

Fault Trees

This page intentionally left blank

Fault Trees

Nikolaos Limnios

First published in France in 2005 by Hermès Science/Lavoisier entitled “Arbres de

défaillances”

First Published in Great Britain and the United States in 2007 by ISTE Ltd

Apart from any fair dealing for the purposes of research or private study, or criticism or

review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may

only be reproduced, stored or transmitted, in any form or by any means, with the prior

permission in writing of the publishers, or in the case of reprographic reproduction in

accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction

outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd ISTE USA

6 Fitzroy Square 4308 Patrice Road

London W1T 5DX Newport Beach, CA 92663

UK USA

www.iste.co.uk

© ISTE Ltd, 2007

© LAVOISER, 2005

The rights of Nikolaos Limnios to be identified as the author of this work have been asserted

by him in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Cataloging-in-Publication Data

Limnios, Nikolaos.

 [Arbres de défaillances. English]

 Fault trees/Nikolaos Limnios.

 p. cm.

 Includes bibliographical references and index.

 ISBN-13: 978-1-905209-30-9

 ISBN-10: 1-905209-30-4

 1. Reliability (Engineering) 2. Trees (Graph theory) I. Title.

 TA169.L555 2006

 620'.00452--dc22

 2006033027

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library

ISBN 10: 1-905209-30-4

ISBN 13: 978-1-905209-30-9

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire.

Table of Contents

Introduction . 11

Chapter 1 Single-Component Systems 17

1.1 Distribution of failure and reliability 17
1.1.1 Function of distribution and density of failure 17
1.1.2 Survival function: reliability 18
1.1.3 Hazard rate . 19
1.1.4 Maintainability . 19
1.1.5 Mean times . 20
1.1.6 Mean residual lifetime 21
1.1.7 Fundamental relationships 21
1.1.8 Some probability distributions 22

1.2 Availability of the repairable systems 25
1.2.1 Instantaneous availability 25
1.2.2 Asymptotic availability 26
1.2.3 Mean availability . 26
1.2.4 Asymptotic mean availability 27

1.3 Reliability in discrete time . 27
1.3.1 Discrete distributions 28
1.3.2 Reliability . 28

1.4 Reliability and maintenance . 29
1.4.1 Periodic test: repair time is negligible 29
1.4.2 Periodic test: repair time is not negligible 30
1.4.3 Mean duration of a hidden failure 30

1.5 Reliability data . 31

Chapter 2 Multi-Component Systems 33

2.1 Structure function . 33

6 Fault Trees

2.2 Modules and modular decomposition 36

2.3 Elementary structure systems 37

2.3.1 Series system . 37

2.3.2 Parallel system . 38

2.3.3 System k-out-of-n . 38

2.3.4 Parallel-series system . 39

2.3.5 Series-parallel system 39

2.4 Systems with complex structure 40

2.5 Probabilistic study of the systems 42

2.5.1 Introduction . 42

2.5.2 Inclusion-exclusion method 43

2.5.3 Disjoint products . 44

2.5.4 Factorization . 46

2.5.5 Reliability bounds . 46

Chapter 3 Construction of Fault Trees 49

3.1 Basic ideas and definitions . 49

3.1.1 Graphic symbols . 52

3.1.2 Use of the operators . 53

3.2 Formal definition and graphs 56

3.3 Stages of construction . 57

3.3.1 Preliminary analysis . 58

3.3.2 Specifications . 59

3.3.3 Construction . 59

3.4 Example of construction . 60

3.4.1 Preliminary analysis . 60

3.4.2 Specifications . 62

3.4.3 Construction . 62

3.5 Automatic construction . 63

Chapter 4 Minimal Sets . 67

4.1 Introduction . 67

4.2 Methods of study . 68

4.2.1 Direct methods . 68

4.2.2 Descending methods . 71

4.2.3 Ascending methods . 73

4.3 Reduction . 74

4.4 Other algorithms for searching the cut sets 75

4.5 Inversion of minimal cut sets 76

4.6 Complexity of the search for minimal cut sets 78

Table of Contents 7

Chapter 5 Probabilistic Assessment 79

5.1 The problem of assessment . 79
5.2 Direct methods . 80

5.2.1 AND operator . 81
5.2.2 OR operator . 81
5.2.3 Exclusive OR operator 82
5.2.4 k-out-of-n operator . 83
5.2.5 Priority-AND operator 83
5.2.6 IF operator . 83

5.3 Methods of minimal sets . 84
5.3.1 Inclusion-exclusion development 84
5.3.2 Disjoint products . 85
5.3.3 Kitt method . 86

5.4 Method of factorization . 88
5.5 Direct recursive methods . 90

5.5.1 Recursive inclusion-exclusion method 90
5.5.2 Method of recursive disjoint products 91

5.6 Other methods for calculating the fault trees 92
5.7 Large fault trees . 93

5.7.1 Method of Modarres and Dezfuli [MOD 84] 93
5.7.2 Method of Hughes [HUG 87] 94
5.7.3 Schneeweiss method [SCH 87] 95
5.7.4 Brown method [BRO 90] 95

Chapter 6 Influence Assessment . 97

6.1 Uncertainty . 97
6.1.1 Introduction . 97
6.1.2 Methods for evaluating the uncertainty 98
6.1.3 Evaluation of the moments 99

6.2 Importance . 103
6.2.1 Introduction . 103
6.2.2 Structural importance factors 105
6.2.3 Probabilistic importance factors 106
6.2.4 Importance factors over the uncertainty 109

Chapter 7 Modules – Phases – Common Modes 111

7.1 Introduction . 111
7.2 Modular decomposition of an FT 111

7.2.1 Module and better modular representation 111
7.2.2 Modularization of a fault tree 114

7.3 Multiphase fault trees . 116
7.3.1 Example . 117

8 Fault Trees

7.3.2 Transformation of a multiphase system 118
7.3.3 Method of eliminating the minimal cut sets 118

7.4 Common mode failures . 119

Chapter 8 Extensions: Non-Coherent, Delay and
Multistate Fault Trees . 123

8.1 Non-coherent fault trees . 123
8.1.1 Introduction . 123
8.1.2 An example of a non-coherent FT 126
8.1.3 Prime implicants and implicates 126
8.1.4 Probabilistic study . 128

8.2 Delay fault trees . 129
8.2.1 Introduction . 129
8.2.2 Treatment . 129

8.3 FTs and multistate systems . 131
8.3.1 Multistate systems . 131
8.3.2 Structure function . 132
8.3.3 Stochastic description and function of reliability 135
8.3.4 Fault trees with restrictions 136
8.3.5 Multistate fault trees . 138

Chapter 9 Binary Decision Diagrams 143

9.1 Introduction . 143
9.2 Reduction of the Shannon tree 143

9.2.1 Graphical representation of a BDD 143
9.2.2 Formal BDD . 145
9.2.3 Probabilistic calculation 147

9.3 Probabilistic assessment of the FTs based on the BDD 148
9.4 Research about the prime implicants 151
9.5 Algorithmic complexity . 153

Chapter 10 Stochastic Simulation of Fault Trees 155

10.1 Introduction . 155
10.2 Generation of random variables 155

10.2.1 Generation of a uniform variable 155
10.2.2 Generation of discrete random variables 157
10.2.3 Generation of real random variables 158

10.3 Implementation and evaluation of the method 159
10.3.1 The Monte Carlo method 159
10.3.2 Estimating the probability of the top event 160

Table of Contents 9

10.3.3 Precision of the estimation 161
10.3.4 Acceleration of the convergence 164
10.3.5 Rare events . 165

Exercises . 167

Appendices . 177

A BDD Algorithms in FT Analysis 179
A1 Introduction . 179
A2 Obtaining the BDD . 180
A3 Algorithm of probabilistic assessment 182
A4 Importance factors . 183
A5 Prime implicants . 184

B European Benchmark Fault Trees 187
B1 Description of the data 187
B2 Fault tree: Europe-1 . 188

B2.1 Structure of the fault tree (structural data) . . . 188
B2.2 Probabilistic data 190
B2.3 Results . 190

B3 Fault tree: Europe-2 . 191
B3.1 Structure of the fault tree 191
B3.2 Probabilistic data 192
B3.3 Results . 192

B4 Fault tree: Europe-3 . 193
B4.1 Structure of the FT 193
B4.2 Probabilistic data 195
B4.3 Results . 195

C Some Results of Probabilities 197

Main Notations . 201

Bibliography . 205

Index . 221

This page intentionally left blank

Introduction

Dependability : a generic term encompassing the concepts of reliability, avail-
ability, maintainability, security, etc. It is also simply designated by the term
“reliability”, which underlines its quantitative aspect.

The aim of reliability is the study of systems (sets of elements – hardware,
software, human resources – that interact with a view to accomplishing a mis-
sion) that are subjected to physical processes such as the processes of failure,
repair, and stresses.

The component is a part of a system which is non-resolvable within the
framework of the study for which sufficient qualitative information (functioning,
modes of failure, etc.) as well as quantitative information (failure rate, repair
rate, etc.) has been provided in this study. The notion of component is relative
and depends on the study. For example, an aircraft, within the framework of a
study dealing with flight safety, represents the system, whereas for the airline
company it represents a component.

The study of failures in components has led to very elaborate classifications.
The failures that have been taken into account in this book are catastrophic
failures, that is to say, they are sudden and complete.

As for reliability, the part that deals with the modeling of the components
with a view to obtaining qualitative and quantitative information is called
“component reliability” or “reliability statistics”. Another part of reliability,
called the “reliability of systems”, is concerned with the modeling of systems
with a view to studying their reliability according to the reliability of their
components. The reliability of the systems and the component reliability can
be complementary in that the results of the former form the data for the
latter.

11

12 Fault Trees

In this book, we will consider diverse classes of systems: in general, many
criteria such as those regarding the number of system components with single-
or multi-components, the system’s structure function presenting a certain form
of coherence or non-coherence, state spaces (system and components), binary
systems or multi-performance systems, maintenance systems that are non-
repairable, reliably repairable, repairable, the mission expressed by a structure
function or not have been used.

Considerable diversity exists among reliability models. Excluding the diverse
theories, prolongation and applications, we will be considering two large fami-
lies, namely, models of minimal sets (cut sets and minimal paths) and models
involving stochastic processes. The former, not possessing the accuracy and
analytical comfort of the latter, have the advantage of considerably reducing
the size of problems and of enabling, in most cases, their resolution.

From an algorithmic viewpoint, the complexity of systems in terms of reli-
ability is generally determined by different elements such as a large number
of components, a non-classical structure, the existence of certain forms of non-
coherence, many levels of performance, extensive variables, non-constant hazard
rates, stochastic dependences, and the coexistence of the three elements that is
hardware-software-human factor. The problem of evaluating the reliability of a
system is an NP-difficult problem ([ROS 75]), that is to say, there is no algo-
rithm whose time execution is limited by a polynomial function of the problem’s
size (i.e., number of components), unless, for any class of problems considered
as being difficult, there exists a polynomial algorithm.

The main problem of reliability is the construction of the structure function
and the probabilistic risk assessment.

Fault trees: the fault tree (FT) forms part of the family of models called
minimal sets, that is, the models using the minimal cut sets and/or the minimal
paths for studying the reliability of systems. It was developed with the aim of
making it possible to obtain the cut sets of complex systems. At present, the
FT constitutes one of the most widely employed methods in the domain of the
reliability of systems.

Designed by Watson 1962 in the laboratories of the “Bell Telephone Com-
pany” and within the framework of the project involving the “ICBM minute-
man” missiles ordered by the US Air Force, it saw three stages of development.
Initially, during the 1960s, it served as a tool for representing system failures
but in the absence of the techniques and algorithms that are specific for its
treatment. Subsequently, Haasl introduced the basic rules for the construction
of the FTs in 1965, Vesely in 1970 [VES 70] supplied us with the “Kinetic Tree

Introduction 13

Theory” called Kitt, where, through the underlying stochastic processes, the
design of the FTs has become more complete; this theory remains the main tool
for the quantitative evaluation of the FTs until now. At the same time, Fussell
and Vesely [FUS 72] developed and perfected the MOCUS algorithm, which
is distinct from the algorithms of combinatorial character. The third stage of
development, in the 1980s, was marked by the extension of this theory to the
non-coherent fault trees, multistate fault trees and fuzzy fault trees.

Recently, a new algorithm has considerably improved the calculation per-
formances and has offered the possibility of large FTs; the algorithm described
in this study is based, on the one hand, on recursive algorithms that do not
require prior information of the minimal sets of the FT and, on the other hand,
on the truncation algorithms of minimal cut sets.

The FT is a purely deductive technique. An FT represents a failure mode
of a system according to the failure modes of its subsystems and components.
The term “fault tree” is to a certain extent restrictive; for example, we will go
on to discuss a dual FT which, in principle, represents the good functioning of
a system (in the case of binary systems) is described in this study. Barlow and
Proschan [BAR 75] make use of the term “event tree” and not “fault tree”) for
designating an FT; this term also adds to the ambiguity, for it also designates
the inductive event trees [LIM 84]. For distinguishing it from the latter, we
could use the term “deductive events tree”. Nevertheless, in this book, we will
be focusing on the use of the traditional term of “fault tree”; however, in a
number of cases, it will not represent the failure but the good functioning of
the systems.

Figure 1 shows the essential stages for the evaluation of the reliability of
a system (1-4-5), that is, proceeding from the system, we obtain its structure
function that we will introduce in a model of probabilities for evaluating its
reliability. Obtaining the function of structure from the system is a difficult
task and, except in the case of simple systems (in principle, systems of elemen-
tary structure), this cannot be done without special tools for the majority of
complex systems. Thus, modeling of the system is obtained through standard
graphs, of which FT is part, for obtaining in a systematic manner the structure
function. As a result, the FT is employed right from the first stages of safety
analysis for the functioning of the systems. The safety study of a system through
FT includes three stages: the construction of the tree, qualitative analysis and
quantitative analysis. This construction should be highly exhaustive, that is,
representing all the (significant) causes for the failure of the system. The con-
struction technique can be obtained quit quckly, which greatly facilitates the
collaboration of specialists of diverse domains.

14 Fault Trees

Problems

What are the failure

modes of the

components and of

the system?

How does the

system break

down?

What is the

probability of the

system breaking

down?

Approach

System

Standard

graph (FT,

etc.)

Construction of

the structure

function

Reduction

Evaluation of

P[Φ(x) = 1]

Explicit

stochastic

processes

Probabilistic

model

Algebraic

models

Representative

model of the

system

Models

Figure 1 Problems, approach and models for evaluating the reliability of systems

The qualitative analysis deals with methods for obtaining the minimal sets:
minimal cut sets and minimal paths. The quantitative analysis comprises on
the one hand the evaluation of the probability of the top event (within the
framework of the preliminary analysis of the risks, this event is called “undesir-
able”) and on the other hand the study of influence concerning the sensitivity
and the importance of the basic events vis-à-vis the top event. The evaluation
of the probability of the top event can be carried out directly on the FT with-
out passing through the minimal sets, when the FT does not contain repeated
events. Another use for the FT, particularly for its minimal cut sets, is con-
cerned with the division of the spaces of states into states of running and into
states of breakdown of the systems modeled by the stochastic processes.

The undisputed efficacy of FTs for representing failures of complex
systems encounters difficulties when probabilistic treatment is concerned. This
is a limitation that is common to the methods based on minimal sets and is
linked to the two following impossibilities: one representing the exact calcu-
lation of the reliability for the systems with repairable components and the
other concerned with the calculation in case of certain dependences. In actual
practice, we overcome this limitation by making an approximate calculation,

Introduction 15

which in the case of the systems of a good reliability is having the correct
accuracy.

The FT is used at first for analyzing the failures of the hardware and then
for modelizing human failures or errors [DHI 86]. Its use is still very much
limited in the software domain [LEV 83]. In principle, the FT can contain
events concerning the software but is used very rarely for analyzing a software
independent of its application.

Organization of the book: the FTs are at first presented for modeling the coher-
ent binary systems, we refer to them as coherent FTs (c-FTs). Then, we face
certain extensions such as the non-coherent FTs (nc-FTs) and the FTs with
restrictions (FT-r), which represent a generalization of the nc-FT and the mul-
tistate FTs (m-FTs).

Before FTs are described, it is important to present in Chapters 1 and 2
the basic elements necessary for the study of FTs. In Chapters 3–9, FTs are
discussed. In Chapter 10, the elements of stochastic simulation for FTs will be
presented.

Chapter 1 deals with the basic relationships concerning the reliability of
the binary component, wherein the notions of reliability, availability, main-
tainability, MTTF, etc., are introduced and expressed through their analytical
expressions.

Chapter 2 presents the structure function, which will form the basis for
the later development, the diverse classes of systems (systems with elementary
structure, systems with complex structure, etc.), the reliability function and
the general methods of evaluation.

Chapter 3 deals with the construction of FTs: the different graphic symbols
and the stages of construction.

Chapter 4 covers qualitative treatment, that is, the search for minimal sets,
and also the corresponding classical algorithms.

Chapter 5 deals with quantitative treatment: the diverse methods of evaluat-
ing the probability of the top event and the essential methods for the evaluation
of large FTs.

Chapter 6 gives a study of influence: the uncertainty or the sensitivity and
the importance, followed by the methods of calculating the uncertainty and the
most well-known factors of importance.

16 Fault Trees

Chapter 7 deals with the modularization of FTs, multi-phase FTs and the
treatment of common failure modes.

Chapter 8 presents certain extensions: non-coherent FTs, delayed action
FTs, FTs with restrictions and multistate FTs.

Chapter 9 presents new algorithms based on the binary decision
diagrams (BDD).

Chapter 10 presents the stochastic simulation (or Monte Carlo method) for
the evaluation of the probability of the top event and other quantities.

In this book, for designating the different parts of a system, apart from the
notions of “system” and “component”, the notion of the “sub-system” is used; it
designates a part of a system containing at least one component and is endowed
with a sub-mission within the framework of the overall aim. For designating
without any special discrimination, a system, a subsystem or a component, we
make use of the notion of “item”.

Chapter 1

Single-Component Systems

1.1 Distribution of failure and reliability

1.1.1 Function of distribution and density of failure

We will study here the stochastic behaviour of single-component systems
being subjected to failures (breakdowns) by observing them over a period of
time. Let us simplify things by assuming that the system is put to work at the
instant t = 0 for the first time and that it presents a single mode of failure.

The component, starting a lifetime period at the instant t = 0, is functioning
for a certain period of time X1 (random) at the end of which it breaks down. It
remains in this state for a period of time Y1 (random) during its replacement
(or repair) and, at the end of this time, the component is again put to work
and so on. In this case, the system is said to be repairable. In the contrary case,
that is to say, when the component breaks down and continues to remain in
this state, the system is said to be non-repairable.

It is possible to present a graphic description of the behavior of the above-
described system in different ways, the phase diagram being the most common.

Let X be a random variable (r.v.) representing the lifetime of the system
with F , its cumulative distribution function (c.d.f.):

F (t) = P (X ≤ t).

17

18 Fault Trees

Time

Figure 1.1 Phase diagrams: (a) non-repairable
system and (b) repairable system 1: state of good
functioning 0: state of breakdown

If F is absolutely continuous, the random variable X has a probability
density function (p.d.f.) f and can be written as:

f(t) =
d

dt
F (t) = lim

∆t→0

P (t < X ≤ t + ∆t)

∆t
.

Regarding the probability evaluation of fault trees, we always have to make
the distinction between the occurrence or arrival of an event and its existence
at the time t. Let us consider, for example, that the f.r. F of the duration of
life of a component has an p.d.f. f . The assertion “the occurrence of the failure
of the component at the time t” means that the failure took place within the
time interval (t, t + ∆t], where ∆t → 0; as a result, its probability is given by:
f(t)∆t+o(∆t). On the other hand, the assertion “existence of the failure at the
time t” means that the failure took place at the time x ≤ t and its probability
is then simply F (t).

1.1.2 Survival function: reliability

The complementary function of F , noted as F , is called the survival function
or reliability of the system, noted as R(t). That is to say:

R(t) = F (t) = 1− F (t) = P (X > t),

Now

R(t) =

∫ ∞

t

f(u)du,

Single-Component Systems 19

Thus we have:

R(0) = 1, R(+∞) = 0.

1.1.3 Hazard rate

The hazard rate function, noted as h(t), plays a leading role in connection
with the reliability of systems. In the case of a failure process, it is called the
failure rate (instantaneous), noted as λ(t), and in the case of a process of repair,
it is called the (instantaneous) repair rate, noted as µ(t). In survival analysis,
it is also called the risk rate. It is defined as follows:

h(t) = lim
∆t→0

P (t < X ≤ t + ∆t|X > t)

∆t
.

Properties:

h(t) ≥ 0,

∫ ∞

0

h(u)du = +∞.

The cumulative hazard rate H(t) is defined by the relationship:

H(t) =

∫ t

0

h(u)du.

The total hazard rate is defined by:

H =

∫ X

0

h(u)du.

H follows an exponential distribution of parameter 1.

1.1.4 Maintainability

The maintainability, noted as M(t), is defined by the probability that the
system will be repaired within the time interval (0, t], given that it broke down
at the instant t = 0. Let Y be the random variable indicating the duration of
breakdown (or duration of repair) of the component, and G its distribution
function:

G(t) = P (Y ≤ t).

If G is completely continuous, Y has a density noted as g and we will have:

g(t) =
d

dt
G(t).

20 Fault Trees

The function G is called as maintainability noted as M(t). The maintainabil-
ity M(t) is defined by the probability that the system will be repaired within
the time interval (0, t], given that it broke down at the instant t = 0. The repair
rate, noted as µ(t), will be given by:

µ(t) = lim
∆t→0

P (t < Y ≤ t + ∆t | Y > t)

∆t
.

1.1.5 Mean times

The following mean times (when they exist) play a very important role in
connection with the reliability, because they constitute the indices for compar-
ing the reliabilities of systems and of the components supplied generally by the
manufacturers.

Mean time to failure (MTTF):

MTTF = E[X] =

∫ ∞

0

tdF (t) =

∫ t

0

tf(t)dt.

Mean time to repair (MTTR):

MTTR = E[Y] =

∫ t

0

tdG(t) =

∫ t

0

tg(t)dt.

Mean duration of good functioning after the repair, MUT (Mean Up Time).

Mean duration of failure, MDT (Mean Down Time).

Mean time between failures (MTBF):

MTBF = MUT + MDT.

In order that MTTF should exist, it is necessary that ξ > 0, such that:

lim
t→+∞

eξtR(t) = 0.

⊲ Example 1.1. If the density f of the random variable X , with non-negative
values, is given by the formula (Cauchy distribution):

f(x) =
2

π

a

x2 + a2
, (a > 0),

then X does not have any moment!

Single-Component Systems 21

It should also be noted that for the single-component systems we will have:

MUT = MTTF and MDT = MTTR,

Hence, the formula MTBF = MTTF + MTTR is applicable to this case
only.

1.1.6 Mean residual lifetime

It will be of interest to know the residual lifetime of the system at the age
of t, knowing that it did not break down in (0, t):

L(t) = E[X − t|X > t],

L(t) =

∫ ∞

t

R(u)du

R(t)
.

This function L(t) satisfies the following conditions:

L(X) = 0,

L(0) = E(X),

d

dt
L(t) ≥−1,

∫ ∞

0

dt

L(t)
= +∞.

1.1.7 Fundamental relationships

The reliability verifies the following relationships:

d

dt
R(t) + λ(t)R(t) = 0,

obtained by the definition of the failure rate in section 1.1.3. The solution for
this equation is:

R(t) = R(0) exp(−
∫ t

0

λ(u)du).

Agreeing that the reliability at the instant t = 0 is equal to 1, this relation-
ship can be written as:

R(t) = exp(−
∫ t

0

λ(u)du).

22 Fault Trees

This is the most general relationship for the reliability.

In the samemanner,wecanobtain the equationverifiedby themaintainability:

d

dt
M(t)− [1−M(t)]µ(t) = 0.

The general solution is as follows:

M(t) = 1− [1−M(0)] exp(−
∫ t

0

µ(u)du).

Agreeing that for the maintainability M(0) = 0, the preceding relationship
becomes:

M(t) = 1− exp(−
∫ t

0

µ(u)du).

For the mean times and when the functions R(t) and 1-M(t) are summable
over the real half line x ≥ 0, we can write:

MTTF =

∫ ∞

0

R(t)dt,

MTTR =

∫ ∞

0

[1−M(t)]dt.

⊲ Example 1.2. An electrical equipment has a constant failure rate λ. The
reliability of the apparatus at time t is given by R(t) = exp(−λt). The probability
that it might break down in the time interval (t1, t2], (t1 < t2) is given by:

P (t1 < T ≤ t2) =

∫ t2

t1

f(t)dt = e−t1 − e−t2 .

The probability that it might survive at the time t2, given that it did not
break down between 0 and t1, is

P (T > t2|T > t1) =
P (T > t1, T > t2)

P (T > t1)
=

P (T > t2)

P (T > t1)
= e−λ(t1−t2)

and MTTF =
∫ ∞
0

e−λtdt = 1/λ.

1.1.8 Some probability distributions

We present here some of the usual probability distributions dealing with the
reliability of systems that we are using or with those that we will be referring to
in the wake of our statement. These probability distributions, unless otherwise
mentioned, have their support on the real half-line x ≥ 0.

Single-Component Systems 23

– Exponential distribution
The exponential distribution is by far the most frequently used in relation to

the reliability of systems. A system whose stochastic behavior is modeled by an
exponential distribution is a system without memory or a Markovian system,
that is to say, for t > 0, x > 0, we have P (X > t + x|X > t) = P (X > x). For
the exponential distribution, we have, for x ≥ 0:

f(t) = λe−λt,

R(t) = e−λt,

λ(t) = λ.

This distribution gives good modeling for the lifetime of electronic compo-
nents. Nevertheless, its use in other fields, such as for the modeling of mechan-
ical components or the times to repair, is not always justified.

– Normal distribution
The normal distribution is supported by the complete real line; as a result, it

is not suited for modeling the system’s lifetime. Nevertheless, when 0 < σ/µ≪ 1,
the part of the distribution carried by the half-line x < 0 can be neglected and
the distribution is used in this case for modeling the duration of the lifetime of
the systems.

f(t) =
1√
2πσ

e−
(t−µ)2

2σ2 ,

R(t) =

∫ ∞

t

f(y)dy,

λ(t) =
f(t)

R(t)
,

where µ is the average and σ is the standard deviation.

– Log normal distribution
The log normal distribution models the times of repair quite well. It is also

used for the modeling for the propagation of uncertainties in the fault trees.

f(t) =
1√

2πσt
e−

(ln t−µ)2

2σ2 , t ≥ 0,

R(t) =

∫ ∞

t

f(y)dy,

λ(t) =
f(t)

R(t)
,

where µ is the average and σ is the standard deviation.

– Weibull distribution
Thanks to the vast variations of form that it can take up according to the values

of its parameters, the Weibull distribution is used in many domains of reliability,
particularly in those concerned with the reliability of mechanical components.

24 Fault Trees

f(t) =
β

ηβ
(t− γ)β−1 exp{− (t− γ)β

η
},

R(t) = exp{− (t− γ)β

η
},

λ(t) =
β(t− γ)β−1

ηβ
,

where β is the parameter of form, η the parameter of scale and γ the parameter
of localization. For β = 1 and γ = 0, we will obtain the exponential distribution.

– Gamma distribution
The gamma distribution has, just like the preceding distribution, multiple

forms depending on the values of its parameters.

f(t) =
(λt)a−1

Γ(a)
λe−λt,

R(t) =
λa

Γ(a)

∫ ∞

t

ya−1e−λydy,

λ(t) =
f(t)

R(t)
,

where λ > 0 and Γ(x) =
∫ ∞
0

tx−1e−tdt is the gamma function. For n ∈ �
∗, we

have Γ(n) = (n− 1).

If a = 1, we are then dealing with the exponential distribution. If a ∈ �
∗,

then the gamma distribution is called the Erlang distribution and the reliability
is given by the following relationship:

R(t) = e−λt
a−1∑

k=0

(λt)k

k!
.

– Distribution of the delay systems
IfX andY aredistributedaspertheexponentialdistributionsoftheparameters

λ and µ respectively, and τ > 0, let us consider the random variable T [LIM 90]:

T = (X1 + Y ∗
1) + · · ·+ (Xn−1 + Y ∗

n−1) + Xn + τ

with n = inf{k : τ ≥ Yi, i = 1,, k − 1, τ < Yk} and

Y ∗
i =

{
Yi if Yi ≤ τ

+∞ if Yi > τ.

Then the density of probability of T is given by:

fT (t) =

{
λ

∑r−1
n=0(λµ)ne−(n+1)µτΦn(t− (n + 1)τ), if t ≥ τ,

0, if 0≤ t < τ,

Single-Component Systems 25

for rτ ≤ t < (r + 1)τ , with

Φo(t) =
µ

λ + µ
+

λ

λ + µ
e−(λ+µ)t

and for n = 1,2, ...,

Φn(t) =
1

(n!)2

{
n

n−1∑

k=0

(−1)n+kCn−1
k (1 +

µ

n− k
t)tn−1−kIn+k(t) + µI2n(t)

}

Ik(t) =

∫ t

0

uke−audu =
k!

ak+1

{
1− e−at

k∑

j=0

(at)j

j!

}

with t ∈ �
∗
+, k ∈ �, and a = λ + µ.

1.2 Availability of the repairable systems

Contrary to reliability, which is concerned with the good working of the
system over an interval of time, [0, t], availability deals with the good function-
ing at the instant t, irrespective of the fact that the system might have had one
or more failures prior to t.

In order to study the availability, we will be introducing, for a fixed time of
t, the random variable X(t) with the values {0,1}:

X(t) =

{
1 if the system is in good state at the instant t

0 if the system is in down state at the instant t.

1.2.1 Instantaneous availability

The instantaneous availability of a system, noted as A(t), is expressed by
the probability that the system is in good condition at the instant t.

A(t) = P{X(t) = 1}.

If X(t), t≥ 0 is a stochastic process with state space {0,1}, the instantaneous
availability at the time t is represented by the probability that the process is
seen to be state 1 at t. According to the definitions, we will easily establish the
following inequality:

A(t) ≥R(t), t ≥ 0.

When the values for the availability are very close to unity, as is the case
with standby safety systems, we will rather be using the instantaneous
unavailability, noted as A(t):

A(t) = 1−A(t) = P{X(t) = 0}.

26 Fault Trees

1.2.2 Asymptotic availability

This is expressed by the portion of the period of good working per unit time,
when the system is under a “stationary probabilistic condition”, that is to say
a sufficiently long time after its commissioning.

Mathematically, when it exists, it is expressed by the following limit:

A = lim
t→+∞

A(t).

Let X = (Xi; i = 1,2, ...) represent the times of good working and Y =
(Yi; i = 1,2, ...) represent the times of breakdown of a system.

If

– X is i.i.d,

– Y is i.i.d,

– X and Y are independent,

– at least one of X and Y is not a lattice,

then stationary availability exists and it is given by the following relationship
[ASC 84]:

A =
E[X]

E[X] + E[Y]
=

MTTF

MTTF + MTTR
.

For the same reason as in the preceding case, we will make use of the notion
of asymptotic unavailability, noted as A: A = 1−A.

If X(t) is a Markov process with state space {0,1}, then (A,A) represents the
stationary distribution of this process and in this case this distribution always
exists since λ > 0 and µ > 0.

For a non-repairable system, we have: A = 0.

1.2.3 Mean availability

The mean availability, noted as Ã(t), over [0, t] is expressed by the expecta-
tion of the time of good functioning of the system over [0, t]:

Ã(t) =
1

t

∫ t

0

A(x)dx.

Single-Component Systems 27

1.2.4 Asymptotic mean availability

This is expressed by the following relationship:

Ã = lim
t→+∞

1

t

∫ t

0

A(x)dx.

In the case where limt→+∞ A(t) exists, we will have A = Ã.

The unavailability of a component will be noted as q(t).

– component with constant unavailability:

q(t) = q = constant, t ≥ 0.

Component with constant failure and repair rates λ and µ respectively:

– non-repairable component:

q(t) = 1− e−λt,

– repairable component:

q(t) =
λ

λ + µ
(1− e−(λ+µ)t),

– asymptotic unavailability:

q =
λ

λ + µ
=

λτ

1 + λτ
,

where τ is the mean repair time (τ = 1/µ). When λτ ≪ 1, the above formula
reduces to: q ∼= λτ .

1.3 Reliability in discrete time

It will be of interest to calculate the reliability of a system in � as the
calculations are much simpler to carry out. In the section that follows, we
will first list the distributions of some discrete random variables and then the
reliability over � [BRA 03].

28 Fault Trees

1.3.1 Discrete distributions

Let X be a discrete random variable with values A = {a1, a2, ..., an, ...}. Its
probability law is defined by the data of a series of probabilities (p(ai); i =
1,2, ...) with: p(ai) = P (X = ai), i = 1,2, We have:

p(ai) ≥ 0, i ∈ �
∗,

∞∑

i=1

p(ai) = 1.

Bernoulli distribution. This is the distribution of random variable X with
values {0,1}, and is given by:

x = 0,1.

Binomial distribution. This is the distribution of random variable X with
values A = {0,1, ..., n}, and is given by:

p(x) = Cn
x px(1− p)n−x, x ∈ A.

Geometric distribution. This is the distribution of random variable X with
values �

∗, and is given by:

p(x) = (1− p)x−1p, x ∈ �
∗.

Poisson’s distribution. This is the distribution of random variable X with
values �, and is given by:

p(x) = e−λ λx

x!
, x ∈ �.

1.3.2 Reliability

We will give the reliability in �. The failure rate is given as follows:

λ(n) = P (X = n|X ≥ n), (n ∈ �).

In order that the sequence (λ(n), n ∈ �) represents a failure rate, it is
necessary to have

0 ≤ λ(n) ≤ 1, (n ∈ �),

∑

n∈�

λ(n) = +∞.

Probability distribution of failure at the time n:

f(n) = P (X = n) = [1− λ(0)][1− λ(1)]...[1− λ(n− 1)]λ(n).

Single-Component Systems 29

Reliability:

R(n) = P (X ≥ n) = [1− λ(0)][1− λ(1)]...[1− λ(n− 1)].

Availability: if λ(n) = λ and µ(n) = µ, for every n ∈ �, then:

A(n) =
µ

λ + µ
+

(1− λ− µ)n

λ + µ
(λP1(0) + µP2(0)),

where P1(0) represents the probability that the component be in good state at
the instant 0 and P2(0) = 1− P1(0).

⊲ Example 1.3. The calculation for the reliability of the electrical apparatus
and failure rate, in discrete time, is carried out as follows. We choose a number
of intervals n such that: ∆t < 1, where ∆t = t/n. Then, the reliability is given

by:

R(t) = (1− λ∆t)n = (1− λt

n
)n.

This relationship is justified also by the fact that: (1 − λt
n)n → e−λt when

n → +∞, from where it can be noted that with a smaller ∆t, the approximation
is better.

1.4 Reliability and maintenance

For reliability, maintenance constitutes a basic given condition. It affects
the reliability from both the logical point of view of failure and from the prob-
abilistic point of view. In particular, the maintainability constitutes a measure
of the efficacy pertaining to a given maintenance policy.

1.4.1 Periodic test: repair time is negligible

Let there be a component for which we are applying a preventive mainte-
nance by replacing it systematically every T hours. We will assume that the
time of replacement is negligible.

For t = jT + τ , j ∈ �, τ ∈ [0, T), we have:

– Reliability

R(t) = R(jT + τ) = [R(T)]jR(τ).

– Availability

A(t) = A(jT + τ) = A(τ).

– Mean time to failure

MTTF =

∫ T

0

R(u)du

1−R(T)
.

30 Fault Trees

1.4.2 Periodic test: repair time is not negligible

We are considering here the same problem that has been described
previously, but allowing for a time of intervention (inspection and/or repair)
that is not negligible, that is to say, there are regular interventions at times
jT , j = 1,2, During these interventions into the system, there are two pos-
sibilities: either the system is working, in which case a time t1 of inspection
is necessary, or it is under breakdown, in which case an additional time t2
for repair is necessary, and hence the time of stop in this case t1 + t2. The
unavailability is therefore given by the following relationship:

q(t) = 1− exp{−(t− jT)λe}{1− exp[−(
t− jT

t1
)a]},

with:

λe =
T − t1

T
(
T − t1

T
+

2t2
T

) + 2(1− Γ(1/a)

a
)

t1
T 2

a = ln[3− ln(λt1)]

j: number of test interval

T : test interval

t1: time of inspection of a non-defective component

t2: time of inspection of a defective component

t1 + t2: time of inspection of a defective component

λe: effective failure rate of a component.

1.4.3 Mean duration of a hidden failure

Let a component be inspected periodically at times T , 2T , 3T , Let us con-
sider t = jT + τ the instant the component’s breaks down. We will try to evaluate
the duration of the breakdown time before the next inspection: D = T − τ :

E(D) = E(T − τ) = T −
∫ T

0

F (t)dt.

When X follows an exponential distribution of the parameter λ, we have:

E(D) = T − 1

λ

T

eλT − 1
∼= T

2
(1 +

λT

6
).

Single-Component Systems 31

1.5 Reliability data

In order to be able to evaluate the reliability of the systems, we should have
the database, that is, the data concerning the components: the probabilities of
failure and repair or the rates of failure and repair, etc. The sources for the
data to obtain the rates of failure of components are the tests and usage. These
data can be treated under non-parametric or parametric form for obtaining the
desirable measures.

It has to be said that, more often than not, we lack probablistic data. Oper-
ators who are devoted to the means for collecting and storing these data are
few in number, and those treating them at a sufficient level with existing sta-
tistical techniques are even fewer. The majority of the the time, this treatment
is limited to getting a constant rate of failure.

Nevertheless, special efforts have been taken up during the last few years
to put up the databases for the operational reliability. At the European level,
we have the following databases: ERDS (European Reliability Data System,
1980), ODERA (deals with the petroleum platforms, 1980), SRDF (nuclear,
EDF, 1978), etc. [AME 85].

The data treatment should contain an exploratory treatment preceding tra-
ditional statistical treatment. For example, an exploratory treatment, which
consists of tracing a curve in the plane (t, n) (where t is the cumulative time of
working and n the number of failures), can supply us with precious information:
constant increasing and decreasing rates of failure, etc. [ASC 84], [HIL 90].

This page intentionally left blank

Chapter 2

Multi-Component Systems

2.1 Structure function

Chapter 1 focused on the reliability of a single-component system. This
chapter focuses on the reliability of systems with more than one component,
which are referred to as “multi-component systems”.

Whereas in the case of single-component systems the failure in the com-
ponent implies the failure of the system, this is no longer the case for
multi-component systems, at least not automatically. The failure in a multi-
component system arises in the wake of the failure in the sub-sets of well-defined
components. For example, the failure in one of the four cylinders of a car does
not jeopardize its overall working: it works badly, but it still works. On the
other hand, the failure of the drive shaft leads to the immobilization of the car.

From this example, it can be observed that the sub-sets of the components,
whose simultaneous failures lead to the failure of the system, should be defined
exactly. This approach makes use of the Boolean algebra, and more specifically
uses the structure function, which translates the functional relationships among
the components of the system and its state of failure/working.

Let us consider a binary system with n components: C = {1,, n}: For each
component i, we define a variable xi, with value in {0,1}, with the following
convention:

xi =

{

1 if the component is in good state

0 if the component is in down state

33

34 Fault Trees

Let x = (x1, x2, ..., xn) ∈ {0,1}n be the vector describing jointly the states of
the components. We define a function ϕ(x) describing the state of the system
with values in {0,1}, with the following convention:

ϕ(x) =

{

1 if the system is in good state

0 if the system is in down state

The set {0,1}n fitted with the operations (∔) addition and (·) multiplica-
tion is called a Boolean lattice (complemented distributive lattice), which has
the common properties of associativity, commutativity and distributivity. The
“zero” element is noted as 0 = (0,0, ...,0), the “unity” element as 1 = (1,1, ...,1)
and the “inverse” element x = 1−x = (1−x1,1−x2, ...,1−xn). The operations
(+̇) addition and (·) multiplication among the elements of {0,1}n are carried
out as follows:

x +̇y = (x1 +̇y1, x2 +̇y2, ..., xn +̇yn)

x · y = (x1 · y1, x2 · y2, ..., xn · yn).

The set {0,1}n is partially ordered with the relationship “≤” called “inclu-
sion”. Strict inclusion “<” and equality “=” are defined in the usual manner.

⊲ Example 2.1. Let us consider the brake system of a vehicle, made up of front
and rear brakes. If the rear brakes are down, we can still continue braking.
On the other hand, if both the brakes are down (front and rear), we can no
longer brake and the braking system is declared to be failed. If the front brakes
be indicated by x1 and the rear brakes by x2, then the braking system of the
vehicle can be described by the function:

ϕ(x) = 1− (1− x1)(1− x2).

The table given below shows the values of this function corresponding to
the values of the variables.

x1 x2 ϕ(x)

0 0 0

0 1 1

1 0 1

1 1 1

The binary operation (+̇) can be written as:

x +̇y = x + y − xy = 1− (1− x)(1− y) = max{x, y}.

Multi-Component Systems 35

The correspondence among the operations utilized is given in the following
table:

Sets/ Indicator

events variables

∪ +̇

∩ ·

Denote xA and xB respectively, as the indicator functions (Boolean vari-
ables) of events A and B. We have the following correspondences:

E = A∩B ⇔ xE = xAxB

E = A∪B ⇔ xE = xA +̇xB = xA + xB − xAxB .

Remark 2.1. The intersection (∩) will often be neglected or replaced by the
comma, when the events are defined by random variables; see section 5.2.

Elementary functions:

ϕ1(x) = 0 Constant function 0

ϕ2(x) = 1 Constant function 1

ϕ3(x) = x Identity function

ϕ4(x) = x = 1− x “NON”-function (non-x)

ϕ5(x1, x2) = x1x2 Conjunction of x1, x2

ϕ6(x1, x2) = x1+̇x2 Disjunction of x1, x2

ϕ7(x1, x2) = x1 → x2 Implication of x1 by x2

ϕ8(x1, x2) = x1 ⊕ x2 Or exclusive.

Notations:

(1i,x) = (x1, ..., xi−1,1, xi+1, ..., xn)

(0i,x) = (x1, ..., xi−1,0, xi+1, ..., xn).

Essential variable: the variable xi is said to be essential if there exists a
vector x such as ϕ(1i,x) �= ϕ(0i,x). On the contrary, the variable xi is said to
be inessential.

Equal functions: two functions ϕ1(x) and ϕ2(x) are said to be equal if one
is deduced from the other or vice versa by adjunction or elimination of the
inessential variables. It is noted that: ϕ1 ≡ ϕ2.

36 Fault Trees

Dual function: given the function ϕ(x), we define its dual function, noted
as ϕD(x) or ϕ(x), as follows:

ϕD(x) = 1−ϕ(1− x).

Monotone structure function: the function ϕ is said to be monotone with
respect to the variable xi if:

ϕ(1i,x) ≥ ϕ(0i,x), x ∈ {0,1}n.

If the function ϕ is monotonic with respect to all the variables, then ϕ will
be called monotonic.

Coherent structure function: if the function ϕ is monotone and, in addition,
all its variables are essential, then ϕ will be called coherent.

2.2 Modules and modular decomposition

For a sizeable problem, the solution we adopt frequently, not only in the
matter of reliability but also in many other domains, is to decompose it, as
much as possible, into many small problems in order to be able to study it. In
the matter of system reliability, this approach is carried out with the aid of the
modules that are defined as follows.

Module: the coherent system (A,α) is a module of the coherent system
(C,ϕ), if:

ϕ(x) = ψ(α(xA),xA), A = C \A,

where A ⊂ C, and xA represents the vector with elements xi,i ∈ A. ψ is a
coherent structure function called an organizing function, and A is called a
modular set of (C,ϕ).

If A ⊂ C and |A| ≥ 2, then (A,ψ) is called a proper module of (C,ϕ).
A modular decomposition of the coherent system(C,ϕ) is a set of disjoint
modules:

{(A1, α1), ..., (Ar, αr)}

with an organizing function ψ, if:

(i) C = ∪r
i=1Ai, with Ai ∩Aj = ∅, i �= j

(ii) ϕ(x) = ψ(α1(x
A1), ..., αr(x

Ar)).

Multi-Component Systems 37

The three modules theorem (cf. [BARL 75]).

Let there be a coherent system (C,ϕ). Let us assume that A1,A2 and A3 are
three non-empty and disjoint sets such that A1 ∪A2 and A2 ∪A3 are modular
sets. Then:

(i) A1,A2 and A3 are modular sets,
(ii) A1 ∪A2 ∪A3 is modular,
(iii) the moduless αA1 , αA2 , αA3 appear either in series or in parallel,
(iv) A1 ∪A3 is modular.

2.3 Elementary structure systems

The distinction between elementary structure systems and complex struc-
ture systems is very useful in matters of reliability. The elementary structure
systems are concerned with series structure and the parallel structure or, more
precisely, the structure k-over-n, which is a generalization of the preceding two
structures. Any system giving a k-over-n structure through successive reduc-
tions is called a elementary structure system. In the contrary case, it is known
as a complex structure system. The structural function of an elementary struc-
ture system is obtained directly using the functions of structures, as described
in the following section. On the contrary, for the complex structure systems,
we require the notions of minimal cut set or of minimal path.

2.3.1 Series system

A system is said to be in series if its functioning is subjected to the simulta-
neous functioning of all its components. If just one of its components is failed,
then the system will have broken down.

Figure 2.1 Series system

The structure function of a series system is given by:

ϕ(x) = min(x1, ..., xn) =

n
∏

i=1

xi.

The dual of a series system is a parallel system.

38 Fault Trees

2.3.2 Parallel system

The functioning of this system is assured, if at least one of its components
is in good state. The system will be failed if and only if all its components are
simultaneously failed.

Figure 2.2 Parallel system

The structure function of a system is given by:

ϕ(x) = max(x1, ..., xn) = x1 +̇ · · · +̇xn = 1−
n

∏

i=1

(1− xi)

The dual of a parallel system is a series system.

2.3.3 System k-out-of-n

Figure 2.3 System k-out-of-n

Multi-Component Systems 39

The functioning of this system is assured if at least k components among n
(1 ≤ k ≤ n) are in good state. The system will be failed if n − k + 1 or more
components are failed simultaneously.

The structural function of a system k-out-of-n:G is given by:

ϕ(x) =

{

1 if
∑n

i=1 xi ≥ k

0 if not.

The series system is a system n-over-n:G, and the parallel system 1-out-of-n:G.
The dual of a system k-out-of-n:G is a system (n− k + 1)-out-of-n:F.

2.3.4 Parallel-series system

This is formed by r blocks mounted in series, and each block i constitutes
a parallel system of ij components j = 1, ..., r.

Figure 2.4 Parallel-series system

2.3.5 Series-parallel system

This is formed by r blocks mounted in parallel, and each block i constitutes
a series system of ij components j = 1, ..., r.

40 Fault Trees

Figure 2.5 Series-parallel system

2.4 Systems with complex structure

A system that cannot be directly classified into the preceding cases of ele-
mentary structures is called a system with complex structure. For the study
of systems with complex structure, the concepts of minimal paths and cuts (in
the case of monotone structures) must be introduced. The system in Figure 2.6
is a system with complex structure. This system cannot be directly classified
into modules with traditional structures. If the input/output of this system are
located at the extremities of component 3, it will then involve a system with
elementary structure.

Figure 2.6 Example of a system with complex structure

The definitions are given as follows.

Multi-Component Systems 41

Path: a sub-set of components whose simultaneous good functioning will
assure the good working of the system, which is independent of the states of
the other components.

Minimal path: a path which does not contain another path.

Cut set: a sub-set of components whose simultaneous failure leads to the
system failure, which is independent of the states of the other components.

Minimal cut set: a cut set that does not contain another cut set.

⊲ Example 2.2. The set {1,4,5} is a path (non-minimal), which contains the
minimal path {1,4}. The set {1,2,3} is a cut set (non-minimal) and it contains
the minimal cut set {1,2}.

The minimal path sets of the system given in Figure 2.6 are:

C1 = {1,4}, C2 = {2,5}, C3 = {1,3,5}, C4 = {2,3,4}.

The minimal cut sets are:

K1 = {1,2}, K2 = {4,5}, K3 = {1,3,5}, K4 = {2,3,4}.

In order to study a complex system, the following hypotheses are made:

– The initial system is equivalent to the system formed by its minimal
paths in parallel, where each path is represented by a series system having as
components the components of the path. With reference to this hypothesis, the
structural function will be given by the following relationship:

ϕ(x) = 1−
c

∏

j=1

(

1−
∏

i∈Cj

xi

)

,

where c is the number of minimal paths of the system.

– The initial system is equivalent to the system formed by its minimal cut
sets in series, where each cut set is represented by a parallel system having as
components the components of the cut set. With reference to this hypothesis,
the structural function is given by the following relationship:

ϕ(x) =
k

∏

j=1

[

1−
∏

i∈Kj

(1− xi)
]

,

where k is the number of minimal cut sets of the system.

42 Fault Trees

2.5 Probabilistic study of the systems

2.5.1 Introduction

Let there be a coherent system S = (C,ϕ) of the order n ≥ 1.

Let Xi, an r.v. (random variable) of Bernoulli, describe the state of the
component i (i = 1, ..., n), with values xi ∈ {0,1}, and let X = (X1, ...,Xn)
denote the vector with value x = (x1, ..., xn) ∈ {0,1}. We also note that Xi :=
1−Xi and X = 1−X = (1−X1, ...,1−Xn).

We have: E[Xi] = P{Xi = 1} =: pi and E[Xi] = P{Xi = 1} = P{Xi = 0}
=: qi , i ∈ C, and p = (p1, ..., pn); q = (q1, ..., qn); p + q = 1 = (1, ...,1).

The problem here consists of expressing the reliability of the system, noted
as R(p) or R(p1, ..., pn), according to the reliabilities of its components. Sev-
eral methods that are exact or approximate are proposed for performing this
calculation. It can be written that:

R(p) = E[ϕ(X)] =
∑

x

ϕ(x)P{X = x} =
∑

x:ϕ(x)=1

n
∏

i=1

qxi

i (1− qi)
1−xi .

This formula gives an exact method of calculation, but we will see that there
are other methods that are either based or not based on the minimal sets and
give quicker calculations.

As we have seen earlier, the minimal sets (minimal paths and cut sets) con-
stitute a general method for expressing the structure function of the system and
hence for calculating its reliability. In order to evaluate the reliability through
the method of minimal sets, we consider two different approaches: one based
on the structure function and the other based on the lifetime.

Let K = {K1,K2, ...,Kk} be the set of minimal cut sets and
C = {C1,C2, ...,Cc} the set of minimal paths of a system (C,ϕ).

It is clear that:

R(p) = P [ϕ(X) = 1] = E[ϕ(X)].

Therefore, it can be written as:

R(p) = P (C1 ∪C2 ∪ · · · ∪Cc),

and

R(p) = P (K1 ∪K2 ∪ · · · ∪Kk)

with R(p) = 1−R(p), called unreliability of the system.

Multi-Component Systems 43

The approach based on the lifetimes of the components and of the system,
is obtained from the following equalities:

T = min
1≤j≤k

max
i∈Kj

{Ti} = max
1≤j≤c

min
i∈Cj

{Ti}

where T is the lifetime of the system, and Ti, i = 1, ..., n, the lifetime of the
components.

The reliability can be obtained through different methods; the main methods
will be described in the following sections.

Remark 2.2. We will use the same symbol for designating a minimal cut set,
its indicating variable and the event “occurrence of the cut set”.

2.5.2 Inclusion-exclusion method

This development, for k events, is written as:

P (∪k
i=1Ki) =

k
∑

i=1

P (Ki)−
k−1
∑

i=1

k
∑

j=i+1

P (Ki ∩Kj) +

· · ·+ (−1)k−1P (∩k
i=1Ki). (2.1)

The probability for the occurrence of a cut set is evaluated as follows. Let
the cut set be Ki = {i1, i2, ..., is}, its probability being:

P (Ki) = P (Xi1 = 0,Xi2 = 0, ...,Xis
= 0)

= P (Xi1 = 0)P (Xi2 = 0|Xi1 = 0)×

· · · × P (Xis
= 0|Xi1 = 0, ...,Xis−1

= 0).

In the case where the events are independent, we can write:

P (Ki) = P (Xi1 = 0)P (Xi2 = 0) · · ·P (Xis
= 0).

Probability for the simultaneous occurrence of two cut sets: let the cut sets
be Ki and Kj : Ki = {a1, ..., ar, ir+1,, is} and Kj = {a1, ..., ar, jr+1, ..., jl}

44 Fault Trees

and hence: Ki ∩Kj = {a1, ..., ar}. Then:

P (Ki ∩Kj) = P (Ki|Kj)P (Kj)

= P (Xir+1
= 0,,Xis

= 0,Xa1
= 0,

...,Xar
= 0,Xjr+1 = 0, ...,Xjl

= 0).

⊲ Example 2.3. Let us consider the system of Figure 2.6. The minimal cut sets
are given in section 2.4 and p = (p1, ..., p5). We have:

K1 = {1,2}, K2 = {4,5}, K3 = {1,3,5}, K4 = {2,3,4}.

Consequently:

R(p) = (q1q2 + q4q5 + q1q3q5 + q2q3q5)

− (q1q2q4q5 + q1q2q3q5 + q1q2q3q4 + q1q3q4q5 + q2q3q4q5

+ q1q2q3q5)

+(q1q2q3q4q5 + q1q2q3q4q5 + q1q2q3q4q5 + q1q2q3q4q5)

− q1q2q3q4q5.

2.5.3 Disjoint products

Let us consider the events: E1,E2, ...,En.

– Disjunction of events. We can write:

E1 ∪E2 ∪ · · · ∪En = E1 ∪E1E2∪ · · · ∪E1 · · ·En−1En. (2.2)

This relationship enables us to express the disjunction of n initial events,
which are not necessarily disjunctive, into a disjunction of n disjunctive events.
Consequently, we can write:

P{E1 ∪E2 ∪ · · · ∪En} = P{E1}+ P{E1E2}+ · · ·+ P{E1 · · ·En−1En}. (2.3)

– Conjunction of events. Let us consider the event: E = E1E2 · · ·En (we are
omitting ∩). We can write:

E = E1 ∪E1E2 ∪ · · · ∪E1 · · · · · ·En−1En.

Multi-Component Systems 45

For the indicator variables of the events mentioned above, x1, x2, ..., xn we
have:

x1 +̇x2 +̇ ... +̇xn = x1 + x1x2 + ... + x1...xn−1xn.

If x = x1x2....xn, we have:

x = x1 + x1x2 + ... + x1x2...xn−1xn. (2.4)

⊲ Example 2.4. Let us consider the system in Figure 2.6. We saw that its
minimal paths are:

C1 = {1,4}, C2 = {2,5}, C3 = {1,3,5}, C4 = {2,3,4}.

Let us note ci, the indicator variable of the minimal path Ci, for i = 1,2,3,4.
According to (2.4), we can write:

c1 = x1x4, which implies c1 = x1 + x1x4;

c2 = x2c5, which implies c2 = x2 + x2x5;

and

c3 = x1x3x5, which implies c3 = x1 + x1x3 + x1x3x5.

According to (2.2), we have:

C = C1 ∪C2 ∪C3 ∪C4 = C1 ∪C1C2 ∪C1C2C3 ∪C1C2C3C4,

But then, if c is the indicator variable of the event C, we have:

c = x1x4 + (x1 + x1x4)x2x5 + (x1 + x1x4)(x2 + x2x5)x1x3x5

+(x1 + x1x4)(x2 + x2x5)(x1 + x1x3 + x1x3x5)x2x3x4,

and on simplifying, we obtain:

c = x1x4 + x1x2x5 + x1x2x4x5 + x1x2x3x4x5 + x1x2x3x4x5 + x1x2x3x4x5,

From which:

R(p) = p1p4 + q1p2p5 + p1p2q4p5 + p1q2p3q4p5 + q1p2p3p4q5 + p1p2p3q4q5.

Remark 2.3. The formulae (2.1) and (2.2) can be very easily proved through
recursion.

46 Fault Trees

2.5.4 Factorization

The technique of factorization is based on the following relationship:

ϕ(x) = xiϕ(1i,x) + (1− xi)ϕ(0i,x). (2.5)

This relationship is known in other works on this subject (given in the
bibliography) as the formula or development or theorem of Shannon (or the
formula of factorization). We will continue the decomposition until such time
as we arrive at the elementary structures.

⊲ Example 2.5. The system is as given in Figure 2.6. The above relationship
can be written with respect to the variable x3 as follows:

ϕ(x) = x3ϕ(13,x) + (1− x3)ϕ(03,x).

The functions ϕ(13,x) and ϕ(03,x) represent two systems with elementary
structures (cf. Figure 2.7).

Figure 2.7 Decomposition of a system by factorization

2.5.5 Reliability bounds

The exact calculation for the reliability of the systems is very costly (NP-
hard problem); that is why the calculation of the bounds, instead of for exact
value, is suitable. We have four types of bounds: the bounds of inclusion–
exclusion, the minimal sets bounds, the “min–max” bounds and the trivial

Multi-Component Systems 47

bounds. Other bounds can be obtained by improving the above-cited bounds
or through the construction of mixed bounds or by a modularization of the
system. It has to be noted that there is a relationship of order among those
four types of bounds. The best bound depends on the problem.

Inclusion-exclusion bounds

The inclusion-exclusion bounds are closely linked to the inclusion-exclusion
development (cf. section 2.5.2). They are:

k
∑

i=1

P (Ki)−
k−1
∑

i=1

k
∑

j=i+1

P (Ki ∩Kj) ≤R(p) ≤
k

∑

i=1

P (Ki). (2.6)

For reliable systems, the lower bound is very close to the exact value. For less
reliable systems, an improvement in the bounds can be obtained by calculating
more terms in the inclusion-exclusion development. An even number of terms
of this development yields a lower bound, while an odd number of terms gives
an upper bound. Theoretically, these bounds are also valid for the minimal
paths of the system. Nevertheless, this does not lead to any significant bounds,
because for the reliable systems they lie outside the interval [0, 1]. It must be
mentioned that we simply require the minimal cut sets for these bounds.

Minimal sets bounds

A lower bound is obtained through minimal cut sets, and an upper bound
through minimal paths, as follows:

k
∏

j=1

(

1−
∏

i∈Kj

(1− pi)
)

≤R(p) ≤ 1−
c

∏

j=1

(

1−
∏

i∈Cj

pi

)

. (2.7)

When the minimal cut sets are 2-by-2 disjoint sets, then the upper bound
coincides with the exact value. The same assertion is valid regarding the mini-
mal paths and the lower bound.

“Min–max” bounds

The complement, with respect to unity, of the probability of the most prob-
able cut set is an upper bound, whereas the complement, with respect to unity,
of the probability of the least probable path is a lower bound:

max
1≤j≤c

[

1−
∏

i∈Cj

pi

]

≤R(p) ≤ min
1≤j≤k

[

1−
∏

i∈Kj

(1− pi)
]

. (2.8)

48 Fault Trees

Trivial bounds

The reliability of a coherent system is higher than that of a series system
and lower than that of a parallel system. This assertion is expressed as follows:

n
∏

i=1

pi ≤R(p) ≤ 1−
n

∏

i=1

(1− pi). (2.9)

⊲ Example 2.6. Let us consider the system given in Figure 2.6.

– inclusion-exclusion bounds:

(q1q2 + q4q5 + q1q3q5 + q2q3q5)− (q1q2q4q5 + q1q2q3q5 + q1q2q3q4

+ q1q3q4q5 + q2q3q4q5 + q1q2q3q5) ≤R(p)

≤ q1q2 + q4q5 + q1q3q5 + q2q3q5.

– minimal sets bounds:

(1− q1q2)(1− q4q5)(1− q1q3q5)(1− q2q3q4) ≤R(p)

≤ 1− (1− p1p4)(1− p2p5)(1− p1p3p5)(1− p2p4p5).

– min–max bounds:

max{(p1p4), (p2p5), (p1p3p5), (p2p4p5)} ≤ R(p)

≤min{(1− q1q2), (1− q4q5), (1− q1q3q5), (1− q2q3q4)}.

– trivial bounds:

p1p2p3p4p5 ≤R(p) ≤ 1− q1q2q3q4q5.

Chapter 3

Construction of Fault Trees

3.1 Basic ideas and definitions

We first give out the basic notions constituting the vocabulary of fault
trees before moving on to the stages of construction and treatment of fault
trees (FT).

Graphic
symbol

Name Meaning

OR

The output is generated if
at least one of the inputs
exists

The output is generated if
all the inputs existAND

Table 3.1 Fundamental operators

49

50 Fault Trees

Graphic
symbol

Name Meaning

Exclusive
OR

Priority or
sequential IF

IF

K-out-of-n
combination

Matrix

Delay

No

The output is generated if
one and only one input exists

The output is generated if
all the inputs exist, with an
order of appearance

The output is generated if
the input exists and if the
state C is verified

The output is generated if
k-out-of-n inputs exist
(1 ≤ k ≤ n)

The output is generated
for certain combinations
of inputs

The output is generated
with a delay ∆t over the
input that should be present
during ∆t

The output is generated
when the input is not
produced

Table 3.2 Special operators

Construction of Fault Trees 51

Graphic
symbol

Meaning

Rectangle
Top or intermediate event

Circle
Elementary basic event

Rhombus
Non-elementary basic event

Double rhombus
Event that is considered to be basic in
this step and will be analyzed later

House
Event considered as being normal

Table 3.3 Events

Graphic
symbol

Meaning

Identical transfer
The part of the tree that should
follow is not indicated, as it is identical
to the part tagged by the last symbol

Similar transfer
The part of the tree that should
follow is not indicated, as it is similar
to the part tagged by the last symbol

Identification of the transfer
Marks an identical or similar subtree
that is not otherwise resumed

Table 3.4 Transfer triangles

52 Fault Trees

3.1.1 Graphic symbols

The fault tree is represented by means of three types of graphic symbols:

– The logic gates or operators: fundamental operators, as given in Table 3.1
and special operators, as indicated in Table 3.2. This list is not exhaustive, as
other operators are not included here.

– The events, given in Table 3.3.

– The transfer triangles, as given in Table 3.4.

The transfer triangles are utilized to make the representation of the fault
tree more compact, by avoiding repetitions.

An operator is said to be primary when all its inputs are basic events.

Figure 3.1 Fault tree

Construction of Fault Trees 53

⊲ Example 3.1. Figure 3.1 gives an example of an FT. This FT is composed
of:

– Top event: A.

– Intermediate events: B, C, D, E and F .

– Basic events: 1, 2, 3, 4, 5, 6 and 7, where the events 5 and 6 are not
elementary.

– Events 2 and 3, which are repeated events.

– Operators “OR”: G1, G3, G4, G5 and G6. Operator “AND”: G2.

Among these operators, the operators G5 and G6 are primary, because all
their inputs are basic events.

An FT can have unique representation through the fundamental operators
(“AND” and “OR”). This representation is called the restrained form. We des-
ignate the set of basic events of the fault tree by E , that is, E = {e1, ..., eN}. The
numbers assigned to the basic events on the fault tree correspond to the indices
of the events, that is, the number i corresponds to the event ei ∈ E . We asso-
ciate an indicator variable with every event. If an FT, under its restrained form,
contains two complementary events, we say that it contains biform variables;
in the opposite case, we say that it contains solely the monoform variables.

The sub-FT corresponding to an intermediate event is the biggest FT having
this intermediate event as its top event.

The domain of a sub-FT corresponding to the intermediate event X is the
subset of E containing the basic events of the subtree X , denoted as D(X).

⊲ Example 3.2. All the variables associated with the FT in Figure 3.1 are
monoforms, because none of these events have their respective complementary
event.

The sub-FT corresponding to the intermediate event D is the FT containing
the operators G4, G6 and the basic events, which are inputs of these operators.
The domain of this sub-FT is: D(D) = {2,3,6,7}.

3.1.2 Use of the operators

We give examples for the use of operators regarding the FT-c and tem-
poral operators. As for the operators concerning the FT-nc, their equivalent
structures are given in Chapter 7.

54 Fault Trees

– OR operator: this operator describes the failure of a series system
(Figure 3.2).

Figure 3.2 Series system and the OR operator

– AND operator: this operator describes the failure of a parallel system
(Figure 3.3).

Figure 3.3 Parallel system of active redundancy and the AND operator

– Priority AND operator: this describes the failure of a parallel system with
passive redundancy (Figure 3.4). Unlike in the case of the preceding redun-
dancy, called the active redundancy, this passive redundancy involves the func-
tioning of component 1, while component 2 is on standby. When the component
1 breaks down, component 2 starts functioning instantaneously. Now, the fail-
ure of the system necessitates at first the failure of component 1 (it is agreed
that component 2 cannot break down, when it is on standby) and then the
failure of component 2 after having started functioning.

Construction of Fault Trees 55

Figure 3.4 Parallel system with passive redundancy and the priority AND
operator

– IF operator: from the logical viewpoint, that is, the Boolean equation, it
is equivalent to an ordinary AND operator. Nevertheless, it cannot be con-
fused with an ordinary AND operator as it plays quite a different role in
the construction of a fault tree. It is used for briefly presenting an event
without analyzing it through its cause events, either because this analysis is
not possible, at least at the required level of precision, or because it is too
time-consuming. To assist understanding of the function of this operator, we
can say that the input event A designates the state of the entity, and the
event C is an external event with respect to the space of this entity’s states,
and its occurrence is uniquely possible when the entity is situated within the
states designated by the event A. The probability p of the state C is a con-
ditional probability p = P (C|A), where A is the input event of the operator.
This operator is very much used in safety studies. For example, the explosion
of an industrial machine can result the death of the user if a splinter happens
to hit him. Here we make use of an IF operator because we cannot analyze the
trajectories of the machine’s fragments and the position of the user to be able
to predict whether he will be hit by the flying projectiles. The top event will
be “death of the user”, the input event will be “explosion of the machine” and
the state will be “a splinter hits the user”.

– DELAY operator: let us consider an electric system made up of a main
source of supply (1) and a secondary source of supply (2), as passive redundancy,
whose role consists of making up for the failures in the main source. The lifetime
of (1) is random, while that of (2) is fixed and is equal to τ (τ > 0). Thus, when
(1) breaks down, (2) comes into play. The system breaks down only when the
time taken for repairing (1) is greater than τ . In the opposite case, the system
does not break down. The failure of the system is represented by the DELAY
operator in Figure 3.5.

56 Fault Trees

Figure 3.5 DELAY operator

3.2 Formal definition and graphs

The representation of an FT by a standard graph offers many advantages
with regard to its construction and its treatment. There are numerous algorithms
dealing with the graphs, which can be applied almost directly to the FTs.

From the graphical viewpoint, we give the formal definition as follows:

An FT is a 1-graph, quasi strongly connected, without loop and without
circuit (Figure 3.6).

Let G = (X,U) be this graph, where X is the set of vertices and U the set
of edges.

Each event is represented by a vertex of G; the intermediate events are
identified by the corresponding operators. The arcs link the intermediate events
with the inputs of the corresponding operators.

OR Operator

AND Operator

Basic event

Figure 3.6 Fault tree graph

Construction of Fault Trees 57

Loop

Type Representation Comments

When an operator is
its own input

When an operator
(≠top) is not an input to
another operator

An operator without
input

An operator has for
input one of its
predecessors

An operator has for
input the same event
more than once

Pending

operator

Multi-graph

Circuit

Non-

connected

operator

Table 3.5 Configurations that are not admitted in an FT graph

The vertex of G, corresponding to the top event of the FT, is called the root
of an FT graph. From the definition of the FT itself, we deduce the configurations
that are not allowed in an FT graph. They are given in Table 3.5.

3.3 Stages of construction

The construction is a very vast task that requires a deep knowledge of the
system that is being studied. This implies the “horizontal” knowledge, of the
complex systems, we see here an overlapping of the most diverse disciplines
(physics, chemistry, electronics, automatic control engineering, computer sci-
ence, etc.) and “vertical” knowledge, because the fidelity of the representation
of the “undesirable” event, defined at the level of the system through FT,
depends on the precise definition of the logical links existing among the differ-
ent components of this system and its failure modes.

Thus, the construction of an FT should be the fruit of collaboration among
the different specialists, who intervene in the realization of the system, from
the designer to the operator entrusted with the running of the system.

58 Fault Trees

The construction starts off by defining the undesirable event, still called the
top event. This event is resolved into “intermediate events”. The intermediate
events are in turn developed until such time as any new resolving becomes
impossible or also judged as being useless; this last possibility then implies the
knowledge of quantitative data such as the probabilities of final events, called
the basic events.

Subsequently, we are going to present a general approach for the systematic
construction of the FTs. This consists of three phases: preliminary analysis,
specifications and the construction.

3.3.1 Preliminary analysis

(a) Decomposition of the system: this involves a physical decomposition of
the system. The criteria that are generally used are as follows:

– Criteria of technology: for example, a microprocessor that controls an
electric circuit will be separately taken into account.

– Criteria of maintenance: for example, when a part of the system is sys-
tematically replaced in the wake of a failure.

– Criteria of data on the study made: for example, when for a part of
the system, the data are adequate or a particular study has already been
carried out.

It is also possible to envisage other criteria.

(b) Identification of the components: this involves the identification of all
the devices that are represented at the last resolving level of the system; within
the framework of our analysis, we call them “components”.

(c) Definition of failure modes of the components: for each component, the
possible failure modes should be defined; that is to say, the different manners
manifested by the failure.

(d) Reconstitution of the system through the components: it is necessary to
reconstitute the system into functional mode by climbing back the levels of
decomposition.

Remark 3.1. More details of all these information are provided in the FMEA
(Fault Modes and Effects Analysis) tables (see for example [VIL 88]).

Construction of Fault Trees 59

3.3.2 Specifications

(a) Phases: we refer to the different working modes of a system as phases.
Almost all the systems have many working modes. For example, in the case of
an aircraft in flight, we have at least three phases: takeoff, flight at altitude and
landing.

(b) Boundary conditions: these are concerned with the interactions of the
system with its environment.

(c) Specific hypotheses: these are concerned with the conventions on the
system itself.

(d) Initial conditions: these refer to the hypotheses in connection with the
commencement of the phase under study.

3.3.3 Construction

(a) Defining the undesirable event: the undesirable event (top event) to be
studied must be defined without ambiguity and in a coherent manner with the
preceding specifications.

(b) Resolution of the events: this deals with the resolving of the undesirable
event into its immediate cause events and the resolving of the latter into their
own cause-events, etc.

(c) End of construction: construction is over when all the non-resolved cause
events are failure modes of the components or of the environment.

During the construction, it should be remembered that the FT is a purely
deductive tool, hence considerable caution is called for when proceeding from
the general to the particular. The general scheme of proceeding is based on three
types of failures (in a more general manner, we speak of “faults”): primary fault,
secondary fault and control defect. For example, at the component level, the
primary fault is a failure mode and involves an elementary basic event (circle),
the secondary fault a non-elementary basic event (rhombus) and the control
fault an intermediate event.

The secondary fault is characterized by an abnormal functioning of the
entity. The operating factors comprise amplitude, frequency and duration. The
variables of the environment of the system are of thermal, mechanical, electrical,
chemical, magnetic and electromagnetic nature.

60 Fault Trees

When resolving an intermediate event, it is imperative that all of its causes
be defined before their analysis is taken up. Each operator input should have its
own text, and there shall be no two operators with direct connection between
them.

3.4 Example of construction

With a view to capture the approach that is elaborated above in a better
manner, we construct a small FT.

Let us consider the hydraulic system given below (Figure 3.7):

Figure 3.7 Hydraulic system

This is designed for transporting water from the point (1) to the areas of its
consumptions (2) and (3). It contains the valves V1, V2 and V3, the centrifugal
pump P0, and the adjacent pipes with hydraulic components.

3.4.1 Preliminary analysis

Decomposition of the system:
Level 1:

Level 2:

Construction of Fault Trees 61

Block 10 contains the valve, pump and the adjacent pipes.

Each of the blocks 20 and 30 contains one valve and two adjacent pipes.

The system is represented as follows:

Identification of the components:

The components are: 11,12,13,14,15; 21,22,23; 31,32,33.

Definition of the failure modes of the components:

Valve (12,22,32)
MD1: opened blocked
MD2: closed blocked
MD3: ill-timed closure
MD4: ill-timed opening

Pump (P0)
MD1: out of service

Pipe
MD1: clogging
MD2: leakage
MD3: crack

62 Fault Trees

Reconstitution of the system through its components:

3.4.2 Specifications

– Phase:

In normal functioning

– Boundary conditions:

– Availability of water at the point 1,

No other interaction with regard to the environment will be considered
(i.e. cracking of a pipe due to an external cause, etc.)

– Specific hypotheses:

The pipes will not be taken into account in this study.

– Initial conditions:

The system functions normally at the beginning of the working phase
with a flow of 100%.

3.4.3 Construction

Definition of the undesirable event:

“Total stopping of the flow”

(i.e. the event “not starting” would not adhere to the preceding specifica-
tions).

The construction of the tree is presented in Figure 3.8.

Construction of Fault Trees 63

3.5 Automatic construction

In the studies on operational safety, where the FT intervenes, its construction
is the most important task, as it conditions the other stages, that is, the
qualitative analysis and the evaluation. It is also the most time-consuming and
the most difficult to perform. These reasons have, from the beginning, led the
analysts to conceive of systematic techniques of construction with a view to
automate this stage.

Two sets of techniques have been developed in this regard: one based on
the decision tables and the other on the graphs, depending on the type of
representation of the system being studied.

The first consists of modeling the components of the system through the
decision tables that translates the relationships among the inputs, the inter-
nal states (failure modes and the different operational configurations) and the
outputs of each component. This method, called Cat (Computer-Aided Trees
[APO 76], [SAL 80]), is adapted for the discrete systems, the easily discretizable
ones, such as the electric systems.

Total stoppage of

flow at the outlet

No flow through

the point 2

Ill-timed closure

V2

Pump out of

service

No flow at the

inlet V2

No flow at the

inlet V3

Ill-timed closure

V2

Ill-timed closure

V1

No flow through

the point 2

Figure 3.8 Fault tree of the hydraulic system

64 Fault Trees

⊲ Example 3.3. In the case of the preceding hydraulic system, a model of pipe
through a decision table is:

Input and output Failure mode Normal mode

0: zero flow 1: clogging 0: normal functioning

1: normal flow 2: leakage

The decision table is as shown below:

Perfect pipe:

Inlet Outlet

0 0

1 1

Real pipe (with the failure modes):

Input Internal mode Output

0 0 0

0 1 0

0 2 0

1 0 1

1 1 0

1 2 0

The decision table for the real pipe can be written under the reduced form
as follows:

Input Internal mode Output

0 X 0

1 0 1

1 1 0

1 2 0

X means “for any internal mode”.

Starting from these decision tables, the topology of the system and the defi-
nition of the top event, the Cat program constructs the FT automatically. The
topology of the system is described by a directed graph, and the flux is defined
once for all. If, following a failure, the flux is reversed, this cannot be taken into
account by the model, and consequently the results will be false. The same prob-
lem arises when the vertex considered for the top event is an intermediate vertex.
These disadvantages are discussed in detail in [CAR 86], where a novel method
Cafts (Computer-aided Fault-Tree Synthesis) is proposed for offsetting the prob-
lems encountered in Cat. It replaces the decision tables by the “logical” equations,

Construction of Fault Trees 65

which renders the model much more flexible. Unlike in the case of Cat, Cafts is
not entirely automatized but is interactive with the user.

A second set of techniques that are entirely based on modeling through the
directed graphs is proposed in [LAP 77] and [LAP 79]. The vertices of the graph
represent the variables of the system and certain types of failures (i.e. flow,
temperature, pressure, etc.) and the arcs represent the relationships among the
variables. If a change in a variable V1 brings about a change in another variable
V2, then these two variables (vertices of the graph) are connected by a weighted
edge having a value h, i.e.

h

V1 −→ V2

If ∆V1
∼= ∆V2, then h = 1, if ∆V1 ≫ ∆V2, then the edge (h = 0) is cancelled,

and if ∆V1 ≪ ∆V2, then h = 10. If the variations are in opposite directions,
then h will be negative.

Starting from this representation and from the definition of the top event
that takes place relatively at a vertex of the graph, the software Fts [LAP 76]
automatically constructs the FT.

The advantages of an automatic construction are evident:

– It allows a systematic analysis, which guarantees a very high degree of
exhaustivity of the construction.

– Once the system is modeled by a graph, a decision table, or similar param-
eters, the construction of more FTs dealing with the same system requires
practically no additional cost.

– It favors a considerable reduction in certain types of studies carried out
mainly through FT, such as the studies of safety.

The disadvantages are as follows:

– At present, there are no general models for dealing with the majority types
of existing systems.

– Large simplifications are done a priori for the systems of continuous state
spaces and the dynamic systems.

– There are risks of systematic errors.

In [AND 80], there is a noteworthy study that focuses on the difficulties
existing during the automatic construction of the FTs.

This page intentionally left blank

Chapter 4

Minimal Sets

4.1 Introduction

When the construction of an FT is over, it can be analyzed from an algebraic
point of view (this analysis is also called logical or even qualitative analysis);
that is, we have to determine the structure function (or indicator function)
of the FT concerning the top event, or, generally, any intermediate event. The
determination of the structure function involves the study of minimal sets, that
is, minimal cut sets and minimal path sets.

It has to be noted that the structure function is the indicator function of
the top event of the FT; that is, it takes up the value 1 for the occurrence of
the top event, and the value 0 for its non-occurrence. In a binary system, the
top event of the FT translates the failure of the system, and consequently the
structure function takes up the value 1 when the system has broken down. This
is contrary to the convention in Chapter 2.

The construction and reduction of the structure function of the FT is the
most significant in this analysis. The structure function of an FT will be dual in
comparison with the FT given in Chapter 2, with an inversion of the convention
adopted, i.e.:

xi =

{

1, if the event i occurs (failure)

0, otherwise (functioning)

For all values of i ∈ E :

Same convention for the structure function:

ϕ(x) = ϕ(x1, . . . , xn) =

{

1, if the top event occurs

0, otherwise

67

68 Fault Trees

We admit that the FT contains:

– uniquely the operators AND and OR, and

– the monoform variables.

In other words, the FT is coherent.

A basic event is said to be relevant or essential if its indicator variable
appears in the minimal form of ϕ(x). In the opposite case, it is said to be
irrelevant or inessential.

We give here the definitions of the minimal sets adapted in the context of
the FTs:

Path: a subset of events, whose simultaneous non-existence involves the non-
occurrence of the top event, and which is independent of the occurrence
or non-occurrence of the other events of the FT.

Minimal path: a path that does not contain another path.

Cut set: a subset of events, whose simultaneous existence involves the occur-
rence of the top event, and which is independent of the occurrence or
non-occurrence of the other events of the FT.

Minimal cut set: a cut set that does not contain another cut set.

4.2 Methods of study

4.2.1 Direct methods

We can directly construct on the FT, its structure function and give its
minimal sets by means of the latter. The approach adopted here consists of:

– the construction of ϕ(x),

– its development,

– its reduction for obtaining the minimal form.

Each term of the minimal form represents a minimal cut set of the FT.

The construction of ϕ(x) is based on the following relationships:

Minimal Sets 69

Let the operator be E(A1, . . . ,As), where E is the output event, and
A1, . . . ,As are the input events of the operator.

– for an OR operator, we have: E = A1 ∪ . . .∪As,

– for an AND operator, we have: E = A1 ∩ . . .∩As.

For the indicator variables we have:

– OR operator: yE = x1+̇ · · · +̇xs,

– AND operator: yE = x1 · · ·xs.

where yE is the indicator variable of the intermediate event E.

The minimal form is obtained by the following reductions:

xn = x,

nx = x, (n ∈ N
∗),

x +̇xy = x.

⊲ Example 4.1. Let us consider the FT CH (Figure 4.1).

Figure 4.1 FT CH

70 Fault Trees

The indices for the operators of this FT correspond to the indices of the
indicator variables yi of the intermediate events.

Construction of ϕ(x):

ϕ(x) = y1 = y2y3 = (x1+̇y4)(x2 +̇y5) = (x1 +̇x3 +̇x4)(x2 +̇x3 +̇x4).

Development:

ϕ(x) = x1x2 +̇x1x3 +̇x1x4 +̇x3x2 +̇x3x3 +̇x3x4 +̇x4x2 +̇x4x3 +̇x4x4.

Reduction:

ϕ(x) = x1x2 +̇x3 +̇x4.

The minimal cut sets are:

K1 = {3}, K2 = {4}, K3 = {1,2}.

The minimal paths are obtained in the same way as minimal cut sets, but
by proceeding with the dual FT.

The dual fault tree is obtained from the fault tree, by replacing the AND
gates with the OR gates, the OR gates with the AND gates, and the events
with their complementary events.

⊲ Example 4.2. Let us consider the dual FT of the FT CH in Figure 4.2.

Figure 4.2 Dual FT of the FT CH

Minimal Sets 71

We have:

ϕ(x) = y1 = y2 +̇y3 = x1x3x4 +̇x2x3x4.

The above form is already minimal. Hence the minimal paths are:

C1 = {1,3,4} and C2 = {2,3,4}

Within the framework of the coherent FTs, we have two types of methods.
These are descending methods, proceeding from the top operator and descend-
ing the FT by decomposing the operators, and ascending methods, which pro-
ceed in the opposite direction.

4.2.2 Descending methods

We present the algorithm Mocus, which is the oldest and the most used.
This algorithm was proposed by Fussell and Vesely [FUS 72]. It consists of
initializing a matrix B through the top operator and in resolving it into its
inputs. When the input itself happens to be an operator, it will also be resolved
in the succeeding stage and so on, until such time that all the elements of the
matrix B are basic events. Each row of the matrix B obtained in the last stage
represents a cut set. The reduction of these cut sets provides us the list of the
minimal cut sets in the FT.

The decomposition of the operators in the matrix B is done as follows.

Algorithm 4.1. Mocus

0. Initialize the first element of a matrix with the top event operator.

1. The operator Gi(A1, . . . ,As) occupying the place

(i, j) of the matrix Bk is to be resolved at the stage k.

2. If it is an AND operator, we will replace it with its inputs

in the row. The first input takes the place

of the operator, and the subsequent inputs the places

(i, j + 1), (i, j + 2), . . . , (i, j + s− 1).

3. If it is an OR operator, we will replace it with its inputs

in the column. The first input takes the place of the operator,

and the subsequent inputs the places

(i + 1, j), (i + 2, j), . . . , (i + s, j).

In addition, each element bi,m, m = 1, . . . , s, m �= i,

will be repeated (Figure 4.3). The blocks B1 and B2 remain unaltered.

4. If there is another operator in B, then continue as per 1.

End.

72 Fault Trees

OR AND

Figure 4.3 Resolving the operators in the MOCUS algorithm

⊲ Example 4.3. Application of the Mocus algorithm to the FT CH. Cut sets:

B1 = [G1], B2 = [G2,G3], B3 =

[

1 G3

G4 G3

]

,

B4 =

1 2

1 G5

G4 G3

, B5 =

1 2

1 3

1 4

G4 G3

, B6 =

1 2

1 3

1 4

3 G3

4 G3

,

B7 =

1 2

1 3

1 4

3 2

3 G5

4 G3

, B8 =

1 2

1 3

1 4

3 2

3 3

3 4

4 2

4 G5

, B9 =

1 2

1 3

1 4

3 2

3 3

3 4

4 2

4 3

4 4

.

The operator that is analyzed at each stage is underlined.

When the matrix B9, is obtained, the algorithm is completed as all its
elements are basic events. Each line of this matrix corresponds to a cut set.

Minimal Sets 73

We find here the development de ϕ given in the preceding section. After
reducing these cut sets, we obtain the minimal cut sets given in the same
section.

The paths will be obtained by applying the same algorithm on the dual FT.

4.2.3 Ascending methods

The ascending methods proceed from the basic events by climbing up the
fault tree up to the top event. At each stage, the obtained cut sets (or the paths)
are reduced. Thus, we also obtain the minimal cut sets of all the intermediate
events.

First, we proceed from the primary operators by replacing the intermediate
events corresponding to these operators with the Boolean expression of its
inputs. Then, we proceed again in the same manner from the operators that
have become primary: obtaining and reducing from their Boolean expressions.
The procedure is over once the Boolean expression that is reduced from the top
event is obtained.

⊲ Example 4.4.

Stage 1: the primary operators are G4 and G5. We replace them with their
inputs.

y4 = x3 +̇x4 and y5 = x3 +̇x4.

Stage 2: the operators G2 and G3 have become primary. Now,

y2 = x1 +̇x3 +̇x4, there is no reduction,

y3 = x2 +̇x3 +̇x4, there is no reduction.

Stage 3: the operator G1 has become primary. Now,

y1 = (x1+̇x3+̇x4)(x2+̇x3+̇x4)

= x1x2 +̇x1x3 +̇x1x4 +̇x2x3 +̇x3x3 +̇x3x4 +̇x2x4 +̇x3x4 +̇x4x4.

And after reduction,

ϕ(x) = y1 = x1x2 +̇x3 +̇x4.

The Miscup algorithm, proposed by Chatterjee [CHA 74], is the first of
this type. The development of big FTs, having AND operators near the top,
yield quite a considerable number of Boolean terms. In order to avoid this,
Nakashima & Hatori [NAK 79] proposed a very interesting algorithm, called
Anchek.

74 Fault Trees

4.3 Reduction

The reduction of the obtained cut sets and paths is the most time-consuming
task. For a given number n of cut sets, n!/[2(n−2)!] operations of comparison at
the maximum have to be performed. This number increases when the number
of cut sets is considerable.

The Mocus algorithm, applied to an FT not containing any repeated event,
directly yields the minimal cut sets without reduction.

We have shown [LIM 86] that the cut sets not containing any repeated event
are minimal. The reduction is then solely limited to the cut sets containing
repeated events.

A reduction algorithm is as follows.

Algorithm 4.2. LZ

1. Obtain the cut sets K′ (for example: Mocus);

If the FT does not contain repeated event, then: K =K′; end.

If no, continue the stage 2;

2. Partition K′ into two subsets K′

1 and K′

2

such that the former comprises of all the cut sets

containing at least one repeat event;

3. Reduce the cut sets in K′

1, let K1 be the reduced set;

4. K =K1 ∪K′

2;

End.

K is the set of minimal cut sets of the FT.

⊲ Example 4.5. Consider the FT in Figure 4.4.

The Mocus algorithm generates the following 9 cut sets:

{1},{2},{3},{6},{8},{4,6},{4,7},{5,7},{5,6}.

For reducing these cut sets, 36 comparisons should be made. By restricting
oneself solely to the cut sets containing the repeated event 6, that is, the cut
sets {6},{4,6} and {5,6}, (the other cut sets already being minimal), we have
to carry out 3 comparisons. The minimal cut sets are:

{1},{2},{3},{6},{8},{4,7},{5,7}.

Minimal Sets 75

Figure 4.4 FT for the qualitative analysis

4.4 Other algorithms for searching the cut sets

Many other algorithms have been developed for obtaining the minimal cut
sets of FTs. The majority of these algorithms have tried to improve upon the
Mocus algorithm by taking into consideration the repeated events. Among the
most important of such algorithms, we have the algorithm of Bengiamin et al.
[BEN 76] and the algorithm of Fatram [RAS 78]. In the following sections, we
will be describing Fatram with a view to illustrate the inclusion of the repeated
events when the cut sets are constructed.

Algorithm 4.3. Fatram

1. Reduce FT by deleting all the primary OR operators

on replacing them with basic events.

2. Find all the minimal cut sets (i.e. through the application

of the Mocus algorithm).

3. Treat each repeated event in the inputs of the OR operators.

For each repeated event:

a. The repeated event replaces all the OR operators

that are not yet resolved and for which this event

is an input;

b. These new sets are added in the collection;

c. This event is eliminated from the OR operators,

in which it appears;

d. Eliminate all the non-minimal cut sets;

4. Resolve the remaining OR operators;

all the sets are minimal cut sets.

End.

76 Fault Trees

⊲ Example 4.6. Application of the Fatram algorithm on the FT of Figure 4.4.

Stages 1 and 2: K0 = {{1},{2},{3},{G5,G6},{G7}}.

Stage 3: repeated event 6

a. {{6},{G5,6}};

b. K1 =K0∪{{6},{G5,6}} = {{1},{2},{3},{G5,G6},{G7},{6},{G5,6}}

c and d. K2 = {{1},{2},{3},{G5,G6},{G7},{6}}.

Stage 4: K = {{1},{2},{3},{6},{8},{4,7},{5,7}}.

Remark 4.1. The Fatram algorithm, as mentioned above, is a more compact,
new version of the original algorithm [RAS 78]. As well as the algorithm of
Bengiamin et al., it can bring about an improvement over the Mocus algorithm,
only in the case of the FT having primary OR operators. In the opposite case,
they do not offer any improvement in terms of execution time.

4.5 Inversion of minimal cut sets

The problem of inversion consists of obtaining the minimal paths (or the
minimal cut sets) from the minimal cut sets (or from the minimal paths),
respectively. This operation is useful from the practical viewpoint, as it allows
us to obtain a type of minimal set from the preceding type, without again
having to take recourse to the FT.

The existing algorithms are based on the De Morgan equations:

xy = x +̇y,

x +̇y = x · y.

⊲ Example 4.7. Let K1 = {1,2}, K2 = {3} and K3 = {4} be the minimal cut
sets of the FT CH (Figure 4.1). The structure function ϕ is written as:

ϕ(x) = x1x2 +̇x3 +̇x4.

On applying the equalities of De Morgan, we get:

ϕ(x) = (x1 +̇x2)x3x4.

Minimal Sets 77

By development (here, there is no reduction), we get:

ϕ(x) = x1x3x4 +̇x2x3x4.

This gives rise to the minimal paths of the FT:

C1 = {1,3,4}, C2 = {2,3,4}.

The algorithm SW [SHI 85] is based on an approach proposed initially in
[LOC 78].

Another algorithm, called “Inmin”, is proposed for the inversion of the min-
imal sets. For an FT T (E), with E = {e1, . . . , eN}, K is the set of its minimal
cut sets (given), and C the set of its minimal paths (to be calculated). Let S
be the set of all the subsets of E , sequenced as per the lexicographic order. In
addition, let: K∗ = {K = E \H |H ∈K}.

Algorithm 4.4. Inmin ([HEI 83])

1. Calculate K∗;

2. Put I = ∅ et C = ∅;

3. If (I �∈ J ,∀J ∈K) and (L �∈ I,∀L ∈ C), then C := C ∪ I;

4. If I �= E , then replace I by its successor in S, and

continue the stage 3;

End.

If we permute K and C in the preceding algorithm, we obtain the minimal
cut sets from the minimal paths.

⊲ Example 4.8. Let K = {{1,2},{1,3}}. The Inmin algorithm gives:

1. K∗ = {{3},{2}};

2. I = ∅ and C = ∅;

3. for I = {1} there is no set J of K∗ containing I :

C = {{1}};

for I = {2,3} there is no set L of C contained in I :

C = {{1},{2,3}}.

Here, C is the final set of minimal paths, because for all the other elements
I of S , C does not change.

78 Fault Trees

4.6 Complexity of the search for minimal cut sets

The time for the execution of an algorithm depends on the size of the
problem, machine, programming language, etc. To use the abstraction of the
machine, in general the time of execution is measured as the number of ele-
mentary operations that have to be carried out. In fact, the time of execution
is described according to the problem size, perhaps the data size, the number
of towns for the problem of the salesman, the order of a square matrix for the
algorithm for calculating its inverse, the number of vertices in a graph, etc. The
increase in the time of calculation according to the data for a type of problem
can be characterized as being polynomial, exponential or more. This increase
is a measure of the algorithmic complexity.

An exponential increase or more renders the large-sized problems untreatable.
Thecost of analgorithm in termsof thenumberof elementaryoperations is defined
by the maximum of necessary operations over all the data of the same size.

In general, for the study of the algorithmic complexity, we are not interested
in the exact number of the elementary operations but in the order of the size
only described by the Landau notation. In particular, with regard to O(g),
where g describes the size of the problem’s data, a function f is said to be in
O(g) in the neighborhood V of x, if |f(x)| ≤ C|g(x)|, for all x in V .

Three classes of problems are of particular interest from the viewpoint of
their algorithmic complexity: the class P , the class NP and the class NP -
complete. The class P includes all the problems resolvable by a determinist
Turing machine in polynomial time; that is to say, the time of execution of a
problem of this class, whose data size is N , is of the order O(Na), where a is
a positive constant.

The algorithms concerning the problems of the class P are said to be effi-
cient. The NP class includes the problems resolvable by a non-determinist
Turing machine in polynomial time. In a more precise manner, NP is the class
of decision problems, from which one can verify that an instance is correct in
a polynomial time. The NP -complete class is a subclass of the NP class. Any
problem of the NP class can be transformed in a polynomial time into a prob-
lem of the class NP -complete. This class includes the problems that are very
difficult to resolve, and no algorithm of polynomial order has been found for
any of these problems.

The possibility of finding the polynomial algorithms for the NP -hard prob-
lem is an open problem. When a polynomial algorithm for one of the prob-
lems is obtained, the polynomial algorithms for all the other problems are also
obtained. For example, the saleman problem is a NP -complete problem. As for
the search for the minimal cut sets of the FT, this problem is of the NP class
[ROS 75], [ODE 95].

Chapter 5

Probabilistic Assessment

5.1 The problem of assessment

The probabilistic assessment of an FT consists of calculating the probability
of a top event starting from the probabilities of the basic events. This can be
done directly when the FT does not possess any repeated event. This is carried
out with a simple approach, which consists of climbing back up the FT by
starting from its primary operators up to the top event.

When the FT possesses repeated events, the calculation as mentioned above
is no longer applicable (it yields over-evaluated results). For exact calculation in
this case, we should pass through minimal sets of the FT and then use one of the
methods presented in Chapter 2; that is, the inclusion-exclusion development
or the disjoint products or factorization. In Chapter 9, we will give a more
recent method based on binary decision diagrams.

Because of the high reliability of the majority of the systems, the inclusion-
exclusion development is the most commonly used, as the second term only
yields highly satisfactory results.

Two families of problems, from the viewpoint of the probabilistic assessment,
are usually raised.

Problem 1: non-repairable systems.

For these systems, we have: R(t) = A(t) = 1−PS(t), for all t ≥ 0. The second
equality is valid in the case of binary systems. In the opposite case, we have
to replace PS(t) with

∑r
i=1 PSi

(t) where Si, i = 1, ..., r indicates the r failure
modes of the system.

79

80 Fault Trees

The data are {λi(t)}i∈A, {qj}j∈B , {γk}k∈C , {A,B,C} is a partition of E ,
where t → λi(t), t ≥ 0, i ∈ A is the function of the occurrence rate of the basic
event i of the FT (the failure rate of a component of the system),

qj , i ∈ B is the probability of a basic event over a time interval [0, θ], with
θ being the duration of the mission,

γk, k ∈ C is the probability of a basic event, expressing the stress failure or
the probability of the condition in an IF operator.

Whenwehavemixed data, a special attention has to be paid to the homogenity
of the assessment. The calculation has to be carried out for the time θ. On the
other hand, if A = E , then the calculation can be done for all t ≥ 0.

The result gives the probability of the top event to occur over [0, t], PS(t)

Problem 2: repairable systems.

For the repairable systems, we have: R(t) ≤ A(t) = 1 − PS(t). It has to be
noted that in the case of these systems, we cannot assess the reliability by means
of the FT, thus constituting a considerable limitation of the FTs in comparison
with the random processes.

Nevertheless, we can calculate an approximate value of the reliability by
defining a pseudo-rate of the occurrence of basic events (cf. section 5.3.3).

The data are {λi(t), µi(t)}i∈A, {qj}j∈B , {γk}k∈C , {A,B,C} is a partition
of E , where t → µi(t), t ≥ 0, i ∈ A, is the function of the rate of disappearance
(of repair) of the basic event i (of the component).

The result is the probability for the existence of the top event at time t ≥ 0,
i.e. PS(t).

5.2 Direct methods

When the FT does not contain any repeated event, we can obtain the prob-
ability of the top event through direct calculation over the FT, without having
to go in for minimal sets or for other techniques.

For this, it is sufficient to start from the primary operators and climb up the
FT by calculating the probabilities of the intermediate events, whose respec-
tive operators have known or have already calculated probability inputs. The
procedure continues until the top event is reached.

The calculation at the level of each operator is done with the help of the
following formulae.

Probabilistic Assessment 81

5.2.1 AND operator

Inputs A and B, output E; equation: E = A∩B.

– A and B dependent:

P (E) = P (A)P (B|A) = P (B)P (A|B).

– A and B independent:

P (E) = P (A)P (B).

– A and B mutually exclusive:

P (E) = 0.

– A and B dependent and A ⊂B:

P (E) = P (A).

When the input data are λ, τ = 1/µ, then the stationary λ and τ of E are
given by the following relationships:

λE =
λAλB(τA + τB)

1 + λAτB + λBτB
and τE =

(
1

τA
+

1

τB

)−1

For the non-repairable case, we have:

λE = min{λA, λB}

The probabilities P (A) and P (B) are linked with (λA, τA) and (λB , τB)
through the relationships given in Chapter 1, section 1.2.4.

5.2.2 OR operator

Inputs A and B, output E; equation: E = A∪B.

– A and B dependent:

P (E) = P (A) + P (B)− P (A∩B) = P (A) + P (B)− P (A)P (B|A).

82 Fault Trees

– A and B independent:

P (E) = P (A) + P (B)− P (A)P (B).

– A and B mutually exclusive:

P (E) = P (A) + P (B).

– A and B dependent and A ⊂B:

P (E) = P (B).

When the input data are (λ, τ = 1/µ), the stationary λ and τ of E are given
by the following relationships:

λE = λA + λB (for the repairable and non-repairable case)

and

τE =
λAτA + λBτB + λBτAτB

λA + λB
.

The formulae given above, concerning AND as well as OR operators, can
be easily extended to the operators having more than two inputs [LIE 75].

5.2.3 Exclusive OR operator

Inputs A and B, output E; equation: E = (A∩B)∪ (A∩B).

– A and B dependent:

P (E) = P (A) + P (B)− 2P (A∩B).

– A and B independent:

P (E) = P (A) + P (B)− 2P (A)P (B).

– A and B mutually exclusive:

P (E) = P (A) + P (B).

– A and B dependent and A ⊂B:

P (E) = P (B)− P (A).

– λE , µE stationary:

λE
∼= λA + λB and µE

∼=
λA + λB

λA

µA
+ λB

µB

.

Probabilistic Assessment 83

5.2.4 k-out-of-n operator

Inputs A1,A2, ...,An, output E. The output is generated, when at least k
inputs among n (1 ≤ k ≤ n) are generated. If P (A1) = P (A2) = ... = P (An) = q,
then:

P (E) =

n∑

i=k

Ci
nqi(1− q)n−i.

5.2.5 Priority-AND operator

Inputs A and B, output E. The occurrence of the event E is obtained if
we have the occurrence of event A and then the occurrence of event B; that
is, the existence of the two events A and B are not sufficient for causing the
occurrence of the output event E [FUSS 76].

– A and B independent:

P (E) =
λB

λA + λB
− exp(−λAt) +

λA

λA + λB
exp[−(λA + λB)t].

If λit << 1, for i = A,B, we can write:

P (E) ∼=
1

2
λAλBt2 − 2λAt.

The rate of stationary occurrence λE and the rate of stationary disappear-
ance µE are given by:

λE
∼= λAλB/µA and µE

∼= µA + µB .

5.2.6 IF operator

Let there be an IF operator having as input the event A, then the condition
C of probability γ and as output the event E. If A and C are independent,
then:

P (E) = γ × P (A),

and

λE = γ × λA.

84 Fault Trees

5.3 Methods of minimal sets

Once the minimal sets are obtained, the problem is the same for any model:
block diagram of reliability, FT, etc.

Thus, we will be using the formulation given in section 2.5; that is,
K = {K1,K2, ...,Kk} the set of minimal cut sets, and C = {C1,C2, ...,Cc} the
set of the minimal paths of the FT.

Let us note by PS = Q(q) the probability of the top event. With
q = (q1, ...,qn) the probabilities of the basic events of the FT, that is:
P (Xi = 1) = qi and P (Xi = 0) = pi, i = 1, ..., n, (pi + qi = 1), and p = (p1, ..., pn)
the probabilities of the supplementary basic events.

5.3.1 Inclusion-exclusion development

We can write:

PS = P{K1 ∪K2 ∪ ...∪Kk}

and

PS = 1− P{C1 ∪C2 ∪ ...∪Cc}.

⊲ Example 5.1. Evaluation of the FT CH (see section 4.2) from the minimal
sets.

– Evaluation from the minimal cut sets:

The minimal cut sets are:

K1 = {3}, K2 = {4}, K3 = {1,2},

now

PS = P{K1 ∪K2 ∪K3} = P{K1}+ P{K2}+ P{K3}

−(P{K1 ∩K2}+ P{K1 ∩K3}+ P{K2 ∩K3}) + P{K1 ∩K2 ∩K3}

= P{X3 = 1}+ P{X4 = 1}+ P{X1 = 1,X2 = 1} − (P{X3 = 1,X4 = 1}

+P{X3 = 1,X1 = 1,X2 = 1}+ P{X4 = 1,X1 = 1,X2 = 1})

+P{X3 = 1,X4 = 1,X1 = 1,X2 = 1}

Probabilistic Assessment 85

= P{X3 = 1}+ P{X4 = 1}+ P{X1 = 1}P{X2 = 1}

−(P{X3 = 1}P{X4 = 1}+ P{X3 = 1}P{X1 = 1}P{X2 = 1}

+P{X4 = 1}P{X1 = 1}P{X2 = 1})

+P{X3 = 1}P{X4 = 1}P{X1 = 1}P{X2 = 1}

= q3 + q4 + q1q2 − q3q4 − q3q1q2 − q4q1q2 + q3q4q1q2.

– Evaluation from the minimal paths:

The minimal paths are:

C1 = {1,3,4}, C2 = {2,3,4},

now

PS = 1− P{C1 ∪C2}

= 1− (P{C1}+ P{C2} − P{C1 ∩C2})

= 1− (P{X1 = 0,X3 = 0,X4 = 0}+ P{X2 = 0,X3 = 0,X4 = 0}

−P{X1 = 0,X2 = 0,X3 = 0,X4 = 0})

= 1− (P{X1 = 0}P{X3 = 0}P{X4 = 0}+ P{X2 = 0}P{X3 = 0}P{X4 = 0}

−P{X1 = 0}P{X2 = 0}P{X3 = 0}P{X4 = 0})

= 1− (p1p3p4 + p2p3p4 − p1p2p3p4).

5.3.2 Disjoint products

As we have already seen in Chapter 2, this method consists of starting from
the minimal sets and in transforming the structure function of the FT into
the sum of disjoint products. The most efficient method is that developed by
Abraham [ABR 79], and its principle, for the minimal cut sets, is as follows.

Let:

E = K1 ∪K2 ∪ ...∪Kn = K1 ∪K1K2 ∪ ...∪K1...Kn−1Kn.

86 Fault Trees

Algorithm 5.1. Abraham’s algorithm

1. Put L0 = K1 and M0 = 1;

2. Make for i = 1, ..., n− 1;

Mi = Mi−1Ki

Li = MiKi+1

End;

3. E = L0 ∪L1 ∪ ...∪Ln;

End.

In the same example, we have, by means of the minimal cut sets:

L0 = 3; M0 = 1;

i = 1: M1 = M0K1 = 3

L1 = M1K2 = 3 4

i = 2: M2 = M1K2 = 3 4

L2 = M2K3 = 3 4 1 2

E = L0 ∪L1 ∪L2 = 3∪ 3 4∪ 3 4 1 2.

The detailed algorithm is given in [ABR 79].

5.3.3 Kitt method

Contrary to the stationary probabilistic assessments (constant probabilities
for the basic events) the Kitt (Kinetic tree theory) method consists of a cou-
pling of the FTs and the stochastic processes (see [VES 70]). Each basic event
is described by an underlying stochastic process, and its probability is given
depending on time. Proceeding from here, and by means of the minimal sets,
the probability of the top event is evaluated in terms of time. Other magnitudes
are also calculated, such as the average number of occurrences of an event over
a time interval.

Kitt modelization is as follows: for the basic events, we define the following
two quantities:

λ̂(t)∆t + o(∆t): the probability of the basic event occurring in the time
interval (t, t + ∆t], knowing that it does not exist at the time t.

Probabilistic Assessment 87

µ̂(t)∆t + o(∆t): the probability of the basic event disappearing in the time
interval (t, t + ∆t], knowing that it exists at the time t.

The expected number of occurrences of the event i in the time interval (t, t′]
is:

ni(t, t
′) =

∫ t′

t

λ̂i(u)du.

Remark 5.1. The λ̂(t) and µ̂(t) as defined above, usually called pseudo-failure
and pseudo-repair rates, are different from those defined and used until now;
that is, the λ(t)∆t + o(∆t) was defined as the probability of the basic event in
the time interval (t, t + ∆t], knowing that it does not exist from the instant to

0 to t. Nevertheless, in the case of an exponential law, both λ̂(t) and λ(t) are
the same.

We proceed from the minimal cut sets as follows.

Let Ki = {1, ..., ni} be the ith minimal cut set, and Qi(t) its probability of
occurrence at the time t. Then, Qi(t) = q1(t)...qni

(t) where qi(t) is the proba-
bility of the basic event i at the time t.

The (pseudo-) rate of occurrence of the minimal cut set i, Λ̂i(t), at the time
t, is:

Λ̂i(t)∆t =

ni∑

j=1

λ̂i(t)∆t

ni∏

i=1
i �=j

qi(t),

or

Λ̂i(t) =

ni∑

j=1

λ̂i(t)

ni∏

i=1
i �=j

qi(t).

The expected number of system breakdowns in the time interval (t, t′], due
to the minimal cut set i, is:

Ni(t, t
′) =

∫ t′

t

Λ̂i(u)du.

We will define for the system the non-availability or the probability of exis-
tence of the top event, PS(t), at the time t:

PS(t) ∼=

k∑

i=1

Qi(t),

88 Fault Trees

with k, the total number of the system’s minimal cut sets.

The (pseudo-) failure rate, Λ̂(t), of the system is:

Λ̂(t) =
k∑

i=1

Λ̂i(t).

And the average number of the system breakdowns in the time interval (t, t′] is:

N(t, t′) =

∫ t′

t

Λ̂(u)du.

5.4 Method of factorization

Another type of the probabilistic assessment of a FT, which does not neces-
sitate the minimal sets, consists of factorizing with respect to the repeated
events.

The method consists of successively factorizing the FT with respect to its
repeated events. At each factorization, we have two FTs at most, containing
one repeated event less. Thus, at the end of the factorization, we have a set of
FTs, which do not contain a repeated event, and consequently a procedure of
direct calculation can be done on them.

⊲ Example 5.2. Factorization of the FT CH (see section 4.2): the FT CH
contains two repeated events: event 3 and event 4. A successive factorization
with respect to these two events gives:

ϕ(x) = x3ϕ(13,x)+̇(1− x3)ϕ(03,x).

We have: ϕ(13,x) = 1. Now

ϕ(x) = x3+̇(1− x3)ϕ(03,x).

= x3+̇x3[x4ϕ(03,14,x)+̇x4ϕ(03,04,x)],

ϕ(03,14,x) = 1, now

ϕ(x) = x3+̇x3[x4+̇x4ϕ(03,04,x)],

ϕ(03,04,x) = x1x2

ϕ(x) = x3+̇x3[x4+̇x4x1x2].

Probabilistic Assessment 89

Figure 5.1 Factorization of the FT CH

90 Fault Trees

The factorization directly carried out on the FT is given in Figure 5.1.
According to Schneeweiss [SCH 84], the complete decomposition of a structure
function by the Shannon formula yields an expression for the sum of disjoint
products. This expression does not require the simplifications of orthogonality
(xx = 0) and idempotance (xx = x).

By the same method, on stopping at a level of decomposition, we can obtain
the boundaries. This is done by substituting ϕi(x) ≡ 1 for all the sub-structures
remaining at the level, where one stops.

5.5 Direct recursive methods

The recursive methods enable a direct probabilistic assessment of the FT
without passing through the minimal sets. This is important when a quali-
tative analysis of the FT is not required and when the exact value of the
probability for the top event [LOCK 79] is calculated.

5.5.1 Recursive inclusion-exclusion method

The procedure is simple: we will begin from the top event and climb down
the fault tree by means of the following relationships.

For two independent events A and B, we have:

For an OR operator,

P (A∪B) = P (A) + P (B)− P (A)P (B).

For an AND operator,

P (A∩B) = P (A)P (B),

P{(A∪B)∩C} = P (A∩C) + P (B ∩C)− P (A∩B ∩C).

⊲ Example 5.3. For the FT CH, we have:

Q = P (G2 ∩G3) = P{(1∪G4)∩G3}

= P{1∩G3}+ P{G4 ∩G3} − P{1∩G4 ∩G3}

= P{1∩ (2∪G5)}+ P{(3∪ 4)∩G3} − P{1∩G4 ∩ (2∪G5)}

= P{1∩ 2}+ P{1∩G5} − P{1∩ 2∩G5}+ P{3∩G3}

+P{4∩G3} − P{3∩ 4∩G3} − P{1∩ 2∩G4}

−P{1∩G4 ∩G5}+ P{1∩G4 ∩ 2∩G5}

Probabilistic Assessment 91

= h1 + P{1∩ (3∪ 4)} − P{1∩ 2∩ (3∪ 4)}+ P{3∩ (2∪G5)}

+P{4∩ (2∪G5)} − P{3∩ 4∩ (2∪G5)} − P{1∩ 2∩ (3∪ 4)}

−P{1∩ (3∪ 4)} − P{1∩ 2∩ (3∪ 4)}

= h2 + P{3∩G5} − P{2∩ 3∩G5}+ P{4∩G5} − P{2∩ 4∩G5}

−P{3∩ 4∩G5}+ P{2∩ 3∩ 4∩G5}

= h3 + P{3∩ (3∪ 4)} − P{2∩ 3∩ (3∪ 4)}+ P{4∩ (3∪ 4)}

−P{2∩ 4∩ (3∪ 4)} − P{3∩ 4∩ (3∪ 4)}

+P{2∩ 3∩ 4∩ (3∪ 4)},

and on developing, we retrieve the result of section 5.1.3, where hi,
i = 1,2,3 are the terms that can be calculated; that is, the terms do not contain
an operator. For example: h1 = P{1∩ 2} = q1q2.

The advantages of a recursive algorithm, mentioned by Perry and Page [PER
86], are: exact calculation, conceptual simplicity, minimum memory capacity,
and small programs.

5.5.2 Method of recursive disjoint products

As seen in the previous method, we climb down the FT, starting from the
top event by making use of the following two relationships, for the indicator
variables of the FTs events. For the basic events, we will be using the indicator
variable x, and for the intermediate events, the indicator variable y. The FT is
transformed as before so as to have two inputs for each operator.

Let there be an operator with two inputs, whose indicator variables are z
and w.

For an OR operator:

z+̇w = z + zw.

For an AND operator:

zw.

92 Fault Trees

⊲ Example 5.4. Let us consider the FT CH.

ϕ(x) = y1 = y2y3

= y2(x2 + x2y5)

= y2x2 + y2x2y5

= x2(x1 + x1y4) + x2y2(x3 + x3x4)

= x1x2 + x1x2(x3 + x3x4) + x2x3y2 + x2x3x4y2

= x1x2 + x1x2x3 + x1x2x3x4 + x2x3(x1 + x1y4)

+x2x3x4(x1 + x1y4).

On simplifying, we get:

ϕ(x) = x1x2 + x1x2x3 + x1x2x3x4 + x1x2x3 + x1x2x3 + x1x2x3x4

+x1x2x3x4,

Leading to:

Q(q) = q1q2 + p1q2q3 + p1q2p3q4 + q1p2q3 + q1p2q3 + q1p2p3q4

+p1p2p3q4.

Remark 5.2. From the above expression for ϕ(x), we can obtain the cut sets of
the FT by eliminating the supplementary variables and, through reduction, we
can obtain the minimal cut sets.

5.6 Other methods for calculating the fault trees

Apart from the methods, which we have encountered up to now, and the
methods truncating the minimal sets concerning the large FTs that we are going
to study in the succeeding section, there are still more methods for calculating
the FTs, which we will not cover here.

One method that has been in use for a long time is the so-called method of
lambda-tau (λ, τ). It leads to simple calculations and, when the FT does not
contain a repeated event, we obtain the exact stationary value of (λ, τ) dealing
with the top event [LIE 75] [RAC 76].

Modularization is an effective method in combination with other methods
(for example direct calculation, minimal sets, etc.), as it transforms the calcu-
lation of an FT to the calculation of small independent FTs (cf. section 7.2).

Probabilistic Assessment 93

When we have λi(t) = Kit
m
i (Weibull law), i = 1, ...,N , we obtain, by means

of the minimal cut sets of the FT, the S(t) of the top event through a method
proposed in [DUB 80].

The calculation of the boundaries, presented in Chapter 2, is also very much
in use in combination with the modularization.

5.7 Large fault trees

One of the important limitations concerning the applications of the FTs is
the large number of the minimal sets that they generate. We quickly reach some
thousands and even millions of minimal cut sets.

The treatment of such an FT, even for calculating the lower boundary, is
quite forbidding.

Because of this fact, the methods of truncating the set of minimal cut sets,
developed in the 1980s, have certain importance. The basic idea of these meth-
ods consists of eliminating the minimal cut sets, whose contribution to the
probability of the top event is below a given threshold, or the minimal cut sets
are of a length exceeding a given value.

An assessment of the error that occurred is given with each of these methods.
We will be presenting the principal methods of truncation.

5.7.1 Method of Modarres and Dezfuli [MOD 84]

Let q1, ..., qN be the probabilities of the basic evens of the FT with
q = max{q1, ..., qN} and nk be the number of minimal cut sets of length k,
1 ≤ k ≤N . We have:

nk ≤∆ = CN
k =

N !

(N − k)!k!
.

For very large values of N , we have the approximation:

∆ ∼=
Nk

k!
.

The probability of the occurrence of the minimal cut sets of length k, marked
as Pk, is:

Pk = P{K(1) ∪ ...∪K(nk)} ≤ 1− [1− P (K(1))]...[1− P (K(nk))],

94 Fault Trees

whence,

Pk ≤ P ′

k = 1− (1− qk)∆.

We have: P ′

k → 1− exp(−νk/k!), when N →∞, where ν = qN.

If ν < 1, the contribution of the minimal cut sets to the top event rapidly
decreases, and the contribution of the cut sets of length k is less important than
that of the cut sets of length k − 1. If ν > 1, then one has to break up the FT
into sub-FTs having the values ν < 1.

5.7.2 Method of Hughes [HUG 87]

This method is a variant of the previous method, and the difference between
them lies in the calculation of the probability of the cut sets of length k, P ′

k.

P ′

k =
∑

ri=0,1

r1+...+rN =k

(1− q1)
1−r1qr1

1 ...(1− qN)1−rN qrN

N .

Let:

hk = A
αk

k!
,

with

A =

N∏

i=1

(1− qi) and α =

N∑

i=1

qi

1− qi
.

We have:

P ′

k ≤ hk.

A bound of the error committed by omitting the minimal cut sets of the
order higher than ω is:

β(ω + 1) = β(0)−
ω∑

k=1

hk

where β(0) = Aeα.

In the case where the distribution of the number of cut sets in terms of
orders of length is not regular, or where the values of probability of the basic
events are very much dispersed, the value of P ′

k will be very much above the real
value (for example, 1,000% more important than the real value of the error!).

The improvements that have been brought about [KER 91] are of two kinds.
They are concerned on the one hand with the use of the value of the maximum
number of cut sets and the maximum length of the cut sets instead of the
number N (these numbers being very rapidly obtained on the FT through
the algorithms of linear complexity), and on the other hand with the use of
Shannon’s formula (cf. relation (2.5)).

Probabilistic Assessment 95

5.7.3 Schneeweiss method [SCH 87]

Let ϕ be the structure function of the FT written under the form of a sum
of products corresponding to the minimal cut sets. We can write it as:

ϕ = ϕ1+̇ϕ2.

Proceeding from this equality, and by applying the expectation operator,
we have:

Eϕ1 ≤Eϕ ≤Eϕ1 + Eϕ2.

Now, the maximum error committed, namely εmax, by omitting the term
ϕ2, is less than or equal to Eϕ2. In addition, we have, if ϕ2 = y1+̇ · · · +̇ys:

Eϕ2 ≤EY1 + ... + EYs,

Consequently:

εmax ≤EY1 + ... + EYs.

The algorithm of Schneeweiss for determining the ϕ2 and the algorithms
that follow from this analysis are as follows:

Algorithm 5.2.

1. Fix a maximum error: εmax;

2. Calculate the EY1, ...,EYk and arrange them in increasing order:

EY(1) ≤ ...≤EY(k);

3. Calculate successively: EY(1),EY(1) + EY(2), ..., until we get:

εmax < EY(1) + ... + EY(J), then put: ε = EY(1) + ... + EY(J−1);

4. ϕ2 = y(1)+̇...+̇y(J−1);

End.

5.7.4 Brown method [BRO 90]

This method consists of climbing up the FT by obtaining the minimal cut
sets whose probability of individual occurrence is higher than a fixed value ε.
Let the intermediate event E and KE be the set of the minimal cut sets of E.
Let us consider the following partition:

KE =KE,1 ∪KE,2.

For any minimal cut set X of KE,1, we have: P{X} > ε, and for any minimal
cut set Y of KE,2 we have: P{Y } ≤ ε.

Thus, we retain the minimal cut sets KE,1 and eliminate the KE,2 on having
a probability of error εE corresponding to the eliminated cut sets:

P{X ∪ Y } ≤ εE = P{X}+ P{Y } − P{X}P{Y }. (5.1)

96 Fault Trees

Two cases appear according to the operator corresponding to the event E.

OR operator: E = X ∪ Y

ϕE = (ϕX,1+̇ϕY,1)+̇(ϕX,2+̇ϕY,2),

whence: KE,1 =KX,1 ∪KY,1

E(ϕX,2+̇ϕY,2) ≤ εE = E(ϕX,2) + E(ϕY,2)−E(ϕX,2)E(ϕY,2).

AND operator: E = X ∩ Y

ϕE = (ϕX,1+̇ϕX,2)(ϕY,1+̇ϕY,2)

= (ϕX,1ϕY,1)+̇{(ϕX,1ϕY,2)+̇ϕX,2(ϕY,2+̇ϕY,1)}

Thus:

KE,1 ⊂KX,1 ∩KY,1. (5.2)

The calculation is done by the Brown algorithm as follows.

Algorithm 5.3.

1. Obtain the minimal cut sets from (5.2).

2. Calculate the upper boundary of P{(KX,1 ∩KY,1) \ KE,1}.

3. Upper boundary of P{KX,1 ∩KY,2} is equal to the min

{bs(P{KX,1}), P{KY,2}}.

4. Upper boundary of

P{KX,2 ∩ (KY,2 ∪KY,1)} = min{bs(P (KX,1)), bs(P{KY,1 ∪KY,2})},

where bs(·) is the upper boundary of (·) obtained through
relationship (5.1).

End.

Chapter 6

Influence Assessment

6.1 Uncertainty

6.1.1 Introduction

In the previous chapter, we studied the probability of the top event
considering that the parameters of distribution concerning the basic events
were fixed.

In reality, this is not always the case. There are very good reasons for
saying that this approach is not always satisfactory. In fact, the data on
the reliability of components are generally obtained through tests or even
through field data. In both cases, a statistical analysis is carried out in
order to determine the parameters of distributions, wherein we consider these
parameters that constitute themselves as random variables. Hence, for every
parameter, we define a distribution, or the first moments, or just a simple factor
of error, etc.

Concerning a component, whose lifetime follows a distribution depending on
a parameter, we obtain, within the framework of a standard statistical study, an
estimator (preferably an estimator with good properties!), whose distribution
enables us to obtain confidence intervals of the parameter at desired levels of
confidence, and then the confidence intervals for the probability of this compo-
nent’s failure. Obviously an analysis with the same aim as that of the preceding
analysis can be carried out within a Bayesian analysis framework.

Within the framework of the reliability of the systems, and in particular, in
matters concerning the FTs, the previous analysis dealing with the components

97

98 Fault Trees

of the system is considered a data, and we seek to start from there to obtain
an interval of confidence for the probability of the top event.

The fact of considering the parameters of a distribution as random variables
is due not only to the uncertainty about the data, but also on account of the
mode of using the system. To illustrate this, we give an example [BIE 83].

⊲ Example 6.1. Let us consider a system with a single component meant for
working over the time interval [0, θ]. The component will be picked up at random
from a stock of components coming from two different stocks, noted as A and
B. The stock is constituted by n components in A and by m components in B.
The probabilities of the failure of components over [0, θ] are p1 for a component
A, and p2 for a component B.

The probability that the system breaks down over [0, θ] is a random variable,
whose mathematical expectation is given by:

E(PS) = p1
n

n + m
+ p2

m

n + m
.

6.1.2 Methods for evaluating the uncertainty

There are two large families of methods that are used for evaluating the
uncertainty of the top event: analytical methods and numerical methods.

The analytical methods consist of evaluating a few first moments of distribu-
tion of the top event from the first moments of the basic events. With the help
of moments evaluated for the top event, we either make use of the inequalities
so as to deduce from them the confidence intervals, or we adopt a distribution.

In the case of numerical methods, it is assumed that the distributions of
the basic events are known, from which we evaluate the distribution of the
top event, either through the Monte-Carlo method or through the method of
discrete distributions.

In this section, we discuss the analytical methods developed by Apostolakis
et al. [APO 77].

Inequality methods

Inequality methods are very often useful and are valid for any distribution,
and therefore they can be used without knowing the distribution except some
of their first moments, usually the average and the variance.

Influence Assessment 99

– Markov inequality: if X is a real positive random variable, then for all real
δ > 0 we have:

P [X ≥ δ]≤
E[X]

δ
.

– Bienaymé-Chebychev inequality: if X is a random variable of the average
µ and of the variance σ2, then we have:

P [|X − µ| ≥ δ]≤
σ2

δ2
.

More generally, if X has moments of the order n ≥ 1, we have:

P [|X − µ| ≥ δ]≤
E[|X − µ|n]

δn
.

Method of empirical distributions [APO 77]

This consists of using a distribution for the random variable PS . The major-
ity of the distributions that were used have the disadvantage of the domain of
definition being much larger than the interval [0,1]. The empirical distribu-
tion of Johnson SB can, on the other hand, be defined over [0,1], which is
coherent with the nature of PS . The random variable PS follows a Johnson SB

distribution if

f.r.(PS) = Φ
(ln PS

1−PS
− µ

σ

)

,

where Φ(·) is the standard Gaussian c.d.f.

Once the µS and σS are evaluated, we have to define the µ and σ of a
Gaussian r.v., by resolving the system of two equations as follows:

∫ 1

0

xdx[Φ
(ln x

1−x − µ

σ

)

] = µS ,

∫ 1

0

(x− µS)2dx[Φ
(ln x

1−x − µ

σ

)

] = σ2
S .

6.1.3 Evaluation of the moments

Certain methods have been proposed in other works for evaluating the
moments (mainly the µS and the σ2

S).

100 Fault Trees

Direct method

For a direct evaluation on the FT, we can make use of the following
relationships.

For an OR operator, we have:

E(PS) = E(PA) + E(PB)−E(PA)E(PB),

V ar(PS) = V ar(PA)[1−E(PB)]2 + V ar(PB)[1−E(PA)]2 + V ar(PA)V ar(PB).

For an AND operator, we have:

E(PS) = E(PA)E(PB),

V ar(PS) = V ar(PA)[E(PB)]2 + V ar(PB)[E(PA)]2 + V ar(PA)V ar(PB).

⊲ Example 6.2. Let the FT be as given in Figure 6.1.

Figure 6.1 FT of example 6.2

with the following data:

Component Mean value Variance

1 10−2 10−3

2 10−3 10−4

3 5× 10−3 2× 10−4

Influence Assessment 101

We have:

Mean value:

µB = µ2 + µ3 − µ2µ3, µB = 5.995 · 10−3

µA = µ1µB , µS = µA = 5.995 · 10−4;

Variance:

σ2
B = σ2

2 [1− µ3]
2 + σ2

3 [1− µ2]
2 + σ2

2σ2
3 , σ2

B = 2.986 · 10−4

σ2
A = σ2

1σ2
B + σ2

1µ2
B + σ2

Bµ2
1, σ2

S = σ2
A = 3.64 · 10−7.

Rushdi’s method

The method developed by Rushdi [RUS 85] is based on the complete devel-
opment into the Taylor series of the function Q(q) for the top event. As this
function is a multiaffine function, it has a finite Taylor series development. This
development, around the mean, is as follows:

Q(q)−Q(m1) =

n∑

i=1

Ci(qi −mi1) +

n−1∑

i=1

n∑

j=i

Cij(qi −mi1)(qj −mj1)

+... + C12...n(q1 −m11)(q2 −m21)...(qn −mn1) (6.1)

where min = E[|Xi − µi|
n] is the random variable Xi’s nth centered moment.

The coefficients Ci,Cij , . . . ,C12...n are calculated from the following relation-
ships:

Q(q) = qiQ(1i,q) + (1− qi)Q(0i,q).

We have:

Ci = (
∂Q

∂qi
)q=m1

= Q(1i,m)−Q(0i,m),

Cij = (
∂2Q

∂qi∂qj
)q=m1

= Q(1i,1j ,m1)−Q(0i,1j ,m1)

−Q(1i,0j ,m1) + Q(0i,0j ,m1),

Cijk = (
∂3Q

∂qi∂qj∂qk
)q=m1

= Q(1i,1j ,1k,m1)−Q(0i,1j ,1k,m1)

−Q(1i,0j ,1k,m1) + Q(0i,0j ,1k,m1)

−Q(1i,1j ,0k,m1) + Q(0i,1j ,0k,m1)

+Q(1i,0j ,0k,m1)−Q(0i,0j ,0k,m1).

102 Fault Trees

From relationship (6.1), developed to the power n, and by applying the
expectation operator, we can obtain the moments of order n.

⊲ Example 6.3. The structure function of the FT is:

ϕ(x) = x1x2+̇x1x3,

hence

Q(q) = q1q2 + q1q3 − q1q2q3.

The development of Taylor for Q(q) around the mean is:

Q(q)−Q(m1) = C1(q1 −m11) + C2(q2 −m21) + C3(q3 −m31)

+ C12(q1 −m11)(q2 −m21) + C13(q1 −m11)(q3 −m31)

+ C23(q2 −m21)(q3 −m31)

+ C123(q1 −m11)(q2 −m21)(q3 −m31).

The coefficients are:

C1 = q2 + q3 − q2q3,

C2 = q1 − q1q3,

C3 = q1 − q1q2,

C12 = 1− q3,

C12 = 1− q2,

C12 =−q1,

C123 = 1.

The variance for the probability of the top event is:

σ2
S = [m21 + m31 −m21m31]

2m12 + m2
11[1−m31]

2m22

+ m2
11[1−m21]

2m32 + [1−m31]
2m12m22

+ [1−m21]
2m12m32 + m2

11m22m32 + m12m22m32.

Influence Assessment 103

6.2 Importance

6.2.1 Introduction

Until now, we have been focusing on the evaluation of the probability of
the top event in a coherent FT when the probabilities of the basic events are
known.

Now, there arises another important question regarding the particular role
played by a basic event from the viewpoint of its contribution to the probability
of the top event. During the stage of designing of a system, before defining the
technical specifications for the components, we do not have any probabilistic
data. In view of the ruggedness of the structure (see Figure 6.2), we are tempted
to conclude that component 1 is the most important (the most sensitive from
the viewpoint of good functioning of the system). In other words, the failure in
this component leads, on its own, to the failure of the system, which is not the
case for components 2 and 3. The failure in component 2 cannot, on its own,
lead to the failure of the system. This type of approach, in the absence of prob-
abilistic data, concerns the importance of the component from the structural
point of view.

In a second stage, once the technical specifications have been defined and we
have the probabilistic data, the context of our approach is changed; that is, we
will be asking questions about the probabilistic importance of the components.
In other words, how much will the reliability of a component contribute to
the reliability of the system? Or, what is the probability that the component i
would have brought about the failure of the system? etc.

This type of study guides us in optimizing an investment with a view to
improving the reliability of the system.

The values used for measuring the importance of the components are called
the “factors of importance”.

It must be noted that apart from the components, we can ask ourselves the
same questions for a particular module or even for a minimal set. Analogous
measures exist for the latter.

Here is an example that clarifies this question.

104 Fault Trees

⊲ Example 6.4. Let us consider the system given in Figure 6.2.

Figure 6.2 Binary system of order 3

Let us note by pi(t) the reliability of the component i (i = 1,2,3) and
p = [p1, p2, p3], and R(t) = r(p(t)) the reliability of the system; r(p) is the
reliability of structure. We can write:

dR

dt
(t) =

∂r

∂p1

dp1

dt
+

∂r

∂p2

dp2

dt
+

∂r

∂p3

dp3

dt
,

or, for small variations, we write:

∆R ∼=
∂r

∂p1
∆p1 +

∂r

∂p2
∆p2 +

∂r

∂p3
∆p3.

The reliability of the system is given by:

R(t) = p1(t)p2(t) + p1(t)p3(t)− p1(t)p2(t)p3(t), (6.2)

and consequently,

a1 =
∂r

∂p1
= p2 + p3 − p2p3,

a2 =
∂r

∂p2
= p1 − p1p3,

a3 =
∂r

∂p3
= p1 − p1p2.

Numerical application: let p1 = p2 = p3 = 0.9, then we have: a1 = 0.99 and
a2 = a3 = 0.099; and R = 0.891.

Influence Assessment 105

If we increase the reliability of the component 1, such that p1 = 0.95 and
the reliability of the other components remaining the same, we have:

∆R ∼= 0.99 · (0.95− 0.90) = 0.0495.

The reliability given by the relationship (6.2) will be:

R = 0.9405 and ∆R ∼= 0.9405− 0.891 = 0.0495.

If at present, we increase the reliability of the component 2 such that p1 = 0.95
and the reliability of the other components remaining the same, we have:

∆R ∼= 0.099 · (0.95− 0.90) = 0.00495.

Then, for the same increase in the reliabilities of components 1 and 2, the
reliability of the system will not increase in the same manner; far from it!

6.2.2 Structural importance factors

Before giving the factors of structural importance, we give the following
definition:

Critical vector for the component i: the vector x is said to be critical for the
component i, if ϕ(1i,x) = 1 and ϕ(0i,x) = 0.

⊲ Example 6.5. Let us consider the system as given in Figure 6.2. The vectors
(1,1,0), (1,0,1) and (1,1,1) are critical vectors for component 1. The vector
(1,1,0) is critical for component 2.

The number of critical vectors for component i, noted as nϕ(i), is given by
the relationship:

nϕ(i) =
∑

{x|xi=1}
[ϕ(1i,x)−ϕ(0i,x)].

We give the two factors of structural importance that were used.

Birnbaum’s factor of importance: Iϕ
B(i)

This is expressed by the ratio of the number of critical vectors for the com-
ponent i to the total number of vectors [BAR 75].

Iϕ
B(i) =

∂r

∂pi

(1/2) =
1

2n−1
nϕ(i),

where 1/2 = (1/2, ...,1/2).

106 Fault Trees

Barlow-Proschan’s factor of importance: Iϕ
BP (i)

This is expressed by the “average probability” of critical vectors for the event
i. Its expression is given by the relationship:

Iϕ
BP (i) =

∫ 1

0

[Q(1i,q)−Q(0i,q)]dq,

with q = (q, ..., q).

It can be calculated from:

Iϕ
BP (i) =

1

n

n
∑

k=1

nϕ(i)

Cn−1
k−1

.

6.2.3 Probabilistic importance factors

Birnbaum’s importance factor: I
(i)
B

This is expressed by the probability that the vector X(t) would be critical
for the event i at the time t.

I
(i)
B (t) =

∂Q

∂qi

(q(t)) = Q(1i,q(t))−Q(0i,q(t)).

Criticality importance factor: I
(i)
C

This is expressed by the probability that the vector X(t) would be critical
for the event i at the time t, and that the top event could exist at the time t.

I
(i)
C (t) =

Q(1i,q(t))−Q(0i,q(t))

Q(q(t))
qi(t).

Vesely-Fussell’s importance factor: I
(i)
V F

This is expressed by the probability that the event i would have contributed
to the occurrence of the top event, knowing that this took place prior to t.

I
(i)
V F (t) =

P{Ui(t) = 1}

Q(q(t))
,

where Ui(t) = 1 −
∏Ni

j=1[1 −
∏

k∈Kj
Xk(t)] represents the Boolean sum of the

minimal cut sets containing the event i, and Ni represents the number of
minimal cut sets containing component i.

Influence Assessment 107

Lambert’s importance factor of improvement: I
(i)
La

This is expressed by the percentage rate of change in the probability of the
top event resulting from a percentage change in the probability of the event i
at the time t.

I
(i)
La(t) = λi(t)

∂

∂λi(t)
h(λ(t)),

where h = Q ◦ g and g : λ �→ q and λ = (λ1, ..., λn) the failure rates of
components.

We can write this factor of importance by replacing, in the formula men-
tioned above, λi with γi = λi/λref where λref is a reference value:

γi(t)
∂

∂γi(t)
Q(γ,q(t)),

or even as:

γi(t)

Q(γ,q(t))

∂

∂γi(t)
Q(γ,q(t)).

These last two expressions give the same grading for the basic events, but
the second expression gives values closer to unity.

Factor of importance for the sequential contribution according to Lambert: I
(i)
Ls

This is expressed by the probability that the vector X(t) would be critical
for event i at time t and that another event triggers the occurrence of the top
event.

I
(i)
Ls(t) =

1

Q(q(t))

∑

j:j �=i

∫ t

0

[Q(1i,1j ,q(t))−Q(1i,0j ,q(t))]qj(u)dfj(u).

Barlow-Proschan’s importance factor: I
(i)
BP

This is expressed by the probability that the event i would have triggered
the occurrence of the top event.

I
(i)
BP =

∫ ∞

0

[Q(1i,q(t))−Q(0i,q(t))]dqi(t).

We have 0 ≤ I
(i)
BP ≤ 1 and

∑n
i=1 I

(i)
BP = 1.

108 Fault Trees

Natvig’s importance factor: I
(i)
N

It is defined by means of the random variable Zi which designates the
reduction of the residual time of the top event’s occurrence due to the occur-
rence of the event i.

Let:

L1
i be the residual lifetime of the system just before the failure in the

component i

L0
i be the residual lifetime of the system just after the failure in the

component i.

We have:

Zi = L1
i −L0

i .

Natvig’s factor of importance is expressed by the following relationship:

I
(i)
N =

E[Zi]
∑n

j=1 E[Zj]
.

It is clear that we have: 0 ≤ I
(i)
N ≤ 1 and

∑n
i=1 I

(i)
N = 1.

The expectation E[Zi] is calculated as follows:

E[Zi] = E[L1
i]−E[L0

i] =

∫ ∞

0

P{L1
i > x}dx−

∫ ∞

0

P{L0
i > x}dx,

and

∫ ∞

0

P{L1
i > x}dx =

∫ ∞

0

∑

(.i,x)

∏

j �=i

(Fi(t))
1−xj (F i(t))

xj fi(t)Q(H
(1i,x)

t (u))dt,

∫ ∞

0

P{L0
i > x}dx =

∫ ∞

0

∑

(.i,x)

∏

j �=i

(Fi(t))
1−xj (F i(t))

xj fi(t)Q(H
(0i,x)

t (u))dt,

where

H
x

t (u) = (H
x1

(1,t)(u),,H
xn

(n,t)(u))

and

H1
(i,t)(u) =

F i(t + u)

F i(t)
, H

0

(n,t)(u) = 0.

Influence Assessment 109

6.2.4 Importance factors over the uncertainty

For completing the study of uncertainty, we will be studying the importance
of the basic events on the uncertainty of the top event’s probability. In partic-
ular, we will be presenting the factors of importance concerning the influence
of the basic event probability variances on the top event probability variance.

We will be presenting two factors of importance over the uncertainty; one
of them is introduced by Pan and Tai [PAN 88], which is analogous to that of
probabilistic factor of importance of Birnbaum. The other is introduced by Bier
[BIE 83], which is analogous to the improvement factor according to Lambert.

The probabilities of the basic events qi are random variables, and consequently
the probability function of the top event Q(q) is a random variable too.

Pan-Tai’s factor of importance: II
(i)
PT

Analogous to the factor of importance of Birnbaum, this is defined by:

II
(i)
PT =

∂V ar(Q)

∂V ar(qi)
.

It can be expressed by:

II
(i)
PT = E

(∂Q

∂qi

)2

.

Bier’s factor of importance: II
(i)
BR

Analogous to the factor of importance by Lambert, this is defined by:

II
(i)
BR =

V ar(qi)

V ar(Q)

∂V ar(Q)

∂V ar(qi)
.

We have:

0 ≤ II
(i)
BR ≤ 1, i = 1, ..., n.

⊲ Example 6.6. Let us consider the FT given in Figure 6.1. The probability
variance of the top event is given by the relationship (see section 6.1.3).

V ar(Q) = [m21 + m31 −m21m31]
2m12 + m2

11[1−m31]
2m22

+ m2
11[1−m21]

2m32 + [1−m31]
2m12m22

+ [1−m21]
2m12m32 + m2

11m22m32 + m12m22m32.

110 Fault Trees

Hence,

II
(i)
PT = [m21 + m31 −m21m31]

2 + [1−m31]
2m22 + [1−m21]

2m32 + m22m32,

and

II
(i)
BR = [[m21+m31−m21m31]

2+[1−m31]
2m22+[1−m21]

2m32+m22m32]m12/var(Q).

Chapter 7

Modules – Phases – Common Modes

7.1 Introduction

In this chapter, we will study the modular decomposition of the FTs, the
FTs with phases and the common failure modes.

These questions are important for several reasons. The modular decompo-
sition of an FT enables an easier calculation of the probability of the top event
or the calculation for better bounds. In addition, it can lead to a better under-
standing of the tree structure and, consequently, carry out a better qualitative
analysis.

The FTs with phases enable us to carry out an overall study of the systems
in phases, that is, the systems having many phases functioning during the
currency of their mission. For example, an aircraft has three working phases
during the mission of a flight from one place to another: the takeoff phase, the
flight phase and the landing phase. The FT with phases concerning the failure
of the mission represents the three phases of flight, and its treatment is global.

Finally, the multiple failures, which are a result of common causes that wipe
out the advantage of the redundancies and other functional dependences under
the name “common mode of failures” (CM), should be seriously taken into
account during dependability studies.

7.2 Modular decomposition of an FT

7.2.1 Module and better modular representation

The concept of module in the context of the binary systems is defined by
Birnbaum and Esary in 1965 [BIR 65], Chapter 2.2, [BAR 75].

111

112 Fault Trees

A sub-FT is said to be independent if no elements of its domain appears
anywhere else in the FT.

An independent sub-FT is a module.

⊲ Example 7.1. Let us consider the FT in Figure 7.1.

Figure 7.1 Fault tree

The sub-FT C is independent as no element in its domain {4,5,6} appears
elsewhere in the FT. On the contrary, the sub-FT B is not independent, because
the event 1 appears elsewhere.

Consequently, the sub-FT C is a module of the FT A.

The best modular representation of an FT is an equivalent FT with the
following properties:

(i) Reduced representation, that is to say, each operator is:

– either a primary operator,

– or an AND operator that does not have an AND operator as input,

– or an OR operator that does not have an OR operator as input.

Modules – Phases – Common Modes 113

(ii) All the sub-FTs are independent.

⊲ Example 7.2. The best modular representation of the FT in Figure 7.1 is
given in Figure 7.2.

The modularization of an FT presents numerous advantages, the most
important being as follows:

– Exact evaluation of the probability of the top event through procedures
that are extremely simple.

– Better bounds for the top event and an easier attainment.

– Treatment of certain statistical dependences among the basic events.

– From the best modular representation of an FT, we can obtain all its mod-
ular representations, and thus the optimum modularization can be obtained.

– When the modularization is directly carried out, that is, without passing
through the minimal sets, the modularization reduces the complexity of the
search for the latter.

Figure 7.2 Best modular representation

114 Fault Trees

7.2.2 Modularization of a fault tree

There are two approaches for the modularization of the FTs. The first
approach consists of intervening before obtaining the minimal sets based on
the FT, and in the other approach, the intervention comes later and is based
on the structure function of the FT. With regard to the first approach, we will
be presenting the algorithm by Olmos and Wolf [OLM 78]. As for the second
approach, we will present a technique proposed by Wilson [WIL 86].

Algorithm by Olmos and Wolf

This algorithm is presented in six stages:

Algorithm 7.1.

1. The vertices having repeated events in common are interconnected.
These interconnections define the set of vertices that are not
immediately modularizable in the original form of the FT.

2. The modular decomposition of the FT starts simultaneously
from all its non-connected primary operators.

3. The primary operators having an operator of the same type as
predecessor are merged with their predecessors by transferring
all their inputs to the predecessor.

4. The primary operators having a predecessor of a different type are
modularized. Those not having repeated event or sub-module as
input are temporarily transformed into modules. If not, the set of
repeated events of the gate in question will be complete and in that
case, a modular representation of the minimal cut sets for
their composition could be carried out.

5. The operators already transformed into proper modules or
into temporary sub-modules are attached to their predecessors as
new components.

6. The stages #3–#5 are repeated until the top event is attained.

End.

It should be noted that the original algorithm [OLM 78] provides for the
treatment of the k-out-of-n operators. Another algorithm proposed by Willie
is presented in [WIL 78].

⊲ Example 7.3. The application of the algorithm to the FT of Figure 7.1 will
directly lead to the FT of Figure 7.2.

⊲ Example 7.4. We make use of the preceding algorithm for modularizing
the FT, given in Figure 7.3. In this FT, we have two repeated events {4,5}

Modules – Phases – Common Modes 115

and three primary operators {C,E,F}; the operator E is reduced to a module
and the operators C and F become connected. Figure 7.4 shows an intermediate
stage of the algorithm and Figure 7.5 presents the modularized FT.

Modules of the structure function

It will be of interest to be in a position to modularize the structure function
of an FT, when it is known that the calculation of the probability of the top
event will be based on this function. This brings about a considerable reduction
in the complexity of the calculations. The method proposed in [WIL 85] is as
follows:

Figure 7.3 Fault tree to be modularized

Figure 7.4 Intermediate fault tree

116 Fault Trees

Figure 7.5 Modularized fault tree

For a given Boolean function ϕ, we will examine the couples of the variables
(xi, xj), for i �= j. Let us assume that such a couple fulfills the two conditions
as follows:

(C1) any monomial of ϕ containing xi contains xj as well;

(C2) for any monomial of ϕ of the form xiP (where P contains neither xi

nor xj), there is also a monomial of the form xjP .

Then:

xixj is a module and can be replaced by yi

xiP is replaced by yiP , and

xjP is eliminated.

Then, yi can be compared with another xi, etc.

⊲ Example 7.5. Let an FT have the structure function as follows:

ϕ(x) = x1x3 + x2x3 + x4x6 + x5 + x1x2.

Let us examine the couple (x1, x2). This couple satisfied conditions (C1)
and (C2); consequently, we will replace x1x2 by y1, x1x3 by y1x3 and we will
eliminate x2x3.

This leads to the expression:

ϕ(x) = y1 + x3 + x5 + x4x6.

7.3 Multiphase fault trees

Multiphase systems have been studied by Easary and Ziehms [ESA 75].

Modules – Phases – Common Modes 117

7.3.1 Example

Let us consider a hydraulic system made up of two pumps, which work
independently of each other. This system should function in two phases. In
phase 1, the yield required is d = 50 units of volume (u.v) per unit time (u.t.);
in phase 2, d = 100 u.v./u.t.

Given the fact that the flows of the pumps are equal at 50 u.v./u.t./pump,
it is evident that in phase 1 one of the two pumps should be functioning, and
in phase 2, the two pumps should function at the same time.

The success of the mission implies the success of phase 1 and the suc-
cess of phase 2. The FT concerning the failure of the mission is given in
Figure 7.6.

Mission

failure

Figure 7.6 Multiphase fault tree

For each phase, we will construct an FT and will compile them together by
an OR operator.

Let pi1 be the probability that the component i will function during phase 1,
and pi2, the conditional probability that the component i will function during
phase 2, knowing that it functioned during phase 1.

118 Fault Trees

The reliability of the system will be:

– for the phase 1: p1 = p11 + p21 − p11p21

– for the phase 2: p2 = p12p22,

and for the system in the two phases:

r(p) = p1p2 = (p11 + p21 − p11p21)p12p22.

7.3.2 Transformation of a multiphase system

Let us consider a system that has to function in m phases (m > 1). Let ui,
i = 1, ...,m be the durations of phases and u1 + ... + um = θ, where θ is the
duration of mission of the system. Set tj = u1 + ... + uj , j = 1, ...,m. We will
agree that the system is located in the phase j (1 ≤ j ≤m) in the time interval
[tj−1, tj).

For a component k and a fixed time period t, let us consider Xk(t) the
random variable with value {0,1} (1: good functioning and 0: breakdown).

The transformation can be carried out as follows:

(a) Replace, in the configuration of the phase J , the component k by a
series system with the components: independent k1, ..., kJ , corresponding to
the phases 1, ..., J , whose probabilities of working are:

P (Yk1 = 1) = P (Xk(t1) = 1),

P (Yki
= 1) = P (Xk(ti) = 1|Xk(ti−1) = 1), i = 2, ..., J.

where, Ykj
is the indicator variable for the good working of the imaginary

component j, corresponding to the real component k.

(b) Consider that the transformed configuration of a phase is a sub-system
operating in series.

7.3.3 Method of eliminating the minimal cut sets

A minimal cut set of a phase can be eliminated if it contains a minimal cut
set of a later phase.

⊲ Example 7.6.

– Minimal cut set of the phase 1: K11 = {1,2}.

Modules – Phases – Common Modes 119

– Minimal cut set of the phase 2: K21 = {1} and K22 = {2}.

The minimal cut sets K11 should be eliminated as it contains the minimal
cut set K21.

Apart from the phases considered from the working point of view, we can
consider the phases concerning the resources of the system, in general, of ran-
dom duration.

For illustrating this idea, let us consider a non-repairable system of the
order n having active parallel structure. When k (1 ≤ k ≤ n) components are
working, the failure rate of each component is λ/k (λ > 0). This system, which
starts to work at the instant t = 0, presents n phases of functioning for random
periods. In the phase i, having a duration Ti, there are i components that are
working and n − i components that are under breakdown. We can easily see
that all the random variables Ti follow the exponential laws of parameter λ.
The life duration of the system T , which we make out in n phases, follows a
Gamma distribution γ(n,λ) (see Exercise 2.4).

7.4 Common mode failures

One of the most prominent hypotheses about the reliability of the systems,
and more particularly concerning the FTs, is the statistical independence of
the basic events.

Two events A and B are said to be statistically independent or independent
in probability or simply independent if:

P (A∩B) = P (A)P (B).

For three events: A, B and C, we should have:

P (A∩B) = P (A)P (B), P (B ∩C) = P (B)P (C), P (C ∩A) = P (C)P (A),

P (A∩B ∩C) = P (A)P (B)P (C).

For n events, we should verify 2n − n − 1 equalities at the maximum for
establishing the independence of these events.

The dependences considered above are concerned with the probability
values of the events and are connected to our state of knowledge. Another
type of dependence is concerned with the functional dependences connected
to the physical world. The functional dependences concerning the failures
of the components in a system are called “common modes of failure” (CM).

120 Fault Trees

The common modes of failure (or “the common causes” or simply “the
common mode”) are simultaneous failures or cascade failures of many com-
ponents or sub-systems due to a common cause.

The distinction between the functional dependences and dependences linked
to the state of our knowledge is not always quite clear. For example, two com-
ponents produced by the same manufacturer have a tendency to be correlated;
this correlation is due to the functional dependences by virtue of a common
manufacturing procedure. It cannot be considered a CM, as in general we
do not have simultaneous failures or cascade failures. Nevertheless, this dis-
tinction, commonly made in the studies of operational safety, turns out to be
effective.

A common mode can be on account of a particular error or cause (see the
classification of CM in [PAG 80]):

– Design (i.e., error of design).

– Manufacture (i.e., inadequate standards).

– Procedure (i.e., human errors).

– Environment (i.e., vibration, earthquake).

⊲ Example 7.7. Let us consider a 2-component parallel system with a com-
mon electric supply. The failure in the electric supply will constitute a CM
and makes both the components out of service at the same time and hence
brings about the failure of the system. A first FT, Figure 7.7(a), is constructed
without analyzing the CM. This FT leads to a false analysis and probabilistic
assessment. If qe is the failure probability of the electric supply and qi, i = 1,2
is the failure probability of the component i, we will obtain through FT (a) the
failure probability of the system: P ′

S = q2
e + qe(q1 + q2)+ q1q2. From the FT (b),

where we have taken into account the CM, we will have: PS = qe−qeq1q2 +q1q2,
which represents the real value. We have: PS < P ′

S .

Modules – Phases – Common Modes 121

System

failure

System

failure

Component 1

failure

Component 1

failure
Component 2

failure

Component 2

failure

Supply

failure

(a) (b)

Figure 7.7 Illustration of separable CM: (a), FT with a common mode, (b) FT
with the separate common mode

There are two methods for dealing with the CM’s within the framework of
the FTs:

– When the common modes are separable; in this case, we will consider the
CM separately, as in the example shown in Figure 7.7.

– When the CMs can be treated by a stochastic process. For example, we can
treat certain forms of dependences through Markov chains and then integrate
the results in the FT, where the dependent components will be considered as
a macro-component.

The method of separable causes consists of considering, in a form that is
more general than that illustrated in the FT described above, the distinct causes
affecting the sub-sets of a set of components. For example, for a set of three
components {A,B,C}, we will be considering distinct causes affecting the sub-
sets of the components {A},{B},{C},{A,B},{B,C},{C,A} and {A,B,C}.
For example, the cause affecting the sub-set {C} is distinct from the cause
affecting the sub-set {C,A}.

If the probabilities of causes are q1 for the individual causes, q2 for the causes
of the couples and q3 for the cause of common failure of three components, then
the probability that a component be faulty is: q1 + 2q2 + q3.

The probability of failure of a series sub-system having as components A,
B and C is equal to P (CA ∪ CB ∪ CAB ∪ CBC ∪ CCA ∪ CABC), (where C(·)
designates the causal event of (·)). We can develop this probability by the
methods studied previously, for example the inclusion-exclusion development.

122 Fault Trees

More generally, we can consider that the instances attributed for different
causes described above are governed by distinct stochastic processes.

There are also statistical methods for the study of CMs, but an illustration
of these methods is beyond the scope of this book. The interested reader can
consult the following references: [CHA 86], [APO 87], [MOS 91].

Chapter 8

Extensions:
Non-Coherent, Delay and

Multistate Fault Trees

8.1 Non-coherent fault trees

8.1.1 Introduction

In the preceding chapters, we studied the coherent fault trees (c-FT), that
is, the FTs that can be described by the fundamental operators (OR and AND)
and the monoform variables.

This logic is overtaken very fast in the case of the current complex systems,
for example: regulation loops, maintenace specifications, etc.

Another family of FT deals with the non-coherent systems, which is called
non-coherent FTs (nc-FTs), will form the subject of this chapter. A non-
coherent FT, in its restrained form, is described by fundamental operators
and contains biform variables. In the case of the nc-FT, we can make use of the
NO-operator for representing a complemented variable (see Figure 8.1).

The nc-FTs can also be represented by other operators, such as NOR,
NAND. Subsequently, in Figures 8.2, 8.3 and 8.4, we will be giving the operators
that are used the most in the case of FTs, and their equivalent representation
in terms of AND, OR and NO-operators.

With reference to the above transformations, it often happens that we have
successions of NO-operators; we will reduce them as follows:

123

124 Fault Trees

Figure 8.1 Equivalence of representations of a complemented event

Figure 8.2 NAND operator (a) and its equivalent transformation (b)

Figure 8.3 OR-exclusive operator (a) and its equivalent transformation (b)

Extensions: Non-Coherent, Delay and Multistate Fault Trees 125

Figure 8.4 NOR operator (a) and its equivalent transformation (b)

If the series contains n NO-operators, then we will replace them by a single
NO-operator in the case where n is an odd number, and by an identity operator,
in the case where n is even. An identity operator is an operator that has no
effect on its impact.

We will now consider the nc-FT in their restrained form.

A necessary condition for an FT being non-coherent is that it contains
biform variables. This condition is not sufficient. In fact, as we can see in Fig-
ure 8.5a, the FT containing the biform variables {x,x} is a c-FT, because it is
equivalent to the c-FT in Figure 8.5b.

Figure 8.5 (a) Fault tree containing complementary events (b) Coherent fault
tree equivalent to fault tree (a)

126 Fault Trees

8.1.2 An example of a non-coherent FT

Let us consider the FT given in Figure 8.6.

A

B C

C

Figure 8.6 Non-coherent fault tree

We can see that this FT contains two couples of complementary events:
(1,1) and (3,3), hence two couples of biform variables: (x1, x1) and (x3, x3).

8.1.3 Prime implicants and implicates

Before proceeding with the study of prime implicants and implicates, we
will define them.

We will define at first the literal, xa, as follows:

xa =

{

x if a = 1

x if a = 0.

An implicant is a conjunction of the no conflicting or repeated literals that
imply ϕ(x).

Extensions: Non-Coherent, Delay and Multistate Fault Trees 127

A prime implicant is an implicant which is not implied by any other
implicant.

An implicate is a disjunction of the literals implied by ϕ(x).

A prime implicate is an implicate which does not contain any other
implicate.

A base of a function ϕ is any disjunction of prime implicant equivalent to ϕ.

A complete base is the disjunction of all the prime implicant.

A base is irredundant if it ceases to be a base, when one of the prime impli-
cants in this base is deleted.

A base is minimal irredundant when it contains the least number of prime
implicants among all the irredundant bases.

A Boolean function can have more than one minimal irredundant base. If
the function ϕ possesses just one base, which is simultaneously complete and
irredundant, then ϕ is coherent.

The same algorithms that are utilized for the c-FT can be employed for the
nc-FT, but on considering, in addition, the terms of consensus.

Let us consider the identity:

xy + zx = xy +̇zx+̇yz. (8.1)

The term yz is called the term of consensus. A particular version of the
above identity is given below:

x + xy = x +̇y.

Thus, when we, by employing the algorithms developed for the c-FT, obtain
the list of cut sets (implicants), we have to take into account the terms of
consensus during the reduction.

⊲ Example 8.1. We will obtain the prime implicants of the FT in Figure 8.6
On applying the Mocus algorithm (see Chapter 4) we take:

I1 = x1x2x3

I2 = x1x2

I3 = x1x3

128 Fault Trees

I1 and I2 give the consensus I4 = x2x3, which will be a fourth implicant.

The implicant I1 will be eliminated as it is no longer prime. Thus, the prime
implicants of the studied FT are: I2, I3 and I4. Here we have the following
theorem of Worel et al. [WOR 78]: “If the Boolean function ϕ has a dual
function that does not contain zero product, then the prime implicants are
obtained without applying the term of consensus”.

⊲ Example 8.2. The following function

ϕ(x) = (x1 +̇x2x3x4)(x1 +̇x4 +̇x3)

has a dual function:

ϕD(x) = x1(x2 +̇x3 +̇x4) +̇x4, x1, x3.

without zero product.

As a result, we will obtain the prime implicants of ϕ through simple devel-
opment, as well as the reductions of the coherent functions without making use
of the term of consensus.

ϕ(x) = x1x4 +̇x1x3 +̇x1x2x3x4.

8.1.4 Probabilistic study

The probabilistic assessment of the nc-FT can be done by the methods that
we have developed in the case of the c-FT.

During the inclusion-exclusion development, we have to take into account
the reduction due to complementary events (i.e., A ∩ A = ∅). Thus, the prob-
ability of intersection of two implicant containing at least one complementary

Extensions: Non-Coherent, Delay and Multistate Fault Trees 129

event is equal to zero. The terms of the development to be calculated for a
given precision are not more important than those for the c-FT.

During the factorization, it will be necessary to integrate the complementary
events into the list of repeated events.

The recursive methods are valid also for the nc-FT. It has to be mentioned
that, when in a term we have the conjunction of two complementary events,
then the term will be eliminated.

The calculation of the bounds is applicable also for the nc-FT, except for
the “min-max” bounds [APOS 77].

⊲ Example 8.3. (Example 8.1 contd.). We get:

Q = q1q3 + q2 + q1q2 − q1q2q3 − q1q2p3 = q1q3 + q2p3.

As for the analysis of uncertainty, the same method used for the coherent
FTs can be employed. As regards the factors of importance, we will use the
same relationships as for those the coherent fault trees, but wherever we have
∆Q, we need to substitute |∆Q|, [JAC 83].

8.2 Delay fault trees

8.2.1 Introduction

In this section, we will study the fault trees comprising, apart from the OR
and AND operators, the DELAY operators, which we call the delay fault trees.

The DELAY operator contains a single input and a single output. The
output event is realized when that at the input is realized for at least a time
period τ , which is equal to the delay given by the operator.

We have developed algorithms for the transformation of a delay fault tree
into a standard fault tree.

8.2.2 Treatment

Let us consider a DELAY(τ) operator having for input an AND operator,
itself having two inputs. We can transform this structure into another equivalent
structure: this consists of an AND operator having for input two DELAY(τ)
operators (see Figure 8.7a) and b)).

130 Fault Trees

AND/OR

AND/OR

Figure 8.7 Transformation of a structure comprising a delay operateor as out-
put a) into an equivalent structure with two delay operators as input b)

We have:

S1(t) = Y (t− τ) = X1(t− τ)X2(t− τ)

and

S2(t) = Y1(t)Y2(t) = X1(t− τ)X2(t− τ)

whence

S1(t) = S2(t), t ≥ 0.

Let us now consider a DELAY(τ) operator having for input an OR operator,
which in turn has two inputs. We can transform this structure into another
equivalent structure: this one consists of an OR operator having for input two
DELAY(τ) operators. (see Figure 8.7a) and b)).

We have:

S1(t) = Y (t− τ) = X1(t− τ) +̇X2(t− τ)

and

S2(t) = Y1(t) +̇Y2(t) = X1(t− τ) +̇X2(t− τ),

whence

S1(t) = S2(t), t ≥ 0.

Extensions: Non-Coherent, Delay and Multistate Fault Trees 131

We have considered two operators with two inputs for simplifying the
presentation. The result is valid for operators having more than two inputs.

Let G = (X,U) be a delay fault tree (containing at least one delay operator),
and D ∈ X be a DELAY(τ) operator. Let D(D) be the domain of D (the set
of the basic events of the sub-fault tree having D as its top operator).

We can transform the fault tree described above into an equivalent fault tree.
It suffices to eliminate the operator D by transforming at first all the events
of the fault tree belonging to D(D) into “delay events” (delay components
[LIM 90]). The proof of this assertion is immediate, thanks to the two proof of
transformation of operators described above.

The treatment of the fault tree thus obtained is done in a traditional manner,
that is: obtaining the cut sets, reduction and evaluation. See also the delay
distribution in section 1.1.8.

8.3 FTs and multistate systems

In this section, we will give a brief introduction to the multistate systems
by presenting the diverse types of these systems, a general definition of the
structure function as well as the definition of the reliability in this general
context. We will then present the two types of FT for modelizing the multistate
systems: FTs with restrictions and multistate FTs.1

8.3.1 Multistate systems

Up to now we have been studying systems with state spaces Ei = E = {0,1},
for any component i, that is to say, “binary systems”. The binary systems
constitute the essential paradigm of the theory of reliability of systems.

The difficulties of the binary model for describing more and more complex
systems have led, since the beginning of the 1970s, to considerations that are
more ambitious than the simple “reliability of switches”. Thus, through the
natural route, the negation of the binary character on the state spaces of the
components and of the systems led to multistate systems.

Postelnicu introduced in 1970 [POS 70] the state space [0,1] ⊂ �, for the
components and the systems. For these systems, and without algebraic con-
sideration, he deduced a certain number of probabilistic results. This idea of

1 The reader solely interested in FTs can move on directly to section 8.3.4.

132 Fault Trees

“extension” led the analysts to consider other types of systems; the systems
studied in the books are, to a large extent, systems of discrete state spaces.
Thus, we can classify them, depending on their state spaces, into three big
families:

Systems with totally ordered discrete state spaces

This first family contains three types of systems:

– The multistate systems with Ei = E = {0,1, ...,M} (studied by Barlow and
Wu [BAR 78], El-Neweihi, Proschan and Sethuraman [PRO 78], Griffith [GRI
80 & 82], Natvig [NAT 82] and Block and Savits [BLO 82]).

– The systems with E = {0,1, ...,M} and Ei = {0,1, ...,Mi} (studied by Ohio,
Hiroso and Nishida [OHI 84], Janan [JAN 85] and Wood [WOO 85]).

– The systems with E = {0,1, ...,M} and {0,M} ⊂ Ei ⊂ E (studied by Natvig
[NAT 82]).

It should be noted that the second and third types, as we will see later, can
be considered particular cases of the first type.

Systems with partly ordered discrete state spaces

The systems of this family are modeled by the definition of binary variables
for each mode of failure. Thus:

– Caldarola [CAR 80] and Xizhi [XIZ 84] consider Boolean algebras with
“restrictions” to the variables.

– Garriba et al. [GAR 80 & 85] consider Boolean algebras without restric-
tion.

Systems with continuous state spaces

– Ross [ROS 79] considers systems with state spaces �+

– Postelnicu [POS 70], Baxter [BAX 84], and Montero [MON 90] consider
state spaces the closed [0,1]⊂ �.

8.3.2 Structure function

Let there be a system S, with C the set of its components (if |C|= n < ∞,
and n ≥ 1, the system is said to be of order n); for each component i ∈ C, we
will assign a function xi(t), (if xi(t) = k, k ∈ Ei, the component i is said to be
in the state k, at time t); for the set of the components, let us consider the
vector x(t) = (x1(t), ..., xn(t)). We will define a function ϕ over E1× ...×En and

Extensions: Non-Coherent, Delay and Multistate Fault Trees 133

values within E (state space of the system) called the structure function. The
system in question is noted as S = (C,×n

i=1Ei,E ,ϕ).

More exactly, the structure function is defined as a measurable applica-
tion. We define the measurable space (Ei,B(Ei)), for all i ∈ C, and the product
measurable space (E1 × ... × En,B(E1 × ... × En)), where B(·) is the Borelian
σ-field generated by the family of opens (·); then, the structure function is a
measurable application:

ϕ: (E1 × ...×En,B(E1 × ...×En))−→ (E ,B(E)).

The product set E1 × ... × En, provided with the (product) and +̇ (sum),
is called a Boolean lattice (complemented distributive lattice). The elements of
E1 × ...× En are n-dimensional vectors, noted as x = (x1, ..., xn). The Boolean
lattice possesses the usual properties: associativity, commutativity and distribu-
tivity. The binary case that we presented in Chapter 2 is a particular example.

As for the binary case, the product set E1 × ...× En is partly ordered with
the relationship “≤”, called inclusion. In the usual manner, we will also define
the strict inclusion, noted “<” and the equality, noted “=”.

The following definitions and properties relate to systems with discrete
states.

Now, we use as support, so as to give the basic definitions, the system:
SM = (C,En,E ,ϕ), with E = {0,1, ...,M}. In fact, this type of systems also
represents the systems with Ei = {0,1, ...,Mi} and E = {0,1, ...,M0}, because,
in the latter case, we can define M = max{M1, ...,Mn,M0} and consider the
system SM with, for structure function, the function ϕ̂ : En →E , with ϕ̂(x) =
ϕ(x1 +̇M, ..., xn +̇M).

Dual structure function: for a given structure function ϕ, we define its dual
function ϕD through the relationship:

ϕD(x) = M −ϕ(M− x).

Essential component: a component i ∈ C is said to be essential or relevant
for the structure function ϕ:

If there exists an x ∈ En such that ϕ(Mi,x) 	= ϕ(0i,x),
with (ai,x) = (x1, ..., xi−1, a, xi+1, ..., xn).

The component i ∈ C is said to be strictly essential for the structure function
ϕ if:

For all z, y ∈ E , y 	= z, there exists an x ∈ En such that ϕ(zi,x) 	= ϕ(yi,x).

134 Fault Trees

Monotone system: the system S is said to be monotone if:

– ϕ is non-decreasing with respect to x ∈ En;

– for all x ∈ En, we have

min
i∈c

{xi} ≤ ϕ(x) ≤max
i∈c

{xi}.

Coherent component and coherent system: the component i ∈ C is said to
be strictly coherent for the structure function ϕ if:

For all j, k ∈ E , there exists an x ∈ En

such that ϕ(ki,x) = j if and only if k = j.

When all the components i ∈ C are strictly coherent, the system is said to
be strictly coherent.

Elementary systems: the three types of systems given below are called ele-
mentary systems:

– Series system at the level m if

ϕ(x) = m ⇔ min
i∈C

xi = m.

– Parallel system at the level m if

ϕ(x) = m ⇔ max
i∈C

xi = m.

– System k-out-of-n at the level m if

ϕ(x) = m ⇔ max
i∈C

{
i :

n∑

j=1

1{xj≥i} ≥ k
}

= m.

Extensions: Non-Coherent, Delay and Multistate Fault Trees 135

In fact, the “series” systems and the systems “in parallel” are particular
cases of the systems “k-out-of-n”. A “series” system is a system “n-out-of-n”
and a system “in parallel” is a system “1-out-of-n”.

Any system that can be composed uniquely of elementary sub-systems is
called a system of elementary structure. In the opposite case, it is called a
system of complex structure.

Minimal sets: the minimal sets (minimal cut sets and paths) play a prepon-
derant role in the study of systems with complex structure; they allow us to
construct their structure function.

A vector x is a path at level m if ϕ(x) ≥ m; it is a path vector at minimal
level m if ϕ(x) = m; it is a minumal path vector at maximal level m if ϕ(y) < m,
for y < x.

A vector x is a cut set at level m if ϕ(x) < m; it is a cut set vector at
minimal level m if ϕ(x) = m− 1; it is a minimal cut set vector at minimal level
m if ϕ(y) ≥m, for y ≥ x.

Module: (A,χ) is a module of the system SM = (C,En,E ,ϕ) if A ⊂ C and

ϕ(x) = ψ(χ(xA),xA), where ψ is a coherent structure function called an orga-
nizing function, and xA is the restriction of the vector x over A.

The set of disjoint modules {(A1, χ1), ..., (Ar, χr)} is a modular decomposi-
tion of the system SM = (C,En,E ,ϕ), with, as organizing function, the function
ψ, if:

(i) C = A1 ∪ ...∪Ar

(ii) ϕ(x) = ψ(χ1(x
A1), ..., χr(x

Ar)).

8.3.3 Stochastic description and function of reliability

Let a multistate system of order n be S = (C,En,E ,ϕ). The performance
process of the component i ∈ C is the right continuous stochastic process
{Xi(t); t ∈ T }, defined over a probability space (Ωi,Ai, Pi) and with values
in E . The set of the time is: T = �+ or T = �.

The simultaneous performance process is the vector stochastic process
X(t) = (X1(t), ...,Xn(t); t ∈ T) over the space of product probability:
(Ω,A, P) = (×CΩi;×CAi;×CPi) and with values in En.

136 Fault Trees

The performance process of the system is the right-handed continuous
stochastic process {ϕ(X(t)); t ∈ T }, defined over (Ω,A, P) and with values in E .

In line with the above considerations, we can define the reliability function
as follows:

– Reliability of the system at the level z at time t, R(z, t):

R(z, t) = P (ϕ(X(u))≥ z, ∀u ∈ T (t)),

where T (t) = T ∩ [0, t].

– Instantaneous availability at the level z at time t, A(z, t):

A(z, t) = P (ϕ(X(t))≥ z),

– Maintainability of the system at the level z at time t, M(z, t):

M(z, t) = 1− P (ϕ(X(u)) < z, ∀u ∈ T (t)).

⊲ Example 8.4. In the case of binary systems, we can find again the well-known
formulae:

R(t) = P (ϕ(X(u)) = 1,∀u ∈ T (t)),

A(t) = P (ϕ(X(t)) = 1),

M(t) = 1− P (ϕ(X(u)) = 0,∀u ∈ T (t)).

In the discussion that follows, we have two types of fault trees for studying
the multistate systems with discrete state space: the fault trees with restrictions
(FT-r) and the multistate fault trees (m-FT).

8.3.4 Fault trees with restrictions

The FT-r within the framework of the multistate systems are similar to the
binary FTs, except for the fact that many basic events are mutually exclusive,
because they are defined over the state space of a same component of the
system, which in general exhibits multistate. From this point of view, the FT-r
are a generalization of the nc-FT. It should be noted that in the case of the
FT-r, the mutually exclusive basic events are not necessarily complementary as
in the case of the nc-FT.

The treatment of the FT-r necessitates considering these dependences at
the level of the algebraic analysis. Caldarola [CAR 80] has proposed a Boolean
algebra with restrictions for variables.

Extensions: Non-Coherent, Delay and Multistate Fault Trees 137

Let there be a component i of the system and Ei = {0,1, ..., ni} be its state
space, and the variable xi with values Ei. Let us define the binary variables as
follows:

xij = 1{xi=j}, i ∈ C, j ∈ Ei.

It is clear that we have:

xi0 +̇xi1 +̇ ... +̇xini
= 1, i ∈ C, (8.2)

and

xijxik = 0; j 	= k. (8.3)

The Boolean algebra with the restrictions proposed in [CAR 80] is concerned
with the two relationships (8.2) and (8.3).

We also define the complementary variable:

xis = xi0 +̇xi1 +̇ ... +̇xi,s−1 +̇xi,s+1 +̇ ... +̇xini
, s ∈ Ei. (8.4)

It is important to note that within the framework of the Boolean algebra
with restrictions, the state spaces are not ordered. This translates in a better
manner the reality of the system concerning the reliability. As underlined by
Caldarola, an electric switch is not more faulty under the “opening failure”
mode than that under the “closing failure” mode.

For obtaining the prime implicants of an FT-r, we will obtain the implicants
of the top event (for example, by using the Mocus algorithm), and then, from
the Nelson algorithm [NEL 54 & 55], we will obtain an irredundant base for
the Boolean function of the top event.

⊲ Example 8.5. Let us consider the structure function of an FT obtained from
a Mocus-type algorithm. The four components of the system implied in this
FT have state spaces of cardinalities 4, 2, 3 and 3. The binary variables defined
for this problem are as follows:

Component 1: x10, x11, x12, x13.

Component 2: x20, x21.

Component 3: x30, x31, x32.

Component 4: x40, x41, x42.

The events {X13 = 1}, {X21 = 1}, {X32 = 1} and {X42 = 1} designate,
respectively, the perfect states of the four components.

138 Fault Trees

The structure function of the FT, obtained by a Mocus-type algorithm, is
given below:

ϕ(x) = x21 +̇x32x11 +̇x32x12 +̇x42x13 +̇x12x33x41 +̇x31x11x43

+̇x31x13x43 +̇x31x41 +̇x11x33x43,

where x = (x10, x11, x12, x13, x20, x21, x30, x31, x32, x40, x41, x42).

On applying the Nelson algorithm [NEL 54 & 55], we will obtain:

ϕ(x) = x21 +̇x32x12 +̇x42x13 +̇x12x41 +̇x31x13 +̇x31x41 +̇x11.

8.3.5 Multistate fault trees

Multistate fault trees are the trees whose “basic events” do not represent
events but components; the “intermediate events” represent the sub-systems;
the “top event” represents the system. The operators are generalized, and they
represent the applications of the input spaces to the output space (the spaces
are discrete).

Figure 8.8 Multistate operator with n inputs

The operator in Figure 8.8 represents the following application:

f : Er,1 × ...×Er,n →Er,

where Er,i, (i = 1, .., n) is the space of the i-th input, and Er is the output space.

Given the high complexity concerning the treatment of the m-FT, we limit
ourselves in pratice to the operators having no more than two inputs. An
m-FT can be represented by k FT-r, where k = card E , E being the state space
of the top.

Extensions: Non-Coherent, Delay and Multistate Fault Trees 139

⊲ Example 8.6. Let us reconsider the example already illustrated in
Chapter 7, concerning the two hydraulic pumps. Let us consider three states
for the pumps, and three states for the system, that is to say: E1 = E2 = E =
{0,1,2}. For the pumps we have 2: perfect state and output equal to 50; 1:
partial failure and output equal to 25; 0: complete failure and output equal to
0. For the system, we have 2: perfect state and output between 75 and 100; 1:
partial failure and output between 25 and 75; 0: complete failure and output
less than 25.

The multistate operator describing the state of the system as a function of
the states of its components is given in Figure 8.9. The matrix translates the
application f given above.

Figure 8.9 Multistate operators with two inputs

The operator (FT-mp) given in Figure 8.9 can be represented by the two
FT-r given in Figures 8.10 and 8.11.

Figure 8.10 FT-r concerning the state 2 of the system

140 Fault Trees

The notation (i, j) concerning the basic events of the FTs means the
occurrence of the state j of the component i. ϕk designates the non-occurrence
of the state k of the system, that is, the level of performance of the system will
be less than k. Thus, the FT in Figure 8.11 represents the top event, “not the
nominal regime”. The FT in Figure 8.10 represents the “non-occurrence of the
partial failure of the system”, that is, the complete failure.

Figure 8.11 FT-r dealing with the state 1 of the system

The operators in the FTs described above are binary operators AND and
OR. We could have also constructed the FTs dealing with the different states
of the system without considering the order relationships in the state spaces.

Concerning the probability of not obtaining the level of performance j, we
can assess it either directly through the m-FT of Figure 8.9, or through the
FT-r described above.

Let us note:

pij(t) the probability that the component i is in the state j at the

times t,

pj(t) the probability that the system is in the state j at the time t,

S(k,h) the element (k,h) of the matrix of Figure 8.9.

Then, we have:

pj(t) =
∑

(k,h):S(k,h)=j

p1h(t)p2k(t).

For example, the probability that the performance of the system be less
than 2, at time t, is:

p0(t) + p1(t) = p10(t)p20(t) + p11(t)p20(t) + p10(t)p21(t). (8.5)

Extensions: Non-Coherent, Delay and Multistate Fault Trees 141

From the m-FT in Figure 8.9, we have:

ϕ2 = x10 +̇x20 +̇x11x21.

whence we obtain again the expression (8.5). It should be noted that: x10x11 = 0
and x20x21 = 0.

It should also be noted that the probabilities pij(t) as shown above are
obtained generally from the resolution of the stochastic processes describing
the behavior of the components in the system.

This page intentionally left blank

Chapter 9

Binary Decision Diagrams

9.1 Introduction

In recent years, new algorithms concerning fault trees was proposed by
Coudert and Madre [COU 92], [COU 94] designated under the term of binary
decision diagrams (BDD). It is based on a kind of reduction of the factoriza-
tion tree of Shannon, as tuned in the treatments of Boolean functions by Akers
[AKE 78], and later by Bryant [BRY 87], [BRY 92]. With the aid of this new
technique, a complete algorithmics (probabilistic assessment, logical analysis
and calculation of the factors of importance) has already been proposed in the
literatures [RAU 93], [ODE 95], [ODE 96].

The algorithms based on the BDD are exceptionally rapid. They have made
possible the treatment of difficult test cases in a very short space of time (some
seconds) instead of very long time periods (some hours, even some days) even
with the most efficient traditional algorithms.

Nevertheless, it has to be noted that these algorithms have not altered the
nature of the problem, which still continues to be NP -complete. As a result,
there can be cases that are difficult to resolve, even with these algorithms.

9.2 Reduction of the Shannon tree

9.2.1 Graphical representation of a BDD

Beginning from the tree developed by Shannon, we will proceed with its
reduction starting, in principle, from the bottom towards the top, while elimi-
nating the vertices that are not useful. We eliminate a vertex in the following
two cases:

143

144 Fault Trees

– When its two children head for the same vertex, or

– When it is equivalent to another vertex.

Two vertices are said to be equivalent if they carry the same variable and
if their children (1) and (0) head for two equivalent vertices, respectively. This
definition is applied recursively from the bottom towards the top of the tree.
When the two children, (1) and (0), of a vertex (b) head for the same vertex
(c), (Figure 9.1(a)), then vertex (b) will be eliminated and its inputs will be
directed towards vertex (c) (Figure 9.1(b)).

Figure 9.1 Eliminating vertex (b) in (a)

Figure 9.2 Eliminating one of the two equivalent vertices (a)

When two or more vertices are equivalent, we retain one of them and elim-
inate the others by directing their inputs to the retained vertex.

In Figure 9.2(a), the two vertices (a) are equivalent. We will eliminate one
of them and will direct its inputs towards the other (Figure 9.2(b)).

Binary Decision Diagrams 145

⊲ Example 9.1. With a view to giving a good illustration of the reduction, we
will give an example for obtaining the reduced Shannon tree for the following
Boolean function:

ϕ(x1, x2, x3) = x1x2 +̇x3.

Figures 9.3(a), (b) and (c) illustrate the stages of reduction. Figure 9.3(a)
shows the developed Shannon tree. It has to be noted that the vertices of the
variables are represented by circles, whereas the vertices of values 1 and 0 are
represented by rectangles. Figure 9.3(b) represents an intermediate stage of
reduction, and Figure 9.3(c) represents the reduced Shannon tree or the BDD.

The Shannon tree (developed or reduced) is not unique; it depends on the
order of variables. However, each developed tree has a corresponding unique
reduced tree, that is, when we fix the order of the variables, the BDD that
we obtain is unique. In this case, we will discuss the ordered BDD or OBDD
[BRY 92].

In the preceding example, the order of variables was: x1 < x2 < x3. On
changing the order, we will obtain a different BDD. For example, by adopting
the order: x3 < x1 < x2, we will obtain the BDD in Figure 9.4.

Nevertheless, all the BDDs obtained by adopting different orders of variables
are equivalent. The expressions of Boolean functions obtained through the two
BDDs represented in Figures 9.3(c) and 9.4 are, respectively (we obtain them
by enumerating the paths of the root at the vertex 1, in the respective BDDs):

ϕ1(x1, x2, x3) = x1x2 + x1x2x3 + x1x3,

ϕ2(x1, x2, x3) = x3 + x1x2x3

We can easily verify that the above two functions ϕ1 and ϕ2 are equivalent
to ϕ.

9.2.2 Formal BDD

The BDD can also be obtained in a formal manner without using graph rep-
resentatives. We will be presenting such formalism in the following discussion.

146 Fault Trees

Figure 9.3 Reduction of the Shannon tree (BDD)

Figure 9.4 BDD according to the order x3 < x1 < x2 of variables

Let the structure function be ϕ, and the factorization be as follows.

ϕ(x) = xiϕ(1i,x) +̇xiϕ(0i,x).

Binary Decision Diagrams 147

We will represent this operation through an ordered triple,

< xi,ϕ(1i,x),ϕ(0i,x) >,

also called if-then-else. In a general manner, for the three given Boolean func-
tions f , g and h, we will designate the following operation:

< f,g,h >= fg +̇fh.

The usual operations between the Boolean functions can be carried out with
the help of this operation. For example:

f =< f,1,0 >

fg =< f,g,0 >

f +̇g =< f,1, g >

f ⊕ g =< f,g, g >

Let us consider the Boolean function ϕ(x) designated by < f,g,h > and the
variable x. With the aid of the factorization relationship, the following can be
obtained:

ϕ(x) =< f,g,h >= xi[fg +̇fh](1i,x) +̇xi[fg +̇fh](0i,x).

This relationship can also be written as:

ϕ(x) =< f,g,h >=
〈
xi,< fxi =1, gxi =1, hxi =1 >,< fxi =0, gxi =0, hxi =0 >

〉

where fxi =1 = f(1i,x).

This latter relationship enables us to obtain recursively the BDD of a
Boolean function without using the graphs. In this case, we choose xi with
the smallest order.

9.2.3 Probabilistic calculation

The probabilistic calculation, which will be carried out, will yield the same
value in all the cases. However, there is one problem that still remains and it
concerns the size of the BDD. Different orders of variables give different sizes.
In certain cases, this difference can be very large, which implies an unmatched
treatment. In important applications, it will be in our interest to choose cor-
rectly the order of the variables. The problem regarding the choosing of the
order of variables still remains unsolved.

148 Fault Trees

The calculation for Q(q) = Eϕ(X) being carried out on the basis of the
BDD of Figure 9.3(c), we have:

Q(q1, q2, q3) = q1q2 + q1p2q3 + p1q3.

On the basis of the BDD in Figure 9.4, we will obtain:

Q(q1, q2, q3) = q3 + q1q2p3.

It is easy to verify, keeping in mind the relationship qi + pi = 1, that the
above two expressions are equal.

9.3 Probabilistic assessment of the FTs based on the BDD

The construction of the BDD for a fault tree does not differ from that of
an explicit Boolean function as in the previous section, but for the mode of
calculating the value of the Boolean variable for the top event.

We will be considering the fault tree in Figure 9.7 and constructing the
corresponding BDD with a view to calculating the probability of the top event
and after the BDD for obtaining the prime implicants.

Figure 9.5 Fault tree

Binary Decision Diagrams 149

Figure 9.6 BDD of the fault tree

Figure 9.7 BDD corresponding to a different order of the variables

(a) Construction of the BDD: it is obtained successively in Figures 9.6(a),
(b) and (c).

On adopting a different order: x3 < x1 < x2, the BDD that is obtained
is given in Figure 9.7 It is seen that it is smaller (3 vertices) than that in
Figure 9.6(c) (5 vertices).

150 Fault Trees

(b) Formally obtaining the BDD: from the formal viewpoint, we have:

xi = < xi,1,0 >,

xi = < xi,0,1 >,

G3 = x2x3 =< x2, x3,0 >

= << x2,1,0 >,< x3,0,1 >,0 >

= < x2,< 1,< x3,0,1 >,0 >,< 0,< x3,0,1 >,0 >>

= < x2,< x3,0,1 >,0 >,

G5 = x2 +̇x3 =< x2,1, x3 >

= << x2,1,0 >,1,< x3,1,0 >>

= < x2,<< 1,1,0 >,1,< x3,1,0 >>,<< 0,1,0 >,1,< x3,1,0 >>>

= < x2,1,< x3,1,0 >>

= < x2,1, x3 >,

G2 = x1G3 =< x1,0,G3 >

= << x1,1,0 >,0,G3 >

= < x1,< 1,0,G3 >,< 0,0,G3 >>

= < x1,0,G3 >,

G4 = x1G5 =< x1,G5,0 >

= < x1,< 1,G5|x1 =1,0 >,< 0,G5|x1 =0,0 >>

= < x1,G5|x1 =1,0 >

= < x1,G5,0 >,

G1 = G2 +̇G4 =< G2,1,G4 >

= < x1,< G2|x1 =1,1,G4|x1 =1 >,< G2|x1 =0,1,G4|x1 =0 >>

= < x1,< 0,1,< x2,1, x3 >>,<< x2,< x3,0,1 >,0 >,1,0 >>

= < x1,< x2,1, x3 >,< x2,< x3,0,1 >,0 >> .

The BDD, as given in Figure 9.6(c), corresponds well to the expression of G1,
described above, which is finally:

x1x2 + x1x2x3 + x1x2x3

(c) Probabilistic assessment: the calculation for the probability of the top
event of the fault tree is done either on the graph of the BDD with the aid of
the paths leading to value 1 (vertex 1), or with the help of the expression of
G1 described above.

Binary Decision Diagrams 151

From the BDD of Figure 9.6(c), we obtain

PS = q1q2 + q1p2q3 + p1q2p3,

and from the BDD of Figure 9.7

PS = q1q3 + q2p3.

which comes to the same thing.

9.4 Research about the prime implicants

Let us consider a structure function ϕ, and let the Shannon development be
as follows:

ϕ(x) = xiϕ(1i,x) +̇xiϕ(0i,x).

Taking into account the consensus, this relationship can also be written as
follows:

ϕ(x) = xiϕ(1i,x) +̇xiϕ(0i,x) +̇ϕ(1i,x)ϕ(0i,x).

If ϕ is monotonic with respect to xi, then, ϕ(1i,x) ≥ ϕ(0i,x), which implies
that ϕ(1i,x)ϕ(0i,x) = ϕ(0i,x), which in turn enables the representation of ϕ
as follows:

ϕ(x) = xiϕ(1i,x) +̇ϕ(0i,x).

If, on the contrary, ϕ is monotonic with respect to xi = 1− xi, by the same
way, ϕ is written as:

ϕ(x) = ϕ(1i,x) +̇xiϕ(0i,x).

Noting by impl(f) the set of prime implicants of the Boolean function ϕ,
we have:

impl(ϕ) = P ∪Q∪R,

where the sets P , Q and R are, in the first case:

P = impl(ϕ(0i,x))

Q = {{xi} ∪ σ | σ ∈ impl(ϕ(1i,x))) \ P}

R = ∅.

152 Fault Trees

In the second case we have:

P = impl(ϕ(1i,x))

Q = ∅

R = {{xi} ∪ σ | σ ∈ impl(ϕ(0i,x))) \ P}.

For the general case, where ϕ is monotonic neither for xi, nor for 1−xi, we
have:

P = impl(ϕ(1i,x)ϕ(0i,x))

Q = {{xi} ∪ σ | σ ∈ impl(ϕ(1i,x))) \ P}

R = {{xi} ∪ σ | σ ∈ impl(ϕ(0i,x))) \ P}.

Figure 9.8 BDD coding the prime implicants of the fault tree

Concerning the prime implicants, many algorithms have been proposed
([COU 94], [RAU 93], [ODE 95]).

Odeh has proposed an algorithm based on the above analysis [ODE 95],
[ODE 96]. It starts from the BDD of the fault tree and from a new type of
vertex, called “sum”, and constructs a new BDD coding the prime implicants.

Binary Decision Diagrams 153

The “sum” vertex will realize quite simply the union of the prime implicants of
two functions or more precisely of two portions of a BDD (see Appendix A).

This last algorithm, applied to the example of the fault tree in the previous
section furnishes the BDD of the prime implicants in Figure 9.8.

The prime implicants are represented by the paths of the BDD leading from
the root of the tree at the vertex (1). We obtain the following prime implicants:

x1x3, x2x3, x1x2.

9.5 Algorithmic complexity

The complexity of a BDD is measured by its size, that is, by the number of
the vertices contained in it.

The size of a tree developed by Shannon, representing a Boolean function
of n variables, is

20 + 21 + 22 + ... + 2n = 2n+1 − 1.

The maximum size of a reduced Shannon tree or BDD, representing a
Boolean function of n variables, is given by:

2n

n
(2 + ε).

with ε ∼= 3.125. This boundary was obtained by Liaw and Lin [LIA 92] by con-
sidering uniquely the reductions due to the equivalent vertices. An improvement
on this boundary could be obtained by also considering the reductions of the
vertices due to the fact that their two children (1) and (0) head for the same
vertex.

This page intentionally left blank

Chapter 10

Stochastic Simulation
of Fault Trees

10.1 Introduction

The stochastic simulation or the Monte Carlo method is the first technique
employed for obtaining, not only the probability of the top event, but also
the cut sets of the fault trees. Even though the analytical methods presently
developed respond suitably to the calculation requirements of the FTs, it would
be of interest to include “stochastic simulation”, because simulation offers the
advantage of being capable of carrying out the calculations of FTs with less
software support. In general, for the problems of the engineer concerning the
simulation, the reader can consult for example [BOU 86]. A good description of
the FTs is given in [LIE 75]. [HEN 81] and [KUM 77] also treat the simulation
of the reliability of the systems modeled by their minimal cut sets.

The theoretical elements necessary for the comprehension of this chapter
are included in Appendix C.

10.2 Generation of random variables

In order to be in a position to simulate an FT, we have to be able to generate
realizations of given r.v.s.

10.2.1 Generation of a uniform variable

The generation of the random variables through methods such as a game of
dice, drawing of cards or the stopping of a rotating wheel are already outdated.

155

156 Fault Trees

The generation of a uniform random variable over [0,1] is presently carried out
using a computer in a deterministic procedure; because of this, we call them
pseudo random variables.

The method that is most often used is based on the congruent sequences.
For example, proceeding from an initial value x0, the foot, we construct the
sequence of numbers x1, x2, ... with the formula

xn = axn−1 + b mod m, (10.1)

where a, b and m are integer constants. For example, we have the values a = 75,
b = 0, and m = 231 − 1 for a calculator of 32 bits. Thus the values obtained
are integers from 0 to m − 1. Now dividing these values by m, we obtain real
values in [0,1]. This algorithm for obtaining the random variables is called
a generator of pseudo-random numbers.

Testing of a generator: we will now present the use of a test of χ2 for testing
whether it is good, i.e., if it really generates the random variables U(0,1).

We will divide the interval [0,1] into r regular sub-intervals, i.e. Ii = [i−1
r , i

r [,
1 ≤ i ≤ r.

We will consider a sequence of random variables Uk,1 ≤ k ≤ N , whose
realizations are produced by the generator in question. We define the random
variables

Ni :=

N
∑

k=1

1{Uk∈Ii}, 1 ≤ i ≤ r. (10.2)

Let the r.v. TN be defined as follows:

TN :=

r
∑

i=1

(Ni −N/r)2

N/r
, (10.3)

where 1/r is the probability that a realization Uk(ω) falls within the given
interval Ii.

We have the following theorem.

Stochastic Simulation of Fault Trees 157

Proposition 10.1 We have the convergence in law

TN
L

−→ χ2(r − 1), N →∞.

Thus, for sufficiently large N , we can admit that approximately
TN ∼ χ2(r − 1). For a realization tN from TN , and for a level α of risk (in
general α = 0.05 or 0.01), if tN > χ2

1−α(r − 1), we reject the generator, and we
accept it in the case to the contrary.

In practice, we consider a number of classes verifying: r ∼= N2/5.

In fact, the method of simulation of the any r.v, which we will be describing
in the following discussion, is based on the fundamental theorem (see BOU 86):

Proposition 10.2 For any r.v X with values in �
d, d ≥ 1, there exists a mapping g:

�
n → �

d, and a vector (U1, ...,Un) uniformly distributed over the cube [0,1]n,
such that the r.v Y := g(U1, ...,Un) follows the same distribution as X. In addi-
tion, it can be realized by substituting n = 1 or n = d, or even n ≥ 1 as given.

10.2.2 Generation of discrete random variables

The problem here consists of generating a d.r.v from the realizations of
uniform random variables over [0,1].

Bernoulli random variable: let X be a Bernoulli random variable, X ∼B(p),
p ∈ [0,1], i.e.

�(X = 1) = 1− �(X = 0) = p.

Let there be a random variable U ∼U(0,1). Then the r.v Y = 1{U≤p} follows
a distribution B(p). In fact,

�(Y = 1) = �(1{U≤p} = 1) = �(U ≤ p) = p.

Any discrete random variables: let there be a d.r.v X with values in E =
{x1, x2, ..., xn, ...}, of distribution p = (p1, p2..., pn, ...), i.e., pi = �(X = xi). Let
there now be an r.v. U ∼U(0,1). Then the r.v. Y defined by

Y =

∞
∑

i=1

xi1{p0+p1+...+pi−1<U≤p1+...+pi−1+pi}, (10.4)

where p0 = 0, follows the distribution p.

158 Fault Trees

10.2.3 Generation of real random variables

We will at first present a general method for the generation of the r.r.v
called the inverse function method, which is based on the following results.

Proposition 10.3 Let there be an r.r.v X of c.d.f F continuous. Then the r.v.

Y := F (X) ∼U(0,1).

PROOF. As

{X ≤ x} ⊂ {F (X) ≤ F (x)},

and

{X > x} ∩ {F (X) < F (x)} = ∅,

We get:

�(F (X) ≤ F (x)) = �(F (X) ≤ F (x),X ≤ x) + �(F (X) ≤ F (x),X > x)

= �(X ≤ x) + �(F (X) = F (x),X > x)

= �(X ≤ x).

As F is continuous, for all y ∈]0,1[, there exists an x ∈ � such that F (x) = y.
Then, from the previous relationship, we have:

�(Y ≤ y) = �(F (X) ≤ F (x)) = F (x) = y.

Hence the result.

Proposition 10.4 Let there be an c.d.f F . Let us define F−1 :]0,1[→ �, through

F−1(y) := inf{x : F (x) ≥ y}, 0 < y < 1.

If U ∼U(0,1), then X := F−1(U) has for r.f. F .

PROOF. Let us show that for any x ∈ �, such that F (x) ∈]0,1[, and for any
y ∈]0,1[, F (x) ≥ y if and only if x ≥ F−1(y).

Let us assume x ≥ F−1(y) = inf{x : F (x) ≥ y}, 0 < y < 1. Then, as F is
ascending and continues to the right, {x : F (x) ≥ y} is an interval containing

Stochastic Simulation of Fault Trees 159

the extreme left point, and hence F (x) ≥ y. Now, let us assume F (x) ≥ y. Then
x ≥ inf{x : F (x) ≥ y} = F−1(y).

As a result:

�(F−1(U) ≤ x) = �(U ≤ F (x)) = F (x),

which completes the proof.

⊲ Example 10.1. Let X be an r.v of exponential distribution of parameter
λ > 0, i.e. X ∼ E . Let us note F the c.d.f of X and U ∼ U(0,1). The inverse
function F−1 of F (λ):

F−1(y) = − 1

λ
ln(1− y).

Then the r.v. Y :=− 1
λ ln(1−U), or which arrives at the same relationship,

Y :=− 1
λ ln(U) ∼ E(λ)

We will also provide another method for obtaining the realizations of abso-
lutely continuous r.v.; we are dealing here with the rejection algorithm of Von
Neumann. Let there be a random variable X of p.d.f f(x), x ∈ �. Let us assume
that there exist a p.d.f g(x), x ∈ �, and a constant c ≥ 1 such that cg(x) ≥ f(x),
for all x ∈ �, for which we will assume that we possess a series of its realizations
(Yn), or that its realizations are easy to obtain [FLU 90].

Algorithm 10.1. Von Neumann rejection method

1. Generate Y from g;

2. Generate U from the uniform distribution over [0, cg(Y)];

3. If U ≤ f(Y), then: X := Y ;

If otherwise, go back to the stage 1.

End.

In general, g is a uniform distribution.

10.3 Implementation and evaluation of the method

10.3.1 The Monte Carlo method

The Monte Carlo method consists of calculating the mathematical expecta-
tions for the r.v. functions, i.e.

�ϕ(X).

Let Xi,1 ≤ i ≤ n be the n independent realizations of X. Let us substitute
Zi = ϕ(Xi), 1 ≤ i ≤ n. By the strong distribution of large numbers, we have:

160 Fault Trees

P̂S,n =
1

n
(Z1 + ... + Zn)

p.s.
−→ �ϕ(X), n →∞. (10.5)

The Monte Carlo method converges:

– at mean value as O(n−1/2);

– at worst as O
((

log log n
n

)1/2)

,

when n →∞, [GIR 01].

10.3.2 Estimating the probability of the top event

We will estimate the probability of the top event of an FT for a fixed arbi-
trary time period θ.

Let us consider an FT with E = {e1, ..., eN}, the set of its basic events, and

the r.v. T = (T1, ..., TN) with values in �
N
+ , where Ti is the of waiting time for

the occurrence of the event i.

Let us note that fT is the density of T and ϕ the structure function of the
FT. Let us imagine the case where the system modeled through the FT is not
repairable, and let us consider the following application:

h : �
N
+ ∋T−→X = h(T) ∈ {0,1}N ,

with

Xi = 1{Ti≤θ}, i = 1, ...,N. (10.6)

The estimator of P̂S,n , the probability of the top event of the FT, PS for n
simulations, and for the time θ, will be given by the following relationship:

P̂S,n =
1

n

n
∑

i=1

ϕ(Xi), (10.7)

where Xi the ith copy of the r.v. X = (X1, ...,XN). In fact, we are dealing with
the empirical estimator, which is unbiased.

In the case of repairable systems, we will proceed as follows:

Let us note {Tij , j = 1,2, ...}, the time of appearance with common c.d.f,
noted Fi and {Yi,j , j = 1,2, ...}, the time of disappearance with common c.d.f,
noted Gi, of the basic event i, i = 1, ...,N , of the FT.

Stochastic Simulation of Fault Trees 161

There exists an m ∈ �
∗ such that:

m−1
∑

k=1

(Tik + Yik) ≤ θ <

m−1
∑

k=1

(Tik + Yik) + Ti,m+1 (10.8)

where

m−1
∑

k=1

(Tik + Yik) + Ti,m ≤ θ <

m
∑

k=1

(Tik + Yik). (10.9)

Let
∑0

1(·) = 0.

The realization of the relationship (10.8) is equivalent to the non-occurrence
of the basic event i and the relationship (10.9) to the occurrence of the basic
event i.

Let us note by Li the event defined by the relationship (10.9), {ω : ∃m ≥ 1,
the relationship (10.9) be realized}. It should also be noted that (10.8) defines
the complementary event Li of Li. Then the relationship (10.6), as described
above, is written as follows:

Xi = 1Li
, for all i = 1, ...,N.

In this manner, we have, as in the previous case, a realization for ϕ(X) =
ϕ(X1, ...,XN). The simulation is terminated, when n realizations of ϕ(X) are
obtained.

10.3.3 Precision of the estimation

An evaluation per simulation cannot be carried out without an estimation
of the error that had occurred.

The precision is described here by two parameters: ε > 0, 0 < δ < 1, i.e., if

Rn := P̂S,n − �ϕ(X), (10.10)

It is expressed as follows:

�(|Rn| ≥ ε) ≤ δ. (10.11)

The question that arises is: for a given precision (ε, δ), which is the minimal
value of n for expecting this precision?

A first approach that answers this question consists in utilizing the Cheby-
chev inequality. Hence, we can write:

P (|P̂S,n − �ϕ(X)| ≥ ε) ≤ V ar(ϕ(X))

nε2
. (10.12)

162 Fault Trees

However, for the Bernouilli r.v ϕ(X) we have V ar(ϕ(X))≤ 1/4.

As a result, if

n ≥ n0 :=

[
1

4δε2
+ 1

]
(10.13)

the precision expressed by (10.11) will be satisfied, and n0 defined in (10.13) is
the sought-after minimal value. The symbol [a] stands for the integer part of
the number a.

A different approach for estimating the minimal value of n is based on the
estimation by means of confidence intervals.

Let us substitute: γ := �[Z] and σ2 := V ar(Z), (Z := ϕ(X)) and

S2
n :=

1

n− 1

n
∑

i=1

(Zi − P̂S,n)2, (10.14)

the estimator of the variance σ2. By the strong distribution of large numbers,
we obtain:

S2
n

p.s.−→ σ2. (10.15)

From the central limit theorem, we have:

√
n

σ
(P̂S,n − γ)

L−→N (0,1). (10.16)

From (10.15) and Slutsky’s theorem, we obtain

√
n

Sn
(P̂S,n − γ)

L−→N (0,1). (10.17)

n being sufficiently large, we can consider that approximately

√
n

Sn
(P̂S,n − γ) ∼N (0,1),

and hence

�

(

zα/2 <

√
n

Sn
(P̂S,n − γ) < z1−α/2

)

= 1− α

or

�

(

P̂S,n − z1−α/2
Sn√

n
< γ < P̂S,n + z1−α/2

Sn√
n

)

= 1− α,

where zα is the α-fractile of N (0,1), and we have: zα =−z1−α.

Stochastic Simulation of Fault Trees 163

The width of the confidence interval described above is: l := 2z1−α/2
Sn√

n
, and

it represents the precision of the approximation.

When the precision is defined by α and δ, we should have l ≤ δ, and hence
n should verify the following inequality:

n ≥ (2z1−α/2
Sn

l
)2. (10.18)

⊲ Example 10.2. Estimation of the mean time until the occurrence of the top
event. Let us consider an FT, whose minimal cut sets are:

K1 = {1,2,3} and K2 = {1,4,5}

Let Ti be the time of occurrence of the basic event i, and T the time of
occurrence of the top event. We have:

T = min{max{T1, T2, T3},max{T1, T4, T5}}.

Here, we have the estimator T̂n of �T , i.e.

T̂n :=
1

n
(T 1 + ... + Tn),

where T i, 1≤ i ≤ n are the i.i.d. ∼ T .

Thus, we can write:

T1 ≤ T ≤ T1 + T2 + T3

and hence

V ar(T) = E[T 2]− (E[T])2 ≤E[(T1 + T2 + T3)
2]− (E[T1])

2. (10.19)

If E[Ti] = 1/λi , i = 1,2,3,4; the relationship (10.19) gives:

V ar(T) ≤ 1

λ2
1

+
2

λ2
2

+
2

λ2
3

+
2

λ1λ2
+

2

λ2λ3
+

2

λ3λ1
.

This boundary of variance enables us to calculate n0 from

n0 =

[
h

δε2
+ 1

]
.

164 Fault Trees

10.3.4 Acceleration of the convergence

We will estimate �h(Z) based on the Monte Carlo method. The smaller the
variance of Z, the faster the convergence will be. This assertion is intuitively
true. Instead of considering r.v. Z, we consider another r.v. V such as V ar(V) <
V ar(Z).

Let f be the p.d.f of Z and g that of V . We will assume that supp(f) ⊂
supp(g) where supp(.) stands for the support of the corresponding functions.
Then we can write:

�h(Z) = �[h(V)L(V)] =: γ, (10.20)

with

L(V) =
f(V)

g(V)
.

On the basis of this equality, we will propose the following estimator for γ:

γn :=
1

n

n
∑

i=1

h(Vi)L(Vi). (10.21)

The variance of this estimator is:

V ar(γn) =
1

n
V ar[h(V)L(V)]

=
1

n

{

�[h(V)L(V)]2 − [�(h(V)L(V)]2
}

=
1

n

{

�[h(V)L(V)]2 − γ2
}

.

The problem that is now posed is: what is the p.d.f (or the r.v V) that
minimizes the variance of γn?

It is clear that for minimizing the V ar(γn), �[h(V)L(V)]2 should be mini-
mized. This arrives at the selection for p.d.f

g(x) =
1

γ
h(x)f(x). (10.22)

In this case, we have:

V ar(γn) = 0,

Stochastic Simulation of Fault Trees 165

and therefore, a single realization would suffice for obtaining the exact value
of γ. Evidently, we will find out quickly that this poses a problem, that is, δ is
the parameter that we have to estimate.

Nevertheless, in many cases, we are able to define a p.d.f g for reducing the
variance and hence accelerate the speed of convergence.

10.3.5 Rare events

In most cases, the events involved in an FT have very low probabilities
(aircraft crash, explosion of a nuclear power plant, general breakdown of the
IT system of a bank, etc., where the probability of such an event is generally
of the order of 10−10), and, consequently, the probability of observing an event
within a rather short time period is likewise considerably very small. In fact,
the simulation described earlier will be very expensive.

We will discuss a problem which is posed during a calculation of the prob-
ability of an event with low probability of occurrence.

Let there be such an event expressed by {X ∈ A} and let us set h = 1A. We
have:

γ = �h(X) = �(X ∈ A).

Here, we will differentiate between two families of problems: one with bound
relative error and the other with unbound relative error.

Relative error: the relative error RE(X) of a random variable X is defined
by the following ratio:

RE(X) :=
standard deviation

expectation
(10.23)

For a random variable X ∼ B(γ), we have RE(X) = 1/
√

γ. For the case of
an estimator γn of an indicator random variable, shown above, we have �γn = γ
and V ar(γn) = γ(1− γ)/n. Hence

RE(γn) ∼= 1√
nγ

−→∞, γ → 0.

In this case the relative error is not bounded. These problems are very
difficult to handle.

This page intentionally left blank

Exercises

Chapter 1

E 1.1. The distribution governing the life duration T of a system is without
atom, having support �+. Show that the probability, whereby a failure occurs
at a time which is a fully positive natural number or rational value, is zero.

E 1.2. The distribution Q of the life duration T of a system has a distribution
function F , given by the relationship:

F (x) =

{

1− exp{−λx} if x ≥ a,

0 if x < a,

where a > 0, λ > 0.

a) Calculate Q(a).

b) Calculate the MTTF and the variance of T .

c) Study the characteristics of the magnitudes that are calculated,
when a→ 0+.

E 1.3. Let R(t) be the reliability function of a component/system, and suppose
that there exist a positive number a, such that limt→∞ eatR(t) = 0. Show that
the MTTF exists and

∫ ∞

0

R(t)dt.

.

167

168 Fault Trees

E 1.4. The lifetime of a system is the r.v T with c.d.f F on the half-real axis
x ≥ 0. Its mission duration is a v.a. θ of c.d.f G again over x ≥ 0. Calculate the
probability whereby the system will successfully accomplish its mission.

E 1.5. Let there be a component under continuous working. When it breaks
down, it is replaced instantaneously by a new component. If the p.d.f for the
survival time of the components is f(t) = λ exp{−λt}, t > 0, give the probability
density for the time of the nth failure.

E 1.6. A component taken from a stock containing identical components is
put to work. The stock contains the components in good condition as well as
the faulty components. When we take out a component without any special
precaution, its probability of being a failure is given equal to q. It has been
shown that the c.d.f of the lifetime of the working component T is given by
the relationship F (x) = 1− (1− q) exp{−λx}, for x > 0. Show that the average
duration of good functioning of the component is E[T] = (1− q)/λ.

Chapter 2

E 2.1. Let there be a binary, coherent system S = (C,ϕ), of the order n > 1.
Show, with respect to the active redundancy, that a local redundancy (redun-
dancy for each component) is more reliable than a global redundancy (redun-
dancy of the system). Find the equivalence condition.

E 2.2. With respect to the passive redundancy, show that: (a) in a system of
1-out-of-n:G, the global redundancy is less reliable than the local redundancy;
(b) in a system n-over-n:G, the global redundancy is more reliable than the
local redundancy ([SHE 91]).

E 2.3. Show that the reliability function of a binary system of order n, noted
as r(p), where p = (p1, ..., pn), is a multiaffine function determined in a unique
manner by the 2n coefficients in the following form:

r(p) = c0 +

n∑

i=1

cipi +
∑

1≤i<j≤n

cijpipj + ... + c12...np1p2...pn.

Exercises 169

Show also that this relationship is correct, if, for any path vector, it gives
the value 1, and for any cut set vector, it gives the value 0 ([RUS 83]).

E 2.4. Let us consider a parallel system of the order 3. When the three
components are working, the failure rate of each of them is given as λ/3. When
one of the three has broken down, the failure rate of the other two is seen to be
λ/2 and, when only one of the three is working, its failure rate is λ. Give the
c.d.f of the system’s lifetime. The same criterion is considered when the system
is in passive redundancy.

E 2.5. Let us consider a system of order 2 and let f(x, y) be the joint probability
density of the lifetimes of the two components.

(a) Show that the reliability is given by the following relationships depending
on the case:

– series system: R(t) =
∫ ∞

t
dx

∫ ∞
t

f(x, y)dy;

– active redundancy: R(t) = 1−
∫ t

0
dx

∫ t

0
f(x, y)dy;

– passive redundancy: R(t) = 1−
∫ t

0
dx

∫ t−x

0
f(x, y)dy.

(b) If the lifetimes of the two components are independent, derive the well
known expressions for the reliability in the above three cases starting from these
three expressions.

(c) Write down the above relationships in the case of a system of order n > 2.

Chapter 3

E 3.1. Dealing with the hydraulic system (Figure 3.7), construct the FT for
the top event “output less than or equal to 50%”.

E 3.2. Propose an algorithm for the automatic construction of an FT starting
from block diagram of reliability.

170 Fault Trees

Chapter 4

E 4.1. Consider the fault tree given below, as described by its operators and by
their inputs in each line of the following table. For example, G + 15 refers to the
OR operator number 15, and G ∗ 6 refers to the AND operator number 6.

G+1 G+2 02 G+15

G+2 01 G+3

G+3 G+4 G+5

G+4 03 04 05

G+5 G*6 G+7

G*6 G+8 G+12

G+7 06 07

G+8 G+9 G+11

G+9 11 G+10

G+10 12 13

G+11 14 15 16

G+12 G+17 G+19 G+13

G+13 G+14 G+10

G+14 17 18

G+15 08 G+16

G+16 09 10

G+17 22 23 24

Design this FT and give the lists of the minimal cut sets and minimal paths.

E 4.2. Let the following FT be described by its operators and by its inputs:

G+1 01 G*2 06 07

G*2 G+3 G+4

G+3 02 03

G+4 04 05

Design this FT and give the lists of the minimal cut sets and of the minimal
paths.

E 4.3. Let there be a coherent FT, whose basic events are E = {e1, ..., eN} and let
the application v : ei �→ v(i), where v(i) is the i-th prime number. On the basis
of the application v, propose a reduction algorithm of the minimal cut sets.

Exercises 171

Chapter 5

E 5.1. For the FT of Exercise 4.1:

(a) Calculate the probability of occurrence of the top event, if the probabilities
for the occurrence of the basic events are equal to 10−4.

(b) Calculate the four types of bounds.

(c) Use the Hughes method for calculating the error committed concerning the
probability of the top event, when its evaluation is done solely from the cut sets of
length 1.

E 5.2. For the FT of Exercise 4.2:

(a) Calculate the probability of occurrence of the top event, if the probabilities
for the occurrence of the basic events are: p1 = 10−3, p2 = 3 · 10−2, p3 = 10−2,
p4 = 3 · 10−3, p5 = 10−2, p6 = 3 · 10−3 and p7 = 10−6.

(b) Calculate the four types of bounds.

(c) Use the Schneeweiss method for calculating the error that occurred for the
probability of the top event, when its evaluation is solely done from the cut sets of
length 1.

E 5.3. Let there be an FT whose set of repeated events is R = {ei1 , ..., eir
} and

whose structure function is ϕ.

(a) Show that the probability of the top event is given the following formula:

PS =
∑

(vi1 ,...,vir)∈{0,1}r

Eϕ(vi1 , ..., vir
,X)

r
∏

k=1

EX
αik

ik
,

where

X
αik

ik
=

{

Xik
if αik

= 1

1−Xik
if αik

= 0.

(b) Propose an algorithm for calculating the PS on the basis of the relation-
ship (a) [ODE 93].

172 Fault Trees

E 5.4. The appearance (arrival) rates of the two inputs of an AND operator are
λ1 and λ2.

Show that:

1. The appearance of the output Λ is given by:

Λ(t).
λ1e

−λ1t + λ2e
−λ2t − (λ1 + λ2)e

−(λ1+λ2)t

e−λ1t + e−λ2t − e−(λ1+λ2)t
.

2. If λ1 �= λ2, then

lim
t→∞

Λ(t) = min{λ1, λ2}.

3. There is a t0 ≥ 0 such that, for all t > t0, we have

min{λ1, λ2} ≤ Λ(t) ≤max{λ1, λ2}.

4. If λ1 = λ2 = λ then

lim
t→∞

Λ(t) = λ.

5. Generalize the formula of 1) for n inputs.

Chapter 6

E 6.1. For the FT of Exercise 5.1, calculate the Birnbaum’s factor of importance
for the events 01 and 11.

E 6.2. Let us consider a coherent, binary system S = (C,ϕ) of the order n ≥ 1. Let
us note p = (p1, ..., pn) as being the reliabilities of its components. If we replace
any component i of the system by two components identical to the component i in
parallel, show that:

(a) The growth of the reliability of the system will be ∆Ri = piqiI
(i)
B , where

qi = 1− pi and I
(i)
B are the Birnbaum’s probabilistic importance factor.

(b) The growth of the reliability satisfies the relationship:

ci

1 + ci
R(p)qi ≤∆Ri ≤min{R(p)qi, pi(1−R(p))},

where ci = piI
(i)
B ([SHE 90]).

E 6.3. Let us consider a coherent, binary system S = (C,ϕ) of the order n ≥ 1.

(a) Show that the probability for the component i having caused the failure of
the system at time t, is given by:

Exercises 173

[R(1i,p(t))−R(0i,p(t))]fi(t)
∑n

j=1[R(1j ,p(t))−R(0j ,p(t))]fj(t)
.

(b)Deduce from the above relation the importance factor according toBarlow-
Proschan ([BAR 75]).

E6.4.Assume that PS follows aBeta distribution and give amethod for the assess-
ment of the uncertainty proceed in a manner analogous to the method of empirical
distribution; see section 6.1.2. The density of the Beta distribution with parame-
ters a and b (a > 0, b > 0) is

f(x) =
1

B(a, b)
xa−1(1− x)b−1, 0 < x < 1, a > 0, b > 0,

where B(a, b) is the Beta function defined by

B(a, b) =
∫ 1

0
xa−1(1−x)b−1dx, and we also have B(a, b) = Γ(a)Γ(b)/Γ(a+ b).

Chapter 7

E 7.1. Let us consider a binary system of order 3 that has to function in three con-
secutive phases of respective durations: θ1, θ2 and θ3.

The structures of the system corresponding to the three phases are:

Phase 1: 1//2//3 (parallel system)

Phase 2: 1− (2//3)

Phase 3: 1− 2− 3 (series system)

(a) Construct the FT concerning the failure of the system’s mission.

(b) Find the minimal cut sets of the FT.

(c) Calculate the probability of occurrence of the top event.

(d) Numerical application: θ1 = θ3 = 100 h, θ2 = 300 h, λ1 = λ2 = λ3 =
10−3 h−1.

E 7.2. Carry out a modular decomposition of the FT in Exercise 4.1 through the
Olmos-Wolf algorithm. Next, calculate the boundaries on the basis of the preced-
ing decomposition and compare the results with those found in
Exercise 5.1.

174 Fault Trees

Chapter 8

E 8.1. Let us consider the system: S = (C, [0,1]n, [0,1],ϕ). The (s, r)-importance
of the component i for the level z is defined by the relationship:

I
(s,r)
i (z) = P{ϕ(si,X) ≥ z} − P{ϕ(ri,X) ≥ z},

where s, r, z ∈ [0,1].

Show that the (0,1)-importance is given by:

Ii = E[ϕ(1i,X)]−E[ϕ(0i,X)]

and

∆Eϕ(X) = Ii∆E[Xi].

E8.2.Letusconsideradiscretemulti-performancesystem:S = (C,En,E ,ϕ), show
that:

(i) ϕ(x +̇y) ≥ ϕ(x) +̇ϕ(y),

(ii) ϕ(xy) ≤ ϕ(x)ϕ(y) where x,y ∈ En ([BLO 82]).

Chapter 9

E 9.1. Let there be an FT as given below.

G+1 G*2 G*3 G*4

G*2 1 2

G*3 1 3

G*4 3 4

(a) Construct the BDD of this tree.

(b) Show that the prime implicant are: {2,4}, {2,3}, {3,4}, {1,2}, {1,4}
and {1,3}.

(c) If p1 = 0,1; p2 = 0,2; p3 = 0,3 et p4 = 0,4, show that the probability of the
top event is equal to 0,573 [ODE 95].

Exercises 175

E 9.2. Construct the BDD of the FT of Exercise 4.1.

E 9.3. Construct the BDD of the FT of Exercise 4.2.

Chapter 10

E 10.1. Starting from the realizations of the r.v with c.d.f f.r. Fi, i = 1, ..., n,
generate the realizations of the random variable with c.d.f F :

1. F (x) ≡
∏n

k=1 Fk(x) (series system).

2. F (x) ≡ 1−
∏n

k=1(1− Fk(x)) (parallel system).

E 10.2. Show that the exponential distribution has a bound relative error.

E 10.3. Write an algorithm for obtaining the minimal cut sets of a coherent fault
tree (start from the algorithm in section 9.4; see algorithm A5).

This page intentionally left blank

APPENDICES

This page intentionally left blank

Appendix A

BDD Algorithms in FT Analysis

A1 Introduction

In order to generate a BDD corresponding to the structure function of an
FT, we study the FT in depth, and we recursively construct the BDD for each
node.

Section A2 presents the construction of a BDD starting from an FT.
Algorithm 1, for this construction, takes recourse to algorithm 2. Section A3
presents the probabilistic assessment (algorithm 3) of the top event (or of
an intermediate event), proceeding from the BDD constructed beforehand.
Section A4 presents the calculation of the Birnbaum importance factor for
the top event (algorithm 4) or of an intermediate event. Section A5 presents
algorithm 5 for searching the prime implicants for a non-coherent FT, or
the minimal sets (cut sets and paths) for a coherent FT. Algorithm 5 in
combination with algorithm 6 completes the difference between two Boolean
functions (BDD) F and G, i.e., F \ G. It generates a BDD coding for all
the paths of F (as indicated in the graph), except those containing a path
of G. Finally, algorithm 7 reads the reduced BDD and displays the prime
implicants.

These algorithms (1–7) can constitute the basis of a software for the analysis
of FTs.1

1 Written by Khaled Odeh.

179

180 Fault Trees

A2 Obtaining the BDD

In this section, we present an algorithm for the construction of the BDD
from the FT. The FT-to-BDD (node) function transforms the BDD of the FT,
whose top event is “node”.

Algorithm 1. Construction of the BDD from the FT

FT-to-BDD(node)

Start

If (node is a basic event) then

R := ite(node,1,0)

if not /* node is an operator */

op := the operator associated with node

j := first children of node

R := FT-to-BDD (j)

For (for all the threads i of node and i �= j) Make

F := FT-to-BDD (i)

R := BDD-OP (R, F, op)

End for

End if

Return(R)

End

The function “BDD-OP (F, G, op)” constructs the BDD associated with
the Boolean operation “op” between F and G. This function transforms the
triplet “(op, F, G)” from the following table into ite(F,G,H) ≡< F,G,H >,
(“ite” is an abbreviation of “if-then-else”).

Operator ite

F ·G ite<F, G, 0>

F +̇G ite<F, 1, 0>

F ⊕G ite<F, G, 0>

The latter will then be assessed by applying algorithm 2. Let us note that
algorithm 2 calls on the functions linked with the hashing table. We will use
two tables:

1. A table of operations where the Boolean operations between two BDDs
are memorized. This helps to avoid repeated calculations that have already
been carried out.

2. A table in which the diverse nodes of the BDD are memorized. This helps
to avoid the creation of already existing “ite”s.

BDD Algorithms in FT Analysis 181

These different functions are as follows:

1. “exist-op-table (<F,G,H>, R)” returns R in the case where there exists
an input at <F,G,H> in the table of operations.

2. “add-op-table (<F,G,H>, R)” creates an input < F,G,H > in the table
of operations for storing the BDD R.

3. “add-or-restore-ite-table (< x,Fx=1, Fx=0 >,F)” resets F, if there is an
input at < x,Fx=1, Fx=0 > in the table of the “ite”s; otherwise it creates for
itself an input for storing F .

Algorithm 2. Algorithm of binary operation between two BDDs

BDD-OP(F,G,op)

Start

If (F = 1 or F = 0) and (G = 1 or G = 0) then

Return(F op G)

If not

R := T [F,G]

If (R �= NULL) /* the BDD of F op G is already calculated*/

Return(R)

If not

R :=create a new BDD

T [F,G] := R /* store the result in the table T */

index(R) := min(index(F), index(G))

If (index(F) = index(R)) then

L1 := Fr(F)=1; H1 := Fr(F)=0

Otherwise

L1 := F ; H1 := F

End if

If (index(G) = index(R)) then

L2 := Gr(G)=1; H2 := Gr(G)=0

Otherwise

L2 := G; H2 := G

End if

Rr(R)=1 :=BDD-OP-1(L1,L2, op)

Rr(R)=0 :=BDD-OP-1(H1,H2, op)

Return(R)

End if

End if

End

182 Fault Trees

A3 Algorithm of probabilistic assessment

We will present an algorithm of assessment of the probability of top event
from the BDD of the FT.

Algorithm 3. Probabilistic assessment of the BDD

Probability(F)

Start

If (F = 0) then

Return(0)

Otherwise

If (F = 1) then

Return(1)

Otherwise

If (exists-prob-table(F,R))

Return(R)

Otherwise

R := pr(F)·Probability(Fr(F)=1)+qr(F)·Probability(Fr(F)=0)

add-prob-table(F,R)

Return(R)

End if

End if

End if

End

BDD Algorithms in FT Analysis 183

A4 Importance factors

This algorithm calculates the importance factor of the intermediate event
F . When F = Top, then it is the top event.

Algorithm 4. Calculation of the Birnbaum importance factor

Importance(F, i)

Start

If(F = 1 or F = 0) then

Return(0)

Otherwise

If (exists-importance-table(F,R))

Return(R)

Otherwise

If (index(F) = index(xi))

/* We will recuperate the probabilities of table-prob */

exists-prob-table(Fxi=1,R1)

exists-prob-table(Fxi=0,R2)

R := R1−R2

Otherwise

If (index(F) < index(xi))

R = Pr(F)·Importance(Fr(F)=1, i)

+

qr(F)·Importance(Fr(F)=0, i)

Otherwise

If (index(F) > index(xi))

Return(0)

End if

End if

add-importance-table(F,R)

Return(R)

End if

End if

End

184 Fault Trees

A5 Prime implicants

Algorithm 5. Obtaining the BDD of the prime implicants of F

Imp(F)

Start

If (F = 0 or F = 1) then Return(F)

Otherwise

If (exists-implic-prem-table(F, F̃)) Return(F̃)

Otherwise

non monotone := 0

F̃r(F)=0 :=Imp(Fr(F)=0)

F̃r(F)=1 :=Imp(Fr(F)=1)

If (f is monotonic with respect to r(F)) then

F̃r(F)=1 :=without(F̃r(F)=1, F̃r(F)=0)

Otherwise

If (f is monotonic with respect to r(F)) then

F̃r(F)=0 :=sans(F̃r(F)=0, F̃r(F)=1)

Otherwise

non monotone := 1

/* we will calculate Fr(F)=1 ∧ Fr(F)=0 */

cons := ite(Fr(F)=1, Fr(F)=0,0)

cons :=Imp(cons) /* we will calculate the consensus*/

F̃r(F)=1 :=without(F̃r(F)=1, cons)

F̃r(F)=0 :=without(F̃r(F)=0, cons)

End if

End if

add-or-recover-ite-table(< r(F), F̃r(F)=1, F̃r(F)=1 >, F̃)

If (non monotone = 1) then

F̃ := Sum(F̃ , cons) /* for representing the union of F̃ and cons */

add-prim-implic-table(F, F̃)

Return(F̃)

End if

End if

End

BDD Algorithms in FT Analysis 185

Algorithm 6. The BDD of F\G

Without(F,G)

Start

If (F = 0 or G = 1 then F = G) then Return(0)

Otherwise

If (G = 0) then Return(F)

Otherwise

If (F = 1) then Return(1)

Otherwise

If(exists-without-table(F,G,R)) then Return(R)

Otherwise

If (index(F) < index(G)) then

Rr(F)=1 := without(Fr(x)=1,G)

Rr(F)=0 := without(Fr(x)=0,G)

Otherwise

If (index(F) > index(G)) then

If (g is monotone with respect to r(g)) then

Return(without(F,Gr(G)=0)

Otherwise

If (g is monotone with respect to r(g)) then

Return(without(F,Gr(G)=1)

Otherwise

Return(F)

Otherwise

If (index(F) = index(G)) then

If (f is monotone with respect to r(f)) then

Rr(F)=1 := without(without(Fr(F)=1),Gr(F)=1),Gr(F)=0)

Rr(F)=0 := without(Fr(F)=0,Gr(F)=0)

Otherwise

If (f is monotone with respect to r(f)) then

Rr(F)=1 := without(Fr(F)=1),Gr(F)=1)

Rr(F)=0 := without(without(Fr(F)=0),Gr(F)=0),Gr(F)=1)

Otherwise

Rr(F)=1 := without(Fr(F)=1),Gr(F)=1)

Rr(F)=0 := without(Fr(F)=0,G)

End if

End if

End if

End if

End if

add-or-recover-ite-table(< r(F),Rr(F)=1,Rr(F)=1 >,R)

add-without-table(F,G,R)

End if

End

186 Fault Trees

Algorithm 7. Display the prime implicants coded by F

Displ-imp(F̃ , σ)

Start

If (F̃ = 0) then Return

Otherwise

If (F̃ = 1) then display(σ) /* we display the prime implicant σ */

Otherwise

If (F̃ = Sum(G,H)) then

/* the prime implicants of F̃ are those of G union H */

Displ-imp(G,σ)

Displ-imp(H,σ)

Otherwise

If (f is monotone with respect to r(F̃)) then

/* the prime implicants of F̃ are those of F̃
r(F̃)=1

to which we add r(F̃) union those of F̃
r(F̃)=0

*/

Displ-imp(F̃
r(F̃)=1

, σ ∪ r(F̃))

Displ-imp(F̃
r(F̃)=0

, σ)

Otherwise

If (f is monotone with respect to r(F̃)) then

/* the prime implicants of F̃ are those of F̃
r(F̃)=0

to which we add r(F̃) union those of F̃
r(F̃)=1

*/

Displ-imp(F̃
r(F̃)=0

, σ ∪ r(F̃))

Displ-imp(F̃
r(F̃)=1

, σ)

otherwise

/* the prime implicants of F̃ are those of F̃
r(F̃)=1

to which we

add r(F̃) union those of F̃
r(F̃)=1

to which we add r(F̃) */

Displ-imp(F̃
r(F̃)=1

, σ ∪ r(F̃))

Displ-imp(F̃
r(F̃)=0

, σ ∪ r(F̃))

End if

End if

End if

End if

End if

End

Appendix B

European Benchmark Fault Trees

B1 Description of the data

Each line of the structural data corresponds to the description of an operator
of the fault tree. For example, the line “G*143 G+139 G+140 G+141 G+142”
will describe the inputs of the operator G*143, which are: G+139 G+140 G+141
G+142.

We identify the type of operator by the second character:

1. *: for an AND operator, i.e. “G*143”.

2. +: for an OR operator, i.e., “G+139”.

3. n/k: for a combination operator n/k, i.e., “G(3/4)112”.

An event is designated by the letter “T” followed by:

1. N: normal.

2. C: complementary,

and its number, for example “TN252”.1

1 Written by Khaled Odeh.

187

188 Fault Trees

B2 Fault tree: Europe-1

B2.1 Structure of the fault tree (structural data)

G*1 G+126 G+138 G+144

G+144 G+111 G+112 G*143 TN253

G*143 G+139 G+140 G+141 G+142

G+142 G*65 G*69 G+118 G+132 TN251

G+141 G*64 G*67 G+117 G+131 TN250

G+140 G*63 G*68 G+118 G+130 TN249

G+139 G*62 G*66 G+117 G+129 TN248

G+138 G+106 G+119 G+137

G(3/4)137 G+133 G+134 G+135 G+136

G+136 G*65 G+132 TN261

G+135 G*64 G+131 TN260

G+134 G*63 G+130 TN259

G+133 G*62 G+129 TN258

G+132 G*65 G*128 TN257

G+131 G*64 G*127 TN256

G+130 G*63 G*128 TN255

G+129 G*62 G*127 TN254

G*128 G*116 G+120

G*127 G*115 G+120

G+126 G+111 G+112 G+125 TN253

G(2/4)125 G+121 G+122 G+123 G+124

G+124 G*69 G+118 TN251

G+123 G*67 G+117 TN250

G+122 G*68 G+118 TN249

G+121 G*66 G+117 TN248

G+120 G+109 G+110

G+119 G+107 G+108 TN252

G+118 G*114 TN247

G+117 G*113 TN246

G*116 G+103 G+105

G*115 G+102 G+104

G*114 G+91 G+93

G*113 G+90 G+92

G(3/4)112 G+98 G+99 G+100 G+101

G(3/4)111 G+94 G+95 G+96 G+97

G(3/4)110 G+86 G+87 G+88 G+89

G(3/4)109 G+82 G+83 G+84 G+85

G(3/4)108 G+78 G+79 G+80 G+81

G(3/4)107 G+74 G+75 G+76 G+77

G(3/4)106 G+70 G+71 G+72 G+73

G+105 G*69 TN245

G+104 G*67 TN244

G+103 G*68 TN243

G+102 G*66 TN242

European Benchmark Fault Trees 189

G+101 G*69 TN241

G+100 G*67 TN240

G+99 G*68 TN239

G+98 G*66 TN238

G+97 G*69 TN237

G+96 G*67 TN236

G+95 G*68 TN235

G+94 G*66 TN234

G+93 G*69 TN233

G+92 G*67 TN232

G+91 G*68 TN231

G+90 G*66 TN230

G+89 G*65 TN229

G+88 G*64 TN228

G+87 G*63 TN227

G+86 G*62 TN226

G+85 G*65 TN225

G+84 G*64 TN224

G+83 G*63 TN223

G+82 G*62 TN222

G+81 G*65 TN221

G+80 G*64 TN220

G+79 G*63 TN219

G+78 G*62 TN218

G+77 G*65 TN217

G+76 G*64 TN216

G+75 G*63 TN215

G+74 G*62 TN214

G+73 G*65 TN213

G+72 G*64 TN212

G+71 G*63 TN211

G+70 G*62 TN210

G*69 TN201 TN209

G*68 TN201 TN208

G*67 TN201 TN207

G*66 TN201 TN206

G*65 TN201 TN205

G*64 TN201 TN204

G*63 TN201 TN203

G*62 TN201 TN202

190 Fault Trees

B2.2 Probabilistic data

The following table gives the probabilities of occurrence for the basic events
of the fault tree Europe-1.

TN201 .01 TN231 .0137

TN202 .051 TN232 .0137

TN203 .051 TN233 .0137

TN204 .051 TN234 .016

TN205 .051 TN235 .016

TN206 .112 TN236 .016

TN207 .112 TN237 .016

TN208 .112 TN238 .016

TN209 .112 TN239 .016

TN210 .016 TN240 .016

TN211 .016 TN241 .016

TN212 .016 TN242 .0038

TN213 .016 TN243 .0038

TN214 .0218 TN244 .0117

TN215 .0218 TN245 .0117

TN216 .0218 TN246 .00052

TN217 .0218 TN247 .00052

TN218 .015 TN248 .018

TN219 .015 TN249 .018

TN220 .015 TN250 .018

TN221 .015 TN251 .018

TN222 .016 TN252 .000008

TN223 .016 TN253 .000072

TN224 .016 TN254 .015

TN225 .016 TN255 .015

TN226 .015 TN256 .015

TN227 .015 TN257 .015

TN228 .015 TN258 .0188

TN229 .015 TN259 .0188

TN230 .0137 TN260 .0188

TN261 .0188

B2.3 Results

PS = 1.282 · 10−6

46188 minimal cut sets

European Benchmark Fault Trees 191

B3 Fault tree: Europe-2

B3.1 Structure of the fault tree

G(3/5)1 G+71 G+70 G+69 G+68 G+67

G+71 G*66 TN32

G+70 G*65 TN31

G+69 G*64 TN30

G+68 G*63 TN29

G+67 G*62 TN28

G*66 G+61 G+56

G*65 G+60 G+56

G*64 G+59 G+56

G*63 G+58 G+56

G*62 G+57 G+56

G+61 G+55 TN27

G+60 G+55 TN26

G+59 G+55 TN25

G+58 G+55 TN24

G+57 G+55 TN23

G+56 G+54 TN22

G(2/3)55 G+53 G+52 G+51

G(2/3)54 G+40 G+37 G+34

G+53 G*47 TN21

G+52 G*46 TN20

G+51 G*45 TN19

G+50 G*47 TN18

G+49 G*46 TN17

G+48 G*45 TN16

G*47 G+44 TN15

G*46 G+43 TN14

G*45 G+42 TN13

G(2/3)44 G+42 G+38 G+35

G(2/3)43 G+40 G+37 G+34

G(2/3)42 G+39 G+36 G+33

G+41 TN12 TN10

G+40 TN11 TN10

G+39 TN9 TN10

G+38 TN8 TN6

G+37 TN7 TN6

G*36 TN5 TN6

G*35 TN4 TN2

G*34 TN3 TN2

G*33 TN1 TN2

192 Fault Trees

B3.2 Probabilistic data

The following table gives the probabilities of occurrence of the basic events
of the fault tree Europe-2.

TN1 0.1

TN2 0.035

TN3 0.1

TN4 0.1

TN5 0.1

TN6 0.035

TN7 0.1

TN8 0.1

TN9 0.1

TN10 0.035

TN11 0.1

TN12 0.1

TN13 0.022

TN14 0.022

TN15 0.022

TN16 0.00088

TN17 0.00088

TN18 0.00088

TN19 0.00088

TN20 0.00088

TN21 0.00088

TN22 0.00175

TN23 0.00175

TN24 0.00175

TN25 0.00175

TN26 0.00175

TN27 0.00175

TN28 0.00875

TN29 0.00875

TN30 0.00875

TN31 0.00875

TN32 0.00875

B3.3 Results

PS = 7.822 · 10−6

3412 minimal cut sets

European Benchmark Fault Trees 193

B4 Fault tree: Europe-3

B4.1 Structure of the FT

G+187 G*183 G*175 G*186

G*186 G+185 G+184

G+185 G*155 G*141

G+184 G*156 G*140

G*183 G+182 G+181

G+182 G*180 G+133 TN003

G+181 G*179 G+132 TN001

G*180 G*178 TC080

G*179 G*178 TC079

G*178 G+177 G+176

G+177 G+120 TC078

G+176 G*108 G*107 TC077

G*175 G+174 G+173

G+174 G*172 G+166

G+173 G*171 G+165

G*172 G+170 G+169

G*171 G+168 G+167

G+170 G+120 G+101 TC076

G+169 G*108 G*107 G+100 TC075

G+168 G+119 G+094 TC074

G+167 G*108 G*107 G+093 TC073

G+166 G*164 G*155

G+165 G*163 G*156

G*164 G*162 G+159

G*163 G*161 G+157

G*162 G+160 TN072

G*161 G+158 TN071

G+160 G+120 TC068 TC070

G+159 G*108 G*107 TC068 TC069

G+158 G+119 TC065 TC067

G+157 G*108 G*107 TC065 TC066

G*156 G+153 G*149

G*155 G+154 G*148

G+154 G*152 G*149

G+153 G*152 G*148

G*152 G+151 G+150

G+151 G*108 G*107 TC064

G+150 G+119 TC063

G*149 G*147 G+144

G*148 G*146 G+142

G*147 G+145 TN062

G*146 G+143 TN061

194 Fault Trees

G+145 G+096 TC060 TC059

G+144 G+095 TC058 TC059

G+143 G+101 TC057 TC056

G+142 G+100 TC055 TC056

G*141 G*139 G+136

G*140 G*138 G+134

G*139 G+137 TN054

G*138 G+135 TN053

G+137 G+120 TC052 TC051

G+136 G*108 G*107 TC050 TC051

G+135 G+120 TC049 TC048

G+134 G*108 G*107 TC047 TC048

G+133 G+131 TC046 TC035

G+132 G+130 TC045 TC037

G+131 G*118 G*129 TC044

G+130 G*118 G*128 TC043

G*129 G+127 G+124

G*128 G+126 G+125

G+127 G+125 TC042

G+126 G+124 TC042

G+125 G*123 G+094 TC041

G+124 G*122 G+101 TC040

G*123 G+121 TC039

G*122 G+121 TC038

G+121 G+101 G+094 TC035 TC036 TC037

G+120 G*118 G*117 TC034

G+119 G*118 G*116 TC033

G*118 G+101 G+094

G*117 G+115 G+112

G*116 G+114 G+113

G+115 G+113 TC032

G+114 G+112 TC032

G+113 G*111 G+094 TC031

G+112 G*110 G+101 TC030

G*111 G+109 TC029

G*110 G+109 TC028

G+109 G+101 G+094 TC027

G*108 G+100 G+093

G*107 G+106 G+105

G+106 G*104 G+093 TC026

G+105 G*103 G+100 TC025

G*104 G+102 TC024

G*103 G+102 TC023

G+102 G+100 G+093 TC022

G+101 G*099 G*097 TC021

G+100 G*098 G*097 TC020

G*099 G+089 G+081

G*098 G+090 TN019

G*097 G+081 TN019

European Benchmark Fault Trees 195

G+096 G+094 TC010 TC018

G+095 G+093 TC007 TC017

G+094 G*092 G*088 G*087 G*082 TC016

G+093 G*086 G*085 G*091 G*082 TC016

G*092 G+083 TN004

G*091 G+084 TN005

G+090 TC014 TC015 TC013

G+089 TC011 TC012 TC013

G*088 TC009 TC010

G*087 TC008 TC010

G*086 TC008 TC007

G*085 TC006 TC007

G+084 TC009 TC010 TC008

G+083 TC006 TC007 TC008

G*082 TN004 TN005

G+081 TN001 TN002 TN003

B4.2 Probabilistic data

All the components (TN and TC) have a rate of appearance equal to
10−6h−1

B4.3 Results

24386 minimal cut sets

This page intentionally left blank

Appendix C

Some Results of Probabilities

This appendix contains the elements of the theory of probabilities that are
necessary in the statement of the Monte Carlo method.

Proposition C.1 (Chebychev inequality)

Consider a square intergrable r.v X. Then for all ε > 0, we have:

P (|X − �X| ≥ ε) ≤
V ar(X)

ε2
(C.1)

Definition C.2 (i.i.d sequences)

A sequence of r.v (Xn, n ≥ 1) defined on the probability space (Ω,F ,�) is said

to be i.i.d, when any finite sequence extracted from this sequence is of the i.i.d

type Set Sn = X1 + . . . + Xn.n≥ 1.

Proposition C.3 (Week law of large numbers: Khintchine theorem)

Let there be a sequence of r.v (Xn, n ≥ 1) i.i.d with �|X1| < ∞. When n →∞,

we have

Sn

n

p−→ �X1 (C.2)

197

198 Fault Trees

Proposition C.4 (Strong law of large numbers: Kolmogorov theorem)

Let there be a sequence of r.v (Xn, n ≥ 1) i.i.d. Then, �|X1|<∞ is a necessary
and sufficient condition such that the sequence (Xn) verifies the law of large

numbers, i.e. when n →∞, we have

Sn

n

p.s.−→ �X1 (C.3)

⊲ Example C.3. For a series of independent events (An, n ≥ 1) and of the
same probability p, the strong law of large numbers says that the frequencies
1
n

∑n
k=1 1Ak

converge almost surely (a.s) towards p when n →∞. This result
justifies the estimation of the probabilities through the frequencies.

⊲ Example C.4. The function of empirical distribution of an n-sample is
defined by

Fn(x) =
1

n

n∑

i=1

1{Xi≤x} (C.4)

From the strong law of large numbers, we directly obtain, for any x ∈ �,
and when n →∞,

Fn(x)
a.s.−→ F (x) (C.5)

Proposition C.5 (Central limit theorem (CLT))

Let there be a sequence of r.v (Xn, n ≥ 1), i.i.d with common expectation µ and

common variance σ2 such that 0 < σ2 <∞. Then, when n →∞, we have

Sn − nµ

σ
√

n

L−→ N(0,1) (C.6)

⊲ Example C.5. (Moivre-Laplace theorem). Let (Xn, n ≥ 1) be a sequence of r.v
i.i.d with Xn ∼ B(p), (0 < p < 1), then µ = p and σ2 = p(1− p) > 0. According
to proposition C.5, we have

Sn − np√
np(1− p)

L−→ N(0,1). (C.7)

Some Results of Probabilities 199

⊲ Example C.6. The application of the CLT to the sequence of empirical
functions Fn(·), when n →∞, gives, for all x ∈ �

√
n(Fn(x)− F (x))

L−→ N(0, σ2(x)) (C.8)

with σ2(x) = F (x)(1− F (x)).

Proposition C.6 (CLT for the r.v vector)

Let there be a sequence of random vectors (Xn, n ≥ 1), i.i.d with values in �
d

of mean vector µ ∈ �
d, and common variances-covariances matrices K. Then,

when n →∞, we have

1√
n

(Sn − nµ)
L−→ Nd(0,K). (C.9)

where Nd(0,K) is the d-dimensional normal distribution, with mean the vector
0 ∈ �d and variance-covariances matrix K.

Proposition C.7 (Law of the iterated logarithm (LIL))

Let there be a sequence of real r.v (Xn, n ≥ 1), i.i.d with �X1 = 0 and V ar(X1) = 1
Then

lim
n→∞

Sn√
2n log logn

= 1, a.s (C.10)

lim
n→∞

Sn√
2n log logn

=−1, a.s (C.11)

This page intentionally left blank

Main Notations

F c.d.f of a random variable (r.v)

f p.d.f of an r.v

R(t) reliability at time t

A(t) instantaneous availability

M(t) maintainability

Q, PS probability of the top event of a fault tree

A∞ or A asymptotic availability

Ã(t) average availability over [0, t]

Ã∞ or Ã asymptotic average availability

h(t) hazard rate at time t

λ(t) instantaneous failure rate

µ(t) instantaneous repair rate

L(t) mean residual lifetime at time t

T lifetime of the system

θ duration of mission of the system

Y duration of the repair

1A indicator function of event A

mk k-th centered moment of the random variable X (k ∈ �
∗)

Γ(x) Gamma function: Γ(x) =
∫
∞

0
tx−1e−tdt.

if x ∈ �
∗ then Γ(x) = (x− 1)!

� set of real numbers:

� = (−∞,+∞) and �+ = [0,+∞)

� set of natural numbers:

� = {0,1,2, ...} and �
∗ = � \ {0}

ϕ structure function of a system

C set of components of a system

E state space of a system

201

202 Fault Trees

Ei state space of a component i ∈ C

Ki i-th minimal cut set of a system or of an FT

Ci i-th minimal path of a system or of an FT

K set of minimal cut sets of a system or of an FT

C set of minimal paths of a system or of an FT

x vector of states of the components of the system,

x = (x1, ..., xn), (ai,x) vector x with its i-th element fixed

at a, a = 0 or 1

X random vector of the states of the components of the system,

X = (X1, ...,Xn)

EX expectation of the r.v. X

A contrary event, i.e., A = Ω \A

∪ disjunction of two events

∩ conjunction of two events

Abbreviations

FT fault tree

c-FT coherent fault tree

nc-FT non-coherent fault tree

FT-r fault tree with restrictions

FT-d fault tree with delay

m-FT multistate fault tree

BDD binary decision diagram

p.d.f probability density function

c.d.f cumulative distribution function

i.i.d independent and identically distributed

MC common mode of failure

MTTF mean time to failure

MTTR mean time to repair

MUT mean up-time

MDT mean down-time

MTBF mean time between failures

r.v random variable

Main Notations 203

Conventions

k-out-of -n: G a system whose good functioning is obtained through the

good functioning at k out of n components

k-out-of -n: F a system whose failure is obtained by the failure of at least

k out of n components

a− b the components a and b are in series

a//b the components a and b are in parallel

(active redundancy)

a/b the components a and b are in parallel

(passive redundancy with a as active

component and b as standby)

This page intentionally left blank

Bibliography

[ABR 79] J.A. Abraham, “An improved algorithm for network reliability”,
IEEE Trans. on Reliab., vol. R-28, N◦1, April 1979, pp. 58–61.

[ALL 83] D.J. Allen, “Digraphs and fault trees”, Hazard Prevention, Jan./Febr.
1983, pp. 22–25.

[AKE 87] S.B. Akers, “Binary decision diagrams”, IEEE Trans. Computers,
vol. C-27, N◦6, 1978, pp 509–516.

[AME 85] A. Amendola, “Reliability data bases”, Reindel P.C., Dordrecht-
Hollande, 1985.

[AME 86] H.H. Amer, R.K. Iyer, “Effect of uncertainty in failure rates on
memory systems reliability”, IEEE Trans. on Reliab., vol. R-35, N◦4,
Oct. 1986, pp. 377–379.

[AND 80] P.K. Androw, “Difficulties in fault-tree synthesis for process plant”,
IEEE Trans. on Reliab., vol. R-29, N◦1, April 1980, pp. 2–9.

[APO 76] G. Apostolakis, D. Okren, S.L. Salem, “A computer-oriented
app.roch to fault-tree construction”, EPRI NP 288, Univ. of California,
Nov. 1976.

[ANG 94] J.E. Angus, “The probability integral transform and related results”,
SIAM Review, vol. 36, N◦4, pp. 652-654.

[APO 77] G. Apostolakis, Y.T. Lee, “Methods for the estimation of confidence
bounds for the top-event unavailability of fault trees”, Nucl. Eng. Des.,
vol. 41, 1977, pp. 411–419.

[APO 81] G. Apostolakis, S. Kaplan, “Pitfalls in risk calculations”, Reliab.
Eng., vol. 2, 1981, pp. 135–145.

205

206 Fault Trees

[APO 87] G. Apostolakis, P. Moieni, “The foundations of models of dependance
in probabilistic safety assessment”, Reliab. Eng., vol. 18, N◦3, 1987, pp.
177–196.

[ASC 84] H.E. Ascher, H. Feingold, Repairable systems reliability: Modeling,
Inference, Misconception and their Causes, Marcel Dekker, 1984, NY.

[AST 80] M. Astolfi, S. Contini, C.L. Van den Muyzenberg, G. Volta, “Fault
tree analysis by list-processing techniques”, in Synthesis and analysis
methods for safety and reliability studies, In G. Apostolakis, S. Garribba,
G. Volta (eds.), Plenum Press, N.Y., 1980, pp. 5–32.

[AVE 86] T. Aven, “On the computation of certain measures of impor-
tance of system components”, Microelectron. Reliab., vol. 26, N◦2, 1986,
pp. 279–281.

[AVE 86] T. Aven, R. Osteno, “Two newcomponent importance measures for
a flow network system”, Reliab. Eng., vol. 4, 1986, pp. 75–80.

[BAR 75] R.E. Barlow, F. Proschan, “Importance of system components and
fault tree events”, Stoch. Proc. & Appl., vol. 3, 1975, pp. 153–173.

[BAR 75] R.E. Barlow, F. Proschan , Statistical Theory of Reliability and Life
Testing- Probability Models, Holt, R-W, Inc., 1975.

[BAR 78] R.E. Barlow, A.S. Wu, “Coherent systems with multi-state compo-
nents”, Math. Oper. Res., vol. 3, N◦4, Nov. 1978, pp. 275–281.

[BAX 84] L.A. Baxter, “Continuum structure I”, J. of Appl. Probab., vol. 19,
1984, pp. 391–402.

[BEN 85] A. Bendell, L.A. Walls, “Exploring reliability data”, Qual. Reliab.
Eng. Intern., vol. 1, 1985, pp. 37–51.

[BEN 76] N.N. Bengiamin, B.A. Bowen, K.F. Schenk, “An efficient algorithm
for reducing the complexity of computation in fault tree analysis”, IEEE
Trans. Nucl. Sci., vol. NS-23, N◦5, Oct. 1976, pp. 1442–1446.

[BEN 75] R.G. Bennetts, “On the analysis of fault trees”, IEEE Trans. on
Reliab., vol. R-24, N◦3, August 1975, pp. 175–185.

[BIE 83] V. Bier, “A measure of uncertainty importance for components in
fault trees”, PhD Thesis, MIT, LIDS-TH-1277, Jan. 1983, Cambridge.

[BIR 65] Z.W. Birnbaum, J.D. Esary, “Modules of coherent binary systems”,
J. Soc. Indust. Appl. Math., vol. 13, N◦2, June 1965, pp. 444–462.

Bibliography 207

[BIR 69] Z.W. Birnbaum, “On the importance of different components in a
multicomponent system”, in Multivariate Analysis II, P. Krishnaiam (ed),
Academic Press, 1969, pp. 581–592.

[BLI 80] A. Blin, A. Carnino, J.P. Signoret, F. Buscatie, B. Duchemin,
J.M. Landré, H. Kalli, and M.J. De Villeneuve, “PATREC, a computer
code for fault-tree calculation”, in [ASTOL 80], pp. 33–44.

[BLO 82] H.W. Block, T.H. Savits, “A decomposition for multistate monotone
systems”, J. Appl. Prob., vol. 19, 1982, pp. 391–402.

[BON 96] J.L Bon, Fiabilité des systèmes, 1996, Dunod, Paris.

[BOS 84] A. Bossche, “The top-event’s failure frequency for non-coherent
multi- state fault trees”, Microelectron. Reliab., vol. 24, N◦4, 1984, pp.
707–715.

[BOS 87] A. Bossche, “Calculation of critical importance for multi-state
components”, IEEE Trans. on Reliab., vol. R-36, N◦2, June, 1987,
pp. 247–249.

[BOU 91] M. Bouissou, “Une heuristique d’ordonnancement des variables pour
la construction des diagrammes de décision”, 9th National Conference λµ,
1994, pp 513–518, La Baule.

[BOU 86] N. Bouleau, Probabilités de l’ingénieur, variables aléatoires et simu-
lation, Hermann, 1986.

[BRO 90] K.S. Brown, “Evaluating fault tree (AND & OR gates only) with
repeated events”, IEEE Trans. on Reliab., vol. 39, N◦2, Dec. 1990,
pp. 226–235.

[BRA 03] C. Bracquemond, O. Gaudoin “A survey on discrete lifetime distri-
butions”, Quality Safety Eng., vol. 10, No 1, 2003, pp. 69–98.

[BRY 87] R.E. Bryant, “Graph based algorithms for boolean function manip-
ulation”, IEEE Trans. Computer, vol. 35, N◦8, 1987, pp 677–691.

[BRY 92] R.E. Bryant, “Symbolic boolean manipulation with ordered binary-
decision diagrams”, ACM Computing Surveys, vol. 24, N◦3, Sept. 1992,
pp 293–318.

[BUT 77] D.A. Butler, “An importance ranking for system components based
upon cuts”, Oper. Research, vol. 25, N◦5, 1977, pp. 874–879.

208 Fault Trees

[BUT 79] D.A. Butler, “A complete importance ranking for components of
binary coherent systems, with extentions to multi-state systems”, Naval
Res. Log. Quart., vol. 26, 1979, pp. 565–578.

[BUZ 83] J.A. Buzacott, “The ordering of terms in cut-based recursive dis-
joint products”, IEEE Trans. on Reliab., vol. R-32, N◦5, Dec. 1983,
pp. 472–474.

[BUZ 83] J.A. Buzacott, G.J. Anders, “Probability of component or subsystem
failure before system failure”, IEEE Trans. on Reliab., vol. R-32, N◦5,
Dec. 1983, pp. 450–452.

[CAL 80] L. Caldarola, “Unavailability and failure intensity of components”,
Nucl. Eng. Des. J., 44, 1997, pp 147.

[CAL 80] L. Caldarola, “Coherent systems with multistate components”, Nucl.
Eng. and Des., vol. 58, 1980, pp. 127–139.

[CAM 78] P. Camarda, F. Corsi, A. Trentadue, “An efficient simple algorithm
for fault tree automatic systhesis from the reliability graph”, IEEE Trans.
on Reliab., vol. R-27, N◦3, Aug. 1978, pp. 215–221.

[CAR 86] G. Carpinelli, U. De Martinis, A. Losi, V. Mangoni, R. Mongelluzzo,
A. Piccolo, A. Testa, V. Vaccaro, “Some considerations on computer-
aided fault-tree construction for electric power systems components”,
Technical note N◦1.05.E3.86.41, PER 1086/86, May 1986.

[CHA 86] K.C. Chae, “System reliability in the presence of common-cause fail-
ures”, IEEE Trans. on Reliab., vol. R-35, N◦1, April 1980, pp. 32–35.

[CHA 74] P. Chatterjee, “Fault tree analysis: Reliability theory and systems
safety analysis”, Oper. Res. Center, University of California, Berkeley,
1974.

[CHA 75] P. Chatterjee, “Modularization of fault trees: A method to reduce
the cost of analysis”, in Reliability and Fault Tree Analysis. Theoret-
ical and applied aspects of system reliability and safety assessment,
R.E. Barlow, J.B. Fussell, N.D. Singpurwalla (eds), Siam, Philadelphia,
1975, pp. 101–126.

[CHU 80] T.L. Chu, G. Apostolakis, “Methods for probabilistic analysis
of noncoherent fault trees”, IEEE Trans. on Reliab., vol. R-39, N◦5,
Dec. 1980, pp. 354–360.

Bibliography 209

[CLA 81] C.A. Clarotti, “Limitations of minimal cut-set approach in evaluat-
ing reliability of systems with repairable components”, IEEE Trans. on
Reliab., vol. R-30, N◦4, Oct. 1981, pp. 335–338.

[CLA 81] C.A. Clarotti, F. Spizzichino, “Minimal-cut reliability lower-bound
for systems containing standby modules”, IEEE Trans. on Reliab.,
vol. R-30, N◦3, Aug. 1981, pp. 293–297.

[COC 97] C. Cocozza-Thivent, Processus stochastiques et fiabilité des systèmes,
SMAI, Springer, 1997.

[COL 80] A.G. Colombo, “Uncertainty propagation in fault-tree analysis”,
in Synthesis and analysis methods for safety and reliability studies,
G. Apostolakis, S. Garribba, G. Volta (eds.), Plenum Press, N.Y., 1980,
pp. 95–103.

[COR 75] M. Corazza, Techniques Mathématiques de la Fiabilité Prévisionnelle,
Sup’Aero, Cependus, 1975.

[COU 92] O. Coudert, J.C. Madre, “A new method to compute prime and
essential prime implicants of boolean functions”, in Advanced Research
in VLSI and Parallel Systems, Knight and Savage (Eds), pp 113–128. The
MIT Press, March 1992.

[COU 94] O. Coudert, J.C. Madre, “MetaPrime: an interactive fault-tree ana-
lyzer”, IEEE Trans. Reliability, vol. 43, N◦1, March 1994, pp 121–127.

[COX 82] D.C. Cox, “An analytic method for uncertainty analysis of nonlinear
output functions, with applications to fault-tree analysis”, IEEE Trans.
on Reliab., vol. R-31, N◦5, Oct. 1982, pp. 465–469.

[COX 77] N.D. Cox, “Comparison of two uncertainty analysis methods”, Nucl.
Science and Eng, vol. 64, 1977, pp. 258–265.

[DES 83] W. De Souza Borges, F.W. Rodrigues, “An axiomatic characterization
of multistate coherent structures”, Math. Oper. Res., vol. 8, N◦3, Aug.
1983, pp. 435–438.

[DHI 86] B.S. Dhillon, Human Reliability with Human Factors, Pergamon
Press, 1986, Oxford.

[DUB 80] B. Dubuisson, M. Hassan, “A simplified method for evaluating time
dependent fault-trees using Weibull distribution”, Microelectron. Reliab.,
vol. 20, 1980, pp. 347–350.

210 Fault Trees

[DUG 91] J.B. Dugan, “Automated analysis of phased-mission reliability”,
IEEE Trans. on Reliab., vol. 40, N◦1, April, 1991 pp. 45–52.

[EL-N 78] E. El-Neweihi, F. Proschan, J. Sethuraman, “Multistate coherent
systems”, J. Appl. Prob., vol. 15, 1978, pp. 675–688.

[ESA 75] J.D. Esary, H. Ziehms, “Reliability analysis of phased systems”,
in [CHAT 75], pp. 213–236.

[FLU 90] B.D. Flury, “Acceptance-rejection sampling made easy”, SIAM
Review, vol. 32, N◦3, Sept. 1990, pp. 474–476.

[FON 87] C.C. Fong, J.A. Buzacott, “Improved bounds for system-failure
probability”, IEEE Trans. on Reliab., vol. R-36, N◦4, Oct. 1987,
pp. 454–458.

[FUS 72] J.B. Fussell, W.E. Vesely, “A new methodology for obtaining cut
sets”, Amer. Nucl. Soc. Trans., vol. 15, N◦1, June 1972, pp. 262–263.

[FUS 76] J.B. Fussell, E.F. Aber, R.G. Rahl, “On the quantitative analysis
of priority-AND failure logic”, IEEE Trans. on Reliab., vol. R-25, N◦5,
Dec. 1976, pp. 324–326.

[GAR 77] S. Garriba, P. Mussio, F. Naldi, G. Reina, G. Volta, “Efficient con-
struction of minimal cut sets from fault trees”, IEEE Trans. on Reliab.,
vol. R-26, N◦2, June 1977, pp. 88–94.

[GAR 85] S. Garribba, E. Guagnini, P. Mussion, “Multiple-valued logic trees:
meaning and prime implicants”, IEEE Trans. Reliability, vol. R-34, N◦5,
Dec. 1985, pp. 463–472.

[GIR 01] V. Girardin, N. Limnios, Probabilités en vue des applications, Vuibert,
2001, Paris.

[GNE 72] B. Gnedenko, Y. Beliaev, A. Soloviev, Méthodes Mathématiques en
Théorie de la Fiabilité, MIR, Moscou, 1972.

[GON 78] G.E. Gonzalez-Urdaneta, B.J. Cory, “Variance and approximate
confidence limits for probability and frequency of system failure”, IEEE
Trans. on Reliab., vol. R-27, N◦4, Oct. 1978, pp. 289–293.

[GRE 96] E.P. Greenwood, M.S. Nikulin, A guide to chi-squared testing, Wiley,
N.Y., 1996.

Bibliography 211

[GRI 80] W.S. Griffith, “Multistate reliability models”, J. Appl. Prob.,
vol. 17, 1980, pp. 735–744.

[GRI 82] W.S. Griffith, “A multistate availability model: system performance
and component importance”, IEEE Trans. Reliability, vol. R-31, N◦1,
April 1982, pp. 97–98.

[HEI 82] K.D. Heidtmann, “Bounds on reliability of noncoherent system using
its length & width”, IEEE Trans. on Reliab., vol. R-31, N◦5, Dec. 1982,
pp. 424–427.

[HEI 83] K.D. Heidtmann, “Inverting paths & cuts of 2-state systems”, IEEE
Trans. on Reliab., vol. R-32, N◦5, Dec. 1983, pp. 469–471 & 474.

[HEI 84] K.D. Heidtmann, “A prior error estimates for the method of inclusion-
exclusion with applications”, Siam J. Appl. Math., vol. 44, N◦2, April
1984, pp. 443–450.

[HEN 81] E.J. Henley, H. Kumamoto, Reliability Engineering and Risk Assess-
ment, Prentice-Hall, 1981.

[HIL 90] C. Hill, C. Com-Nougué, A. Kramar, T. Moreau, J. O’Quigley,
R. Senoussi, and C. Chastang “Analyse statistique des données de survie”,
Flamarion, Paris, 1990.

[HOU 65] R.W. House, T. Rado, “A generalization of Nelson’s algorithm for
obtaining prime implicants”, The J. of Symb. Logic, vol. 30, N◦1, March
1965, pp. 8–12.

[HUD 83] J.C. Hudson, K.C. Kapur, “Models in coherent multistate systems”,
IEEE Trans. Reliability, vol. R-32, N◦2, June 1983, pp. 183–185.

[HUG 87] R.P. Hughes, “Fault tree truncation error bounds”, Reliab. Eng., vol.
17, 1987, pp. 37–46.

[HUL 75] B.L. Hulme, R.B. Worrell, “A prime implicant algorithm with
factoring”, IEEE Trans. on Computers, Nov. 1975, pp. 1130–1131.

[INA 80] T. Inagaki, E.J. Henley, “Probabilistic of prime implicants and top-
events for non coherent systems”, IEEE Trans. on Reliab., vol. R-29, N◦5,
Dec.1980, pp. 361–67.

[ION 99] D.C. Ionescu, N. Limnios (Eds) , Statistical and Probabilistic Models
in Reliability, Birkhauser, Boston, 1999.

212 Fault Trees

[JAC 82] P.S. Jackson, “A second-order moments method for uncertainty analy-
sis”, IEEE Trans. on Reliab., vol. R-31, N◦4, Oct. 1982,
pp. 382–384.

[JAC 83] P.S. Jackson, “On the s-importance of elements and prime implicants
of non-coherent systems”, IEEE Trans. on Reliab., vol. R-32, N◦1, April
1983, pp. 21–25.

[JAN 85] X. Janan, “On multistate system analysis”, IEEE Trans. Reliability,
vol. R-34, N◦4, Oct. 1985, pp. 329–337.

[JAN 99] J. Janssen, N. Limnios (Eds), Semi-Markov processes and applica-
tions, Kluwer, Dordrecht, 1999.

[JEA 85] J.P. Jeannette, N. Limnios, “Méthodes actuelles d’analyse de sûreté
des systèmes”, R.G.S., N◦43, Avril 1985, pp. 46–52.

[JEA 86] J.P. Jeannette, N. Limnios, “Contribution of safety analysis meth-
ods in the framework of safety audits”, REL-CON’86, Eur. Rel. Conf.,
16–20 June 1986, Copenhagen. In Reliability & Technology: Theory and
Applications, F. Jensen and J. Moltoft (eds), North-Holland Publ. Co,
1986.

[KAU 75] A. Kaufmann, D. Grouchko, R. Cruon, Modèles Mathématiques pour
l’Etude de la Fiabilité des Systèmes, Masson et Cie, Paris, 1975.

[KER 91] F. Kervégant, N. Limnios, C. Cocozza-Thivent, A. Dubreuil-
Chambardel, “Evaluation probabiliste approchée des grands arbres de
défaillance”, RAIRO, operational research, 1991.

[KIS 83] L. Kiss, “From fault-tree to fault-identification”, IEEE Trans. on
Reliab., vol. R-32, N◦5, Dec. 1983, pp. 422–425.

[KOH 89] T. Kohda, E.J. Henley, K. Inoue, “Finding modules in fault tree”,
IEEE Trans. on Reliab., vol. 38, N◦2, June 1989, pp. 165–176.

[KUM 77] H. Kumamoto, K. Tanaka, K. Inoue, “Efficient evaluation of
system reliability by Monte Carlo method”, IEEE Trans. on Reliab.,
vol. R-26, N◦5, Dec. 1977, pp. 311–315.

[KUM 78] H. Kumamoto, E.J. Henley, “Top-down algorithm for obtaining
prime implicant sets of non-coherent fault trees”, IEEE Trans. on Reliab.,
vol. R-27, N◦4, Oct. 1978, pp. 242–249.

Bibliography 213

[LAI 86] C.D. Lai, “Bounds on reliability of a coherent system with posi-
tively correlated components”, IEEE Trans. on Reliab., vol. R-35, N◦5,
Dec. 1986, pp. 508–511.

[LAP 77] S.A. Lapp, G.J. Powers, “Computer-aided synthesis of fault-trees”,
IEEE Trans. on Reliab., April 1977, pp. 2–13.

[LAP 79] S.A. Lapp, G.J. Powers, “Update of Lapp-Powers fault-tree syn-
thesis algorithm”, IEEE Trans. on Reliab., vol. R-28, N◦1, April 1979,
pp. 12–14.

[LEE 81] K.K. Lee, “A compilation technique for exact system reliability”,
IEEE Trans. on Reliab., vol. R-30, N◦3, Aug. 1981, pp. 335–338.

[LEE 59] C.Y. Lee, “Representation of switching circuits by binary-decision
diagrams”, Bell. Syst. Tech. J., vol. 38, July 1959, pp 985–999.

[LIA 90] H.T. Liaw, C.S. Lin, “On the OBDD-representation of general boolean
functions”, NSC Rep., N◦NSC79–0404-E002–35, July 1990.

[LEV 83] N.G. Leveson, J.L. Stolzy, “Safety analysis of Ada programs
using fault trees”, IEEE Trans. on Reliab., vol. R-32, N◦5, Dec.1983,
pp. 479–484.

[LIE 75] C. Lievens, “Sécurité des systèmes”, Sup’Aero, Cependus, Toulouse,
1975.

[LIM 84] N. Limnios, J.P. Jeannette, “Les logiciels AREV et ARBRE”,
3e Sém. Europ.3SF, 19–21 Sept., 1984, Cannes.

[LIM 85] N. Limnios, J.P. Jeannette, “Traitement automatique des arbres de
défaillance”, Le Nouvel Automatisme, N◦51, Jan.-Feb. 1985, pp. 56–62.

[LIM 86] N. Limnios, R.Ziani, “An algorithm for reducing cut sets in fault-
tree analysis”, IEEE Trans. on Reliab., vol. R-35, N◦5, Dec. 1986,
pp. 559–562.

[LIM 86] N. Limnios, R. Ziani, J.F. Guyonnet, “Traitement automatique des
arbres de défaillance non cohérents. Le logiciel ARBRE-NC”, 4th Sém.
Eur., 3SF, 4–6 juin, 1986, Deauville.

[LIM 87] N. Limnios, “Failure rate of non-repairable systems”, Reliability Engi-
neering, vol. 17, N◦2, 1987, pp. 83–88.

214 Fault Trees

[LIM 87] N. Limnios, J.P. Jeannette, “Event trees and their treatment on PC
computers”, Reliability Engineering, vol. 18, N◦3, 1987, pp. 197–204.

[LIM 87] N. Limnios, “A formal definition of fault-tree graph models and an
exhaustive test of their stuctural data”, Reliability Engineering, vol. 18,
N◦4, 1987, pp. 267–274.

[LIM 90] N. Limnios, “Failure-delay systems reliability modelling”, In Systems
Reliability Assessment, A.G. Colombo, A. Saiz de Boustamante (eds.),
1990 ECSC, EEC, EAEC, Brussels & Luxembourg, 1990, pp. 145–158.

[LIM 96] N. Limnios, A. Rauzy (Eds), Binary Decision Diagrams and Reliabil-
ity”, Spacial issue, Journal Eur. Systèmes Automatisés.

[LIM 00] N. Limnios, M. Nikulin, (Eds), Recent advances in reliability theory:
Inference, methods and practice, Birkhauser, Boston, 2000.

[LIM 01] N. Limnios, G. Oprisan, Semi-Markov processes and reliability,
Birkhauser, Boston, 2000.

[LOC 78] M.O. Locks, “Relationship between minimal path sets and cut sets”,
IEEE Trans. on Reliab., vol. R-27, N◦2, June 1978, p. 106.

[LOC 78] M.O. Locks, “Inverting and minimalizing path sets and cut sets”,
IEEE Trans. on Reliab., vol. R-27, N◦2, June 1978, p 107–109.

[LOC 79] M.O. Locks, “Synthesis of fault trees: an example of noncoherence”,
IEEE Trans. on Reliab., vol. R-28, N◦1, Dec. 1979, pp. 2–5.

[LOC 81] M.O. Locks, “Modularizing, minimizing, and interpreting the K&H
fault tree”, IEEE Trans. on Reliab., vol. R-30, N◦5, Dec. 1981,
pp. 411–415.

[LU 86] P.-E. Lu, D.-H. Shi, “A simple method for calculating the structural
importance of a component”, Microelectron. Reliab., vol. 26, N◦5, 1986,
pp. 857–858.

[MAR 75] J.D. Marchland, “Fundamental concepts and relations for reliability
analysis of multi-state systems”, in Reliability and Fault Tree Analysis,
R.E. Barlow and J.B. Fussell (Eds), SIAM, 1975, Pennsylvania.

[MAS 87] M. Masera, “Uncertainty propagation in fault tree analyses using
lognormal distributions”, IEEE Trans. on Reliab., vol. R-36, N◦1, April
1987, pp. 145–149.

Bibliography 215

[MEL 83] W.A. Metler, D. Dietrich, “A moments compiler for computing Bayes
intervals for complex systems”, IEEE Trans. on Reliab., vol. R-32, N◦1,
April 1983, pp. 111–114.

[MIS 92] K.B. Misra, Reliability Analysis and Prediction, Elsevier, 1992.

[MOD 75] M. Modarres, “Mathematical concepts of time-dependent modular-
ized fault tree evaluation”, in [ESAR 75], pp. 1257–1266.

[MOD 79] M. Modarres, “Reliability analysis of complex technical systems
using the fault tree modularization technique”, PhD Thesis, MIT Depart.
of Nucl. Eng., 1979.

[MOD 84] M. Modarres, H. Dezfuli, “A truncation methodology for evaluating
large fault trees”, IEEE Trans. on Reliab., vol. R-33, N◦4, Oct. 1984, pp.
325–328.

[MON 90] J. Montero, J. Tejada, J. Yànez, “Some mathematical properties
of multistate continuum systems”, 7th Coll. Intern. Fiabilité et Mainten-
abilité, 1990, Brest, France, pp. 82–87.

[MOS 91] A. Mosleh (Guest editor), “Dependent failure analysis”, Reliability
Eng. & Syst. Saf., vol. 34, N◦3, 1991.

[NAK 79] K. Nakashima, Y. Hattori, “An efficient bottom-up algorithm for
enumerating minimal cut sets of fault trees”, IEEE Trans. on Reliab.,
vol. R-28, N◦5, Dec. 1979, pp. 353–357.

[NAK 82] K. Nakashima, K. Yamato, “Variance-importance of system compo-
nents”, IEEE Trans. on Reliab., vol. R-31, N◦1, April 1982, pp. 99–100.

[NAT 79] B. Natvig, “A suggestion of a new measure of importance of system
components”, Stoch. Proc. & Appl., vol. 9, 1979, pp. 319–330.

[NAT 80] B. Natvig, “Improved bounds for the availability and unavailability in
a fixed time interval for systems of maintenaid, independent components”,
Adv. Appl. Prob., vol 12, 1980, pp. 200–221.

[NAT 82] B. Natvig, “On the reduction in remaing system lifetime due to
the failure of a specific component”, J. Appl. Prob., vol. 19, 1982,
pp. 642–652.

[NAT 82] B. Natvig, “Two suggestions of how to define a multistate coherent
system”, Adv. Appl. Prob., vol. 14, 1982, pp. 434–455.

216 Fault Trees

[NEL 54] R.J. Nelson, “Simplest normal truth functions”, The J. of Symb.
Logic, vol. 20, N◦2, June 1954, pp. 105–108.

[NEL 55] R.J. Nelson, “Weak simplest normal truth functions”, The J. of Symb.
Logic, vol. 20, N◦3, Sept. 1955, pp. 232–234.

[OGU 81] E.I. Ogunbiyi, E.J. Henley, “Irredundant forms and prime implicants
of a function with multistate variables”, IEEE Trans. on Reliab., vol. R-
30, N◦1, April 1981, pp. 39–42.

[ODE 95] K. Odeh, “Nouveaux algorithmes pour le traitement probabiliste et
logique des arbres de défaillance”, PhD Thesis, University of Technology.
Compiègne, Dec. 1995.

[ODE 93] K. Odeh, N. Limnios, “An efficient method for probability evaluation
of a fault tree”, In System Modeling and Optimization,
J. Henry & J.P.Yvon (Eds), pp. 951–957, 1993, Springer-Verlag.

[ODE 94] K. Odeh, N. Limnios, “Comparaison de principales méthodes
d’évaluation probabiliste des arbres de défaillance”, 9th National Con-
ference λµ− 9, 1994, pp 513–518, La Baule.

[ODE 96] K. Odeh, N. Limnios, “A new algorithm for fault-trees prime impli-
cants computation”, International conference, ESREL’96, Crete (Greece),
June 1996.

[OHI 84] F. Ohi, T. Nishida, “On multistate coherent systems”, IEEE Trans.
Reliability, vol. R-33, N◦4, Oct. 1984, pp. 284–287.

[OLM 78] J. Olmos, L. Wolf, “A modular representation and analysis of fault
trees”, Nucl. Eng. Des., vol. 48, 1978, pp. 531–561.

[PAG 86] L.B. Page, J.E. Perry, “An algorithm for exact fault-tree probabilities
without cut sets”, IEEE Trans. on Reliab., vol. R-35, N◦5, Dec. 1986, pp.
544–558.

[PAG 88] L.B. Page, J.E. Perry, “An algorithm for fault-tree probabili-
ties using the factoring theorem”, Microelectron. Reliab., vol. 28, N◦2,
pp. 273–286.

[PAG 80] A. Pages, M. Gondran, Fiabilité des Systèmes, Eyrolles, Paris, 1980.

[PAR 86] J.W. Park, G.M. Clark, “A computational algorithm for reliability
bounds in probabilistic design”, IEEE Trans. on Reliab., vol. R-35, N◦1,
April, 1986, pp. 30–31.

Bibliography 217

[PAN 88] Z.-J. Pan, Y.-C. Tai, “Variance importance of system components
by Monte Carlo”, IEEE Trans. on Reliab., vol. 37, N◦4, Oct. 1988,
pp. 421–423.

[PHA 88] H. Pham, J. Upadhyaaya, “The efficiency of computing the reliability
of k-out-of-n systems”, IEEE Trans. on Reliab., vol. R-37, N◦5, Dec. 1988,
pp. 521–523.

[POS 70] V. Postelnicu, “Nondichotomic multi-component structures”, Bull.
Math. Soc. Sci. Math. Roumanie, vol. 14 (62), N◦2, 1970, pp. 209–217.

[POW 74] G.J. Powers, F.C. Tompkins, “Fault tree synthesis for chemical pro-
cesses”, AIChE Journal, vol. 20, N◦2, March 1974, pp. 376–387.

[POW 75] G.J. Powers, F.C. Tompkins, S.A. Lapp, “A safety simulation
language for chemical processes: a procedure for fault tree systhesis”,
in [ESAR 75], pp. 57–75.

[RAC 76] L.E. Rackley, “System safety handbook for preparation of F-16 fault
tree analysis”, General Dynamics, Fort Worth Division, 16PR361, Aug.
1976

[RAS 78] D.M. Rasmuson, N.H. Marshall, “FATRAM-A core efficient cut-
set algorithm”, IEEE Trans. on Reliab., vol. R-27, N◦4, Oct. 1978,
pp. 250–253.

[RAU 93] A. Rauzy, “New algorithms for fault trees analysis”, Reliab. Eng.
Syst. Safety, vol. 40, 1993, pp. 203–211.

[REA 75] Reactor safety study. An assessment of accident risk in US com-
mercial nuclear power plants, WASH-1400 (NUREG 75/014), US Nuclear
Regulatory Commission, Oct. 1975 (Appendix II).

[ROS 75] A. Rosenthal, “A computer scientist looks at reliability computa-
tions”, in Reliability and Fault Tree Analysis, SIAM, Philadelphia, 1975,
pp. 133–152.

[ROS 79] A. Rosenthal, “Approaches to comparing cut-set enumeration algo-
rithms”, IEEE Trans. on Reliab., vol. R-28, N◦1, April 1979, pp. 62–65.

[ROS 79] S.M. Ross, “Multivalued state component systems”, The Annals of
Probability, vol. 7, N◦2, 1979, pp. 379–383.

[RUS 83] A.M. Rushdi, “How to hand-check a symbolic reliability expression”,
IEEE Trans. on Reliab., vol. R-32, N◦5, Dec. 1983, pp. 402–408.

218 Fault Trees

[RUS 85] A.M. Rushdi, “Uncertainty analysis of fault-tree outputs”, IEEE
Trans. on Reliab., vol. R-34, N◦5, Dec. 1985, pp. 458–462.

[SAL 80] S.L. Salem, G. Apostolakis, “The Cat methodology for fault-tree con-
struction”, in [ASTO 80], pp. 109–128.

[SAS 76] M. Sasaki, H. Hayashi, “Confidence limits for redundant-system avail-
ability”, IEEE Trans. on Reliab., vol. R-25, N◦1, April 1976, pp. 41–42.

[SCH 84] W.G. Schneeweiss, “Disjoint Boolean products via Shannon’s expan-
sion”, IEEE Trans. on Reliab., vol. R-33, N◦4, Oct. 1984, pp. 329–332.

[SCH 90] W.G. Schneeweiss, “Fast fault-tree evaluation for many sets of input
data”, IEEE Trans. on Reliab., vol. R-39, N◦3, Aug. 1990, pp. 296–300.

[SCH 00] W.G. Schneeweiss, The fault tree method, LiLoLe-Verlag, 1999.

[SHE 90] K. Shen, M. Xie, “On the increase of system reliability by paral-
lele redundancy”, IEEE Trans. on Reliab., vol. R-39, N◦5, Dec. 1990,
pp. 607–612.

[SHI 85] D.R. Shier, D.E. Whited, “Algorithms for genarating minimal cut-
sets by inversion”, IEEE Trans. on Reliab., vol. R-34, N◦4, Oct. 1985,
pp. 314–319.

[SLA 70] J.R. Slagle, C.-L. Chang, R.C.T. Lee, “A new algorithm for generating
prime implicants”, IEEE Trans. on Computers, vol. C-19, N◦4, April 1970,
pp. 304–310.

[STE 81] K. Stecher, “Evaluation of large fault-trees with repeated events using
an efficient bottom-up algorithm”, IEEE Trans. on Reliab,
vol. R-35, N◦1, April 1981, pp. 51–58.

[TAK 82] K. Takaragi, R. Sasaki, S. Shingai, “An improved moment-matching
algorithm for evaluating top-event probability bounds”, IEEE Trans. on
Reliab., vol. R-31, N◦1, April 1982, pp. 45–48.

[TAK 83] K. Takaragi, R. Sasaki, S. Shingai, “An algorithm for obtainig sim-
plified prime implicant sets in fault tree and event tree analysis”, IEEE
Trans. on Reliab., vol. R-32, N◦4, Oct. 1983, pp. 386–389.

[VES 70] W.E. Vesely, “A time-dependent methodologie for fault tree evalua-
tion”, Nucl. Eng. Des., 13, 1970, pp. 337–360.

Bibliography 219

[VES 81] W.E. Vesely, F.F. Goldberg, N.H. Roberts, D.F. Haasl, Fault Tree
Handbook, US Nuclear Regulatory Commission, 1981, Washington DC.

[VIL 88] A. Villemeur, Sûreté de Fonctionnement des Systèmes Industriels, Ed.
Eyrolles, 1988, Paris.

[WHE 77] D.B. Wheeler, J.S. Hsuan, R.R. Duersch, G.M. Roe, “Fault tree
analysis using bit manipulation”, IEEE Trans. on Reliab., vol. R-26, N◦2,
June 1977, pp. 95–99.

[WIL 85] J.M. Wilson, “Modularizing and minimizing fault trees”, IEEE Trans.
on Reliab., vol. R-34, N◦4, Oct. 1985, pp. 320–322.

[WIL 90] J.M. Wilson, “An improved minimizing algorithm for sum of disjoint
products”, IEEE Trans. on Reliab., vol. R-39, N◦1, April 1990, pp. 42–45.

[WLK 05] A. Wilson, N. Limnios, S. Keffer-McNulty, Y. Arminjo (eds.), Mod-
ern Statistical and Mathematical Methods in Reliability, World Scientific,
Singapore, 2005.

[WOO 85] A.P. Wood, “Multistate block diagrams and fault trees”, IEEE
Trans. Reliability, vol. R-34, N◦3, Aug. 1985, pp. 236–240.

[WOR 81] R.B. Worrell, D.W. Stack, B.L. Hulme, “Prime implicants of non-
coherent fault tree”, IEEE Trans. on Reliab., vol. R-30, N◦2, June 1981,
pp. 98–100.

[XIZ 84] H. Xizhi, “The generic method of the multistate fault tree analysis”,
Microelectron. Reliab., vol. 24, N◦4, 1984, pp. 617–622.

[ZHA 85] O. Zhang, O. Mei, “Element importance and system failure frequency
of a 2-state system”, IEEE Trans. on Reliab., vol. R-34, N◦4, Dec. 1985,
pp. 308–313.

[ZHA 87] Q. Zhang, Q. Mei, “Reliability analysis for a real non-coherent sys-
tem”, IEEE Trans. on Reliab., vol. R-36, N◦4, Oct. 1987, pp. 436–439.

[ZIA 86] R. Ziani, “Vérification des objectifs de disponibilité et de mainten-
abilité des systèmes complexes modélisés par leurs ensembles minimaux”,
Thesis, University of Compiègne, GI, Dec. 1986.

This page intentionally left blank

Index

algorithm
Abraham, 86
Anchek, 73
BDD, 181
Brown, 96
Fatram, 75, 76
Inmin, 77
LZ, 74
Micsup, 73
Mocus, 71, 74, 76
Olmos and Wolf, 114
Schneeweiss, 95
SW, 77
Von Neumann, 159
Willie, 114

availability, 25
instantaneous, 25
limited, 26
mean, 26
mean limited, 27

base
complete, 127
irredundant, 127

minimal, 127
of a function, 127

BDD, 143
complexity, 153
developed, 143
formal, 145
prime implicants, 151
probabilistic assessment, 148

reduced, 143

benchmark

FT, 187

Boolean algebra, 33

bounds

of inclusion-exclusion, 47

of relability, 46

of minimal sets, 47

min-max, 47

coherent

FT non-, 123

common mode, 113, 121

complexity

algorithmic, 78

consensus, 128

term of-, 128

cut, 41, 68

minimal, 41, 68

decomposition

modular of an FT, 111

degree

failure, 19

hazard, 19

repair, 19

risk, 19

delay

FT with-, 123, 129

development

inclusion-exclusion, 43, 84

221

222 Fault Trees

disjoint product, 44, 85, 91

distribution

log-normal, 23

domain

of an operator, 53

event

complementary, 53

elementary, 53

essential, 68

existence, 18

intermediary, 53

occurrence, 18

pertinent, 68

rare, 165

repeat, 53

-top, 53

factorization, 46, 88

formula of-, 46

formula

Shannon, 46

function

(the structure)

organising, 36

the structure, 33

monotonic, 33

dual, 38

function

distribution, 18

of structure

coherent, 36

multistate, 133

probability density, 18

implicant, 127

prime, 127

implicant, 128

implicant

prime, 127

importance, 103

factor of-

probabilistic, 106

structural, 105

uncertainty, 109

Kitt, 86

law
binomial, 28
Erlang, 24
exponential, 23
gamma, 24
geometric, 28
normal, 23
of system with delay, 24
Poisson’s, 28
Weibull, 23

life duration, 17
limited availability, 26

machine
of Turing, 78

maintainability, 19
MDT, 20
mean time of the residual survival, 21
mean times, 20
method

of Brown, 95
of empirical laws, 99
of Hughes, 94
of inequalities, 98
of Modarres and Dezfuli, 93
of Monte Carlo, 155, 159

acceleration, 164
precision, 161

of Rushdi, 101
of Schneeweiss, 95

minimal form, 68
module, 38, 111
MTBF, 20
MTTF, 20
MTTR, 20
multiperformance

FT-, 123
multiphase

FT-, 116
MUT, 20

operator, 52
AND, 53, 54, 81
AND-priority, 54, 83
DELAY, 55

Index 223

fundamental, 52

IF, 55, 83

k-out-of-n, 83

NO, 123

NOR, 123

OR, 53, 54, 81

OR-exclusive, 82

primary, 52

special, 52

with delay, 129

operator

NAND, 123

path, 41, 68

minimal, 41, 68

periodic test, 29

phase, 113

phase diagram, 17

problem

NP-complete, 78

NP-difficult, 78

polynomial, 78

reliability, 18

discrete time, 27

residual survival, 21

set
minimal, 67, 84
modular, 37

stochastic simulation, 155
system

binary, 33
multiphase, 118
non-repairable, 17, 79
repairable, 17, 80
with structure

complex, 135
elementary, 135

system
complex, 40
k-out-of-n, 38
parallel, 38
parallel-series, 39
series, 37
series-parallel, 39
elementary, 37

triangle of transfer, 52

uncertainty, 97

variable
essential, 35
monoform, 68

