


W R I T I N G S C I E N T I F I C S O F T W A R E : A G U I D E
T O G O O D S T Y L E

The core of scientific computing is designing, writing, testing, debugging and mod-

ifying numerical software for application to a vast range of areas: from graphics,

weather forecasting, and chemistry to engineering, biology, and finance. Scientists,

engineers, and computer scientists need to write good, clear code, for speed, clarity,

flexibility, and ease of re-use.

Oliveira and Stewart provide here a guide to writing numerical software,

pointing out good practices to follow, and pitfalls to avoid. By following their

advice, the reader will learn how to write efficient software, and how to test it

for bugs, accuracy, and performance. Techniques are explained with a variety of

programming languages, and illustrated with two extensive design examples, one

in Fortran 90 and one in C++, along with other examples in C, C++, Fortran 90

and Java scattered throughout the book.

Common issues in numerical computing are dealt with: for example, whether to

allocate or pass “scratch” memory for temporary use, how to pass parameters to a

function that is itself passed to a routine, how to allocate multidimensional arrays

in C/C++/Java, and how to create suitable interfaces for routines and libraries.

Advanced topics, such as recursive data structures, template programming and

type binders for numerical computing, blocking and unrolling loops for efficiency,

how to design software for deep memory hierarchies, and amortized doubling for

efficient memory use, are also included.

This manual of scientific computing style will prove to be an essential addition

to the bookshelf and lab of everyone who writes numerical software.
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Preface

Mathematical algorithms, though usually invisible, are all around us. The micro-

computer in your car controlling the fuel ignition uses a control algorithm embody-

ing mathematical theories of dynamical systems; a Web search engine might use

large-scale matrix computations; a “smart map” using a Global Positioning System

to tell where you are and the best way to get home embodies numerous numerical

and non-numerical algorithms; the design of modern aircraft involves simulating

the aerodynamic and structural characteristics on powerful computers including

supercomputers.

Behind these applications is software that does numerical computations. Often

it is called scientific software, or engineering software; this software uses finite-

precision floating-point (and occasionally fixed-point) numbers to represent con-

tinuous quantities.

If you are involved in writing software that does numerical computations, this

book is for you. In it we try to provide tools for writing effective and efficient

numerical software. If you are a numerical analyst, this book may open your eyes

to software issues and techniques that are new to you. If you are a programmer,

this book will explain pitfalls to avoid with floating-point arithmetic and how to get

good performance without losing modern design techniques (or programming in

Fortran 66). People in other areas with computing projects that involve significant

numerical computation can find a bounty of useful information and techniques in

this book.

But this is not a book of numerical recipes, or even a textbook for numerical

analysis (numerical analysis being the study of mathematical algorithms and their

behavior with finite precision floating-point arithmetic or other sources of com-

putational errors). Nor is it a handbook on software development. It is about the

development of a particular kind of software: numerical software. Several things

make this kind of software a little different from other kinds of software:

ix



x Preface

� It involves computations with floating-point numbers. All computations with floating point

arithmetic are necessarily approximate. How good are the approximations? That is the

subject matter of numerical analysis. Proofs of correctness of algorithms can be irrelevant

because either: (a) they completely ignore the effects of roundoff error, and so cannot

identify numerical difficulties; or (b) they assume only exact properties of floating point

arithmetic (floating point arithmetic is commutative x + y = y + x , but not associative

(x + y) + z �= x + (y + z)). In the latter case, they cannot prove anything useful about

algorithms which are numerically accurate, but not exact (which is almost all of them).
� It involves large-scale computations. Large-scale computations can involve computing

millions of quantities. Here efficiency is of critical importance, both in time and memory.

While correctness is vital, efficiency has a special place in scientific computing. Program-

mers who wish to get the most out of their machine had better understand just how the

hardware (and software) behind their compilers and operating systems work.
� Requirements change rapidly. Frequent changes in requirements and methods are a fact of

life for scientific software, whether in a commercial or research environment. This means

that the code had better be flexible or it will be scrapped and we will be programming

from scratch again.

In every decade since the 1950s, the complexity of scientific software has increased

a great deal. Object-oriented software has come to the fore in scientific and engi-

neering software with the development of a plethora of object-oriented matrix li-

braries and finite element packages. Fortran used to be the clear language of choice

for scientific software. That has changed. Much scientific software is now writ-

ten in C, C++, Java, Matlab, Ada, and languages other than Fortran. Fortran has

also changed. The Fortran 90 standard and the standards that have followed have

pushed Fortran forward with many modern programming structures. But, many

people who were educated on Fortran 77 or earlier versions of Fortran are unaware

of these powerful new features, and of how they can be used to facilitate large-scale

scientific software development. In this book when we refer to “Fortran” we will

mean Fortran 90 unless another version is explicitly mentioned.

We have focused on C, C++ and Fortran 90 as the languages we know best,

and are in greatest use for scientific and engineering computing. But we will also

have things to say about using other languages for scientific computing, especially

Java. This is not to say that other languages are not appropriate. One of the points

we want to make is that many of the lessons learnt in one language can carry over

to other languages, and help us to better understand the trade-offs involved in the

choice of programming language and software design.

Occasionally we make historical notes about how certain systems and program-

ming languages developed. Often important insights into the character of operating

systems and programming languages, and how they are used, can be gleaned from

the history of their development. It is also a useful reminder that the world of
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software (including scientific software) is not static – it is changing and changing

rapidly. And often our best guide to the future is a look at the past – it is certainly a

good antidote to the impression often given that programming languages are eternal.

This book has been divided into five parts. The first is about what scientific and

engineering software is all about, and what makes it different from conventional

software design: the approximations inherent in floating-point arithmetic and other

aspects of scientific software make some approaches to software development of

limited applicability or irrelevant. Instead, we need to understand numerical issues

much better than with other kinds of software. Also, scientific software often has

much more of an emphasis on performance – there is a real need for speed. But

this must be tempered by the need to keep the structure of the code from becoming

“fossilized”, trying to maximize performance for some particular system. Instead

we advocate a balance between flexibility and performance.

The second part is about software design. After a look at how things happen

(how CPUs work, stacks and registers, variable allocation, compilers, linkers and

interpreters), we emphasize practical software design and development techniques.

These include incremental testing alongside some of the more practical of the “proof

of correctness” ideas.

The third part is on efficiency – in both time and memory. To do this well requires

a good understanding of both algorithms and computer architecture. The importance

of locality is particularly emphasized. There is also a considerable amount on how

to use dynamic memory allocation. This may be particularly useful for Fortran

programmers who have so far avoided dynamic memory allocation.

Part IV is on tools for software development including online sources of scientific

software, debuggers, and tools that have originated from the Unix operating system

and have spread to many other environments.

Part V emphasizes the practicalities involved in programming scientific software.

We have developed two medium-sized examples of numerical software develop-

ment. One is a cubic spline library for constructing and evaluating various kinds of

splines. The other is a multigrid system for the efficient iterative solution of large,

sparse linear systems of equations. In these examples, the reader will see the issues

discussed earlier in the context of some real examples.

As Isaac Newton said, “If I have seen far, it is because I have stood on the

shoulders of giants.” We do not claim to see as far as Isaac Newton, but we have

stood on the shoulders of giants. We would like to thank Barry Smith, Michael

Overton, Nicholas Higham, Kendall Atkinson, and the copy-editor for their com-

ments on our manuscript. We would especially like to thank Cambridge University

Press’ technical reviewer, who was most assiduous in going through the manuscript,

and whose many comments have resulted in a greatly improved manuscript. We

would also like to thank the many sources of the software that we have used in the
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production of this book: Microsoft (MS) Windows XP, Red-Hat Linux, the GNU

compiler collection (gcc,g++, and most recentlyg95), Delorie’s port ofgcc/g++
to MS Windows (djgpp), Minimal GNU for Windows (MinGW) and their port of

gcc/g++ to MS Windows, Intel’s Fortran 90/95 compiler, the GNU tools gmake,

grep, sed, gdb, etc. (many thanks to the Free Software Foundation for making

these tools widely available), the LYX word processing software, the MikTEX and

TeTEX implementations of LATEX and the DVI viewers xdvi and yap, Component

Software’s implementation of RCS for MS Windows, Xfig, zip and unzip, WinZip,

Valgrind, Octave and MATLAB.
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Numerical Software
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Why numerical software?

Numerical software is the software used to do computations with real numbers;

that is, with numbers with decimal points in them like π = 3.141 5926 . . . . These

kinds computations are commonly of great scientific and engineering importance.

Real numbers can be used to represent physical quantities (position, height, force,

stress, viscosity, voltage, density, etc.). Computation with real numbers can be for

simulating the nuclear processes in the centers of stars, finding the stresses in a

large concrete and steel structure, or for determining how many spheres of unit

radius can touch each other without penetrating. This kind of software is about

quantitative problems. That is, the answers to our questions are not simple yes/no

or red/green/blue answers. They involve continuously varying quantities. But com-

puters can only store a finite number of values. So we have to use an approximation

to real numbers called floating point numbers (described in Chapter 2).

Numerical software is often used for large-scale problems. That is, the number

of quantities that need to be computed is often very large. This happens because we

want to understand what is happening with a continuously varying quantity, such

as stress in a structural column, or flow in a river. These are quantities that vary

continuously with position, and perhaps with time as well. Since we cannot find or

store the values at all infinitely many points in a column or a river, we must use some

sort of discretization. Discretizations are approximations to the true system, which

are usually more accurate when more refined. Refining a discretization means that

we create more quantities to compute. This does not have to go very far (especially

for problems in three dimensions) before we are at the limit of current computers,

including supercomputers.

How large are modern computational tasks? Here is an example. Consider water

flowing through a pipe. If the flow is smooth, then we can use relatively coarse

discretizations, and the scale of the simulation can be kept modest. But if we

have turbulence, then the scale of the turbulent features of the flow are typically

a fraction of a millimeter. To simulate turbulent flow in a pipe that is 5 cm in

3



4 Why numerical software?

diameter and 2.5 cm long with a discretization spacing of a tenth of a millimeter

would involve at least 3 × π (25 mm/0.1 mm)3 ≈ 147 million unknowns to store

the flow’s velocity. Just to store this would require over a gigabyte of memory (in

double-precision). Unless you can store this in the main memory of a computer

(the memory banks of your computer, but excluding disk drives), your algorithm

is going to be slow. This amount of memory is simply the memory needed to store

the results of the computations. The amount of memory needed for the other data

used in the computation can be equally large or even much larger.

These large-scale problems are computational challenges that require not only

effective and efficient algorithms but also implementations that maximize use of

the underlying hardware.

1.1 Efficient kernels

Since we are trying to compute a large number of quantities, we need our software

to be efficient. This means that the core operations have to be written to execute

quickly on a computer. These core operations are often referred to as kernels.

Since these kernels are executed many, many times in large-scale computations,

it is especially important for them to run efficiently. Not only should the algorithms

chosen be good, but they should also be implementated carefully to make the best

use of the computer hardware.

Current Central Processing Units (CPUs) such as the Intel Pentium 4 chips have

clock speeds of well over a GigaHertz (GHz). In one clock cycle of one nanosecond,

light in a vacuum travels about 30 cm. This is Einstein’s speed limit. For electrical

signals traveling through wires, the speed is somewhat slower. So for a machine

with a 3 GHz Pentium CPU, in one clock cycle, electrical signals can only travel

about 10 cm. To do something as simple as getting a number from memory, we

have to take into account the time it takes for the signal to go from the CPU to

the memory chips, the time for the memory chips to find the right bit of memory

(typically a pair of transistors), read the information, and then send it back to the

CPU. The total time needed takes many clock cycles. If just getting a number from

memory takes many clock cycles, why are we still increasing clock speeds?

To handle this situation, hardware designers include “cache” memory on the

CPU. This cache is small, fast but expensive memory. If the item the CPU wants

is already in the cache, then it only takes one or two clock cycles to fetch it and to

start processing it. If it is not in the cache, then the cache will read in a short block

of memory from the main memory, which holds the required data. This will take

longer, but shouldn’t happen so often. In fact, the cache idea is so good, that they

don’t just have one cache, they have two. If it isn’t in the first (fastest) cache, then it

looks in the second (not-as-fast-but-still-very-fast) cache, and if it isn’t there it will
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look for it in main memory. Newer designs add even more levels of cache. If you

want to get the best performance out of your CPU, then you should design your

code to make best use of this kind of hardware.

There is a general trend in the performance of these kinds of electronic compo-

nents that is encapsulated in “Moore’s Law”, which was first put forward in 1965

[81], by Gordon Moore one of the founders of Intel:

the number of transistors on a CPU roughly doubles every eighteen months.

Gordon Moore actually said that the doubling happened every twelve months.

But, averaging over progress from the 1950s to now, the number of transistors on a

“chip” doubles about every eighteen months to two years. This usually means that

the number of operations that can be done on a single CPU also roughly doubles

every eighteen months to two years. But memory speed has not kept up, and data

has to be transfered between the main memory and the CPU. To maintain the speed,

we need to get memory and CPU closer; this is why we have multiple level caches

on CPUs. It also means that if we want to get close to peak performance, we need

to take this structure into account. There will be more on this in Part III.

1.2 Rapid change

As scientists, we are interested in research. That means that we want to go where no-

one has gone before. It means that we want to investigate problems and approaches

no-one else has thought of. We are unlikely to get something profoundly important

on our first try. We will try something, see what happens, and then ask some new

questions, and try to answer those. This means that our software is going to have

to change as we have different problems to solve, and want to answer different

questions. Our software will have to change quickly.

Rapidly changing software is a challenge. Each change to a piece of software

has the chance to introduce bugs. Every time we change an assumption about what

we are computing, we have an even bigger challenge to modify our software, since

it is easy to build in bad or restrictive assumptions into our software.

The challenge of rapidly changing software is not unique to research, but it

is particularly important here. In numerical analysis, a great deal of thought has

gone into designing algorithms and the principles behind them. The algorithms

themselves, though, have often been fairly straightforward. However, that has been

changing. Consider Gaussian elimination or LU factorization for solving a linear

system of equations. The standard dense LU factorization routine is fairly easy to

write out in pseudo-code or in your favorite programming language. A great deal of

analysis has gone into this algorithm regarding the size and character of the errors

in the solution. But the algorithm itself is quite straightforward. Even when we add
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pivoting techniques, there is much more to the analysis than the algorithm. But

with the increasing importance of sparse matrices with general sparsity patterns,

the algorithms become much more complicated. Current algorithms for solving

sparse linear systems are supernodal multifrontal algorithms that use combinato-

rial data structures (elimination trees) that must be constructed using moderately

sophisticated techniques from Computer Science. You can write a standard LU fac-

torization routine with partial pivoting in an afternoon in almost any programming

language. But current supernodal multifrontal algorithms require much more care

to implement. This trend to increasing sophistication and complexity can also be

seen in the development of finite element software, ordinary differential equation

solvers, and other numerical software. When we start bringing together different

pieces of software to solve larger problems, we should realize that we have a large

software system, and it should be treated as such. Writing your own (from scratch)

is no longer an option.

1.3 Large-scale problems

Problems in scientific computing usually involve large amounts of computation.

These are called large-scale problems or large-scale computations. This can be

because the problem requires a large amount of data (such as signal processing),

produces a large amount of data (such as solving a partial differential equation), or is

simply very complex (some global optimization problems are like this). Some tasks,

such as weather forecasting, may both require and produce large amounts of data.

1.3.1 Problems with a lot of data

Signal processing is an area where vast amounts of data must be processed, often in

real time – such as digital filtering of telephone signals, transforming digital video

signals, or processing X-ray data in computerized tomography to get pictures of

the inside of human bodies. Real-time constraints mean that the processing must

be very rapid. Often specialized hardware is used to carry this out, and perhaps

fixed-point rather than floating-point arithmetic must be used.

Other situations which do not have real-time constraints are seismic imaging,

where pictures of the rock layers under the ground are obtained from recordings of

sounds picked up by buried sensors. The amount of data involved is very large. It

needs to be, in order to obtain detailed pictures of the structure of the rock layers.

In addition to the usual numerical and programming issues, there may be ques-

tions about how to store and retrieve such large data sets. Part of the answers to such

questions may involve database systems. Database systems are outside the scope

of this book, but if you need to know more, you might look at [26].
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Many problems, such as finding the air flow around a Boeing 747, produce a great

deal of data. After the relevant partial differential equations have been discretized,

there are large systems of nonlinear equations that need to be solved. And the

answer involves a great deal of data. Part of the problem here is making sense of the

answer. Often the best way to describe the answer is to use computer visualization

techniques to paint a picture of the airflow. Moving pictures can be rotated, shifted

and moved enable aeronautical engineer to study different aspects of the problem.

Computer visualization is outside the scope of this book, but if you need something

like that, some good references are [37, 51, 68].

1.3.2 Hard problems

Sometimes, the data for the problem, and the data produced, are not very large,

but solving the problem can involve an enormous amount of time. This can easily

be the case in global optimization, where there can be very large numbers of local

minima, but only one global minimum. Finding all the local minima and comparing

them to find the best – the global minimum – can be like looking for a needle in

a haystack. These problems are often closely related to combinatorial problems

(problems which can be described in terms of integers rather than real numbers).

Sometimes combinatorial methods can solve these problems efficiently, but often,

continuous optimization methods are an essential part of the solution strategy.

Another area where there are hard problems which do not necessarily involve a

lot of data are highly nonlinear problems. Highly nonlinear problems can have, or

appear to have, many possible solutions. Perhaps only one or a few of the solutions

is really useful. Again we have a problem of finding a “needle in a haystack”.



2

Scientific computation and numerical analysis

2.1 The trouble with real numbers

Real numbers like π = 3.141 592 65 . . . are a problem for computers because (in

general) they have an infinite number of digits. Unless your computer has infinite

memory (and ours don’t), there is no way it can store π exactly. So we do the next

best thing, and store a reasonable approximation. Of course, how accurately you

need to know something depends on what you want to do with the information.

And that is exactly how it is with computers.

2.1.1 Floating point numbers

Real numbers are stored as floating point numbers. Floating point numbers are

numbers like π ≈ 3.141 592 6, or Avogadro’s number ≈ 6.03 × 1023, or the charge

on an electron ≈ 1.602 1773 3 × 10−19 coulombs. These have the form ±x × be

where x , the significand or mantissa, is a number from 1 to b (or from 1/b to 1), e
is the exponent, and b is the base of the floating point system. If the mantissa is in

the range 1 to b, then it has the form x = x0.x1x2x3 . . . xm−1 in base b where each

xi is a base-b digit (0, 1, 2, . . . , b − 1) and m is the length of the mantissa.

The length of the mantissa describes how accurately numbers can be approxi-

mated. Since

x × be = (x0.x1x2x3 . . . xm base b) × be

= (x0 + x1 b−1 + x2 b−2 + x3 b−3 + · · · + xm−1 b−m+1) × be,

we can’t approximate a number from 1 to b with a guaranteed error less than 1
2
b−m+1.

This tells us how many digits or bits we have to represent a number. If b = 2 (as

it is in most computers), then we can assume that the leading digit is x0 = 1; then

it doesn’t even need to be stored! Actually this assumption cannot hold for zero,

8
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which can be represented by a special value of e. There are also limits on the values

of e as it must be represented using a finite number of bits or digits. This controls

the range of the floating point system.

The best known and most used floating point system is the IEEE floating point
system, which is sometimes referred to as the IEEE 754 standard [59]. This specifies

a set of three different floating point formats: single-precision, double-precision,

and extended precision. These give increasingly precise and broad floating point

systems. Most programming languages support single and double-precision floating

point systems. Usually, real or float types represent single-precision numbers,

while double, double-precision or long real/longreal types repre-

sent double-precision numbers. An excellent overview of floating point arithmetic

with particular emphasis on the IEEE standard is Overton’s book [84]. A shorter

starting point is Goldberg’s classic article [45]. Some history of the development

of the IEEE standards can be found in [64]. A very useful reference that describes

floating point arithmetic, but is mostly focused on the consequences of using float-

ing point in numerical algorithms is Higham’s book [52]. Most of the algorithms

analyzed in [52] are for matrix computations, but the basics of error analysis are the

same in every part of numerical analysis and scientific computing. An older book

(pre-IEEE arithmetic) that deals with floating point and other aspects of numerical

computing that is still well worth reading is Webb Miller’s The Engineering of
Numerical Software [79].

A fundamental quantity for any floating point system is the unit roundoff. This

is denoted by u and is the smallest positive number where the computed value of
1 + u is different from 1. The machine epsilon is the smallest a − 1 where a is the

smallest representable number greater than 1. We denote the machine epsilon by

εMACH; in binary arithmetic with rounding we usually have εMACH = 2 u.

Suppose we used four-digit decimal arithmetic, so we might store π approxi-

mately as 3.141 × 100 = 0.3141 × 101. If we added 1.000 + 0.0001 exactly we

would get 1.0001. But if we can only store four decimal digits, we would have to

drop the last digit: 1.000. To get a value different from 1.000 in the result we would

have to add at least 0.0005 and then round 1.0005 up to 1.001 before storing. So for

four-digit decimal arithmetic with rounding we would get u = 0.0005 = 5 × 10−4.

The smallest representable number > 1 is 1.001 = 1 + 2 u.

Another fundamental quantity in floating point arithmetic is the range of the

floating point numbers: what are the largest and smallest floating point numbers?

This depends on the range of the exponent. If −emax ≤ e ≤ +emax and 1/b ≤ x < 1,

then the largest representable number is close to bemax and the smallest representable

number is b−emax−1. Usually bemax is given to indicate the range of the floating point

numbers.
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Table 2.1. IEEE floating point quantities

floating point data bits

precision u max number sign mantissa exponent total

single 6 × 10−8 ≈ 1038 1 23 8 32
double 2 × 10−16 ≈ 10308 1 52 11 64

extended 5 × 10−20 ≈ 109863 1 64 15 80
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8 90 1 31
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1516
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52

64

IEEE single precision format

E

E

E

e = E−127

e = E−1023

e = E−16,383

IEEE double precision format

IEEE extended precision format

Figure 2.1. IEEE 754 floating point formats.

In Figure 2.1 we show how the components of the floating point numbers are

stored. In Table 2.1 we give a list of the most important values of the above quantities

for the IEEE floating point standards.

The floating point units on most CPUs now have registers which store floating

point numbers in extended precision. In the past, when floating point operations

were performed in software, it was considerably cheaper to use single-precision

floating point numbers; adding double-precision numbers took about twice as long,

while multiplying them took about four times as long. Now, however, to add single-

precision numbers, they are loaded into extended precision registers and then the

hardware adds the extended precision values. This limits the speed advantage of

using single-precision arithmetic. The main penalty for using double-precision is

the amount of memory it takes up, although in some situations where the mem-

ory bandwidth is limited, single-precision can be twice as fast as double-precision.

As a practical matter, we recommend that floating point variables be declared

double-precision (or better), and you should let the hardware do the actual op-

erations in extended precision (or better) where this is under the programmer’s

control.
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One of the important features of this is that

intermediate calculations should be done in higher precision than needed for
the results.

This point-of-view is strongly promoted by William Kahan, one of the driving

forces behind the IEEE floating point standards. For some scathing criticism of

language “features” that prevent this, see [62].

2.1.2 Floating point arithmetic

Real numbers can be added and subtracted, multiplied and divided (at least provided

the denominator is not zero); if a real number is not negative it has a square root;

the basic trigonometric functions sin and cos are defined for all real numbers. So

we would like to do all these things with floating point numbers. However, unless

we are very lucky, most of these operations applied to floating point numbers will

give us something that is not a floating point number, or at least requires more bits

or digits to represent it.

As an example, suppose we had a computer that used five decimals digits for the

mantissa. Then 1.0000 and 3.0000 are exactly represented, but 1.0000/3.0000 =
0.333 333 33 . . . cannot be. Even addition has this problem. Suppose we add

0.123 45 to 3.141 5:

0.12345

+ 3.1415

3.26495

and the sum has more than five digits in the mantissa. We can either chop the

answer back to 3.2649 or round it up to 3.2650. Similar problems occur when we

subtract or multiply floating point numbers, or if we consider computing square

roots, powers, trigonometric or other functions.

Since we want to use fast hardware to do our floating point operations, and we

don’t want our mantissas to grow in size, we keep chopping or rounding the results

of adding, subtracting, multiplying or dividing floating point numbers. This means

that most operations with floating point numbers are approximate. What we can

do is quantify how large those errors should be. For notation, suppose that x and

y are floating point numbers, and “*” represents a standard arithmetic operation

(+, –, ×, /) and f l(expression) is the computed value of the given expression using

floating point arithmetic. The error in the result of a floating point computation is

generally given by

f l(x ∗ y) = (x ∗ y)(1 + ε),
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where |ε| ≤ u and u is unit roundoff. This holds true for IEEE floating point arith-

metic, provided there is no overflow or underflow (see next paragraph). For func-

tions f like sin, cos, and square roots, the best we can expect is that

f l( f (x)) = (1 + ε1) f ((1 + ε2)x),

where |ε1|, |ε2| ≤ u. If they are well implemented, we can expect an accuracy close

to this for function evaluations that are provided in standard libraries.

2.1.3 Forward and backward error

Let’s have a closer look at the formula for what is actually computed by a function

call:

f l( f (x)) = (1 + ε1) f ((1 + ε2)x).

The numbers ε1 and ε2 are small, but either positive or negative or possibly

zero. Let us look at the effects of the two errors separately: first suppose ε2 = 0.

Then

f l( f (x)) = (1 + ε1) f (x).

This says that the relative error (the actual error, or absolute error, f l( f (x)) − f (x)

divided by what we are trying to compute, f (x)) is ε1. This is called the forward
error. If we know what the input is, this gives us an estimate of what the error in the

output is. We want this quantity to be small. The best we can expect is that |ε1| ≤ u.

Usually the forward error is small, but not always, particularly if f (x) ≈ 0.

Here is a small example. The following computation was done in double-

precision:1 y = √
2, z = y2. The exact result is exactly 2, but subtracting two from

z gave ≈ 4.44 × 10−16. Dividing by the exact answer (= 2) we obtained the relative

error ≈ 2.22 × 10−16 which is u for double-precision. This is about as good as we

can reasonably expect for the accuracy of these computations.

Now trying sin(2π ), the computed value in double-precision is ≈ −2.44 ×
10−16. This is good for the absolute error, but the exact value is zero! This gives

infinite relative error. One reason for this problem is that the computed value of π is

not exact, and even if it were, any computation that is carried out with it in floating

point arithmetic will result in errors of about the size of u. Since the trigonometric

functions repeat themselves after every 2π , usually the first step in computing sin x
for any x is to subtract off a multiple of 2π from x so that 0 ≤ x < 2π . This is

called argument reduction. Carrying out this step before doing the main compu-

tations will result in absolute errors of size approximately u |x | for |x | ≥ 2π . Then

1 We used GNU Octave on a Pentium 4 computer to do this.
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we are not evaluating sin x exactly, but rather sin((1 + ε2)x). This is an example of

backward error. Of course, when sin((1 + ε2)x) is computed, there will be some

forward error as well: (1 + ε1) sin((1 + ε2)x).

Often the computed value can be represented using only the backward error:

f l( f (x)) = f ((1 + ε2)x) for small ε2.

This says that the computed value is the exact value for some nearby input(s).

2.1.4 Overflow and underflow

Since floating point formats use a fixed number of bits, there are only finitely many

floating point numbers in a particular format. This means that there must be a biggest

floating point number in a specific format – a biggest single-precision number, and

a biggest double-precision number. When we have numbers bigger than this, we

have overflow. What do computers do when there is overflow? The most common

response is to terminate the program. With IEEE arithmetic it is possible to return

“infinity” as a result (denoted by Inf). This often leads to other problems which will

be discussed later in this section.

Overflow obviously should be avoided. Fortunately, the maximum number in

well-designed floating point systems like IEEE arithmetic are really very large

(≈ 1038 for single-precision, ≈ 10307 in double-precision). It is difficult to give

precise limits for when overflow will occur in most realistic computations, but

some things can obviously cause problems: for example taking exponentials of

large positive numbers are very large numbers; multiplying large numbers gives

even larger numbers. An example is the tanh function which can be expressed by

the quotient

tanh x = e+x − e−x

e+x + e−x
.

Here is an obvious implementation.

double tanh1(double x)

{
return (exp(x)-exp(-x))/(exp(x)+exp(-x));

}

Here the obvious implementation can fail when x is moderately large, even though

the result is never larger than one. For single-precision, overflow in tanh1 occurs

for x = 90, while for double-precision overflow occurs for x = 750.

A more subtle issue is underflow, which occurs when the result of a floating point

operation is too small to be represented as a floating point number (of the same
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format). This can happen when multiplying two very small numbers, or dividing

a small number by a very large number. The limit of how small floating point

numbers have to be for this to happen is usually close to one divided by the largest

floating point number. So the smallest single-precision IEEE floating point number

is about 10−38, and the smallest double-precision IEEE floating point number is

about 10−307.

When underflow occurs, the FP unit usually returns zero, although on some old

systems the program would crash! When underflow occurs, the formula

f l(x ∗ y) = (x ∗ y)(1 + ε), |ε| ≤ u, where “*” is +, −, ×, /,

no longer holds. Since the size of underflowing numbers are very small, this is

usually not a problem. However, underflow does represent a loss of all significant

digits, and this should be kept in mind.

IEEE arithmetic reduces the dangers of unexpected results from underflow by

implementing gradual underflow. Once the exponent field reaches its minimum

value, the system uses a form of fixed point arithmetic so that the loss of significant

digits is made more gradual as the size of the floating point numbers is reduced.

See Overton [84] for more details.

2.1.5 Things to avoid with floating point numbers

There are a number of things that you should avoid doing with floating point

numbers because they are not exact representations of real numbers.

� Don’t test for equality between floating point numbers. Don’t do this even if you have

assigned one to the other: y = x;. . . if ( x == y ). . . One of the authors got a

nasty shock when this failed. Why didn’t it work? The reason was that one was stored in

a register in extended precision, while the other was stored in main memory in double-

precision. When they were compared, the variable in main memory was loaded into

a register, converted to extended precision, and the comparison was done in extended

precision. As a result the two quantities compared were not exactly equal.

There are many other situations where things that ought to be the same are actually

not exactly the same in floating point arithmetic, so you should forget about testing exact

equality between floating point numbers.
� Don’t subtract nearly equal quantities and then divide by something small. This often

results in catastrophic cancellation and all digits of accuracy are lost. An easy exercise:

compute (1 − cos x)/x2 for x = 10−k with k = 1, 2, 3, . . . The limit should be 1/2. But

usually you end up getting zero for x small. Why? Because cos x becomes so close to one

that it is rounded up to one; then the numerator becomes zero and the end result is zero.

In general, if you subtract numbers where the first k digits are equal, you lose k digits of

accuracy. For more information see Section 2.4.1.
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� Don’t use floating point numbers as loop counters. Since there is very little that can be

trusted to be exact in floating point, we should not trust loops like

for ( x = 0.0; x <= 1.0; x = x + 1.0/9.0 )

printf(”%g ”, x);

For a start, 1/9 will not be stored exactly in a binary floating point representation. With

roundoff error, after ten times through the loop we will have x close to 8/9 = 0.8888 . . . .

But then adding 1/9 toxwill give something close to 1. If it is smaller, then we go through

the loop one more time. If it is larger, we exit the loop straight away. Do we really want

these decisions to be at the mercy of roundoff error? Not if we want reliable and accurate

code. In summary: use integers (standard, short, or long) to control loops. Not floating

point numbers.

2.1.6 Inf, NaN, and other traps

IEEE arithmetic has a number of bit-patterns reserved for things that are not truly

numbers. The ones you will hear most about are Inf and NaN. These are represented

by certain extreme values of the exponent. Inf stands for infinity, and there are both

+Inf and −Inf. These can arise if you get overflow occurring. It is also possible to

get −0 as 1/(−Inf), for example. So there are both +0 and −0. However, these are

equal to each other if you test them for equality.

Then there are things that are undefined – and are not infinity: 0/0 for example.

This is simply a nonsense thing to work with as anyone who has proved that zero

and one are the same will know:

0 = 0 × 1 = 0 × (0/0) = (0 × 0)/0 = 0/0 = 1 (oops).

Similar things happen with Inf − Inf, Inf/Inf and related expressions. Certain other

undefined quantities like
√−1 and log(−1) are represented by NaNs. IEEE handles

such things by creating NaNs; NaN stands for “Not a Number”. This is nice in the

sense that it is clearly connected with the theoretical idea of an undefined quantity. In

computations, if creating an NaN does not immediately cause program termination,

they tend to spread widely (adding, subtracting, multiplying or dividing anything

with a NaN will give a NaN) and you can easily have extensive output of nothing

but NaNs from your code. MATLAB is an example of a system where NaNs do not

stop the program, and one NaN can infect everything else.

As a practical rule, it is almost always best to immediately stop the program if

you find a NaN. Generating a NaN is usually a sign of a bug in your program or

algorithm. Since locating this bug is usually the first step to fixing it, having your

program crash on finding a NaN, or at least alert you to it, is a good common-sense

strategy.
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Table 2.2. IEEE floating point exceptions and the
standard responses

Note that Nmin and Nmax are respectively the smallest
and largest normalized floating point numbers

Exception Standard response

Invalid operation return NaN
Division by zero return ±∞

Overflow return ±∞ of Nmax

Underflow return ±0, ±Nmin, or subnormal
Inexact return correctly rounded result

A simple way to test if a number is a NaN is to compare it to itself; NaNs are the

only floating point numbers not equal to themselves. Here is how to test for NaNs

in Fortran 90.

if ( x == x ) then

print *, ’x is not a NaN’

else

print *, ’x is a NaN’

endif

Don’t test every variable to see if it is a NaN. Instead occasionally test a “summary”

variable, like the norm, or magnitude, of a vector.

2.1.7 Rounding modes and exceptions in IEEE floating point arithmetic

The IEEE floating point arithmetic standard contains some features which there are,

until recently, no standard ways of accessing. These include control of the rounding

modes, and access to the different types of exceptions that can be generated.

The exceptions that can be generated by IEEE floating-point operations and the

standard responses are shown in Table 2.2. The possible rounding modes in IEEE

floating-point arithmetic are listed in Table 2.3. Note that the default rounding mode

is round to nearest. In the case of a tie, the rule used is round toward zero.

Under the newer standards C99 and Fortran 2003 there are defined mechanisms

for controlling the behavior when an IEEE floating-point exception occurs, and to

enforce a particular rounding mode.2 Included in the standard for C99 are macros

2 Note that, at the time of writing, the C99 standard is partially supported by the well-known GNU C compiler
gcc provided a suitable compiler option is used. However, the GNU C support for the IEEE arithmetic features
is limited.
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Table 2.3. IEEE floating-point
rounding modes

Rounding modes

Round down (towards −∞)
Round up (towards +∞)

Round towards zero
Round to nearest

for testing if a number is a NaN or a normalized floating point number, for example.

For more details consult the relevant standards and/or your compiler manuals and

documentation.

2.1.8 Rounding modes and debugging

The rounding modes of IEEE arithmetic provide a wonderful opportunity to ex-

pose rounding errors in most software. Re-running software with different rounding

modes (especially the “toward +∞”, “toward −∞” modes in addition to the usual

“to nearest” mode) will give different results; the size of the difference will usually

give a good estimate of the effects of roundoff errors. While it is not a foolproof

method, there are currently no foolproof methods for detecting problems due to

roundoff error. For a discussion of the problems with different schemes for iden-

tifying roundoff error, see Kahan [63]. The best is a detailed rounding analysis,

but this is costly to carry out, and is done only by a few people, even amongst

numerical analysts. According to Kahan, the next best approach is to re-run the

code with different rounding modes to “smoke out” problems with roundoff.

With the C99 and Fortran 2003 standards, there is (at last) a standardized way

of setting rounding modes. Here is an example in C99 that shows how to do this

inside a program.

#include <stdio.h>

#include <fenv.h>

#pragma STDC FENV ACCESS ON

double my op(double x, double y);

int main(int argc, char *argv[])

{
double a, b, x, y;
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int old fp mode, status1, status2, status3;

x = 7.1; y = 1.0/5.0;

old fp mode = fegetround();

status1 = fesetround(FE DOWNWARD);

a = my op(x, y);

status2 = fesetround(FE UPWARD);

b = my op(x, y);

status3 = fesetround(old fp mode);

/* All status values should be zero */

printf(”Status values are: %d, %d, %d\n”,

status1, status2, status3);

printf(”Difference is %g\n”, b-a);

}

This was compiled and run using gcc 3.4.2 for MinGW. The pragma

FENV ACCESS is meant to turn off certain optimizations that subvert the con-

trol of rounding modes. However, gcc (at the time of writing) ignores this pragma;

compiling the my op function in the same file as main results in zero difference

between the two rounding modes with optimization on (-O1 or -O2), but gives

properly rounded results without optimization. The effects of optimization and the

use of pragmas will undoubtedly change with the compiler and the version of the

compiler; we just want to point out that care must be exercised in using IEEE

rounding modes.

2.2 Fixed-point arithmetic

While almost all conventional scientific and engineering computations are done

using floating-point arithmetic, in some real-time systems, fixed-point arithmetic

is used because of its speed and simplicity compared to floating-point arithmetic.

This is done, for example, in digital signal processing. Few programming languages

support fixed-point arithmetic; Ada is one of them. Usually, fixed-point arithmetic

is implemented using standard integer arithmetic.

We can think of fixed-point numbers as having the form

x = c × z, z an integer,

where c is a positive constant that defines the range of the fixed-point numbers. (If

we were doing financial calculations, then we might set c = $0.01 – that is, c might
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be one cent.) Since the error in performing a fixed-point arithmetic operation is at

best c, we try to make c as small as possible. Our choice of c is constrained by

the fact that integers are represented using a fixed number of bits (usually 32, but

it could be 16 or 64, or some other number). Because of this, there is a maximum

integer value; let’s call it M . If we want to represent real numbers in the range

[−r, +r ], we want r ≤ c M . Since M is fixed by the integer arithmetic used, and

we want c as small as we can, we usually want r = c M .

But there is a danger here. If most of any of our fixed-point numbers exceed r in

magnitude, we get integer overflow. Often this will happen silently, and we will find

that adding two large, positive fixed-point numbers might result in a negative fixed-

point number! In other implementations (e.g., Ada), fixed-point overflow results in

an error or exception being raised.

These problems mean that if we are using fixed-point arithmetic, we have to

choose c (> 0) large enough so that r � c M to avoid fixed-point overflow (with

a larger error for most computations). The two conflicting goals of reducing the

error by reducing c, and increasing the range r to avoid overflow, must be carefully

balanced. Whether the numbers to be represented lie in the permissible range must

be carefully monitored to prevent overflow. Floating-point arithmetic is much more

adaptable, and floating-point overflow much less likely.

The use of fixed point arithmetic has been common in digital signal processing

and other applications requiring high speed with minimal hardware. However, it

was a contributing factor in the Ariane 5 disaster discussed in Chapter 4. The initial

event that triggered the Ariane 5 crash was a fixed point event.

2.3 Algorithm stability vs. problem stability

Even if we can’t compute the exact answer to a problem with real numbers in it,

we would like to get something close, preferably very close. The trouble with a

criterion like this is that often we can ask questions without even realizing they’re

bad questions. Suppose we have a routine for solving linear equations Ax = b for

x , where A is a given square matrix and b a vector with consistent dimensions. If

we ask our solver to solve [+1 −1

−1 +1

] [
x1

x2

]
=

[
2

3

]
,

then we are asking a stupid question because there is no solution. (There is if we

replace 3 with −2, but for almost all other changes there is no solution.) This is

because the matrix [+1 −1

−1 +1

]
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is a singular matrix; that is, it has no inverse matrix. But if we change one of the

entries by even a very small amount, the result is not singular:[
1 + ε −1

−1 +1

]−1

= 1

ε

[
1 1

1 1 + ε

]
.

So changing the entries of our matrix will give us an answer. Unfortunately it won’t

be a very useful answer. But that is not the fault of our algorithm. It is the fault of the

problem. Ideally, the numerical software will identify when the matrix is singular

or nearly singular.

Linear equation solvers do not claim to give us an answer that is always close

to the exact solution. But they usually claim to give an exact answer to a nearby
problem. This is called backward stability. This property means that the algorithm

has a small backward error. Provided the problem we ask is well-posed (small

changes in the inputs give small changes in the exact solution), then backward

stability of our algorithm will ensure that we will get answers close to the exact

solution.

On the other hand, if a particular class of problems is always well-posed (mul-

tiplying a pair of numbers, for example), then we can have algorithms that always

give answers that are close to the exact answers – provided the numbers are not so

big as to overflow or so small as to cause underflow.

For solving a linear system, the data for the problem are the matrix A and

the vector b; the output is x . Note that vectors can be added and can be scaled

(multiplied by a number), but it usually does not make sense to multiply or divide

vectors. Matrices can be added and multiplied, and can multiply vectors.

When we want to tell whether a vector or matrix is big or small, we need a way

of measuring the “size” of a vector or matrix. To measure the size of a vector we

use a norm ‖z‖. All norms have three basic properties:

1. ‖z‖ ≥ 0 for all vectors z, and ‖z‖ = 0 can only happen if z is the zero vector.

2. If α is a number the scaled vector αz has norm ‖αz‖ = |α| ‖z‖. So doubling a vector

doubles its size.

3. If x and y are two vectors then ‖x + y‖ ≤ ‖x‖ + ‖y‖. This is known as the triangle
inequality. (See Figure 2.2.)

Although we can choose different norms, most often people use the Euclidean norm

‖z‖2 =
√∑

i z2
i , the max-norm ‖z‖∞ = maxi |zi |, or the 1-norm ‖z‖1 = ∑

i |zi |.
There are many others, but these seem to be the most useful. For example, if

z =
⎡⎣ 3

−2

5

⎤⎦ ,
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z

2z

y

x

x+y

Figure 2.2. Vectors and vector operations.

it is easy to compute ‖z‖2 =
√

32 + (−2)2 + 52 = √
38 ≈ 6.1644, ‖z‖∞ =

max(|3|, | − 2|, |5|) = 5 and ‖z‖1 = |3| + | − 2| + |5| = 10.

For each vector norm, we have a corresponding matrix norm ‖A‖. The usual

way of creating a matrix norm from a vector norm is through the formula

‖A‖ := max
x 
=0

‖Ax‖
‖x‖ .

Note that in the fraction all the norms are vector norms. Vector norms and their

associated matrix norms have two extra properties:

1. ‖Ax‖ ≤ ‖A‖ ‖x‖ for matrix–vector products, and

2. ‖AB‖ ≤ ‖A‖ ‖B‖ for matrix–matrix products.

Computing matrix norms can be harder than computing the associated vector norm.

However, a number of matrix norms have relatively simple expressions:

1. ‖A‖∞ = maxi
∑

j |ai j |,
2. ‖A‖1 = max j

∑
i |ai j |, and

3. ‖A‖2 =
√

λmax(AT A).

Note that λmax(B) is the maximum real eigenvalue of B. Eigenvalues and eigen-

vectors form a more advanced part of linear algebra. See Appendix A on

matrices and vectors for more information. However, a convenient bound is

‖A‖2 ≤ ‖A‖F, where ‖A‖F =
√∑

i, j |ai j |2 is the Frobenius norm and is easily

calculated.

Here is an example matrix to try it out on:

A =
⎡⎣ 1 −2 1

−2 3 4

5 1 −2

⎤⎦ .
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Then

‖A‖∞ = max(|1| + | − 2| + |1|, | − 2| + |3| + |4|, |5| + |1| + | − 2|)
= max(4, 9, 8) = 9.

‖A‖1 = max(|1| + | − 2| + |5|, | − 2| + |3| + |1|, |1| + |4| + | − 2|)
= max(8, 6, 7) = 8.

With some help from matrix computation systems like MATLABT M or Octave it

is also possible to compute ‖A‖2 ≈ 6.695. Also, we can compute

Az =
⎡⎣ 1 −2 1

−2 3 4

5 1 −2

⎤⎦ ⎡⎣ 3

−2

5

⎤⎦ =
⎡⎣12

8

3

⎤⎦ .

Note that ‖Az‖∞ = 12 ≤ 9 × 5 = ‖A‖∞‖z‖∞, ‖Az‖1 = 23 ≤ 8 × 10 =
‖A‖1‖z‖1 and even ‖Az‖2 ≈ 14.7309 ≤ 6.695 × 6.1644 ≈ ‖A‖2‖z‖2.

The sensitivity of the solution of a system of linear equations to changes in the

data is usually described through the error bound below (see [4, 18]). If Ax = b
and (A + F)(x + e) = b + d, then

‖e‖
‖x‖ ≤ κ(A)

1 − κ(A) ‖F‖/‖A‖
[‖d‖

‖b‖ + ‖F‖
‖A‖

]
,

where κ(A) := ‖A‖ ‖A−1‖ is the condition number of the linear system. Provided

κ(A) is not very large, we say that the linear system Ax = b is well-conditioned, as

small (relative) changes in A and b result in small (relative) changes in the solution

x . In general, you lose about log10 κ(A) digits in computing x .

If A is singular, then solutions might not exist, and if they do exist there are

infinitely many. If A is close to being singular, then the linear system is sensitive

to small changes in the data. This means that a general linear system solver cannot

always be forward stable. But it can be backward stable. In fact, standard error

bounds for using LU factorization or Gaussian elimination to solve a linear system

(the standard method for general linear systems) say that the computed solution x̂
of a linear system Ax = b is the exact solution of the linear system

(A + F )̂x = b,

where

‖F‖ ≤ c1(n) u [‖A‖ + ‖L‖ ‖U‖],

u is the unit roundoff, c1(n) is a modest function of n, and A = LU is the LU factor-

ization of A. Since u is small, ‖F‖ is (usually) small, and so the computed solution
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x̂ is the exact solution to a nearby linear system. This makes LU factorization a

backward stable algorithm, at least if ‖L‖ ‖U‖ ≈ ‖A‖.

Note that if u κ(A) is small, then from the error bounds we see that

‖̂x − x‖
‖x‖ � κ(A)

‖F‖
‖A‖ � 2 c1(n) u κ(A) � 1,

so that the solution of this linear system is forward stable. This is one example of

the principle that

well-conditioned + backward stable ⇒ forward stable.

Note that being well-conditioned is a property of the problem, but backward stability

is a property of the algorithm used to solve the problem.

2.4 Numerical accuracy and reliability

Choose numerical algorithms which are numerically stable if at all possible. There

is a wide literature on this, and you should have some idea of which algorithms

are numerically stable in your area of interest. Have a look at numerical analysis

textbooks like [4, 18], have a look in the library at the numerical analysis books

(or books on your particular area of interest), and check the journals in numerical

analysis, scientific computing, or computing in general. For more ideas, have a look

at Chapter 11 on algorithm awareness.

The following suggestions give some additional information on problems that

can occur due to floating point arithmetic, and ways of avoiding them.

2.4.1 Catastrophic cancellation

Catastrophic cancellation is probably the most common source of numerical trouble.

This can occur when nearly equal quantities are subtracted: c := a − b where a ≈
b. The problem is that usually a is computed as â = (1 + ε1)a and b is usually

computed as b̂ = (1 + ε2)b. Both ε1 and ε2 are small, typically |ε1|, |ε1| � u with

u unit roundoff. Then the computed value of c is

ĉ = (1 + ε3) [(1 + ε1)a − (1 + ε2)b]

= (1 + ε3) [a − b] + (1 + ε3) [ε1 a − ε2 b] .

If |a − b| is much less than |a| and |b| then |ε1 a − ε2 b| can be larger than |a − b|
if ε1 and ε2 have opposite signs (so that the error adds instead of subtracts). The

error in c is still small, but its relative error | ĉ − c|/|c| can be quite large. If we

then divide by a small number, we can get large errors.
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Here is a simple example. Suppose we want to compute the mean and variance

of some test data in a list a1, a2, . . . , an . (The variance is the square of the standard

deviation.) The formulas for these quantities are:

a = 1

n

n∑
i=1

ai (mean)

v = 1

n − 1

n∑
i=1

(ai − a)2 (variance - two pass)

= 1

n − 1

[
n∑

i=1

a2
i − na2

]
(variance - one pass).

The second formula for the variance is very popular since we can use it to compute

the mean and the standard deviation in one pass through the data. On the other

hand, if we used the first formula for the variance we would need to compute the

mean first, and then compute the variance on the second pass through the data.

However, the second formula has some hidden numerical problems if the input

data is fairly large. For the input list

34 124.75

34 124.48

34 124.90

34 125.31

34 125.05

34 124.98

the computed results using single-precision were a mean of 34 124.91 and a vari-

ance of 38.5934 (standard deviation of 6.212). By comparison, using the two-pass

algorithm gives a mean of 34 124.91 and a variance of 0.078 778 (standard devia-

tion of 0.280 67). If you have a look at the data, you can see they don’t differ from

the the mean by more than 0.42, so the variance from the one-pass algorithm can’t

be correct.

The reason is the catastrophic cancellation in
∑n

i=1 a2
i − na2, where the sum of

the squares has magnitude close to na2. The squaring has also resulted in much

larger numbers. To get a rough estimate of the roundoff errors, let’s suppose that∑n
i=1 a2

i and na2 are computed exactly. Then the error we expect in the difference

can be approximated by u na2 ≈ 6 × 10−8 × 6 × (3.4 × 104)2 ≈ 416. This is then

divided by n − 1 = 5 to give an error estimate for the variance of about 83, which

is much larger than the true variance. This means that this estimate of the variance

is almost entirely error.
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But wait! The two-pass algorithm also has cancellation: doesn’t computing ai −
a cause catastrophic cancellation? The answer is that it can, but the errors are much

smaller because the ai s and a are much smaller than a2. The error in ai − a can

be roughly estimated by u |a|, so the error in (ai − a)2 can be roughly estimated

by 2 |ai − a| u |a|. This gives an error in the variance which we can estimate by

2n maxi |ai − a| |a| u. So we get an error estimate of roughly 2 × 6 × 0.42 × 3.4 ×
104 × 6 × 10−8 ≈ 1.02 × 10−2. This means that the computed variance 7.877 ×
10−2 has one digit of accuracy.

The problem is not that there is cancellation, so much as increasing the size of

the numbers in the computation (e.g., by squaring ai to get a2
i ) before subtracting

nearly equal quantities. Try to keep the numbers small, or at least prevent them from

becoming much larger. Also, try to avoid dividing by especially small numbers.

Another example: Consider the problem of computing (ez − 1)/z. The obvious

code suffers from catastrophic cancellation for z small. On the other hand, for

small z we have the rapidly convergent Taylor series expansion (ez − 1)/z = 1 +
z/2! + z2/3! + · · · . However, the number of terms needed depends on the accuracy

desired, and the divisions can make for a slow routine.

It turns out that the problems with catastrophic cancellation can be dealt with by

a remarkable little trick [63]:

w = exp(z);

/* exp(z) underflow */

if ( w == 0 ) return -1/z;

/* exp(z) == 1, special case */

if ( w == 1 ) return 1.0;

return (w-1)/log(w);

This gives full precision for any z, excepting z which give overflow. For small

z, w = f l(ez) = f l(1 + z + z2/2! + O(z3)). Assuming that this is computed to

full precision, we have a loss of accuracy in adding z + z2/2 to 1. For z in the

range u to
√

u, z2/2 < u/2, and so will not make any contribution to w. Instead,

w = f l(1 + z). So the numerator of the returned result is w − 1, while the denom-

inator is f l(log(w)). Now log(w) = (w − 1) − (w − 1)2/2! + · · · . Since w − 1 is

in the same range as z (but with less accuracy), f l(log(w)) = f l((w − 1) − (w −
1)2/2) = (w − 1)[1 − (w − 1)/2](1 + ε1) with |ε1| ≤ u. This means that the com-

puted ratio is

w − 1

(w − 1)[1 − (w − 1)/2](1 + ε1)
(1 + ε2), |ε1|, |ε2| ≤ u.

Canceling the w − 1 factors, we get a result that is within unit roundoff of

1/[1 − (w − 1)/2] = 1 + (w − 1)/2 + O(w − 1)2. But w − 1 is within u of z, so
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our computed result is within unit roundoff of 1 + z/2! + z2/3! + · · · = (ez − 1)/z,

as we wanted. We could carry out a similar analysis for different ranges of z and

obtain similar results.

Another algorithm that works similarly, but is not quite as good is:

w = exp(z); u = 1 + z;

if ( w == 1 || u == 1 ) return 1;

return (w-1)/(u-1);

Unfortunately, if z ≈ √
u the errors are approaching

√
u in size in this algorithm.

The reason is that the computed value of u will be the same as the computed value

of w, since z2/2 + · · · will be smaller than u. But then (w − 1)/(u − 1) will be

exactly one, not 1 + z/2 + O(z2) as it should be.

The first modification is worthwhile as it provides full accuracy without having

to determine what that accuracy is.

2.4.2 Numerical stability

Much bad numerical behavior can be traced to a single operation. But not all. Take

for instance the problem of computing Ik := ∫ 1

0
xke−x dx for k = 0, 1, 2, . . . . We

can show that

Ik = k Ik−1 − e−1, k = 1, 2, . . . , I0 = 1 − e−1.

From the first formula for Ik it is easy to see that Ik > Ik+1 > 0. The following

algorithm is correct, but not stable.

double I[N];

I[0] = 1.0 - exp(-1.0);

for ( k = 1; k < N; k++ )

I[k] = k*I[k-1] - exp(-1.0);

The trouble is that if there is an error of δ in I[k-1], then we get an error of k δ in
I[k]. This amplifies the error, especially if k is large. Even if there is an error of

only unit roundoff (≈ 10−16) in I[0], we expect the error in I[20] to be about

20! × 10−16 ≈ 12, while the true value is close to e−1/21. When we run this code3

we get the following results:

I[0] = 0.63212055882856

I[1] = 0.26424111765712

I[2] = 0.16060279414279

I[3] = 0.11392894125692

3 We used the DJGPP version of the Gnu C compiler on a Windows XP computer.
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I[4] = 0.087836323856248

I[5] = 0.071302178109799

I[6] = 0.059933627487354

I[7] = 0.051655951240039

I[8] = 0.045368168748868

I[9] = 0.040434077568367

I[10] = 0.036461334512231

I[11] = 0.033195238463104

I[12] = 0.030463420385801

I[13] = 0.028145023843975

I[14] = 0.026150892644214

I[15] = 0.024383948491768

I[16] = 0.022263734696843

I[17] = 0.010604048674894

I[18] = -0.17700656502335

I[19] = -3.7310041766152

I[20] = -74.987962973475

The numerical instability seems to appear very rapidly, but on close examination, we

can see that I[17] is about half the value of I[16], and even I[16] is perhaps

a bit too small. When the error is amplified by 16 or more with each iteration, even

very small errors can become large in a few iterations.

This is an example of numerical instability that does not become apparent in one,

two, three or even ten steps. But it does become apparent and eventually overwhelms

the computed results. In this case, the problem can be fixed by reversing the iteration:

use In−1 = (In + e−1)/n for n = . . . , 3, 2, 1. The trouble now is getting started.

We don’t know “I∞”, and even if we did, it would take an infinite amount of time to

do the computations. But since the error is rapidly reduced we can start with a very

rough value of (say) I30 ≈ e−1/30 which means that the error in I20 by this reverse

method is about e−1/(30 × 29 × 28 × · · · × 21) ≈ 9 × 10−16, which is almost full

double-precision accuracy.

2.4.3 Speed and/or reliability

Speed and reliability are not necessarily mutually exclusive! Consider Newton’s al-

gorithm for solving a single linear equation with a single unknown and the bisection

method.

The Newton method for solving an equation f (x) = 0 is an iteration

xk+1 = xk − f (xk)

f ′(xk)
, x0 given.
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This method can be extremely fast when it converges. But it is not guaran-

teed to converge. Consider first the equation x = cos x . This can be represented

by f (x) := x − cos x = 0 whose derivative is f ′(x) = 1 + sin x . The iterates of

Newton’s method with x0 = 0 are

x0 = 0

x1 = 1

x2 = 0.750363867840

x3 = 0.739112890911

x4 = 0.739085133385

x5 = 0.739085133215

and | f (x5)| ≤ 10−16. On the other hand, if we apply this to the function f (x) =
tanh(x) with x0 = 2 we get

x0 = 2

x1 = −11.6449585986

x2 = +3255536207.19

x3 = −Inf

x4 = NaN.

The code stopped at this point, because no comparison with a NaN is evaluated as

true.

This bisection method solves the same equation, f (x) = 0, but uses a very

different strategy. It takes an interval [a, b] where f (a) and f (b) have opposites

signs. That is, f (a) > 0 and f (b) < 0, or f (a) < 0 and f (b) > 0. This guarantees

that there is a solution of f (x) = 0 for some x ∈ [a, b].

bisect(f, a, b, ε)
if sign f (a) = sign f (b) then return fail
while |b − a| ≥ ε

c ← (a + b)/2

if sign f (c) = sign f (a)

then b ← c else a ← c end if
end while

end bisect

As long as our function f is continuous, the intervals [a, b] must converge to a

solution x of f (x) = 0. For example, if f (x) = x − cos(x), we can start with a =
0: f (a) = 0 − cos 0 = −1 < 0, and b = π/2: f (b) = π/2 − cos(π/2) = π/2 >
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0. In 34 iterations the bisection method gets the interval down to [a, b] =
[0.739 085 133 2, 0.739 085 133 291].

The bisection method is guaranteed to work, but is relatively slow. Newton’s

method works most of the time and when it does it usually converges very, very

quickly. So, which should you use? The tortoise or the hare?

The best answer is: both. There are algorithms which combine the speed of

Newton’s method (or get close to it) and the reliability of the bisection algorithm.

There are several ways of doing this. One is to keep an interval [a, b] where f (a)

and f (b) have opposite signs. At each iteration of the hybrid method, we do a

bisection step which halves the width of the interval [a, b], and then do a Newton

step using the mid-point c of [a, b] as the starting point. Let w be the result of the

Newton step. If w is outside the interval [a, b] then we ignore the Newton step; if

w is inside the interval [a, b] then we compute f (w) and replace the interval [a, b]

with [a, w] or [w, b] according to the sign of f (w). Pseudo-code is given below.

hybrid( f , a, b, ε)
while |b − a| ≥ ε

// bisection step
c ← (a + b)/2

if sign f (c) = sign f (a)

then b ← c else a ← c end if
// Newton step
c ← (a + b)/2; w ← c − f (c)/ f ′(c)

if a < w < b then
if sign f (w) = sign f (a)

then b ← w else a ← w end if
end if

end while
end hybrid

The best hybrid method is probably Brent’s [15]. In designing this algorithm

Brent took not only the number of iterations into account, but also the problems of

rounding error. If you only have one variable and one equation, this is probably the

algorithm of choice.
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Priorities

Let’s get this straight. Your priorities in writing scientific software should be,
roughly speaking:

� correctness,
� numerical stability,
� accurate discretization (including estimating accuracy),
� flexibility,
� efficiency (speed and memory).

If your program is not correct, then nothing else matters. If the algorithm is not

numerically stable, the results cannot be trusted (at least not unless you test them

first). If the discretization or other approximations used are inaccurate we will still

not be able to trust the results. Even better is to have a method that can estimate

the errors in the discretization and approximations. The estimates don’t have to be

exact (if they were, we could compute the exact values), but good enough to give

a reasonable idea of their size.

If the software is not flexible, then others probably won’t use it, since they will

have a hard time making it do something slightly different. Once we have a correct

implementation of a numerically stable algorithm, then we can think about how

to make it fast. Speed is still one of our priorities, but it comes last. Don’t forget

memory. If your algorithm needs more memory than your machine has, then it

won’t run. And sometimes this is more important than speed.

3.1 Correctness

Without correctness, we really can’t expect any useful results. So we must first

make sure that our programs bug-free. Since human beings make errors even for the

simplest tasks (and programming involves a great deal of thought), the probability

30
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that someone can write a bug-free program of any significance without debugging

is close to zero.

In addition, we should carefully check our logic when we are designing and

writing the software. Catching mistakes early saves a great deal of pain later.

So we need to test and debug our programs. In fact, we should design our software

for debugging and testing. There will be more to say on this later.

There is a caveat that should be mentioned here: since operations on floating

point numbers are almost always only approximately true, we will not get answers

that are exactly correct. For example, even trivial code such as z = x + y; in C

will not necessarily make z exactly the sum of x and y if these are floating point

quantities. However, if the operations were done in exact arithmetic we would get

the exact answer.

Much has been made of “proof of correctness” methods, which make use of

formal logic. There are even programs that automate part of this process. But

for most programming tasks full-strength “proof of correctness” methods are im-

practicable. However, there are a number of features of these methods that we

advocate.

“Proof of correctness” methods force the user to write down the explicit con-

ditions that should be satisfied when a routine is called (preconditions), and the

properties that are satisfied when the routine exits (postconditions). These are good

habits. Writing down even informal preconditions and postconditions for your rou-

tines will help debugging and also testing later on. In fact, this is an example of a

contract: provided the preconditions hold when the routine is called, the routine

guarantees that the postconditions will hold on return. Some languages and systems

provide automated support for “programming by contract”.

Another technique that is worth using to help write loops is the idea of a loop
invariant. A loop invariant is a logical statement at a point in a loop that should

be satisfied every time the loop invariant is reached. A very simple example is a

summation routine. In C this might look like this:

/* factorial

-- precondition: n >= 0

-- postcondition: returns n! */

int factorial(int n)

{
int k, product;

if ( n < 0 ) return 0;

product = 1;

for ( k = 2; k <= n; k++ )

/* loop invariant: product = (k-1)! */
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product = k*product;

return product;

}

The advantage of the loop invariant is that if we wish to check that it really does

hold every time one goes through the loop, we only have to check the first time

through the loop, and that if it was true the last time through the loop, it must be

true this time through the loop. This works just like a proof using mathematical

induction.

Support for these constructs is provided in some languages, such as C/C++,

which have the assert macro. The macro evaluates its argument, and if the result is

true then execution continues as if nothing happened; but if the result is false then

execution is aborted with an error message identifying the failure of the assertion.

For more information on these topics, see [80].

3.2 Numerical stability

Catastrophic cancellation, overflow, and more gradual amplification of errors are

all examples of numerical instability. Avoiding these, and finding ways of reducing

the errors, are important aspects of designing numerical algorithms and their im-

plementations. See Chapter 2 for examples of how these problems arise, and how

to avoid them.

Knowing ways of identifying and handling numerical instabilities should be part

of the background of everyone practicing scientific programming.

Choose your numerical algorithm with care. It will repay you later.

3.3 Accurate discretization

Not all computational tasks in scientific computing require a discretization of a

“continuous” problem, but it happens very frequently. This should be done in a

way that results in accurate solutions. This is a core topic in much of numerical

analysis.

A related issue is estimating the error in the solution that is computed. This is

done much less than it should be, but it gives crucial information to the user about

how much the result should be trusted. (Read the story of the Sleipner A oil rig

collapse in Chapter 4; this disaster could have been averted if error estimation had

been used.)

We will consider error estimates for differential equations. The discretizations

have some parameter which measures how refined the discretization is. For most

ordinary differential equations, this parameter is the step-size; for the finite element
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method it may be the size of the largest element. Since we can usually control this

parameter, we would like to know how large the errors are, and how to change these

parameters to change the resulting errors.

One kind of error estimate is the a priori error estimate. This kind of error estimate

depends on the discretization parameter and certain properties of the (unknown)

exact solution. This kind of error estimate is usually of the kind that says that the

size of the error is bounded by C h p where C is a number depending on the exact

solution, h is the discretization parameter, and p is a fixed exponent that depends

only on the discretization strategy. These error bounds usually assume that the

exact solution is “sufficiently differentiable”, meaning that the exact solution can

be differentiated a certain number of times, typically p + 1 times. If this is violated,

then the form of the error bound can be different.

A priori error bounds are very useful in determining the suitability of a particular

discretization strategy – large values of p indicate that the error becomes small very

rapidly as the discretization parameter h becomes small. Methods which have large

values of p are called high-accuracy methods. High-accuracy methods can give

extremely accurate solutions for modest values of the discretization parameter.

However, their success often depends on the solution being very smooth, and any

significant feature of the solution that has a size of about h can make high-accuracy

method perform very badly. In short, high-accuracy methods often have a threshold

behavior – if the discretization parameter is well below a threshold, the results are

very accurate, but if they are significantly above this threshold, the results can be

very inaccurate.

A different kind of error estimate is the a posteriori error estimate. This does not

make any assumptions about the exact solution. Instead, the idea is to estimate the

error in a given computed (approximate) solution. This may require the solution

of some associated system of equations. This is the kind of error estimate that the

designers of the Sleipner A oil rig did not have in their finite element software. If

they did, then they would have realized that part of their solution was inaccurate.

The development of a posteriori error estimates is not a simple task – substantial

mathematical theory is needed to develop these kinds of error estimators. Part of this

theory can be found in textbooks on finite element methods, such as [36] and [13].

3.4 Flexibility

Let’s start with a slogan:

If users can’t do what they want (easily) with your code, they will use something
else.

While this is rather obvious, it should remind us that we can’t easily tell what users

will want to do with our code. (And users could include the very same programmer



34 Priorities

after a few months or years!) So we should try to design the code to allow users to

do different (but legitimate) things with our code.

One way of making a lot of code flexible is to set up a library based on a partic-

ular mathematical abstraction with a specific data structure. The most successful

libraries of this kind are matrix libraries. While MATLABT M is an interactive

system and not a library, it is based around the abstraction of matrices with a con-

sistent set of internal data structures; this is both very flexible and very successful.

MATLAB users can use MATLAB’s matrices in ways which the designers never

dreamed of. But because the users and the designers of MATLAB have a com-

mon understanding of the mathematical abstraction of matrices, users do not have

to know whether the designers had their problems in mind when they designed

MATLAB.

This kind of approach can be used for many other kinds of problems. But we

should be careful about trying to make the code too abstract. After all, we need to

provide concrete implementations and, in general, users have great difficulty with

software that uses abstractions they are not already familiar with.

Most of our applications will not just involve libraries of this kind, but will

have to deal with the specifics of our particular problem. Nevertheless, it is usually

possible to find suitable abstractions that handle the problem of interest.

One way in which programmers make their programs less flexible is by building

assumptions into their code. Have a look at this Fortran function for computing

Simpson’s approximation to the integral
∫ b

a f (x) dx for a function f :

real function trapezoidal(a,b,n)

real :: a, b, f, sum, h

external :: f

integer :: i, n

h = (b-a)/n

sum = 0.5*(f(a) + f(b))

do i = 1, n-1

sum = sum + f(a+i*h)

end do

trapezoidal = h*sum

end function trapezoidal

This builds in the assumption that the name of the function to be integrated is “f”.

If another function builds in the same assumption, but we want to apply it to a

function called “g”, we are in trouble. How can we get around this assumption?

We can pass the function as a parameter. Then it doesn’t matter what the function

is called. Here is how to do that:
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real function trapezoidal(f,a,b,n)

real :: a, b, f, sum, h

external :: f

integer :: i, n

h = (b-a)/n

sum = 0.5*(f(a) + f(b))

do i = 1, n-1

sum = sum + f(a+i*h)

end do

trapezoidal = h*sum

end function trapezoidal

It is important to know how to pass functions and subroutines as parameters. While

this tends to be relegated to the “advanced” section of most introductions to pro-

gramming, it is basic to most scientific computing.

3.5 Efficiency: time and memory

Efficiency in time and memory may be the last priority, but it is still essential

in design and development. Scientific computations are typically large, and any

significant improvement in the execution time or the amount of memory required

can be important. Fortunately, provided you are willing to suffer a small to modest

loss of time for overheads, the pursuit of efficiency does not need to cause sacrifices

in other areas (accuracy, flexibility, reliabilty, . . .) provided it is well-designed. And,

in fact, good, flexible design will actually make efficiency much easier to attain.

The first area in which you should look for efficiency is in the data structures

and overall algorithms you use. A “cheap” algorithm that is easy to implement but

takes O(n2) time is likely to be a much bigger headache than a more complicated

O(n log n) algorithm when n starts to become large. In fact, if you are interested in

pushing n to the limits that your machine will allow, it is almost always the O(n2)

algorithm that will limit the program.

If it is necessary, proper design will make it easy to first implement a simple

O(n2) algorithm, and then to replace it later with a better O(n log n) algorithm for

better performance. And you will be able to compare the results with the simple

algorithm and the faster algorithm to check for bugs.

Other tools that you should consider in your quest for efficiency are the compiler’s

optimization options (in Unix or Linux, or if you are using a GNU compiler, add

“-O” to your compilation command line) and profilers for finding how much time

is spent in which routines (the Unix commands prof and gprof do this).
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Famous disasters

Here are some stories of some famous disasters involving scientific or engineering

software. Further details of these disasters can be found in [3] and in [57]. Original

reports on these disasters can be found in [41] for the Patriot missile failure, [71]

for the Ariane 5 crash, and [54] for the collapse of the Sleipner A platform.

4.1 Patriot missiles

On February 25th, 1991 a Scud missile launched by Iraq against Saudi Arabia hit a

US Army base at Dahran in Saudi Arabia, killing 28 soldiers. The soldiers should

have been protected by a Patriot missile which was meant to fire, hit and destroy

the incoming Scud missile. It fired, but it missed the incoming Scud. While hitting

a missile with a missile is a difficult task, it had a bigger difficulty: the software

controlling the Patriot missile’s guidance system did not have a very good idea of

where the Scud missile actually was.

It turns out that the problem was a form of catastrophic cancellation. In order

to predict the location of the Scud missile, the Patriot missile’s guidance system

needed a good estimate of the Scud’s velocity. Positions of the Scud missile could

be obtained via radar tracking at times separated by up to a few seconds; the velocity

could be approximated by the ratio

x ′(t) ≈ x(t2) − x(t1)

t2 − t1
.

To us, it should be clear that this expression is vulnerable to catastrophic cancel-

lation. It turns out that the biggest problem is in the denominator: the error in the

denominator could be roughly bounded by u (|t1| + |t2|), so that the relative error

in the denominator is roughly bounded by

u
|t1| + |t2|
|t2 − t1| .

36
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So if t2 ≈ t1(they only differed by at most a few seconds), and t1 and t2 are large,

then we can expect relatively large errors in the denominator. And consequently,

we would expect poor velocity estimates.

So . . . if the Patriot missile guidance system had been running for a long time

(and they ran for days on end) then they would become progressively less accurate

at targeting Scud missiles.

Once the source of the problem was identified, they started to modify the soft-

ware. In the meantime, there was a simple solution: regularly reset the Patriot missile

software. It took a day to re-write and re-install the software to fix the problem once

they realized what was wrong.

4.2 Ariane 5

On June 4th, 1996 the European Space Agency launched their latest spacecraft –

the Ariane 5, larger and more powerful than its predecessor the Ariane 4 – from the

coast of French Guiana in equatorial South America. However, 30 seconds after

liftoff, it veered out of control and was destroyed before it could crash back to

Earth. What went wrong?

This is a story of overflow, software re-use, and error handling. The navigation

software on the Ariane 5 (and on its predecessor, the Ariane 4) was in two parts: one

piece was for the pre-flight portion of the flight, another for the in-flight portion of

the flight. The main task of the pre-flight navigation software was to get an accurate

fix of its location at the start of its flight. This part of the software used fixed-

point arithmetic. The in-flight navigation software used floating-point arithmetic.

For a short while from just before take-off until a short while after take-off, both

navigation systems were in operation in order to prevent transition problems.

Since these pieces of software had been working on the Ariane 4, the software

was re-used. The trouble was that the Ariane 5 was a larger and more powerful

rocket, and accelerated considerably faster than the Ariane 4. When the Ariane 5

took off, it reached the speed at which the fixed-point arithmetic unit in the pre-flight

navigation software overflowed sooner – before the pre-flight navigation software
was turned off. So an overflow error was generated. Because the software designers

took the attitude that software was correct unless shown otherwise, they did not
write routines to handle fixed- or floating-point errors. As a result the pre-flight

navigation software crashed. Unfortunately, this crashed all the navigation software.

Fortunately, they had a backup system . . . but it was loaded with the same software

and so crashed as well (a fraction of a second earlier, in fact). With all navigation

software out of action, the rocket soon started tumbling and had to be destroyed.

The final report from the inquiry into the disaster stated that “It was the deci-
sion to cease the processor operation which finally proved fatal. . . . The reason
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behind this drastic action lies in the culture within the Ariane programme of only
addressing random hardware failures. From this point of view exception- or error-
handling mechanisms are designed for a random hardware failure which can quite
rationally be handled by a backup system.” In other words, there was no allowance

for systematic or software errors. Such arrogance should always be viewed with

suspicion.

In the earlier section on fixed-point arithmetic, we saw that reducing errors using

fixed-point arithmetic tended to push the fixed-point arithmetic to overflow. This

makes fixed-point arithmetic particularly vulnerable to problems of this kind; each

new situation needs to be checked to see if overflow is a possibility.

4.3 Sleipner A oil rig collapse

In August 1991, Norway’s newest oil rig for drilling North Sea oil was in Gands-

fjorden near Stavanger being assembled. During this process, the Sleipner A oil rig

sprang a leak and sank to the bottom of the fjord, and the rest of the rig followed.

The problem wasn’t in any of the software that was running at the time, and

it wasn’t due to roundoff error. Instead it was in the design software. Like most

large structures it was analyzed by a finite element system, in this case it was a

popular finite element program called NASTRAN. Finite Element software gives

approximate solutions to the partial differential equations for elastic materials. This

involves discretizing the equation by first decomposing the elastic bodies into small

“elements”. The smaller these elements are (provided they are not too slender), the

more accurate the solution (the stresses and deformations) will be. The mathematical

theory of finite element methods is well understood.

However, the finite element software used did not have any routines to compute

the a posteriori error estimate. As a result the large errors in the stresses at a crucial

part of the structure were not noticed. After the disaster, more refined analysis of

the stress (using smaller elements) resulted in a much more accurate estimate of

the stresses in this part of the structure. When this was done, it was clear that that

part of the structure would collapse when it was fully loaded.

While this story does not involve floating-point arithmetic (or fixed-point arith-

metic), it does illustrate the fact that most scientific software uses approximations,

and so (almost) never gives the exact answer. Instead we need to understand how to

estimate the errors in the answers produced because of the approximations made.
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Exercises

1. Suppose that you are wanting to solve an ordinary differential equations dx/dt = f (t, x),

x(0) = x0 where x(t) is a three-dimensional vector. How could you present the solution?

What if x(t) is a three hundred-dimensional vector?

2. Compute (1 − cos x)/x2 for x = 10−k , k = 0, 1, 2, . . . , 16. Note that the limit of

(1 − cos x)/x2 as x goes to zero is 1/2. Estimate the roundoff error for small x
by noting that cos x ≈ 1 for small x . Note that this is an example of catastrophic

cancellation.

3. A common problem is to compute
√

x2 + y2. A standard implementation might be

double hypot(double x, double y)
{ return sqrt(x*x+y*y); }

but this can suffer from overflow if x or y is very large. Re-write this to avoid overflow.

Test your code with some large inputs (say x ≈ ±10200 and y a similar size). [Hint: If

x is larger than y, note that
√

x2 + y2 = |x |
√

1 + (y/x)2. Now what should we do if y
is larger than x?]

4. The standard formula for the solutions of a quadratic function ax2 + bx + c = 0 is

x± = −b ± √
b2 − 4ac

2a
.

If b2 is small compared to ac and b is also positive, then −b + √
b2 − 4ac is likely to

result in catastrophic cancellation. Noting that x+ · x− = c/a, and that one of x− and

x+ can be computed without catastrophic cancellation, show how to compute the other

accurately.

5. One way of computing the variance of a collection of values x1, x2, . . . , xn is first to com-

pute x = (1/n)
∑n

i=1 xi and then s2 = (1/(n − 1))
∑n

i=1(xi − x)2. But this is a two-pass

algorithm – we need to store all the data before we can compute s2. Now we will de-

velop a one-pass algorithm to do the same. Let ak be the average (1/k)
∑k

i=1 xi

and vk = ∑k
i=1(xi − ak)2. First show that ak+1 = (1/(k + 1))(kak + xk+1) =

39
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ak + (xk+1 − ak)/(k + 1). Now we derive an update formula for vk :

vk+1 =
k+1∑
i=1

(xi − ak+1)2

=
k∑

i=1

((xi − ak) + (ak+1 − ak))2 + (xk+1 − ak+1)2

=
k∑

i=1

(xi − ak)2 + 2(ak+1 − ak)
k∑

i=1

(xi − ak)

+ k(ak+1 − ak)2 + (xk+1 − ak+1)2

= vk + k(ak+1 − ak)2 + (xk+1 − ak+1)2.

Implement this method and check with the data that caused the problem with the original

approach described in Section 2.4.1. You might like to expand ak+1 − ak in the above

formula to avoid catastrophic cancellation problems for large k.

6. Suppose that your computer can perform about 109 floating point operations per second

and has about a Gigabyte of memory (which is 230 ≈ 109 bytes of memory). Since double

precision numbers take up eight bytes of memory each, work out the size of the largest

square matrix that could fit in memory. If we used LU factorization to solve a linear

system, how long would this take, assuming that your LU factorization gets nearly peak

performance? [Hint: LU factorization requires about (2/3)n3 flops.]

7. For some kinds of mathematical problem, the solution can be checked in a finite number

of arithmetic operations and standard function values. For some others, this is not possible

unless we already know what the solution is. Identify which of the list below of kinds of

mathematical problem belong to which category of problems. [Note: Sometimes extra

information, such as gradients, can be useful.]

(a) Solving linear systems of equations: solve Ax = b for x .

(b) Solving nonlinear systems of equations: solve f (x) = 0 for x .

(c) Solving ordinary differential equation initial value problems: dx/dt = f (t, x),

x(t0) = x0.

(d) Solving partial differential equation boundary value problems: ∇2u = f (x) in a

domain � and u(x) = g(x) on the boundary of �.

(e) Solving optimization problems: minx φ(x).

(f) Computing an integral:
∫ b

a f (x) dx .

8. Run the following codes for computing (ez − 1)/z for z = 1, 10−1, 10−2, . . . , 10−16 in

double precision and print out the results to 16 digits.

(a) return (exp(z)-1)/z;

(b) w = exp(z);

/* exp(z) underflow */

if ( w == 0 ) return -1/z;

/* exp(z) == 1, special case */
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if ( w == 1 ) return 1.0;

return (w-1)/log(w);

(c) w = exp(z); u = 1 + z;

if ( w == 1 || u == 1 ) return 1;

return (w-1)/(u-1);

Compare with the results obtained from using the Taylor series (ez − 1)/z = 1 + z/2! +
z2/3! + · · · + zk/(k + 1)! + · · · . Use 20 terms of the Taylor series for |z| ≤ 1; ideally

these should be added from the smallest to the largest (that is, in reverse order).





Part II

Developing Software
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Basics of computer organization

In this section we remind our readers of a number of things that are important to un-

derstand when developing scientific software. The first is how a Central Processing

Unit (CPU) works. This is particularly important for getting the maximum perfor-

mance out of your computer. The second is how variables are stored in memory.

This is important not only for the performance of your code, but also whether it

runs correctly or not. The third is what compilers, linkers, loaders and interpreters

do to the code you write when they turn it into a program that actually runs on your

computer. This is particularly important for people who write libraries of routines;

these days that includes most programmers.

In this section we will not deal with the most advanced aspects of programming

for performance. That will come in the next chapter.

6.1 Under the hood: what a CPU does

A CPU is the hardware that does the actual processing. The other hardware that

makes up a computer – memory, input and output devices (keyboard, mouse, net-

work connector, display, disk drives), support hardware – are there mainly to support

the operations of the CPU.

So what does a CPU actually do? At the bottom level it is an electrical circuit

containing many transistors, which we can consider to be electrically controlled

switches carrying out logical operations (“and”, “or”, and “not”). The circuits form

sub-systems of the CPU, as illustrated in Figure 6.1. Inside the CPU are a number

of fast registers to store temporary data which are going to be operated on. The

part of the CPU that does the actual computation is called the Arithmetic-Logic
Unit (ALU). The program controls what computations the CPU does. This is read

from memory into the CPU, which then decodes the instructions, switches the

appropriate links connecting the registers and the ALU to take the input data from

45
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instructions data

instructions & data

Figure 6.1. Basic CPU architecture.

the appropriate register and to put the result in the appropriate destination register. If

the CPU wishes to read or write some part of main memory, it activates the switches

connecting the register to the main memory (or memory management unit) so that

data can be transferred between them.

To keep track of where in the program we are, the CPU has a special register

called the program counter. Usually this increases with each instruction by the

length of the instruction, so that it points to the next instruction to read in, decode,

and execute. Sometimes, when the CPU executes a branch or go to instruction, the

program counter is set to a new value which is where the CPU continues to exe-

cute. There are other special registers that contain condition codes which indicate

if the result of the last arithmetic operation was zero, positive, or negative. Using

these codes, when the CPU executes a conditional branch (such as a branch if
positive instruction), the CPU will check the control code register, and if the ap-

propriate condition code is set, the program counter will be set to the prescribed

value; if the condition code is not set, the program counter will be incremented to

the address of the next instruction.

Other instructions include branch to subroutine which implements calls to rou-

tines using the system stack. The use of stacks to call routines is described in the

next section.

Some CPUs have very extensive instruction sets. These are often called Complex
Instruction Set Computers (CISCs), which typically have instructions for loading

and adding the contents of a register with the contents of the top of the stack and

storing the location at the top of the stack. This makes writing in machine code

or assembly language more convenient. However, it makes the hardware design

more complex. In the past, this was dealt with by having a second level of software
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called microcode which implemented the machine instructions in terms of direct

hardware operations.

Beginning in the mid-1980s, there was a strong move to reduce the complexity of

the hardware by reducing the number and complexity of the machine instructions.

CPUs designed this way were called Reduced Instruction Set Computers (RISCs).

This began as an academic exercise, but later entered the marketplace through a

company called MIPS (later acquired by Silicon Graphics). In RISC CPUs, instead

of having many instructions that accessed memory, there were only two, load and

store, for each size of data item (usually byte and word). RISC computers sometimes

had shallow stacks implemented in hardware so that, say, add instructions applied

to the top two stack entries and did not have to specify which registers to add.1

RISC CPUs also introduced new ways of handling registers, that were often copied

in other non-RISC CPUs. One of the advantages of RISC CPUs was that each

machine instruction could be executed in one clock cycle. This often put them at

the leading edge of performance.

The “RISC revolution” has now largely passed. While the Intel CPUs that now

dominate the market are generally regarded as being CISC CPUs, many of the

features of RISC CPUs have been incorporated into the Pentium architecture. Pen-

tium CPUs are now described as having a load/store architecture, meaning that the

complex memory access instructions have been dropped. The relentless advance of

Moore’s law (the number of transistors on a CPU double roughly every 18 months)

has meant that simplicity is not a virtue for hardware designers. Instructions can

still execute in an average of one clock cycle or even less by using a complex com-

bination of pipelines, parallelism, and other techniques. Some of these issues will

be dealt with in the next part on performance issues.

6.2 Calling routines: stacks and registers

Stacks (also known as LIFOs for Last In First Out) are basic data structures for

modern computer systems. This was not always so. In the 1950s and 1960s, com-

puters used different ways of storing variables and calling routines which made

certain kinds of routines (like recursive routines) impossible. Now, virtually all

CPUs are intended to work with stacks. We will refer to the stack that is basic to

the system as the system stack.

The basic operations on a stack are push, pull, and peek. Push puts a data value

onto the top of the stack; pull removes whatever is on the top of the stack, and peek

1 This was the case for the Transputer developed by Inmos. The Transputer was an innovative approach to parallel
computing: each Transputer had four serial links to communicate with other Transputers, and were programmed
using a language called Occam which had message passing primitives built in.
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Figure 6.2. Expression evaluation using a stack.

tells us what is on the top of the stack. Pushing data onto the stack does not destroy

any data, rather the data that was previously on the stack is pushed down, and can

be accessed only after the newly pushed data is pulled from the stack.

Stacks are very useful for evaluating expressions which involve intermediate

quantities. Consider evaluating the expression 3 + 2 × (5 + 6). Here is how it is

done using stacks (see also Figure 6.2):

� push 3 onto the stack;
� push 2 onto the stack;
� push 5 onto the stack;
� push 6 onto the stack;
� now pull 5 and 6 from the stack, add them to get 11;
� push 11 onto the stack;
� pull 2 and 11 from the stack, multiply them to get 22;
� push 22 onto the stack;
� pull 3 and 22 from the stack, add them to get 25;
� we could push 25 onto the stack, but that’s the final answer.

This is not quite the most efficient way of doing this. We pushed things that we

immediately pulled; in a CPU, these could be held in a register. But it gives you the

idea.

To implement this data structure, we need a pointer into memory called the stack
pointer. This tells us where the “top” of the stack is. When we push an item of data,

we increase the stack pointer, and put the new item in the new place pointed to by

the stack pointer. This means that we can push the data without destroying the old

data in the stack. To pull the data item from the stack we simply decrease the stack

pointer by one data item. To peek, we simply fetch the data item pointed to by the

stack pointer.2

2 In actual computer systems, the system stack is usually thought of as growing down instead of up, so instead of
increasing the stack pointer to push, they actually decrease the stack pointer; similarly to pull a data item, the
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myroutine:
  :
z = x + y
  :
return

  :
  :
call myroutine
..next instruction..
  :
  :

main_routine:

sp = stack pointer
pc = program counter

Inside myroutine After return::

in_main:
calling:

next:

exprn:
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in_main pc: pc:
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sp:

next

x+y

exprn next

Before call:

Figure 6.3. Function call using stacks.

6.2.1 Calling routines

Stacks are also vital for calling functions. Consider calling a function with no

arguments first: (in Fortran)

call myroutine()

The function call is translated into an instruction that we will call branch to sub-
routine myroutine. This instruction increments the program counter and then

pushes that value onto the stack; the program counter is then set to the memory

address of myroutine.

Inside myroutine there may be some computation, but at the end there is a

return instruction. This return instruction pulls the address from the top of the stack

and puts it in the program counter. This way, the program returns to where it was

before the call to myroutine was made. The whole sequence is illustrated in

Figure 6.3.

If we are calling a function, then we need to return a value. There are two ways

of doing this:

� the return value can be in a designated register;
� the return value can be stored on the stack.

Since the calling and called routines have to agree on which way to do it, there has

to be a fixed rule, once and for all, for deciding how to do this. Generally small

stack pointer is increased instead of decreased. However, the idea is the same, and if it is confusing to think of
stacks growing down, then don’t worry about it – it works just the same way if you think of stacks growing up.
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Figure 6.4. Stack frame for z = myroutine(a,b,x).

objects like integers, pointers, and floating point numbers are returned in registers,

while large objects like structures are returned on the stack.

6.2.2 Passing arguments

What happens if myroutine needs arguments: myroutine(a,b,x)? There

are two main ways of passing the arguments a, b, and x.

� We can copy the value of the arguments onto the stack. This is called pass by value. If

the argument is an expression, the expression is evaluated (using the stack if necessary)

and the result of the expression is left or put on the top of the stack.
� We can put the address of the arguments onto the stack. This is pass by reference. If the

argument is the value of an expression, as for example myroutine(a,c*w+z,x),

then we can put the value of the expression (c*w+z) into a memory location and pass

the address to that location.

Note that if a variable is passed by value, then changing that value inside the called

routine will not change it outside. But if it is passed by reference and changed

inside, then it is changed outside as well.

In addition to the variables passed, it might be necessary to save some data in

registers on the stack to be restored when the routine returns. This is often true

of control codes mentioned earlier, which remember whether the result of the last

operation was zero, positive or negative. Sometimes, if only a few small variables

are passed, then this can be done through registers. However, since both the calling

and called routines need to agree on this, there has to be a fixed rule for when this

is done.

The data put on the stack for calling a routine is called the stack frame. Figure 6.4

gives an example of how a stack frame might look.
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Note that passing arrays by value will take up a lot of memory on the stack. Since

the stack is constantly changing size as expressions are evaluated and functions

called, this can result in stacks becoming extremely large, which is not desirable.

Many systems provide only a very limited amount of memory for the stack, and

in older microcomputer systems there was no protection of other memory if the

stack became too large. So it is usual to pass arrays by reference, even if all other

variables are passed by value (as is the case in C). In Fortran, all variables are

passed by reference. In Java, the standard types (int, char, float, double
and bool) are all passed by value, but all others (including arrays) are passed by

reference.

6.2.3 A cautionary tale

Sloppy programming practices can sometimes work on some hardware, and then

suddenly fail. For example, in C the standard memory allocation function is called

malloc. Also in C, if you do not declare the return type of a function, it is

assumed to return an integer (int). The malloc function returned a pointer. This

didn’t matter because integers and pointers fit in the same registers, so many C

programmers didn’t declare the malloc function.

But a new microprocessor appeared in 1979 by Motorola called the 68000, which

broke of a lot of code. What happened was that even though integers and pointers

were the same size, they were stored in different registers. The 68000 had two sets

of registers – one set of eight data registers and one set of eight address registers.

Since malloc returned a pointer, its return value was put into the first address
register. But any code that used malloc assumed it returned an integer, got the

value in the first data register. And the value left in the first data register had nothing

to do with the value returned by malloc.

6.3 Allocating variables

Variables need a piece of memory to store their value. There are three main choices

for where this memory is

� On the stack. This is where local variables are usually stored. To create a local variable,

simply update the stack pointer as if pushing that variable. The address of the local

variable can be computed by adding a known constant to the stack pointer (these are

details that the compiler works out). Unless the local variable is initialized, its value is

whatever was left on the stack, which is usually not useful. Since the stack is usually

overwritten by other data between calls, the value of a local variable between calls is

typically regarded as undefined. It also means that you should (almost) never return the

address of (or pointer to) a local variable.
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Arrays can be allocated on the stack, but it is not done in most modern computing

environments. It was done by Algol compilers and can also be done by Fortran 90

compilers, but it results in a number of complications – calculating the address of local

variables depends on the size of the arrays allocated on the stack, and stack space is

usually fairly limited. It usually doesn’t take too many arrays on the stack to overflow

the stack space.
� In a fixed memory location. In the first versions of Fortran, this was how everything was

stored. It was efficient. No address calculations were needed. But it was restrictive. Array

sizes had to be fixed at the time the program was compiled, and recursive routines are

impossible with this approach. Since Fortran 77, local variables are allocated on the stack.

Storing variables in fixed locations means that the value of the variable is “remembered”

from one routine call to another, unlike storage on a stack where the value of the local

variable is forgotten (and the stack is overwritten by other local variables and stack

frames).

Now, many languages provide this kind of storage allocation for selected local vari-

ables. In C or C++, declaring a local variable to be static means that it is stored

in a fixed memory location. In recent versions of Fortran, variables declared with the

keyword save are stored in this way. This is often used in routines that use reverse
communication.

Global variables are variables that are accessible by all routines. These are variables

that must be stored in a fixed memory location, so that all routines know how to access

them.
� In the memory heap. This provides permanent storage for variables and arrays, and can

accommodate arrays whose size is not known when the program is compiled. However,

the allocation has to be done explicitly in most programming languages. In C, this is done

using a routine such as malloc or calloc; in Pascal, C++, and Java a new command

is used and in Fortran 90 and later versions of Fortran the allocate command is used.

The memory heap is a data structure that contains a list of blocks of memory along with

information about them (if free, how big they are, etc.). What each of these routines

(malloc) and commands (new, allocate) do is to call a routine to find a free block

of memory from within a memory heap and return a pointer to the start of that block of

memory.

De-allocating memory allocated on the memory heap is equally important. Without

this, repeated requests for memory allocations on the memory heap without returning

memory will eventually cause the heap to run out of memory. This is an example of

a memory leak. De-allocating memory on the memory heap involves re-inserting the

block of memory into the heap. Do not de-allocate memory that was not originally

allocated on the heap, or de-allocate the same block of memory twice. This can result

in programs crashing. These problems can often be caught by using special libraries of

“debugging” allocators which carry out a number of consistency checks in an attempt to

ensure that inappropriate blocks of memory are not inserted into the heap. Alternatively,

if a system supports garbage collection, all the de-allocation will be carried out by the

system.
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Here is a quick summary of the important differences between these ways of storing

variables

� Storage in fixed memory locations is efficient, but limits what can be done with it. This

prevents recursion, and if it is used as a global variable can cause complications in

understanding, writing, and debugging code.
� Storage on the stack is almost as efficient as storage in fixed memory, but is much more

flexible. However, stack space is often limited, so it is best not to use this for large arrays.
� Large objects, or objects that must keep their value beyond the end of the routine that cre-

ates them, are best stored in the memory heap. There is significant overhead in allocating

and de-allocating memory, but the gain in flexibility in enormous.

6.4 Compilers, linkers and loaders

Most languages for scientific computing are compiled languages. That means that

they are first compiled into a programming language that is closer to the machine’s

language. Usually it is the machine language (called machine code) – the language

that the CPU can execute directly.

However, if we need to use some libraries (including the system’s libraries),

then we need to store some extra information with the machine code so that we can

link the two pieces of software. This machine code with extra information is called

object code. (In Unix systems this is usually identified by the “.o” extension, and

in Microsoft Windows, by the “.obj” extension.)

Part of the extra information that object files contain is called relocation infor-

mation, and the code in an object file is called relocatable code. Machine code is

meant to start at a specific memory location, since otherwise the jump and branch

instructions will go to the wrong places. But a routine in a library cannot guarantee

that that block of memory will be free. What if another routine needs that block of

memory? Then we need extra information so that the routine can be shifted to a

block of memory starting at a different address.

Part of the extra information in object files is the names of the routines and

global variables in the object file, the names of routines and global variables, and

the (relocatable) addresses of those routines and global variables. The names are

often called symbolic addresses or just symbols. These are needed if we want to

link the routines to other routines. This process is called resolving addresses.

6.4.1 Libraries

Libraries are collections of routines that are ready to be linked with other rou-

tines. Libraries are extremely useful implementations of the idea of modular-

ity: each routine in the library is expected to operate correctly whatever it is
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Program 1 Program 2 
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Figure 6.5. Shared libraries can be called by multiple programs.

linked to, provided the interface is implemented correctly and known preconditions

hold.

The simplest libraries are static libraries, which are usually implemented as files

containing the object code of the different routines together with an index showing

which routines contain which symbols. In Unix systems these are usually “.a” files

(“a” for “archive”); in Microsoft Windows these are usually “.lib” files. Library

files are basically collections of object code files. These are linked with the routines

that use them and the other libraries they use before we can execute the code. The

resulting executable code can be sent to any other machine with the same operating

system and machine code and run.

There are also shared and dynamically linked libraries. In Unix these are usually

“.so” or “.sl” files, while in Windows these are “.dll” files. When these are

linked with the main program and its routines, the executable code contains the

unresolved symbolic names that are defined in the shared or dynamically linked

library. When the executable code is run, the shared or dynamically linked library

must be found, the library is then loaded into memory, and the symbolic addresses

resolved. Usually the library can be shared by separate programs – only one copy

of the library is needed, as illustrated in Figure 6.5.

Sharing the library is efficient in memory, but there is a cost that must be taken

into account when you are programming routines for a shared or dynamically

linked library: the code should be re-entrant. That is, while the code is being

executed by one program, it can simultaneously be executed for another program.

While separate programs have separate stacks so that variables stored on the stack
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are not shared, variables stored in fixed memory locations are shared by the two

programs.

Shared variables are dangerous and should be avoided in shared libraries.

So if you are writing a shared or dynamically linked library, avoid static or

saved local variables and avoid global variables.

6.4.2 Interpreted languages and variations

Most languages used for scientific computing are compiled. However, some pro-

gramming languages are interpreted instead. Examples of this include Lisp, BASIC

(Beginners All-purpose Symbolic Instruction Code), and MATLAB. Interpreted lan-

guages are most often used for their flexibility and the interactive environment that

they provide. They can be excellent for quickly implementing an idea and seeing

how it works. Users of Lisp, BASIC, and MATLAB can all attest to this.

But interpreted languages are typically very inefficient. Because code in the

interpreted language must be parsed to determine what it means, there is a great deal

of overhead. Typically this overhead slows down execution by a factor of anything

from 20 to 1000. MATLAB is able to be more efficient for matrix computations since

the basic matrix operations (dot products, matrix multiplication, LU factorization,

etc.) are available as pre-compiled routines. But if you wrote your own MATLAB

matrix multiply routine using MATLAB’s for loops, you will notice that it is

much, much slower than with a compiled language.

The inefficiency of interpreted languages can be mostly overcome by providing

compilers for interpreted languages, and there are compilers for Lisp, BASIC, and

MATLAB, for example.

An alternative to the purely compiled and purely interpreted languages is to

use an intermediate language. Often this intermediate language is described as a

“virtual machine code” – machine code for a hypothetical but plausible CPU. This

intermediate language should be easy to interpret, but designed to fit the high-level

language. Then compilation can be done quickly, so that often an interactive feel is

maintained.

Java is an example which uses an intermediate language, although the reason

for the intermediate language is portability rather than to maintain an interactive

environment. The interpreter for the compiled Java “bytecode” is called the Java

virtual machine (JVM). Other examples of languages or systems using an interme-

diate language include the P-code system for Pascal, and SmallTalk “bytecodes”.
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Sometimes hardware is actually built to directly execute the intermediate language –

implementing the “virtual” machine as hardware. This was the idea behind Lisp

machines (to execute Lisp directly) and other projects, such as Lilith to execute

M-code produced by Modula-2 compilers. Microsoft’s .NET family of languages

(such as C#) are all compiled to a common intermediate language which is similar

to Java bytecode.
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Software design

7.1 Software engineering

Software engineering is about the task of designing and implementing software.

It is not about the specific algorithms or techniques to be programmed, but about

how to organize both the software and the people who develop it. While many

programmers have the attitude “Just do it!” and can cope with small programs just

fine, large programs and, indeed, any programs that you expect other people to use,

need careful attention and design.

There are many other books available to help programmers be more effective at

their work. One of the first such books is The Mythical Man-Month [17], which is

justifiably famous for its advice on avoiding software disasters. A book that many

have found invaluable is Elements of Programming Style [65]. Recent books of

this kind include books on trends such as Extreme Programming like [21], and

The Pragmatic Programmer [58]. Many contain a great deal of wisdom, and have

been written with considerable and deep experience. They usually generate a great

deal of lively controversy. One of the especially good features of these books, as

opposed to textbooks on software engineering such as [86], is their emphasis on

practical aspects of programming and the words of experience with large systems

and difficult situations.

7.2 Software life-cycle

Software is eternal. Once a program is written in a specific programming language,

it is a valid program in that language and when compiled and executed will do

essentially the same thing now and forever. Yet our software is ever-changing.

Microsoft comes out with new versions of its operating system every few years,

and sends out patches on a weekly basis. Computer programming languages have

57
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multiple versions coming out every few years. Why does “eternal” software change

so rapidly?

� New features;
� bug fixes;
� new hardware;
� reliance on other software.

Since software keeps changing, we need to deal with software maintenance. In

one sense, software does not need to be maintained. But we do need to find ways to

handle new features, bug fixes, new hardware, and other software. But maintaining

software is not like maintaining, say, a bicycle. If something goes wrong with a

bicycle it is usually because something broke, and needs to be repaired or replaced.

A burst inner tube means going to a bicycle store and buying a new inner tube, and

then taking out the old and putting in the new. You don’t have to change any of the

design of the bicycle. And you wouldn’t want to.

But with software, we aren’t trying to repair “broken” statements or functions

to make them like they were when the software was new. They haven’t changed.

What we have to do is re-design the software to work correctly, better, or work in

a new environment. Re-designing something is always a risky proposition (riskier

than just making it “like it was”), so we have to be careful about doing this. We

need to ask ourselves, “Are our assumptions justified?”, “Will this introduce a new

bug?”, etc. To make this easier and more reliable, we should design our software

in the first place to make it easier to debug, test, and modify.

Bugs are a perpetual problem in software. Since even for simple tasks people

make errors, perfectly bug-free software is a practical impossibility. However, we

should be able to reduce the occurrence of bugs to a very low level by good design

and testing. Once other people use our software (or we re-use our own software),

problems and flaws usually become apparent, even if they are not “bugs”. (When

we write a piece of code that is what we wanted to write, but does something

different from what we want because of a mistaken assumption or deduction, it is

called misimplementation.) To fix these problems or flaws, we have to re-design

the software. Then the software is again put to use, and perhaps, new flaws are

found.

This is the basic idea of the lifecycle of software. Software is designed, tested

and debugged, used, and from the results, the software is re-designed and the

process continues. Skipping or skimping on part of the cycle doesn’t mean that

you have escaped from doing extra work. Instead, you find that you have to spend

even more time later on in testing and debugging. In the mean time your users

(which could include you!) might give up in disgust with the extra time this is

taking.
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If you have been involved in a few projects, you will start to get an idea of how the

software lifecycle works. If you have made your software public, or incorporated

it into some commercial software, then you probably have had feedback from

users – bug reports, difficulties in using the software, ideas for future features, and

occasionally praise for your efforts. Writing software is partly art and craft as well

as science, so developing your own skills should become part of your day-to-day

programming efforts. The Pragmatic Programmer [58] has some ideas about how

to do this. Edward Yourdon, a long-time proponent of software engineering, has

some as well [107, pp. 113–124].

7.3 Programming in the large

Programming in the large is about designing the overall structure of the software,

and organizing people to write it. This is obviously very important for large-scale

software efforts such as writing operating systems, where there are many different

aspects that need to be properly co-ordinated (e.g., disk drives, displays, process

managers, windowing systems, and network systems). When even a few people

work on a common piece of software, effort must be spent on programming in the

large.

Issues that should be considered for programming in the large are:

� Requirements specification.

What exactly needs to be done? What is the form of the input? Form of the output? Are

there time or memory performance objectives? The answers to some of these questions are

well outside the domain of the programmer(s), but is something that the client (whoever

he/she is) might or might not have clearly thought out. A clearly thought out specification

should form the basis of a set of tests. And testing should be integrated throughout the

software development cycle.
� Main data structures (or databases) to be used.

For large software systems that will be put to many uses, this is perhaps the most important

question of all. Deciding what data structures will be operated on then becomes the central

design issue. Consider MATLAB again: the matrix is its essential data structure, but it also

needs data structures to handle variable names and values, expressions, and MATLAB

routines. Related questions are “What parts of the software can access which data struc-

tures or databases?”, “What parts can modify which data structures or databases?”, “What

data needs to be stored in which data structure or database?” In object-oriented systems,

the main objects must be designed: “What are the object’s interfaces?”, “How should it

respond to its requests?”
� Software libraries to be used as a basis for work.

Using other people’s libraries is a common way to speed up development work, and

allows programmers to concentrate on the relevant aspects of their programming. But
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we need to make sure that the libraries really can do what we expect of them. We

need to know what their interfaces are (i.e., how we communicate with the routines

in these libraries). We might also need to know something about how they carry out their

task, especially if we have strong performance requirements. And what if the library

changes?
� How to co-ordinate programmers.

Programmers, being human, obviously need to be managed differently from software

or computers. There is much to be said about managing people both in the context of

software development and outside of it, but this is outside of our scope. Look up some

books on the subject, for example The Mythical Man-Month by Frederick Brooks [17],

and a standard text on software engineering, such as [86]. Many techniques for handling

teams of programmers and ensuring the quality of the software written, such as code

inspections and structured walkthroughs, are described in [86], along with results of

quantitative studies of their effectiveness.
� How to co-ordinate software development.

If different people are developing different components of the same software system,

they need to co-ordinate how to do things. The most important information that they

need to know is about the interfaces between the different software systems. This

might be as simple as knowing how to call the relevant routines in the different com-

ponents, but it might also involve files and file formats. For example, a Finite Element

package might use a file generated by a Computer-Aided Drafting (CAD) program to de-

fine the geometry of the region. (An example of such a file format is the Initial Graphics

Exchange Specification, or IGES.) Any change to the file format would require changes

to both the CAD program and the Finite Element package. Also note that any assump-
tions made by a component must also be considered as part of the interface. There are

automated tools to support co-ordination between programmers, such as version control

systems.
� Language specification.

What programming languages will we use? Will we use more than one language? If

so, which? And how do we get them to communicate properly? How portable is the

language? Are there requirements that force us to use a particular language? For exam-

ple, real time systems may require a particular language/operating system combination.

Some legacy systems will require a particular programming language. If there is some

choice of languages, how would you decide which is most suitable for the task? Also,

if you wish to use BLAS (which is written in Fortran), how will you interface to it?

Fortunately there are a number of interfaces to BLAS for different languages such as

C/C++ and Java. How will the system be built? Can changes be incorporated quickly and

automatically?
� Software portability.

How portable will the software be? Will it run under Microsoft Windows? Under Linux?

Under other versions of Unix? Under Apple OS X? Will it require other software to be

installed? Will the user have to re-compile the software? What compilers are acceptable?

These are all questions that you should consider. Even if you are the only user, you may
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need or want to change machines or operating systems and then you will have to face

these issues.

To get an idea of what “programming in the large” is all about, sometimes it is

worthwhile reading stories about particular large software development projects.

One is the IBM OS360 project to write an operating system for IBM’s System 360

in the 1960’s. This experience was the starting point for Brook’s book The Mythical
Man-Month [17]. Another well-documented software project is the development

of the SmallTalk programming language at the Xerox Palo Alto Research Center

(also known as Xerox PARC). This is described in [67]. If you want to know more

about SmallTalk itself, the classic reference is [44].

Do not think that these questions will be decided once for always. Later events

and experiences will often force developers to re-think previous decisions. This is

particularly true if Extreme Programming (XP) practices are used.

7.4 Programming in the small

Programming in the small is about the nitty-gritty details of programming. It

covers the basics of programming, writing loops, declaring variables, accessing

data structures, etc. It also covers many aspects of optimizing programs, especially

for reducing the amount of time they take to execute. There are some aspects of this

that are particularly important for programmers in scientific computation, especially

those related to memory hierarchies. There will be more on memory hierarchies

later.

However, you should keep in mind a quote of Donald Knuth (paraphrasing a

quote of C.A.R. Hoare):

premature optimization is the root of all evil.1

Often the best approach to optimization is to wait until you have evidence of poor

performance before trying to optimize. See the section on profiling tools on how to

obtain this evidence. You should also be aware of the capabilities of the compiler’s

optimizer. Very often things that you do to improve performance would already be

done by the compiler. For example, the C keyword register is now essentially

obsolete. The idea was that you should declare a few key variables as register
variables (syntax: register int x;) so that the compiler would know to keep

them in registers, rather than in main memory. Optimizing compilers now are so

good that they can work this out themselves. They also have the advantage of

knowing how many registers it has available for this purpose.

1 The full version of the quote is “We should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil.”
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Another example of a useless optimization is to convert the following code

from:

void copy array1(double a[], int length, double b[])

{
int i;

for ( i = 0; i < length; i++ )

b[i] = a[i];

}

to use C’s pointer arithmetic:

void copy array2(double a[], int length, double b[])

{
int i;

for ( i = 0; i < length; i++ )

*b++ = *a++;

}

If there is an opportunity for optimization, an optimizing compiler will probably

recognize what the first version does (using a[i] and b[i]) instead of the clever

(but obscure) pointer-arithmetic version. The code it would produce for the first

version would often be faster than the code produced for the second version. We’ve

seen this in practice.

Optimizing compilers do a number of clever things that you don’t need to worry

about:

� Register allocation. Assign commonly used variables to registers for rapid access.
� Common sub-expression elimination. If an expression appears several times, evaluate it

once and store the result.
� Loop transformations. Re-order loops to avoid inefficiencies.

There are things that you should optimize at a low level. Here is a quick summary

of some of these.

� Temporal locality: Nearby memory accesses in time should be to nearby locations in

memory. Accessing far-apart memory locations means that each time a new memory

location is accessed, memory within the CPU has to be filled with values at and around

that memory location.
� Memory usage: Try to re-use dynamically allocated memory. This is not only helpful for

avoiding memory leaks (see later), but also avoids time allocating and freeing memory.

Here is an example of temporal locality in action. Consider computing a matrix–

vector multiplication: y = Ax . In terms of components, yi = ∑n
j=1 ai j x j for
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i = 1, 2, . . . , m, where A is m × n. When we write a routine for that, there are

two ways of ordering the loops: should we do the i loop first, or the j loop? We

can do it in either order:

for ( i = 0; i < m; i++ )

{
y[i] = 0;

for ( j = 0; j < n; j++ )

y[i] = y[i] + a[i][j]*x[j];

}

or

for ( i = 0; i < m; i++ )

y[i] = 0;

for ( j = 0; j < n; j++ )

{
for ( i = 0; i < m; i++ )

y[i] = y[i] + a[i][j]*x[j];

}

To see which results in better memory accesses, we have to realize that C stores its
arrays in row-major order. That is, consecutive memory locations hold a[0][0],

a[0][1], a[0][2], . . . , a[0][n-1], a[1][0], a[1][1], . . . . To keep our

memory references close together, we should make the j loop the inner loop.

Now Fortran does things differently. It stores arrays in column-major order.

That is, in the array

double precision a(m,n)

the entries are stored in the order a(1,1), a(2,1), . . . , a(m,1), a(1,2),

a(2,2). . . . If we were writing a Fortran routine, we should put the loops the

other way around, i.e., the loop on i should be the inner loop:

do i = 1, m

y(i) = 0;

enddo

do j = 1, n

do i = 1, m

y(i) = y(i) + a(i,j)*x(j)

enddo

enddo

We will talk about memory allocation and memory usage later in Chapter 14.
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7.4.1 Zero-relative and one-relative indexing

In C, C++ and Java, array indexes start at zero. In Fortran, Pascal, Ada and MAT-

LAB, they are at one by default. So C uses zero-relative indexing and Fortran uses

one-relative indexing. Most pseudo-codes in numerical analysis books use one-

relative indexing with occasional use of zero-relative indexing for things like Fast

Fourier Transforms, where it is clearly more natural to use zero-relative indexing.

Of course, transforming from one to another is essentially a mechanical process.

But it is one you should be careful to get right.

An example is solving a lower-triangular linear system. First, here is an example

in Fortran to solve Lx = b with L a lower triangular matrix2 using one-relative

indexing:

do i = 1, n

sum = b(i)

do j = 1, i-1

sum = sum - L(i,j)*x(j)

enddo

x(i) = sum / L(i,i)

enddo

To generate the equivalent zero-relative indexing code, any array index appearing

in a loop bound (like i in the second do loop) has one added to it, and the loop

bounds then have one subtracted from them. So the bounds for the first do loop are

replaced by 1 − 1 = 0 and n − 1 respectively. For the second do loop, the bounds

are replaced by 1 − 1 = 0 and ((i + 1) − 1) − 1 = i − 1. This can be written in C

using the for loop

for ( j = 0; j < i; j++ )

Here is the equivalent C code:

for ( i = 0; i < n; i++ )

{
sum = b[i];

for ( j = 0; j < i; j++ )

sum -= L[i][j]*x[j];

x[i] = sum / L[i][i];

}

Some people (e.g., the authors of Numerical Recipes in C [87]) avoid using zero-

relative indexing by making all arrays one bigger than necessary or using pointer

2 A matrix L is lower triangular if li j = 0 for i < j .
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arithmetic to make the pointer point to one place before the actual array; we believe

this practice is unnecessary. Our advice is that when using C, C++, or Java, it is

better to use zero-relative indexing, and one-relative indexing in Fortran, Pascal, and

MATLAB. The transformation from one-relative indexed routines to zero-relative

indexed routines (and vice versa) is not hard, and the resulting loops usually look

more natural in the language you are writing in.

7.4.2 Variables and function names

The names of variables and functions are important, as well-chosen names can make

code much easier to read and understand. Names do not have to be long, or give a

complete description: something mnemonic will do. If we have some mathematical

description, like

ci j =
N∑

k=1

aikbk j , or C = AB,

then it is sensible to use the same names rather than give complete descriptions.

int i, j, k;

double A[N][N], B[N][N], C[N][N];

/* C = A*B */

/* code for matrix product */

for ( i = 0; i < N; i++ )

for ( j = 0; j < N; j++ )

{
C[i][j] = 0;

for ( k = 0; k < N; k++ )

C[i][j] += + A[i][k]*B[k][j];

}

If we tried more verbose names, we might not make it any more readable:

int index1, index2, index3, indexLimit;

double firstFactor[indexLimit][indexLimit],

secondFactor[indexLimit][indexLimit],

productMatrix[indexLimit][indexLimit];

for ( index1 = 0; index1 < indexLimit; index1++ )

for ( index2 = 0; index2 < indexLimit; index2++ )

{
productMatrix[index1][index2] = 0;

for ( index3 = 0; index3 < indexLimit; index3++ )
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productMatrix[index1][index2] =

productMatrix[index1][index2] +

firstFactor[index1][index3] *
secondFactor[index3][index2];

}

When you are dealing with more complex objects that don’t have such a simple

(mathematical) representation, a longer name is often better. For example, if the

geometry of a problem is encapsulated into a single structure, then something like

geometry or even geom should be fine.

The SmallTalk tradition of calling a variable aString does not seem to be

more useful than calling the string s and having a comment like “write the
comment string s to the log file” near the start of a routine or

program.

Don’t have a large collection of variables called ii, jj, kk etc., or i1, i2, i3,

etc. When you declare variables in a routine, you should put a brief description of

what that variable is for. But remember, the code is the final arbiter of what the code

actually does, and these comments need to be updated if the purpose of variable

changes.

Capitalized names and upper case names should be used for special things. In

C, it is common to use all upper case names for things that are defined using

the preprocessor (e.g., things that are #defined). If the object in question is

represented by a capital letter in mathematics, then use that. In Fortran, upper

and lower case are not distinguished, so aBcDEf is equivalent to abcdef. For

historical reasons, Fortran programmers have tended to use all upper case. But these

days, all upper case IS THE MORAL EQUIVALENT OF SHOUTING, and should

generally be avoided.

7.4.3 Style and layout

Everyone has their own style. But if you are part of a team, you will need to make

sure that your style fits with that of the other people on the team. One of the surest

ways to waste time is to (continually) convert code from one style to another. Settle

on a single, consistent style. Where possible, use an automatic system to keep to a

particular style. For example, the emacs editor will automatically indent code in a

particular way.

With Fortran, as long as you are using a Fortran 90 or later compiler, we would

suggest that all new routines be written using the free format style rather than

using the fixed columns of the pre-Fortran 90 dialects. Do indent Fortran code

to highlight the structure of the code (e.g., indent the body of loops and if/then
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statements, with multiple spaces for loops within loops; indent the body of functions

and subroutines).

Some programmers use all upper case for control words in Fortran. (In the lan-

guage Modula-2, all key-words had to be in upper case.) This is perfectly acceptable,

although it does tend to emphasize the control structure of some code more than

the variables.

One of the main purposes of good style and layout is to make the structure of

the code clear to the reader. Modern editors can help by coloring the text of the

program to indicate control words (e.g., if, then, else), declarations, strings,

and comments differently. This makes it easier to “see” the structure of the code

and to find the part that you want to study.

7.5 Programming in the middle

Programming in the middle is about organizing the functions and files to carry out

certain tasks. Often we need to break-down a single (large) function into smaller

parts to avoid having hard-to-debug-and-test routines. Simplicity is best! But the

pieces should also be more-or-less self-contained. If you can describe what a routine

is intended to do in a short sentence or two, then you will be able to write it and

test it fairly easily. If you need a long explanation of what a routine does, then it is

a good candidate to break up.

Routines need to communicate with each other, usually by passing arguments.

How you get the required information to a routine is that routine’s interface. Pro-

gramming in the middle has a lot to do with designing the interfaces. Simple

interfaces are usually associated with functions which have a straightforward de-

scription of what they do. Complicated interfaces are hard to understand and hard

to change when we have to. Part of this complexity can be reduced or hidden by

using data structures to package the information needed. If these data structures

are easy to describe in a high-level way (e.g., “a sparse matrix”, or “an ordered

binary tree”, or “a description of the boundary of the domain”) then the interface

can be easy to understand, even if the underlying data structures are complicated.

Below we have an example of a suitable data structure for dealing with cubic

splines. A cubic spline function s is a function that is piecewise cubic (that is,

there are points x0 < x1 < x2 < · · · < xn where s(x) is a cubic function of x on

each interval [xi , xi+1]: s(x) = Ai x3 + Bi x2 + Ci x + Di for xi ≤ x ≤ xi+1) with

the additional property that s is continuous and has continuous first and second

derivatives. Typically we choose s so that s(xi ) = yi for given values yi ; that is, s
interpolates the pairs of data (xi , yi ). To store a cubic spline function we need to

store the xi s, the yi s, and also Mi = s ′′(xi ) for i = 0, 1, . . . , n.
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typedef struct {
/* See Atkinson:

Intro Numer Anal, 2nd Ed’n, pp. 166-173 */

int length;

double *xlist; /* list of knots */

double *ylist; /* values interpolated */

double *Mlist; /* 2nd derivatives at knots */

} spline;

Having settled on a data structure, we now want to decide which functions we

need and what their interfaces will be. We should have routines to create this data

structure so that it is ready to use. We need to construct different kinds of splines

(natural splines, clamped splines, periodic splines, and “not-a-knot” splines). All of

these different splines can be represented by this data structure without needing any

extra information to say which type of spline we are representing. The differences

are all contained in Mlist. We will assume that the knots are listed in xlist in

increasing order.

In order to construct a spline we need to specify the knots (xlist) and the values

to interpolate (ylist). Natural, “not-a-knot”, and periodic splines need no extra

information for their construction. Clamped splines, however, need the derivative

values at the first and last knots. Construction of the different splines is probably

best done by different routines, although they may share some common parts. (We

might want to refactor the code and the design later.) Since we have the knots and

values to interpolate in the data structure, we can have a routine that simply sets

these values.

Here is a collection of interfaces written in C that seems as if it can work well

with the task at hand:

/* spline create -- allocates spline structure

with the desired length */

spline *spline create(int length);

/* spline destroy -- frees spline structure memory */

void spline destroy(spline *s);

/* spline print -- prints a representation of

the spline s to the stream fp */

void spline print(FILE *fp, spline *s);

/* spline read -- reads a representation of

a spline from stream fp and return the spline */
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spline *spline read(FILE *fp);

/* spline setxy -- copies the knot and interpolation

values into xlist and ylist */

spline *spline setxy(spline *s,

double x[], double y[], int length);

/* spline eval -- evaluates spline s at point t */

double spline eval(spline *s, double t);

/* spline make natural -- constructs natural spline

using knots and values (xlist & ylist resp.) in s */

spline *spline make natural(spline *s);

/* spline make periodic -- constructs periodic spline

using knots and values in s;

must have ylist[length-1] == ylist[0]

for periodicity */

spline *spline make periodic(spline *s);

/* spline make clamped -- constructs clamped spline

using knots and values in s, but with

end-point derivatives dy0 at xlist[0] and

dy end at xlist[length-1] */

spline *spline make clamped(spline *s,

double dy0, double dy end);

Put this into a header file, probably called something like spline.h. Then the

implementations of these routines should be put somewhere like spline.c,

which should contain the line:

#include ”spline.h”

at the start of the file and all files that use these routines.

Once we have set up these interfaces, we should think about the major compo-

nents we would need to implement these spline functions. The most important task

is to solve a tridiagonal system of linear equations. (To compute the coefficients for

a periodic spline function we need to solve a slight modification of a tridiagonal

linear system.) It would probably be best to write a single tridiagonal linear system

solver. It would not only be sharable amongst the different spline routines, but also
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usable elsewhere. Of course, you could short-circuit this if you already had a library

available which did this already, such as LAPACK [5], or Meschach [92].

7.6 Interface design

In interface design, we need to decide how to pass information to routines, and get

information back. In this section we will look at a number of issues and techniques

for doing this.

7.6.1 Pass by value vs. pass by reference

The first issue here is whether to pass the value of a variable, or a reference or pointer
to the variable. Variables passed by value are not changed outside the routine when

they are changed inside; a variable passed by reference that is changed inside the

routine will be changed outside. Variables used for holding the output from a routine

must be passed by reference, and it is safer to pass inputs by value.

In C, variables and expressions are passed by value; to pass a variable by reference

we have to explicitly pass a pointer, which we can get by applying the “&” operator

in C.

main()
{
double x, y;
myroutine(x,&y);
...

}
void myroutine(double by value, double *by ref)
{
...
by value = ...; /* x unchanged */

*by ref = by value; /* y is changed */
...

}

Although in Fortran all variables are passed by reference, it is possible to indicate

whether an argument is an input or output argument using the intent property:

subroutine myroutine(x,y)
real, intent(in) :: x
real, intent(out) :: y
...
x = y ! not allowed !
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y = x ! allowed !
...

end

So

real z
call myroutine(3+2,z)

is acceptable, but

real z
call myroutine(z,3+2)

is not.

Note that in Java, all the basic built-in types (int, float, double, char,

bool) are passed by value, while arrays and objects are passed by reference. In

C++, objects can either be passed by value (which requires a copy-constructor),

by reference, or as a pointer (which is an explicit way of passing by reference).

Where pass by value is allowed, it should be used for passing small objects

(integers, floating point numbers, complex numbers, etc.). However, for large or

variable-sized objects (such as matrices and vectors) this can be very inefficient, as

the data in the objects must be copied in order to pass them by value; large objects

such as arrays should be passed by reference.

Any variable used to hold an output must be passed by reference.

What if you want to pass a variable by reference for efficiency, but you want

to show that it is only an input variable? This is particularly important if you are

passing arrays in C or C++, which are automatically passed by reference. In C or

C++ you should use the keyword to indicate that it is not to be changed:

double another routine(double x, const double y[])
{
...
y[4] = 0.0; /* illegal */
...

}

7.6.2 Scratch space

Often a routine working with arrays needs extra memory. If the amount of extra

memory needed is not known at the time the routine is written, there are at least

two ways of getting this memory. One is by passing an array (called a scratchspace
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or workspace array), the other is by allocating memory. (There is more on memory

allocation in Chapter 14.)

Since allocating memory typically has some overhead and has not always been

available, many routines are written requiring scratch space arrays to be passed.

This is particularly true in Fortran routines as memory allocation was not avail-

able until Fortran 90. Users of Fortran numerical libraries have undoubtedly read

documentation that gives formulas for how large the scratch space arrays should

be. Sometimes the size of the scratch array needed could not be determined un-

til after the routine is called, in which case there had to be an ifail argument

(integer, intent(out)) which is set to some non-zero value to indicate

insufficient scratch space.

Although memory allocation is available in all serious programming languages

for scientific computing, scratch space arrays can still be useful for efficiency.

This is appropriate for routines that are short and executed many times, and where

the size of the scratch space array is computable before calling the routine. This

avoids the cost of memory allocation (and de-allocation), and can greatly improve

efficiency.

If you do not want to use scratch space arrays, you can allocate the memory you

need. If your system does not have garbage collection (e.g., in Fortran or C/C++),

then you should de-allocate the allocated memory at the end of your routine. Even

if you do have garbage collection (e.g., in Java), you may want to find ways of

re-using allocated memory. For more on this, see Chapter 14. In Fortran routines,

arrays can be created with a size that is a simple expression of the input arguments.

This is sufficient for most scratch space arrays.

An alternative is to use “scratch structures” – data structures that contain the

desired memory and “know” how big they are and can be re-sized as needed. This

relieves the caller of the routine from having to determine the amount of scratch

memory needed before calling. It also relieves the called routine from having to

de-allocate any memory. In C++, this can be done using More details of how to

create these data structures can be found in Section 14.7.1.

If you are having difficulty in choosing between scratch space arrays (or scratch

space structures) and allocating and (possibly) de-allocating memory, consider pro-

viding several interfaces: one where scratch space arrays (or scratch space struc-

tures) must be passed, and another which takes care of all the memory allocation

and de-allocation as needed. Rationales for multiple interfaces are given in

Section 7.6.4.

7.6.3 Returning values vs. output arguments

Outputs from a routine can be passed back to the caller by either setting the value

of a variable passed by reference specifically to hold the output, or by returning
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the output as from a function. For small and built-in types, returning the output is

usually the best practice.

If more than one value should be returned then output arguments are essential.

Consider a max function which returns the maximum of an array of floating

point numbers. The maximum value should definitely be returned. But if you also

want the index where the maximum occurs (which is often the case), then we need

to have an output argument:

double mymax(double x[], int length, int *index);

If we wish to return an array, for example, after computing a matrix–vector product,

then we should use an output argument:

/* computes out <- A*x (A is n x n) */
void matrix vector prod(double **A, double *x,

int n, double *out);

Sometimes it is worthwhile both to have an output argument and to return the output.

This is often done in the Meschach matrix library. For example, the Meschach

routine for computing matrix–vector products has the interface

VEC *mv mlt(const MAT *A, const VEC *x, VEC *out);

This structure has the additional advantage that if out is NULL when mv mlt is

called, then out is allocated to be the correct size; if out is not the correct size for

the product when called, then it is re-sized to the correct size. Thus this one routine

can be used to allocate the output if needed, or use an output argument and re-use

memory.

7.6.4 Multiple interfaces

A routine that requires a scratch space array of objects to be passed puts an additional

burden on the caller of that routine. This makes it harder to use the routine and

makes bugs more likely. This is also true when a routine has many parameters that

“tune” the behavior of the routine, but do not otherwise change the results of the

computation done by the routine.

In situations like this, it is often helpful to have several interfaces to a routine.

Some libraries’ documentation will refer to “expert” and “non-expert” interfaces

to a routine. The expert interface will have all the scratch space and “tuning”

arguments. The non-expert interface will have the tuning parameters set to default

values, and can allocate the scratch space to pass to the expert routine.

If you create a non-expert interface, remember that the aim is to provide a simpler

interface. The main computations should not be reproduced. Instead it is better for
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the simple interface to only set the “tuning” parameters and allocate the scratch

space arrays before calling the “expert” interface. There is a small overhead for

the additional function call, but if efficiency is the over-riding goal, the “expert”

interface should be called directly. Making the “non-expert” routine call the “expert”

routine avoids maintenance problems: bug fixes for the main operation only need

to be done to one routine.

Here is how an “expert” interface routine might look (in C):

double expert(const double *array, int len, double

tolerance,

double *scratch)

{
double val;

val = 0;

/* assume length of scratch is >= len */

/* do operation with input array, using scratch */

return val;

}

Now our “non-expert” interface simply allocates the scratch array, and calls the

“expert” interface:

double non expert(const double *array, int len)

{
double val, tolerance;

double *scratch;

/* set default tolerance value */

tolerance = 1e-6;

/* allocate scratch */

scratch = (double *)malloc((size t)len);

if ( scratch == NULL )

/* error! */ ;

val = expert(array,len,tolerance,scratch);

/* de-allocate scratch */

free(scratch);

return val;

}
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One way of creating multiple interfaces is to have optional or default arguments.

Fortran allows named optional arguments; C++ has default arguments. Here is an

example of how to use optional arguments; note that if an optional argument is not

present, then that argument cannot be assigned to.

module my ifaces

implicit none

contains

subroutine expert(array, len, abstol, reltol)

real :: array(:)

integer :: len

real, optional :: abstol, reltol

real :: abstol0, reltol0

abstol0 = 1e-6

if ( present(abstol) ) abstol0 = abstol

reltol0 = 1e-8

if ( present(reltol) ) reltol0 = reltol

! code using abstol0 and reltol0

print *, ’abstol =’, abstol0

print *, ’reltol =’, reltol0

end subroutine expert

subroutine use iface

real :: array(100)

call expert(array, 100)

! uses abstol = 1e-6, reltol = 1e-8

call expert(array, 100, 1e-3)

! uses abstol = 1e-3, reltol = 1e-8

call expert(array, 100, reltol=1e-3)

! uses abstol = 1e-6, reltol = 1e-3

end subroutine use iface

end module my ifaces

7.7 Top-down and bottom-up development

Top-down development of software was part of the structured programming move-

ment, and was based on the idea of refining a high-level idea into more and more

concrete steps, until the high-level idea is completely expressed in the programming
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language chosen. An interactive program like MATLAB might start with the high-

level description

while ( not done )
{
read command;
execute command;

}

While this can be a good way to learn to program, it is not necessarily the best one

for all circumstances. In fact, critics of the structured programming or top-down

approach say that it tends to lead to monolithic systems: large programs with very

little modularization. Structured programming seems to be most useful for writing

a routine once responsibilities have been modularized.

In another approach, systems that are built around a particular data structure(s)

may be best developed by starting with the data structures with their basic operations

and working up. This is bottom-up development, which also has its proponents.

Finally, there is the middle-out approach to development: pick a level of software

somewhere in the middle, and start there. Refine the operations at the middle level

in a top-down way, and then combine the middle level routines and structures in a

bottom-up way. All of these are possible and useful.

Another feature of most large-scale software is that it tends to be layered. For

example, we could have low-level operations handled by one set of routines. These

are called by mid-level routines which implement intermediate operations, which

are called by the high-level routines which implement the application.The number of

layers does not have to be limited to three; there could be any number. Starting from

the bottom layer, each layer should be tested and checked. Once basic functionality

has been established for each layer, you should start implementing the next layer.

Improved features, performance, etc., can be dealt with later.

If all these ways are possible, what should a programmer do? We would recom-

mend the following.

� Identify the overall structure of the system at the highest level.
� Identify what components you would need to make a minimal system work.
� Start work on the minimal system components, identifying what you would need to build

a minimal version of each component.
� Start building the components (or sub-components) from near the bottom level.
� Test as you build! Keep old tests and re-apply them when making changes.
� Once you have a minimal “end-to-end” system done, and you are ready to add new

capabilities, repeat the above process recursively for the new capability.
� Don’t be afraid to re-design data structures. Don’t be afraid to throw code away and

re-write it.
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7.8 Don’t hard-wire it unnecessarily!

Consider the problem of computing (approximately)
∫ 1

0
ex dx . If we used the trape-

zoidal rule we might write something like this:

n = 100;

h = 1.0/n;

sum = (exp(0.0)+exp(1.0))*(h/2);

for ( i = 1; i < n; i++ )

{
x = i*h;

sum = sum + exp(x)*h;

}

But we aren’t quite sure what error our answer has. There’s an easy answer: just

double the value of n. Let’s set n = 200 and then we have to copy the code. But

we have to change the name of the second variable, because we want to take the

difference between the two.

n = 200;

h = 1.0/n;

sum2 = (exp(0.0)+exp(1.0))*(h/2);

for ( i = 1; i < n; i++ )

{
x = i*h;

sum2 = sum2 + exp(x)*h;

}
printf(”Error is approximately %g\n”, sum2-sum);

But later we will probably want to do this for another function, like g(x) =
x2 cos(πx). So we will write something like

n = 100;

h = 1.0/n;

sum = (0.0*0.0*cos(M PI*0.0)+1.0*1.0*cos(M PI*1.0))*(h/2);

for ( i = 1; i < n; i++ )

{
x = i*h;

sum = sum + x*x*cos(M PI*x)*h;

}

This is starting to look a bit complicated, and easy to make errors. Instead, let’s

re-factor these codes to avoid repeating ourselves. (Re-factoring is re-organizing
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the internal structure of code without changing what it does.) First let’s write a

routine for handling the common parts: the trapezoidal routine:

double trapezoidal(double (*f)(double),

double a, double b, int n)

{
double h, sum;

int i;

h = (b-a)/n;

sum = 0.5*((*f)(a)+(*f)(b));

for ( i = 1; i < n; i++ )

sum = sum + (*f)(a+i*h);

return sum*h;

}

Then we can compute
∫ 1

0
ex dx like this:

sum = trapezoidal(exp,0.0,1.0,100);

sum2 = trapezoidal(exp,0.0,1.0,200);

printf(”Error is approximately %g\n”, sum2-sum);

For
∫ 1

0
x2 cos(πx) dx we need a function

double x sqr cosx(double x)

{ return x*x*cos(M PI*x); }

and then pass it like this:

sum = trapezoidal(x sqr cosx,0.0,1.0,100);

Now the trapezoidal rule code is all in one place (instead of being repeated lots

of times), and we can use it for other things very easily. The code is simpler, and

easier to understand. It’s shorter, too. We don’t have to look through three different

implementations of the trapezoidal method checking them all for bugs. By re-

factoring the code in this way, debugging and testing adds instead of multiplying
as we add features and capabilities to the code. So remember the slogan:

don’t hardwire special choices unless you are willing to re-do the wiring.

7.9 Comments

Programmers are taught to put comments in their code. Generally this is a good

idea. Reading completely undocumented code is difficult. But you should be careful

about what kinds of comments you should put in; some are very helpful.
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� Comment your interfaces In C it is common to use header files to contain informa-

tion about the types of variables that are passed to a collection of routines. This is also

a good place to put comments about the meanings of the variables passed and what

the routine does, and any special cases or behavior the user should know about. For

example:

/* sum array -- returns sum(i=0 to n-1) a[i]

a -- input array to be summed

n -- length of array (zero returned if n <= 0) */

double sum array(double a[], int n);

Since header files may be available where the source code is not, this is a useful form of

documentation. In other languages the C/C++, the source code should contain this kind

of documentation.

This kind of comment is more than an ordinary comment – it is a contract with any

software that calls this routine. Provided the preconditions hold (a is a valid array of

length n), then the postcondition (the sum of a[i], for i going from zero to n-1, is

returned) holds on return.
� Loop invariants and assertions If you have some statement that is guaranteed to be true

(assuming that the pre-conditions for the routine are satisfied) at a particular point in the

code, then put that into a comment. (See the previous discussion of loop invariants.)
� Warnings about unusual behavior Some code behaves in a way that is difficult to see from

the source code. This should be rare. But if you have unusual behavior, then you should

definitely warn the reader about what is happening where it is happening. Of course, it is

always better to have the behavior of code obvious by inspection!
� Descriptions of what is done, not how To help others navigate a complex piece of code,

it can be very useful to have headings describing what the code is trying to do, such as:

/* use binary search to find i where
xlist[i] <= t < xlist[i+1] */

before an implementation of the binary search algorithm. Of course, if the code is

re-organized to use a different method, then the comment should be removed or

modified.

Some comments should be avoided. Simply re-stating what is obvious from the

code is bad practice:

/* increment i */
i = i+1;

It seems harmless. Why not? The trouble is that when code is modified, the com-

ments don’t always get changed to reflect this. The code itself after all is the most

authoritative description of what the routine actually does. For example, if the code
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was changed to go backward through an array instead of forwards, after the change

you might read

/* increment i */
i = i-1;

Confusing or incorrect comments are worse than useless.

One of the slogans of the Extreme Programming movement is

once and only once!

There should only be one authoritative description of the behavior of the code. This

should be the code itself. Comments that give meaning to the code that is not evident

from the code itself are good, but you will need to modify these if you modify the

code!

7.10 Documentation

A purist might hope that the code itself is all the documentation that you would need.

But as users, we all need extra information that tells us how to use the software,

not just how it works inside. Large systems also need documentation in order to

“navigate” the software source code in order to understand how it works. Ideally this

should be kept small. As mentioned above regarding comments in header files, it is

important to document interfaces as others will need this and will not necessarily

be able (or willing!) to read through the source code to find this out.

There are two kinds of documentation.

� User documentation This focuses on how to use the system, not on how it works. In-

formation about the kinds of algorithm used can be included, but is usually kept to a

minimum. Interfaces (whether function calls, file formats, or Graphical User Interfaces
(GUIs)) are what you should describe here.

� Developer documentation This is for other programmers so that they can change or re-

use your software for other purposes. This should outline the structure of the software

(e.g., what routine calls what), the data structures used, and conventions about how the

system should be used (e.g., “Always call function init XYZ() before any other calls

to the library”).

Documentation should be kept in sync with the actual software. When things change

in the software, the documentation should change with it. Some systems (e.g., the

javadoc system for Java) provides for the automatic generation of certain kinds

of documentation from the source code and its comments. Simple versions of this

can be easily implemented for other languages provided users adopt a standard

for inserting documentation in comments. For example, in C++ you could extract

all lines that begin with “// **” as being comments to be included in external
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documentation. Extracting these comments can be easily done with a tool likegrep
or sed in Unix (see Chapter 17 for more information about grep and sed):

grep ’// **’ < file.cpp >> documentation
sed -n -e ’s/ˆ *\/\/ \*\*//p’ < file.cpp >> \

documentation

Readers familiar with perl could use it to create similar, and also more sophis-

ticated, documentation generators. Users will still need documentation targeted at

their concerns, which the programmer may have to write. However, this additional

documentation should not change often the way a user uses the software should be

fairly stable. Unixman (short for manual) pages provide concise, direct documenta-

tion. Programmers or those needing information only about simple commands, will

find this is usually all they need. This kind of documentation shows how to use the

software, the interfaces, the assumptions built into the software, special cases, data

formats, and bugs (or misimplementations). More complex systems (like compil-

ers and editors, for example) need more extensive documentation. Often “tutorial”

documentation giving fairly extensive examples of how to use the software are

very valuable for users. For graphical user interfaces, screen shots are often useful,

especially for users with less programming experience. Example driver programs

and input files are also excellent ways of showing how to use a routine or library.

Our advice: keep your documentation simple and direct. Large documents are

an obstacle to the use of the software, and will probably not be read (which is a

waste of paper and a waste of time).

Document only what is necessary for others to understand, use, and modify
the software.

There is one area in which you should not forget to include comments: in your

data! This should be so for both your test data and for serious problems. You should

especially have comments in any configuration files. A simple way to implement

this is to pick a “comment character” to indicate the start of a comment, which

goes to the end of the line. In many systems (MATLAB, LATEX, PostScript) the

percent sign (%) is the comment character, while many Unix shells or command

line interpreters use the hash character (#). Comments like this can be stripped out

by using a Unix tool like sed:

sed -e ’s/#.*$//’ < data-file > stripped-file

which makes the data file ready to be read by a program. Alternatively, you can

make sure that the program can read the data file with comments. The main change

needed is to call a routine like skipcomment below before calling the routines

to read in the data:
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void skipcomment(FILE *fp)

{
int c;

c = getc(fp);

while ( c != EOF && isspace(c) )

c = getc(fp);

while ( c == COMMENT CHAR )

{ /* skip to end of line or end of file */

while ( c != EOF && c != ’\n’ )

c = getc(fp);

/* skip over any further white space */

while ( c != EOF && isspace(c) )

c = getc(fp);

/* put back non-white-space character */

}
if ( c != EOF )

ungetc(c,fp);

}

If the comment character is a “#”, then the following code

skipcomment(stdin); scanf(”%d”, &num gnus);

skipcomment(stdin); scanf(”%d”, &num llamas);

skipcomment(stdin); scanf(”%lf”, &weight llama);

can read a data file like this:

# Data for the gnus and llamas problem

# See Drofnats et al., Journal of Gnus & Llamas

# volume 37, number 5, pages 77-87 (2001)

36 # number of gnus

27 # number of llamas

# llama weight in kilograms

227.5

7.11 Cross-language development

Since the 1980s there has been interest in using more than one programming lan-

guage to construct programs, often combining Fortran and C or C++. An example
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is PLTMG, which was written mainly in Fortran 77 with some code written in C

to interface with systems routines and graphics libraries. On the other hand, more

scientific software is being written in C/C++ than before, but using the BLAS

which is based on Fortran.

Combining programming languages in a single program has been a tricky task

because it has been almost completely outside the standards for programming lan-

guages. This meant that combining languages was not portable and relied on some

“tricks” to make sure that routines compiled in one language could call routines

compiled in another. There has been a trend to accommodate cross-language de-

velopment in the development of programming language standards. This was first

evident in the development of C++, where the extern ”C” feature was in-

cluded to allow C++ programmers to call routines compiled in C. Java provides

standard mechanisms for calling “native” libraries, which could have been com-

piled from almost any language. The recent Fortran 2003 standard incorporates

standards for intermixing Fortran 2003 and C and C++. The Microsoft .NET sys-

tem provides a family of languages which can be used together to produce single

programs. However, all these languages fit into the same .NET framework, and

calling routines compiled from outside the .NET framework is considerably more

difficult.

7.11.1 Obstacles to cross-language development

In the past, each compiler would have its own way of determining how one rou-

tine calls another. Provided all the routines are compiled by the same compiler,

all the routines have consistent conventions about how data is stored in data struc-

tures, and how stack frames are organized. Over time, standards have been set for

many of the basic issues, such as how stack frames are organized for each family

of CPUs.

In order to link routines compiled from different languages, the compiled routines

have to be in a common, standardized format for linkable object code, and there must

be a linker that understands this standardized format. Assuming that this is the case,

in order to link the routines, the symbolic names that the linker sees must match the

routines to be linked. But the names that the linker sees are not necessarily the same

as the names given in the source code. A well-known example of this is the different

behavior of the Fortran and C compilers in Unix. Under Unix, Fortran compilers

typically append an underscore “ ” to the names of routines, while C compilers do

not. This made it difficult for Fortran routines to call C library routines even if they

were linked to the C library; for example, if the Fortran routine had a line

returncode = printf(formatstring)
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the compiled object file would contain the string “printf ” which did not match

the string “printf ” used in the standard C library.

Even if the linker names can be made to match, there are additional sources of

difficulties, especially with more sophisticated languages. Between C and C++,

for example, care must be taken regarding the different systems for input/output

(printf in C, for example, versus the “<<” operator in C++), memory al-

location (the malloc function in C versus the new operator in C++), and

error and exception handling (the setjmp/longjmp functions in C versus the

try/throw/catch mechanism in C++). In each case there is a different mech-

anism used to carry out the associated operation, and these are potentially incom-

patible. In C++ there is also the matter of overloaded functions (several functions

with the same name) and the associated “name mangling” that the compiler does

to create unique names for each function that the linker has to deal with. If a C

routine calls a C++ routine, it has to know what name the compiler has created for

the specific function called. This can easily lead to non-portable code which can be

broken even by using a new version of a compiler.

Another area where there are dangers of miscommunication across languages (or

even different compilers) is the layout of data structures. Consider a data structure

in Fortran 90:

type my type
integer :: i1, j1, i2, j2
real, allocatable, pointer, kind(0d0) :: A(:,:)
real(kind(0d0)) :: entry

end type my type

The Fortran 90 standard does not require the compiler to put all these entries into

contiguous memory locations, and often pointer and data alignment needs will

prevent this from happening. For example, integers and pointers may need to be

stored in memory locations with addresses divisible by four and double-precision

floating-point numbers stored in locations with addresses divisible by eight. In this

case, the compiler would probably put in four bytes of padding between the end

of A and the start of entry. In fact, there is no requirement to keep these fields

in this order. Also, whereas in C we might represent A as a pointer to point to

doubles, a Fortran 90 compiler is more likely to represent A as a pointer to an

array of double-precision numbers and possibly two integers for the dimensions of

A. These potential incompatibilities would make it unlikely to match the obvious

structure in C, even after noting that C uses row-major order and Fortran uses

column-major order:
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struct {
int i1, j1, i2, j2;
double **A;
double entry;

};

Another issue that can complicate cross-language development is the way in which

arguments are passed to routines. In Fortran arguments are always passed by refer-

ence, in C arguments are almost always passed by value (passing by reference in

C is done by passing pointers). This means that when a C routine calls a Fortran

routine, it must pass pointers; when a Fortran routine calls a C routine, the C routine

must take pointers for arguments.

7.11.2 Strategies for general cross-language development

In general, cross-language software development is system dependent. In keeping

with good software engineering practices, the system dependent part of the soft-

ware should be isolated from the other software. Sometimes this can be done (for

example, in C/C++) by having one or two header files which contain the interface

details.

In general, more sophisticated programming language features (class hierarchies

in object-oriented systems, dynamic memory allocation and de-allocation) are likely

to be implemented in incompatible ways. For example, new/delete in C++ will

in general be incompatible with malloc/free in C; the class hierarchy in Java is

incompatible with those in C++. Input/output systems are often also incompatible.

There are too many different design choices to expect these things to be compatible

at the object code level. This means that cross-language calls should be as simple

as possible, passing only simple data structures: integers, floating point numbers,

and arrays of these. Even strings in Fortran and C behave differently and may be

implemented differently and incompatibly.

We need to deal with differences in how arguments are passed. For example,

since Fortran expects arguments passed by reference, and C/C++ uses pass by

value, to call a Fortran routine from C, pointers to the C/C++ variables containing

the data must be passed. Similarly, calling C from Fortran, the C routine must expect

pointers.

Java routines can call non-Java routines by using the nativemodifier for a Java

method. The javah program can then generate header files for C as well as C code

to be used as a skeleton for implementing an interface to a routine in C, or some other

language. The Java Native Interface (JNI) [98, search for “JNI”] standard should

be used where possible; this means that the javah program should be used with
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the -jni option. The JNI works by passing an env (for “environment”) argument

which contains the arguments passed as well as other information. Accessing the

value of an argument requires a function call through the env argument.

Fortran 2003 has a number of features to allow interoperability with C and

C++ [89]. This includes a number of new types such as C INT, C FLOAT and

C DOUBLEwhich are guaranteed to be interoperable with the C types int, float
and double. There are also C PTR and C FUN PTR types which correspond to

C general pointer types and C function pointer types respectively. It is also pos-

sible to specify how Fortran 2003 and C derived types (data structures) can be

made to correspond to C structs. The technical report [89] gives the following

example:

typedef struct {
int m, n;
float r;

} myctype

is interoperable with

USE ISO C BINDING
TYPE, BIND(C) :: MYFTYPE
INTEGER(C INT) :: I, J
REAL(C FLOAT) :: S

END TYPE MYFTYPE

The report also states that no Fortran type is interoperable with a C union type,
struct type that contains a bit field, or struct type that contains a flexible array
member. This is not surprising as unions and bit fields and the more advanced

parts of the recent C99 standard (e.g., flexible array members) are not part of

the Fortran 90/95/2003 standards. Fortran 2003 can also call C functions that

require items passed by value directly as long as an INTERFACE is set up in

Fortran where the arguments passed by value have the VALUE attribute. For more

details see the Fortran 2003 standard and/or the technical report [89].

In summary: cross-language development is system dependent. If possible, write

the interface code according to published standards (if any). Keep the interface code

isolated from the rest of the system. After all, standards do change (and standards

for cross-language development are especially volatile), which typically requires

changing the interface code. Unless the two languages are very tightly coupled, it

can be useful to have interface routines that turn the data structures in one language

into a form compatible for the other language. Avoid advanced data structures and

concepts in the actual interface.
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7.12 Modularity and all that

7.12.1 Mathematical abstractions

Mathematical software has an advantage over many other kinds of software be-

cause mathematicians have been dealing with specific kinds of abstractions for

a long time. There is a well-established terminology and set of operations that

mathematicians deal with. Matrices and vectors, for example, have been used as

self-contained objects for over a hundred years now. So it is often easy to identify

central mathematical abstractions that can form basic building blocks for scientific

software. Other software developers (e.g., for computer games or databases) have

had to develop and refine their own terminology and concepts.

Abstraction is a key tool in dealing with software complexity. Abstractions that

can be “packaged” into a software system can be dealt with on a high level, without

needing to go into the details of how things are implemented. The abstractions

can then be operated on as independent objects, as long as we understand that

abstraction. We have already seen the usefulness of the abstractions of “matrix”

and “vector” in MATLAB.

It should be noted that it is not just the data structure itself that makes up the

mathematical abstraction, but also the operations that you can perform on it. This

was one of the key insights that led to object-oriented programming.

7.12.2 Information hiding

The principle of information hiding is that routines should be allowed to access

only the data that they need to do their job. All the rest should be kept out of sight.

Conversely, the data that one part of the system needs only for its own internal

purposes should be hidden from the other parts of the system. Why?

Because if that internal data is not hidden, then routines could be written to take

advantage of the internal data of other routines and processes. Then when another

part of the system is changed, the routine accessing it would also have to be changed

or the system would (probably) break. This makes the process of debugging much

harder, because you not only need to look at the routines that had legitimate access

to the data that changed, but also all the other routines that could possibly rely on

this data. Redesigning the broken routine would also be a much more difficult task.

This principle has become deeply incorporated into object-oriented program-

ming: access to data is controlled by the class that contains it.

7.12.3 Flexibility via abstraction

Abstraction is the process of distilling the minimal essence of a concept, removing

it from the context we usually use to think about that concept. For example, we
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usually think of an m × n matrix A as a rectangular array of numbers. Another

way of thinking about a matrix is as a linear operator A : Rn → Rm . That is, we

can treat A as a function, albeit satisfying certain requirements: A(αx + βy) =
α A(x) + β A(y) for any numbers α and β and vectors x ∈ Rn and y ∈ Rn . It can

be difficult to enforce or test these requirements in general, but it does lead to a

very flexible (and efficient) way of dealing with many situations. This approach

uses functional representation of matrices, and is discussed in Section 8.4.

Abstraction occurs continually in mathematics, and we can use mathematical

descriptions to create abstractions suitable for implementing as software. However,

this does not work well for all applications. Using functional representation of

matrices can result in efficient ways of representing addition, subtraction, and scalar

multiplication of matrices. However, it cannot be used to implement an efficient

transpose operation. To do that we need to resort to the concept of a matrix as an

array of numbers.

7.12.4 Procedural and object-oriented programming

Packaging data into data structures is a good step, but object-oriented program-

ming goes further, by also packaging the routines that operate on the data into an

object. This has been implemented in numerous languages, beginning with Simula,

SmallTalk, and then in the C-like languages C++, Java, C#, and also in a number

of other languages such as Eiffel [77] and Sather [94]. Now most new languages

have many object-oriented features, including the Fortran 2003 standard [1].

Object-oriented languages extend the idea of modularity by controlling access

to the underlying data. Getting a piece of the underlying data should be achieved

by a routine in the object (that is, by a member function of the object) rather than

by directly accessing it. Similarly, modifying the underlying data should be via a

member function, which can ensure self-consistency of the data in the object. This

extra layer of function calls can have a performance impact. This overhead can

be removed in C++ and other object-oriented languages by inlining functions.

Inlining puts a copy of the function (renaming variables if necessary) in place of

the function call.

7.12.5 Layered software

Layered software is very important for large software projects. Different parts of

a large project can be split into two distinct kinds of software, usually in terms of

whether the software is “high-level” or “low-level”. For example, LAPACK is built

on top of the BLAS. Here the BLAS deals directly with the matrices and this is

where most of the inner loops belong. Most machine-dependent efficiency concerns
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can be dealt with at the level of the BLAS, freeing the implementors of LAPACK

to concentrate on algorithmic issues. In the spline function example in Chapter 18,

the components of the software that deal with tridiagonal matrices form a layer

which the spline routines can call.

Layering is a large-scale version of modularity, where whole aspects of a piece

of software are assigned to a particular collection of routines and data structures.

To make this work effectively, programmers need a certain discipline. Getting

around problems in the “lower level” layer, by going directly to the underlying

data structures, should be avoided wherever possible. Conversely, this means that

bugs and misimplementations in the “lower level” layer must be fixed quickly. The

responsibilities of the “lower” layer should be simple and easily stated. Adding

features to the “lower” layer should be done rarely and be carefully considered.
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Data structures

8.1 Package your data!

Data structures with heterogeneous elements (i.e., elements of different types) have

been incorporated into almost all serious programming languages: records in

Pascal and Modula-2, structs in C/C++, classes in Java, and most recently

type structures in Fortran 90. These are useful in packaging together data, even if

you don’t have a nice abstract interpretation of the data. Combining data used for a

common purpose into a single data structure can provide some level of abstraction

which can simplify interfaces and other routines.

For example, if you are working with spline functions, the basic function to

evaluate a cubic spline function might have an interface that looks like this:

/* eval spline -- returns spline function value at t,

where spline is determined by

xlist, ylist, & Mlist as given in

Atkinson’s Intro Numer Anal, 2nd Ed’n, pp. 166-173

This represents the spline function s(x) where

xlist[i] is the i’th knot, i = 0, 1, ..., length-1

ylist[i] = s(xlist[i]),

Mlist[i] = s’’(xlist[i]). */

double eval spline(double xlist[], double ylist[],

double Mlist[], int length, double t);

If we set up a suitable spline data structure

typedef struct {
/* See Atkinson:

Intro Numer Anal, 2nd Ed’n, pp. 166-173 */

int length;

double *xlist; /* list of knots */

90
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double *ylist; /* values interpolated */

double *Mlist; /* 2nd derivatives at knots */

} spline;

then the interface becomes much simpler and easier to understand:

/* eval spline -- returns cubic spline function s at t */

double eval spline(spline *s, double t);

What is even better is if we change the implementation of the spline functions (and
the internals of spline), we don’t have to change the interface! We would have

to re-compile our functions that use spline and re-link, but that would be all.

8.2 Avoid global variables!

Suppose that we had a functionfredwhose behavior depended on a global variable

foobar, which could have one of two values: FOO or BAR. Then foobar would

be part of the interface for fred. But it is a pathological connection, and not to

be trusted. Suppose we called fred on two different occasions like this:

foobar = FOO;

answer1 = fred(...);

/* lots of code in between */

...

answer2 = fred(...);

Then we will be using the FOO version. Now we need to call another routine called
george in between:

foobar = FOO;

answer1 = fred(...);

...

answer3 = george(...);

...

answer2 = fred(...);

This is fine so far. But maybe things go faster if george calls fred!

double george(...)

{
/* now call fred() */

foobar = BAR;

fred(...);

...

}
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Now we have a problem. Something will be wrong with the call to fred. You

might check all the arguments passed to the second call to fred, but they are what

they should be. What’s wrong? You won’t know until you get around to checking

the global variable.

Of course you can fix this problem by always remembering to set foobar
just before you call fred. The better strategy is to pass foobar like the other

parameters. That way the compiler will tell you if you forget!

8.3 Multidimensional arrays

In most programming languages the model of a simple linear array is essentially

the same. There are some differences: in some languages the length of the array is

part of the data structure (e.g., Java and Common Lisp), while in most languages

the length is implicit and the user must keep track of it (e.g., C/C++). Apart from

this difference, the models of linear arrays with one subscript are essentially the

same.

However, multidimensional arrays such as m × n matrices are interpreted in

different ways. In some languages a two-dimensional m × n array is treated as a

single data structure (e.g., Fortran and Pascal), while in others a two-dimensional

m × n array is treated as an array of length m of arrays of length n (e.g., C/C++
and Java).

In languages that treat a two-dimensional array as a single data structure, the

entries can be laid out in either row-major order or column-major order. In row-

major order the last index changes fastest as one goes through memory, while for

column-major order the first index changes fastest. For example, in Pascal, which

uses row-major order, the entries of a matrix

real A[3,3];

appear in the order A[1,1], A[1,2], A[1,3], A[2,1], A[2,2], A[2,3],

A[3,1], A[3,2], and A[3,3]. In Fortran, which uses column-major order, the

entries of

real A(3,3)

appear in the order A(1,1), A(2,1), A(3,1), A(1,2), A(2,2), A(3,2),

A(1,3), A(2,3), A(3,3).

In languages where two-dimensional arrays are treated as arrays of arrays (such

as C/C++ and Java) the layout in memory is somewhat more complex. However,

in any such language the ordering of entries in memory is like the row-major case

since changing the last index by one will give adjacent entries in memory.
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In Fortran, to declare a two-dimensional array of double-precision numbers that

can be allocated (i.e., created), use

real(kind(0d0)), allocatable :: A(:,:)

To actually allocate an m × n array, we use an allocate statement:

integer :: errno
allocate(A(m,n), stat=errno)
if ( errno /= 0 ) then ! allocation failed

If we don’t use the “stat=errno” part, then the program aborts if the allocation

fails. For higher-dimensional arrays in Fortran, we simply use more indexes:

integer :: errno
real(kind(0d0)), allocatable :: A(:,:,:)
! now the actual allocation...
allocate(A(m,n,p), stat=errno)
if ( errno /= 0 ) then ! allocation failed

Now consider C and C++. We need to make a careful distinction between the

two-dimensional array

double A[4][3];

which has the sizes fixed at compile time, and the more flexible data structure

double **B;

In the case ofA[4][3], the size determined by the compiler, and space is allocated

for the correct number (4 × 3 = 12) of entries. Also, the compiler will convert any

reference to A[i] to a pointer to the start of the i th row of A[4][3] (zero relative),

which is i × 3doubles after the start address ofA. An element referenceA[i][ j]
will access the double-precision number located i × 3 + j doubles after the start

address of A.

By comparison,double **B does not allocate any memory. After memory has

been properly allocated, B will point to an array of pointers to arrays of doubles,

as shown in Figure 8.1. Although we can access the entry B[i][ j], it happens by

a different mechanism to A[i][ j]. This time B[i] refers to the i th pointer in the

array of pointers starting at B. Then B[i][ j] refers to the j th pointer in the array

of doubles starting at B[i].

To allocate the pointer-to-pointer structure we need to first allocate the memory

for the array of pointers, and then allocate the memory for each array of entries.

The obvious way of allocating an m × n array takes m + 1 calls to malloc or

new to create the structure, as shown in Algorithm 1: however, this is inefficient
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Figure 8.1. Example of pointer-to-pointer structure.

Algorithm 1 Naive matrix allocation method

B = (double **)malloc(m*sizeof(double *));

if ( B == NULL ) return NULL;

for ( i = 0; i < m; i++ )

{
B[i] = (double *)malloc(n*sizeof(double));

if ( B[i] == NULL ) { free(B); return NULL; }
}

Algorithm 2 Fast matrix allocation method

B = (double **)malloc(m*sizeof(double *));

if ( B == NULL ) return NULL;

B[0] = (double *)malloc(m*n*sizeof(double));

if ( B[0] == NULL ) { free(B); return NULL; }
/* now set the other pointers */

for ( i = 1; i < m; i++ )

B[i] = B[0] + i*n;

in both time and memory. A more efficient way of doing this is to allocate a single

m × n block of memory for the entries and then set up the pointers into this block

of memory, as shown in Algorithm 2.

There is a temptation to grab the memory in a single call to malloc. However,

this is dangerous and is not portable unless you use the open array syntax. Code
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Algorithm 3 Dangerous matrix allocation method

/* dangerous due to misalignment problems */

B = (double **)

malloc(m*sizeof(double *)+m*n*sizeof(double));

if ( B == NULL ) return NULL;

B[0] = (double *)(B[m]);

/* now set the other pointers */

for ( i = 1; i < m; i++ )

B[i] = B[0] + i*n;

is shown in Algorithm 3. The reason is that mixing different types in a single call

to malloc can create problems for data alignment. If a computer system requires

that pointers are aligned on 4-byte boundaries (i.e., the address of a pointer is a

multiple of four) but doubles should be aligned on 8-byte boundaries, then odd

m can result in program termination.

Note that a de-allocation routine must match each allocation routine – the calls

to free must match the calls to malloc, or in C++, the delete operations

must match new operations. Note that in C++, it is not possible to use new to

allocate different types in one call.

Higher-dimensional arrays can be created in similar ways to two-dimensional

arrays. The analog of Algorithm 2 for allocating a three-dimensional array is shown

below.

/* creates m x n x p array */

B = (double ***)malloc(m*sizeof(double **));

if ( B = NULL )

return NULL;

B[0] = (double **)malloc(m*n*sizeof(double *));

if ( B[0] == NULL )

{ free(B); return NULL; }
B[0][0] = (double *)malloc(m*n*p*sizeof(double));

if ( B[0][0] == NULL )

{ free (B[0]); free(B); return NULL; }
for ( i = 0; i < m; i++ )

{
B[i] = B[0] + i*n;

for ( j = 0; j < n; j++ )

B[i][j] = B[i][0] + j*p;

}
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In Java, two-dimensional arrays are really arrays of arrays, and each array implicitly

carries its own length. Because Java does not allow pointer arithmetic, unlike C

and C++, the method of Algorithm 2 is not possible in Java. Instead we use the

method of Algorithm 1; here is code for this:

double B[][];

B = new double[m];

for ( int i = 0; i < n; i++ )

B[i] = new double[n];

Since Java and C++ are object oriented languages, it is possible to have a different

underlying representation of an array and design a suitable interface for accessing

entries. For example, a matrix can be a one-dimensional array internally, but the

class can have access functions get(i,j) and set(i,j,value) for getting

and setting entries in the matrix. There are overheads in terms of programmer

convenience and in terms of speed, although in C++ it is possible to have these

access functions inlined for greater efficiency.

8.4 Functional representation vs. data structures

The most general representation scheme is the use of a function to define the object.

This is a valuable idea for matrices. One way of thinking about this is that a matrix

can be thought of as a two-dimensional array of numbers A ∈ R
m×n , or as a linear

operator A : R
n → R

m . So we can represent a matrix as a function like this:

/* operator -- returns with y = A*x */
void operator(double x[], double y[]);

The matrix–vector multiply can be implemented in the most efficient means possible

(it might involve using a Fast Fourier Transform, for example, or be defined by a

multigrid algorithm). It is an extremely general way of describing a matrix.

This generality has drawbacks. You can’t do LU decomposition or even modify

any entries in a functionally defined matrix. In this case, you can’t even compute

y = ATx given this representation of a matrix without a lot of work. You can, in

principle, extract A as a two-dimensional array from the functional representation:

set x = ei , then y = Aei is the i th column of A. However, this is an inefficient thing

to do unless A is small.

Another example of functional definition is the idea of iterator that is used in

object-oriented programming for describing lists. An iterator is a class (think: a data

structure plus associated functions) for which the allowed operations are getting

the current item, going to the next item, and testing if we are at the end of the list.
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In the C++ Standard Template Library (STL), these are iterator classes,

and the container classes in the STL can produce iterators on request. For example,

if we have linked list list<double> x then we can go through the items in the

list like this:

list<double>::iterator i;

for ( i = x.begin(); i != x.end(); ++i )

cout << ”Found number ” << *i << endl;

Note that in C++ a number of the operations are overloaded, particularly *i (for

accessing the current item), and ++i (for going to the next item). This provides a

general and efficient way of handling lists of general objects through a functional

representation. In Java this is done using the standard Enumeration class, which

can be created by a Java Vector or Hashtable for instance.

8.5 Functions and the “environment problem”

Functional representation is the most memory efficient representation of

“read-only” data structures possible. It is almost, but not quite, the most flexible.

The problem is that when we talk about a function, we are almost always talking

about it in some context. For example, we might talk about a quadratic function

f (x) = px2 + qx + r.

This is clearly a function of one variable (x), and we can integrate, differentiate

and do other things to the function f (x) as a function of x . However, to complete

the definition of f , say to evaluate f (3), we need to know what p, q, and r are.

This we will call the context or environment of f . The problem is that we need to

explicitly pass the information about what p, q and r are to the code that evaluates

f (x). This is particularly important if we are using a general purpose routine to

integrate a function f over an interval [a, b]:

double integrate(double (*f)(double),
double a, double b);

There are a number of ways of doing this.

� Global variables. The quantities p, q , and r can be made global variables which are

set before calling f . This is not recommended since passing information through global

variables is not. This is discussed in Section 8.2.
� Reverse communication. In this approach (a favorite in Fortran 66 and 77), the inte-
grate routine would not be passed a function, but would rather return to the caller with

a flag set to indicate that the function should be evaluated (and where). The caller would
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then do the evaluation before again calling the integrate routine with the flag set to

say that the function had been evaluated. At the end of the process, the integrate
routine would return with the flag set to a value to indicate that the computation was

complete and one of the variables would contain the final (returned) value.

Reverse communication is difficult to implement, and difficult to use. We do not advise

its use where there are better approaches (see below). Nevertheless, this technique is still

in use, so we explain how to implement it, and how to use it.
� Passing pointers. An approach that works in C-like languages is to pass a pointer to an

indeterminate type (void *) which points to whatever data structure(s) the function

passed needed. This can also work in Fortran provided you ignore the Fortran type-

checking system.

This approach is easy to implement, but care should be taken in using it. The routine that

callsintegrate and the routine defining the function to integrate must be consistent and

should be written together. They therefore become tightly-coupled routines, and should

come with appropriate warning labels!
� Classes contain the environment. In object-oriented languages the class (or object) that

does the function evaluation can contain the environment. This can be done most efficiently

using multiple inheritance or a similar mechanism, such as Java’s interface. It is

straightforward to implement and striaghtforward to use. This is the most recommended

approach for object-oriented systems.

8.5.1 Reverse communication

Reverse communication is a complex method to implement. Here we will consider

computing
∫ b

a f (x) dx . Below is a Fortran 90 interface for a reverse communication

version of the one-dimensional integration routine integrate:

subroutine integrate rc(state,iflag,x,fx,a,b,n,val)

type(internal state), intent(inout):: state

integer, intent(inout):: iflag

integer, intent(in) :: n

real, intent(inout) :: x, val

real, intent(in) :: a, b, fx

! code goes here

end

Note that the internal state of the integrate rc routine is maintained in the

variable state which must be passed to integrate rc. This type (which is

described below) should be defined somewhere in the interface declaration or close

to it. The main controlling argument is iflag. The required behavior could be

described through a table:
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iflag On entry. . . On exit. . .

0 Initialize Successful exit
1 fx = f (x) Evaluate fx:= f (x)

−1 Error Failure

Any other value of iflag should be treated as an error. So the code to use this

routine would look something like this:

integer:: iflag

real :: x, fx

type(internal state):: state

iflag = 0

call integrate rc(state,iflag,x,fx,a,b,n,val)

do while ( iflag /= 0 )

if ( iflag == 1 ) then

! code for evaluating fx = f(x)

fx = f(myparam,x) ! or something horribly complicated...

call integrate rc(state,iflag,x,fx,a,b,n,val)

else ! if ( iflag /= 0 ) then

exit ! exit do while loop

end if

end do

! val is now the computed integral if iflag == 0

As you might suspect, the code inside integrate rc is even more complex!

However, to generate a reverse communication routine from a more conventional

routine with passed functions is essentially a mechanical translation. Here is a

conventional Fortran routine for the integration problem (for the trapezoidal rule).

subroutine integrate(f,a,b,n,val)

real, intent(in) :: a, b

real, intent(out):: val

real, external :: f ! function

integer :: i, n

real :: h, sum

h = (b-a)/n

! position 1

sum = 0.5*f(a)

! position 2

sum = sum + 0.5*f(b)
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do i = 1, n-1

! position 3

sum = sum + f(a+i*h)

end do

! position 4

val = sum*h;

end subroutine integrate

To convert this to a reverse communication routine we need to note all the points at

which a function call occurs. (These are positions 1, 2, and 3.) We need to construct

a data structure that contains the state information for this routine, which consists

of the local variables together with the position within the routine. We only need

to record which of positions 1, 2, or 3 we are at; more refined information is not

needed. So we will have a data structure that will look like this:

type:: internal state

integer:: position

integer:: i, n

real:: h, sum

end type internal state

Note that we don’t really need to include val, since that is only computed at the

end, and so is not really needed as a local variable.

When we write the reverse communication routine, we need to remember that

we have to update the state of the system as if we were tracing the execution of the

conventional routine.

subroutine integrate rc(state,iflag,x,fx,a,b,n,val)

type(internal state), intent(inout):: state

integer, intent(inout):: iflag

integer, intent(in) :: n

real, intent(inout) :: x, val

real, intent(in) :: a, b, fx

if ( iflag == 0 ) then

! Initialization

state%position = 1

state%n = n

state%h = (b-a)/n

x = a ! evaluate function at a

iflag = 1

else if ( iflag == 1 ) then
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select case ( state%position )

case ( 1 ) ! position 1

state%sum = 0.5*fx

x = b ! evaluate function at b

iflag = 1

state%position = 2

case ( 2 ) ! position 2

state%sum = state%sum + 0.5*fx

state%i = 1 ! start of loop

x = a + state%i*state%h

iflag = 1

state%position = 3

case ( 3 ) ! position 3

state%sum = state%sum + fx

state%i = state%i + 1

x = a + state%i*state%h

iflag = 1

if ( state%i == n-1 ) then

state%position = 4

end if

case ( 4 ) ! position 4

state%sum = state%sum + fx

val = state%sum*state%h

iflag = 0 ! That’s all folks!

case default

iflag = -1 ! Error !

end select

else

iflag = -1 ! Error !

end if

end subroutine integrate rc

Note that we had to split the initial function calls f (a) and f (b). That way we could

correctly identify whether we had to compute f (b) next, or go on to the loop.

In spite of the fact that constructing reverse communication routines is essentially

a mechanical process, it is a fairly involved and tedious one.

Note that it is more traditional not to have an explicit data structure holding the

state. Instead, the local variables and a “position” variable are kept between function

calls. In Fortran, declaring them using the save keyword will keep the values

between function calls. This appears simpler than passing a “state” parameter, but
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it means that if the function f is itself defined in terms of integrate rc, then

integrate rc will fail. Passing an explicit state parameter avoids this problem.

Passing an explicit state parameter also makes the routine threadsafe; that is, the

routine can be used with threads.

8.5.2 Passing pointers

If you are using a language with pointers, then an attractive alternative is to pass

the environment or context via a pointer. This is particularly easy in C with the

void * pointer type, which could point to any type of data or data structure.

We will do a C version of the integrate routine passing a void * pointer to

some (user-defined) data structure.

double integrate pp(double (*f)(void *,double),

void *params, double a, double b, int n)

{
int i;

double sum;

sum = 0.5*((*f)(params,a) + (*f)(params,b));

for ( i = 1; i <= n-1; i++ )

sum = sum + (*f)(params,a+i*(b-a)/n);

return sum*(b-a)/n;

}

Now to integrate a quadratic function, we set up the appropriate data structure and

function:

struct quad params {
double p, q, r; /* coefficients of quadratic:

p*x*x+q*x+r */

};

double quadratic(void *params, double x)

{
struct quad params *qp;

qp = (struct quad params *)params;

return x*(qp->p*x+qp->q) + qp->r; /* Horner’s rule */

}

So, if we wished to compute the integral
∫ 1

0
(x2 − 7x + 3.5) dx , we would use the

following code:
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struct quad params qp = { 1.0, -7.0, 3.5 };
val = integrate pp(quadratic, &qp, 0.0, 1.0);

This is much more convenient than reverse communication.

What if we want to integrate the sin function? There is a simple trick for that

which doesn’t involve much more work as long as we don’t mind an extra layer of

function evaluations:

double func eval(void *params, double x)

{
double (*f)(double);

f = (double (*)(double))params;

return (*f)(x);

}

That is, we make the function pointer itself the parameter of this universal function

func eval. To use it, we now call

val = integrate pp(func eval,sin,a,b);

to approximately compute
∫ b

a sin x dx .

Fortran 2003 introduces procedure pointers which have much of the same syntax

as other pointers in Fortran 90/95, and can be used much like pointers to functions in

C and C++. These can be passed and assigned to a specific procedure or function

using pointer assignment, and can be set to null. Each procedure pointer has an

explicit or implicit interface showing how it can be used as a function or subroutine.

This interface can be taken from a pre-existing function or subroutine, or specified

via an abstract interface.

8.5.3 Classes contain the environment

The most natural way of handling the environment problem goes to object-oriented

languages. However, to implement this in a properly general way requires inheri-
tance from an abstract base class, or a similar mechanism. Java has theinterface
mechanism for implementing a strictly limited kind of inheritance from an abstract

base class, which is suitable for our purposes.

For example, in Java, we would use an interface class of the form:

public interface Func {
public double eval(double x);

}
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Then, if we want to set up a function like x �→ ax2 + bx + c, we create a class that

contains the environment of the function. So our class must contain the values of

a, b and c. This would be a class like this:

public class Quadratic implements Func {
private double a, b, c;

public Quadratic(double a, double b, double c)

{ a = a; b = b; c = c; }
public double eval(double x)

{ return (a*x+b)*x+c; }
}

To use it to evaluate the function x �→ 3x2 + 2x − 5 at x = −1.5 we would use

code like this:

public class FuncTest {
public static void main(String args[])

{
Quadratic q = new Quadratic(3.0,2.0,-5.0);

double x = -1.5;

System.out.println(q.eval(x));

}
}

A more serious use of theFuncinterfacewould be for writing a general routine

for integration via the trapezoidal rule, for example:

public class Trapezoidal {
public static double

integrate(Func f, double a, double b, int n)

{
double sum = 0.5*(f.eval(a)+f.eval(b));

double h = (b-a)/n;

for ( int i = 1; i < n; i++ )

sum += f.eval(a+i*h);

return sum*h;

}
}

Then to evaluate the integral
∫ 1

0
(3x2 + 2x − 5) dx we create a Quadratic object

with the correct coefficients and pass this to the Trapezoidal integrate
routine:
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Quadratic q = new Quadratic(3.0,2.0,-5.0);

System.out.print(”Integral is (n=10) ”);

System.out.println(Trapezoidal.integrate(q, 0.0, 1.0, 10));

If we were using C++, we would use inheritance from an abstract base class

to achieve the same thing. The key to this is to note that a Java interface is es-

sentially an abstract class, and implementing a Java interface is like inheriting

an abstract class in most other object-oriented languages. Here is our quadratic

example:

class Func {
public:

virtual double operator()(double x) const = 0;

};

The class defining the quadratic function would look like this:

class Quadratic : public Func {
private:

double a, b, c;

public:

Quadratic(double a, double b, double c)

{ a = a; b = b; c = c; }
double operator()(double x)

{ return (a*x+b)*x+c; }
};

Then the trapezoidal integration routine would look like this:

#include ”trapezoidal.h”

double trapezoidal(Func &f, double a, double b, int n=100)

{
double sum = 0.5*(f(a)+f(b));

double h = (b-a)/n;

for ( int i = 1; i < n; i++ )

sum = sum + f(a+i*h);

return sum*h;

}

If we already have a large and complex class C, we could create a function class

from C using multiple inheritance:
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class C func : public C, public Func {
public:

double operator()(double x) const

{
double val = 0;

/* code to compute val = function(x) goes here */

return val;

}
};

The only difficulty is that we need to create a new class for each new function. But,
as we see above, this need not be a major problem: there is only a small amount of

extra code needed to create the class – most of the code is for computing the function.

8.6 Some comments on object-oriented scientific software

The benefits of object-oriented programming for software development have

become firmly entrenched in the minds of many, especially for developing

“component-based software”. This has happened to the extent that there are

courses on “object-oriented software design” without a comparable course for

non-object-oriented languages or systems. Almost all current textbooks on software

engineering have at least a chapter on software engineering for object-oriented

languages. Most have more.

One of the more recent developments is the use of design patterns as a major

tool in object-oriented software development. An excellent starting point for un-

derstanding these patterns is the book Design Patterns [40], which not only gives

design patterns and their rationales, but also describes a good many of their uses

and pitfalls.

Most scientific software is not (yet) developed in object-oriented languages,

and there have been some important concerns about the ability of object-oriented

programs to provide the performance desired for high-performance computing.

Java, for example, is strongly object-oriented in its design, but this seems as much

a hindrance as a help for producing high-performance software. (See [11] and the

notes above on Java.)

Yet, object-oriented systems offer a great deal of value to the development of

scientific software. The problem is how to incorporate them into the standard ways

of programming scientific software to gain the flexibility they promise, but without

losing the performance that we want.

In this section we will concentrate on C++ as the object-oriented language of

choice. This is because, more than in almost any other object-oriented language,

the features of C++ were designed with efficiency in mind.
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8.6.1 The performance implications of object-oriented design techniques

There are three areas in which object-oriented design tend to result in poor perfor-

mance:

1. excessive time spent in object creation and destruction;

2. loss of control of placement of objects in memory;

3. excessive function call overhead as member methods and virtual methods (that is, meth-

ods that can be overridden through inheritance) replace direct access to data structures

and fixed functions.

Object creation and destruction is particularly important in dealing with overloaded

operators. For example, in C++, we can create a class of vectors, and overload the

addition and subtraction operators. When we use the operators, in code such as

Vector x(10), y(10), z(10), w(10);
w = x + y + z;

then the naive implementation will result in a new vector being created after forming

x + y and another new vector when this is added to z, which is then copied to w.

Another area where object creation tends to occur is in passing objects by value.

C++ provides reference types to mitigate this problem, while other object-oriented

languages like Java use a pass by reference model throughout for objects.

Replacing direct access to data structures with member functions is needed

in object-oriented design for encapsulation – with member functions the object

controls access to its internal data. Virtual methods provide flexibility in how objects

respond to requests while providing a consistent interface.

8.6.2 Avoiding constructors and destructors

Object creation and destruction can be major costs in object-oriented codes and

can often be avoided. One source of object construction is the passing of objects

by value; then a copy of the object should be passed, which results in the copy
constructor being called to create the copy. In C++, consider a Vector class

with a dot product

class Vector {
Vector(Vector &); // copy constructor
...
double dot(Vector y) { ... }
...

};
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The trouble with this interface is that y is passed by value, so that the copy con-

structor must be called whenever the dot member function is called. The local copy

inside dot must also be destroyed when the dot function returns. This results in

O(n) overhead (where n is the dimension of the vectors) for an O(n) operation,

which can be substantial.

It is better to use the interface

double dot(const Vector &y) const;

The interface shows that a reference (or pointer) to y is passed to dot, which is

more efficient; y cannot be changed by dot; neither can the implicit current object

(this in C++).

Syntactically, the member function is called the same way: x.dot(y), but

because only a reference is passed, there is no call to the copy constructor on entry

to the routine, and no call to a destructor when the routine dot returns.

Avoiding unnecessary object creation and destruction is harder in the context

of operator overloading, but still possible if we use some of the features of C++.

This is outlined in The C++ Programming Language [96, pp. 675–677]. From

the point of view of object-oriented programming, the trick is to create objects

which contain all the data needed for the operation, and delay carrying out the

operation itself until it can be done efficiently. These objects are called “composition

objects”, or compositors. These hold the data necessary for carrying out one or

more operations. When values are needed, a low-level routine that carries out the

operation is called (e.g., a saxpy operation y ← y + αx , or a matrix–vector multiply

and add z ← Ax + y).

Here are some examples of how to do this with matrix and vector data structures.

The basic data structures are classes MyMat and MyVec. The low-level routines

we use are as follows:

MyVec &add assign(const MyVec &v1, const MyVec &v2,

MyVec &out);

MyVec &mul assign(const MyMat &A, const MyVec &x,

MyVec &out);

MyVec &mul add assign(const MyMat &A, const MyVec &x,

const MyVec &y, MyVec &out);

When we define the matrix–vector product operator, the result should not be a

MyVec, but rather a structure that holds the matrix and the vector, or rather, pointers

or references to the actual matrix and vector. This structure is the MVmul class:

struct MVmul { // represents m*v

const MyMat *m; // use pointers

const MyVec *v; // to avoid copying
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MVmul(const MyMat & m, const MyVec & v)

{ m = & m; v = & v; }

operator MyVec(); // This computes m*v

};

Similarly, we create that Vadd class for holding a pair of vectors for addition:

struct Vadd { // represents v1+v2

const MyVec *v1, *v2;

Vadd(const MyVec & v1, const MyVec & v2)

{ v1 = & v1; v2 = & v2; }

operator MyVec(); // This computes v1+v2

};

We can create classes to hold the results of more than one operation, but this must

be done using the previous “one operation” compositors. Here is a matrix–vector

multiply and add class MVmuladd:

struct MVmuladd { // represents m*v1+v2

const MyMat *m;

const MyVec *v1, *v2;

MVmuladd(const MVmul &mv, const MyVec & v2)

{ m = mv.m; v1 = mv.v; v2 = & v2; }

operator MyVec(); // This computes m*v1+v2

};

These are created out of the basic MyMat and MyVec objects through the usual

arithmetic operators:

inline MVmul operator*(const MyMat &mm, const MyVec &vv)

{ return MVmul(mm,vv); }

inline MVmuladd operator+(const MVmul &mv, const MyVec &vv)

{ return MVmuladd(mv,vv); }

inline MVmuladd operator+(const MyVec &vv, const MVmul &mv)

{ return MVmuladd(mv,vv); }

inline Vadd operator+(const MyVec &v1, const MyVec &v2)

{ return Vadd(v1,v2); }
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These compositors are only “evaluated” when they are converted to the MyVec
class throught the MyVec() conversion operators. These conversion routines call

the low-level operation routines.

All this is declared before we define the MyMat and MyVec classes:

class MyMat {
string name; // for our test code

public:

friend class MyVec;

friend MyVec &mul assign(const MyMat &A,

const MyVec &x, MyVec &out);

friend MyVec &mul add assign(const MyMat &A,

const MyVec &x,

const MyVec &y, MyVec &out);

MyMat(string name) : name( name)

{ cout << ”Creating MyMat ” << name << ”\n”; }
˜ MyMat() { cout << ”Destroying MyMat ” << name << ”\n”; }
friend ostream &operator<<(ostream &s, const MyMat &x)

{ return s << x.name; }
};

class MyVec {
string name;

public:

friend class MyMat;

friend MyVec &add assign(const MyVec &x, const MyVec &y,

MyVec &out);

friend MyVec &mul assign(const MyMat &A, const MyVec &x,

MyVec &out);

friend MyVec &mul add assign(const MyMat &A, const

MyVec &x,

const MyVec &y, MyVec &out);

MyVec(string name) : name( name)

{ cout << ”Creating MyVec ” << name << ”\n”; }
˜ MyVec() { cout << ”Destroying MyVec ” << name << ”\n”; }
MyVec(const Vadd &vv)

{ add assign(*vv.v1,*vv.v2,*this); }
MyVec(const MVmul &mv)

{ mul assign(*mv.m,*mv.v,*this); }
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MyVec(const MVmuladd &mv)

{ mul add assign(*mv.m,*mv.v1,*mv.v2,*this); }
MyVec &operator=(const Vadd &vv)

{ return add assign(*vv.v1,*vv.v2,*this); }
MyVec &operator=(const MVmul &mv)

{ return mul assign(*mv.m,*mv.v,*this); }
MyVec &operator=(const MVmuladd &mv)

{ return mul add assign(*mv.m,*mv.v1,*mv.v2,*this); }

friend ostream &operator<<(ostream &s, const MyVec &x)

{ return s << x.name; }
};

We use these classes to perform the following operations:

cout << ”operation: w = u+v;\n”;

w = u+v;

cout << ”operation: z = A*u+v;\n”;

z = A*u+v;

cout << ”operation: z = A*(A*u+v)+z;\n”;

z = A*(A*u+v)+z;

cout << ”operation: z = A*u + A*v + w + z;\n”;

z = A*u + A*v + w + z;

cout << ”operation: A*(u+v) + w + z\n”;

z = A*(u+v) + w + z;

With diagnostic code to indicate when vector objects are created and destroyed, we

get the following output:

Creating MyVec u

Creating MyVec v

Creating MyVec w

Creating MyVec z

Creating MyMat A

operation: w = u+v;

add assign(u,v,w)

operation: z = A*u+v;

mul add assign(A,u,v,z)

operation: z = A*(A*u+v)+z;

Creating MyVec (A*u+v)

mul add assign(A,u,v,(A*u+v))

mul add assign(A,(A*u+v),z,z)
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Destroying MyVec (A*u+v)

operation: z = A*u + A*v + w + z;

Creating MyVec (A*v)

mul assign(A,v,(A*v))

Creating MyVec (A*u+(A*v))

mul add assign(A,u,(A*v),(A*u+(A*v)))

Creating MyVec ((A*u+(A*v))+w)

add assign((A*u+(A*v)),w,((A*u+(A*v))+w))

add assign(((A*u+(A*v))+w),z,z)

Destroying MyVec ((A*u+(A*v))+w)

Destroying MyVec (A*u+(A*v))

Destroying MyVec (A*v)

operation: A*(u+v) + w + z

Creating MyVec (u+v)

add assign(u,v,(u+v))

Creating MyVec (A*(u+v)+w)

mul add assign(A,(u+v),w,(A*(u+v)+w))

add assign((A*(u+v)+w),z,z)

Destroying MyVec (A*(u+v)+w)

Destroying MyVec (u+v)

Done!

Destroying MyMat A

Destroying MyVec z

Destroying MyVec w

Destroying MyVec v

Destroying MyVec u

As can be seen from the output, more complex expressions can be handled this

way, but objects will be created. Furthermore, since the operations are inlined, the

decisions about what temporary objects to create and destroy is made at compile

time. If no objects are created or destroyed, then there is no run-time penalty! This

code does not check for bad in situ operations such as z ← Az + u that overwrite

the output. This can be done by means of checks within mul add assign and

mul assign that the output pointer is not equal to the pointer to the vector being

multiplied. If theMyVec andMyMat structures do not share memory, then we would

need only to check the addresses of the structures in order to avoid in situ operations.

8.6.3 Granularity of routines

In order to encapsulate the data inside objects, direct access to the internal data

structures is usually disallowed. Instead, accessor member functions are usually
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defined which provide the necessary access, but in a controlled way. This impacts

performance because using an accessor function means that there is some function

call overhead. Also, there may be checking code inside an accessor function (e.g.,

to check that an array index is within bounds), which may be redundant when the

larger context is understood. Consider, for example, a Vector class

class Vector {
private:

double *array; // vector entries stored here

int dim; // dimension of vector

public:

Vector(int dim);

// ...

double &operator[](int i)

{
if ( i < 0 }} i >= dim )

throw new VectorError(”Outside array bounds”);

return array[i];

}
// ...

};

We can avoid the overhead of the function call by using inlining. Defining the

function inside the class declaration like this makes this function available for

inlining in C++. However, we still have the overhead for the array bounds checking

code. This can have an excessive impact on code such as this:

Vector x(10);

double sum;

sum = 0.0;

for ( int i = 0; i < 10; i++ )

sum = sum + x[i];

since the array bounds checking is done for each value of i, unless the compiler

has a particularly powerful optimizer. While [11] (from 1998) reported that, for

at least one Java system, array bounds checking only added 20% to the total time

for accessing an array entry, the extra code may disrupt other optimizations, such

as using fused multiply-adds. This is an area where known compiler optimization

techniques can be applied; it is mostly a matter of the capabilities of the compiler

used and the optimization level requested.

Note that member functions have direct access to the underlying data, so that these

should not have any performance handicaps. This also means that member functions

involving significant computation should be preferred to writing equivalent code
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via accessor functions. For example, it is better for a Vector class to provide a

dot function for computing dot products, and a sum function for summing entries,

than for the user of the class to write new functions to do this.

Note that in the C++ Standard Template Library the vector template classes

have two access operators: x[i] that does not do bound checking, and x.at(i)
that does do bound checking.

8.6.4 Template programming

Since its beginning, C++ has been designed for efficiency. Although templates

were a relatively late addition to C++ (coming after Ada’s generic features),

these continue the tradition of C++ providing efficient features.

Templates are one mechanism for providing generic programming where one

piece of source code can be used for different types without requiring or forc-

ing conversions. Consider, for example, the following template for computing the

maximum of two objects:

template <class T>

T max(T a, T b)

{ return ( a > b ) ? a : b; }

This can be used to compute the maximum of two integers, floating point numbers,

or any other class where the “<” operator is overloaded.

#include <iostream>

#include ”max-generic.h”

int main(int argc, char *argv[])

{
std::cout << ”max(3,7) = ” << max(3,7) << std::endl;

}

Not only are there template functions, but also template classes (or types).

Templates are processed directly by the compiler. As a result there is no run-time

overhead to templates, unlike the use ofvirtual functions which are heavily used

in inheritance-based polymorphism. In addition, the modern C++ template mech-

anism supports partial and complete specialization. This means that specific cases

for which there are especially efficient implementations can be handled more effi-

ciently without the template user being aware of the different implementation(s).1

1 This means that if you use the template specialization mechanism, you need to be especially vigilant that the
different implementations are correct and consistent.
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Here is an example of how templates can be used for implementing fixed-

dimension vectors, and then specializing for two-dimensional and three-

dimensional vectors with loop unrolling “by hand”. First, here is an outline of

the general template for these fixed-dimension vectors:

template <int dim>

class FDVec {
private:

double e[dim];

public:

FDVec()

{
for ( int i = 0; i < dim; i++ ) e[i] = 0.0;

}

// Member function: x.sum(y,out): returns out <- x + y

...

// Member function: x.mult(s,out): returns out <- s*x

...

};

Here is how the sum function can be implemented in general:

FDVec<dim> &sum(const FDVec<dim> &y, FDVec<dim> &out)

{
for ( int i = 0; i < dim; i++ )

out.e[i] = e[i] + y.e[i];

return out;

}

Since these are defined inside the class, these routines can be inlined, which will

eliminate the function call overhead, and make for more efficient code.

In spite of this, for two- or three-dimensional vectors, these loops are too short to

be efficient. The amount of code that is executed is too little to justify the expense

of setting up the loop. This is especially true on pipelined CPUs like the Intel

CPUs, where the pipeline must be flushed when the loop exits. It would be much

more efficient to have “straight through” code. We do not need to write new classes

D2Vec and D3Vec for two- and three-dimensional vectors. Instead we specialize

the FDVec template for dim = 2.
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// Specializations of FCVec template for 2-dim’l vectors

template<>

class FDVec<2> {
private:

double e[2];

public:

FDVec() { e[0] = e[1] = 0.0; }
FDVec<2> &sum(FDVec<2> &y, FDVec<2> &out)

{
out.e[0] = e[0] + y.e[0]; out.e[1] = e[1] + y.e[1];

return out;

}
FDVec<2> &mult(double s, FDVec<2> &out)

{
out.e[0] = s*e[0]; out.e[1] = s*e[1];

return out;

}
}

An alternative that avoids re-writing a lot of code for each specialization to one,

two, and three dimensions is to use template recursion. Here is an example of how

you can use it for adding vectors:

// Example of use of recursive templates for loop unrolling

template<typename T, int len>

struct AddOp {
static void add(const T *a, const T *b, T *out)

{
AddOp<T,len-1>::add(a,b,out);

out[len-1] = a[len-1] + b[len-1];

}
};

// Specialization to act as base case for recursion

template<typename T>

struct AddOp<T,0> {
static void add(const T *a, const T *b, T *out)

{ }
};
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The recursion is mainly handled by the first declaration of theAddOp template. The

specialization takes care of the base case in the recursion (in this case zero). Then

adding, for example, three-dimensional vectors can be done with loops unrolled at

compile time by

AddOp<double,3>::add(x,y,z);

We compiled this using the DJGPP C++ compiler with the -O2 optimization

switch. Careful inspection of the assembly code generated showed that it was

equivalent to the desired code:

z[0] = x[0] + y[0];

z[1] = x[1] + y[1];

z[2] = x[2] + y[2];

Template recursion and template specialization have been particularly important in

systems such as Blitz++ [102] which give performance that can match, and in some

cases exceed, optimized Fortran without giving up the benefits of object-oriented

programming.

There is a cost to sophisticated template programming. Firstly, there are limits on

how deeply compilers can expand recursive templates. Often it is possible to control

this limit by means of compiler options or pragmas embedded in the code. There

is a similar limit to the depth of inlining that a compiler can carry out. Secondly, in

large programs that use a great deal of template expansion, this can result in much
longer compilation times, sometimes taking hours to compile.
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Design for testing and debugging

This section is about how you should design your software so it is easy to test and

debug. Bugs are inevitable. But we should try to eliminate them as quickly and

thoroughly as we can. To do this, we need to test the code thoroughly. The best way

to do this is to automate the testing. When bugs are uncovered, the situation that

revealed the bug should be added to the set of (automated) tests. When changes

are made, re-do the tests. This is known as regression testing and is how many

software companies ensure the quality of their software.

Memory allocation and the associated debugging issues are dealt with in Chap-

ters 14 and 15.

9.1 Incremental testing

This is perhaps the most crucial single technique in designing for debugging. Test

as you go. Make sure each piece is working correctly before you put them together.

Don’t try to construct a full-featured program from the beginning, but make sure

that you can get a “bare bones” version going. For any feature you want to add, first

devise a test for what this feature does. Then start building the feature, checking it

against the test you devised. This way you can test each new addition while having

confidence that the base system is behaving correctly.

The Extreme Programming approach [21] is even stronger: Before you start

writing code, write the test code and data. Furthermore, you should automate the

tests, and add new tests as you refine, debug, and test the code. Whenever you feel

that you have things working, run the complete set of tests. This ensures that you

haven’t broken anything that you thought was fixed. If any of the tests fail, you

have to find out why and fix it.

A version of this approach is not uncommon in commercial software companies.

Typically, the software is built each night and the automated tests are run. If some

change breaks the “nightly build”, then the author of that change is notified. At

118
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Microsoft, for example, software development is not allowed to begin until the

testers have OK’d the specifications. The specifications are the basis for the tests.

Furthermore, every programmer is teamed up with a tester to carry out basic tests on

new modules before they are made part of the “nightly build” [107, pp. 269–272].

Many scientific software systems are large and need many parts in place and op-

erational before the whole can work. Incremental testing can still work here. Take,

for example, a finite element program. There are many parts to this: geometry spec-

ification, mesh generation, matrix assembly (forming the linear system to solve),

the linear solver(s), postprocessing, and visualization. We want to start testing well

before all of these pieces (even very simplified ones) are put together. Many of

these parts are going to be built around their own data structures or databases. Start

with these parts. Write tests to see that these data structures are built properly and

represent what they are intended to represent. Put the routines into libraries (or

sub-libraries) so we can link test programs against the routines. Remember: keep

the old tests to make sure that we haven’t broken anything that was working before.

Another aspect of large-scale software systems is integration. That is, we need

to be able to put all the parts together, so that they will be able to communicate

with each other correctly. To do this we need to put together a minimal end-to-
end system. How can we do that quickly? Perhaps we could start with just the

linear solver and the matrix assembly parts. The linear solver can be just a standard

dense LU factorize and solve routine(s), like the LAPACK routines SGETRF and

SGETRS – there are lots of versions of this that are easy to code or use directly

(but you will test it separately first, of course). The matrix assembly part could take

a hand-written triangularization of a very simple domain (a square, or even just

an interval in one dimension) and produce the matrix (just a simple dense matrix

to start with; no fancy sparse matrix data structures yet) for a simple differential

equation (like d2u/dx2 = f (x)). With this we can start integrating the system early

on. Later we will modify the interfaces between these to pass sparse matrices, or

perhaps even more sophisticated data structures, and use more sophisticated linear

solvers. Note that the interfaces that we have may have to be changed later if we

need, say, mesh information in the linear solver, as might happen with multigrid

types of methods. But this can be handled when you get to it, and when you do,

you can be confident that the rest of the system works as it should.

A word of warning about memory bugs: to catch some memory bugs, such as

modifying array elements that are actually outside the array, you might need a

debugging memory allocation library. So this should be part of the test set-up. You

should also set any compiler or program switches to maximum testing of inputs

and operations, such as array abounds checking where this is available. These bugs

can be insidious and difficult to locate, so find them early when it is relatively easy.

Don’t trust a program that seems to run fine one time but crashes mysteriously
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another time. There may be memory bugs that are causing the problems both times,

but only cause crashes when the right combination of circumstances appear.

Some bugs show up as slow convergence, for example if you are using Newton’s

method, or a variation of it. Newton’s method normally converges very quickly

when you are close to the solution (and the Jacobian matrix is not nearly singular).

If you find that convergence is linear or worse even though it is converging, check

that the code for computing the Jacobian matrix is consistent with the code for

computing the function whose zero you are computing. A bug here might not stop

Newton’s method from converging, but it is likely to converge slowly.

Similar things can happen in other kinds of scientific software. For example, in

Ordinary Differential Equation (ODE) solvers, the computed results may converge

to the correct limit. But if they do so slower than the asymptotic rate predicted by the

theory, then there may be a bug. (You might also have a stiff ODE, for example, and

the “stiff order” may be different from the conventional order of the ODE solver.)

9.2 Localizing bugs

The hardest part of debugging is to find where the bug is. Once you have identified

the section of code where the bug is to within a few lines, you can check the variable

values, parameters passed to any routines and the returned values. If the bug occurs

in a function call, and you have the source code you can debug that function –

find out where the error occurs in that function, and repeat if necessary. If you

don’t have the source code, you can check the documentation you have (if writing

C/C++, start with the header file) about that routine to see what it needs and what

assumptions it makes.

Debuggers can help with localizing errors, especially if the program crashes.

The most straightforward use of the debugger is to determine where the program

crashed via a stack backtrace or possibly identifying the source code lines where

the program crashed. This way you can at least find out the routine where the

program is crashing.

Bugs that involve over-writing memory outside of an array do not necessarily

cause the program to crash there. The program could crash later on. This makes these

bugs much harder to localize. To track these down, see Chapter 15 on debugging

memory problems.

9.3 The mighty “print” statement

While it is often derided, there is truly no better way to get started with debug-

ging than with “print” statements. While debuggers are powerful tools, generating

human-readable information is invaluable (and can often be used inside debuggers).
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And since most of the time what we want to do is to localize the bug, information

should be printed out about where we are. We used to write statements (in C) like

printf(”Checkpoint A\n”);

...

printf(”Checkpoint B\n”);

...

printf(”Checkpoint C\n”);

In C this can be automated rather better with a macro:

#ifdef DEBUG

#define checkpoint() \
printf(”Checkpoint at line %d in file \”%s\”\n”,\
LINE , FILE )

#else

#define checkpoint() /* no printing */

#endif

A similar macro can be implemented in C++. Thanks to the built in C macros

LINE and FILE , this checkpoint macro will tell you exactly where you are in

the source code. We can use this macro in our code like this:

/* some code */

checkpoint();

/* some more code */

and it produces output like this:

Checkpoint at line 8 in file ”checkpt-eg.c”

Next you will need to print out results from your code at selected places. This

you will need to check. Usually you will do this with small problems so you are

not overwhelmed. But sometimes, problems only become noticeable with larger

problems. How do you avoid getting overwhelmed with data? First use the computer

to do most of the checking for you. If you can check that a data structure is self-

consistent, you can print out a message when it first discovers an inconsistency. Or

perhaps the results are not consistent with the inputs.

Suppose we are trying to solve a linear system Ax = b. For now, let’s suppose that

A is a small matrix, so we can store it in main memory without difficulty. However

you solve it, keep the matrix. Then when the computer tells you that the answer is

x , print out the norm of the residual ‖Ax − b‖. (Use your favorite norm; if you are

writing things from scratch, just use the infinity norm: ‖r‖∞ = maxi |ri |, which is

easy to compute.) If the number is of the order of unit roundoff (≈ 2 × 10−16 for
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double precision) times the norm of A (‖A‖∞ = maxi
∑

j |ai j |) then all is well. It

can even be bigger by 10 or even 100 times this value without problems. But if it

is much bigger than this, you have a problem. It may be hard to solve a system of

equations, but it is almost always easy to check a system of equations.

Loops can result in a lot of print out; there can be megabytes of output which can

be overwhelming. How can we reduce this? One way is by getting the computer to

give us summary information, like the residual norm ‖Ax − b‖ instead of the vector

Ax − b. Even so, we might get megabytes of print out. One way to get a handle

on this is to periodically print out headings, and (on Unix) to pass this through the

filters more or less, or use a text editor. (Note that less is actually better than

more because it gives you the ability to go backwards through the output.) Both

more and less allow you to search for text strings. Use this to go to headings in

the output, skipping over the uninteresting material in the middle. This way you

can check individual numbers and operations even in many megabytes of output. If

it is small enough (e.g., only a few megabytes) you can send the output to a file and

use your favorite editor to do the same thing: scan through the file for the heading

strings that tells you where the important information is.

9.4 Get the computer to help

There are other ways in which you can get the computer to help you with testing and

debugging. One of the simplest ways is to print out easy-to-understand (human-
readable) information contained in your data structures. In fact, whenever you

create a new data structure, one of your first tasks should be to write an output

routine so you can see what is inside your new data structures. It is often helpful to

have a second version which prints out essentially everything in your data structure

(replicated data, scratch area, pointer addresses, etc.) so that you can check that the

internal data structures are at least self-consistent.

9.4.1 Print routines

For printing the spline function data structure, you should have something like this:

void spline print(FILE *fp, spline *s)

{
int i;

fprintf(fp,”Spline: ”);

if ( s == NULL )

{
fprintf(fp,”NULL\n”);

return;
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}
fprintf(fp,”length: %d\n”, s->length);

fprintf(fp,”xlist: ”);

for ( i = 0; i < s->length; i++ )

fprintf(fp,”%20.14g ”, s->xlist[i]);

fprintf(fp,”\n”);

fprintf(fp,”ylist: ”);

for ( i = 0; i < s->length; i++ )

fprintf(fp,”%20.14g ”, s->ylist[i]);

fprintf(fp,”\n”);

fprintf(fp,”Mlist: ”);

for ( i = 0; i < s->length; i++ )

fprintf(fp,”%20.14g ”, s->Mlist[i]);

fprintf(fp,”\n”);

}

The output of this print routine looks like this:

Spline: length: 5

xlist: 0 1 3 4.5 5

ylist: 2 -1 0.5 3 1

Mlist: 0 0 0 0 0

Then we can write a function spline dump which also prints out the address of

the pointers s->xlist, s->ylist and s->Mlist. This will help to make sure

that you have really allocated these arrays properly. Null values or repeated values,

or values that are too close together are a sign that there is a bug in the way the data

structure is constructed. Here is typical output from such a routine:

Spline: @ 91a10 length: 5

xlist @ 91a28: 0 1 3 4.5 5

ylist @ 91a58: 2 -1 0.5 3 1

Mlist @ 91a88: 0 0 0 0 0

Note that current debuggers allow the user to call routines interactively; calling a

print routine can give useful human-readable information about the data structures

under investigation.

9.4.2 Input routines

If you want to do interactive testing, then you should definitely write an input

routine. This should read in data in the same format as your print routine outputs.
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In fact, if you are careful, you can read in exactly what was printed out. This is a

useful design rule in general, although not everyone follows it. MATLAB does not,

for example. You cannot cut and paste MATLAB’s output to use as input.

For the code below we use some macros to simplify the memory allocation calls

in C:

#define NEW(type) ((type *)malloc(sizeof(type)))

#define NEW ARRAY(num,type) \
((type *)calloc((size t)(num),sizeof(type)))

Note that we use malloc and calloc to allocate memory as needed. But we

need to check the returned value to see that it is not NULL before proceeding, in

case the memory wasn’t allocated. Also, these macros ensure that the correct types

are passed and that the type of the returned pointer matches the type used for the

sizeof operation.

Here is how to program an input routine spline read that reads the data

printed by spline print:

spline *spline read(FILE *fp)

{
int i, length;

spline *s;

/* read header */

if ( fscanf(fp,” Spline: length:%u”,&length) < 1)

return NULL;

s = spline create(length);

/* read xlist */

fscanf(fp,” xlist:”);

for ( i = 0; i < length; i++ )

if ( fscanf(fp,”%lf”,&(s->xlist[i])) < 1 )

spline error(”spline read: fscanf error”);

/* read ylist */

fscanf(fp,” ylist:”);

for ( i = 0; i < length; i++ )

if ( fscanf(fp,”%lf”,&(s->ylist[i])) < 1 )

spline error(”spline read: fscanf error”);

/* read Mlist */

fscanf(fp,” Mlist:”);

for ( i = 0; i < length; i++ )
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if ( fscanf(fp,”%lf”,&(s->Mlist[i])) < 1 )

spline error(”spline read: fscanf error”);

return s;

}

We should also check that thefscanf calls were successful in finding the numbers

we put into the arrays. We can do this with the following lines:

if ( fscanf(fp,”%lf”,&(...)) < 1)
/* error return */ ... ;

The above routine returns NULL if there has been an error. There are other ways

of handling errors, and different languages have different support for error and

exception handling. (More on that in the next section.)

Once you have these routines, you should of course test them. Set up some

input data, and then print it out. Once you have it going properly, you can save the

output in a file so you have a quick (and automatic) test that the input and output

routines are working correctly. Now we have a routine that produces output that is

both human and machine readable. Note that interactive input requires a different

routine which will be considerably more complex. If is often said that the most

complex part of any program is its user interface. But user interfaces are a topic

for another book.

9.4.3 Testing mathematics

Now let’s set up a test to see if the spline function evaluation routine is working

correctly. First we need to have an evaluation routine to test:

/* spline eval -- evaluates spline s at point t */

double spline eval(spline *s, double t);

This can be tested by using the formulas that define the spline function (say from

a numerical analysis text like Atkinson [4, pp. 166–173] or Burden and Faires [18,

pp. 141–152]). Since our data structure uses Mi from Atkinson’s presentation, we

use the formulas that he gives directly in terms of these: let hi = xi+1 − xi . Then

for xi ≤ x ≤ xi+1,

s(x) = (xi+1 − x)3 Mi + (x − xi )
3 Mi+1

6hi
+ (xi+1 − x)yi + (x − xi )yi+1

hi

− hi

6
[(xi+1 − x)Mi + (x − xi )Mi+1]. (9.1)
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Remember that even textbooks occasionally have mistakes, so we should verify

this formula for ourselves if we can. If we fix some values we can compute a few

values “by hand” and then write a short routines that tests these few values. Here

is an example in C:

double t1 xlist[] = { 0.0, 1.0, 3.0, 4.5, 5.0 },
t1 ylist[] = { 2.0, -1.0, 0.5, 3.0, 1.0 },
t1 Mlist[] = { 0.0, 1.0, 3.0, 0.0, -1.0 },
t1 points[] = { 1.0, 1.5, 1.7,

2.3, 4.6 },
t1 values[] = { -1.0, -1.3125, -1.3395,

-0.9805, 2.608 };
spline *s;

int length = 5, n points = 5;

s = spline create(5);

spline setxy(s,t1 xlist,t1 ylist,5);

for ( i = 0; i < s->length; i++ )

s->Mlist[i] = t1 Mlist[i];

fail = 0;

for ( i = 0; i < 5; i++ )

if ( fabs(t1 values[i] -

spline eval(s,t1 points[i])) > 1e-12 )

{
printf(”Spline eval’n test failed for test point %g\n”,

t1 point[i]);

fail = 1;

}

You should note some things about the test set used. The spline itself does not have

equally spaced knots, and the spacings are not all integer. It is good to avoid places

of symmetry for tests: the test points are not all at the knots (one is, but the others

aren’t). The test points are also not at the midpoints; however, they are integer

multiples of 0.1. This means that we can actually represent the true values exactly

once we know these values to an accuracy of 10−4. The true values were computed

interactively using MATLAB. Even though we have the exact values, we don’t test

for exact equality – remember we shouldn’t test floating point numbers for equality!

Now we can test the spline construction routines. There are a number of different

ones depending on the kind of spline you wish to construct: natural splines, peri-

odic splines, clamped splines (derivatives at the end points are specified), or “not-

a-knot” splines. We can construct a piecewise cubic function that has continuous

second derivatives, and then work out the input to generate this function and its
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representation as a spline structure. Since natural splines have zero second

derivatives at the end points, we will start with one of those. As a cubic spline

is piecewise cubic, its second derivative is piecewise linear. Then we can integrate

twice to get the spline function itself. So let’s start with something like:

s ′′(x) =
⎧⎨⎩

x, 0 ≤ x ≤ 1,

1 − 3
2
(x − 1), 1 ≤ x ≤ 3,

−2 + 2(x − 3), 3 ≤ x ≤ 4.

(9.2)

Integrating once with s ′(0) = 1 gives

s ′(x) =

⎧⎪⎨⎪⎩
1 + 1

2
x2, 0 ≤ x ≤ 1,

3
2

+ (x − 1) − 3
4
(x − 1)2, 1 ≤ x ≤ 3,

1
2

− 2(x − 3) + (x − 3)2, 3 ≤ x ≤ 4.

(9.3)

Integrating again with s(0) = −1 gives

s(x) =

⎧⎪⎨⎪⎩
−1 + x + 1

6
x3, 0 ≤ x ≤ 1,

1
6

+ 3
2
(x − 1) + 1

2
(x − 1)2 − 1

4
(x − 1)3, 1 ≤ x ≤ 3,

3 1
6

+ 1
2
(x − 3) − (x − 3)2 + 1

3
(x − 3)3, 3 ≤ x ≤ 4.

(9.4)

This is the sort of calculation that should be double-checked, of course. You could

try using Maple or Mathematica or MATLAB’s symbolic toolbox to do these com-

putations, or just to check them. We can then set the xlist and ylist arrays

in the spline structure, and get the natural spline function construction func-

tion to compute Mlist. We know what Mlist should be: Mi = s ′′(xi ). We can

automatically check the resulting Mlist.

double t2 xlist[] = { 0.0, 1.0, 3.0, 4.0 },
t2 ylist[] = { -1.0, 1.0/6.0, 19.0/6.0, 3.0 },
t2 Mstart[] = {-1.0, -1.0, -1.0, -1.0 },
t2 Mlist[] = { 0.0, 1.0, -2.0, 0.0 };

spline t2 dat;

t2 dat.length = 4; t2 dat.xlist = t2 xlist;

t2 dat.ylist = t2 ylist; t2 dat.Mlist = t2 Mstart;

spline make natural(&t2 dat);

for ( i = 0; i < 4; i++ )

if ( fabs(t2 dat.Mlist[i]-t2 Mlist[i]) > 1e-12 )

{
printf(”Error in computed Mlist[%d] = %g ”,

i, t2 dat.Mlist[i]);

printf(”Exact value: %g\n”, t2 Mlist[i]);

}
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Note that we have specified to high precision what we expect from the test. For

every test you should have a clear way of determining if the test was successful;

the more precise and more stringent these conditions are, the better. Often you can

check your computations against other ways of computing the same thing, but at

the bottom level, we need to do some calculations by hand. We can test various

properties of what we compute, but these tests can be fooled unless we do some

hand-checking as well.

We are testing a class of implementations of cubic splines – those that compute

Mlist[i]= s ′′(xi ). If we used the approach of Burden and Faires [18] where the

spline is represented as a cubic function ai x3 + bi x2 + ci x + di on [xi , xi+1), these

tests would not be applicable.

Which tests would be applicable for any algorithm? We can’t computationally

test directly for equality of functions in general. While it is not possible to write

a guaranteed computational test for equality of functions, we can write computa-

tional tests for certain kinds of functions. For example, we can test if two cubic

polynomials are the same by checking that they have the same values at any set of

four distinct points. In fact this is part of a more general result that if two degree n
polynomials agree at n + 1 points, then the two polynomials are the same. This is

a consequence of the theory of polynomial interpolation [4]. Since a cubic spline

is cubic polynomial on each interval [xi , xi+1] we can check four spline values on

each interval [xi , xi+1] to see if the spline is a specific piecewise-cubic function.

But can we tell if a given function f is a cubic polynomial? No matter how

many function evaluations f (z j ) we compute, even if all of these match a cubic

polynomial p(z) there could be a point z∗ where f (z∗) �= p(z∗). In spite of this,

we can develop stringent computational tests that catch most, but not all, functions

that are not cubic polynomials. If a function passes the test, but is not a cubic

polynomial, it is a false positive. Such a test could be based on divided differences

[4], which is also related to polynomial interpolation. For a cubic polynomial, all

4th- and higher-order divided differences should be zero. Some allowance should be

made for roundoff error. How large should this allowance be? This requires careful

analysis of the divided difference algorithm. If η0 is a bound on the error in the

function evaluations, then the error in the kth-order divided differences (assuming

no further roundoff) for equally-spaced points x0, x1, . . ., xk is 2k(hk k!) where the

spacing is h = x1 − x0 = x2 − x1 = · · · = xk − xk−1.

When you are designing initial test cases for numerical algorithms, don’t use very

large or very small (or “very extreme”) values for your inputs. Since we always

have roundoff errors, even if nothing else, we have to ignore small levels of error.

If you use extreme values for your inputs, then these values could mean that some

errors that are due to bugs will be smaller than our threshold for recognizing an

error. Use modest values so that, for example, all terms in a sum are of similar sizes.
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In selecting general test values, avoid “special” cases such as zero, or all values the

same, or symmetrical inputs, etc. It may be worth creating tests for these special

cases to make sure that they are handled correctly. But do not consider tests for

special cases as any kind of substitute for general tests. Special case tests often

conceal the effects of parts of the routine, and so conceal bugs in those parts.

Later you will want to “stress test” your code. Then large, extreme, and degener-

ate cases will be important, but the results will require more interpretation. For now

we are focusing on correctness – removing basic bugs and misimplementations.

For more on stress testing, see Section 9.10.

For methods like Newton’s method it is particularly important that the Jacobian

matrix computed is consistent with the function whose zeros we are trying to find.

One of the most common bugs is computing an incorrect entry in the Jacobian

matrix. How can we use the computer to help identify errors here? The Jacobian

matrix can be approximated by using finite differences. You should consider writing

a routine for computing approximate Jacobian matrices via finite differences for

testing (exact) Jacobian matrix code. The error threshold will usually be much

higher than unit roundoff, but you will be able to catch most common bugs this

way. A routine like this might already be available; if so, use it.

9.5 Using debuggers

Debuggers are very useful for localizing bugs. One of the more popular debuggers

in Unix environments is the GNU debugger gdb. There are also a number of GUI

interfaces to gdb. One that is popular under Linux is ddd.

Debuggers can be most useful when the debugging information is incorporated

into the executable file at compile time. For most Unix compilers this means using

the -g compiler switch. For many compilers this is incompatible with the opti-

mization (-O) switches, although not for the GNU compilers (gcc, gpp, etc.). Be

warned, however, that optimization typically re-arranges code, and often strips the

information that debuggers use.

One of the most important uses of a debugger is to find where (and why) a

program crashed – to do this the debugger must be loaded with the executable file

and the file containing a dump of the program’s memory and status. In Unix the

dump files are called core files and are usually called core or core.* where

“*” is the process number. Once the files are loaded, a stack backtrace shows

what routines were active when the crash occurred, and often the line in the source

code where it occurred. Usually local variables can be printed, and routines called.

Programs can also be run directly under the debugger’s control, with breakpoints
selected where the debugger will stop execution. This neither needs nor uses acore
file. When this happens the value of variables can be viewed and the status of the
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program checked (again by looking at the stack backtrace). Provided the program

has been compiled with debugging information included (-g for Unix compilers

and gcc), debuggers can identify the line of source code where the event happened.

9.6 Debugging functional representations

In this section we will look at some of the issues in testing consistency of objects

represented as functions. These approaches are black box approaches that just looks

at how the input and output are related. You should also do white box testing that

tracks how the function computes its values.

If we are using a functional representation of a matrix, we need to be careful

that we really are representing a matrix and not something else. What we are really

representing is a linear operator, which must satisfy the equation

A(αx + βy) = α Ax + β Ay for all x and y and real α, β.

While we cannot possibly test this for all vectors x , y and real numbers α and β,

we can test randomly generated vectors x , y and randomly generated values of α

and β. For repeatability these vectors and values should be pseudorandom (that

is, generated by some deterministic process), and the seed of the (pseudo)random

number generator should be fixed before the test. We should automate these tests

by writing a routine to compare A(αx + βy) and α Ax + β Ay for a number of

pseudorandomly generated x , y and pseudorandomly generated α, β. Of course,

we cannot expect these to be exactly equal because of roundoff errors. The size of

the errors should be a modest multiple of n ‖A‖(|α| ‖x‖ + |β| ‖y‖) u; recall that u
is the roundoff error. Here “modest” would be something like 10 or 20. If we had

a buggy nonlinear function, the nonlinearities may depend on the size of x and y.

So we should be able to vary the sizes of x and y. Using Java with the Jama matrix

library [11, 10] we might write the body of a test function like this:

for ( int i = 0; i < 3; i++ )

{
double alpha = r.nextDouble() - r.nextDouble();

double beta = r.nextDouble() - r.nextDouble();

Matrix x = Matrix.random(dim,1).minus(Matrix.random(dim,1));

Matrix y = Matrix.random(dim,1).minus(Matrix.random(dim,1));

Matrix Az1 = A.times(x).times(alpha).

plus(A.times(y).times(beta));

Matrix Az2 = A.times(x.times(alpha).plus(y.times(beta)));

if ( Az1.minus(Az2).normInf() > eps )

return false;

}
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Note that r is a pseudo-random number generator. Other situations that can be

handled in a similar way are tests comparing a matrix with its transpose where both

represented by functions A and Atransp respectively. The crucial property is that

yT(Ax) = xT(AT y) for all x and y.

Another example is comparing a nonlinear function f and its gradient ∇ f . We can

compare ( f (x0 + εd) − f (x0))/ε with ∇ f (x0)Td. Since the errors in this approxi-

mation are more than just roundoff errors, we have to be careful in how we choose the

tolerance. The choice of this tolerance depends on the problem involved. There are

two sources of error: one is due to the error in computing function values, including

roundoff error; the other is due to the error in the linear approximation. Suppose the

error in computing the function values is ≤ η (for example, η = 10 u maxx | f (x)|
would usually work). Then the error in ( f (x + ε d) − f (x))/ε would be at most

(2η + u max(| f (x + ε d)|, | f (x)|))/ε. The error in ( f (x + ε d) − f (x))/ε due to

the linear approximation is 1
2
εdT∇2 f (z) d, where z is some point on the line

between x and x + ε d, and ∇2 f (z) is the matrix of second derivatives. Adding

these two error bounds gives a suitable tolerance. If you don’t know the second

derivatives, use an estimate multiplied by a modest “fudge factor” as the tolerance.

When designing tests of this kind, a good guiding principle is that of scale
invariance. Ideally, scaling a function and its inputs should not alter the results of

a test like this. Dealing with scaling of the inputs may mean making d an input to

the routine, so we will first consider scaling the function itself:

f (x) = α f̃ (x), α > 0.

Then ∇ f (x) = α ∇ f̃ (x), and f (x + εd) − f (x) = α( f̃ (x + εd) − f̃ (x)). This

means that

f (x0 + εd) − f (x0)

ε
− ∇ f (x0)Td = α

[
f̃ (x0 + εd) − f̃ (x0)

ε
− ∇ f̃ (x0)Td

]
.

However, since ‖∇ f (x0)‖ = α ‖ f̃ (x0)‖, we note that ‖∇ f (x0)‖ ‖d‖ does not scale

with α:

‖ f (x0 + εd) − f (x0) − ε ∇ f (x0)Td‖
ε‖∇ f (x0)‖ ‖d‖ = ‖ f̃ (x0 + εd) − f̃ (x0) − ε ∇ f̃ (x0)Td‖

ε‖∇ f̃ (x0)‖ ‖d‖ .

This approach would work well in most situations, but it is vulnerable to ∇ f (x0) ≈
0. To deal with this there are some possibilities depending on how much user control

is expected. The first is to have the user input a rough estimate of the scaling of the

function α0 and report

‖ f (x0 + εd) − f (x0) − ε ∇ f (x0)Td‖
ε (‖∇ f (x0)‖ + α0) ‖d‖ .
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Alternatively, for a non-expert, it may be best to avoid requiring a guess of the

scaling of f and instead report

‖ f (x0 + εd) − f (x0) − ε ∇ f (x0)Td‖
ε (‖∇ f (x0)‖ + 1) ‖d‖ .

9.7 Error and exception handling

Errors happen no matter what you do. What you do when an error happens is (in

part) up to you.

Ideally you should check all the preconditions needed for a piece of software to

work correctly. This is not always possible, especially when you have efficiency in

mind. But if you at least do “sanity checking” to make sure that the data is self-

consistent before continuing, you are likely to signal bugs close to their source and

make testing and debugging much easier. This sort of checking usually has little

impact on efficiency. If there is an impact on efficiency, then the checking code can

be included inside if ( debug ) statements (or #ifdef/#endif in C/C++)

so that the checking code can be removed by the compiler.

What should you do when the data passed to a routine are not self-consistent or

clearly not appropriate? This will depend on the software environment in which

you are working.

If you are using a C-type language, and the function you are in returns a pointer,

then passing a NULL pointer is one way of signaling a major failure. This is

what malloc does when it can’t allocate memory. The user has to remember to

check for this before continuing. This is the approach taken in the spline function

spline create above. This approach is not appropriate for functions returning

ordinary scalar values. For example, for spline eval to return zero on an error

will mask the fact that an error has occurred, making it hard to find the bug that

would follow.

A traditional Fortran approach is to pass (by reference) an integer variable called

ifail, which is set to a particular value according to the error that occurs (usu-

ally negative), or some other value to indicate success (and perhaps some other

information about the results of the routine). This should be checked by the calling

routine, and the calling routine should probably pass ifail back to its calling

routine. This can result in a cascade of returns in a Fortran program, and you can

then decide what to do. If there is print out by the routines just before doing their

returns, you can get an effective stack backtrace.

subroutine george(x, y, z, ifail)

double precision x, y, z

integer ifail
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! some computation here

call fred(x,y,ifail)

if ( ifail < 0 )

print *, ’Error detected in george, ifail =’, ifail

return

endif

! more computation here

end

If necessary, consult the documentation of the routine generating the error to deter-

mine what kind of error has occurred.

Another approach is to set up an error handler, which might do something like

print an error message and abort the program. Here is one way of setting up an

error handler through a header fileerror.h and an implementation fileerror.c
which allows each file to set up its own error handler. Here is error.h:

#ifndef ERROR H

#define ERROR H

void std error handler(char *file, int line, char *mesg);

void (*error handler)(char *file, int line, char *mesg)

= std error handler;

#endif /* ERROR H */

The first two lines are to ensure that the definitions are not repeated (which compilers

would flag as an error). While we normally don’t intentionally include the same

file more than once, if this file is basic to the system, it can be included many times

over.

Here is error.c:

#include <stdio.h>

#include ”error.h”

void std error handler(char *file, int line, char *mesg)

{
fprintf(stdout,”Error in file \”%s\”, line %d: %s\n”,

file, line, mesg);

fprintf(stderr,”Error in file \”%s\”, line %d: %s\n”,

file, line, mesg);

exit(1);

}
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The first printf sends a message to the standard output device, which may be

a file as well as a terminal. The second printf sends the same message to the

user’s terminal.

Another approach is to raise an error or exception. This is partly language depen-

dent; Ada, Common Lisp, C++, Java, SmallTalk and many other languages have

a built-in error and exception handling mechanism. C has the routines setjmp()
and longjmp() which can be used for this purpose – see Meschach [92] for an

example of how they can be used – but they are not as flexible as C++ and Java

which use throw/catch mechanisms. The setjmp()/longjmp() approach

to error handling in C is also inconsistent with the throw/catch mechanism in

C++, so if you are combining both C and C++ in a single program, you should

be aware of this.

We start by creating an error class in C++, which holds the information that we

want to pass back to whatever routine wants to handle the error. It can be trivial if

you want:

class Error { };

At the point where an error occurs, we use the throw command to raise or throw

an exception:

int harry(int x)

{
if ( x < 0 )

throw Error();

else

return 5*x;

}

This routine can be called by another (which might not know anything about errors):

int george(int x)

{
return harry(1+2*x);

}

And this can be called by another routine (which might know something about

errors):

int fred(int x)

{
int y;

try
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{
y = george(x-2);

}
catch (Error e)

{
print err notice();

throw; // re-throw error

}
return y;

}

We can try to execute the code in the braces followingtry. After the error is thrown

before the completion of the code. After the error is thrown, control passes to the

code following catch. Any data about the error that was thrown is in the Error
object e. We can print out our location in the source code using a suitable macro:

#define print err notice() \
(cout << ”Error caught in file \””<< \

FILE << ”\” at line ” << LINE << ”\n”)

Then the error is re-thrown by “throw;”. If an error is not caught, the program is

aborted, and some summary information may be printed out.

9.8 Compare and contrast

Having a program that you can trust to compute what you want (even if it is

slow, works in a different environment, on a different operating system, or avoids

copyright issues) can still be used to test improved code. We can even write code

ourselves for two different systems – say for MATLAB and for C or Fortran – and

compare the results we get. This cross-referencing can help us to find bugs, and

possibly numerical instabilities as well. Bugs are usually immediately evident by

different outputs. If the systems use the floating-point system differently, numer-

ical instabilities can become evident by divergent results, either immediately or

gradually, but this is not guaranteed.

There may be other reasons for comparing codes. With MATLAB code we can

do interactive testing quicker than we could using C of Fortran, while for very

large problems, the C or Fortran version would run much faster than MATLAB.

With interactive testing, repeatability can become a problem. Use the MATLAB

diary command to record what you do. This record can be turned into a MATLAB

script that be used repeatedly. Just don’t forget to set the seed for the pseudorandom

number generator interactively and in the script!
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Often it is desirable to create a first implementation using a system such as

MATLAB, and then re-implement the algorithm in a faster language. Then the new

version can be tested against the same data as the MATLAB version, checking the

intermediate values to identify if and where the new implementation diverges from

the old to locate bugs.

9.9 Tracking bugs

In one-person software development it is tempting not to have any formal mech-

anism for tracking bugs – what they are, the code that is responsible for them,

attempts to fix the bugs, and the results of these attempts. However, when a project

starts getting larger or more complex, a more formal approach to tracking bugs

becomes necessary. All version control systems have some level of support for bug

tracking: every change has an associated description which can be printed out as

part of the “log” for each file. The more recent systems such as Subversion and

Bitkeeper have improved support for this. For example, with Subversion several

related changes (which are commonly required for fixing a single bug) can have

a single description, and it is possible to “roll-back” the source files to before the

related changes.

While version control systems allow the description of changes, bugs should be

described as they are discovered. This could be done using something as simple as

using a text file for the bug description. Tracking the bug will require keeping this

documentation synchronized with the actual code as modifications are made to fix

the bug.

There are a number of bug-tracking software systems available. The Bugzilla
system is an open-source system used for the Mozilla web browser project. All

of these tracking systems are based on a database system and have bug reporting

and updating components. Bug reports are entered into the system from users or

developers saying what the problem is, and the context in which it occurs. Bug

reports need to be specific about what is going wrong, the version of the software

which goes wrong, the environment in which it goes wrong (operating system,

compiler – if that is an issue, any data or files involved), and any error messages

observed. Saying “Bad answer for 10 × 10 matrix” won’t work; but saying “Solving
linear system with 10 × 10 Hilbert matrix and got zero correct digits in the solution
instead of 2 or 3 correct digits as expected for double precision; see attached
file containing input data and output” is much more helpful. (Perhaps one of the

variables was actually declared single precision?) With this information, the bug can

be assigned to a person, who would receive notification of it along with information

about its priority, severity, and the bug report(s). When a fix for the bug is found,
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a patch is created (say, by using the Unix command diff -u old-version
new-version on all the changed files and concatenating the results) and passed

to the bug control system. There may be an extra layer of quality assurance to make

sure that the bug really is fixed before the modified version is shipped and the bug

declared dead.

Often bug-tracking systems have a Web interface which allows developers to be

distributed far and wide. There are a number of issues that bug-tracking software

handles (or should handle) that go beyond what is needed for single-user develop-

ment. We do not endorse any products here, and they may be over-kill for many

small programming projects. But if your project is becoming decidedly large or

complex, or you need to work with more than one other person (or even more than

zero!), then you may need to use one of these.

9.10 Stress testing and performance testing

Stress testing is testing to see how well the algorithm behaves with large, extreme,

or degenerate inputs. The key quantity to watch with stress testing is accuracy.

Performance testing is about determining how the algorithm behaves with large-

scale problems. The key quantities to watch with performance testing are time and

memory usage.

9.10.1 Stressors: extreme inputs and degeneracy

Underflow and overflow can obviously be a problem for numerical algorithms. For

example, computing the 2-norm

‖x‖2 =
√√√√ n∑

i=1

x2
i

in the obvious way can fail if
∑

i x2
i overflows. This can happen even with n = 1

if |x1| >
√

flmax where flmax is the maximum real floating-point number (not Inf).

This can be remedied by first dividing each xi by scale = maxi |xi |, or a power

of two close to this, computing the 2-norm in the usual way, and then multiplying

the result by scale. Other examples can be found in Chapter 2 on floating-point

arithmetic.

Degenerate situations, where some quantities are nearly equal, can also cause

severe problems. Since degeneracies don’t require extreme input values, they can

be more subtle and less obvious at first. But they are at least as important as
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Table 9.1. Gaps in smallest two eigenvalues for Wilkinson example

n gap n gap n gap

4 5.85 × 10−1 10 4.14 × 10−4 16 5.28 × 10−9

6 1.02 × 10−1 12 1.33 × 10−5 18 7.09 × 10−11

8 8.53 × 10−3 14 3.06 × 10−7 20 7.63 × 10−13

extreme inputs. Here are some examples of degenerate situations that require special

consideration:

� matrices that are singular or nearly singular;
� geometric objects (such as polygons) that touch at a corner;
� repeated eigenvalues, or nearly repeated eigenvalues, of a matrix.

It is tempting to argue that since degenerate (and nearly degenerate) situations

are rare, there is no need to write software to handle these situations. But this

would be wrong. Sometimes, near degeneracy happens where it can be proved that

degeneracy cannot happen. One example comes from computing eigenvalues of

symmetric tridiagonal matrices:

T =

⎡⎢⎢⎢⎢⎢⎢⎣
α1 β1

β1 α2 β2

β2 α3
. . .

. . .
. . . βn−1

βn−1 αn

⎤⎥⎥⎥⎥⎥⎥⎦ .

If βi �= 0 for all i then this matrix cannot have repeated eigenvalues. But they can

be nearly repeated. Consider the case where βi = −1 for all i , and αi = n/2 − |i −
(n + 1)/2|. A table of these gaps for various n according to GNU Octave is shown

in Table 9.1. This example was originally devised by Wilkinson [106, Chap. 5, §45,

p. 308]. Note how rapidly the gaps go to zero! It can be shown that the gaps go to

zero at a faster-than-exponential rate.

Stress testing can not only help to determine the robustness and limits of correctly

implemented algorithms, it can also help identify the existence of bugs. However,

this is a matter of judgment – implementations that would be correct under exact

arithmetic might fail due to roundoff error in extreme situations. Sometimes small

changes in how an operation is implemented can avoid these problems. Sometimes

lack of robustness is intrinsic in the problem. In that case, you will have to think

carefully about what your objective truly is for a numerical algorithm.
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9.10.2 Performance testing

Performance of numerical codes has three parts: speed, memory, and accuracy. For

direct methods (which should produce an accurate answer with one application) the

three components are more-or-less independent: for given input data the algorithm

runs once, uses a certain amount of memory, and produces its answer – the accuracy

of the answer and the time and memory used to achieve it should then be measured.

The point then is to see how the time, memory and accuracy behave as the problem

changes. Typically, for speed, it is only the size of the input that matters; for accuracy,

it can depend on the kind of input, and here it is important to consider stress testing

to reveal problems with accuracy.

On the other hand, methods that rely on iteration have a trade-off between the

time taken and the accuracy obtained. This is particularly true of iterative methods

for large linear and nonlinear systems [7] and methods for ordinary differential

equations [48, 49]. To display this trade-off it is often worthwhile to have a work–

accuracy diagram, plotting the error obtained against the work required. Usually

this requires a logarithmic scale for the error, and possibly for the work required

as well, depending on the relationship between work and accuracy. For iterative

methods, the error typically decreases exponentially or even faster in the number

of iterations, so the work should be plotted in a linear plot; on the other hand, an

ordinary differential equation solver typically has an error of O(h p) where h is the

time-step, and the work is proportional to 1/h. This gives an algebraic relationship

between work and accuracy: error ∝ workp. In this case, using logarithmic scales

on both axes is better.

When doing performance testing there is also the question of what to measure.

While time is the ultimate measure of speed of an algorithm, it can change depending

on the compiler, the compiler options (especially the optimization options), the

CPU, the clock speed, the type and amount of main memory, the operating system,

and even how many people are using the system. Also, times can be misleading

on interpreted systems such as MATLAB, since re-writing a for loop in terms

of an intrinsic operation can result in much better performance1 – re-writing in

a compiled language could make a poorly performing algorithm in MATLAB an

excellent algorithm in Fortran 90 or C++. Often it is better to measure some

quantity that is more intrinsically related to the algorithm, such as the number of

iterations or the number of steps, than the raw time taken. For proper comparisons,

of course, if you are comparing between two substantially different iterations, you

should measure comparable quantities, such as the number of function evaluations

in a differential equation solver, or the number of matrix–vector multiplies in an

1 Computing the product of two random 100 × 100 matrices using for loops took roughly 1000 times as long as
the intrinsic matrix multiply in GNU Octave (a MATLAB work-alike).
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Figure 9.1. Work–accuracy diagram for the Kepler problem.

iterative linear equation solver. Record this information for later comparison. It can

also be used for debugging!

Here is one example of a work-accuracy diagram for solving the Kepler problem:

d2x
dt2

= − x
‖x‖3

, x(0) = [1, 0]T,
dx
dt

(0) = [0, 1]T,

corresponding to the motion of a planet about a much more massive sun. The above

initial conditions have the exact solution x(t) = [cos t, sin t]T. Using three methods:

Euler’s method (error = O(h)), Heun’s method (error = O(h2)), and the standard

Runge–Kutta 4th-order explicit method (error = O(h4)), the authors obtained the

work–accuracy diagram in Figure 9.1; the error is given by ‖x(T ) − xN‖ where

N h = T ; we took T = 10. Since Euler’s method uses just one function evaluation

per step, N = number of function evaluations, but for Heun’s method there are

two function evaluations per step so N = 1
2
(number of function evaluations), and

for the 4th-order Runge–Kutta method there are four function evaluations per step,

so N = (number of function evaluations)/4. All computations were done in double

precision.

The slopes of the curves (where they are roughly straight) are close to −1

for Euler’s method, −2 for Heun’s method, and −4 for the 4th-order Runge–

Kutta method, reflecting the order of the methods. The first time we tried this,

we obtained a slope of about −2.9 for the “4th-order Runge–Kutta method”, in-

dicating 3rd-order accuracy (rather than 4th order). This did not seem right, and

investigating further revealed a bug in the code. The accuracy of the 4th-order
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Runge–Kutta method bottoms out at about 10−13 for 1.2 × 104 function evaluations.

Since 10−13 is getting close to u ≈ 2.2 × 10−16 for double precision, roundoff error

is a likely explanation for this “bottoming out” of the accuracy. Indeed, since round-

off error seems essentially random, summing N numbers of about equal size without

cancellation would result in an error of size about u
√

N . Setting N = 1.2 × 104

would give a probable error of about 2.4 × 10−14. If we used the upper bound of

u N we would get an error bound due to roundoff error of 2.6 × 10−12, which is

substantially larger than the true error. If the errors in the function evaluations are

more like 5u instead of u, we would get a probable error of 5u
√

N ≈ 1.02 × 10−13,

which is very close to the true error. This is not to say that the estimate of 5u is very

accurate for the relative errors in the function evaluations. But it does indicate that

a substantial part of the error is roundoff error. Increasing the number of steps only

makes this contribution from roundoff larger.

9.11 Random test data

Often random, or more accurately pseudo-random, test data are used to test numer-

ical and other algorithms. For such problems, the solution is not known directly, but

the results of an algorithm can often be tested against the input. For example, given

an algorithm to compute the LU factorization of a matrix and an input A then the

resulting L and U can be checked by computing the norm of A − LU . If the norm

is a modest multiple of the unit roundoff u, then the algorithm is likely to be correct.

In the following discussion, the term “random” is used to mean “pseudo-

random”. While the two terms are often confused, it is important to remember

than any deterministic method for computing numbers cannot, by definition, be

considered random. As John von Neumann said,

anyone who considers the arithmetical generation of random digits is, of course,
in a state of sin.

Random test data can be useful as a check against most kinds of bugs. However,

if a bug is found using random test data, it is important that the random number

generators can produce repeatable results – say by using a seed for the random

number generator. Without this, bug fixes cannot be checked.

Remember that

testing with random data is no substitute for careful stress testing!

Many bugs occur with special or extreme values or data sets. Problems with floating

point arithmetic often occur with integers plus 1
2
, 1

4
or 1

8
, since the choice of whether

to round up or round down can cause difficulties in some cases. Random matrices are
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usually not ill conditioned. To test for ill-conditioned matrices, try Hilbert matrices

[4], or other examples if you want non-symmetric matrices. For ill-conditioned

matrices we do not expect full accuracy in the solutions, but we should aim for

small residuals. Random matrices have other properties [34], which can make them

much less useful for stress testing.

For non-numerical problems as well, random test data is a poor substitute for

carefully designed stress tests. Consider, for example, quicksort. It is well known

that quicksort with random data takes O(n log n) time on average, and with high

probability. But its worst case time is ∼ c n2. You would have to do a very large

number of random tests to see this worst case behavior. To see it, a carefully

constructed data set would be needed.
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Exercises

1. We wish to design in C++ a complex number system C++ allows operator overloading,

so we can create code that looks like this:

complex z1, z2, w;
z1.set(1.0,2.0); // z1 = 1 + 2i
z2.set(4.5,-1.2); // z2 = 4.5-1.2i
w = z1*z2;
cout << ”w = ” << w << ”\n”;

To do this we create a complex class:

public class complex {
private:

double re, im;
public:

complex(double re val=0.0, double im val=0.0)
{ re = re val; im = im val; }
complex operator+(complex z)
{ return complex(re+z.re,im+z.im); }
...

}
How are the arguments passed? By value or by reference? Is it efficient? When complex

variables are created, are they created on the stack, or in the memory heap? How would

you change this so that you could (automatically) get complex arithmetic with single

precision or extended precision real and imaginary parts?

2. Now let us consider a similar C++ class for vectors. We should be able to use it like

this:

Vector x(10), y(10); // create two 10-vectors
double alpha, beta;
Vector z = alpha*x+beta*y;

The class to implement this would look something like this:
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public class Vector {
private:

int dim;
double *array;

public:
Vector(int n)
{ array = new double[n]; dim = n; }
int dimension() { return dim; }
Vector operator+(Vector y)

{ Vector sum(y.dimension());
for(int i = 0; i < y.dimension(); i++ )

sum.array[i] = array[i]+y.array[i];
}

...
}

How are the arguments passed? Is it efficient? Is there a better way of passing the

arguments? Re-write the above code with any improvements you have identified.

3. Read and discuss Sections 1 and 2 of the paper Developing numerical libraries in Java
[11] by Boisvert, Dongarra, Pozo, Remington, and Stewart. Is it worth developing a

VectorDouble class specifically for vectors of double precision numbers? Can you

think of any alternatives?

4. An idea that has become important in software design is composability. That is, it should

be possible to combine (compose) a software design technique with other techniques or

with itself. Here we explore this idea in a particular context.

A two-dimensional integral over a rectangular region with edges aligned with the axes

can be written as a nested double integral∫ b

a

∫ d

c
f (x, y) dx dy =

∫ b

a

(∫ d

c
f (x, y) dx

)
dy.

So, in principle, a routine for doing a one-dimensional integral should be usable for com-

puting two-dimensional integrals over rectangles. However, the function in the inner in-

tegral x �→ f (x, y) changes as the value of y changes, so we need to pass this (changing)

environment to the inner function. The outer function is the function y �→ ∫ d
c f (x, y) dy.

All these functions as well as the function (x, y) �→ f (x, y) need to be represented in

the same way.

Given a function integrate1d that implements integration over an interval using

(a) pointer passing,

(b) reverse communication, or

(c) classes

to represent the environment of the function, write a function integrate2d that

computes the two-dimensional integral.

[Hint: For the pointer passing approach, our original function would look like this:

double (*f)(void *params, double x, double y);
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and the one-dimensional integration routine would be:

double integrate1d(double (*f)(void *, double,double),
void *params,

double a, double b, double tolerance);

The environment of the inner function x �→ f (x, y) must contain y as well as f and its

environment. So we create a structure that contains this information:

struct inner {
double (*f)(void *,double,double);
void *f params;
double y;

};
which we use like this:

double inner(struct inner *in, double x)
{

return (*in->f)(in->params,x,in->y);
}

Then to compute the integral
∫ d

c f (x, y) dx we execute code such as:

struct inner my in;
my in.f = f;
my in.params = params;
my in.y = y;
return integrate1d(inner,&my in,c,d);

Now what is the environment of the function y �→ ∫ d
c f (x, y) dx? This environment

includes f and its environment, but also c and d, and the error tolerance for the inner

integral. So let us have another structure that contains these things:

struct outer {
double (*f)(void *, double, double);
void *params;
double c, d, eps;

};
The outer function can then be written in the form

double outer(struct outer *out, double y)
{

struct inner in;
in.f = out->f;
in.params = out->params;
in.y = y;
return integrate1d(inner,&in,out->c,out->d,

out->eps);
}



146 Exercises

Then the outer integral
∫ b

a

(∫ d
c f (x, y) dx

)
dy can be computed with this code:

double integrate2d(double (*f)(void *, double,double),
void *params, double a, double b,
double c, double d, double eps)

{
struct outer my out;
my out.c = c;
my out.d = d;
my out.eps = eps;
my out.f = f;
my out.params = params;
return integrate1d(outer,&my out,a,b,eps);

}
The overhead is some “glue” code that links the functions through the two structures

containing the environments for the one-dimensional functions.]

5. Repeat the previous exercise using classes in an object-oriented language to compute a

double integral
∫ b

a

∫ d
c f (x, y) dy dx as a repeated one-dimensional integral.

6. In October 1960 the US Strategic Air Command was put on high alert because their

systems had identified a massive nuclear missile strike from the Soviet Union. After

some time it was realized that it was a mis-identification of radar reflections off the

moon [56].

(Similar mistaken identifications had occurred before, including alerts triggered by a

flock of geese.)

(a) What kind of testing can you think of that would identify this problem before the

identification software was put in service?

(b) Can you think of other possible events or objects that could be mis-identified as a

threat?

(c) What do examples like this imply for how software is designed? In particular, how

would you deal with wrong or undesirable behavior in critical real-time software?

7. The developers of LAPACK (see Section 12.9) have decided to continue the development

of the library only in Fortran 77. For other languages they will continue providing

interfaces to the Fortran 77 library in languages such as Fortran 95, C, C++, and Java.

Critically evaluate this strategy for a large scientific software package that is publicly

funded, such as LAPACK. How would you handle cross-language portability problems?

As these programming languages (except Fortran 77) develop, what changes would be

needed or desirable for the interfaces?

8. Can you give some examples of layering of scientific or numerical software?

[Hint: Consider MATLAB and LAPACK and BLAS. Alternatively, have a look at

PETSc.]
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Be algorithm aware

Be aware of algorithms that can be useful to you. There are many textbooks on

algorithms and data structure. One of the more encyclopedic is the book by Cormen,

Leiserson, Rivest, and Stein [23].

Scientific and engineering software almost always needs to be efficient in both

time and memory. You should first consider optimizing at a high level, choosing data

structures and algorithms that are inherently efficient. At a lower level, you should

understand how computers work, and how to efficiently use modern computer

architectures.

Choosing good algorithms and data structures is the foundation of designing

efficient software. Without this, no amount of low-level tweaking of the code will

make it run fast. This is especially true for large problems. By tuning your code

you could gain an improvement of anything from, say, a factor of two to a factor

of ten, in the speed of an algorithm. But moving from an algorithm that is O(n3)

in time and O(n2) in memory to one that is O(n2) in time and O(n) in memory

can give you a much greater benefit, especially if n ≈ 10 000 or larger. Sometimes

you can get approximate algorithms that are fast, but the speed will depend on how

accurately you want the answer. Here you need to know the problem well in order

to see how large an error can be tolerated.

11.1 Numerical algorithms

Since the development of electronic digital computers (and even well before then)

there has been a great deal of development of numerical algorithms. Many are highly

efficient, accurate, and robust. Apart from checking numerical analysis texts, you

should have a look at advanced textbooks like Matrix Computations [46], and

even the research literature. Other sources include Collected Algorithms of the
ACM [38], which can provide many surprisingly effective algorithms. Collected
Algorithms includes discrete algorithms as well as numerical algorithms, such as
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in-place transposition of non-square matrices, sparse matrix bandwidth reduction,

and Euclid’s algorithm. Most of the implementations are in Fortran.

You should be aware that broad techniques for constructing algorithms, such as

divide and conquer, are often applicable to numerical algorithms. One of the best

examples of this is the Fast Fourier Transform [22] for computing discrete Fourier

transforms

yk =
n−1∑
l=0

e2π ikl/nxl, i = √−1

in O(n log n) time and O(n) memory. If the input vector xl is split into even-index

(x2l) and odd-index (x2l+1) parts, we can compute the discrete Fourier transform of

each part, and combine these to obtain the output (yk).

Sometimes linear systems with special structure can have efficient solution meth-

ods. An example of this is the solution of symmetric Toeplitz equations (which arise

in the context of signal processing, for example):⎡⎢⎢⎢⎢⎢⎣
r0 r1 r2 · · · rn−1

r1 r0 r1 · · · rn−2

r2 r1 r0 · · · rn−3

...
...

...
. . .

...

rn−1 rn−2 rn−3 · · · r0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x0

x1

x2

· · ·
xn−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
b0

b1

b2

· · ·
bn−1

⎤⎥⎥⎥⎥⎦ .

The Levenberg algorithm for solving Toeplitz systems of this type is described in

[46]; it can solve this system in O(n2) time and O(n) memory instead of the usual

O(n3) time and O(n2) memory needed for LU factorization.

Some fast methods are not exact, but only approximate (even with exact real

arithmetic). Examples of this include multipole methods [20, 47], which were first

used to compute approximate sums of the form

N−1∑
i=0

mi m j
xi − x j

‖xi − x j‖3
2

, j = 0, 1, . . . , N − 1.

With the multipole method, all N sums can be computed with an error bounded by

ε in O(N log N log(1/ε)) time. These algorithms work by first creating a hierarchy

of clusters, and then approximating clusters by a multipole approximation.

Another idea that uses hierarchies is multigrid methods. These are methods

for solving large linear (and occasionally, nonlinear) systems of equations, usually

those arising from elliptic partial differential equations. These are iterative methods

(and therefore only give approximate answers), but are among the fastest iterative

methods available. Multigrid methods, when applied to equations from nice dis-

cretizations of nice elliptic partial differential equations, can solve systems of N
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equations in N unknowns to an accuracy of ε in O(N log(1/ε)) time and O(N )

memory. We will discuss multigrid methods again in Chapter 10.

A final example of divide-and-conquer is a matrix multiplication algorithm called

Strassen’s algorithm . The remarkable fact about this algorithm is that it can compute

the product of two n × n matrices in O(nα) time where α is less than three. Consider

the block matrix product[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
C11 C12

C21 C22

]
.

Strassen in 1969 [95] found a way to write the block matrices Ci j using seven block

matrix multiplies instead of the usual eight, but with 18 block matrix additions in-

stead of the usual four. If we perform the seven block multiplications recursively we

get Strassen’s algorithm. From this information we get a total of O(nlog2 7) floating

point operations provided n is a power of two. Strassen’s algorithm has not been

widely adopted for two main reasons: (1) concern over some subtle questions of nu-

merical stability, and (2) the matrices have to have n > 660 for Strassen’s algorithm

to beat the standard algorithm for matrix multiplication. It turns out that the second

reason is only partly true: by stopping the recursion and applying the standard

algorithm for small matrices the cutoff is reduced to n ≈ 18. Still the complexity

of implementing Strassen’s algorithm has been a deterrent to widespread use. For

more information regarding the accuracy of Strassen’s algorithm see [14, 78].

Another general issue that commonly arises is the use of sparse matrices. Dense

matrix arithmetic is straightforward to use and implement; however, if you have

large problems, in all probability the matrices involved are sparse, or have some

structure that does not require all n2 entries to be separately stored. There are many

sparse matrix packages available (unfortunately, most are mutually incompatible)

and worth considering. But beware: many operations destroy sparsity. Inverses of

sparse matrices are almost never sparse, and even products of sparse matrices are

far less sparse than the original matrices. As always, don’t try computing matrix

inverses if all you want to do is to solve linear systems. Use the factored matrices

instead.

11.2 Discrete algorithms

Discrete algorithms are the province of “classical” computer science. Nevertheless,

they are very often key to efficient implementation of numerical algorithms. There

are numerous textbooks on these “classical” algorithms, such as [23, 50, 66]. If you

are new to the area, it is probably easiest to start with [50].

Amongst the most “classical” of these algorithms are sorting algorithms, es-

pecially quicksort and mergesort, which can sort N items in O(N log N ) time.
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Quicksort has the additional benefit that it needs no additional memory. But this is

not the end of methods you should know about. Heaps (or priority queues) are a

fast way of storing a collection where you want to repeatedly get the smallest of

the collection.

Other algorithms that you should be aware of are quicksort-based algorithms for

finding the kth-largest item out of N in just O(N ) time independently of N . An

example of this is the problem of finding the median of N numbers; it can be done

in O(N ) time without having to spend O(N log N ) time sorting the list.

Sets can be represented in a number of ways (as an array of bits, as a list, or

in a tree), but a partition (a collection of disjoint sets whose union is given) is

probably most efficiently represented by a find–union data structure. A find–union

data structure can quickly tell you if two elements belong to the same set of a

partition, and can be efficiently modified to represent the result of replacing two

sets in the partition by their union. This can be very efficient for various kinds

of clustering algorithms. These data structures are also very important for sparse

matrix factorizations.

Computational geometry is a more specialized area, but is of crucial importance

for computer graphics and many kinds of simulations and for mesh generation for

finite element methods. There are many kinds of problem and technique developed

for computational geometry that can be useful. For example, did you know that

there are algorithms for finding the two closest points out of a set of N points in the

plane that take just O(N log N ) time? Questions about convex sets and convex hulls

lead to problems in linear programming. Most computational geometry tasks are

about low-dimensional problems (no more than three dimensions, usually). There

are O(N ) algorithms for linear programming in d dimensions for fixed d. (The

hidden constant in the “O” grows something like d! so their algorithms are not

suitable for most large-scale linear programming problems.) Some good references

for algorithms in computational geometry are [27, 68].

Many discrete algorithms do not have efficient algorithms. This is the subject

of the theory of NP-completeness. Although this theory is described in most text-

books on algorithms, the standard reference is still Garey and Johnson’s book [42].

This book not only describes the theory and its uses, it has an extensive list of

problems that are known to be NP complete or NP hard. There are a number of

open questions that have been resolved since their book, but the most important

open problem, whether NP problems have polynomial time algorithms, remains

unanswered.

What do you do if your problem is NP complete or NP hard? Since we cannot

do the exact problem quickly, it is often quite acceptable to solve a problem ap-

proximately. Approximations and heuristics for NP complete or NP hard problems

are a large and important research area, and many things are known – both positive
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and negative. To find out more, you can have a look at Garey and Johnson or the

research literature. The Journal of Algorithms has had many papers on NP com-

pleteness and approximation algorithms in it. Some problems are (apparently) hard

while not being NP-hard. For more information, see [50].

11.3 Numerical algorithm design techniques

There are a number of techniques for designing algorithms, numerical and oth-

erwise. While there are too many to present here, we will present two that seem

particularly useful for numerical problems. The first is design through recursion.

This approach seems especially useful for many matrix computations. The second is

for developing iterative methods by treating an approximation as if it was exact. This

can be used for a great many nonlinear problems as well as matrix computations.

11.3.1 Design through recursion

Design through recursion reduces a larger problem to a smaller problem. Usually

the reduction is to a problem that is smaller by one in some crucial quantity, although

sometimes it can be to a problem that is much smaller (say, half the size). As long

as there is a bottom limit that can be dealt with easily, this approach can result in

effective algorithms. Here is an example.

Consider the problem of solving (for z) the symmetric Toeplitz linear system⎡⎢⎢⎢⎣
r0 r1 · · · rn

r1 r0 · · · rn−1

...
...

. . .
...

rn rn−1 · · · r0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

z0

z1

...

zn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
r1

r2

...

rn+1

⎤⎥⎥⎥⎦ .

This kind of system arises often in certain statistical estimation problems.

Let’s write this as Rnzn = rn . Let řn = [rn+1, rn, . . . , r1]T be the reversed vector

of rn . Then we can partition the linear system as:[
Rn−1 řn−1

(řn−1)T r0

] [
z∗

n

z∗
n

]
=

[
rn−1

rn+1

]
.

That is, we have Rn−1z∗
n + řn−1z∗

n = rn−1 and (řn−1)Tz∗
n + r0z∗

n = rn+1. Now let’s

assume that we know zn−1, where Rn−1zn−1 = rn−1. Note that if we reverse all

the components of rn−1 and zn−1 we have Rn−1žn−1 = řn−1. Then we can put

z∗
n = zn−1 − z∗

n žn−1. The only unknown here is z∗
n . But we can work that out from the

second equation: (řn−1)Tz∗
n + r0z∗

n = rn+1. Substituting our formula for z∗
n we get

(řn−1)T(zn−1 − z∗
n žn−1) + r0z∗

n = rn+1.
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That is,

(r0 − (řn−1)Tžn−1) z∗
n = rn+1 − (řn−1)Tzn−1.

This new formula gives us z∗
n; substituting it into z∗

n = zn−1 − z∗
n žn−1 gives us the

other components of zn .

We need a starting point for the recursive algorithm. This is easy: if n = 1 our

equation just becomes

r0 z0 = r1, so z0 = r1/r0.

The resulting algorithm takes just O(n2) operations instead of O(n3) for Gaussian

Elimination or LU factorization. Also note that the resulting algorithm can be

written using a for or do loop and no recursive function calls by computing z0 = z0,

z1, z2, etc., in order. This is an example of replacing tail-end recursion with a loop.

For more information about tail-end recursion, see [23, p. 162].

11.3.2 Treat approximations as if they are exact

Newton’s method is based on the approximation

f (x + p) ≈ f (x) + f ′(x) p for p small.

If we want to solve the equation f (x + p) = 0, then one approach is to treat the

approximation f (x + p) ≈ f (x) + f ′(x) p as if it were exact. That is, we set

f (x) + f ′(x) p = 0.

This is an equation we can solve (for p):

p = − f (x)/ f ′(x).

Our new estimate of the solution is x + p = x − f (x)/ f ′(x).

Of course, our original approximation was not exact, so x + p is not expected

to be the exact solution, but it should be much better than x . This leads us to the

iterative method

xn+1 = xn − f (xn)/ f ′(xn),

which is nothing other than Newton’s method.

Another example comes from matrix computations. Suppose we wish to solve

Ax∗ = b, but we only know an approximate inverse B. Suppose we have an ap-

proximate solution x. Then A(x∗ − x) = b − Ax, so

x∗ = x + A−1(b − Ax)

≈ x + B(b − Ax).
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Instead of treating this as an approximation to the exact solution, treat it as the exact

value of an improved approximation:

xn+1 = xn + B(b − Axn).

As long as all the eigenvalues of I − B A are smaller than one, we will get con-

vergence of our method: xn → x∗ as n → ∞. This iterative algorithm is called

iterative refinement.
Numerical analysis abounds with many other examples of this principle: nu-

merical integration and differentiation formulas derived from the exact integral or

derivative of a polynomial approximation:

� Richardson extrapolation of a series x1, x2, . . . → x∗ by assuming xk+1 − x∗ =
α(xk − x∗);

� Heun’s method for dy/dt = f (y) with step size h, where yn+1 = yn + (h/2)[ f (yn) +
f (yn+1)] is approximated by yn+1 = yn + (h/2)[ f (yn) + f (yn + h f (yn))];

� and multipole methods which (in their simplest form) approximate
∑

i mi (x − xi )/‖x −
xi‖3 by m∗(x − x∗)/‖x − x∗‖3 with m∗ = ∑

i mi and x∗ = (1/m∗)
∑

i mi xi .
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Computer architecture and efficiency

If you really need your program to run as fast as possible, you need to under-

stand modern computer hardware. The most crucial concept in all this is that of

a memory hierarchy. You should also understand some things about optimizing
compilers. Optimizing compilers know more about the target architecture(s) than

most programmers, so we should write code that the compiler can make best use

of. Keep simple, intelligible (unoptimized) code in comments for future reference

since architectures and compilers change frequently.

12.1 Caches and memory hierarchies

Since the advent of computers, CPUs have been getting faster. Memories have been

getting faster too, but not fast enough to keep up with the CPUs. As a result, CPUs

are becoming starved of the data they need to compute with. The fastest memory in

a CPU consists of the registers; operations act directly on the values in the registers.

In effect, the registers can be accessed in one clock cycle. (This means that if you

have a 1GHz computer, registers can usually be accessed in one nano-second, 1 ns.)

However, it often takes from tens to hundreds of clock cycles to send a memory

address to the memory chips, access the data within the memory chips, and return

it to the CPU. This means that code like

for ( i = 0; i < n; i++ )
sum = sum + a[i]*b[i];

will take from tens to hundreds of clock cycles each time through the loop.

To alleviate this problem, CPU designers have inserted one or more levels of

cache memory between the registers and main memory. See Figure 12.1 for an

illustration of a system with two levels of cache. An excellent reference on caches

(and other aspects of memory hierarchies) is [72]. This book has a great deal of
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registers

L1 chache

main memoryhard
disk

L2 cache

for virtual
memory

Figure 12.1. Memory hierarchy.

information on the design of caches and related systems, as well as information on

how to program to make the best use of these facilities.1

The cache is on the same chip as the rest of the CPU so it is much faster to access.

But there is limited space on a chip, so there are limits on how big the cache can be.

Each cache is broken up into cache lines, which are short blocks of memory within

each cache. Each cache line is a copy of a block of memory within main memory.

In addition, there is a table in hardware that indicates which blocks of memory are

in the cache.

Here is how a CPU with cache handles a request to read an address in main

memory. First, it checks to see if the cache has a cache line containing the data

from that address. If it does, it reads the data from the cache. This is called a cache
hit. If the cache does not contain data from that address, then the block of memory

is read from main memory into a cache line, and the data read from that cache line

into a register. If necessary, a different cache line may need to be evicted (that is,

removed) from the cache to make room for the new block of memory. A memory

reference that is not in the cache is called a cache miss.

For a CPU with cache, writing to memory is a little more complicated, and there

are two main choices: write-through and write-back. For a write-through cache,

data is written to both the cache line and to main memory. For a write-back cache,

1 Beware, however, not to copy the code examples verbatim without checking them. A number of the code
examples suffer from off-by-one bugs.
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Table 12.1. Typical cache data for Pentium 4 CPUs

Note that a single register is regarded as a “line” or “block”. Also: 1K = 1024 and
1M = 10242.

registers L1 cache L2 cache main memory

Access speed (ns) 0.4 1.0 8.0 150
Total size (bytes) 64 8K 256K 512M

Block/line size (bytes) 8 64 64 —
# blocks/lines 8 128 4K —

data is written to the cache line. The cache line has a special bit called the dirty bit,

which is then set to indicate that the cache line is different from what is in main

memory. If that cache line is needed for some other piece of memory, then the cache

line has to be written back to main memory first.

For multiple caches, the CPU first looks in the lowest level cache. If there is a

miss for this cache, it then looks to the next level cache, and so on. A cache miss

on the first level which leads to a cache hit on the second level will result in the

first level cache reading the cache line from the second level cache. This can be

extended in a recursive fashion to include an arbitrary number of caches. Hardware

limits and practicalities limit CPUs to no more than three cache levels at present.

This will probably increase as time goes on, however.

Lower level caches tend to be faster and smaller, with smaller cache lines; the

smallest “cache” is the set of registers. Some typical figures for Pentium 4 CPUs

are in Table 12.1. The figures for “main memory” of course depend on the memory

system used, not on the CPU. Since new versions of CPUs are being released all the

time, not to mention their different clock speeds, the data presented in Table 12.1 can

only be regarded as indicating the relative speeds of the different levels of memory.

12.2 A tour of the Pentium 4T M architecture

This section is intended to give a quick overview of the architecture of the hardware

in a Pentium 4 CPU. This overview will be very rough as there are many techniques

used to accelerate microprocessors, and CPU designers have developed an extensive

set of terms to describe how to achieve the goals of high-speed. These notes are

based on the documentation provided by Intel [60, 61].

12.2.1 Historical aspects

The Intel Architecture (IA) started in 1978 with the 8088 and 8086 CPUs, and has

continued with the development of the 80188/80186, 80286, i386, i486, Pentium
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and Xeon CPUs. With the i386 CPU, Intel introduced their 32-bit architecture –

previous CPUs had only 16-bit addresses. With the i386, 4 GB of memory was

directly addressable. Prior to that, a more complicated system of memory segments

was used where each segment had (up to) 64 KB of memory, the maximum amount

addressable with 16-bit addresses. With the 32-bit Intel Architecture (IA-32) a more

uniform address system was available for Intel CPUs. Since the i386 CPU, more

registers and facilities have been added, and low-level parallelism of an SIMD kind

has been introduced. With the i486 CPU, what has been a floating point co-processor

(the 8087) has been integrated into the CPU. Before the i486, if you did not buy

the floating-point co-processor, then floating-point operations were done purely in

software, which made them quite slow. From the initial version of the floating-

point co-processor (for the 80186 CPU in 1986) IEEE floating-point arithmetic

was implemented.

An important aspect of Intel’s CPUs is the need for backward compatibility: that

is, newer IA CPUs should be able to execute code written for older IA CPUs and give

identical results.2 This means (for example) that the registers in the original 8086

CPU must be present in the latest Pentium computer. Operations on 16-bit addresses

must still work correctly on the current 32 bit CPUs (and on future 64-bit CPUs).

12.2.2 Basic architecture

The 32-bit Intel Architecture (IA-32) is a basic design for a CPU with eight general

purpose 32-bit integer and pointer registers,3 eight 80-bit floating-point registers,

eight 64-bit MMX4 and eight 128-bit XMM registers, six 16-bit segment registers,

and various control and status registers. The floating-point registers store IEEE

extended precision floating-point numbers, and all floating point operations on the

floating-point registers are carried out in extended precision.

The set of instructions available in the machine code for an IA-32 CPU is ex-

tensive. An operation can act on data that can be specified in the instruction itself,

in a register, in a fixed memory location (specified in the instruction), in a memory

location specified by a register or registers, or in an I/O (input/output) port; outputs

can be sent to registers, fixed memory locations, locations specified by a register or

registers, or an I/O port. Memory operations can use the results of several registers

with (for example) one register storing the base address of an array, and another stor-

ing the index or offset into the array. In addition there are more specialized machine

instructions for acting on multiple data items in MMX and XMM registers.

2 Excepting, of course, the infamous Pentium floating-point division bug!
3 Four in the original 16-bit CPUs. The names of the 32 bit general-purpose registers are EAX, EBX, ECX, EDX,

ESI, EDI, EBP, and ESP.
4 MMX stands for MultiMedia eXtensions.



160 Computer architecture and efficiency

The IA-32 architecture is a Complex Instruction Set Computer (CISC), unlike

many of the CPUs in non-Linux Unix systems, which are commonly Reduced In-

struction Set Computers (RISCs). For a Pentium CPU, there are over 500 assembly

language operation codes. This means that decoding IA-32 machine instructions is

a fairly complex task. Different instructions will have different lengths, and must

be interpreted in different ways depending on the kind of instruction, the number

of operands (i.e., data items being operated on), and the way that the operands are

specified. IA-32 CPUs do not attempt to decode and execute a single instruction

each clock cycle. Instead instructions pass through a pipeline which can handle

many instructions at once, but which takes many clock cycles to pass from the

start of the pipeline to the end of the pipeline. Since we want to look at the more

advanced high-performance features, we will focus on the recent Pentium 4’s “Net-

Burst microarchitecture” hardware features in the rest of this section. Much of this

information comes from the description in the Intel Technology Journal issue that

describes the Pentium 4 and its features and capabilities [53].

12.2.3 Caches and memory accesses

In addition to the registers, Pentium CPUs also have on-chip caches to improve

performance and use high clock speeds. Note that the Pentium 4 contains some

42 million transistors, so there are plenty of opportunities to use extra hardware to

improve performance.

There are multiple arithmetic and logic units for doing the actual computations.

To gain performance, there are separate arithmetic and logic units (ALUs) for the

simpler integer operations (shifts, adds, subtractions) that operate at twice the clock

speed of the rest of the CPU, operating on 16 bits at a time, so 32-bit integer adds,

shifts and subtractions can be done 1 1
2

or 2 clock cycles. More complex integer

operations (multiplications, divisions) are carried out by separate ALUs, which can

take many clock cycles (14 clock cycles for integer multiply, 60 clock cycles for

division). There are a total of four of the simpler integer ALUs, and one ALU for

the more complex integer operations. The floating-point units can perform one ex-

tended or double-precision addition in a single clock cycle; one extended precision

multiplication can be done in two clock cycles while a double-precision multiplica-

tion can be done in one clock cycle. Single precision operations can be done in half

the time using the MMX/XMM registers. Floating-point division and square roots

can be computed at a rate of two bits per clock cycle (so an extended precision

division can take about 32 clock cycles, a double-precision division would take

about 26 clock cycles, and a single-precision division would take about 12 clock

cycles).
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There are several different kinds of cache. There are two level-one (L1) caches:

one for data and one for instructions. The instruction cache does not contain simple

copies of the instructions to execute; rather it contains traces which are sequences

of hardware instructions called μops (“micro-operations”). This cache is called the

Trace Cache. The L1 data cache is more straightforward and does contain simple

copies of data in memory. The L1 data cache is a write-through cache so that writes

to the L1 cache are automatically copied into the level-two (L2) cache. The L2

cache is a large unified cache (usually 256 KB to 1 MB).

12.2.4 Decoding and execution

Machine instructions are read from memory and fed to the decoding pipeline. The

output of this pipeline is a stream of direct hardware instructions called μops which

are fed to the Trace Cache. The Trace Cache can hold about 12K of these μops. The

execution engine of a Pentium CPU takes these μops, re-orders and schedules them,

and then executes them. Note that the execution of the μops can happen in a different
order than the corresponding machine operations appeared in the program. Up to

three μops can be executed in parallel. In order to use this parallelism it is important

to be able to re-order the μops and to check that the re-ordering will not result in

incorrect results.

Since the execution of even a single μop is carried out by a pipeline, references

to quantities whose computation has been initiated, but not completed, have to be

delayed. If a particular quantity has been computed, but is waiting to be written to a

register or to the L1 cache, then there is a hardware sub-system to use that quantity

in further computation if that is possible. In spite of the hardware support for using

computed values before they are written to registers or memory, code should be

written to avoid loop carried dependencies such as

a[0] = 1.0;
for ( i = 1; i < N; i++ )
a[i] = 0.5*a[i-1];

The problem is that a[i] depends on a[i-1] which was computed in the pre-

vious iteration of the loop, and so the computation of a[i] cannot begin until the

computation of a[i-1] is complete. More advice about how to handle pipelines

will be given in the section on loop unrolling.

A recurring issue that limits the performance of modern CPUs is how to handle

conditional branches. Consider, for example, the above for loop. It is usually

compiled into machine code that looks like this C code (noting that eax and ebx
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represent two of the general purpose registers, andfp0 represents one of the floating

point registers):

ebx = a; /* set ebx to address of a[0] */
eax = 1; /* eax will hold the value of i */

*ebx = 1.0; /* a[0] = 1.0; */
ebx++; /* ebx now points to a[1] */
loop:
if ( eax >= N ) goto end;
fp0 = *ebx;
fp0 = 0.5*fp0;
ebx += sizeof(double);
/* ebx now points to a[eax] */

*ebx = fp0;
eax++;
goto loop;

end:

The problem is with

if ( eax >= N ) goto end;

If we know which way the branch goes, we can start executing the following

code. What the hardware does is guess which way the branch will go before it has

computed if eax >= N. By looking at past history, we can get a good idea. If

N is large, then we will not do the goto, but instead continue to fp0 = *ebx
many times before we finally exit the loop. Once this has happened a few times, the

hardware (which keeps track of this) is able to guess that that is what will happen, at

least most of the time. The first time a branch is seen, a simple rule is used: backwards

branches are assumed taken but forward branches are not. Continuing to execute

code with an assumption like this is called speculative execution. This technique

has been part of microprocessor design for over a decade at the time of writing.

The guess of not doing the goto will eventually be wrong. Then there will be

a considerable amount of “patching-up” that has to be done. Pipelines have to be

cleared, and values restored to registers. (The pipeline that has to be cleared in the

Pentium 4 contains 20 μops – quite a long pipeline.)

These characteristics of the Pentium 4 architecture should give some guidance

for writing high-performance code.

� Avoid if statements inside short inner loops.
� It is better for short inner loops to execute for a moderate to large number of iterations.

(One or two iterations may result in a lot of time spent clearing pipelines.)
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� Avoid loop-carried dependencies in short inner loops. That is, avoid making the compu-

tation in the following iteration depend on the computation in the current iteration.

The following code has a loop-carried dependency.

for ( i = 1; i < n; i++ )
a[i] = a[i-1] + 1;

Equivalent code that does not have a loop-carried dependency is:

for ( i = 1; i < n; i++ )
a[i] = a[0] + i;

12.2.5 Register re-naming

Since there are only a limited number of registers available in the IA-32 architecture,

many of them (like the EAX register) tend to be heavily used. This can create a

problem with dealing with parallel execution: often there will be several operations

“in flight” at one time that specify operations with the same register. Usually there is

no logical dependence – registers are often used as temporary storage for computing

address, or storing a result, and then loaded with some other value for doing an

independent computation. To deal with this situation, the Pentium 4 uses register
renaming along with a much larger register file (containing the equivalent of 128

registers in the Pentium 4) to handle the multiple but independent uses of the

registers such as EAX. When there are multiple references to a single register by

the instructions being processed, different registers in the register file are identified

as corresponding to the different (and independent) uses of the EAX register.

12.2.6 SSE SIMD extensions

The Pentium 4 architecture includes a number of instructions that explicitly provide

Single Instruction, Multiple Data parallelism using the MMX and XMM registers.

A single XMM register with 128 bits can be loaded with two double-precision

numbers or four single-precision numbers in packed form. A packed SIMD add of

two double-precision or four single-precision floating-point numbers in two clock

cycles and computing one product of two double-precision numbers or two products

each of two single-precision numbers can each be computed in one clock cycle.

These use the parallelism available in the floating-point unit of the Pentium 4. The

64 bit MMX registers can perform similar operations on integer (or pointer) data

in parallel. This can lead to greater on-chip parallelism – up to 8 characters can be

operated on simultaneously. This is particularly useful in digital signal processing

where integer or fixed-point operations are being carried out and it is critical that
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the processing meets time constraints. However, the SSE floating point operations

do not use extended precision arithmetic.

12.3 Virtual memory and paging

Caching is built into CPUs, but virtual memory is about using storage devices like

hard disks (see Figure 12.1) to increase the amount of available memory. Although

the terminology is different, the principles are the essentially the same.

If virtual memory is in use, blocks of memory (called pages) can be written to

hard disk if they are not needed, and read back off disk when they are needed. In

this way a hard disk is a reservoir of memory. With it you can carry out much larger

computations than would otherwise be possible. However, there is a substantial

cost: reading data from a hard disk or writing to a disk is much slower than reading

or writing data to and from main memory.

Hard disks are divided into circular tracks, and each track is divided into seg-

ments which can hold anything from 128 bytes to 8 or 16 KB. Usually a segment

corresponds to a page of virtual memory, which is analogous to a cache line for

caches. When a memory address is accessed using virtual memory, a table is looked

up to find the physical address. If the physical address is in main memory, then that

address is accessed directly. If it is not in main memory, then the corresponding page

of memory on the hard disk is read in to main memory and the table of virtual mem-

ory pages is updated (this is called a page fault). Often there is hardware support for

the table of physical addresses in the form of a table lookaside buffer (TLB) which

contains the physical addresses of the most recently accessed virtual addresses.

As with caches, efficient use of virtual memory involves keeping a close eye

on memory locality: inner loops should avoid accessing widely spaced locations in

memory, and should re-use blocks of memory, where possible. Inefficient codes can

result in a page fault for (almost) every memory access, slowing the code down by a

factor of ten thousand or more. Generating many page faults in rapid succession is

called thrashing, and is the subject of the next section. The same effect can easily

occur when using cache, although the effect reduces speed only by a factor of two

to ten.

12.4 Thrashing

Consider the following piece of Fortran code for y ← Ax + y:

do i = 1, m
do j = 1, n
y(j) = y(j) + A(i,j)*x(j)

enddo
enddo
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This uses the minimum number of floating point operations, and is simple, direct

code, and yet it is inefficient if A is m × n and m and n are large. Why?

After each time we go though inner loop, we increment j . Since Fortran uses

column major order, the memory address of A(i,j+1) differs from A(i,j) by

m floating-point numbers. If we are using single-precision real numbers, this

amounts to 4m bytes. This means that if m ≥ 64/4 = 16, we need to read in a new

L1 cache line every time we go through the inner loop, at least on the first time

through the outer loop. Since there are only 128 L1 cache lines, we will need to

start re-reading the L1 cache lines after 128/n times through the outer loop. If n is

128 or more, this means that for every time we go through the inner loop we have

to read a cache line to do a multiply and an add. The time to do a multiply and add

is typically a few clock cycles on modern CPUs, so most of the time will be spent

filling the L1 cache, not on doing floating-point operations.

This is thrashing. Thrashing can occur at any level of a memory hierarchy.

Whichever level of the memory hierarchy we consider, the principles of how to avoid

thrashing are basically the same. These principles are discussed in the next section.

12.5 Designing for memory hierarchies

The main principle for designing software for memory hierarchies is locality. There

are two kinds of locality to consider: temporal locality (which is about the exe-

cutable code) and spatial locality (which is about the data).

For good temporal locality, the code being executed should not jump around too

much. Ideally, most of the actual computation should be spent in small, tight loops.

Most times that a jump or branch to a far-away address occurs, cache lines need

to be filled with the new instructions to be executed. Consider, for example, the

difference between

double x[N], y[N], z[N];
...
for ( i = 0; i < N; i++ )
z[i] = x[i] + y[i];

and

double d add(double a, double b)
{ return a + b; }
...
double x[N], y[N], z[N];
...
for ( i = 0; i < N; i++ )
z[i] = d add(x[i],y[i]);
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There are several sources of inefficiency in the second example.

� Function calls usually involve setting up (and later tearing down) a stack frame.
� The function call usually involves branching to somewhere far away in memory.
� Variables often have to be saved from registers to memory or copied from memory to

registers.

No-one would consciously write code like the second example (calling a routine

to add a pair of numbers), but similar things can occur easily in object-oriented

languages unless you take care to inline small routines.

Other programming constructs like if-then-else statements also tend to reduce

temporal locality, but not as much. The conditions and the code to execute in

situations like this should be kept small. If the code for the whole loop can be kept

in a part of the cache, the loop will often run much faster as memory will not need

to be accessed for the instructions to execute. For example, it is better to write a

matrix–vector multiply in the obvious way

for ( i = 0; i < m; i++ )
for ( j = 0; j < n; j++ )
y[i] = y[i] + a[i][j]*x[j];

than to try to make it faster by avoiding zeros in the inner loop:

for ( i = 0; i < m; i++ )
for ( j = 0; j < n; j++ )
{
if ( a[i][j] != 0.0 )
y[i] = y[i] + a[i][j]*x[j];

}

Not only is time lost in the comparison with zero, but the compiler will find it harder

to optimize the second example, and temporal locality is reduced.

The main rule-of-thumb you should bear in mind for temporal locality is:

keep the inner loops short and tight wherever possible.

Spatial locality is about how the data is accessed in memory. Ideally, memory ac-

cesses should stay close together most of the time. Because C uses row-major

order, the matrix multiplication example above will access (in order) y[0],

a[0][0], x[0], y[0], y[1], a[0][1], x[1], y[1], y[2], a[0][2],

x[2], y[2], . . . . We are accessing three arrays; the entries in the x array that

we access are x[0], x[1], . . . ; the entries in the y array that we access are y[0],

y[1], . . . ; the entries in the a array that we access are a[0][0], a[0][1],
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a[0][2], . . . . In all three arrays, we are accessing sequential memory locations.

This results in good spatial locality.

If we used Fortran, which uses column-major order, with the code

do i = 1, m
do j = 1, n
y(i) = y(i) + a(i,j)*x(j)

enddo
enddo

then we would have poor spatial locality because a(1,1), a(1,2), a(1,3),

. . . are separated by (at least) m floating point numbers. Each time we accessed the

matrix we would have to read in a new cache line, and probably evict a cache line

containing the part of the x and y arrays that we need.

In this example, the Fortran code should be written with the loops reversed: the

loop on i should be the inside loop and the loop on j should be the outside loop:

do j = 1, n
do i = 1, m
y(i) = y(i) + a(i,j)*x(j)

enddo
enddo

Whether an algorithm is “cache friendly” is not always obvious. What about binary

search? If we are searching for widely spaced items, then, apart from the initial test

against the middle entry of the list, we are unlikely to be making the same tests

in successive searches. This would be cache unfriendly. But if the searches are for

close items, then most of the tests in successive binary searches would be the same.

Most of the list entries used in one binary search will be re-used in the following

search.

Matrix transposition is simple to define and program, but it is distinctly cache-

unfriendly:

for ( i = 0; i < m; i++ )

for ( j = 0; j < n; j++ )

B[j][i] = A[i][j];

No matter how you order the loops (or if you use Fortran instead of C), each time

through the inner loop will result in a cache miss (unless both A and B can reside to-

gether in cache). Cache-friendly algorithms for transposition are typically blocked.

Transposition can also be done using so-called “cache-oblivious” algorithms; see

Section 12.10.
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12.6 Dynamic data structures and memory hierarchies

Dynamic data structures, such as linked lists and trees, are commonly used in ad-

vanced algorithms. However, if we create and destroy the nodes for these data

structures using the standard memory allocation and de-allocation routines or com-

mands, we lose all control over memory locality, plus we have the expense of

managing the memory heap. For example, in an array, consecutive entries are

stored consecutively, while there is no guarantee that this is true for linked lists. In

fact, heavily modified linked lists usually have consecutive entries that are widely

scattered. Also, modifying linked lists usually involves memory allocation and

deallocation.

How can we create dynamic data structures and still keep some memory locality

for efficient use of memory hierarchies? Here are some ideas that you can use to help.

� One piece of advice given in [72] is to copy the data structure. The original process of

creating the data structure may have been very complicated. Then performing a deep

copy of the data structure will usually result in most nodes being allocated sequentially

in memory.
� Another approach is to regain control of the memory allocation and de-allocation. For

example, it is possible to allocate memory out of an explicit array for small dynamic

data structures. That way the allocated memory for the data structure is all contained in

the array – if the array is not large, then the data structure will not be too spread out

in memory. The size of the array should be limited by what can fit in the L2 cache, for

example. Code for performing this kind of memory allocation is given in Section 14.6.

12.7 Pipelining and loop unrolling

Often it is too expensive for a CPU to execute an instruction in one clock cycle. One

alternative is to create a pipeline in hardware, which is a sequence of independent

units which together accomplish a certain task, such as a floating-point operation.

IBM’s RS/6000 series of CPUs (the forerunner to the PowerPC CPUs) had a fused

floating-point multiply–add (FMA) operation which could compute a × b + c
using three pipelined units. Each unit could carry out its operation in one clock

cycle, so computing a × b + c could be done in three clock cycles. However, be-

cause each unit was independent of the others, it could carry out one multiply–add

each clock cycle – as long as the pipeline was full. This has an important effect

on how to write code to get the most out of this CPU. Consider carrying out a dot

product:

sum = 0.0;

for ( i = 0; i < n; i++ )

sum = sum + a[i]*b[i];
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Each addition to sum must be carried out before the next can begin. So the CPU

must wait for the pipeline to clear before starting a new multiply–add. The RS/6000

had independent integer arithmetic units, so the loop operations could be done

simultaneously with the floating point operations. So this code (if compiled with

the optimization switches set) could compute a direct product of two n-vectors in

3n clock cycles.

If we re-wrote the code using loop unrolling, we could reduce the time for a

multiply–add to nearly one clock cycle, increasing the speed by a factor of nearly

three:

/* do inner product in blocks of length 4 */

sum0 = sum1 = sum2 = sum3 = 0.0;

for ( i = 0; i < n; i += 4 )

{
sum0 = sum0 + a[i ]*b[i ];

sum1 = sum1 + a[i+1]*b[i+1];

sum2 = sum2 + a[i+2]*b[i+2];

sum3 = sum3 + a[i+3]*b[i+3];

}
sum = sum0 + sum1 + sum2 + sum3;

/* take care of fractional block:

4*(n/4) = 4*floor(n/4) */

for ( i = 4*(n/4); i < n; i++ )

sum = sum + a[i]*b[i];

Note that, in the first loop, the statement incrementing sum0 is independent of the

statement incrementing sum1, the statement incrementing sum2 and the statement

incrementing sum3. This independence means that there is no need to wait for

the pipeline to clear before starting a new multiply–add. Also, as there are four

increments carried out, by the time that the statement

sum3 = sum3 + a[i+3]*b[i+3];

is started, the statement

sum0 = sum0 + a[i ]*b[i ];

has finished. So when the first loop starts the next iteration, we can begin updating

sum0 without waiting for the pipeline to clear.

The second loop

for ( i = 4*(n/4); i < n; i++ )
sum = sum + a[i]*b[i];
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ensures that the final few entries of a and b are included in the dot product. While

this short loop suffers from the problems of the original code for computing the dot

product, it adds only a small amount of overhead.

Astute readers may note that we did not need to unroll the loop into four sums,

but only three. Why should we unroll the loop into four sums? One reason is that

the division n4 = n/4 usually amounts to shifting bits while n3 = n/3 is a true

division operation, and can be remarkably expensive.

On a Pentium 4 a division takes 23–30 clock cycles for integers or single-

precision floating point numbers and 38–40 for double-precision, while multipli-

cation takes 7 or 8 clock cycles in full precision [25, Appendix C].

A similar pipelining problem occurs for the Pentium 4, which has about 20 stages

in its pipeline. Four fused multiply–adds take sufficient time for the pipeline to clear,

so this loop unrolled code should work well on a Pentium 4 as well as the RS/6000.

How much loop unrolling is needed depends on the details of the architecture, and

the effectiveness of the compiler’s optimization. Careful experiments are the best

way to determine optimal loop unrolling.

12.8 Basic Linear Algebra Software (BLAS)

The Basic Linear Algebra Software (BLAS) routines are a collection of routines for

performing standard operations in numerical linear algebra: forming inner prod-

ucts, matrix–vector and matrix–matrix multiplication, solving triangular systems

of equations, and so on, for matrices and vectors stored as dense arrays. These are

available for arrays of single-precision floating point numbers, double-precision

floating point numbers, and both single and double-precision complex numbers.

Since the BLAS routines were originally written in Fortran, they assume that the

arrays are laid out in memory as they are in Fortran. BLAS routines are divided

into three different levels.

� BLAS–1: These routines do not have nested loops, and include inner products routines

and “axpy” operations: y ← ax + y. These were first described in [69]. BLAS-1 routines

use O(n) operations for n-dimensional vectors.
� BLAS–2: These routines involve doubly nested loops, and include matrix–vector prod-

ucts, matrix–transposed-vector products, and solving upper or lower triangular linear

systems. These were first described in [30]. BLAS-2 routines use O(n2) operations for

n × n matrices.
� BLAS–3: These routines involve triply-nested loops, and include matrix–matrix, matrix–

transposed-matrix multiplies, and solving L X = B and U X = B for a matrix X where L
is a lower triangular matrix and U is an upper triangular matrix. These were first described

in [29]. BLAS-3 operations use O(n3) operations for n × n matrices.

Because of this standardization, many computer manufacturers have implemented

these routines using all the tricks their hardware and compilers provide. This has
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made the BLAS routines a basis for efficient algorithms involving dense matrices

and vectors. BLAS-3 routines have been especially important. We will see why in

Subsection 12.8.2.

12.8.1 BLAS in detail

The BLAS assumes a flat column-major layout of array entries in memory. Since

we often wish to apply BLAS operations to sections or slices of arrays, there are a

number of additional parameters used to identify a particular part of an array.

Vectors are passed by passing the starting address, the dimension of the vector

(that is, the number of entries), and also the stride. The stride is the distance between

consecutive entries of the vector in the array. Usually the stride is one, but if we

are trying to operate on a particular row (or column) of a matrix, we can use the

stride to specify this. From the point of view of memory accesses, it is best to have

the stride equal to one, or at least something small. On the other hand it is better to

have a large stride for a vector than to transpose a matrix.

Matrices are two-dimensional arrays in a column-oriented layout. The physical

number of rows of the array is called the leading dimension of the array, or LDA.

Then A(i, j), the entry of A in row i and column j , is located at the address of the

start of A plus (i − 1 + L D A × ( j − 1)) times the size of the items stored in the

array. In Fortran, a double-precision array passed like this would be declared

subroutine xxx(..., A, LDA, ...)
integer LDA
real(kind=0d0) A(LDA,*)

The BLAS has a systematic naming scheme. The names of most routines begin with

a letter indicating the type of vectors and/or matrices that are being operated on:

“s” for single-precision real, “d” for double-precision real, “c” for single-precision

complex and “z” for double-precision complex arrays. There is also the possibility

(provided it is supported by local hardware and/or software) for extended precision

versions where the routine names start with “es”, “ed”, “ec”, and “ez”.

The matrix type on which the operation is applied also appears in the BLAS

naming scheme:

Matrix type Standard storage Banded storage Packed storage

General (G) GE General GB General band
Symmetric (S) SY Symmetric SB Symm. band SP Symm. packed
Hermitian (H) HE Hermitian HB Herm. band HP Herm. packed
Triangular (T) TR Triangular TB Triang. band TP Triang. packed



172 Computer architecture and efficiency

For all but the general matrix or general banded matrix formats, the data for the

matrix could be stored in the upper or the lower triangles of the matrix. For example,

a symmetric matrix A needs only ai j for i ≤ j to be stored; this is storage of the

upper triangular part of A. Alternatively, A could be stored as ai j for i ≥ j ; this

is storage of the lower triangular part of the matrix. The remainder of the matrix

could be used for other purposes (for the SY, HE, and TR formats), or the remainder

would be eliminated for the packed formats (SP, HP, and TP formats). Whether

the upper or lower triangular parts of the matrix is stored is indicated by the UPLO
argument: this is a string argument and is either “Lower triangular” or

“Upper triangular”. The string argument can be shortened to the initial

letter – “L” or “U” respectively – and are case insensitive. This is true of all the

following string arguments for BLAS routines.

Since it is frequently required to compute ATx or A
T

x and undesirable to explic-

itly transpose or conjugate A, there is an additional parameter to indicate whether

to apply the operation to or with A, its transpose AT, or its Hermitian (or conju-

gate) transpose AH = A
T
. The last case only makes sense for complex matrices.

The choice of operations is determined by the TRANS argument, which is another

string argument with the values “No transpose” (op(A) = A), “Trans-
pose” (op(A) = AT), and “Conjugate transpose” (op(A) = AH).

For triangular matrices (the TR, TB, or TP formats), it can be important to know

if the diagonal of the array is truly the diagonal of the matrix, or (as is often the

case) the diagonal of the matrix consists of ones and is therefore not stored. This

information is passed in the DIAG argument, which can have the values “Non-
unit triangular” or “Unit triangular”.

Symmetric and Hermitian matrices are stored in the upper or lower triangle of

a matrix. If we chose to store a symmetric matrix A as the upper triangle of the

array A(n,n), then A(i,j) would a valid reference to ai j only if i ≤ j . If i > j
we would have to access ai j = a ji in A(j,i). For a Hermitian matrix, we could

do the same thing, except that if i > j we would need to remember that ai j = a ji

which is the conjugate of A(j,i).

The packed format removes the unused space when a symmetric or Hermitian

matrix is stored. For example, in the packed upper triangular storage format, the

matrix entries are laid out in memory like this:

a11, a12, a22, a13, a23, a33, a14, . . .

The code to access a particular entry is obviously more complex in this case.

Banded matrices need an additional parameter, namely the bandwidth (K); a

general banded matrix has two bandwidth parameters: a lower (KL) and an upper

(KU). The upper bandwidth (KU) is the number of non-zero diagonals in the banded
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KU

KU+1

KU+2

KL+KU+1

1

a a a a a1,1 2,2 3,3 4,4 5,5

a a a a1,2 2,3 3,4 4,5

a a a a a2,1 3,2 4,3 5,4 6,5

a a a a a3,1 4,2 5,3 6,4 7,5KU+3

an,n

KU−1 a a a1,3 2,4 3,5 an−2,n
an−1,n

an−1, n−1

an, n−1

an−3, n−1
an−2, n−1

A:

Figure 12.2. LAPACK banded matrix storage.

matrix strictly above the diagonal. SimilarlyKL is the number of non-zero diagonals

strictly below the diagonal. General banded matrices are stored so that the j th

column of the Fortran array is the j th column of the banded matrix; however, only

the KL+ KU+ 1 entries in the band of each column are actually stored. With this

approach there is some wasted memory in the first and last KL+ KU columns of

the array, but this is usually small compared to the amount of memory needed for

the non-zero entries unless the bandwidth starts becoming a significant fraction of

n. Only the upper triangular or lower triangular part of symmetric or Hermitian

banded matrices is stored so that KL = 0 (and K = KU), or KU = 0 (and K = KL),

depending on which part is stored.

The ai j entry of a banded matrix A is stored inA(1+KU+i − j, j). Figure 12.2

illustrates the LAPACK banded matrix storage format.

The BLAS-1 routines are

subroutine xSWAP(N, X, INCX, Y, INCY)
x↔ y

subroutine xSCAL(N, ALPHA, X, INCX)
x← αx

subroutine xCOPY(N, X, INCX, Y, INCY)
y← x

subroutine xAXPY(N, ALPHA, X, INCX, Y, INCY)
y← αx+ y

function xDOT (N, X, INCX, Y, INCY)
xT y real version

function xDOTU(N, X, INCX, Y, INCY)
xT y complex only

function xDOTC(N, X, INCX, Y, INCY)
xH y complex only
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function xNRM2(N, X, INCX)
‖x‖2

function xASUM(N, X, INCX)∑
i(|Re(xi)| + |Im(xi)|)

function IxAMAX(N, X, INCX)
argmaxi(|Re(xi)| + |Im(xi)|)

subroutine xROTG(A, B, C, S)
generate plane rotation

subroutine xROTMG(D1, D2, A, B, PARAM)
generate modified rotation

subroutine xROT (N, X, INCX, Y, INCY, C, S)
apply plane rotation

subroutine xROTM(N, X, INCX, Y, INCY, PARAM)
apply modified rotation.

The prefix “x” represents the component types: “s” for single-precisioncision

real, “d” for double-precision real, “c” for single-precisioncision complex, and

“z” for double-precision complex.

Many of these routines are clearly in the nature of utility routines: xSWAP,

xCOPY, xSCAL, IxAMAX; however, xDOT, xNRM2 and xAXPY are clearly of

relevance to linear algebra; the xROT routines are for generating and applying

Givens’ rotation, which is the basis for a number of algorithms related to least-

squares problems and to computing eigenvalues and eigenvectors.

There are limited opportunities for improving the performance of BLAS-1 rou-

tines. The dot product routines xDOT can be improved by loop unrolling, especially

in architectures with long pipelines. The xNRM2 routines can be improved over

“naive” implementations to avoid overflow or underflow: the entries are scaled by

a power of two so that the largest entry has magnitude between (say) one and two.

The BLAS-2 routines really only implement four operations: MV for a matrix–

vector product (y ← αAx + βy), SV for solving a triangular system of equations

(x ← A−1x), R for a rank-1 update (A ← A + αxyT), and R2 for symmetric rank-

2 updates (A ← A + αxyT + y(αx)T). The matrix–vector multiply (MV) and the

solve (SV) routines can be used with the banded matrix routines, but the rank-1

(R) and rank-2 (R2) update routines cannot, as rank-1 and rank-2 updates usually

do not result in banded matrices. The rank-1 updates for symmetric and Hermitian

matrices are restricted in the kind of update that can be carried out since the result

must be of the same type (symmetric or Hermitian as appropriate).

We use the prefix “x” as for BLAS-1 routines to indicate the component type,

and follow it with the prefix “yz” (“yz” can be GE, GB, SY, SB, SP, HE, HB, HP,

TR, TB, or TP). We can compactly represent all the BLAS-2 operations below:
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xyzMV(UPLOa, TRANSb, DIAGc, Md, N, KLe, KU f,
ALPHAg, A, LDAh, X, INCX, BETAg, Yg, INCYg)
y← α op(A) x+ β y (matrix–vector multiply)

xTzSV(UPLO, TRANS, DIAG, N, Ke, A, LDAh, X, INCX)
x← op(A)−1x (triangular solve)

xyzR(UPLOa, Md, N, ALPHA, X, INCX, Yb,
INCYb, A, LDAh)

A ← α xyH + A (rank-1 updatek)

xyzR2(UPLO, N, ALPHA, X, INCX, Y, INCY, LDAh)
A ← α xyH + y(α x)H (rank-2 updatel).

Notes:
a Not used for the general matrix operations (y = G).
b Not used for the symmetric matrix types (y = S or H); op(A) = A in the MV
routines, y = x in the R routines.
c Used only for the triangular matrix types (y = T).
d Used only for the general matrix types (y = G).
e Used only for the banded matrix formats (z = B).
f Used only for the general banded matrix format (yz = GB).
g Not used for the triangular matrix types (y = T); in this case α = 1 and β = 0.
h Not used for the packed formats (z = P).
k In the case of general complex matrices there are two routines: GERUwhich com-

putes A ← A + αxyT and GERCwhich computes A ← A + αxyH. These routines

do not apply to triangular matrices.
l These routines only apply to the symmetric formats (y = S or H).

For BLAS-3 the central operations are the matrix-multiply (MM) operations, but

the other operations are rank-k (RK) and rank-2k (R2) updates and solve-matrix

(SM) operations. All of the BLAS-3 operations are for matrices in the standard

storage format, not for either the banded or packed formats. The matrix-multiply

(MM) operations compute C ← α op(A) op(B) + β C where op(A) is A, AT, or AH

according to the associated TRANS argument for the GEneral matrix type. For the

SYmmetric and HErmitian matrix types theMM routines compute C ← αAB + βC
or C ← αB A + βC according to the SIDE argument, which can be “Left” or

“Right”. Note that it is the A matrix that is symmetric or Hermitian as the prefix

“yz” indicates.

The rank-k update routines compute C ← αA op(A) + βC or C ←
α op(A) A + βC for symmetric or Hermitian C according to the TRANS argument.

Note that op(A) is AT or AH according to whether C is symmetric or Hermitian.

Here the A matrix is n × k (TRANS is “No transpose”) or k × n (TRANS is

“Transpose” or “Conjugate transpose”) where C is n × n.
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The rank-2k update routines compute C ← α A op(B) + αB op(A) + βC or

C ← α op(A) B + α op(B) A + βC according to the TRANS argument. Again

op(A) is AT or AH according to whether C is symmetric or Hermitian. Here the

A and B matrices are n × k (TRANS is “No transpose”) or k × n (TRANS is

“Transpose” or “Conjugate transpose”) where C is n × n.

Finally, there is the BLAS-3 triangular solve routine (SM). This computes

B ← α op(A−1) B or B ← α B op(A−1) according to SIDE argument. Note that

op(A) = A, AT or AH according to the TRANS argument. Note that A must be the

triangular matrix.

The routines can be summarized as follows.

xGEMM(TRANSA,TRANSB, M,N,K, ALPHA,
A,LDA, B,LDB, BETA, C, LDC)
C ← α op(A)op(B)+ βC, C is m × n

xSYMM(SIDE,UPLO, M,N, ALPHA,
A, LDA, B,LDB, BETA, C,LDC)
C ← αAB + βC or
C ← αBA + βC, C is m × n, AT = A

xHEMM(SIDE,UPLO, M,N,K, ALPHA,
A,LDA, B,LDB, BETA, C,LDC)
C ← αAB + C or
C ← αBA + βC, C is m × n, AH = A

xyzRKa(UPLO,TRANS, N,K, ALPHA,
A,LDA, BETA, C,LDC)
C ← α A op(A)+ βC or C ← α op(A) A + βC,
C is n× n, A is n× k or k× n

xyzR2Ka(UPLO,TRANS, N,K, ALPHA,
A,LDA, B,LDB, BETA, C,LDC)
C ← α A op(B)+ α B op(A)+ βC or
C ← α op(A) B + α op(B) A + βC
C is n× n, A,B are n× k or k× n

xTRMM(SIDE,UPLO,TRANSA,DIAG, M,N, ALPHA,
A,LDA, B,LDB)
B ← α op(A) B or B ← α B op(A), B is m × n

xTRSM(SIDE,UPLO,TRANSA,DIAG, M,N, ALPHA,
A,LDA, B,LDB)
B ← α op(A−1) B or B ← α B op(A−1), B is m × n.

Notes:
a op(A) = AT ifyz =SY (symmetric case), and op(A) = AH ifyz =HE (Hermitian

case).
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12.8.2 Why BLAS is a good foundation

In modern computer architectures we have seen that memory access times are

starting to dominate computation times. From this perspective we will look at

typical BLAS routines to compare the number of floating-point operations with the

number of memory accesses.

� BLAS-1: “axpy” routines compute y ← αx + y. That is, yi ← αxi + yi for all i . If x
and y are n-vectors, then this has 2n floating point operations and 3n memory accesses.

The ratio of memory accesses to floating point operations is (3n)/(2n) = 3/2.
� BLAS-2: Matrix–vector multiply routines compute y ← Ax + y. That is, yi ←∑

j ai j x j + yi for all i . If x and y are n-vectors, then this has 2n2 + n floating point

operations and n2 + 3n memory accesses. For large n the ratio of memory accesses to

floating-point operations is ≈ (n2)/(2n2) = 1/2. This is a lower ratio than for BLAS-1,

but not particularly small.
� BLAS-3: Matrix–matrix multiply routines compute C ← AB + C . That is, for all ma-

trices n × n, ci j ← ∑
k aikbk j + ci j . This has 3n2 memory accesses (in principle; im-

plementations could easily have more) and 2n3 floating point operations. The ratio of

memory accesses to floating point operations is then (in principle) (3n2)/(2n3) = 3/(2n).

If n is large, then this is small.

Thus BLAS-3 routines have the potential to get very close to the theoretical peak

performance of the CPU. To realize this potential we have to use blocked algorithms,

and to use the cache to hold blocks of the matrices in BLAS-3 algorithms. This is

described in more detail in Section 12.9.

The BLAS have been the foundation of the algorithms developed in LAPACK,

and BLAS-3 routines are particularly important for the efficiency of LAPACK rou-

tines. To make effective use of the BLAS-3 routines, the algorithms in LAPACK

must also be blocked algorithms. For example, the standard LU factorization al-

gorithm (with or without pivoting) must be modified to factorize a small block on

the diagonal of the matrix; then the remainder of the matrix to the left and right

of the diagonal block are modified, and the factorization continues with the next

block on the diagonal. The optimal size of the block depends on the size of the

cache.

12.8.3 BLAS, ATLAS, and other issues

One of the difficulties with the current state of affairs regarding the BLAS is the

difficulty in keeping implementations in step with CPUs. CPU manufacturers like

Intel are producing a range of CPUs with different characteristics (clock speed,

cache size, pipelines, arithmetic units, etc.). Ideally each change should result in

a different implementation of the BLAS. Given that it takes a substantial number
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of programmer–months to develop BLAS-3 routines, the continual modification of

the BLAS routines has tended to fall behind except where there has been particular

demand. One response to this has been the development of ATLAS (Automatic
Tuning of Linear Algebra Software) [105] to automatically produce implementa-

tions of BLAS routines. ATLAS works by running a series of timing experiments

using standard techniques for improving performance (loop unrolling, blocking,

etc.) to determine optimal parameters and structures.

Another issue that has received some scrutiny is the matter of handling C-style

pointer-to-pointer representations of matrices, rather than assuming a Fortran-style

layout in memory. In the absence of a C-BLAS standard that uses pointers to

pointers, one approach is to use an object-oriented language such as C++ to provide

a more C-like interface to arrays using a Fortran-style layout in memory. There is

also a C interface to the original BLAS that respects the row-oriented nature of

C’s matrices, but works with a pointer to floats or doubles (that is, not with a

pointer to an array of pointers to arrays of floats or doubles) [8].

Other solutions (such as cache-oblivious algorithms and data structures) may

result in complicated memory layouts and require access functions to update indi-

vidual entries.

It should be kept in mind that the BLAS were introduced as computational

kernels for the construction of direct LU- and Cholesky-based linear solvers and

for solving eigenvalue/eigenvector problems for dense or banded matrices. They

do not contain all the kernels needed for numerical computations. Specifically

missing are kernels for iterative solvers, sparse direct solvers, and most PDE solvers.

Work has proceeded on “sparse BLAS” kernels [33] (current information available

through [8]) to remedy some of these deficiencies, as well as high-performance

software for iterative methods such as multigrid methods [101] and Krylov subspace

methods [7, 6] for the iterative solution of linear systems and eigenvalue/vector

problems.

12.9 LAPACK

LAPACK [5] (Linear Algebra PACKage) is a package of linear algebra routines. It is

based on BLAS, and uses all three levels of BLAS routines to achieve performance.

Since the BLAS-3 routines give the best performance, the designers of LAPACK

preferred to use BLAS-3 routines over BLAS-2 or BLAS-1 routines. If we have

a look at the pseudo-code for a common operation, such as LU factorization for

solving a linear system, we will see that there are apparently no opportunities to

use BLAS-3 or matrix–matrix operations.
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LUfactorization(A, pivot) /* A is m × n */
for k← 1,. . .,min(m ,n)− 1
/* find row to pivot */
p← argmaxi≥k+1 |aik|
if apj= 0 then return /* singular matrix */
swap akj↔ apj, j= 1,. . .,n
pivot[k] ← p
/* do row operations */
for i← k+ 1,. . .,m
aik ← aik/akk /* compute multiplier */
for j← k+ 1,. . .,n
aij← aij− aikakj

end for j
end for i

end for k
end LUfactorization

There are opportunities for using BLAS-1 and BLAS-2 operations here. The BLAS-

1 routine IxAMAX can be used to compute p ← arg maxi≥k+1 |aik |; the routine

xSWAP can be used to perform “swap akj ↔ apj , j = 1, . . . , n”. The multipliers

aik for i > k can be computed in one application of xSCAL for scaling column k
below the diagonal by 1/akk . Finally, the doubly-nested loop over i and j actually

computes a rank-1 update on the sub-matrix [ ai j | i, j = k + 1, . . . , n ]. This can

be performed by one call of the BLAS-2 routine xGER.

This can be seen in the LAPACK routine SGETF2; an abbreviated and slightly

modified version of the Fortran 90 source file from LAPACK version 3E follows.

Note that the 3E version of LAPACK is in Fortran 90 and uses Fortran 90 features,

rather than being written purely in Fortran 77.

#include ”lapacknames.inc”

SUBROUTINE SGETF2( M, N, A, LDA, IPIV, INFO )

USE LA CONSTANTS

USE LA AUXILIARY, ONLY: XERBLA

USE LA BLAS1, ONLY: LA IAMAX, LA SCAL, LA SWAP

USE LA BLAS2, ONLY: LA GER

! .. Arguments ..

INTEGER INFO, LDA, M, N

INTEGER IPIV( * )

REAL(WP) A( LDA, * )

INTEGER J, JP ! Local Variables
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INTRINSIC MAX, MIN ! Intrinsic Functions

INFO = 0

...

IF ( M == 0 .OR. N == 0 ) RETURN

DO J = 1, MIN(M,N)

JP = J - 1 + LA IAMAX( M-J+1, A(J,J), 1 )

IPIV(J) = JP

IF ( A(JP,J) /= ZERO ) THEN

IF ( JP /= J ) &

CALL LA SWAP( N, A(J,1), LDA, A(JP,1), LDA )

IF ( J < M ) &

CALL LA SCAL( M-J, ONE/A(J,J), A(J+1,J), 1 )

ELSE IF( INFO == 0 ) THEN

INFO = J

END IF

IF ( J < MIN(M,N) ) THEN

CALL LA GER( M-J, N-J, -ONE, A(J+1,J), 1, &

A(J,J+1), LDA, A( J+1, J+1 ), LDA )

END IF

END DO

RETURN

END SUBROUTINE SGETF2

In LAPACK 3E there is no need to have separate single-precisioncision and double-

precision routines as this information is encoded in the REAL(WP) declaration;

WP is a KIND parameter which is defined in the LA CONSTANTS module. The

LA BLAS1 and LA BLAS2 are modules which define interfaces to the BLAS-1

and BLAS-2 routines. The module LA BLAS1, for example, defines an interface

LA SCAL which it selects from SSCAL (for single-precisioncision) and DSCAL
(for double-precision) according toWP. LAPACK 3E for single-precision or double-

precision can be generated automatically by compiling with the appropriate value of

WP in the LA CONSTANTSmodule. (This is an example of the once and only once!
principle of p. 177 in action. The precision need be specified in only one place.)

Some argument tests have been removed in this abbreviated code; in its place is

an ellipsis (. . . ) after “INFO = 0”.

The code for SGETF2 clearly shows the usefulness of the BLAS, but only levels

1 and 2. To use BLAS-3 we need to use blocked algorithms. The basic idea is to

partition the matrix A into

A =
[

A11 A12

A21 A22

]
,
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and we begin by computing the LU factorization (with row-pivoting) of the first

block column:

P1

[
A11

A21

]
=

[
L11

L21

]
U11,

where L11 is lower triangular, U11 is upper triangular, and P1 is a permutation

matrix. Notice that we are making use of the fact that we can compute LU factoriza-

tions of rectangular matrices. This initial factorization is done using the unblocked
algorithm in SGETF2. Now adding the second block column back in gives us

P1

[
A11 A12

A21 A22

]
=

[
L11U11 A′

12

L21U11 A′
22

]
=

[
L11 0

L21 I

] [
U11 L−1

11 A′
12

0 A′
22 − L21L−1

11 A′
12

]
,

where [
A′

11 A′
12

A′
21 A′

22

]
= P1

[
A11 A12

A21 A22

]
.

Note that A′
22 − L21L−1

11 A′
12 = A′

22 − L21U11U−1
11 L−1

11 A′
12 = A′

22 − A′
21(A′

11)−1 A′
12

is the Schur complement matrix [55] to A′
11 in P1 A. We can set U12 = L−1

11 A′
12.

Note that these two steps U12 ← L−1
11 A12 and computing the Schur complement

A′
22 − L21L−1

11 A′
12 = A′

22 − L21U12 can be done using BLAS-3 operations.

We can then carry out the LU factorization of the Schur complement:

P2(A′
22 − L21U12) = L22U22.

This LU factorization can be done recursively using the blocked algorithm. Since

this is tail-end recursion, it can be implemented using loops.

We still need to combine the two permutations into one. Here is what we have

so far:

P1

[
A11 A12

A21 A22

]
=

[
A′

11 A′
12

A′
21 A′

22

]
=

[
L11 0

L21 I

] [
U11 U12

0 A′
22 − L21U12

]
=

[
L11 0

L21 I

] [
I

P−1
2

] [
U11 U12

0 L22U22

]
=

[
I

P−1
2

] [
L11 0

P2L21 I

] [
U11 U12

0 L22U22

]
.

So [
I

P2

]
P1 A =

[
L11 0

P2L21 L22

] [
U11 U12

0 U22

]
.
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So after we have computed L22 and U22 we need to apply the permutation to L21

and to combine the two permutations.

LAPACK represents permutation matrices by integer arrays; however, these inte-

ger arrays are not direct representations of the corresponding permutation. Instead,

a permutation is represented by an integer array P like this: for k ← 1, 2, . . . , n,

swap k with P(k).

In what follows, a lightly edited version of the LAPACK 3E (Fortran 90) version

of SGETRF will be used. The modified version uses the DO/END DO constructs

and the free format features of Fortran 90. Here is how SGETRF works: first the

header for the routine:

#include ”lapacknames.inc”

SUBROUTINE SGETRF( M, N, A, LDA, IPIV, INFO )

USE LA CONSTANTS

USE LA AUXILIARY, ONLY: ILAENV, XERBLA, LA LASWP

USE LA BLAS3, ONLY: LA GEMM, LA TRSM

USE LA XGETF2

The array A is M× N with leading dimension LDA. IPIV contains the pivot array.

INFO is an output; on exit it contains zero to indicate success, negative values to

indicate invalid inputs, and positive values to indicate failure of the routine. The

input data goes through some “sanity checking”. Then there is the main body of

the routine:

...

! Determine the block size for this environment.

NB = ILAENV( 1, SPREFIX // ’GETRF’, ’ ’, M, N, -1, -1 )

IF( NB <= 1 .OR. NB >= MIN(M,N) ) THEN

! Use unblocked code.

CALL LA GETF2( M, N, A, LDA, IPIV, INFO )

ELSE

! Use blocked code.

...

END IF

RETURN

This computes the block size NB first. If the matrix is smaller than the block size we

use the unblocked routine SGETF2 (which has been renamed to LA GETF2). But

usually we use the blocked code. This code implements the algorithm described

above:
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DO J = 1, MIN(M,N), NB

JB = MIN(MIN(M,N)-J+1, NB)

! Factor diagonal and subdiagonal blocks

! and test for exact singularity.

CALL LA GETF2( M-J+1, JB, A(J,J), LDA, IPIV(J), IINFO )

! Adjust INFO and the pivot indices.

IF( INFO == 0 .AND. IINFO > 0 ) &

INFO = IINFO + J - 1

DO I = J, MIN(M,J+JB-1)

IPIV(I) = J - 1 + IPIV(I)

END DO

! Apply interchanges to columns 1:J-1.

CALL LA LASWP( J-1, A(1,1), LDA, J, J+JB-1, IPIV(1), 1 )

!

IF( J+JB <= N ) THEN

! Apply interchanges to columns J+JB:N.

CALL LA LASWP( N-J-JB+1, A(1,J+JB), LDA, J, J+JB-1,

IPIV(1), 1 )

! Compute block row of U.

CALL LA TRSM( ’Left’, ’Lower’, ’No transpose’, ’Unit’, &

JB, N-J-JB+1, ONE, A(J,J), LDA, A(J,J+JB), LDA )

IF( J+JB <= M ) THEN

! Update trailing submatrix.

CALL LA GEMM( ’No transpose’, ’No transpose’, &

M-J-JB+1, N-J-JB+1, JB, -ONE, &

A(J+JB,J), LDA, A(J,J+JB), LDA, &

ONE, A(J+JB,J+JB), LDA )

END IF

END IF

END DO

At each stage through the loop, the algorithm factorizes the sub-matrix [ai j | i, j ≥
J ], and J increases by the block size NB with each iteration. Note that we use the

unblocked routineSGETF2 to do this factorization. TheINFO andIPIV arguments

have to be increased by J − 1 because SGETF2 assumes that the indexes start at

1. The pivot swaps have to be applied to columns 1 through J − 1 of A using

LA SWAP. If J + J B ≤ N then we have to recursively factorize the sub-matrix

consisting of columns J + J B through M and rows J + J B through N . To do that

we first apply the row swaps to the sub-matrix. We then use the BLAS-3 triangular

solve routine to compute U12 ← L−1
11 A′

12, and then the BLAS-3 matrix-multiply
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routine to compute A′
22 − L21U12. By using blocked algorithms like this, LAPACK

is able to use BLAS-3 routines and obtain near maximum performance on most

computer architectures.

12.10 Cache-oblivious algorithms and data structures

Since cache sizes are constantly changing, one approach to getting high performance

is to use algorithms and data structures which give near optimum performance no

matter what size of cache is available. These algorithms and data structures should

also perform well with deep memory hierarchies.

The term cache-oblivious data structures was first used by Prokop [88], and later

described in [39]. A more recent description of the behavior of cache-oblivious

algorithms in practice was given by Olsen & Skov [83]. Good surveys of cache-

oblivious algorithms include one by Demaine [28] and Elmroth, Gustavson, Jonsson

and Kågström [35]. One of the most straightforward cache-oblivious algorithms is

a divide-and-conquer matrix multiplication algorithm. If we wish to multiply two

large n × n matrices A and B we use the formula[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11 B11 + A12 B21 A11 B12 + A12 B22

A21 B11 + A22 B21 A21 B12 + A22 B22

]
.

Suppose n is a power of 2. The block matrices A11, A12 etc. are all n/2 × n/2.

Applying the block matrix formula recursively to computing A11 B11 etc. gives

a cache-oblivious algorithm. An algorithm like this can be accelerated by using

a cache-oblivious data structure for storing the matrices. Instead of storing the

matrices in either row-major or column-major order, we can store the matrices in a

way that makes this algorithm particularly convenient: to store A we first store A11,

then A12, followed by A21 and A22. Each block sub-matrix should be (recursively)

stored in the same fashion. Here is an example of an 8 × 8 matrix showing the order

in which the entries are stored in this data structure:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 5 6 17 18 21 22

3 4 7 8 19 20 23 24

9 10 13 14 25 26 29 30

11 12 15 16 27 28 31 32

33 34 37 38 49 50 53 54

35 36 39 40 51 52 55 56

41 42 45 46 57 58 61 62

43 44 47 48 59 60 63 64

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Many other data structures which can be regarded as “cache oblivious” have been

developed. There is reason to believe that these techniques are almost ready for

general use. Several issues have delayed their acceptance:

� computing the address of a specific entry is much more complex than for standard layouts

of matrices;
� natural algorithms for dealing with these data structures are recursive, which causes

difficulties for optimizing compilers – for one thing, recursive routines cannot be “inlined”;
� the natural base cases for the recursion are 1 × 1 or 2 × 2 block matrices, which are too

small to be efficiently handled by modern deeply pipelined CPUs.

Getting the best performance out of cache-oblivious algorithms takes some careful

implementation [35, 83]. The biggest overhead is perhaps the use of recursion for

the smallest matrices. One way of avoiding this is to stop the recursion, and to lay

out the blocks in memory the standard way, when the blocks are “small enough”.

For example, if the blocks can fit in the L1 cache they are probably “small enough”.

This is not purely “cache oblivious”, but it is close enough. For high performance

applications it is probably necessary to convert matrices stored in the standard way

into a cache-oblivious format near the beginning of the main computations, and

convert back to a standard format at the end of the computations.

12.11 Indexing vs. pointers for dynamic data structures

If you are using linked lists or trees or other dynamic data structures, there is usually

a problem with keeping memory locality. If we use a conventional approach for

(say) linked lists, then we would have a structure in C like this:

struct link {
void *data;
struct link *next;

};

and to get a new link we would use malloc. However, malloc and new and

related functions and operators which allocate memory from a heap in general do

not pass pointers to nearby blocks of memory on successive calls. This means that

traversing a linked list can mean jumping around in memory and losing any memory

locality. This is even truer if, in between allocating links in a linked list, your code

is allocating memory for completely different purposes.

There are several different ways of improving memory locality for dynamic data

structures like this.
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� Write your own memory allocation and de-allocation routines for linked lists, which use

one or more memory pools from which to allocate the links.
� Instead of using a pointer field for next, allocate a single array to contain the entire

linked list and make next an integer index into the array.

Writing your own memory allocation and de-allocation routines is more flexible,

and relies on the fact that all the link objects are allocated from one or a small number

of pools of memory. If the pools fit in cache, then traversing the list repeatedly will

probably not result in many cache misses.

Allocating an array of objects and using array indexes in place of pointers can

achieve the same effect even more efficiently. However, even more of the burden of

writing allocation code is put on the programmer. But, if there are no de-allocations

to do, this should not be overwhelming.

These techniques are useful only if efficiency is of the utmost importance. As

noted above, profile your code to see where time is being spent before optimizing.
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Global vs. local optimization

13.1 Picking algorithms vs. keyhole optimization

Optimizing the performance of software requires working with at least two different

points of view. One is the global view where the questions are about how to structure

the overall architecture of the system. Another view is how the individual routines

are written, and even how each line of code is written. All of these views are

important. Selecting good algorithms is as important as selecting good hardware

and implementing algorithms efficiently.

When the term “optimization” is used in computing, it is often taken to mean

something like picking compiler options or “writing tight code” that uses the least

number of clock cycles or operations. This is clearly important in writing fast,

effective software, but it is only a part of the process, which begins early in the

design stage.

Usually the first part of the design stage is the design of the central data struc-

tures and databases that will be used. These should be chosen so that there are

well-known efficient algorithms for handling these data structures, preferably with

readily available implementations that perform correctly, reliably and efficiently.

Then the algorithms to carry out the main tasks need to be selected. An impor-

tant guide to selecting them is their asymptotic complexity or estimate of the time

needed. However, this is not the only guide; see the last section of this chapter for

more information about how to refine this information and to make sure that the

asymptotic estimates are relevant in practice. The last part is the detailed design

process where the algorithms are implemented, and this should be done with an eye

on efficiency to ensure that the whole system works well. On the whole, optimiz-

ing compilers can do a great deal of the detailed “optimization” that programmers

used to spend considerable time on. Where possible, use the optimization that com-

pilers can provide as it is much less error prone than doing the equivalent task

“by hand”.

187
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Note that it is usually not important to make every routine optimal. Often only a

small fraction of the code in a large system has a significant impact on efficiency.

This is sometimes expressed by the slogan that

95% of the time is spent in 5% of the code.

The values 95% and 5% should not be taken literally for every large software project.

But we have seen similar figures for the systems we have worked on. Often, in many

pieces of large-scale scientific software, most of the time is spent in linear algebra:

solving systems of linear equations.

Profilers are useful tools for identifying where most of the time is being spent

in a program. See the chapter on tools for more information on them and how to

use them to identify the parts of the code that could have a substantial impact on

the performance of the overall system. Use a profiling tool to find bottlenecks. If

there is a bottleneck in your code, have a close look at it. Ask yourself: could better

algorithms be used? Could it be implemented more efficiently? Should a higher

level of compiler optimization be used? Should the data structures be re-designed?

Repeat the process until the system is performing as expected.

13.2 What optimizing compilers do

Optimizing compilers carry out their work on several different levels to improve the

quality of code, mainly to reduce execution time, although they can also be used

to reduce memory requirements. There have been many advances in optimizing

compilers, and they use a number of techniques to improve performance. These

transformations are best left to compilers so that your code remains clear and

portable.

� Keyhole optimization. This is the simplest kind of optimization, and it is carried out on

the assembly language or machine code output of the compiler: it scans the output for

a pre-selected set of patterns of instructions, which are then replaced by more efficient

instructions. For example, multiplying an integer by two can be replaced by shifting

the bits of the integer to the left by one; adding zero to a register can be replaced by

a no-operation (and removed entirely). There are a great many limits on the operation

of keyhole optimizers since they have to be careful not to violate implicit assumptions

and dependencies that are used by the code. For example, subtracting one number from

another in most CPUs does not just carry out an arithmetic operation – it usually sets

bits in the condition code to indicate, for example, if the result is positive, negative, or

zero. Sometimes that is the sole purpose of the subtraction: to perform a comparison

between two numbers to see which is the larger. A naive keyhole optimizer that removed

the subtraction because no use was made of the difference is likely to produce incorrect

code.
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� Common sub-expression elimination. The same sub-expression occurring two or more

times is often an opportunity for optimization, provided the value of the sub-expression

cannot be modified between their occurrences. The value of the sub-expression can then

be computed once, and the value re-used without re-computing it. The reader may notice

that this only makes sense if the programmer is writing the same piece of code repeatedly.

Why would a programmer leave the same sub-expression many times over in the same

piece of code? The answer is that many do for clarity, or because they use macros to

navigate data structures. Code inlining (discussed below) can also be a common source

of repeated sub-expressions.
� Code hoisting. Another example of common sub-expression elimination is to remove

quantities that are independent of the loop index. Thus the sub-expression is “hoisted”

outside the loop and computed once before the loop, and the value is used inside the

loop. Consider, for example, the Meschach MAT data structure for storing matrices: MAT

*A; the entries in the matrix are stored in a field of the MAT structure (double **me,

for matrix entries). Summing all the entries of a matrix A could then be done using code

like this:

int i, j;
double sum = 0.0;
for ( i = 0; i < m; i++ )

for ( j = 0; j < n; j++ )
sum += A->me[i][j];

In the inner loop on j there is a common sub-expression: A->me[i]. This is the pointer

to the start of the ith row. This can be pre-computed outside the loop on j, but inside

the loop on i. The expression A->me[i] inside the loop on i also has a common

sub-expression: A->me, which can be computed outside the loop on i. Code hoisting

in effect results in the code

int i, j;
double sum = 0.0, **A me, *A me i;
A me = A->me;
for ( i = 0; i < m; i++ )
{

A me i = A me[i];
for ( j = 0; j < n; j++ )

sum += A me i[j];
}

Now we see that inside the inner loop, apart from the floating-point operations, there are

only a simple memory address computation and a memory access. In the original code

there were two memory address computations and three memory accesses in each pass

through the inner loop.
� Dead code elimination. Dead code is code that can never be executed. Again, it sounds

strange that this would ever happen. But it does: debugging code, for example, is often
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preceded by “if ( debug )” conditions. If debug is a constant whose value is

known at compile time, and the value if false, then the debugging code is dead code and

the compiler can remove it. It can also occur in code inlining and templates in C++,

where general code might handle situations that never occur in certain uses.
� Code inlining. Inlining is the process of substituting the text of a routine into another

(possibly changing variable names in the process) to create code equivalent to the function

call. This almost certainly requires additional memory for the inlined code, but has the

potential to reduce the execution time. The time needed for a function call is definitely

eliminated; but greater savings are possible by combining inlining with other optimization

techniques.
� Register allocation. Register allocation for variables is a vital, if low-level, optimization

that compilers must carry out. It is desirable to keep frequently used variables and

computed values in registers for fast access. But if there are more values that are frequently

accessed than registers to hold them, there can be some difficult decisions to make

regarding which values to keep in registers and which to keep in memory. These issues are

particularly acute in CPUs with a small number of registers, such as Intel CPUs. However,

recent Intel CPUs aggressively use register renaming to overcome this limitation so that

the hardware performs as if there were a very large number of registers.
� Strength reduction. Sometimes a sequence of multiplications can be replaced by a se-

quence of additions, which allows us to replace a more expensive operation (integer

multiplication) with a faster one (integer addition). This is particularly useful for very

low-level operations such as computing memory addresses. For example, consider the

code

double a[N];
int i;
for ( i = 0; i < N; i++ )

a[i] = i;

The memory address of a[i] is the address of a plus 8 times i. Instead of doing this

computation on each pass through the loop, we can keep a pointer to a[i] which is

initialized to a before the loop and incremented by 8 (one double) in each pass through

the loop. The optimized code would look like this:

double a[N], *a i;
int i;
a i = a;
for ( i = 0; i < N; i++ )
{

*a i = i;
a i++; /* increments by 1 double */

}

One aspect of optimizing compilers that will undoubtedly improve in the future

is interprocedural optimization. These optimizations involve code in one or more
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routines. The need for separate compilation means that compilers cannot “see”

beyond a single compilation unit – typically a file – to determine what optimizations

can or should be carried out.

While there have been considerable advances in compiler optimization technol-

ogy, they all involve some form of pattern matching. Optimizing compilers are

fundamentally local optimizers: they can improve on local patterns and operations,

but they do not understand the global issues and they cannot derive optimal algo-

rithms for you.

13.3 Helping the compiler along

While optimizing compilers are able to do a great many things, there are many

things that they cannot do. How things get done is ultimately in the hands of the

programmer. While some things that a programmer can do have limited effect (such

as using the register keyword in C/C++), there are many others that can be

crucial for performance. This is particularly true for memory locality.

Other keywords such as const are very useful for optimizing compilers to

produce efficient code. This is particularly true when used in combination with the

restrict keyword from the C99 standard.1 The const keyword means that the

indicated variable cannot be assigned to. This is particularly important for pointers

and arrays: to pass an array so that it cannot be changed by a routine, we use the

const keyword like this in the declaration of the routine:

void my routine(double const *my array, ...)

or

void my routine(double const my array[], ...)

However, the const keyword cannot prevent changes due to aliasing. That is, the

same memory location can be referred to through different pointers. Consider the

example routine below:

void aliased func(double const *px, double *py)

{
double temp;

temp = *px;

*py = 3.0;

temp = *px;

}

1 The GNU C++ compiler supports the restrict keyword which has the same effect in C++.
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If this routine is called with px == py, then the memory location *px is aliased;

it can be accessed both as *px and as *py. This has an effect on optimization of

the code: since the compiler cannot be sure that px and py are different, it has to

assume that assigning to *py can change the value of *px. So the compiler cannot

save the value of *px obtained for the first assignment to temp for the second

assignment.

The restrict keyword in the C99 standard for C is a way of telling a compiler

to assume that aliasing does not occur for a particular variable. That is, if a variable

is declaredrestrict, the compiler assumes that changes to other variables cannot

affect that variable. Whether aliasing does or does not occur is the responsibility of

the programmer.

Using restrict for all pointer variables is essentially equivalent to what

happens with Fortran, as Fortran compilers can assume that aliasing does not occur,

whether or not it actually does. What happens if aliasing occurs but is assumed not

to? The standards documents say that it is undefined. In practice it depends on the

compiler, and perhaps how much optimization is requested – the more optimization,

the more likely that unexpected things will happen. Sometimes it will be harmless,

but sometimes it can break the program.

In Fortran 90 we can use the intent(in), intent(out), and in-
tent(inout) declarations to inform the compiler about how arguments are

used. Note that intent(in) in Fortran 90 works like const in C/C++, but

intent(out) has no equivalent in C/C++. An intent(out) argument must

be assigned a value before use and before the routine returns.

Normally optimizing compilers can only work on local information – they can

optimize a routine, but they usually cannot use any information about where the

routine is called. This can be partly overcome by inlining routines. In C/C++ this

is done with the inline keyword. Where an inlined function is called, the text

of the inlined function is copied to where it is called, possibly with variable names

changed to avoid name clashes. This is particularly important in C++ where the

goals of security and information hiding result in lots of small access and updating

functions – these are natural candidates for inlining. Inlining combined with tem-

plate programming (discussed in Section 8.6.4) provides a powerful mechanism

for creating efficient programs in a fully object-oriented framework.

13.4 Practicalities and asymptotic complexity

The most common measure of the performance of algorithms is the asymptotic

bound on the time (or number of operations) needed to complete the algorithm

with an input of a given length. Asymptotic notation is convenient and concise, and

widely used.
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Mathematically, we say that a function f (n) is O(g(n)) (pronounced “order of

g of n”) as n goes to infinity if there are numbers N and C where

| f (n)| ≤ C g(n) for all n ≥ N .

Because C can act as a scale factor between, say, operations and time in seconds

it doesn’t matter which of these is measured – they have the same asymptotic

behavior. This also means that differences in compilers, access speeds, and units

of measurement are irrelevant. Thus, for example, we can readily show that bubble

sort is O(n2) and that the average case time for quicksort is O(n log n). Usually

these kinds of asymptotic estimates give good indications of what performs better in

practice, at least for large input sizes. But sometimes following only the asymptotic

behavior gives a poor guide for algorithm selection. For example, the value of C
could be very large – 106 or 1012 or more for example. But unless the algorithm is

enormously complicated, the constant C is usually not large.

Consider, for example, Strassen’s algorithm for matrix multiplication. This is

asymptotically O(nlog2 7) with log2 7 ≈ 2.807, while the conventional algorithm is

O(n3). Clearly Strassen’s algorithm is asymptotically faster. However, n has to be

quite large before it beats the conventional algorithm. To see where this “break-

even” point is, we need to know the constants involved. For the conventional al-

gorithm, the number of floating point operations is ≈ 2n3, while for Strassen’s

algorithm, if n is a power of 2 then the number of floating point operations is

≈ 7nlog2 7. These two estimates are equal when n = (7/2)1/(3−log2 7) ≈ 667.11. So

the matrices would have to be at least 667 × 667 for Strassen’s algorithm to have

fewer floating point operations. If n is not a power of 2, we could use the sim-

ple strategy of padding the A and B matrices by zeros to become 2k × 2k with

k = ⌈
log2 n

⌉
, then in the worst case n would be roughly doubled. Comparing the

worst case (n is doubled) 7(2n)log2 7 and 2n3 we find these are equal when n =
(7 × 2log2 7−1)1/(3−log2 7) ≈ 1.626 × 107. Dense n × n double-precision matrices

with n ≈ 1.6 × 107 need about 2 000 000 Gigabytes of memory! Clearly this ap-

proach to using Strassen’s algorithm is impracticable.

Fortunately there are ways of reducing the constant in Strassen’s algorithm by

using a recursive hybrid of Strassen’s algorithm with the conventional algorithm:

when the matrices are smaller than a certain threshold t use the conventional matrix-

multiply algorithm, and otherwise use Strassen’s formulas recursively. In this way

it can be ensured that the algorithm never uses more floating point operations than

the conventional algorithm, and the hidden constant in the O(nlog2 7) is substantially

smaller. In fact, the cutoff point for this hybrid algorithm to use fewer floating point

operations is n ≈ 18.

Another issue that can arise in some asymptotic measures of the performance

of algorithms is hidden parameters. Consider, for example, linear programming in
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d unknowns with n linear inequality constraints: this is the task of minimizing a

linear cost function of x1, x2, . . . , xd subject to a collection of linear inequality

constraints:

c(x) = c1x1 + c2x2 + · · · + cd xd subject to

bi ≥ ai1x1 + ai2x2 + · · · + aid xd, i = 1, . . . , n,

x j ≥ 0, j = 1, . . . , d.

There are randomized algorithms for this problem which have O(n) complexity for

fixed d [27]. This makes them excellent algorithms for one, two, or three unknowns.

However, the hidden constant in the O(n) estimate is a function of d – in fact, the

average number of floating point operations needed grows like C d! n for a modest

constant C . This behavior is very nice in n but very bad in d since d! grows so fast

(d = 10 gives d! ≈ 3.63 × 106). If d is 5 or more, more conventional algorithms

such as the simplex method or an interior point method should be used [82].

Another trap in blindly using asymptotics is the matter of slowly growing func-

tions such as log n. Since log n grows much slower than n, O(n log n) algorithms

(e.g., quicksort) are usually much faster than O(n2) algorithms (e.g., bubble sort).

However, we should be more careful with functions like n logd n if d starts be-

coming larger than about 2 or 3. An example comes from computational geometry

for a task involving range queries of d-dimensional data [27]. The complexity of

the algorithm is O(n logd
2 n) compared with O(n2) for a naive algorithm. The ratio

n logd
2 n/n2 goes to zero as n goes to infinity for any d, but it may become large for

modest n. In fact, the ratio has a maximum value of (d/2)d at n = 2d . If d = 10

this gives a worst-case ratio of 510 ≈ 9.76 × 106 at n = 210 = 1024. This would be

worth taking into account before implementing a complex algorithm like this for d
as large as 10.

To summarize, while asymptotic estimates of performance are very valuable,

don’t start using or relying on an asymptotically faster algorithm until you have

investigated the hidden constants in the “big O” formulas, and checked that it makes

sense for the parameters you have in mind. Replacing a factor of n in the asymptotic

formula with log n or log2 n can result in substantial speed improvements even for

a more complex algorithm. But removing a factor of log n might or might not

be useful. More slowly growing functions like log log n should usually regarded as

approximately constant. When you have an opportunity to compare algorithms with

similar asymptotic estimates for time, dig deeper to see what the hidden constants

are. And remember, even if an algorithm uses fewer floating point operations, there

are many other effects which can make it run slower.
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14.1 Dynamic memory allocation

In the middle of a routine you realize that you need some scratch space n floating

point numbers long, and n is a complicated function of the inputs to the routine.

What do you do? Do you add another scratch space argument to your routine

along with its length as an argument and check that it is big enough (stopping the

program immediately if it is not)? Often a better idea is to allocate the memory

needed. In Fortran 90 this is done using the allocate command; in C you use the

malloc function; in C++ and Java the new operator will do this task; in Pascal

the allocation is done by the new operator, but the syntax is different from C++ or

Java. These can be used to dynamically allocate memory. All of these commands

return, or set, a pointer to the allocated block of memory.

The allocated block of memory is taken from a global list of available mem-

ory which is ultimately controlled by the operating system. This block of memory

remains allocated until it is no longer accessible (if garbage collection is used), ex-

plicitly de-allocated, or the program terminates. So dynamically allocated memory

can be used to hold return values or returned data structures. Dynamically allocated

memory can be passed to other routines, and treated like memory that has been

statically allocated, or allocated on a stack in most respects.

The data structure that controls the allocation and de-allocation of memory is

called a memory heap. A memory heap may contain a pair of linked lists of point-

ers to blocks of memory. One linked list contains pointers to the allocated blocks

of memory (the allocated list), while the other linked list contains pointers to the

unallocated (or free) blocks or memory (the free list); see Figure 14.1. Many im-

plementations only have one linked list for the free memory blocks for efficiency,

but incorrectly de-allocating a block of memory that was not dynamically allo-

cated from the memory heap cannot be prevented. These bugs typically result in

program termination in an apparently unrelated part of the program. More careful
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free list

allocated list

allocated memory

free memory

null pointer

Figure 14.1. Memory heap structure. Note that some systems do not have an
“allocated list”.

memory heaps can do a great deal of checking to catch these and other bugs, but

are considerably slower.

In C, where the allocation is done by a function call rather than an operator built

into the language, there needs to be a special way of passing information about

the type of the object(s) being allocated. The reserved word for this purpose is

sizeof, and to allocate an array of n double-precision floating point numbers in

C we use:

xp = (double *)malloc(n*sizeof(double));

In C++, the new[] operator is used:

double *xp = new double[n];

In any language there has to be a way to deal with the possibility that dynamic

memory allocation fails. If it fails in C, the malloc routine returns NULL; in C++
and Java the new operator throws an exception; in Fortran 90 if the allocate
statement is used with an optional status variable, the status variable is non-zero if

there has been an error:

real, allocatable :: x(:)
integer :: allocstat, n
allocate( x(n), STAT=allocstat )
IF ( allocstat /= 0 ) ... ! error

You should always ensure that the program cannot “fall through” the allocation step

without the allocation occurring. So in C, the value returned from malloc should

always be checked:

xp = (double *)malloc(n*sizeof(double));
if ( xp == NULL ) ... /* error */

This issue is not as important in C++ since the default behavior of new is to throw

an exception, which will prevent this kind of “fall through” from happening.
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Table 14.1. Allocation and deallocation commands

Language Allocation Deallocation

C malloc/calloc free
C++ new delete

Fortran allocate deallocate
Java new —

Beware of relying on a NULL return or a thrown exception if you are close to

running out of memory. In the authors’ experience, operating systems do not always

behave in a crisp way, returning a good pointer or NULL, or throwing an error.

Sometimes programs crash anyway, or “freeze”. One cause of strange behavior

is virtual memory: an allocated block of memory might not fit in main memory,

and so might require swapping memory onto and off of disk. If things are very

tight with other processes starting and stopping, this might lead to thrashing (see

Section 12.4): a great deal of swapping memory on and off disk, making the system

extremely slow – even “frozen”. Another possibility is that, since stacks can grow

and shrink unpredictably, there can be a sudden overflow due to a stack needing an

extra page of virtual memory. This can cause immediate program termination.

14.2 Giving it back

Being able to grab memory as it is needed is a wonderful convenience, and can

greatly simplify the calls to routines that use scratch memory. However, if the

memory is not returned to the heap, and fresh memory allocated from the heap

instead, eventually the heap will run out of blocks of memory to allocate. Then the

memory allocator has no option but to force a program error. Systems with garbage

collection will return inaccessible memory to the heap, which makes running out

of free memory a very unlikely event. Garbage collection is very convenient, but it

comes at a cost. Most programming languages which are designed with efficiency

in mind do not have it. These languages include C, Fortran 90, and C++. Java,

C#, and Lisp do have garbage collection. More on how to program efficiently in a

garbage collected language is discussed in the next section.

Allocation and deallocation commands are listed in Table for C, C++, Fortran

and Java.

There are a number of rules you should follow in de-allocating memory.

1. Prevent access to de-allocated memory. This can be done by setting the pointer to

null after de-allocating. In C set the pointer to NULL; in C++ set the pointer to zero;

in Fortran 90/95 use nullify(x) for pointers. The only way that access to that
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de-allocated memory can occur is if the pointer was copied before de-allocating, creating

a “dangling pointer”. Access to the de-allocated memory can result in catastrophic failure

as the contents of the memory block may be changed either by the memory heap routines,

or by another piece of code that has allocated that block.

2. De-allocate memory in the reverse order it was allocated. This makes sure that any

dependencies between the allocated memory will not result in “dangling pointers”. So if

one allocated data structure has a pointer to another allocated data structure, the second

should be de-allocated first.

3. For a temporary memory block, de-allocate the block before leaving the routine. If the

de-allocation is not done before the routine ends, access to the memory is lost. While

this does not lead directly to catastrophic failure, it does mean that that memory block

becomes unusable. Later calls to the routine will result in more memory being allocated.

If this is repeated often enough, this memory leak can exhaust the entire supply of

allocatable memory and that can be catastrophic.

De-allocating NULL pointers in C can lead to program termination in some imple-

mentations. Also, de-allocating a pointer twice can cause problems in C and C++.

Memory bugs can be difficult to track down and fix. For more information on how

to do this, see Chapter 15.

14.3 Garbage collection

Garbage collection in computing is as convenient and helpful as it is in real-life.

Some languages build it in, such as Lisp, Java, and C#. Memory leaks are (almost)

a thing of the past!

But there is a cost. To understand that cost, you should have some awareness of

how garbage collection is carried out. Generally there are three main approaches

to garbage collection.

� Mark-and-sweep. This is perhaps the most common. When memory runs out, then the

garbage collector is brought into action to reclaim what memory is available. It is assumed

that the garbage collector has access to all pointer (or reference) variables in the system,

and can navigate all the data structures in the system. From these starting points, it finds all

the accessible memory, marking it as it finds it as referenced. Everything else is available

to be reclaimed, which is added to the free list.
� Reference counting. Each object allocated contains a reference count of the number of

references to it. Whenever a reference to an object is passed to a routine or assigned to a

variable, the object’s count is incremented; whenever a routine exits, the reference count of

each local object is decremented. Whenever the reference count becomes zero, the object

is garbage and is destroyed and the memory returned to the memory heap. Whenever an

object is destroyed, the reference count of all objects it refers to are decremented.
� Copy collection. Memory is divided into two partitions. When one partition becomes full,

the garbage collection system, starting from all the pointers in the system, navigates all

the accessible data structures, copying the data structures into the second partition. As
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it does this it updates all pointers in the data structures that it finds. Like the mark and

sweep approach, this assumes that the garbage collection system has access to all pointer

variables and can navigate all the data structures. One advantage of this method is that it

compacts memory; that is, after garbage collection, all the free memory is contiguous.

The mark-and-sweep and copy collection approaches result in a program stopping

all activity but garbage collection until this is finished. Users of the emacs editor

(which uses a version of Lisp) may notice it doing this sometimes. Various tech-

niques have been used to reduce this cost of garbage collection, which have resulted

in significant advances. However, the principle of “don’t create garbage unless you

have to” applies. That is, instead of creating objects that are soon destroyed, re-cycle

already created objects.

The reference counting approach results in more computation in normal oper-

ations, but the program will not stop for long while garbage collection is being

carried out. Reference counting does not require knowledge of all the variables in

the system, and can be implemented in C++, for example.

14.4 Life with garbage collection

Garbage collection means never having to explicitly give memory back. The system

with garbage collection will do it for you! Memory leaks practically cease to exist.

Garbage collection is an intrinsic part of some programming languages, such

as Lisp. Lisp became important enough that special hardware was developed for

running Lisp code (which is normally interpreted). This effort culminated in the

MIT Lisp Machine. With systems like this, a considerable amount of experience was

gained with the effects of garbage collection, particularly for the mark-and-sweep

approach to garbage collection.

A particular problem with the mark-and-sweep is that while garbage collection

is happening across most of main memory, the computer cannot do anything else.

And if the amount of main memory is large, this can take a long time. One lesson

learned was that

to minimize the amount of time spent in garbage collection, minimize the amount of garbage
produced.

In practice this means that objects allocated should be re-used. This is particu-

larly important if you have many small objects – the time spent allocating and

de-allocating small objects can become much larger than the time spent doing

computations with these small objects.

Consider, for example, the Jama [11, 10] package in Java for dense matrix

operations. A typical use of Jama would be to solve a small system of linear

equations, which can be done like this (with checking for a small residual):
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double[][] array = {{1.,2.,3},{4.,5.,6.},
{7.,8.,10.}};

Matrix A = new Matrix(array);
Matrix b = Matrix.random(3,1);
Matrix x = A.solve(b);
Matrix residual = A.times(x).minus(b);
double rnorm = residual.normInf();

This is an excellent use of many of the object-oriented facilities of Java. However,

if the matrix A is small, and this code is repeated many times, there are hidden

creations and destructions of Matrix objects. Take a look at the line

Matrix residual = A.times(x).minus(b);

This computes Ax − b. But note that it does this first by computing Ax and storing

the result in a newly createdMatrix object; then b is subtracted from thisMatrix
to give theresidual object. TheMatrix holding the product Ax is thrown away.

If the code is part of a loop, then residual is thrown away with each subsequent

iteration before being replaced by the new result of A.times(x).minus(b).

In this case, there can be a great deal of memory allocation and de-allocation.

If the matrix A is n × n with large n, then these concerns are not as important:

the time spent performing A.solve(b) (which involves a matrix factorization)

will far exceed the time spent in allocating and de-allocating memory.

But if you want maximum performance, then you should be able to re-use mem-

ory. The designers of Jama could have accommodated this by including functions

where the user passed a Matrix to hold the result as well:

class Matrix ... {
...
Matrix minus(Matrix B, Matrix out)
...
Matrix minus(Matrix B)
{
Matrix out = new
Matrix(B.getRowDimension(),

B.getColumnDimension());
return minus(B,out);

}
...

}



14.4 Life with garbage collection 201

There is an additional function call if we use A.times(x) with this modified

version of Jama, but the cost of this will be insignificant compared to the cost of

creating the output Matrix, which must be done anyway with this way of using

times. And if you want the fast version, you will need to think about where

to put the output, but the code will execute faster: A.times(x,residual).

We can put this into a loop which can execute many times without creating much

garbage.

Matrix A, b, x, residual;
...
b = new Matrix(A.getRowDimension(), 1);
x = new Matrix(A.getColumnDimension(), 1);
residual = new Matrix(A.getRowDimension(), 1);
double rnorm;
for ( int i = 0; i < 100000; i++ )
{
// Set up A matrix
...
// Now set up right-hand side
...
// Solve linear system and compute residual
A.solve(b,x); // output in x
A.times(x,residual); // output in residual
residual.minusEquals(b);
rnorm = residual.normInf();
// Do something with the results
...

}

Since we are re-using memory, we are avoiding the additional cost of allocating

and de-allocating memory. It also means that the code is accessing the same piece

of memory each time the code is executed.

This is an example of providing more than one interface to an algorithm. Fur-

thermore, the additional interface comes at very little programming cost, since

implementing the easy-to-use interface minus(Matrix b) does not require

any knowledge about the internal structure of minus(Matrix b, Matrix
out).

Finally, in garbage collected systems it is a good idea to nullify references and

pointers to data structures that are no longer needed. This signals that these structures

are ready for garbage collection.
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14.5 Conservative garbage collection

Conservative garbage collectors can provide garbage collection services for lan-

guages that do not have it built in, such as C and C++.

Conservative garbage collectors typically use a mark–sweep algorithm with a

conservative method for determining what objects are “live” and what is “garbage”.

By conservative we mean that it will mark some things as being live which should

be marked as garbage. This is crucial, since any de-allocation of a live object would

likely crash the program.

Conservative garbage collectors scan the stack and the global data area for any-

thing that could be a pointer into an allocated memory block. When one is found,

then that allocated block is similarly scanned for possible pointers to allocated

memory blocks, and the process repeated recursively. Any allocated memory block

found this way is potentially live, and kept. Any memory block that is not found

this way is considered garbage and de-allocated.

The most commonly used conservative garbage collector is the Boehm–Demers–

Weiser garbage collector, which can be used as a replacement for malloc
or new in C/C++. There are a number of papers on this topic; one of the

more recent at the time of writing is [9]. The garbage collector and user docu-

mentation can be found on Hans Boehm’s site http://www.hpl.hp.com/
personal/Hans Boehm/gc/. Conservative garbage collectors can also be

used with conventional programs that do their own de-allocation, for finding mem-

ory leaks.

Typically the Boehm–Demers–Weiser garbage collector can reclaim all but a

few percent of the “garbage”. However, it is possible for this and other conservative

garbage collectors to perform badly by not freeing most of the garbage. For example,

if a significant fraction of the address space is taken up by allocated memory then

these garbage collectors will not perform as well: a “random” entry in memory

is likely to point to some block of allocated memory. This can happen on 32-bit

machines if you have a gigabyte or several hundred megabytes of memory allocated.

On 64-bit machines, you would need to allocate hundreds of petabytes (1 petabyte

is approximately 1015 bytes) before this effect would start to occur.

It is also possible to fool conservative garbage collectors by storing pointer

information in a way that makes it impossible to tell that a block of allocated

memory is potentially alive. For example, consider the (bad) C++ code:

int *p = new int[10];

// bottom 16 bits of p

long l1 = 0x0000FFFF & reinterpret cast<long>(p);

// top 16 bits of p

long l2 = 0xFFFF0000 & reinterpret cast<long>(p);
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p = 0;

// Allocated memory could be considered garbage here,

// but we can reconstruct p:

p = reinterpret cast<int *>(l1 | l2);

But disguising pointers like this is dangerous, non-portable and should be avoided.

(Note the use of reinterpret cast.) Leave pointers as pointers and conserva-

tive garbage collectors can do their job.

14.6 Doing it yourself

Designing your own general memory allocation and de-allocation system takes

some effort. Usually this is not worthwhile, but if certain conditions hold, you

can write simple and fast allocators (and de-allocators). Things are simplest for

fixed-size objects with no de-allocation. In this case, all that is needed is an array

and counter. If you need to include de-allocation then you need to have pointers

as well. Both of these situations can be handled with allocation (and de-allocation)

algorithms that cost O(1) time and memory per allocation (or de-allocation).

C++ programmers should note that creating memory allocation operations for

particular data types should be done viaallocator template classes [96, pp. 567–

578] .

14.6.1 Fixed-size objects and no de-allocation

This is the simplest case, and where “doing it yourself” is the most profitable. At

its simplest it amounts to allocating items out of an array and keeping an index of

the next item available for allocation. When we come to the end of the array, we

normally have to stop.

Here is an example in C++. The objects are stored in an array, but we also

need to know the length of this array and how many elements have already been

allocated. This can be done using a pointer and two integers:

T *array; // allocate from this array

int length; // length of array

int start; // index of next item to allocate

Note that T is the type of the objects to allocate; this can be made part of a template

in C++ to make it useful for allocating whatever objects you wish.

Creating the memory heap is easy: allocate the array and set the size of the array,

setting the starting point for allocation at the start of the array (index zero):
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MemHeap1(int max size)

{
array = new T[max size];

if ( array != 0 )

length = max size;

else // error!

length = 0;

start = NULL;

}

Now allocation can be done very easily:

T *allocate()

{
if ( start >= length )

throw bad alloc();

else

{
// initialize to default value

array[start] = 0;

return &(array[start++]);

}
}

Note that there is very little memory overhead in this: just two integers for the entire

set of objects available for allocation. However, if we come to the end of the array

there is not much we can do. We cannot, for example, re-allocate the array, as

then the pointers returned by allocate would all become invalid.

14.6.2 Fixed-size objects with de-allocation

Allowing de-allocation as well for fixed-size objects means that we need more

bookkeeping. The simplest strategy is to keep the memory heap for the objects

concerned as a linked list. De-allocating a memory block then becomes a sim-

ple matter of making the block the head of the list. Coming to the end of the list

means that a new large block of memory must be obtained from the underlying

allocator (malloc or new). This should be done in C++ by creating an allo-
cator. There are some complications in C++ because at some point there must

be a conversion of “raw memory” into objects (which require that the constructor

for its class is called). An example of how to do this in C++ can be found in

[96, pp. 570–573].
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14.7 Memory tips

Since memory allocation and de-allocation can take up a great deal of time, or

result in memory leaks which can crash a program, it is worthwhile to be aware of

some techniques which can help you use dynamic memory allocation efficiently

and safely. Here, two techniques are described which we have found helpful.

14.7.1 High-water mark technique

A situation that is not uncommon is that a vector used for intermediate calculations

has a size that will need to change unpredictably as the computation progresses.

How can we handle this situation?

Allocating the largest conceivable vector is very likely wasteful of memory.

Allocating and re-allocating the vector with every new size could take considerable

time. An alternative is the high-water mark technique: keep a separate field or

variable which holds the physical size of the vector, and another which holds the

logical size of the vector (that is, how much we actually need to use). If the physical

size is as large or larger than the logical size requested, then we simply change the

logical size. If the physical size is smaller than the logical size requested, then we

must increase the physical size. Typically with the high-water mark technique, the

physical size is increased to the requested logical size.

This technique is used in Meschach; it is implemented in the vector and matrix

resize functions. The vector data structure contains information about how much

memory has been allocated along with the current size of the vector:

/* vector definition */

typedef struct {
unsigned int dim, max dim;

Real *ve;

} VEC;

Here is part of the Meschach vector resize function v resize():

/* v resize -- returns the vector x with dim new dim

-- x is set to the zero vector */

VEC *v resize(VEC *x, int new dim)

{
...

if ( new dim > x->max dim )

{
...

/* reallocate for new dim Real’s */
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x->ve = RENEW(x->ve,new dim,Real);

if ( ! x->ve )

/* if allocation fails... */

error(E MEM,”v resize”);

x->max dim = new dim;

}
...

/* now set new dimension */

x->dim = new dim;

return x;

}

If we have a rough (but not always correct) estimate of the likely maximum size

of the vector that we need, then we can first size the vector to this estimate, and

then re-size it to the desired logical sizes as needed. If you are using the C++ STL,

use reserve() for the initial sizing. Since the physical size never gets smaller,

we know that we have covered most of the logical size requests and so we will not

need many memory allocation or de-allocation calls. But if our estimate is wrong,

the code will still operate correctly and increase the available physical memory on

the few cases this is needed.

In Meschach, the high-water mark technique is used inside functions, so that

intermediate vectors keep their memory between function calls, like this:

#include ”matrix.h”

VEC *my function(VEC *x, VEC *out)

{
static VEC *temp = NULL; /* holds intermediate results */

if ( ! x )

error(E NULL,”my function”);

temp = v resize(temp,x->dim);

/* do computations... */

return out = v copy(temp,out);

}

It is important that the intermediate vector temp be declared static, so that

it retains its values and the memory between function calls. This approach is not
applicable for re-entrant or threadsafe code, which is an important issue in shared

libraries – then static variables must be avoided wherever possible.
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The weakest point of this approach is that once the vector is no longer needed,

it still might have a great deal of memory in it – resizing the vector will not make

that memory available for other computations. The simplest way to deal with this

situation is to de-allocate the entire vector. This is not possible for static local

variables. Meschach provides some alternative ways of dealing with this situation

involving registering these static temporaries.

14.7.2 Amortized doubling

The high-water mark technique can handle many irregular size requests, but it does

not efficiently handle one common situation: what if we are adding one entry to

the end of a vector? This would mean that we would probably need to increase the

size of the vector each time through the loop – one allocation and vector copy with

each iteration. This can be expensive.

One way to avoid this is to keep the physical and logical sizes separate, as for the

high-water mark, but instead we approximately double the physical size each time

we get a request for a small increase in the physical size. (We could set the physical

size to max(2 × current physical size, requested logical size), for example.) If this

initial size of the vector is s0 and the maximum size requested is smax, we will not

need more than log2 �smax/s0� memory allocation calls. Since this technique does

not know the actual amount of memory needed, it may allocate up to twice as much

memory as is actually used. However, this is often acceptable.

Assuming we are preserving the previous entries with each increase in size, we

will have to copy values from the old array to the new array. However, the number

of copies is no more than 2n, where n is the number of entries in the final array.

This technique is used in Meschach’s sparse matrix code when inserting entries

into a sparse matrix: the size of a sparse row is doubled when more memory is

needed for a row. That way the usual operations (incrementally adding entries to a

row) can be handled efficiently.



15

Memory bugs and leaks

Memory problems are harder to debug because where the bug seems to be can be
very far from where it actually is. There are several kinds of memory problems that
you should be especially aware of:

� forgetting to allocate memory;
� reading or writing to memory outside the allowed regions;
� dangling pointers which result in improper accesses to memory;
� access being lost to useful pieces of memory, resulting in a memory leak.

15.1 Beware: unallocated memory!

The simplest mistake with memory is to forget to initialize a pointer variable:

double *p;
/* ... */
for ( i = 0; i < n; i++ )
p[i] = 0.0;

In many languages and systems, uninitialized variables simply take on the value

left on the stack. If it is an uninitialized pointer, then accessing it will usually result

in a segmentation violation. Attempting to de-allocate memory associated with an

uninitialized pointer can cause a program to terminate unexpectedly far from the

creation of the pointer.

Use of uninitialized variables can be quickly identified by most compilers. Check

your compiler for options that will force it to check for this error, which can cause

other kinds of problems as well.

15.2 Beware: overwriting memory!

This is a particularly common bug in C and Fortran. In languages where the compiler

or the run-time system knows the sizes of arrays (such as Java and Pascal), most of

208
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these errors can be prevented. Often Fortran compilers have switches that enable

checking array bounds where the array bounds are known. Writing to memory

outside the permitted limits often results in the program crashing, but often not
where the bug is. Here is an example in C:

double *array1, *array2;

int i, length;

/* some code goes here */

length = 10;

array1 = (double *)malloc(length*sizeof(double));

/* more code goes here */

array2 = (double *)malloc(length*sizeof(double));

/* bug is here: should have ”i < length” */

for ( i = 0; i <= length; i++ )

array1[i] = exp(-(double)(i));

/* even more code goes here */

printf(”array1[3] = %g\n”, array1[3]);

/* program could crash here */

free(array2);

The bug is that the valid indexes for array1 are 0, 1, . . . , length–1. The final

time through the for loop results in a piece of memory outside the array being

written to. (This is an example of an “off-by-one” bug.) If array1 was obtained

using a memory allocator, as in this example, then there is usually some extra

header information used by the memory allocator there. As a result, when one of

the memory allocation or de-allocation routines is called afterwards, it is likely (but

not certain) that the program will crash there. Even if the allocation or de-allocation

routines do not crash, the memory heap is in a bad state and something bad is likely

to happen later on.

Probably the most common error in numerical programming is going beyond the

bounds of arrays. This can be eliminated in languages like Java and Pascal which

have array bounds checking built in. If you use access routines to control access to

vector entries in C++, this problem can be controlled there as well. Many Fortran

compilers also offer array bounds checking as a compile-time option. This is worth

using.

But array bounds checking simply means that you know when you have gone

beyond the array. Then you need to fix the bug that caused it.

Whatever language you program in, it is almost always best to program de-

fensively to prevent over-running array bounds. This is particularly true for input

routines where you do not know the size of the input – strings are a particular

problem here. Routines that read or produce a string of unknown (maximum) size
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should be avoided. One such function is gets in C for inputting a string from a file

or input device. This function should not be used. Instead, you should use fgets
where you can specify the longest string you will read in. For example, consider

the code:

char line1[11], line2[11];

printf(”Input string: ”);

gets(line2);

printf(”line1: %s\n”, line1);

printf(”line2: %s\n”, line2);

Here is an example of what can happen with it:

Input string: This is a very long string.

line1: ong string.

line2: This is a very long string.

The trouble is that there is no limit to the length of the string read in. Although 80

characters plus the terminating null character might seem enough, long strings can

be read in which result in overwriting memory far beyond the limits of the line
array. In fact, this is a favorite attack of hackers who can input a special string that is

(perhaps) megabytes long to reach a particular point in (say) a Web server program

and alter that program to do something else (usually to take over the program and

gain access to the system running it).

When reading in strings, always use a means of controlling the length of the

string read in. This can be done in C using fgets, or putting a count on the “%s”

format string:

fgets(line,80,stdin);
/* or... */
scanf(”%80s”,line);

The fgets call is the most recommended.

15.3 Beware: dangling pointers!

A dangling pointer is a pointer to a piece of memory that was once allocated, but is

now de-allocated. Dangling pointers can happen in most programming languages,

including Fortran 90. Here is a simple example of how this can happen in C++:

double *p1, *p2;

int n = 10;

p1 = new double[n]; // allocate array
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p2 = p1; // p2 points to array

delete[] p1; // p2 now ‘‘dangles’’

p2[3] = 5.7; // Ooopppsss!!!

Use of p2 after p1 is deleted will (likely) result in a program error or a program

crash. Avoid copying pointers unless the copy is being used for a short, temporary

operation.

While most programmers will avoid dangling pointers in simple situations like

this, avoiding them in general can be a major design issue. One of the ways in

which problems arise is when a shallow copy is made of a data structure when a

deep copy is really needed. Consider a vector data structure

type :: myvec

integer :: length, max len

real, kind(0d0), pointer :: array(:)

end type myvec

and we write a shallow copy routine:

subroutine shallowcopy(x,y)

type(myvec), intent(in) :: x

type(myvec), intent(inout) :: y

y%array => x%array ! pointer assignment

y%length = x%length

y%max len = x%max len

end subroutine shallowcopy

If we try to use this, then changing the copy will also change the original:

type(myvec) :: x, y

call createvec(10,x)

call createvec(10,y)

do i = 1, x%length

x%array(i) = i*i

end do

call shallowcopy(x,y)

y%array(4) = 5.0d0

! Now x%array(4) is 5, instead of 4*4
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Furthermore, if we decide to delete the copy, we are inadvertently destroying the

block of memory that the original needs:

call deallocvec(y)

! Now x%array is a dangling pointer

What we really need is a deep copy routine that copies the array entries into a safe

and separate block of memory:

subroutine deepcopy(x,y)

type(myvec), intent(in) :: x

type(myvec), intent(inout) :: y

integer :: i

if ( allocated(y%array) ) then

deallocate(y%array)

end if

allocate(y%array(x%length))

y%length = x%length

y%max len = y%length

do i = 1, x%length

y%array(i) = x%array(i)

end do

end subroutine deepcopy

Then updating the copy will not change the original, and destroying the copy will

not result in dangling pointers.

There is another way in which dangling pointers can arise without usingmalloc
or new. That is if you violate the rule

never return a pointer to a local variable!

Here is a simple example:

double *add 3d vectors1(double a[3], double b[3])

{
double sum[3];

sum[0] = a[0] + b[0];

sum[1] = a[1] + b[1];

sum[2] = a[2] + b[2];

return sum; /* DON’T DO THIS!!! */

}
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Why is this a problem? Well, local variables are allocated on the stack. The stack

is a data structure used by the system to keep local variables, return addresses for

when routines finish, and some related data and memory. It is constantly changing

as calls are made and functions return. As soon as you return from the routine, none

of its local variables should be referenced. That memory will soon be over-written

with other data.

How should you write the add 3d vectors1 routine? The best approach is

probably to pass an array for the result.

double *add 3d vectors2(double a[3], double b[3],

double sum[3])

{
sum[0] = a[0] + b[0];

sum[1] = a[1] + b[1];

sum[2] = a[2] + b[2];

return sum;

}

Note that in C/C++ it is common to return the output argument, as it can be ignored

by the calling routine if convenient.

An alternative is to allocate the memory needed (which will be in the memory

heap) when the function is called. It could be implemented like this:

double *add 3d vectors3(double a[3], double b[3])

{
double *sum;

sum = (double *)malloc(3*sizeof(double));

if ( sum == NULL )

return NULL;

sum[0] = a[0] + b[0];

sum[1] = a[1] + b[1];

sum[2] = a[2] + b[2];

return sum;

}

This is correct, but it tends to lack efficiency, since we have to call malloc on

every call to add 3d vectors3. If add 3d vectors3 is called a lot then this

will be a serious slow-down of your code. A compromise is this: pass a pointer for

the output (sum), and if sum is NULL, then allocate it.
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double *add 3d vectors4(double a[3], double b[3],

double *sum)

{
if ( sum == NULL )

{
sum = (double *)malloc(3*sizeof(double));

if ( sum == NULL )

return NULL;

}
sum[0] = a[0] + b[0];

sum[1] = a[2] + b[1];

sum[2] = a[2] + b[2];

return sum;

}

This way, you have a routine which allocates the memory only when it is necessary.

But there is still a warning you should heed. Local variables can have any value –

whatever junk is left on the stack when the function is called. Therefore you should

always initialize variables before use, especially pointers.

Even this new routine is vulnerable to memory leaks, which we look at next.

15.4 Beware: memory leaks!

Suppose we have written the last version of add 3d vectors, and we are feeling

proud of being able to get it to handle the memory allocation problems. So we use

it in a program for three-dimensional graphics, for example:

double *sum, list[1000000][3];

int i;

sum = list[0];

for ( i = 1; i < 1000000; i++ )

{
sum = add 3d vectors4(list[i],sum,NULL);

if ( sum == NULL )

/* no more memory */

exit(0); /* failure! */

}
/* success! */
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If you do this loop many times, you will find that you will run out of memory. If

the problem is small enough, everything will work fine and give correct values.

But on the large problems you will run out of memory. Why?

Because every call to add 3d vectors4 will allocate the memory needed for

the array, and then be thrown away so that access to that array is lost. The memory

is lost to the program. Without garbage collection, the loss of memory will become

more serious and eventually will cause the program to stop or crash.

If we do not have garbage collection, then we need a way to avoid losing memory.

One way of doing this is to re-use the memory we have allocated. Here is one way

to do that:

double sum[3], list[1000000][3];

int i;

/* create sum <- list[0] + list[1] */

add 3d vectors4(list[0],list[1],sum);

for ( i = 2; i < 1000000; i++ )

{
add 3d vectors4(list[i],sum,sum);

}
/* success! */

Memory leaks are not bugs per se – they do not result in incorrect results. But they

do reduce the amount of memory available and they can make your program crash

or fail where it should succeed. Memory leaks occur when the pointer to a piece of

allocated memory is overwritten, so that access to that allocated memory is lost.

One of the more frustrating things about memory leaks is that there is no point in

the program where anything is obviously wrong. One of the best tools you can use to

track down memory leaks is to instrument your code so that you can find out where

and for what memory has been allocated. One approach is used in the dmalloc
debugging malloc library, which keeps the file name and line number where the

memory was allocated. This will be a help, but not a panacea for memory leaks.

Free and commercial tools for checking memory leaks are available, and include

valgrind (described in the next section) and the conservative garbage collectors

described in Section 14.5.

15.5 Debugging tools

One class of debugging tools is debugging memory allocators. These record con-

siderable additional information, and often also lay down a bit pattern in the unal-

located blocks so that unauthorized writes to unallocated memory can be detected.
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Examples of this style of debugging memory allocator are dbmalloc by Conor

Cahill [19] and dmalloc by Gray Watson [104]. These are purely software tools

that provide “drop in” replacements for malloc etc. The simplest way to use them

is to include them at link time as libraries before the standard library:

cc -o program program.o file1.o ... -ldmalloc

Check their documentation for the correct command line to use. To get the most out

of these libraries, you should also use the include files and the additional functions

provided with these libraries. These additional functions can help with memory

leaks and checking for self-consistency of the heap. The latter is important as it can

be used to identify where memory is being improperly overwritten.

A more hardware-based system is Electric Fence by Bruce Perens [85]. This is

also a drop-in replacement for malloc and new. However, the way it works is

a little different from the way that dmalloc and dbmalloc work: it places an

inaccessible virtual memory page just before and just after each memory allocation.

Any access that runs outside the properly allocated area will result in the program

terminating. A quick look with a debugger will show you the offending instruction.

Note that Electric Fence will stop the program at an improper read instruction,

something the software-only approach cannot. Since Electric Fence relies on this

hardware feature, there can sometimes be limits on its usability. Also, since virtual

memory pages are often much larger than the objects allocated, the executable size

can become huge with Electric Fence, as can the core file that is dumped on an

error.

There is also the checkergcc compiler for C which builds in memory access

checks. This is part of the GNU project and is available via www.gnu.org. A

program compiled with checkergcc will emit warnings when illegal writes are

made, and memory leaks can be also be identified.

For Linux systems running on Intel x86 CPUs, a powerful memory debugging

system is Valgrind. Valgrind is actually a framework for a number of tools for

investigating memory problems, memory accessing and caching behavior, amongst

others. Amongst the tools that are available in Valgrind is memcheck. This can

detect a large number of problems, including not only what can be caught by

debugging memory allocators, but also use of uninitialized memory. Memcheck
can also identify memory leaks and inappropriate reading or writing of the stack

(which can occur when pointers to local variables are returned). Memcheck can

also detect mismatches between how memory is allocated and how it is de-allocated

in C/C++ systems: in particular it can detect when memory allocated with new
(from C++) is de-allocated with free (from C) or delete[] (from C++).
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Sources of scientific software

The development of the Internet has contributed to the development of public

libraries of scientific software. Some of this development has occurred through the

efforts of individuals, through Internet collaborations (as with the development of

Linux), and through government supported software development by academics

and others (as with the development of LAPACK). There is a wide range of other

software packages for scientific computing, many now written in C/C++, although

Fortran and other languages are used for parts of many of these systems: PETSc

(which supports the use of MPI for parallel computation), IML++ (an iterative

methods library in C++), SparseLib++ (for handling sparse matrices in C++),

and PLTMG (for solving partial differential equations).

In parallel with this, there has also been a tremendous development of com-

mercial numerical software. Beginning in 1970 the Numerical Algorithms Group

(NAG), based in the UK, developed libraries which have been sold commercially

as the NAG libraries since 1976; the Harwell library was also developed in the UK;

the IMSL libraries were developed commercially in the US. Another set of numer-

ical libraries, called SLATEC, was developed by the Sandia and Los Alamos US

National Laboratories and the US Air Force. These are available through netlib
(see the next section). Perhaps the most spectacular example of commercial numer-

ical software is the development of MATLAB. Initially a collection of Fortran 77

routines based on the early LINPACK and EISPACK libraries for dense matrix

computations with a text interface, MATLAB has evolved into a full-featured inter-

active programming language with special support for numerical computation and

scientific visualization. Niche numerical software has also been highly successful

commercially – CPLEX has sustained a presence in the marketplace because of

its highly regarded software for linear programming (minimizing or maximizing

linear functions subject to linear inequality constraints). There are also a number

of other successful commercial packages for optimization, including, for example,

MINOS, SNOPT, KNITRO, and LOQO.
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Note that most of these packages originated in academic environments, but once

established, most became widespread as commercial software.

In this chapter we will focus on freely available software for numerical compu-

tation. These are the most widely available, and, in many areas, the most important

software.

16.1 Netlib

Netlib is perhaps the best collection of freely available numerical software in one

place, and has software for a wide variety of different computational tasks: solving

differential equations (ODEPACK and PLTMG), Fourier transforms (FFTPACK

and FISHPACK), eigenvalue/eigenvector computations (ARPACK), sparse matrix

operations (SPARSE and ITPACK), continuation methods (HOMPACK), numerical

integration (QUADPACK) and of course BLAS and LAPACK for dense matrix

computations. In addition to the actual routines, there is also documentation. Most

of the software is in Fortran 77, but there are also significant contributions in C (e.g.,

Meschach, and Kahan’s paranoia program for testing floating point arithmetic).

Netlib is now far from being the only collection of freely available numerical

software, and much can be found with a suitable search by Google. But it is a good

starting point.

16.2 BLAS

BLAS (Basic Linear Algebra Subroutines) is the foundation of many other matrix

and vector algorithms. LAPACK is based on BLAS, which provides the low-level

operations – matrix–vector multiplication, scalar multiplication and addition of

vectors and matrices, solution of triangular systems of equations, and matrix–matrix

multiplication.

The basic idea of the BLAS is that each CPU has its own optimal implementation

of the low-level routines. The implementations of BLAS are often constructed

painstakingly by optimizing and hand-tuning standard implementations of the

routines so as to make best use of the available hardware. Traditionally this

has been done by the manufacturer of the CPU, and sold to purchasers of the

hardware. However, the rapid evolution of hardware and software has made this

approach very expensive. Instead of modifying the routines for each new version

of the hardware, automatic tuning through systems such as ATLAS [105] has

become common. Even so, BLAS libraries optimized for standard architectures

and CPUs can be found on the Web. For example, a library of Pentium 4

optimized BLAS is available publicly through Kazishige Goto’s Web page

http://www.cs.utexas.edu/users/kgoto/signup-first.html



16.5 Other sources 221

along with optimized BLAS for a range of other architectures. Plain (unoptimized)

versions of BLAS are available as Fortran 77 source, along with C interfaces,

through netlib. Netlib also provides a number of links to optimized BLAS

libraries available through a number of CPU vendors.

16.3 LAPACK

LAPACK is arguably the best dense matrix software currently available, at least as

a general purpose library. While it suffers somewhat from the problems typical of

Fortran 77-based software (e.g., no dynamic memory allocation or de-allocation,

error handling is carried out by checking return codes or iflag variables, and

no support for input/output), LAPACK carries out the core tasks of matrix com-

putations efficiently and about as accurately as can be achieved. The efficiency of

LAPACK was achieved mainly through the reliance on BLAS, which is discussed

below. LAPACK covers most dense matrix computations – solution of linear sys-

tems of various kinds, eigenvalue/eigenvector tasks, condition number estimation,

and updating matrix factorizations. If you want only to carry out dense matrix

operations, you should consider looking here first.

16.4 GAMS

GAMS [12] stands for Guide to Available Mathematical Software, and provides

a search facility for finding mathematical software. This service is supported by

the National Institute of Standards and Technology (NIST). GAMS has a taxon-

omy of kinds of mathematical software: at the coarsest level it is divided into the

areas of arithmetic and error analysis, elementary and special functions, linear alge-

bra, interpolation, optimization, differentiation and integration, solution of ordinary

and partial differential equations, integral equations, transforms, convolutions, ap-

proximation, statistics and probability, simulation, data handling, computational

geometry, and software tools.

The software indexed by GAMS includes software in netlib and also some

commercial libraries, such as IMSL and NAG.

16.5 Other sources

Mathematical software, like that for other purposes, has been developing very

rapidly. As a result it is very hard for any one person or group to track all the

developments in the area. So often the way to get the most current mathematical

software is to use a Web search engine like Google or AltaVista or . . . (insert your

favorite search engine here).
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As always with online resources, you should check carefully for the background

to the software and clues as to its quality. Look for the group or individual behind

it. What sort of background do they have? Do they have experience with scientific

software? Is the software based on some standard software (such as BLAS and/or

LAPACK)? How extensive is the software? Does it really cover your needs? Is

it extensible? Have all aspects of the software (accuracy, robustness, ease of use,

flexibility, efficiency in time and memory) been well developed?Are there licencing

or other legal restrictions on its use?

There are many, many matrix libraries available through the Web. Many of

them are simply object-oriented interfaces to BLAS/LAPACK, or provide the basic

non-numerical operations plus matrix–vector addition and multiplication. Others

are fully-blown implementations of a wide range of matrix data structures and

operations. The great variety is partly because matrix libraries are something almost

everyone in numerical computing needs, partly because of the different languages

used, and partly because of different aspects that are emphasized. Blitz++, for

example, provides template classes and aggressive inlining in order to provide high

performance. Other libraries provide expression templates to avoid the creation (and

destruction) of temporary objects. The GNU Scientific Library (GSL) is written

in ANSI C, and so does not use templates. However, it covers a great many areas

including matrices and vectors, and operations such as LU and QR factorization and

singular value decompositions. GSL is a threadsafe library, which can be important

in real-time applications. On the other hand, GSL was not designed for either lots

of very small (two- or three-dimensional) vectors, or for very large systems.

In some areas commercial solvers predominate. This is the case in continuous

optimization, for example. For linear programming, for example, the most-used

software is CPLEX, although there is a popular free package called lp solve.

CPLEX is noted for its speed and robustness, which is why many are willing to pay

substantial amounts for it. On the other hand, lp solve can handle moderately

large problems, and may be sufficient for most users.

These days there are many sources for software. If you take care to evaluate the

quality of software, you can usually find software that can be adapted to your needs.

As always: test before you use.
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Unix tools

The Unix operating system was developed at the outset by programmers who wanted

to make their life easier. As a result the Unix operating system has a collection of

tools for programming that other operating systems adopted or adapted.

While Graphical User Interfaces (GUIs) are extremely useful, they can be a

hindrance to automating tasks. Consider, for example, the task of deleting every

object code file in a directory or one of its sub-directories. In a GUI system, you

would need to go into each sub-directory, highlight the files you wanted to remove,

and then send them to the “Recycle Bin” or “Trashcan”. By contrast, Unix provides a

command calledfind, which is for more than just finding files, and can accomplish

the job like this:

find . -name \*.o -exec rm {} \;
That is, starting from the current directory (.), find all files with a name ending in

.o and then execute the command rm with that file. That is: delete all the “.o”

files in this directory and its sub-directories.

Unix also emphasized the role of text. So many Unix tools were developed for

handling text files, such as grep (short for Get Regular Expression and Print),

sed (short for Stream EDitor), and awk (after the initials of its designers). A tool

that combines the abilities of these tools is perl [90]. As noted in The Pragmatic
Programmer [58], much of a programmer’s work life is spent working with (writ-

ing, editing, modifying, and transforming) text. So these tools should be in most

programmers’ toolboxes. We will also look at tools for building programs from

source code, managing revisions, and profiling.

17.1 Automated builds: make

The purpose of make is to ease the compilation of small to medium sized projects.

Instead of having to remember all the source files, compiler options, and libraries,
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this information is stored in a makefile. When the makefile is properly set

up,

make myprogram

will re-compile all the source file(s) that have changed since the myprogram was

last built, using all the appropriate compiler options, libraries, and other settings

needed.

Unless the only source is myprogram.c, and no special compiler options or

libraries are needed, you will need to write a file calledmakefile (orMakefile).

Here is an example of what a makefile looks like:

myprogram: myprogram.o routine1.o

cc -o myprogram myprogram.o routine1.o

myprogram.o: myprogram.c myheader.h

The first line says that to create myprogram the object files myprogram.o
and routine1.o are needed, that is, myprogram depends on myprogram.o
and routine1.o; the second line says how this done. Note that the first char-

acter of the second line is a tab. Using eight spaces instead of a tab will not

work, only a tab will do. The third line says that myprogram.o depends on

myprogram.c and myheader.h. It will use the default rule to do that, which

we discuss next.

The make program knows some default rules about how to create certain files.

For example, object code files (.o files) can be created from C source files (.c
files) by using the C compiler with the -c compiler option. The name of the C

compiler command is a macro with a pre-set value (cc on most Unix machines).

But if you want to change it to something else, or include certain compiler options,

you can do this too:

# Use the GNU C compiler

CC = gcc

# standard rule:

.c.o:

$(CC) -c $(CFLAGS) $<

The rule for creating .c.o files is really a rule for creating .o files from .c files;

the .c file that is being processed is represented by the mysterious symbol $<.

Often, make will apply a sequence of implicit rules to, for example, check out a

source file from an RCS file (see below), convert it to a C file via a transformation,

and then compile the C file to create an object code file. And it will do this without

any outside guidance, just using the implicit rules.
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You can add rules for other kinds of files. In fact, the pattern syntax used in the

GNU version (called gmake) [76] allows for more complicated ways in which file

names are related:

%.o: %.c
$(CC) -c $(CFLAGS) $< -o $@

The $@ symbol represents the file being created. You can add rules for converting

PostScript files to PDF files, or LATEXfiles to DVI files, or creating documentation

files from source files, for example. If you use the older “.c.o” style of creating

implicit rules, you will need to add the new suffixes to the system like this:

# Adding LaTeX, DVI, PostScript and PDF files
.SUFFIXES: .tex .dvi .ps .pdf
.tex.dvi: # Do latex twice to resolve references

latex $<
latex $<

.dvi.ps:
dvips $< -o $@

.tex.pdf:
pdflatex $<
pdflatex $<

Readers who have compiled a large program downloaded from the Internet on Unix

have probably seen a large number of makefiles in the files downloaded. Often

these are organized in a hierarchical way with a number of directories, so that the

makefile in the top directory will tell make to run make recursively in a number

of sub-directories.

Very oftenmakefiles also have pseudo-targets. These do not describe a partic-

ular file to create, but rather something to do. Pseudo-targets are often just symbolic

names for a collection of real or pseudo-targets; examples include all (to create

all target files associated with the makefile) and install (to install the main

executable files, libraries, and resource files, in standard directories). For example,

in a makefile for creating the executable files mainprog, supportprog and

a shared library mylib.sl. we might define the pseudo-targets all, install
and archive:

SOURCES = mainprog.cpp supportprog.cpp \
package1.cpp package2.cpp package3.cpp \
package1.h package2.h package3.h

EXECUTABLES = mainprog supportprog
SHAREDLIBS = mylib.sl
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all: $(EXECUTABLES) $(SHAREDLIBS)
install: all

cp $(EXECUTABLES) $(EXECDIR)
cp $(SHAREDLIBS) $(SHAREDLIBDIR)

archive: $(SOURCES)
tar cf archive.tar $(SOURCES)
gzip archive.tar

Note the use of symbolic names; any changes to the structure of the system (such

as using a new package) can be accommodated with a minimal number of changes

to this file.

As the authors of make noted in their initial descriptions of the program, make
was not intended to be a complete tool for building extremely large systems. More

sophisticated tools may be needed, but make is a powerful and useful way of

controlling and automating the building of programs. Use it even for small projects.

Then you don’t have to worry about what compiler options you should use. They

will be built in to the makefile you write for the project.

Some tools create makefiles: some of these are the configuration scripts gen-

erated by autoconf, a tool for automatically configuring build programs, that

determines the compilers and libraries available on a given Unix system. An issue

that arises in many large systems is automatically finding the directories, as differ-

ent Unix systems (including different flavors of Linux) can have different directory

structures. A part of the solution is to standardize on a particular directory structure

for a system. Examples of this are the TEX and LATEX systems, and the X-windows

system, which have standardized directory structures for where executable files,

source files, macros, and other resources should be placed.

17.2 Revision control: RCS, CVS, Subversion and Bitkeeper

RCS, CVS, Subversion and Bitkeeper are examples of revision or version control
systems. These maintain not only the current version of a file, but also keep all the

previous versions in a compact form. In fact, most revision control systems allows

the user to have several current versions (e.g., source code for different operating

systems). RCS (Revision Control System) is perhaps easier to get started with, but

CVS (Concurrent Version System), Subversion, and Bitkeeper seems to have better

support for large software development projects. Earlier revision control software

in Unix includes SCCS (Source Code Control System) which was more complex

to use than RCS.

RCS and CVS [103] were designed for keeping versions of text files. The more

recent systems like Subversion [74] and Bitkeeper [24] can handle binary files



17.2 Revision control 227

(including, for example, Microsoft Word files and images). Subversion is an open

source system and so is freely available. Bitkeeper is a commercial package.

All revision control systems store the differences between the different versions.

If you want to get an old version, the revision control software will start with the

original or current version and work forwards or backwards respectively, incor-

porating the changes between the different versions to get the version you want.

(SCCS starts with the original file and then works forward, while RCS starts with

the current file and then works backwards. CVS is built on top of RCS, so it works

backwards as well.) This way it can efficiently handle the usual situation: small

numbers of changes between successive revisions.

All version control systems have a repository where all the information about the

files under its control are kept. Once the repository is initialized (if necessary), new

files can be added to the repository. Once a file is in the repository it can be checked
out for editing. After changes are made, the file can be checked in or committed to

the repository so that the current version of the file becomes a new revision of the file

with its own revision number or identifier. For revision control systems that support

group access, if several people are working on the same file(s), changes by different

people can be merged unless there is a conflict (e.g., the same line is modified by

more than one person). In that case, there must be some manual intervention to

decide how the conflict should be resolved. Checking changes should be done with

each significant completed change. If you have a regular (e.g., nightly) build of

your system, files should generally be checked out and checked back in between

builds.

With each revision, the user is asked to enter some message about the reason for

the change. Later, a log file can be generated for each source file, indicating when

and why the file was modified. However, this is not enough for some purposes,

such as tracking bug fixes – that would need a separate data-base to identify a bug

report, list when a bug fix was made, who by, and to which files, and the outcome

of the bug fix. While RCS and CVS can track what happens to a particular file,

it is not so good at finding out which files were changed for a particular reason.

This deficiency is remedied in more recent version control systems. Subversion and

Bitkeeper, for example, have the concept of a change set which is exactly for this

purpose.

Since the older revision control software was designed for text files, they can be

used for any source language where the source can be treated as a collection of text

files. This can include just about any programming language, and other sorts of files

such as documentation in LATEX, and even figures in PostScript. RCS can’t handle

non-text data formats such as Microsoft Word files, RTF (Rich Text Format), or

PDF (Portable Document Format) files. CVS has limited capabilities for handling

non-text data. However, the newer version control systems such as Subversion
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and Bitkeeper can easily handle non-text formats, and indeed almost any kind of

file.

Most revision control systems are based on other software that identifies differ-

ences between text files. In fact, SCCS and RCS were built using the Unix diff
command, which can generate a set of differences between text files. However,

diff and related commands work on lines as their basic unit of text. So, any

change to a line (even just adding a space) results in a completely new line as far as

SCCS is concerned, so re-formatting a source file may result in the new file being

regarded as a completely new, unrelated file. While all revision control systems can

handle this, it is inefficient.

17.3 Profiling: prof and gprof

Since we are interested in evaluating the performance of our algorithms, tools that

time the various parts of an algorithm (called profiling tools) are very useful. They

can often surprise us about where most of the time is being spent, and point out the

inefficiencies that we had forgotten, or never even considered!

The main profiling tools in Unix systems are prof and gprof. Of these, prof
is the simplest, and gprof gives a much more complete picture of where and why

time is spent in the different routines. To use either of these routines requires that

when we compile the program, routines, and libraries we use some compiler options

that generate the information thatprof andgprof need. For most Unix compilers

these options are “-p” for prof and “-pg” for gprof. Sometimes, vendors who

supply libraries also supply libraries that have been compiled with these options so

that more complete profiles of programs using the libraries can be generated.

Once the program has been compiled, the program can be run as normal (although

input and output should be streamlined and reduced so that input/output does not

dominate the timings). When the program completes normally, it generates an

output file for the profiling program (mon.out for prof and gmon.out for

gprof). The prof and gprof commands take the data put by these output files

and displays them. The prof command produces a “flat” output showing simply

how much time is spent (as well as prof can determine it) in each routine, and

how many times each routine is called. The gprof command shows this, and also

shows the number of times every routine is called from each routine that calls it;

gprof also shows the amount of time each routine spends “in the service” of each

calling routine. This can make it much easier to track where and why the program

is spending its time. If considerable time is spent in library functions, it may be

necessary to link the program with a library compiled with the -p (for prof) or

-pg (for gprof) switches in order to see how much, and for what purpose, time

is being spent in different parts of the library functions.
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Here is an example of the “flat” output for repeatedly running the trapezoidal

method to approximate
∫ 1

0
x2 cos(x) dx (100 000 times):

% cumulative self self total

time seconds seconds calls us/call us/call name

60.34 0.17 0.17 100000 1.75 2.55 trapezoidal

27.59 0.26 0.08 10100000 0.01 0.01 x sqr cosx

12.07 0.29 0.04 main

The “call graph” output shows all the ways in which each function is called. In this

case it’s pretty simple: main calls trapezoidal which calls x sqr cosx.

index % time self children called name

<spontaneous>

[1] 100.0 0.04 0.26 main [1]

0.17 0.08 100000/100000 trapezoidal [2]

-----------------------------------------------

0.17 0.08 100000/100000 main [1]

[2] 87.9 0.17 0.08 100000 trapezoidal [2]

0.08 0.00 10100000/10100000 x sqr cosx [3]

-----------------------------------------------

0.08 0.00 10100000/10100000 trapezoidal [2]

[3] 27.6 0.08 0.00 10100000 x sqr cosx [3]

By following item [1] (main), we see that 0.04 seconds are spent in main itself,

while 0.26 seconds are spent in trapezoidal (when called from main) and the

routines that it calls. Looking at the line below [1], we see that only 0.17 seconds

are spent in trapezoidal itself (when called from main) and 0.08 seconds in

x sqr cosx. So about half the time is spent applying the trapezoidal rule, about

half in evaluating the function f (x) = x2 cos(x), with a small amount of overhead

in the main routine.

When using prof or gprof with languages other than C, be warned that a

certain amount of name mangling will occur as it does with other tools such as de-

buggers. For example, in object-oriented languages such as C++, the class or type

name helps to distinguish the variables and functions, especially for overloaded

functions. Thus this information must be included in the symbol information used

by the linker. Similarly, in Fortran 90/95 modules separate name spaces, so module

names must be incorporated into the symbol information used by the linker. Chap-

ter 18 gives an example of how to use gprof for Fortran 90/95, and Chapter 19

gives an example using C++ with templates.
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17.4 Text manipulation: grep, sed, awk, etc.

Text manipulation is a daily task for most programmers. If we are not writing, read-

ing, searching or modifying text, we are thinking about it. Since we as programmers

should try to automate whatever processes we can, we should be aware of the tools

available for manipulating text. Unix has provided most of the best tools for han-

dling text, and we will concentrate on the most popular of these: grep, sed, awk,

and m4. The tasks carried out by these programs can often be done better in perl
[90] or python [73]. Perl is a scripting language reminiscent of the Unix shells,

but much, much more powerful. Python tries from the outset to be a fully-featured

programming language, but with lots of support for text processing.

Of these commands, the most commonly used is grep (get regular expression
and print): this will search one or more files for a given regular expression. A

regular expression is a pattern of characters that we can build up recursively as

follows: A regular expression is:

� a character string (which represents itself)
� a set of characters [set-of-chars] (which represents any of the characters in set-of-chars)
� a period “.” (which represents any character except possibly the newline character)
� a caret “ˆ” (which represents the start of a line or a string)
� a dollar sign “$” (which represents the end of a line or a string)
� a parenthesized regular expression \(r\) (which is the same as r )
� a sequence of regular expressions r1r2 · · · rm (representing concatenations of the strings

represented by r1, r2, etc.)
� a regular expression followed by a symbol indicating multiplicity: r∗ represents zero or

more repititions of r , r+ represents one or more repititions, r? represents zero or one

repitition.

The characters that have special meanings “.ˆ$[]*?\” can be included as regular

characters as long as they are preceded by the escape character “\”. Thus \$
represents an actual dollar symbol, and \\ an actual backslash character.

So, we can match regular expressions like this: the regular expression

“abc\..*def” will match the strings “abc.Xdef” or “abc. def” or

“abc. this is !!wow!! a long string def” and also “abc.def”.

(The “.*” can match the empty string.) If you wanted to find all include files in

a C file, you can use this command:

grep ’ˆ#[ ]*include[ ]*[ˆ ]*’ file.c

The [ ] part of the regular expression includes a space and a tab.

If we want to find all Fortran 90 files containing a certain identifier (like geom)

we can use something like this:

grep -i ’g *e *o *m’ *.f90
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The -i option is to tell grep to ignore the case of the letters (so it will match up-

per case or lower case letters), and the “*” parts of the regular expression tell

grep to ignore spaces (since Fortran allows spaces inserted in the middle of

identifiers).

In addition togrep, Unix also hasegrepwhich stands for Extended GREP. The

egrep command also allows alternative patterns to be matched. These alternative

strings are listed in parentheses like this: (pattern1|pattern2|...). For

example, if you want a pattern to find all C and C++ source files in a directory,

you could use the pattern .*\.(c|h|C|cc|cpp|cxx) (note that \. matches a

period).

Other Unix commands use regular expressions, such as sed (Stream EDitor).

This will take a collection of editing commands and an input file, and produce an

output file (or on-screen) which is the result of applying those editing commands to

the input file. The editing commands that sed has available include adding lines of

input, deleting lines of input, substituting patterns found, changing lines, reading

input from other files, and translating characters.

For example, to change strings from being bracketed by double quotes (”) to

being bracketed by <...>, we can use the following sed command:

sed -e ’s/”\(.*\)”/<\1>/’ file > output

The actual command for sed follows -e on the command line. The s command

in sed is the substitute command. The regular expression inside the first pair of

slashes (”\(.*\)”) is the pattern to be substituted, and it is substituted by the string

between the second and third slashed (<\1>). The \1 represents the first bracketed

regular expression in the pattern, which in this case is .*. The ”\(.*\)” regular

expression matches any string contained in double quotes (including the quotes),

so the .* regular expression in it matches the quoted string. This is then substituted

into \1 in the output string.

Awk is a program for setting up and using small text-files as data bases. The data

bases commonly consist of lines of strings or numbers separated by spaces. The

strings and numbers in a line are fields of that line. (Other characters can be used

as field separators, such as the colons (:) used in password files.) Awk programs

have variables and functions, just like other programming languages. But the basic

way awk operates is to read a line, and if a specified pattern matches the input,

the associated operation is executed (which is often a print statement). For more

information about sed and awk, see [31].

The m4 program is a macro preprocessor. It works somewhat like the C/C++
preprocessor, but with more sophisticated features, such as recursive macros, and

arithmetic. This can make it a very useful tool in a number of areas. For exam-

ple, loop unrolling can be an error prone process when done by hand. However,
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a recursive m4 forloop command can make it simple: running m4 on the

file

define(‘unroll’,‘define(‘var’,$1)dnl

define(‘tempvar’,$1 $3)dnl

for ( tempvar = 0; tempvar+$3 < $2; tempvar += $3 )

{
forloop(‘j’,0,decr($3),‘ pushdef($1,‘tempvar’+‘j’)$4;

popdef($1)’)

}
undefine(‘$1’)dnl

for ( var = tempvar; var < $2; var++ )

$4;’)dnl end definition of unroll macro

unroll(‘i’,‘n’,4,‘sum[i] = a[i]+b[i]’)dnl

will generate

for ( i 4 = 0; i 4+4 < n; i 4 += 4 )

{
sum[i 4+0] = a[i 4+0]+b[i 4+0];

sum[i 4+1] = a[i 4+1]+b[i 4+1];

sum[i 4+2] = a[i 4+2]+b[i 4+2];

sum[i 4+3] = a[i 4+3]+b[i 4+3];

}
for ( i = i 4; i < n; i++ )

sum[i] = a[i]+b[i];

This kind of automatic generation of code for loop unrolling is impossible using

the C/C++ macro preprocessor. Writing m4 macros can be tricky; it is said to

be addictive as well. . . But properly used, this is a powerful tool for dealing with

text.

17.5 Other tools

Other tools worth mentioning that are available with Unix (including Linux and

Mac OS X) include

� lex or flex. These perform lexical analysis, which is usually a preliminary stage for

the syntactical analysis that a compiler carries out. They can be used independently or

with yacc or bison. Lex was the original Unix program; flex is a near-equivalent

program from the GNU project of the Free Software Foundation.



17.6 What about Microsoft Windows? 233

� yacc or bison. Yacc (Yet Another Compiler-Compiler) is a syntax-directed compiler

generator. This is a convenient way to construct mini-languages for representing input

data, or for parsing various kinds of data files, as well as for constructing compilers

for programming languages. The bison program is a completely free version of this

program which is part of the GNU project.
� find. Find is not only a search engine, it can automate many tasks, especially on

files scattered across several directories. Combined with grep it can search for patterns

inside files. Combined with sed, it can transform source code across an entire directory

tree.
� diff and merge. Diff finds the differences between two text files on a line-by-line

basis. This can be a powerful tool to see how a file has changed. However, for diff,

lines either match exactly or not at all. This means that some trivial changes (like the

difference between the end-of-line characters for Unix, Microsoft, and Macintosh) can

render diff useless unless they are converted to a common format. Merge is a three-

file command that compares an original file to two new versions, and creates an output

that combines both the changes for the new versions. Diff and merge were the basis

of the original RCS revision control system. Revision control systems typically provide

equivalent operations for files in their repositories.
� gzip and tar. Unix has a long line of compression tools, starting with compress.

Others include pack, zip, gzip and bzip2, although zip originated under the

Microsoft operating systems. These are lossless compression programs – that is, they

do not lose any information, and the original input can be completely reconstructed. On

the other hand, tar (Tape ARchive) combines selected files into one. Most of the Unix

tools for compression are solely for compression, while zip both combines and com-

presses sets of files. For storing or sending large sets of files both zip and tar/gzip
are excellent tools.

This list is by no means complete, and more tools are being developed, modified,

and updated all the time.

17.6 What about Microsoft Windows?

With the advent of Macintosh’s OS X, virtually all of the operating systems in

widespread use are a version of either Microsoft Windows or Unix. This means that

almost all computer users will have access to Unix tools or will be working under

Microsoft Windows. Since Microsoft Windows is targeted at non-programmers,

effective tools for programmers do not come with standard distributions of the

operating system. This means that programmers working under Microsoft Windows

need to take steps to obtain compilers and other programming tools. These may

include tools for development in the .NET framework created by Microsoft, such

as Visual Studio.NET.
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We will look at three ways of doing this. One is through Integrated Develop-

ment Environments. The second is through free sets of Unix tools that run under

Microsoft Windows. The third is through individual tools re-written for the

Microsoft Windows environment.

17.6.1 Interactive Development Environments

Interactive Development Environments (IDEs) are environments that provide facil-

ities for editing source code, compiling and linking files, defining the way to build

the executable, and running executable code. Like most Graphical User Interfaces,

IDEs are low-threshold systems – it is easy to get started and put together simple

programs. But if you want to structure your programs differently from what the

IDE expects, it is likely to be much harder.

In many respects, IDEs are replacements for the operating system. They provide

access to compilers, and linkers, along with editors, building tools (like make),

and usually provide access to debuggers and profiling tools. These are essentially

standard components in Unix operating systems. IDEs are definitely useful in certain

situations, such as GUI builders. But as general purpose tools, operating systems

with good toolsets are nearly as easy to use, and provide much more flexibility.

17.6.2 Unix toolsets for Windows

One approach to supporting programmers in a Microsoft Windows environment is

to provide collections of Unix tools in a Windows-compatible form. The degree to

which the collections are self-contained differs between the different toolsets. At

one extreme, Linux can be used as an alternative operating system in one partition

of a hard disk, and Microsoft Windows can run in another partition; done properly

the Linux system can “see” the Microsoft Windows files, although the reverse is

not always possible. At the other extreme, separate programs that can run under

Microsoft Windows can be used; this is the main approach of MinGW (Minimalist
Gnu for Windows, available from http://www.mingw.org). In between is

Cygwin, which includes a Linux emulation program, and provides its own command

interface. Cygwin takes over a sub-tree of the directory structure. All the usual Unix

tools are available in Cygwin, and in addition, there is a version of X-windows.

Programs written with Cygwin can use Unix facilities; the resulting programs are

usually run under Cygwin as they use the Linux emulation that Cygwin provides. It

is possible to compile programs under Cygwin for Windows, although it is a more

complex process. Cygwin is available from http://www.cygwin.com.

The most popular C/C++ compilers for Linux (gcc and gpp) are also available

for Windows systems along with most of the tools for Unix described above. These
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compilers and tools have been ported by a number of people, including DJ Delorie

who wrote djgpp, a Windows version of gcc/gpp.

17.6.3 Stand-alone tools

Some tools are useful enough on their own to be worth turning into stand-alone

tools under Microsoft Windows and/or Mac OS X. Examples include WinZip
(shareware), which is GUI version of a command line version of zip. Component

Software developed a version of RCS which is integrated into Microsoft Windows,

and has a GUI interface. There are also GUI versions of other revision control

systems for both Unix and Microsoft Windows, including CVS and Subversion.

Numerous other Unix tools have GUI interfaces and run under Microsoft Windows.

Part of the attraction of this conversion of Unix tools is to set up GUIs for

command line tools. And GUIs often do make life easier. By way of analogy,

paintings can capture qualities and textures that are hard to put into words, but

literature can describe relationships on a level that pictures cannot represent. The

world would be poorer without either one of them. At heart, this is about a choice

of interfaces: often we are best off with more than one interface.
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Cubic spline function library

In this chapter, we will consider the details of designing a cubic spline library. The

examples given here use Fortran 90, but are based on the interface and data structure

developed earlier in C in Sections 7.5 and 8.1.

Here is the Fortran version of the data structure:

type :: spline

! length is current length

! max len is allocated length of arrays

integer length, max len

! For spline function f

! f(xlist(i)) = ylist(i), Mlist(i) = f’’(xlist(i))

real(kind=wp), pointer :: &

xlist(:), ylist(:), Mlist(:)

end type spline

Note that thexlist,ylist, andMlist components have theallocatable at-

tribute, and so must be allocated before use. However, since they have thepointer
but not pointer attribute, this means that the components will not be de-allocated

when the data structure goes out of scope.1

The spline library is made into a Fortran 90 module that provides the data struc-

ture(s) needed together with the operations and tests. Here is an outline of the

module:

module splines

! sets working precision (wp)

use set precision, only: wp

! use tridiagonal solvers

1 Fortran 2003 allows allocatable components of data structures. This is already available in many compilers
(such as g95 and Intel’s ifort) at the time of writing.

239
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use tridiag

implicit none

! spline data structure

...

contains

! Spline functions

...

! Spline tests

...

end module splines

Several things are worth noting about this outline for a module:

� Working precision (single, double, or extended precision) is set by the module

set precision. This module is used by splines and must be used by all other

modules and routines that work with it. As long as all declarations of floating point vari-

ables and functions use real(wp), they will be using the same precision. If additional

precision is desired for certain computations, the module could also define an “ep” param-

eter as being the parameter for a suitable “extended precision” floating point arithmetic.
� The module itself contains no variables, only type and parameter declarations. Any

variables declared would essentially be global to the module, which we wish to avoid.

Also, having a single “spline object” is very limiting.
� We use implicit none to ensure that all undeclared variables are caught. In fact,

this caught a logical error. A mis-spelled variable is a new variable, and implicit typing

will not alert the programmer when this happens. Implicit none can also be set via

compiler switches.
� The software is layered, with the splinesmodule built on top of the tridiagmodule.

Since both are modules, calling routines can be checked to ensure that numbers and

types of arguments are correct without needing to create separate interface blocks.
� Test routines are included in the module. Testing routines should be created along with

the rest of the module. Test programs can simply call the test routines and are only a

few lines long. (In Java, classes can have a main method, which is a good place to put

testing routines. But this feature is not available in current dialects of Fortran.)

Remember, the data structure is part of the implementation, and not really part of the

functionality of the library. So it could be changed if a better way was found. With

this approach we could change this module, as long as the interfaces to the routines

are kept the same, without changing any routine that used or called the routines in

this module. We would still have to recompile the routines that used this module.

Errors in scientific software may occur for a number of different reasons: division

by zero, memory allocation failure, or an input error, for example. Furthermore, if

one routine calls another, and the called routine has an error, then almost always
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the calling routine must indicate that an error has occured. In long calling chains

then, an error deep in the chain will propagate all the way to the top.

Error handling in Fortran has little support (even in Fortran 2003). So we adopt

two different ways of handling errors: either the routine called returns a logical
value with.true. returned for success,.false. for failure, or the routine called

sets an integer argumentiflag. If a routine normally returns something, or if more

detailed information is desired about the error status, then an iflag argument is

used. Otherwise we use the logical return value for indication of an error. In the

following design example we use the following convention for iflag: if iflag
is zero on exit, then the operation was successful; if iflag is negative on exit, then

the operation had a fatal error; if iflag is positive on exit, then the operation’s

value(s) may be in doubt or inaccurate. While we might later assign more meaning

for specific values of iflag, this convention will enable us to write simple code

for handling most cases.

Here is a description of the interface as comments embedded in the module.

! spline get(s,len) -- creates spline s of length len

! -- returns .true. if successful, .false. if not

...

! spline free(s) -- deallocates all memory associated

! with s and resets length and max len.

...

! spline resize(s,new len) -- resizes s to length new len

! -- re-allocates if necessary, possibly destroying

! old values

...

! spline set(s,x,y,len) -- sets xlist & ylist values in s

! to x & y respectively

! -- resizes s to ensure it has length = len

! -- x must be ordered on entry: x(i+1) > x(i) for all i

! but this is not checked by spline set

...

! spline print(s,output) -- prints representation of spline

! on unit ”output”

...

! spline read(s,input) -- reads representation of spline

! on unit ”input” (reads output from spline print)

...

! spline eval(s,t,iflag) -- evaluates spline s at t:

returns s(t)
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! -- extrapolates if t outside interval

! [xlist(1),xlist(length)], but then sets iflag > 0

! -- if fatal error (e.g., division by zero), set

! iflag < 0

! -- otherwise, set iflag == 0 on exit

...

! spline peval(s,t,iflag) -- evaluates spline s at t:

! returns s(t)

! -- assumes spline is periodic

! -- if fatal error, set iflag < 0

...

! spline basic(s,mat,rhs,iflag) -- constructs basic linear

! system for splines for computing Mlist

! This is common to spline clamped, spline natural,

! and spline not knot; sets iflag < 0 if fatal error

...

! spline clamped(s,dy0,dy1,iflag) -- constructs clamped

! spline f(.):

! f(s%xlist(i)) = s%ylist(i), i = 1, ..., s%length

! f’(s%xlist(1)) = dy0, f’(s%xlist(s%length)) = dy1

...

! spline natural(s,iflag) -- constructs natural spline f(.):

! f(s%xlist(i)) = s%ylist(i), i = 1, ..., s%length

! f’’(s%xlist(1)) = f’’(s%xlist(s%length)) = 0

...

! spline periodic(s,iflag) -- constructs periodic

! spline f(.):

! f(s%xlist(i)) = s%ylist(i), i = 1, ..., s%length

! Period of f is s%xlist(s%length)) - s%xlist(1)

...

Note that s is a type(spline), while iflag, len and new len are

integers; the other arguments are real(kind=wp) scalars or arrays.

18.1 Creation and destruction

The first task is to create-and-initialize the spline data structure. Since we want

to have more than one spline function, this cannot be done at startup time: at

startup we do not know how many spline functions will be needed. So we must
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have a function to create and initialize a spline data structure. Here is code to do

this:

logical function spline get(s,len)

type(spline), intent(out) :: s

integer, intent(in) :: len

integer :: err

s%length = 0

s%max len = 0

allocate(s%xlist(len), s%ylist(len), s%Mlist(len), &

STAT=err)

if ( err /= 0 ) then

deallocate(s%xlist, s%ylist, s%Mlist)

spline get = .false.

else

s%length = len

s%max len = len

spline get = .true.

end if

end function spline get

If we did not use theSTAT=err option in theallocate statement, then execution

would terminate if the allocation failed. The approach here allows the calling routine

to decide what to do on failure.

Note thatlength andmax len are assigned after the allocation has succeeded,

so allocation failure will not result in illegal accesses, although the data structure

may still be in an inconsistent state (e.g., xlist allocated, but neither ylist nor

Mlist allocated).

Since the allocated components xlist, ylist, and Mlist have the

pointer rather than allocatable attribute, we need to explicitly de-allocate a

type(spline) object before it goes out of scope. So we have included a function

spline free:

subroutine spline free(s)

type(spline) :: s

deallocate(s%xlist, s%ylist, s%Mlist)

s%length = 0

s%max len = 0

end subroutine spline free
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18.2 Output

The spline print routine gives access to the internals of the data structure,

which is very useful for debugging:

subroutine spline print(s,output)

type(spline) :: s

integer i, output

write (output,*) ’Spline:’, s%length, &

’, max length =’, s%max len

write (output,*) ’xlist:’

write (output,’(3G22.15)’) (s%xlist(i), i = 1, s%length)

write (output,*) ’ylist:’

write (output,’(3G22.15)’) (s%ylist(i), i = 1, s%length)

write (output,*) ’Mlist:’

write (output,’(3G22.15)’) (s%Mlist(i), i = 1, s%length)

end subroutine spline print

The output is human readable.

18.3 Evaluation

The first real numerical workhorse routine is thespline eval routine. Evaluating

a spline function once we have computed the Mi values is fairly straightforward:

given an input t , we find the interval [xi , xi+1] that contains t , and then apply the

formula for the spline function.

What happens if t is outside the interval [x1, xn]? Officially there is no value

defined. Such a policy could be enforced by raising an error if t < x1 or t > xn .

However, this is probably not wise since roundoff error could mean that something

that ought to be in the interval is not. Recall that even assigning x = y does not

guarantee that y == x later, even if both are declared to be double-precision.

So we should extend the function beyond the official interval [x1, xn]. Note, how-

ever, that there is no uniqueness to the extension. We would like it to have some

properties of the cubic spline function that are important on [x1, xn]; it should

probably be at least twice continuously differentiable. Since extrapolation cannot

be expected to give accurate values for a spline interpolant far from [x1, xn], we set

iflag to +1 for extrapolation. This signals to the user that the value might not be

trustworthy.

The simplest approach is if t < x1 then we use the formula used for [x1, x2], and

if t > xn we use the formula used for [xn−1, xn]. Of course, once we go outside

the interval [x1, xn] we are really talking about extrapolation, not interpolation,

and we do not expect that the errors will stay small as we go far from the interval
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[x1, xn]. However, it will give us a twice-differentiable extension to the spline

outside [x1, xn].

18.3.1 Implementation of spline eval()

Now we should consider how to implement the spline evaluation function.

There are two main parts to the function:

1. identify the interval [xi , xi+1] containing the evaluation point t , or if t < x1 or t > xn;

2. evaluate the cubic polynomial given in Equation (9.1) on p. 125.

The first part should be carried out using a form of binary search. The second

part is straightforward evaluation, although care should be taken to avoid excessive

roundoff errors.

To implement the binary search, we will start with a loop invariant:xlist(lo)
<= t <= xlist(hi), where lo and hi are indexes. After we tested and ex-

cluded the cases t < xlist(1) and t > xlist(length), we know that

xlist(1) <= t <= xlist(length), which means we can set lo = 1
and hi = length. We stop when hi == lo or hi == lo+1, and we set

i = lo. At each iteration we wish to roughly halve |hi-lo|. Note that using

mid = (lo+hi)/2 does this, although we get mid == lo if hi == lo+1.

But if hi >= lo+2, then mid≥(lo+lo+2)/2 == lo+1 using integer divi-

sion, which rounds towards zero for non-negative arguments.

For the evaluation of the cubic expression for the interval [xi , xi+1], it is usually

worthwhile to use the differences t − xi and xi+1 − t . One reason for this is that

these quantities are typically much smaller than t , xi , or xi+1. Subtracting first

usually gives smaller roundoff errors – catastrophic cancellation is usually worse

when quantities are amplified, say by squaring or cubing, before subtracting. In

addition, we try to partially factor the expressions to improve efficiency and reduce

roundoff errors.

The complete code is listed below:

function spline eval(s,t,iflag) result(val)

type(spline), intent(in) :: s

integer, intent(out) :: iflag

real(kind=wp) :: t, val, h, diff1, diff2

integer i, lo, mid, hi

if ( s%length == 1 ) then

val = s%ylist(1)

iflag = 1 ! extrapolation !

return
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else if ( s%length == 0 ) then

val = 0

iflag = -1 ! no data !

return

end if

! binary search to find i: xlist(i) <= t <= xlist(i+1),

! or i = 1 if t < xlist(1),

! or i = length-1 if xlist(length) < t

lo = 1

hi = s%length

if ( t < s%xlist(1) ) then

i = 1

iflag = 1 ! extrapolation !

else if ( t > s%xlist(s%length) ) then

i = s%length-1

iflag = 1 ! extrapolation !

else

iflag = 0 ! normal case !

! binary search

do while ( hi > lo + 1 )

! Loop invariant: xlist(lo) <= t <= xlist(hi)

mid = (lo + hi)/2

if ( t <= s%xlist(mid) ) then

hi = mid

else

lo = mid

end if

end do

i = lo

end if

! Use interpolation formula on [xlist(i),xlist(i+1)]

h = s%xlist(i+1) - s%xlist(i)

if ( h == 0 ) then

iflag = -1 ! fatal error !

return

end if

diff1 = t - s%xlist(i)

diff2 = s%xlist(i+1) - t
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val = diff1*(s%ylist(i+1)/h - s%Mlist(i+1)*h/6.0 &

+ diff1*diff1*s%Mlist(i+1)/(6.0*h)) &

+ diff2*(s%ylist(i )/h - s%Mlist(i )*h/6.0 &

+ diff2*diff2*s%Mlist(i )/(6.0*h))

end function spline eval

Testing can be done using the specific examples given in Equations (9.2)–(9.4)

on pages 127 to 127, using a number of different values of t . Plotting the spline

function above for t = 0 to t = 4 can also provide a quick indication if the code

is probably correct – such a plot can easily identify jumps in values and first

derivatives, although it is unlikely to identify jumps in higher derivatives.

The place in the code where i has been determined is a good place to start

debugging. By printingiout, it can be easy to identify if the problem is in computing

i, or in the interpolation formula.

Sometimes, published formulas are incorrect. This can make debugging difficult

since whoever debugs the code will spend a lot of time comparing the formula in

the code with the published formula, swearing that the bug can’t be there. . . But

it has happened before and can happen again. So, in these cases, go through the

derivation of the formula, or use a symbolic computation package (like Maple or

Mathematica) to derive the formula yourself.

18.4 Spline construction

Constructing a spline is more involved than evaluating a spline. The basic material

we need to construct a spline function are the knot points xi , i = 1, . . . , n and the

values to interpolate: yi , i = 1, . . . , n. In addition, you need to know what kind of

spline to construct: whether it is a natural spline, a complete spline, a “not-a-knot”

spline, or a periodic spline. To construct any of these, we have to solve a linear

system. For all but periodic splines, this linear system is a tridiagonal system of

equations. That is, it is a linear system of the form:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 c1

b1 a2 c2

b2 a3
. . .

. . .
. . .

. . .

. . . an−1 cn−1

bn−1 an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

z3

...

zn−1

zn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

...

bn−1

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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Note that this sub-problem is an essentially self-contained sub-problem, so it is

a natural place for creating a component of our spline software.

18.4.1 Tridiagonal linear systems

Usually we solve the tridiagonal linear system by carrying out an LU factorization

as is done for general linear systems. But when we look at what happens in the LU

factorization for a tridiagonal systems, we can greatly reduce the time and memory

needed. This is well-known and documented in most numerical analysis texts (see,

for example, [4] and [18]). We could (and should) use the LAPACK banded matrix

routines here. However, we will proceed as if it were not available to illustrate the

issues involved. If we write⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 c1

b1 a2 c2

b2 a3
. . .

. . .
. . .

. . .

. . . an−1 cn−1

bn−1 an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

β1 1

β2 1
. . .

. . .

. . . 1

βn−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 γ1

α2 γ2

α3
. . .

. . .
. . .

αn−1 γn−1

αn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= LU,

as the LU factorization of our original tridiagonal matrix, we can compute the

quantities αi , βi , and γi in a simple O(n) algorithm:

α1 ← a1; β1 ← b1/a1; γ1 ← c1

for i = 2, 3, . . . , n − 1

αi ← ai − βi−1γi−1; βi ← bi/ai; γi ← ci

αn ← an − βn−1γn−1

This algorithm can operate in situ (that is, without using any additional memory,

by overwriting the input arrays with the output) like this:

b1 ← b1/a1

for i = 2, 3, . . . , n − 1

ai ← ai − bi−1ci−1; bi ← bi/ai

an ← an − bn−1cn−1
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Note that we can store both the tridiagonal matrix and the LU factors (in compressed

form) in the same data structure:

! representation of n x n tridiagonal matrix A

! A(i,i) = a(i), A(i+1,i) = b(i), A(i,i+1) = c(i)

! array sizes: a(max n), b(max n-1), c(max n-1)

type :: tdg

integer n, max n

real(kind=wp), pointer :: a(:), b(:), c(:)

end type tdg

Again, this is part of a module which contains data structures and routines, but no

variables. Again, we have used the set precision module to set the precision

of the floating point data. Basic routines to create and allocate, destroy, resize, print,

and copy these data structures have been written.

This LU factorization code is implemented in tdg lu below:

subroutine tdg lu(mat,iflag)

type(tdg) :: mat

integer, intent(out) :: iflag

integer :: i, n

n = mat%n

if ( mat%a(1) == 0 ) then

iflag = -1

return

end if

mat%b(1) = mat%b(1) / mat%a(1)

do i = 2, n-1

if ( mat%a(i) == 0 ) then

iflag = -1

return

end if

mat%a(i) = mat%a(i) - mat%b(i-1)*mat%c(i-1)

mat%b(i) = mat%b(i) / mat%a(i)

end do

mat%a(n) = mat%a(n) - mat%b(n-1)*mat%c(n-1)

end subroutine tdg lu

!-----------------------------------------------
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How can we test this code? We can re-construct the the LU matrix, and check the

re-construction error: how close are the re-computed ai , bi , and ci to the original

values? Note that to do this we need to copy the original values so they won’t be

changed by tdg lu. Our re-construction routine should not be in situ: the output

should be separate from the input. We need this for debugging, not for speed or

minimizing memory usage. It also means that we are avoiding bugs that can arise

in the in situ version of the algorithm. Here is a routine for re-constructing the LU

factorization:

logical function tdg lumult(mat,prod)

type(tdg) :: mat, prod

integer i

tdg lumult = .true.

if ( .not. tdg resize(prod,mat%n) ) then

tdg lumult = .false.

return

end if

if ( mat%n <= 0 ) return

prod%a(1) = mat%a(1)

if ( mat%n == 1 ) return

prod%c(1) = mat%c(1)

do i = 2, mat%n - 1

prod%b(i-1) = mat%b(i-1)*mat%a(i-1)

prod%a(i) = mat%a(i) + mat%b(i-1)*mat%c(i-1)

prod%c(i) = mat%c(i)

end do

prod%b(mat%n-1) = mat%b(mat%n-1)*mat%a(mat%n-1)

prod%a(mat%n) = mat%a(mat%n) + &

mat%b(mat%n-1)*mat%c(mat%n-1)

end function tdg lumult

At this point it is also useful to have a routine that gives an indication of how

different two type(tdg) variables are. For example, we could simply compute

the maximum difference in the entries, as is done in tdg norm diff. This is not

a regular matrix norm of the difference, but it is enough for these testing purposes.

The testing code then becomes quite simple after we have set up and copied a matrix

to factor:
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if ( .not. tdg lumult(mat1,temp) ) then

print *, ’Error performing L.U multiplication’

end if

print *, ’L.U =’

call tdg print(temp,stdout)

print *, ’Maximum difference between L.U & original =’, &

tdg norm diff(temp,mat2)

The maximum error should be a modest multiple, say 10 to 20 times, of u (the unit

roundoff, see Section 2.1.1), provided the original matrix has modest-sized entries

and is diagonally dominant; that is, each diagonal entry has magnitude greater than

the sum of the magnitudes of all other entries in that row:

|aii | >
∑
j : j �=i

|ai j |.

It turns out that the linear systems that arise in computing splines are diagonally

dominant. If the error is much larger than 10 or 20 times u for a diagonally dominant

matrix and n modest, it is likely a sign of a bug.

Solving the linear system can now be carried out using the standard approach

for LU factorization. To solve LU z = y, we first solve Lw = y and then U z = w.

If we write out the equations to solve for w in terms of y we get the following

algorithm:

w1 ← y1

for i = 2, 3, . . . , n
wi ← yi − βi−1wi−1

This can also be done in situ with input and output in y:

for i = 2, 3, . . . , n
yi ← yi − βi−1 yi−1

Solving for z in terms of w from the equation U z = w is done backwards, starting

from zn and working our way towards z1. (For solving Lw = y we started with w1

and worked our way forwards to wn .) The algorithm for this is

zn ← wn/αn

for i = n − 1, n − 2, . . . , 1

zi ← (wi − γi zi+1)/αi

Again, this operation can be made in situ with both input and output in y.

yn ← yn/αn

for i = n − 1, n − 2, . . . , 1

yi ← (yi − γi yi+1)/αi
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Combining forward and backward substitution gives a single in situ algo-

rithm for solving the factored tridiagonal linear system. This is implemented in

tdg lusolve.

subroutine tdg lusolve(mat,y,iflag)

type(tdg), intent(in) :: mat

real(kind=wp) :: y(:)

integer, intent(out) :: iflag

integer i

logical has zero

iflag = 0

! Solve U.z = y, overwriting y with z

do i = 2, mat%n

y(i) = y(i) - mat%b(i-1)*y(i-1)

end do

! check mat%a for zeros

has zero = .false.

do i = 1, mat%n

has zero = has zero .or. (mat%a(i) == 0)

end do

if ( has zero ) then

iflag = -1

return

end if

! Solve L.x = z (stored in y), overwriting y with x

y(mat%n) = y(mat%n) / mat%a(mat%n)

do i = mat%n-1, 1, -1

y(i) = (y(i) - mat%c(i)*y(i+1)) / mat%a(i)

end do

end subroutine tdg lusolve

!-----------------------------------------------

The solve routine can be tested in combination with the tridiagonal factorization

routine; set up a linear tridiagonal system Ax = b and, after solving for x , check

the residual b − Ax .

So far, we have represented a tridiagonal matrix by three floating point arrays a,

b and c, and a length parameter n (a has n entries while b and c have n − 1 entries).
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The module created for tridiagonal matrices is self-contained and independently

tested. It can be used in other contexts.

18.4.2 Some words about accuracy and reliability

Readers knowledgeable in numerical analysis will realize that the LU factorization

routine described above does not use partial pivoting (i.e., row swaps). This means

that it can fail for some non-singular tridiagonal matrices such as[
0 1

1 0

]
.

Even for tridiagonal matrices which are close to this matrix, there are typically

large errors in the computed solution due to roundoff errors.

However, the equations solved to determine the unknowns in the spline repre-

sentation are tridiagonal linear systems with special features.

Let us recall the formula we use for the spline functions: let hi = xi+1 − xi . Then

for xi ≤ x ≤ xi+1,

s(x) = (xi+1 − x)3 Mi + (x − xi )
3 Mi+1

6hi
+ (xi+1 − x)yi + (x − xi )yi+1

hi

− hi

6
[(xi+1 − x)Mi + (x − xi )Mi+1].

From this formula we can see that on [xi , xi+1], s(xi ) = yi and s(xi+1) = yi+1; since

the formulas for s(x) match up at the endpoints xi and xi+1 the spline function s
is continuous. Something similar happens with the second derivatives: using the

formula on [xi , xi+1], s ′′(xi ) = Mi and s ′′(xi+1) = Mi+1 and again s ′′ is continuous.

We need the equations to enforce the continuity of the first derivatives. Using the

formula for s(x) on [xi , xi+1] we get

s ′(x) = −(xi+1 − x)2 Mi + (x − xi )
2 Mi+1

2hi

+ yi+1 − yi

hi
− hi

6
(Mi+1 − Mi ).

The corresponding formula for the interval [xi−1, xi ] is

s ′(x) = −(xi − x)2 Mi−1 + (x − xi−1)2 Mi

2hi−1

+ yi − yi−1

hi−1

− hi−1

6
(Mi − Mi−1).
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Equating the values at x = xi for continuity of the first derivatives gives the equation

− h2
i

2hi
Mi + yi+1 − yi

hi
+ hi

6
(Mi − Mi+1)

= h2
i−1

2hi−1

Mi + yi − yi−1

hi−1

+ hi−1

6
(Mi−1 − Mi ).

Rearranging gives the equation

yi+1 − yi

hi
− yi − yi−1

hi−1

= hi−1

6
Mi−1 + hi−1 + hi

3
Mi + hi

6
Mi+1.

Since this must be satisfied at every interior knot point xi , i = 1, 2, . . . , n − 2,

there are two equations that are left to be satisfied. What those two extra equations

are depends on the kind of spline (complete, natural, periodic, “not-a-knot”). But

these n − 2 equations for the interior knot points are diagonally dominant (that is,

each diagonal entry is larger in magnitude than the sum of the magnitudes of the

other entries on that row – or column):

hi−1 + hi

3
>

hi−1

6
+ hi

6
,

as h j > 0 for all j . Provided the remaining two equations do not break this property,

LU factorization with partial pivoting (that is, row swaps) is not necessary.

What if partial pivoting is necessary? Do we need to revert to the standard LU

factorization algorithm with its O(n3) cost in time and O(n2) memory needs? No.

But we would need one more array for an extra set of super-diagonal entries ai j ,

where j = i + 2, to handle the row swaps. And we would have to make sure that

the matrices start out tridiagonal. More information on some of these issues can be

found in books on numerical linear algebra such as Matrix Computations [46].

18.4.3 Handling scratch memory

When we need to construct the spline from the data given knowing the kind of

spline we wish to construct, we need to construct a tridiagonal linear system along

the way, which is then solved. But this requires more memory. We can either use

“scratch space” arrays (provided they are big enough), allocate the array, or use

automatic arrays (stored on the stack).

Scratch space arrays are vulnerable to problems with lengths; if the length is too

small, then an error will occur. There is no way without dynamic memory allocation

of handling arbitrarily large problems, as the extra memory needed is proportional

to n, the number of knot points. While scratch space arrays are essentially the only
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way of dealing with these memory problems in Fortran 77, in Fortran 90 memory

allocation means we can avoid passing scratch space arrays.

Stack allocation is possible in Fortran 90, provided the dimensions of the arrays

are computable as expressions of the input arguments. But we wish to use the

tridiagonal matrix structures. So rather than use stack allocation we will use the more

portable and less problematic approach of allocating the type(tdg) structure as

needed, and de-allocating it at the end of the routine. This does have a performance

penalty. However, construction of splines should be relatively infrequent, so this

penalty should not be too significant. If this is found to be too high a penalty, then

the stack allocation of the necessary arrays could be implemented. In this case the

tridiagmodule would need to be replaced with a lower level module that worked

directly on triples of arrays. In that case, the tridiag module routines could be

re-written to be interfaces to the lower level routines.

18.4.4 Setting up the equations

What remains to be done for the spline construction routines is to set up and solve

the linear systems to obtain Mlist.

For most of the spline construction routines, the equations for rows 2 through

n − 1 are the same; it is usually only the first and last equations that are different

for the different kinds of splines. A routine spline basic was written to carry

out these common computations:

subroutine spline basic(s,mat,rhs,iflag)

type(spline), intent(in) :: s

type(tdg) :: mat

integer, intent(out) :: iflag

real(kind=wp) rhs(:), h(s%length-1)

integer i, n

iflag = 0

n = s%length

if ( .not. tdg resize(mat,n) ) then

iflag = -1

return

end if

! Set up h array

do i = 1, n - 1

h(i) = s%xlist(i+1) - s%xlist(i)
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if ( h(i) == 0 ) then

iflag = -1

return

end if

end do

! Set up right-hand side (rhs) and matrix entries

do i = 2, n - 1

rhs(i) = (s%ylist(i+1)-s%ylist(i))/h(i) &

- (s%ylist(i)-s%ylist(i-1))/h(i-1)

mat%b(i-1) = h(i-1)/6.

mat%a(i) = (h(i-1)+h(i))/3

mat%c(i) = h(i)/6

end do

end subroutine spline basic

Note that we use stack allocation for theh array for efficiency. This routine simplifies

the computations in the spline construction routines. For spline clamped we

use:

call spline basic(s,mat,s%Mlist,iflag)

if ( iflag == 0 ) then

! Now we must set the first and last rows

h 1 = s%xlist(2) - s%xlist(1)

h n 1 = s%xlist(n) - s%xlist(n-1)

mat%a(1) = h 1/3

mat%c(1) = h 1/6

s%Mlist(1) = (s%ylist(2)-s%ylist(1))/h 1 - dy0

mat%b(n-1) = h n 1/6

mat%a(n) = h n 1/3

s%Mlist(n) = dy1 - (s%ylist(n)-s%ylist(n-1))/h n 1

end if

Similar code is in spline natural. Note that if we had used Cholesky factor-

ization, which requires the matrix to be symmetric, then we would not have been

able to use this approach.

As usual, we test these codes. We test them two ways: for our example spline

function we know the formula for the spline function, and we know the values of

the Mi . So we test both. We compute and print the maximum error in the computed

values for the Mi , and we select (pseudo-)random points in the interpolation interval

and compute the difference between the formulas for our example given above, and

via spline eval. This is perhaps redundant, but it is often worthwhile (and not
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inconvenient) to do both tests; the tests are not redundant when applied to other

example splines where the correct Mi values are not given.

For the example test spline, we obtained in double-precision a maximum error

of 2.22 × 10−16 in Mlist, and a maximum error in the spline function values of

2.56 × 10−16. As the unit roundoff u for double-precision is ≈ 2.2 × 10−16, these

are very satisfactory values.

18.5 Periodic splines

A periodic spline is a spline function s with the property that for a fixed p > 0 (the

period of the spline), s(t + p) = s(t) for all t . The periodic spline interpolant of

s(xi ) = yi , i = 1, 2, . . . , n

has period p = xn − x1; the extra conditions that a periodic spline must satisfy

are that s(xn) = s(x1), s ′(xn) = s ′(x1) and s ′′(xn) = s ′′(x1). The first condition says

that yn = y1. Since Mi = s ′′(xi ) this last condition simply says that Mn = M1. The

middle condition is the more difficult one, but reduces to the equation:

y2 − y1

h1

− y1 − yn−1

hn−1

= hn−1

6
Mn−1 + hn−1 + h1

3
M1 + h1

6
M2.

You can get this equation by setting i = n in the general equation and using the

facts that Mn = M1, Mn+1 = M2, yn = y1, yn+1 = y2, and hn = h1 for periodic

splines. Similarly, for i = n − 1 we get

y1 − yn−1

hn−1

− yn−1 − yn−2

hn−2

= hn−2

6
Mn−2 + hn−2 + hn−1

3
Mn−1 + hn−1

6
M1.

Periodic splines require slightly different treatment from clamped and natural

splines as the linear system used for constructing the spline is no longer tridi-

agonal, rather it is tridiagonal plus a symmetric pair or entries in the top-right

and bottom-left corners of the matrix. This gives a so-called periodic tridiagonal

matrix. We will now look at how we can solve periodic tridiagonal matrices effi-

ciently using the standard tridiagonal solver.

For evaluating periodic splines we do not use the simple extrapolation technique

for evaluating the spline outside the interval [x1, xn]. Instead, we use the periodicity

of the spline function.

18.5.1 Periodic spline evaluation

To evaluate a periodic spline function, we use the argument reduction approach:

first replace the input t with t − kp, where k is a whole number chosen so that
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t − kp ∈ [x1, xn]. Then we can use the standard evaluation routine for t − kp.

How do we compute k? Recall that p = xn − x1. Now x1 ≤ t − kp ≤ xn , so 0 ≤
t − x1 − kp ≤ xn − x1 = p, or, equivalently, kp ≤ t − x1 ≤ (k + 1)p. Dividing by

p > 0 gives k ≤ (t − x1)/p ≤ k + 1. So we can take k = floor((t − x1)/p); note

that floor(z) = 	z
, the largest integer ≤ z. Using the Fortran 90 FLOOR function

runs the risk of overflowing the integer result. Instead, what we really need is t −
pk = x1 + [(t − x1) − p floor((t − x1)/p)]; u − p floor(u/p) can be computed by

the MODULO function in Fortran 90 (fmod in C/C++).

Clearly we need a new routine for evaluating periodic spline functions:

spline peval. We do not have to repeat all the code for evaluating the cu-

bic function on [xi , xi+1] or carrying out the binary search. In accordance with the

principle of once and only once! we will callspline eval fromspline peval
to do most of the work. Here is code to implement this:

p = s%xlist(s%length) - s%xlist(1)

t reduced = s%xlist(1) + modulo(t-s%xlist(1), p)

val = spline eval(s,t reduced,iflag)

18.5.2 Periodic spline construction

Construction of a periodic spline involves solving a linear system with a periodic

tridiagonal matrix, which looks like this:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 c1 bn−1

b1 a2 c2

b2 a3
. . .

. . .
. . .

. . .

. . . an−2 cn−2

cn−1 bn−2 an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

z3

...

zn−2

zn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

w1

w2

w3

...

wn−2

wn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

if we replace Mn with M1 in the linear system. The technique we will use is the

Sherman–Morrison–Woodbury formula [46]. This formula allows us to compute

the inverse of a matrix that is “almost tridiagonal” in the sense that removing just

a few entries will give a tridiagonal matrix. The formula itself is

(A + uvT)−1 = A−1 − A−1uvT A−1

1 + vT A−1u

provided A is a matrix with an inverse and 1 + vT A−1u �= 0. Since for periodic

spline functions the matrix in the linear system is symmetric, bn−1 = cn−1, and we
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can set

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 − bn−1 c1

b1 a2 c2

b2 a3
. . .

. . .
. . .

. . .

. . . an−2 cn−2

bn−2 an−1 − cn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

u = bn−1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0
...

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, v =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0
...

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

A quick check will verify that uvT is a matrix with zeros everywhere except at the

four corner entries which each have the value bn−1, so the linear system we wish

to solve really does have the matrix A + uvT.

The Sherman–Morrison–Woodbury formula will work well if A and A + uvT are

well-conditioned. Since A and A + uvT are diagonally dominant for the periodic

spline case, we would expect this approach to be satisfactory. To implement this

approach, we first compute A−1u, which can be done one column at a time. We write

ek for the vector with kth component one and all others zero; then u = bn−1(e1 +
en−1) and v = (e1 + en−1). So A−1u = bn−1 A−1(e1 + en−1); we can compute w :=
bn−1 A−1(e1 + en−1) by means of the standard tridiagonal linear solver. Then we

can compute

1 + vT A−1u = 1 + bn−1(e1 + en−1)T A−1(e1 + en−1)

= 1 + (e1 + en−1)Tw = 1 + w1 + wn−1.

To solve the linear system (A + uvT)z = r for z we set

z = (A + uvT)−1r

= A−1r − A−1uvT A−1

1 + vT A−1u
r

=
(

I − w(e1 + en−1)T

1 + vTw

)
A−1r.
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So we can first solve Ap = r using the standard tridiagonal equation solver, and

then compute

z = p − p1 + pn−1

1 + w1 + wn−1

w.

A minor problem in all this is that the tridiagonal solvers generated by

spline basic are n × n matrices, not (n − 1) × (n − 1) as we would use

after dropping Mn as an independent variable. However, this is not a major problem:

we can set an = 1 and the other entries in the nth row and column equal to zero.

After computing M1, . . . , Mn−1 we can simply set Mn = M1, regardless of what

came out of the linear equation solver.

Since the algorithm used is quite complicated, we found it very useful to go

through the calculations “by hand” using MATLAB for a specific example periodic

spline. Constructing the example periodic spline was done using pen and paper,

and also using MATLAB to plot the result so that errors in the pen-and-paper

calculations were revealed. Initial computation not only gives a good set of data to

compare with the Fortran 90 implementation, but also helps to find problems with

the proposed algorithm itself. Doing computations “by hand” is no guarantee that

they are error free!

As always, testing was done incrementally as the code was developed. This in-

volved testing the periodic tridiagonal solver (often by comparing with MATLAB’s

results), hand-computing a periodic spline function explicitly, computing the cor-

responding Mi s, testing the Mi s produced by the construction routine, and finally

testing the spline function values against the hand-computed formula.

18.6 Performance testing

Here is some performance testing code:

if ( .not. spline get(s,len) ) then

print *, ’Cannot allocate spline’

return

end if

do i = 1, len

xlist(i) = (1.0d0*i)/len

end do

call random number(ylist)

if ( .not. spline set(s,xlist,ylist,len) ) then

print *, ’Cannot set spline x, y entries’

return

end if
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do i = 1, n

call spline natural(s,iflag)

if ( iflag /= 0 ) then

print *, ’Cannot compute natural spline,’, &

iflag =’, iflag

call spline print(s,stdout)

return

end if

do j = 1, n evals

call random number(t)

s at t = spline eval(s,t,iflag)

end do

call random number(s%ylist)

end do

After compiling the program with the -pg compiler option and running the pro-

gram, running gprof on the executable file produces output which contains a

summary of the amount of time spent inside each routine, and a more extensive

output listing the number of calls and amount of time spent in each routine on
behalf of the different calling routines. In our example, each spline has length len
= 100 while each spline is evaluated at n eval= 100 randomly chosen points;

this is repeated n = 105 times. Using g95 as the Fortran 90/95 compiler, without

optimizing switches set, we get the top two routines where most time is spent:

% cumulative self self total

time seconds seconds calls s/call s/call name

54.57 5.97 5.97 10000000 0.00 0.00 splines MP spline eval

12.80 7.37 1.40 100000 0.00 0.00 splines MP spline basic

That is, spline eval (54%) and spline basic (13%) in the splines
module are the most time-consuming routines. A detailed analysis of these tim-

ings can be made, using information regarding the number of clock cycles typically

required to access data and perform operations. The outcome of this analysis is that

about 60% to 70% of the clock cycles needed can be accounted for. This means

that the time needed could not be reduced to less than 60% to 70% of the times

produced by this code under test conditions; perhaps not even that is achievable.

The code, therefore, performs about as well as can be expected.
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Multigrid algorithms

Multigrid algorithms are iterative methods or preconditioners for large linear sys-

tems, especially those arising from partial differential equations. While the reader

does not need to be knowledgeable about multigrid algorithms, if further infor-

mation about these algorithms is needed, see [16] or [75] for overviews of how

multigrid algorithms work. But the information we need for developing the soft-

ware will be given here.

Multigrid methods for linear elliptic second order partial equations can solve

linear systems with n unknowns to an accuracy of ε in O(n log(1/ε)) or

O(n log n log(1/ε)) time and O(n) or O(n log n) memory. This makes them among

the most efficient methods for solving linear systems.

We will only consider multigrid methods for linear systems; nonlinear systems

can be treated using the Full Approximation Scheme (FAS) developed by Brandt

and described in [16].

19.1 Discretizing partial differential equations

Partial differential equations are differential equations where the unknown function

is a function of more than one variable, and involves derivatives of all the variables.

For example, the Poisson equation in two variables is the equation (for unknown

u(x, y)):

∂2u

∂x2
+ ∂2u

∂y2
= f (x, y) in a region R,

for some given function f (x, y). This equation is useful in electrostatics (there,

u(x, y) is the voltage at (x, y), and f (x, y) is the net charge density in the region),

or in steady heat flow (there, u(x, y) represents the temperature, and f (x, y) the

rate of heat generation at (x, y)). To solve the equation uniquely we need conditions

262
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that must hold on the boundary of R. For the Poisson equation, these are typically

either Dirichlet boundary conditions

u(x, y) = g(x, y) on the boundary ∂ R,

or Neumann boundary conditions

∂u

∂n
(x, y) = j(x, y) on the boundary ∂ R.

The expression ∂u/∂n(x, y) is the derivative of u along the direction perpendicular

to the boundary of R at (x, y), going away from R. For steady heat flow problems,

Dirichlet boundary conditions represent a boundary held at a fixed temperature (like

an ice bath), while Neumann boundary conditions represent heat flow conditions

(like meeting an insulator, i.e. no heat flow).

The discretization of partial differential equations is a large and important subject,

but goes far beyond the scope of this book. There are three main approaches:

the Finite Difference Method (FDM), the Finite Element Method (FEM), and the

Finite Volume Method (FVM). What each of these does is turn a partial differential

equation (with boundary conditions) into a large system of algebraic equations. If the

partial differential equation is linear, the result is a large system of linear equations.

Since the unknown in a partial differential equation is a function, we effectively

have to find infinitely many quantities. Rather than try to do the impossible, we aim

to compute an approximation to the true solution. To get a better approximation, we

would normally expect to compute more quantities. Thus for an accurate solution,

we will need to solve a large system of equations.

Rather than show in detail how to use these different methods, we will refer the

reader to a number of books which describe and analyze these methods in detail. For

the Finite Difference Method, [99] is a good starting point. For the Finite Element

Method, [36] is a good starting point; [13] is more advanced in terms of both

techniques and theory. There are fewer books devoted to the Finite Volume Method

than the others, but an introduction with an emphasis on fluid flows (perhaps the

biggest area using Finite Volume Methods) is [70].

For what follows, we will say a little about using Finite Difference Methods,

since these are the simplest to describe and are used in the computational exam-

ples. The test equation we will work with is the Poisson equation in two dimensions:

∂2u/∂x2 + ∂2u/∂y2 = f (x, y) on a square region R with Dirichlet boundary con-

ditions u(x, y) = g(x, y) for a given function g on the boundary of R. We start

by selecting a grid spacing h > 0 and laying down a grid of points (xi , y j ) where

xi = x0 + i h, i = 0, 1, 2, . . . , m and y j = y0 + j h, j = 0, 1, 2, . . . , m. Now

we make appoximations to the partial derivatives ∂2u/∂x2 and ∂2u/∂y2 at (xi , y j )
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based on the values u(x p, yq) at nearby points:

∂2u

∂x2
(xi , y j ) ≈ u(xi+1, y j ) − 2 u(xi , y j ) + u(xi−1, y j )

h2
and

∂2u

∂x2
(xi , y j ) ≈ u(xi , y j+1) − 2 u(xi , y j ) + u(xi−1, y j−1)

h2
.

The errors in these approximations are ≈ ∂4u/∂x4 · h2/12 and ≈ ∂4u/∂y4 · h2/12,

respectively. So the exact solution to the partial differential equation would satisfy

u(xi+1, y j ) + u(xi−1, y j ) + u(xi , y j+1) + u(xi−1, y j−1) − 4 u(xi , y j )

h2
≈ f (xi , y j ).

The idea is to replace this approximation with equality in order to compute an

approximation ui j of u(xi , y j ). (This is an example of treating an approximation as

if it were exact; see Section 11.3.2.) We get the system of equations

f (xi , y j ) = ui+1, j +ui−1, j +ui, j+1+ui−1, j−1− 4ui, j

h2
for every (xi , y j ) inside R,

g(xi , y j ) = ui, j for every (xi , y j ) on the boundary of R.

The smaller h > 0, the more accurate we expect the approximation u(xi , y j ) ≈ ui, j

to be, but the larger the system of linear equations is. If R is a 1 × 1 square and

we take h = 0.01, then we will have 992 ≈ 104 unknowns in our linear system to

solve. For three-dimensional problems, the number of unknowns can easily be in

the millions, and can reach into billions.

19.2 Outline of multigrid methods

Multigrid methods use a hierarchy of “grids”, each of which has its own matrix.

These grids go from the finest grid (which is associated with the matrix from

the linear system to solve) to the coarsest grid (which is associated with a small

matrix). These grids are numbered 0, 1, . . . , N − 1. Since the number of grids

grows logarithmically in the number of unknowns, N is typically no more than

about 20. The matrix associated with grid k is Ak with A0 = A, the matrix in the

linear system we wish to solve. For each grid we need a smoothing operator Rk

which acts as a preconditioner for Ak . Actually, there are two kinds of smoothing

operators: pre-smoothers Rk and post-smoothers Sk . The matrix Ak is a square

nk × nk matrix. For multigrid methods we need n0 ≥ n1 ≥ · · · ≥ nN−1 with n0 =
n, the number of unknowns in the original system. To connect the grids there

are interpolation matrices I k
k+1 which are nk × nk+1 and restriction operators I k+1

k

which are nk+1 × nk . With these ingredients we can write an abstract version of a

multigrid algorithm as:
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multigrid(k,bk)/* Solve Ak xk = bk */
{
if k = N
solve AN xN = bN directly

else
{

xk ← 0

repeat ν1 times: xk ← Rk(xk, bk)

rk+1 ← I k+1
k (bk − Ak xk)

ek ← I k
k+1 multigrid(k + 1,rk+1)

xk ← xk + ek

repeat ν2 times: xk ← Sk(xk, bk)

}
return xk

}

The operations xk ← Rk(xk, bk) and xk ← Sk(xk, bk) can each be an iteration of

the Gauss–Seidel method [4, p. 548], the Gauss–Jacobi method [4, p. 545], the

SOR method [4, p. 555], reversed versions of these, or some other linear iterative

method for the equation Ak xk = bk such as iterative refinement with Incomplete

LU factorization (ILU). Often these can be represented in terms of matrices R̂k and

Ŝk via the formulas

Rk(xk, bk) = xk + R̂k(bk − Ak xk),

Sk(xk, bk) = xk + Ŝk(bk − Ak xk).

To guarantee that the overall multigrid method implements a symmetric precondi-

tioner we need Ŝk = R̂T
k , Ak symmetric for all k, and I k+1

k = (I k
k+1)T.

Readers familiar with multigrid methods will identify this as a V-cycle multigrid

algorithm [16]. Using the same ingredients, variants of this (such as the W-cycle)

can be constructed [16].

19.3 Implementation of framework

This framework can be easily implemented as an abstract framework. Our imple-

mentation language is C++, and we will use templates. The main template class

will be an abstract class, so that all the ingredients (the functions Ak , I k+1
k , I k

k+1, Rk ,

Sk , and support functions) can be overloaded in derived classes. Note that all of these

“ingredients” are represented by functions for computing matrix–vector products,

computing y = Ak x for example. The main template parameters are the vector and

scalar types. This allows us to use the same code for single, double, and extended
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precision (or even higher precision when it becomes available), and different ways

of representing vectors. We have chosen to use the Matrix Template Library (or

MTL) developed by the Open Systems Laboratory at Indiana University for the

final implementation. Alternatives include MV++ and SparseLib++ developed at

the National Institute for Standards and Technology (NIST) which is another tem-

plate matrix–vector library; Blitz++, originally developed by Todd Veldhuizen;

uBLAS, originally developed by Joerg Walter and Mathias Koch, which is part of

the Boost C++ library, and is modeled on MTL; there are many more, including

wrappers for LAPACK in C++, stand-alone non-template matrix–vector libraries

(such as newmat). The production of matrix–vector libraries in C++ and other

object-oriented languages is almost a small industry in itself!

The interfaces that are assumed to be available for matrices and vectors follow

MTL, but we have aimed to keep as much of the code as possible independent of

the specific choice of implementation. We chose MTL in part because it has sparse

and dense matrices in a common framework, and can provide high performance.

We will need to assume that a number of operations can be performed on the

vector class. Some of these will be supported by the STL vector template class

(such as size, resize, subscripting, and iterators), and some will not (such

as arithmetic operations). An important design decision regarding the arithmetic

operations is whether they should be “two argument” functions (which construct and

return the result) or “three argument” functions (with an output parameter). Since

efficiency is the essential reason for multigrid methods, we opted for using output

parameters for the vector arithmetic functions, rather than the more convenient but

usually less efficient “two argument” versions.

Along with the use of templates, we are using the technique of type binders.

Since classes can be used to define operations, a template implementation of an

abstract framework can use a collection of classes to implement the basic operations

used in the multigrid algorithm. The technique of type binders uses another aspect

of classes in C++: types can be defined within a class, and are then “local” to the

class. This is used a great deal in the Standard Template Library, where the standard

template vector classes contain the type of each entry and the types of the iterators

for accessing the vector entries:

typedef vector<double> Vec;
Vec x(10); Vec::iterator i;
for ( i = x.begin(); i != x.end(); ++i )
cout << *i << endl;

This avoids users of iterators needing to know how the iterators are implemented.

It also means that we can define classes whose main purpose is to provide a set of
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types or classes that are related in specific ways. Here is the the main part of the

type binder for the multigrid framework:

template< typename T, class VectorType,

class MatrixType, class PermType >

class TypeBinder

{
public:

typedef TypeBinder< T, VectorType, MatrixType, PermType >

Types;

typedef T value type; // Scalar Type

typedef unsigned int int type; // Integer Type

typedef MatrixType Matrix; // Matrix (dense)

typedef VectorType Vector; // Vector (dense)

typedef PermType Perm; // Permutation or pivot

typedef typename Vector::size type size type;

// Grid class contains vectors for internal use

...

}; //TypeBinder

This contains all the types needed for creating the multigrid class. Note that since

T (the value type) is a template parameter, if we want to use single-precision

(float), double-precision (double), or extended precision (long double,

where available), we just need to change this and the other template types to use this

value type, and all the computations will propagate this level of precision. It is

even possible to use user-defined types that provide high accuracy through software,

or the complex<double> type for solving linear systems with complex matrices

and/or right-hand sides.

Since our multigrid method will need a place to store residuals, right-hand sides,

and approximate solutions for each level, the type binder contains a Grid class

which is suitable for this purpose.

struct Grid

{
Vector x, b, r;

// Constructor of dimension dim

Grid(size type dim)

{ Vector x(dim), b(dim), r(dim); }
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// Empty constructor

Grid() { }
// resize -- sets new dimension

void resize(size type new dim)

{
x.resize(new dim);

b.resize(new dim);

r.resize(new dim);

}
}; // class Grid

This class does not provide supporting vectors for all levels. That will be done in

the main multigrid template class.

The main multigrid template class is both a template class and an abstract class.

The main “ingredients” for the multigrid method – the operators that define the

method – are pure virtual functions. That is, they must be defined in a derived

class. The routine that defines the multigrid V-cycle is not virtual. Thus, a derived

class needs only to define the ingredients for the multigrid method; the base class

takes care of how to combine them. There is a performance penalty for virtual

functions: time must be spent looking up the virtual function table. However, unless

the problem is very small, this will be negligible compared to the time spent applying

the operator.

Here is the outline of the multigrid template class using the type binder:

template < typename Types >

class multigrid

{
protected:

// typedefs from Types for better readability

...

private:

// Private data items

...

public:

// Constructor: builds a multigrid method with n levels,

// where level k has dimension dims[k].

// multigrid(int type n levels, const int type dims[],

// const int type nu[])

...

// Constructor: need to use resize() later
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// multigrid(int type n levels)

...

// resize -- Note: dims must have length >=

coarsest level + 1

// void resize(const int type dims[])

...

// set nu -- update nu[] array; nu must have length >= 2

// void set nu(const int type nu[])

...

// Destructor: free up grid and dims

// We want

”˜multigrid()”

...

int type const get max level() const

{ return coarsest level; }
int type const get dim(int type level) const

{ assert(level >= 0 && level <= coarsest level );

return dims[level]; };
int type const get nu(int type i) const

{ assert(i == 0 || i = 1); return nu[i]; };

// residual -- out <- b-A[level]*x

// Vector &residual(const Vector &x, const Vector &b,

// int type level, Vector &out)

...

// The ”ingredients” for multigrid (apply operator,

pre relax,

// post relax, interpolate, restriction, and solve)

...

// MGSolve -- multigrid solver for solving A[0]*x = rhs

// Uses levels up to ”top level”

// Vector &MGSolve( int type top level, Vector &x, const

Vector& rhs )

...

}; // multigrid
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The private data part consists of the array of dimensions, the array of Grids, and

the number of pre- and post-relaxations to do:

Grid *grid; // Array of grid structures

int type *dims; // Array of dimension of each grid

int type coarsest level; // Coarsest grid

int type nu[2]; // Relaxation parameters

The constructors allocate and initialize the private data. Here is the main constructor:

multigrid(int type n levels, const int type dims[],

const int type nu[])

{
dims = new int type[n levels];

grid = new Grid[n levels];

coarsest level = n levels - 1;

for ( int i = 0; i < n levels; i++ ) {
dims[i] = dims[i];

grid[i].resize( dims[i] );

}
nu[0] = nu[0]; nu[1] = nu[1];

};

There is a resizemember that can re-set all the dimensions in the dim array. The

interfaces of the “ingredients” are fairly similar to each other, although some are

meant to represent direct or iterative solution methods, while the others represent

the direct application of a matrix:

virtual Vector &pre relax (Vector &v, const Vector &b,

int type level) = 0;

virtual Vector &post relax(Vector &v, const Vector &b,

int type level) = 0;

virtual Vector &solve (Vector &v, const Vector &b,

int type level) = 0;

virtual Vector &interpolate(const Vector &v, int type level,

Vector &out) = 0;

virtual Vector &restriction(const Vector &v, int type level,

Vector &out) = 0;

virtual Vector &apply operator(const Vector &v,

int type level, Vector &out) = 0;
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The main member function of the multigrid class is MGSolve, which implements

a V-cycle algorithm. Note that it is written in terms of iteration instead of recursion,

similar to eliminating tail-end recursion.

Vector &MGSolve( int type top level, Vector &x,

const Vector& rhs )

{
assert(top level <= coarsest level && top level >= 0);

Vector interpolant(dims[0]);

copy(rhs, grid[0].b);

copy(x, grid[0].x);

for ( int type j = 0;j < top level; ++j ) {
assert(grid[j].x.size() == dims[j]);

pre relax( grid[j].x, grid[j].b, j );

residual( grid[j].x, grid[j].b, j, grid[j].r);

restriction( grid[j].r, j+1, grid[j+1].b );

// We need to set grid[j+1].x to zero as well...

for ( int type i = 0; i < grid[j+1].x.size(); ++i )

grid[j+1].x[i] = 0;

assert(grid[j].r.size() == dims[j]);

assert(grid[j+1].b.size() == dims[j+1]);

}

solve( grid[top level].x, grid[top level].b, top level);

for ( int type j = top level; j > 0; --j ) {
interpolant.resize( dims[j-1] );

interpolate( grid[j].x, j-1, interpolant );

add( interpolant , grid[j-1].x );

post relax( grid[j-1].x, grid[j-1].b, j-1);

}
copy(grid[0].x, x);

return x;

}

Next we will see some guidelines for the “ingredients”, and a first test

example.
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19.4 Common choices for the framework

There are some standard choices that are commonly made:

� I k+1
k = (I k

k+1)T.

That is, the restriction and interpolation operators are transposes of each other.
� Ak+1 = I k+1

k Ak I k
k+1.

That is, Ak+1x is obtained by interpolating x onto the next finer grid, applying the matrix

Ak for the finer grid to the interpolated vector, and then restricting the result to the original

grid.

These choices are natural from a mathematical point of view, and ensure (amongst

other things), that if A0 is symmetric, positive definite, I k+1
k = (I k

k+1)T for all k,

and all of the I k+1
k have full rank, then all Ak matrices are symmetric, positive

definite. However, with functional representations of all these matrices, it is not

possible to implement I k+1
k = (I k

k+1)T in an efficient way. It is possible to implement

Ak+1 = I k+1
k Ak I k

k+1 in a moderately efficient way by using

Ak xk = I k
k−1 Ak−1 I k−1

k xk

= I k
k−1 I k−1

k−2 Ak−2 I k−2
k−1 I k−1

k xk

...

= I k
k−1 I k−1

k−2 · · · I 1
0 A0 I 0

1 · · · I k−2
k−1 I k−1

k xk,

which could be implemented by interpolating all the way to the bottom level,

applying A0, and then restricting back to level k. A compact representation of Ak ,

if possible, would generally be more efficient. Usually this can be done using sparse

matrix data structures. While there is no general guarantee that the Ak matrices are

all sparse, with suitable interpolation and restriction operators, they usually are.

How sparse these matrices are should be monitored in general applications. By

keeping the abstract software given above, we keep a great deal of flexibility. If

we have a perfectly regular problem for which all the necessary operators can be

determined analytically, then we do not have to keep the sparse matrices; only a

few parameters would be needed for each level. This would give us algorithms

which use a minimal amount of memory and could be used for very large, regular

problems.

Another common choice is to set, in addition,

� Sk = RT
k .

With this additional choice, the multigrid operator is symmetric if A0 is.

For multigrid software that uses explicit sparse matrices, we will start with the

abstract multigrid routine, and create the ingredients for the abstract algorithm using
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sparse matrices. Then the typical choices for the smoother operators (based on the

Jacobi, Gauss–Seidel or SOR iterative methods) become very easy to implement.

19.5 A first test

Our first test is to solve the n × n system

A u :=

⎡⎢⎢⎢⎢⎢⎢⎣
2 −1

−1 2 −1

−1 2
. . .

. . .
. . . −1

−1 2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
u0

u1

...

un−2

un−1

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
b0

b1

...

bn−2

bn−1

⎤⎥⎥⎥⎥⎥⎦ =: b,

which comes from the one-dimensional differential equation d2u/dx2 = f (x) with

the boundary conditions u(0) = 0 and u(L) = 0. If we set xi = i h with h (the step-

size or grid spacing) equal to L/n, then setting bi = h2 f (xi ) will give a solution

u, where ui ≈ u(xi ).

19.5.1 Implementing the test problem

Since this is a test problem, and the aim is to keep the structure of the code very

simple, we assume that n = 2k − 1 for some positive, whole number k. This allows

us to use simple code for all the operators. Since this is a test code, hard-wiring

most of the choices is acceptable. The need for a concrete test case outweighs the

need for generality at this stage. Later we will build more general test cases.

The restriction operator y = I k
k+1u is given by yi = 1

4
u2i + 1

2
u2i+1 + 1

4
u2i+2,

while the interpolation operator z = I k+1
k v is actually two times the transpose of

the restriction operator: z2i−1 = vi and z2i = 1
2
(vi−1 + vi ). The operators y = Aku

have a scale factor that depends on the level k: yi = sk(2ui − ui−1 − ui+1), with

u−1 = un = 0; some pencil-and-paper calculation will show (and MATLAB will

confirm) that sk+1 = sk/4. The scaling is particularly important for the relaxation

steps. We used Gauss–Seidel for the pre-relaxation and reversed Gauss–Seidel for

the post-relaxation.

The solver for the top level was a direct LU-factorize-and-solve, which was im-

plemented using MTL’s lu factor and lu solve routines. Since the number of

unknowns at the top level should always be fairly small, this should give acceptable

performance.

All the “ingredients” were implemented in another template class oneDPois-
son derived from multigrid. This template was then instantiated with a Types
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binder made from a collection of basic C/C++ types and instantiations of MTL’s

types:

// Derived class from multigrid which defines the operators

needed

typedef double value type;

typedef MY MG::TypeBinder<value type,

dense1D<value type>,

matrix<value type>::type,

dense1D<int> > myTypes;

typedef myTypes::int type int type;

typedef myTypes::Vector Vector;

The main program takes the number of levels from the command line, creates

the right-hand side and solution vectors and the multigrid object. The multigrid

algorithm is then applied a number of times to compute a usefully accurate solution

to the linear system.

19.5.2 Testing and validation

It took a number of steps to build, and test while building, the system. The most

important steps were to select a modest value of n (we used n = 7 and 15) in order

to check that each step was being carried out correctly. The main operator matrices

(Ak), the interpolation and restriction matrices (I k+1
k and I k

k+1), and the relaxation

operators (R̂k and Ŝk) were all computed in MATLAB. This gave a reference with

which to compare the results from the framework. Using the Op<Vector> tem-

plate class for operators (described in the following section) and a function to

generate a dense matrix representation of such an operator, the matrices for the

framework and this example were generated and compared. By going through

the steps of the algorithm one by one we were able to locate and fix the bugs in the

code. A number of these were syntax errors that were identified during compilation

due to misunderstanding how to use the MTL matrices and iterators. Occasionally,

templates required typename operators for the compiler to understand the code;

these errors were flagged at compilation. In addition, there were a few more serious

errors in logic that were identified by a step-by-step comparison with the results of

MATLAB for a simple example.

One of the difficulties for testing multigrid algorithms is that there is no simple

description of what they do apart from the original pseudo-code. This is different

from direct linear solvers: given A and b they compute x where Ax − b should be

zero (or very close to it). Thus it is easy to test if a linear solver is working. So for
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Figure 19.1. Plot of residual norms against iteration number for the first test problem.

multigrid algorithms, it is necessary to test each step to see if it has computed what

it should compute. For this task, MATLAB is invaluable.

Ultimately, the whole purpose of the multigrid solver is that it can produce rapidly

convergent iterations that approach the true solution. At least it is always possible

to compute residuals, and they should go to zero in a rapid way that is independent,

or nearly independent, of the size of the problem. To test to see if we have a useful

algorithm, we need performance tests – not just correctness tests.

In Figure 19.1 we can see plots of the residual norm ‖Ax − b‖∞ (logarithmic

scale) against the iteration number for n = 2k − 1, k = 2, 4, . . . , 18. The number

of levels in the multigrid algorithm is k. The exponential convergence of the resid-

ual can be seen in the straight, descending part of the plots. These plots flatten out

eventually because of roundoff error; for small values of k the level of the residual

is clearly not far from unit roundoff for double-precision. For larger values of k
it appears to be much larger. However, if we compute ‖Ax − b‖∞/‖A‖∞‖x‖∞
we find that it is a little smaller than unit roundoff; for k = 18 for example,

‖Ax − b‖∞/‖A‖∞‖x‖∞ ≈ 5.5 × 10−17 which is less than u ≈ 2.2 × 10−16. A

reason for this is that the condition number of A grows like n2 ≈ 4k ; for k = 18

we get n ≈ 2.62 × 104 and n2 ≈ 6.87 × 1010.

The essential point is the straight, descending part of the plots all have a slope

that is roughly the same, representing a reduction of the residual with each iteration

of a factor of about 0.185. This the most desirable property of multigrid methods:

convergence rates that are independent, or very slowing degrading, as the prob-

lem size increases. Also, because only functional representations of the operators
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Table 19.1. Time per iteration per solution
component

k n time/iter’n/component (μsec)

14 1.63 × 104 0.275
17 1.31 × 105 0.347
20 1.05 × 106 0.387

have been used, very large problems can be handled without running into mem-

ory limitations. The tests were run on a laptop with 256 MB of memory; this test

problem could run well with k = 21 (n ≈ 2 × 106), but with k = 22 (n ≈ 4 × 106)

the program was starting to thrash with continual disk accesses. With k = 22 and

n ≈ 4 × 106, the amount of memory that the solution vector x takes up is about

32 MB. Since there are three such vectors in the level zero Grid structure, this takes

up about 96 MB. Adding the memory for all the other levels double this: 192 MB.

Adding in the three vectors (solution, right-hand side, and residual) in the main

program gives a total memory requirement for k = 22 of about 288 MB. While the

program could still run using virtual memory (even taking into account the space

needed by the operating system), the program was thrashing.

Timings back up the good results on convergence and memory usage: there were

no obvious bottlenecks. Using gprof we obtained Table 19.1. While there is an

increase in the time per iteration per solution component, it is mostly due to caching

effects; for k = 14 several solution vectors will fit in the L2 cache, but this is no

longer true for k = 17 or k = 20. The difference between k = 14 and k = 20 is

about 112 ns (nanoseconds) per iteration per component, or about 200 clock cycles

for the 1.8 GHz computer that gave the timings. This can be easily accounted for

by several L2 cache misses per iteration per component.

19.6 The operator interface and its uses

For a more serious application, we used the multigrid framework to handle a more

complex task. First, the framework was extended to handle the situation where

general sparse matrices can be used to define some or all of the “ingredients”

of the multigrid method. This is particularly appropriate for looking at Algebraic
Multigrid (AMG) methods [97]. The interpolation, restriction, and the main (Ak)

operators have to be explicitly represented as sparse matrices. The pre- (and post-)

relaxation operators can be defined as Gauss–Seidel (and reverse Gauss–Seidel)

operators for the corresponding main (Ak) matrix. Note that implementing the

Gauss–Seidel operators requires access to the entries of the Ak matrices.
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In between the original framework and the sparse matrices we have an operator

interface:

// Defines Op class -- transforms vectors to vectors

#ifndef OPERATOR H

#define OPERATOR H

template <class Vector> struct Op { // returns y = A*x

virtual Vector &operator()(const Vector &x, Vector &y)

= 0;

};
#endif // OPERATOR H

For a sparse matrix we can define the simple application of the matrix to a vector,

the Gauss–Seidel method, Successive Over-Relaxation (SOR), the Jacobi method,

and so on.

Here is the class for the simple application of a matrix:

template<class Vector, class Matrix>

class MatrixOp : public Op<Vector> {
private:

const Matrix *A;

public:

MatrixOp(const Matrix & A) : A(& A) { }

Vector &operator()(const Vector &x, Vector &y)

{ zero(y); mult(*A,x,y); return y; }
};

The MTL mult operator actually computes y ← Ax + y, so it is necessary to

zero y before calling mult to get y ← Ax . Here is the code for carrying out one

iteration of the Gauss–Seidel method using MTL-style interfaces:

template <class Vector, class Matrix>

class GaussSeidelOp : public Op<Vector> {
private:

const typename mtl::rows type<Matrix>::type A;

public:

GaussSeidelOp(const Matrix & A) : A(rows( A)) { }

typedef typename Vector::value type value type;

Vector &operator()(const Vector &b, Vector &x)

{
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for ( int i = 0; i < A.nrows(); ++i )

{
typename Matrix::Row r = A[i];

typename Matrix::Row::iterator j;

value type sum = b[i], diag = 0;

for ( j = r.begin(); j != r.end(); ++j )

{
if ( j.column() == i ) diag = *j;

else sum -= (*j)*x[j.column()];

}
x[i] = sum / diag;

}
return x;

}
}; // GaussSeidelOp

Note that j is an iterator over the entries of the current row A[i] so that *j is the

value of the current entry of the matrix, while j.column() is its column number

and j.row() is its row number.

To accommodate these Op<Vector> objects into the multigrid framework, a

new template class OpMG was created from multigrid using arrays of Ops:

#ifndef OP MG H

#define OP MG H

// Multigrid using arrays of operators

#include ”my-mg.h”

#include ”operator.h”

template<typename Types>

class OpMG : public MY MG::multigrid<Types> {
public:

// typedefs from Types

...

typedef Op<Vector> *PtrOp;

private:

// These are the arrays of (pointers to) operators that

// define the multigrid preconditioner.

// We use pointers to Op’s to allow polymorphism

// via virtual functions

PtrOp *A, *pre rel, *post rel,

*interp, *restrikt, top solve;
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public:

// main constructor

...

// Destructor

...

// now here we put the essential (virtual) functions

// defining the multigrid preconditioner

Vector &pre relax (Vector &v, const Vector &b,

int type level)

{ return (*pre rel[level])(b, v); }
Vector &post relax(Vector &v, const Vector &b,

int type level)

{ return (*post rel[level])(b, v); }
Vector &solve (Vector &v, const Vector &b,

int type level)

{ return (*top solve)(b, v); }
// Note that ”out” is on level ”level”,

// while ”v” is on ”level+1”

Vector &interpolate(const Vector &v, int type level,

Vector &out)

{ return (*interp[level])(v, out); }
// Note that ”out” is on level ”level”,

// while ”v” is on ”level-1”

Vector &restriction(const Vector &v, int type level,

Vector &out)

{ return (*restrikt[level-1])(v, out); }
Vector &apply operator(const Vector &v, int type level,

Vector &out)

{ return (*A[level])(v, out); }
};

#endif // OP MG H

19.7 Dealing with sparse matrices

In contrast to the situation for dense matrices, there are a great many different ways

of representing sparse matrices. Not only this, but there are even more ways of

implementing sparse matrices and their operations. This means that different sparse

matrix systems or packages will be inconsistent, and there are more opportunities

for incompatibilities. Since it is possible to develop more efficient code for particular
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cases (e.g., tridiagonal, or banded, or periodic tridiagonal matrices), there tends to

be a zoo of routines and data structures for sparse matrices.

This leads to two important observations:

� The underlying code should not depend on the details of a particular sparse matrix data
structure. Efficiency might still depend on the details of the sparse matrix structure, but

the correctness of the algorithm should not. Whole matrix operations (e.g., matrix–vector

multiplies) should be preferred to element operations (e.g., accessing ai j ) which should

be preferred to elemental update operations (e.g., inserting a new non-zero entry ai j ).
� Since users need a way of setting up sparse matrices, include or allow a “default” sparse

matrix data structure. There are a number of these available publicly, such as MTL and

SparseLib++. Many more are available. If you do not wish to use a previously developed

data structure, you could develop one of your own. This is not an easy task, but if you

insist, you should provide easy-to-use access and operations routines.

In this multigrid example, the iterative methods that we wish to use as smoothers

(e.g., Jacobi, Gauss–Seidel, SOR, etc.) require elemental access. That is, their effi-

ciency relies on efficiently accessing individual elements. Other iterative methods

such as Krylov subspace methods (e.g., conjugate gradients, GMRES, BiCG and

BiCGStab, QMR) require only the ability to compute the matrix–vector products

Ax and possibly ATx for the sparse matrix A and a general vector x . Other methods

such as sparse LU and sparse incomplete LU factorization require not only efficient

element access, but also the ability to efficiently update entries in the sparse matrix,

and to add new non-zero entries.

Templates allow the choice of essentially any matrix type, as long as they can

satisfy the interface requirements. As noted above, MTL matrix types can do this

for the multigrid system described in this book.

19.7.1 A taxonomy of sparse matrix data structures

For more on sparse matrix data structures, there are the classic references [32, 43].

A short introduction to this topic can also be found in [93].

The simplest sparse matrix data structure is the triplet structure: a sparse matrix

is represented by a set of triplets (i, j, val) with one triplet for each non-zero

entry. Here i is the index of the row of the entry, j the index of the column, and

val the actual value of the entry: ai j = val. This is referred to as the coordinate
representation of the sparse matrix, see [93, 32]. However, as it stands it is not a

very useful data structure. For a start, accessing a specific entry is not easy: the

entire set must be searched for the correct value of (i, j) before reading off the

value ai j . Most matrix operations access all or part of a specific row or column of

A. This data structure is of no help in doing this.
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row start

value

column #
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1 3 4 2 5 1 2 4 3 1 4 5

1 4 6 9 10

Figure 19.2. Compressed row representation.

The set of triplets can be sorted using, for example, a lexicographical ordering

that orders the triplets first by i , and then for the entries in the same row i orders

the entries according to j . Then all the entries in the same row will be together,

greatly reducing search time and improving memory locality. Alternatively, this

could be done by sorting first on the column index j and then (for entries in the

same column) on the row index i .

Ordering the entries so as to bring all the entries in a specific row (or column)

together is the essence of the packed or compressed row (or column) representation.

This is illustrated in Figure 19.2. This means that entries in a given row can be

accessed very efficiently. However, if we also wanted to access the entries in a

given column, this cannot be done very efficiently. Finding an individual entry is

reasonably efficient: given (i, j), we can go directly to the list of entries in row i ,

and scan or search these entries for column index j , and then read off ai j . With

binary search, an individual entry can be found in time O(1 + log ni ) where ni is

the number of non-zeros in row i . However, inserting a new non-zero entry will

require updating almost the entire data structure: if we insert a new ai j entry, all the

entries following after this new entry have to be shifted up by one space. This is very

inefficient. Commonly this is dealt with in sparse matrix factorization routines by

splitting the factorization of a matrix into two parts: a symbolic factorization and a

numerical factorization. The first phase is simply to compute an upper bound for the

non-zero entries in the factored matrix. The numerical factorization then computes

the actual (numerical) values. The symbolic factorization phase can often be done

efficiently using specialized algorithms, data structures, and theory. In this way, the

problems of inserting new non-zeros individually is avoided.

A partial remedy is to use a separate block of allocated memory for each row.

Then when inserting a new non-zero entry into a row, only entries in that row will

need to be shifted. The memory block should not be re-allocated every time a new

non-zero entry is added. Instead, we should use amortized doubling to double the

size of the memory block when extra memory is needed, and track how much of

each memory block is actually used. This is the strategy used in Meschach [92].
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Another issue is how to access efficiently all the entries in a particular column

when using packed row representation (or accessing all entries in a particular row

when using packed column representation). This can be done use links from each

entry to the next entry in its column. This is done in Meschach [92]. It is also

described in [93]. The links needed can be constructed in O(nnz) time where nnz
is the number of non-zeros, however, the links need to be updated when a new

non-zero is inserted into the sparse matrix structure.

Two other options can be considered for sparse matrix representation. One is

to use hash tables. This is suitable where a sparse matrix is accessed in an essen-

tially random fashion, and also allows “random” updates with O(1) cost. However,

traversing rows or columns is difficult, and memory locality is lost. Nevertheless,

it is a useful option for certain operations.

Another option is to treat each row and each column as a linked list. That is, each

entry will belong to two linked lists, one for its row and one for its column. This

makes insertion of a new entry fast (once you know where to put it). Accessing

entries in a row and a column can be done reasonably efficiently, but because of all

the pointers and memory allocations involved, there is substantial loss of memory

locality.

19.8 A second test

A second test for the multigrid framework comes from the two-dimensional partial

differential equation

∂2u

∂x2
+ ∂2u

∂y2
= f (x, y)

over a region � with the condition that u = 0 on the boundary of �. For this test we

take � to be the union of three squares forming an “L”, as shown in Figure 19.3. This

is discretized using the standard 5-point stencil for the ∂2/∂x2 + ∂2/∂y2 operator:

if u(xi , y j ) ≈ ui j with xi = x0 + i h and y j = y0 + j h, where h is the common

grid spacing, then

∂2u

∂x2
(xi , y j ) + ∂2u

∂y2
(xi , y j ) ≈ ui+1, j + ui−1, j − 4ui, j + ui, j−1 + ui, j+1

h2
.

Setting bi, j = −h2 f (xi , y j ) we get a linear system

−ui+1, j − ui−1, j + 4ui, j − ui, j−1 − ui, j+1 = bi, j .

A difficulty here is that we have to map the (i, j) pairs for a two-dimensional domain

into a single index k for a vector, and because we have a more complicated region,
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finest grid (grid 0)

middle grid (grid 1)

coarsest grid (grid 2)

Figure 19.3. “L”-shaped region for second multigrid example. Note that points in
coarser grid are included in finer grids.

this can be a substantial problem. Rather than try to hard-wire the choices, we

implemented the algorithm to use general sparse matrices which can be modified

as needed.

We used the OpMG template class to define the multigrid operator using the Op-

derived classes (MatrixOp, GaussSeidelOp, LUSolveOp, etc.) to define the

component operators.

We could have started using the Op classes to define operators and built a ver-

sion of OpMG without needing the original multigrid class. Then why have

a multigrid class? The two classes have different roles: OpMG is appropriate

when the operators in the multigrid algorithm are implemented using independent

data structures, while multigrid is appropriate when the different operators are

defined in terms of a common data structure.

Several routines required careful debugging. This was particularly true for the

routine to construct the matrix A0 that defined the linear system to be solved, and

the routine to construct the restriction operators. Since all the other matrices were

defined in terms of these, if these matrices were wrong, everything else would be
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wrong and the error would not be caught by self-consistency checking. A small

test case was set up which was checked by hand. For automated testing, we would

write a small program to generate and then test all of the entries to see if they

are correct. To help with writing these matrix construction routines we set up two

support routines, my idx and rev my idx, which translated between components

of the solution vector k and the two-dimensional integer co-ordinates of the point

in the region (i, j). The routine my idx computes k from (i, j) and rev my idx
is its inverse function.

Since we used the MTL row-major compressed sparse matrix format, we took

care to construct the sparse matrices one row at a time. This would ensure that

with each new entry inserted into the matrix, only a few entries (the ones in the

same row) would be moved to make space for the new entry. The MTL transpose

routine was used for constructing the interpolation matrices from the restriction

matrices.

A sparse matrix multiplication routine was written for row-major compressed

sparse matrices, and tested independently before being incorporated into the routine

constructing the sparse matrices. To compute C = A B, the routine scans the rows

of A; for each entry of that row, the column index would be extracted, and the

corresponding row of B would be scanned for its entries. In this way, C could be

built up one row at a time. Again, existing entries of C would be moved to make space

for new entries, but only entries in the row under construction. To facilitate this, a

sparse vector was constructed for each row before adding the values in the sparse

vector to C .

The resulting routine (after debugging) gave excellent convergence results. These

are shown in Figure 19.4. The convergence rates are remarkably consistent across

the size of the problem: residuals are typically between 0.186 and 0.217 of the

previous residual.

However, there is a big performance problem. From times reported by gprof,

most of the time was spent in assigning values to sparse matrix entries A(i,j) =
val.1 The second largest was an internal insertion operation. Table 19.2 shows the

timing results for the “A(i,j) = val” operation.

As can be seen from Table 19.2, the dimension increases by roughly a factor

of four as we go down the table, as do the number of calls. This means that the

number of sparse matrix updates is only linear in the dimension of the problem.

This is good news. However, the time per call is increasing by a factor that is also

close to four as we go down the table. Furthermore, for the largest problem in

the table, the “A(i,j) = val” operation and the internal insertion operation

1 More precisely, the function call with the most time (not counting the functions it called) was
mtl::elt ref<...>::operator=(double).
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Table 19.2. Timing results for sparse matrix entry assignment

dimension total time (sec) # calls time/call (μsec)

2 945 0.19 30 745 6.18
12 033 3.03 128 939 23.49
48 641 50.87 528 061 96.33

195 585 872.57 2 137 295 408.00
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Figure 19.4. Plot of residual norms against iteration number for the second test problem.

together account for about 98.7% of the total time. Given that we have been careful

to add entries by rows, why is this happening? The cost of shifting entries may have

been avoided, but the cost of allocating new memory has not. The writers of MTL

could have used an amortized doubling scheme which would only require O(log n)

calls to new and only copying O(n) sparse matrix entries. However, it seems that

this was an optimization that was not implemented, perhaps because of the memory

overhead. Modifying the library to incorporate amortized doubling would involve

considerable effort, and any new version of the library would require a new “fix”.

Instead, we decided to use hash tables for constructing the sparse matrix; once

the hash tables have all the sparse matrix entries entered and updated, it can be

converted into an MTL sparse matrix. Since MTL can use external arrays to define

a compressed sparse matrix, we can avoid going through “A(i,j) = val” in

converting the hash table into a sparse matrix.
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To ease the implementation of a hash table for sparse matrices we used the

hash map template class. While hash map is not part of the Standard Template

Library [96, pp. 497–504], it is available with GNU C++ as an extension. Note

that hash map is also available in the SGI implementation of the STL [91]. A

hash matrix template class was derived from hash map for the purpose of

assembling matrices – hash matrix is not a general matrix class; instead it has

a convert member which converts the hash matrix into an MTL matrix.

Four routines needed to be replaced with ones that use the hash matrix class:

the sparse matrix multiply, the transpose routine, the routine constructing the main

matrix A0, and the routine constructing the restriction operator for each level.

With these changes implemented and tested, the performance of the algorithm

improved enormously for the larger problems. For the largest problem considered

(dimension 195 585) the time needed was reduced from 26 minutes, 22 seconds

(without hash matrix) to 17.75 seconds (with hash matrix), a reduction by a

factor of about 90. The convergence rates per iteration were just the same as before.

We did not try to run this second test on the next larger problem (dimen-

sion 784 385) to completion: we noticed that it was doing a great many disk ac-

cesses which indicates thrashing, and the memory requirements (as reported by MS

Window’s Task Manager) would come close to 200 MB on a 256 MB laptop. The

solution vector would only need about 6 MB, but the sparse matrices would need

much more.

The memory requirements can be estimated as follows: A0 needs about 45 MB;

the interpolation and restriction operators need about 21 MB each; the level zero

Grid structure takes up 3 × 6 MB = 18 MB; the solution, right-hand side and

residual vectors of the main program need 6 MB each totalling 18 MB. Together

these account fo 123 MB. The A1 probably accounts for another 20 MB. Temporary

structures, such as hash tables and temporary matrix products, would account for

the remaining 50 to 60 MB.

The redesign using hash tables illustrates some points about designing for effi-

ciency: it is often best to start with a good design without worrying about low-level

efficiency issues. Then profile the result to see what needs improving. A simpler

design is usually easier to debug and check. It can then be used as a reference

for debugging an improved version. And good designs are easy to change, so it is

usually not hard to make them more efficient.



Appendix A

Review of vectors and matrices

Since linear equations are basic to much scientific computation, and linear equations are
represented by vectors and matrices, we outline a basic review of vectors and matrices.
For more information about vectors and matrices, see linear algebra texts such as [2, 100].

Vectors are usually represented by columns of numbers like this:

x =

⎡⎢⎢⎢⎢⎣
x1

x2

x3

...
xn

⎤⎥⎥⎥⎥⎦ ∈ R
n

for an n-dimensional vector.

A word about notation There are a number of different notations used to represent
vectors. These include using bold face letters (x), letters with arrows above them (−→x ),
tildes underneath (x

∼
), or no extra notation at all (x). In spite of attempts to unify the

notation for vectors, no agreement was reached. In this book, no extra notation is used to
indicate vectors.

There are two basic operations on vectors: multiplying by a scalar (that is, a real
number), and adding. Suppose α is a real number and x and y are two n-dimensional
vectors. Then

α x =

⎡⎢⎢⎣
α x1

α x2

...
α xn

⎤⎥⎥⎦ , x + y =

⎡⎢⎢⎣
x1 + y1

x2 + y2

...
xn + yn

⎤⎥⎥⎦ .

An m × n matrix is a matrix with m rows and n columns and has the form:

A =

⎡⎢⎢⎣
a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎤⎥⎥⎦ (m × n).

Usually matrices are represented by capital letters. Note that an n-dimensional column
vector can be thought of as an n × 1 matrix. The transpose of a matrix is the result of
reflecting the entries across the main diagonal – the entries where the row number is the

287
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same as the column number:

AT =

⎡⎢⎢⎣
a11 a21 · · · am1

a12 a22 · · · am2

...
...

. . .
...

a1n a2n · · · amn

⎤⎥⎥⎦ (n × m).

If x is a column vector (n × 1), then xT is a row vector (1 × n).
Like vectors, matrices can be multiplied by scalars, and added (provided they have the

same number of rows and columns). But matrices can also be multiplied by vectors and by
matrices, provided the sizes are consistent. If A is m × p and B is p × n, then C := AB is
the m × n matrix with entries given by the formula

ci j =
p∑

k=1

aikbk j .

The most common use of matrices and vectors is to represent systems of linear
equations. The equations

b1 = a11x1 + a12x2 + · · · + a1n xn

b2 = a21x1 + a22x2 + · · · + a2n xn

...
...

...

bm = am1x1 + am2x2 + · · · + amn xn

can be represented as a single matrix–vector equation

b = Ax,

where b is an m-dimensional vector, A an m × n matrix and x an n-dimensional vector.
We don’t expect to have one solution of a system of equations unless m = n – that is, the
matrix A is square. If n > m there are more unknowns than equations (called an
underdetermined system), and if n < m then there are more equations than unknowns
(called an overdetermined system). In underdetermined systems there are usually
solutions, but there may be infinitely many of them. In overdetermined systems, unless we
are lucky, there will not be any solutions at all.

Even if the matrix is square, there might not be solutions. Try this system, for example:

1 = x1 + x2,

1 = 2x1 + 2x2.

If we subtracted twice the first equation from the second, we would get −1 = 0, which is
impossible. So there are no solutions to this system of equations.

A.1 Identities and inverses

To understand how matrices are used to solve linear systems, we need to introduce a
special matrix: the n × n identity matrix. This is the matrix that has ones on the main
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diagonal and zeros elsewhere:

I =

⎡⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤⎥⎥⎦ .

The reason why it is special is that for any m × n matrix A, AI = A, and if B is n × p
then I B = B. There is also the zero matrix where every entry is zero, usually denoted O:
A + O = A, AO = O , and O B = O for compatible matrices A and B.

In the algebra of n × n square matrices, some matrices A are invertible: that is, they
have an inverse A−1 with respect to matrix multiplication: A A−1 = I = A−1 A. For
square matrices, if AX = I then we also have X A = I , so X = A−1 is the inverse of A.
The identity matrix is clearly its own inverse: I −1 = I since I I = I .

Knowing that an inverse exists is very helpful (at least theoretically) for determining if a
linear system can be solved uniquely: if Ax = b then if we multiply from the left by the
inverse of A we get

A−1 Ax = A−1b, that is,

I x = A−1b, so

x = A−1b

is the unique solution of the linear system.
For example, if

A =
[

2 −3
−1 1

]
then

A−1 =
[−1 −3

−1 −2

]
.

Note that if A and B are square matrices and AB = I , then B = A−1 and also B A = I .

A.2 Norms and errors

In numerical computation we do not expect to get exact answers. So we need a way of
measuring how big an error is, and a way of measuring the size of a number, or a vector, or
a matrix. For numbers we can use the absolute value:

|x | =
{+x, if x ≥ 0,

−x, if x < 0.

For vectors we need something more. Usually we measure the size of a vector with a
norm, which is usually denoted by double vertical bars something like this: ‖ · ‖. Different
authors in different situations might use a slightly different notation, but it means the same
thing.

What is a norm? It is a real-valued function of vectors x �→ ‖x‖ with the following
properties:

1. ‖x‖ ≥ 0 for any vector x , and ‖x‖ = 0 only if x = 0 (the zero vector);

2. if α is any real number and x is a vector, then ‖α x‖ = |α| ‖x‖;
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3. ‖x + y‖ ≤ ‖x‖ + ‖y‖ for any vectors x and y. (This is called the triangle inequality.)

There are a number of standard norms that are commonly used, but other norms are also
used if they are appropriate or convenient. In a program or routine you should say what
norm you are using, or how it is defined. The most common norms used are the following.

1. The Euclidean norm: ‖x‖2 =
√∑n

i=1 |xi |2. This is the usual way of measuring the size

of a vector in three-dimensional space. This formula can be derived using Pythogoras’

theorem for right-angle triangles.

2. The maximum norm: ‖x‖∞ = maxi=1,...,n |xi |. This is suitable if you want to see the

maximum error.

3. The 1-norm: ‖x‖1 = ∑n
i=1 |xi |. This norm has some close connections to the maximum

norm, and is appropriate if each xi is adding to some important quantity.

All norms on n-dimensional vectors are equivalent in the sense that each can be bounded
by the others. Suppose ‖ · ‖a and ‖ · ‖b are norms on n-dimensional vectors. Then there
are numbers C1, C2 > 0 where

C1 ‖x‖a ≤ ‖x‖b ≤ C2 ‖x‖a for all x .

These numbers C1 and C2 can depend on n:

‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞,

‖x‖∞ ≤ ‖x‖2 ≤ √
n‖x‖∞.

There are also norms for matrices. These norms satisfy the same conditions, plus an
additional one for matrix multiplication:

‖A B‖ ≤ ‖A‖ ‖B‖.
The usual way of defining matrix norms is in terms of vector norms. These are called
induced matrix norms. The general formula for these is

‖A‖ := max
x :x �=0

‖Ax‖
‖x‖ .

Note that the norms on the right are all vector norms. Calculating the induced norm on a
matrix in general is not easy but fortunately there are some formulas for the most common
cases:

1. ‖A‖∞ = maxi
∑

j |ai j |;
2. ‖A‖1 = max j

∑
i |ai j |;

3. ‖A‖2 =
√

λmax(AT A), where λmax(B) is the maximum eigenvalue1 of B.

Some matrix norms are not induced by any vector norm. One such norm is the Frobenius
norm:

‖A‖F =
√∑

i, j

|ai j |2;

that is, it is the square root of the sum of the squares of all entries of the matrix.

1 Eigenvalues are described in texts on linear algebra and most texts on numerical analysis. See, for example,
[4, 18, 46].
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A.3 Errors in solving linear systems

If we try to solve a linear system

Ax = b

for x , but we have inaccurate data, what we actually solve is

(A + E)(x + d) = b + e,

where e is the error in b, E is the error in A, and d is the error in the (computed) solution.
There is a formula that bounds the error d in the solution:

‖d‖
‖x‖ ≤ κ(A)

1 − κ(A) (‖E‖/‖A‖)

(‖E‖
‖A‖ + ‖e‖

‖b‖
)

,

where κ(A) (‖E‖/‖A‖) < 1. The number κ(A) := ‖A‖ ‖A−1‖ is the condition number of
A. Of course, when we take norms of matrices, we need to use the matrix norm generated
by the vector norm that we choose to use. For example, if A is the 2 × 2 matrix[

2 −3
−1 1

]
, then if we use the ‖ · ‖∞ vector norm, the condition number is

κ∞(A) =
∥∥∥∥[

2 −3
−1 1

]∥∥∥∥
∞

∥∥∥∥[−1 −3
−1 −2

]∥∥∥∥
∞

= 5 × 4 = 20.

This condition number can never get smaller than one, so we would rather that the
condition number “is not too big”. How large does κ(A) need to become to cause
difficulties? Since we can never expect better accuracy in our data than ‖E‖/‖A‖,
‖e‖/‖b‖ ≈ u, the unit roundoff, if κ(A) � 1/u we do not expect any accuracy at all in our
computed results. In double-precision this means that κ(A) ≈ 1015 or higher will probably
make the results of a numerical algorithm in double-precision meaningless unless there is
some special structure to the matrix. Even for lower values of κ(A) there can be a
significant loss of accuracy; if κ(A) ≈ 10n then you lose approximately n significant
digits in the final solution.



Appendix B

Trademarks

MATLAB is a trademark of The MathWorks, Inc.

Pentium is a trademark of Intel.

GNU (which stands for GNU’s Not Unix), and gcc are trademarks of the Free Software
Foundation.

68000 is a trademark of Motorola.

RS/6000 and PowerPC are trademarks of IBM.

Java is a trademark of Sun Microsystems.

Unix is a trademark of AT&T.

Microsoft Word and RTF (Rich Text Format) are trademarks of Microsoft.

PostScript and PDF (Portable Document Format) are trademarks of Adobe.

Connection Machine, CM-2, CM-5, *Lisp and C* are trademarks of Thinking Machines,
Inc.
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algorithms and hybrid data structures for dense matrix library software. SIAM Rev.,
46(1):3–45, March 2004.



References 295

[36] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational Differential
Equations. Cambridge University Press, 1996.

[37] James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, and Richard L.
Phillips. Introduction to Computer Graphics. Addison-Wesley, 1st edition, 1993.

[38] Association for Computing Machinery. Collected algorithms of the ACM. URL:
http://www.acm.org/pubs/calgo/, 1960–2005. The algorithms in thic
collection are mostly from the journal Transactions on Mathematical Software.

[39] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, pages 285–297, New York, October 1999. ACM.

[40] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Addison-Wesley, 1994.

[41] United States General Accounting Office (GAO). GAO report: Patriot missile
defence – software problem led to system failure at Dharhan, Saudi Arabia.
Available via
http://www.fas.org/spp/starwars/gao/im92026.htm, 1992.
GAO/IMTEC report # 92-26.

[42] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. Freeman, 1979.

[43] A. George and J. Liu. Computer Solution of Large, Sparse, Positive-Definite
Systems. Prentice–Hall, 1981.

[44] A. Goldberg. SmallTalk-80: the Language. Addison-Wesley, 1989.
[45] David Goldberg. What every computer scientist should know about floating-point

arithmetic. ACM Computing Surveys, 32(1):5–48, 1991.
[46] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins Press, 2nd

edition, 1989.
[47] Leslie Greengard and Vladimir Rokhlin. A new version of the fast multipole

method for the Laplace equation in three dimensions. In Acta Numerica, 1997,
pages 229–269. Cambridge University Press, 1997.

[48] E. Hairer, S. P. Nörsett, and G. Wanner. Solving Ordinary Differential Equations I.
Ser. in Comp. Math. #8. Springer–Verlag, 2nd edition, 1993.

[49] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and
Differential–Algebraic Problems. Ser. in Comp. Math. #14. Springer–Verlag, 1991.

[50] D. Harel and Y. Feldman. Algorithmics: The Spirit of Computing. Addison-Wesley,
3rd edition, 2004.

[51] Donald Hearn and M. Pauline Baker. Computer Graphics, C Version. Prentice-Hall,
2nd edition, 1994.

[52] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 1996.
[53] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean, Alan

Kyker, and Patrice Roussel. The microarchitecture of the Pentium 4 processor. Intel
Technology Journal, (Q1):1–12, 2001. Available at URL
http://developer.intel.com/technology/itj/q12001.htm.

[54] Ivar Holand. Sleipner A GBS Loss. Report 17. Main Report. SINTEF: Civil and
Environmental Engineering report STF22–A97861, 1997.

[55] R. A. Horne and C. A. Johnson. Matrix Analysis. Cambridge University Press, 1985.
[56] J. C. Hubbell. You are under attack! The strange incident of October 5. Reader’s

Digest, 78(468):37–41, April 1961.
[57] Thomas Huckle. Collection of software bugs. URL:

http://www5.in.tum.de/̃ huckle/bugse.html, March 2004.



296 References

[58] Andrew Hunt and David Thomas. The Pragmatic Programmer. Addison-Wesley,
1st edition, 2000.

[59] IEEE. IEEE Standard 754–1985 Standard for Binary Floating Point Arithmetic,
New York edition, 1985.

[60] Intel Corp., Denver, CO. IA-32 Intel Architecture Software Developer’s Manual,
Volume 1: Basic Architecture, 2004.

[61] Intel Corp., Denver, CO. IA-32 Intel Architecture Software Developer’s Manual,
Volume 3: System Programming Guide, 2004.

[62] W. Kahan and Joseph D. Darcy. How Java’s floating-point hurts everyone
everywhere. Technical report, Department of Mathematics and Department of
Electrical Engineering and Computer Science, University of California, Berkeley,
Berkeley, CA, USA, June 1998.

[63] Willliam Kahan. How futile are mindless assessments of roundoff in floating-point
computation? Technical report, Department of Computer Science, University of
California, Berkeley, June 2005. Available via
http://www.cs.berkeley.edu/̃ wkahan/Mindless.pdf .

[64] Willliam Kahan and Charles Severance. IEEE 754: An interview with William
Kahan. IEEE Computer, 33(3):114–115, March 1998.

[65] B. Kernighan and P. J. Plauger. The Elements of Programming Style. McGraw-Hill
Publ., 2nd edition, 1978.

[66] J. Kleinberg and E. Tardos. Algorithm Design. Pearson/Addison-Wesley, 2005.
[67] G. Krasner, editor. SmallTalk-80: Bits of History, Words of Advice. Addison-Wesley

series in computer science. Addison-Wesley, 1983.
[68] Michael J. Laszlo. Computational Geometry and Computer Graphics in C++.

Prentice Hall, Inc., 1996.
[69] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra

subprograms for Fortran usage. ACM Trans. Math. Software, 5:308–325, 1979.
[70] Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge

University Press, 2002.
[71] J. L. Lions. Ariane 5: Flight 501 failure, report by the inquiry board. Originally

appeared at
http://www.esrin.esa.it/htdocs/tidc/Press/Press96/
ariane5rep.html. Available via
http://www.ima.umn.edu/̃ arnold/disasters/ariane5rep.html.,
July 1996.

[72] David Loshin. Efficient Memory Programming. McGraw-Hill, 1999.
[73] Mark Lutz and David Ascher. Learning Python. O’Reilly Media, Inc., 2nd edition,

2003.
[74] M. Mason. Pragmatic Version Control: using Subversion. Pragmatic Bookshelf,

2005.
[75] S. F. McCormick, editor. Multigrid Methods. Frontiers in Applied Math. SIAM,

1987.
[76] R. W. Mecklenburg. Managing Projects with GNU Make. O’Reilly Media, Inc., 3rd

edition, 2005.
[77] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1991. Second revised

printing, 1992. Third edition in preparation. Tutorials on Eiffel available online at
http://docs.eiffel.com.

[78] Webb Miller. Computational complexity and numerical stability. SIAM J. Comput.,
4:97–107, 1975.

[79] Webb Miller. The Engineering of Numerical Software. Prentice-Hall, Inc., 1984.



References 297

[80] Jean François Monin. Understanding Formal Methods. Springer, 2003.
[81] Gordon E. Moore. Cramming more components onto integrated circuits.

Electronics, 38(8):114–117, 1965.
[82] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999.
[83] Jesper Holm Olsen and Sœren Christian Skov. Cache-oblivious algorithms in

practice. Master’s thesis, Department of Computer Science, University of
Copenhagen, December 2002.

[84] Michael L. Overton. Numerical Computing with IEEE Floating Point Arithmetic.
SIAM, 2001.

[85] Bruce Perens. Electric Fence documentation. Available via
http://perens.com/FreeSoftware/.

[86] Shari L. Pfleeger. Software Engineering: Theory and Practice. Prentice Hall, 2nd
edition, 2001.

[87] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipies in C: the Art of Scientific Computing. Cambridge University Press, second
edition, 1992.

[88] Harald Prokop. Cache-oblivious algorithms. Master’s thesis, Massachusetts
Institute of Technology, Cambridge, MA, June 1999.

[89] John Reid. The new features of Fortran 2003. Technical Report JTC1/SC22/WG5
N1579, ISO/IEC, JKR Associates, Oxon, UK, 2003. Available via URL
http://www.kcl.ac.uk/kis/support/cit/fortran/
john reid new 2003.pdf.

[90] Ellen Siever, Stephen Spainhour, and Nathan Patwardhan. Perl in a Nutshell.
O’Reilly Media, Inc., 2nd edition, 2002.

[91] Silicon Graphics Inc. (SGI). Standard template library programmer’s guide.
Available via http://www.sgi.com/tech/stl/, 1993–2006.

[92] D. E. Stewart and Z. Leyk. Meschach: Matrix Computations in C. Australian
National University, Canberra, 1994. Proceedings of the CMA, #32.

[93] G. W. Stewart. Building an old-fashioned sparse solver. Technical Report
TR-203-95 or TR-4527, University of Maryland, College Park, Institute for
Advanced Computer Studies, Department of Computer Science, August 2003.

[94] David Stoutamire and Stephen Omohundro. Sather 1.1, August 1996. Available via
http://www.icsi.berkeley.edu/̃ sather/.

[95] Volker Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356,
1969.

[96] Bjarne Stroustrup. The C++ Programming Language. Pearson/Addison-Wesley,
3rd edition, 1997.
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