achieve an overall speedup of 10?

(b) Assume that the distribution of enhancement usage is 30%, 30%, and
20% of the unenhanced execution time for enhancements 1, 2, and 3,
respectively. If all three enhancements are in use, during what fraction of
the reduced (i.e. enhanced) execution time is no enhancement in use?

. What are the advantages of fixing the execution time of a benchmark program

while allowing the amount of computation it completes to vary? What are the
disadvantages?

. Develop a new microbenchmark program to characterize the input/output

performance of a computer system. You will have to define what ‘input/out-
put performances’ means, and how to measure it. After you have completed
your benchmark program, use it to compare the input/output performances
of three different computer systems. Use some appropriate analysis technique
for your comparison, such as the ANOVA test.

Linear regression models

8.1

139

‘I see your point ... and raise you a line.’
Elliot Smorodinsky

Measuring the performance of a computer system for all possible input values
would allow us to answer any question someone might have about how the
system will perform under any set of conditions. Unfortunately, it would be
prohibitively expensive, if not impossible, to make all of these measurements.
Instead, we can measure the system’s performance for a limited number of inputs
and use these measured values to produce a mathematical model that describes
the behavior of the system over a range of input values. We can then use this
model, which is called a regression model, to predict how the system will perform
when given an input value that we did not actually measure.

A linear-regression model begins with a system that has one continuous (or
nearly so) input factor whose value we can control. If we plot the measured
response values as a function of the input values, we may find that there appears
to be a linear relationship between the input and the output, as shown in Figure
8.1. We can then use the method of least-squares minimization to produce a
linear-regression equation to model the system. This model will allow us to predict
how the system will respond to input values that we did not actually measure.

Least squares minimization

A simple linear regression model is of the form
y=a+bx (8.1)

where x is the input variable, y is the predicted output response, and a and b are
the regression parameters that we wish to estimate from our set of measurements.
If y; is the value we actually measure when we set the input value to x;, then each
of these (x;, y;) pairs can be written as

140

Linear-regression models

X

Figure 8.1 A scatter plot of the measured data points with the calculated regression line.
The experimenter controls the input value, x;, and measures the corresponding output
value, y;. The residual, ¢;, is the difference between the regression line and the measured
data point, (x;, y;).

yi=a+bx;+e (8.2)

where ¢; is the difference between the measured value for y; and the value that
would have been predicted for y; from the regression model (see Figure 8.1). This
difference is called the residual for this measurement.

To find the regression parameters ¢ and b that will form a line that most
closely fits the n measured data points, we can minimize the sum of squares of
these residuals, denoted SSE. That is, we wish to find ¢ and b to minimize

SSE=Y "ef =) (y;—a—bx). (8.3)
i=1 i=1

We begin by differentiating SSE first with respect to @ and then with respect to
b. We then set both of these partial derivatives to zero to produce the following
system of equations

na—l—bixi = iyl (84)
i=1 i=1
n n n
aZx,» + bX:yc,2 = Zx,»yi. (8.5)
i=1 i=1 i=1

Solving this system for b produces
h— nY iy XiVi — (27:1 x,») (Z?:l J’z‘) ‘
DR (27:1 Xi)z

(8.6)

141 8.1 Least squares minimization

Table 8.1. Measured times required to read various input file

sizes
File size Time
(bytes) (1s)
(x;) &)
10 3.8
50 8.1
100 11.9
500 55.6
1,000 99.6
5,000 500.2
10,000 1,006.1

We then can use Equation (8.4) to find that
a=7j— bx. (8.7)

Example. We wish to develop a regression model to relate the time required to
perform a file-read operation to the number of bytes read.

We perform an experiment in which we vary the number of bytes read from 10
to 10,000 and measure the corresponding reading time. Our resulting measure-
ments are shown in Table §.1.

From these data, we calculate

> x;=16,660.0 (8.8)
i=1

7
> yi=16853 (8.9)
i=1

7
> xiyi=12,691,033.0 (8.10)
i=1

7
> x; =126,262,600.0 (8.11)
i=1
X =2,380 (8.12)
7 = 240.76. (8.13)

Plugging these values into the above equations for @ and b produces

142 Linear-regression models

, _ (1D(12,691,033.0) — (16,660.0)(1685.3)

=2 — 0.1002 (8.14)
(7)(126,262,600.0) — (16,660.0)

a = 240.76 — (0.1002)(2,380) = 2.24. (8.15)

Thus, using these estimates for the parameters for a linear regression model for
this system produces

y =224+ 0.1002x. (8.16)

From this equation we can say that the time required to read a file from the disk
is approximately 2.24 us plus an additional 0.1002 ps per byte read. We can then
predict that the time required to read a file of 3,000 bytes would be about 2.24 +
0.1002(3,000) = 303 ps, for instance. &

8.2 Confidence intervals for regression parameters

It is important to bear in mind that the regression model parameters a and b
calculated using this technique are estimates based on experimentally measured
values. Thus, they are subject to all of the types of experimental errors described
in Chapter 4. Additionally, the output values we predict when using the regres-
sion model also are affected by the experimental errors since they are simple
linear combinations of the measured values. Confidence intervals are again use-
ful in quantifying the precision of our estimates of the regression parameters and
the predicted output values.

To derive a confidence interval for the regression parameters, we first need
some estimate of their variance. It can be shown that the best estimate of this
variance is obtained by dividing the sum of squares of the residuals, SSE, by the
number of degrees of freedom available for this term. Since we used » measure-
ments to derive the two regression parameters, there are n — 2 degrees of freedom
for SSE. Thus,

SSE
S2 =

== (8.17)

To simplify the calculation of this sample variance, it useful to expand SSE as
follows:

n

SSE =3¢ = (i —a—bx) = 3l —) — b — 9
i=1 i=1 i=1 (8.18)

2
= Sy = 2bSy, + b*Syy = S, — bS,,

where

143 8.2 Confidence intervals for regression parameters

2
Z(x,—x) —Zx, Lic Ix) (8.19)

Z(y, P’ —Zy, Li=]y (Zh)” (8.20)

Sy = Z;(xi - -y = Z;xiyi _) () : (8.21)

n

Using these intermediate terms gives the following estimate of the variance of the
regression parameters
» SSE S, —bS,,

— . 8.22
s n—2 n—2 ()

Using this sample variance, it is easily shown that the confidence interval for
the slope of the regression equation, b, is

MN—a/2;n-218
(by, by) = bF —=— (8.23)
SXX
where jj_q/2.,—2 18 from a ¢ distribution with n —2 degrees of freedom. As
before, when n is sufficiently large, we can approximate the ¢ distribution
using a standard normal distribution. Similarly, the confidence interval for the
intercept in the regression equation, a, is

—0(/2 n— 2]SV Z;l:l xl2

nS,,

(a1,a) =aF (8.24)

Finally, we are often interested in using a regression model to predict a future
observed response. That is, we would like to estimate the system’s response for a
particular input level that we did not (or could not) actually measure. Our
prediction of the system’s response, y,, when the input value is x,, is found simply
by inserting these values into the regression equation. Thus, y, =a+bx,. A
corresponding confidence interval for this prediction is

1 (x,— %
D1 Vp2) = Vp Flli—apan-28y L + =+ M (8.25)
n S
XX

Example. Using the data in Table 8.1, we found the corresponding regression
model to be y = 2.24 4+ 0.1002x. Calculate appropriate confidence intervals for
these regression parameters.

We first calculate S, S,,, and Sy, to be

yys

144

Linear-regression models

1 2

S.. = 126,262,600 — (16,660)" _ 86,611,800 (8.26)
1,685.3)°

S,y = 1,275,670.43 — @ = 869,922.42 (8.27)

(16,660)(1,685.3)
7

The variance of the regression parameters is then calculated to be

2 869,922.42 — 0.1002(8,680,019)
N 7-2

Sy = 12,691,033 — —8,680,019. (8.28)

— 36.9027. (8.29)

The corresponding standard deviation is
s =+/36.9027 = 6.0748. (8.30)

The 90% confidence intervals for the regression parameters a and b are then
found to be

2.015(6.0748)
/86,611,800

2.015(6.0748)/126, 262, 600
/7(8,680,019)

(by, by) = 0.1002 F —0.1002 0.0013 = (0.099,0.102) (8.31)

(), a)) = 2.24 F —2.24F5.59 = (—3.35,7.83).

(8.32)

Since the confidence interval for a includes zero, at the 90% confidence level,
we cannot conclude that this y-intercept is significantly different than zero.

We also used this model to predict that the time required to read a file of 3,000
bytes would be y3q99 = 303 us. We can then calculate the 90% confidence interval
for this prediction to be

1 (3,000 — 2,380)°

(3000;1> ¥3000;,2) = 303 F 2-015(6-0748)\/1 T 86,611,800 (8.33)

=303 F 13.11 = (290, 316).

Thus, we are 90% confident that it will take between 290 and 316 ps to read a
file of 3,000 bytes. &

These confidence intervals allow us to determine how much measurement
noise there is in our estimates of the regression parameters. Confidence intervals
that are large relative to the size of the parameters would suggest that there is a
large amount of error in our regression model. This error could be due to
systematic or random errors in the measurements, or it could be due to the
fact that the underlying process we are measuring does not, in fact, exhibit a

145

8.3

8.3.1

8.3 Correlation

linear relationship. As a result, we should be careful when drawing conclusions
from a regression model with large variances (and, therefore, large confidence
intervals) in the parameters.

Furthermore, when a linear-regression model is used to predict system-
response values for inputs that are outside of the range of measurements that
were used to develop the model, we would expect to have less confidence in the
values predicted. In fact, it may be that the system is linear only within the range
that we happened to measure. Thus, great care should also be taken when trying
to predict values outside of the range of measurements. This situation is inves-
tigated further in the exercises at the end of the chapter.

Correlation

After developing a linear-regression model, it is useful to know how well the
equation actually models the measured data. That is, we are interested in know-
ing how strong the linear correlation between the input and output is. The
coefficient of determination, and its square root, called the correlation coefficient,
are quantitative measures of this observed linearity.

The coefficient of determination

We start by using the method of allocation of variation to determine how much of
the total variation is explained by the linear model. In Equation (8.18), we saw
that

SSE =S, — bS,,. (8.34)
If we let SST = S, and SSR = bS,,, then we have
SST = SSR + SSE. (8.35)

In this form of the expression, we readily see that the total variation in the
measured system outputs, i.e. SS7T, is partitioned into two components. The
first component, SSR, is the portion of the total variation explained by the
regression model. The remaining component, SSE, is due to measurement
error. In a scatter plot of the measurements, we see this error as the variation
of the measurements around the regression line.

The fraction of the total variation explained by the regression model is called
the coefficient of determination. It is denoted r* and, similar to what we have seen
before, it is found as

» SSR _SST — SSE
" TSsTT T ssT

(8.36)

146

8.3.2

Linear-regression models

Since SST = SSR + SSE, it should be apparent that 0 <> < 1. If there is a
perfect linear relationship between the input and the output, then all of the
variation in the measured outputs will be explained by the regression model.
In this case, all of the measured data points would fall directly on the regression
line so that all of the residuals, ¢;, are zero, giving SSE = 0. In this case, then,
#* = 1. If, on the other hand, none of the variation in the outputs is explained by
the regression model, then SSE = SST and r* = 0.

Thus, the coefficient of determination provides an indication of how well the
regression model fits the data. Values of r* near 1 indicate a close linear relation-
ship between the input and output values. Conversely, values of r* near 0 indicate
that there is little to no linear relationship. The latter situation would occur if the
output were a horizontal line, for instance, so that knowing any of the input
values would be of no help in predicting the output values. Similarly, even if
there were a functional relationship between the inputs and outputs, but it was
not linear (it could be quadratic, perhaps), then /> would be near zero.

The correlation coefficient

The square root of the coefficient of determination is called the correlation
coefficient, denoted r. It can be shown that

Sy
F=— (8.37)

CVSuSy

Note that, equivalently,

S SSR
oo [Se 8.38
"TNs, T VssT (8.38)

where b = S, /S, is the slope from the linear regression model.

The value of r ranges between —1 and +1. A value of r = +1 indicates a
perfect positive linear correlation between the input and output variables. In
this case, any increase in the magnitude of the input will produce an appropri-
ately scaled increase in the output. A value of r = —1, on the other hand, means
that any change in the input will produce a corresponding change in the output
in the opposite direction. That is, an increase in the input will produce an
appropriate decrease in the output. Values of r between —1 and +1 indicate
different degrees of linear correlation.

It is important to understand the differences between the coefficient of deter-
mination and the correlation coefficient. Suppose that we have two different
systems for which we have developed linear regression models. For one of
them we calculate a correlation coefficient of r; = 0.6 while for the other we

147

8.3.3

8.3 Correlation

find r, = —0.9. From these correlation coefficients we cannot conclude that the
linear relationship for the second system is 50% ‘better’ than that for the first. All
we can conclude is that the linear relationship in the second system appears
stronger.

Looking at the coefficient of determination, though, we find ¥ = 0.36 and
3 =0.81. Now we see that, for the first system, only 36% of the variation in
the output is explained by the linear-regression model. For the second system,
however, 81% of the change in the output values is explained by the regression
model. We can thus conclude that the linear relationship between the inputs and
the output for the second system is much stronger than that for the first.

Example. Again using the data from Table 8.1, we can calculate the correlation
coefficient for the regression model relating the time required to read a file of a
given number of bytes as follows:

/ 86,611,800
r=10.1002 869.922.4171 0.9998. (8.39)

The coefficient of determination is > = (0.9998)% = 0.9996. Thus, we conclude
that 99.96% of the variation in the time required to read a file is explained by this
linear-regression model. &

Correlation and causation

Finally, it is important to appreciate the difference between correlation and
causation. Causation implies that an observed change in the output is the direct
result of a change in the input. That is, there is some process within the system
that somehow links the input and the output. If the process is linear, we would
expect to find a large correlation coefficient. For example, reading a large file
takes longer than reading a small file because more data must be transferred
from the disk to the memory. Thus, we are not surprised to find a high correla-
tion between the file-reading time and the number of bytes read in the example
above.

However, the converse is not always true. That is, the output could be highly
correlated to the input without the input causing the output. For example, we
may find that there is a high correlation between the time required to send a
message on some shared network and the time of day. Thus, knowing the time of
day allows us to predict with some accuracy how long it will take to send a
message. However, the time of day does not cause there to be a certain transmis-
sion time. Rather, the number of people using the system changes throughout the
day according to work schedules. It is the actions of these users that change the
load on the network, which then causes the changes observed in the message-
transmission times. Thus, although there is a strong correlation between the time

148

8.4

Linear-regression models

required to send a message and the time of day, the analyst must be careful not to
conclude that one causes the other. This admonition is commonly summarized in
the aphorism ‘correlation does not imply causation.’

Multiple linear regression

A multiple-linear-regression model is a straightforward extension of the simple
one-input regression model. It allows the model to include the effects of several
input variables that are all linearly related to a single output variable. For
example, it may be that the total execution time of a program is a linear function
of the number of memory and file input/output operations it performs. The
multiple-regression model would then allow the prediction of execution times
on the basis of these two input factors.

For simplicity of explanation, we first consider the case of a multiple linear
model with two independent input variables, x; and x,. In this case, we are trying
to fit a plane to the collection of measurements instead of a simple line. The basic
form of this two-dimensional regression model is

y = bo + b]X] + b2X2 (840)

where by, b;, and b, are the regression parameters we wish to estimate. By
making n measurements of the output y for various combinations of the inputs
x; and x,, we obtain n data points (xy;, Xy;, y;), Where y; is the output value
observed when input x; is set to the specific value x;; and input x, is set to
x,;. Each of these data points can be expressed as

Y ="bo+bix1; +byxsi +¢; (8.41)

where e; is again the residual for the data point (xy;, Xo;, ;).
Just like in the simple regression case, we wish to minimize the sum of the
squares of the residuals:

SSE = Ze,z = Z(yi — by — b1 X1; — byxy) . (8.42)
P i

As before, this expression takes on its minimum value when the partial deriva-
tives of SSE with respect to by, by, and b, are all set to zero. This procedure then
leads to the following system of equations:

nby+b1 Y Xii+b Y xXi= ¥ (8.43)
i=1 i=1 i=1

149

8.4 Multiple linear regression

n n n n
bod xiHby Y Xty Yy xixg =Y xpy; (8.44)
i=1 i=1 i=1 i=1

n n n n
by szf+b1 lefxzi + by Zx%i = ZXZiyi- (8.45)
i=1 i=1 i=1 i=1

We now have three equations that we can solve to find the three unknowns b, by,
and b,. The wide availability of software for solving these types of systems of
equations should make this a relatively simple task, although the solution could
also be found by using any of the standard methods for solving systems of
equations.

This same procedure can be generalized to find a multiple linear regression
model of the form

y:b0+b1)€1 —i—---—i—bkxk (846)

for k independent inputs. Again, we wish to minimize
SSE =) el =) (i—bo—bixi; = byxy — -+ = byxy,)’ (8.47)
i=1 i=1

where y; is the output value measured when the k inputs are set to (xy;, xo;,
-+, Xy;) and there are in total » measurements available. After setting the partial
derivatives of SSE with respect to the b; values to zero, we obtain a system of
equations that can be solved to find the b; regression parameters.

To solve this system, it is convenient to organize the input values used when
making all of the measurements of the system into a matrix X defined as

1 x; X o Xp]
I X xpn 0 Xp
Xx=| | (8.48)
Loxy Xy 0 X
L1 Xy, X2 0 Xp

Next define the matrix
A =XTX (8.49)

and the two column vectors

150

8.5

Linear-regression models

P (8.50)

by |

Zn’;:l Yi
d— Z[:l:xliyi ' (8.51)
Z;’:l. XkiVi
Then, if A is invertible, the regression coefficients are found by solving

b=A"ld. (8.52)

Owing to the effort required to solve linear systems of equations with a large
number of variables, it is recommended that you use one of the several com-
monly available software packages designed for this purpose. Many versions of
these packages intended for use by statisticians also can calculate confidence
intervals for the regression parameters, predicted outputs, and so forth. This
approach is generally much more convenient, and much less error-prone, than
is trying to solve these systems manually.

Verifying linearity

An important consideration in developing linear regression models is that the
relationship you are trying to model might not in fact be linear. Even if the
relationship is not linear, you can still mechanically apply the formulas to cal-
culate values for the regression-model parameters that will minimize the sum of
the squares of the residuals. However, the resulting model will be wrong in the
sense that it will give poor predictions for output values.

Furthermore, applying a linear model to a nonlinear system will give a mis-
leading impression about the system’s overall behavior. Consequently, it is very
important to verify that the inputs and outputs appear to be linearly related. A
simple plot of the output values as a function of the inputs is often sufficient to
verify this assumption of linearity. Constructing this type of plot before begin-
ning any regression calculation should be considered mandatory.

151

8.6

8.6 Nonlinear models

Nonlinear models

For systems with nonlinear input—output relationships, it is sometimes possible
to transform the nonlinear data into a linear form. The linear-regression formu-
las can then be applied to these transformed data.

For example, say that we know (or suspect) that the input—output relationship
of a system is exponential such that

y=ab". (8.53)
In this case, if we take the logarithm of both sides we obtain
Iny =Ina+ (Inb)x. (8.54)

By letting) =Iny, d =1Ina, and b' = Inb, we can rewrite this equation in our
standard form

Yy =d+Dbx. (8.55)

The regression formulas can then be used to find & and %', from which @ and b in
the nonlinear model can be obtained.

The conversion of a nonlinear function into a linear function to which the
above linear-regression techniques can be applied is called curvilinear regression.
There is also a variety of other general transformations that can be used to
convert measured data from one form to another. There is a large body of
literature dealing with this topic of curve fitting, to which the interested reader
should refer. Many of these curve-fitting techniques have been implemented in
readily available software packages.

Example. You are given the task of estimating the growth over time in the
number of transistors on a certain type of integrated-circuit chip that your
company produces. In particular, you are asked to estimate how many transis-
tors are likely to be integrated on the chip 4 years from now, assuming that the
growth in transistor density continues at the same rate as it has over the past
several years.

You begin by collecting the data in Table 8.2, which shows the estimated
number of transistors integrated on this type of chip for the past 6 years.
After plotting this data, as shown in Figure 8.2, it is apparent that the growth
in transistor density is nonlinear. In fact, the growth appears to be exponential.
Consequently, you expect that you can model this growth using a regression
equation of the form

y = ab”. (8.56)

To apply the linear regression techniques, however, you must first /inearize the
model by letting y =Iny, @ =Ina, and b = Inb, to give

152

Linear-regression models

Table 8.2. Estimates of the number of transistors on a certain
type of integrated-circuit chip during several consecutive

years
Year Number of transistors Transformed
(x;) o) data
O =Iny)

1 9,500 9.1590
2 16,000 9.6803
3 23,000 10.0432
4 38,000 10.5453
5 62,000 11.0349
6 105,000 11.5617

n (o)

100 *
gt
= 80F
X 3
g I
% 60 | °
= 2
© L
£ 40f o
=
Z 2
20 F °
I (o)
* o
0 . | | Ll | | |
0 1 2 3 4 5 6

Year

Figure 8.2 A scatter plot of the measured data points from Table 8.2.

V=d+bx (8.57)

The corresponding values you calculate for y; are shown in Table 8.2, and a
scatter plot of these linearized values is shown in Figure 8.3.

Using the linear regression equations, you calculate the following intermediate
values:

ZX[=21

i=1

(8.58)

153

8.6 Nonlinear models

115 | °
5 1
E L o
§11.0?
o
=}
2 05| °
g
=
=
[}
= i o
S 100 F
g
= o
5
&b 95
—
i o
9.0
7\\\\\\\\\\\\\ L b TN AR L b TR BRI TR
0 1 2 3 4 5 6
Year

Figure 8.3 A scatter plot of the transformed (linearized) data points from Table 8.2.

Zx,2 =91

i=1

6
>y =162.0246
i=1

6
30 = 645.1103
i=1

6
> xiyi = 2253756

i=1
Sp=17.5
Sy, = 3.9354
S,y = 8.2895.

(8.59)

(8.60)

(8.61)

(8.62)

(8.63)
(8.64)

(8.65)

You then find the regression parameters to be ¢’ = 8.68 and b’ = 0.474, from
which you can calculate a = ¢* = 5,881 and b = ¢ = 1.61. This produces the

regression model for growth in transistor density

y = (5,881)1.61".

(8.66)

154

Linear-regression models

It is a good idea to find confidence intervals for these regression parameters to
provide some indication of how well they model the data. We first calculate the
standard deviation as follows:

Sy, —b'Sy, [3.9354 —(0.474)(8.2895
5= \/ 2 2 = \/ (0474) _ 0.0465. (8.67)

n—2 4

Note that we must use 4" in this expression instead of b since the standard
deviation is applicable only to the linearized version of the regression model.
For a 90% confidence interval for ', we find from the 7 table #;_ggs.4 = 2.132.
Then the interval itself is found to be

2.132(0.0465)

bips b)) = 0.4737 = (0.4500, 0.4974). 8.68
(bio» bii) T s () (8.68)
The corresponding interval for b is

(bros byi) = (€27, P = (1.57, 1.64). (8.69)

Similarly, the confidence interval for « is

2.132(0.0465)+/91

J6(17.5)

The corresponding confidence interval for a is then found to be

() aly) = 8.68 F = (8.59, 8.77). (8.70)

(a1, ay) = (€, 577) = (5,360, 6,450). (8.71)

Finally, we predict what the transistor density will be 4 years in the future by
setting x = 10 in the above regression equation (since x = 6 corresponds to the
present) to give

y10 = (5,881)1.61' = 670,000. (8.72)

To calculate an appropriate confidence interval for this prediction, we must
again work with the linearized parameters. Thus,)}, = 8.68 + (0.474)(10)
= 13.42. The 90% confidence interval for this prediction is

. . 1 (10 —3.5)7

= (13.23, 13.60).

The corresponding confidence interval for)}, is (556,000, 809,000). Thus, we
conclude that, if the growth in transistor densities maintains the same rate as it
has over the past 6 years, there is a 90% chance that we will see between 556,000
and 809,000 transistors per chip 4 years from now. &

155

8.7

8.8

8.8 For further reading

Note that this conclusion relies on the assumption that the variation in
transistor densities that we estimated follows a normal (Gaussian) distribution.
This variation in this case corresponds to the ‘noise’ in the data in Table 8.2.
Since these are not actually measurements in the sense in which we typically
think of measurements in computer-performance-analysis experiments, however,
this assumption is not in fact necessarily reasonable. As a result, our conclusions
must be treated with an appropriate measure of caution. In particular, the
confidence-interval width perhaps does not accurately reflect what would be
actually observed. Nevertheless, without some additional information about
the error in these ‘measurements,” this approach to modeling the growth in
transistor densities is probably as reasonable as is any other alternative.

Summary

Linear regression uses the least-squares-minimization technique to develop a
mathematical model of a system from a set of measured data values. This
model relates a single output response of a system to the values presented at
its inputs. Since this model is derived from measured data, which are subject to
measurement noise, confidence intervals are again used to quantify the precision
of the regression parameters. Confidence intervals can also be calculated for
output values predicted from the model. Before blindly applying the linear-
regression formulas, it is important to verify that the output indeed appears to
be linearly related to the inputs. The coefficient of determination and the corre-
lation coefficient provide quantitative measures of the linearity between the out-
put and the inputs. Inputs and outputs that are not linearly related can often be
‘linearized’ by using an appropriate transformation. The linear regression models
then can be applied to the linearized data.

For further reading

e Chapter 15 of this text describes the mathematics behind linear regression, and
discusses the general problem of fitting measured data to a parameterized model.
William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.

Flannery, Numerical Recipes in C (Second Edition), Cambridge
University Press, New York, NY, 1992.

156

8.9

Linear-regression models

Exercises

. What error distribution is assumed to exist in the measurements used to

develop a linear-regression model? What are the consequences of this assump-
tion being wrong for your data?

2. What is an outlier? How should outliers be handled in regression modeling?
. What can you say about a regression model whose coefficient of determina-

tion is 0.87? 0.54? 0.29?

. What other criteria besides the least-squares error criterion could be used to

find a line that fits the measured data?

. Using the data values shown in Table 8.1, calculate confidence intervals for

input file-size values ranging from 100 bytes to 10,500 bytes in steps of 100
bytes. Plot these confidence intervals and the corresponding linear-regression
model on the same graph. What happens to the confidence intervals towards
the ends of the measured values?

. Show that the coefficient of determination is the square of the correlation

coefficient.

. Develop a linear-regression model to predict the time required to perform a

recursive subroutine call as a function of the depth of the recursion. We are
interested only in the overhead of the call and return, not the user work that
would be performed within the subroutine.

(a) Measure and plot the time required to perform a recursive call n levels
deep using appropriate values of n in the range [100, 100,000].
Superimpose on this plot your linear-regression model. Also, determine
90% confidence intervals for the regression parameters and include
appropriate information about the correlation between the inputs and
outputs of your model.

(b) Use this model to predict the time required to perform this recursive call
m levels deep (with an appropriate confidence interval), where m is near
the middle of the range of values you measured, but not a value you
actually measured.

(c) Now measure the time required to perform this recursive call m levels
deep and calculate a 90% confidence interval. Compare your prediction
from part (b) with these measurements, and explain your results.

(d) Repeat parts (b) and (c¢) for two additional values of m, one that is larger
than the largest value you measured in part (a), and one that is smaller
than the smallest value you measured.

8. Repeat the above problem for the time required to read a file of b bytes.
9. Using the data in Table 8.2, estimate the number of transistors that will be on

a chip in year 20 and year 25. Calculate a 90% confidence interval for your
predictions.

157

The design of experiments

‘The fundamental principle of science, the definition almost, is this: the sole test of the validity
of any idea is experiment.’
Richard P. Feynman

The primary goal of the design of experiments is to determine the maximum
amount of information about a system with the minimum amount of effort. A
well-designed experiment guides the experimenter in choosing what experiments
actually need to be performed. From the resulting measurements, the experimen-
ter can determine the effects on performance of each individual input factor, and
the effects of their interactions. The form of the experimental design also allows a
quantitative evaluation of the error inherent in the experimental measurements
relative to the overall system response.

A key assumption behind the design of experiments is that there is a nonzero
cost associated with performing an experiment. This cost includes the time and
effort required to gather the necessary data, plus the time and effort needed to
analyze these data to draw some appropriate conclusions. Consequently, it is
important to minimize the number of experiments that must be performed while
maximizing the information obtained.

Good experiment design allows the experimenter to

e isolate the effects of each individual input variable,
e determine the effects due to interactions of the input variables,

e determine the magnitude of the change in the system’s output due to the
experimental error, and

e obtain the maximum amount of information with the minimum amount of
effort by limiting and controlling the number of experiments that must be
performed.

158

9.1

9.2

The design of experiments

Types of experiments

The simplest design for an experiment varies one input (factor) while holding all
of the other inputs constant. Unfortunately, this approach ignores possible inter-
actions between two input variables, which could lead one to draw erroneous
conclusions. The opposite extreme is a full factorial design with replication in
which the system’s response is measured for all possible input combinations.
With this type of data, it is possible to determine the effects of all input variables
and all of their interactions, along with an indication of the magnitude of the
measurement error. However, a full factorial design can require a very large
number of experiments. For example, a system with five factors (input variables),
each of which has four possible levels, requires 4> = 1,024 separate experiments.
Repeating all of the measurements twice to obtain some estimate of the measure-
ment error increases the total number of experiments to 1,024 x 3 = 3,072.

To reduce the total number of experiments that must be performed, the experi-
menter can reduce either the number of levels used for each input variable, or the
total number of inputs. Both of these choices restrict the conclusions that can be
drawn from the resulting measurements, of course. The n2" factorial design
limits the number of levels for each input variable to two, either high or low.
Although not as much information is provided by this reduced experiment design
as with the complete design, it does provide a way to more quickly determine
which input variables are the most important. A complete design restricted to
only these important variables can then be performed.

Terminology

The terminology used in the design of experiments can sometimes be confusing.

Here we define some of the most important terms.

e The response variable. The response variable is the output value that is mea-
sured as the input values are changed. A common response variable is the total
execution time, for instance.

e Factors. The input variables of an experiment that can be controlled or chan-
ged by the experimenter are called the factors. For example, the factors of an
experiment might include the cache size, the size of a disk file, the processor
type or clock rate, the number of bytes to be sent on a communications net-
work, and so forth.

e Levels. The levels of a factor are the specific values to which it may be set.
These values may be continuous (or nearly so), such as the number of bytes

159

9.3

9.3.1

9.3 Two-factor experiments

moved in an input/output operation, or they may be categorical, such as the
type of system being used.

e Replication. Replicating an experiment means completely rerunning it with all
of the same input levels. Since the measurements of the response variable are
subject to random variations, replications of an experiment are used to deter-
mine the impact of measurement error on the response variable.

e Interaction. An interaction between factors occurs when the effect of one
factor depends on the level of another factor.

Two-factor experiments

Previously, in Section 5.2.1, we examined a one-factor experiment for comparing
alternatives. The only factor, or input variable, in this experiment was the type of
system we were comparing. The number of levels in this experiment corre-
sponded to the number of different alternatives being compared. Recall that
we used the analysis of variance (ANOVA) technique to separate the total var-
iation observed in all of the measurements into (i) the variation due to measure-
ment error within each alternative separately, and (ii) the variation across
alternatives. Further recall that this variation across alternatives could be due
both to actual differences in the alternatives and to measurement error. Thus, we
used the F-test to determine whether this cross-alternative variation was statis-
tically significant compared with the variation known to be due to measurement
error alone. If it was, we could conclude that there was indeed a statistically
significant difference between the alternatives.

Interaction of factors

We now extend this basic idea to experiments with two factors, calling them
factor A and factor B. As you might guess, we want to separate the total varia-
tion we observe among our measurements into the effect due to 4, the effect due
to B, and the variation due to measurement errors. However, there is one addi-
tional effect we need to consider here — specifically, the effect due to the inter-
action of factors A and B.

For example, consider an experiment in which we want to observe the effect on
the system’s response time of varying the size of the main memory available in
the system and the degree of multiprogramming allowed. (The degree of multi-
programming is the number of applications that are allowed to time-share the
processor.) If we have three different memory sizes available, say 32, 64, and 128
Mbytes, and we allow from one to four applications to share the system, we have
in total 12 combinations of the two factors that we must consider. Table 9.1

160

9.3.2

The design of experiments

Table 9.1. The user-response times in seconds measured with various combinations of
system memory size and degree of multiprogramming

B (MBytes)
4 32 64 128
1 0.25 0.21 0.15
2 0.52 0.45 0.36
3 0.81 0.66 0.50
4 1.50 1.45 0.70

shows the user-response times of the system measured for each of these combi-
nations, where factor A4 is the degree of multiprogramming and factor B is the
memory size.

A common (and inappropriate) shortcut that is often made in these types of
experiments is to vary only one factor at a time. For instance, say the experi-
menter fixes the memory size at 64 Mbytes while varying the degree of multi-
programming. Then, the degree of multiprogramming is fixed, say at 3, while the
memory size is varied. The experimenter may then feel that they now have a
complete view of the system’s performance as a function of these two factors
since, after all, they allowed both of them to vary. The problem with this reason-
ing is that it corresponds to measuring only along the ‘64’ column in Table 9.1,
followed by measuring along the ‘3’ row. However, all of the other possible
combinations of the two factors have been ignored. Thus, the experimenter
would be unable to determine whether there is any interaction between the
memory size and the degree of multiprogramming. In this example, in fact, it
appears that there could be some interaction. Specifically, when the degree of
multiprogramming is 4, the response time decreases nonlinearly with the memory
size. With smaller degrees of multiprogramming, however, the response time
appears to be more directly correlated to the available memory size.

ANOVA for two-factor experiments

The development of the ANOVA technique for a two-factor experiment closely
parallels the one-factor development of ANOVA in Section 5.2.1. Begin by let-
ting y;; be the kth measurement made with factor 4 set to its ith level and factor
B set to its jth level. Assume that 4 has a possible levels, B can take on b possible
levels, and n measurements in total have been made for each combination of the
two factors. It is convenient to summarize all of these abn total measurements as
shown in Table 9.2.

161

9.3 Two-factor experiments

Table 9.2. Entry yj, in this table is the kth measurement made with factor A set to its
ith level and factor B set to its jth level when using the ANOVA technique in a two-
factor experiment

B
A 1 2 e Jj e b Sum Mean
1 Y1 Y121 Yij1 Yib1 NE Y.
Y112 Y122 T Yij2 T Yib2
Yin Yion Yijn Vibn
2 Jan V221 T)1 T Yani Ss.. 2.
V212 V22 T 22 T Yom2
Yan Y22 T Yo T Yaobn
i Yin Y2l T Yijl T Yib1 Si. Vi
Yinz Vi T Yij2 T YVib2
Yiln Yion e Vijn e Yibn
a Yal1 Ya21 e Yaj1 e Yab1 Sa..)711..
Yal12 Ya22 T Yaj2 e Yab2
Yain Yazn e Yajn e Yabn
Sum S, So. e S, e S, S.
Mean y. Va. e V. e Vb V.

Next, we find the mean of the n measurements made for each combination of
levels, that is, when factor 4 is at level i and factor B is at level j. This gives

n
_ Dkt ik Sy
= LV i
n n

(9.1)

where S; = > /_, v The value y; then is the local mean value of the measure-
ments within each cell of the table.

We can then write each individual measurement as the sum of its local mean
value and a residual term, e;;. This produces

Yik = Vij. + ek 9.2)

162

The design of experiments

which shows the deviation of each measurement from its local mean value. Thus,
the ¢;; terms are an indication of the variation in the measurements around the
mean for that set of levels (input values).

Extending what we did previously for the one-factor experiment, we can
express the individual row and column means from Table 9.2 as the sum of
the overall grand mean of all of the measurements, y , and the deviations due
to the effects of the factors. Note that, in this case, however, we have an inter-
action effect from the combination of the two factors in addition to the main
effects of each factor. This produces the following expression:

Vi.=YV.to+ B+ 9.3)

where «; is the main effect of the ith level of factor 4, B; is the main effect of the
Jjth level of factor B, and y; is the effect due to the interaction of factor A4 at level
i and factor B at level j. Substituting Equation (9.3) into Equation (9.2) then
gives

Yik = V.. +a;+ B+ vy + e 9.4

The effects are constrained so that

Xa:ai -0 (9.5)
i=1

b
> B=0 (9.6)
J=1
Y vy=0 (9.7)
i=1

b
>y =0. (9.8)
J=1

Expressing each individual measurement in this form now allows us to sepa-
rate the total variation in the measurements into the components due to factor A4,
factor B, their interaction, AB, and the measurement error. This separation is
called the sum-of-squares identity and is written as

SST = SSA + SSB+ SSAB + SSE 9.9)

where

a b n

SST=) % > u—7.) (9.10)

i=1 j=1 k=1

a

SSA=bnY (7. —7.) (9.11)

i=1

163

9.3 Two-factor experiments

SSB = an Z@, 9.12)
SSAB =n Z Z% T A & (9.13)
i= 1 j=
SSE = Z Z Z(yijk —)% (9.14)
i=1 j=1 k=1

The proof of this identity is done by algebraically expanding SST and noticing
that all of the cross-product terms are zero due to the above constraints on «;, f,
and yj;.

To compute these sum of squares values it is useful to expand them as follows:

SST = ZZZM abn 9.15)

i=1 j=1 k=

“. .87 s
SSA = i b;q - (9.16)
b 2
A} 2
SSB = 2155 5. (9.17)
an abn
P Z[‘)—l Siz/‘ S S7 Z 1 52 s?
SSAB === 0 Skl =Ly e (9.18)
n bn an abn
SSE = SST — SSA — SSB — SSAB. (9.19)

In these expressions, S; = > j_, y; for each cell (i, /) in Table 9.2. The remain-
ing S, values are the row and column sums shown in Table 9.2.

We are interested in the sum-of-squares identity in Equation (9.9) since it
partitions the total variation in our measurements into its constituent compo-
nents. We need only divide each of these sum-of-squares terms by their respective
degrees of freedom to find the variance for each term. We can then use the F-test
to compare the variance of each component with the variance of the error term,
to thereby determine which components are statistically significant and which are
likely to be due to random error alone.

The number of degrees of freedom for each factor is simply one less than the
total number of levels the factor can assume. Thus, SSA4 has a — 1 degrees of
freedom and SSB has b — 1 degrees of freedom. The number of degrees of free-
dom for the interaction, SSAB, is then the product of these two terms,
(a— 1)(b —1). Since there are n measurements for each combination of levels
of the factors, the sum for each cell in Table 9.2 has n — 1 degrees of freedom.
Additionally, since all ab cells contribute to the total error, the total number of

164

The design of experiments

degrees of freedom for SSE is ab(n — 1). Finally, since SST is calculated using all
of the measurements, its number of degrees of freedom is abn — 1. Note that the
number of degrees of freedom partitions according to the sum-of-squares terms:

df (SST) = df (SSA) + df (SSB) + df (SSAB) + df (SSE) (9.20)

abn —1=(a—1)+ (b —1)+ (a—)b — 1)+ ab(n — 1). (9.21)

Dividing the sum-of-squares terms by their corresponding numbers of degrees of
freedom produces the following estimates of their variances (recall that these
variances are also called the mean-square values):

2= 55/11 (9.22)
&= % (9.23)
52 = % (9.24)
se = %. (9.25)

Now recall that we use the F-test to compare two variances. First, we calculate
the corresponding F statistic for each factor. This statistic is the ratio of the
variance of the factor in which we are interested to the variance of the error term:

2
F,="¢ (9.26)
SC
2
Fy=" (9.27)
se
2
F, = STZb (9.28)

If the resulting F statistic is ‘sufficiently large,” meaning that the variance of
the numerator is ‘sufficiently larger’ than the variance in the denominator, we
conclude that the corresponding factor, or interaction of factors, is statistically
significant. The calculated statistic is determined to be ‘sufficiently large’ and,
therefore, statistically significant, if it is greater than the critical F value obtained
from the F distribution. Thus, if

Fy > Flaa—1,ab(n—1] (9.29)

165

9.3.3

9.3 Two-factor experiments

Table 9.3. A summary of using an analysis-of-variance (ANOVA) test for a two-factor
experiment: if the computed F statistic is larger than the critical F value obtained from
the table, the effect of the corresponding factor or interaction can be considered
statistically significant at the « level of significance.

Source of variation

A B AB Error
Sum of SSA SSB SSAB SSE
squares
Degrees of a—1 b—1 (a=—DbB-1) ab(n—1)
freedom
Mean , S54 , SSB s SSAB , SSE
Su = Sb =7 1 Sab = N/L 1N Se =
Square a—1 b—1 (a—DbB-1) ab(n — 1)
Computed 2 2 §2
F statistic F,=—= Fy== Fp="%
52 52 52
F value Flaat,abn-1) Flap—1.ab=1) Flo:(@a=1)0=1),ab(n—1)]
from table

we conclude that the variation in measurements due to the effect of factor 4
is statistically significant at the o« level of significance. In this expression,
Flo:a—1.ab(n—1y) 18 the critical value obtained from the F distribution with a — 1
degrees of freedom in the numerator and ab(n — 1) degrees of freedom in the
denominator.

Similarly, we conclude that the effect of factor B is statistically significant if

Fy > Flap1.abn-1)] (9.30)
and that the interaction of 4 and B is statistically significant if
Fap > Flaa-1)b-1),ab(n-1)- (9.31)

Conversely, if the calculated F statistics are not greater than the critical values,
we conclude that the effect of the corresponding factor or interaction is not
significant. The ANOVA test for this two-factor experiment can be summarized
as shown in Table 9.3.

The need for replications

It is enlightening to observe what happens when we have only one measurement
for each combination of levels, that is, when n = 1. In this case, the sum of all of
the measurements within a single cell becomes

166

The design of experiments

1
Sy =D Vik = Vi (9.32)
k=1

On substituting this value into Equation (9.18), we see that SSAB =
SST — SSA4 — SSB. From Equation (9.19) we then see that this condition implies
that SSE = 0. As a result, we are left without any information about the mag-
nitude of the measurement errors. Another way of looking at this situation is
that, when n = 1, we cannot separate the effect due to the interaction of the two
factors from the measurement noise. To separate out information about both the
interaction effect and the magnitude of the measurement errors, we must make
more than one measurement at each of the combinations of the different levels.
That is, we need n > 1. Note that these measurements should be true replications
of the experiment, not simply another measurement of the identical configura-
tion.

Example. We wish to use a two-factor-experiment design to examine the effects
of the main memory size and the degree of multiprogramming on the response
time of a given computer system beginning with the data collected in Table 9.1.

The first thing to notice is that, to separate both the interaction effect and the
experimental error in this experiment, we need at least one additional measure-
ment for each set of input combinations. More than two replications for each
combination would be desirable, but two should be sufficient to obtain some
indication both of the magnitude of the errors and of the interaction. Table 9.4
repeats the data from Table 9.1 along with an additional set of measurements
and the sums necessary for calculating the sum-of-squares terms. Note that a = 4
and b = 3 in this experiment since there are four levels of factor A4, the degree of
multiprogramming, and three levels of factor B, the main memory size. Also, n =
2 since we have two measurements at each combination of levels.

Using the data in this table, we can now calculate the the sum of squares values

as follows:
SST = (0.25% +0.28% + - - + 0.68%) — 14.98° = 13.6976 — 9.35 = 4.3476
4(3)(2)
(9.33)
1.19° + ... +7.26> 14.98> 76.3286
SSA = - = —9.35=13.3714 (9.34)
3(2) 4(3)(2) 3(2)
6.21% + 536> + 3.41> 14.98° 78.9218
SSB = = ~935=0.5152 (9.35)

42) A3 4

167

9.3 Two-factor experiments

Table 9.4. The user-response times in seconds measured with various combinations of
system-memory size and degree of multiprogramming

B (MBytes)

A 32 64 128 Sum
1 0.25 0.21 0.15

0.28 0.19 0.11
N 0.53 0.40 0.26 1.19
2 0.52 0.45 0.36

0.48 0.49 0.30
S 1.00 0.94 0.66 2.60
3 0.81 0.66 0.50

0.76 0.59 0.61
Sy 1.57 1.25 1.11 3.93
4 1.50 1.45 0.70

1.61 1.32 0.68
Sy 3.11 2.77 1.38 7.26
Sum 6.21 5.36 3.41 14.98

0.53> +0.40> +---+1.38° 763286 78.9218 14.98>

SSAB = 2 32 40 +4(3)(2) (9.36)

=0.4317

SSE =4.3476 — 3.3714 — 0.5152 — 0.4317 = 0.0293. (9.37)

The mean-square values computed from these sum-of-squares values are shown
in Table 9.5 along with the corresponding computed and critical F values.

So, after all of this calculation, what can we say about the impact on the
response time of varying the degree of multiprogramming and the main memory
size? First, we can conclude that 77.6% (SSA/SST) of all of the variation in our
measurements is due to factor A, the degree of multiprogramming. Also, only
11.8% (SSB/SST) is due to factor B, the size of the main memory, and only
9.9% (SSAB/SST) is due to the interaction of the two factors. Only 0.7% of the
total variation is due to random errors, suggesting that the measurements are
quite precise compared with the variation due to the factors.

Finally, since the computed F values both for the factors and for their inter-
action are larger than the corresponding critical F values obtained from the
table, we can conclude with 95% confidence that the effects of both factors
are indeed statistically significant. Furthermore, with the same level of confi-
dence, we can conclude that the interaction of the memory size and the degree
of multiprogramming is also statistically significant. Thus, our final conclusion is

168

9.4

The design of experiments

Table 9.5. The computed mean-square values with the corresponding F values for the
data in Table 9.4 with an « = 0.05 level of significance

Source of variation

A B AB Error Total
Sum of 3.3714 0.5152 0.4317 0.0293 4.3476
squares
Degrees of 3 2 6 12 23
freedom
Mean s2=1.1238 52 =0.2576 $2,=0.0720 52 =0.0024
square
Computed F, =460.2 F, =105.5 F,;, =29.5
F statistic
F value Flo.os;3.121 = 349 Floos:2.12) = 3-89 Fops;.12) = 3.00
from table

that the degree of multiprogramming has the largest impact on the response time,
but we cannot dismiss either the impact of the size of the main memory, or the
impact of the interaction of the memory size and the degree of multiprogram-
ming. In fact, we find that the relative impacts of both the memory size (11.8%)
and the interaction of the memory size and the degree of multiprogramming
(9.9%) are about the same. &

Generalized m-factor experiments

Generalizing the use of the analysis-of-variance (ANOVA) technique for experi-
ments with m > 2 independent factors closely follows the development of the
two-factor experiments in the previous section. However, owing to the additional
factors and, more significantly, the increasing number of interactions, the calcu-
lations for multiple-factor experiments become progressively more tedious. For
example, consider an experiment with m = 3 factors, 4, B, and C. We have to
consider not only the main effects of each factor individually, but also the addi-
tional interactions AB, AC, BC, and ABC.

In general, in an experiment with m factors there are m main effects, (’;’) two-
factor interactions, () three-factor interactions, and so on up to (,”,) interac-
tions with (m — 1) factors, and (;’;) = 1 interaction with m factors. In total, there
are 2" — 1 effects.

After determining the total number of effects that must be considered in an
experiment, the ANOVA procedure for an m-factor experiment becomes essen-

169

9.4 Generalized m-factor experiments

tially the same as that for the two-factor case. In particular, the steps to follow
are these.

1. Calculate the 2" — 1 sum of squares terms, SSx, for each factor individually
and for each of the interactions. Then find the sum of the squares of the
errors, SSE, by subtraction.

2. Determine the number of degrees of freedom, df (SSx), for each of the sum-of-
squares terms.

3. Calculate s2 = SSx/df(SSx) to find the mean square (variance) for each
effect.

4. Calculate the F statistic for each term by finding the ratio of the mean square
of the term to the mean square error. That is, F, = s>/s-.

5. Find the corresponding critical F value from the table using the appropriate
number of degrees of freedom corresponding to the numerator and denomi-
nator used when calculating the F statistic in the previous step. The value
from the table is Fiy. qroumerator), df (denominatory)> Where o is the desired significance
level and df (-) is the number of degrees of freedom of the corresponding term.

6. Compare the calculated F statistic, F,, with the value read from the table. If
F is greater than the table value, you can conclude with 1 — & confidence that
the effect of term x is statistically significant.

7. You can also calculate SSx/SST to determine the fraction of the total varia-
tion that is attributable to effect x. This gives an indication of the relative
importance of each effect while the previous step determines whether it is
statistically significant. Note that an effect may be relatively unimportant
even though it is statistically significant.

The only real potential difficulty with this procedure is calculating the sum of
squares terms, and determining the number of degrees of freedom. The necessary
computational formulas for m = 3 factors are shown below. It is then assumed
that the reader can generalize to the case when m > 3.

Assume that factor 4 can take on « different levels, factor B can take on b
different levels, and factor C can take on ¢ different levels. Also, assume that n
complete replications of each experimental configuration have been made. That
is, there are n measurements for each combination of levels. We begin by defining
the following intermediate sums.

a b ¢ n

S.=D2 3 vim (9.38)

i=1 j=1 k=1 i=1

b .
Si.=Y Vi (9.39)

170

The design of experiments

a c n
S; =233 Yiu

i=1 k=1 I=1

a b n

Sk=Y_2. viu

i=1 j=1 I=1

C n

Sij. = Z Zyzjkl

k=1 I=1

b n

Sik. =D Vil

J=1 =1
a n

Sik. = Z Vijki

i=1 I=1

n
Sijk. = Zyijkl
=)

The sum-of-squares terms then are calculated as follows:

a b c n
SST=33 0 > yu~—S5

i=1 j=1 k=1 [=1

a 2
SSA — Z[:l Sl _ S
ben
b 2
b g2
ssp—Z=50 g
acn

c 2
SSC — Zk:l Sk _ S
abn

SSAB =

a b 2 b 2
Zi:l Zj:l Si/L _ Z?:1 Szz _ Zj:l S:/‘--

+S

cn

ben acn

a c 2 a 2 4 2
SSAC — Zi:l Zk:l Slk _ Zi:l Sl _ Zk:] Sk + S

bn

SSBC =

ben abn

b 2 ¢
LS YL,

b ~ 2
Z/‘:l > =1 Sk,
an

acn abn

S

(9.40)

(9.41)

(9.42)

(9.43)

(9.44)

(9.45)

(9.46)

(9.47)

(9.48)

(9.49)

(9.50)

(9.51)

(9.52)

171

9.4 Generalized m-factor experiments

Table 9.6. The number of degrees of freedom corresponding to each sum-of-squares
term for an experiment with m = 3 factors

Sum of squares Degrees of freedom
SSA a—1

SSB b—1

SSC c—1

SSAB (a—Dd-1)
SSAC (a—D(-1)
SSBC b-D-1)
SSABC (a=Db-D(-1)
SSE abe(n — 1)

SST aben — 1

b . 2 b 2
i 2 2kt Sik i 2m1 S Y Y S

SSABC =

n cn bn

b ¢ 2 a b 2

DYDY EE DN RE DY R (9.53)

+ +
an ben acn

c 2

n Dt Sk, _g
abn

where
Sz
= e bcn . (9.54)

The corresponding number of degrees of freedom for each of these sum-of-
squares terms is shown in Table 9.6.

As you can see, the basic idea behind the ANOVA technique for experiments
with many factors does not change. Rather, the computational complexity
increases due to the large number of terms that now comprise the sum-of-squares
identity. There are numerous statistical software packages that can be used to
perform the calculations necessary for an ANOVA test. To intelligently interpret
the results, though, it is important to understand how the various terms are
calculated.

In addition to increasing the computational complexity of an ANOVA test,
additional input factors and levels increase the number of measurements that
must be made. We now look at some techniques for reducing this complexity by
limiting the number of interactions that we take into account, or by limiting the
number of levels that we consider. The penalty for this simplification, of course,
is a loss of information. However, we often find that the high-order interactions

172

9.5

9.5.1

The design of experiments

turn out to be relatively small, and that, in some instances, examining many
levels of the various factors does not provide any particularly useful new insights.
As a result, they often can be safely ignored.

n2™ experiments

The n2"-experiment designs can be thought of as special cases of a generalized m-
factor experiment in which each factor is allowed to take on only two possible
levels (or values). These values could be categorical values, such as a compiler
optimization being turned on or off, for instance, or they could be two different
levels of a continuous value, such as two different memory sizes. We can take
advantage of this restriction on the number of levels for each factor to simplify
the analysis of the measured data. This allows us to design an experiment with
more factors than we could comfortably handle in the generalized m-factor
design to determine which factors have the largest impact on the system’s
response. We can then perform a more complete analysis, focusing on only the
most important factors, with a larger number of input levels.

Just like with the previous experiment designs, we wish to apply the ANOVA
technique to partition the variation in the measurements into the components
due to each factor, due to their interactions, and due to the measurement error.
To apply this analysis technique, we first need to find the sum-of-squares terms
for each component.

Two factors

Let’s begin by considering an experiment with only two factors, 4 and B, that
can be set to two possible values. For convenience, we will refer to these two
factors as being at either a ‘high’ level or a ‘low’ level. Recognize, however, that
high and low are arbitrary for a categorical variable. For instance, high may refer
to a compiler optimization being turned off, while low means the optimization
was turned on. Similarly, high could refer to processor type X, while low refers to
processor type Y. This situation gives us four possible configurations to measure:
both A and B set to their high values, both set to their low values, A4 set to high
and B set to low, and vice versa.

Assuming that we make measurements of # replications of each configuration,
let

e y,p = the sum of the n measured responses when both 4 and B are set to their
high values,

173

9.5 n2™ experiments

e), = the sum of the n measured responses when both 4 and B are set to their
low values,

e), = the sum of the n measured responses when A4 is set to its high value and
B is set to its low value, and

e y,z = the sum of the n measured responses when A4 is set to its low value and
B is set to its high value.

We then define the following contrasts:

Wy =Y+t YVapb —VaB — Vab (9.55)
Wg =Y4B —Vab T VaB — Vab (9.56)
WAB:yAB_yAb_yaB+y¢117' (957)

Intuitively, the contrast w is the difference between the system’s responses when
A is set to its high and low values. Similarly, wp is the difference in response when
B is set to its two extreme values, and w p is the response when 4 and B are set to
opposing extremes. That is, w,p is an indication of the interaction of the two
factors.

While it is perhaps not a very interesting derivation, it can be shown that the
sum-of-squares terms can be found simply by dividing the square of the above
contrasts by the total number of observations made for all factors at all levels.
Thus,

2

SSA4 =4 (9.58)
nzm
wh
SSB=—2 (9.59)
n2
W2
SSAB =22 (9.60)
n2

Since each factor has only two possible levels, each of these sum-of-squares terms
has a single degree of freedom. As before, SSE can be found using the sum-of-
squares identity:

SSE = SST — SSA — SSB — SSAB. (9.61)

Since the number of degrees of freedom for SST is n2" — 1, the number of
degrees of freedom for SSE is (12" — 1) — 1 —1—1 = (n — 1)2". The variances
(or mean square values) for each sum-of-squares term are again found as the
ratio of the sum-of-squares value and its corresponding number of degrees of
freedom. Finally, the F-test is used to determine whether each component of the

174

The design of experiments

Table 9.7. The use of the analysis-of-variance (ANOVA) test for an n2™ factorial
experiment in which there are n replications with each of the m factors taking on two
possible values: if the computed F statistic is larger than the critical F value obtained
from the table, the effect of the corresponding factor or interaction can be considered
statistically significant at the « level of significance

Source of variation

A B AB Error Sum
Sum of SSA SSB SSAB SSE SST
squares
Degrees of 1 1 1 2"(n—1) m" —1
freedom
Mean , SS4 , SSB , SSAB , SSE
square Sa =" =1 Sab =" T mo0)
Computed 2 2
s s s
F statistic F, == F, = —}2’ F, = L;’
s 52 52
F value Fg; 1,071y Flo:1,0m(—1)) Fg;1,0m(—-1)]
from table

variation is statistically significant. The ANOVA test for this experiment with
two factors is summarized in Table 9.7.

Example. A certain compiler has two optimization options that can be turned
on or off individually. Table 9.8 shows the execution times measured when
running a test program compiled with all four combinations of the two optimi-
zations being turned on and off. We measured n = 3 replications for each com-
bination.

From these measured values, we find the corresponding contrasts to be
wy = —20.5, wg = 271.3, and w,p = —22.1. The contrasts are used to calculate
the corresponding values for the ANOVA test shown in Table 9.9. From the
table of critical F values in Appendix C.2, we see that Fj9s.; g &~ 5.4. Since all of
the computed F values are larger than this critical value, we conclude that both
optimizations produce statistically significant variations in the execution time of
this test program, as does the interaction of the two optimizations. However, we
see that the fraction of the total variation due to optimization B being turned on
is (6,133.64/6,212.57) x 100% = 98.7%. Thus, even though both optimizations
produce effects that are not simply due to random errors (that is, the effects are
statistically significant), almost all of the change is due to this single compiler
optimization.

175

9.5.2

9.5 n2™ experiments

Table 9.8. Execution-time measurements of a test program compiled with two different
optimizations turned on and off

Optimization Replication Total
combination

1 2 3
Both off (y,p) 45.7 46.4 44.1 136.2
A off, B on (y4) 3.8 4.1 3.7 11.6
A on, B off (y,p) 52.5 52.1 52.9 157.5
Both on (y,,) 3.6 3.7 3.5 10.8

More than two factors

The contrasts shown in the previous section are used to separate out the influ-
ences of the input factors and their various interactions on the system’s response
measured with the various combinations of input levels. The main effect of the
input A4, for instance, is found by comparing the system’s response when A is set
to its high value with that when it is set to its low value. Thus, we can assign a
positive sign to A when it is at its high value and a negative sign when it is at its
low value. The same holds true for finding the main effects of input B. The signs
applied to the interaction effects are found by algebraically multiplying the
corresponding signs for A and B. The signs for each combination of input factors
for this two-factor case are summarized in Table 9.10.

For example, with the input combination ab, both inputs are at their low
values, so the sign for the measured response term y,, in the contrasts w, and
wp is negative. Since (—1) x (—1) = +1, the sign for the interaction contrast w,p
is positive. Given this type of sign table, the terms comprising each contrast can
be found simply by reading down the table. For instance, the contrast for the
main effect of 4 is found by reading down the first column to be
W4 = ~Yab+ Vab — Yap + Va5

Extending this procedure to larger values of m is quite straightforward.
Consider the case with m =3 input factors. There are in total 2° =8 input
combinations that must be measured. The resulting sign table for this experiment
is shown in Table 9.11. With this type of sign-table representation, we can see
that any pair of contrasts is orthogonal. This orthogonality allows each contrast
to be used in calculating a corresponding sum-of-squares term for the ANOVA
test.

For example, from Table 9.11, we find that the contrast for the interaction
between factors B and C is

Wyc = Yabe = Yabe + VaBe = Yabc — Y 4Be T Vabc — Yac + VaBc- (9.62)

176

The design of experiments

Table 9.9. The computed mean square values with the corresponding F values for the
data in Table 9.8 with an « = 0.05 level of significance

Source of variation

A B AB Error Total
Sum of 35.02 6,133.64 40.70 3.21 6,212.57
squares
Degrees of 1 1 1 8 11
freedom
Mean 55 =35.02 53 =06,133.64 54z =40.70 52 =0.4013
square
Computed ~ F, =873 Fz=15286 F,p=101.4

F statistic

Table 9.10. Determining the signs for the contrasts for an n2™-factor experiment with

m=2

Measured
response

Contrast

W4

Wy

WaB

Yab

Yab
YaB
YaB

Table 9.11. Determining the signs for the contrasts for an n2™-factor experiment with

m=3

Contrast
Measured
response Wy wp we Wyp Wyc Wpe W4BC
Yabe - - - + + + -
Ve + - - - - + +
YaBe - + - - + - +
Yabe - - + + - - +
YVaBe + + - + - - -
Yavc + - + - + - -
Vase - + + - - + -
YABC + + + + + + +

177

9.6

9.7

9.7 For further reading

The corresponding sum-of-squares term is then

2

SSAC = 24C (9.63)
2°n

As before, each of these effects has one degree of freedom. The sum of squares
for the error term is again found as SSE = SST — SS4 — SSB— SSC—
SSAB — SSAC — SSBC — SSABC, with (n—1)2" degrees of freedom. Once
these sum-of-squares terms have been computed, the ANOVA test is performed
in the normal way.

Summary

The design-of-experiments technique presented in this chapter extends the one-
factor ANOVA technique presented in Section 5.2.1 to m factors. This extension
allows us to isolate the effects on the system’s output of each individual input
variable, the effects due to their interactions, and the magnitude of the measure-
ment errors. We can compare the relative importances of these effects, and
determine whether the effects are statistically significant. Although the number
of experiments that must be performed grows very quickly with the number of
factors and the number of levels of each factor, the n2” design provides a
simplified analysis for quickly isolating the most important factors and interac-
tions. A complete analysis on these factors alone can then be performed.

For further reading

e The ANOVA technique and the design of experiments concept have long been

important tools in the statisticians’ toolbox. See

Ronald E. Walpole and Raymond H. Myers, Probability and Statistics for
Engineers and Scientists (Second Edition), Macmillan Publishing, New
York, 1978,

for example. The concepts are also commonly used by physical scientists who

must deal with noisy data, and by researchers of all types who must rely on

sampling from large populations. With the notable exception of

Raj Jain, The Art of Computer Systems Performance Analysis, John Wiley and
Sons, Inc., 1991,

however, the design-of-experiments concepts have not been a common tool

for the computer-research community. This lack of statistical rigor has been a

weakness in the field of computer-systems performance analysis. I hope that

this chapter will encourage you to be more careful in the experiments and

178 The design of experiments

analyses you perform. This text by Jain also provides a good discussion of
fractional factorial designs. These experiment designs provide a way of redu-
cing the total number of input combinations that must be tested at the expense
of grouping together the contributions to the total variation of some of the
input factors and their interactions. This type of grouping is called confound-
ing since the effects of some of the factors and their interactions cannot be
separated.

9.8 Exercises

1. What is the difference between the ‘variation’ explained by a factor and the
‘variance?’

2. The allocation of variation is used to determine the relative importance
of each factor. What is used to determine whether it is statistically
significant?

3. The use of confidence intervals for effects makes an implicit assumption
about the distribution of measurement errors. What is this assumption?

4. What are the key differences between an n2"'-factor experiment and a one-
factor experiment?

5. What type of experiment design should be used to determine the effect of the
size of a processor’s cache on performance? What are the factors that should
be considered? What is the response variable?

6. What type of experiment should be used to determine which of three new
disk drives should be purchased?

7. What is the difference between a ‘contrast’ and the ‘effect’ of a factor?

8. How many experiments are necessary to determine the effects of eight dif-
ferent input variables if three of them have five levels, and the remainder
have two levels? Assume that n replications are necessary.

9. Find two different optimizations that can be used together or indepen-
dently to improve the execution time of a program. For instance, loop
unrolling and memory padding are two optimization techniques that can
be used to reduce the execution time of simple loops. Loop unrolling
attempts to reduce the relative overhead of a loop by executing several
iterations of the original loop for each execution of the loop’s control
structure. Memory padding, on the other hand, inserts some unused mem-
ory locations between large arrays accessed in a loop to ensure that they do
not cause cache and memory conflicts. These techniques are orthogonal
and can also be used together. An example of these techniques is shown in
the following programs:

179 9.8 Exercises

c original program
program main

parameter (n=1024*1024)
common /com/ a(n), bi(n), b2(n), b3(n), b4(n)

do 10 irep=1,10
do 10 i=1,n
a(i) = .256%x(b1(i)+b2(i)+b3(i)+b4(i))
10 continue

end
c after padding

program main
parameter (n=1024%1024)
common /com/ a(n), x1(32), b1i(n), x2(32), b2(n), x3(32),
* b3(n), x4(32), bd(n)
do 10 irep=1,10

do 10 i=1,n

a(i) = .26%x(b1(i)+b2(i)+b3(i)+b4(i))

10 continue

end

c after unrolling
program main

parameter (n=1024%1024)
common /com/ a(n), bi(n), b2(n), b3(n), bd(n)

do 10 irep=1,10
do 10 i=1,n-2,3
a(i) = .25%(b1(i)+b2(i)+b3(i)+b4(i))
a(i+1) = .25%x(b1(i+1)+b2(i+1)+b3(i+1)+b4(i+1))

180 The design of experiments

10.

a(i+2) = .25% (b1 (i+2)+b2(i+2)+b3(i+2)+b4(i+2))

10 continue

end

c after unrolling and padding
program main

parameter (n=1024*1024)
common /com/ a(n), x1(32), bl(n), x2(32), b2(n), x3(32),
* b3(n), x4(32), bd(n)

do 10 irep=1,10
do 10 i=1,n-2,3
a(i) = .25%(b1(i)+b2(i)+b3(i)+b4(i))
a(i+1) = .26%x(b1(i+1)+b2(i+1)+b3(i+1)+b4(i+1))
a(i+2) = .25%(b1(i+2)+b2(i+2)+b3(i+2)+b4(i+2))

10 continue

end

Design an appropriate experiment to determine the impacts on performance
of loop unrolling, memory padding, and the combination used together for
the above example loop. Note that you can view this experiment as having
two factors — loop unrolling and padding — and each of these factors has two
possible values — either on or off. Do a minimum of three replications and
determine the percentages of the variation that are due to the factors, their
combination, and the experimental error.

Design an appropriate experiment to compare the times required to perform
some basic operation, such as a subroutine call and return, on three
different types of systems; call them A, B, and C. Use appropriate contrasts
to compare A—B, A—C, and B-C. Determine whether there is a statistically
significant difference among the three machines in terms of the times
required to perform this operation both at the 90% and at the 95% con-
fidence levels.

181

Simulation and random-number
generation

‘Do not plan a bridge’s capacity by counting the number of people who swim across the river
today.’

Unknown

Oftentimes we wish to predict some aspect of the performance of a computer
system before it is actually built. Since the real machine does not yet exist, we
obviously cannot measure its performance directly. Instead, the best we can do is
to simulate the important aspects of the system. We then try to extrapolate from
these simulations information about how the system will behave once it is actu-
ally built. Simulation may also be appropriate when we want to investigate some
aspect of a system’s performance that we cannot easily measure directly or
indirectly.

When the system does not yet exist, there are many assumptions that must be
made about the, perhaps not completely defined, system before it can be simu-
lated. Simplifying assumptions are also necessary when simulating an existing
system since it would most likely be impossible to simulate every small detail. If
these assumptions are not realistic, the simulation results will not accurately
predict how the system will ultimately perform.

Simulation has the advantage of being much less expensive than actually
building a machine. Additionally, it is much more flexible than measuring the
performance of a real machine. In a simulated system, we can quickly change
important parameters that would be difficult or impossible to change in a real
system, such as the size or associativity of the cache, for instance, to determine
how the system’s performance will be affected. This ability to rapidly change the
system configuration allows us to explore more of the design space than would be
possible if we had only a real machine with which to experiment. As a result, we
can more easily determine the system parameters that produce the best overall
performance.

182

10.1

Simulation and random-number generation

Simulation-efficiency considerations

An important limitation of simulation is, of course, precisely the fact that it is not
a real system. Every simulator has built into it simplifying assumptions that limit
its ability to exactly duplicate the behavior of a real system. There is, in general, a
trade-off between the accuracy of a simulation and the time required to write the
simulator and execute the necessary simulations. An extremely detailed simulator
can take a very long time to write. Furthermore, since it simulates the system at a

very fine level of granularity, it can take a very long time to execute to produce a

single result. Consequently, a less detailed simulator may actually be preferable.

Although the results it produces will probably not be as accurate as those pro-

duced by a more detailed simulator, the simpler simulator might allow suffi-

ciently detailed results to be produced more quickly.

Determining the level of detail necessary when writing a new simulator is more
art than science. The ‘correct’ choice depends on the level of detail necessary in
order to make the desired decision, and the consequences of being wrong. For
example, the consequences of being wrong when using a simulator to determine
the best cache size for a new system are relatively small. Either the cache specified
will be too large, resulting in a slightly higher cost than necessary, or the cache
will be too small, which will produce a degradation in performance. The incor-
rect operation of a microprocessor used to control a heart pacemaker, though,
can have much more serious consequences. Thus, in this case, a very detailed
simulation may be warranted.

When developing a new simulator, it is important to explicitly consider the
consequences and trade-offs of the simplifying assumptions that must be made.
The following (incomplete) list highlights some of the simulation efficiency trade-
offs that confront the simulation-model developer.

e The complexity of the simulation model. There is a nonlinear relationship
between simulation-model complexity and the accuracy of the results
obtained. In general, the results of a simulation will be more accurate as the
model is made more detailed. However, since the simulation is only a model of
the real system, increasing the level of detail beyond a certain point quickly
leads to diminishing returns. That is, the programming effort and simulation
time required for a very detailed model do not continue to produce corre-
sponding improvements in the simulation results after a certain level of detail
has been incorporated. Furthermore, simpler models are easier to validate
than are very complex, detailed models.

e The time factor for decisions. The goal of developing a simulation model is to
make a decision based on the results produced by executing the simulation. As
a result, the simulation model developer must always bear in mind the time by

183

10.2

10.2.1

10.2 Types of simulations

which a decision will be required. For example, we may be given the job of
developing a simulator that will be used to predict how certain system para-
meters should be set for the next time period in a time-shared system on the
basis of the recent pattern of resource usage. Even though we may be able to
produce highly accurate predictions with a very detailed simulator, the results
will be useless if the results of the simulation are not available before they are
needed by the scheduler for the next time period.

e Allocation of human and machine resources. There is typically a trade-off in the
human time required to implement a complex piece of software such as a
simulator and the time required to execute the resulting program. If the simu-
lation is going to be executed only a few times, it may not be worth the
programmer’s time to implement a highly efficient, elegant algorithm.
Instead, it may be a better use of resources to quickly implement a more
inefficient algorithm, and then pay the resulting execution-time penalty.
This trade-off may then allow the simulation developer to spend more time
analyzing the results and less time actually writing the simulator program.

Types of simulations

There are several different types of simulations that are commonly used by the
computer systems performance analyst. These include

1. emulation,
2. static (or Monte Carlo) simulation, and
3. discrete-event simulation.

Emulation

An emulator program is a simulation program that runs on some existing system
to make that system appear to be something else. Since the goal of emulation is
to make one type of system appear to be another type, an emulation program
typically sacrifices performance for flexibility. For example, a terminal-emulator
program is often executed on a personal computer to make that computer appear
to be a specific type of terminal to a remote system. The Java Virtual Machine
(JVM) is an example of a processor emulator.

The JVM is a program that executes on a wide variety of different computer
systems. It simulates the execution of a virtual processor whose instruction set is
that defined in the JVM specification. This emulation allows programs written in
the Java programming language to be executed on any processor for which a
JVM has been written. Thus, by interpreting the JVM instruction set, this pro-

184

10.2.2

Simulation and random-number generation

gram can make any computer system appear to be a processor that directly
executes Java programs.

Static (Monte Carlo) simulation

A static simulation is one in which there typically is no time parameter. Instead,
the simulation is run until some equilibrium state is reached, or until further
refinement of the state of the simulated system is no longer useful or possible.
Static simulations are often used to evaluate probabilistic systems, to model
some physical phenomenon, or to numerically estimate the solution of some
mathematical expression, such as a complex integral. Since static simulations
are driven with sequences of random numbers, they are also commonly referred
to as Monte Carlo simulations, after the casinos of Monte Carlo.

As an example of how a Monte Carlo simulation works, consider the problem
of numerically determining the value of 7. We begin with a geometric description
that we can directly relate to the value of 7, as shown in Figure 10.1. Since the
area of a circle with a radius of 1 is 7(1)’> = 7, the area of the quarter-circle
within the first quadrant in Figure 10.1 is 7r/4. The area contained within the unit
square in this quadrant is simply 1. Thus, the ratio of the area of the quarter-
circle to the area of the square, which we denote R, is R = n/4. The numerical
value of & then can be found from = = 4R.

We have now transformed the problem of computing the numerical value of =
into the equivalent geometric problem of determining the ratio of the two areas,
R. A Monte Carlo simulation can be used to find R by modeling an equivalent
physical system. In particular, imagine throwing darts randomly at Figure 10.1

Figure 10.1 The area shown within the shaded quarter-circle is 7/4 while the area
contained within the unit square is 1. An estimate of the ratio of these two areas can be
obtained with a simple Monte Carlo simulation, which then allows us to estimate the
numerical value of 7.

185

10.2.3

10.2 Types of simulations

such that every dart hits within the unit square. After throwing a large number of
darts, we count the number of times a dart hit within the quarter-circle, 7, and
the total number of darts thrown, 7,,,;. Then the desired ratio of the two areas is
R = nire [Neotal-

We can simulate this dart-throwing experiment by generating two random
numbers, u; and u,, for each dart thrown, such that u; and u, are both uni-
formly distributed between 0 and 1. If the distance from the origin of the point
defined by (x,y) = (u;,up) is smaller than the radius of the circle, that is,

u? +u3 < 1, then the simulated dart has hit within the quarter-circle. By
repeating this process a large number of times, we can theoretically compute
the value of 7 to any level of precision desired. The key to this type of Monte
Carlo simulation is identifying an appropriate physical model for the system
being studied.

Discrete-event simulation

A discrete-event simulator is used to model a system whose global state changes
as a function of time. The state may also be affected by events that are generated
externally to the simulator as well as those that are spawned within the simulator
by the processing of other events. The basic idea is that the global state is
appropriately updated every time some event occurs. While the specific details
of every simulator will be unique, discrete-event simulators all share a similar
overall structure. Each discrete-event simulator will require at least some of the
following components:

an event scheduler,

a global time variable and a method for updating this time,
event-processing routines,

event-generation mechanisms, and

data-recording and -summarization routines.

10.2.3.1 The event scheduler

The event scheduler is the heart of a discrete-event simulator. It maintains a list
of all pending events in their global time order. It is the responsibility of the
scheduler to process the next event on the list by removing it from the list and
dispatching the event to the appropriate event-processing routine. The scheduler
also inserts new events into the appropriate point in the list on the basis of the
time at which the event is supposed to be executed. Updates to the global time
variable also are coordinated by the scheduler.

186

Simulation and random-number generation

10.2.3.2 The global time variable

The global time variable records the current simulation time. It can be updated
by the scheduler using one of two approaches. In the fixed-increment
approach, the scheduler increments the global time variable by some fixed
amount. It then checks the pending events on the event list. If the scheduled
execution time for any of the pending events matches the current time, all of
these events are dispatched for execution. After all of the events scheduled for
the current time have been processed, the scheduler again increments the
global time variable.

The alternative event-driven approach allows the global time to jump to the
value of the next event at the head of the pending-event list. With this approach,
the value of the global time variable will change nonuniformly, sometimes jump-
ing by a large amount, sometimes not changing from one event to another. The
choice of which approach to use depends on the specific details of the system
being simulated. The event-driven approach is probably the most common in
simulations of computer systems, however.

10.2.3.3 Event processing

Each event in the system will typically have its own event-processing routine to
simulate what happens when that event occurs in a real system. These routines
may update the global state and they may generate additional events that must
be inserted into the pending-event list by the scheduler. The processing of each
event depends entirely on the system being simulated, though.

For example, a memory-access event in a simulation of a processor may result
in two possible outcomes. If the address being accessed is found in the simulated
cache memory, the event may simply return the stored value.

If the address is not in the cache, however, the memory-access event-proces-
sing routine may generate a new event that returns the corresponding data value
Imiss time units in the future, where f,,;, is the time required to service a cache
miss. This event must be inserted, in the correct time order, into the list of
pending events. Then when the event is eventually serviced, it will appear to
the rest of the simulated system as if the earlier memory access actually did
produce a cache miss with a delay of f.;. This ability to generate new events
and insert them into the pending event list provides a powerful mechanism for
simulating events that consist of multiple subevents separated in time.

10.2.3.4 Event generation

Discrete-event simulators are often classified according to the technique used to
generate events. Commonly used classifications are execution driven, trace driven,
and distribution driven.

187

10.2 Types of simulations

Execution driven. An execution-driven simulation is somewhat similar to an
emulation in that the simulator actually executes a benchmark program. Thus,
the simulator actually produces the same output from the benchmark program as
that which would be produced if the benchmark were executed on an actual
machine. The primary difference between an execution driven simulation and
an emulation is that, in addition to executing the program, the simulator models
the necessary details of the system being tested. An emulation, on the other hand,
simply executes the program without regard to how the execution is performed.
The emulation is concerned only with producing the appropriate output from the
benchmark program whereas the execution-driven simulator is concerned also
with how the output is produced.

Execution-driven simulations are often considered the most accurate type of
simulation since they must model all of the details necessary to actually execute a
program. This advantage is also their primary disadvantage, however. Modeling
a system at this level of detail can be quite expensive both in terms of simulation
time, and in terms of the time required to develop and verify the simulator. To
simulate a program that does floating-point-arithmetic operations or any input/
output operations, for instance, the simulator must provide mechanisms for
actually performing the necessary arithmetic and input/output operations.

Trace driven. As discussed in Section 6.4, a trace is a record of the sequence of
events that occurred when the system was traced. When a trace is used to drive a
discrete-event simulator, this list of events is usually time-ordered. One of the
advantages of driving the simulator with a program trace is that the simulator
itself does not have to provide all of the functionality needed by the program, as
is required in an execution-driven simulation. On the other hand, the trace
represents only one possible execution path for the system. Thus, the simulation
result will be valid for only that single trace, which need not be representative of
the ‘typical” workload. To obtain a simulation result for a different set of inputs
to the program traced, the program must be reexecuted with the new inputs while
a new trace is collected. Additionally, since the trace is fixed at the time it is
collected, it can be difficult to accurately simulate events that would affect the
order of execution. Providing a dynamic-feedback path from the simulator to the
trace-collecting system can sometimes alleviate this problem, though.

Another concern with trace-driven simulation is the difficulty of dealing with
the large trace files. The tremendous amount of information generated during the
tracing operation typically limits traces to only a few seconds of total system-
execution time. Thus, the system being simulated will be evaluated on the basis of
its simulated performance during only a few seconds of actual execution time on
relatively small benchmark programs. This situation is roughly equivalent to
evaluating the performance of a new type of automobile by measuring how
quickly it can get out of the drive-way! Because of these limitations, execution

188

Simulation and random-number generation

driven simulations are becoming more popular than trace-driven simulations in
computer-systems performance analysis, in spite of their complexity.

Distribution driven. A distribution driven simulation is similar to a trace-driven
simulation, except that the input events are generated by the simulator itself to
follow some predefined probabilistic function. For example, sending messages
over a communication network could be modeled by using an exponential dis-
tribution to determine the amount of time that elapses between each message.
That is, sequences of random numbers are generated to model the expected
statistical behavior of the inputs to the system being simulated. The simulator
then produces an output that would occur if the real system were driven by an
application program that produced the same sequence of inputs.

Since there is no assurance that any real application program actually would
produce this input sequence, the simulation should be run many times with
several different input sequences. The outputs produced then can be averaged
in some appropriate fashion to produce a statistical view of the performance of
the system being simulated.

This type of probabilistic (or stochastic) simulation is often used when actual
application programs are not available to drive the simulator. It is also useful in
evaluating the behavior of the system over a wider range of input conditions than
could be generated by the application programs available. One important con-
cern with this stochastic simulation is, of course, how accurately the selected
probability distributions model the actual system’s behavior.

Comments. To summarize, an execution-driven simulation actually executes an
input application program and produces the same output result that the applica-
tion would produce if it were executed on a real system. One of the main advan-
tages of execution-driven simulation is that, since the simulator executes the
application program as it simulates the desired system, it provides a level of
control of the timing between events, and the timing of each individual event,
that is not possible with the other types of simulation.

The primary disadvantage of an execution-driven simulation is that the
simulator itself must have the capability of executing every type of instruction
that may appear in the application programs it is to execute. A trace-driven
simulation, on the other hand, captures the events produced by a single
execution of an application when it is executed on some real system capable
of recording the desired trace. This trace is then later played back as the input
to the simulator. One of the primary shortcomings of this trace-based simula-
tion is that, since the trace has already been recorded and is therefore fixed, it
is difficult for the simulator to reorder the input events on the basis of
changes that may occur as the simulation progresses. That is, it is very
difficult to provide a feedback path that allows the simulator to alter the
input trace.

189

10.2 Types of simulations

A distribution-driven simulation is similar to a trace-driven simulation,
except that the input to the distribution-driven simulation is a sequence of
artificially generated random numbers. Because the inputs to this type of simu-
lation are random, the outputs produced are but a single statistical sample of
the system’s potential behavior. Thus, the simulation must be repeated numer-
ous times with different sequences of random values (that still follow the same
statistical distribution, however) to determine the system’s average behavior.
The primary advantage of this distribution-driven simulation is that, by chan-
ging the parameters of the input distributions, it is easy to study a wide variety
of situations for which the experimenter may not have appropriate test
programs available.

10.2.3.5 Recording and summarization of data

In addition to maintaining the state variables necessary for simulating the sys-
tem, the simulator must also maintain appropriate event counts and time mea-
surements. These values will be used at the end of the simulation to calculate
appropriate statistics to summarize the simulation results. For example, if a
memory system is being modeled, the simulator would probably count the
total number of memory references and the number of those references that
result in cache misses. At the end of the simulation, these values can be used
to calculate the overall cache-miss ratio. Similarly, a simulation of a communica-
tions network would likely maintain a count of the number of messages sent and
a running total of the number of bytes sent in each message. These values can
then be used at the end of the simulation to calculate the average number of bytes
sent per message.

10.2.3.6 The simulation algorithm

Given these basic components, the overall processing done by a discrete-event
simulator can be summarized in the following steps.

Initial global state variables.
Initialize the global time to O.
Obtain the first input event.
while((no more events) AND (time < maximum simulation time limit))
{
Advance the global time.
Remove the next event from the pending-event 1list.
Process the event.
{

Perform event-specific operations.

190

10.3

10.3.1

Simulation and random-number generation

Update global variables.
Update simulation statistics.
Generate new events triggered by this event.
1
I

Print the simulation results.

Of course, the specifics of each simulator will depend on the system being simu-
lated.

Random-number generation

Random numbers are the life-blood of probabilistic simulations, such as distri-
bution-driven discrete-event simulations and Monte Carlo simulations, since an
essentially unlimited supply of random numbers is necessary for driving these
types of simulators. This section explains how a deterministic algorithm can be
used to generate sequences of numbers that appear to be random. First, we
discuss how to generate a random sequence of numbers that appear to be uni-
formly distributed. We then present techniques for transforming this uniformly
distributed sequence into sequences that appear to be from any desired distribu-
tion. Section 10.4.4 then discusses statistical techniques used for testing the
‘quality’ of the random sequences generated.

Uniformly distributed sequences

Sequences of random numbers are necessary to drive stochastic simulators.
However, generating random-number sequences is not as easy it might seem at
first glance. For instance, there would seem to be an inherent contradiction in
using a deterministic algorithm to generate a sequence of numbers that is, by
definition, nondeterministic. In fact, to allow us to exactly repeat a simulation
(for testing, for example), we do not really want truly random numbers. Instead,
a variety of techniques to generate pseudorandom-number sequences has been
developed.

Unlike truly random numbers, pseudorandom numbers only appear to be
random while, in fact, they are generated by a completely deterministic algo-
rithm. With a truly random sequence of numbers, knowing what values have
come so far will not help us in any way to predict what value will come next.
With a pseudorandom sequence, though, we know the exact sequence of values
that will be produced. From a statistical point of view, and, perhaps more

191

10.3 Random-number generation

importantly, from the point of view of the probabilistic simulator, a pseudoran-
dom sequence can appear to be a sufficiently random sequence.

The first step in generating a sequence of random numbers that appears to
come from any type of distribution is to be able to generate a sequence that
appears to be uniformly distributed on the interval [0, 1). That is, the probability
of obtaining any value within this interval is constant. A good pseudorandom-
number generator should have the following properties.

e It should be efficient. Since a typical simulation will require a large number of
random values, the generator should be easy to compute efficiently.

e It should have a long period. The sequence of random values generated by a
finite algorithm must necessarily be finite. That is, the sequence will repeat
with some period k, such that x, ., = X,, X401 = Xna1> Xnpha2 = Xpg2s .. 1O
make the sequence appear as random as possible, we would like the period &
to be as large as possible.

e Its values should be independent and uniformly distributed. The values pro-
duced should appear to be uniformly distributed in the interval [0, 1). That is,
every value should have the same likelihood of appearing in the sequence.
Furthermore, the order in which the values occur should appear to be inde-
pendent in a statistical sense. (More about this independence property will be
said in Section 10.4.4.)

e It should be repeatable. To facilitate testing of our simulator, and to allow the
direct comparison of different simulation configurations being driven by the
same sequence of random values, we would like the generator to be able to
reproduce exactly the same sequence as that it produced at some previous
time.

A linear-congruential generator (LCG) is one of the simplest generators that
exhibits the above desirable properties. The basic form of the LCG is the equa-
tion

z; = (az;_1 + ¢) mod m (10.1)

where a, ¢, and m are constants carefully chosen to ensure that the LCG satisfies
the desired properties and the z; values are the desired sequence of random
values. If the constants are chosen correctly, this generator can be made to
produce the complete sequence of integers from the set {0,1,2,...,m — 1} in
some permuted order. Since 0 < z; < m, the sequence of values u; = z;/m will
appear to be uniformly distributed on the interval [0, 1).

There are a few interesting characteristics of this type of generator that make
the sequence of values it generates somewhat different than a truly random
sequence. For instance, each of the m values produced by this generator appears
exactly once in the sequence. Thus, the probability of obtaining any particular

192

Simulation and random-number generation

value is 1/m, which satisfies our uniformity requirement. However, since z; is
calculated using z;_;, when a value repeats, the entire sequence will begin all over
again. As a result, unlike a truly random sequence, it is impossible for the same
value to appear twice in a row in the sequence of values generated.

Furthermore, since we use u; = z;/m to approximate the values distributed on
the interval [0, 1), the smallest difference between any two values is 1/m. This
type of quantization error would also not appear in a truly random sequence.
Nevertheless, even with these limitations, this type of LCG can produce samples
that appear, in a statistical sense, to be from the desired distribution.

10.3.1.1 Choosing the constants

The constants a, ¢, and m in the LCG must be carefully chosen to ensure that the
generator has the desired properties described above. Since it is guaranteed that
the period of the generator can be no larger than m, this constant should be
chosen to be as large as possible, within the limits of the arithmetic precision of
the system on which the generator will be executed. It also is convenient to make
m a power-of-two value; that is, choose m = 2/, where j is a positive integer. Then
the modulo operation can be performed with a simple truncation of the result to j
bits.

In addition to these constraints on m that are related to the efficiency of
calculating the sequence, it has been shown that, if ¢ # 0, the maximum period
will be obtained if and only if

1. the constants m and c are relatively prime,
2. every prime that is a factor of m is also a factor of a — 1, and
3. if 4 divides m, then ¢ — 1 must be a multiple of 4.

These constraints are all true if the constants are chosen such that m =2/,
a=4d + 1, and ¢ is odd, where j and d are positive integers.

As an example, various implementations of the UNIX operating system often
provide the following LCG:

z; = (1,103,515,245z,_, + 12,345) mod 2. (10.2)

Since these constants satisfy the above constraints, this generator has a complete
period of 2% values. Also, the modulo operation can be performed simply by
truncating the final value to 32 bits.

Some LCGs use ¢ = 0. This choice for ¢ eliminates the need to perform the
addition, which, thereby, simplifies the overall calculation and improves the
efficiency of the random-number-generation process. These types of generators
are called multiplicative LCGs. If m is chosen as a power of 2 in a multiplicative
LCG, though, the period is reduced by a factor of 4 to 272, Choosing m to be a
prime number, along with an appropriate value of a, can produce a generator

193

10.3 Random-number generation

with a period of 2" — 1. Note that the period is not 2" since a multiplicative LCG
can never produce the value 0. A reasonably good multiplicative LCG is

z; = (16,807z;_;) mod (2*!' — 1. (10.3)

10.3.1.2 Cautions and suggestions

Looking at the above formulas for the LCG and the multiplicative LCG may
leave the reader with the impression that producing a good random-number
generator is rather simple. However, it turns out that there are many subtleties
that can strongly and adversely affect the quality of the final random-number
sequence generated. For instance, the properties of an LCG, such as the length of
its period, are maintained only if all computations are done precisely with no
round-off error. Thus, the computations should use only integer arithmetic
instead of floating-point operations. Note also that the multiplication operation
in the az;_; step could easily exceed the number of bits in the standard integer
data type since multiplying two m-bit numbers can produce a 2m-bit result.
Thus, the intermediate calculations all need to be performed with extended-pre-
cision arithmetic operations.

A related caution is that subsets of an m-bit generator need not exhibit the
same randomness characteristics as those of the complete generator. If you want
only a single bit that is randomly 0 or 1 with equal probabilities, for instance, you
should not simply look at the least-significant bit of the m-bit value.
Multiplicative LCGs where m is a power of 2 actually exhibit short-period cycles
in their low-order bits. Thus, looking only at the least-significant bit would
produce a sequence with very high autocorrelation. A better solution, which is
discussed more completely in Section 10.3.2, is to compare the u; = z;/m value
with 0.5, returning 0 if u; < 0.5 and 1 otherwise.

In addition to these calculation difficulties, it is important not to confuse
complexity with randomness. A long, complex sequence of operations will not
necessarily produce a good sequence of random values. A better generator is one
that consists of a relatively simple sequence of operations whose properties can
be proven analytically, such as a LCG. Furthermore, recognize that pseudoran-
dom numbers are not unpredictable. They are actually perfectly predictable once
the algorithm used to generate the values is known. This characteristic of pre-
dictability is good for simulations, however, since it allows the repetition of an
experiment with the identical input conditions. What we want from a random-
number generator is statistical randomness, not ‘perfect” randomness.

The LCG is not the only type of random-number generator. Other types
include linear-feedback-shift registers, extended Fibonacci generators, and gen-
erators that combine several other generators to further randomize the resulting
sequence. Given the numerous subtleties involved in producing a good random-

194

10.3.2

Simulation and random-number generation

number generator, though, it is much better to use a generator that has been
proven robust through extensive analysis and use than trying to develop one
yourself. To paraphrase a popular saying, ‘Don’t try this at home.” Leave the
development of a good umif(0,1) pseudorandom-number generator to the
experts.

Nonuniformly distributed random numbers

Many of the processes in a computer system that we may wish to include in a
simulation can often be reasonably modeled using a sequence of random num-
bers that appears to be from some nonuniform distribution. For example, the
time that elapses between the sending of two messages on an interprocessor
communications network can often be modeled using an exponential distribu-
tion. That is, if we were to measure the times that elapse between the messages
sent on a real system, and plotted them as the histogram shown in Figure 10.2,
we may find that the times appear to roughly follow an exponential distribution
parameterized with some mean value. We may then decide that we could simu-
late the times that messages are sent by using a sequence of random values that
we generate. Each of the values would be the simulated time that must elapse
after one simulated message is sent before the next can be sent. To perform this

1000
900
800
700

600

Count

500

400

300

200

100

5 10 15 20 25 30 35 40 45 50
Time (microseconds)

Figure 10.2 A histogram of the distribution of the times measured between two successive
send operations for some interprocessor communication network. The horizontal axis
shows the subranges of times measured, and the vertical axis is the number of occurrences
of times in each subrange.

195

10.3 Random-number generation

type of nonuniform-distribution-driven simulation, we need some way to gener-
ate a sequence of random values that appears to follow an exponential distribu-
tion with the desired mean.

Generating these nonuniform distributions is a two-step process. The first step
is to generate a sequence of values that appears to be uniformly distributed
between 0 and 1 by using one of the techniques discussed in Section 10.3.1.
This type of sequence is denoted unif (0, 1). The second step then is to transform
this sequence into a sequence from the desired distribution. Several different
techniques for performing these transformations are discussed in the following
sections. Several distributions that are commonly used in computer simulations
are described in Appendix B.

10.3.2.1 Inverse transformation

Let f(x) be the probability density function of the distribution we wish to gen-
erate. Then the cumulative distribution function is

F(x) = / ") dv. (10.4)
Notice that
+00
S(x)dx =1 (10.5)

so that 0 < F(x) < 1 for all values of x. Furthermore, it can be shown that F(x) is
uniformly distributed between 0 and 1. As shown in Figure 10.3, this character-
istic of a cumulative distribution function allows us to randomly select a value y
of the cumulative distribution function y = F(x) using a random value
u = unif (0, 1). Then, using the inverse of the cumulative distribution function,
we find the desired sample value x = F 7l(y)|y:u.

So the procedure for generating a random sample using this inverse transfor-
mation method is to first generate a random value u = unif (0, 1), and then plug
this value into the inverse of the cumulative distribution function of the desired
distribution. The calculated value x is then one sample of a sequence of values
that will appear to be distributed according to the probability density function
f(x). Of course, this method works only if the cumulative distribution function of
f(x), i.e. F(x), is invertible.

Example. The exponential distribution is commonly used to model the time
that elapses between two events, such as the time between access requests to some
input/output device. The probability density function of this distribution is

f(x) = %e—x/ﬂ, x>0 (10.6)

196

Simulation and random-number generation

1.0
F(x)
u = unif(0, 1)
0 x
= Value returned

Figure 10.3 The inverse-transformation method for generating a sequence of nonuniformly
distributed random values begins by generating a random value u = unif(0, 1). The
transformed value that should be returned is then x = F~'(y)| y—u» Where F(x) is the
cumulative distribution function of the desired probability density function f(x).

where B is the mean value. The cumulative distribution for this density function
is then easily found to be

F(x)=1—¢"#, x> 0. (10.7)
Letting y = F(x), we find that
x=F'()=—pIn(1-y), 0<y<l (10.8)

To use this expression to generate a value of x, we first need to generate a value
y = unif (0, 1). Note, however, that, if y = unif(0, 1), then 1 — y = unif(0, 1),
also. Thus, we can simplify the above expression to give

x = —BIn(y) (10.9)

where y = unif (0, 1). &

Example. The inverse-transformation method is quite useful also for generat-
ing a sequence of values that is uniformly distributed over any arbitrary interval.
Consider transforming a unif (0, 1) sequence into a sequence that is unif(a, b).
The probability density function for a value x = unif(a, b) is

fora<x<b

1
SX)=1b—-a (10.10)
0 otherwise.

The corresponding cumulative distribution function is

197

10.3 Random-number generation

0 X<a
F(x) = z_a fora=x=b (10.11)
1 x>b

which is shown graphically in Figure 10.4. Finding the inverse of F(x), we have
x=F ') =a+ b -a)y. (10.12)
Then, if y = unif (0, 1), the values of x will be unif(a, b). &

10.3.2.2 The alias method

The alias method is useful for generating nonuniformly distributed random
values that appear to be from an arbitrary discrete probability density function
with a finite range. It uses a uniformly distributed random value to index into a
table to find the appropriate value of x to return. To see how this technique
works, consider an experiment in which each of the possible outcomes occurs
with a probability that is a multiple of 1/k, where k is a positive integer. That is,
the probability of obtaining the outcome i is Pr(i) = £ (i) = k;/k, where k; is the
number of times that outcome i can occur. Note that k =), k; for all possible
outcomes i.

Before the simulation begins, a table with k entries in total must be initialized
for all possible outcomes such that k; entries contain outcome value i. To gen-
erate a value from this distribution, a random value y that is unif (1, k) is first
generated. This value is used to index into the table. The value previously stored
in the table entry at this location is then returned as the desired sample value x.
Although this procedure may sound rather complicated, it is actually quite
straightforward, as shown in the following example.

y=F)

a b X

Figure 10.4 The cumulative distribution function F(x) = (x — a)/(b — a).

198

Simulation and random-number generation

Table 10.1. The possible outcomes that can occur when
flipping three coins

Configuration Number of heads
(outcome x)

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

S = = N = NN W

Example. The distribution we wish to model is the number of ‘heads’ that
occur when three coins are flipped simultaneously. That is, each time this func-
tion is invoked, it should return a value from the set {0, 1, 2, 3}, where the value
returned corresponds to the number of heads that occurred.

To produce this function, we first enumerate all possible outcomes for the
experiment, as shown in Table 10.1. From this enumeration, we see that the
outcomes with three heads and no heads each occur exactly once, while three
outcomes produce two heads and another three outcomes produce only one
head. Since there are kK = 8 outcomes in total, we find the probabilities shown
in Table 10.2 for each of the possible outcomes.

Since k =), k; = 8, we need a table with eight entries. One of the entries in
the table should be initialized with 0, three should be initialized with 1, three
more should be initialized with 2, and the remaining one should be initialized
with 3. These values correspond to the outcomes of no head, one head, two
heads, and three heads, respectively. To generate a value for x, a random
index into the table is generated using i = [unif(1,8)]. The ceiling operator
ensures that the index into the table is an integer value. If the previously initi-
alized table is the array x[.], then the value to be returned is simply x[i]. <

10.3.2.3 Decomposition

Decomposition is used when the desired distribution function can be expressed as
two or more other distributions that are easier to generate than the original
distribution. One unif(0, 1) random value is used to select one of these other
distributions with the appropriate probability. Then one or more additional
unif (0, 1) values are used to generate a value from the selected distribution.

199

10.3 Random-number generation

Table 10.2. The probabilities associated with each of the
outcomes shown in Table 10.1

Number of heads Number of occurrences Probability
(outcome x) (k) (f (i) = k;/k)

W N = O
—_ L) L) —
00— 00|12 00|t OO —

More precisely, say that the desired probability density function, f(x), can be
expressed as the weighted sum of »n other density functions, f;(x). Thus, f(x) can
be written

[=) pfix) (10.13)
i=1

where p; is is the fraction of f(x) that decomposes into f;(x). The first unif (0, 1)
random value is used to select the appropriate density function f;(x) according to
the corresponding weight p;. A random value is then generated to follow the f;(x)
distribution using whatever method is appropriate for that distribution.

Example. We would like to generate random values for a probability density
function in which two-thirds of the time the value is uniformly distributed
between 0 and 5 and one-third of the time it is uniformly distributed between
5 and 10. That is,

Pr(x <0)=0

Pr0 < x < 5) =2
% (10.14)
Pr(5<x§10):§

Pr(x > 10) = 0.

We first generate a random value u; = unif (0, 1). If u; < %, then we need to
return a value that is unif (0, 5). This is easily accomplished using the inverse
transform method, giving x = Su,, where u, = unif (0, 1). If u; > %, however, we
need to return a value that is unif (5, 10). This is again easily accomplished using
an inverse transform, giving x = 5 + Su,. &

This decomposition technique is particularly useful when one is generating
empirical distributions that are derived from actual measured values. For
instance, say you measure the size of messages sent on a communications net-

work and find that the resulting distribution does not appear to fit any standard

200

Simulation and random-number generation

analytical distribution. Instead of trying to force the observed distribution into
some standard distribution, you could decompose your observations into several
other distributions. You would then choose, on the basis of the observed prob-
abilities of these distributions, which of these other distributions to use for gen-
erating the next sample.

10.3.2.4 Special characterization

Many probability distributions have special relationships to other distributions.
We can often take advantage of these relationships to develop algorithms for
generating random sequences that appear to be from the desired distribution.
There are no standard strategies to follow with this technique. Rather, you must
notice that the special relationship exists, and then produce a specific algorithm
to exploit it. The following examples demonstrate the idea of special character-
ization for a few common distributions.

Example. The Poisson distribution is a discrete distribution that is often used
to model the number of events that occur within a specified interval. The prob-
ability of exactly x events occurring is

)\'xef)\
x!

flx) = ,x=0,1,2,... (10.15)
where A is the mean number of events that occur within the specified interval. It
is closely related to the exponential distribution in that, if the time between
events follows an exponential distribution, the number of events that occur
within a given interval follows a Poisson distribution.

We can take advantage of this relationship between the two distributions to
generate Poisson-distributed values. In particular, one sample from a Poisson
distribution would be the count of how many samples from an exponential
distribution with mean S =1 must be added together to exceed the mean
value A. A sample from an exponential distribution with mean 8 =1 can be
computed simply by using the inverse-transform method, giving z = —In(y),
where y is distributed unif (0, 1). A simple algorithm for a Poisson sample is then:

sum = 0, i = -1
while (sum <= lambda)
y = unif(0,1)

z = — 1n (y)
sum = sum + 2z
i=1i+ 1
endwhile
return(i)

201

10.3 Random-number generation

Example. A Bernoulli distribution has two possible outcomes, 0 and 1. These
outcomes are typically assumed to mean either success or failure in one trial,
such as the flipping of a coin. If the probability of obtaining 1 is p, then 1 — p is
the probability of obtaining 0. A binomial distribution with parameters n and p is
the probability of obtaining x successes out of # trials where the probability of a
success in a single trial is p. The binomial distribution is the sum of » independent
Bernoulli distributions. Thus, to generate a binomial(n, p) sample, simply count
the number of unif (0, 1) samples out of n that are less than or equal to p. This is
essentially simulating #n Bernoulli experiments that comprise the binomial experi-
ment each time a value for the binomially distributed sequence of random values
is needed. <&

10.3.2.5 The accept-reject method

The accept—reject method is a general technique for generating random
sequences. The basic idea behind this technique can be explained with a simple
geometric argument. First, draw the probability density function for the desired
distribution, f(x), as shown in the shaded region in Figure 10.5. If we could
throw a dart at this figure so that it has an equal probability of hitting anywhere
in the area under f(x), the corresponding value of x where the dart hit would be
one sample from the desired distribution. It should be easy to see that the
sequence of x values generated through multiple dart throws will follow the
distribution defined by f(x).

Owing to the complexity of evaluating the corresponding inverse function,
however, it may be difficult, or impossible, to ensure that the random point
selected (i.e. where the dart hits) is always uniformly distributed in two dimen-
sions while remaining below f(x). Instead, we choose a simpler function, g(x), for
which we already know how to calculate appropriate random values. We then

cgl)

Reject x

Accept x

Figure 10.5 Generating samples from the distribution f(x) using the accept-reject method.

202

Simulation and random-number generation

scale g(x) with the constant ¢ so that f(x) < cg(x), as shown in Figure 10.5. We
now generate a random point that is within the area bounded by cg(x) using
whatever technique is appropriate for g(x). That is, we again throw a dart at the
larger target defined by cg(x). If this randomly selected point is within the area
bounded by the desired distribution f(x), we accept the corresponding value of x
as a good sample from this distribution. If it is in the area between f(x) and
cg(x), though, we must reject it and repeat the entire process by generating a new
random point. Eventually, a dart will hit within the area bounded by f(x) giving
us our desired sample value, x.

Note that the probability of any particular point being accepted as a good
sample for f(x) is the ratio of the area under f(x) to the area under cg(x). Thus,
the efficiency of this technique depends on how close the bounding function cg(x)
is to the desired distribution f(x). There is a trade-off here, though. While it may
be easier to generate samples from looser bounding functions for g(x), these
samples are more likely to be rejected. On the other hand, functions that more
closely follow f(x), and so produce fewer rejections, may be correspondingly
more computationally expensive to calculate.

This accept-reject algorithm is summarized as follows.

1. Find a function g(x) and a constant ¢ such that f(x) < cg(x) for all values of x
where f(x) is defined. Furthermore, g(x) should be chosen so that it is easy to
generate samples from this distribution.

2. Generate a sample x from the distribution described by g(x). This x could
potentially be returned as a value from the desired distribution f(x).

3. Calculate Y = cg(x). Then generate a second random sample, y, that is uni-
formly distributed on the interval [0, Y].

4. If y < f(x), the randomly selected point (x, y) falls under the distribution f(x).
The value x then should be accepted as a sample from the desired distribution
f(x). If y > f(x), however, then x should be rejected and the process repeated
beginning at step 2.

Example. To generate random values that follow the arbitrary distribution

f(x) shown in Figure 10.5, we perform the following steps. First, we must find

a function that completely bounds f(x). Owing to the complex shape of f(x), the
simplest bounding function is the rectangle shown in the figure. Random points
within this box can be easily generated by selecting a random value x that is
uniformly distributed on the interval [0, ¢] and a value y that is uniformly dis-
tributed on [0, b]. Then, if y < f(x), we accept x as a sample from the desired
distribution. Otherwise, we reject x and repeat the process, beginning with the
generation of new values for x and y. &

203

10.4

10.4.1

10.4 Verification and validation of simulations

Verification and validation of simulations

The quality of the results obtained from any simulation of a system is funda-
mentally limited by the quality of the assumptions made in developing the simu-
lation model, and the correctness of the actual implementation. Throughout the
development of the simulator, you should bear in mind how your assumptions
impact the reasonableness of your simulation model. You should also rigorously
follow good programming practices to reduce the number of bugs that creep into
your simulator, and to simplify its implementation.

The validation process attempts to ensure that your simulator accurately mod-
els the desired system. That is, validation attempts to determine how close the
results of the simulation are to what would be produced by an actual system.
Verification, on the other hand, is the process of determining that your simulator
actually implements the desired model. Verification is not concerned with
whether the model is correct, but, rather, whether the given model is implemen-
ted correctly. It is essentially a software-debugging problem, although there are a
few additional things that must be verified beyond simple programming errors.
These include the ‘randomness’ of any probabilistic distributions that may be
used in the simulation, for instance. The following subsections discuss the vali-
dation and verification issues in more detail.

Validation

The goal in validating a simulation model is to determine how accurately it
reflects the actual system being simulated. The types of questions that need to
be addressed in this process include the following.

Is this a good model?
Are the assumptions reasonable?

e Are the input distributions a good representation of what would be seen in
practice?

Are the output results reasonable?

Are the results explainable?

While there is no foolproof method for addressing these questions, there are at
least three approaches that can be used to help validate a simulation model.
These are

e comparisons with a real system,
e comparisons with an analytical model, and
e engineering judgement.

204

Simulation and random-number generation

10.4.1.1 Comparisons with real systems

In many situations, a simulation model is used to study a system that does not
yet exist. This obviously makes it difficult to determine whether the simulation
results match the output of the real system! However, it may be possible to at
least partially validate a simulation by comparing some of its outputs with those
produced by a similar system. Consider a simulation of a processor, for example,
in which we wish to study the effect of varying the number of pipeline stages.
While an actual system with the identical pipeline configuration most likely does
not exist, we may be able to set the simulation parameters to match those of
some existing processor. Comparing the simulation results obtained when run-
ning a collection of benchmarks with the results obtained on the real processor
may help in validating that, at least in that particular configuration, the simula-
tion output closely approximates the output of the real system.

As another example, we might develop a simulator for studying how the size
of input/output requests affects the bandwidths that can be obtained for dif-
ferent types of disk-array systems. To partially validate our simulator, we could
first measure the disk bandwidth of some existing system. We next set the
parameters of our simulator to match those of this existing system, and execute
the simulation using the same sequence of requests. Finally, we compare these
simulated results with the results from the real system. Although this does not
validate that the simulator produces accurate results for all possible parameter
configurations, it at least validates the output results for one specific design
point.

Measurements of real systems can also be used to estimate the characteristics
of certain system inputs. For instance, the size and interarrival time of messages
received on a communication network can be measured on an existing system.
These measurements then can be used to develop a probabilistic distribution for
generating an event trace to drive the simulator. Although these comparisons
with real systems are incomplete and imperfect, they are infinitely better than no
validation at all.

10.4.1.2 Analytical results

If comparisons with an actual system are impossible or impractical, it may be
feasible to develop a simplified analytical model of the system. This simple
mathematical model can then be used to validate some specific results from
the simulator. Or, the model may be useful in validating overall performance
trends. For example, the delay observed when sending a message on some com-
munications network can be approximated with the following equation:

tend = lo + 1/b. (10.16)

205

10.4 Verification and validation of simulations

In this approximation, 7, is the overhead required to initiate the sending of any
message, such as the time required to perform the appropriate system call, set up
appropriate buffers and pointers, and so forth, n is the number of bits to be sent,
b is the bandwidth of the network in bits transmitted per second, and 7.4 is the
total time required to send a message of n bits.

Comparing the simulated time required to send a message with the time cal-
culated using this simple model can provide some insights into the validity of the
simulation. More importantly, perhaps, the shape of the curve defined by this
simple model could be compared against the simulation output as the number of
bits sent is varied. Although it is unlikely that the values produced by the simu-
lator will exactly match the values produced by this model, the trends that are
observed can be helpful in validating the overall behavior of the simulator. A
detailed analytical model can be very complex and time-consuming to develop.
Nevertheless, even simple ‘back-of-the-envelope’ calculations can often provide
surprising insights into the validity of a simulation. It is good practice to always
develop at least a crude model to help reassure yourself that the simulation
output is not unreasonable. Some additional analytical modeling techniques
are presented in Chapter 11.

10.4.1.3 Engineering judgement

10.4.2

Finally, you should never underestimate the power of solid engineering judge-
ment in helping validate a simulator. Through years of experience, systems
designers and performance analysts can often develop an uncanny ability to
determine whether a simulation result ‘looks right.” Oftentimes they are not
even aware of how they know that a simulation result appears to be suspect.
However, they have learned to trust their instincts. If a result just does not
appear to ‘feel’ right, determine why. If you cannot explain why the simulator
produces an unusual result in a specific situation, it is difficult to trust any of its
results. If you can’t explain it, don’t believe it.

Verification

The verification process attempts to ensure that the simulator is implemented
correctly and that it accurately reflects the chosen model. All simulators require
some deterministic verification in which all aspects of the simulator that are not
dependent on a probabilistic distribution are checked. Stochastic simulators
also require some additional checks to verify that the random-number distribu-
tions are being generated correctly, for instance. Techniques that have been
proven useful for performing both types of verifications are described in the
following.

206

10.4.3

10.4.4

Simulation and random-number generation

Deterministic verification

The most basic form of deterministic verification is to follow good software-
engineering practices. These may include such techniques as an emphasis on
structured programming, top-down modular design, detailed code walk-
throughs in which the simulator’s operation is explained to someone else, and
standard internal-error checking, such as checks for accessing arrays out of
bounds and common memory leaks. Beyond these basics of good programming,
the simulator writer should carefully verify the operation of the simulator by
simulating a simple case for which the expected output can be determined by
hand. It can also be useful to follow a trace of the simulator’s execution to verify
that it proceeds through the desired states and transitions as expected.

It can also be quite helpful to build consistency checks into the program’s
logic. These consistency checks are carefully designed to ensure that different
values produced by the simulator are self-consistent. If any discrepancy is found
during a simulation, the simulator should abort and report the error. For exam-
ple, in a simulation of a processor’s memory system, the simulator should main-
tain a count of the total number of memory references generated, the number of
references that cause cache hits, and the number of references that cause cache
misses. At the end of each simulation run, the simulator should then verify that
the sum of the number of hits and misses is equal to the total number of refer-
ences. Other types of consistency checks are likely to become apparent as the
simulator is written and debugged.

Another form of verification that can expose subtle programming errors is to
simulate the system for all of the special cases, often called the corner conditions.
These are the degenerate cases that can cause buffer overflows or underflows and
other unexpected conditions. In a simulation of a large multiprocessor computer
system, for instance, verify that the simulation works correctly with only a single
processor. Or ensure that all memory references produce cache misses if the
cache size is set to zero. As another example, verify what happens in a network
simulator when the send memory buffer is smaller than the message being sent.
Even though it might not seem important to verify many of these cases since they
are not likely to happen in a real system, verifying these corner cases often
exposes programming errors that do in fact cause the wrong result to be pro-
duced by the simulator even in ‘normal’ situations. These cases often turn out to
be the most enlightening ones.

Stochastic verification

Simulations that include components driven by sequences of pseudorandom
numbers pose an interesting verification challenge since, by definition, the ran-

207

10.4 Verification and validation of simulations

dom components are supposed to be unpredictable. In particular, how do we
verify that a sequence of pseudorandom numbers is indeed ‘random enough?” We
can never say with 100% certainty that a sequence of values is indeed random.
Instead, we apply appropriate statistical tests to verify that the random values
generated appear to be random in a statistical sense. Or, more precisely, that we
have no reason to think that they do not appear to be random.

We divide the problem of verifying a random-number stream into two com-
ponents. First, we use statistical goodness-of-fit tests to determine whether the
shape of the generated sequence is statistically ‘close enough’ to the expected
distribution. We then use extensions of these standard tests, plus some additional
tests, to verify that the order of the samples occurs in such a way as to make each
sample appear to be statistically independent of the other samples. These two
components of random-number testing are described further in the following
subsections.

10.4.4.1 Goodness-of-fit testing

Goodness-of-fit testing is a general technique used to compare a collection of
generated or measured values with an ideal or expected distribution. That is, we
wish to determine how close the observed (or measured) values are to the
expected values for a given distribution. The goodness-of-fit test quantifies the
deviation of the observed values from the expected values. An appropriate sta-
tistical test is then performed on this calculated measure of deviation to deter-
mine the likelihood that the calculated deviation would occur by chance if the
sampled values did in fact come from a distribution of the expected type.

For example, suppose that we have a simulation in which we generate values
that appear to be from a binomial distribution with n =35 and p = 0.2. (See
Appendix B for an explanation of how to generate these values.) This particular
distribution is defined by the density function

fo=(C)pa—p (10.17)

where 0 < p < 1, n is a positive integer, and x =0, 1,2,...,n.

To determine whether the values generated actually appear to follow this
desired distribution, we generate 100 samples and count how many of each of
the six possible outcomes occur, where x € {0, 1, 2, 3, 4, 5}. The results of our
measurements are shown as the observed values in Table 10.3. Next, we must
calculate how many of each of the values we would expect to occur if the dis-
tribution were actually binomial. The predicted number of times that x = 0 is the
outcome is found by evaluating £ (0) = ((5))(0.2)0(1 —0.2)° = 0.328. Since we have
100 samples in total, we must scale this probability by 100. This gives the pre-
dicted number of times x = 0 occurs as the outcome to be 32.8. We perform a

208

Simulation and random-number generation

Table 10.3. A histogram of the values observed from a generated sequence of
pseudorandom values compared with the values that would be expected if the
distribution were binomial withn =5 and p = 0.2

Outcome values

0 1 2 3 4 5
Observed (0;) 36 40 18 6 0 0
Predicted (P;) 32.8 40.9 20.5 5.1 0.7 ~0

similar calculation for (1), f(2), ..., f(5) to obtain the predicted values for this
specific binomial distribution shown in Table 10.3.

We see that the predicted and observed values for each outcome in Table 10.3
are not the same. In fact, since the observed values are supposed to approximate
a random sequence, we should not be surprised that they are different. Indeed,
we would be quite surprised if they were exactly the same! The question now is,
given that we expect some difference between the observed and predicted values,
how likely is it that we would see this amount of variation due to normal random
fluctuations?

To begin to answer this question, we need some way to quantify the deviation
between the predicted and observed values. One obvious idea is to take the
maximum difference as our measure of deviation. That is,

dev:nbax|0l-—P,»|. (10.18)

A problem with this simple absolute deviation, however, is that it overempha-
sizes histogram cells with large predicted values. For example, if the predicted
value for a cell i1s 1,000 and the observed value is 900, the absolute deviation is
100. If another cell had a predicted value of 15 and an observed value of 10, its
absolute difference would be only 5. Thus, we would have 100 as our measure of
deviation when using Equation (10.18).

However, the deviation relative to the predicted value is only 10%
((1,000 —900)/1,000) for the first cell, while it is 33.3% ((15 — 10)/15) for the
second cell. It seems reasonable to expect that this larger relative deviation is
more important in comparing the observed and predicted values. Consequently,
a better measure of the deviation between the observed and predicted values may
be the maximum relative deviation:

0: — P,

dev = max
Vi P,

(10.19)

209

10.4 Verification and validation of simulations

The problem with using only the maximum value as the measure of deviation is
that we do not take advantage of all of the information available.

A better measure, then, may be to take the sum of the relative differences,
giving

dev = Z'O"P_M, (10.20)
i=1 i

where m is the total number of histogram cells. Although this measure does take
into account all of the available information, that is, the deviations in each
histogram cell, we have no way of knowing how large this value can become
before we decide that it is too large to have occurred strictly by chance fluctua-
tions in the observed values.

Fortunately, we end up being saved by some smart statisticians. The chi-
squared statistic for a given set of observed values is calculated as

m 2
2 (Oi - Pi)
Xm—1 = ;:1 — (10.21)

1

By relying on the central-limit theorem, our smart statisticians have determined
that the statistic x2,_; calculated as shown in Equation (10.21) follows a chi-
squared distribution with m — 1 degrees of freedom, where m is the number of
histogram cells used in making our observations. Critical values for this distribu-
tion have been tabulated in Appendix C.3. These critical values can be used to
determine whether the deviations between the observed and the predicted values
are likely to have been caused by chance fluctuations. If not, then we must
conclude that it is unlikely that the observed values follow the expected distribu-
tion.

One word of caution is appropriate here. Since knowing the distribution of the
chi-squared statistic x2,_; relies on the central-limit theorem, it is necessary for
each histogram to have a ‘large enough’ number of predicted values. In practice,
it is usually adequate to ensure that P; > 5 or 6. If this requirement is not
satisfied for the given histogram, adjacent cells must be combined until the
predicted value for the combined cell is large enough to satisfy this normalization
assumption.

Example. For the observed and predicted values in Table 10.3, we see that
outcomes 4 and 5 occur too infrequently to satisfy the chi-squared approxima-
tion. Consequently, we add together outcomes 3, 4, and 5 to produce a single cell
with a predicted value of 5.8 and an observed value of 6. The corresponding chi-
squared statistic for these values is found to be

» (36-328)° (6-58)°

R sg = 0:6438. (10.22)

210

Simulation and random-number generation

The critical values in the table in Appendix C.3 show the probability that the
tabulated value of the chi-squared statistic will occur due to random fluctuations,
with the given number of degrees of freedom. In our current situation, we have
m — 1 = 3 degrees of freedom. From the table, we find that there is a 95% chance
that the chi-squared statistic will be as large as 7.815 with this many degrees of
freedom. Since our calculated statistic, X% = 0.6438, is smaller than this critical
value, we conclude with 95% confidence that there is no reason to suspect that
the observed values do not come from the expected distribution.

Note that we cannot say that the observed values actually do come from the
expected distribution. The best we can say is that there is no evidence to lead us
to believe otherwise. &

This example concerned a histogram that corresponded to the natural struc-
ture of the distribution being tested. That is, each cell corresponded to a single
outcome value, except for the last cell which was aggregated to make the pre-
dicted number of outcomes in that cell large enough for the chi-squared approx-
imation to hold. However, each term in Equation (10.21) is normalized with
respect to the predicted value P;. Thus, cells with small values of P; will tend
to have a greater influence on the value of the calculated statistic than will cells
with comparatively larger values of P;. To reduce this bias, it is best to combine
adjacent cells in the histogram to make the P; values for each cell approximately
the same. This aggregating of values potentially decreases the information avail-
able, but it tends to make the chi-squared test work better in practice.

There are other types of goodness-of-fit tests that are appropriate for specific
situations. The Kolmogorov—Smirnov test, for example, is specifically designed
to compare a small number observations with an expected continuous distribu-
tion. This is in contrast to the chi-squared test, which assumes a discrete dis-
tribution with a large number of samples. It is possible to ‘discretize’ a
continuous distribution and still apply a chi-squared test to obtain an approx-
imate result, though. Consequently, for most of the applications you are likely to
encounter, the chi-squared test is usually adequate.

10.4.4.2 Tests of independence

The fact that a sequence of values passes a goodness-of-fit test is no guarantee
that the sequence is actually random. For example, the sequence (0, 1,2, 3, ...,
19,0,1,2,3,...,19,...) will appear to follow a perfect unif (0, 19) distribution
with any goodness-of-fit test. However, it is obviously not a random sequence at
all. A goodness-of-fit test quantifies whether the number of unique values in the
sequence, that is, the histogram of all of the samples that occurred, is not too far
away from the expected number for each. It says nothing about the order in
which those values occurred, though. Determining whether the order of the
values appears to be appropriately random is the goal of an independence test.

211

10.4 Verification and validation of simulations

Typically, we apply an independence test only to the sequence of unif (0, 1)
samples that we use as the inputs to the other functions that actually produce the
values following the desired distributions. Theoretical tests analyze the properties
of the specific algorithm used to generate the unif (0, 1) samples to verify that its
mathematical properties will ensure the generation of apparently independent
sample sequences. For example, theoretical tests of the LCG described in Section
10.3.1 ensure that this type of generator will produce independent samples. These
theoretical tests do not ensure that the algorithm is actually implemented cor-
rectly, however. For this type of verification, we must rely on a statistical test of
the actual values produced.

The serial test attempts to verify the uniformity of a sequence of unif (0, 1)
values in k& dimensions. The basic idea in two dimensions is to plot points in a
two-dimensional plane using nonoverlapping pairs of values from the generated
sequence as the (x, y) coordinates of the points. After these points have been
plotted on the plane, the uniformity of the resulting distribution is tested. For
example, given the sequence (zy, z5, z3, . . .), the coordinates of successive points
are (z1, z7), (23, z4), (25, 26), - . ..

The first step in verifying uniformity is a simple visual inspection. Do the
points appear to be uniformly distributed when they are plotted? If the values
in the sequence are not independent, the points will tend to form lines, or they
will cluster into groups. Next, the plane can be divided into a grid of a x a cells,
as shown in Figure 10.6. If the distribution were completely uniform, each cell
would be expected to contain n/(2¢°) points, where n is the total of points
plotted. A chi-squared test with > — 1 degrees of freedom can be used to
gauge the uniformity of the distribution more precisely than by a simple visual
test.

The serial test can be extended to k dimensions by using k successive values
from the sequence to form the nonoverlapping k-tuple representing the coordi-
nates for each point. If the values at these higher dimensions are not
independent, planes and hyperplanes will tend to appear. Again, a chi-squared
test with an appropriate number of degrees of freedom can be used to check the
uniformity of the resulting distribution of points in the k-dimensional space.

Other tests for independence include the serial-correlation test, which uses the
autocovariance function, the spectral test, which measures the maximum distance
between hyperplanes using either overlapping or nonoverlapping k-tuples, and
the runs-up test, which measures the lengths of subsequences that are monoto-
nically increasing. All of these various tests measure a necessary condition for
independence. That is, if the sequence of values exhibits statistical independence,
these tests will produce a ‘true’ answer. However, the converse is not necessarily
true. A test that produces the result expected for independence is not sufficient to
prove independence.

212

10.5

Simulation and random-number generation

o o 1* 1% e lee®
B
s
.
.
.
.

a X

Figure 10.6 In the serial test for independence, the uniformly distributed random values
(z1, 22, z3, .. .) are paired to form the coordinates of points, (z;, z5), (23, z4), (25, Z6), . . ., tO be
plotted on the (x, y) plane. If the values in the sequence are not independent, the points will
tend to form lines or clusters on the plane. After a visual inspection to determine whether
the points appear to be uniformly distributed across the plane, a chi-squared test can be
applied to the area a x a.

The goal of this discussion is not to make you an expert in testing the inde-
pendence properties of random-number generators. Instead, it is to expose you
to the basic ideas of this testing so that you know what problems may arise. Since
independence tests are verifying the quality of the unif(0, 1) random generator
that underlies all of your random-number generation tasks, you are best off
following the advice from Section 10.3.1. That is, your best option is to use a
unif (0, 1) generator that has been demonstrated to be robust and reliable by
experts in the field and through extensive use by others. Testing for independence
is a subtle task that is best left to someone who really knows what they are doing.

Summary

Simulation is a commonly used tool for estimating the performance of computer
systems. Simulations are particularly useful for predicting the performance of
computer systems that do not yet exist, for instance. They are also commonly
used to investigate some aspect of a system’s performance that would be difficult
or impossible to measure directly. An emulation is a simulation program that is
intended to make some existing system appear to a user to be something else.
Monte Carlo simulations are typically used to evaluate probabilistic systems and
to model physical phenomena. Simulations of computer systems and their var-

213

10.6

10.6 For further reading

ious constituent components, on the other hand, typically use a discrete-event
approach. These discrete-event simulations can be driven by previously collected
traces, by the direct execution of a test program, or by a sequence of random
numbers that have been generated to follow a desired distribution.

Generating these sequences of random numbers is a two-step process. First, a
pseudorandom-number generator, such as the linear-congruential generator, is
used to generate a sequence of values that appears, in a statistical sense, to be
uniformly distributed on the interval [0, 1). Then one of several different tech-
niques can be used to transform this uniformly distributed sequence into a
sequence that follows any desired distribution.

Finally, no simulation result should be taken at face value. You should not
carelessly believe that the output of any simulator is correct without first validat-
ing the simulated result against the result produced by some other means. In the
best case, this validation compares the simulation outputs with the results mea-
sured on an actual system. Since this is often not feasible, or in many cases even
possible, however, you should instead (or in addition) try to validate a few
critical design points or overall trends using some sort of analytical model.
Verifying the statistical properties of any random-number sequences that are
generated for the simulation is an important component of this verification
and validation process. Regardless of how a simulation is validated, you should
always maintain a healthy skepticism towards the results it produces and you
should always be sure to critically apply your engineering judgement and good
old common sense.

For further reading

e Chapter 7 of the following text provides some ready-to-run programs written
in the C programming language for generating a variety of random numbers.
It also provides an extensive discussion and several examples of Monte Carlo
simulation used for numerical integration.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery, Numerical Recipes in C (Second Edition), Cambridge
University Press, New York, 1992.

Additional discussions of random number generation can be found in the

following:

Donald E. Knuth, The Art of Computer Programming, Volume 2:
Seminumerical Algorithms (Second Edition), Addison-Wesley, Reading,
MA, 1981,

214

Simulation and random-number generation

S. K. Park and K. W. Miller, ‘Random Number Generators: Good Ones Are
Hard to Find,” Communications of the ACM, Vol. 31, No. 10, October 1988,
pp. 1192-1201.

George Marsaglia, ‘“Technical Correspondence: Remarks on Choosing and
Implementing Random Number Generators,” Communications of the
ACM, Vol. 36, No. 7, July 1993, pp. 105-110, and

L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New
York, 1986.

This text discusses techniques for generating random numbers that can be

implemented directly in hardware:

Christian Ronse, Feedback Shift Registers, Springer-Verlag, New York, 1984.

Some good texts on general simulation topics include:

P. Bratley, B. L. Fox, and E. L. Schrage, 4 Guide to Simulation, Springer-
Verlag, New York, 1983, and

A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, McGraw-
Hill, New York, 1982.

This text describes the popular DLX processor simulator:

Philip M. Sailer and David R. Kaeli, The DLX Instruction Set Architecture
Handbook, Morgan Kaufmann Publishers, San Mateo, CA, 1996.

Finally, there are numerous simulators available on the Web. A little judicious

searching can uncover a wealth of information about various types of simu-

lators and simulation software packages.

10.7 Exercises

1. A simulation experiment may be considered a ‘failure’ because a bug in the
program causes it to produce incorrect results. What are other ways in which
a simulation may fail? (For instance, consider the analysis of the results, the
time required to complete a simulation, and so forth.)

2. Why is a more detailed simulation not always better than one with less

detail?

3. What are the key differences among emulation, Monte Carlo simulation,

and discrete-event simulation?

4. What are the key differences between stochastic and deterministic simula-

tions?

5. Use a Monte Carlo simulation to calculate the integral fol (1 —x)/(1 +x)dx.
6. One technique that can be used to help verify the correctness of a simulator

is to perform consistency checks whenever possible. For instance, a memory
simulator could verify that the number of cache misses plus the number of

215

10.7 Exercises

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

hits is always equal to the total number of memory references. What other
consistency checks could be performed?

. What types of system-level checks can be performed to verify a simulator?

(For example, compare the results of a simulation with the results obtained
on an equivalent real system.)

. How many results are required when using a probabilistic simulation? Hint:

think about the number of data samples required to produce a confidence
interval.

. If a trace-driven simulation always produces the same result for a given input

trace, how general are the conclusions that can be drawn from the simula-
tion? How can this be improved?

A trace-driven simulation terminates when the end of the trace input is
encountered. Similarly, an execution-driven simulation terminates when
the benchmark program it is executing terminates. What causes a probabil-
istic simulation to terminate? How long must a probabilistic simulation be
run to ensure a valid result?

One criticism of trace-driven simulation is that any trace of manageable size
represents only a very small interval of actual run-time. What techniques
could be used to allow the simulation of longer representative run-times
using traces?

If a LCG with a period of m = 2" is used to generate a sequence that is
unif(0, 1), what is the largest value that could appear in this sequence? What
is the smallest value? What is the smallest interval between successive values?
Can the same value ever appear more than once within the period of a LCG?
What do your answers to the previous two questions imply about the ran-
domness of sequences produced with a LCG?

What are the similarities and differences between complexity and random-
ness?

What are the problems with using a random seed in a random-number
generator?

What is the difference between ‘statistical’ randomness and ‘perfect’ random-
ness? Are they mutually exclusive?

It is important to test the randomness of any random-number generator
before using it, but are these tests sufficient to ensure randomness?

What is the difference between a theoretical test of randomness and an
empirical test? Which is stronger?

Why does a higher confidence level allow a larger error statistic in a good-
ness-of-fit test? This seems counter-intuitive.

Several different techniques can be used to generate numbers that appear to
come from a normal (Gaussian) distribution. Compare the two techniques
described in Appendix B for generating a normal distribution with a mean of

216

Simulation and random-number generation

22.

23.

100 and a standard deviation of 45. Measure the average execution time per
sample for each method (be sure to include an appropriate confidence inter-
val) and use the chi-squared test to determine whether both methods gen-
erate samples that appear to actually come from the desired distribution.
Test the uniformity of the random-number generator available on your
system using the chi-squared test with ¢=10 and 100 equal-width cells.
Test the independence of the random-number generator available on your
system using a two-dimensional version of the serial test.

217

Queueing analysis

‘It is very difficult to make an accurate prediction, especially about the future.’
Niels Bohr

At the beginning of our study of computer-systems performance analysis, it was
pointed out that there are three fundamental techniques that can be used to find
the desired solution to a performance-analysis problem. We have so far exam-
ined measurement and simulation techniques. The third and final fundamental
solution technique is analytical modeling.

In the memory-performance example in Section 1.3, we developed a very
simple analytical model to estimate the memory delay observed by an application
program. This equation required only a few pieces of information, specifically,
the times required to service a cache hit and a cache miss, and the miss ratio of
the application program. Even though this analytical model was a tremendous
over-simplification of the performance of a complex memory hierarchy, it can
help us develop some insight into the performance trade-offs that are made in a
memory subsystem. In this chapter, we extend our view of analytical modeling to
provide greater insights into the performance of a computer system than are
possible when using only this simple type of intuitive model.

Queueing analysis is an important analytical modeling technique for computer
systems. There is a very large body of literature on this topic, and hundreds of
new research papers and books are being published every year. This chapter will
only scratch the surface of queueing analysis by focusing on a few of the funda-
mental results that form the basis of the more complex analytical modeling
techniques. Fortunately, these fundamental results are often sufficient for
answering many of the basic questions you are likely to have about a computer
system. The goal is to provide you with some simple analytical tools allowing
quick estimates of a system’s behavior. These models can be used to compare
against the results of a simulation or a measurement experiment to help validate
the results, for example. Analysis of more complex systems, taking into account
the interactions of networks of queues, has been an area of intensive research for

218

11.1

Queuing analysis

many years. See some of the references cited in the ‘further reading’ section at the
end of this chapter for more information on these advanced techniques.

Queueing-network models

The basic notion behind queueing analysis is to think of all the jobs that must be
executed in a computer system as customers to be serviced by the system’s indi-
vidual subsystems, such as the memory, the processor, the input/output devices,
and so forth. Each of these resources, often called service centers, or simply
servers, can process only one job at a time. Other jobs wanting to use a busy
resource must wait in a gueue until the current job has been serviced completely.
The various servers and queues are interconnected with a series of arcs showing
how jobs can flow between the servers in the system.

There are two different types of these queueing-network models. In an open
network model, such as that shown in Figure 11.1, jobs arrive in the system from
some external source. In Figure 11.1, requests enter the system from the left and
are first processed by the CPU. This processing may initiate one or more disk
accesses, which would cause requests to flow from the CPU to the appropriate
disk servers. After processing the requests, the disk subsystems will respond back
to the CPU by sending a job across the arc connecting the disks to the CPU. The
CPU may generate additional disk requests based on these responses, or it may
complete its processing of the job by routing it to the exit arc.

While all of the jobs that enter this open system will eventually depart, an
unbounded number of jobs could be in the system at any given time. A closed-
network model, in contrast, has a fixed number of jobs that circulate among the
various queues and servers in the system. For example, in the previous open-
network example shown in Figure 11.1, the requests coming into the system are

Jobs departing

Disk 1

CPU

Requests entering : :

Disk 2

@

Figure 11.1 An open-queueing-network model of a simple Web server.

219

11.1 Queueing-network models

most likely generated by some users working at remotely connected terminals.
After a user makes a request, he or she most likely will make no more requests
until the first request completes. Then, after some period of ‘thinking’ time, the
user may make another request. Thus, when a command is issued by a user, a job
moves into the CPU. When it finally finishes its processing within the CPU and
the disks, it completes by returning to the user’s terminal. This type of situation is
more accurately modeled as a closed-network model in which the total number of
jobs in the system is constant. Figure 11.2 adds a network-interface node to
convert the model of Figure 11.1 into a closed system.

Open-queueing models assume that an essentially unlimited number of jobs
are continuously flowing into and out of the system. However, real systems have
hard physical-resource limitations. For instance, queues in a real system would
have to be constructed out of some sort of physical memory device that would
buffer the pending requests. Since a system cannot have an infinite amount of
memory, the number of jobs that could queue up at a particular server will be
limited by these physical constraints. Thus, closed-queueing models are often
assumed to more accurately model real systems than do open models.
Unfortunately, obtaining mathematical solutions for closed models is typically
much more difficult than obtaining solutions for open models.

The remainder of this chapter focuses on solutions for open models of single-
queue systems. This type of single-queue system could be a component or sub-
system within a larger computer system, such as a disk drive or network inter-
face, for instance. It also could be used to model the overall system itself. In that
case, we ignore the internal details of the system’s operation, and instead focus
on its overall behavior as observed through its inputs and output responses.

Disk 1

]

CPU

Qi

Disk 2

i

NETWORK INTERFACE

I

Figure 11.2 A network-interface node is added to the queueing-network model of Figure
11.1 to make it a closed-queueing-network model.

220

11.2

Queuing analysis

It is important to bear in mind that these open-single-queue models only
approximate the characteristics of a real system. Consequently, the solutions
we obtain are necessarily only approximations of the behavior we would expect
to see in a real system. This analysis describes the average, or steady-state,
behavior of a system and cannot be used to analyze the behavior of an individual
job.

Basic assumptions and notation

Before we move any deeper into this queueing analysis, it is helpful to describe
the assumptions we make about the queueing system in order to apply this type
of analysis. It is also helpful to define all of the notation that will be used. The
basic assumptions are summarized below.

e Job-flow balance. The number of jobs arriving at a server within a sufficiently
large observation interval must be equal to the number of jobs that depart
from the server. That is, no jobs are lost within the server or its queue.
Furthermore, the server cannot spontaneously generate new jobs. Notice
that this job-flow balance does not hold over shorter intervals since jobs
must wait in the queue while the server is busy. However, over the long
term, the number of jobs going into a server must match the number of
jobs that complete service.

e One-step behavior. At any instant of time, only a single job can enter or leave a
server so that the system’s state changes only incrementally. This assumption
specifically disallows jobs from moving simultaneously between servers within
the system. It also disallows the coupling of arrivals and departures of jobs.

e Homogeneity. Homogeneity means that the average job-arrival rate and the
average service rate are independent of the system’s state. Furthermore, the
probability of moving between two servers is independent of the numbers of
jobs both at the source and at the destination servers.

e Exclusivity. A job can be present in only a single server, either waiting in the
queue or receiving service. Thus, a single job cannot make a request of two
servers simultaneously. Similarly, when a job is receiving service, it has exclu-
sive use of the server so that all other jobs wanting to use the server must wait
in its queue.

e Non-blocking. The service provided by a server cannot be controlled by any
other device in the system. When a job appears at the head of a queue, the
server must begin serving it immediately.

o Independence. Jobs are not allowed to interact in any way, except for sharing
space in a queue. Specifically, jobs are not allowed to synchronize.

221

11.3

11.3.1

11.3 Operational analysis

The following notation will be used throughout the remaining discussion of
the analysis of these single-queue models.

e s is the average time required to service a job.

e 1 = 1/sis the average service rate measured in jobs completed per unit time.

e) is the average arrival rate; that is, the total number of jobs that arrive in time
T divided by T.

® p = A/u is the traffic intensity.

e 7 is the average response time. This is the average time a job spends in the
system, including both the time spent waiting in the queue and the time being
serviced.

e 1w is the average time a job spends waiting in the queue.

e ¢ is the average number of jobs in the queue.

e 7 is the number of jobs in the system, including both those in the queue and
those being serviced.

e U is the utilization of the system, which is the average fraction of the total
time that it is busy.

e g is the number of arrivals that occur within the fixed observation interval 7.

e d is the number of departures that occur in the fixed observation interval 7.

Given these basic assumptions and this notation, we now develop several laws
relating the various system parameters and arrivals of jobs. We first look at a
general technique called operational analysis. The following section then focuses
on stochastic analysis.

Operational analysis

Operational analysis views the system being studied as a black box in which jobs
arrive at one end, are processed for some period of time, and then depart at the
other end. This view, which is summarized in Figure 11.3, allows us to analyze a
queueing model while making no assumptions about the distribution of the times
between arrivals of jobs and the times required to service these jobs. Instead, we
directly measure the operational characteristics of the system being studied. We
can then apply some simple laws to determine the system’s overall, or average,
behavior.

The utilization law

Suppose that we observe the system for a fixed period of time, T, while recording
the number of jobs that arrive at the system and how long it takes to service each

222

Queuing analysis

Job-arrival Job-completion
rate = A Computer system rate = u

being tested, or a

subsystem

Figure 11.3 Operational analysis views the system being studied as a black box in which
jobs enter the system from the left, are processed for some period of time, and finally
depart from the system on the right.

job. Then the average arrival rate of jobs is simply the total number of arrivals, a,
divided by 7. This mean arrival rate is denoted XA so that
A= T (11.1)
Since A is the reciprocal of the mean time between jobs, it is measured in units of
jobs arriving per time. A typical value of A may be 240 requests per second, for
instance. The mean job-completion rate, also called the mean service rate, is
denoted w. It is simply the reciprocal of the average time required to service a
job, and so is measured in units of the number of jobs completed per time.
The average utilization of the system is the fraction of the total time that it is
busy servicing jobs. If we observe the system for a time interval 7" and find that it
is busy for b time units during that interval, the average utilization of the device
is

U= (11.2)

We can factor this ratio into two components to give

b b d

U=7=30"7

(11.3)

where d is the number of departures from the system during the interval. That is,
d is the number of jobs that are serviced by this device in the interval T.

Notice that the ratio b/d is the average amount of time the device is busy
servicing each of the d jobs. This is simply the definition of the average service
time per job, s = b/d. Furthermore, d/T is the average rate at which jobs depart
from this device. If the device is job-flow balanced, the number of departures in
the interval 7" must be equal to the number of arrivals in the same interval.
Therefore, the average rate of arrival at the device must equal the average rate
of departure, so A = d/T. On substituting these expressions for s and A into
Equation (11.3), we find that the average utilization of a device, defined as the
average fraction of the total time that the device is busy, is the product of its
average arrival rate and its average service time:

223

11.3.2

11.3 Operational analysis

U = As. (11.4)

This simple result is called the utilization law.

Example. Consider an input/output subsystem that consists of a single disk
and the associated controller hardware and software. If the average time required
to service each request to this disk subsystem is 600 ps, what is the maximum
possible request rate it can tolerate?

The maximum capacity of the disk subsystem occurs when it is at 100%
utilization, or U = 1. Since U = As, we find that the maximum request rate is
Amax = U/s = 1/(600 x 107%) = 1,667 requests per second. &

Traffic intensity. Since the average service rate is related to the average service
time by u = 1/s, Equation (11.4) for the utilization can also be written as

U=—. (11.5)
n

The ratio A/ is called the traffic intensity. Owing to its importance in queueing

systems, it is given its own symbol, p = A/pu.

A value of p > 1 implies that A > . Thus, the arrival rate of jobs is greater
than the rate at which jobs are being serviced. Intuitively, this situation means
that jobs are arriving at the system faster than they can be processed. As a result,
the number of the jobs in the queue will increase without bound, which will lead
to infinite waiting times. Obviously, then, to maintain a stable system, the aver-
age arrival rate must be less than the service rate. That is, on the average, jobs
must be serviced more quickly than they arrive at the system. Thus, in a stable
system, we must have p < 1. Stated more simply, the utilization of any device can
never exceed 100%.

Little’s law

If we observe the black-box system shown in Figure 11.3 for some long time
period T, we will see a jobs arrive. If the total amount of delay experienced by all
of the jobs is D, then the average time each job waits in the queue, w, is

w=—. (11.6)

a

Also, the average arrival rate is A = a/T. On substituting this into Equation
(11.6) and rearranging, we then have

D =wAT. (11.7)

We can also find another expression for the total delay experienced by the jobs
by observing that the jobs are waiting only while they are in the queue.
Therefore, the total amount of delay experienced by all of the jobs is the average

224

Queuing analysis

number of jobs queued multiplied by the total observation time. If there are on
average ¢ jobs waiting in the queue during the observation period 7, we have

D =qT. (11.8)
By equating Equations (11.7) and (11.8), we obtain

qT = wAT. (11.9)
The observation interval, 7', drops out of this equation to give

q = Aw. (11.10)

This expression, which is known as Little’s law, says that the average number of
jobs that will be seen in the system’s queue is the product of the average time
spent waiting in the queue and the average arrival rate.

Little’s law is actually very general and can be applied to any system, or to any
component within the system, for which the job-flow-balance criterion is satis-
fied. To use Little’s law, you can think about drawing a box around any portion
of the system, or around the system as a whole, as shown in Figure 11.4. Little’s
law then can be applied to the portion of the system surrounded by the box if the
number of jobs that enter the box is equal to the number of jobs that depart from
the box. Thus, by drawing the appropriate box, Little’s law can be formulated in
several different ways. Here are some examples.

e The derivation of Little’s law above implicitly drew a box around the queue at
the input to the server. The inputs to the box are the arriving jobs that are
placed in the queue. The outputs from the box are the jobs that leave the
queue to enter the server. Little’s law then says that the average number of

Job flow

Server

Figure 11.4 Little’s law can be applied to any system, or any portion of the system, by
drawing a conceptual box around the portion of the system of interest. The only
requirement is that the number of jobs that enter the box must equal the number of jobs
that depart from the box. Drawing the box around the queue itself leads to the relation

q = Aw, whereas drawing the box around the entire system produces n = Ar. Analyzing the
server in isolation leads to another derivation of the utilization law, U = As.

225

11.4

11.4 Stochastic analysis

jobs in the queue equals the average arrival rate times the average time jobs
spend waiting in the queue; that is, ¢ = Aw.

e If we draw the box around the entire system to include both the queue and the
server, we have the black-box view of the system shown previously in Figure
11.3. We then find that the average number of jobs in the system equals the
average arrival rate times the average response time of the system; that is,
n=Ar.

e Finally, if we draw the box around only the server itself, excluding the queue,
we have that the average number of jobs being serviced equals the average
arrival rate times the average service time. Recall that the assumption of
exclusivity means that the server can service only a single job at a time.
Consequently, the average number of jobs being serviced is the same as the
utilization of the server. Little’s law then provides another way to derive the
utilization law, U = As.

Example. The average response time of a Web server is measured to be 11 ms
when the request rate is 450 requests per second. What is the average number of
requests that are buffered in the system?

From the system-level formulation of Little’s law, we have n = Ar with A = 450
requests per second and r = 11 x 107> s. Thus, there are n = 450 x (11 x 107%)
= 4.95 requests in the system. &

It is important to point out that this value of n is only an average value. The
peak number of requests that must be buffered in the server could be substan-
tially higher. Consequently, this average value cannot be used to determine how
much memory space must be allocated in the server to queue incoming requests.
Determining this value requires more information (or assumptions) about the
characteristics of the incoming requests. This is exactly where the stochastic
analysis presented in the following section becomes useful.

Stochastic analysis

Examining the behavior of a system with operational analysis requires no
assumptions about the distribution of the times between arriving jobs and the
distribution of times required to service jobs at each resource. The Utilization
law and Little’s law provide a high-level view of the flow of jobs through a
system by abstracting away the low-level details of what goes on within the
system. If we assume that the times between the arrivals of new jobs, and the
times required to service these jobs, follow certain probabilistic (stochastic) dis-
tributions, however, we can often provide more detailed answers than is possible
using only operational analysis.

226

11.4.1

Queuing analysis

The fundamental stochastic queueing model consists of one or more servers
processing jobs taken from a single queue, as shown in Figure 11.5. In this
model, the time between successive jobs arriving at the queue for service (the
interarrival time) is a stochastic (random) process described by some appropriate
probability distribution function. Similarly, the time required to service each job
is also modeled as a stochastic process. Jobs enter the system at times determined
by the arrival process. If a server is available, the job can be serviced immediately.
Otherwise, it must wait in the queue until one of the jobs currently being serviced
completes. The time required to service each job also follows some assumed
stochastic distribution.

Given this basic model, the queueing analysis described in the subsequent
sections allows us to determine such important performance parameters as the
average time a job spends in the queue, the average number of jobs in the queue,
the probability of having a given number of jobs in the queue, and the average
response time.

Kendall’s notation

The basic stochastic queueing model can be completely specified using six para-
meters. Kendall’s notation is a shorthand method for specifying these six para-
meters in the form A/S/¢/B/N/D.

e The A term in this notation specifies the arrival process. This stochastic pro-
cess describes when jobs arrive at the queue. What is actually more useful,
though, is knowing the times between arrivals of jobs. Thus, if jobs arrive at
times Ty, Ty,...,7T;, ..., the times =T, —Tytr,=T,—T,...,t;,=

T, —T;_,... are called the interarrival times. It is typically assumed that
SERVERS
N
QUEUE N\
Arriving jobs ()
— N
Departing jobs
N
/

Figure 11.5 A single-queue model of a system consists of one or more servers that process
jobs entering the system. A single queue temporarily stores (buffers) jobs that must wait to
be processed while jobs that arrived earlier are being processed.

227

11.4 Stochastic analysis

these interarrival times follow a specified probabilistic distribution function.

The most common arrival process used in queueing analysis is the Poisson
process. A Poisson process is one in which the interarrival times appear to
follow an exponential distribution. As discussed in Appendix B.7, the expo-
nential distribution has some nice mathematical properties, specifically the
property of memorylessness. This property allows extensive analysis of a sin-
gle-queue system. Fortunately, many real arrival processes in computer sys-
tems also seem to be reasonably well described by a Poisson arrival process.
An exponential distribution is denoted by M in Kendall’s notation to empha-
size the property of memorylessness. Other distributions sometimes used to
describe an arrival process include the Erlang distribution (denoted by E in
Kendall’s notation), the hyperexponential distribution (denoted by H), a
deterministic distribution (denoted by D), and a general random distribution
(denoted by G).

The S term in this notation specifies the distribution of times required to
service a job when it leaves the queue and enters one of the servers. The
notation for the service-time distribution follows the same form as that of
the interarrival time distributions, with a Poisson service process again being
the most commonly used distribution.

The number of servers in the system is specified by the value ¢. All of the
subsequent analysis of this queueing system assumes that all ¢ servers are
identical so that each has the same distribution of service times. A system
in which all the servers are not identical must be broken up into separate
queueing systems before it can be analyzed using these techniques.

The total number of jobs that can be in the system, including both those in the
queue and those being served, is specified by the parameter B. Most real
systems have finite maximum queue sizes due to their having limited amounts
of buffer memory. However, a single-queue system is easier to analyze if the
queue size is assumed to be infinite. Consequently, if the buffers that comprise
the queue in a system are sufficiently large, it is common to assume that the
total system capacity is approximately infinite.

The parameter N specifies the total number of jobs that could ever enter the
system. Just like with the system-capacity parameter, B, the analysis is greatly
simplified if this parameter is assumed to be infinite.

The final parameter, D, specifies the order in which jobs are removed from the
queue and passed to a server. This is referred to as the service discipline. The
most common service order is first come, first served (FCFS). Many other
service orders are possible, however, including last come, first served (LCFS),
and a variety of orders that allow preemption of a job being serviced, such as
round robin (RR).

228

11.4.2

Queuing analysis

For analyzing most single-queue systems, both the queue size and the popula-
tion are assumed to be infinite, and the service discipline is assumed to be FCFS,
unless they are explicitly specified to be some other value. Thus, it is common to
not even write the last three parameters when describing a queueing system in
Kendall’s notation. The notation M/M/c, for instance, specifies a single-queue
model with exponential interarrival times of jobs, exponential service times, and
¢ servers. Because it can be thoroughly analyzed mathematically, this type of
queue is probably the most common type used in performance analysis. It also
forms the basis for more complex analyses. Consequently, we now examine this
single-queue system beginning with the single-server M/M/1 case.

The single-queue, single-server (M/M/1) system

We begin our analysis of a single-queue system by assuming that all jobs arrive at
the queue one at a time. This assumption specifically says that groups of jobs
cannot arrive as a single batch all at the same time. With this assumption, we can
describe the state of the entire system using a single integer n, which is the total
number of jobs in the system. Note that n includes both jobs in the queue and
jobs being serviced.

The arrival of a new job into the system is called a birth. This arrival causes the
system to transition from state n to state n + 1. Similarly, when a server com-
pletes a job, the system transitions from state n to state n — 1. The completion of
a job is known as a death. This type of queueing process, which is called a birth—
death process, can be represented by the state-transition diagram shown in
Figure 11.6.

One of the basic assumptions in this analysis is that the next state depends only
on the current state. That is, the next state is independent of the sequence of
states through which the system passed to arrive at the current state. The next
state also is independent of how long the system has been in the current state.
This assumption is valid only if the interarrival and service times follow an

! A A
t:
I “ 7

“ I “

Figure 11.6 The state of a system described by a birth-death process is the number of jobs
in the system, n. A birth occurs when a job enters the system and increases n by 1. The
departure of a job from the system is called a death, and causes n to decrease by 1.

229

11.4 Stochastic analysis

exponential distribution and so are memoryless. Finally, only a single birth or
death can occur at any instant of time. Thus, the system can transition only
between adjacent states. A discrete-state process that follows these assumptions
is called a Markov chain.

In the steady state, the average rate at which the system enters state # must be
equal to the average rate at which the system moves out of state n. Another way
to think of this requirement for steady-state behavior is that the average flow
across the vertical line drawn between states # — 1 and # in Figure 11.7 must be
the same in both directions. That is, the rate at which the system’s state flows to
the right across the line must be equal to the rate at which it flows back to the left
of the line. If this were not true, then the number of jobs in the system would
grow without bound. This steady-state behavior is often referred to as the con-
servation of flow.

We can now write balance equations, which are also called flow equations,
directly from this state-transition diagram to describe this steady state-behavior.
The flow across the line to the right is the probability of being in state n — 1 times
the rate at which the system transitions from state n — 1 to state n. As shown, this
rate of flow to the right is simply the average arrival rate, A. Thus, the flow from
state n — 1 to state n is AP,_;, where P,_; is the probability of being in state
n — 1. Similarly, the flow across the line to the left is the probability of being in
state n times the average service rate, u, which gives uP,. Since in the steady state
these two flows must be equal, we have

AP, | = uP,. (11.11)

By rearranging this balance equation we obtain the recurrence equation
A
P, = P pP,_1. (11.12)

Recall that p = A/ is the traffic intensity. From this recurrence equation, we
have P, = pPy, P, = pP; = p° Py, Py = pP> = p°P,, In general, we obtain

Figure 11.7 When a birth—death process is in a steady state, the average number of births
will equal the average number of deaths. Thus, the average flow from state n — 1 to state n
across the vertical line must equal the average flow from state n to state n — 1.

\

u

230

Queuing analysis

the following expression for P,, the probability of having exactly n jobs in the
system:

P, = p'P,. (11.13)
0

We now wish to find a closed-form expression for P,. We begin by noticing
that the sum of all of these probabilities must be 1. That is,

o0 o0

Y oP,=) p'P=1 (11.14)
n=0 n=0

Expanding this equation, we have

P+ p' Py + PP+ ... =1 (11.15)

which can be solved for P, to give

1 > 1
Py = =Y —. (11.16)
0 p0+pl+p2++poo nzz(;p}’l

With p < 1, it can be shown that this infinite sum converges to the value 1 — p.
Thus, on substituting this value for P, into Equation (11.13), we find that the
probability of having n jobs in the system is

P,=(1—p)p'n=012,.... (11.17)

Given this expression for P,, we can now derive many other performance
parameters for M/M/1 queueing systems. For example, the average number of
jobs in the system is found by computing the expected value of n. From the
definition of the expected value, we have

E[n]:ZnPn:Zn(l—p)p":%. (11.18)
n=0 n=0

The corresponding variance of the number of jobs in the system is

Var[n] = E[(n — E[n])’] = E[n’] — (E[n])*

2
00 o0 (11.19)
=> (1 —pp" - (Zn(l - p)ﬁ”) =0 _pp)z-

n=0 n=0

From Little’s law, we know that the average number of jobs in the system is the
product of the average response time of the system and the average arrival rate.
This gives the average response time

Em (e L\ 1 1
F_X_(l—p)Q)_M(l—p)_u—k' (11:20)

231

11.4 Stochastic analysis

Since there is at most a single job being serviced at any time, the average
number of jobs waiting in the queue can be found by calculating

00 2
q:Z(n—l)Pn:E[n]—p:l‘i—p. (11.21)
n=1
The corresponding average time a job spends waiting in the queue can be found
by recognizing that the average time a job spends in the system is simply the
average response time, r. Then the average time a job spends waiting in the queue
must be this total time in the system minus the average time the job is being

serviced, which is 1/u. Therefore, the average time spent waiting in the queue is

1 p
W=r——=———. 11.22
w w(l—p) ()
Finally, the probability of finding k& or more jobs in the system can be found by
summing the probabilities Py, Py, Pry2, This gives
Pr(K=k)=) P,=) (1-p)p'=/" (11.23)
n=k n=k

where K is the total number of jobs in the system.

Using these results, we can now make some general comments about the
performance of any single-queue system. First, notice that the server is busy
whenever one or more jobs are in the system. So the average utilization of the
server, or, equivalently, its average load, is the probability of finding one or more
jobs in the system. This is simply one minus the probability of finding no jobs in
the system, giving

U=1-Py=1—(1-p)=p. (11.24)

Notice that this result is the same as that which we derived in Equation (11.4) for
the utilization law.

Figure 11.8 shows how the average number of jobs waiting in the queue
(Equation (11.21)) changes as a function of the server utilization. The queue
length increases slowly at first as the server utilization is increased. When the
utilization reaches about 80% (p = 0.8), however, the queue length begins to
increase sharply. As the server utilization continues to increase, the number of
jobs waiting in the queue grows without bound. As can be seen from Equation
(11.20), the response time will also become unbounded as the server utilization
approaches 100%. To provide a good average response time, then, it is necessary
to ensure that the server does not become loaded beyond about 70% of its
maximum capacity.

Example. The time between requests to a Web server is measured and found to
approximately follow an exponential distribution with a mean time between

232

Queuing analysis

50F

40

20

Number of jobs in the queue

0.0 0.2 0.4 0.6 0.8 1.0
Server utilization, p

Figure 11.8 The average number of jobs waiting in the queue of an M/M/1 system
increases nonlinearly as the server utilization, p, increases.

requests of 8 ms. The time required by the server to process each request was also
found to roughly follow an exponential distribution with an average service time
of approximately 5 ms.

(a) What is the average response time observed by the users making requests
on this server?

The average request rate is one request per 8 ms, giving A = 0.125 requests per
millisecond. Each request requires 5 ms of processing time, so the average service
rate is u = 0.2 jobs per millisecond. The server utilization is then found to be
p =0.125/0.20 = 0.625. Stated another way, the server is operating at an aver-
age of 62.5% of its maximum capacity. The average response time then is R =
1/[u(1 — p)] = 1/[0.20(1 — 0.625)] = 13.33 ms.

(b) How much faster must the server process requests to halve this average
response time?

Assuming that the request rate remains constant, we wish to reduce the aver-
age response time to 13.33/2 = 6.67 ms. We know that

1 1

R= = (11.25)

By rearranging this expression, we find that we need an average service rate of
w=1/R+Xx=1/6.67+0.125=0.275 jobs per millisecond. This is [(0.275—
0.2)/0.2] x 100% = 37.5% faster than the existing server. Thus, by increasing

233

11.4.3

11.4 Stochastic analysis

the performance of the server by 37.5%, we can cut the average response time
in half.

(c) Approximately how many queue entries are necessary to buffer requests so
that, on average, no more than one request per billion is lost?

We need to choose a value k such that the probability of finding k or more jobs
in the system is no more than 10™. Using Equation (11.23), we have o <1077,
Solving for k£ with p = 0.625, we find

In10~°

Thus, we need sufficient buffer space to store 45 or more requests waiting to be
serviced. <o

It is important to point out that the last result is only an approximation. We
actually should use a slightly refined analysis that takes into account the effect of
a finite queue size. However, the number of queue entries needed is substantially
larger than the average queue size. Furthermore, the service times and the times
between requests are only approximated by an exponential distribution, making
the entire analysis only approximate. Even with these approximations, though,
this estimate should be adequate for most purposes.

The single-queue, multiple-server (M/M/c) system

The generalization of the single-server M/M/1 model is a system consisting of ¢
identical servers removing jobs from a single queue. This type of system would
correspond to a symmetric multiprocessor system with ¢ processors in which the
processors obtain their work from a common task queue, for example. Just like
in the single-server case, we assume that the job-arrival rate is A and that there
are n jobs in total in the system. This value of n again includes both jobs being
processed by one of the servers and jobs waiting in the queue. We further assume
that the service rate for each server is j.

If all ¢ servers are busy, the mean service rate for the overall system will be cpt.
That is, the system’s service rate will be ¢ times faster than that of a single server
since all of the servers are identical. Note that this analysis implicitly assumes
that there is no cost in determining which server will process the next job waiting
at the head of the queue. If there are fewer than c¢ jobs in the system, though,
some of the servers will be idle. The system’s average service rate then will be nu
where n < ¢ is the number of jobs in the system. The state-transition diagram
corresponding to this situation is shown in Figure 11.9.

By writing the same type of balance equations as those we used in the previous
section for the M/M/1 queue, it is straightforward to show that the probability of
finding » jobs in the system is

234

Queuing analysis

EERCLTE

(c—Tu

Figure 11.9 The state-transition diagram for an M/M/c queueing model.

n
mPO, n=12 .. ¢
P, = (11.27)

(cp)" Py, n>c.
cld™

The total traffic intensity in this multiple-server environment is o = A/(cu) since
each of the ¢ servers can service requests at the rate . As before, p can also be
interpreted as the utilization of each server.

Also as before, we can find P, by observing that the sum of all of the prob-
abilities must be 1. That is,

00 c—1 n 00 n
C,O) cp
> P, = (Po+) f)) Py =1. (11.28)

n=0 n=0 ! n=c "
Solving for P, and simplifying the infinite sum, we obtain

Py = 1 . (11.29)

c—1 n c
(cp) (cp)
HXZ(; n! (1 —p)

A newly arriving job will have to wait in the queue when all of the servers are
busy. The probability of all servers being busy is simply the probability that there
are ¢ or more jobs in the system, which we denote Pr(K > ¢). This leads us to the
following expression, which is known as Erlang’s C formula:

k=Pr(K>c)= ZP _Po(cé) Z " C_cv((lcp) p)P (11.30)

The average total number of jobs in the system can again be found by com-
puting the expected value of n, giving

E[n] = Zn ,1—("0)+p)0+cp_cp+l—p (11.31)

Similarly, the average number of jobs waiting in the queue is

235

11.5 Summary

qg= Z (n—c)P, =P, (c,(:) Z (n—c)p" = plep) P pE_ (11.32)

240 =
et o, Al—pP ' T=p

Little’s law again gives us the response time:
Eln] 1 K
r=——=—4— (11.33)
Looopn el =p)

It also can be used to find the average time jobs wait in the queue:

qg [px 1y K YA K
T (1 —p) (X) - <1 —p> (J) (X> T ew(l=p) (139

Example. How does the response time in the previous M/M/1 example change
if the number of servers in the system is increased to four?
This new system can be modeled as an M/M/4 queueing system. With A =

0.125 requests per millisecond and p = 0.2 jobs per millisecond, we calculate

A 0125
Cep 4x02

P —0.1563. (11.35)

The probability of the system being idle is then found to be

1
Py = 0 T 2 3 q
(4 x 0.1563)" (4 x 0.1563)" (4 x 0.1563)" (4 x 0.1563)" (4 x 0.1563)
0! N 1! N 2! N 3! T 41(1 = 0.1563)
=0.5352.
(11.36)
Erlang’s C formula is used to find
(4 x 0.1563)*
=——————"(0.5352) = 0.0040326. 11.37
= 1= 0.1563)) (11.37)
which leads to an average response time of
1 .004032
r=—+ 00040526 = 5.01 ms. (11.38)

T 40.2)(1 —0.1563)

We can conclude, then, that increasing the number of servers by a factor of four
will reduce the average response time by approximately 62% (from 13.33 to 5.01

ms). &

11.5 Summary

The type of queueing analysis presented in this chapter is quite attractive to
many computer-systems performance analysts. The analysis is built on a solid

236

Queuing analysis

mathematical foundation, which gives it a sense of robustness and authority that
is often felt to be lacking in a simulation or measurement-based analysis, for
instance. The noise and uncertainty inherent in measurements of real systems,
and the extensive assumptions necessary to make a simulation model tractable,
can make conclusions based on these techniques seem somewhat tentative and
‘soft.” Additionally, if you repeat a measurement experiment several times, you
will most likely obtain different numerical values each time. This inconsistency
can lead one to question the usefulness of the results. The results of a queueing
analysis, though, are perfectly repeatable.

It is important to bear in mind, however, that the conclusions drawn from a
queueing analysis must eventually be applied to a real system if they are to be of
any use. The results of this analysis will be accurate only insofar as the assump-
tions made in the analysis match the system’s characteristics. This means that, if
the characteristics of the actual system only approximate some of the assump-
tions made in the queueing analysis, then the conclusions drawn from the ana-
lysis will (at best) only approximate what will happen in the actual system.

For example, the stochastic queueing analysis presented above assumes that
both job arrivals and service times are Poisson processes. That is, both the
interarrival times and the service times must be exponentially distributed. It is
likely, however, that these times will be only approximated by an exponential
distribution for an actual system. Furthermore, the analysis assumes that all job
arrivals and service times are independent. However, it would not be unusual for
jobs arriving at a system to be dependent on some dynamically varying system
characteristic, such as the load on the servers. Users trying to access a Web
server, for instance, will likely give up if the response time begins to increase
beyond a certain threshold. This behavior will then cause the average queue
length to decrease, which will subsequently cause an improvement in the average
response time. This type of feedback is not considered in the queueing analysis
presented here, though. Another assumption is that jobs always arrive one at a
time. That is, they cannot arrive in batches. However, it is not at all unlikely that,
in a real system, jobs will arrive in batches.

All of this is not to say that queueing analysis is a worthless tool, however. In
fact, queueing analysis does provide a very flexible means for quickly obtaining
useful insights into a system’s overall behavior. It is important to be careful not
to exceed its inherent limitations, though.

This chapter has focused on analyzing single-queue systems with infinite buf-
fers (open systems), for which the interarrival and service times are assumed to be
exponentially distributed and the service discipline was first come, first served.
Beyond these fundamental results, there is an extensive body of literature pre-
senting techniques for solving cases of interconnected networks of queues with a
wide variety of arrival and service processes and service disciplines. These include

237 11.7 Exercises

such techniques as mean-value analysis, decomposition, convolution, and gen-
erating functions for analyzing resource contention in queueing networks. Petri
nets are another analytical tool for taking into account synchronization between
jobs. The reader interested in these more advanced techniques is referred to the
following texts.

11.6 For further reading

e The classic texts in queueing analysis are
L. Kleinrock, Queueing Systems, Volume 1: Theory, John Wiley, New York,
1975, and
L. Kleinrock, Queueing Systems, Volume 2: Computer Applications, John
Wiley, New York, 1976.
e Another good introductory text is
E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sivcik, Quantitative
System Performance — Computer System Analysis Using Queueing Network
Models, Prentice-Hall, Englewood Cliffs, NJ, 1984.
e The following texts provide more in-depth mathematical developments of
some advanced topics in queueing analysis:
S. M. Ross, Stochastic Processes, John Wiley, New York, 1983,
E. Gelenbe and 1. Mitrani, Analysis and Synthesis of Computer Systems,
Academic Press, New York, 1980,
K. Kant, Introduction to Computer System Performance Evaluation, McGraw-
Hill, New York, 1992,
S. S. Lavenberg (ed.), Computer Performance Modeling Handbook, Academic
Press, New York, 1983, and
Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi,
Queuing Networks and Markov Chains: Modeling and Performance
Evaluation with Computer Science Applications, John Wiley, New York,
1998.

11.7 Exercises

1. If the average time required to service each request to a network interface is
250 ps, what is the maximum possible request rate it can handle?

2. What is the utilization of the network interface in the previous problem if the
request rate is one-half of the maximum rate calculated in the previous pro-
blem?

238

Queuing analysis

. If the average response time of a time-shared system is 60 ms, what is the

maximum average arrival rate that can be tolerated to ensure that no more
than 100 jobs on average are in the system at any time?

. Determine whether it is better on average to maintain a separate queue for

each of several identical servers, or whether it is better to maintain a single
queue that is shared among all of the servers. Hint: if the single-queue,
multiple-server (M/M/c) configuration has an arrival rate of A, the multiple-
separate-queue configuration can be modeled as ¢ M/M/1 queues that each
have an arrival rate of A/c.

. Compare a computer system with a single powerful processor with a multi-

processor system with ¢ processors, each of which can service jobs at 1/c¢ the
rate of the single-processor system.

. Determine the average response time of a single-server system in which the

mean time between arrivals of jobs is 230 ps and the mean time required to
service a job is 52 pus.

. How many additional identical servers would have to be added to the system

in the previous problem to reduce its average response time by a factor of ten?

. If five additional servers are added to the system in the previous problem, how

many additional job requests can be handled while still maintaining the same
average response time as that of the single-server configuration?

239

Appendix A Glossary

“What is another word for thesaurus?”’

Unknown

Accuracy. The absolute difference between a measured value and the corre-
sponding reference value.

Analysis of variance (ANOVA). A general statistical technique used to separate
the total variation observed in a set of measurements into the variation
due to measurement error within each alternative and the variation
across alternatives.

Basic block. A sequence of instructions in a program that has no branches into or
out of the sequence. Thus, it is ensured that the sequence will execute as
an indivisible unit.

Benchmark program. Any program that is used to measure the performance of a
computer system.

Coefficient of determination. A value between 0 and 1 that indicates the fraction
of the total variation explained by a linear-regression model. It is the
square of the correlation coefficient.

Coefficient of variation (COV). The ratio of the sample’s standard deviation to
the corresponding mean of the sample. It provides a dimensionless value
that compares the relative size of the variation in a set of measurements
with the mean value of those measurements.

Confidence level. The probability that a confidence interval actually contains the
real mean.

Contrast. A linear combination of the effects, «;, of the alternatives:
c= Z]’-‘Zl wja;. The weights in this linear combination must be chosen
such that Zj;l w; = 0. A contrast is typically used to separate the effects
of two alternatives.

Correlation coefficient. A value between —1 and + 1 that indicates the nature of
the linear relationship between the input and output variables in a linear-

240

Appendix A. Glossary

regression model. It is the square root of the coefficient of determination,
although the sign must be determined through a separate calculation.

Density function. The derivative of the distribution function.

Distribution function. A function that provides the probability that a random
variable will be less than or equal to a given value x.

Emulator. A program that makes a computer system appear to be a different type
of system.

Factors. The input variables of an experiment that can be controlled or changed
by the experimenter.

Interaction. When the effect of one factor depends on the level of another
factor.

Levels. The specific values to which the factors of an experiment may be set.

Mean square. The sum of squares of a component term (i.e. the total variation of
the component term) divided by the number of degrees of freedom of
that component term.

Mean-square error. The sum of squares of the error term divided by the corre-
sponding number of degrees of freedom.

Median. The middle value in a set of measurements. If there is an even number of
values, the median is the mean of the middle two values.

Mode. The value that occurs most frequently.

Normalize. To convert values to a common basis for comparison.

Operational analysis. Uses direct measurements of the characteristics of a system
being studied.

Outlier. A measured value that is significantly different than the other values in a
set of measurements.

Perturbation. The changes in a system’s behavior caused by measuring some
aspect of its performance.

Precision. The amount of scatter in a set of measurements. Corresponds to the
repeatability of the measurements.

Profile. An aggregate characterization of the overall behavior of an application
program or of an entire system.

Quantization error. A random error introduced into a measurement due to the
finite resolution of the measuring tool.

Random errors. Errors in measurements that are completely unpredictable, non-
deterministic, and perhaps not controllable. They are unbiased in that a
random error has an equal probability of either increasing or decreasing
a measurement.

Range. The difference between the largest and smallest values in a set of mea-
surements.

Regression. A mathematical model derived from measured values.

241

Appendix A. Glossary

Replication. A complete repetition of an experiment performed with exactly the
same experimental configuration as that in a previous run of the experi-
ment.

Resolution. The smallest incremental change that can be detected and displayed
by a measuring tool.

Response time. The time measured from when a request is submitted until the
system has returned a response.

Response variable. The output value of a system that is measured as the input
values are changed. A common response variable is the total execution
time.

Service discipline. The order in which jobs are removed from the queue and
passed to a server.

Significance level. The probability, typically denoted «, that a confidence interval
does not contain the actual mean.

Simulator. A program that models the internal operation of a system in order to
allow its performance to be studied.

Standard deviation. The square root of the variance.

Stochastic. Involving a random or unpredictable element.

Systematic error. Errors in measurements that are the result of some experimen-
tal “‘mistake,” such as a change in the experimental environment or an
incorrect procedure, that introduces a constant or slowly changing bias
into the measurements.

Throughput. The rate at which a system can process a given computation.
Typically measured in instructions executed per second, jobs completed
per second, etc.

Trace. A time-ordered sequence of events.

Utilization. A number between 0 and 1 showing the average fraction of the total
time that a system is busy.

Validation. Determining how close the results of a simulation are to what would
be produced by an actual system.

Variance. A common index of dispersion for a set of measurements.

Verification. Determining whether a simulation model is implemented correctly.

Appendix B Some useful probability
distributions

B.1

242

‘Impossible things usually don’t happen.’

Sam Treiman, Princeton University physicist

Several different distributions are commonly encountered in computer-systems
performance analysis. These distributions may be used for generating a sequence
of random values to drive a simulator, for instance. It also is not unusual to try
to determine whether a set of measured values appears to come from one of these
standard distributions. This comparison of measured values with a given distri-
bution is commonly performed using a chi-squared test, as described in Section
10.4.4.

In addition to providing the typical information about each distribution,
including the density function, f(x), the mean, u, and the variance, o’, some
intuition about the distribution is also given. When it is appropriate, this intui-
tion is based around an example random process in which we have a barrel
containing an effectively infinite number of links of a chain. Some fraction p
of these links are good, while 1 — p of them are defective. A brief description of
how to generate a sequence of random values that appears to follow the dis-
tribution is also given.

The Bernoulli distribution

Intuition. The possible outcomes of a Bernoulli distribution are 0 and 1. In our
example process, a Bernoulli distribution corresponds to the probability of a
randomly selected link from the barrel being good. Or, equivalently, it is the
number of good links in a sample size of 1.

Density function.

f=pA-p', x=01 (B.1)

Mean. u = p.

243

B.2

B.3 The geometric distribution

Variance. o = p(1 — p).
Random-number generation. Generate u = unif(0,1). If u<p return 1.
Otherwise, return 0.

The binomial distribution

B.3

Intuition. The binomial distribution has two parameters, n and p. The probability
of success in a single trial is p, with 0 < p < 1, and n =1, 2, 3, ... is the number
of trials. The outcome x corresponds to the number of successes out of # trials. In
our example process, the number of successes is the number of good links out of
n selected from the barrel.

Density function.

f(x) = (Z)px(l oY x=0,1,2,....n; O<p<l. (B.2)

Mean. = np.

Variance. o = np(1 — p).

Random-number generation. As can be seen in the density function f(x), the
binomial distribution is the sum of #n independent Bernoulli distributions. Thus,
to generate a binomial(n, p) sample, simply count the number of wunif(0, 1)
samples out of n that are less than or equal to p.

The geometric distribution

Intuition. If the probability of success in a single trial is p, the outcome x of a
geometric distribution with parameter p is the number of trials that are success-
ful, up to and including the first failure. In our example process, this corresponds
to the number of links removed from the barrel that are good, up to and includ-
ing the first bad link. Since an infinite number of links could be good,
x=1,2,3,.... In the following density function, note that p*~' is the probability
of drawing x good links in a row, while 1 — p is the probability that link x is bad.
Density function.

f=p""0=p, x=123 ... (B.3)

Mean. u = 1/(1 — p).

Variance. o = p/(1 — p)°.

Random-number generation. The simplest method of generating geometric
samples uses the inverse-transform method. First, generate u = unif (0, 1). Then
return the value x = [Inu/In(1 — p)]. Of course, the value In(1 — p) needs to be

244

B.4

Appendix B Some useful probability distributions

calculated only once and stored in a temporary variable for use in subsequent
computations.

The discrete uniform distribution

B.5

Intuition. If n good links are removed from the barrel and exactly one of them is
bad, the outcome x of the discrete uniform distribution is the location of the bad
link. All outcomes (i.e. locations) are equally likely, so the probability of any
given location being bad is 1/n.

Density function. Given a range of possible outcomes [a, 5],

f(x):m, x=aa+1,a+2,...,b. (B.4)

Mean. u = (b + a)/2.

Variance. o> = (b —a+ 1)*/12 — 1.

Random-number generation. Generate u = unif (0, 1). Then, using the inverse-
transformation method, return x = a+ [(b — a+ 1)u].

The continuous uniform distribution

B.6

Intuition. This is the continuous equivalent of the discrete uniform distribution.
It is often used when no information about the distribution is known, other than
its bounds and the fact that it is continuous.

Density function.

1

) =7,

Mean. u = (b + a)/2.

Variance. o = (b — a)*/12.

Random-number generation. We again can use the inverse-transformation
method to generate a sample from this distribution. First, generate
u = unif (0, 1). Then return x = a + (b — a)u.

a<x<bh. (B.5)

The Poisson distribution

Intuition. The Poisson distribution is the limiting form of the binomial distribu-
tion as n becomes very large with np fixed. It is often used to model the number
of events that occur within a given interval. It is closely related to the exponential

245

B.7

B.7 The exponential distribution

distribution in that, if the time between events follows an exponential distribu-
tion, the number of events that occur within a given interval follows a Poisson
distribution.
Density function. The probability of exactly x events occurring is
Axe—)u

x!

f(x) = , x=0,1,2,... (B.6)

where X is the mean number of events that occur within the specified interval.

Mean. = A.

Variance. o> = A.

Random-number generation. One sample from a Poisson distribution is the
number of samples from an exponential distribution with mean g =1 that
must be added together to exceed the value A. This gives the following algorithm:

sum = 0, i = -1
while (sum <= lambda)
y = unif(0,1)

z = - 1n (y)
sum = sum + 2z
i=1i+1
endwhile
return(i)

The exponential distribution

Intuition. The exponential distribution is the continuous approximation of the
geometric distribution. The continuous analog using our example process occurs
as the links in the chain blend into a continuous cable. The outcome x of the
exponential distribution then is the distance to the first defect in the cable. The
exponential distribution is often used to model the time between successive
events, or the time required to service an event.

The Poisson and exponential distributions are related in that, if the times (or
distances, or some other appropriate continuous value) between events are inde-
pendent with an exponential distribution with mean u = 8, then the number of
events within time 7 is Poisson distributed with u = A = T/8.

The exponential distribution has the interesting property of being memoryless.
That is, knowing the time that the last event occurred is in no way helpful in
predicting when the next event may occur. For example, assume that the times
between events in a system follow an exponential distribution with mean u = g.
If it has been B time units since the last event occurred, we may intuitively think

246

B.8

Appendix B Some useful probability distributions

that the next event is likely to occur ‘soon.” However, even though we know that
the last event occurred § time units in the past, the mean time to wait for the next
event is still 8. In fact, no matter how long we have been waiting, the mean time
that we must still wait for the next event is always 8! (The proof of this can be
found in almost any textbook on probability and statistics.)

This property of memorylessness leads to some useful simplifications in the
study of queueing systems, as discussed in Section 11.4. Thus, it is very common
to assume that the interarrival times of events in a computer system follow an
exponential distribution.

Density function.

f(x) = ;ex/f‘, x>0 (B.7)

Mean. u = B.

Variance. o” = ﬁz.

Random-number generation. Samples from the exponential distribution can be
generated using the inverse-transform method. The value to be returned is simply
x = —B In u, where u = unif (0, 1). See Section 10.3.2 for more details.

The Gaussian (normal) distribution

Intuition. The Gaussian distribution is the classical bell-shaped curve. It is sym-
metric around the mean, u, and its width is determined by the variance, o’. The
Gaussian distribution is also called the normal distribution. The standard normal
or unit normal distribution is simply a Gaussian distribution with mean u =0
and variance o = 1.

Density function.

1 210 2
f(x) = ——=e W) —00 < x < o0. (B.8)
’ o 21

Mean. .

Variance. o° > 0.

Random-number generation.

Method 1. A generalization of the inverse-transformation method to two
dimensions, known as the Box—Muller method, allows the generation of two
samples at a time from a Gaussian distribution. The procedure begins with the
generation of two samples u; = unif (0, 1) and u, = unif (0, 1). Then the two
values to return are

X1 =+ ocosmuy)y/—2 In uy (B.9)

247

B.9

B.10

B.10 The Pareto distribution

Xy =+ osin(2ruy)y/—2 In u, (B.10)

Method 2. The Box—Muller method effectively picks two samples from the unit
square. If we instead pick a random point from inside the unit circle using the
accept-reject method, we can eliminate the need for the trigonometric functions.
This approach essentially converts the problem to be solved into an equivalent
representation using polar coordinates. The procedure in this case is to first
generate two random samples u; = unif (0, 1) and u, = unif (0, 1), and then com-
pute v; = 2u; — 1 and v, = 2u, — 1. This generates a point (v, v,) within the
square bounded by —1 <x <1 and —1 <y <1. If r=v7 + 43 > 1, then the
point is outside the unit circle, so reject u; and u, and begin the process all
over again. Otherwise, return the values x; = u +ov;t and x, = u + ovyt,
where t=./—2 In r/r. The values x; and x, are two independent samples
from the Gaussian distribution with mean p and variance o°.

The Erlang distribution

Intuition. The Erlang distribution can be thought of as a generalization of the
exponential distribution. For this distribution two parameters have to be speci-
fied, namely @, which is called the scale parameter, and 2, which is the shape
parameter. These parameters are constrained such that ¢ > 0 and and m is a
positive integer.

Density function.

m—1 _—x/a

f(X)=x7m, 0<x<o0 (B.11)
(m—1)la
Mean. am.

Variance. ’m.

Random-number generation. Samples from an Erlang (a, m) distribution are
easily generated using the convolution technique. Begin by generating m values,
uy, Uy, . . ., U, that are unif (0, 1). Then return the value

X =—aln(u; xXuy X -+ X u,). (B.12)

The Pareto distribution

Intuition. The Pareto distribution is a generalized power function. It has a single
shape parameter, a. Given a set of observations {x, x,, ...,X,}, it can be shown

248 Appendix B Some useful probability distributions

that, if the observations follow a power relationship, the value of this shape
parameter that best fits these data is

n
i=1 i
Density function.
f(x) = ax“*. (B.14)

Mean. a/(a — 1), for a > 1

Variance. a/[(a — 1)*(a — 2)], for a > 2.

Random-number generation. The inverse-transform method can be used to
generate a sample from a Pareto distribution by computing x = 1/u'/?, where
u is a unif (0, 1) sample.

B.11 For further reading
e If your recollection of basic probability is a little rusty, the following text
provides a nice review:
David Applebaum, Probability and Information: An Integrated Approach,
Cambridge University Press, Cambridge, 1996.

C.1

249

Appendix C Selected statistical tables

‘There are three types of mathematicians. Those who can count, and those who cannot.’
Robert Arthur

Critical values of Student’s t distribution

The derivation of the ¢ distribution was first published by W. S. Gosset in 1908.
Gosset was employed by an Irish brewery that did not allow its employees to
publish the results of their research. Gosset instead published his work using the
pseudonym ‘Student.” Consequently, the ¢ distribution is often referred to as
Student’s t distribution.

The ¢ distribution is commonly used for calculating confidence intervals. It is
bell-shaped and symmetric around a mean of zero, similar to the Gaussian
(normal) distribution. The ¢ distribution has a higher variance than a
Gaussian distribution, making it appear flatter and more spread out. As the
number of degrees of freedom in the ¢ distribution becomes very large, it is
well approximated by a Gaussian distribution with a mean of 0 and a variance
of 1, that is, the so-called ‘standard normal distribution.” Consequently, the last
line in the following table shows the critical values for a standard normal dis-
tribution.

The values shown in the following table are the critical values of the ¢ dis-
tribution. Each 7,, value in the table is the value on the x axis for which there is
an area of a to the left of #,,,, as shown in Figure C.1, where 7 is the number of
degrees of freedom. For example, say you want to find the 7 value necessary to
compute a 95% confidence interval with eight degrees of freedom. The corre-
sponding significance level is @ = 1 — 0.95 = 0.05. Since the distribution is sym-
metric around zero, but the table shows the area to the left of #,.,, we must use
I —a/2=1-0.05/2=0.975 as the area « for finding the critical ¢ value. The
necessary value from the table is then 7975, = 2.306.

250

Appendix C. Selected statistical tables

Critical values of the t distribution

a

n 0.7000 0.8000 0.9000 0.9500 0.9750 0.9950 0.9995
1 0.727 1.376 3.078 6.314 12.706 63.657 636.619
2 0.617 1.061 1.886 2.920 4.303 9.925 31.599
3 0.584 0.979 1.638 2.354 3.183 5.841 12.924
4 0.569 0.941 1.533 2.132 2.777 4.604 8.610
5 0.559 0.920 1.476 2.015 2.571 4.032 6.869
6 0.553 0.906 1.440 1.943 2.447 3.708 5.959
7 0.549 0.896 1.415 1.895 2.365 3.500 5.408

8 0.546 0.889 1.397 1.860 2.306 3.356 5.041

9 0.544 0.883 1.383 1.833 2.262 3.250 4.781
10 0.542 0.879 1.372 1.813 2.228 3.169 4.587
11 0.540 0.876 1.363 1.796 2.201 3.106 4.437
12 0.539 0.873 1.356 1.782 2.179 3.055 4318
13 0.538 0.870 1.350 1.771 2.161 3.012 4.221
14 0.537 0.868 1.345 1.761 2.145 2977 4.141
15 0.536 0.866 1.341 1.753 2.132 2.947 4.073
16 0.535 0.865 1.337 1.746 2.120 2.921 4.015
17 0.534 0.863 1.333 1.740 2.110 2.898 3.965
18 0.534 0.862 1.330 1.734 2.101 2.879 3.922
19 0.533 0.861 1.328 1.729 2.093 2.861 3.884
20 0.533 0.860 1.325 1.725 2.086 2.845 3.850
21 0.533 0.859 1.323 1.721 2.080 2.832 3.819
22 0.532 0.858 1.321 1.717 2.074 2.819 3.792
23 0.532 0.858 1.320 1.714 2.069 2.807 3.768
24 0.531 0.857 1.318 1.711 2.064 2.797 3.746
25 0.531 0.856 1.316 1.708 2.060 2.788 3.725
26 0.531 0.856 1.315 1.706 2.056 2.779 3.707
27 0.531 0.855 1.314 1.703 2.052 2.771 3.690
28 0.530 0.855 1.313 1.701 2.048 2.763 3.674
29 0.530 0.854 1.311 1.699 2.045 2.757 3.660
30 0.530 0.854 1.310 1.697 2.042 2.750 3.646
40 0.529 0.851 1.303 1.684 2.021 2.705 3.551
50 0.528 0.849 1.299 1.676 2.009 2.678 3.496
60 0.527 0.848 1.296 1.671 2.000 2.660 3.460
70 0.527 0.847 1.294 1.667 1.994 2.648 3.435
80 0.527 0.846 1.292 1.664 1.990 2.639 3.416
90 0.526 0.846 1.291 1.662 1.987 2.632 3.402
100 0.526 0.845 1.290 1.660 1.984 2.626 3.391
110 0.526 0.845 1.289 1.659 1.982 2.621 3.381
120 0.526 0.845 1.289 1.658 1.980 2.618 3.374
130 0.526 0.844 1.288 1.657 1.978 2.614 3.367
140 0.526 0.844 1.288 1.656 1.977 2.612 3.362
150 0.526 0.844 1.287 1.655 1.976 2.609 3.357
00 0.524 0.842 1.282 1.645 1.960 2.576 3.291

251

C.2

C.2 Critical values of the F distribution

t

a n

Figure C.1 Each t,, value in the ¢ table is the value on the x axis for which there is an
area of a to the left of 7,,,,.

Critical values of the F distribution

The F-test is used to determine whether two variances are significantly different.
The F statistic is the ratio of the two variances, s; and s3:

S2

Fealculated = _é . (C.1)
53

where variance s has n; degrees of freedom and variance s3 has n, degrees of
freedom. If F_ycuateq 18 larger than the critical value obtained from one of the
following tables, we can conclude, with the confidence level shown for the table
used, that there is a statistically significant difference between the variances.

For example, given s7 = 23.12 and s3 = 3.44 with n; = 4 and n, = 20, we find
Fetculated = 23.12/3.44 = 6.72. The critical value from the 90% confidence-level
F distribution table is F{gg.4.20 = 2.249. Since Fyicutated > F0.90:4,20, We conclude
with 90% confidence that there is a statistically significant difference between the
variances.

252 Appendix C. Selected statistical tables

Critical values of the F distribution for a 90% confidence level

n

n 1 2 3 4 5 6 10
1 39.863 49.500 53.593 55.833 57.240 58.204 60.195
2 8.526 9.000 9.162 9.243 9.293 9.326 9.392
3 5.538 5.462 5.391 5.343 5.309 5.285 5.230
4 4.545 4.325 4.191 4.107 4.051 4.010 3.920
5 4.060 3.780 3.619 3.520 3.453 3.405 3.297
6 3.776 3.463 3.289 3.181 3.108 3.055 2.937
10 3.285 2.924 2.728 2.605 2.522 2.461 2.323
20 2.975 2.589 2.380 2.249 2.158 2.091 1.937
40 2.835 2.440 2.226 2.091 1.997 1.927 1.763
60 2.791 2.393 2.177 2.041 1.946 1.875 1.707
80 2.769 2.370 2.154 2.016 1.921 1.849 1.680
100 2.756 2.356 2.139 2.002 1.906 1.834 1.663
200 2.731 2.329 2.111 1.973 1.876 1.804 1.631
500 2.716 2.313 2.095 1.956 1.859 1.786 1.612

n
) 20 40 60 80 100 200 500

1 61.740 62.529 62.794 62.927 63.007 63.167 63.264

2 9.441 9.466 9.475 9.479 9.481 9.486 9.489

3 5.184 5.160 5.151 5.147 5.144 5.139 5.136

4 3.844 3.804 3.790 3.782 3.778 3.769 3.764

5 3.207 3.157 3.140 3.132 3.126 3.116 3.109

6 2.836 2.781 2.762 2.752 2.746 2.734 2.727
10 2.201 2.132 2.107 2.095 2.087 2.071 2.062
20 1.794 1.708 1.677 1.660 1.650 1.629 1.616
40 1.605 1.506 1.467 1.447 1.434 1.406 1.389
60 1.543 1.437 1.395 1.372 1.358 1.326 1.306
80 1.513 1.403 1.358 1.334 1.318 1.284 1.261
100 1.494 1.382 1.336 1.310 1.293 1.257 1.232
200 1.458 1.339 1.289 1.261 1.242 1.199 1.168

500 1.435 1.313 1.260 1.229 1.209 1.160 1.122

253

C.2 Critical values of the F distribution

Critical values of the F distribution for a 95% confidence level

n

1y 1 2 3 4 5 6 10
1 161.448 199.500 215.707 224.583 230.162 233986 241.882
2 18.513 19.000 19.164 19.247 19.296 19.330 19.396
3 10.128 9.552 9.277 9.117 9.013 8.941 8.786
4 7.709 6.944 6.591 6.388 6.256 6.163 5.964
5 6.608 5.786 5.409 5.192 5.050 4.950 4.735
6 5.987 5.143 4.757 4.534 4.387 4.284 4.060
10 4.965 4.103 3.708 3.478 3.326 3.217 2.978
20 4.351 3.493 3.098 2.866 2.711 2.599 2.348
40 4.085 3.232 2.839 2.606 2.449 2.336 2.077
60 4.001 3.150 2.758 2.525 2.368 2.254 1.993
80 3.960 3.111 2.719 2.486 2.329 2.214 1.951
100 3.936 3.087 2.696 2.463 2.305 2.191 1.927
200 3.888 3.041 2.650 2.417 2.259 2.144 1.878
500 3.860 3.014 2.623 2.390 2.232 2.117 1.850

n

n, 20 40 60 80 100 200 500
1 248.013 251.143 252,196 252.724 253.041 253.677 254.059
2 19.446 19.471 19.479 19.483 19.486 19.491 19.494
3 8.660 8.594 8.572 8.561 8.554 8.540 8.532
4 5.803 5.717 5.688 5.673 5.664 5.646 5.635
5 4.558 4.464 4.431 4.415 4.405 4.385 4.373
6 3.874 3.774 3.740 3.722 3.712 3.690 3.678
10 2.774 2.661 2.621 2.601 2.588 2.563 2.548
20 2.124 1.994 1.946 1.922 1.907 1.875 1.856
40 1.839 1.693 1.637 1.608 1.589 1.551 1.526
60 1.748 1.594 1.534 1.502 1.481 1.438 1.409
80 1.703 1.545 1.482 1.448 1.426 1.379 1.347
100 1.676 1.515 1.450 1.415 1.392 1.342 1.308
200 1.623 1.455 1.386 1.346 1.321 1.263 1.221
500 1.592 1.419 1.345 1.303 1.275 1.210 1.159

254 Appendix C. Selected statistical tables

Critical values of the F distribution for a 99% confidence level

ny

n, 1 2 3 4 5 6 10

1 4,052.181 4,999.500 5,403.352 5,624.583 5,763.650 5,858.986 6,055.847
2 98.503 99.000 99.166 99.249 99.299 99.333 99.399
3 34.116 30.817 29.457 28.710 28.237 27.911 27.229
4 21.198 18.000 16.694 15.977 15.522 15.207 14.546
5 16.258 13.274 12.060 11.392 10.967 10.672 10.051
6 13.745 10.925 9.780 9.148 8.746 8.466 7.874

10 10.044 7.559 6.552 5.994 5.636 5.386 4.849
20 8.096 5.849 4.938 4.431 4.103 3.871 3.368
40 7.314 5.179 4.313 3.828 3.514 3.291 2.801
60 7.077 4.977 4.126 3.649 3.339 3.119 2.632
80 6.963 4.881 4.036 3.563 3.255 3.036 2.551
100 6.895 4.824 3.984 3.513 3.206 2.988 2.503
200 6.763 4.713 3.881 3414 3.110 2.893 2.411
500 6.686 4.648 3.821 3.357 3.054 2.838 2.356
ny
n, 20 40 60 80 100 200 500

1 6,208.730 6,286.782 6,313.030 6,326.197 6,334.110 6,349.967 6,359.501
2 99.449 99.474 99.482 99.487 99.489 99.494 99.497
3 26.690 26.411 26.316 26.269 26.240 26.183 26.148
4 14.020 13.745 13.652 13.605 13.577 13.520 13.486
5 9.553 9.291 9.202 9.157 9.130 9.075 9.042
6 7.396 7.143 7.057 7.013 6.987 6.934 6.902
0 4.405 4.165 4.082 4.039 4.014 3.962 3.930

20 2.938 2.695 2.608 2.563 2.535 2.479 2.445
40 2.369 2.114 2.019 1.969 1.938 1.874 1.833
60 2.198 1.936 1.836 1.783 1.749 1.678 1.633
80 2.115 1.849 1.746 1.690 1.655 1.579 1.530
100 2.067 1.797 1.692 1.634 1.598 1.518 1.466
200 1.971 1.694 1.583 1.521 1.481 1.391 1.328

500 1.915 1.633 1.517 1.452 1.408 1.308 1.232

255

C.3

C.3 Critical values of the chi-squared distribution

Critical values of the chi-squared distribution

The chi-squared statistic for a given collection of measurements is calculated as
follows:

"\ (0; - P,)’
X%ﬂ—l = Z P (Cz)
i=1 L

where P; is the predicted number of outcomes in histogram cell i, O; is the
number actually observed in cell i, and m is the total number of histogram cells.

The critical values in the following table show the probability that a chi-
squared statistic with the given number of degrees of freedom could have a
value as large as that shown in the table due to random fluctuations. Thus, if
the calculated statistic x,_; is smaller than the value obtained from the table, we
can conclude, with the given level of confidence, that there is no evidence to lead
us to believe that the observed values do not come from the expected distribu-
tion.

For example, we calculate the chi-squared statistic for a series of observations
with 17 histogram cells to be x7 = 19.8. Looking at the 0.90 column in the table,
we find the maximum allowed value of the chi-squared statistic with 16 degrees
of freedom to be 23.542. Since our calculated value is smaller than this critical
value, we conclude with 90% confidence that there is no reason to suspect that
the observed values do not come from the expected distribution.

Note that the chi-squared test works best when the size of the cells is adjusted
so that the predicted number of outcomes in each cell is approximately the same.
Also, for the approximations used in deriving the chi-squared test to hold, the
predicted number of outcomes in each cell must be larger than five or six. See
Section 10.4.4 for more details.

256 Appendix C. Selected statistical tables

Critical values of the chi-squared distribution

a

n 0.5000 0.7500 0.8000 0.9000 0.9500 0.9900 0.9950

1 0.455 1.323 1.642 2.706 3.842 6.635 7.879
2 1.386 2.773 3.219 4.605 5.992 9.210 10.597
3 2.366 4.108 4.642 6.251 7.815 11.345 12.838
4 3.357 5.385 5.989 7.779 9.488 13.277 14.860

5 4.352 6.626 7.289 9.236 11.071 15.086 16.750
6 5.348 7.841 8.558 10.645 12.592 16.812 18.548
7 6.346 9.037 9.803 12.017 14.067 18.475 20.278
8 7.344 10.219 11.030 13.362 15.507 20.090 21.955
9 8.343 11.389 12.242 14.684 16.919 21.666 23.589
10 9.342 12.549 13.442 15.987 18.307 23.209 25.188
11 10.341 13.701 14.631 17.275 19.675 24.725 26.757
12 11.340 14.845 15.812 18.549 21.026 26.217 28.300
13 12.340 15.984 16.985 19.812 22.362 27.688 29.820
14 13.339 17.117 18.151 21.064 23.685 29.141 31.319
15 14339 18.245 19.311 22.307 24.996 30.578 32.801
16 15.339 19.369 20.465 23.542 26.296 32.000 34.267
17 16.338 20.489 21.615 24.769 27.587 33.409 35.719
18 17.338 21.605 22.760 25.989 28.869 34.805 37.157
19 18.338 22.718 23.900 27.204 30.144 36.191 38.582
20 19.337 23.828 25.038 28.412 31.410 37.566 39.997
21 20.337 24.935 26.171 29.615 32.671 38.932 41.401
22 21.337 26.039 27.302 30.813 33.925 40.290 42.796
23 22.337 27.141 28.429 32.007 35.173 41.639 44.181
24 23.337 28.241 29.553 33.196 36.415 42.980 45.559
25 24337 29.339 30.675 34.382 37.653 44.314 46.928
26 25337 30.435 31.795 35.563 38.885 45.642 48.290
27 26.336 31.528 32912 36.741 40.113 46.963 49.645
28 27.336 32.621 34.027 37.916 41.337 48.278 50.994
29 28.336 33.711 35.140 39.088 42.557 49.588 52.336
30 29.336 34.800 36.250 40.256 43.773 50.892 53.672
40 39.335 45.616 47.269 51.805 55.759 63.691 66.766
50 49.335 56.334 58.164 63.167 67.505 76.154 79.490
60 59.335 66.982 68.972 74.397 79.082 88.380 91.952
70 69.335 77.577 79.715 85.527 90.531 100.425 104.215
80 79.334 88.130 90.405 96.578 101.880 112.329 116.321
90 89.334 98.650 101.054 107.565 113.145 124.116 128.299

100 99.334 109.141 111.667 118.498 124.342 135.807 140.170
110 109.334 119.609 122.250 129.385 135.480 147.414 151.949
120 119.334 130.055 132.806 140.233 146.568 158.950 163.648
130 129.334 140.483 143.340 151.045 157.610 170.423 175.278
140 139.334 150.894 153.854 161.827 168.613 181.840 186.847
150 149.334 161.291 164.349 172.581 179.581 193.208 198.360

257 C.4 For further reading

C.4 For further reading
e The tables in this appendix were calculated using extensions of the computer
programs described in
William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery, Numerical Recipes in C (Second Edition), Cambridge
University Press, New York, 1992.

258

Index

abstract execution 102, 108

accept-reject method 201

accuracy 6, 43, 44, 58, 182, 239

alias method 197

allocation of variation 73, 145, 178

Amdahl’s law, fixed-computation 118, 135, 138

Amdahl’s law, fixed-time 121, 135, 138

Analysis of variance (ANOVA) 62, 63, 71, 77, 81,
160, 165, 174, 177, 239

application program benchmark 30, 111, 116, 134

arithmetic mean 26, 27, 28, 30, 40

arrival process 226

arrival rate 221, 222, 230, 238

Arthur, Robert 249

average 26

balance equations 229, 233

basic block, counting 93, 95, 100, 109

basic block, definition 95, 96, 239

basic block, profiling 93, 95

Basic linear algebra subroutines (BLAS)

before-and-after comparisons 3, 63, 81

bell-shaped curve (see normal distribution)

benchmarks, application program 30, 111, 116,
134, 239

benchmarks, fixed-computation

benchmarks, fixed-time 120, 133

benchmarks, instruction mix 112, 134

benchmarks, instruction time 112, 134

benchmarks, kernel 115, 134

benchmarks, micro- 115, 134, 136, 138

benchmarks, strategies 117

benchmarks, synthetic 114

benchmarks, toy 117

Berlioz, Hector 9

Bernoulli distribution 91, 201, 242, 243

Bierman, Keith 25

binomial distribution 47, 54, 91, 201, 207, 243

birth-death process 228

Bohr, Niels 217

Box—Muller method 246

126, 137

117, 133

causation 147
cell 36
Central-limit theorem 56, 57, 209

central tendency, index of 26, 27, 41
chi-squared, distribution 209, 255
chi-squared, statistic 209

chi-squared, test 209, 255

clock rate 10, 12

closed network 218, 219

coefficient of determination 145, 156, 239
coefficient of variation (COV) 39, 42, 239

comparing, before-and-after measurements 3, 63,
81

comparing, means 63

comparing, more than two alternatives 71, 77, 80

comparing, noncorresponding measurements 64
comparing, proportions 69, 92, 94
compression 100, 109, 110, 98, 101, 102, 108
confidence intervals 45, 47, 52, 58, 63
confidence intervals, mean 48

confidence intervals, proportions 53
confidence intervals, regression parameters 142
confidence level 49, 58, 239

conservation of flow 229

continuous uniform distribution 244, 196
contrast 78, 173, 175, 178, 239

correlation 145, 147

correlation coefficient 145, 146, 239

COV (coefficient of variation) 39, 42

CPU time 18, 24

critical values, F distribution 164, 251
critical values, ¢ distribution 249

critical values, chi-squared distribution 255
critical values, Student’s ¢ (see ¢ distribution)
curve fitting 151

curvilinear regression 151

DebitCredit benchmark 130

decomposition method 198

degrees of freedom 38, 50, 74, 163, 171, 240
density function 195, 197, 199, 240, 242
design of experiments 157, 177

deterministic verification 150, 205, 206
Dhrystone benchmark 129, 136
discrete-event simulation 183, 185, 214

discrete uniform distribution 244
dispersion, index of 36

distribution, Bernoulli 91, 201, 242, 243

259

Index

distribution, binomial 47, 54, 91, 201, 207, 243

distribution, chi-squared 209, 255

distribution, continuous uniform 196, 244

distribution, discrete uniform 190, 244

distribution, Erlang 227, 247

distribution, exponential 195, 200, 236, 244, 245

distribution, F 74, 251

distribution, Gaussian (normal) 46, 47, 49, 54, 59,
155, 215, 246, 249

distribution, geometric 243

distribution, hyperexponential 227

distribution, normal (Gaussian) 46, 49, 155, 215,
246

distribution, Pareto 247

distribution, Poisson 200, 244, 245

distribution, service 227

distribution, standard normal 246, 249

distribution, Student’s ¢ (see t distribution)

distribution, 7 (see t distribution)

distribution, uniform 190, 196

distribution, unit normal 246

distribution-driven simulation 186, 188, 189

effect 72,78, 159, 162, 178

emulation 100, 183

emulator 183, 240

ends-based metrics 21, 24

Erlang distribution 227, 247

Erlang’s C formula 234

error, model 46, 47, 57

error, random 19, 45, 46, 47, 48, 58, 90, 240
error, systematic 45, 58, 241

event, classification 83

event, count metrics 83

event, generation 186

event, processing 186

event, scheduler 185

event, tracing 84, 97

event-driven simulation 186

exclusivity 220

execution rate 117

execution time 17, 18, 23
execution-driven simulation 187, 188, 214
expected value 26, 230, 234

exponential distribution 195, 200, 236, 244, 245

F, distribution 74, 164, 251

F, statistic 74, 164, 169

F-test 74, 159, 164

factors 158, 240

Feynman, Richard P. 157
fixed-computation benchmarks 117
fixed-time benchmarks 120

flow equations 229

fractional factorial designs 178
freedom, degrees of 38, 50, 74, 163, 171, 240
full factorial design 158

Gaussian (normal) distribution 46, 47, 49, 54, 59,
155, 215, 249

geometric distribution 243

geometric mean 15, 32, 40, 41

Gibson instruction mix 113, 136

global time 186
goodness-of-fit testing 207, 215

harmonic mean 31, 32, 40

HINT benchmark 16, 123, 124, 133, 135, 137
histogram 35, 59, 93, 255

homogeneity 220

hyperexponential, distribution 227
hypothesis testing 61

imprecision 43

independence 12, 210, 216, 220

index of central tendency 26, 27

index of dispersion 36

indirect measurement 85, 104, 106, 108, 110

instruction-execution mix 112, 134

interaction of factors 159, 168, 240

interarrival time 226, 236

interval timer 17, 24, 58, 86

inverse-transformation method 195, 243, 244,
246, 248

isoefficiency function 122, 137

job-flow balance 220

Kendall’s notation 226
kernel benchmarks 115, 134
Kohn, Jim 1

LCG

191, 193, 215

LCG, multiplicative 192, 193
least-squares minimization 139, 156

levels

158, 240

linear-congruential generator (see LCG)
linear regression 139, 155

linear regression, multiple 148, 155
LINPACK 126

Little’s law 223, 225, 230, 235
Livermore Fortran kernels 125
Livermore loops 125

m-factor experiment 168

M/M/1 queue 228, 238

M/M/c queue 228, 233, 238
Markov, chain 229, 237

Maslow, Abraham 82

mean square 74, 164, 169, 240
mean-square error 75, 79, 169, 240
mean, arithmetic 26, 27, 28, 30, 40
mean, comparing 63, 64

mean, geometric 15, 32, 40, 41
mean, harmonic 31, 32, 40

mean, weighted 35

means-based metrics 19, 21, 24
median 27, 28, 40, 41, 240
memorylessness 227, 245

metrics, ends-based 21, 24

metrics, means-based 9, 21, 24
MFLOPS 10, 12, 14, 15, 22, 24, 29, 41, 118, 125,

126

microbenchmarks 115, 134, 136, 138

MIPS
mode

10, 11, 12, 13, 14, 15, 24, 41, 118
28, 40, 41, 240

260

Index

Monte Carlo simulation 183, 184, 214
n2™ experiment 158, 172, 178
N-queens problem 117

NAS 126, 137

nonblocking 220

nonlinear models 151

nonlinear regression 151, 155

normal (Gaussian) distribution 46, 59, 68, 155,
214

normalization 32, 33, 40, 55, 240

null hypothesis 61

numerical aerodynamic simulation (NAS) 126,
137

O’Conner, Marie 111

one-factor experiment 71, 80 158, 159, 178
one-step behavior 220

one-way classification 71

online trace consumption 98, 101

open network 218, 236

operational analysis 221, 225, 240

outlier 27, 156, 240

Pareto distribution 247

PC sampling 83, 93, 109

PERFECT Club benchmark

performance debugging 3

perturbation 45, 83, 85, 97, 105, 108, 240

Petri, C. A. 237

Poisson distribution 200, 244, 245

Poisson process 227, 236

precision 43, 44, 51, 58, 240

prime-number-sieve benchmark 117

profiling, basic-block counting 93, 95, 100, 109

profiling, PC sampling 83, 93, 240

proportions, comparing 69

pseudorandom-number generation (see random-
number generation)

127, 137

quality improvements per second (QUIPS) 16,
23,123, 133

quantization 46, 90, 91, 192, 240

queueing network models 218

quicksort benchmark 117

QUIPS 16, 23, 123, 133

random errors 19, 45, 46, 47, 58, 90, 240
random-number generation, accept-reject 201
random-number generation, alias 197
random-number generation, Box—Muller 246
random-number generation, decomposition 198
random-number generation, inverse
transformation 195, 243, 244, 246, 248
random number generation, special
characterization 200
random-number verification 206, 210, 213, 215,
216
random process 226
range 36, 240
rate metric 9, 13
regression models
regression, linear

139, 140, 240
139, 155

regression, nonlinear 151, 155
relative change 19, 20, 24
relative performance 3, 118
replication 158, 159, 165, 241
residual 140
resolution 44, 46, 58, 90, 241
response time 19, 159, 221, 230, 232, 235, 236,
238, 241
response variable 158
rollover, timer 87, 89, 109
runs-up test 211

sampling 70, 84, 86, 93, 103
sampling, PC 83, 93, 109
sampling, trace 103

scaled Amdahl’s law 121
secondary-event metrics 83
serial correlation 211

serial test 211

service, centers 218

service, discipline 227, 236, 241
service, distribution 227
service, rate 221, 222, 233
service, time 221, 236
SFS/LADDIS benchmark 131
significance level 49, 241

simulation, discrete-event 183, 185, 214
simulation, distribution-driven 186, 188, 189
simulation, event-driven 186

simulation, execution-driven 187, 188, 215
simulation, Monte Carlo 183, 184, 214
simulation, static 184

simulation, stochastic 188

simulation, trace-driven 187, 188, 215

single-queue, multiple-server (M/M/c) 228, 233,
238

single-queue, single-server (M/M/1) 228, 238

SLALOM 120, 135

slowdown 20

Smorodinsky, Elliot 139

SPEC 15, 23, 24, 127, 136, 137

SPEC, reference time 128, 129

special characterization 200

SPECratio 128

SPECweb 131

speedup 19, 20, 24, 118, 119, 121

SSE 73,75, 77, 140, 142, 145, 162

SST 73,75, 77, 145, 162, 170

standard deviation 39, 241

standard normal distribution 246, 249

static simulation 184

stochastic, analysis 221, 225, 236, 237, 241

stochastic, simulation 188

Student’s ¢ distribution (see ¢ distribution)

sum of squares 162

synthetic benchmark 114, 134

System Performance Evaluation Cooperative

(SPEC) 15, 23, 24, 127, 136, 137
systematic error 45, 58, 241

¢ distribution 50, 64, 66, 68, 143, 249
throughput 9, 13, 19, 241
time, CPU 18, 24

261

Index

timer, interval 17, 24, 59, 86

timer, overhead 88, 109

timer, rollover 87, 98, 109

timer, wall-clock 17, 19, 24

Towers of Hanoi benchmark 117

toy benchmarks 117, 134

TPC 130, 137

trace, compression 100, 109, 110
trace, generation 84, 98, 106, 108, 109
trace, sampling 103, 108

trace, simulation 108, 187, 188, 215
traffic intensity 221, 223, 229, 234
Transaction Processing Council (TPC) 130, 137
Treiman, Sam 242

two-factor experiments 159

uncertainty 43
uniform distribution 190, 196

unit normal distribution 49, 50
utilization 221, 222, 234, 237, 241
utilization law 221, 225, 231

validation 203, 241
variability 35
variance 38, 178, 241

variation, allocation of 73, 145, 178
verification, deterministic 150, 205, 206
verification, random-number 206, 210, 213, 215,

216
verification, simulator
verification, stochastic

203, 241
206

wall-clock time 17, 19, 24

weighted mean 35
Wheeler, John xv
Whetstone benchmark

129, 136

	Cover
	Half-title
	Title
	Copyright
	Dedication
	Contents
	Preface
	Goals
	Philosophy
	Organization
	Suggestions for using this text

	Acknowledgements
	1 Introduction
	1.1 Measuring performance
	1.2 Common goals of performance analysis
	1.3 Solution techniques
	1.4 Summary
	1.5 Exercises

	2 Metrics of performance
	2.1 What is a performance metric?
	2.2 Characteristics of a good performance metric
	2.3 Processor and system performance metrics
	2.3.1 The clock rate
	2.3.2 MIPS
	2.3.3 MFLOPS
	2.3.4 SPEC
	2.3.5 QUIPS
	2.3.6 Execution time

	2.4 Other types of performance metrics
	2.5 Speedup and relative change
	2.6 Means versus ends metrics
	2.7 Summary
	2.8 For further reading
	2.9 Exercises

	3 Average performance and variability
	3.1 Why mean values?
	3.2 Indices of central tendency
	3.2.1 The sample mean
	3.2.2 The sample median
	3.2.3 The sample mode
	3.2.4 Selecting among the mean, median, and mode

	3.3 Other types of means
	3.3.1 Characteristics of a good mean
	3.3.2 The arithmetic mean
	3.3.3 The harmonic mean
	3.3.4 The geometric mean
	3.3.5 Weighted means

	3.4 Quantifying variability
	3.5 Summary
	3.6 For further reading
	3.7 Exercises

	4 Errors in experimental measurements
	4.1 Accuracy, precision, and resolution
	4.2 Sources of errors
	4.3 A model of errors
	4.4 Quantifying errors
	4.4.1 Confidence intervals for the mean
	4.4.1.1 Case 1: When the number of measurements is large…
	4.4.1.2 Case 2: When the number of measurements is small (n < 30)

	4.4.2 Determining the number of measurements needed
	4.4.3 Confidence intervals for proportions
	4.4.3.1 Determining the number of measurements needed

	4.4.4 Normalizing data for confidence intervals

	4.5 Summary
	4.6 For further reading
	4.7 Exercises

	5 Comparing alternatives
	5.1 Comparing two alternatives
	5.1.1 Before-and-after comparisons
	5.1.2 Noncorresponding measurements
	5.1.3 Comparing proportions

	5.2 Comparing more than two alternatives
	5.2.1 Analysis of variance (ANOVA)
	5.2.2 Contrasts

	5.3 Summary
	5.4 For further reading
	5.5 Exercises

	6 Measurement tools and techniques
	6.1 Events and measurement strategies
	6.1.1 Events-type classification
	6.1.2 Measurement strategies

	6.2 Interval timers
	6.2.1 Timer overhead
	6.2.2 Quantization errors
	6.2.3 Statistical measures of short intervals

	6.3 Program profiling
	6.3.1 PC sampling
	6.3.2 Basic-block counting

	6.4 Event tracing
	6.4.1 Trace generation
	6.4.2 Trace compression
	6.4.2.1 Online trace consumption
	6.4.2.2 Compression of data
	6.4.2.3 Abstract execution
	6.4.2.4 Trace sampling

	6.5 Indirect and ad hoc measurements
	6.6 Perturbations due to measuring
	6.7 Summary
	6.8 For further reading
	6.9 Exercises

	7 Benchmark programs
	7.1 Types of benchmark programs
	7.1.1 The single-instruction-execution time
	7.1.2 Instruction-execution mixes
	7.1.3 Synthetic benchmark programs
	7.1.4 Microbenchmarks
	7.1.5 Program kernels
	7.1.6 Application benchmark programs

	7.2 Benchmark strategies
	7.2.1 Fixed-computation benchmarks
	7.2.1.1 Amdahl's law

	7.2.2 Fixed-time benchmarks
	7.2.2.1 Scaling Amdahl's law

	7.2.3 Variable-computation and variable-time benchmarks

	7.3 Example benchmark programs
	7.3.1 Scientific and engineering
	7.3.1.1 Livermore loops
	7.3.1.2 NAS kernels
	7.3.1.3 LINPACK
	7.3.1.4 PERFECT club
	7.3.1.5 SPEC CPU
	7.3.1.6 Whetstone and Dhrystone

	7.3.2 Transaction processing
	7.3.3 Servers and networks
	7.3.3.1 SFS/LADDIS
	7.3.3.2 SPECweb

	7.3.4 Miscellaneous benchmarks

	7.4 Summary
	7.5 For further reading
	7.6 Exercises

	8 Linear regression models
	8.1 Least squares minimization
	8.2 Confidence intervals for regression parameters
	8.3 Correlation
	8.3.1 The coefficient of determination
	8.3.2 The correlation coefficient
	8.3.3 Correlation and causation

	8.4 Multiple linear regression
	8.5 Verifying linearity
	8.6 Nonlinear models
	8.7 Summary
	8.8 For further reading
	8.9 Exercises

	9 The design of experiments
	9.1 Types of experiments
	9.2 Terminology
	9.3 Two-factor experiments
	9.3.1 Interaction of factors
	9.3.2 ANOVA for two-factor experiments
	9.3.3 The need for replications

	9.4 Generalized m-factor experiments
	9.5 n2m experiments
	9.5.1 Two factors
	9.5.2 More than two factors

	9.6 Summary
	9.7 For further reading
	9.8 Exercises

	10 Simulation and random-number generation
	10.1 Simulation-efficiency considerations
	10.2 Types of simulations
	10.2.1 Emulation
	10.2.2 Static (Monte Carlo) simulation
	10.2.3 Discrete-event simulation
	10.2.3.1 The event scheduler
	10.2.3.2 The global time variable
	10.2.3.3 Event processing
	10.2.3.4 Event generation
	10.2.3.5 Recording and summarization of data
	10.2.3.6 The simulation algorithm

	10.3 Random-number generation
	10.3.1 Uniformly distributed sequences
	10.3.1.1 Choosing the constants
	10.3.1.2 Cautions and suggestions

	10.3.2 Nonuniformly distributed random numbers
	10.3.2.1 Inverse transformation
	10.3.2.2 The alias method
	10.3.2.3 Decomposition
	10.3.2.4 Special characterization
	10.3.2.5 The accept–reject method

	10.4 Verification and validation of simulations
	10.4.1 Validation
	10.4.1.1 Comparisons with real systems
	10.4.1.2 Analytical results
	10.4.1.3 Engineering judgement

	10.4.2 Verification
	10.4.3 Deterministic verification
	10.4.4 Stochastic verification
	10.4.4.1 Goodness-of-fit testing
	10.4.4.2 Tests of independence

	10.5 Summary
	10.6 For further reading
	10.7 Exercises

	11 Queueing analysis
	11.1 Queueing-network models
	11.2 Basic assumptions and notation
	11.3 Operational analysis
	11.3.1 The utilization law
	11.3.2 Little's law

	11.4 Stochastic analysis
	11.4.1 Kendall's notation
	11.4.2 The single-queue, single-server (M/M/1) system
	11.4.3 The single-queue, multiple-server (M/M/c) system

	11.5 Summary
	11.6 For further reading
	11.7 Exercises

	Appendix A Glossary
	Appendix B Some useful probability distributions
	B.1 The Bernoulli distribution
	B.2 The binomial distribution
	B.3 The geometric distribution
	B.4 The discrete uniform distribution
	B.5 The continuous uniform distribution
	B.6 The Poisson distribution
	B.7 The exponential distribution
	B.8 The Gaussian (normal) distribution
	B.9 The Erlang distribution
	B.10 The Pareto distribution
	B.11 For further reading

	Appendix C Selected statistical tables
	C.1 Critical values of Student's t distribution
	C.2 Critical values of the F distribution
	C.3 Critical values of the chi-squared distribution
	C.4 For further reading

	Index

