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Preface

State of books on compilers

The book collects and condenses the experience of years of teaching compiler
courses and doing research on formal language theory, on compiler and lan-
guage design, and to a lesser extent on natural language processing. In the
turmoil of information technology developments, the subject of the book has
kept the same fundamental principles over half a century, and its relevance
for theory and practice is as important as in the early days.

This state of affairs of a topic, which is central to computer science and
is based on consolidated principles, might lead us to believe that the accom-
panying textbooks are by now consolidated, much as the classical books on
mathematics. In fact this is rather not true: there exist fine books on the
mathematical aspects of language and automata theory, but the best books
on translators are sort of encyclopaedias of algorithms, design methods, and
practical know-how used in compiler design. Indeed a compiler is a micro-
cosm, featuring a variety of aspects ranging from algorithmic wisdom to CPU
and memory exploitation. As a consequence the textbooks have grown in size,
and compete with respect to their coverage of the last developments on pro-
gramming languages, processor architectures and clever mappings from the
former to the latter.

A basic textbook on compilation

To put things into order, in my opinion it is better to separate such complex
topic into two parts, basic and advanced, which correspond with good ap-
proximation to the two subsystems of a compiler: the user language-specific
front-end, and the machine language-specific back-end. The basic part is the
subject of this book; it covers the principles and algorithms widely used
for defining the syntax of languages and implementing simple translators. It
does not include: the specific know-how needed for various classes of program-
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vi Preface

ming languages (imperative, functional, object oriented, etc.), the computer
architecture-related aspects, and the optimization methods used to improve
the machine code produced by the compiler.

In other textbooks the bias towards technological aspects, related to soft-
ware and hardware architectures, has reduced the attention to the fundamen-
tal concepts of language specification and translation. This perhaps explains
why such books do not exploit the improvements and simplifications made
possible by decades of extensive use of syntax-directed methods, and still
keep the irritating variants and repetitions, to be found in the historical pa-
pers which introduced the theory of translation. Moving from these premises,
I decided to present in a simple minimalist way the essential principles and
methods used in designing syntax-directed translators. Just a few examples:
the coverage of the algorithms for processing regular expressions and finite
automata is rather complete and condensed. The systematic discussion of
ambiguous forms is intended to avoid pitfalls when designing grammars. The
standard presentation of parsing algorithms has been improved, by unify-
ing the concepts and notations used in different approaches, thus extend-
ing methods coverage with a reduced definitional apparatus. The concepts
of syntactic translation are effectively linked to regular expressions, gram-
mars and abstract automata, and pave the way to attribute grammars and
syntax-directed translation. The book is not restricted to syntax. The sections
on translation, semantic functions (attribute grammars), and static program
analysis by data flow equations provide a more comprehensive understanding
of the compilation process.

Presentation

The text is illustrated by many small yet realistic and paradigmatic examples,
to ease the understanding of the theory and the transfer to application. Many
diagrams and figures enlighten the presentation. This book has been written
by an engineer for future engineers and compiler or language designers: the
choice of the theoretical properties is always driven by their utility and the
conceptual economy they allow. Theoretical models of automata, transduc-
ers and formal grammars are extensively used, whenever practical motivation
warrants. Formal properties are intuitively justified and illustrated by exam-
ples; proofs are outlined whenever possible, and reference is given to publi-
cations. Algorithms are described in a pseudo-code to avoid the disturbing
details of a programming language, yet they are straightforward to convert
to executable procedures. Links to further readings and published references
are provided as footnotes.



Preface vii

Intended audience

The main material can be taught in about 50 class hours to computer science
or engineering students of the third year (graduate or upper division under-
graduate), but of course cuts and selective specialization are possible. Actu-
ally the material is largely self-contained and is also suitable to self-learning.
The first three chapters can be also used for introducing students (especially
engineering ones) to the foundations of formal languages and automata, but
other topics of theoretical computer science (such as computability and com-
plexity) are not covered.

This book should be welcome by those willing to teach or to learn the
essential concepts of syntax-directed compilation, without the need to rely
on software tools and implementations. I believe that learning by doing is
not always the best approach, and that early and excessive commitment to
practical work may sometimes hinder the acquisition of the conceptual foun-
dations. In the case of formal languages and data-flow analysis, the elegance
and simplicity of the underlying theory allow students to acquire the funda-
mental paradigms of language structures, to avoid pitfalls such as ambiguity,
and to adequately map structure to meaning. In this field, most relevant al-
gorithms are simple enough to be practiced by paper and pencil. Of course,
students should be encouraged to enroll in a parallel hands-on laboratory
for experimenting syntax-directed methods and tools (like flex and bison) on
realistic cases.

Supplementary Web materials

Course slides and numerous problems with solutions (prepared by L. Breveg-
lieri for the English language class) are available from the author Web site,
hosted by Politecnico di Milano, http://www.dei.polimi.it/. Error indications
and comments from readers are appreciated, and an errata-corrige will be set-
up on site.
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Chapter 1

Introduction

1.1 Intended Scope and Audience

The information technology revolution was made possible by the invention
of electronic digital machines, but without programming languages their use
would have been restricted to the few people able to write binary machine
code. A programming language as a text contains features coming both from
human languages and from mathematical logic. The translation from a pro-
gramming language to machine code is known as compilation.1 Language
compilation is a very complex process, that would be impossible to master
without systematic design methods. Such methods and their theoretical foun-
dations are the argument of this book. They make up a consistent and largely
consolidated body of concepts and algorithms, that are applied not just in
compilers, but also in other fields. Automata theory is pervasively used in
all branches of informatics to model situations or phenomena classifiable as
time and space discrete systems. Formal grammars on the other hand orig-
inated in linguistic research and are widely applied in document processing
in particular for the Web.

Coming to the prerequisites, the reader should have a good background
in programming, but detailed knowledge of a specific programming language
is not required, because our presentation of algorithms uses self-explanatory
pseudo-code. The reader is expected to be familiar with basic mathematical
theories and notations, namely set theory, algebra and logic. The above pre-
requisites are typically met by computer science/engineering or mathematic
students with two or more years of university education.

The selection of topics and the presentation based on rigorous definitions
and algorithms illustrated by many motivating examples should qualify the
book for a university course, aiming to expose students to the importance of

1 This term may sound strange; it originates in the early approach to the compilation
of tables of correspondence between a command in the language and a series of machine
operations.

S.C. Reghizzi, Formal Languages and Compilation,
Texts in Computer Science, DOI 10.1007/978-1-84882-050-0 1,
c© Springer-Verlag London Limited 2009



2 1 Introduction

good theories and of efficient algorithms for designing effective systems. In
our experience about 50 hours of lecture suffice to cover the entire book.

The author’s long experience in teaching the subject to different audiences,
brings out the importance of combining theoretical concepts and examples.
Moreover it is advisable that the students take advantage of well-known and
documented software tools (such as classical flex and bison), to implement
and experiment the main algorithm on realistic case studies.

With regard to the reach and limits, the book covers the essential concepts
and methods needed to design simple translators based on the syntax-directed
paradigm. It goes without saying that a real compiler for a programming
language includes other technological aspects and know-how, in particular
related to processor and computer architecture, which are not covered. Such
know-how is essential for automatically translating a program to machine
instructions and for transforming a program in order to make the best use of
computational resources of a computer. The study of program transformation
and optimization methods is a more advanced topic which follows the present
introduction to compiler methods. The next section outlines the contents of
the book.

1.2 Compiler Parts and Corresponding Concepts

There are two external interfaces to a compiler: the source language to be
analyzed and translated, and the target language produced by the translator.

Chapter 2 describes the so-called syntactic methods that are generally
adopted in order to provide a rigorous definition of the texts (or character
strings) written in the source language. The methods to be presented are reg-
ular expressions, and context-free grammars. Both belong to formal language
theory, a well-established chapter of theoretical computer science.

The first task of a compiler is to check the correctness of the source text,
that is whether it complies with the syntactic definition of the source language
by certain grammar rules. In order to perform the check, the algorithm scans
the source text character by character and at the end it rejects or accepts
the input depending on the result of the analysis. By a minimalist approach,
such recognition algorithms can be conveniently described as mathematical
machines or automata, in the tradition of the well-known Turing machine.

Chapter 3 covers finite automata, which are machines with a finite random
access memory. They are the recognizers of the languages defined by regular
expressions. Within compilation they are used for lexical analysis or scanning,
to extract from the source text keywords, numbers, and in general the pieces
of text corresponding to the lexical units or lexemes of the language.

Chapters 4 and 5 are devoted to the recognition problem for languages de-
fined by context-free grammars. Recognition algorithms are first modelled as
finite automata equipped with unbounded last-in-first-out memory or push-
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down stack. For a compiler, the language recognizer is an essential component
known as the syntax analyzer or parser. Its job is to check the syntactic cor-
rectness of a source text already subdivided into lexemes, and to construct a
structural representation called a syntax tree.

The ultimate job of a compiler is to translate a source text to another lan-
guage. The module responsible for completing the verification of the source
language rules and for producing the translation is called the semantic ana-
lyzer. It operates on the structural representation produced by the parser.

The formal models of translation and the methods used to implement
semantic analyzers are in Chapter 6, which describes two kinds of trans-
formations. Pure syntactic translations are modelled by finite or pushdown
transducers. Semantic translations are performed by functions or methods
that operate on the syntax tree of the source text. Such translations will be
specified by a practical extension to context-free grammars called attribute
grammars. This approach, by combining the accuracy of formal syntax and
the flexibility of programming, conveniently expresses analysis and transla-
tion of syntax trees.

To give a concrete idea of compilation, typical simple examples are in-
cluded: the type consistency check between variables declared and used in a
programming language, the translation of high-level statements to machine
instructions, and semantic-directed parsing.

For sure compilers do much more than syntax-directed translation. Static
program analysis is an important example, consisting in examining a pro-
gram to determine, ahead of execution, some properties, or to detect errors
not covered by semantic analysis. The purpose is to improve the robustness,
reliability, and efficiency of the program. An example of error detection is the
identification of uninitialized variables. For code improvement, an example is
the elimination of useless assignment statements.

Chapter 6 terminates with an introduction to the static analysis of pro-
grams modelled by their flow graph, viewed as a finite automaton. Several
interesting problems can be formalized and statically analyzed by a common
approach based on flow equations, and their solution by iterative approxima-
tions converging to the least fixed point.



Chapter 2

Syntax

2.1 Introduction

2.1.1 Artificial and Formal Languages

Many centuries after the spontaneous emergence of natural language for hu-
man communication, mankind has purposively constructed other communi-
cation systems and languages, to be called artificial, intended for very specific
tasks. A few artificial languages, like the logical propositions of Aristotle or
the music sheet notation of Guittone d’Arezzo, are very ancient, but their
number has exploded with the invention of computers. Many of them are
intended for man-machine communication, to instruct a programmable ma-
chine to do some task: to perform a computation, to prepare a document, to
search a database, to control a robot, and so on. Other languages serve as
interfaces between devices, e.g.,, Postscript is a language produced by a text
processor commanding a printer.

Any designed language is artificial by definition, but not all artificial lan-
guages are formalized: thus a programming language like Java is formalized,
but Esperanto, although designed by man, is not.

For a language to be formalized (or formal), the form of sentences (or syn-
tax) and their meaning (or semantics) must be precisely and algorithmically
defined. In other words, it should be possible for a computer to check that
sentences are grammatically correct, and to determine their meaning.

Meaning is a difficult and controversial notion. For our purposes, the mean-
ing of a sentence can be taken to be the translation to another language which
is known to the computer or the operator. For instance, the meaning of a Java
program is its translation to the machine language of the computer executing
the program.

In this book the term formal language is used in a narrower sense that
excludes semantics. In the field of syntax, a formal language is a mathematical
structure, defined on top of an alphabet, by means of certain axiomatic rules

S.C. Reghizzi, Formal Languages and Compilation,
Texts in Computer Science, DOI 10.1007/978-1-84882-050-0 2,
c© Springer-Verlag London Limited 2009
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(formal grammar) or by using abstract machines such as the famous one due
to A. Turing. The notions and methods of formal language are analogous to
those used in number theory and in logic.

Thus formal language theory is only concerned with the form or syntax of
sentences, not with meaning. A string (or text) is either valid or illegal, that is,
it either belongs to the formal language or does not. Such theory makes a first
important step towards the ultimate goal: the study of language translation
and meaning, which will require additional methods.

2.1.2 Language Types

A language in this book is a one-dimensional communication medium, made
by sequences of symbolic elements of an alphabet, called terminal characters.
Actually people often refer to language as other not textual communication
media, which are more or less formalized by means of rules. Thus iconic
languages focus on road traffic signs or video display icons. Musical language
is concerned with sounds, rhythm, and harmony. Architects and designers
of buildings and objects are interested in their spatial relations, which they
describe as the language of design. Early child drawings are often considered
as sentences of a pictorial language, which can be partially formalized in
accordance with psychological theories. The formal approach to the syntax
of this chapter has some interest for nontextual languages too.

Within computer science, the term language applies to a text made by a
set of characters orderly written from, say, left to right. In addition the term
is used to refer to other discrete structures, such as graphs, trees, or arrays
of pixels describing a discrete picture. Formal language theories have been
proposed and used to various degrees also for such nontextual languages1.

Reverting to the main stream of textual languages, a frequent request
directed to the specialist is to define and specify an artificial language. The
specification may have several uses: as a language reference manual for future
users, as an official standard definition, or as a contractual document for
compiler designers to ensure consistency of specification and implementation.

It is not an easy task to write a complete and rigorous definition of a
language. Clearly the exhaustive approach, to list all possible sentences or
phrases, is unfeasible because the possibilities are infinite, since the length of
sentences is usually unbounded. As a native language speaker, a programmer
is not constrained by any strict limit on the length of phrases to be written.
The problem to represent an infinite number of cases by a finite description
can be addressed by an enumeration procedure, as in logic. When executed,
the procedure generates longer and longer sentences, in an unending process
if the language to be modelled is not finite.

1 Just two examples and references: tree languages [21] and picture (or two dimensional)
languages [23, 15].
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This chapter presents a simple and established manner to express the rules
of the enumeration procedure in the form of rules of a generative grammar
(or syntax).

2.1.3 Chapter Outline

The chapter starts with the basic components of language theory: alphabet,
string, and operations, such as concatenation and repetition, on strings and
sets of strings.
The definition of the family of regular languages comes next.
Then the lists are introduced as a fundamental and pervasive syntax struc-
ture in all kinds of languages. From the exemplification of list variants, the
idea of linguistic abstraction grows out naturally. This is a powerful reasoning
tool to reduce the varieties of existing languages to a few paradigms.
After discussing the limits of regular languages, the chapter moves to context-
free grammars. After the basic definitions the presentation focuses on struc-
tural properties, namely, equivalence, ambiguity, and recursion.
Exemplification continues with important linguistic paradigms such as: hier-
archical lists, parenthesized structures, polish notations, and operator prece-
dence expressions. Their combination produces the variety of forms to be
found in artificial languages.
Then the classification of some common forms of ambiguity and correspond-
ing remedies is offered as a practical guide for grammar designers.
Various transformations of rules (normal forms) are introduced, which should
familiarize the reader with the modifications often needed for technical ap-
plications, to adjust a grammar without affecting the language it defines.
Returning to regular languages from the grammar perspective, the chapter
evidences the greater descriptive capacity of context-free grammars.
The comparison of regular and context-free languages continues by consider-
ing the operations that may cause a language to exit or remain in one or the
other family. Alphabetical transformations anticipate the operations studied
in Chapter 6 as translations.
A discussion of unavoidable regularities found in very long strings, completes
the theoretical picture.
The last section mentions the Chomsky classification of grammar types and
exemplifies context-sensitive grammars, stressing the difficulty of this rarely
used model.
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2.2 Formal Language Theory

Formal language theory starts from the elementary notions of alphabet, string
operations, and aggregate operations on sets of strings. By such operations
complex languages can be obtained starting from simpler ones.

2.2.1 Alphabet and Language

An alphabet is a finite set of elements called terminal symbols or characters.
Let Σ = {a1, a2, . . . , ak} be an alphabet with k elements, i.e., its cardinality
is |Σ| = k. A string (also called a word) is a sequence (i.e., an ordered set
possibly with repetitions) of characters.

Example 2.1. Let Σ = {a, b} be the alphabet. Some strings are: aaba, aaa,
abaa, b.

A language is a set of strings on a specified alphabet.

Example 2.2. For the same alphabet Σ = {a, b} three examples of languages
follow:

L1 = {aa, aaa}
L2 = {aba, aab}
L3 = {ab, ba, aabb, abab, . . . , aaabbb, . . .} = set of strings having as many

a’s as b’s

Notice that a formal language viewed as a set has two layers: at the first
level there is an unordered set of nonelementary elements, the strings. At the
second level, each string is an ordered set of atomic elements, the terminal
characters.

Given a language, a string belonging to it is called a sentence or phrase.
Thus bbaa ∈ L3 is a sentence of L3, whereas abb /∈ L3 is an incorrect string.

The cardinality or size of a language is the number of sentences it contains.
For instance, |L2| = |{aba, aab}| = 2. If the cardinality is finite, the language
is called finite, too. Otherwise, there is no finite bound on the number of
sentences, and the language is termed infinite. To illustrate, L1 and L2 are
finite, but L3 is infinite.

One can observe a finite language is essentially a collection of words2

sometimes called a vocabulary. A special finite language is the empty set or
language ∅, which contains no sentence, |∅| = 0. Usually, when a language
contains just one element, the set braces are omitted writing e.g., abb instead
of {abb}.

2 In mathematical writings the terms word and string are synonymous, in linguistics a
word is a string having a meaning.
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It is convenient to introduce the notation |x|b for the number of characters
b present in a string x. For instance:

|aab|a = 2, |aba|a = 2, |baa|c = 0

The length |x| of a string x is the number of characters it contains, e.g.:
|ab| = 2; |abaa| = 4.

Two strings
x = a1a2 . . . ah , y = b1b2 . . . bk

are equal if h = k and ai = bi, for every i = 1, . . . , h. In words, examining
the strings from left to right their respective characters coincide. Thus we
obtain:

aba �= baa, baa �= ba

String Operations

In order to manipulate strings it is convenient to introduce several operations.
For strings

x = a1a2 . . . ah y = b1b2 . . . bk

concatenation3 is defined as

x.y = a1a2 . . . ahb1b2 . . . bk

The dot may be dropped, writing xy in place of x.y. This essential operation
for formal languages plays the role addition has in number theory.

Example 2.3. For strings

x = well , y = in , z = formed

we obtain
xy = wellin , yx = inwell �= xy

(xy)z = wellin.formed = x(yz) = well.informed = wellinformed

Concatenation is clearly non-commutative, that is, the identity xy �= yx does
not hold in general. The associative property holds:

(xy)z = x(yz)

This permits to write without parentheses the concatenation of three or more
strings. The length of the result is the sum of the lengths of the concatenated
strings:

|xy| = |x| + |y| (2.1)

3 Also termed product in mathematical works.
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Empty string

It is useful to introduce the concept of empty (or null) string, denoted by
Greek epsilon ε, as the only string satisfying the identity

xε = εx = x

for every string x. From equality 2.1 it follows the empty string has length
zero:

| ε |= 0

From an algebraic perspective, the empty string is the neutral element with
respect to concatenation, because any string is unaffected by concatenating
ε to the left or right.
The empty string should not be confused with the empty set: in fact ∅ as
a language contains no string, whereas the set {ε} contains one, the empty
string.

Substrings

Let x = uyv be the concatenation of some, possibly empty, strings u, y, v.
Then y is a substring of x; moreover, u is a prefix of x, and v is a suffix of x.
A substring (prefix, suffix) is called proper if it does not coincide with string
x.

Let x be a string of length at least k, |x| � k � 1. The notation Inik(x)
denotes the prefix u of x having length k, to be termed the initial of length
k.

Example 2.4. The string x = aabacba contains the following components:

prefixes: a, aa, aab, aaba, aabac, aabacb, aabacba
suffixes: a, ba, cba, acba, bacba, abacba, aabacba
substrings: all prefixes and suffixes and the internal

strings such as a, ab, ba, bacb, . . .

Notice that bc is not a substring of x, although both b and c occur in x. The
initial of length two is Ini2(aabacba) = aa.

Mirror reflection

The characters of a string are usually read from left to right, but it is some-
times requested to reverse the order. The reflection of a string x = a1a2...ah

is the string xR = ahah−1 . . . a1. For instance, it is

x = roma xR = amor
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The following identities are immediate:

(xR)R = x (xy)R = yRxR εR = ε

Repetitions

When a string contains repetitions it is handy to have an operator denoting
them. The m-th power (m � 1, integer) of a string x is the concatenation of
x with itself m − 1 times:

xm = xx . . . x
︸ ︷︷ ︸

m times

By stipulation the zero power of any string is defined to be the empty string.
The complete definition is

{

xm = xm−1x , m > 0
x0 = ε

Examples:

x = ab x0 = ε x1 = x = ab x2 = (ab)2 = abab
y = a2 = aa y3 = a2a2a2 = a6

ε0 = ε ε2 = ε

When writing formulas, the string to be repeated must be parenthesized, if
longer than one. Thus to express the 2nd power of ab, i.e., abab, one should
write (ab)2, not ab2, which is the string abb.
Expressed differently, we assume the power operation takes precedence over
concatenation. Similarly reflection takes precedence over concatenation: e.g.,
abR returns ab, since bR = b, while (ab)R = ba.

2.2.2 Language Operations

It is straightforward to extend an operation, originally defined on strings, to
an entire language: just apply the operation to all the sentences. By means of
this general principle, previously defined string operations can be revisited,
starting from those having one argument.

The reflection of a language L is the set of strings that are the reflection
of a sentence:

LR = {x | x = yR ∧ y ∈ L
︸ ︷︷ ︸

characteristic predicate

}

Here the strings x are specified by the property expressed in the so-called
characteristic predicate.
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Similarly the set of proper prefixes of a language L is

Prefixes(L) = {y | x = yz ∧ x ∈ L ∧ y �= ε ∧ z �= ε}

Example 2.5. Prefix-free language
In some applications the loss of one or more final characters of a language
sentence is required to produce an incorrect string. The motivation is that
the compiler is then able to detect inadvertent truncation of a sentence.
A language is prefix-free if none of the proper prefixes of sentences is in the
language; i.e., if the set Prefixes(L) is disjoint from L.
Thus the language L1 = {x | x = anbn ∧ n � 1} is prefix-free since every
prefix takes the form anbm, n > m � 0 and does not satisfy the characteristic
predicate.

On the other hand, the language L2 = {ambn | m > n � 1} contains a3b2

as well as its prefix a3b.

Similarly, operations on two strings can be extended to two languages, by let-
ting the first and second argument span the respective language, for instance
concatenation of languages L′ and L′′ is defined as

L′L′′ = {xy | x ∈ L′ ∧ y ∈ L′′}

From this the extension of the m-th power operation on a language is straight-
forward:

Lm = Lm−1L , m > 0
L0 = {ε}

Some special cases follow from previous definitions:

∅0 = {ε}
L.∅ = ∅.L = ∅

L.{ε} = {ε}.L = L

Example 2.6. Consider the languages

L1 = {ai | i � 0, even} = {ε, aa, aaaa, . . .}

L2 = {bja | j � 1, odd} = {ba, bbba, . . .}

We obtain
L1L2 = {ai.bja | (i � 0, even) ∧ (j � 1, odd)}

= {εba, a2ba, a4ba, . . . , εb3a, a2b3a, a4b3a, . . .}
A common error when computing the power is to take m times the same
string. The result is a different set, included in the power:
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{x | x = ym ∧ y ∈ L} ⊆ Lm, m � 2

Thus for L = {a, b} with m = 2 the left part is {aa, bb} and the right part is
{aa, ab, ba, bb}.

Example 2.7. Strings of finite length
The power operation allows a concise definition of the strings of length not
exceeding some integer k. Consider the alphabet Σ = {a, b}. For k = 3 the
language

L = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb}
= Σ0 ∪ Σ1 ∪ Σ2 ∪ Σ3

may also be defined as
L = {ε, a, b}3

Notice that sentences shorter than k are obtained using the empty string of
the base language.
Slightly changing the example, the language {x | 1 � |x| � 3} is defined,
using concatenation and power, by the formula

L = {a, b}{ε, a, b}2

2.2.3 Set Operations

Since a language is a set, the classical set operations, union (∪ ), intersection
(∩), and difference (\), apply to languages; set relations, inclusion (⊆), strict
inclusion (⊂), and equality (=) apply as well.
Before introducing the complement of a language, the notion of universal
language is needed: it is defined as the set of all strings of alphabet Σ, of any
length, including zero.
Clearly the universal language is infinite and can be viewed as the union of
all the powers of the alphabet:

Luniversal = Σ0 ∪ Σ ∪ Σ2 ∪ . . .

The complement of a language L of alphabet Σ, denoted by ¬L, is the set
difference

¬L = Luniversal \ L

that is, the set of the strings of alphabet Σ that are not in L. When the
alphabet is understood, the universal language can be expressed as the com-
plement of the empty language:

Luniversal = ¬∅
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Example 2.8. The complement of a finite language is always infinite, for in-
stance the set of strings of any length except two is

¬({a, b}2) = ε ∪ {a, b} ∪ {a, b}3 ∪ . . .

On the other hand, the complement of an infinite language may or may not
be finite, as shown on one side by the complement of the universal language,
on the other side by the complement of the set of even length strings with
alphabet {a}:

L = {a2n | n � 0} ¬L = {a2n+1 | n � 0}

Moving to set difference, consider alphabet Σ = {a, b, c} and languages

L1 = {x | |x|a = |x|b = |x|c � 0}

L2 = {x | |x|a = |x|b ∧ |x|c = 1}

Then the differences are,

L1 \ L2 = ε ∪ {x | |x|a = |x|b = |x|c � 2}

which represents the set of strings having the same number, excluding 1, of
occurrences of letters a, b, c;

L2 \ L1 = {x | |x|a = |x|b �= |x|c = 1}

the set of strings having one c and the same number of occurrences of a, b,
excluding 1.

2.2.4 Star and Cross

Most artificial and natural languages include sentences that can be lengthened
at will, causing the number of sentences in the language to be unbounded.
On the other hand, all the operations so far defined, with the exception
of complement, do not allow to write a finite formula denoting an infinite
language. In order to enable the definition of an infinite language, the next
essential development extends the power operation to the limit.
The star4 operation is defined as the union of all the powers of the base
language:

L∗ =
⋃

h=0...∞
Lh = L0 ∪ L1 ∪ L2 ∪ . . . = ε ∪ L ∪ L2 ∪ . . .

4 Also known as Kleene’s star and as closure by concatenation.
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Example 2.9. For L = {ab, ba}

L∗ = {ε, ab, ba, abab, abba, baab, baba, ...}

Every string of the star can be segmented into substrings which are sentences
of the base language L.
Notice that starting with a finite base language, L, the “starred” language
L∗ is infinite.
It may happen that the starred and base language are identical as in

L = {a2n | n � 0} L∗ = {a2n | n � 0} ≡ L

An interesting special case is when the base is an alphabet Σ, then the star
Σ∗ contains all the strings5 obtained by concatenating terminal characters.
This language is the same as the previous universal language of alphabet Σ.6

It is clear that any formal language is a subset of the universal language
of the same alphabet; the relation

L ⊆ Σ∗

is often written to say that L is a language of alphabet Σ.
Some useful properties of star:

L ⊆ L∗ (monotonicity)
if (x ∈ L∗ ∧ y ∈ L∗) then xy ∈ L∗ (closure by concatenation)

(L∗)∗ = L∗ (idempotence)
(L∗)R = (LR)∗ (commutativity of star and reflection)

Example 2.10. Idempotence
The monotonicity property affirms any language is included in its star. But
for language L1 = {a2n | n � 0} the equality L1

∗ = L1 follows from the
idempotence property and the fact that L1 can be equivalently defined by
the starred formula {aa}∗.

For the empty language and empty string we have the identities

∅∗ = {ε} {ε}∗ = {ε}

5 The length of a sentence in Σ∗ is unbounded but it may not be considered to be infinite. A
specialized branch of this theory (see Perrin and Pin [41]) is devoted to so-called infinitary
or omega-languages, which include also sentences of infinite length. They effectively model
the situations when an eternal system can receive or produce messages of infinite length.
6 Another name for it is free monoid . In algebra a monoid is a structure provided with an
associative composition law (concatenation) and a neutral element (empty string).
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Example 2.11. Identifiers
Many artificial languages assign a name or identifier to each entity (variable,
file, document, subprogram, object, etc.). A usual naming rule prescribes that
an identifier should be a string with initial character in {A, B, . . . , Z} and
containing any number of letters or digits {0, 1, . . . , 9}, such as CICLO3A2.
Using the alphabets

ΣA = {A, B, . . . , Z}, ΣN = {0, 1, . . . , 9}

the language of identifiers I ⊆ (ΣA ∪ ΣN)∗ is

I = ΣA(ΣA ∪ ΣN)∗

To introduce a variance, prescribe that the length of identifiers should not
exceed 5. Defining Σ = ΣA ∪ ΣN , the language is

I5 = ΣA(Σ0 ∪ Σ1 ∪ Σ2 ∪ Σ3 ∪ Σ4) = ΣA(ε ∪ Σ ∪ Σ2 ∪ Σ3 ∪ Σ4)

The formula expresses concatenation of language ΣA, whose sentences are
single characters, with the language constructed as the union of powers. A
more elegant writing is

I5 = ΣA(ε ∪ Σ)4

Cross

A useful though dispensable operator, derived from star, is the cross7

L+ =
⋃

h=1...∞
Lh = L ∪ L2 ∪ . . .

It differs from the star because the union is taken excluding power zero. The
following relations hold:

L+ ⊆ L∗

ε ∈ L+ if and only if ε ∈ L

L+ = LL∗ = L∗L

Example 2.12.

{ab, bb}+ = {ab, b2, ab3, b2ab, abab, b4, . . .}

{ε, aa}+ = {ε, a2, a4, . . .} = {a2n | n � 0}
Not surprisingly a language can usually be defined by various formulas, that
differ by their use of operators.

7 Or nonreflective closure by concatenation.
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Example 2.13. The strings four or more characters long may be defined by

• concatenating the strings of length four with arbitrary strings: Σ4Σ∗;
• or by constructing the th power of the set of nonempty strings: (Σ+)4.

2.2.5 Quotient

Operations like concatenation, star, or union lengthen the strings or increase
the cardinality of the set of strings they operate upon. Given two languages,
the (right) quotient operation shortens the sentences of the first language
by cutting a suffix, which is a sentence of the second language. The (right)
quotient of L′ with respect to L′′ is defined as

L = L′/R L′′ = {y | ∃y, z such that yz ∈ L′ ∧ z ∈ L′′}

Example 2.14. Let

L′ = {a2nb2n | n > 0} , L′′ = {b2n+1 | n � 0}

The quotients are

L′/R L′′ = {arbs | (r � 2, even )∧ (1 � s < r, s odd )} = {a2b, a4b, a4b3, ....}

L′′/R L′ = ∅

A dual operation is the left quotient L′′/L L′ that shortens the sentences
of the first language by cutting a prefix which is a sentence of the second
language.

Other operations will be introduced later, in order to transform or translate
a formal language by replacing the terminal characters with other characters
or strings.

2.3 Regular Expressions and Languages

Theoretical investigation on formal languages has invented various categories
of languages, in a way reminiscent of the classification of numerical domains
introduced much earlier by number theory. Such categories are characterized
by mathematical and algorithmic properties.

The first family of formal languages is called regular (or rational) and
can be defined by an astonishing number of different approaches. Regular
languages have been independently discovered in disparate scientific fields:
the study of input signals driving a sequential circuit8 to a certain state, the

8 A digital component incorporating a memory.
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lexicon of programming languages modelled by simple grammar rules, and
the simplified analysis of neural behavior. Later such approaches have been
complemented by a logical definition based on a restricted form of predicates.

To introduce the family, the first definition will be algebraic, using the
union, concatenation, and star operations; then the family will be defined
by certain simple grammar rules; last, Chapter 3 describes the algorithm for
recognizing regular languages in the form of an abstract machine or automa-
ton9.

2.3.1 Definition of Regular Expression

A language of alphabet Σ = {a1, a2, . . . , an} is regular if it can be expressed
by applying a finite number of times the operations of concatenation, union,
and star, starting with the unitary languages10 {a1}, {a2}, ..., {an} or the
empty language ∅.

More precisely a regular expression (r.e.) is a string r containing the ter-
minal characters of alphabet Σ and the metasymbols11

. concatenation ∪ union ∗ star ∅ empty set ( )

in accordance with the following rules:

1. r = ∅ 3. r = (s ∪ t) 5. r = (s)∗

2. r = a, a ∈ Σ 4. r = (s.t) or r = (st)

where s and t are r.e.
Parentheses may often be dropped by imposing the following precedence

when applying operators: first star, then concatenation, and last union.
For improving expressivity, the symbols ε (empty string) and cross may

be used in an r.e., since they are derived from the three basic operations by
the identities ε = ∅∗ and s+ = s(s)∗.

It is customary to write the union cup ‘∪’ symbol as a vertical slash ‘|’,
called alternative.
Rules 1. to 5. compose the syntax of r.e., to be formalized later by means of
a grammar (example 2.31, p. 32).
The meaning or denotation of an r.e. r is a language Lr over alphabet Σ,
defined by the correspondence in Table 2.3.1.

9 The language family can also be defined by the form of the logical predicates character-
izing language sentences, as e.g., in [52].
10 A unitary language contains one sentence.
11 In order to prevent confusion between terminals and metasymbols, the latter should
not be in the alphabet. If not, metasymbols must be suitably recoded to make them
distinguishable.



2.3 Regular Expressions and Languages 19

Table 2.1 Language denoted by a regular expression.

expression r language Lr

1. ε {ε}
2. a ∈ Σ {a}
3. s ∪ t or also s | t Ls ∪ Lt

4. s.t or also st Ls.Lt

5. s∗ L∗
s

Example 2.15. Let Σ = {1}, where 1 may be viewed as a pulse or signal. The
language denoted by expression

e = (111)∗

contains the sequences multiple of three

Le = {1n | n mod 3 = 0}

Notice that dropping the parentheses the language changes, due to the prece-
dence of star over concatenation:

e1 = 111∗ = 11(1)∗ Le1 = {1n | n � 2}

Example 2.16. Integers
Let Σ = {+,−, d} where d denotes any decimal digit 0, 1, . . . , 9. The expres-
sion

e = (+ ∪ − ∪ ε)dd∗ ≡ (+ | − | ε)dd∗

produces the language

Le = {+,−, ε}{d}{d}∗

of integers with or without a sign, such as +353,−5, 969, +001.

Actually the correspondence between r.e. and denoted language is so direct
that it is customary to refer to the language Le by the r.e. e itself.

A language is regular if it is denoted by a regular expression. The collection
of all regular languages is called the family REG of regular languages.

Another simple family of languages is the collection of all finite languages ,
FIN . A language is in FIN if its cardinality is finite, as for instance the
language of 32-bit binary numbers.

Comparing the REG and FIN families, it is easy to see that every finite
language is regular, FIN ⊆ REG. In fact, a finite language is the union
of finitely many strings x1, x2, . . . , xk, each one being the concatenation of
finitely many characters, xi = a1a2 . . . ani . The structure of the r.e. producing
a finite language is then a union of k terms, made by concatenation of ni
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characters. But REG includes nonfinite languages too, thus proving strict
inclusion of the families, FIN ⊂ REG.

More language families will be introduced and compared with REG later.

2.3.2 Derivation and Language

We formalize the mechanism by which an r.e. produces a string of the lan-
guage. Supposing for now the given r.e. e is fully parenthesized (except for
atomic terms), we introduce the notion of subexpression (s.e.) in the next
example:

e0 =

⎛

⎜

⎜

⎜

⎜

⎝

e1
︷ ︸︸ ︷
(

(a ∪ (bb))∗
)

e2
︷ ︸︸ ︷
⎛

⎝(c+) ∪ (a ∪ (bb))
︸ ︷︷ ︸

s

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎠

This r.e. is structured as concatenation of two parts e1 and e2, to be called
subexpressions. In general an s.e. f of an r.e. e is a well-parenthesized sub-
string immediately occurring inside the outermost parentheses. This means
no other well-parenthesized substring of e contains f . In the example, the
substring labelled s is not s.e. of e0 but is s.e. of e2.

When the r.e. is not fully parenthesized, in order to identify the subexpres-
sions one has to insert (or to imagine) the missing parentheses, in agreement
with operator precedence.

Notice that three or more terms, combined by union, need not to be pair-
wise parenthesized, because the operation is associative, as in:

(

c+ ∪ a ∪ (bb)
)

The same applies to three or more concatenated terms.
A union or repetition (star and cross) operator offers different choices for

producing strings. By making a choice, one obtains an r.e. defining a less
general language, which is included in the original one. We say an r.e. is a
choice of another one in the following cases:

1. ek, 1 � k � m, is a choice of the union (e1 ∪ . . . ∪ ek ∪ . . . ∪ em)
2. em = e . . . e

︸ ︷︷ ︸

m times

, m � 1, is a choice of the expressions e∗, e+

3. the empty string is a choice of e∗

Let e′ be an r.e.; an r.e. e′′ can be derived from e′ by substituting some choice
for e′. The corresponding relation called derivation between two regular ex-
pressions e′, e′′ is defined next.
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Definition 2.17. Derivation12

We say e′ derives e′′ , written e′ ⇒ e′′ , if

e′′ is a choice of e′

or
e′ = e1 . . . ek . . . em and e′′ = e1 . . . e′′k . . . em

where e′′k is a choice of ek, 1 � k � m

A derivation can be applied two or more times in a row. We say e0 derives
en in n steps, written

e0
n⇒ en

if
e0 ⇒ e1, e1 ⇒ e2, . . . , en−1 ⇒ en

The notation
e0

+⇒ en

states that e0 derives en in some n � 1 steps. The case n = 0 corresponds
to the identity e0 = en and says the derivation relation is reflective. We also
write

e0
∗⇒ en for

(

e0
+⇒ en

)

∨ (e0 = en)

Example 2.18. Immediate derivations:

a∗ ∪ b+ ⇒ a∗, a∗ ∪ b+ ⇒ b+, (a∗ ∪ bb)∗ ⇒ (a∗ ∪ bb)(a∗ ∪ bb)

Notice that the substrings of the r.e. considered must be chosen in order
from external to internal, if one wants to produce all possible derivations.
For instance, it would be unwise, starting from e′ = (a∗ ∪ bb)∗, to choose
(a2 ∪ bb)∗, because a∗ is not an s.e. of e′. Although 2 is a correct choice
for the star, such premature choice would rule out the derivation of a valid
sentence such as a2bba3.
Multi-step derivations:

a∗ ∪ b+ ⇒ a∗ ⇒ ε that is a∗ ∪ b+ 2⇒ ε or also a∗ ∪ b+ +⇒ ε

a∗ ∪ b+ ⇒ b+ ⇒ bbb or also (a∗ ∪ b+) +⇒ bbb

Some expressions produced by derivation from an expression r contain the
metasymbols union, star, and cross; some others just terminal characters
or the empty string (and maybe some redundant parentheses which can be
cancelled). The latter expressions compose the language denoted by the r.e.

The language defined by a regular expression r is

12 Also called implication.
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Lr = {x ∈ Σ∗ | r
∗⇒ x}

Two r.e. are equivalent if they define the same language.
The coming example shows that different orders of derivation may produce

the same sentence.

Example 2.19. Consider the derivations

1. a∗(b ∪ c ∪ d)f+ ⇒ aaa(b ∪ c ∪ d)f+ ⇒ aaacf+ ⇒ aaacf
2. a∗(b ∪ c ∪ d)f+ ⇒ a∗cf+ ⇒ aaacf+ ⇒ aaacf

Compare derivations 1. and 2. In 1. the first choice takes the leftmost s.e.
(a∗), whereas in 2. another s.e. (b ∪ c ∪ d) is taken. Since the two steps are
independent of each other, they can be applied in any order. By a further step,
we obtain r.e. aaacf+, and the last step produces sentence aaacf . The last
step, being independent from the others, could be performed before, after, or
in between.

The example has shown that many different but equivalent orders of choice
making, derive the same sentence.

Ambiguity of Regular Expressions

The next example conceptually differs from the preceding one with respect
to the way different derivations produce the same sentence.

Example 2.20. Ambiguous regular expression
The language of alphabet {a, b}, characterized by the presence of at least one
a, is defined by

(a ∪ b)∗a(a ∪ b)∗

where the compulsory presence of a is evident. Now sentences containing two
or more occurrences of a can be obtained by multiple derivations, which differ
with respect to the character identified with the compulsory one of the r.e.
For instance, sentence aa offers two possibilities:

(a ∪ b)∗a(a ∪ b)∗ ⇒ (a ∪ b)a(a ∪ b)∗ ⇒ aa(a ∪ b)∗ ⇒ aaε = aa

(a ∪ b)∗a(a ∪ b)∗ ⇒ εa(a ∪ b)∗ ⇒ εa(a ∪ b) ⇒ εaa = aa

This sentence (and the r.e. deriving it) is said to be ambiguous, because there
are two structurally different derivations. On the other hand, sentence ba is
not ambiguous, because there exists only one set of choices, corresponding to
derivation

(a ∪ b)∗a(a ∪ b)∗ ⇒ (a ∪ b)a(a ∪ b)∗ ⇒ ba(a ∪ b)∗ ⇒ baε = ba

In order to formalize the idea of ambiguity, it helps to number the letters of
the r.e. f , obtaining a numbered r.e.:
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f ′ = (a1 ∪ b2)∗a3(a4 ∪ b5)∗

which defines a regular language of alphabet {a1, b2, a3, a4, b5}.
An r.e. f is ambiguous if the language defined by the corresponding num-

bered r.e. f ′ contains distinct strings x, y such that they become identical
when the numbers are erased13. For instance, strings a1a3 and a3a4 of lan-
guage f ′ prove ambiguity of aa.

Ambiguous definitions are a source of trouble in many settings. They
should be avoided in general, although they may have the advantage of
concision over unambiguous definitions. The concept of ambiguity will be
thoroughly studied for grammars.

2.3.3 Other Operators

When regular expressions are used in practice, it may be convenient to add to
the basic operators (union, concatenation, star) the derived operators power
and cross.
For further expressivity other derived operators may be practical:

Repetition from k to n > k times: [a]nk = ak ∪ ak+1 ∪ . . . ∪ an

Option: [a] = (ε ∪ a)
Interval of ordered set: to represent any digit in the ordered set 0, 1, . . . , 9

the short notation is (0 . . . 9). Similarly the notation (a . . . z) and (A . . . Z)
stand for the set of lower (respectively upper) case letters.

Sometimes, other set operations are also used: intersection, set difference,
and complement. Expressions using such operators are called extended r.e.,
although the name is not standard, and one has to specify the allowed oper-
ators.

Example 2.21. Extended r.e. with intersection
This operator provides a straightforward formulation of the fact that valid
strings must simultaneously obey two conditions. To illustrate, let {a, b} be
the alphabet and assume a valid string must (1) contain substring bb and (2)
have even length. The former condition is imposed by r.e.

(a | b)∗bb(a | b)∗

the latter by r.e.
((a | b)2)∗

and the language by the r.e. extended with intersection

((a | b)∗bb(a | b)∗) ∩ ((a | b)2)∗

13 Notice the empty string too may be ambiguous. Observe formulas (ab)∗ | ε and (ab)∗ |
c∗.
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The same language can be defined by a basic r.e., without intersection, but
the formula is more complicated. It says substring bb can be surrounded by
two strings of even length or by two strings of odd length:

((a | b)2)∗bb((a | b)2)∗ | (a | b)((a | b)2)∗bb(a | b)((a | b)2)∗

Furthermore it is sometimes simpler to define the sentences of a language ex
negativo, by stating a property they should not have.

Example 2.22. Extended r.e. with complement
Consider the set L of strings of alphabet {a, b} not containing aa as substring.
The complement of the language is

¬L = {x ∈ (a | b)∗ | x contains substring aa}

easily defined by r.e. (a | b)∗aa(a | b)∗, whence the extended r.e.

L = ¬((a | b)∗aa(a | b)∗)

The definition by a basic r.e.

(ab | b)∗(a | ε)

is, subjectively, less readable.

Actually it is not by coincidence that both preceding examples admit also an
r.e. without intersection or complement. A theoretical result to be presented
in Chapter 3 states that an r.e. extended with complement and intersection
produces always a regular language, which by definition can be defined by a
nonextended r.e. as well.

2.3.4 Closure Properties of REG Family

Let op be an operator to be applied to one or two languages, to produce
another language. A language family is closed by operator op if the language,
obtained applying op to any languages of the family, is in the same family.

Property 2.23. The family REG of regular languages is closed by the opera-
tors concatenation, union, and star (therefore also by derived operators such
as cross).

The property descends from the very definition of r.e. and of REG (p. 19).
In spite of its theoretical connotation, the property has practical relevance:
two regular languages can be combined using the above operations, at no
risk of losing the nice features of the class of regular languages. This will
have an important practical consequence, to permit compositional design of
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algorithms used to check if an input string is valid for a language. Furthermore
we anticipate the REG family is closed by intersection, complement, and
reflection too, which will be proved later.

The next statement provides an alternative definition of family REG.

Property 2.24. The family REG of regular languages is the smallest language
family such that: (i) it contains all finite languages and (ii) it is closed by
concatenation, union, and star.

The proof is simple. Suppose by contradiction a family exists F ⊂ REG,
which is closed by the same operators and contains all finite languages. Con-
sider any language Le defined by an r.e. e; the language is obtained by re-
peated applications of the operators present in e, starting with some finite
languages consisting of single characters. It follows from the hypothesis that
language L(e) belongs also to family F , which then contains any regular
language, contradicting the strict inclusion F ⊂ REG.

We anticipate other families exist which are closed by the same operators of
property 2.23. Chief among them is the family CF of context-free languages,
to be introduced soon. From statement 2.24 follows a containment relation
between the two families, REG ⊂ CF .

2.4 Linguistic Abstraction

If one recalls the programming languages he is familiar with, he may observe
that, although superficially different in their use of keywords and separators,
they are often quite similar at a deeper level. By shifting focus from con-
crete to abstract syntax we can reduce the bewildering variety of language
constructs to a few essential structures. The verb “to abstract” means14

consider a concept without thinking of a specific example.

Abstracting away from the actual characters representing a language con-
struct we perform a linguistic abstraction. This is a language transformation
that replaces the terminal characters of the concrete language with other ones
taken from an abstract alphabet. Abstract characters should be simpler and
suitable to represent similar constructs from different artificial languages.15

By this approach the abstract syntax structures of existing artificial lan-
guages are easily described as composition of few elementary paradigms, by
means of standard language operations: union, iteration, substitution (later
defined). Starting from the abstract language, a concrete or real language is

14 From WordNet 2.1.
15 The idea of language abstraction is inspired by research in linguistics aiming at dis-
covering the underlying similarities of human languages, disregarding morphological and
syntactic differences.
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obtained by the reverse transformation, metaphorically called coating with
syntax sugar.

Factoring a language into its abstract and concrete syntax pays off in
several ways. When studying different languages it affords much conceptual
economy. When designing compilers, abstraction helps for portability across
different languages, if compiler functions are designed to process abstract,
instead of concrete, language constructs. Thus parts of, say, a C compiler can
be reused for similar languages like FORTRAN or Pascal.

The surprisingly few abstract paradigms in use, will be presented in this
chapter, starting from the ones conveniently specified by regular expressions,
the lists.

2.4.1 Abstract and Concrete Lists

An abstract list contains an unbounded number of elements e of the same
type. It is defined by r.e. e+ or e∗, if elements can be missing.

An element for the moment should be viewed as a terminal character; but
in later refinements, the element may become a string from another formal
language: think e.g., of a list of numbers.

Lists with Separators and Opening/Closing Marks

In many concrete cases, adjacent elements must be separated by strings called
separators, s in abstract syntax. Thus in a list of numbers, a separator should
delimit the end of a number and the beginning of the next one.

A list with separators is defined by r.e. e(s e)∗, saying the first element can
be followed by zero or more pairs se. The equivalent definition (e s)∗e differs
by giving evidence to the last element.
In many concrete cases there is another requirement, intended for legibility
or computer processing: to make the start and end of the list easily recogniz-
able by prefixing and suffixing some special signs: in the abstract, the initial
character or opening mark i, and the final character or closing mark f .
Lists with separators and opening/closing marks are defined as

ie(s e)∗f

Example 2.25. Some concrete lists
Lists are everywhere in languages, as shown by typical examples.

Instruction block: begin instr1; instr2; . . . instrnend
where instr possibly stands for assignment, go to, if-statement, write-
statement, etc. Corresponding abstract and concrete terms are:
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abstract alphabet concrete alphabet
i begin
e instr
s ;
f end

Procedure parameters: as in

procedure WRITE(
︸ ︷︷ ︸

i

par1
︸︷︷︸

e

,
︸︷︷︸

s

par2, . . . , parn )
︸︷︷︸

f

Should an empty parameter list be legal, as e.g., procedure WRITE(), the
r.e. becomes i[e(s e)∗]f .

Array definition: array MATRIX ′[′
︸ ︷︷ ︸

i

int1
︸︷︷︸

e

,
︸︷︷︸

s

int2, . . . , intn
′]′
︸︷︷︸

f

where each int is an interval such as 10...50.

Substitution

The above examples illustrate the mapping from concrete to abstract sym-
bols. Language designers find it useful to work by stepwise refinement, as done
in any branch of engineering, when a complex system is divided into its com-
ponents, atomic or otherwise. To this end, we introduce the new language
operation of substitution, that replaces a terminal character of a language
termed the source, with a sentence of another language called the target. As
always Σ is the source alphabet and L ⊆ Σ∗ the source language. Consider
a sentence of L containing one or more occurrences of a source character b:

x = a1a2 . . . an where for some i, ai = b

Let Δ be another alphabet, called target, and Lb ⊆ Δ∗ be the image language
of b. The substitution of language Lb for b in string x produces a set of strings,
that is, a language of alphabet (Σ \ {b}) ∪ Δ, defined as

{y | y = y1y2 . . . yn ∧ ( if ai �= b then yi = ai else yi ∈ Lb)}

Notice all characters other than b do not change. By the usual approach the
substitution can be defined on the whole source language, by applying the
operation to every source sentence.

Example 2.26. Example 2.25 continued
Resuming the case of a parameter list, the abstract syntax is

ie(se)∗f
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and the substitutions to be applied are tabulated below:

abstract char. imagine
i Li = procedure 〈procedure identifier〉(
e Le = 〈parameter identifier〉
s Ls = ,
f Lf = )

For instance, the opening mark i is replaced with a string of language Li,
where the procedure identifier has to agree with the rules of the technical
language.
Clearly the target languages of the substitution depend on the syntax sugar
of the concrete language intended for.
Notice the four substitutions are independent and can be applied in any order.

Example 2.27. Identifiers with underscore
In certain programming languages, long mnemonic identifier names can be
constructed by appending alphanumeric strings separated by a low dash:
thus LOOP3 OF 35 is a legal identifier. More precisely the first string must
initiate with a letter, the others may contain letters and digits, and adjacent
dashes are forbidden, as well as a trailing dash.
At first glance the language is a nonempty list of strings s, separated by a
dash:

s( s)∗

However, the first string should be different from the others and may be taken
to be the opening mark of a possibly empty list:

i( s)∗

Substituting to i the language (A . . . Z)(A . . . Z | 0 . . . 9)∗, and to s the lan-
guage (A . . . Z | 0 . . . 9)+, the final r.e. is obtained.

This is an overly simple instance of syntax design by abstraction and stepwise
refinement, a method to be further developed now and after the introduction
of grammars.
Other language transformations are studied in Chapter 6.

Hierarchical or Precedence Lists

A recurrent construct is a list such that each element is in turn a list of a
different type. The first list is attached to level 1, the second to level 2, and
so on. The present abstract structure, called hierarchical list, is restricted to
lists with a bounded number of levels. The case when levels are unbounded
is studied later using grammars, under the name of nested structures.
A hierarchical list is also called a list with precedences , because a list at level
k bounds its elements more strongly than the list at level k − 1; in other
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words the elements at higher level must be assembled into a list, and each
becomes an element at next lower level.
Each level may have opening/closing marks and separator; such delimiters
are usually distinct level by level, in order to avoid confusion.
The structure of a k � 2 levels hierarchical list is

list1 = i1list2(s1list2)∗f1

list2 = i2list3(s2list3)∗f2

. . .

listk = ikek(skek)∗fk

Notice the last level alone may contain atomic elements. But a common
variant permits at any level k atomic elements ek to occur side by side with
lists of level k + 1. Some concrete examples follow.

Example 2.28. Two hierarchical lists

Block of print instructions: begin instr1; instr2; . . . instrn end
where instr is a print instruction, WRITE(var1, var2, . . . , varn), i.e., a
list (from example 2.25). There are two levels:
Level 1: list of instructions instr, opened by begin, separated by semicolon
and closed by end.
Level 2: list of variables var separated by comma, with i2 = WRITE(
and f2 =).

Arithmetic expression not using parentheses: the precedence levels of op-
erators determine how many levels there are in the list. For instance, the
operators ×,÷ and +,− are layered on two levels and the string

3 + 5 × 7 × 4
︸ ︷︷ ︸

term1

− 8 × 2 ÷ 5
︸ ︷︷ ︸

term2

+8 + 3

is a two-level list, with neither opening nor closing mark. At level one we
find a list of terms (e1 = term) separated by the signs + and −, i.e., by
lower precedence operators. At level two we see a list of numbers, separated
by higher precedence signs ×,÷.
One may go further and introduce a third level having the exponentiation
sign “∗∗” as separator.

Hierarchical structures are of course omnipresent in natural languages as well.
Think of a list of nouns

father, mother, son, and daughter

Here we may observe a difference with respect to the abstract paradigm: the
penultimate element has a distinct separator, possibly in order to warn the
listener of an utterance that the list is approaching the end. Furthermore,
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items in the list may be enriched by second-level qualifiers, such as a list of
adjectives.

In all sorts of documents and written media, hierarchical lists are extremely
common. For instance, a book is a list of chapters, separated by white pages,
between a front and back cover. A chapter is a list of sections; a section a list
of paragraphs, and so on.

2.5 Context-Free Generative Grammars

We start the study of the context-free language family, which plays the cen-
tral role in compilation. Initially invented by linguists for natural languages
in the 1950s, context-free grammars have proved themselves extremely use-
ful in computer science applications: all existing technical languages have
been defined using such grammars. Moreover, since the early 1960s efficient
algorithms have been found to analyze, recognize, and translate sentences
of context-free languages. This chapter presents the relevant properties of
context-free languages, illustrates their application by many typical cases,
and lastly positions this formal model in the classical hierarchy of grammars
and computational models due to Chomsky.

2.5.1 Limits of Regular Languages

Regular expressions, though quite practical for describing list and related
paradigms, falls short of the capacity needed to define other frequently oc-
curring constructs. A case are the block structures (or nested parentheses)
offered by many technical languages, schematized by

begin begin begin . . . end
︸ ︷︷ ︸

begin . . . end
︸ ︷︷ ︸

. . . end

︸ ︷︷ ︸

end

Example 2.29. Simple block structure
In brief, let {b, e} be the alphabet, and consider a somewhat limited case
of nested structures, such that all opening marks precede all closing marks.
Clearly, opening/closing marks must have identical count:

L1 = {bnen | n � 1}

We argue this language cannot be defined by a regular expression, deferring
the formal proof to a later section. In fact, since strings must have all b’s left
of any e, either we write an overly general r.e. such as b+e+, which accepts
illegal strings like b3e5; or we write a too restricted r.e. that exhaustively lists
a finite sample of strings up to a bounded length. On the other hand, if we
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comply with the condition that the count of the two letters is the same by
writing (be)+, illegal strings like bebe creep in.

For defining this and other languages, regular or not, we move to the formal
model of generative grammars.

2.5.2 Introduction to Context-Free Grammars

A generative grammar or syntax 16 is a set of simple rules that can be repeat-
edly applied in order to generate all and only the valid strings.

Example 2.30. Palindromes
The language to be defined

L = {uuR | u ∈ {a, b}∗} = {ε, aa, bb, abba, baab, . . . , abbbba, . . .}

contains even-length strings having specular symmetry, called palindromes.
The following grammar G contains three rules:

pal → ε pal → a pal a pal → b pal b

The arrow ‘→’ is a metasymbol, exclusively used to separate the left from
the right part of a rule.

To derive the strings, just replace symbol ‘pal’, termed nonterminal, with
the right part of a rule, for instance:

pal ⇒ a pal a ⇒ ab pal ba ⇒ abb pal bba ⇒ . . .

The derivation process can be chained and terminates when the last string
obtained no longer contains a nonterminal symbol; at that moment the gen-
eration of the sentence is concluded. We complete the derivation:

abb pal bba ⇒ abbεbba = abbbba

(Incidentally the language of palindromes is not regular.)
Next we enrich the example into a list of palindromes separated by com-

mas, exemplified by sentence abba, bbaabb, aa. The grammar adds two list-
generating rules to the previous ones:

list → pal, list pal → ε
list → pal pal → a pal a

pal → b pal b

16 Sometimes the term grammar has a broader connotation than syntax, as when rules
for computing the meaning of sentences are added to rules for enumerating them. When
necessary, the intended meaning of the term will be made clear.
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The first rule says: the concatenation of palindrome, comma, and list produces
a (longer) list. The second says a list can be made of one palindrome.

Now there are two nonterminal symbols: list and pal; the former is termed
axiom because it defines the designated language, the latter defines certain
component substrings, also called constituents of the language, the palin-
dromes.

Example 2.31. Metalanguage of regular expressions
A regular expression defining a language over a fixed terminal alphabet,
say Σ = {a, b}, is a formula, that is, a string over the alphabet Σr.e. =
{a, b,∪,∗ , ∅, (, )}; such strings can be viewed in turn as sentences of a lan-
guage.
Following the definition of r.e. on p. 18, this language is generated by the
following syntax Gr.e.:

1. expr → ∅ 4. expr → (expr ∪ expr)
2. expr → a 5. expr → (expr expr)
3. expr → b 6. expr → (expr)∗

where numbering is only for reference. A derivation is

expr ⇒4 (expr ∪ expr) ⇒5 ((expr expr) ∪ expr) ⇒2 ((a expr) ∪ expr) ⇒6

⇒ ((a(expr)∗) ∪ expr) ⇒4 ((a((expr ∪ expr))∗) ∪ expr) ⇒2

⇒ ((a((a∪expr))∗)∪expr) ⇒3 ((a((a∪b))∗)∪expr) ⇒3 ((a((a∪b))∗)∪b) = e

Since the generated string can be interpreted as an r.e., it defines a second
language of alphabet Σ:

Le = {a, b, aa, ab, aaa, aba, ...}

the set of strings starting with letter a, plus string b.
A word of caution: this example displays two levels of languages, since

the syntax defines certain strings to be understood as definitions of other
languages. To avoid terminological confusion, we say the syntax stays at the
metalinguistic level, that is, over the linguistic level; or that the syntax is a
metagrammar.

To set the two levels apart, it helps to consider the alphabets: at meta-
level the alphabet is Σr.e. = {a, b,∪,∗ , ∅, (, )}, whereas the final language has
alphabet Σ = {a, b}, devoid of metasymbols.

An analogy with human language may also clarify the issue. A grammar
of Russian can be written in, say, English. Then it contains both Cyrillic and
Latin characters. Here English is the metalanguage and Russian the final
language, which only contains Cyrillic characters.

Another illustration of language versus metalanguage is provided by XML,
the metanotation used to define a variety of Web document types.
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Definition 2.32. A context-free (CF ) (or type 2 or BNF17) grammar G is
defined by four entities:

1. V , nonterminal alphabet, a set of symbols termed nonterminals (or meta-
symbols).

2. Σ, terminal alphabet.
3. P , a set of syntactic rules (or productions).
4. S ∈ V , a particular nonterminal termed axiom.

A rule of P is an ordered pair X → α, with X ∈ V and α ∈ (V ∪ Σ)∗.
Two or more rules

X → α1, X → α2, . . . , X → αn

with the same left part X can be concisely grouped in

X → α1 | α2 | . . . | αn or X → α1 ∪ α2 ∪ . . . ∪ αn

We say α1, α2, . . . , αn are the alternatives of X .

2.5.3 Conventional Grammar Representations

To prevent confusion, the metasymbols ‘→’, ‘|’, ‘∪’, ‘ε’ should not be used for
terminal and nonterminal symbols; moreover, the terminal and nonterminal
alphabets should be disjoint. In professional and scientific practice a few
different styles are used to represent terminals and nonterminals, as specified
in Table 2.2. The grammar of example 2.30 in the first style becomes:

< sentence >→ ε

< sentence >→ a < sentence > a

< sentence >→ b < sentence > b

Alternative rules may be grouped together:

< sentence >→ ε | a < sentence > a | b < sentence > b

If a technical grammar is large, of the order of some hundred rules, it should
be written with care in order to facilitate searching for specific definitions,
making changes, and cross referencing. Nonterminals should be identified by
self-explanatory names and rules should be divided into sections and num-
bered for reference.
On the other hand, in very simple examples, the third style is more suitable,

17 Type 2 comes from Chomsky’s classification. Backus Normal Form, or also Backus Naur
Form, comes from the names of John Backus and Peter Naur, who pioneered the use of
such grammars for programming language definition.
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Table 2.2 Different styles for writing grammars.

Nonterminals Terminals Examples

words between an-
gle brackets, for in-
stance: < sentence >
, < list of sentences >

written as they
are, without
special marks

< if sentence > →
if < cond > then < sentence >

else < sentence >

words written as they
are, without special
marks; may not con-
tain blank spaces, for

instance: sentence,
list of sentences

written in
black, in italic
or quoted, for
instance:

a then

′a′ ′then′

if sentence →
if cond then sentence else sentence

or
if sentence →

′if ′ cond ′then′ sentence ′else′ sentence

uppercase Latin letters;
terminal and nontermi-
nal alphabets disjoint

written as they
are, without
special marks

F → if C then D else D

i.e., to have disjoint short symbols for terminals and nonterminals.
In this book, we often adopt for simplicity the following style:

• lowercase Latin letters near the beginning of the alphabet {a, b, . . .} for
terminal characters;

• uppercase Latin letters {A, B, . . . , Z} for nonterminal symbols;
• lowercase Latin letters near the end of the alphabet {r, s, . . . , z} for strings

over Σ∗ (i.e. including only terminals);
• lowercase Greek letters {α, β, . . .} for strings over the combined alphabets

(V ∪ Σ)∗.

Types of Rules

In grammar studies rules may be classified depending on their form, with the
aim of making the study of language properties more immediate. For future
reference we list in Table 2.3 some common types of rules along with their
technical names. Each rule type is next schematized, with symbols adhering
to the following stipulations: a, b are terminals, u, v, w denote possibly empty
strings of terminals, A, B, C are nonterminals, α, β denote possibly empty
strings containing terminals and nonterminals; lastly σ denotes a string of
nonterminals.

The classification is based on the form of the right part RP of a rule,
excepting the recursive classes that also consider the left part LP. We omit
any part of a rule that is, irrelevant for the classification. Left- and right-
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Table 2.3 Classification of grammar rules.

Class and Description Examples

terminal : RP contains terminals or the empty string → u | ε

empty (or null): RP is empty → ε

initial : LP is the axiom S →
recursive: LP occurs in RP A → α A β

left-recursive: LP is prefix of RP A → A β

right-recursive: LP is suffix of RP A → β A

left and right-recursive: conjunction of two previous cases A → AβA

copy or categorization: RP is a single nonterminal A → B

linear : at most one nonterminal in RP → u B v | w

right-linear (type 3): as linear but nonterminal is suffix → u B | w

left-linear (type 3): as linear but nonterminal is prefix → B v | w

homogeneous normal : n nonterminals or just one terminal → A1 . . . An | a

Chomsky normal (or homogeneous of degree 2): two nonterminals or
just one terminal

→ B C | a

Greibach normal : one terminal possibly followed by nonterminals → a σ | b

operator normal : two nonterminals separated by a terminal (opera-
tor); more generally, strings devoid of adjacent nonterminals

→ A a B

linear forms are also known as type 3 grammars from Chomsky classification.
Most rule types will occur in the book; the remaining ones are listed for
general reference.

We shall see that some of the grammar forms can be forced on any given
grammar, leaving the language unchanged. Such forms are called normal.

2.5.4 Derivation and Language Generation

We reconsider and formalize the notion of string derivation. Let β = δAη
be a string containing a nonterminal, where δ and η are any, possibly empty
strings. Let A → α be a rule of G and let γ = δαη be the string obtained
replacing in β nonterminal A with the right part α.

The relation between such two strings is called derivation. We say that β
derives γ for grammar G, written

β ⇒
G

γ

or more simply β ⇒ γ when the grammar name is understood. Rule A → α
is applied in such derivation and string α reduces to nonterminal A.

Consider now a chain of derivations of length n � 0:

β0 ⇒ β1 ⇒ . . . ⇒ βn
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shortened to
β0

n⇒ βn

If n = 0, for every string β we posit β
0⇒ β, that is, the derivation relation is

reflexive.
To express derivations of any length we write

β0
∗⇒ βn (resp. β0

+⇒ βn)

if the length of the chain is n � 0 (resp. n � 1).
The language generated or defined by a grammar G starting from nonter-

minal A is
LA(G) = {x ∈ Σ∗ | A

+⇒ x}

It is the set of terminal strings deriving in one or more steps from A.
If the nonterminal is the axiom S, we have the language generated by G:

L(G) = LS(G) = {x ∈ Σ∗ | S
+⇒ x}

In some cases we need to consider derivations producing strings still contain-
ing nonterminals. A string form generated by G starting from nonterminal
A ∈ V , is a string α ∈ (V ∪ Σ)∗ such that A

∗⇒ α. In particular, if A is the
axiom, the string is termed sentential form. Clearly a sentence is a sentential
form devoid of nonterminals.

Example 2.33. Book structure
The grammar defines the structure of a book, containing a front page (f) and
a nonempty series (derived from nonterminal A) of chapters; each one starts
with a title (t) and contains a nonempty series (derived from B) of lines (l).
Grammar Gl:

S → fA
A → AtB | tB
B → lB | l

Some derivations are listed. From A the string form tBtB and the string
tlltl ∈ LA(Gl); from the axiom S sentential forms fAtlB, ftBtB and sentence
ftltlll.

The language generated from B is LB(Gl) = l+; the language L(Gl) gen-
erated by Gl is defined by the r.e. f(tl+)+, showing the language is in the
REG family. In fact, this language is a case of an abstract hierarchical list.

A language is context-free if a context-free grammar exists that generates it.
The family of context free languages is denoted by CF .
Two grammars G and G′ are equivalent if they generate the same language,
i.e., L(G) = L(G′).

Example 2.34. The next grammar Gl2 is clearly equivalent to Gl of example
2.33:
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S → fX
X → XtY | tY
Y → lY | l

since the only change affects the way nonterminals are identified. Also the
following grammar Gl3

S → fA
A → AtB | tB
B → Bl | l

is equivalent to Gl. The only difference is in row three, which defines B by a
left-recursive rule, instead of the right-recursive rule used in Gl. Clearly any
derivations of length n � 1

B
n⇒
Gl

ln and B
n⇒

Gl3
ln

generate the same language LB = l+.

2.5.5 Erroneous Grammars and Useless Rules

When writing a grammar attention should be paid that all nonterminals are
defined and that each one effectively contributes to the production of some
sentence. In fact, some rules may turn out to be unproductive.
A grammar G is called clean (or reduced) under the following conditions:

1. every nonterminal A is reachable from the axiom, i.e., there exists deriva-
tion S

∗⇒ αAβ;
2. every nonterminal A is well-defined , i.e., it generates a nonempty language,

LA(G) �= ∅.

It is often straightforward to check by inspection whether a grammar is clean.
The following algorithm formalizes the checks.

Grammar Cleaning

The algorithm operates in two phases, first pinpointing the nondefined non-
terminals, then the unreachable ones. Lastly the rules containing nontermi-
nals of either type can be cancelled.

Phase 1. Compute the set DEF ⊆ V of well-defined nonterminals.
The set DEF is initialized with the nonterminals of terminal rules, those
having a terminal string as right part:

DEF := {A | (A → u) ∈ P, with u ∈ Σ∗}
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Then the next transformation is applied until convergence is reached:

DEF := DEF ∪ {B | (B → D1D2 . . . Dn) ∈ P}

where every Di is a terminal or a nonterminal symbol present in DEF .
At each iteration two outcomes are possible:

• a new nonterminal is found having as right part a string of symbols that
are well-defined nonterminals or terminals, or else

• the termination condition is reached.

The nonterminals belonging to the complement set V \ DEF are nonde-
fined and should be eliminated.

Phase 2. A nonterminal is reachable from the axiom, if, and only if, there
exists a path in the following graph, which represents a relation between
nonterminals, called produce:

A
produce−→ B

saying that A produces B if, and only if, there exists a rule A → αBβ,
where A, B are nonterminals and α, β are any strings.
Clearly C is reachable from S if, and only if, in this graph there exists an
oriented path from S to C. The unreachable nonterminals are the comple-
ment with respect to V . They should be eliminated because they do not
contribute to the generation of any sentence.

Quite often the following requirement is added to the above cleanness condi-
tions.

• G should not permit circular derivations A
+⇒ A .

The reason is such derivations are inessential, because,if string x is obtained
by means of a circular derivation A ⇒ A ⇒ x,it can also be obtained by the
shorter derivation A ⇒ x.
Moreover, circular derivations cause ambiguity (a negative phenomenon later
discussed).
In this book we assume grammars are always clean and noncircular.

Example 2.35. Unclean examples

• The grammar with rules {S → aASb, A → b} generates nothing.
• The grammar G with rules {S → a, A → b} has an unreachable non-

terminal A; the same language L(G) is generated by the clean grammar
{S → a}.

• Circular derivation:
The grammar with rules {S → aASb | A, A → S | c} presents the circular
derivation S ⇒ A ⇒ S. The grammar {S → aSSb | c} is equivalent.
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• Notice that circularity may also come from the presence of an empty rule,
as for instance in the following grammar fragment:

X → XY | . . . Y → ε | . . .

Finally we observe a grammar, although clean, may still contain redundant
rules, as the next one:

Example 2.36. Double rules

1. S → aASb 4. A → c
2. S → aBSb 5. B → c
3. S → ε

One of the pairs (1,4) and (2,5), which generate exactly the same sentences,
should be deleted.

2.5.6 Recursion and Language Infinity

An essential property of most technical languages is to be infinite. We study
how this property follows from the form of grammar rules. In order to gen-
erate an unbounded number of strings, the grammar must be able to derive
strings of unbounded length. To this end, recursive rules are necessary, as
next argued.

An n � 1 steps derivation A
n⇒ xAy is called recursive (immediately

recursive if n = 1); similarly nonterminal A is called recursive. If x (resp. y)
is empty, the recursion is termed left (resp. right).

Property 2.37. Let G be a grammar clean and devoid of circular derivations.
The language L(G) is infinite if, and only if, G has a recursive derivation.

Proof. Clearly without recursive derivations, any derivation has bounded
length, therefore any sentence too is bounded in length, and L(G) would
be finite.
Conversely, assume G offers a recursive derivation A

n⇒ xAy, with not
both x and y empty by the noncircularity hypothesis. Then the derivation
A

+⇒ xmAym exists, for every m � 1. Since G is clean, A can be reached from
the axiom by a derivation S

∗⇒ uAv, and also A derives at least one terminal
string A

+⇒ w. Combining the derivations, we obtain

S
∗⇒ uAv

+⇒ uxmAymv
+⇒ uxmwymv , (m � 1)

that generates an infinite language.
In order to see whether a grammar has recursions, we examine the binary

relation produce of p. 38: a grammar does not have a recursion if, and only
if, the graph of the relation has no circuit.
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We illustrate by two grammars generating a finite and infinite language.

Example 2.38. Finite language

S → aBc B → ab | Ca C → c

The grammar does not have a recursion and allows just two derivations,
defining the finite language {aabc, acac}.

The next example is a most common paradigm of so many artificial languages.
It will be replicated and transformed over and over in the book.

Example 2.39. Arithmetic expressions
The grammar

G = ({E, T, F}, {i, +, ∗, ), (}, P, E)

contains the rules

E → E + T | T T → T ∗ F | F F → (E) | i

The language
L(G) = {i, i + i + i, i ∗ i, (i + i) ∗ i, . . .}

is the set of arithmetic expressions over the letter i, with signs of sum and
product and parentheses. Nonterminal F (factor) is nonimmediately recur-
sive; T (term) and E (expression) are immediately recursive, both to the
left. Such properties are evident from the circuits in the graph of the produce
relation:

E T F
prod. prod.

prod.

prod. prod.

Since the grammar is clean and noncircular, the language is infinite.

2.5.7 Syntax Trees and Canonical Derivations

The process of derivation can be visualized as a syntax tree for better legi-
bility. A tree is an oriented and ordered graph not containing a circuit, such
that every pair of nodes is connected by exactly one oriented path. An arc
〈N1 → N2〉 defines the 〈father, son〉 relation, customarily visualized from top
to bottom as in genealogical trees. The siblings of a node are ordered from
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left to right. The degree of a node is the number of its siblings. A tree contains
one node without father, termed root.

Consider an internal node N : the subtree with root N is the tree having
N as root and containing all siblings of N , all of their siblings, etc., that is,
all descendants of N . Nodes without sibling are termed leaves or terminal
nodes. The sequence of all leaves, read from left to right, is the frontier of
the tree.

A syntax tree has as root the axiom and as frontier a sentence.
To construct the tree consider a derivation. For each rule A0 → A1A2 . . . Ar,

r � 1 used in the derivation, draw a small tree having A0 as root and siblings
A1A2 . . . Ar, which may be terminals or nonterminals. If the rule is A0 → ε,
draw one sibling labelled with epsilon. Such trees are then pasted together,
by uniting each nonterminal sibling, say Ai, with the root node having the
same label Ai, which is used to expand Ai in the subsequent step of the
derivation.

Example 2.40. Syntax tree
The grammar is reproduced in Figure 2.1 numbering the rules for reference
in the construction of the syntax tree.

1. E → E + T E

E + T
2. E → T E

T
3. T → T ∗ F T

T ∗ F
4. T → F T

F
5. F → (E) F

( E )

6. F → i F

i

Fig. 2.1 Grammar rules and corresponding tree fragments.

The derivation

E ⇒
1

E+T ⇒
2

T+T ⇒
4

F+T ⇒
6

i+T ⇒
3

i+T ∗F ⇒
4

i+F∗F ⇒
6

i+i∗F ⇒
6

i+i∗i
(2.2)

corresponds to the following syntax tree:
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E1

E2

T4

F6

i

+ T3

T4

F6

i

∗ F6

i

where the labels of the rules applied are displayed. Notice the same tree
represents other equivalent derivations, like the next one

E ⇒
1

E+T ⇒
3

E+T∗F ⇒
6

E+T∗i ⇒
4

E+F∗i ⇒
6

E+i∗i ⇒
2

T+i∗i ⇒
4

F+i∗i ⇒
6

i+i∗i (2.3)

and many others which differ in the order rules are applied. Derivation (2.2)
is termed left and derivation (2.3) is termed right.

A syntax tree of a sentence x can also be encoded in a text, by enclosing each
subtree between brackets18. Brackets are subscripted with the nonterminal
symbol. Thus the preceding tree is encoded by the parenthesized expression

[
[

[[i]F ]T
]

E
+
[

[[i]F ]T ∗ [i]F
]

T

]

E

or by
i
︸︷︷︸

F
︸︷︷︸

T
︸︷︷︸

E

+ i
︸︷︷︸

F
︸︷︷︸

T

∗ i
︸︷︷︸

F

︸ ︷︷ ︸

T
︸ ︷︷ ︸

E

The representation can be simplified by dropping the nonterminal labels, thus
obtaining a skeleton tree (left):

or the corresponding parenthesized string:
[
[

[[i]]
]

+
[

[[i]] ∗ [i]
]
]

18 Assuming brackets not to be in the terminal alphabet.

i

+

i

∗

i

i

+

i

∗

i

skeleton tree condensed skeleton tree
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A further simplification of the skeleton tree consists in shortening non-
bifurcating paths, resulting in the condensed skeleton tree (right). The nodes
fused together represent copy rules of the grammar. The corresponding paren-
thesized sentence is

[[i] + [[i] ∗ [i]]]

Some approaches tend to view a grammar as a device for assigning structure
to sentences. From this standpoint a grammar defines a set of syntax trees,
that is, a tree language instead of a string language.19

Left and Right Derivations

A derivation
β0 ⇒ β1 ⇒ . . . ⇒ βp

where
βi = δiAiηi and βi+1 = δiαiηi

is called right or rightmost (resp. left) if, for all 0 � i � p − 1, it is ηi ∈ Σ∗

(resp. δi ∈ Σ∗).
In words, a right (resp. left) derivation expands at each step the rightmost
(resp. leftmost) nonterminal. A letter r or l may be subscripted to the arrow
sign, to make explicit the order of the derivation.

Observe that other derivations exist which are neither right nor left, be-
cause the nonterminal symbol expanded is not always either rightmost or
leftmost, or because it is at some step rightmost and at some other step left-
most.
par Returning to the preceding example, the derivation (2.2) is leftmost and
is denoted by E

+⇒
l

i + i ∗ i. The derivation 2.3 is rightmost, whereas the

derivation

E ⇒
l,r

E + T ⇒
r

E + T ∗ F ⇒
l

T + T ∗ F ⇒ T + F ∗ F ⇒
r

T + F ∗ i ⇒
l

F + F ∗ i ⇒
r

F + i ∗ i ⇒
r

i + i ∗ i
(2.4)

is neither right nor left. The three derivations are represented by the same
tree.

This example actually illustrates an essential property of context-free
grammars.

Property 2.41. Every sentence of a context-free grammar can be generated
by a left (or right) derivation.

Therefore it does no harm to use just right (or left) derivations in the defini-
tion (p. 36) of the language generated by a grammar.

19 A reference to the theory of tree languages is [21].
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On the other hand, other more complex types of grammars, as the context-
sensitive ones, do not share this nice property, which is quite important for
obtaining efficient algorithms for string recognition and parsing, as we shall
see.

2.5.8 Parenthesis Languages

Many artificial languages include parenthesized or nested structures, made by
matching pairs of opening/closing marks. Any such occurrence may contain
other matching pairs.

The marks are abstract elements that have different concrete representa-
tions in distinct settings. Thus Pascal block structures are enclosed within
‘begin’ . . . ‘end’, while in language C curly brackets are used.

A massive use of parenthesis structures characterizes the mark-up lan-
guage XML, that offers the possibility of inventing new matching pairs. An
example is 〈title〉 . . . 〈/title〉 used to delimit the document title. Similarly,
in the LaTeX notation this book was written in, a mathematical formula is
enclosed between the marks \begin{equation}...\end{equation}.

When a marked construct may contain another construct of the same
kind, it is called self-nested. Self-nesting is potentially unbounded in arti-
ficial languages, whereas in natural languages its use is moderate, because
it causes difficulty of comprehension by breaking the flow of discourse. Next
comes an example of a complex German sentence 20 with three nested relative
clauses:

der Mann der die Frau die das Kind das die Katze f üttert
︸ ︷︷ ︸

sieht

︸ ︷︷ ︸

liebt

︸ ︷︷ ︸

schläft

Abstracting from concrete representation and content, this paradigm is
known as Dyck language. The terminal alphabet contains one or more pairs
of opening/closing marks. An example is alphabet Σ = {′)′,′ (′,′ ]′,′ [′} and
sentence [ ] ( ( [ ] ( ) ) ).

Dyck sentences are characterized by the following cancellation rule that
checks parentheses are well nested: given a string, repeatedly substitute the
empty string for a pair of adjacent matching parentheses

[ ] ⇒ ε ( ) ⇒ ε

thus obtaining another string. Repeat until the transformation no longer
applies; the original string is correct if, and only if, the last string is
empty.

20 The man who loves the woman (who sees the child (who feeds the cat)) sleeps.
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Example 2.42. Dyck language
To aid the eye, we encode left parentheses as a, b, . . . and right parentheses
as a′, b′, . . ..
With alphabet Σ = {a, a′, b, b′}, the Dyck language is generated by grammar:

S → aSa′S | bSb′S | ε

Notice we need nonlinear rules (the first two) to generate this language.
To see that, compare with language L1 of example 2.29 on p. 30. The lat-
ter, recoding its alphabet {b, e} as {a, a′}, is strictly included in the Dyck
language, since L1 disallows any string with two or more nests, e.g.,

a a aa′
︸︷︷︸

a′

︸ ︷︷ ︸

a a aa′
︸︷︷︸

a′

︸ ︷︷ ︸

a′

︸ ︷︷ ︸

a′

Such sentences have a branching syntax tree that requires nonlinear rules for
its derivation.

Another way of constraining the grammar to produce nested constructs, is
to force each rule to be parenthesized.

Definition 2.43. Parenthesized grammar
Let G = (V, Σ, P, S) be a grammar with an alphabet Σ not containing paren-
theses. The parenthesized grammar Gp has alphabet Σ ∪ {′(′,′ )′} and rules

A → (α) where A → α is a rule of G

The grammar is distinctly parenthesized if every rule has form

A → (A α )A B → (B α )B

where (A and )A are parentheses subscripted with the nonterminal name.

Clearly each sentence produced by such grammars exhibits parenthesized
structure.

Example 2.44. Parenthesis grammar
The parenthesized version of the grammar for lists of palindromes (p. 31) is

list → (pal, list) pal → ()
list → (pal) pal → (a pal a)

pal → (b pal b)

The original sentence aa becomes the parenthesized sentence ((a ( ) a)).

A notable effect of the presence of parentheses is to allow a simpler checking
of string correctness, to be discussed in Chapter 4.
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2.5.9 Regular Composition of Context-Free Languages

If the basic operations of regular languages, union, concatenation, and star,
are applied to context-free languages, the result remains a member of the CF
family, to be shown next.

Let G1 = (Σ1, V1, P1, S1) and G2 = (Σ2, V2, P2, S2) be the grammars
defining languages L1 and L2. We need the unrestrictive hypothesis that
nonterminal sets are disjoint, V1∩V2 = ∅. Moreover, we stipulate that symbol
S, to be used as axiom of the grammar under construction, is not used by
either grammar, S �∈ (V1 ∪ V2).

Union: The union L1 ∪L2 is defined by the grammar containing the rules
of both grammars, plus the initial rules S → S1 | S2. In formulas, the
grammar is

G = (Σ1 ∪ Σ2, {S} ∪ V1 ∪ V2, {S → S1 | S2} ∪ P1 ∪ P2, S)

Concatenation: The concatenation L1L2 is defined by the grammar con-
taining the rules of both grammars, plus the initial rule S → S1S2. The
grammar is

G = (Σ1 ∪ Σ2, {S} ∪ V1 ∪ V2, {S → S1S2} ∪ P1 ∪ P2, S)

Star: The grammar G of the starred language (L1)∗ includes the rules of
G1 and rules S → SS1 | ε.

Cross: From the identity L+ = L.L∗, the grammar of the cross language
could be written applying the concatenation construction to L and L∗, but
it is better to produce the grammar directly. The grammar G of language
(L1)+ contains the rules of G1 and rules S → SS1 | S1.

From all this we have:
Property 2.45. The family CF of context-free languages is closed by union,
concatenation, star, and cross.

Example 2.46. Union of languages
The language

L = {aibic∗ | i � 0} ∪ {a∗bici | i � 0} = L1 ∪ L2

contains sentences of the form aibjck with i = j ∨ j = k, such as

a5b5c2, a5b5c5, b5c5

The rules for the component languages are straightforward:
G1 G2

S1 → XC S2 → AY
X → aXb | ε Y → bY c | ε
C → cC | ε A → aA | ε
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We just add alternatives S → S1 | S2, to trigger derivation with either gram-
mar.

A word of caution: if the nonterminal sets overlap, this construction produces
a grammar that generates a language typically larger than the union. To see
it, replace grammar G2 with the trivially equivalent grammar G′′:

S′′ → AX X → bXc | ε A → aA | ε

Then the putative grammar of the union, {S → S1 | S′′}∪P1∪P ′′, would also
allow hybrid derivations using rules from both grammars, thus generating for
instance abcbc, which is not in the union language.

Notably, property 2.45 holds for both families REG and CF , but only the
former is closed by intersection and complement, to be seen later.

Grammar of Mirror Language

Examining the effect of string reversal on the sentences of a CF language,
one immediately sees the family is closed with respect to reversal (the same
as family REG). Given a grammar, the rules generating the mirror language
are obtained reversing every right part of a rule.

2.5.10 Ambiguity

The common linguistic phenomenon of ambiguity in natural language shows
up when a sentence has two or more meanings. Ambiguity is of two kinds, se-
mantic or syntactic. Semantic ambiguity occurs in the clause a hot spring,
where the noun denotes either a coil or a season. A case of syntactic (or
structural) ambiguity is half baked chicken, having different meanings de-
pending on the structure assigned:
[[half baked] chicken] or [half [baked chicken]].
Although ambiguity may cause misunderstanding in human communication,
negative consequences are counteracted by availability of nonlinguistic clues
for choosing the intended interpretation.

Artificial languages too can be ambiguous, but the phenomenon is less
deep than in human languages. In most situations ambiguity is a defect to
be removed or counteracted.
A sentence x defined by grammar G is syntactically ambiguous, if it is gen-
erated with two different syntax trees. Then the grammar too is called am-
biguous.

Example 2.47. Consider again the language of arithmetic expressions of ex-
ample 2.39, p. 40, but define it with a different grammar G′ equivalent to the
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previous one:
E → E + E | E ∗ E | (E) | i

The left derivations

E ⇒ E ∗ E ⇒ E + E ∗ E ⇒ i + E ∗ E ⇒ i + i ∗ E ⇒ i + i ∗ i (2.5)

E ⇒ E + E ⇒ i + E ⇒ i + E ∗ E ⇒ i + i ∗ E ⇒ i + i ∗ i (2.6)

generate the same sentence, with different trees:

(2.5) E

E

E

i

+ E

i

∗ E

i

(2.6) E

E

i

+ E

E

i

∗ E

i

The sentence i + i ∗ i is therefore ambiguous.
Pay attention now to the meaning of the two readings of the same expres-

sion. The left tree interprets the sentence as (i + i) ∗ i, the right tree assigns
the interpretation i + (i ∗ i). The latter is likely to be preferable, because
it agrees with the traditional precedence of operators. Another ambiguous
sentence is i + i + i, having two trees that differ in the order of association of
subexpressions: from left to right, or the other way. As a consequence gram-
mar G′ is ambiguous.
A major defect of this grammar is that it does not force the expected prece-
dence of product over sum.

On the other hand, for grammar G of example 2.39 on p. 40 each sentence
has only one left derivation, therefore all sentences are unambiguous, and the
grammar as well.

It may be noticed that the new grammar G′ is smaller than the old one G:
this manifests a frequent property of ambiguous grammars, their conciseness
with respect to equivalent unambiguous ones. In special situations, when
one wants the simplest possible grammar for a language, ambiguity may
be tolerated, but in general conciseness cannot be bought at the cost of
equivocation.

The degree of ambiguity of a sentence x of language L(G) is the number
of distinct syntax trees deriving the sentence. For a grammar the degree
of ambiguity is the maximum degree of any ambiguous sentence. The next
derivation shows such degree may be unbounded.

Example 2.48. (Example 2.47 continued)
The degree of ambiguity is 2 for sentence i + i + i ; it is 5 for i + i ∗ i + i, as
one sees from the skeleton trees:
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i + i
︸︷︷︸

∗ i + i
︸︷︷︸

︸ ︷︷ ︸

, i + i ∗ i
︸︷︷︸

︸ ︷︷ ︸

+i

︸ ︷︷ ︸

, i + i ∗ i
︸︷︷︸

+i
︸ ︷︷ ︸

︸ ︷︷ ︸

, i + i ∗ i + i
︸︷︷︸

︸ ︷︷ ︸

︸ ︷︷ ︸

, i + i
︸︷︷︸

∗i
︸ ︷︷ ︸

+i

︸ ︷︷ ︸

It is easy to see that longer sentences cause the degree of ambiguity to grow
unbounded.

An important practical problem is to check a given grammar for ambiguity.
This is an example of a seemingly simple problem, for which no general
algorithm exists: the problem is undecidable.21 This means that any general
procedure for checking a grammar for ambiguity may be forced to examine
longer and longer sentences, without ever reaching the certainty of the answer.
On the other hand, for a specific grammar, with some ingenuity, one can often
prove nonambiguity by applying some form of inductive reasoning.

In practice this is not necessary, and two approaches usually suffice. First,
a small number of rather short sentences are tested, by constructing their
syntax trees and checking that they are unique. If the test is passed, one has to
check whether the grammar complies with certain conditions characterizing
the so-called deterministic context-free languages, to be lengthily studied in
Chapters 4 and 5. Such conditions are sufficient to ensure nonambiguity.

Even better is to prevent the problem when a grammar is designed, by
avoiding some common pitfalls to be explained next.

2.5.11 Catalogue of Ambiguous Forms and Remedies

Following the definition, an ambiguous sentence displays two or more struc-
tures, each one possibly associated with a sensible interpretation. Though
the cases of ambiguity are abundant in natural language, clarity of commu-
nication is not seriously impaired because sentences are uttered or written
in a living context (gestures, intonation, presuppositions, etc.) that helps in
selecting the interpretation intended by the author. On the contrary, in arti-
ficial languages ambiguity cannot be tolerated because machines are not as
good as humans in making use of context, with the negative consequence of
unpredictable behavior of the interpreter or compiler.

Now we classify the most common types of ambiguity and we show how
to remove them by modifying the grammar, or in some cases the language.

Ambiguity from Bilateral Recursion

A nonterminal symbol A is bilaterally recursive if it is both left and right-
recursive (i.e., it offers derivations A

+⇒ Aγ and A
+⇒ βA). We distinguish

the case the two derivations are produced by the same or by different rules.

21 A proof can be found in [28].
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Example 2.49. Bilateral recursion from same rule
The grammar G1:

E → E + E | i

generates string i + i + i with two different left derivations:

E ⇒ E + E ⇒ E + E + E ⇒ i + E + E ⇒ i + i + E ⇒ i + i + i

E ⇒ E + E ⇒ i + E ⇒ i + E + E ⇒ i + i + E ⇒ i + i + i

Ambiguity comes from the absence of a fixed order of generation of the string,
from the left or from the right. Looking at the intended meaning as arith-
metic formulas, this grammar does not specify the order of application of
operations.

In order to remove ambiguity, observe this language is a list with separators
L(G1) = i(+i)∗, a paradigm we are able to define with a right-recursive
rule, E → i + E | i; or with a left-recursive rule E → E + i | i. Both are
unambiguous.

Example 2.50. Left and right recursions in different rules
A second case of bilateral recursive ambiguity is grammar G2:

A → aA | Ab | c

This language too is regular: L(G2) = a∗cb∗. It is the concatenation of two
lists, a∗ and b∗, with c interposed. Ambiguity disappears if the two lists are
derived by separate rules, thus suggesting the grammar:

S → AcB A → aA | ε B → bB | ε

An alternative remedy is to decide the first list should be generated before
the second one (or conversely):

S → aS | X X → Xb | c

Remark: a double recursion on the same nonterminal by itself does not cause
ambiguity, if the two recursions are not left and right. Observe the grammar

S → +SS | ×SS | i

that defines so-called prefix polish expressions with signs of sum and product
(further studied in Chapter 6), such as + + ii × ii. Although two rules are
doubly recursive, since one recursion is right but the other is not left, the
grammar is not ambiguous.
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Ambiguity from Union

If languages L1 = L(G1) and L2 = L(G2) share some sentences, that is,
their intersection is not empty, the grammar G of the united languages, con-
structed as explained on p. 46, is ambiguous. (No need to repeat the two
component grammars should have disjoint nonterminal sets.)
Take a sentence x ∈ L1 ∩L2. It is obviously produced by two distinct deriva-
tions, one using rules of G1, the other using rules of G2. The sentence is
ambiguous for grammar G that contains all the rules. Notice a sentence x
belonging to the first but not the second language, x ∈ L1 \L2, is derived by
rules of G1 only, hence is not ambiguous (if the first grammar is so).

Example 2.51. Union of overlapping languages
In language and compiler design there are various causes for overlap.

1. When one wants to single out a special pattern requiring special processing,
within a general class of phrases. Consider additive arithmetic expressions
with constants C and variables i. A grammar is

E → E+C | E+i | C | i C → 0 | 1D | . . . | 9D D → 0D | . . . | 9D | ε

Now assume the compiler has to single out such expressions as i + 1 or
1+ i, because they have to be translated to machine code, using increment
instead of addition. To this end we add the rules

E → i + 1 | 1 + i

Unfortunately, the new grammar is ambiguous, since a sentence like 1 + i
is generated by the original rules too.

2. When the same operator is overloaded, i.e. used with different meanings in
different constructs. In language Pascal the sign ‘+’ denotes both addition
in

E → E + T | T T → V V → . . .

and set union in

Eset → Eset + Tset | Tset Tset → V

Such ambiguities need severe grammar surgery to be eliminated: either the
two ambiguous constructs are made disjoint or they are fused together. Dis-
junction of constructs is not feasible in the previous examples, because string
‘1’ cannot be removed from the set of integer constants derived from nonter-
minal C. To enforce a special treatment of value ‘1’, if one accepts a syntactic
change to the language, it suffices to add operator inc (for increment by 1)
and replace rule E → i + 1 | 1 + i with rule E → inc i.

In the latter example ambiguity is semantic, caused by the double meaning
(polysemy) of operator ‘+’. A remedy is to collapse together the rules for
arithmetic expressions (generated from E) and set expressions (generated
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from Eset), thus giving up a syntax-based separation. The semantic analyzer
will take care of it. Alternatively, if modifications are permissible, one may
replace ‘+’ by character ‘∪’ in set expressions.

In the following examples removal of overlapping constructs actually succeeds.

Example 2.52. (McNaughton)

1. Grammar G:
S → bS | cS | D D → bD | cD | ε

is ambiguous since L(G) = {b, c}∗ = LD(G). The derivations

S
+⇒ bbcD ⇒ bbc S ⇒ D

+⇒ bbcD ⇒ bbc

produce the same result. Deleting the rules of D, which are redundant, we
have S → bS | cS | ε.

2. Grammar
S → B | D B → bBc | ε D → dDe | ε

where B generates bncn, n � 0, and D generates dnen, n � 0, has just one
ambiguous sentence: ε. Remedy: generate it directly from axiom:

S → B | D | ε B → bBc | bc D → dDe | de

Ambiguity from Concatenation

Concatenating languages may cause ambiguity, if a suffix of a sentence of
language one is also a prefix of a sentence of language two.
Remember the grammar G of concatenation L1L2 (p. 46) contains rule S →
S1S2 in addition to the rules of G1 and G2 (by hypothesis not ambiguous).
Ambiguity arises in G if the following sentences exist in the languages:

u′ ∈ L1 u′v ∈ L1 vz′′ ∈ L2 z′′ ∈ L2

Then string u′vz′′ of language L1.L2 is ambiguous, via the derivations

S ⇒ S1S2
+⇒ u′S2

+⇒ u′vz′′ S ⇒ S1S2
+⇒ u′vS2

+⇒ u′vz′′

Example 2.53. Concatenation of Dyck languages
For the concatenation L = L1L2 of the Dyck languages (p. 44) L1 and L2

over alphabets (in the order given) {a, a′, b, b′} and {b, b′, c, c′}, a sentence is
aa′bb′cc′. The standard grammar of L is

S → S1S2 S1 → aS1a
′S1 | bS1b

′S1 | ε S2 → bS2b
′S2 | cS2c

′S2 | ε

The sentence is derived in two ways:
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S1
︷ ︸︸ ︷

aa′bb′

S2
︷︸︸︷

cc′

S1
︷︸︸︷

aa′

S2
︷ ︸︸ ︷

bb′cc′

To remove this ambiguity one should block the movement of a string from
the suffix of language one to the prefix of language two (and conversely).

If the designer is free to modify the language, a simple remedy is to inter-
pose a new terminal as separator between the two languages. In our example,
with � as separator, the language L1�L2 is easily defined without ambiguity
by a grammar with initial rule S → S1�S2.

Otherwise, a more complex unambiguous solution would be to write a
grammar, with the property that any string not containing c, such as bb′, is
in language L1 but not in L2. Notice that string bcc′b′ is on the other hand,
assigned to language two.

Unique Decoding

A nice illustration of concatenation ambiguity comes from the study of codes
in information theory. An information source is a process producing a mes-
sage, i.e., a sequence of symbols from a finite set Γ = {A, B, . . . , Z}. Each
such symbol is then encoded into a string over a terminal alphabet Σ (typ-
ically binary); a coding function maps each symbol into a short terminal
string, termed its code.

Consider for instance the following source symbols and their mapping into
binary codes (Σ = {0, 1}):

Γ = {
01
︷︸︸︷

A ,

10
︷︸︸︷

C ,

11
︷︸︸︷

E ,

001
︷︸︸︷

R }

Message ARRECA is encoded as 01 001 001 11 10 01; by decoding this string
the original text is the only one to be obtained. Message coding is expressed
by grammar G1:

Mess → AMess | C Mess | E Mess | R Mess | A | C | E | R

A → 01 C → 10 E → 11 R → 001

The grammar generates a message such as AC by concatenating the corre-
sponding codes, as displayed in the syntax tree:

Mess
︷ ︸︸ ︷

A
︷︸︸︷

01

Mess
︷︸︸︷

C
︷︸︸︷

10
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As the grammar is clearly unambiguous, every encoded message, i.e., every
sentence of language L(G1), has one and only one syntax tree corresponding
to the decoded message.
On the contrary, the next bad choice of codes

Γ = {
00
︷︸︸︷

A ,

01
︷︸︸︷

C ,

10
︷︸︸︷

E ,

010
︷︸︸︷

R }

renders ambiguous the grammar

Mess → AMess | C Mess | E Mess | R Mess | A | C | E | R

A → 00 C → 01 E → 10 R → 010

Consequently, message 00010010100100 can be deciphered in two ways, as
ARRECA or as ACAEECA.
The defect has two causes: the identity

01
︸︷︷︸

first

.00.10 = 010
︸︷︷︸

first

.010

holds for two pairs of concatenated codes; and the first codes, 01 and 010,
are one prefix of the other.
Code theory studies these and similar conditions that make a set of codes
uniquely decipherable.

Other Ambiguous Situations

The next case is similar to the ambiguity of regular expressions (p. 22).

Example 2.54. Consider the grammar

S → DcD D → bD | cD | ε

Rule one says a sentence contains at least one c; the alternatives of D generate
{b, c}∗. The same language structure would be defined by regular expression
{b, c}∗ c {b, c}∗, which is ambiguous: every sentence with two or more c is
ambiguous since the distinguished occurrence of c is not fixed. This defect
can be repaired imposing the distinguished c is, say, the leftmost one:

S → BcD D → bD | cD | ε B → bB | ε

Notice that B may not derive a string containing c.

Example 2.55. Setting an order on rules
In grammar

S → bSc | bbSc | ε
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the first two rules may be applied in one or the other order, producing the
ambiguous derivations

S ⇒ bbSc ⇒ bbbScc ⇒ bbbcc S ⇒ bSc ⇒ bbbScc ⇒ bbbcc

Remedy: oblige rule one to precede rule two:

S → bSc | D D → bbDc | ε

Ambiguity of Conditional Statements

A notorious case of ambiguity in programming languages with conditional
instructions occurred in the first version of language Algol 60,22 a milestone
for applications of CF grammars. Consider grammar

S → if b then S else S | if b then S | a

where b stands for a boolean condition and a for any nonconditional instruc-
tion, both left undefined for brevity. The first alternative produces a two legs
conditional instruction, the second a one-leg construct.
Ambiguity arises when two sentences are nested, with the outermost being a
two-way conditional. For instance, examine the two readings:

︷ ︸︸ ︷

if b then
︷ ︸︸ ︷

if b then a else a

︷ ︸︸ ︷

if b then
︷ ︸︸ ︷

if b then a else a

caused by the “dangling” else.
It is possible to eliminate the ambiguity at the cost of complicating the

grammar. Assume we decide to choose the left skeleton tree, that binds the
else to the immediately preceding if . The corresponding grammar is:

S → SE | ST SE → if b then SE else SE | a

ST → if b then SE else ST | if b then S

Observe the syntax class S has been split into two classes: SE defines a two-
legs conditional such that its nested conditionals are in the same class SE . The
other syntax class ST defines a one-leg conditional, or a two-legs conditional
such that the first nested conditional is of class SE and the second is of class
ST ; this excludes the combinations

if b then ST else ST and if b then ST else SE

The facts that only SE may precede else, and that only ST defines a one-leg
conditional, disallow derivation of the right skeleton tree.

22 The following official version [39] removed the ambiguity.
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If the language syntax can be modified, a simpler solution exists: many
language designers have introduced a closing mark for delimiting conditional
constructs. See the next use of mark end−if :

S → if b then S else S end−if | if b then S end−if | a

Indeed this is a sort of parenthesizing (p. 45) of the original grammar.

Inherent Ambiguity of Language

In all preceding examples we have found that a language is defined by equiv-
alent grammars, some ambiguous some not. But this is not always the case.
A language is called inherently ambiguous if every grammar of the language
is ambiguous. Surprisingly enough, inherently ambiguous languages exist!

Example 2.56. Unavoidable ambiguity from union
Recall example 2.46 on p. 46:

L = {aibjck | (i, j, k � 0) ∧ ((i = j) ∨ (j = k))}

The language can be equivalently defined by means of the union

L = {aibic∗ | i � 0} ∪ {a∗bici | i � 0} = L1 ∪ L2

of two nondisjoint languages.
We intuitively argue that any grammar of this language is necessarily

ambiguous. The grammar on p. 46 unites the rules of the component gram-
mars, and is obviously ambiguous for every sentence x ∈ {ε, abc, . . . aibici . . .},
shared by both languages. Any such sentence is produced by G1 using rules
checking that |x|a = |x|b, a check only possible for a syntax structure of the
type

a . . . a ab
︸︷︷︸

b
︸ ︷︷ ︸

. . . b

︸ ︷︷ ︸

cc . . . c

Now the same string x, viewed as a sentence of L2, must be generated with
a structure of type

a . . . aa b . . . b bc
︸︷︷︸

c
︸ ︷︷ ︸

. . . c

︸ ︷︷ ︸

in order to perform the equality check |x|b = |x|c.
No matter which variation of the grammar we make, the two equality

checks on the exponents are unavoidable for such sentences and the grammar
remains ambiguous.

In reality, inherent language ambiguity is rare and hardly, if ever, affects
technical languages.
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2.5.12 Weak and Structural Equivalence

It is not enough for a grammar to generate the correct sentences; it should
also assign to each one a suitable structure, in agreement with the intended
meaning. This requirement of structural adequacy has already been invoked
at times, for instance when discussing operator precedence in hierarchical
lists.
We ought to reexamine the notion of grammar in the light of structural ad-
equacy. Recall the definition on p. 36: two grammars are equivalent if they
define the same language, L(G) = L(G′). Such definition, to be qualified now
as weak equivalence, poorly fits with the real possibility of substituting one
grammar for the other in technical artifacts such as compilers. The reason is
the two grammars are not guaranteed to assign the same meaningful struc-
ture to every sentence.
We need a more stringent definition of equivalence, which is only relevant
for unambiguous grammars. Grammars G and G′ are strongly or structurally
equivalent , if L(G) = L(G′) and in addition G and G′ assign to each sentence
two syntax trees, which may be considered structurally similar.
The last condition should be formulated in accordance with the intended ap-
plication. A plausible formulation is: two syntax trees are structurally similar
if the corresponding condensed skeleton trees (p. 43) are equal.
Strong equivalence implies weak equivalence, but the former is a decidable
property, unlike the latter. 23

Example 2.57. Structural adequacy of arithmetic expressions
The difference between strong and weak equivalence is manifested by the case
of arithmetic expressions, such as 3 + 5× 8 + 2, first viewed as a list of digits
separated by plus and times signs.

• First grammar G1:

E → E + C E → E × C E → C
C → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The syntax tree of the previous sentence is

E

E

E

E

C

3

+ C

5

× C

8

+ C

2

.
.

.
3 + 5

× 8
+ 2

In the condensed skeleton (right), nonterminals and copy rules have been
dropped.

23 The decision algorithm, e.g., in [47], is similar to the one for checking the equivalence
of finite automata, to be presented in next chapter.
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• A second grammar G2 for this language is

E → E + T E → T T → T × C T → C
C → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The two grammars are weakly equivalent. Observing now the syntax tree
of the same sentence:

E

E

E

T

C

3

+ T

T

C

5

× C

8

+ T

C

2

.
.

3 + .
5 × 8

+ 2

we see its skeleton differs from the previous one: it contains a subtree with
frontier 5 × 8, associated with a multiplication. Therefore the grammars
are not structurally equivalent.

Is either one of the grammars preferable? Concerning ambiguity, both gram-
mars are all right. But only grammar G2 is structurally adequate, if one con-
siders also meaning. In fact, sentence 3+5×8+2 denotes a computation, to be
executed in the traditional order: 3+(5×8)+2 = (3+40)+2 = (43+2) = 45:
this is the semantic interpretation. The parentheses specifying the order of
evaluation ((3 + (5 × 8)) + 2) can be mapped on the subtrees of the skeletal
tree produced by G2.
On the contrary, grammar G1 produces the parenthesizing (((3+5)× 8)+2)
which is not adequate, because by giving precedence to the first sum over the
product, it returns the wrong semantic interpretation, 66.
Incidentally, the second grammar is more complex because enforcing operator
precedence requires more nonterminals and rules.

It is crucial for a grammar intended for driving a compiler to be struc-
turally adequate, as we shall see in the last chapter on syntax-directed trans-
lations.

• A case of structural equivalence is illustrated by the next grammar G3
24:

E → E + T | T + T | C + T | E + C | T + C | C + C | T × C | C × C | C
T → T × C | C × C | C
C → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Now the condensed skeleton trees of any arithmetic expression coincide for
grammars G2 and G3. They are structurally equivalent.

24 This grammar has more rules because it does not exploit copy rules to express inclu-
sion of syntax classes. Categorization and ensuing taxonomies reduce the complexity of
descriptions in any area of knowledge.



2.5 Context-Free Generative Grammars 59

Generalized Structural Equivalence

Sometimes a looser criterion of similarity than strict identity of condensed
skeleton trees is more suitable. This consists in requesting that the two cor-
responding trees should be easily mapped one on the other by some simple
transformation. The idea can be differently materialized: one possibility is
to have a bijective correspondence between the subtrees of one tree and the
subtrees of the other. For instance, the grammars

{S → Sa | a} and {X → aX | a}

are just weakly equivalent in generating L = a+, since the condensed skeleton
trees differ, as in the example of sentence aa:

a
︸︷︷︸

a
︸ ︷︷ ︸

and a a
︸︷︷︸

︸ ︷︷ ︸

However, the two grammars may be considered structurally equivalent in a
generalized sense because each left-linear tree of the first grammar corre-
sponds to a right-linear tree of the second. The intuition that the two gram-
mars are similar is satisfied because their trees are specularly identical, i.e.,
they become coincident by turning left-recursive rules into right-recursive (or
conversely).

2.5.13 Grammar Transformations and Normal Forms

We are going to study a range of transformations that are useful to obtain
grammars having certain desired properties, without affecting the language.
Normal forms are restricted rule patterns, yet allowing any context-free lan-
guage to be defined. Such forms are widely used in theoretical papers, to sim-
plify statements and proofs of theorems. Otherwise, in applied work, gram-
mars in normal form are rarely used because they are much larger and less
readable.
Several grammar transformations (e.g., the movement of recursion from left
to right) are useful for parsing algorithms. We start the survey of transfor-
mations from simple ones.

Let grammar G = (V, Σ, P, S) be given.

Nonterminal Expansion

A general-purpose transformation preserving language is nonterminal expan-
sion, consisting of replacing a nonterminal with its alternatives.

Replace rule A → αBγ with rules
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A → αβ1γ | αβ2γ | . . . | αβnγ

where B → β1 | β2 | . . . | βn are all the alternatives of B. Clearly the language
does not change, since the two-step derivation A ⇒ αBγ ⇒ αβiγ becomes
the immediate derivation A ⇒ αβiγ, to the same effect.

Axiom Elimination from Right Parts

At no loss of generality, every right part of a rule may exclude the presence
of the axiom, i.e., be a string over alphabet (Σ ∪ (V \ {S})). To this end, just
introduce a new axiom S0 and rule S0 → S.

Nullable Nonterminals and Elimination of Empty Rules

A nonterminal A is nullable if it can derive the empty string, i.e., A
+⇒ ε.

Consider the set named Null ⊆ V of nullable nonterminals. The set is com-
puted by the following logical clauses, to be applied in any order until the
set ceases to grow, i.e., a fixed point is reached:

A ∈ Null if A → ε ∈ P
A ∈ Null if (A → A1A2 . . . An ∈ P with Ai ∈ V \ {A}) ∧ ∀Ai(Ai ∈ Null)

Row one finds the nonterminals that are immediately nullable; row two finds
those which derive a string of nullable nonterminals.

Example 2.58. Computing nullable nonterminals

S → SAB | AC A → aA | ε B → bB | ε C → cC | c

Result: Null = {A, B}.
Notice that, if rule S → AB were added to the grammar, the result would

include S ∈ Null.

The normal form without nullable nonterminals, for brevity nonnullable, is
defined by the condition that no nonterminal other than the axiom is nullable.
Moreover, the axiom is nullable if, and only if, the empty string is in the
language.

To construct the non-nullable form, first compute the set Null, then do
as follows:

• for each rule A → A1A2 . . . An ∈ P , with Ai ∈ V ∪ Σ, add as alternatives
the strings obtained from the right part, deleting in all possible ways any
nullable nonterminal Ai;

• remove the empty rules A → ε, for every A �= S.

If the grammar thus obtained is unclean or circular, it should be cleaned with
the known algorithms (p. 37).
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Example 2.59. (Example 2.58 continued)
In Table 2.4, column one lists nullability. The other columns list the original
rules, those produced by the transformation, and the final clean rules.

Table 2.4 Elimination of copy rules.

Nullable G original G′ to be cleaned G′ nonnullable normal

F S → SAB | S → SAB | SA | SB | S | S → SAB | SA | SB |
AC | AC | C | AC | C

V A → aA | ε A → aA | a A → aA | a
V B → bB | ε B → bB | b B → bB | b
F C → cC | c C → cC | c C → cC | c

Copies or Subcategorization Rules and Their Elimination

A copy (or subcategorization) rule has the form A → B, with B ∈ V , a
nonterminal symbol. Any such rule is tantamount as the relation LB(G) ⊆
LA(G): the syntax class B is included in the class A.
For a concrete example, the rules

iterative phrase → while phrase | for phrase | repeat phrase

introduce three subcategories of iterative phrases: while, for, and repeat.
Although copy rules can be eliminated, many more alternatives have to be in-
troduced and grammar legibility usually deteriorates. Notice that copy elim-
ination reduces the height of syntax trees by shortening derivations.
For grammar G and nonterminal A, we define the set Copy(A) ⊆ V contain-
ing the nonterminals that are immediate or transitive copies of A:

Copy(A) = {B ∈ V | there is a derivation A
∗⇒ B}

Note: if nonterminal C is nullable, the derivation may take the form

A
+⇒ BC ⇒ B

For simplicity we assume the grammar is nonnullable and the axiom does not
occur in a right part.
To compute the set Copy, apply the following logical clauses until a fixed
point is reached:

A ∈ Copy(A) - - initialization
C ∈ Copy(A) if (B ∈ Copy(A)) ∧ (B → C ∈ P )

Then construct the rules P ′ of a new grammar G′, equivalent to G and copy-
free, as follows:
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P ′ := P \ {A → B | A, B ∈ V } - - copy cancellation
P ′ := {A → α | α ∈ ((Σ ∪ V )∗ \ V )} where (B → α) ∈ P ∧ B ∈ Copy(A)

The effect is that the old grammar derivation A
+⇒ B ⇒ α shrinks to the

immediate derivation A ⇒ α.
Notice the transformation keeps all original noncopy rules. In Chapter 3 the
same transformation will be applied to remove spontaneous moves from an
automaton.

Example 2.60. Copy-free rules for arithmetic expressions
Applying the algorithm to grammar G2

E → E + T | T T → T × C | C
C → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

we obtain

Copy(E) = {E, T, C}, Copy(T ) = {T, C}, Copy(C) = {C}

The equivalent copy-free grammar is

E → E + T | T × C | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
T → T × C | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
C → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

It is worth repeating that copy rules are very convenient for reusing cer-
tain blocks of rules, corresponding to syntactic subcategories; the grammar is
concise and evidences the generalization and specialization of language con-
structs. For these reasons, reference manuals of technical languages cannot
do without copy rules.

Chomsky or Binary Normal Form

There are two types of rules:

1. homogeneous binary: A → BC, where B, C ∈ V
2. terminal with singleton right part : A → a, where a ∈ Σ

Moreover, if the empty string is in the language, there is rule S → ε but the
axiom is not allowed in any right part.

With such constraints any internal node of a syntax tree may have either
two nonterminal siblings or one terminal son.

Given a grammar, by simplifying hypothesis without nullable nontermi-
nals, we explain how to obtain a Chomsky normal form. Each rule A0 →
A1A2 . . . An of length n > 2 is converted to a length 2 rule, singling out
the first symbol A1 and the remaining suffix A2 . . . An. Then a new ancillary
nonterminal is created, named 〈A2 . . . An〉, and the new rule

〈A2 . . . An〉 → A2 . . . An
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Now the original rule is replaced by

A0 → A1〈A2 . . . An〉

If symbol A1 is terminal, we write instead the rules:

A0 → 〈A1〉〈A2 . . . An〉 〈A1〉 → A1

where 〈A1〉 is a new ancillary nonterminal.
Continue applying the same series of transformations to the grammar thus
obtained, until all rules are in the form requested.

Example 2.61. Conversion to Chomsky normal form
The grammar

S → dA | cB A → dAA | cS | c B → cBB | dS | d

becomes

S → 〈d〉A | 〈c〉B A → 〈d〉〈AA〉 | 〈c〉S | c B → 〈c〉〈BB〉 | 〈d〉S | d

〈d〉 → d 〈c〉 → c 〈AA〉 → AA 〈BB〉 → BB

This form is used in mathematical essays, but rarely in practical work.

Conversion of Left to Right Recursions

Another normal form termed not left-recursive is characterized by the ab-
sence of left-recursive rules or derivations (l-recursions); it is indispensable
for the top-down parsers to be studied in Chapter 4. We explain how to
transform l-recursions to right recursions.

Transformation of Immediate l-Recursions

The more common and easier case is when the l-recursion to be eliminated
is immediate. Consider the l-recursive alternatives of a nonterminal A:

A → Aβ1 | Aβ2 | . . . | Aβh , h � 1

where no βi is empty, and let

A → γ1 | γ2 | . . . | γk , k � 1

be the remaining alternatives.
Create a new ancillary nonterminal A′ and replace the previous rules with
the next ones:
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A → γ1A
′ | γ2A

′ | . . . | γkA′ | γ1 | γ2 | . . . | γk

A′ → β1A
′ | β2A

′ | . . . | βhA′ | β1 | β2 | . . . | βh

Now every original l-recursive derivation, as for instance

A ⇒ Aβ2 ⇒ Aβ3β2 ⇒ γ1β3β2

is replaced with the equivalent right-recursive derivation

A ⇒ γ1A
′ ⇒ γ1β3A

′ ⇒ γ1β3β2

Example 2.62. Converting immediate l-recursions to right recursion
In the usual grammar of expressions

E → E + T | T T → T ∗ F | F F → (E) | i

nonterminals E and T are immediately l-recursive. Applying the transforma-
tion, the right-recursive grammar is obtained:

E → TE′ | T E′ → +TE′ | +T

T → FT ′ | F T ′ → ∗FT ′ | ∗F F → (E) | i

Actually, in this case but not always, a simpler solution is possible, to spec-
ularly reverse the l-recursive rules, obtaining

E → T + E | T T → F ∗ T | F F → (E) | i

Transformation of Nonimmediate Left Recursions

The next algorithm is used to transform nonimmediate l-recursions. We
present it under the simplifying assumptions that grammar G is homoge-
neous, nonnullable, with singleton terminal rules; in other words, the rules
are like in Chomsky normal form, but more than two nonterminals are per-
mitted in a right part.

There are two nested loops; the external loop employs nonterminal expan-
sion to change non-immediate into immediate l-recursions, thus shortening
the length of derivations. The internal loop converts immediate l-recursions
to right recursions; in so doing it creates ancillary nonterminals.

Let V = {A1, A2, . . . , Am} be the nonterminal alphabet and A1 the axiom.
For orderly scanning, we view the nonterminals as an (arbitrarily) ordered
set, from 1 to m.
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Algorithm for Left Recursion Elimination

for i := 1 to m do
for j := 1 to i − 1 do
replace every rule of type Ai → Ajα, where i > j, with the rules:
Ai → γ1α | γ2α | . . . | γkα
(- - possibly creating immediate l-recursions)
where Aj → γ1 | γ2 | . . . | γk are the alternatives of nonterminal Aj

end do
eliminate, by means of the previous algorithm, any immediate l-recursion
that may have arisen as alternative of Ai, creating the ancillary
nonterminal A′

i

end do

The idea25 is to modify the rules in such a way that, if the right part of a
rule Ai → Aj . . . starts with a nonterminal Aj , then it is j > i, i.e., the latter
nonterminal follows in the ordering.

Example 2.63. Applying the algorithm to grammar G3

A1 → A2a | b A2 → A2c | A1d | e

which has the l-recursion A1 ⇒ A2a ⇒ A1da, we list in Table 2.5 the steps
producing grammar G′

3, which has no l-recursion.

Table 2.5 Turning recursion from left to right.

i j Grammar

1 Eliminate immediate l-recursions of A1

(none)
idem

2 1 Replace A2 → A1d with the rules con-
structed expanding A1, obtaining: A1 → A2a | b

A2 → A2c | A2ad | bd | e

Eliminate the immediate l-recursion, ob-
taining G′

3: A1 → A2a | b

A2 → bdA′
2 | eA′

2 | bd | e

A′
2 → cA′

2 | adA′
2 | c | ad

It would be straightforward to modify the algorithm to transform right recur-
sions to left ones, a conversion sometimes applied to speed up the bottom-up
parsing algorithms of Chapter 5.

25 A proof of correctness may be found in [28] or in [14].
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Greibach and Real-Time Normal Form

In the real-time normal form every rule starts with a terminal:

A → aα where a ∈ Σ, α ∈ {Σ ∪ V }∗

A special case of this is Greibach normal form:

A → aα where a ∈ Σ, α ∈ V ∗

Every rule starts with a terminal, followed by zero or more nonterminals.
To be exact, both forms exclude the empty string from the language.
The designation ‘real time’ will be later understood, as a property of the
parsing algorithm: at each step it reads and consumes a terminal character,
thus the total number of steps equals the length of the string to be parsed.
Assuming for simplicity the given grammar to be nonnullable, we explain
how to proceed to obtain the above forms.
For the real-time form: first eliminate all left-recursions; then, by elementary
transformations, expand any nonterminal that occurs in first position in a
right part, until a terminal prefix is produced. Then continue for the Greibach
form: if in any position other than the first, a terminal occurs, replace it by
an ancillary nonterminal and add the terminal rule that derives it.

Example 2.64. The grammar

A1 → A2a A2 → A1c | bA1 | d

is converted to Greibach form by the following steps.

1. Eliminate l-recursions by the step

A1 → A2a A2 → A2ac | bA1 | d

and then

A1 → A2a A2 → bA1A
′
2 | dA′

2 | d | bA1 A′
2 → acA′

2 | ac

2. Expand the nonterminals in first position until a terminal prefix is pro-
duced:

A1 → bA1A
′
2a | dA′

2a | da | bA1a A2 → bA1A
′
2 | dA′

2 | d | bA1

A′
2 → acA′

2 | ac

3. Substitute ancillary nonterminals for any terminal in a position other than
one:

A1 → bA1A
′
2〈a〉 | dA′

2〈a〉 | d〈a〉 | bA1〈a〉 A2 → bA1A
′
2 | dA′

2 | d | bA1
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A′
2 → a〈c〉A′

2 | a〈c〉

〈a〉 → a 〈c〉 → c

Halting before the last step, the grammar would be in real-time but not in
Greibach’s form.

Although not all preceding transformations, especially not the Chomsky
and Greibach ones, will be used in this book, practicing with them is recom-
mended as an exercise for becoming fluent in grammar design and manipu-
lation, a skill certainly needed in language and compiler engineering.

2.6 Grammars of Regular Languages

Since regular languages are a rather limited class of context-free languages,
it is not surprising that their grammars admit severe restrictions, to be next
considered. Furthering the study of regular languages, we shall also see that
longer sentences present unavoidable repetitions, a property that can be ex-
ploited to prove that certain context-free languages are not regular. Other
contrastive properties of the REG and CF families will emerge in chapters 3
and 4 from consideration of the amount of memory needed to check whether
a string is in the language, which is finite for the former and unbounded for
the latter family.

2.6.1 From Regular Expressions to Context-Free
Grammars

Given an r.e. it is straightforward to write a grammar for the language, by
analyzing the expression and mapping its subexpressions into grammar rules.
At the heart of the construction, the iterative operators (star and cross) are
replaced by unilaterally recursive rules.

Algorithm. From r.e. to grammar
First we identify and number the subexpressions contained in the given r.e. r.
From the very definition of r.e., the possible cases and corresponding grammar
rules (with uppercase nonterminals) are in Table 2.6. Notice we allow the
empty string as term. For shortening the grammar, if in any row a term ri

is a terminal or ε, we do not introduce a corresponding nonterminal Ei, but
write it directly in the rule.

Notice that rows 3 and 4 offer the choice of left or right-recursive rules.
To apply this conversion scheme, each subexpression label is assigned as a
distinguishing subscript to a nonterminal. The axiom is associated with the
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Table 2.6 From subexpressions to grammar rules.

subexpression grammar rule

1 r = r1.r2. . . . .rk E → E1E2 . . . Ek

2 r = r1 ∪ r2 ∪ . . . ∪ rk E → E1 ∪ E2 ∪ . . . ∪ Ek

3 r = (r1)∗ E → EE1 | ε or E → E1E | ε
4 r = (r1)+ E → EE1 | E1 or E → E1E | E1

5 r = b ∈ Σ E → b
6 r = ε E → ε

first step, i.e., to the whole r.e. An example should suffice to understand the
procedure.

Example 2.65. From r.e. to grammar
The expression

E = (abc)∗ ∪ (ff)+

is analyzed into the arbitrarily numbered subexpressions shown in the tree,
which is a sort of syntax tree of the r.e. with added numbering:

E0

E1

E3

a b c

∗
∪ E2

E4

f f

+

We see that E0 is union of subexpressions E1 and E2, E1 is star of subex-
pression E3, etc.

The mapping scheme of Table 2.6 yields the rules in Table 2.7. The axiom
derives the sentential forms E1 and E2; nonterminal E1 generates the string
forms E∗

3 , and from them (abc)∗. Similarly E2 generates strings E+
4 and fi-

nally (ff)+.

Table 2.7 Mapping the r.e. of example 2.65 on grammar rules.

Mapping Subexpression Grammar rule

2 E1 ∪ E2 E0 → E1 | E2

3 E∗
3 E1 → E1 E3 | ε

4 E+
4 E2 → E2 E4 | E4

1 a b c E3 → a b c

1 f f E4 → f f

Notice that if the r.e. is ambiguous (p. 22), the grammar is so (see example
2.68 on p. 70).

We have thus seen how to map each operator of an r.e. on equivalent
rules, to generate the same language. It follows that every regular language
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is context-free. Since we know of context-free languages which are not regular
(e.g., palindromes and Dyck language), the following property holds.

Property 2.66. The family of regular languages REG is strictly included in
the family of context-free languages CF , that is, REG ⊂ CF .

2.6.2 Linear Grammars

Algorithm 2.6.1 converts an r.e. to a grammar substantially preserving the
structure of the r.e. But for a regular language it is possible to constrain
the grammar to a very simple form of rules, called unilinear or of type 3.
Such form gives evidence to some fundamental properties and leads to a
straightforward construction of the automaton which recognizes the strings
of a regular language.
par We recall a grammar is linear if every rule has the form

A → uBv where u, v ∈ Σ∗, B ∈ (V ∪ ε)

i.e., at most one nonterminal is in the right part.
Visualizing a corresponding syntax tree, we see it never branches into two

subtrees but it has a linear structure made by a stem with leaves directly
attached to it. Linear grammars are not powerful enough to generate all
context-free languages (an example is Dyck language), but already exceed the
power needed for regular languages. For instance, the following well-known
subset of Dyck language is generated by a linear grammar but is not regular
(to be proved on p. 77).

Example 2.67. Nonregular linear language

L1 = {bnen | n � 1} = {be, bbee, . . .}

Linear grammar: S → bSe | be

A rule of the following form is called right-linear :

A → uB where u ∈ Σ∗, B ∈ (V ∪ ε)

Symmetrically, a left-linear rule has the form

A → Bu, with the same stipulations.

Clearly both cases are linear and are obtained by deleting on either side a
terminal string embracing nonterminal B.
A grammar such that all the rules are right-linear or all the rules are left-
linear is termed unilinear or of type 3 .26

26 Within Chomsky hierarchy (p. 87).
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For a right-linear grammar every syntax tree has an oblique stem oriented
towards the right (towards the left for a left-linear grammar). Moreover, if
the grammar is recursive, it is necessarily right-recursive.

Example 2.68. The strings containing aa and ending with b are defined by
the (ambiguous) r.e.

(a | b)∗aa(a | b)∗b

The language is generated by the unilinear grammars:

1. Right-linear grammar Gr:

S → aS | bS | aaA A → aA | bA | b

2. Left-linear grammar Gl:

S → Ab A → Aa | Ab | Baa B → Ba | Bb | ε

An equivalent nonunilinear grammar is constructed by the algorithm on p.
67:

E1 → E2aaE2b E2 → E2a | E2b | ε

With grammar Gl the leftwards syntax trees of the ambiguous sentence baaab
are

S

A

B

B

B

ε

b

a

aa

b

S

A

A

B

B

ε

b

aa

a

b

Example 2.69. Parenthesis-free arithmetic expressions
The language

L = {a, a + a, a ∗ a, a + a ∗ a, . . .}

is defined by the right-linear grammar Gr:

S → a | a + S | a ∗ S

or by the left-linear grammar Gl:

S → a | S + a | S ∗ a

By the way, neither grammar is adequate to impose the precedence of arith-
metic operations.
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Strictly Unilinear Grammars

The unilinear rule form can be further constrained, with the aim of simpli-
fying the coming discussion of theoretical properties and the construction of
language recognizing automata. A grammar is strictly unilinear if every rule
contains at most one terminal character, i.e., if it has the form

A → aB (or A → Ba), where a ∈ (Σ ∪ ε), B ∈ (V ∪ ε)

A further simplification is possible: to impose that the only terminal rules
are empty ones. In this case we may assume the grammar contains just the
following rule types:

A → aB | ε where a ∈ Σ, B ∈ V

Summarizing the discussion, we may indifferently use a grammar in unilinear
form or strictly unilinear form, and we may additionally choose to have as
terminal rules only the empty ones.

Example 2.70. Example 2.69 continued
By adding ancillary nonterminals, the right-linear grammar Gr is transformed
to the equivalent strictly right-linear grammar G′

r:

S → a | aA A → +S | ∗S

and also to the equivalent grammar with null terminal rules:

S → aA A → +S | ∗S | ε

2.6.3 Linear Language Equations

Continuing the study of unilinear grammars, we show the languages they
generate are regular. The proof consists of transforming the rules to a set of
linear equations, having regular languages as their solution. In Chapter 3 we
shall see that every regular language can be defined by a unilinear grammar,
thus proving the identity of the languages defined by r.e. and by unilinear
grammars.

For simplicity take a grammar G = (V, Σ, P, S) in strictly right-linear form
(the case of left-linear grammar is analogous) with null terminal rules.
Any such rule can be transcribed into a linear equation having as unknowns
the languages generated from each nonterminal, that is, for nonterminal A

LA = {x ∈ Σ∗ | A
+⇒ x}

and in particular, L(G) ≡ LS.
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A string x ∈ Σ∗ is in language LA if:

• x is the empty string and P contains rule A → ε;
• x is the empty string, P contains rule A → B and ε ∈ LB;
• x = ay starts with character a, P contains rule A → aB and string y ∈ Σ∗

is in language LB.

Let n = |V | be the number of nonterminals. Each nonterminal Ai is defined
by a set of alternatives

Ai → aA1 | bA1 | . . . | . . . | aAn | bAn | . . . | A1 | . . . | An | ε

some possibly missing.27 We write the corresponding equation:

LAi = aLA1 ∪ bLA1 ∪ . . . ∪ aLAn ∪ bLAn ∪ . . . ∪ LA1 ∪ . . . ∪ LAn ∪ ε

The last term disappears if the rule does not contain the alternative Ai → ε.
This system of n simultaneous equations in n unknowns (the languages gen-
erated by the nonterminals) can be solved by the well-known method of
Gaussian elimination, by applying the following formula to break recursion.

Property 2.71. Arden identity
The equation

X = KX ∪ L (2.7)

where K is a nonempty language and L any language, has one and only one
solution

X = K∗L (2.8)

It is simple to see language K∗L is a solution of (2.7) because, substituting
it for the unknown in both sides, the equation turns into the identity

K∗L = (KK∗L) ∪ L

It would also be possible to prove that equation (2.7) has no solution other
than (2.8).

Example 2.72. Language equations
The right-linear grammar

S → sS | eA A → sS | ε

defines a list of (possibly missing) elements e, divided by separator s. It is
transcribed to the system

{

LS = sLS ∪ eLA

LA = sLS ∪ ε

Substitute the second equation into the first:

27 In particular, alternative Ai → Ai is never present since the grammar is noncircular.
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{

LS = sLS ∪ e(sLS ∪ ε)
LA = sLS ∪ ε

Then apply the distributive property of concatenation over union, to factorize
variable LS as a common suffix:

{

LS = (s ∪ es)LS ∪ e
LA = sLS ∪ ε

Apply Arden identity to the first equation, obtaining
{

LS = (s ∪ es)∗e
LA = sLS ∪ ε

and then LA = s(s ∪ es)∗e ∪ ε.

Notice that it is straightforward to write the equations also for unilinear
grammars, which are not strictly so. We have thus proved that every unilin-
early generated language is regular.

An alternative method for computing the r.e. of a language defined by a
finite automaton will be described in Chapter 3.

2.7 Comparison of Regular and Context-Free Languages

It is important to understand the scope of regular languages, in order to re-
alize which constructs can be thus defined, and which require the full power
of context-free grammars. To this end we present a structural property of
regular languages. Recall first that, in order to generate an infinite language,
a grammar must be recursive (property 2.37, p. 39), because only recursive
derivations, such as A

+⇒ uAv, can be iterated n (unbounded) times, produc-
ing the string unAvn. This fact leads to the observation that any sufficiently
large sentence necessarily includes a recursive derivation in its generation;
therefore it contains certain substrings that can be unboundedly repeated,
producing a longer sentence of the language.
This observation will be stated more precisely, first for unilateral, then for
context-free grammars.

Property 2.73. Pumping of strings
Take a unilinear grammar G. For any sufficiently long sentence x, meaning
of length greater than some grammar dependent constant, it is possible to
find a factorization x = tuv, where string u is not empty, such that, for every
n � 0, the string tunv is in the language. (It is customary to say the given
sentence can be “pumped” by injecting arbitrarily many times the substring
u.)
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Proof. Take a strictly right-linear grammar and let k be the number of non-
terminal symbols. Observe the syntax tree of any sentence x of length k or
more; clearly two nodes exist with the same nonterminal label A:

S

a1 . . .

a2 A

b1 . . .

b2 A

c1 . . .

c2 . . .

cm

Consider the factorization into t = a1a2 . . ., u = b1b2 . . ., and v = c1c2...cm.
Therefore there is a recursive derivation:

S
+⇒ tA

+⇒ tuA
+⇒ tuv

that can be repeated to generate the strings tuuv, tu . . . uv and tv.
This property is next exploited to demonstrate that a language is not regular.

Example 2.74. Language with two equal powers
Consider the familiar context-free language

L1 = {bnen | n � 1}

and assume by contradiction it is regular. Take a sentence x = bkek, with k
large enough, and decompose it into three substrings, x = tuv, with u not
empty. Depending on the positions of the two divisions, the strings t, u, and
v are as in the following scheme:

b . . . b
︸ ︷︷ ︸

t

b . . . b
︸ ︷︷ ︸

u

b . . . be . . . e
︸ ︷︷ ︸

v

b . . . b
︸ ︷︷ ︸

t

b . . . be . . . e
︸ ︷︷ ︸

u

e . . . e
︸ ︷︷ ︸

v

b . . . be . . . e
︸ ︷︷ ︸

t

e . . . e
︸ ︷︷ ︸

u

e . . . e
︸ ︷︷ ︸

v

Pumping the middle string will lead to contradiction in all cases. For row
one, if u is repeated twice, the number of b exceeds the number of e, causing
the pumped string not to be in the language. For row two, repeating twice
u, the string tuuv contains a pair of substrings be and does not conform to
the language structure. Finally for row three, repeating u, the number of e
exceeds the number of b. In all cases the pumped strings are not valid and
property 2.73 is contradicted. This completes the proof that the language is
not regular.
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This example and the known inclusion of the families REG ⊆ CF justify
the following statement.

Property 2.75. Every regular language is context-free and there exist context-
free languages which are not regular.

The reader should be convinced by this example, that the regular family
is too narrow for modelling some typical simple constructs of technical lan-
guages. Yet it would be foolish to discard regular expressions, because they
are perfectly fit for modelling some most common parts of technical lan-
guages: on one hand there are the substrings that make the so-called lexicon
(for instance, numerical constants and identifiers), on the other hand, many
constructs that are variations over the list paradigm (e.g., lists of procedure
parameters or of instructions).

Role of Self-Nested Derivations

Having ascertained that regular languages are a smaller family than context-
free ones, it is interesting to focus on what makes some typical languages (as
the two powers language, Dyck or palindromes) not regular. Careful observa-
tion reveals that their grammars have a common feature: they all use some
recursive derivation which is neither left nor right, but is called self-nested :

A
+⇒ uAv u �= ε and v �= ε

On the contrary, such derivations cannot be obtained with unilinear gram-
mars which permit only unilateral recursions.

Now, it is the absence of self-nesting recursion that permitted us to solve
linear equations by Arden identity. The higher generative capacity of context-
free grammars essentially comes from such derivations, as next stated.

Property 2.76. Any context-free grammar not producing self-nesting deriva-
tions generates a regular language.

Example 2.77. Not self-nesting grammar
The grammar G:

S → AS | bA A → aA | ε

though not unilinear, does not permit self-nested derivations. Therefore L(G)
is regular, as we can see by solving the language equations.

{

LS = LALS ∪ bLA

LA = aLA ∪ ε

{

LS = LALS ∪ bLA

LA = a∗

LS = a∗LS ∪ ba∗
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LS = (a∗)∗ba∗

Context-Free Languages of Unary Alphabet

The converse of property 2.76 is not true in general: in some cases self-nesting
derivations do not cause the language to be nonregular. On the way to il-
lustrate this fact, we take the opportunity to mention a curious property of
context-free languages having a one-letter alphabet.

Property 2.78. Every language defined by a context-free grammar over a one-
letter (or unary) alphabet, |Σ| = 1, is regular.

Observe that the sentences x with unary alphabet are in bijective correspon-
dence with integer numbers, via the mapping x ⇔ n, if and only if |x| = n.

Example 2.79. The grammar

G = {S → aSa | ε}

has the self-nesting derivation S ⇒ aSa, but L(G) = (aa)∗ is regular. A
right-linear, equivalent grammar is easily obtained, by shifting to suffix the
nonterminal that is, positioned in the middle of the first rule:

{S → aaS | ε}

2.7.1 Limits of Context-Free Languages

In order to understand what cannot be done with context-free grammars,
we study the unavoidable repetitions which are found in longer sentences
of such languages, much as we did for regular languages. We shall see that
longer sentences necessarily contain two substrings, which can be repeated
the same unbounded number of times by applying a self-nested derivation.
This property will be exploited to prove that context-free grammars cannot
generate certain languages where three or more parts are repeated the same
number of times.

Property 2.80. Language with three equal powers
The language

L = {anbncn | n � 1}

is not context-free.

Proof. By contradiction, assume grammar G of L exists and imagine the syn-
tax tree of sentence x = anbncn. Focus now on the paths from the root
(axiom S) to the leaves. At least one path must have a length that increases
with the length of sentence x, and since n can be arbitrarily large, such path
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necessarily traverses two nodes with identical nonterminal label, say A. The
situation is depicted in the scheme:

S

t A

u A

v

w

z

where t, u, v, w, z are terminal strings. This scheme denotes the derivation

S
+⇒ tAz

+⇒ t uAw z
+⇒ t u v w z

This contains a recursive subderivation from A to A, which can be repeated
any number j of times, producing strings of type

y = t

j
︷ ︸︸ ︷

u . . . u v

j
︷ ︸︸ ︷

w . . . w z

Now, examine all possible cases for strings u, w:

• Both strings contain just one and the same character, say a; therefore, as j
increases, string y will have more a than b, hence cannot be in the language.

• String u contains two or more different characters, for instance u =
. . . a . . . b . . .. Then, by repeating the recursive part of the derivation, we
obtain uu = . . . a . . . b . . . a . . . b . . ., where characters a and b are mixed up,
hence y is not in the language.
We do not discuss the analogous case when string w contains two different
characters.

• String u contains only one character, say a, and string w only one different
character, say b. When j increases, string y contains a number of a greater
than the number of c, hence it is not valid.

This reasoning exploits the possibility of pumping the sentences by repeating
a recursive derivation. It is a useful conceptual tool for proving that certain
languages are not in the CF family.

Although the language with three equal powers has no practical relevance,
it illustrates a kind of agreement or concordance that cannot be enforced
by context-free rules. The next case considers a construct more relevant for
technical languages.

Language of Copies or Replica

An outstanding abstract paradigm is the replica, to be found in many tech-
nical contexts, whenever two lists contain elements that must be identical
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or more generally must agree with each other. A concrete case is provided
by procedure declaration/invocation: the correspondence between the formal
parameter list and the actual parameter list. An example inspired by English
is: cats, vipers, crickets, and lions are respectively mammals, snakes, insects,
and mammals.
In the most abstract form the two lists are made with the same alphabet and
the replica is the language

Lreplica = {uu | u ∈ Σ+}

Let Σ = {a, b}. A sentence x = abbb abbb = uu is in some respect analo-
gous to a palindrome y = abbb bbba = uuR, but string u is copied in the
former language, specularly reversed in the latter. We may say the symmetry
of sentences Lreplica is translational, not specular. Strange enough, whereas
palindromes are a most simple context-free language, the language of replicas
is not context-free. This comes from the fact that the two forms of symmetry
require quite different control mechanisms: a LIFO (last in first out) push-
down stack for specular, and a FIFO (first in first out) queue for translational
symmetry. We shall see in chapter 4 that the algorithms (or automata) rec-
ognizing context-free languages use a LIFO memory.

In order to show that replica is not in CF , one should apply again the
pumping reasoning; but before doing so, we have to filter the language to
render it similar to the three equal powers language.
We focus on the following subset of Lreplica, obtained by means of intersection
with a regular language:

Labab = {ambnambn | m, n � 1} = Lreplica ∩ a+b+a+b+

We state (anticipating the proof on p. 160) that the intersection of a context-
free language with a regular one is always a context-free language. Therefore,
if we prove that Labab is not context-free, we may conclude the same for
Lreplica.
For brevity, we omit the analysis of the possible cases of the strings to be
pumped, since it closely resembles the discussion in the previous proof (p.
76).

2.7.2 Closure Properties of REG and CF

We know language operations are used to combine languages into new ones
with the aim of extending, filtering, or modifying a given language. But not
all operations preserve the class or family the given languages belong to.
When the result of the operation exits from the starting family, it can no
longer be generated with the same type of grammar.
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Continuing the comparison between regular and context-free languages,
we resume in Table 2.8 the closure properties with respect to language op-
erations: some are already known, others are immediate, and a few need to
await the results of automata theory for their proofs. We denote as L and R
a generic context-free language and regular language, respectively.

Table 2.8 Closure properties of REG and CF .

reflection star union or concatenation complement intersection

RR ∈ REG R∗ ∈ REG R1 ⊕ R2 ∈ REG ¬R ∈ REG R1 ∩ R2 ∈ REG

LR ∈ CF L∗ ∈ CF L1 ⊕ L2 ∈ CF ¬L 
∈ CF L1 ∩ L2 
∈ CF
L ∩ R ∈ CF

Comments and examples follow.

• A nonmembership (such as ¬L �∈ CF ) means that the left term does not
always belong to the family; but this does not exclude, for instance, that
the complement of some context-free language is context-free.

• The mirror language of L(G) is generated by the mirror grammar , the
one obtained reversing the right parts of the rules. Clearly, if grammar
G is right-linear the mirror grammar is left-linear and defines a regular
language.

• We know the star, union, and concatenation of context-free languages are
context-free. Let G1 and G2 be the grammars of L1 and L2, let S1 and
S2 be their axioms, and suppose that the nonterminal sets are disjoint,
V1 ∩ V2 = ∅. To obtain the new grammar in the three cases, add to the
rules of G1 and G2 the following initial rules:

Star: S → SS1 | ε
Union: S → S1 | S2

Concatenation: S → S1S2

In the case of union, if the grammars are right-linear, so is the new gram-
mar. On the contrary, the new rules introduced for concatenation and star
are not right-linear but we know that an equivalent right-linear grammar
for the resulting languages exists, because they are regular (property 2.23,
p. 24) and family REG is closed by such operations.

• The proof that the complement of a regular language is regular is in Chap-
ter 3 (p.137).

• The intersection of two context-free languages is not context-free (in gen-
eral), as witnessed by the known language with three equal powers (exam-
ple 2.80 on p. 76)

{anbncn | n � 1} = {anbnc+ | n � 1} ∩ {a+bncn | n � 1}

where the two components are easily defined by context-free grammars.
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• As a consequence of De Morgan identity, the complement of a context-free
language is not context-free (in general): since L1 ∩L2 = ¬(¬L1 ∪¬L2), if
the complement were context-free, a contradiction would ensue since the
union of two context-free languages is context-free.

• On the other hand, the intersection of a context-free and a regular language
is context-free. The proof will be given on p. 160.

The last property can be applied, in order to make a grammar more discrim-
inatory, by filtering the language with a regular language which forces some
constraints on the original sentences.

Example 2.81. Regular filters on Dyck language (p. 45)
It is instructive to see how the freely parenthesized sentences of a Dyck lan-
guage LD of alphabet Σ = {a, a′} can be filtered, by intersecting with the
regular languages:

L1 = LD ∩ ¬(Σ∗a′a′Σ∗) = (aa′)∗

L2 = LD ∩ ¬(Σ∗a′aΣ∗) = {an(a′)n | n � 0}

The first intersection preserves the sentences that do not contain substring
a′a′, i.e., it eliminates all the sentences with nested parentheses. The second
filter preserves the sentences having exactly one nest of parentheses. Both
results are context-free languages, but the former is also regular.

2.7.3 Alphabetic Transformations

It is a common experience to find conceptually similar languages that differ
by the concrete syntax, i.e., by the choice of terminals. For instance, multipli-
cation may be represented by sign ×, by an asterisk, or by a dot in different
languages.
The term transliteration or alphabetic homomorphism refers to the linguistic
operation that replaces individual characters by other ones.

Definition 2.82. Transliteration (or alphabetic homomorphism28)
Consider two alphabets: source Σ and target Δ. An alphabetic transliteration
is a function:

h : Σ → Δ ∪ {ε}

The transliteration or image of character c ∈ Σ is h(c), an element of the tar-
get alphabet. If h(c) = ε, character c is erased. A transliteration is nonerasing
if, for no source character c, it is h(c) = ε.

The image of a source string a1a2 . . . an, ai ∈ Σ is the string h(a1)h(a2) . . . h(an)
obtained concatenating the images of individual characters. Notice the image
of the empty string is itself.

28 This is a simple case of the translation functions to be studied in Chapter 6.
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Such transformation is compositional: the image of the concatenation of two
strings v and w is the concatenation of the images of the strings:

h(v.w) = h(v).h(w)

Example 2.83. Printer
An obsolete printer cannot print Greek characters and instead prints the spe-
cial character �. Moreover, the test sent to the printer may contain control
characters (such as start-text, end-text) that are not printed. The text
transformation (disregarding uppercase letters) is described by the translit-
eration:

h(c) = c if c ∈ {a, b, . . . , z, 0, 1, . . . , 9};
h(c) = c if c is a punctuation mark or a blank space;
h(c) = � if c ∈ {α, β . . . , ω};
h(start-text) = h(end-text) = ε.

An example of transliteration is

h(start-text the const. π has value 3.14 end-text
︸ ︷︷ ︸

source string

) = the const. � has value 3.14
︸ ︷︷ ︸

target string

An interesting special case of erasing homomorphism is the projection: it is a
function that erases some source characters and leaves the others unchanged.

Transliteration to Words

The preceding qualification of transliteration as alphabetic means the image
of a character is a character (or the empty string), not a longer string. Oth-
erwise the transliteration or homomorphism may no longer be qualified as al-
phabetic. An example is the conversion of an assignment statement a ← b+c
to the form a := b + c by means of a (nonalphabetical) transliteration:

h(←) = ‘:=’ h(c) = c for any other c ∈ Σ

This case is also called transliteration to words.
Another example: vowels with umlaut of German alphabet have as image

a string of two characters:

h(ä) = ae, h(ö) = oe, h(ü) = ue

Language Substitution

A further generalization leads us to a language transformation termed sub-
stitution (already introduced in the discussion of linguistic abstraction on
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p. 27). Now a source character can be replaced by any string of a specified
language. Substitution is very useful in early language design phases, in order
to leave a construct unspecified in the working grammar. The construct is
denoted by a symbol (for instance 〈identifier〉). As the project progresses, the
symbol will be substituted with the definition of the corresponding language
(for instance with (a . . . z) (a . . . z | 0 . . . 9)∗).
par Formally, given a source alphabet Σ = {a, b, . . .}, a substitution h as-
sociates each character with a language h(a) = La, h(b) = Lb, . . . of target
alphabet Δ. Applying substitution h to a source string a1a2 . . . an, ai ∈ Σ we
obtain a set of strings:

h(a1a2 . . . an) = {y1y2 . . . yn | yi ∈ Lai}

We may say a transliteration to words is a substitution such that each image
language contains one string only; if the string has length one or zero, the
transliteration is alphabetic.

Closure under Alphabetic Transformation

Let L be a source language, context-free or regular, and h a substitution such
that for every source character, its image is a language in the same family as
the source language. Then the substitution maps the set of source sentences
(i.e., L) on a set of image strings, called the image or target language, L′ =
h(L). Is the target language a member of the same family as the source
language? The answer is yes, and will be given by means of a construction
that is, valuable for modifying without effort the regular expression or the
grammar of the source language.

Property 2.84. The family CF is closed by the operation of substitution with
languages of the same family (therefore also by the operation of translitera-
tion).

Proof. Let G be the grammar of L and h a substitution such that, for ev-
ery c ∈ Σ, Lc is context-free. Let this language be defined by grammar
Gc with axiom Sc. Moreover, we assume the nonterminal sets of grammars
G, Ga, Gb, . . . are pairwise disjoint (otherwise it suffices to rename the over-
lapping nonterminals).

Next we construct the grammar G′ of language h(L) by transliterating the
rules of G with the following mapping f :

f(c) = Sc, for every terminal c ∈ Σ;
f(A) = A, for every nonterminal symbol A of G.

The rules of grammar G′ are constructed next:

• to every rule A → α of G apply transliteration f , to the effect of replac-
ing each terminal character with the axiom of the corresponding target
grammar;
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• add the rules of grammars Ga, Gb, . . .

It should be clear that the new grammar generates language h(L(G)).

In the simple case where the substitution h is a transliteration, the construc-
tion of grammar G′ is more direct: replace in G any terminal character c ∈ Σ
with its image h(c).

For regular languages an analogous result holds.

Property 2.85. The family REG is closed by substitution (therefore also by
transliteration) with regular languages.

Essentially the same construction of the proof of property 2.84 can be applied
to the r.e. of the source language, to compute the r.e. of the target language.

Example 2.86. Grammar transliterated
The source language i(; i)∗, defined by rules

S → i; S | i

schematizes a program including a list of instructions i separated by semi-
colon. Imagine that instructions have to be now defined as assignments. Then
the following transliteration to words is appropriate:

g(i) = v ← e

where v is a variable and e an arithmetic expression. This produces the gram-
mar

S → A; S | A A → v ← e

As next refinement, the definition of expressions can be plugged in by means
of a substitution h(e) = LE, where the image language is the well-known
one. Suppose it is defined by a grammar with axiom E. The grammar of the
language after expression expansion is

S → A; S | A A → v ← E E → . . . - - usual rules for arith. expr.

As a last refinement, symbol v, which stands for a variable, should be replaced
with the regular language of identifier names.

2.7.4 Grammars with Regular Expressions

The legibility of r.e. is especially good for lists and similar structures, and
it would be a pity to do without them when defining technical languages
by means of grammars. Since we know recursive rules are indispensable for
parenthesis structures, the idea arises to combine r.e. and grammar rules in
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a notation, called extended context-free grammar, or EBNF 29 that takes the
best of each formalism: simply enough we allow the right part of a rule to
be an r.e. Such grammars have a nice graphical representation, the syntax
charts to be shown in Chapter 4 on p. 174, which represents the blueprint of
the flowchart of the syntax analyzer.

First observe that, since family CF is closed by all the operations of r.e.,
the family of languages defined by EBNF grammars coincide with family
CF .

In order to appreciate the clarity of extended rules with respect to basic
ones, we examine a few typical constructs of programming languages.

Example 2.87. EBNF grammar of a block language: declarations
Consider a list of variable declarations:

char text1, text2; real temp, result; int alpha, beta2, gamma;

to be found with syntactic variations in most programming languages.
The alphabet is Σ = {c, i, r, v, ′,′ , ′;′ }, where c, i, r stand for char, int,

real and v for a variable name. The language of lists of declarations is defined
by r.e. D:

((c | i | r)v(, v)∗; )+

The iteration operators used to generate lists are dispensable: remember any
regular language can be defined by a grammar, even a unilinear one.

The lists can be defined by the basic grammar

D → DE | E E → AN ; A → c | i | r N → v, N | v

with two recursive rules (for D and N). The grammar is a bit longer than
the r.e. and subjectively less perspicuous in giving evidence to the two-level
hierarchical structure of declarations, which is evident in the r.e. Moreover,
the choice of metasymbols A, E, N is to some extent mnemonic but arbitrary
and may cause confusion, when several individuals jointly design a grammar.

Definition 2.88. An extended context-free or EBNF grammar G = (V, Σ, P, S)
contains exactly |V | rules, each one in the form A → α , where A is a non-
terminal and α is an r.e. of alphabet V ∪ Σ.
For better legibility and concision, other derived operators (cross, power,
option) too may be permitted in the r.e. .

We continue the preceding example, adding typical block structures to the
language.

Example 2.89. Algol-like language
A block B embraces an optional declarative part D followed by the imperative
part I, between the marks b (begin) and e (end):

29 Extended BNF.
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B → b [D]I e

The declarative part D is taken from the preceding example:

D → ((c | i | r)v(, v)∗; )+

The imperative part I is a list of phrases F separated by semicolon:

I → F (; F )∗

Last, a phrase F can be an assignment a or a block B:

F → a | B

As an exercise, yet worsening legibility, we eliminate as many nonterminals
as possible by applying nonterminal expansion to D:

B → b
[
(

(c | i | r)v(, v)∗ ;
)+
]

Ie

A further expansion of I leads to

B → b
(

(c | i | r)v(, v)∗;
)∗

F (; F )∗e

Last F can be eliminated obtaining a one-rule grammar G′

B → b
(

(c | i | r)v(, v)∗;
)∗(a | B)(; (a | B))∗e

This cannot be reduced to an r.e. because nonterminal B cannot be elimi-
nated, as it is needed to generate nested blocks (bb . . . ee) by a self-nesting
derivation (in agreement with property 2.76, p. 75).

Usually language reference manuals specify grammars by EBNF rules, but
beware that excessive grammar conciseness is often contrary to clarity. More-
over, if a grammar is split into smaller rules, it may be easier for the compiler
writer to associate simple specific semantic actions to each rule, as we shall
see in Chapter 5.

Derivations and Trees in Extended Context-Free Grammars

The right part α of an extended rule A → α of grammar G is an r.e., which
in general derives an infinite set of strings: each one can be viewed as the
right part of a nonextended rule having unboundedly many alternatives.

For instance, A → (aB)+ stands for a set of rules

A → aB | aBaB | . . .



86 2 Syntax

The notion of derivation can be defined for extended grammars too, via the
notion of derivation for r.e. introduced on p. 20.

Shortly, for an EBNF grammar G consider a rule A → α, where α is
an r.e. possibly containing choice operators (star, cross, union, and option);
let α′ be a string deriving from α (using the definition of derivation of r.e.),
not containing any choice operator. For any (possibly empty) strings δ and
η there is a one-step derivation:

δAη ⇒
G

δα′η

Then one can define multi-step derivations starting from the axiom and pro-
ducing terminal strings, and finally the language generated by an EBNF
grammar, in the same manner as for basic grammars. Exemplification should
be enough.

Example 2.90. Derivation for extended grammar of expressions
The grammar G:

E → [+ | −]T ((+ | −)T )∗ T → F ((× | /)F )∗ F → (a | ′(′E′)′)

generates arithmetic expressions with the four infix operators, and the prefix
operators ±, parentheses, and terminal a standing for a numeric argument.
Square brackets denote option. The left derivation

E ⇒ T + T − T ⇒ F + T − T ⇒ a + T − T ⇒ a + F − T ⇒ a + a − T ⇒
⇒ a + a − F × F ⇒ a + a − a × F ⇒ a + a − a × a

produces the syntax tree:

E

T

F

a

+ T

F

a

− T

F

a

× F

a

Observe that the degree of a node can be unbounded, with the consequence
that the breadth of the tree increases and the height decreases, in comparison
with the tree of an equivalent basic grammar.

Ambiguity in Extended Grammars

It is obvious that an ambiguous basic grammar remain such also when viewed
as an EBNF grammar. On the other hand, a different form of ambiguity may
arise in an EBNF grammar, caused by the ambiguity of the r.e. present in
the rules. Recall an r.e. is ambiguous (p. 22) if it derives a string with two
different left derivations.
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For instance, the r.e. a∗b | ab∗, numbered a∗
1b2 | a3b

∗
4, is ambiguous because

the string ab can be derived as a1b2 or as a3b4. As a consequence the extended
grammar

S → a∗bS | ab∗S | c

is ambiguous.

2.8 More General Grammars and Language Families

We have seen context-free grammars cover the main constructs occurring
in technical languages, namely, parentheses structures and hierarchical lists,
but fail with other syntactic structures even simple, such as the replica or
the three equal powers language on p. 76.
Such shortcomings have motivated, from the early days of language theory,
much research on more powerful formal grammars. It is fair to say that none
of the formal models have been successful; the more powerful are too obscure
and difficult to use, and the models marginally superior to the context-free do
not offer significant advantages. In practice, application of such grammars to
compilation has been episodic and quickly abandoned. Since the basis of all
subsequent developments is the classification of grammars due to the linguist
Noam Chomsky, it is appropriate to briefly present it for reference, before
moving on to more applied aspects in the coming chapters.

2.8.1 Chomsky Classification

The historical classification of phrase structure grammars based on the form
of the rewriting rules is in Table 2.9. Surprisingly enough, very small differ-
ence in the rule form, determine substantial changes in the properties of the
corresponding family of languages, both in terms of decidability and algo-
rithmic complexity.
A rewriting rule has a left part and a right part, both strings on the terminal
alphabet Σ and nonterminal set V . The left part is replaced by the right
part. The four types are characterized as follows:

• a rule of type 0 can replace an arbitrary not empty string over terminals
and nonterminals, with another arbitrary string;

• a rule of type 1 adds a constraint to the form of type 0: the right part of
a rule must be at least as long as the left part;

• a rule of type 2 is context-free: the left part is one nonterminal;
• a rule of type 3 coincides with the unilinear form we have studied.

For completeness Table 2.9 lists the names of the automata (abstract string
recognition algorithms) corresponding to each type, although the notion of
automata will not be introduced until next chapter. The language families
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Table 2.9 Chomsky classification of grammars and corresponding languages and ma-
chines.

grammar form of rules language family type of recognizer

Type 0 β → α where α, β ∈ (Σ ∪ V )+

and β 
= ε
Recursively enu-
merable

Turing machine

Type 1 context
dependent
(or context
sensitive)

β → α where α, β ∈ (Σ ∪ V )+

and |β| � |α|
Contextual or
context-dependent

Turing machine with
space complexity lim-
ited by the length of
the source string

Type 2
context-free
or BNF

A → α where A is a nontermi-
nal and α ∈ (Σ ∪ V )∗

Context-free CF or
algebraic

Push-down automaton

Type 3 uni-
linear (right-
linear or
left-linear)

Right-linear: A → uB
Left linear: A → Bu, where A
is a nonterminal, u ∈ Σ∗ and
B ∈ (V ∪ ε)

Regular REG or
rational or finite-
state

Finite automaton

are strictly included one into the next from bottom to top, which justifies the
name of hierarchy.

Partly anticipating later matters, the difference between rule types is mir-
rored by differences in the computational resources needed to recognize the
strings. Concerning space, i.e., memory complexity for string recognition,
type 3 uses a finite memory, the others need unbounded memory.

Other properties are worth mentioning, without any claim to completeness.
All four language families are closed by union, concatenation, star, reflection,
and intersection with a regular language. But for other operators, properties
differ: for instance families 1 and 3, but not 0 and 2, are closed by complement.

Concerning decidability of various properties, the difference between the
apparently similar types 0 and 1 is striking. For type 0 it is undecidable (more
precisely semi-decidable) whether a string is in the language generated by a
grammar. For type 1 grammars the problem is decidable, though its time
complexity is not polynomial. Last, only for type 3 the equivalence problem
for two grammars is decidable.

We finish with two examples of type 1 grammars and languages.

Example 2.91. Type 1 grammar of the three equal powers language
The language, proved on p. 76 to be not CF , is

L = {anbncn | n � l}

It is generated by the context-sensitive grammar

1. S → aSBC 3. CB → BC 5. bC → bc
2. S → abC 4. bB → bb 6. cC → cc

For type 0 and 1 grammars a derivation cannot be represented as a tree,
because the left part of a rule typically contains more than one symbol.
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However, the derivation can be visualized as a graph, where the application
of a rule such as BA → AB is displayed by a bundle of arcs (hyper-edge)
connecting the left part nodes to the right part ones.

Coming from our experience with context-free grammars, we would expect
to be able to generate all sentences by left derivations. But if we try to
generate sentence aabbcc proceeding from left to right

S ⇒ aSBC ⇒ aabCBC ⇒ aabcBC ⇒ block!

surprisingly, the derivation is stuck, before all nonterminal symbols are elim-
inated. In order to generate this string we need a not leftmost derivation,
shown in Figure 2.2.

S

a S B C

a b C

. .

B C

. .

b b

. .

b c

. .

c c

Fig. 2.2 Graph representation of a context-sensitive derivation (example 2.91).

Intuitively the derivation produces the requested number of a with rule
1 (a type 2 self-nesting rule) and then with rule 2. In the sentential form,
letters b, B, and C appear with the correct number of occurrences, but mixed
up. In order to produce the valid string, all C’s must be shifted to the right,
using rule 3. CB → BC, until they reach the suffix position.

The first application of 3. reorders the sentential form, to the aim that
B becomes adjacent to b. This enables derivation 4. bB ⇒ bb. Then the
derivation continues in the same manner, alternating steps 3. and 4., until
the sentential form is left with just C as nonterminal. The occurrences of
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C are transformed to terminals c, by means of rule bC → bc, followed by
repeated applications of rule cC → cc.

We stress the finding that the language generated by type 1 grammars
may not coincide with the sentences generated by left derivations, unlike for
type 2 grammars. This is a cause of difficulty in string recognition algorithms.

Type 1 grammars have the power to generate the language of replicas, or
lists with agreements between elements, a construct that we have singled out
as practically relevant and exceeding the power of context-free grammars.

Example 2.92. Type 1 grammar of replica with center
Language L = {ycy | y ∈ {a, b}+} contains sentences such as aabcaab, where
a prefix and a suffix, divided by the central separator c, must be equal.
To simplify the grammar, we assume sentences are terminated to the right
by the end-of-text character or terminator, �. Grammar:

S → X � XA → XA′ A′A → AA′ A′ �→ a B′a → ba
X → aXA XB → XB′ A′B → BA′ B′ �→ b B′b → bb
X → bXB B′A → AB′ A′a → aa Xa → ca

B′B → BB′ A′b → ab Xb → cb

To generate a sentence, the grammar follows this strategy: it first generates
a palindrome, say aabXBAA, where X marks the center of the sentence and
the second half is in uppercase. Then the second half, modified as B′AA, is
reflected and converted in several steps to A′A′B′. Last, the primed uppercase
symbols are rewritten as aab and the center symbol X is converted to c.
We illustrate the derivation of sentence aabcaab. For legibility, at each step
we underline the left part of the rule being applied:

S ⇒ X � ⇒ aXA � ⇒ aaXAA � ⇒ aabXBAA � ⇒

aabXB′AA � ⇒ aabXAB′A � ⇒ aabXA′B′A � ⇒

aabXA′AB′ � ⇒ aabXAA′B′ � ⇒ aabXA′A′B′ � ⇒

aabXA′A′b ⇒ aabXA′ab ⇒ aabXaab ⇒ aabcaab

We observe that the same strategy used in generation, if applied in reverse
order, would allow to check whether a string is a valid sentence. Starting from
the given string, the algorithm should store on a memory tape the strings
obtained after each reduction (i.e., the reverse of derivation). Such procedure
is essentially the computation of a Turing machine that never goes out of the
portion of tape containing the original string, but may overprint its symbols.

Such examples should have persuaded the reader of the difficulty to design
and apply context-sensitive rules even for very simple languages. The fact is
that interaction of grammar rules is hard to understand and control.

In other words, type 1 and 0 grammars can be viewed as a particular
notation for writing algorithms. All sorts of problems could be programmed
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in this way, even mathematical ones, by using the very simple mechanism of
string rewriting30. It is not surprising that using such elementary mechanism
as the only data and control structure, makes the algorithm description very
entangled.

Undoubtedly the development of language theory towards models of higher
computational capacity has mathematical and speculative interests but is
almost irrelevant for language engineering and compilation31.

In conclusion, we have to admit that the state of the art of formal language
theory does not entirely satisfy the need of a powerful and practical formal
grammar model, capable of accurately defining the entire range of constructs
found in technical languages. Context-free grammars are the best available
compromise between expressivity and simplicity. The compiler designer will
supplement their weaknesses by other methods and tools, termed semantic,
coming from general-purpose programming methods. They will be introduced
in Chapter 6.

30 An extreme case is a type 1 grammar presented in [47] to generate prime numbers
encoded in unary base, i.e., the language {an | n prime number}.
31 For historical honesty, we mention that context-sensitive grammars have been occa-
sionally considered by language and compiler designers. The language Algol 68 has been
defined with a special class of type 1 grammars termed 2-level grammars, also known as
VW-grammars from Van Wijngarten [55]; see also Cleaveland and Uzgalis [13] .



Chapter 3

Finite Automata as Regular Language
Recognizers

3.1 Introduction

Regular expressions and grammars are widely used in technical specifications
of languages but the actual design and implementation of a compiler needs
a way to describe the algorithms, termed recognizers or acceptors, which
examine a string and decide if it is a valid sentence of the language. In this
chapter we study the recognizers for regular languages and in the next two
chapters those of context-free languages.

The need to recognize if a text is valid for a given language is quite com-
mon, especially as a first step for text processing or translation. A compiler
analyzes a source program to check its correctness; a document processor
makes a spell check on words, then verifies syntax; and a graphic user inter-
face must check that the data are correctly entered. Such control is done by
a recognition procedure, which can be conveniently specified using minimal-
ist models, termed abstract machines or automata. The advantages are that
automata do not depend on programming languages and techniques, i.e., on
implementation, and that their properties (such as time and memory com-
plexity) are in this way more clearly related with the family of the source
language.

In this chapter we briefly introduce more general automata, then focus
on those having a finite memory that match the regular language family
and have countless applications in computer science and beyond. First we
consider the deterministic machines and describe useful methods for cleaning
and minimizing. Then we motivate and introduce nondeterministic models,
and we show they correspond to the unilinear grammars of the previous
chapter. Conversion back to deterministic models follows.

A central section deals with transformations back and forth from regu-
lar expressions to automata. On the way to proving their convertibility, we
introduce the subfamily of local regular languages, which have a simpler
recognition procedure making use of a sliding window.

S.C. Reghizzi, Formal Languages and Compilation,
Texts in Computer Science, DOI 10.1007/978-1-84882-050-0 3,
c© Springer-Verlag London Limited 2009
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Then we return to the operations of complement and intersection on regu-
lar languages from the standpoint of their recognizers, and present the com-
position of automata by cartesian product. The chapter ends with a summary
of the interrelation between finite automata, regular expressions, and gram-
mars.

In compilation finite automata have several uses to be described especially
in Chapter 6: in lexical analysis to extract the shortest meaningful strings
from a text, for making simple translations, and for modelling and analyzing
program properties in static flow analysis and optimization.

3.2 Recognition Algorithms and Automata

To check if a string is valid for a specified language, we need a recognition
algorithm, a type of algorithm producing a yes/no answer, commonly referred
to in computational complexity studies as a decision algorithm. For instance,
a famous problem is to decide if two given graphs are isomorphic: the problem
domain (a pair of graphs) differs from the case of language recognition, but
the answer is again yes/no.

For the string membership problem, the input domain is a set of strings of
alphabet Σ. The application of a recognition algorithm α to a given string x
is denoted as α(x). We say string x is recognized or accepted if α(x) = yes,
otherwise it is rejected. The language recognized, L(α), is the set of accepted
strings:

L(α) = {x ∈ Σ∗ | α(x) = yes}

The algorithm is usually assumed to terminate for every input, so that the
membership problem is decidable. However, it may happen that, for some
string x, the algorithm does not terminate, i.e., the value of α(x) is not
defined, hence x is not a valid sentence of language L(α). In such case we
say that the membership problem for L is semidecidable, or also that L is
recursively enumerable.

In principle, if for an artificial language the membership problem is semide-
cidable, we cannot exclude that the compiler falls into an endless loop, for
some input strings. In practice we do not have to worry about such decid-
ability issues, central as they are for the theory of computation,1 because in
language processing the only language families of concern are decidable, and
efficiently so.

Incidentally, even within the family of context-free languages, some deci-
sion problems, different from string membership, are not decidable: we have
mentioned in Chapter 2 the problem of deciding if two grammars are weakly
equivalent, and of checking if a grammar is ambiguous.

1 Many books cover the subject e.g.,Bovet and Crescenzi [11], Floyd and Beigel [20],
Hopcroft and Ullman [29], Kozen [32], Mandrioli and Ghezzi [34], and McNaughton [35]).
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In fact, recognizing a string is just the first step of the compilation process.
In Chapter 6 we shall see the translation from a language to another: clearly
the codomain of a translation algorithm is much more complex than a pure
yes/no, since it is itself a set of strings, the target language.

Algorithms, including those for string recognition, may be ranked in com-
plexity classes, measured by the amount of computational resources (time or
memory i.e., space) required to solve the problem. In the field of compilation
it is common to consider time rather than space complexity. With rare excep-
tions, all the problems of interest for compilation have low time complexity:
linear or at worst polynomial with respect to the size of the problem input.
Time complexity is closely related with electric power consumption, which is
an important attribute for portable programmed devices.

A tenet of the theory of computation is that the complexity of an algo-
rithm should be measured by the number of steps, rather than by the actual
execution time spent by a program implementing the algorithm. The reason
is that the complexity should be a property of the algorithm and should not
depend on the actual implementation and processing speed of a particular
computer. Even so, several choices are open for computational steps: they
may range from a Turing machine move to a machine instruction or to a
high-level language statement. Here we consider a step to be an elementary
operation of an abstract machine or automaton, as customary in all the the-
oretical and applied studies on formal languages. This approach has several
advantages: it gives evidence to the relation between the algorithmic com-
plexity and the family of languages under consideration; it allows to reuse
optimized abstract algorithms with a low cost of adaptation to the language,
and it avoids premature commitment and tedious details of implementation.
Moreover, sufficient hints will be given for a programmer to easily transform
the automaton into a program, by hand or by using widespread compiler
generation tools.

3.2.1 A General Automaton

An automaton or abstract machine is an ideal computer featuring a very
small set of simple instructions. Starting from the Turing machine of the
1930s, research on abstract machines has spawned many models, but only
a few are important for language processing.2 In its more general form a
recognizer is schematized in Figure 3.1. It comprises three parts: input tape,
control unit, and (auxiliary) memory. The control unit has a limited store,
to be represented as a finite set of states; the auxiliary memory on the other
hand, has unbounded capacity. The upper tape contains the given input or

2 Other books have a broader and deeper coverage of automata theory, such as Salomaa
[47], Hopcroft and Ullman [28, 29], Harrison [25], and the handbook [45]; for finite automata
a specific reference is Sakarovitch [46].



96 3 Finite Automata as Regular Language Recognizers

input tape

� a1a2 . . . ai . . . an �

control unit

� M1M2 . . . Mj . . . Mn �

auxiliary memory

input reading head (read only)

memory head (read and write)

Fig. 3.1 General automaton.

source string, which can be read but not changed. Each case of the tape
contains a terminal character; the cases to the left and right of the input
contain two delimiters, the start of text mark � and the end of text mark or
terminator �. A peculiarity of automata is that the auxiliary memory is also
a tape (instead of the random access memory used in other computational
models), containing symbols of another alphabet.

The automaton performs at discrete time instants the following actions:
read the current character ai from input, shift the reading head, read from
memory the current symbol Mj and replace it with another symbol, move
the memory head, and change the current state of the control unit to the
next one.

The automaton examines the source by performing a series of moves; the
choice of a move depends on the current two symbols (input and memory)
and on the current state. A move may have some of the following effects:

• shift the input head left or right by one position;
• overwrite the current memory symbol with another one, and shift the

memory head left or right by one position;
• change the state of the control unit.

A machine is unidirectional if the input head only moves from left to right:
this is the model to be considered in the book, because it well represents
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text processing by a single scan. For unidirectional machines the start of text
mark is superfluous.

At any time the future behavior of the machine depends on a 3-tuple, called
an (instantaneous) configuration, made by: the suffix of the input string still
to be read, that is laying to the right of the head; the contents of the memory
tape and the position of the head; the state of the control unit. The initial
configuration has: the input head positioned on character a1 (i.e., right of
the start of text mark), the control unit in an initial state, and the memory
containing a specific symbol (or sometimes a fixed string).

Then the machine performs a computation, i.e., a sequence of moves, that
leads to new configurations. If for a configuration at most one move can
be applied, the change of configuration is deterministic. A nondeterministic
(or indeterministic) automaton is essentially a manner of representing an
algorithm that in some situation may explore alternative paths.

A configuration is final if the control is in a state specified as final, and
the input head is on the terminator. Sometimes, instead of, or in addition to
being in a final state, a final configuration is qualified by the fact that the
memory tape contains a specified symbol or string: a frequent choice is for
memory to be empty.

The source string x is accepted if the automaton, starting in the initial
configuration with x � as input, performs a computation leading to a final
configuration (a nondeterministic automaton can possibly reach a final con-
figuration by different computations). The language accepted or recognized
by the machine is the set of accepted strings.

Notice a computation terminates either when the machine has entered
a final configuration or when in the current configuration no move can be
applied. In the latter case the source string is not accepted by that com-
putation (but perhaps accepted by another computation if the machine is
indeterministic).

Two automata accepting the same language are called equivalent. Of course
two machines, though equivalent, may belong to different models or have
different computational complexities.

Turing Machine

The preceding description substantially reproduces the automaton introduced
by A. Turing in 1936 and widely taken as the best available formalization of
any sequential algorithm. The family of languages accepted is termed recur-
sively enumerable. In addition, a language is termed decidable (or recursive) if
there exists a Turing machine accepting it and halting for every input string.
The family of decidable languages is smaller than the one of recursively enu-
merable languages.

Such machine is the recognizer of two of the language families of Chomsky
classification (p. 87). The languages generated by type 0 grammars are ex-
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actly the recursively enumerable. The languages of context-sensitive or type
1 grammars, on the other hand, correspond to the languages accepted by a
Turing machine that is constrained in its use of memory: the length of the
memory tape is bounded by the length of the input string.

Turing machines are not relevant for practical applications but are a signif-
icant term of comparison for the efficient machine models used to recognize
and transform technical languages. Such models can be viewed as Turing
machines with severe limitation on memory. When no auxiliary memory is
available, we have the finite-state or simply finite automaton, the most fun-
damental type of computing machine which corresponds to the regular lan-
guages. If the memory is organized as LIFO (last in first out) store, the ma-
chine is termed a pushdown automaton and is the recognizer of context-free
languages.

The memory limitations have a profound effect on the properties and in
particular the performance of the automata. Considering the worst-case time
complexity, which is a primary parameter for program efficiency, a finite
automaton is able to recognize a string in linear time, or more exactly in real
time, that is, with a number of steps equal to the input length. In contrast the
space bounded Turing machine may take a nonpolynomial time to recognize
a context-sensitive language, another reason making it unpractical to use.
Context-free language recognizers are somehow in between: the number of
steps is bounded by a polynomial of small degree of the input string length.

3.3 Introduction to Finite Automata

Finite automata are surely the simplest and most fundamental abstract com-
putational device. Their mathematical theory is very stable and deep and is
able to support innumerable applications in diverse areas, from digital cir-
cuit design to system modelling and communication protocols, to mention
just a few. Our presentation will be focused on the aspects that are impor-
tant for language and compiler design, but in order to make the presentation
self-contained we briefly introduce some essential definitions and theoretical
results.

Conforming to the general scheme, a finite automaton comprises: the in-
put tape with the source string x ∈ Σ∗; the control unit; the reading head,
initially placed on the first character of x, scanning the string until its end,
unless an error occurs before. Upon reading a character, the automaton up-
dates the state of the control unit and advances the reading head. Upon
reading the last character, the automaton accepts x if and only if the state
is an accepting one.

A well-known representation of an automaton is by a state-transition di-
agram or graph. This is a directed graph whose nodes are the states of the
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control unit. Each arc is labelled with a terminal and represents the change
of state or transition caused by reading the terminal.

Example 3.1. Decimal constants
The set L of decimal constants has the alphabet Σ = Δ ∪ {0, •} where
Δ = {1, 2, 3, 4, 5, 6, 7, 8, 9} is a digit other than zero. The r.e. is

L = (0 ∪ Δ(0 ∪ Δ)∗) • (0 ∪ Δ)+

The recognizer is specified by the state-transition diagram or by the equiva-
lent state-transition table in Figure 3.2.

State-transition diagram State-transition table

q2

q0 q3 q4

q1

→ →

Δ

0

•

•

0 ∪ Δ

0 ∪ Δ

0 ∪ Δ

Current Current character
state 0 1 . . . 9 •
→ q0 q2 q1 . . . q1 −

q1 q1 q1 . . . q1 q3

q2 − − . . . − q3

q3 q4 q4 . . . q4 −
q4 → q4 q4 . . . q4 −

Fig. 3.2 State-transition diagram or graph (left) and table (right) for decimal constants
(example 3.1).

Notice that if several arcs span the same two nodes, only one is drawn:
e.g.,arc (q0 → q1) represents a bundle of 9 arcs with labels 1, 2, . . . , 9. The
initial state q0 is marked by an ingoing arrow; the final state q4 by an outgoing
arrow. The transition table is the incidence matrix of the graph: for each pair
(current state, current character) the entry contains the next state. Notice
the arrows giving evidence to initial/final states.

Given the source string 0 • 2•, the automaton transits through the states
q0, q2, q3, q4. In the last state, since no transition allows reading a • charac-
ter, the computation stops before the entire input has been consumed. As
a consequence, the source string is not accepted. On the other hand, input
0 • 21 would be accepted.

If we prefer to modify the language so that constants such as 305• ending
with a decimal point are legal, the state q3 too must be marked as final.

We have seen an automaton may have several final states, but only one initial
state (otherwise it would not be deterministic).
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3.4 Deterministic Finite Automata

The previous ideas are formalized in the next definition.
A finite deterministic automaton M comprises five items:

1. Q, the state set (finite and not empty)
2. Σ, the input or terminal alphabet
3. the transition function δ : (Q × Σ) → Q
4. q0 ∈ Q, the initial state
5. F ⊆ Q, the set of final states.

Function δ specifies the moves: the meaning of δ(q, a) = r is that machine M
in the current state q reads a and moves to next state r. If δ(q, a) is undefined,
the automaton stops and we can assume it enters the error state; more on
that later.

The automaton processes a not empty string x by a series of moves. Take
x = ab; reading the first character, the first step δ(q0, a) = q1 leads to state
q1, then to q2 by the second step δ(q1, b) = q2.
In short, instead of writing δ(δ(q0, a), b) = q2, we combine the two steps into
δ(q0, ab) = q2 , to say that reading string ab the machine moves to state q2.
Notice that the second argument of function delta is now a string.
A special case is the empty string, for which we assume no change of state:

∀q ∈ Q : δ(q, ε) = q

Following these stipulations, the domain of the transition function is (Q×Σ∗)
and the definition is

δ(q, ya) = δ(δ(q, y), a), where a ∈ Σ and y ∈ Σ∗

Looking at the graph, if δ(q, y) = q′, then, and only then, there exists a
path from node q to node q′, such that the concatenated labels of the arrows
make string y. We say y is the label of the path and the path represents a
computation.
A string x is recognized or accepted by the automaton if it is the label of a
path from the initial state to a final state, δ(q0, x) ∈ F .
Notice the empty string is recognized if, and only if, the initial state is also
final, q0 ∈ F .
The language recognized or accepted by automaton M is

L(M) = {x ∈ Σ∗ | x is recognized by M}

The languages accepted by such automata are termed finite-state recognizable.
Two automata are equivalent if they accept the same language.

Example 3.2. (Example 3.1 continued)
The automaton M of p. 99 is defined by:



3.4 Deterministic Finite Automata 101

Q = {q0, q1, q2, q3, q4}
Σ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0, •}
q0 = q0

F = {q4}
Examples of transitions:

δ(q0, 3•1) = δ(δ(q0, 3•), 1) = δ(δ(δ(q0, 3), •), 1) = δ(δ(q1, •), 1) = δ(q3, 1) = q4

Since q4 ∈ F , string 3 • 1 is accepted. On the contrary, since δ(q0, 3•) = q3 is
not final, string 3• is rejected, as well as string 02 because function δ(q0, 02) =
δ(δ(q0, 0), 2) = δ(q2, 2) is undefined.

Observing that for each input character the automaton executes one step,
the total number of steps is exactly equal to the length of the input string.
Therefore such machines are very efficient as they can recognize strings in
real time by a single left-to-right scan.

3.4.1 Error State and Total Automata

If the move is not defined in state q when reading character a, we say that
the automaton falls into the error state qerr. The error state is such that for
any character the automaton remains in it, thus justifying its other name of
sink or trap state. Obviously the error state is not final.

The state transition function can be made total by adding the error state
and the transitions from/to it:

∀ state q ∈ Q and ∀a ∈ Σ, if δ(q, a) is undefined set δ(q, a) = qerr

∀a ∈ Σ set δ(qerr , a) = qerr

The recognizer of decimal constants, completed with error state, is shown in
Figure 3.3.
Clearly any computation reaching the error state gets trapped in it and

cannot reach a final state. As a consequence, the total automaton accepts
the same language as the original one. It is customary to leave the error state
implicit, neither drawing a node nor specifying the transitions for it.

3.4.2 Clean Automata

An automaton may contain useless parts not contributing to any accepting
computation, which are best eliminated. Notice the following concepts hold
as well for nondeterministic finite automata, and in general for any kind of
abstract machine.
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qerr

q2

q0 q3 q4

q1

→ →

Δ

0

•

•

0 ∪ Δ

0 ∪ Δ

0 ∪ Δ

•

0 ∪ Δ

• •

0 ∪ Δ ∪ •

Fig. 3.3 Recognizer of decimal constants completed with sink (error or trap) state.

A state q is reachable from state p if a computation exists going from p
to q. A state is accessible if it can be reached from the initial state; it is
postaccessible if a final state can be reached from it. A state is called useful
if it is accessible and postaccessible; otherwise it is useless. In other words a
useful state lays on some path from the initial state to a final one.

An automaton is clean (or reduced) if every state is useful.

Property 3.3. For every finite automaton there exists an equivalent clean au-
tomaton.

The construction of the clean machine consists of identifying and deleting
useless states, together with adjoining transitions.

Example 3.4. Elimination of useless states
Figure 3.4 shows a machine with useless states and the corresponding clean
machine.

Notice the error state is never postaccessible, hence always useless.



3.4 Deterministic Finite Automata 103

unclean automaton:

not accessible state

not postaccessible state

→ →

b

a

a

c

c

a

b

clean automaton:

→ →
a a

b

Fig. 3.4 Useless states (top) and their elimination obtaining a clean automaton (bottom).

3.4.3 Minimal Automata

We focus on properties of the automata recognizing the same language. Their
state sets and transition functions are in general different but their compu-
tations are equivalent. A central property is that, among such equivalent
machines, there exists only one which is the smallest in the following sense.

Property 3.5. For every finite-state language, the (deterministic) finite rec-
ognizer minimal with respect to the number of states is unique (apart from
renaming of states).

Conceptually the statement is fundamental as it permits to represent a col-
lection of equivalent machines by a standard one which moreover is minimal.
In practice this is not so important for compiler applications, nevertheless we
describe for self-consistency the standard minimization algorithm.

First we need to introduce an algebraic relation between equivalent states,
to be computed by the algorithm.3

Although we assume the given automaton is clean, some of its states may
be redundant, in the sense that they can be fused together at no consequence
for strings accepted or rejected. Any two such states are termed undistin-

3 Other more efficient and subtle algorithms have been invented. We refer the reader to
the survey in [56].
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guishable from each other, and the corresponding binary relation is termed
undistinguishability (or of Nerode).

Definition 3.6. The states p and q are undistinguishable if, and only if, for
every string x ∈ Σ∗, either both states δ(p, x) and δ(q, x) are final, or neither
one is. The complementary relation is termed distinguishability.

Spelling out the condition, two states p and q are undistinguishable if, starting
from them and scanning the same arbitrarily chosen input string x, it never
happens that a computation reaches a final state and the other does not.

Notice that:

1. the sink state qerr is distinguishable from every state p, since for any state
there exists a string x such that δ(p, x) ∈ F , while for every string x it is
δ(qerr , x) = qerr;

2. p and q are distinguishable if p is final and q is not, because δ(p, ε) ∈ F
and δ(q, ε) �∈ F ;

3. p and q are distinguishable if, for some character a, the next states δ(p, a)
and δ(q, a) are distinguishable.

In particular, p is distinguishable from q if the set of labels attached to the
outgoing arrows from p and the similar set from q are different: in that case
there exists a character a such that the move from state p reaches state p′,
while the move from q is not defined (i.e., it reaches the sink); from condition
3. the two states are distinguishable.

Undistinguishability as a relation is symmetric, reflexive, and transitive,
i.e., it is an equivalence relation, whose classes are computed by a straight-
forward procedure to be described next by means of an example.

Example 3.7. Equivalence classes of undistinguishable states
For automaton M of Figure 3.5, we construct a table of size |Q| × |Q|, repre-
senting the undistinguishability relation; but, since the relation is symmetric,
we do not have to fill the cases over the principal diagonal.

q0 q1 q2 q3→

↑

→a b a

b

b

a

b

a

Fig. 3.5 Automaton M to be minimized (example 3.7).
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The procedure will mark with X the case at position (p, q) , when it
discovers that the states p and q are distinguishable. We initialize with X
the cases such that one state only is final:

q1 − −
q2 X X −
q3 X X

q0 q1 q2

Then we examine every case (p, q) still unmarked and, for every character a,
we consider the next states r = δ(p, a) and s = δ(q, a). If case (r, s) already
contains X , meaning that r is distinguishable from s, then also p and q are
so, therefore case (p, q) is marked X . Otherwise, if (r, s) is not marked X ,
the pair (r, s) is written into case (p, q), as a future obligation, if case (r, s)
will get marked, to mark case (p, q) as well.

The pairs of next states are listed in the table to the left. The result of
this step is the table to the right. Notice case (1,0) is marked because the
pair (0, 2) ≡ (2, 0) was already marked:

q1 (1,1),(0,2) − −
q2 X X −
q3 X X (3,3),(2,2)

q0 q1 q2

q1 X − −
q2 X X −
q3 X X (3,3),(2,2)

q0 q1 q2

Now all cases (under the principal diagonal) are filled and the algorithm
terminates. The cases not marked with X identify the undistinguishable pairs,
in our example only the pair (q2, q3).

An equivalence class contains all the pairwise undistinguishable states. In
the example the equivalence classes are [q0], [q1], [q2, q3].

It is worthwhile analyzing another example where the transition function is
not total. To this end, we modify automaton M of Figure 3.5, erasing the
self-loop δ(q3, a) = q3, i.e., redefining the function as δ(q3, a) = qerr. As a
consequence, states q2 and q3 become distinguishable, because δ(q2, a) = q3

and δ(q3, a) = qerr. Now every equivalence class is a singleton, meaning the
automaton is already minimal.

Construction of Minimal Automaton

The minimal automaton M ′, equivalent to the given M , has for states the
equivalence classes of the undistinguishability relation. It is simple to con-
struct its transition function: M ′ contains the arc

C1
︷ ︸︸ ︷

[. . . , pr, . . .]
b−→

C2
︷ ︸︸ ︷

[. . . , qs, . . .]

between equivalence classes C1 and C2, if, and only if, M contains an arc
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pr
b−→ qs

between two states respectively belonging to the two classes. Notice that the
same arc of M ′ may derive from several arcs of M .

Example 3.8. (Example 3.7 continued)
The minimal automaton M ′ is in Figure 3.6. This has the least number of
states of all equivalent machines. In fact, we could easily check that merging
any two states, the resulting machine would not be equivalent, but it would
accept a larger language than the original.

q0 q1 [q2, q3]→ →a b

b

a

a

b

Fig. 3.6 Result M ′ of minimization of automaton M of Figure 3.5.

The example has constructively illustrated property 3.5, that the minimal
automaton is unique. From this it is a straightforward test to check whether
two given machines are equivalent. First minimize both machines; then com-
pare their state-transition graphs to see if they are identical (i.e., isomorphic
and with corresponding initial and final states), apart from a change of name
of the states.4

In practical use, obvious economy reasons make the minimal machine a
preferable choice. But the saving is often negligible for the cases of concern
in compiler design. What is more, in certain situations state minimization
of the recognizer should be avoided: when the automaton is enriched with
actions computing an output function, to be seen in Chapter 6, two states
that are undistinguishable for the recognizer, can be associated with different
output actions. Then merging the states would spoil the intended translation.
Finally we anticipate that the uniqueness property of the minimal automaton
does not hold for the nondeterministic machines to be introduced next.

3.4.4 From Automata to Grammars

Without much effort we are going to realize that finite automata and unilinear
(or type 3) grammars of p. 69 are alternative but equivalent notations defining
the same language family.

4 Other more efficient equivalence tests do without first minimizing the automata.
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First we show how to construct a right-linear grammar equivalent to an
automaton. Grammar G has as nonterminal set the states Q of the automa-
ton, and the axiom is the initial state. For each move q

a−→ r the grammar
has the rule q → ar. If state q is final, it has also the terminal rule q → ε.

It is evident that there exists a bijective correspondence between the com-
putations of the automaton and the derivations of the grammar: a string x
is accepted by the automaton if, and only if, it is generated by a derivation
q0

+⇒ x.

Example 3.9. From the automaton to the right-linear grammar
The automaton and corresponding grammar are

q0 q1 q2→
↓

→
b

c

a|b

a

q0 → aq0 | bq1 | ε
q1 → cq0 | aq2 | bq2

q2 → ε

Sentence bca is recognized in 3 steps by the automaton and it derives from
the axiom in 3 + 1 steps:

q0 ⇒ bq1 ⇒ bcq0 ⇒ bcaq0 ⇒ bcaε

Observe the grammar contains empty rules but of course it can be turned
into the nonnullable normal form by means of the transformation on p. 60.

For the example, first we find the set of nullable nonterminals Null =
{q0, q2}; then we construct the equivalent rules:

q0 → aq0 | bq1 | a | ε q1 → cq0 | aq2 | bq2 | a | b | c

Now q2 is eliminated because its only rule is empty. At last grammar cleaning
produces the rules:

q0 → aq0 | bq1 | a | ε q1 → cq0 | a | b | c

Of course the empty rule q0 → ε must stay there because q0 is the axiom,
which causes the empty string to be a sentence.
In this normal form of the grammar it is evident that a move entering a final
state r

q
a−→ r →

may correspond to two rules q → ar | a, one producing the nonterminal r,
the other of the terminal type.

The conversion from automaton to grammar has been straightforward, but
to make the reverse transformation from grammar to automaton, we need to
modify the machine definition by permitting nondeterministic behavior.
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3.5 Nondeterministic Automata

A right-linear grammar may contain two alternative rules

A → aB | aC where a ∈ Σ, A, B, C ∈ V
C A B

aa

starting with the same character a. In this case, converting the rules to ma-
chine transitions, two arrows with identical label would exit from the same
state A and enter two distinct states B and C. This means that in state A,
reading character a, the machine can choose which one of the next states to
enter: its behavior is not deterministic. Formally the transition function takes
two values, δ(A, a) = {B, C}.

Similarly a copy rule

A → B where B ∈ V
A B

ε

would be converted into an unusual machine transition from state A to state
B, which does not read any terminal character (it would be odd to say it
reads the empty string).

A machine move that does not read an input character is termed sponta-
neous or an epsilon move. Spontaneous moves too cause the machine to be
nondeterministic, as in the following situation:

C A B
εa

where in state A the automaton can choose to move spontaneously (i.e.,
without reading) to B, or to read a character, and if it is an a, to move to C.

3.5.1 Motivation of Nondeterminism

The mapping from grammar rules to transitions pushed us to introduce some
transitions with multiple destinations and spontaneous moves, which are the
main forms of indeterminism. Since this might appear as a useless theoretical
concept, we hasten to list several advantages.

Concision

Defining a language with a nondeterministic machine often results in a more
readable and compact definition, as in the next example.

Example 3.10. Penultimate character
A sentence, like abaabb, is characterized by the presence of letter b in
the penultimate position. The r.e. and indeterministic recognizer are in
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L2 = (a | b)∗b(a | b) N2 :

q0 q1 q2→ →b a | b

a | b

Fig. 3.7 R.e. and corresponding nondeterministic machine N2 checking the penultimate
character is b.

Figure 3.7. We have to explain how machine N2 works: given an input string,
the machine seeks a computation, i.e., a path from the initial state to the
final, labelled with the input characters; if it succeeds, the string is accepted.
Thus string baba is recognized with the computation

q0
b→ q0

a→ q0
b→ q1

a→ q2

Notice other computations are possible, for instance the path

q0
b→ q0

a→ q0
b→ q0

a→ q0

fails to recognize, because it does not reach the final state.
The same language is accepted by the deterministic automaton M2 in

Figure 3.8. Clearly this machine is not just more complicated than the inde-
terministic type in Figure 3.7, but the latter makes it more perspicuous that
the penultimate character must be b.

M2:

p0 p1 p3

p2

→

→

↓

b b

a
a b a

a b

Fig. 3.8 Deterministic recognizer M2 of strings having b next to last.

To strengthen the argument consider a generalization of language L2 to
language Lk, such that, for some k � 2, the k-th character before the last
is b. With little thought we see the nondeterministic automaton would have
k + 1 states, while one could prove that the number of states of the minimal
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deterministic machine is an exponential function of k.
In conclusion indeterminism sometimes allows much shorter definitions.

Left Right Interchange and Language Reflection

Nondeterminism also arises in string reversal when a given deterministic ma-
chine is transformed to recognize the reflection LR of language L. This is
sometimes required when for some reason strings must be scanned from right
to left.
The new machine is straightforward to derive: interchange initial and final
states5 and reverse all the arrows. Clearly this may give birth to nondeter-
ministic transitions.

Example 3.11. The language having b as penultimate character (L2 of Figure
3.7) is the reflection of the language having the second character equal to b:

L′ = {x ∈ {a, b}∗ | b is the second character of x} L2 = (L′)R

L′ is recognized by the deterministic automaton (left):

q0 q1 q2← ←
b a | b

a | b

q0 q1 q2→ →b a | b

a | b

Transforming the deterministic automaton as explained above, we obtain the
nondeterministic machine (right), which by the way is identical to the one in
Figure 3.7.

As a further reason, we anticipate that nondeterministic machines are the
intermediate product of procedures for converting r.e. to automata, widely
used for designing lexical analyzers or scanners.

3.5.2 Nondeterministic Recognizers

We precisely define the concept of nondeterministic finite-state computation,
first without spontaneous moves.

5 If the machine has several final states, multiple initial states result thus causing another
form of indeterminism to be dealt with later.
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A nondeterministic finite automaton N , without spontaneous moves, is de-
fined by:

• the state set Q
• the terminal alphabet Σ
• two subsets of Q: the set I of the initial states and the set F of final states
• the transition relation δ, a subset of the cartesian product Q × Σ × Q.

Remarks. This machine may have several initial states. In the graphic rep-
resentation a transition (q1, a, q2) is an arc labelled a, from the first to the
second state.
As before, a computation is a series of transitions such that the origin of each
one coincides with the destination of the preceding one:

q0
a1→ q1

a2→ q2 . . .
an→ qn

The computation origin is q0, the termination is qn, and the length is the
number n of transitions or moves. A computation of length one is just a
transition. The computation label is the concatenation a1a2 . . . an of the
characters read by each transition. In brief, the computation is also writ-
ten q0

a1a2...an−→ qn.
A string x is recognized or accepted by the automaton, if it is the label of a
computation originating in some initial state, terminating in some final state,
and having label x.
Let us focus on the empty string. We stipulate that every state is the origin
and termination of a computation of length 0, having the empty string ε as
label. It follows that the empty string is accepted by an automaton if, and
only if, there exists an initial state which is also final.
The language L(N) recognized by automaton N is the set of accepted strings:

L(N) = {x ∈ Σ∗ | q
x→ r with q ∈ I, r ∈ F}

Example 3.12. Searching a text for a word
Given a string or word y and a text x, does x contain y as substring? The
following machine recognizes the texts which contain one or more occurrences
of y, that is, the language (a | b)∗y(a | b)∗. We illustrate with the word y = bb:

p q r→ →b b

a | b a | b

String abbb is the label of several computations originating in the initial state:

p
a→ p

b→ p
b→ p

b→ p p
a→ p

b→ p
b→ p

b→ q

p
a→ p

b→ p
b→ q

b→ r p
a→ p

b→ q
b→ r

b→ r



112 3 Finite Automata as Regular Language Recognizers

The first two computations do not find the word looked for. The last two find
the word respectively at position ab bb

︸︷︷︸
and a bb

︸︷︷︸
b .

Transition Function

The moves of a nondeterministic automaton can still be considered as a finite
function, but one computing sets of values. For a machine N = (Q, Σ, δ, I, F ),
devoid of spontaneous moves, the functionality of the state-transition function
δ is:

δ : (Q × (Σ ∪ ε)) → powerset of Q

Now the meaning of δ(q, a) = [p1, p2, . . . , pk] is that the machine reading a
in the current state q, can arbitrarily move to any of the states p1, . . . , pk.
As we did for deterministic machines, we extend the function to any string y
including the empty one:

∀q ∈ Q : δ(q, ε) = [q]

∀q ∈ Q, y ∈ Σ∗ : δ(q, y) = [p | q
y→ p]

In other words, it is p ∈ δ(q, y) if there exists a computation labelled y from
q to p.

The previous definitions allow a reformulation of the language accepted
by automaton N :

L(N) = {x ∈ Σ∗ | ∃q ∈ I : δ(q, x) ∩ F �= ∅}

i.e., the set computed by function delta must contain a final state, for a string
to be recognized.

Example 3.13. (Example 3.12 continued)

δ(p, a) = [p], δ(p, ab) = [p, q], δ(p, abb) = [p, q, r]

3.5.3 Automata with Spontaneous Moves

Another kind of nondeterministic behavior occurs when an automaton changes
state without reading a character, thus performing a spontaneous move, to be
depicted in the state-transition diagram as an arc labelled ε (named ε-arc).
Such arcs will prove to be expedient for assembling the automata recognizing
a regular composition of finite-state languages. The next example illustrates
the case for union and concatenation.

Example 3.14. Compositional definition of decimal constants
This language includes constants such as 90 • 01. The part preceding the
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decimal point may be missing (as in •02); but it may not contain leading
zeroes. Trailing zeroes are permitted at the end of the fractional part. The
language is defined by the r.e.

L = (0 | ε | N) • (0 . . . 9)+ where N = (1 . . . 9)(0 . . . 9)∗

The automaton in Figure 3.9 mirrors the structure of the expression. Notice
that the presence of spontaneous moves does not affect the way a machine
performs recognition: a string x is recognized by a machine with spontaneous
moves if it is the label of a computation originating in an initial state and
terminating in a final state. Observe that taking the spontaneous move from

A C D E

B

→ →
0 | ε

1 . . . 9 ε

• 0 . . . 9

0 . . . 9

0 . . . 9

Fig. 3.9 Decimal constant definition with spontaneous moves (example 3.14).

A to C, the integer part N vanishes. The string 34 • 5 is accepted with the
computation

A
3→ B

4→ B
ε→ C

•→ D
5→ E

But the number of steps of the computation (i.e., the length of the path in
the graph) can exceed the length of the input string, because of the presence
of ε-arcs. As a consequence, the recognition algorithm no longer works in real
time. Yet time complexity remains linear, because it is possible to assume
that there are no cycles of spontaneous moves in any computation.

The family of languages recognized by such nondeterministic automata is
also called finite-state.

Uniqueness of Initial State

The official definition of nondeterministic machine allows two or more initial
states, but it is easy to construct an equivalent machine with only one: add
to the machine a new state q0, which will be the only initial state, and the
ε-arcs going from it to the former initial states of the automaton. Clearly any
computation on the new automaton accepts a string if, and only if, the old
automaton does so.
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The transformation has changed one form of indeterminism, linked with mul-
tiple initial states, to another form related to spontaneous moves. We shall
see on p. 120 that such moves can be eliminated.

3.5.4 Correspondence between Automata and
Grammars

We collect in Table 3.1 the mapping between nondeterministic automata, also
with spontaneous moves, and unilinear grammars. The correspondence is so
direct that it witnesses the two models are essentially notational variants.

Table 3.1 Correspondence between finite nondeterministic automata and right-linear
grammars.

Right-linear grammar Finite automaton

1 Nonterminal set V Set of states Q = V

2 Axiom S = q0 Initial state q0 = S

3 p → aq, where a ∈ Σ and p, q ∈ V p q
a

4 p → q, where p, q ∈ V p q
ε

5 p → ε Final state p →

Consider a right-linear grammar G = (V, Σ, P, S) and a nondeterministic
automaton N = (Q, Σ, δ, q0, F ) , which we may assume from the preceding
discussion to have a single initial state. First assume the grammar rules are
strictly unilinear (p. 71). The states Q of the automaton match the nonter-
minals V of the grammar. The initial state corresponds to the axiom. Notice
(row 3) that the pair of alternatives p → aq | ar correspond to two nonde-
terministic moves. A copy rule (row 4) matches a spontaneous move. A final
state (row 5) matches a nonterminal having an empty rule.
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It is easy to see that every grammar derivation matches a machine com-
putation, and conversely, so that the following statement ensues.

Property 3.15. A language is recognized by a finite automaton if, and only if,
it is generated by a unilinear grammar.

Notice that the statement concerns also left-linear grammars, since we know
from Chapter 2 they have the same capacity as right-linear grammars.

If the grammar contains nonempty terminal rules of type p → a where
a ∈ Σ, the automaton is modified, to include a new final state f , different
from those produced by row 5 of Table 3.1, and the move p f →a

Example 3.16. Right-linear grammar and nondeterministic automaton
The grammar matching the automaton of decimal constants (Figure 3.9 on
p. 113) is

A → 0C | C | 1B | . . . | 9B B → 0B | . . . | 9B | C
C → •D D → 0E | . . . | 9E
E → 0E | . . . | 9E | ε

where A is the axiom.
Next we drop the assumption of unilinearity in the strict sense. Observe

the right-linear grammar (left) and matching automaton (right) below:

S → aaX | ε
S q X f→
↑

→a a

b

b

X → bX | b

The not strictly right-linear rule S → aaX is simply converted to a cascade
of two arcs, with an intermediate state q after the first a. Moreover, the new
final state f has been added to mirror the last step of a derivation using rule
X → b.

3.5.5 Ambiguity of Automata

An automaton is ambiguous if it accepts a string with two different compu-
tations. Clearly it follows from the definition that a deterministic automaton
is never ambiguous. It is interesting to link the notion of ambiguity for au-
tomata and for unilinear grammars. Knowing that there is a bijective corre-
spondence between computations and grammar derivations, it follows that an
automaton is ambiguous if, and only if, the right-linear equivalent grammar
is ambiguous, i.e., if it generates a sentence with two distinct syntax trees.
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Example 3.17. Ambiguity of automaton and grammar
The automaton of example 3.12 on p. 111, reproduced below

p q r→ →b b

a | b a | b

p → ap | bp | bq
r → ar | br | ε
q → br

recognizes string abbb in two ways. The equivalent grammar (right) generates
the same string with the trees:

p

a p

b p

b q

b r

ε

p

a p

b q

b r

b r

ε

3.5.6 Left-Linear Grammars and Automata

Remember that the REG family can also be defined using left-linear gram-
mars. By interchanging left with right, it is simple to discover the mapping
between such grammars and automata. Observe the forms of left-linear rules:

A → Ba, A → B, A → ε

Consider such a grammar G and the specular language LR = (L(G))R: this
language is generated by the reflected grammar, denoted GR, obtained (p.
79) transforming the rules of the first form to A → aB, while the remaining
two forms do not change. Since the reflected grammar GR is right-linear, we
know how to construct a finite automaton NR for LR. In order to obtain the
automaton of the original language L, we modify NR, reversing the arrows
of transitions and interchanging initial and final states.

Example 3.18. From left-linear grammar to automaton
Given grammar G:

S → Aa | Ab A → Bb B → Ba | Bb | ε

the reflected grammar GR is

S → aA | bA A → bB B → aB | bB | ε

The corresponding automaton NR recognizing the mirror language and the
recognizer N for language L(G) are:
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Recognizer NR of (L(G))R Recognizer N of L(G)

S A B→ →
a | b b

a | b

S A B← ←
a | b b

a | b

Incidentally, the language has a b in the position before the last.

3.6 Directly from Automata to Regular Expressions:
BMC Method

In applied work one has sometimes to compute an r.e. for the language defined
by a machine. We already know a rather indirect method: since an automa-
ton is easily converted to an equivalent right-linear grammar, the r.e. of the
language can be computed solving the linear simultaneous equations, seen on
p. 71. The next direct elimination method BMC is named after Brzozowski
and McCluskey .

Suppose for simplicity the initial state i is unique and no arc enters in it;
similarly the final state t is unique and without outgoing arcs. Otherwise, just
add a new initial state i connected by spontaneous moves to the ex-initial
states; similarly introduce a new unique final state t. Every state other than
i and t is called internal.

We construct an equivalent automaton, termed generalized, which is more
flexible as it allows arc labels to be not just terminal characters, but also
regular languages (i.e., a label can be an r.e.). The idea is to eliminate one by
one the internal states, while compensating by introducing new arcs labelled
with r.e., until only the initial and final states are left. Then the label of arc
i → t is the r.e. of the language.

Observe in Figure 3.10 to the left an internal state q with all adjoining
arcs; to the right, the same fragment of machine, after eliminating state q
and with compensatory arcs labelled with the same strings produced when
traversing state q.

To avoid too many superpositions some labels are not printed, but of

course, for every pair of states pi and rj there should be an arc pi
HiJ

∗Kj−→ rj .
Notice that in the scheme some states pi, rj may coincide. It is evident that
the set of strings which may be read when the original automaton moves from
state pi to state rj , coincide with the language labelling the arc pi → rj of
the new automaton.
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p1 r1

p2 q r2

ph rk

:

:

:

:

H1

H2

Hh J

K1

K2

Kk

p1 r1

p2 r2

ph rk

:

:

:

:

H1J∗K1

HhJ∗Kk

H1J∗K2

Fig. 3.10 Deleting a node and compensating with new generalized arcs.

In order to compute the r.e. of the language of a given automaton, the
above transformation is applied over and over eliminating each time an in-
ternal state.

Example 3.19. (from Sakarovitch)
The automaton is shown in Figure 3.11 before and after normalization.

p q

↓

↓

b

a
a b

i

p q

t

→

→

ε

b

a

ε

a b

Fig. 3.11 Automaton before (left) and after (right) normalization (example 3.19).

We trace in Figure 3.12 the execution of the BMC algorithm, eliminating
the states in the order q, p.

The elimination order does not affect the result, but, as in the solution
of simultaneous equations by elimination, it may yield more or less complex
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t
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(b∗a)∗

Fig. 3.12 Left to right: the automaton of Figure 3.11 after elimination of node q, simpli-
fication of r.e., and elimination of node p.

yet equivalent solutions. For instance, the order p, q would produce the r.e.
(a∗b)+a+ | a∗.

3.7 Elimination of Nondeterminism

We have argued for the use of nondeterministic machines in language specifi-
cations and transformations, but the final stage of a project usually requires
an efficient implementation, which can only be provided by a deterministic
machine. There are exceptions, like when the cost to be minimized is the
time needed to construct the automaton, instead of the time spent to recog-
nize strings: this happens for instance in a text editor, when implementing a
searching algorithm by means of an automaton to be used only one time to
find a string in a text.

Next we describe a procedure for turning a nondeterministic automaton
into an equivalent deterministic one; as a corollary every unilinear grammar
can be made nonambiguous. The transformation operates in two phases:

1. Elimination of spontaneous moves, obtaining a machine that in general is
nondeterministic. Because spontaneous moves match the copy rules of the
equivalent grammar, this phase applies the grammar transformation that
removes such rules (p. 61).

2. Replacing several not deterministic transitions with one transition entering
a new state: this phase is called powerset construction, because the new
states correspond to the subsets of the set of states.
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Elimination of Spontaneous Moves

For phase one we avoid repeating the algorithm for copy rule elimination and
proceed to illustrate.

Example 3.20. For the automaton of Figure 3.13, we want to eliminate all
the copy rules6 of the equivalent right-linear grammar (right).

S A B

C D

→ →ε ε

a
ε

b

c

d e

S → A A → B | eD B → ε
C → aS | bD D → S | cC | dA

Fig. 3.13 Automaton with spontaneous moves and equivalent grammar.

First we compute the sets of copies:

copy
S S, A, B
A A, B
B B
C C
D D, S, A, B

Then we construct the copy-less grammar and the equivalent machine
without spontaneous moves shown in Figure 3.14, where state B, not acces-
sible from the initial state, should be deleted. Observe that a whole path of
the graph of Figure 3.13 (e.g., D

ε→ S
ε→ A

e→ D), made with a chain of
spontaneous moves ended by a reading move, is replaced with a direct move
(D e→ D) in Figure 3.14.

The last remark suggests that elimination can be directly performed on
the graph, without going through the grammar. It suffices to identify every
path made by spontaneous moves and ending with a reading move and to
replace it with a reading move to the same effect. After all such paths have
been similarly analyzed, the varepsilon-arcs are erased.
After this machine transformation, if the result is not deterministic, the next
transformation must be applied.

6 Notice that the algorithm of p. 61 can be applied, although the grammar contains ε-rules,
because in a unilinear grammar every right part contains at most one nonterminal.
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S → ε | eD A → ε | eD B → ε
C → aS | bD D → ε | eD | cC | dA

S A B

C D

→
↑ ↑

→

→

e
a

b

c

d e

e

Fig. 3.14 Copy-less grammar and automaton without spontaneous moves, equivalent to
the machine of Figure 3.13.

3.7.1 Construction of Accessible Subsets

Given N , a nondeterministic automaton without spontaneous moves, we ex-
plain how to construct an equivalent deterministic machine M ′. The main
idea is that, if N contains the moves

p
a→ p1, p

a→ p2, . . . , p
a→ pk

after reading a, machine N can be in any one of the next states p1, p2, . . . , pk,
i.e., it is in a state of uncertainty. Then we create in M ′ a new collective state
named

[p1, p2, . . . , pk]

that will simulate the uncertainty.
To connect the new state to the others, we construct the outgoing arcs

according to the following rule. If a collective state contains the states
p1, p2, . . . , pk , for each one we consider in N the outgoing arcs labelled with
the same letter a

p1
a→ [q1, q2, . . .], p2

a→ [r1, r2, . . .], etc.

and we merge together the next states

[q1, q2, . . .] ∪ [r1, r2, . . .] ∪ . . .
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thus obtaining the collective state reached by transition

[p1, p2, . . . , pk] a→ [q1, q2, . . . , r1, r2, . . . , . . .]

If such state does not exist in M ′, it is added to the current state set.

Algorithm. Powerset construction.
The deterministic automaton M ′ equivalent to N is defined by:

1. state set Q′ is the powerset of Q
2. final states F ′ = {p′ ∈ Q′ | p′ ∩ F �= ∅}, that are the states containing a

final state of N
3. initial state7 [q0]
4. transition function δ′ :

for all p′ ∈ Q′ and for all a ∈ Σ

p′
a→ [s | q ∈ p′ ∧ ( arc q

a→ s is in N)]

In step 4., if an arc q
a→ qerr leads to the error state, it is not added to the

collective state: in fact, any computation entering the sink never recognizes
any string and can be ignored.

Because the states of M ′ are the subsets of Q, the cardinality of Q′ is in
the worst case exponentially larger than the cardinality of Q. This confirms
previous findings that deterministic machines may be larger: remember the
exponential explosion of the number of states in the language having a specific
character k positions before the last (p. 108).

The algorithm can be improved: M ′ often contains states inaccessible from
the initial state, hence useless. Instead of erasing them with the clean-up
procedure, it is better to altogether avoid their creation: we draw only the
collective states which can be reached from the initial state.

Example 3.21. The nondeterministic automaton in Figure 3.15 (top) is trans-
formed to the deterministic one below.

Explanations: from δ(A, b) = {A, B} we draw the collective state [A, B];
from this the transitions

[A, B] a→ (δ(A, a) ∪ δ(B, a)) = [A]

[A, B] b→ (δ(A, b) ∪ δ(B, b)) = [A, B, C]

Then we create the transitions originating from the new collective state
[A, B, C]:

[A, B, C] a→ (δ(A, a) ∪ δ(B, a) ∪ δ(C, a)) = [A, C, D], final collective state

7 If the given automaton N has several initial states, the initial state of M ′ is the set of
all initial states.
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A B C D→ →b b a

a | b | c a | b

[A] [A, B] [A, B, C] [A,C, D]→ →
b

a | c

b
a

b

a | c b a

c

c

Fig. 3.15 From nondeterministic N (top) to deterministic M ′ (bottom).

[A, B, C] b→ (δ(A, b) ∪ δ(B, b) ∪ δ(C, b)) = [A, B, C], self-loop

etc. The algorithm ends when step 4, applied to the current set Q′ of states,
does not generate any new state. Notice that not all subsets of Q correspond
to an accessible state: e.g., the subset and state [A, C] would be useless.

To justify the correctness of the algorithm, we show that a string x is recog-
nized by M ′ if, and only if, it is accepted by N .

If a computation of N accepts x, there exists a labelled path x from the
initial state q0 to a final state qf . The algorithm ensures then that in M ′

there exists a labelled path x from [q0] to a state [. . . , qf , . . .] containing qf .
Conversely, if x is the label of a valid computation of M ′, from [q0] to a

final state p ∈ F ′, then by definition p contains at least one final state qf of
N . By construction there exists in N a labelled path x from q0 to qf .

We summarize with a fundamental statement.

Property 3.22. Every finite-state language can be recognized by a determin-
istic automaton.

This property ensures that the recognition algorithm of finite-state languages
works in real time, i.e., completes the job within a number of transitions equal
to the length of the input string (fewer if an error occurs before the string
has been entirely scanned).

As a corollary, for every language recognized by a finite automaton, there
exists an unambiguous unilinear grammar, the one naturally (p. 106) corre-
sponding to the deterministic automaton. This also says that for any regular
language we have a procedure to eliminate ambiguity from the grammar, in
other words a regular language cannot be inherently ambiguous (p. 56).
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3.8 From Regular Expression to Recognizer

When a language is specified with a regular expression, instead of a unilinear
grammar, we do not know how to construct its automaton. Since this require-
ment is quite common in applications such as compilation and document pro-
cessing, several methods have been invented. They differ with respect to the
automaton being deterministic or not, with or without spontaneous moves,
as well as regarding the algorithmic complexity of the construction.

We describe two construction methods. The first, due to Thompson, is
termed structural or modular, because it analyzes the expression into smaller
and smaller subexpressions until the atomic ones. Then the recognizers of
subexpressions are constructed and interconnected into a graph that imple-
ments the language operations (union, concatenation, and star) present in
the expression. The result is in general nondeterministic with spontaneous
moves.

The second method, named after Glushkov, or McNaughton and Yamada,
builds a nondeterministic machine without spontaneous moves, of a size re-
lated to the length of the r.e.

Both methods can be combined with previous determinization algorithms,
to the effect of directly producing a deterministic automaton.

Eventually we will be able to transform language specifications back and
forth from automata, grammars and regular expressions, thus proving the
three models are equivalent.

3.8.1 Thompson Structural Method

Given an r.e. we analyze it into simple parts, we produce corresponding com-
ponent automata, and we interconnect them to obtain the complete recog-
nizer.

In this construction each component machine is assumed to have exactly
one initial state without incoming arcs and one final state without outgoing
arcs: if not so, simply introduce two new states, as for the BMC algorithm of
p. 117.

Thompson algorithm8 incorporates the mapping rule between simple r.e.
and automata schematized in Table 3.2. Observing the machines in Table 3.2
one sees many nondeterministic bifurcations, with outgoing ε-arcs.

The validity of Thompson’s method comes from it being an operational
reformulation of the closure properties of regular languages by concatenation,
union, and star (stated in the preceding chapter, p. 24).

8 Originally presented in [53]. It forms the base of the popular tool lex (or GNU flex) used
for building scanners.
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Table 3.2 From component subexpression to component subautomata. A rectangle de-
picts a component subautomaton with its initial state (left) and final state (right).

Atomic expressions:

a ε

Concatenation of expressions:

i′ t′ i′′ t′′→ →

ε

ε

ε

ε ε

ε

ε

ε

ε

Union of expressions:

i′ t′

i t

i′′ t′′

→ →

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

Star of expression:

i i′ t′ t→ →
ε

ε

ε

ε

ε ε

ε

ε

Example 3.23. Take the r.e. (a ∪ ε).b∗ and decompose it into the subexpres-
sions

E0,11
︷ ︸︸ ︷

E1,6
︷ ︸︸ ︷

(
E2,3
︷︸︸︷

a ∪
E4,5
︷︸︸︷

ε ) .

E7,10
︷ ︸︸ ︷

E8,9
︷︸︸︷

b ∗
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Then apply the mapping to each subexpression, producing the automaton of
Figure 3.16. Notice that we have moderately simplified the constructions to

q2 q3

q0 q1 q6 q7 q8 q9 q10 q11

q4 q5

→ →ε

ε

ε

a

ε

ε

ε

ε ε b ε ε

ε

ε

Fig. 3.16 The automaton obtained with the structural (Thompson) method from r.e.
(a ∪ ε).b∗.

avoid the proliferation of states. Of course, several states (e.g., q0 and q11)
are redundant and could be merged with states q1 and q10, respectively.

Existing tools use improved versions of the algorithm to avoid constructing
redundant states. Other versions combine the algorithm with the one for
elimination of spontaneous moves.

It is interesting to look at the Thompson algorithm as a converter from
the notation of r.e. to the state transition graph of the machine. From this
standpoint this is a typical case of syntax-directed analysis and translation,
where the syntax is the one of r.e.; such approach to translator design is
presented in Chapter 6.

3.8.2 Algorithm of Glushkov, McNaughton and
Yamada

Another classical method, GMY, builds a machine whose states are in di-
rect correspondence with the terminals of the expression. Preliminarily it is
necessary to define9 a simple subfamily of regular languages.

9 Following the conceptual path of Berstel and Pin [10].
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Locally Testable Languages and Local Automata

Some regular languages are extremely simple to recognize, because it suffices
to test if certain short substrings are present. An example is the set of strings
starting with b, ending with a or b, and containing ba or ab as substrings.

Definition 3.24. For a language L of alphabet Σ, the set of initials is

Ini(L) = {a ∈ Σ | aΣ∗ ∩ L �= ∅}

i.e., the starting characters of the sentences of L.
The set of finals is

Fin(L) = {a ∈ Σ | Σ∗a ∩ L �= ∅}

i.e., the last characters of the sentences of L.
The set of digrams (or factors) is

Dig(L) = {x ∈ Σ2 | Σ∗xΣ∗ ∩ L �= ∅}

i.e., the substrings of length 2 present in the sentences of L. The complemen-
tary digrams are

Dig(L) = Σ2 \ Dig(L)

The three sets will be called local.

Example 3.25. Locally testable language
The local sets for language L1 = (abc)+ are

Ini(L1) = a F in(L1) = c Dig(L1) = {ab, bc, ca}

and the complement of the digram set is

Dig(L1) = {aa, ac, ba, bb, cb, cc}

We observe that the sentences of this language are precisely defined by the
three sets, in the sense of the following identity.

L1 ≡ {x | Ini(x) ∈ Ini(L1)∧Fin(x) ∈ Fin(L1)∧Dig(x) ⊆ Dig(L1)} (3.1)

or equivalently

L1 ≡ {x | Ini(x) ∈ Ini(L1) ∧ Fin(x) ∈ Fin(L1)} \ Σ∗Dig(L1)Σ∗ (3.2)

Notice the last term contains the forbidden digrams.

Definition 3.26. A language L is called local (or locally testable) if it satis-
fies identity (3.1) (or (3.2)).

Although not all languages are local, it should be clear that any language L
(not containing the empty string) satisfies a modified condition 3.1 (or 3.2),
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where the equal sign is substituted by the inclusion. In fact, by definition
every sentence starts (resp. ends) with a character of Ini(L) (resp. of Fin(L))
and its digrams are included in the set Dig(L). But such conditions may not
suffice to exclude some illegal strings.

Example 3.27. Nonlocal regular language
For L2 = b(aa)+b we have

Ini(L2) = Fin(L2) = {b} Dig(L2) = {aa, ab, ba} Dig(L2) = {bb}

The sentences of L2 have even length, but among the strings starting and
terminating with b, which do not contain bb as digram, there are those of odd
length such as baaab. Therefore the language defined by condition (3.1) (or
(3.2)) strictly includes L2.

Our present interest10 for local languages comes from the notable simplicity
of their recognizers. To recognize a string, the machine scans it from left to
right, it checks the initial character is in Ini, it verifies that any pairs of
adjacent characters are not in Dig, and finally it checks the last character
is in Fin. We are going to see these checks are easily performed by a finite
automaton.

Algorithm for Constructing the Recognizer of a Local Language

The automaton for a local language, specified by the local sets Ini, F in, Dig,
is defined as follows:

• the states are q0 ∪ Σ;
• the final states are Fin;
• the arcs are: q0

a→ a if a ∈ Ini; a
b→ b if ab ∈ Dig;

• if the empty string is in the language, the initial state q0 is also final.

The finite automata of local languages, in short local automata, are charac-
terized by the following properties:

1. apart from the initial state, the other states one-to-one correspond to the
characters of the alphabet

2. no arc enters the initial state
3. all the arcs labelled with the same letter, say a, enter the same state, the

one named a.

Intuitively, the automaton is in the state b if, and only if, the last scanned
character is b: we may think the machine has a sliding window two characters
wide, that allows the transition from the previous state to the current one, if
the digram is listed as permitted.

10 In Chapter 6 local languages and automata are used to model the control-flow graph of
a program.
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Example 3.28. The local automaton accepting the local language (abc)+ of
example 3.25 is

q0 a b c→ →a b c

a

Notice the arc labels are redundant and may be dropped, since they coincide
with the name of the destination node.

Composition of Local Languages with Disjoint Alphabets

Before we apply the sliding window idea to a generic r.e., another conceptual
step is needed based on the following observation: the basic language opera-
tions preserve the property of being a local language, provided the terminal
alphabets of the languages to be combined are disjoint.

Property 3.29. Given local languages L′ and L′′ with disjoint alphabets, i.e.,
Σ′ ∩Σ′′ = ∅, the union L′ ∪L′′, concatenation L′.L′′ and star L′ ∗ (and cross
too) are local languages.

Proof: it is immediate to construct a local automaton for the resulting lan-
guage by combining the component machines (to be also called L′ and L′′

with a slight abuse) as next explained. Let q′0, q
′′
0 be the respective initial

states and F ′, F ′′ the sets of final states of the component machines. In gen-
eral the local automaton contains the states of the component machines, with
some adjustments on the initial and final states and their arcs, as next de-
scribed.
For the union L′ ∪ L′′:

• the initial state q0 is obtained merging the initial states q′0 and q′′0 ;
• the final states are those of the component machines, F ′ ∪ F ′′;

if the empty string belongs to either one or both languages, the new state
q0 is marked as final.

For the concatenation L′.L′′:

• the initial state is q′0;
• the arcs of the recognizer are:

– the arcs of L′ plus
– the arcs of L′′, except those exiting from the initial state q′′0 ;
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– the latter are substituted by the arcs q′
a→ q′′, from every final state

q′ ∈ F ′ to a state q′′ such that there is in L′′ an arc q′′0
a→ q′′.

• the final states are F ′′, if ε �∈ L′′;
otherwise the final states are F ′ ∪ F ′′.

For the star L′ ∗:

• state q′0 is added to the final states F ′;
• from each final state q ∈ F ′ we draw the arc q

a→ r if machine L′ has arc
q′0

a→ r (exiting from the initial state).

It is straightforward to see the above steps correctly produce the recognizer
of the union, concatenation, or star of a local language. Clearly such ma-
chines have by construction the characteristic properties of local automata.
Examples come later.

Algorithm GMY

Next we show how to transform a generic r.e. into a local language by means
of a simple change of alphabet. First we introduce a simple class of regular
expressions.

In a generic r.e. a terminal character may of course be repeated. An r.e. is
called linear if no terminal character is repeated. For instance, (abc)∗ is linear
whereas (ab)∗a is not, because character a is repeated (but the language is
local).

Property 3.30. The language defined by a linear r.e. is local.

Proof. From the hypothesis of linearity it follows that the subexpressions
have disjoint alphabets. Since the r.e. is obtained by composition of the local
languages of the subexpressions, property 3.29 ensures that the language it
defines is local.

Example 3.31. For the linear r.e. (ab ∪ c)∗ we trace in Figure 3.17 the con-
struction of the local recognizer, starting with the atomic subexpressions.

Having ascertained that the language of a linear r.e. is local, the problem
of constructing its recognizer melts down to the computation of the sets Ini,
Fin, and Dig of the language. We explain how to orderly perform the job.

Computing Local Sets of Regular Languages

Given regular expressions e and e′, the next rules compute the three local
sets. First we must check if an r.e. is nullable, i.e., it includes the empty string
in its language.
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subexpression component automata

elements

a, b, c

p0 a q0 b r0 c

↓

↓

↓

↓

↓

↓

concatenation and
union

ab ∪ c

pr0 a b

c

→ →

→

star

(ab ∪ c)∗

pr0 a b

c

→

↓

→

→

Fig. 3.17 Step-by-step composition of local automata for the linear r.e. (ab∪c)∗ of example
3.31.

The function Null(e) returns the value ε, if ε ∈ L(e); otherwise it returns
as value the empty set ∅. Notice that the function range is not a boolean
value. It is computed with the rules:

Null(ε) = ε Null(∅) = ∅
Null(a) = ∅ for every terminal a Null(e∪ e′) = Null(e) ∪ Null(e′)
Null(e.e′) = Null(e) ∩ Null(e′) Null(e∗) = ε
Null(e+) = Null(e)
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To illustrate, we have

Null((a∪b)∗ba) = Null((a∪b)∗)∩Null(ba) = ε∩(Null(b)∩Null(a)) = ε∩∅ = ∅

The next rules are used to compute the three sets:

Initials Finals
Ini(∅) = ∅ Fin(∅) = ∅
Ini(ε) = ∅ Fin(ε) = ∅
Ini(a) = {a} for every terminal a F in(a) = {a} for every terminal a
Ini(e ∪ e′) = Ini(e) ∪ Ini(e′) Fin(e ∪ e′) = Fin(e) ∪ Fin(e′)
Ini(e.e′) = Ini(e) ∪ Null(e)Ini(e′) Fin(e.e′) = Fin(e′) ∪ Fin(e)Null(e′)
Ini(e∗) = Ini(e+) = Ini(e) Fin(e∗) = Fin(e+) = Fin(e)

Notice that the rules for computing Ini and Fin are sort of symmetric: one
coincides with the other if the specularly reflected r.e. is taken.

Digrams
Dig(∅) = ∅
Dig(ε) = ∅
Dig(a) = ∅, for every terminal a
Dig(e ∪ e′) = Dig(e) ∪ Dig(e′)
Dig(e.e′) = Dig(e) ∪ Dig(e′) ∪ Fin(e)Ini(e′)
Dig(e∗) = Dig(e+) = Dig(e) ∪ Fin(e)Ini(e)

We observe that the above rules are valid for any r.e. but we need them here
only for linear expressions.

After having computed the local sets it remains a simple step: to construct
the automaton using the method explained for linear r.e.

Example 3.32. Recognizer of linear r.e.
R.e. a(b∪ c)∗ is not nullable, so that we set Null = ∅. Next we compute the
local sets:

Ini = a F in = {b, c} ∪ a = {a, b, c} Dig = {ab, ac} ∪ {bb, bc, cb, cc}

Applying the algorithm on p. 128, we produce the next local automaton

q0 a b c→
↑ ↑ ↑

where the arc labels are understood.
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Numbered Regular Expressions

At last we show how to apply the construction to a generic r.e. by first
making it linear. To this end we make all terminals distinct by progressively
numbering, say from left to right, with a subscript. Thus the expression (ab)∗a
becomes (a1b2)∗a3.

The numbered r.e. is linear for the alphabet of numbered terminals, there-
fore it defines a local language on this new alphabet. We know how to con-
struct the local recognizer of the numbered r.e. From this we obtain the
recognizer of the original language by simply erasing the numbers occurring
as subscripts on arc labels.11

It should help to recapitulate the various steps of the complete algorithm
for constructing the recognizer of a generic r.e.

Algorithm. GMY (Glushkov McNaughton Yamada)
The algorithm is divided into four steps:

1. Number the original r.e. e obtaining a linear r.e. e′;
2. Compute for e′ the nullability function and the local sets Ini, F in, and

Dig;
3. Construct the recognizer of the local language characterized by the local

sets (as explained on p. 128);
4. Erase the numbers from arc labels.

Example 3.33. We number the r.e. (ab)∗a obtaining (a1b2)∗a3. The expression
is not nullable and the local sets are easily computed. From them we construct
the recognizer:

q0 a1 b2 a3→ →a1
b2

a1

a3

a3

Removing the numbers we obtain the recognizer of the original language:

q0 a1 b2 a3→ →a b

a

a

a

Notice the automaton is indeterministic, devoid of spontaneous moves, and
has as many states as the characters of the r.e. plus one.

11 This is an example of transliteration (homomorphism) defined on p. 80.
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3.8.3 Deterministic Recognizer by Berry and Sethi
Algorithm

Of course the local automaton computed by GMY may be converted to a de-
terministic one using the known powerset algorithm. But a direct approach,
also based on local sets, allows to immediately construct a deterministic ma-
chine from the r.e.12

Take an r.e. e of alphabet Σ and let e′ be the numbered expression and ΣN

its alphabet. Let the local sets of e′ be Ini, Fin, Dig, and Null the nullability
function.

For convenience instead of the digrams we use the equivalent notion of set
of followers of a character in the numbered r.e.:

Fol(ai) = {bj | aibj ∈ Dig(e′)}

We stipulate that the special character � (string terminator) is a follower of
every final character:

�∈ Fol(ai) for every ai ∈ Fin(e′)

(this is tantamount to working on the r.e. e′ � instead of e′).
The terminator has no follower, i.e., Fol(�) = ∅.
Algorithm. Algorithm BS (Berry and Sethi)
Each state will be denoted by a subset of (ΣN∪ �). The algorithm examines
every state, in order to compute the outgoing arcs and their destination
states, by applying a rule similar to the one of the powerset algorithm. After
the examination of a state is finished, the state is marked as visited to prevent
the algorithm from reexamining it.
The initial state is Ini(e′ �). A state is final if it contains the element �.
When the algorithm begins, the state set Q only contains the initial state.

Q := {Ini(e′ �)}
while a not yet visited state q exists in Q do

mark q as visited
for every character b ∈ Σ
do

q′ :=
⋃

∀ numbered character b′∈q Fol(b′)

if q′ is neither empty nor is already in Q,
add it as a new not visited state, by performing the assignment
Q := Q ∪ {q′}
add the arc q

b→ q′ to the set of arcs
end do

end do

12 For a thorough justification of the method we refer to [7].
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Example 3.34. Number the r.e. (a | bb)∗(ac)+ as

(a1 | b2b3)∗(a4c5)+ �

Then compute the set Ini(e′) = {a1, b2, a4} and function Follow:

Followers
a1 a1, b2, a4

b2 b3

b3 a1, b2, a4

a4 c5

c5 a4,�

The deterministic automaton is shown in Figure 3.18.

a1, b2, a4 Fol(b2) = {b3}

Fol(a1) ∪ Fol(a4) = {a1, b2, a4, c5} Fol(c5) = {a4,�}

Fol(a4) = {c5}

↓

↑

b

a

b

b

c

ac
a

Fig. 3.18 Direct construction of the deterministic automaton for (a | bb)∗(ac)+ (example
3.34).

We mention the automata thus produced often contain more states than
necessary, but of course can be minimized by the usual method.

Use for Determinizing an Automaton

Another use of algorithm BS is as an alternative to the powerset construction,
for converting a not deterministic machine N into a deterministic one M . This
approach is actually more flexible since it applies also to machines having ε-
arcs. We proceed as follows.

1. Distinctly number the arc labels of N . The numbered automaton N ′ thus
obtained recognizes a local language.

2. Compute the local sets Ini, F in, and Fol for automaton N ′. Their com-
putation is entirely analogous to the one for r.e. (p. 130).
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3. Applying the BS construction produce the deterministic automaton M .

It is sufficient to illustrate this application with an example.

Example 3.35. Given the nondeterministic automaton N of Figure 3.19 (top),
numbering the arc labels we obtain automaton N ′ (bottom). Its language is

A B C→

↓

←
b

ε

b

b

a

a

A B C→

↓

←
b1

ε

b2

b5

a3

a4

Fig. 3.19 Automaton N (top) with spontaneous moves and numbered version N ′ (bot-
tom) (Example 3.35).

local and not nullable. Then compute the initials

Ini(L(N ′) �) = {b1, a3, a4}

and note that εa4 = a4 and εa3 = a3. Continue with the set of followers

Followers
b1 b2, b5,�
b2 b1, a3, a4

a3 b2, b5,�
a4 a3, a4

b5 a3, a4

Finally apply algorithm BS to construct the deterministic automaton M of
Figure 3.20.
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b1, a3, a4 b2, b5, a3, a4,�

b2, b5,�

→ →

→

a

b

b

b a

Fig. 3.20 Deterministic machine constructed by the BS algorithm for example 3.35.

3.9 Regular Expressions with Complement and
Intersection

We have now all the knowledge for completing the study of those operations
that were left suspended in Chapter 2: complement, intersection, and set dif-
ference. This will allow us to extend regular expressions with such operations,
to the purpose of writing more concise or expressive language specifications.
We can now state a property anticipated in Chapter 1.

Property 3.36. Closure of REG by complement and intersection.
Let L and L′ be regular languages. The complement ¬L and the intersection
L ∩ L′ are regular languages.

First we show how to build the recognizer of the complement ¬L = Σ∗ \ L.
We assume the recognizer M of L is deterministic, with initial state q0, state
set Q, final state set F , and transition function δ.

Algorithm. Construction of deterministic recognizer M of complement. First
we complete the automaton M , in order to make its function total, by adding
the error or sink state p and the arcs to and from it.

1. Create a new state p �∈ Q, the sink ; the states of M are Q ∪ {p}

2. the transition function δ is:

a. δ(q, a) = δ(q, a), where δ(q, a) ∈ Q;

b. δ(q, a) = p, where δ(q, a) is not defined;

c. δ(p, a) = p, for every character a ∈ Σ;

3. the final states are F = (Q \ F ) ∪ {p}.
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Notice the final and nonfinal states have been interchanged.

To justify the construction, first observe that if a computation of M accepts
a string x ∈ L(M), then the corresponding computation of M terminates in
a nonfinal state, so that x �∈ L(M).

Second, if a computation of M does not accept y, two cases are possible:
either the computation ends in a nonfinal state q, or it ends in the sink p. In
both cases the corresponding computation of M ends in a final state, meaning
y is in L(M).

At last, in order to show that the intersection of two regular languages is
regular, it suffices to quote the well-known De Morgan identity:

L ∩ L′ = ¬(¬L ∪ ¬L′)

because, knowing that the languages ¬L and ¬L′ are regular, their union too
is regular as well as its complement.

As a corollary, the set difference of two regular languages is regular because
of the identity

L \ L′ = L ∩ ¬L′

Example 3.37. Automaton of complement
Figure 3.21 shows three machines: the given one M , the intermediate com-
pleted with sink, and the recognizer M of complement.

For the construction to work the original machine must be deterministic, oth-
erwise the language accepted by the constructed machine may be nondisjoint
from the original one, which would violate the characteristic property of com-
plement, L ∩ ¬L = ∅. See the following counterexample where the pseudo-
complement machine mistakenly accepts string a, which is in the original
language.

Original automaton Pseudo-automaton of complement

q0 q1

↓

↓

a
a q0 q1 p

↓

↓ ↓

a a
a a

Finally we mention the construction may produce unclean or nonminimal
machines.

3.9.1 Product of Automata

A frequently used technique consists in simulating two (or more) machines
by a single one having as state set the cartesian product of the two state sets.
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Original automaton M

q0 q1 q2

↓

↓

a

b

a

b

Made total with sink Recognizer M of complement

q0 q1 q2

p

↓

↓
b

a

a

b

a

b

a | b

q0 q1 q2

p

↓

↓ ↓

→

b
a

a

b

a

b

a | b

Fig. 3.21 Construction of recognizer of complement (example 3.37).

We present the technique for the case of the recognizer of the intersection of
two regular languages.

Incidentally, the proof of the closure of family REG under intersection
based on De Morgan identity (p. 138) already gives a procedure for recogniz-
ing the intersection: given two finite deterministic recognizers, first construct
the recognizers of the complement languages, then the recognizer of their
union (by the method of Thompson on p. 124). From the latter (after de-
terminization if needed), construct the complement machine, which is the
desired result.

More directly, the intersection of two regular languages is accepted by the
cartesian product of the given machines M ′ and M ′′. We assume the machines
to be free from spontaneous moves, but not necessarily deterministic.

The product machine M has state set Q′ × Q′′, the cartesian product of
the two state sets. This means each state is a pair < q′, q′′ >, where the first
(second) component is a state of the first (second) machine. For such pair or
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state we construct the outgoing arc

< q′, q′′ >
a−→< r′, r′′ >

if, and only if, there exist the arcs q′
a→ r′ in M ′ and q′′

a→ r′′ in M ′′. In
other words such arc exists in M if, and only if, its projection on the first
(resp. second) component exists in M ′ (resp. in M ′′).

The initial states I of M are the product I = I ′×I ′′ of the initial states of
the component machines; the final states are the product of the final states,
i.e., F = F ′ × F ′′.

To justify the correctness of the construction consider any string x in
the intersection. Since x is accepted by a computation of M ′ as well as by a
computation of M ′′ it is also accepted by the computation of M that traverses
the pairs of states respectively traversed by the two computations.

Conversely, if x is not in the intersection, at least one of the computations
by M ′ or by M ′′ does not reach a final state, hence the computation of M
does not reach a final state because the latter are pairs of final states.

Example 3.38. Intersection and product machine (Sakarovitch)
The recognizer of the strings containing as substrings both ab and ba is quite
naturally specified through the intersection of languages L′, L′′:

L′ = (a | b)∗ab(a | b)∗ L′′ = (a | b)∗ba(a | b)∗

The cartesian product of the recognizers of the component languages is shown
in Figure 3.22. As usual the pairs of the cartesian product, which are not
accessible from the initial state, can be discarded.

The cartesian product method can be exploited for operations different
from intersection; thus, in the case of union, it would be easy to modify
the product machine construction in order to accept a string if at least one
(instead of both as in the intersection) component machine accepts it. This
would give us an alternative method for building the recognizer of the union
of two languages. But the product machine may have many more states
than the machine obtained with the Thompson method: the product of the
cardinalities of the given machines, instead of the sum.

Extended and Restricted Regular Expressions

A regular expression is extended if it uses other operators beyond the basic
ones (i.e., union, concatenation, star, cross): complement, intersection, and
set difference.

For instance, the strings containing one or multiple occurrences of aa as
substring and not ending with bb are defined by the extended r.e.

((a | b)∗aa(a | b)∗) ∩ ¬ ((a | b)∗bb)
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→ →

↓

↓

→

↓

a b

a | b a | b

b

a

a | b

a | b

a

b

b

b
b

aa
aa

a b

a | b a | b

a | b

a | b

Fig. 3.22 Recognizers of component languages (top and left) and product machine rec-
ognizing their intersection (example 3.38).

The next realistic example shows the practicality of using extended expres-
sions for greater expressivity.

Example 3.39. Identifiers
Suppose the valid identifiers may contain letters a . . . z, digits 0 . . . 9 (not in
first position) and the dash ′−′ (neither in first nor in last position). Adjacent
dashes are not permitted. A sentence of this language is: after− 2nd− test.

The next extended r.e. prescribes that (i) the strings start with a letter,
(ii) it does not contain consecutive dashes, and (iii) it does not end with a
dash:

(a . . . z)+(a . . . z | 0 . . . 9 | −)∗
︸ ︷︷ ︸

(i)

∩

¬((a . . . z | 0 . . . 9 | −)∗ −−(a . . . z | 0 . . . 9 | −)∗)
︸ ︷︷ ︸

(ii)

∩

¬((a . . . z | 0 . . . 9 | −)∗−)
︸ ︷︷ ︸

(iii)
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When a language is specified by an extended r.e. we can of course construct
its recognizer by applying the complement and cartesian product methods.
Then a nonextended r.e. can be obtained if desired.

Star-Free Languages

We know the addition of complement and intersection operators to r.e. does
not enlarge the family of regular languages, because they can be eliminated
and replaced by basic operators. On the other hand, removing the star from
the permitted operators causes a loss of generative capacity: the family of
languages shrinks into a subfamily of the REG family, variously named as
aperiodic or star free or noncounting. Since such family is rarely considered
in the realm of compilation, a short discussion suffices.

Consider the operator set comprising union, concatenation, intersection,
and complement. Starting with the terminal elements of the alphabet and the
empty set ∅, we can write a so-called star-free r.e. using only these operators.
Notice the presence of intersection and complement is essential to compensate
somehow for the loss of the star (and the cross), otherwise just finite languages
would be defined.

A language is called star-free if there exists a star-free r.e. that defines it.
First, observe the universal language of alphabet Σ is star-free, since it

is the complement of the empty set, i.e., it is defined by the star-free r.e.
Σ∗ = ¬∅.

Second, a useful subclass of star-free languages has already been studied
without even knowing the term: the local languages on p. 127 can indeed
be defined without stars or crosses. Recall that a local language is specified
by three local sets: initials, finals, and permitted (or forbidden) digrams. Its
specification can be directly mapped on the intersection of three star-free
languages as next illustrated.

Example 3.40. Star-free r.e. of local and nonlocal languages
The sentences of local language (abc)+ (example 3.25 on p. 127) start with
a, end with c, and do not contain any digram from {aa | ac | ba | bb | cb | cc}.
The language is therefore specified by the star-free r.e.:

(a ¬∅) ∩ (¬∅ c) ∩ (¬ (¬∅ (aa | ac | ba | bb | cb | cc) ¬∅))

Second example. The language L2 = a∗ba∗ is star-free because it can be
converted to the equivalent star-free r.e.:

a∗

︷ ︸︸ ︷

¬ (¬∅ b¬∅)
b
︷︸︸︷

b

a∗

︷ ︸︸ ︷

¬ (¬∅ b¬∅)

On the other hand, this language is not local because the local sets do not
suffice to eliminate spurious strings. Amidst the strings that, as prescribed
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by L2, start and end with a or b and may contain the digrams {aa | ab | ba},
we find the string, say, abab, which does not belong to L2.

The family of star-free languages is strictly included in the family of regular
languages. It excludes in particular the languages characterized by certain
counting properties that justify the other name “noncounting” of the family.
An example is the regular language

{x ∈ {a | b}∗ | |x|a is even}

which is accepted by a machine having in its graph a length two circuit, i.e.,
a modulo 2 counter (or flip-flop) of the letters a encountered. This language
cannot be defined with an r.e not using star or cross.

A philosophical remark is that in the panorama of artificial and human
languages the operation of counting letters or substrings modulo some integer
constant (in the intuitive sense of the previous example) is rarely if ever
needed. In other words, the classification of strings based on the classes of
congruences modulo some integer is usually not correlated with their being
valid sentences or not. For reasons which may have to do with the organization
of the human mind or perhaps with robustness of noisy communication, none
of the existing technical languages discriminates sentences from illegal strings
on the basis of cyclic counting properties: indeed it would be strange if a
computer program were considered valid depending on the number of its
instructions being, say, a multiple of three or not!

Therefore in principle it would be enough to deal with the subfamily of
aperiodic or noncounting regular languages when modelling compilation and
artificial languages. But on one side star-free r.e. are often less readable than
basic ones. On the other side, in different fields of computer science, counting
is of uttermost importance: for instance, a most common digital component
is the flip-flop or modulo 2 counter, which recognizes the language (11)∗,
obviously not a star-free one.13

3.10 Summary of Relations between Regular Languages,
Grammars, and Automata

As we leave the topic of regular languages and finite automata, it is convenient
to recapitulate the relations and transformations between the various formal
models associated with this family of languages. Figure 3.23 represents by
means of a flow graph the conversion methods back and forth from regular
expressions and automata of different types. For instance, we read that
algorithm GMY converts an r.e. to an automaton devoid of spontaneous
moves.

13 For the theory of star-free languages we refer to McNaughton and Papert [36].
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regular
expression

automaton
with ε−moves

automaton
without ε−moves

deterministic
automaton

GMY p.130
BS p.134Thompson p.124

elimination of ε-moves p.120 powerset p.122

complement p.137

BMC p.117

BS p.135

Fig. 3.23 Conversion methods between r.e. and finite automata deterministic and not.

Figure 3.24 represents the direct correspondence between right-linear
grammars and finite automata. The relation between automata and left-linear

automaton
with ε−moves

automaton
without ε−moves

right−linear
grammar

right−linear
grammar without copies

p. 114 p. 114

Fig. 3.24 Correspondence between right-linear grammars and finite automata.



3.10 Summary of Relations between Regular Languages, Grammars, and Automata 145

grammars are not listed, because they are essentially identical, thanks to the
left/right duality of grammar rules and the arrow reversing transformation
of automaton moves.

At last Figure 3.25 lists the relations between regular expressions and
grammars.

regular
expression

context−free
grammar

left−lin.
grammar

right−lin.
grammar

syntax-directed translation p.67

linear eq. p.71

Fig. 3.25 Correspondence between regular expression and grammars.

The three figures give evidence to the equivalence of the three models
used for regular languages: regular expressions, finite automata, and unilinear
grammars.

Finally we recall that regular languages are a very restricted subset of the
context-free, which are indispensable for defining artificial languages.



Chapter 4

Pushdown Automata and Top-down
Parsing

4.1 Introduction

The algorithms for recognizing if a string is a sentence require more mem-
ory resources for context-free than for regular languages. This and the next
chapter present several algorithms, first as abstract automata with a push-
down memory stack, then as parsing1 (or syntax analysis) procedures pro-
ducing the syntax tree of a sentence. Incidentally, parsing has little interest
for regular languages because their syntax structure is predeterminate (left or
right-linear) whereas for context-free languages any tree structure is possible.

Similarly to unilinear grammars, also context-free grammar rules can be
made to correspond to the moves of an automaton, which is no longer a
pure finite-state machine but possesses also a pushdown stack memory. In
contrast to the finite case, it is not always possible to obtain a deterministic
pushdown machine. Moreover, the presence of two memories, i.e., the states
and the stack, introduces a variety of functioning modes that complicate the
theoretical study of such machines.
After the presentation of pushdown automata our study specializes on ef-
ficient deterministic machines and on the corresponding important family
DET of deterministic context-free languages.

Several useful parsing algorithms will be described: in this chapter the
fast top-down predictive algorithms, in Chapter 5 the bottom-up or shift-
reduce algorithms and a general algorithm able to cope with ambiguous and
nondeterministic grammars.

The widespread linear-time parsers used in compilers are classified as top-
down or predictive (LL(k)) and bottom-up (LR(k)), depending on the con-
struction order of syntax trees. Both types make the assumption that the
language is deterministic context-free and impose specific restrictions on the
form of grammar rules.

1 From Latin pars, partis, in the sense of dividing a sentence into its parts or constituents.

S.C. Reghizzi, Formal Languages and Compilation,
Texts in Computer Science, DOI 10.1007/978-1-84882-050-0 4,
c© Springer-Verlag London Limited 2009
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Our presentation of parser construction methods is based on a common
representation of a grammar as a network of finite automata, which can invoke
each other. This allows a substantial reduction in the number of tediously
similar definitions and conditions in comparison to traditional presentations.

After the characterization of top-down parsers, we show their straightfor-
ward implementations with recursive procedures which are widely adopted
especially in hand-coded compilers.

Table-driven bottom-up parsers and general parsers are left for the next
chapter as well as a discussion of choice criteria.

4.1.1 Pushdown Automaton

Any compiler includes a recognition algorithm which is essentially a finite
automaton enriched with an auxiliary memory organized as a pushdown or
LIFO stack of unbounded capacity, storing symbols:

bottom symbol
︷︸︸︷

A1 A2 . . .

top symbol
︷︸︸︷

Ak

The input or source string, delimited to the right by the terminator, is

a1a2 . . .

current character
︷︸︸︷

ai . . . an �

The following operations apply to a stack:

pushing: push(B) inserts symbol B on top, i.e., to the right of Ak; several
push operations can be combined in a single command push(B1 B2 . . . Bn)
that inserts Bn on top;

emptiness test : empty, the predicate is true if, and only if, k = 0;
popping: pop, if the stack is not empty removes the top symbol Ak.

It is sometimes convenient to imagine that a special symbol is painted on the
bottom of the stack, denoted Z0 and termed the bottom. Such symbol may
be read but neither pushed nor popped. The presence of Z0 on top of the
stack means the stack is empty.

The machine reads from left-to-right the source characters using a reading
head. The character under the reading head is termed current. At each instant
the machine configuration is specified by: the current character, the current
state, and the stack content. With a move the automaton may

• read the current character and shift the reading head, or perform a spon-
taneous move without reading;

• read the top symbol and pop it, or read the bottom Z0 if the stack is
empty;
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• compute the next state from the values of current state, current character,
and stack symbol;

• push one or more symbols on the stack (or none).

4.1.2 From Grammar to Pushdown Automaton

We show grammar rules can be interpreted as instructions of a not deter-
ministic pushdown machine that recognizes the language. The machine is so
simple that it does without any internal state, but only uses the stack for
memory. Intuitively, the machine operation is predictive or goal oriented: the
stack serves as an agenda of predicted future actions. The stack symbols are
nonterminal and terminal characters of the grammar. If the stack contains
from top to bottom symbols Ak . . . A1, the machine first executes the action
prescribed by Ak, then the action for Ak−1, and so on until the last action for
A1. The action prescribed by Ak has to recognize if the source string, starting
from the current character ai, contains a substring w which derives from Ak.
If so, the action will eventually shift the reading head of |w| positions. Natu-
rally enough, the goal can recursively spawn subgoals, if, for recognizing the
derivation from Ak, it is necessary to recognize other terminal or nonterminal
symbols. Initially the first goal is the axiom of the grammar: the task of the
machine is to recognize if the source string derives from the axiom.

Algorithm. From grammar to nondeterministic one-state pushdown machine.
Given a grammar G = (V, Σ, P, S) Table 4.1 explicates the correspondence

between rules and moves. Letter b denotes a terminal, letters A, B denote
nonterminals, and Ai can be any symbol. The form of a rule shapes the move.

Table 4.1 Correspondence between grammar rules and moves of nondeterministic push-
down machine with one state. The current input character is cc.

rule move comment

1
A → BA1 . . . An

n � 0
if top = A then pop;
push(An . . . A1B) end if

to recognize A, first recognize
BA1 . . . An;

2
A → bA1 . . . An

n � 0
if cc = b ∧ top = A then
pop; push (An . . . A1); shift reading
head

b was expected as the next char-
acter and has been read; it re-
mains to recognize A1 . . . An;

3 A → ε if top = A then pop the empty string deriving from A
has been recognized;

4
for every
character b ∈ Σ

if cc = b ∧ top = b then pop; shift
reading head

b was expected as next character
and has been read;

5 −−− if cc =� ∧ stack is empty then
accept; halt

the string has been entirely
scanned and the agenda contains
no goals;
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For (2) the right-hand side starts with a terminal and the move is triggered by
reading it. On the contrary rules (1) and (3) give rise to spontaneous moves
that do not check the current character. Move (4) checks that a terminal,
when it surfaces on stack top (having been previously pushed by a move of
type (1) or (2)), matches the current character. Lastly, move (5) accepts the
string if the stack is empty upon reading the terminator.

Initially the stack contains the bottom symbol Z0 and the axiom S, and
the reading head is on the first input character. At each step the automaton
(not deterministically) chooses a move, which is defined in the current con-
figuration, and executes it. The machine recognizes the string if there exists
a computation that ends with move (5). Accordingly, we say this machine
model recognizes a sentence by empty stack.

Surprisingly enough this automaton never changes state and the stack is its
only memory. Later on we will be obliged to introduce the states in order to
make the behavior of the machine deterministic.

Example 4.1. The moves of the recognizer of language

L = {anbm | n � m � 1}

are listed in Table 4.2 next to the grammar rules. The choice between moves
1 and 2 is not deterministic, since 2 may be taken also when a is the current
character; similarly for the choice between 3 and 4.

Table 4.2 Pushdown machine moves associated with grammar rules of example 4.1.

Rule Move

1 S → aS if cc = a ∧ top = S then pop; push(S); shift

2 S → A if top = S then pop; push(A)

3 A → aAb if cc = a ∧ top = A then pop; push(bA); shift

4 A → ab if cc = a and top = A then pop; push(b); shift

5 if cc = b ∧ top = b then pop; shift

6 if cc =� ∧ stack is empty then accept; halt

It is not difficult to see a string is accepted by this machine if, and only
if, it is generated by the grammar. In fact, for each accepting computation
there exists a corresponding derivation and conversely; in other words the
automaton simulates the leftmost derivations of the grammar. For instance,
derivation

S ⇒ A ⇒ aAb ⇒ aabb

mirrors the successful trace in Figure 4.1 (left). But the algorithm has no a
priori information on which, if any among possible derivations, will succeed
and it has to explore all possibilities, including the computations ending in
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Stack x

Z0S aabb �

Z0A aabb �

Z0bA abb �

Z0bb bb �

Z0b b �

Z0 �

Stack x

Z0S aabb �

Z0S abb �

Z0S bb �

Z0A bb �

error

Fig. 4.1 Two computations: accepting (left) and non (right).

error as the one traced (right). Moreover, the source string is accepted by dif-
ferent computations if, and only if, it is generated by diverse left derivations,
i.e., if it is ambiguous for the grammar.

With some thought we may see that the mapping of Table 4.1 on p. 149
is bidirectional and can be applied the other way round, to transform the
moves of a pushdown machine (of the model considered) into the rules of an
equivalent grammar. This remark permits us to state an important theoretical
fact.

Property 4.2. The family CF of context-free languages coincides with the
family of languages accepted, with empty stack, by a nondeterministic push-
down machine having one state.

We stress the mapping from automaton to grammar does not work when the
pushdown automaton has a set of states: other methods will be developed in
that case.

It may appear that in little space we have already reached the objective of
the chapter, to obtain a procedure for building the recognizer of a language
defined by a grammar. Unfortunately the automaton is nondeterministic and
is forced in the worst case to explore all paths, with a time complexity non-
polynomial with respect to the length of the source string: more efficient
algorithms are needed.

Computational Complexity of Pushdown Automata

We compute an upper bound on the number of steps needed to recognize a
string with the previous pushdown machine in the worst case. For simplicity
we consider a grammar G in Greibach normal form (p. 66), which as we know
features rules starting with a terminal and not containing other terminals.
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Therefore the machine is free from spontaneous moves (types (1) and (3) of
Table 4.1 on p. 149) and it never pushes a terminal character onto the stack.

For a string x of length n the derivation S
+⇒ x, if it exists, has exactly n

steps. The same number of moves is performed by the automaton to recognize
x. Let K be the maximum number of alternatives A → α1 | α2 | . . . | αk, for
any nonterminal of the grammar. At each step of a leftmost derivation, the
leftmost nonterminal is rewritten choosing one out of k � K alternatives. It
follows the number of possible derivations of length n is at most Kn. Since in
the worst case the algorithm is forced to compute all derivations before finding
the accepting one or declaring failure, the time complexity is exponential in
n.

However, this result is overly pessimistic; at the end of Chapter 5 a clever
algorithm for string recognition in polynomial time, using other data struc-
tures instead of a LIFO stack, will be described.

4.1.3 Definition of Pushdown Automaton

We are going to define several pushdown machine models. We trust the reader
to adapt to the present context the analogous concepts already seen for finite
automata in order to expedite the presentation.

A pushdown automaton M is defined by seven items:

1. Q, finite set of states of control unit;
2. Σ, input alphabet ;
3. Γ , stack alphabet ;
4. δ, transition function;
5. q0 ∈ Q, initial state;
6. Z0 ∈ Γ , initial stack symbol ;
7. F ⊆ Q, set of final states.

Such machine is in general nondeterministic. The domain and range of the
transition function are made of cartesian products:

domain range
Q × (Σ ∪ (ε)) × Γ the power set of the set Q × Γ ∗

The moves, i.e., the values of δ, fall into the following cases.

• reading move:

δ(q, a, Z) = {(p1, γ1), (p2, γ2), . . . , (pn, γn)}

with n � 1, a ∈ Σ, Z ∈ Γ and with pi ∈ Q, γi ∈ Γ ∗.
The machine in state q with Z on top of the stack, reads a and enters one
of states pi, 1 � i � n after performing operations: pop, push(γi).
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Notes: the choice of the i-th action among n possibilities is not deter-
ministic; the reading head automatically shifts forward; the top symbol is
always popped; the string pushed onto the stack may be empty.

• spontaneous move:

δ(q, ε, Z) = {(p1, γ1), (p2, γ2), . . . , (pn, γn)}

with the same stipulations as before.
The machine in state q with Z on top of the stack, without reading an
input character, enters one of the states pi, 1 � i � n, after performing
the operations: pop, push(γi).

From the definition it is clear the behavior can be nondeterministic for two
causes: the range of the transition function comprises a set of alternative
actions, and the machine may contain spontaneous moves.

The instantaneous configuration of a machine M is a 3-tuple (q, y, η) ∈
Q × Σ∗ × Γ+ which specifies:

• q, the current state;
• y, the remaining portion (suffix) of the source string x to be read;
• η, the stack content.

The initial configuration is (q0, x, Z0) or (q0, x �, Z0), if the terminator is
there.

Applying a move, a transition from a configuration to another occurs, to
be denoted as (q, y, η) �→ (p, z, λ). A computation is a chain of zero or more
transitions, denoted by ∗�→. As customary, the cross instead of the star denotes
a computation with at least one transition.

Depending on the move the following transitions are possible.

Current config. Next config. Applied move
(q, az, ηZ) (p, z, ηγ) reading move: δ(q, a, Z) = {(p, γ), . . .}
(q, az, ηZ) (p, az, ηγ) spontaneous move: δ(q, ε, Z) = {(p, γ), . . .}

Although a move erases the top symbol, the same can be pushed again by
the move if the computation needs to keep it on stack.
A string x is recognized (or accepted) with final state if there exists a com-
putation that entirely reads the string and terminates in a final state:

(q0, x, Z0)
∗�→ (q, ε, λ), q is a final state, λ ∈ Γ ∗

The language recognized is the set of accepted strings.
Notice that when the machine recognizes and halts, the stack contains

some string λ, not further specified, since the recognition modality is by final
state; in particular, λ is not necessarily empty.
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State-Transition Diagram for Pushdown Automata

The transition function as in finite automata can be graphically presented
although its readability is somewhat lessened by the need to specify stack
operations. This is shown in the next example.

Example 4.3. The language L = {uuR | u ∈ {a, b}∗} of palindromes (p. 31)
of even length is accepted with final state by the next pushdown recognizer:

a,A
AA | a,B

BA | a,Z0
Z0A | b,A

AB | b,B
BB | b,Z0

Z0B
a,A
ε | b,B

ε

q0 q1

q2

→

→

�,Z0
Z0

�,Z0
Z0

a,A
ε | b,B

ε

The stack alphabet has three symbols: Z0, the initial symbol, and A and B

respectively indicating that a or b has been read. For instance, arc q0

a,B
BA−→ q0

denotes the reading move (q0, BA) ∈ δ(q0, a, B).
A nondeterministic behavior occurs in state q0 when reading a from input

and A from stack: the machine may remain in q0 pushing AA, or go to q1

pushing nothing.
We trace in Figure 4.2 two among other possible computations for string

x = aa. Since the computation (right) reads entirely the string aa and reaches
a final state, the string is accepted. Another example is the empty string,
recognized by the move corresponding to the arc from q0 to q2.

Stack x State Comment

Z0 aa � q0

Z0A a � q0

Z0AA � q0 failure: no move
is defined for
(q0,�, A)

Stack x State Comment

Z0 aa � q0

Z0A a � q0

Z0 � q1

Z0 � q2 recognition by final
state

Fig. 4.2 Two computations of example 4.3 for input x = aa.
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Varieties of Pushdown Automata

It is worth noticing that the pushdown machine of the definition differs from
the one obtained from a grammar by the mapping of Table 4.1 on p. 149, in
two aspects: it performs state transitions, and it checks if the current state
is final to recognize a string. These and other differences are discussed next.

Accepting Modes

Two different manners of deciding acceptance when a computation ends have
been encountered so far: when the machine enters a final state or when the
stack is empty. The former mode with final state disregards the stack content;
on the other hand, the latter mode with empty stack disregards the current
state of the machine.

The two modes can also be combined into recognition with final state
and empty stack. A natural question is whether these, and other, acceptance
modes are equivalent.

Property 4.4. For the family of nondeterministic pushdown automata the ac-
ceptance modes

1. with empty stack
2. with final state
3. combined (empty stack and final state)

have the same capacity with respect to language recognition.

The statement says that any one of the three modes of acceptance can be
simulated by any other. In fact, if the automaton recognizes with final state,
it is easy to modify it by adding new states, so that it recognizes with empty
stack: simply, when the original machine enters a final state, the second ma-
chine enters a new state and there remains while it empties the stack by
spontaneous moves until the bottom symbol pops up.

Vice versa, to convert an automaton recognizing with empty stack to the
final state mode, do the following:

• add a new final state f and a move leading to it whenever the stack
becomes empty;

• when, performing a move to state q, the stack of the original machine
ceases to be empty, the second machine moves from state f to state q.

Similar considerations could be made for the third acceptance mode.

Spontaneous Loops and On-Line Functioning

In principle an automaton can perform an unbounded series of spontaneous
moves, i.e., a long computation without reading the input. When this hap-
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pens we say the machine has entered a spontaneous loop. A spontaneous loop
may cause the machine not to read entirely the input, or it may trigger an
unbounded computation after the input has been entirely scanned before de-
ciding for acceptance or not. Both situations are in some sense pathological,
as it would be for a program to enter a never-ending loop; they can be elim-
inated from pushdown machines without loss of generality.
The following reasoning2 outlines how to construct an equivalent machine,
free from spontaneous loops. Moreover, such machine will always scan the
entire source string and immediately halt after reading the last character.
First, we can easily modify the given machine by introducing a sink state, so
that it never stops until the input is entirely read.
Suppose this machine has a spontaneous loop, i.e., a computation that can be
repeated forever. By necessity this computation visits a configuration with
state p and stack γA, such that the automaton can perform unboundedly
many spontaneous moves without consuming the top stack symbol A. Then
we modify the machine adding two new states, as next explained. If during
the spontaneous loop the automaton does not enter a final configuration, we
add the new error state pE and the move

p
ε,A
A−→ pE

Otherwise we add the new final state pF and the moves

p
ε,A
A−→ pF , pF

ε,A
A−→ pE

To complete the conversion, the error state pE should be programmed to
consume the remaining suffix of the input string.

A machine is said to function on line if, upon reading the last input char-
acter, it decides at once to accept or reject the string without further com-
putation.
Any pushdown machine can always be transformed to work on line. Since
we know that spontaneous loops can be removed, the only situation to be
considered is when the machine, after reading the last character, enters state
p and performs a finite series of moves. Such moves will examine a finite
topmost stack segment of maximal length k, before accepting or rejecting;
the segment is accordingly qualified as accepting or rejecting. Since the stack
segment is finite, the corresponding information can be stored in the state
memory. This requires to multiply the states, so that in any computation the
topmost stack segment of length k is also represented in the current state.
Whenever the original machine entered state p, the second machine will en-
ter a state that represents the combination of p and the stack segment. If
the segment of the original machine is accepting, then the second machine
accepts as well, otherwise it rejects the input.

2 For a thorough discussion of this point and of the next one, we refer to e.g.,[25, 34].
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4.2 One Family for Context-Free Languages and
Pushdown Automata

We are going to show that the language accepted by a pushdown machine
using states is context-free. This, combined with the property (p. 151) that
a context-free language can be recognized by a pushdown machine, leads to
the next central characterization of context-free languages, analogous to the
characterization of regular languages by finite automata.

Property 4.5. The family CF of context-free languages coincides with the set
of languages recognized by pushdown automata.

Proof. Let L = L(M) be the language recognized by a pushdown machine
M with the following stipulations: it has only one final state, it accepts only
if the stack is empty, and each transition has one of the forms

qi qj qi qj

a ,A
BC

a ,A
ε

where a is a terminal or the empty string and A, B, and C are stack sym-
bols. Thus a move either pushes two symbols or none. It turns out that this
assumption does not reduce the generality of the machine. The initial stack
symbol is Z and q0 the initial state.

We are going to construct a grammar G equivalent to this machine. The
construction may produce useless rules that can later be removed by cleaning.
In the resulting grammar the axiom is S and all other nonterminal symbols
are formed by a 3-tuple containing two states and a stack symbol, written as
〈qi, A, qj〉.

Grammar rules are constructed in such a way that each computation rep-
resents a leftmost derivation. The old construction for stateless automata
(Table 4.1, p. 149) created a nonterminal for each stack symbol. But now
we have to take care of the states as well. To this end, each stack symbol A
is associated with multiple nonterminals, marked with two states having the
following meaning. From nonterminal 〈qi, A, qj〉 string z derives if, and only
if, the automaton starting in state qi with A on top of the stack performs
a computation that reads string z enters state qj and deletes A from stack.
According to this principle, the axiom rewriting rules of the grammar have
the form

S → 〈q0, Z, qf 〉

where Z is the initial stack symbol, q0 is the initial state, and qf is a final
state.

The other grammar rules are obtained as next specified.

1. Moves of the form qi qj

a ,A
ε where the two states may

coincide and a may be empty, are converted to rule 〈qi, A, qj〉 → a.
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2. Moves of the form qi qj

a ,A
BC where the two states may co-

incide, are converted to the set of rules
{

〈qi, A, qx〉 → a〈qj , B, qx〉〈qy , C, qx〉 | for all states qx and qy of M
}

Notice the nonempty grammar rules obtained by 1. and 2. are in Greibach
normal form.

We omit the correctness proof 3 of the construction and move to an example.

Example 4.6. Grammar equivalent to pushdown machine4

The language
L = {anbm | n > m � 1}

is accepted by the pushdown automaton on top of Figure 4.3. The automaton
reads a and stores it as A on the stack. Then for each b it pops a symbol. At
last it checks that at least one A is left and empties the stack (including the
initial symbol Z).

The grammar rules are listed under the automaton: notice the axiom is
〈q0, Z, q3〉. Useless rules created by step 2. such as

〈q0, A, q1〉 → a〈q0, A, q3〉〈q3, A, q1〉

which contains the undefined nonterminal 〈q0, A, q3〉, are not listed.
To understand the mapping between the two models, it helps to compare

the computation
〈0, aab, Z〉 5�→ 〈3, ε, ε〉

and the leftmost derivation

〈q0, Z, q3〉 5⇒ aab

The computation and the corresponding derivation tree with steps numbered
are in Figure 4.4 where nonterminal names are simplified to, say, 0Z3. Observe
the following properties hold at each step of computation and derivation:

• the string prefixes read by the machine and generated by the derivation
are identical;

• the stack content is the mirror of the string obtained by concatenating the
middle symbols (A, Z) of each 3-tuple occurring in the derived string;

• any two consecutive 3-tuples in the derived string are chained together by
the identity of the states, which are marked by the same arrow style in the
next line

3 See for instance [25, 28, 29, 47].
4 This example has been prepared using JFLAP, the formal language and automata pack-
age of Rodger and Finley[44].
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Pushdown automaton M

q0 q1 q2 q3→ →
b ,A

ε
ε ,A

ε
ε ,Z

ε

a ,Z
AZ

, a ,A
AA

b ,A
ε

ε ,A
ε

Grammar G

〈q0, Z, q3〉 → a〈q0, A, q2〉〈q2, Z, q3〉
〈q0, A, q1〉 → a〈q0, A, q1〉〈q1, A, q1〉
〈q0, A, q1〉 → b

〈q0, A, q2〉 → a〈q0, A, q1〉〈q1, A, q2〉
〈q0, A, q2〉 → a〈q0, A, q2〉〈q2, A, q2〉
〈q0, A, q2〉 → ε

〈q2, Z, q3〉 → ε

〈q1, A, q1〉 → b

〈q1, A, q2〉 → ε

Fig. 4.3 Pushdown automaton and grammar for example 4.6.

0Z3 +⇒ aa 0A
↓
1

↓
1 A

⇓
2

⇓
2 Z3

Such step-by-step correspondence between transitions and derivation steps
ensure the two models define the same language.

〈0, aab, Z〉 �→ 〈0, ab, ZA〉
�→ 〈0, b, ZAA〉
�→ 〈1, ε, ZA〉
�→ 〈2, ε, Z〉
�→ 〈3, ε, ε〉

1 0Z3

a 2 0A2

a 3 0A1

b

4 1A2

ε

5 2Z3

ε

Fig. 4.4 A computation of machine M (left) and the corresponding derivation tree for
example 4.6.
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4.2.1 Intersection of Regular and Context-Free
Languages

As an illustration of previous results, we prove the property, stated without
proof in Chapter 2, Table 2.8 on p. 79, that the intersection of a context-
free and a regular language is context-free. Take a grammar G and a finite
automaton A; we explain how to construct a pushdown automaton M to
recognize the language L(G) ∩ L(A).
First we construct, using the simple method on p. 149, the one-state automa-
ton N that recognizes the language L(G) with empty stack.
Then, to simulate the respective computations of machines N and A, we con-
struct the cartesian product machine M . The construction is essentially the
same explained for two finite machines (p. 138), with the difference of the
presence of a stack. The state set is the cartesian product of the state sets
of the component machines. The product machine M performs on the stack
the same operations as component machine N . Recognition is with final state
and empty stack; the final states of M are those containing a final state of
finite machine A.
The product machine is deterministic if both component machines are so.
It is easy to see that a computation of M empties the stack and enters a
final state, i.e., recognizes a string, if, and only if, the string is accepted with
empty stack by N and is accepted also by A which reaches a final state. It
follows that machine M accepts the intersection of the two languages.

Example 4.7. We want (as in example 2.81, p. 80) the intersection of the
Dyck language with alphabet Σ = {a, a′} and the regular language a∗a′ +.
The result is the language {ana′ n | n � 1}.
It is straightforward to imagine a pushdown machine with one state, accepting
the Dyck language with empty stack. This, the finite automaton, and the
product machine are depicted in Figure 4.5. Clearly the resulting machine
simulates both component machines step-by-step. For instance, the arc from
{q, s} to {r, s} associated with a reading move of a′ operates on the stack
exactly as automaton N : it pops A and goes from state q to state r exactly as
the finite automaton. Since the component pushdown machine accepts with
empty stack and the finite machine recognizes in final state r, the product
machine recognizes with empty stack in final state (r, s).

4.2.2 Deterministic Pushdown Automata and
Languages

It is important to further the study of deterministic recognizers and corre-
sponding languages because they are widely adopted in compilers thanks to
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pushdown machine N

s

finite automaton q q, s p
rod

u
ct

m
a
ch

in
e

M

r r, s

↓

→

↓

→

↓

a′

a

a′

a,Z0
Z0A

| a,A
AA

a′,A
ε

a,Z0
Z0A

| a,A
AA

a′,A
ε

a′,A
ε

Fig. 4.5 Product machine for intersection of a Dyck language and a∗a′ + (example 4.7).

their computational efficiency. Observing a pushdown machine (as defined on
p. 152), we may find three forms of indeterminism.

1. Uncertainty between reading moves, if, for a state q, character a and stack
symbol A, the transition function has two or more values: |δ(q, a, A)| > 1.

2. Uncertainty between a spontaneous move and a reading move, if both
moves δ(q, ε, A) and δ(q, a, A) are defined.

3. Uncertainty between spontaneous moves, if for some state q and symbol
A, the function δ(q, ε, A) takes multiple values: |δ(q, ε, A)| > 1 .

If none of the three forms occurs in the transition function, the pushdown
machine is deterministic. The language recognized by a deterministic push-
down machine is called (context-free) deterministic, and the family of such
languages is named DET .

Example 4.8. Forms of nondeterminism
The one state recognizer (p. 150) of the language L = {anbm | n � m > 0}
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is nondeterministic of form 1

δ(q0, a, A) = {(q0, b), (q0, bA)}

and also of form 2

δ(q0, ε, S) = {(q0, A)} δ(q0, a, S) = {(q0, S)}

The same language is accepted by the deterministic machine

M2 = ({q0, q1, q2}, {a, b}, {A, Z}, δ, q0, Z, {q2})

q0 q1 q2→ →
�,Z
Z | �,A

A
b,A
ε

a,Z
ZA | a,A

AA
b,A
ε

Intuitively M pushes on stack each incoming character a encoded as A; upon
reading the first b it pops an A and goes to state q1. Then, for any b found
on input, it pops an A. If there are more b than a, the computation ends
in error. Upon reading the terminator the machine moves to final state q2

irrespectively of the top symbol.

Although we have been able to find a deterministic pushdown machine for the
language of the example, this is not possible for other context-free languages:
in other words DET is a subfamily of CF as we shall see.

Closure Properties of Deterministic Languages

Deterministic languages are a subclass of context-free languages and have
specific properties. Starting from the known properties (Table 2.8 on p. 79),
we list in Table 4.3 the properties of deterministic languages. We symbolize
with L, D, and R a language respectively belonging to the family LIB, DET ,
and REG. Next we argue for the listed properties and support them by ex-
amples.5

Reflection: the language

L1 = {anbne} ∪ {anb2nd}, n � 1

satisfies the equality |x|a = |x|b when the sentence ends with e, and the
equality 2|x|a = |x|b if it ends with d. The language is not deterministic,

5 It may be superfluous to recall that a statement such as DR /∈ DET means there exists
some language D such that DR is not deterministic.
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Table 4.3 Closure properties of DET , REG, and CF .

Operation Property (Already known property)

Reflection DR 
∈ DET DR ∈ CF

Star D∗ 
∈ DET D∗ ∈ CF

Complement ¬D ∈ DET ¬L 
∈ CF

Union D1 ∪ D2 
∈ DET , D ∪ R ∈ DET D1 ∪ D2 ∈ CF

Concatenation D1.D2 
∈ DET , D.R ∈ DET D1.D2 ∈ CF

Intersection D ∩ R ∈ DET D1 ∩ D2 
∈ CF

but the reflected language is so. In fact, it suffices to read the first character
to decide which one of the equalities has to be checked.

Complement: the complement of a deterministic language is deterministic;
the proof (similar to the proof for regular languages on p. 137) constructs
the recognizer of the complement by creating a new sink state and inter-
changing the final and nonfinal states.6 It follows that if a context-free
language has as complement a noncontext-free language, it cannot be de-
terministic.

Union: example 4.11 on p. 165 shows the union of deterministic languages
(as L′ and L′′ obviously are) is in general nondeterministic.
From De Morgan identity it follows that D ∪ R = ¬(¬D ∩ ¬R), which is
a deterministic language, for the following reasons: the complement of a
deterministic language (regular) is deterministic (regular); the intersection
of a deterministic language and a regular one is deterministic (discussed
next).

Intersection D ∩ R: the cartesian product of a deterministic pushdown ma-
chine and a deterministic finite automaton is deterministic.
To show that the intersection of two deterministic languages may go out
of DET , recall the language with three equal exponents (p. 76) is not
context-free; but it can be defined by the intersection of two languages,
both deterministic:

{anbncn | n � 0} = {anbnc∗ | n � 0} ∩ {a∗bncn | n � 0}

Concatenation and star: when two deterministic languages are concate-
nated, it may happen that a deterministic pushdown machine cannot lo-
calize the frontier between the strings of the first and second language.
Therefore it is unable to decide the point for switching from the first to
the second transition function. Example: starting with the languages

6 See for instance [25, 28]. Alternatively there is a method [27] for transforming the gram-
mar of a deterministic language to the grammar of its complement.
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L0 = {aibiaj | i, j � 1} L1 = {aibjaj | i, j � 1} R = {c, c2}

the language L = cL0 ∪ L1 is deterministic, but the concatenation RL is
not.7 In fact, the presence of a prefix cc can be alternatively interpreted
as coming either from c.cL0 or from c2.L1.
The situation for the star of a deterministic language is similar.

Concatenation with a regular language : the recognizer of D.R can be con-
structed by cascade composition of a deterministic pushdown machine and
a deterministic finite automaton. More precisely, when the pushdown ma-
chine enters the final state that recognizes a sentence of D, the new ma-
chine moves to the initial state of the finite recognizers of R and simulates
its computation until the end.

Table 4.3 witnesses that the basic operations of regular expressions may spoil
determinism when applied to a deterministic language. This creates some
difficulty for language designers: when two existing technical languages are
united, there is no guarantee the result will be deterministic (it may even
be ambiguous). The same danger threatens the concatenation and the star
or cross of deterministic languages. In practice, the designer must check that
after any transformation of the language under development the property of
determinism is preserved.

It is worth mentioning that the families DET and CF have another im-
portant difference. While the equivalence of two CF grammars or pushdown
automata is undecidable, an algorithm exists for checking if two deterministic
automata are equivalent.8

Nondeterministic Languages

Unlike regular languages, there exist context-free languages which cannot be
accepted by a deterministic automaton.

Property 4.9. The family DET of deterministic languages is strictly included
in the family CF of context-free languages.

The statement follows from two known facts: first, the inclusion DET ⊆ CF
is obvious since a deterministic pushdown automaton is a special case of the
nondeterministic one; second, it is DET �= CF because certain closure prop-
erties (Table 4.3) differentiate a family from the other.
This completes the proof but it is worthwhile to exhibit typical nondetermin-
istic context-free languages in order to evidence some language paradigms
that ought to be carefully avoided by language designers.

7 The proof can be found in [25].
8 The algorithm is fairly complex, see [48].
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Lemma of Double Service

A valuable technique for proving that a context-free language is not deter-
ministic is based on the analysis of the sentences that are the prefix of each
other.

Let D be a deterministic language, x ∈ D a sentence, and suppose there
exists another sentence y ∈ D which is a prefix of x, i.e., x = yz, where all
the strings can be empty.

Now we define another language called the double service of D obtained
by inserting a new terminal, the sharp sign �, between strings y and z:

ds(D) = {y�z | y ∈ D ∧ z ∈ Σ∗ ∧ yz ∈ D}

For instance, for language F = {a, ab, bb} the double service language is

ds(F ) = {a�b, a�, ab�, bb�}

Notice the original sentences are terminated by � and may be followed or not
by a suffix.

Lemma 4.10. If D is a deterministic language, then also the double service
language ds(D) is deterministic.

Proof.9 We are going to transform the deterministic recognizer M of D into
a deterministic recognizer M ′ of the double service language. To simplify the
construction, we assume the automaton M functions on line (p. 155); this
means that, as it scans the input string, the machine can at once decide if the
scanned string is a sentence. Now consider the computation of M accepting
string y. If y is followed by a sharp sign the new machine M ′ reads the
sharp and accepts, if the input is finished (because y� ∈ ds(D) if y ∈ D).
Otherwise the computation of M ′ proceeds deterministically, scanning the
string z exactly as M would do in order to recognize string yz.

The reason for the curious name of the language is now clear: the automa-
ton simultaneously performs two services inasmuch as it has to recognize a
prefix and a longer string.

The lemma has the practical implication that if the double service of a
CF language L is not CF , then L is not deterministic.

Example 4.11. Nondeterministic union of deterministic languages
The language

L = {anbn | n � 1} ∪ {anb2n | n � 1} = L′ ∪ L”

union of two deterministic languages, is not deterministic.
Intuitively the automaton has to read and store on the stack one or more

characters a. Then, if the string (e.g., aabb) is in the first set, it must pop an

9 See Floyd and Beigel [20] for further reading.
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a upon reading a b; but if the string is in the second set (e.g.,aabbbb), it must
read two letters b before popping one a. Since the machine does not know
which is the correct choice (for that it should count the number of b examining
an unbounded substring), it is obliged to carry on nondeterministically both
computations.

More rigorously, assume by contradiction that L is deterministic. Then
also its double service language ds(L) would be deterministic and, from the
closure property of DET (p. 162) under intersection with regular languages,
the language

LR = ds(L) ∩ (a+b+�b+)

is deterministic. But LR is not a context-free language hence certainly not
a deterministic one because the sentences have the form aibi�bi, i � 1, with
three equal exponents (p. 76), a well-known non-context-free case.

The next example applies the same method to the basic paradigm of palin-
dromes.

Example 4.12. Palindromes
The language of palindromes L is defined by grammar

S → aSa | bSb | a | b | ε

To prove that it is not deterministic, we intersect the language of double
service with a regular language with the aim of obtaining a language that is
not in CF . Consider the language

LR = ds(L) ∩ (a∗ba∗�ba∗)

A string of form aibaj�bak is in LR if, and only if, condition j = i∧k = i holds.
But this language is again the non-CF language with three equal exponents.

Determinism and Unambiguity of Language

If a language is accepted by a deterministic automaton, each sentence is
recognized with exactly one computation and it is possible to prove that the
language is generated by a nonambiguous grammar.

The construction of p. 157 produces a grammar equivalent to a pushdown
automaton, which simulates computations by derivations: the grammar gen-
erates a sentence with a leftmost derivation if, and only if, the machine per-
forms a computation that accepts the sentence. It follows that two distinct
derivations (of the same sentence) correspond to distinct computations, which
on a deterministic machine necessarily scan different strings.

Property 4.13. Let M be a deterministic pushdown machine; then the corre-
sponding grammar of L(M) obtained by the construction on p. 157 is non-
ambiguous.
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But of course other grammars of L(M) may be ambiguous.
A consequence is that any inherently ambiguous context-free language is

nondeterministic: suppose by contradiction it is deterministic, then the pre-
ceding property states a nonambiguous equivalent grammar does exist. This
contradicts the very definition of inherent ambiguity (p. 56) that every gram-
mar of the language is ambiguous. In other words, an inherently ambiguous
language cannot be recognized by a deterministic pushdown machine. The
discussion confirms what has been already said on the irrelevance of inher-
ently ambiguous languages for technical applications.

Example 4.14. Inherently ambiguous language and indeterminism
The inherently ambiguous language of example 2.56 (p. 56) is the union of
two languages

LA = {aibic∗ | i � 0} ∪ {a∗bici | i � 0} = L1 ∪ L2

both deterministic (by the way another proof that family DET is not closed
by union).

Intuitively, to recognize the language two different strategies must be
adopted for the strings of each language. In the former the letters a are
pushed on the stack and popped upon reading b; the same happens in the
latter case but for the letters b and c. Therefore any sentence belonging to
both languages is accepted by two different computations and the automaton
is nondeterministic.

The notion of ambiguity applies to any kind of automata. An automaton
is ambiguous if a sentence exists such that it is recognized by two distinct
computations.

We observe the condition of determinism is more stringent than absence
of ambiguity: the family of deterministic pushdown automata is strictly con-
tained in the family of nonambiguous pushdown automata. To clarify the
statement we show two examples.

Example 4.15. The language LA of the previous example is nondeterministic
and also ambiguous because certain sentences are necessarily accepted by
different computations.

On the other hand, the language of example 4.11 on p. 165

LI = {anbn | n � 1} ∪ {anb2n | n � 1} = L′ ∪ L”

although nondeterministic (as argued there), is unambiguous. In fact, each
of the two sublanguages L′, L” is easily defined by an unambiguous grammar
and the union remains unambiguous because the components are disjoint.
The two recognition strategies described on p. 165 are implemented by dis-
tinct computations but one at most of them may succeed for any given string.
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Subclasses of Deterministic Pushdown Automata

The family DET is by definition associated with the most general type of
deterministic pushdown machine, the one featuring several states and using
final states for acceptance. Various limitations on internal states and on
acceptance modes having no consequence in the indeterministic case cause
a restriction of the language family recognized by a deterministic machine.
The main cases are briefly mentioned.10

Automaton having one state only: acceptance is necessarily with empty
stack and it is less powerful than recognition with final state.

Limitation on the number of states: the family of languages is more re-
stricted than DET ; a similar loss is caused if a limit is imposed on just
the number of final states; or, more generally, on the number of final con-
figurations of the machine.

Real-time functioning, i.e., without spontaneous moves: it restricts the fam-
ily of recognizable languages.

Some Simple Deterministic Subfamilies

In many practical situations, technical languages are designed so that they
are deterministic. For instance, this is the case for almost all programming
languages and for the family XML of mark-up languages of the Net. Dif-
ferent approaches exist for ensuring that a language is deterministic by im-
posing some conditions on the language or on its grammar. Depending on
the conditions, one obtains different subfamilies of DET . Two simple cases
are next described to introduce the topic; others, much more important for
applications, will be obtained with the LL(k) and LR(k) conditions to be
respectively studied in this and the next chapter.

Simple Deterministic Languages

A grammar is called simple deterministic if it satisfies the next conditions.

1. Every right part of a rule starts with a terminal character (hence there are
no empty rules);

2. for any nonterminal A, alternatives do not exist starting with the same
character, i.e.:

� A → aα | aβ with a ∈ Σ, α, β ∈ (Σ ∪ V )∗, α �= β

An example is the simple deterministic grammar S → aSb | c.

10 For further reading, see [25, 49].
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Clearly, if we construct the pushdown machine from a simple deterministic
grammar using the method of Table 4.1 on p. 149, the result is a deterministic
machine. Moreover, this machine consumes a character with each move, i.e.,
it works in real-time, which follows from the fact that such grammars are
(almost) in Greibach normal form.
We hasten to say the simple deterministic condition is too inconvenient for
practical use.

Parenthesis Languages

It is easy to check that parenthesized structures and languages, introduced
in Chapter 2 on p. 44, are deterministic. Any sentence generated by a paren-
thesized grammar has a bracketed structure that marks the start and end of
the right part of each rule used in the derivation. We assume the grammar
is distinctly parenthesized (p. 45); otherwise, if just one type of parentheses
is used, we assume rules do not exist with identical right-hand sides. Either
assumption ensures that the grammar is unambiguous.

A simple recognition algorithm scans the string to localize a substring not
containing parentheses and enclosed between a matching pair of parentheses.
Then the relevant set of the right parts of the grammar rules are searched for
the parenthesized substring. If none matches, the source string is rejected.
Otherwise the parenthesized substring is reduced to the corresponding non-
terminal (the left part of the matching rule) thus producing a shorter string
to be recognized. The algorithm then resumes scanning the new string in the
same way and at last recognizes when the string is reduced to the axiom. It is
not difficult to encode the algorithm by means of a deterministic pushdown
machine.

If a grammar defines a nondeterministic language or if it is ambiguous,
the transformation to a parenthesized grammar removes both defects. For
instance, the language of palindromes (S → aSa | bSb | a | b | ε on p.
166) is changed to a deterministic one when every right part of a rule is
parenthesized:

S → (aSa) | (bSb) | (a) | (b) | ()

Web documents and semistructured databases are often encoded in the
mark-up language XML. Distinct opening and closing marks are used to
delimit the parts of a document in order to allow efficient recognition and
transformation. Therefore the XML language family is deterministic. The
XML grammar model11 (technically known as Document Type Definition)
is similar to the case of parenthesized grammars, but has as distinguishing
feature the use of various regular expression operators in the grammar rules.

11 Such grammars generate context-free languages but differ from context-free grammars
in several ways, see [9] for an initial comparison.
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4.3 Syntax Analysis

The rest of the chapter introduces the distinction between top-down and
bottom-up sentence recognition and covers the classical fast parsing algo-
rithms used in top-down compilers, also for grammars extended with regular
expressions.

Consider a grammar G. The syntax analyzer or parser scans the source
string and computes a derivation or syntax tree if the string is in the lan-
guage L(G); otherwise it stops indicating the configuration where the error
was detected (diagnosis); it may preferably resume parsing, skipping the sub-
strings contaminated by the error (error recovering), in order to offer as much
diagnostic help as possible with a single scan of the source string.

Disregarding error treatment, an analyzer is simply a recognizer capable
of recording the derivation of the string. To this end, the pushdown machine
has to save in some data structure the label of the grammar rule when it
performs a corresponding move. Upon termination, the data structure will
represent the derivation or syntax tree.

If the source string is ambiguous, the result is a set of trees. In that case
the parser may decide to stop when the first derivation has been found or to
exhaustively produce all of them.

4.3.1 Top-Down and Bottom-Up Analysis

We know the same (syntax) tree corresponds to many derivations notably
leftmost and rightmost ones and less relevant others proceeding in zigzaging
orders. Depending on the derivation being leftmost or rightmost and on the
order it is constructed, we obtain the two most important classes of parsers.

Top-down analysis: constructs the leftmost derivation starting from the
axiom i.e., the root of the tree, and growing the tree towards the leaves;
each step of the algorithm corresponds to a derivation step.

Bottom-up analysis: constructs the rightmost derivation but in reflected
order, i.e., from the leaves to the root of the tree; each step corresponds
to a reduction. The algorithms are described in the next chapter.

This is best explained by an example.

Example 4.16. Orders of visit of a tree
Consider grammar

1. S → aSAB 2. S → b
3. A → bA 4. A → a
5. B → cB 6. B → a
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and sentence a2b3a4. The orderings corresponding to top-down and bottom-
up visits are shown in Figure 4.6. In each node the framed number gives
the order of visit and the subscript indicates the grammar rule applied. A
top-down analyzer grafts under the left part of a rule the corresponding right
part. If the latter contains terminal characters, they must match with the
characters of the source string. The procedure terminates when all nonter-
minal symbols have been transformed to terminal characters (or to empty
strings).

Top-down visit

1 S1

a 2 S1

a 3 S2

b

4 A3

b 5 A3

b 6 A4

a

7 B6

a

8 A4

a

9 B6

a

Bottom-up visit

9 S1

a 6 S1

a 1 S2

b

4 A3

b 3 A3

b 2 A4

a

5 B6

a

7 A4

a

8 B6

a

Fig. 4.6 Orders of visit of a tree for example 4.16.

On the other hand, starting with the source text a bottom-up analyzer
reduces to a nonterminal the substrings matching the right part of a rule,
as they are encountered in a left-to-right scan. After each reduction, the
modified text is again scanned to find the next reduction until the text is
reduced to the axiom.
In both cases the process is interrupted when an error is found.
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In principle both approaches to analysis also work from right to left, scanning
the reflected source string. In practice all existing languages are designed for
left-to-right processing as it happens in natural language where the natural
reading direction corresponds to the order a sentence is uttered by a speaker.
Incidentally, reversing the scanning direction may damage the determinism
of the language because the DET family is not closed by mirror reflection
(p. 163).

4.3.2 Grammar as Network of Finite Automata

We are going to represent a grammar as a network of finite machines. This
has several advantages: it offers a pictorial representation, gives evidence to
similarities across different parsing algorithms, permits to directly handle
grammars with regular expressions, and maps quite nicely on recursive de-
scent parser implementation.
For a grammar, each nonterminal is the left part of one or more alterna-
tives. On the other hand, if the grammar G is in the extended context-free (or
EBNF) form of p. 83, the right part of a rule may contain the union operator,
which makes it possible for each nonterminal to be defined by just one rule,
A → α, where α is an r.e. over the alphabet of terminals and nonterminals.
The right part α defines a regular language, whose finite automaton MA can
be easily constructed with the methods of Chapter 3.
In the simple case when α contains just terminal symbols, the automaton
MA recognizes the language LA(G) generated by the grammar starting from
nonterminal A. But in general α contains also nonterminal symbols and we
next discuss what to do with an arc of MA labelled with nonterminal B. This
can be thought as the invocation of another automaton, the one associated
with rule B → β. Notice that B may coincide with A, causing the invocation
to be recursive.
In this part of the book to avoid confusion we call “machines” the finite
automata, reserving the term “automaton” to the pushdown automaton ac-
cepting language L(G).

Definition 4.17. Recursive net of finite machines
All the finite machines considered are deterministic.

• Let Σ be the terminal alphabet, V = {S, A, B, . . .} the nonterminal set,
and S the axiom of the extended context-free grammar G.

• For each nonterminal A there is one rule A → α and the right part α is
an r.e. of alphabet Σ ∪ V .

• Let the rules be denoted by S → σ, A → α, B → β, . . ..
Then symbols RS , RA, RB, . . . denote the regular languages, with alphabet
Σ ∪ V , defined by r.e. σ, α, β, . . . .
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• Symbols MS , MA, MB, . . . are the names of the (finite deterministic) ma-
chines accepting the corresponding regular languages RS , RA, . . . . The set
of all machines, i.e., the net is denoted by M.

• In order to avoid confusion, we assume that the names of the states of
any two machines are disjoint. The state set of machine MA is denoted
QA, the initial state is qA,0, and the final states are FA. The transition
function of all machines will be denoted with the same name δ at no risk
of confusion, since the state sets are disjoint.

• For a state q of machine MA, R(MA, q) (or R(q) if the machine name is
understood) denotes the regular language of alphabet Σ ∪ V accepted
by the machine starting in state q. If q is the initial state, we have
R(MA, qA,0) ≡ RA.

We observe a rule A → α is perfectly represented by machine MA, due to the
bijective correspondence between the strings defined by α and the paths in
the graph going from the initial state to a final state. Therefore the machine
net M = {MS, MA, . . .} is essentially a notational variant of a grammar and
we may go on using the usual concepts such as derivation. In particular, the
terminal language (with alphabet Σ) L(M) defined (or recognized) by the
machine net coincides with the language generated by the grammar, L(G).

We need to consider also the terminal language defined by a generic ma-
chine MA, starting from a state possibly other than the initial one. For state
q of machine MA we write

L(MA, q) = {y ∈ Σ∗ | η ∈ R(MA, q) ∧ η
∗⇒ y}

To simplify notation, we write L(q) if the machine is understood. The for-
mula above contains a string η over terminals and nonterminals, accepted by
machine MA, starting in state q. The derivations originating from η produce
all the terminal strings of language L(q).

In particular, from previous stipulations it follows that

L(MA, qA,0) ≡ L(qA,0) ≡ LA(G)

and for the axiom it is

L(MS, qS,0) ≡ L(qS,0) ≡ L(M) ≡ L(G)

Example 4.18. Machine nets for arithmetic expressions
The grammar has three nonterminals (E is the axiom), therefore also three
rules:

E → [+ | −]T ((+ | −)T )∗ T → F ((× | /)F )∗ F → (a | ′(′ E ′)′ )

Figure 4.7 shows the machines of net M. We list some languages defined by
the net and by component machines, in order to illustrate the definitions.
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ME :

0 1 2E : → −→
+ | −

T

+ | −

T

MT :

3 4T : → −→
F

× | /

MF :

5 6

7 8

F : → −→
a

(

E

)

Fig. 4.7 Machine net of example 4.18.

R(ME , 0) = R(ME) = [+ | −]T ((+ | −)T )∗

R(MT , 4) = R(4) = ((× | /)F )∗

L(ME , 0) = L(0) = LE(G) = L(G) = L(M) = {a, a + a, a × (a − a), . . .}
L(MF , 5) = L(5) = LF (G) = {a, (a), (−a + a), . . .}
L(MF , 8) = L(8) = {′)′}

Syntax Charts

As a short intermission we cite the use of machine nets for the documentation
of technical languages. In many branches of engineering it is customary to
use graphics for technical documentation in addition to textual documents,
which in our case are grammars and regular expressions. The so-called syntax
charts are frequently included in language reference manuals, as a pictorial
representation of extended context-free grammars; under the name of tran-
sition networks they are used in computational linguistics to represent the
grammars of natural languages. The popularity of syntax charts derives from
their readability as well as from the fact this representation serves two pur-
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poses at once: to document the language and to describe the control flow of
parsing procedures as we shall see.

Actually syntax charts differ from machine nets only with respect to
graphic style and naming. First, every finite machine graph is converted to
the dual graph or chart by interchanging arcs and nodes. The nodes of a
chart are the symbols (terminal and non-) occurring in the right part of the
rule A → α. In a chart the arcs are not labelled; this means the states are
not distinguished by a name, but only by their position in the graph. The
chart has one entry point indicated by an arrow with the chart nonterminal
A, and one exit point corresponding to one or more final states. Different
graphic styles are found in manuals to visually differentiate the two classes
of symbols.

Example 4.19. Syntax charts of arithmetic expressions (example 4.18)
The machines (Figure 4.7) of the net are redrawn as syntax charts in Figure
4.8. The nodes are grammar symbols with dashed boxes for nonterminals and
with solid boxes for terminals. Machine states are not drawn as graph nodes
nor do they carry a label.

Fig. 4.8 Syntax charts equivalent to the machine net of Figure 4.7.

E → [+ | −]T ((+ | −)T )∗

+ +

− −

TE : → →

T → F ((× | /)F )∗

×

/

FT : → →

F → (a |′ (′E′)′)

a

( E )F : → →
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Traversing a chart from entry to exit, we obtain any possible right part of the
corresponding syntax rule. For instance, some traversing paths in the chart
of nonterminal E are:

T, +T, T + T, . . .

It should be clear how to construct the syntax charts of a given EBNF gram-
mar: construct, by means of known methods, the finite recognizer of each r.e.
occurring as right part of a grammar rule, then adjust the machine graphic
representation to the desired convention.

4.3.3 Nondeterministic Recognition Algorithm

It is straightforward to interpret a machine net as the control flow graph of a
nondeterministic algorithm that accepts the sentences of the language. Each
machine is viewed as a subprogram and the jump from a machine to another is
then the invocation of a second subprogram, which after termination returns
to the calling machine. Since the machines can be recursively linked, this type
of algorithm is termed a recursive descent parser.

Actually, for the recursion to terminate, it is necessary that the grammar
is not recursive to the left. Otherwise a left-recursive rule, such as A → Aγ,
would cause the subprogram associated with machine MA to endlessly invoke
itself. This is not a limitation, as we recall from p. 63 that any grammar can
be converted to an equivalent one having right- instead of left-recursions.

The recursive descent algorithm is essentially an implementation of a gen-
erally nondeterministic pushdown machine, accepting a string with empty
stack. Before listing the code in Figure 4.9, we describe it in words. Initially,
the active machine is associated with the axiom, and the current character
is the first input character. If the string is legal, there exists a computation
which, possibly after invoking other machines and returning from them, will
enter the final state of the initial machine.

At each step the algorithm may continue computing inside the active ma-
chine, exactly as a finite deterministic recognizer would do, reading the next
terminal character and changing state. The change of state is recorded by
replacing on the stack top the old state with the new one. Thus the stack top
at any time contains the current state of the active machine.

If the current state has an outgoing arc labelled with nonterminal B, the
machine (also termed the caller) suspends itself and moves spontaneously to
the initial state of the machine named MB (possibly the same as the active
one if the rule is recursive), i.e., it pushes the initial state on the stack and
covers the caller state.

When a computation enters the final state of a machine, we say the ma-
chine has terminated the current activation. Then the machine returns control
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to the caller machine, which had been suspended. The return action consists
of two steps: first, the algorithm pops the state of the active machine, thus
allowing the state of the most recently suspended machine to surface and
the machine to be reactivated. Second, the machine executes the transition
labelled with the name of the terminating machine. The operation of the

Algorithm. The pushdown machine:
begin

1. source string x; current terminal character cc;
2. stack symbols are the (disjoint) union Q = QA ∪QB ∪ . . . of the states of all machines;
3. the pushdown automaton has one state, to be left understood;
4. the stack initially contains the initial state qS,0;
5. transitions are next specified; let s ∈ QA be the top symbol, i.e., the state of the active

machine MA;

a. (scanning move)

if the move s
cc−→ s′ is defined (for the active machine MA), scan the current

character and replace the stack top s with s′;
b. (invocation move)

if the move s
B−→ s′ is defined for some nonterminal B, perform a spontaneous move

that pushes on the stack the initial state qB,0 of machine MB, thus making it the
active one;

c. (return move)
if s is a final state of machine MB, pop it then perform from the state r that has

surfaced, the move r
B−→ s′ and replace the stack top r with s′;

d. (recognition move)
if s is a final state of MS (the axiom machine ) and cc =�, accept and halt;

e. in any other case reject the string and halt.

end

Fig. 4.9 Nondeterministic recursive descent algorithm for a machine net.

nondeterministic algorithm is illustrated in the next example.

Example 4.20. List of odd palindromes
The two EBNF rules and the corresponding net are shown in Figure 4.10.
Taking state 0 as initial, we obtain the language L(0) ≡ L(G), the lists of odd
length palindromes. Taking state 2 as initial, we have instead the language
L(2) of odd palindromes.

To parse string a, b �, start with state 0 on top of the stack. Machine MS

pushes 2 on the stack thus invoking machine MP , which reads a and replaces
2 with 3 on the stack. Then MP has a choice: to terminate or to perform self-
invocation, but the latter choice would end in failure. Suppose MP decides to
terminate; it pops 3 and the computation resumes in state 0. Next, machine
MS replaces 0 by 1 on the stack top then reads a comma, replaces 1 with 0
on stack top, and calls again MP , and so on. The computation ends in state
1 upon reading the terminator character.
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S → P (, P )∗

0 1S : → →
P

,

P → aPa | bP b | a | b

3 4

2 5

6 7

P : →

↓

↓

→

a

P

a

b

P

b

Fig. 4.10 Grammar and machine net for example 4.20 (list of palindromes).

The next section presents a deterministic version of the algorithm and the
enabling conditions on the machine net.

4.4 Top-Down Deterministic Syntax Analysis

A majority of technical grammars are especially designed to allow fast deter-
ministic parsing. The next method termed LL(k)12 for constructing deter-
ministic recursive descent pushdown automata is intuitive and practical. It
allows the construction of flexible and efficient syntax-directed translators.

After discussing the conditions enabling LL(k) processing, two different
implementations will be considered: a classical pushdown machine and a re-

12 The acronym LL(1) is historical. The first L says scanning is from left-to-right; the
second L says the derivation is leftmost; the number k � 1 gives the length in characters
of the look-ahead exploration.
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cursive descent program comprising a set of recursive procedures. In the sec-
ond case, the pushdown stack is automatically provided by the stack of the
activation records of invoked procedures. At last we discuss how to adjust a
grammar to make this method applicable.

4.4.1 Condition for LL(1) Parsing

Given grammar G, consider the equivalent machine net, with rule A → α
specified by a deterministic finite machine MA, that recognizes the regular
language defined by r.e. α.
Recall a language is nullable if it contains the empty string.
Moving from similar concepts introduced for finite automata (algorithms
GMY 3.8.2 and BS 3.8.3 p. 130 and following), we define some useful sets.

Set of initials of a state q: take the initials of the strings recognized start-
ing from the state, Ini(q) = Ini(L(q)).

Follow set : the set of followers Fol(A) of a nonterminal A contains the
terminals that may follow A in some derivation. Moreover, the terminator
� is in the follow set of the axiom.

In order to compute the initials and followers, we give a set of logical clauses.
Let a be a terminal, A, B nonterminals, and q, r machine states.

Algorithm. Set of initials of language L(q).

1. a ∈ Ini(q) if ∃ arc q a

2. a ∈ Ini(q) if ∃ arc q
A

∧ a ∈ Ini(qA,0), where qA,0 is the initial state of machine MA.

3. a ∈ Ini(q) if ∃ arc q r
A

∧ L(qA,0) is nullable ∧ a ∈ Ini(r)

Cases 1. and 2. are self-explanatory. For case 3., since ε ∈ L(qA,0), a transi-
tion from state q to state r may read nothing; therefore the first character
encountered is the one read from state r.

Algorithm. Follow set of a nonterminal A.

1. �∈ Fol(S)

2. a ∈ Fol(A) if ∃ arc q r
A

∧ a ∈ Ini(r)
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3. a ∈ Fol(A) if ∃ arc q r
A for machine MB, B �= A

∧ the language L(r) is nullable
∧ a ∈ Fol(B)

4. a ∈ Fol(A) if ∃ arc q r
A →

∧ r is a final state of machine MB, with B �= A
∧ a ∈ Fol(B)

Case 1. clause says the axiom, consistently with the fact it derives a sentence,
is followed by the terminator.
Case 2. adds to the followers of A the initials of the language recognized
starting from any state entered by an arc labelled A.
For case 4., after reading a string of language LA(G), the automaton is in
the final state of machine MB, meaning it has finished reading a string of
language LB(G). Therefore the following character belongs to the follow set
of B and of A.
Case 3. generalizes case 4., in the sense that state r is not directly final, but
is connected to a final state of machine MB via a path that may read the
empty string.

The clauses are applied in any order (as in a logical program) to compute
the sets of initials and followers. First initialize all the sets to empty. Then
repeatedly apply the clauses in any order until the sets of initials and followers
cease to grow (i.e., a fixed point has been reached).

Example 4.21. Initials and followers
Some computations are listed for grammar

S → Aa A → BC B → b | ε C → c | ε

represented as a net in Figure 4.11. The languages derived from A, B, C are
nullable.
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0 1 2

3 4 5

6 7 8 9

S : → →

A : → →

B : → →
↓

C : → →
↓

A a

B C

b c

Fig. 4.11 Example 4.21 for computations of initials and followers.

Computation of initials Computation of followers

Ini(0) = Ini(3) ∪ Ini(1)
= Ini(6) ∪ Ini(4) ∪ Ini(1)
= Ini(6) ∪ Ini(8) ∪ Ini(5) ∪ Ini(1)
= {b} ∪ {c} ∪ ∅ ∪ {a}

Fol(S) = {�}
Fol(A) = Ini(1)

= {a}
Fol(B) = Ini(4) ∪ Fol(A)

= Ini(8) ∪ Fol(A)
= {c} ∪ {a}

Fol(C) = Fol(A)
= {a}

Observe that, if in the net a nonterminal occurs many times, the followers of
each occurrence must be united. To illustrate we modify machine MC of the
net:

8 9 10 11C : →
↓

→

↓

c A d
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Then we recompute the followers of A:

Fol(A) = Ini(1) ∪ Ini(10) ∪ Fol(C)
= {a} ∪ {d} ∪ Fol(A)
= {a} ∪ {d}

Notice in the last step the term Fol(A), identical to the left part of the clause,
is eliminated.

Look-Ahead or Guide Set

At last a set will be now introduced, to guide the choice of the move when two
or more arrows originate from a state. For such nodes of the graph, the idea is
to pre-compute the set of initial characters for each leg of the bifurcation. If
such sets are disjoint for each leg of a bifurcation, the choice is deterministic:
take the leg having the current character in the guide set.

Definition 4.22. Guide (or Look-ahead) set.
The guide set Gui(q → . . .) ⊆ Σ ∪ {�} is defined for every arrow (i.e., an arc
or a final state arrow) of the net. Depending on the type of arrow and on its
label, several cases occur.

1. For an arc q
b−→ r with terminal label b ∈ Σ:

Gui(q b−→ r) = {b}

2. For an arc q
A−→ r of machine MB with nonterminal label A:

a. Gui(q A−→ r) = Ini (L (qA,0) L(r)), if the concatenation L(qA,0)L(r)
is not nullable;

b. Gui(q A−→ r) = Ini (L (qA,0) L(r)) ∪ Fol(B), otherwise.

3. For an arrow q → of a final state q of machine MB:

Gui(q →) = Fol(B)

Case 1. is obvious: the first character is the terminal arc label.
In 2.a the move labelled with nonterminal A will be chosen under two con-
ditions. First, if the character is an initial one of the language defined by
nonterminal A; second, if this language is nullable, and the character is one
of the initials of the language recognized starting from state r.
Case 2.b is more complex. Since the concatenation of the languages L(qA,0)L(r)
is nullable, the recognizer may reach a final state of machine MB without
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reading any character. Then the first character to be encountered is any
character following nonterminal B.
Last, in case 3. the computation on machine MB can terminate when the
current character is in the follow set of B.

Example 4.23. Cases of guide set definition
To illustrate consider the following grammar and the net in Figure 4.12. State
3 of machine MA is a bifurcation and, since the concatenation

L(6)L(8) = L(6)L(4) = {ε, b}{ε, c}

is nullable, the guide sets of the two legs are

Gui(3 B−→ 4) = Ini(L(6)L(8)) ∪ Fol(A)
= Ini({ε, b, c, bc})∪ {a}
= {b, c, a}

Gui(3 d−→ 10) = {d}

S → Aa A → BC | d B → b | ε C → c | ε

In bifurcation 6 we have

Gui(6 →) = Fol(B)
= {a, c}

Gui(6 b−→ 7) = {b}

The last bifurcation is 8, where we have

Gui(8 →) = Fol(C)
= Fol(A)
= {a}

Gui(8 c−→ 9) = {c}

We have determined that in every bifurcation point the guide sets of out-
going arrows are disjoint. This allows us to state that the grammar satisfies
condition LL(1).

The preceding result is essentially a sufficient condition for the pushdown
machine of algorithm 4.3.3 to be deterministic.

Definition 4.24. Condition LL(1)
A machine MA of the net satisfies condition LL(1) in state q if, for every pair
of outgoing arrows from state q, the guide sets are disjoint.
A rule satisfies condition LL(1) if every state of the corresponding machine
meets the condition.
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0 1 2

3 4 5

10

6 7 8 9

S : → →

A : → →

→

B : → →
↓

C : → →
↓

A a

B C

d

b c

Fig. 4.12 Net for illustrating guide set definition (example 4.23).

A grammar has property LL(1) if every state of the machine net satisfies the
condition.

An obvious remark is that a nondeterministic state always violates the con-
dition because it has two outgoing arcs with the same label. This remark
motivates our obligation to use deterministic machines for the construction
of LL(1) parsers.13

Several examples of computation of guide sets and LL(1) condition checking
come next.

Example 4.25. Grammars and condition LL(1)

1. The grammar
G1 : S → aSb | ε

generates the language {anbn | n � 0}. On the equivalent deterministic
machine

13 In Chapter 5 this assumption is not needed for bottom-up parsers.
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0 1 2 3→
↓ ↓

a S b

we now check condition LL(1): we compute the guide sets in the bifurcation
nodes. Here only one exists, state 0. The sets

Gui(0 a−→ 1) = {a}, Gui(0 →) = Fol(S) = {b,�}

are disjoint and the grammar is LL(1).
Notice the second set contains b because S in state 2 is followed by b; it
contains the terminator because S is the axiom.

2. The grammar
G2 : S → aSb | aSc | ε

generates language {an(b | c)n | n � 0}. The machine is LL(1) because
in bifurcations 0 and 2 the lookahead sets of outgoing arrows, enclosed
between braces, are disjoint.

0 1 2 3→
↓

Fol(S) = {b, c,�}
↓

a {a} S

b {b}

c {c}

3. The grammar (ambiguous)

G3 : S → a+Sb | c

generates the language {a∗ancbn | n � 0}. The machine graph contains a
circuit (self-loop) corresponding to the cross operation of the r.e.
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0 1 2 3→
↓

a {a} S {a, c}

a {a}

b

c {c}

State 1 violates condition LL(1) because Ini(S) = {a, c} contains a. On
the other hand, at bifurcation 0 the condition is satisfied.

4. The grammar
G4 : S → Ab+ A → aAb | ε

generates language {anbnb+ | n � 0}.

0 1 2S : →
↓

Fol(S) = {�}

A b

b {b}

3 4 5 6A :→
↓

Fol(A) = {b}
↓

a {a} A b

Both machines satisfy the condition at bifurcations 2 and 3.
5. The grammar of the lists of palindromes (example 4.20 on p. 177) repro-

duced in Figure 4.13 is not LL(1) in state 3, where the final arrow has the
set

Gui(3 →) = Fol(P ) = {, } ∪ Fol(S) ∪ {a} ∪ {b} = {, � a b}

computed combining the three occurrences of P in the net. The set overlaps
the set

Gui(3 P−→ 4) = Ini(LP (G)) = Ini(2) = {a, b}

The same conflict is found in state 6.
On the other hand, bifurcation 1 of the first machine satisfies the condition,
because the comma is not in the set Gui(1 →) = Fol(S) = {�}.
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0 1S : → →
P

,

3 4

2 5

6 7

P : →

↓

↓

→

a

P

a

b

P

b

Fig. 4.13 Machine net of the language of lists of palindromes (example 4.25), with guide
sets in braces.

Simplified Computation of Guide Sets

The computation of guide sets is simpler when the grammar is not extended
with regular expressions, and then it is better done on grammar rules rather
than on the machine net. The definitions will be restated for this simpler
case.

Let A → α be a rule of grammar G, with axiom S.
{

Gui(A → α) = Ini(α), if α is not nullable;
Gui(A → α) = Ini(α) ∪ Fol(A), otherwise.

The terms occurring in the definition are redefined on grammar rules:

Ini(α) = {a ∈ Σ | α
∗⇒ ay ∧ y ∈ Σ∗}

Fol(A) = {a ∈ Σ ∪ {�} | S � ∗⇒ yAaz ∧ y, z ∈ Σ∗}

In words, condition LL(1) imposes that the guide sets be disjoint for every
pair of alternative rules A → α, A → α′ of the grammar.

Left Recursion

The next property, an immediate consequence of the definitions, excludes
from LL(1) analysis any grammar with left-recursive derivations.
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Property 4.26. A left-recursive rule violates condition LL(1).

Proof. For brevity we only discuss immediately recursive rules, such as A →
A . . . | a . . . | B . . ., schematized in Figure 4.14, but the same reasoning would
apply to a derivation of length greater than one. To compute the guide set
of the left-recursive arc (topmost), one has to reenter the same machine thus
obtaining as initial characters the same terminals that occur in the guide set
of the second and third arc. It follows that the guide set of the left-recursive
arc contains the guide sets of the other arcs, which proves the violation of
condition LL(1).

1

0 2

3

A : →

A Guide = Gui(0
a→ 2) ∪ Gui(0

B→ 3) = {a, b, . . .}

a Guide = {a}

B Guide = {b, . . .}

Fig. 4.14 Illustration of property 4.26: a left-recursive rule infringes condition LL(1).

Actually we have already observed that left-recursion causes a recursive de-
scent algorithm (p. 177) to fall into an endless loop. The practical implication
is that every left-recursion present in a grammar must be converted to a right
recursion (as explained on p. 63), if one intends to use LL(1) parsing. If the
conversion effort is deemed too high, the designer has the option to use the
parsing methods of the next chapter.

LL(1) Recognizer

The point of arrival of the preceding discussions can now be stated.

Property 4.27. If a grammar has property LL(1), the recursive descent string
recognition algorithm (Figure 4.9 on p. 177) becomes deterministic.
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In Figure 4.15 we specialize the algorithm under the LL(1) assumption and
we argue that indeterministic choices vanish. At step 5., since the guide sets

Algorithm. Recursive descent deterministic recognizer

The pushdown machine:
begin

1. source string x; current terminal character cc;
2. stack symbols are the (disjoint) union Q = QA ∪QB ∪ . . . of the states of all machines;
3. the pushdown automaton has one state, to be left understood;
4. the stack initially contains the initial state qS,0;
5. transitions are next specified; let s ∈ QA be the top symbol, i.e., the state of the active

machine MA;

a. (scanning move)

if the move s
cc−→ s′ is defined (for the active machine MA), scan the current

character and replace the stack top s with s′;
b. (invocation move)

if the move s
B−→ s′ is defined for some nonterminal B and cc ∈ Gui(s

B−→ s′),
perform the spontaneous move that pushes on stack the initial state qB,0 of machine
MB , thus making it the active one;

c. (return move)
if s is a final state of machine MB and cc ∈ Gui(s →), pop it then perform from

the state r that has surfaced the spontaneous move r
B−→ s′, that replaces the stack

top r with s′;
d. (recognition move)

if s is a final state of MS (axiom machine) and cc =�, accept and halt;
e. in any other case reject the string and halt.

end

Fig. 4.15 Deterministic recursive descent algorithm for an LL(1) compliant machine net.

of the arrows outgoing from state s are disjoint due to LL(1) hypothesis,
the conditions a), b), c), and d) are mutually exclusive and the choice of the
move becomes deterministic.

The time complexity is linear in the string length n. In fact, the automa-
ton either reads and consumes an input character or performs a spontaneous
move in cases b) and c). But the number of spontaneous moves between any
two successive reading moves is bounded from above by a constant, as next
argued. A spontaneous move invokes a machine, which in turn may imme-
diately (i.e., without reading a character) invoke another machine, and so
on. Since the grammar does not contain left-recursive rules (more generally
derivations), the length of the chain of invocations is bounded by the number
of nonterminals of the grammar. Therefore the number of spontaneous moves
between two reading moves cannot exceed a constant, independent from the
source string length, and the complexity of the algorithm is O(n). In partic-
ular, the number of steps executed by the algorithm is exactly equal to the
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length of the string, when the grammar is LL(1) and in Greibach normal
form (p. 66), that for this reason is also called in real-time .

Parser Implementation by Recursive Procedures

An elegant and practical implementation relies on a set of procedures, some-
times called syntactic, in one-to-one correspondence with the machines of the
net, i.e., with the nonterminal symbols of the grammar. We show an example
of this implementation.

Example 4.28. Syntactic procedures for lists of palindromes with center
The grammar

S → P (, P )∗ P → aPa | bPb | c

and the equivalent machine net (Figure 4.16) have property LL(1) as ap-
parent from the guide sets listed in the drawing. The syntactic procedures

0 1S : → → {�}
P

,

3 4

2 5

6 7

P : → →

a

{a}

P

a

c {c}

b

{b}

P

b

Fig. 4.16 Machine net for lists of palindromes with center (example 4.28).

corresponding to the nonterminal symbols of the grammar are listed in Figure
4.17. It is interesting to observe that the flowchart of a syntactic procedure is
represented (details apart) by the state-transition graph of the corresponding
machine. The procedure examines the current character and decides, depend-
ing on the guide set it belongs to, which arrow or arc to take in the graph. If
the arc label is terminal, the next current character is returned by function
Next (which is the main interface of the lexical analyzer or scanner to be
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procedure S
begin

1. call P ;
2. if cc=’�’ then accept and halt;
3. else if cc=′,′ then cc := Next; go to 1;
4. else Error;

end

procedure P
begin

1. if cc=’a’ then
begin
cc:=Next; call P ; if cc=’a’ then
cc:=Next else Error
end

2. else if cc=’b’ then
begin
cc:=Next; call P ; if cc=’b’ then
cc:=Next else Error
end

3. else if cc=’c’ then
begin
cc:=Next
end

4. else Error

end

Fig. 4.17 Syntactic procedures of recursive descent parser (example 4.28).

discussed in Chapter 6). If the label is nonterminal, the corresponding pro-
cedure is invoked. At last, if the current character is not present in any of
the bifurcation guide sets, an error occurs and the source string is rejected.
Parsing starts in the axiom procedure S, scanning the first character of the
string.

For a programmer it should not be difficult to imagine several manners of
improving the procedure code of Figure 4.17. For instance, in procedure S,
the iteration denoted by the star in the r.e. P (, P )∗, can be directly coded
by means of a while . . . do loop.

Error Treatment

In case of an error the above parser terminates without giving explanations,
but compiler users expect a parser to provide diagnostic messages. Actually
they are straightforward to automatically produce by comparing the char-
acters awaited in the active state (the union of the guide sets of outgoing
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arrows) with the current character, and writing: “the expected characters
are . . . , instead of . . . ”.

Another improvement concerns the time an error is detected: clearly early
detection simplifies program correction. To anticipate detection, the parser
can perform the test on the guide set not just at bifurcation points, but also
when there is only one outgoing arc labelled with a nonterminal. If the current
character is not present in the guide set, there is an error. Notice that the
error would have been detected by the parser, but some steps later.

Last but not least, a production quality parser should perform error re-
covery, i.e., it should go on parsing after the first error in order to examine
the whole source text in a single compilation, thus avoiding the annoyance of
recompiling as many times as there are errors.14

4.4.2 How to Obtain LL(1) Grammars

A majority of grammars from language reference manuals, as such, do not
satisfy the condition on guide set disjointedness and need modification. But
as a preliminary caution, observe that it would be wasteful to spend time
computing the guide set for an ambiguous or left-recursive grammar: both
defects should be eliminated (as discussed on p. 49 and p. 63, respectively)
before proceeding further. After that, the guide sets are computed and the
causes of any violation are examined. To this end, it helps to introduce an-
other more synthetical formulation of condition LL(1). At the same time we
take the opportunity to moderately generalize the concept, by considering
the look-ahead length as a parameter possibly greater than one (anticipating
the discussion on p. 196).

Property 4.29. A nonterminal A of the grammar violates the LL(k), k � 1,
condition if, and only if, two derivations exists:

S
∗⇒ uAv ⇒ uαv

∗⇒ uzv S
∗⇒ uAv ⇒ uα′v′

∗⇒ uz′v′

where α, α′ are strings of terminals and nonterminals; the strings u, v, z, z′, v′

are possibly empty terminal strings complying with the following condition.
Let m = min(k, |zv|, |z′v′|) be the minimum among k and the lengths of
strings zv and z′v′. Then the prefixes of length m of zv and of z′v′ are
identical.

The purpose of specifying the minimal length is to rule out the absurdity of
having a prefix longer than the string it comes from.
Consider the basic case k = 1. To persuade oneself that the formulation is
equivalent to the preceding condition 4.24 on p. 183, observe that:

14 For error treatment in parsers see e.g.,[24].
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1. if two such derivations exist, examination of the next k = 1 characters,
i.e., of the guide sets of the alternative rules A → α and A → α′, would
not be enough for choosing between the two;

2. conversely, if the guide sets, in the state of machine MA where the bi-
furcation with legs α and α′ occurs, are disjoint, then the two prefixes
considered in the statement are different.

Left Factoring

A basic transformation to remedy LL(1) conflicts, termed left factoring, is
described by means of an example.

Example 4.30. Left factoring
The grammar

S → 〈IT 〉 | 〈ITE〉

〈IT 〉 → if C then A 〈ITE〉 → if C then A else A

C → . . . A → . . .

abstractly represents the conditional instructions with or without the else
leg; the nonterminals C and A, left to be defined, denote a boolean condition
and an assignment statement.
We apply condition 4.29 to the derivations

S ⇒ 〈IT 〉
︸︷︷︸

A

⇒ if C then A
︸ ︷︷ ︸

α

+⇒ if x � 3 then x = 5
︸ ︷︷ ︸

z

S ⇒ 〈ITE〉
︸ ︷︷ ︸

A

⇒ if C then A else A
︸ ︷︷ ︸

α′

+⇒ if x � 3 then x = 5 else x = 7
︸ ︷︷ ︸

z′

Since the prefixes of length 1 (i.e., the initials) of the strings z and z′ are
identical to if , nonterminal S violates condition LL(1). The same conclusion
is obtained computing the guide sets of the first machine of the net in Figure
4.18. Clearly the guide sets of the arcs leaving 0 coincide.
Notice that increasing the look-ahead length would not help, because the
prefixes of z and of z′ remain identical:

if x, if x �, if x � 3, etc.

To differentiate the prefixes of the example, the parameter should take the
value k = 11. But such unpractically large value would not suffice for other
sentences. It should be evident that, for any fixed value of k, we can find a
string (a boolean condition) deriving from C and a string (an assignment)
deriving from A, such that the prefixes of length k are identical. The implica-
tion is that, with this grammar, it is impossible to construct a deterministic
top-down parser, no matter how large the look-ahead parameter is.
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0 1S : → →

〈IT 〉 {if}

〈ITE〉 {if}

2 3 4 5 6〈IT 〉 : → →
if C then A

7 8 9 10 11 12 13

〈ITE〉:
↓

↓

if C then A else A

. . .

Fig. 4.18 Machine net of conditional instructions before left factoring (example 4.30).

The cause of the conflict is quite simple: the one-leg conditional is a prefix
of the two-legs conditional. The remedy is to defer the choice between the two
conditional constructs to the moment when the presence or absence of else
manifests the right decision. A simple change to the grammar implements
the idea, shown in the machine net of Figure 4.19 and in the grammar

S → 〈IT 〉(ε | else A) 〈IT 〉 → if C then A

Now the only bifurcation is in state 1 where the guide sets are disjoint.

Left factoring transformations often succeed in curing a non-LL(1) gram-
mar, by exposing the longest common prefix of the languages starting from
the bifurcating arcs. In essence, the machine graph is modified in order to
assign just one path to the common prefixes. The common path is upstream
of the node where the two derivations start differentiating. The final effect is
then to displace downstream the original bifurcation, i.e., to defer the choice.
One may notice a conceptual similarity with the powerset construction for
making a finite machine deterministic.
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0 1 2 3S : → →
↓

{�}

〈IT 〉 else

{else}
A

4 5 6 7 8〈IT 〉 : → →
if C then A

Fig. 4.19 Machine net of conditional instructions after left factoring (example 4.30).

Other Transformations

Other cases of infringement of condition LL(1) exist such as the next one, to
be remedied by a different transformation.

Example 4.31. Extracting a construct from a recursion
The language {anb∗bn | n � 0} is defined by the grammar

S → aSb | b∗

The machine net is in Figure 4.20 (top). In the original net the guide sets of
bifurcations overlap in both states 0 and 4. Moving the term b∗ out of the
recursion, we obtain the equivalent LL(1) grammar

S → Ab∗ A → aAb | ε

also depicted in the bottom net.

We finish with a very particular case. If the given non-LL(1) grammar gen-
erates a regular language, another radical method always permits to obtain an
equivalent suitable grammar. It suffices to construct the finite deterministic
automaton that recognizes the language: its graph contains terminal labels
only and, by the very definition of determinism, satisfies condition LL(1)
(more of that on p. 241, property 5.32).
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Original non-LL(1) net:

1 2 3

0 4S : →
↓

{b,�}

→

→ {b,�}

a {a}

S b

b {b}

b, {b}

Transformed LL(1) net:

0 1S : → → {�}
A

{a}

b, {b}

2 3 4 5A : →
↓

{b,�}

→
a {a} A b

Fig. 4.20 Example 4.31. Adjusting a grammar (top) to LL(1) condition by extracting a
construct from a recursion (bottom).

4.4.3 Increasing Look-ahead

A pragmatic approach for obtaining a deterministic top-down parser when
the grammar does not comply with condition LL(1) is to look ahead of the
current character to examine the following ones. This often allows to make
a deterministic choice between alternatives and has the advantage of not
requiring annoying modifications of the original grammar.

The algorithm has to be slightly modified, in order to examine in a bifur-
cation state the input characters k > 1 positions ahead of the current one
before deciding the move. If such test succeeds in reducing the choice to one,
we say the state satisfies condition LL(k).

A grammar has the LL(k) property if there exists an integer k � 1 such
that, for every machine of the net and for every state, at most one choice
between outgoing arrows is compatible with the characters that may occur
at a look-ahead distance � k.
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For brevity we prefer not to formalize the definition of guide set of order k
since it is a quite natural extension of the basic case, and we directly proceed
with an example of computation of look-ahead sets of length k = 2.

Example 4.32. Conflict between instruction labels and variable names
A small fragment of a programming language includes lists of instructions
(assignments, for statements, if statements, etc.) with or without a label.
Both labels and variable names are identifiers. The EBNF grammar is:

progr → [label :]stat(; stat)∗

stat → assign stat | for stat | . . .

assign stat → id = expr
for stat → for id . . .

label → id
expr → . . .

The machines are depicted in Figure 4.21 with the relevant guide sets of length
1 and 2, the latter framed. Clearly state 0 is not LL(1), since the guide sets
(between not framed braces) contain the terminal character id. Refining the
analysis, we observe that if the identifier is an instruction label, it is followed
by a colon. On the other hand, in the case of arc stat, the identifier is the
left part of an assignment statement, and is followed by an equal sign.15 We
have thus ascertained that inspecting the second next character suffices to
determine the choice of the move in state 0, which therefore satisfies condition
LL(2). In the graph the arrows leaving state 0 are decorated with the guide
sets of length two (framed). Such pre-computed sets will be used at run-time
by the parser. Notice that in state 3 length k = 1 suffices to make the choice:
it would be wasteful to use everywhere in the parser the maximal look-ahead
length.

Formally the elements of an LL(k) guide set are strings of length up to k.16

In practice parsers use different look-ahead lengths with an obvious criterion
of economy: in each bifurcation state, the minimum length m � k needed to
arbitrate the choice of the legs should be used.

More powerful though computationally less efficient, top-down determin-
istic parsers have been designed,17 which use a variable and unbounded look-
ahead length in different states. Other parsers, if the choice in a bifurcation
remains uncertain, take into consideration other cues. One possibility is to

15 In the cases of for and if statements, for simplicity we assume that the lexemes for and

if are reserved key-words, which may not be used as variable or label identifier.
16 They may be shorter than k only when they end with terminator �.
17 A well-known example is ANTLR [42].
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0 1 2 3progr: → → {�}
label {id}

{id :}k=2

stat {id, for, . . .}

{id =, for id, . . .}k=2

: stat

; {; }

4 5stat: → →
assign stat {id}

for stat {for}

6 7 8 9assign stat: → →id = expr

10 11 12for stat: → −→ . . .
for id

Fig. 4.21 Machine net of example 4.32. Guide sets are between braces and are framed for
k = 2.

compute some semantic condition, an idea to be worked out in the last chap-
ter.
Such approaches are often preferred by compiler designers, because they elim-
inate the problem of managing different versions of the grammar, one for
reference, the other for driving the parser.
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Family LL(k) and Its Limits

The LL(k) family contains the languages that can be generated by an LL(k)
grammar, for some finite integer k � 1. We have chiefly studied the basic case
LL(1) and occasionally moved to LL(2), when for a given grammar condition
LL(1) was insufficient for designing a deterministic parser. It should be clear
that, for any value of k � 2, if a grammar satisfies the LL(k − 1) condition,
it also satisfies the LL(k) condition. On the other hand, one could find, for
any integer k � 2, a grammar satisfying the condition for k but not for k− 1
(an example for k = 2 is the grammar in Figure 4.21).

The question then comes to mind: if we have a grammar which satisfies
the LL(k) condition for some k � 2, is it possible to construct an equivalent
grammar that satisfies the LL(k − 1) condition? In other words, can we
define the same language with a grammar that would produce a deterministic
top-down parser with shorter look-ahead? Clearly this would be a desirable
technical simplification. But a theoretical result says that in general this is
not possible.

Property 4.33. For any value k � 2 there exist languages that can be defined
by an LL(k), but not by an LL(k − 1) grammar.

The statement says that one can find formal languages such that they need a
look-ahead of any arbitrary length. We do not spend time on it,18 because it
has little relevance for practical technical languages, where, if a finite value
of k suffices, it is typically very small.

We briefly discuss the relation of this language family to the others. A
serious limitation is that not all deterministic languages can be generated by
an LL(k) grammar, no matter how large a parameter we take.

Property 4.34. The language family LL(k) is strictly included in the family
DET of deterministic languages.

A simple example follows.

Example 4.35. A deterministic but not LL(k) language
It is straightforward to construct a deterministic pushdown automaton for
the language

L1 = {a∗anbn | n � 0}

The automaton pushes symbol A on the stack upon reading character a; upon
reading the first b, the automaton changes state and pops a symbol (A); then,
for any subsequent character b, it pops a symbol; it recognizes the string if
at the end the stack contains zero or more symbols. Notice that the stack is
used as a unary counter. A grammar of the language is G1:

S → a∗A A → aAb | ε

18 For a deeper presentation of the LL(k) family see [51].
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The machines with relevant guide sets are shown in Figure 4.22. The k = 1
guide sets in state 0 overlap. Stepping up to k = 2 does not help because the

0 1S : → →
A {a,�}

a {a}

2 3 4 5A : → →
↓

{b,�}

a {a} A b

Fig. 4.22 Machine net of example 4.35.

guide sets below still share string aa:

0 1S : → →
A {�, aa, ab}

a {aa, a �}

In general, for arbitrary large k we find that both arcs leaving state 0 are
compatible with the look-ahead string ak. It follows that grammar G1 does
not have property LL(k) for any finite value of parameter k.

A natural question is: can we find an equivalent LL(k) grammar for this
language? The answer is negative.19

This simple example has shown a weakness of the LL(k) language family.
The next case teaches us that sometimes the design decision to operate with
LL(k) grammars imposes caution in the choice of the terminal symbols of
the language, in order to make guide sets disjoint.

Example 4.36. Relations and expressions
The grammar G:

S → R | (S) R → E = E E → a | (E + E)

19 The proof is based on the pumping lemma of LL(k) languages [6].
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defines certain equality relations between additive arithmetic expressions,
such as

S
︷ ︸︸ ︷

S
︷ ︸︸ ︷

(
R

︷ ︸︸ ︷

a = a)

S
︷ ︸︸ ︷

R
︷ ︸︸ ︷

E
︷ ︸︸ ︷

(

E
︷ ︸︸ ︷

(a + a)+a) = a

Notice that a relation, say a = a, may be parenthesized as (a = a), but a
nonatomic additive expression must be enclosed between parentheses.

The first rule violates condition LL(1) as seen in the following machine:

0 3

1 2

S : → →
R {a, (}

( {(}

S

)

In fact, a string starting with character ’(’ can be a parenthesized relation R
or an expression E.

The same reasoning proves that no finite value k exists, such that grammar
G is LL(k). This is because one can always find two strings, similar to the
preceding ones, such that: both start with k + 1 open parentheses, the first
string is derived with rule S → R, and the second string is generated with
rule S → (S). Since, no matter how the grammar is written, it must present
a choice between the two structures of relations and expressions, one could
prove that this language is not in the LL(k) family. On the other hand, the
language L(G) is deterministic, as the reader may check after studying the
next chapter.

The only option left to the designer stubbornly wanting to use the LL(1)
approach, is to modify the language. A possibility is to differentiate the paren-
theses, using, say, brackets for relations and parentheses for arithmetic ex-
pressions.

The last two examples should not lead the reader into believing that LL(k)
grammars have poor usability. On the contrary, they are widely adopted in
compilers on a par with the bottom-up parsers to be studied in next chapter.
A discussion of their relative merits is postponed to that moment.



Chapter 5

Bottom-Up and General Parsing

5.1 Introduction

This chapter continues the description of practical parsing algorithms, adding
to the previous top-down methods two other interesting approaches, which
altogether cover current design practice. The first and primary objective is to
present the deterministic bottom-up algorithms, also called shift-reduce, gen-
erally applied for automatically implementing parsers starting from a gram-
mar. The formal condition allowing such parser to work is called LR(k).
Several variants will be introduced, including historical ones used in popular
parser construction tools and a version suitable for grammars extended with
regular expressions. We will see that the language family accepted by LR(k)
parsers is exactly the family DET of deterministic context-free languages.

The second and last approach to parser construction is no longer based on
a pushdown automaton but uses a more flexible data structure for efficiently
representing different attempts at constructing a derivation. The algorithm,
termed after Earley, is thus able to parse any context-free language including
nondeterministic and ambiguous cases. Such generality is needed when the
source language has a rather free syntax, and cannot be constrained to be
deterministic. Its cost is a slower than linear time algorithm. The chapter
ends with a discussion of choice criteria for parsers.

5.2 Bottom-Up Deterministic Syntax Analysis

In order to motivate the new approach it is convenient to resume from the dis-
cussion of the shortcomings of LL(k) methods. The grammar is represented
by a network of finite machines as on p. 172. We recall an LL(1) parser be-
comes indeterministic, if from a machine state two arrows originate such that
the guide sets overlap. Since every machine is deterministic by hypothesis, at

S.C. Reghizzi, Formal Languages and Compilation,
Texts in Computer Science, DOI 10.1007/978-1-84882-050-0 5,
c© Springer-Verlag London Limited 2009
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least one arrow is either a state transition arc, with nonterminal label A, or
a final state exit. In the former case, when the current character is in both
guide sets (p. 182), the parser is uncertain what to do: to invoke machine A or
to perform the other move. In such uncertain situation, it is wise to defer the
choice, and proceed with parsing, keeping all options open, until the moment
when sufficient evidence will be available for a decision. However, this tactic
requires that, in the time interval between the first sight of uncertainty and
its resolution, the algorithm preserve the intermediate information that may
be needed to make the final decision.

This is the idea underlying the shift-reduce deterministic syntax analyzers,
known as LR(k)1 (as well as the general Earley analyzer). Such parser is
modelled by a deterministic pushdown automaton endowed with a set of
states and scanning the input up to k characters ahead of the current one.
Unlike top-down parsers, now it makes sense to set k to zero, because in the
simplest cases the choice of the move is solely determined by the current state
of the automaton. For graduality, we start from this case and we consider
grammar rules without regular expressions.

5.2.1 LR(0) Method

It is convenient to introduce the method with a grammar that is not accept-
able for LL(1) parsing.

Example 5.1. Introduction to LR(0)
A not empty list of constructs anbn, n � 1, is defined by the grammar

S → SA | A A → aAb | ab

represented as a machine net in Figure 5.1. We assume the strings end with
the terminator character �. Notice that in drawing the graphs we have de-
liberately kept separate the final states corresponding to alternative rules (a
precaution that was not needed in the LL(k) approach).
Condition LL(k) fails in state 0 since both S and A have a as initial because
the grammar is left-recursive.
We introduce now the operation of the deterministic pushdown automaton
constructed with the LR(0) approach. Initially the automaton is in a state
I0 = {0, 4}, to be called a macro-state, expressing uncertainty between the
initial state 0 (of the axiom machine) and state 4; the latter is the initial state
of machine MA (for brevity denoted as A), which can be invoked from 0. We
can imagine at this moment there are two active copies of a deterministic
pushdown automaton: automaton S and automaton A, that proceed syn-
chronously. There is some similarity with the behavior of a cartesian product

1 The acronym, coined by Donald Knuth, has “L” for left-to-right scanning, “R” because
the derivation is rightmost, and the parameter k � 0 is the look-ahead length.
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0 1 2

3

S : → →

→

S A

A

4 5 6 7

8

A : → →

→

a A

b

b

Fig. 5.1 Machine net of example 5.1.

machine simulating two machines at once. But now the combined machine
must also update the pushdown stacks. Clearly it would be impossible to
simulate two pushdown automata with one machine of the same type, if the
two stacks grow and shrink in totally unrelated ways. Here comes the neat
central idea of the LR(k) approach: to simulate with one stack all currently
active pushdown machines, but only until one of them performs a pop oper-
ation. At that moment a test must be available for arbitrating one out of the
active computations and discarding the rest.

The initial stack symbol is I0. To illustrate, take string ab. Reading and
consuming a, the parser moves from macro-state I0 = {0, 4} to the next
macro-state I2, performing a a shift move. To compute the next macro-state,
we take the union of the next states of 0 and 4

δ(0, a) ∪ δ(4, a) = ∅ ∪ {5} = {5}

But since in 5 we can invoke A, we add initial state 4, obtaining macro-state
I2 = {4, 5}.
The shift move pushes I2 over I0 in the stack, and terminates.
The next character is b, and among the states belonging to macro-state I2,
just state 5 can read b, and then shift to 8; the automaton pushes macro-state
I3 = {8}.
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Now 8 is a final state of machine A, and the time has come to choose the
grammar rule to apply, A → ab, thus reducing the string ab to nonterminal
A. The operation, called a reduction, pops I2 I3, i.e., a number of symbols
equal to the length |ab| = 2 of the right part of the rule recognized in state
8.
The stack content is now I0 = {0, 4}. As symbol A, left part of the rule, labels
an arc leaving state 0 (which is an element of set I0), the automaton performs
a shift and pushes the macro-state of destination of transition δ(0, A) = 3,
to be denoted I4 = {3}. Now string ab has been entirely scanned i.e., the
current input character is the terminator; since 3 is a final state of the axiom
machine the string is accepted.

5.2.2 LR(0) Grammars

The previous construction will now be systematized with a series of defini-
tions, leading to the family of LR(0) grammars.
The grammar is G = (V, Σ, P, S); each nonterminal A ∈ V is the left part
of one or more alternatives, graphically represented in a machine named MA

(or simply A). We uphold the hypothesis that the machines are deterministic,
although this is not strictly necessary. The initial state of machine A is qA,0

and the final state set is FA. More precisely the final state associated with
alternative A → α is qA,α. Thus we have the transition δ(qA,0, α) = qA,α.
Moreover, we stipulate that each alternative A → β has a separate final
state, qA,β ∈ FA; this provision will enable the parser to select the alterna-
tive within the set of reduction moves.
To make presentation simpler, we add to the grammar the starting rule
S0 → S �, which says every sentence is terminated by the terminator. Sym-
bol S0 is now the axiom and S becomes a plain nonterminal. In the grammar
thus modified a sentence cannot be a prefix of another one, a property mak-
ing the test for reduction more direct.
The initial and final states of the axiom machine are respectively qini(tial)

and qterm(inal).
The next function computes the states reachable from another state

through a chain of zero or more machine invocations (spontaneous moves).

Definition 5.2. LR(0) closure function
Let q ∈ Q be a state of some machine. The closure of q is:

C := {q};
repeat
C := C ∪ {qA,0 | for some p ∈ C and A ∈ V, ∃ an arc p© A−→ ©;
until no new state is added to C;
closure(q) := C

For a set R ⊆ Q of states, the closure is
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closure(R) :=
⋃

r∈R closure(r)

This function is instrumental for building an abstract finite machine, to be
later used as control unit of the bottom-up parser.

Definition 5.3. Pilot machine for LR(0) analysis.
We define a new deterministic finite automaton

N = (R, Σ ∪ V, ϑ, I0, R)

that will act as control unit of the parser. To prevent terminological confusion,
we reserve the term machine for the network machines, the term automaton
for the pushdown parser, and we refer to the new finite machine as the pilot
(or driver).
The set of states of the pilot, to be termed macro-states, is

R ⊆ power set of Q

There are no specific final states because the pilot is not used for recognizing
strings but as control unit of the pushdown automaton. The alphabet is the
union of the terminal and nonterminal sets of the grammar. The macro-states
R = {I0, . . .} and transition function ϑ (theta, to avoid confusion with the
transition function delta of the net machines) are computed, starting from
the initial macro-state, with the following procedure:

I0 = closure(qini);
R := {I0};
repeat for all Ij ∈ R and for all X ∈ Σ ∪ V
ϑ(Ij , X) := closure

(

{r | r ∈ δ(q, X), for some q ∈ Ij}
)

;
if ϑ(Ij , X) �∈ R then R := R ∪ ϑ(Ij , X);
until no new macro-state has been created by current iteration.

Function ϑ produces a macro-state to be added to the set R (if not present).
The function is applied over and over producing new macro-states until noth-
ing new is computed by the last iteration step; then the loop terminates.

A machine state is qualified as shift state if in the corresponding machine
there is an arrow from the state to another one. A final state of some machine
is qualified as reduction state.

If a macro-state contains one or more reduction states, the corresponding
grammar rules are referred to as the reductions associated with the macro-
state:

reductions(Ij) = {A → α | qA,α ∈ Ij}

where δ(qA,0, α) = qA,α. Actually a final state of a machine can be at the same
time a shift state: this happens if a labelled arc goes out of it. Combining the
above terminology, a macro-state is classified as:
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reduction: if it uniquely contains reduction states;
shift : if it uniquely contains shift states;
mixed : if it contains both shift and reduction states.

We can now state the simplest condition for the shift-reduce pushdown
automaton to be deterministic.

Definition 5.4. LR(0) condition and LR(0) family.
A grammar meets the LR(0) condition if every macro-state of the pilot sat-
isfies both conditions:

1. the macro-state is not mixed;
2. if it is a reduction macro-state, it contains exactly one state.

The LR(0) family of languages is the collection of languages that can be
generated by grammars satisfying condition LR(0).

Condition 1. forbids a final and a not final state to be in the same macro-
state. Condition 2. rules out the presence of two final states in the same
macro-state.

i 9 tS0 : → →S �

0 1 2

3

S : → →

→

S A

A

4 5 6 7

8

A : → →

→

a A

b

b

Fig. 5.2 Machine net of example 5.5.



5.2 Bottom-Up Deterministic Syntax Analysis 209

Example 5.5. Pilot construction for grammar of example 5.1
The grammar, with the new axiom S0 added, has rules

S0 → S � S → SA | A A → aAb | ab

represented by the net in Figure 5.2. The steps for computing the macro-
states and transition function of the pilot are traced in Table 5.1. The state
transition graph of the pilot is in Figure 5.3. Macro-states I2, I4, I5, I7, I8

Table 5.1 Computing macro-states and transition function of example 5.5, Figure 5.2.

Set of macro-states Macro-state created Move created

0 ∅ closure(i) = {i, 0, 4} = I0
1 I0 = {i, 0, 4} closure(δ(i, S) ∪ δ(0, S) ∪ δ(4, S)) =

closure({9, 1}) = {9, 1, 4} = I1

ϑ(I0, S) = I1

2 I0 = {i, 0, 4}, I1 closure(δ(i, A) ∪ δ(0, A) ∪ δ(4, A)) =
closure(3) = {3} = I2

ϑ(I0, A) = I2

3 I0 = {i, 0, 4}, I1, I2 closure(δ(i, a) ∪ δ(0, a) ∪ δ(4, a)) =
closure(5) = {4, 5} = I3

ϑ(I0, a) = I3

4 I0, I1 = {9, 1, 4}, I2, I3 closure(δ(9, A) ∪ δ(1, A) ∪ δ(4, A)) =
closure(2) = {2} = I4

ϑ(I1, A) = I4

5 I0, I1 = {9, 1, 4}, I2, I3, I4 closure(δ(9, a) ∪ δ(1, a) ∪ δ(4, a)) =
closure(5) = {4, 5} = I3

ϑ(I1, a) = I3

6 I0, I1 = {9, 1, 4}, I2, I3, I4 closure(δ(9, �) ∪ δ(1, �) ∪ δ(4, �)) =
closure(t) = {t} = I5

ϑ(I1,�) = I5

7 I0, I1, I2, I3 = {4, 5}, I4, I5 closure(δ(4, A)∪δ(5, A)) = closure(6) =
{6} = I6

ϑ(I3, A) = I6

8 I0, I1, I2, I3 = {4, 5}, I4, I5, I6 closure(δ(4, a) ∪ δ(5, a)) = closure(5) =
{4, 5} ≡ I3

ϑ(I3, a) = I3

9 I0, I1, I2, I3 = {4, 5}, I4, I5, I6 closure(δ(4, b) ∪ δ(5, b)) = closure(8) =
{8} = I7

ϑ(I3, b) = I7

10 I0, I1, I2, I3, I4, I5, I6 = {6}, I7 closure(δ(6, b)) = closure(7) = {7} = I8 ϑ(I6, b) = I8
11 I0, I1, I2, I3, I4, I5, I6, I7, I8 halt

are of reduction type and contain one final state each. The remaining macro-
states are of shift type because they just contain nonfinal states. No macro-
state is mixed and we never find two or more reductions in the same macro-
state. Therefore condition LR(0) is satisfied by the grammar.
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I0 = {i, 0, 4} I1 = {9, 1, 4} I5 = {t}

I2 = {3} I4 = {2}

I7 = {8} I3 = {4, 5} I6 = {6} I8 = {7}

→ S

A

a

�

A

A

a

b

b

a

Fig. 5.3 Pilot of example 5.5, Figure 5.2.

Properties of Pilot

Observing the graph in Figure 5.3, it is easy to discover the special properties
an LR(0) pilot has when viewed as a finite automaton:

1. all the arrows entering a macro-state carry the same label (e.g., see I3);
2. every reduction macro-state has no successor;
3. every shift macro-state has one or more successors.

Since the pilot is an automaton, the question naturally comes: what language
does it accept, supposing every macro-state is final. For the example the
following strings are recognized:

S, A, a, S �, SA, Sa, aA, aa, ab, SaA, Saa, aAb, aaa, aab, aaAb, . . .

Their characteristic is to be a prefix of some string (technically a sentential
form, p. 36) produced from the axiom of grammar G by means of a rightmost
derivation. For instance, in derivation

S0 ⇒ S �⇒ A �⇒ aAb �⇒ aaAbb �⇒ aaabbb �

the following prefixes are accepted by the pilot:
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S, S �, A, A �, a, aA, aAb, aa, aaA, aaAb, aaab

On the other hand, some prefixes are not accepted, such as aaAbb and aaabb.
The explanation of this property comes from the reasoning we have applied in
constructing the pilot. Recall that it simultaneously carries on several possible
bottom-up parsing attempts until the moment when one of them enters the
final state of a machine i.e., a reduction macro-state. More precisely, let us
follow in the graph the backwards paths from a reduction macro-state. Let
A → β be the (unique) reduction associated with the reduction macro-state
I; then the pilot graph surely contains a backwards path labelled βR, going
from node I to a macro-state such that it contains the initial state of machine
A.

To illustrate, start in macro-state I8 = {7} and make three backwards
steps labelled b, A, a. There are two backward paths with such labels. One
ends in macro-state I0 that contains the initial state 4 of machine A; the
other ends in macro-state I3 also containing 4.

But why is it that some prefixes of rightmost sentential forms are rec-
ognized and others are not? A recognized prefix such as aaab contains as
substring the right part of a grammar rule; moreover the substring is in final
position, i.e., it is a suffix:

aa ab
︸︷︷︸

A→ab

On the other hand, a nonrecognized prefix such as aaabb also contains as
substring the right part of the rule, but the substring is internal not a suffix:

aa ab
︸︷︷︸

A→ab

b

In this case the reduction of ab to nonterminal A should have already taken
place during parsing, resulting in the string aaA, which indeed is accepted
by the pilot.

5.2.3 Shift-Reduce Parser

Given the pilot of a grammar meeting LR(0) condition, it is immediate to
obtain a deterministic pushdown automaton that recognizes the strings and
produces their syntax tree. The parser uses as stack symbols the pilot macro-
states; actually, to ease readability we may also list grammar symbols next to
macro-states. Upon reading the current character, with a shift macro-state I
on stack top, the automaton performs the move prescribed by the pilot and
pushes the new macro-state on stack; the operation is termed a shift.
If the type of the macro-state on stack top is a reduction, from condition
LR(0) a unique grammar alternative is selected; the automaton then performs
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Algorithm. Let G be an LR(0) grammar and N = (R, Σ ∪ V, ϑ, I0, R) its pilot.

Stack alphabet: R ∪ Σ ∪ V ;
Set of states of A: irrelevant as it contains just one state;
Initial configuration: the stack contains the initial macro-state I0;
Moves: there are two types, shift and reduce moves. Let I be the macro-state on stack

top and a the current character:

Shift move: if for pilot macro-state I move ϑ(I, a) = I′ is defined, the automaton
reads a ∈ Σ, moves ahead the reading head, and pushes string aI′ on stack;

Reduction move: if macro-state I, to be here denoted In, contains reduction state
q, with

reductions(q) = {B → X1X2 . . . Xn}
where n � 0 is the length of right part, perform the following action.
On stack top there is necessarily (due to the pilot control logic) a string β′

. . . I′

β′
︷ ︸︸ ︷

X1I1X2I2 . . . XnIn

containing n macro-states, pushed by preceding moves.
A reduction is a spontaneous move that first pops from stack string β′ (i.e., 2n
symbols from top), then pushes string BI′′, where I′′ is the macro-state entered by
the pilot transition reading (so to speak) nonterminal B: I′′ = ϑ(I′, B).

Final configuration: stack = I0, input entirely scanned.

Fig. 5.4 Shift-reduce parser without look-ahead, as pushdown automaton A.

a series of actions to simulate a reduction occurring in a grammar derivation.
First a topmost segment is deleted from stack and then a symbol is pushed.
When the source string has been scanned to end, the automaton accepts if
the stack is empty (or if it just contains the initial macro-state).

The operations are more precisely specified by the algorithm in Figure 5.4.
It goes without saying that the pushdown automaton, reaching a configura-
tion where no move is possible, rejects the string.

The essential property of the algorithm is that, due to LR(0) hypothesis,
the macro-state on stack top uniquely determines the move, acceptance, shift,
or reduction; in the latter, it also determines the reduction to perform. As a
consequence, parser operations are deterministic.

Closer observation reveals that some stacked information is redundant. A
shift pushes a terminal a and the macro-state I ′, but the former is uniquely
determined by the latter, because in the pilot all arcs entering a macro-state
have the same label. The only reason for storing the terminal is to ease reading
the step by step parsing simulations.

A more subtle question concerns the states of the pushdown automaton.
Is indeed correct our previous statement that the automaton does not use
states? Not quite: a reduction is more complex than the standard elementary
operations permitted to pushdown machines. But a reduction can be decom-
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posed into a series of elementary machine operations, provided we use a finite
memory to count how many symbols should be removed from the stack, and
to remember the name of the nonterminal B of the left part of reduction rule.
Indeed, LR(0) pushdown automata use some hidden states inside reduction
moves. Moreover, when we shall introduce general LR(k), k � 1, parsers,
another use of states will occur: to store k incoming look-ahead characters
(exactly as in LL(k) parsers).

To conclude the discussion, all the models of deterministic parsers use
some finite memory, i.e., some states, in addition to the unlimited stack,
although our presentation tries to hide the existence of states in order to
avoid low-level details. The contrary would be absurd, because we know the
DET family (p. 161) is characterized by having as recognizer a deterministic
pushdown automaton making use of states.

Reflected Right Derivation

The actual operation of such pushdown automaton is illustrated in Table 5.2
in order to show the sequence of reductions and the corresponding order of
construction of the syntax tree through a reverse rightmost derivation.

Example 5.6. Trace of parsing steps (example 5.5)
The syntax tree in Figure 5.5 has been constructed by a series of reduction
moves in the order of framed numbers. The following rules are applied:

A → ab, A → aAb, S → A, A → ab, S → SA, S0 → S �

They correspond to the sequence of reductions:

Table 5.2 Trace of parsing for string aabbab (example 5.5).

Stack x Comment

I0 a a b b a b � shift

I0 aI3 a b b a b � shift

I0 aI3 aI3 b b a b � shift

I0 aI3 aI3 bI7 b a b � reduce with A → ab

I0 aI3 AI6 b a b � shift

I0 aI3 AI6 bI8 a b � reduce with A → aAb

I0 AI2 a b � reduce with S → A

I0 SI1 a b � shift

I0 SI1 aI3 b � shift

I0 SI1 aI3 bI7 � reduce with A → ab

I0 SI1 AI4 � reduce with S → SA

I0 SI1 � shift

I0 SI1 � I5 reduce with S0 → S �
I0 accept
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aabbab � ⇒ aAbab � ⇒ Aab � ⇒ Sab � ⇒ SA � ⇒ S � ⇒ S0

6 S0

5 S

3 S

2 A

a 1 A

a b

b

4 A

a b

�

Fig. 5.5 Syntax tree with order of reductions (example 5.5).

The construction order of tree nodes justifies the name bottom-up of this
parsing method. Looking now at the reduction sequence and specularly re-
versing it, we obtain sequence 654321. The corresponding derivation S0

+⇒
aabbab � is rightmost, as already noticed on p. 170.

5.2.4 Syntax Analysis with LR(k) Look-Ahead

The next refinement yields the most general and efficient deterministic parser
by combining two successful devices: the use of look-ahead and the deferment
tactic of shift-reduce LR(0) parsers. Starting from the limitations of LR(0)
analysis, we proceed with the introduction of look-ahead for the LR(k) pilot
and we set parameter k to one. The choice of value one is not an oversim-
plification for the sake of the reader, because, unlike the case of top-down
parsers, the family of LR(1) grammars and languages exactly match the
family of deterministic languages.

Limitations of LR(0) Languages

In the real world it seldom happens that an LR(0) parser can be used be-
cause very few technical languages meet the condition. A serious weakness of
LR(0) languages can be formulated as a property of prefixes. Consider the
strings generated by a nonterminal other than the axiom S. If one of them
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is a prefix of another one, a conflict between reduction and shift occurs and
condition LR(0) is violated. In other words, the language generated by every
nonterminal must be prefix-free. The case of the axiom is different, because
we assume that sentences are terminated by special character dashv, so that
no sentence can be a prefix of another. The conflict introduced by prefixes is
next illustrated.

Example 5.7. A finite yet not LR(0) language
Grammar {S → Xc, X → a | ab} is not LR(0) because nonterminal X gen-
erates a language with prefixes, {a, ab}. Observe in Figure 5.6 the grammar,
machine net, and pilot. Macro-state I1 contains final state 4 hence is mixed:
reduction with rule X → a and shift with the arc to I5, therefore condition
LR(0) is violated. Intuitively this implies the parser is left with the uncer-
tainty as to reducing with a ⇒ X or shifting. Such uncertainty can be easily
removed by examining the next character (c for reducing and b for shifting)
in the same manner an LL(1) parser would do.

S → Xc X → a | ab

0 1 2 3 4 5S :→ →X c
X :→

↓
→a b

I0 = {0, 3} I1 = {4} I2 = {5}

I3 = {1} I4 = {2}

→ a b

X

c

Fig. 5.6 A finite language (example 5.7) violating the prefix-free property: grammar,
machine, and pilot.

A second example containing prefixes is the fundamental construct of lists
with separators defined by regular expression e(se)∗. It contains for example
e and ese. From the previous observation condition LR(0) prevents lists with
separators from occurring as construct of a language: this would preclude
lists of parameters, lists of statements, etc. Very simple regular languages
trespass the LR(0) family!

Continuing with similar limitations, it is easily seen that an empty gram-
mar rule violates the condition. Consider two alternatives A → ε | β, one
of them empty. Then in machine MA the initial state qA,0 is also final. But
since the not empty arc β originates from the state, the macro-state contain-
ing state qA,0 is mixed.
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Example 5.8. Dyck grammar is not LR(0)
The familiar grammar and machine net are shown in Figure 5.7. Computing
the LR(0) pilot, we obtain the graph in Figure 5.8. Every macro-state frame

S0 → S � S → aScS | ε

0 1 2S0 : → →S �

3 4 5 6 7S : →
↓ ↓

a S c S

Fig. 5.7 Dyck grammar and machine net (example 5.8).

I0 =
0

3
not LR(0)

I1
1

I2
2

I3
4

3
not LR(0)

I4
5

I5
6

3
not LR(0)

I6
7

↓

S �

a

S c

a

S
a

Fig. 5.8 LR(0) pilot of Dyck grammar (example 5.8).

is horizontally divided into the subsets computed by successive applications
of the closure function. Notice that the macro-states containing state 3 are all
mixed because 3 is the final state of reduction S → ε and arc 3 a→ 4 performs
a shift. Therefore condition LR(0) is violated.
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Adding Look-ahead to Pilot

We are going to add look-ahead information to every macro-state in order to
gain in selectivity and thus make the method practical.
As a macro-state contains multiple states, the set of look-ahead characters
has to be individually computed for each one and for each outgoing arrow.
Intuitively, a macro-state satisfies condition LR(1) if the next move of the
pushdown automaton is uniquely determined from the macro-state on stack
top and from the look-ahead set which contains the current character,

Definition 5.9. Components of LR(1) pilot machine.
A macro-state I of the LR(1) pilot is a set of pairs, to be termed candidates,
of the form

〈q, a〉 ∈ Q × (Σ ∪ {�})

where Q is a set of states of the machine network and a is the look-ahead
character.
It is convenient to group together the candidates having the same state (first
component):

〈q, {a1, a2, . . . , ak}〉 ≡ {〈q, a1〉, 〈q, a2〉, . . . , 〈q, ak〉}

The set {a1, a2, . . . , ak} is termed look-ahead set of state q in macro-state I.

The closure function, introduced in the LR(0) case (p. 206) to find the states
reachable with machine invocations, is next refined in order to compute also
the look-ahead sets.

Definition 5.10. LR(1) closure function.
Let c = 〈q, π〉 be a candidate, where π is the look-ahead set of state q in
the current macro-state. The LR(1) closure of c, denoted as closure1(c), is
computed as follows:

C := {〈q, π〉};
repeat

C := C ∪ {〈qA,0, ρ〉} where:

qA,0 is the initial state of a machine MA such that:
there exists a candidate 〈p, π〉 ∈ C ∧ with the outgoing arc p© A−→ r©.

The look-ahead ρ is computed as:
{

ρ = Ini(L(r)) if L(r) is not nullable,
ρ = Ini(L(r)) ∪ π otherwise

until no new element has been added to C;
closure1(c) := C
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Remark: if the current set C contains a state p with look-ahead π and the
net has an arc p© A−→ r©, then the algorithm inserts into C the initial state
qA,0 (as in the LR(0) construction). For computing the look-ahead set ρ of
qA,0, we collect the characters that may follow a string deriving from A.
Such characters arise in two different situations. First as initial characters of
language L(r) recognized starting from state r. Second, if state r is final or
more generally if L(r) is nullable, set ρ contains also the characters already
present in set π.

For a set I of candidates, the closure is the union of the closures of the
candidates present in I.

The LR(1) pilot is computed similarly to the LR(0) case paying attention
that components of macro-states are now candidates, i.e., records instead of
simple states.

Definition 5.11. Construction of the LR(1) pilot.
The pilot that will act as control unit of the parser is the deterministic finite
automaton

N = (R, Σ ∪ V, ϑ, I0, R)

defined by:

• the set of macro-states, R;
• the alphabet is the union of the terminal Σ and nonterminal V sets of the

grammar;
• macro-state I0 contains at construction start time the pair

〈qini,�〉 ≡(initial state of net, terminator);
• the macro-state set R = {I0, . . .} and the transition function ϑ are com-

puted starting from the initial macro-state with the following procedure:

I0 = closure1(〈qini,�〉);
R := {I0};
repeat for all macro-state I ∈ R and for all symbol X ∈ Σ ∪ V

ϑ(I, X) := closure1

(

{〈r, π〉}
)

=
⋃

〈q,ρ〉∈I closure1

(

〈δ(q, X), ρ〉
)

where the set of candidates 〈r, π〉 is defined as:
in macro-state I there exists a candidate 〈q, ρ〉 such that
in the net there is an arc q© X−→ r©;
the look-ahead set π is copied from ρ, i.e., π := ρ;

if ϑ(I, X) �∈ R then R := R ∪ ϑ(I, X);

until no new macro-state has been produced by the iteration.

Example 5.12. Dyck language (example 5.8) from LR(1) standpoint
The grammar and net are reproduced in Figure 5.9. The graph of the LR(1)
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pilot is drawn in Figure 5.10. The right column of a macro-state contains
look-ahead sets. To make cross-reference easier, we have reproduced in the
macro-states some grammar rules with a bullet marking the current state.
Such items are termed marked rules. For instance, the marked rule S →
a • ScS denotes state 4 of machine MS . Clearly it is redundant to include
both states and marked rules since the latter are just a different encoding of
states. A macro-state frame contains the identifier and a set of candidates.

S0 → S �

0 1 2S0 : → →S �

S → aScS | ε

3 4 5 6 7S : →
↓ ↓

a S c S

Fig. 5.9 Grammar and machine net of Dyck language (example 5.12).

Thus the candidates of macro-state I3 are 〈4, {�}〉 and〈3, {c}〉. The separation
of candidates by horizontal lines is only meant to facilitate checking their
computation by the closure function but the order of candidates in a macro-
state is irrelevant. Some candidates are special, in that they do not need a
look-ahead set: they are associated with the conventional axiom S0 → S �
(within macro-states I0, I1, I2)

We illustrate look-ahead computation for I3. The pair 〈4,�〉 has the same
look-ahead as state 3 of I0, from which it comes because of arc 3 a→ 4. The
closure function applied to pair 〈4,�〉, returns state 3 with look-ahead {c}
since Ini(L(5)) = {c} and L(5) is not nullable. We observe that state 3 is
commented by two different marked rules, S → •aScS and S → •ε; the latter
may also be written as S → ε•.

Comparing this pilot with the LR(0) one (Figure 5.8), the number of
macro-states has increased because of the diversification brought by look-
ahead sets. In fact, two macro-states such as I3 and I7 differing only in their
look-ahead are merged in one LR(0) macro-state.

LR(1) Condition

A marked rule is said to be completed if the bullet is at the right end, e.g.,

S → ε • S → aScS • S0 → S � •
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I0
0 ≡ S0 → •S �
3 ≡ S → •aScS | •ε �

I1
1 ≡ S0 → S• �

I2
2 ≡ S0 → S � •

I3
4≡ S → a • ScS �
3≡ S → •aScS | •ε c

I4
5 ≡ S → aS • cS �

I5
6 ≡ S → aSc • S �
3 ≡ S → •aScS | •ε �

I6
7 ≡ S → aScS• �

I7
4 ≡ S → a • ScS c

3≡ S → •aScS | •ε c

I8
5 ≡ S → aS • cS c

I9
6 ≡ S → aSc • S c

3 ≡ S → •aScS | •ε c

I10
7 ≡ S → aScS• c

↓

S �

a

S c

S

a
a

S c

S

a

a

Fig. 5.10 LR(1) pilot of Dyck language grammar (example 5.12, Figure 5.9).

We recall and extend to case k = 1 the previous classification of LR(0)
macro-states. A candidate is a reduction candidate if its state is final for
some machine of the net; this means the state is associated with a completed
marked rule. A candidate is a shift candidate if its state is the origin of an arc
labelled with a terminal or nonterminal symbol; this means in the associated
marked rule the bullet is followed by a symbol.

Now the drastic LR(0) condition, that prevented any macro-state from
containing reductions and shifts or from containing multiple reductions, will
be replaced by a finer control on look-ahead sets.

Definition 5.13. LR(1) condition.
A pilot macro-state satisfies condition LR(1) if both clauses hold:

1. no reduction-shift conflict : every reduction candidate has a look-ahead set
disjoint from the set of terminal symbols of shift moves (i.e., from the set
of terminal labels of arcs outgoing from the macro-state);
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2. no reduction-reduction conflict : if the macro-state contains multiple reduc-
tion candidates, their look-ahead sets are disjoint.

A grammar has the LR(1) property if every macro-state satisfies condition
LR(1).

Example 5.14. Dyck language (example 5.12) and LR(1) condition
We examine the pilot in Figure 5.10. Macro-states I1, I2, I4, I6, I8, I10 are
singleton sets, therefore they trivially satisfy condition LR(1). Each of the
macro-states I0, I3, I5, I7, I9 contains reduction candidate S → •ε and shift
candidate S → •aScS (both associated with state 3), plus another shift
candidate. We check disjunction of look-ahead sets:

macro-state look-ahead of S → ε outgoing labels condition
I0 � a {�} ∩ {a} = ∅
I3 c a {c} ∩ {a} = ∅
I5 � a {�} ∩ {a} = ∅
I7 c a {c} ∩ {a} = ∅
I9 c a {c} ∩ {a} = ∅

Every macro-state satisfies the condition, therefore the grammar is LR(1).

We need the next example to illustrate the second clause of the condition.

Example 5.15. Multiple reductions in an LR(1) macro-state
The grammar (of a finite language)

S → A | Ba | bAa | bB A → a B → a

is represented by the machines in Figure 5.11. We omit the starting rule
S0 → S which is irrelevant to the point considered. The LR(1) pilot is de-

1

0 2 3

4 5 6

7

S : →

→

→

→

→

A

B

b

a

A a

B

8 9 10 11A : → → B : → →a a

Fig. 5.11 Machine net of example 5.15.
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picted in Figure 5.12, where we list marked rules for reduction macro-states
only. Only macro-states I4 and I8 have to be checked because all the oth-

I4
9 ≡ A → a• �
11 ≡ B → a• a

I1
1 ≡ S → A• �

I0
0 �
8 �
10 a

I2
2 �

I3
3 ≡ S → Ba• �

I5
4 �
8 a
10 �

I6
5 �

I7
6 ≡ S → bAa• �

I8
9 ≡ A → a• a
11 ≡ B → a• �

I9
7 ≡ S → bB• �

→

A

B

a

a

b

A a

a
B

Fig. 5.12 LR(1) pilot of example 5.15, Figure 5.11.

ers already satisfy the stronger LR(0) condition. Both macro-states contain
two reduction candidates and their look-ahead sets are disjoint, so that no
reduction-reduction conflicts arise. On the other hand, no arc originates from
either macro-state and reduction-shift conflicts are thus excluded.
The grammar is LR(1) but not LR(0) since the two reductions in I4 and in
I8 cannot be arbitrated without look-ahead information.

The last example of this section clarifies the role of look-ahead sets.

Example 5.16. Arithmetic expressions and condition LR(1)
The usual grammar

E → E + T | T T → T × a | a

is represented by the net in Figure 5.13. The graph of the LR(1) pilot is in
Figure 5.14. The grammar has the LR(1) property: no macro-state contains
multiple final states and in every mixed (reduction/shift) macro-state the
disjunction condition is satisfied, to be checked by the following computation:

I3 : × /∈ {�, +}, look-ahead of reduction E → E + T

I5 : × /∈ {�, +}, look-ahead of reduction E → T
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0 1 2 3

4

E : → →

→

E +

T

T

5 6 7 8

9

T : → →

→

T

a

× a

Fig. 5.13 Machine net for arithmetic expressions (example 5.16).

I4
9 ≡ T → a• � +×

I0
0 �
0 +
5 �
5 +

5 ×

I1
1 � +

I2
2 � +

5 � +

5 ×

I3
3 ≡ E → E + T• �, +
6 ≡ T → T • ×a � +×

I5
4 ≡ E → T• � +
6 ≡ T → T • ×a � +×

I6
7 � +×

I7
8 ≡ T → T × a• � +×

↓

E + T

a

T

a

×

a×

Fig. 5.14 Pilot of arithmetic expressions (example 5.16, Figure 5.13).

Observe that in macro-state I3 the look-ahead sets of shift candidate 6 ≡
T → T • ×a and of reduction candidate 3 ≡ E → E + T • are not disjoint:
{�, +,×} ∩ {�, +} �= ∅; yet this is not an infringement of condition LR(1)!
In fact, the look-ahead set of a shift candidate is not an argument of the
LR(1) predicates (definition 5.13 on p. 220), but it is just instrumental for
computing the look-ahead sets of the next macro-states.

It follows that after pilot construction the look-ahead sets of any candidate
of type shift can be deleted because they are unnecessary for parsing (except
maybe for error treatment).
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Lighter Use of Look-Ahead Information: LALR(1)

We briefly discuss a condition for determinism termed LALR(1),2 in between
LR(0) and LR(1) conditions, which became very popular at a time when
the reduced memory size of computers made it unpractical to manage the
large number of macro-states of LR(1) pilots. The technique is supported by
widespread parser construction tools.

Consider a grammar meeting the LR(1) but not the LR(0) condition.
Imagine simplifying the LR(1) pilot by coalescing the macro-states which in
the LR(0) pilot are indistinguishable, meaning that they only differ in the
look-ahead set of some candidate. At the same time look-ahead information
has to be preserved since the LR(0) condition does not suffice. More precisely,
when two macro-states are coalesced, the look-ahead sets of the candidates
that coincide in the first component (the state) are united. The LALR(1)
pilot graph3 thus obtained is isomorphic to the graph of the LR(0) pilot. Yet
it may contain macro-states which are mixed or include multiple reductions,
provided the next condition holds, essentially identical to the LR(1) case.

Definition 5.17. Condition LALR(1).
A grammar has the LALR(1) property if for every macro-state of the
LALR(1) pilot the two conditions are satisfied:

1. every reduction candidate has a look-ahead set disjoint from the set of the
terminal labels of the arcs leaving the macro-state;

2. in case of multiple reduction candidates, their look-ahead sets are disjoint.

It follows immediately from definition that the family of LALR(1) grammars
is included in the family of LR(1) grammars and includes the LR(0) family.
We mention that for the language families, the same strict containments hold
as for grammar families: there exist LR(1) languages that are not LALR(1),
as well as LALR(1) languages that are not LR(0).
Some cases are presented next.

Example 5.18. Dyck language (example 5.12 continued) and LALR(1) con-
dition
The known machine net is reproduced in Figure 5.15. We coalesce the macro-
states of the LR(1) pilot (Figure 5.10 on p. 220), which are not distinguishable
for the LR(0) pilot (Figure 5.8 on p. 216) and thus we obtain the LALR(1)
pilot in Figure 5.16. This graph is isomorphic to the graph of the LR(0) pilot.
As no macro-state contains multiple reductions the related conditions need
not be checked. On the other hand, some macro-states are mixed, namely, I0,
[I3, I7], [I5, I9], which falsify condition LR(0). In such mixed macro-states the
look-ahead set of reduction S → ε is disjoint from the set of terminal labels
of outgoing arcs, thus proving that the grammar has property LALR(1).

2 Short for Look Ahead LR(1).
3 We do not describe other direct constructions of the LALR(1) pilot, which do without
an LR(1) pilot, see e.g.,[17].
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0 1 2

S0:

↓

↓

S �
3 4 5 6 7

S:
↓

↓ ↓

a S c S

Fig. 5.15 Machine net of Dyck language (example 5.18).

I0
0 ≡ S0 → •S �
3≡
S → •aScS
S → •ε �

I1
1

I2
2 ≡ S0 → S � •

I3, I7
4 ≡ S → a • ScS � c

3 ≡ c
S → •aScS
S → •ε

I4, I8
5 � c

I5, I9
6 ≡ S → aSc • S � c

3≡ � c
S → •aScS
S → •ε

I6, I10
7≡ S → aScS• � c

↓

S �

a

S c

a

S

a

Fig. 5.16 LALR(1) pilot of Dyck language (Figure 5.15).

The gain is that this pilot does the same service as an LR(1) pilot but uses
fewer macro-states.

In the coming example the LR(1), LALR(1) and LR(0) pilot graphs are
isomorphic.

Example 5.19. Arithmetic expressions (from example 5.16) and condition
LALR(1)
The LR(1) pilot graph of Figure 5.14 on p. 223 is isomorphic to the LR(0)
pilot, so that no coalescing of macro-states is required. This means that gram-
mar

E → E + T | T T → T × a | a

satisfies the LALR(1) condition.

We finish with an example showing the greater generality of LR(1).
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Example 5.20. LR(1) but not LALR(1) grammar
In example 5.15 on p. 221 let us coalesce macro-states I4 and I8 (Figure 5.12),
since they become identical when their look-ahead sets are dropped. Thus for
the LALR(1) pilot the macro-state results:

I4, I8

9 ≡ A → a• �, a
11 ≡ B → a• �, a

which violates condition LALR(1) because the reductions have overlapping
(actually identical) look-ahead sets.

Many compiler design experiences have proved the LALR(1) method is
often sufficient for parser construction, usually at the cost of minor modifi-
cations to the language reference grammar.

5.2.5 LR(1) Parsing Algorithm

After the pilot (of type LR(1) or LALR(1)) has been constructed, the pars-
ing algorithm described in Figure 5.17 differs from the LR(0) one (p. 212)
in that it checks the current character against the look-ahead sets, in order
to choose the move if the current macro-state is mixed or has multiple re-
ductions. Thanks to the LR(1) (or LALR(1)) hypothesis, the macro-state on
stack top and the current character uniquely determine the move to be done:
shift, reduction with a precise rule, or rejection. Therefore the automaton is
deterministic.
We illustrate with a step-by-step trace.

Example 5.21. Parsing trace for example 5.16
For the language of arithmetic expressions, we refer to the LR(1) and
LALR(1) pilot (Figure 5.14 on p. 223). The trace for string a + a is in Table
5.3. Notice that having omitted the initial rule S0 → E �, the final stack
configuration contains E.

5.2.6 Properties of LR(k) Language and Grammar
Families

We have studied several classes of grammars from LL(k) to LR(k) generating
deterministic languages. It would be too long and out of scope for this book
to examine in detail the formal properties and relations for the corresponding
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Algorithm. Let G be an LR(1) (or LALR(1)) grammar and N = (R, Σ ∪ V, ϑ, I0, R) its
pilot.

Stack alphabet : R ∪ Σ ∪ V ;
Set of states of A: irrelevant as it contains just one state;
Initial configuration: the stack contains the initial macro-state I0;
Moves: let I be the macro-state on stack top and a the current character:

Shift move: if for macro-state I the transition ϑ(I, a) = I′ is defined, the automaton
reads terminal a, moves ahead the reading head, and pushes string aI′ on stack;

Reduction move: if macro-state I, here denoted In, contains a reduction candidate

〈q, π〉 ≡ 〈B → X1X2 . . . Xn•, π〉

(i.e., B → X1X2 . . . Xn ∈ reductions(q)) where n � 0 is the length of the right part,
and
if a is in look-ahead set π, perform the following action.
On stack top there is necessarily string β′

I′

β′
︷ ︸︸ ︷

X1I1X2I2 . . . XnIn

containing n macro-states pushed by preceding moves.
The reduction first pops from stack string β′ (i.e., 2n symbols from top), then pushes
string BI′′, where I′′ = ϑ(I′, B) is the macro-state entered by the pilot transition
“reading” nonterminal B.

Final configuration: stack = I0, input entirely scanned.

Fig. 5.17 Shift-reduce parser with look-ahead, as pushdown automaton A.

Table 5.3 Parsing trace of string a + a (example 5.21).

Stack x Comment

I0 a + a � shift

I0 aI4 + a � reduce with T → a

I0 TI5 + a � + ∈ look-ahead of 4: reduce
with E → T

I0 EI1 + a � shift

I0 EI1 +I2 a � shift

I0 EI1 +I2 aI4 � reduce with T → a

I0 EI1 +I2 TI3 � reduce with E → E + T

I0 � accept

families of languages. Therefore we just state the main properties, here for
the LR(k) case, and in a later section also in comparison with case LL(k).4

Property 5.22. The family DET of context-free deterministic languages co-
incides with the family of languages generated by LR(1) grammars.

4 For a more complete discussion we refer to [25, 50, 51].
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This important statement essentially says that the shift-reduce parsing ap-
proach with look-ahead 1 perfectly captures the idea of deterministic recogni-
tion, using as automaton a machine with a finite memory and an unbounded
stack. Obviously this does not say that any grammar generating a determin-
istic language enjoys the LR(1) property. For instance, the grammar could
be ambiguous, or require a look-ahead longer than one. But for sure there
exists an equivalent grammar that is LR(1). On the other hand, any context-
free language which is not deterministic, as the cases on p. 164, cannot be
generated by an LR(1) grammar.

Consider now extending the look-ahead length, much as we did for LL(k)
grammars. Trusting the reader’s intuition, we are going to talk about an
LR(k) grammar and parser without formally defining them. Such a parser
is driven by a pilot whose look-ahead sets contain strings of length k > 1.
Clearly the pilot may have more macro-states than a k = 1 pilot because some
of the latter macro-states are split due to k = 2 look-ahead sets becoming
different. However, since, no matter how large is k, an LR(k) parser is nothing
but a deterministic pushdown automaton having more internal states than
an LR(1) parser, from the preceding property we have:

Property 5.23. For every k > 1, the family of languages generated by LR(k)
grammars coincides with the family of languages generated by LR(1) gram-
mars hence also with the DET family.

Now a question arises: since any deterministic language can be defined by
means of an LR(1) grammar, what is the use of taking higher values of pa-
rameter k? The answer comes from consideration of the families of grammars
instead of languages. There exist grammars having the LR(2) but not the
LR(1) property, and more generally there is an infinite hierarchy of inclu-
sions.

Property 5.24. For every k � 1 there exist grammars satisfying condition
LR(k) but not condition LR(k − 1).

Although property 5.23 ensures that any grammar LR(k), k > 1, can be
replaced by an equivalent LR(1) grammar, the latter is sometimes less natural
(shortly we shall see examples).

We finish with a negative statement.

Property 5.25. For a given context-free grammar it is undecidable if there
exists an integer k > 0 such that the grammar has the LR(k) property;
therefore it is undecidable whether the language generated by a grammar is
deterministic.

However, if the value k is fixed, it is possible to check whether the grammar
is LR(k) by constructing the pilot and verifying that all macro-states are
adequate. This is what we have done for k = 1 in a number of cases.
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5.2.7 How to Obtain LR(1) Grammars

More often than not, technical grammars meet the LR(1) condition, but
occasionally one finds a grammar that needs adjustment. Imagine we have
an unambiguous grammar that is not LR(1). The case of primary interest
is when the grammar is LR(k) for some k > 1 because then we know from
property 5.23 that an equivalent LR(1) grammar exists. We first introduce
some useful transformations for lowering the value of k and then we consider
a transformation for non-LR(k) grammars.5

Grammar with Reduce-Reduce Conflict

Suppose the grammar is LR(2) but not LR(1). We consider a violation caused
by a reduction-reduction conflict: some macro-state I of the pilot contains
two reduction candidates

A → α•, {a} B → β•, {a}

with the same look-ahead character a. Since the grammar is LR(2), the can-
didates are discriminated by the character following a.

To obtain an equivalent LR(1) grammar, we apply a transformation called
early scanning; the idea is to lengthen the right part of certain rules by
appending to them the conflict causing character a. In this way the new
rules will have in their look-ahead sets the characters following a, which
from the LR(2) hypothesis do not overlap. More precisely, the transformation
introduces two new nonterminals and the rules

〈Aa〉 → αa 〈Ba〉 → βa

For preserving grammar equivalence, we must then adjust the rules containing
A or B. The transformation must ensure that the derivation

〈Aa〉 +⇒ γa

exists if, and only if, the original grammar has the derivation

A
+=⇒ γ

and character a can follow A.

Example 5.26. Early scanning
Grammar G1

S → Abb A → aA B → aB
S → Bbc A → a B → a

5 For a broader discussion of such grammar transformations we refer to [12].
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has a conflict between A → a • {b} and B → a • {b}. Increasing the pa-
rameter to k = 2, the former reduction has look-ahead {bb} while the latter
has disjoint look-ahead {bc}. Applying early scanning, we obtain the LR(1)
grammar:

S → 〈Ab〉b 〈Ab〉 → a〈Ab〉 〈Bb〉 → a〈Bb〉
S → 〈Bb〉c 〈Ab〉 → ab 〈Bb〉 → ab

Grammar with Shift-Reduce Conflict

Another common source of conflict occurs when a macro-state I contains two
candidates

A → α • aβ, π B → γ•, {a}

causing a violation, because an arc labelled a leaves the macro-state and a is
a look-ahead character of the reduction candidate.

How to fix it: create a new nonterminal 〈Ba〉 to do the same service as
B followed by a. Replace the second rule with rule 〈Ba〉 → γa. For con-
sistency, adjust all the rules having B in their right part so as to preserve
grammar equivalence. Since we assume the grammar is LR(2), the look-ahead
set associated with 〈Ba〉 → γa certainly does not include a and the conflict
disappears.

The transformation is more involved if the character a ∈ π, causing the
conflict between candidates A → α • aβ, π and B → γ•, {a}, is produced
as initial character by a derivation from nonterminal C, which immediately
follows B in a sentential form:

S
+⇒ . . . BC . . .

+⇒ . . . Ba . . . . . .

Transformation: create a new nonterminal named 〈a/LC〉 to generate the
strings obtained from those derived from C by cutting prefix a. Formally we
have

〈a/LC〉 +⇒ γ if, and only if, C
+⇒ aγ in the original grammar.

Then the affected grammar rules are adjusted to preserve equivalence. Now
the grammar thus obtained is amenable to early scanning, which will remove
the conflict.

This transformation is called left quotient, since it is based on the homonomous
operation /L defined on p. 17.

Example 5.27. Left quotient preparation for early scanning
Grammar G2

S → AC A → a C → c D → d
S → BD B → ab C → bC
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is LR(2) but not LR(1) as evidenced by the reduction-shift conflict

A → a • {b, c} B → a • b{d}

After left quotient transformation we obtain grammar

S → Ab〈b/LC〉 A → a 〈b/LC〉 → b〈b/LC〉
S → Ac〈c/LC〉 B → ab 〈b/LC〉 → c
S → BD D → d 〈c/LC〉 → ε

Now the conflict can be removed applying early scanning transformation.

Finally, we observe that grammar transformations based on left quotient
and early scanning can also be used when the grammar meets the LR condi-
tion for a value of k larger than two.

Transformation of Non-LR(k) Grammars

If the given grammar is not LR(k), we do not have systematic transforma-
tions, but we may attempt to study the languages generated by the critical
nonterminals, to identify the sources of conflict, and finally to adjust the
subgrammars to make them LR(1).

Quite often, an effective transformation is to turn left-recursive rules or
derivations into right-recursive ones. The reason stems from the fact that
LR parsers carry on multiple computations until the moment when one of
them reaches a reduction, which is deterministically decided and applied. A
right-recursive rule (more generally a derivation) has the effect of delaying
the decision moment, whereas a left-recursive rule does the opposite. In other
words, with right-recursive rules the automaton accumulates more informa-
tion on stack before the time comes to make a reduction. Truly, the stack
grows larger with right-recursive grammars, but such increase in memory
occupation is negligible for modern computers.

Example 5.28. Inverting recursion
The language a+b+ ∪ {anbnb∗c | n � 1} is generated by grammar Gs:

S → X S → Y c
X → aX X → aB Y → Y b Y → Z
B → bB B → b Z → aZb Z → ab

The LR(1) pilot exhibits conflicts between a reduction and two shifts:

Z → ab•, {b, c} B → •bB, {�} B → •b, {�}

Notice that it would not help to increase k: the conflict persists with k = 2
as look-ahead string bb is compatible with the reduction and with the shifts.
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Converting the rules of X and B to left-linear form, the languages gener-
ated by the two nonterminals are unaffected, yet the automaton can perform
shifts earlier and the reduction at the very end. In this way the stack content
can keep open all possibilities until the current character is c or the termi-
nator and the correct choice is made accordingly. After this transformation,
the LR(1) property is satisfied by the equivalent grammar Gd:

S → X S → Y c
X → Xb X → Ab Y → Y b Y → Z
A → Aa A → a Z → aZb Z → ab

5.2.8 LR(1) Parsing with Extended Context-Free
Grammars

An advantage of top-down parsers is that they naturally work with grammars
extended with regular expressions. On the other hand, to adapt shift-reduce
parsers to EBNF grammars, we have to enrich the stack with information
needed to correctly perform reductions. The problem with EBNF grammars
is that when the pilot enters a reduction macro-state and decides to apply
a reduction with a certain rule, the string to be reduced is not immediately
available because the right part of the rule may contain star and union op-
erators. The situation is evidenced by the next example.

Example 5.29. Shift-reduce for EBNF grammar (Sassa and Nakata)
The grammar

R1 : S → a∗b | aAc
R2 : A → a∗

has the machine network of Figure 5.18. The graph of the LR(1) pilot is in
Figure 5.19. As usual a macro-state contains a set of candidates: each one
has a machine state (commented with a marked rule) and an LR(1) (but
LALR(1) would be enough) look-ahead set. For brevity the sets are omitted
in shift candidates.

Take as input string x1 = aaac �. After scanning prefix aa the automaton
configuration is

stack
︷ ︸︸ ︷

I0 a I1 a I2 |
suffix
︷︸︸︷

ac �

and with I2 as current macro-state and a as look-ahead, the parser decides
to shift:

stack
︷ ︸︸ ︷

I0 a I1 a I2 a I2 |
suffix
︷︸︸︷

c �

then, in macro-state I2, the parser performs the reduction A → a∗ in agree-
ment with look-ahead c.
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3 2

0 1 4 5S : →

←

→a

b a
b

b
a

A c

6A : → →

a

Fig. 5.18 Machine net of example 5.29.

I0
0 ≡ S → •(a∗b | aAc)

I1
1

6 ≡ A → a∗• c

I4
4

I5
5 ≡ S → aAc• �

I3
3 ≡ S → a∗b• �

I2
2

6 ≡ A → a∗• c

→ a A

a

c

b
b

b

a

Fig. 5.19 LR(0) pilot of example 5.29.

Now a new problem arises that did not occur with basic context-free gram-
mars. How many symbol pairs should be popped by the reduction move? At
first glance several possibilities exist: zero (case A ⇒ ε), one (case A ⇒ a), or
two (case A ⇒ a2). On the other hand, the case A ⇒ a3 is excluded, because
the first a belongs to S. But having several choices open, would make the
algorithm not deterministic.

Similarly, analyzing string x2 = aaab �, the automaton reaches the con-
figuration

stack
︷ ︸︸ ︷

I0 a I1 a I2 a I2 b I3 |
suffix
︷︸︸︷

�

Now macro-state I3 prescribes a reduction with rule S → a∗b, which does
not specify how many symbols to pop because of the star. To find it, the
parser can inspect the stack from the top checking that the terminal and
nonterminal symbols orderly belong to the language defined by the reflected
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regular expression (a∗b)R. In other words, the string of such symbols has to
be recognized by a new machine, derived from machine MA by reversing the
direction of arrows. Of course, such mirror machine starts computation in
state 3, the one corresponding to the reduction identified by the pilot.

Carrying on the example, the prefix scanned was aaab reflected as baaa,
and several prefix strings, namely, b, ba, baa, baaa, are accepted by the mirror
machine; they respectively determine a number of popped symbols from one
to four. Which is the right choice? It is four because the reduction produces
the configuration

stack
︷︸︸︷

I0 S |
suffix
︷︸︸︷

�

that accepts the input string.

In order to solve the uncertainty over the popping length, we present a rather
simple method, out of several that have been conceived.6

Reduction Control with Morimoto and Sassa Method

The idea is to refine shift operations and corresponding pilot moves into two
categories, termed opening shift and continuation shift : an opening move
starts looking for the right part of a rule, a continuation move proceeds.
Opening shifts push on stack additional information: the label of the rule,
i.e., the name of the machine that starts recognizing the right part of the
rule. On the other hand, continuation shifts do nothing more than the shifts
of a standard LR(1) parser. When a reduction is commanded by the pilot, the
labels in the stack allow the parser to decide when to stop popping symbols.

We explain the Morimoto and Sassa method for constructing the LR(1)
pilot. First, the component states in a macro-state are partitioned in two
sets, both of which may not be empty: the kernel and the rest , to be defined
next.

1. For the initial macro-state I0 all states are in the rest and the kernel is
empty.

2. If the pilot has an arc I
X−→ I ′, the kernel of I ′ includes all states q′ such

that there exists a state q ∈ I with the condition that, in some machine,
there exists an arc δ(q, X) = q′:

kernel(I ′) = {q′ | ∃I such that q ∈ I ∧ q′ = δ(q, X)}

3. The rest of a not initial macro-state I includes the states r returned by
the closure function, applied to some state q in the kernel of I:

rest(I) = {r | q ∈ kernel(I) ∧ r ∈ closurek(q)}

6 A survey is in [37].
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The closure should be computed with the desired look-ahead length k � 0
(as explained on pp. 206 and 217).

Next we have to describe the shift actions the pilot performs when it goes
from macro-state I to macro-state I ′ “reading” a symbol (terminal or non-)
X . For this we define two binary relations between states q of I and q′ of I ′,
to be denoted as (I, q) and (I ′, q′), respectively. As already mentioned a shift
move I

X−→ I ′ is classified in two cases:

Continuation shift : let q ∈ kernel(I) and q′ ∈ I ′ be states, such that the
transition δ(q, X) = q′ exists; then the pilot has the continuation relation:

(I, q)
X, cont−→ (I ′, q′)

Opening shift : let q ∈ rest(I) and q′ ∈ I ′ be states such that the transition
δ(q, X) = q′ exists; then the pilot has the opening relation:

(I, q)
X, open−→ (I ′, q′)

Notice that, depending on the origin state being in the kernel or in the rest,
the class of the move is either a continuation or an opening shift.

We show by means of an example how to construct the pilot with contin-
uation and opening moves.

Example 5.30. Pilot with opening/continuation moves (from [37])
The grammar

S0 → A � A → c(A | c)a

is represented by the network in Figure 5.20. We construct as usual the pi-
lot in Figure 5.21; here look-ahead is not needed since there are no conflicts
within LR(0) macro-states. Notice that macro-state frames are divided by a
horizontal line: the kernel is above and the rest below the line. Figure 5.22
depicts the opening/continuation relations between individual states belong-
ing to macro-states. Thus the arc (I3, 3) −→ (I4, 4) is an opening relation,
since 3 is a rest state in I3. Similarly, since 3 ∈ rest(I4), arc (I4, 3) −→ (I4, 4)
is of opening class.

On the other hand, the arcs (I3, 4) −→ (I4, 5) and (I4, 4) −→ (I4, 5) are
continuation relations, since the origin states are in the kernels of the corre-
sponding macro-states. Arc (I3, 4) −→ (I5, 5) too is classified as continuation,
since state 4 is in the kernel of I3. In general, different relations may exist
between two macro-states, as witnessed by I3 and I4.

Actually the pilot contains a move I
X−→ I ′ if, and only if, at least one

relation exists (I, q)
X,(cont|open)−→ (I ′, q′) between states respectively included

in I and I ′. When multiple relations exist between two macro-states, they can
be of the same or of different classes, as schematized in Figure 5.23. In such
cases, when two macro-states are connected by both opening and continuation



236 5 Bottom-Up and General Parsing

0 1 2S0 : → →A �

3 4 5 6A : → →c

A

c

a

Fig. 5.20 Machine network of example 5.30.

I0
0 ≡ S0 → •A �
3 ≡ A → •c(A | c)a

I3
4 ≡ A → c • (A | c)a

3 ≡ A → •c(A | c)a

I4
5 ≡ A → c(A | c) • a
4 ≡ A → c • (A | c)a

3 ≡ A → •c(A | c)a

I1
1 ≡ S0 → A• �

I5
5 ≡ A → c(A | c) • a

I6
6 ≡ A → c(A | c)a•

I2
2 ≡ S0 → A � •

↓

A

�

c c

A

c

A
a

a

Fig. 5.21 LR(0) pilot of example 5.30.

relations we say there is a stacking conflict . Notice this so-called conflict does
not hinder the construction of a deterministic parser: in case of conflict the
parser will conservatively apply the opening relation in order to push on the
stack the additional information consisting of the label of the machine that
has possibly been activated. We stress that if several opening relations exist
between two macro-states they may involve different machines with the effect
that a set of machine labels instead of just one will be pushed on stack.
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I0

0

3

I3

4

3

I4

5

4

3

I2

2

I1

1

I5

5

I6

6

↓

c, open

A, open

�, cont

c, open

c, cont

A, cont
A, cont

a, cont

c, cont

c, open

a, cont

Fig. 5.22 Pilot with opening/closing relations (example 5.30).

I

q1

q2

—

q3

I′

q′1

q′2

q′3

—

X, open

X, open

X, cont

Fig. 5.23 Multiple relations between states of macro-states.

ELR(1) Parsing Algorithm

We now suppose the pilot is available, with arcs between macro-states qual-
ified as opening or continuation; look-ahead sets are also listed if needed.
Furthermore we assume in every macro-state the LR(1) condition (p. 220) is
met so that the current character determines the next move, shift or reduc-
tion, and in the second case from which final state.

However, in case of reduction, knowing the machine and the final state
does not suffice to rule out the existence of multiple machine paths leading
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from the initial state to the final one. The ELR(1) parsing algorithm to be
presented uses the labels stored in the stack: in every reduction state the
string to be popped from stack can be uniquely determined by the parser,
therefore computation is deterministic.

The ELR(1) parser is similar to the LR(1) case (p. 226), with differences
only in shift and reduction actions. It can be described as a pushdown au-
tomaton, with a stack of the form

I0 E0 D0 I1 E1 D1 I2 . . . In−1 En−1 Dn−1 In

where the I are macro-states, the E are sets of rule/machine labels, and
the D are grammar symbols (terminal or non-). The label of a rule having
nonterminal B as left part will be denoted as (MB, qB,0), that is, by the
name of the corresponding machine MB and its initial state qB,0 (the latter
is actually redundant but makes things more readable). Notice the stack
differs from the LR(1) stack by the presence of sets E of the labels pushed
by opening shifts. Such labels are absent for continuation shifts.

It should help to first give an informal overview of the algorithm. An open-
ing shift move of the automaton pushes on stack the rule label, the current
terminal, and the macro-state specified as target of the pilot transition. A
continuation shift move pushes on stack only the current character and the
target macro-state. When the current macro-state and character trigger a re-
duction starting from final state qf of machine MB, the automaton performs
a series of steps. The effect is to remove from stack a sequence of grammar
symbols Dk, Dk+1, . . . , Dn−1, such that:

• the string DkDk+1 . . . Dn−1 belongs to the regular language R(MB), over
the terminal and nonterminal alphabets, recognized by machine MB;

• the string is recognized in final state qf (machine MB may have multiple
final states);

• within the stack, the string is positioned between the label (MB, q0,B) and
the top.

After removing the sequence (together with intervening macro-states and
labels) the reduction performs a shift (either opening or continuing) of non-
terminal B, with a transition from the macro-state that has surfaced on stack
top.

Algorithm. ELR(1) syntax analyzer.
Let a ∈ Σ be the current character. The starting macro-state is I0, the current
macro-state is I.

Continuation move: to be performed if the relation

(I, q)
a,cont−→ (I ′, q′)

is defined in I. The automaton pushes on stack a and then macro-state I ′;



5.2 Bottom-Up Deterministic Syntax Analysis 239

Opening move: to be performed if one or more opening relations

(I, q1)
a,open−→ (I ′, r1)

. . .
a,open−→ . . .

(I, qm)
a,open−→ (I ′, rm)

are defined in I. Let E be the set of labels of the corresponding grammar
rules/machines.
The automaton pushes on stack:

1. the label set E;
2. the terminal character a;
3. macro-state I ′.

If in the current configuration both a continuation and an opening move
are possible, the automaton performs the second one.

Reduction move: to be performed if the current macro-state, here named
In, contains a candidate 〈qf , π〉, where qf is a final state of machine MB,
and the current character a is in look-ahead set π.
Let the current stack be

I0 E0 D0 I1 . . . In−k

β′

︷ ︸︸ ︷

En−k Dn−k In−k+1 . . . In−1 En−1 Dn−1In

Pop a sequence of one or more stack elements, denoted β′, until the re-
maining stack

I0 E0 D0 I1 . . . In−k

satisfies both of the following conditions:

1. En−k is the label set (closer to the old stack top) containing the label
(MB, qB,0) of the selected reduction.

2. Let β = Dn−k+1 . . . Dn−1 ∈ (V ∪ Σ)∗ be the string obtained from β′,
deleting the macro-states and labels. Then β is a valid sentence of the
regular language accepted by machine MB with final state qf .

At last the automaton spontaneously executes the transition from macro-
state In−k to macro-state I ′, “reading” nonterminal B. Such move as well
is performed according to its class, opening or continuation, as specified
in the pilot by the relation between macro-states In−k and I ′.

The reduction move substantially differs from the basic parser. It can be
implemented using the mirror machine (MB)R that accepts the reflected lan-
guage of machine MB. Then the parser pops grammar symbols and other ele-
ments from stack until the following conditions become true: machine (MB)R
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has reached state qB,0 (initial state of machine MB); the last popped element
is a label set containing the label (MB, qB,0) of the reduction.

We argue that the parser is deterministic. Clearly, if the grammar is LR(1),
the choice between reduction and shift is always deterministic. In case of shift,
the priority granted to the opening moves arbitrates the conflict, if any, with
continuation. It remains to consider reduction moves. Although the label set
En−k may contain several machine labels, condition 2. of reduction moves is
satisfied by one, and only one, machine because of the way the stack is filled.

Example 5.31. Trace of ELR(1) parser execution (example 5.30 continued)
The source string is cccaa �. The machine net is in Figure 5.20 and the pilot
in Figure 5.22.

Stack x Comment
I0 c c c a a � opening
I0 (MA, 3)cI3 c c a a � opening
I0 (MA, 3)cI3 (MA, 3)cI4 c a a � opening
I0 (MA, 3)cI3 (MA, 3)cI4 cI4 a a � continuation
I0 (MA, 3)cI3 (MA, 3)cI4 cI4 aI6 a � reduction: state 6

In macro-state I6, the pilot decides for the reduction associated with state
6 of machine MA, corresponding to rule A → c(A | c)a. To identify the
reducible segment of the stack, the parser uses the mirror machine (MA)R:

3 4 5 6
↓

(MA)R:

↓

c

A

c
a

The parser inspects the string ac, which is included between stack top and
the first (from top) label (MA, 3) corresponding to the reduction started in
6. In so doing it runs a computation on the mirror machine, which reaches
state 4. Since 4 is not final for (MA)R, the string ac is not long enough for the
reduction and the parser must go on digging into the stack. Popping continues
until the underlined label surfaces from the stack. At this point string acc is
accepted by the mirror machine. Then the parser performs reduction cca ⇒ A
and in the new configuration executes two continuation shifts in a row:

I0 (MA, 3)cI3 a � continuation
I0 (MA, 3)cI3 AI5 a � continuation
I0 (MA, 3)cI3 AI5 aI6 � reduction: state 6

Reduction cAa ⇒ A is consistent with the underlined label set and with
acceptance of aAc by the mirror machine. Thereafter the reduction empties
the stack and the parser accepts the source string and terminates.

Actually, different implementations have been proposed for controlling re-
duction moves, instead of the one exploiting the mirror machine. Another
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technique uses counters or pointers, loaded on stack by opening moves. Others
have proposed to modify the grammar in order to simplify the identification
of the reducible part of the stack.

5.2.9 Comparison of Deterministic Families REG,
LL(k), and LR(k)

Before we leave the subject of deterministic parsing it is convenient to ex-
amine the inclusion relations between the main families of deterministic lan-
guages in order to appraise their relative scope. The cases to be discussed are
the regular languages REG defined by regular expressions, finite automata,
or unilinear grammars; the LR(k) languages with their variants (LR(0) and
LALR(1)); and the LL(k) languages. Concerning grammars in this section
we assume they are basic context-free not extended with regular expressions.

We start comparing regular and LL(1) languages.

Property 5.32. Any regular language can be generated by an LL(1) grammar.

The proof is simple. Suppose the language is defined by a deterministic finite
machine, hence the machine network contains exactly one machine which
only carries terminal labels on its arcs. We show condition LL(1) (p. 183) is
satisfied. If two arcs originate from a state, they necessarily carry different
labels since the machine is deterministic. If a state is final, the final arrow
necessarily has just one element in its guide set (p. 182) the terminator �,
which does not label any arc of the machine.

The comparison of LL(k) and LR(k) cases is more involved, because we
have to consider grammars as well as languages, and also to discuss the role
of parameter k. Some facts are first recalled.

• Any LL(k) language with k � 1 is deterministic, hence also LR(1) by
property 5.22 on p. 227. Of course this is consistent with the fact the top-
down parser of an LL(k) language is a deterministic pushdown automaton.

• For every value of k there exist deterministic languages that cannot be
defined with an LL(k) grammar.
It suffices to refer to examples 4.35 and 4.36 (pp. 199, 200).

Next we compare the language generation capacity of LR and LL gram-
mars for the same value of the look-ahead parameter. The following strict
inclusion property states the higher capacity of LR grammars.

Property 5.33. For every value k � 1, if a grammar satisfies condition LL(k),
it also satisfies condition LR(k) (p. 220).7

7 For a formal proof see e.g.,[51].
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Justification. Take for simplicity k = 1 and examine the grammar (Figure
5.15 on p. 225) of Dyck language, which is clearly LL(1), and the LR(1) pilot
in Figure 5.10 on p. 220. A peculiarity of this pilot is that every macro-state
contains exactly one state in the area over the horizontal divider. This means
that when the pilot is constructed, before the closure operation closure1 is
applied, any macro-state contains one state only. The property necessarily
descends from condition LL(1). The property, combined with disjointness of
guide sets of arcs leaving the same state, has the consequence that LR(1)
conflicts in macro-states are impossible.

To complete the comparison we consider different look-ahead lengths, 0
and 1. It is easy to check that the families of LR(0) and LL(1) grammars are
distinct and not included in each other. In fact, we recollect:

1. a grammar containing epsilon rules is certainly not LR(0) but it may be
LL(1);

2. a grammar with left-recursive rules cannot be LL(1) but it may be LR(0).

To contrast the LL(1) and LR(0) language families, some facts are:

1. a language containing a sentence and also some prefix thereof cannot be
LR(0), but it may be LL(1);

2. the language {a∗anbn | n � 0} is LR(0) but not LL(1) (p. 199).

Therefore also for languages, the LL(1) and LR(0) families are not compa-
rable by set inclusion.

The comparison of LL(1) and LALR(1) grammars is subtler8: it suffices
to say that almost all LL(1) grammars excepting some contrived examples
are also LALR(1); in substance, the LALR(1) family of grammars is wider
than the LL(1) family.

5.3 A General Parsing Algorithm

We complete the study of parsing methods with the Earley algorithm that is
able to handle any context-free grammar and produces all derivations for am-
biguous sentences. The computational complexity is proportional to the cube
of the string length and reduces to the square if the grammar is unambiguous
and even less if it is deterministic.

This is the last stage of a series that started with deterministic LL(k) algo-
rithms and then introduced a greater capacity of handling nondeterministic
situations with the LR(k) approach. We know an LR(k) algorithm carries on
multiple parsing attempts but not beyond a reduction operation, when the
decision must be unique, i.e., deterministic. This is a connatural limitation
of any algorithm simulating a deterministic pushdown automaton since this
abstract machine cannot manage multiple stacks.

8 For a careful analysis, see [6].
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The Earley algorithm takes inspiration from the LR(k) approach but it
soon diverges from the deterministic pushdown model and exploits a richer
data structure: a one-dimensional array of sets. This structure efficiently rep-
resents multiple partially overlapping stacks and allows polynomial time sim-
ulation of a nondeterministic pushdown automaton. In this way it avoids the
exponential complexity of the naif nondeterministic recognition algorithm
considered on p. 151.

For simplicity we only study basic context-free grammars but the algo-
rithm could be modified to work with EBNF grammars too. It is convenient
to represent the grammar by means of syntax rules and also by a network of
machines. No hypothesis is needed concerning determinism or the presence
of left-recursive derivations. Treatment of empty rules is deferred to a later
section.

For source string x of length n � 1 we denote xi the i-th character, and
xi..j the substring from character i to j, included; thus the source string is
x ≡ x1..n.

This approach does not rely on a pilot machine (which in general would
violate the LR(k) condition). The algorithm records in a vector E[0..n] at
position i any state of the network such that a nondeterministic parser could
possibly reach it after scanning the i-th character. Next to the state the
algorithm records an integer (named back pointer), that designates a position
in the string: the one from which the current instance of the machine (or
grammar rule) has been activated.

More precisely, each vector element or cell E[i], 0 � i � n, contains a set
of ordered pairs

〈 state, pointer 〉 = (s, p)

where s is a state of the net and p falls in the interval (0 . . . i). For better
readability we often write next to state s the synonymous marked rule (p.
219).

Concerning look-ahead, some versions of the Earley algorithm claim better
performances by using it; but using look-ahead does not enlarge the class of
grammars or languages that can be handled. For this reason we just consider
the basic yet quite practical version that does not inspect any character
beyond the current one.

5.3.1 Introductory Example

Example 5.34. Introduction to Earley method
The language

{anbn | n � 1} ∪ {a2nbn | n � 1}

is not deterministic, therefore the LR(k) condition is violated by the following
grammar (as well as by any equivalent one):
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S → A | B A → aAb | ab B → aaBb | aab

The machine net is in Figure 5.24. Suppose string aabb of length 4 has to be
analyzed. Then the vector E[0] . . . E[4] is prepared containing the initial cell
E[0] and one cell per string position. Each cell will eventually be filled with
a set of couples but at start time only cell E[0] is not empty and contains
the pair:

0 1

2

S : → →

→

A

B

3 4 5 6

7

A : → →

→

a A b

b

8 9 10 11 12

13

B : → →

→

a a B b

b

Fig. 5.24 Machine net of example 5.34.

〈state = 0, pointer = 0〉

written as (0, p = 0), where the first zero is the initial state (of the net axiom
machine) and the pointer is targeted to zero, i.e., to the position preceding
the first character of the string. A more verbose notation is

E[0] = {(0 ≡ S → •(A | B), p = 0)}

In broad terms, three types of operations can be done on the cell E[i] indexed
by the position of the current character: predicting, scanning, and completing.

Prediction is just another name for the LR(0) closure function (p. 206).
Prediction applies to a pair, having a state from where an arc originates with
a nonterminal label. (In terms of marked rule there is a nonterminal to the
right of the bullet.) The operation adds to set E[i] a new pair: its state is the
initial state of the machine (equivalently the bullet precedes the right part of
the rule). The pointer has i as value, which says the pair has been created at
step i starting from a pair already present in E[i].
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The purpose of prediction is to add to set E[i] all the initial states of the
machines that may possibly be invoked to recognize a substring starting from
character xi+1.

In our example the prediction adds to E[0] the pairs

(3 ≡ A → •aAb | •ab, p = 0), (8 ≡ B → •aaBb | •aab, p = 0)

As no further prediction applies to the new pairs, the second operation comes
into play.

Scan is applied to a state from which an arc labelled with a terminal
originates. It is similar to a terminal shift operation of an LR parser. If the
label is equal to xi+1, a new pair is written into cell E[i + 1]. Its state is the
destination state of the arc; the pointer is the same as in the pair the scan is
applied to. This operation says the terminal has been scanned by the parser.

Here, with i = 0 and x1 = a, scanning inserts into E[1] the pairs

(4 ≡ A → a • Ab | a • b, p = 0), (9 ≡ B → a • aBb | a • ab, p = 0)

Then a prediction is again applied to the new pairs, with the effect to add to
E[1] the pair

(3 ≡ A → •aAb | •ab, p = 1)

where we notice the value 1 of the pointer.
If i < n and no scan operation can be successfully applied to the couples

of E[i], cell E[i + 1] remains empty and the source string is rejected.
Next, from E[1], scanning x2 = a, we add to E[2] the pairs

(10 ≡ B → aa • Bb | aa • b, p = 0), (4 ≡ A → a • Ab | a • b, p = 1)

and, applying a prediction to them, we add the pairs

(8 ≡ B → •aaBb | •aab, p = 2), (3 ≡ A → •aAb | •ab, p = 2)

Scanning x3 = b produces in E[3] the pairs

(13 ≡ B → aab•, p = 0), (7 ≡ A → ab•, p = 1)

Now the third operation comes into play.
Completion is similar to a reduction move of a shift-reduce parser. It ap-

plies to a pair (s, j) ∈ E[i] such that state s is final for a machine MA, i.e.,
it is synonymous to a rule s ≡ A → . . . • with trailing mark. The operation
goes back to the set E[j] pointed to by j; we observe relation j � i holds in
general, but here it is j < i because the grammar does not contain empty
rules. In set E[j] we find every pair (at least one exists) (q, k), such that
from q an arc q

A→ r originates. At last we update the current cell E[i] and
we add the pair with state r and pointer k. In other words we add to the
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current cell the marked rule found in E[j] and we shift the bullet to the right
of nonterminal A.

Now completion applies to both pairs present in E[3] since 13 and 7 are
final states of B and A, respectively. The pointer of 13 points to E[0], which
intuitively is the set of partial derivations at the time when the parser started
to recognize this instance of B in the string.

In E[0] we find the pair (0 ≡ S → •A | •B, p = 0), and from state 0 the
arc 0 B→ 2; then we insert in E[3] the pair with state 2 and the same pointer:

(2 ≡ S → B•, p = 0)

Similarly, for pair (7 ≡ A → ab•, p = 1) we find in cell E[1] pair (4 ≡ A →
a • Ab | a • b, p = 0) and we add to E[3] pair

(5 ≡ A → aA • b, p = 0)

If the string ended at this point, the prefix aab scanned up to now would
be accepted; acceptance is shown by the presence in the last set, E[3], of
pair (2 ≡ S → B•, p = 0), characterized by a final state of the net and by
a zero pointer. Actually one more character b remains and a scan produces
in E[4] pair (6 ≡ A → aAb•, p = 0). Completing the latter, through the pair
(0 ≡ S → •A | •B, p = 0) ∈ E[0], we add to E[4] pair (1 ≡ S → A•, p = 0).
The last pair causes string aabb to be accepted.

The whole computation trace is listed in Table 5.4.

Table 5.4 Earley parsing of string aabb (example 5.34).

E[0]
(0 ≡ S → •(A | B), p = 0)
(3 ≡ A → •aAb | •ab, p = 0)
(8 ≡ B → •aaBb | •aab, p = 0)

a E[1]
(4 ≡ A → a • Ab | a • b, p = 0)
(9 ≡ B → a • aBb | a • ab, p = 0)
(3 ≡ A → •aAb | •ab, p = 1)

a E[2]

(10 ≡ B → aa • Bb | aa • b, p = 0)
(4 ≡ A → a • Ab | a • b, p = 1)
(8 ≡ B → •aaBb | •aab, p = 2)
(3 ≡ A → •aAb | •ab, p = 2)

b E[3]

(13 ≡ B → aab•, p = 0)
(7 ≡ A → ab•, p = 1)
(2 ≡ S → B•, p = 0)
(5 ≡ A → aA • b, p = 0)

b E[4]
(6 ≡ A → aAb•, p = 0)
(1 ≡ S → A•, p = 0)
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5.3.2 Earley Algorithm

The algorithm carries on in parallel all possible leftmost derivations9 while it
scans string x1...n from left to right. Upon examining character xi, it produces
a two-field record, i.e., a pair of the form 〈state, pointer〉 shortened in (s, p =
. . .), where pointer p is in the interval from 0 to i. The state may alternatively
be denoted by a marked grammar rule A → α • β.

Intuitively, a pair (s ≡ A → α •β, j) states an assertion and an objective:

Assertion: the parser has found a substring xj+1..i (0 � j < i) that derives
from α, in formula

α
�⇒ xj+1..i

Objective: to find all the positions k with i < k � n, such that substring
xi+1..k derives from β, in formula

β
�⇒ xi+1..k

When the algorithm finds any such position k, it is entitled to assert that
nonterminal A derives substring xj+1..k, i.e.,

A
�⇒ xj+1..k

A pair (q ≡ A → α•, j) where q is a final state (i.e., the bullet terminates the
marked rule), is termed completed.

Algorithm. Earley parser.
It constructs a vector E[0..n], one cell longer than the source string, contain-
ing a set of pairs in each cell E[i] (associated with position xi). E[0] is the
initial set. The initial set is initialized as explained next; the other sets are
initially empty.

Step 0: Initialization. (It sets the objectives, to find every prefix of x,
which may derive from S. The pointer is set to zero.)

E[0] := (qini, 0), where qini is the initial state of the net;
E[i] := ∅, for i = 1, . . . , n;
i := 0.

Then the algorithm applies in the natural order 0, 1, . . . , n the operations of
prediction, completion, and scan to compute all the sets E[i]. At step i the
algorithm may add some pairs only to the current set E[i] and the next one
E[i + 1]. When all possible operations have beenperformed and no pair has

9 Actually, the algorithm does more than finding the derivations of x: it also checks whether
every prefix of x derives from the axiom.
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been added to cell E[i], the algorithm moves on to compute E[i+1]. If E[i+1]
remains empty and i < n, the string is rejected.

Prediction. (Any objective present in cell E[i] can spawn other objectives,
which are added to the same cell; the pointer is set to the current index.)

for each pair in E[i] of form (q ≡ A → α • Bγ j),
where state q is the origin of an arc q

B→ s,
add to cell E[i] the pair (r, i),
where r is the initial state of machine MB.

Completion. (A completed pair (q ≡ A → α•, j) asserts that a derivation
of string xj+1..i from nonterminal A has been discovered. Then cell E[i] is
updated with such assertion.)

for each completed pair (q ≡ A → α•, j) in E[i]
for each pair in E[j] of the form (r ≡ B → β • Aγ, k),
such that state r is the origin of an arc r

A→ s,
add to cell E[i] the pair (s ≡ B → βA • γ, k).

Scan. (Update the objectives in cell E[i+1] in agreement with the current
character. The pointer is set equal to the one of the pair under examina-
tion.)

for each pair in E[i] of the form (q ≡ A → α • aγ, j), if a = xi+1:
add to cell E[i + 1] the pair (r ≡ A → αa • γ, j)
where state r is the target of the arc q

a→ r.

The algorithm terminates when the construction of set E[n] is finished; it
may terminate prematurely with failure, if a scan does not find a pair to add
to cell E[i + 1], i < n.
If the final set E[n] contains (at least) one completed pair (qterm ≡ S →
α•, 0), where qterm is the final state of the axiom machine, the source string
is accepted.

For understanding the algorithm it helps to imagine the three operations
as progressively constructing several syntax trees. From this standpoint, each
cell or set represents a set of trees. In particular, in E[i] we find a pair
(A → α •β, p = j) if, and only if, the grammar generates a syntax tree of the
following form:
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S

A .

α β

. . . .
x1 . . . . . . xj xj+1 . . . . . . xi

Upon termination the string is accepted if, and only if, among the trees
associated with the last set, there is a complete syntax tree rooted at the
axiom.

Notes:
Each character of the string is examined by a scan only one time.
A prediction repeatedly examines the pairs in the current cell and possibly
adds new pairs to it. If the cell contents is organized as a FIFO list, it is easy
to avoid multiple examinations of the same pair.
For completion operations: if in a pair (r ≡ B → β • Aγ, k) ∈ E[j] string γ
is empty, the new pair (s ≡ B → βA•, k) added to E[i] is completed, which
triggers another iteration on the same cell.

It would be rather easy to prove that the algorithm accepts a string if it
is a phrase of language L(G): in fact, a pair is only added to a set if the
derivation asserted by the pair is possible. On the other hand, the proof that
every phrase of the language is recognized by the algorithm is more involved
and is omitted.10

Construction of Syntax Tree

In truth we have dealt only with string recognition, but producing the syntax
tree(s) turns out to be rather simple, starting from the pairs inserted by
the algorithm in the last cell. We explain the construction by means of an
example.

Example 5.35. Syntax tree construction for example 5.34 (p. 243)
The vector computed by the parser for string aabb is reproduced in Figure
5.25, left. To the right we see from top to bottom three stages of tree con-
struction. We start from the last cell, E[4]. Since it contains the completed
pair (S → A•, p = 0), derivation S ⇒ A

∗⇒ x1...4 surely exists, and we rep-
resent it in the topmost tree. The last subscript of nonterminal A in the tree
is 4, therefore we search in the fourth set E[4] for a completed pair having
nonterminal A as left part. We find pair (A → aAb•, p = 0) that we graft
under A1...4 thus obtaining the tree in the middle. The subscript values 2 and
3 come from trivial arithmetics on previous subscripts.

10 The reader may find it in the original paper by Earley [18] or in textbooks such as
[20, 43, 24].
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E[0]
(S → •(A | B), p = 0)
(A → •aAb | •ab, p = 0)
(B → •aaBb | •aab, p = 0)

a E[1]
(A → a • Ab | a • b, p = 0)
(B → a • aBb | a • ab, p = 0)
(A → •aAb | •ab, p = 1)

a E[2]

(B → aa • Bb | aa • b, p = 0)
(A → a • Ab | a • b, p = 1)
(B → •aaBb | •aab, p = 2)
(A → •aAb | •ab, p = 2)

b E[3]

(B → aab•, p = 0)
(A → ab•, p = 1)
(S → B•, p = 0)
(A → aA • b, p = 0)

b E[4]
(A → aAb•, p = 0)
(S → A•, p = 0)

S1...4

A1...4

S1...4

A1...4

a A2...3 b

S1...4

A1...4

a A2...3

a b

b

Fig. 5.25 Left: sets computed by parser (example 5.35) for aabb. Right: syntax tree con-
struction from top to bottom.

Now the central subtree A2...3 has to be grown. It covers the string between
positions 2 and 3; the latter tells us to search set E[3], in order to find the next
step of a derivation from A2...3. More precisely, we look for a completed pair
of A having value 2 as pointer, because the first subscript of A2...3 specifies
the derivation started at position 2. In E[3] we find pair (A → ab•, p = 1)
and we append derivation A ⇒ ab thus obtaining the whole tree at bottom.

Parsing Ambiguous Sentences

If the grammar is ambiguous, the parser actually produces all the possible
leftmost derivations of a sentence. Notice that the derivations are not listed
separately but the linked pointer data structure provides a concise repre-
sentation of common parts of different derivations. This is explained in the
coming example.

Example 5.36. Parsing an ambiguous language
The next grammar is bilaterally recursive hence ambiguous (p. 49).

S → E E → E + E E → a

The sets computed for source string a + a + a are tabulated in Figure 5.26
where in each set a divider separates the pairs computed by subsequent it-
erations of completion operations. Notice the repetition of the same pairs in
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E[0]
S → •E, 0
E → •E + E | •a, 0

a E[1]

E → a•, 0
S → E•, 0
E → E • +E, 0

+ E[2]
E → E + •E, 0
E → •E + E | •a, 2

a E[3]

E → a•, 2
E → E + E•, 0
E → E • +E, 2

S → E•, 0
E → E • +E, 0

+ E[4]
E → E + •E, 0
E → E + •E, 2
E → •E + E | •a, 4

a E[5]

E → a•, 4
E → E + E•, 2
E → E • +E, 4
E → E + E•, 0
E → E • +E, 2
S → E•, 0

E → E • +E, 0

Fig. 5.26 Sets computed for ambiguous sentence a + a + a (example 5.36).

several sets. In the last set E[5] the completed pair (S → E•, 0) evidences
that the string is valid. We show how to recognize and construct multiple
syntax trees, actually two for this sentence. For the first tree, Figure 5.27
lists on the left the relevant pairs and on the right the corresponding stages
of construction. Notice the question mark at some stages of construction says
that the corresponding subscript value is not known at that moment.
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Pairs from Figure 5.26 First tree

E[5]

S → E•, 0
E → E + E•, 0

S1...5

E1...5

E1...? + E?...5

E → a•, 4 S1...5

E1...5

E1...3 + E5...5

a

E[3]

E → E + E•, 0
E → a•, 2

S1...5

E1...5

E1...3

E1...1 + E3...3

a

+ E5...5

a

E[1]

E → a•, 0 S1...5

E1...5

E1...3

E1...1

a

+ E3...3

a

+ E5...5

a

Fig. 5.27 Constructing a syntax tree for example 5.36. Sets of pairs (left) used to grow
the trees (right), from top to bottom.

For the second tree, the same information is given in Figure 5.28.

5.3.3 Computational Complexity

We have seen this parser does much more work than the deterministic top-
down and bottom-up algorithms which we know to have linear time complex-
ity with respect to the input string length. How much more work does it do?
It is not difficult to compute the asymptotic time complexity in the worst
case.
For a string of length n, we compute the number of pairs produced and of
operations performed on them.
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Pairs (from Figure 5.26 Second tree

E[5]

S → E•, 0
E → E + E•, 0
E → E + E•, 2

S1...5

E1...5

E1...1 + E3...5

E3...? + E?...5

E → a•, 4 S1...5

E1...5

E1...1 + E3...5

E3...3 + E5...5

a

E[3]

E → a•, 2 S1...5

E1...5

E1...1 + E3...5

E3...3

a

+ E5...5

a

E[1]

E → a•, 0 S1...5

E1...5

E1...1

a

+ E3...5

E3...3

a

+ E5...5

a

Fig. 5.28 Constructing a second syntax tree for example 5.36. Sets of pairs at left are
used to grow the trees (right), from top to bottom.

1. Each set E[i], i � n, may contain a number of pairs which is linear in i.
We conservatively assume such number is bounded by a linear function of
n.

2. On each pair present in set E[i], scan and prediction operations may exe-
cute a number of steps that is independent of n.

3. A completion operation may execute O(i) steps on each pair it applies to.
The reason is that a completion may add to set E[i] a number of pairs of
the order of O(j), where E[j], 0 � j < i, is a preceding set. Taking n as
upper bound of both i and j, completion altogether needs no more than
O(n2) steps.

4. Summing up the numbers of steps performed for every index i from 0 to
n, we obtain the upper bound O(n3).
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Property 5.37. The asymptotic time complexity of the Earley algorithm in
the worst case is O(n3), where n is the length of the source string.

Even considering the operations on indices needed to construct a syntax tree,
the complexity class of the parser remains the same.

In practice the algorithm performs often faster in many realistic cases.
For deterministic grammars the complexity approaches O(n), and for not
ambiguous grammars it is O(n2).

5.3.4 Handling of Empty Rules

Up to now we have not dealt with empty rules in grammars in order to
simplify parser presentation. It is time to introduce the adjustments required
for such rules.

Let x(i) be the current character, and E[i] be the current set. We recall
the parser (p. 248) at each iteration works on two sets: by means of prediction
and completion operations it adds some pairs to set E[i] and it inserts some
pairs into set E[i + 1] with scan operations. For ε-rules the only operation
requiring adjustment is completion. We consider the case when a completion
step finds in set E[i] a completed pair

(q ≡ A → ε•, j) (5.1)

where state q of machine MA is initial and final. Then it goes to set E[j]
pointed to by j and looks for all pairs having a bullet immediately left of A.
The new situation brought by ε-rules is that pointer j is always equal to i
because pairs such as (5.1) are only produced by prediction operations and
a prediction always assigns the current index to the pointers of the pairs it
creates.

We first describe a naif approach for handling such cases. A completion
operation looks into the partially computed set E[i] and invokes a prediction
operation, which then invokes a completion, and so on, while either operation
succeeds in adding a pair to the set.

A more efficient technique due to Aycock and Horspool11 is next described.
We list the algorithm with changes, restricted to prediction operation, shown
in bold. We recall the nullability predicate from p. 60: a nonterminal A is
nullable if it can generate the empty string in one or more steps.

11 See [5].



5.3 A General Parsing Algorithm 255

Prediction, with ε-rules:

for each pair in E[i] of the form (q ≡ A → α • Bγ, j)
where state q is the origin of arc q

B→ s,
add to set E[i] the pair (r ≡ B → •δ, i)
where r is the initial state of machine MB.
If B is nullable, add to E[i] the pairs
(s ≡ A → αB • γ, j)

Differently stated, a prediction operation moves the bullet from the left to
the right of the nonterminal if the empty string can derive from it: this action
simulates the fact that a derivation would cause the nonterminal symbol to
disappear.

Example 5.38. Grammar with empty rules
In grammar

S′ → S S → AAAA A → a A → E E → ε

all nonterminals are nullable. We show in Figure 5.29 the sets computed while
parsing string a and two out of the possible derivations.

E[0]

S′ → •S, 0
S → •AAAA, 0
S′ → S•, 0
A → •a, 0
A → •E, 0
S → A • AAA, 0
E → •, 0
A → E•, 0
S → AA • AA, 0
S → AAA • A, 0
S → AAAA•, 0

a E[1]

A → a•, 0
S → A • AAA, 0
S → AA • AA, 0
S → AAA • A, 0
S → AAAA•, 0
A → •a, 1
A → •E, 1
S′ → S•, 0
E → •, 1
A → E•, 1

S′

S

A

a

A

E

ε

A

E

ε

A

E

ε

S′

S

A

E

ε

A

a

A

E

ε

A

E

ε

Fig. 5.29 Sets computed by parser (left) and two syntax trees, for example 5.38.
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5.3.5 Further Developments

The possibility was already mentioned to enrich the pairs (state, pointer)
with look-ahead information, which may be computed as in the LR(1)
method. If a state is accompanied by a set of look-ahead terminals, the parser
can decide not to add to the current sets E[i] and E[i + 1] certain pairs that
are destined to failure because they are inconsistent with the lookahead ter-
minals. At first glance this provision looks like an improvement that should
speed up recognition, especially when the grammar (or a part of it) meets the
LR(1) condition. However, in practice the number of pairs to be created and
examined by the parser may actually increase with look-ahead sets, because
of a splitting effect: a pair of the basic algorithm typically spawns multiple
pairs differing in their look-ahead sets. This increase has a computational cost
that makes the benefit of using look-ahead with Earley parsers controversial.

Finally we consider extended grammars: it is not difficult to modify the
parser in order to work with EBNF rules.12

5.4 How to Choose a Parser

We complete the presentation of parsers with a discussion of choice criteria.
For the primary technical languages compilers exist that use both deter-

ministic methods LL(1) and LR(1), the latter often in the simpler LALR(1)
variant. This witnesses that the choice between top-down and bottom-up
parsers is not really critical. In particular, computational performance differ-
ences between the two methods are small and often negligible. The following
considerations provide some hints for choosing one or the other technique.

We know from Section 5.2.9 (p. 241 and following) that the family of LR(1)
languages (also in practice the restricted LALR(1) family) is larger than
family LL(k), k � 1. Quite often the grammar listed in the official language
reference manual is not LL(1), because it contains left-recursive rules or the
guide sets of alternative rules are not disjoint. In that case choosing top-
down parsing obliges the compiler designer to transform the grammar. More
often than not, the simple transformations (such as moving recursion to the
right or left factoring introduced on p. 193) suffice to obtain an equivalent
LL(k), k � 1, grammar, because it is rarely the case that the source language
is not LL(k). But the resulting grammar is typically very different from the
original and often less readable; add to it that having two grammar versions
to manage carries higher maintenance costs when the language evolves over
time.

Another relevant difference is that a software tool (such as yacc or bison)
is needed to construct a shift-reduce parser, whereas recursive descent parsers

12 A sketch of how to do it is in [18].
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can be easily hand coded since the layout of a syntax procedure essentially
mirrors the graph of the corresponding machine. For this reason the code
of such compilers is easier to understand and may be preferred by the non-
specialist. Actually, some tools also exist for helping in designing LL parsers:
they compute guide sets and generate the stubs of recursive procedures.

An advantage of the top-down approach is its direct handling of EBNF
grammars, in contrast to the popular LR or LALR parser generation tools
that do not accept such grammars. The annoying but not serious consequence
is that the regular expressions present in the rules must be eliminated by
means of standard transformations.

A parser is not an isolated application, but it is always interfaced with
a translation algorithm (or semantic analyzer) to be described in the next
chapter. Anticipating some discussion, top-down and bottom-up parsers differ
with respect to the type of translation they can support. A formal property
of syntax-directed translation, to be presented later, makes top-down parsers
more convenient for designing simple translation procedures, obtained by
inserting output actions into the body of parsing procedures. Such one-pass
translators are less convenient to implement on top of bottom-up parsers.

If the reference grammar of the source language does not meet the LL(.) or
LR(.) conditions, the compiler designer may choose to adopt a general parser,
like Earley, instead of modifying the grammar. But he should be aware that
the parser will be slower and more memory demanding than a deterministic
one. Actually this situation is more common for natural language processing
(computational linguistic) than for programming languages, because natural
languages are much more ambiguous than artificial ones.

We should mention that other parsing algorithms exist that fall in between
deterministic parsers and general parsers with respect to generality and com-
putational performance. Derived from LL(k) top-down algorithms, parsers
exist, like ANTLR mentioned on p. 197, that may perform unbounded look-
ahead in order to decide the next move. For bottom-up parsing, a practical
almost deterministic algorithm existing in several variants is due to Tomita.13

The idea is to carry on in parallel a bounded number of alternative parsing
attempts.

Sometimes an entirely different strategy for curtailing the combinatorial
explosion of nondeterministic attempts is followed, especially when the syntax
is highly ambiguous but only one semantic interpretation is possible. In that
case it would be wasteful to construct a number of syntax trees, just to delete
at a later time all but one of them using semantic criteria. It is preferable
to anticipate semantic checks during parsing thus preventing meaningless
syntactic derivations to be carried on. Such strategy, called semantics-directed
parsing, is presented in the next chapter.

In some situations another capability is requested from a parser (more gen-
erally from a compiler): to be able to incrementally process the grammar or

13 See [54].
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the input string. As a matter of fact, the concept of incremental compilation
takes two different meanings.

Incrementality with respect to the grammar. This situation occurs when the
source language is subjected to change, implying the grammar is not fixed.
When changes are maybe minor but frequent it is rather annoying or even
impossible to create a new parser after each change. Such is the case of so-
called extensible languages, where the language user may modify the syn-
tax of some constructs or introduce new instructions. It is then mandatory
to be able to automatically construct the parser, or better to incrementally
modify the existing parser after each syntax change.14

Incrementality with respect to the source string. A more common require-
ment is to quickly reconstruct the syntax tree after some change or cor-
rection of the input string has taken place, following perhaps some error
indication provided by a previous run of the parser.

A good program construction environment should interact with the user and
allow him to edit the source text and to quickly recompile it, minimizing
time and effort. In order to reduce recompilation time after a change, incre-
mental compilation methods have been developed that are based on special
algorithms for syntax and semantic analysis. Focussing on the former, sup-
pose the parser has analyzed a text, identified some error, and produced an
error message. Then the author has done some corrections typically in a few
points.

A parser qualifies as incremental if the time it takes to analyze the cor-
rected text is much shorter than the time for parsing the first time. To this
end, the algorithm has to save the result of the previous analysis in such
form that updates can be just made in the few spots affected by changes. In
practice, the algorithm saves the configurations traversed by the pushdown
automaton recognizing the previous text and rolls back to the last configu-
ration that has not been affected by the changes to the text. From there the
algorithm resumes parsing.15

14 For this problem see [26].
15 The main ideas on incremental parsing can be found in [22, 33].



Chapter 6

Translation Semantics and Static
Analysis

6.1 Introduction

In addition to recognition and parsing, most language processing tasks per-
form some transformation of the original sentence. For instance, a compiler
translates a program from a high-level programming language, e.g., Java, to
the machine code of some microprocessor. This chapter presents a progression
of translation models and methods.

A translation is a function or more generally a mapping from the strings
of the source language to the strings of the target language. As for string
recognition, two approaches are possible. The generative point of view relies
on two coupled grammars, termed a syntactic translation schema, to generate
a pair of strings which correspond to each other in the translation. The other
approach uses a transducer, which differs from an automaton by its capability
to emit a target string.

Such methods may be termed (purely) syntactic translations. They ex-
tend and complete the language definition and parsing methods of previous
chapters, but we hasten to say they are not adequate for implementing the
rather involved translations required for typical compilers. What is lacking in
purely syntactic methods is the concern for the meaning or semantics of the
language. For that we shall present the attribute grammar model, which is
a valuable software engineering method for designing well-structured trans-
lators by taking advantage of the syntactic modularity of grammar rules.

We are going to clarify the distinction between syntax and semantics of a
language. The etymology of the two terms says rather vaguely that the former
has to do with the structure and the latter with the meaning or the message
to be communicated. In linguistics the two terms have often been taken as
emblems representing forms and contents but this reference to human studies
does not make the distinction any more precise or formal.

In the case of computer languages there is a sort of consensus on a de-
marcation line between syntactic and semantic methods. The first difference

S.C. Reghizzi, Formal Languages and Compilation,
Texts in Computer Science, DOI 10.1007/978-1-84882-050-0 6,
c© Springer-Verlag London Limited 2009
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comes from the domains of the entities and operations used by syntax ver-
sus semantics. Syntax uses the concepts and operations of formal language
theory and represents the algorithms as automata. The entities are alpha-
bets, strings, and syntax trees; the operations are concatenation, morphisms
on characters and strings, and tree construction primitives. On the negative
side, the concepts of number and arithmetic operation (sum, product, etc.)
are extraneous to syntax. On the other hand, in semantics the entities are not
a priori limited: numbers and any type of data structures available to pro-
grammers (such as tables or linked lists) may be defined and used as needed
by semantic algorithms. These can take advantage of the syntactic structure
as a skeleton for orderly processing of language components.

The second difference is the higher computational complexity of semantic
algorithms with respect to syntactic ones. We recall that the formal lan-
guages of concern to compilers belong almost exclusively to the regular and
deterministic context-free families. String recognition, parsing, and syntactic
translation are typical syntactic tasks and can be performed in linear time,
i.e., in a time proportional to the length of the source text. But such very
efficient algorithms fall short of all controls required to check program cor-
rectness with respect to the language reference manual. For instance, it is not
possible to check with a parser that an object used in a Java expression has
been consistently defined in a declaration. As a matter of fact, such control
cannot be done in linear time. This and similar operations are performed by
a compiler subsystem usually referred to as a semantic analyzer.

Going deeper into the comparison, the distinction between syntax and
semantic models is imposed by pragmatic considerations. In fact, it is well-
known from computational theory that any computable function, such as the
one deciding whether a source string is a valid Java program, can in principle
be realized by a Turing machine. This is for sure a syntactic formalism since
it operates just on strings and uses the basic operations of formal language
theory. But in practice a Turing machine is too complicated to program for
any realistic problem, least for compilation.

Years of attempts at inventing grammars or automata that would allow
some of the usual semantic controls to be performed by the parser, have shown
that the legibility and convenience of syntactic methods rapidly decay, as soon
as the model goes beyond context-free languages and enters the context-
dependent (p. 87) range of languages. In other words, practical syntactic
methods are limited to the context-free range.

6.1.1 Chapter Outline

The word translation signifies a correspondence between two texts in different
languages, having the same meaning. Many cases of translation occur with
artificial languages: compilation of a programming language to machine code,
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transformation of an HTML document to the PDF format used for portable
documents, etc.. The given text and language are termed the source and the
other text and language are the target.

In our presentation, the first grade of translation to be considered will be
an abstract mapping between two formal languages. The second grade are the
translations obtained by applying local transformations to the source text,
such as replacing a character with a string in accordance with a transliter-
ation table. The third grade consists of the translations defined by regular
expressions and finite transducers that are finite automata enriched with an
output function. The fourth grade presents the syntactic translation schemata
or translation grammars that differ from the previous grade by the use of a
context-free grammar instead of a regular expression for defining the source
and target languages. Such translations are also characterized by the ab-
stract machine computing them, the pushdown transducer, that can be im-
plemented using the parsing algorithms of previous chapters.

All previous classes of translations are purely syntactic and fall short of
the requirements of compilation, as various typical transformations to be
performed cannot be expressed with such methods. Nevertheless, syntactic
translation models are important as a conceptual foundation of the actual
methods used in compilation. Moreover, they have another use as a method
for abstracting from the concrete syntax in order to manifest similarities
between languages.

It is enlightening to show a structural analogy between the theories of
previous chapters and of the present one. At the level of set theoretical defi-
nition: the set of sentences of the source language becomes the set of matching
pairs (source string, target string) of the translation relation. At the level of
generative definition: the language grammar becomes a translation grammar
generating pairs of source/target strings. Finally, at the level of operational
definitions: the finite or pushdown automaton or parser recognizing a lan-
guage becomes a translator computing the transformation. Such conceptual
correspondences will clearly surface in this chapter.

The fifth and last conceptual model is the syntax-directed semantic trans-
lation, a semiformal approach based on the previous models. This makes a
convenient engineering method for designing well-structured modular transla-
tors. Its presentation relies on attribute grammars consisting of a combination
of syntax rules and semantic functions.

Several typical examples will be presented. A lexical analyzer or scan-
ner is specified by the addition of simple semantic attributes and functions
to a finite transducer. Other important examples are: type control in ex-
pressions, translation of conditional instructions into jumps, and semantic-
directed parsing.

The last part of the chapter presents another central method of language
compilers, namely, static program analysis. This analysis applies to exe-
cutable programs rather than to generic technical languages. The flowchart
or control flow graph of the program to be analyzed is viewed as a finite
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automaton. Static analysis detects on this automaton various properties of
the program related to correctness or needed to perform program optimiza-
tions. This final topic completes the well-balanced exposition of elementary
compilation methods.

6.2 Translation Relation and Function

We introduce some notions from the mathematical theory of translations1

that suffice for the scope of the book.
Let the source and target alphabets be respectively denoted by Σ and Δ.

A translation is a correspondence between source and target strings, to be
formalized as a binary relation between the universal languages Σ∗ and Δ∗,
that is, as a subset of the cartesian product Σ∗ × Δ∗.

A translation relation ρ is a set of pairs of strings (x, y), with x ∈ Σ∗ and
y ∈ Δ∗:

ρ = {(x, y), . . .} ⊆ Σ∗ × Δ∗

We say that the target string y is the image or translation of the source string
x and that the two strings correspond to each other in the translation. Given
a translation relation ρ, the source language L1 and target language L2 are
respectively defined as the projection of the relation on the first and second
component:

L1 = {x ∈ Σ∗ | for some y : (x, y) ∈ ρ}
L2 = {y ∈ Δ∗ | for some x : (x, y) ∈ ρ}

Alternatively a translation can be formalized by taking the set of all the
images of each source string. Then a translation is a function τ :

τ : Σ∗ → powerset of Δ∗; τ(x) = {y ∈ Δ∗ | (x, y) ∈ ρ}

where ρ is a translation relation. This function maps a source string on the
set of its images, that is, on a language.

Notice that the repeated application of the function to each string of the
source language produces a set of languages; their union gives the target
language:

L2 = τ(L1) =
⋃

x∈Σ∗

τ(x)

In general a translation is not a total function, i.e., for some strings over the
source alphabet the translation function is undefined. A simple expedient to
make the function total is to posit that where τ(x) is undefined, it is assigned
the value error.

1 A rigorous presentation can be found in Berstel [8] and in Sakarovitch [46].



6.2 Translation Relation and Function 263

A particular but practically most important case occurs when the image of
each string is unique.

The inverse translation τ−1 : Δ∗ → Σ∗ maps the target strings on the
source ones:

τ−1(y) = {x ∈ Σ∗ | y ∈ τ(x)}

Depending on the mathematical properties of the function, the following cases
arise for a translation:

• total: any source string has an image;
• single-valued: no string has two distinct images;
• multi-valued : some source string has two images;
• injective: distinct source strings have distinct images or, differently stated,

any target string corresponds to at most one source string; in this case the
inverse translation is single-valued;

• surjective: a function is surjective when the image coincides with the range,
that is, when any string over the target alphabet is the image of at least
one source string;

• bijective: the correspondence between source and target strings is one to
one.

To illustrate, consider a high-level, say Java, source program and its image
in the code of a certain machine. Clearly the translation is total because any
valid program can be compiled to machine code and any incorrect program
has the value error (i.e., a diagnostic) for image.
Such translation is multi-valued because usually the same Java statement
admits several different machine code realizations.
The translation is not injective because two source programs may have the
same machine code image: just think of two while and for loops translated
to the same code that uses conditional and unconditional jumps.
The translation is not surjective since some machine programs operating on
special hardware registers cannot be expressed by Java programs.

On the other hand, if we consider a particular compiler from Java to
machine code, the translation is totally defined as before and in addition
is single valued, because the compiler chooses exactly one out of the many
possible machine implementations of the source program.
The translation is not necessarily injective (for the same reasons as above)
and certainly is not surjective, because a typical compiler does not use all
the instructions of a machine.

A decompiler reconstructs a source program from a given machine pro-
gram. Notice that this translation is not the reverse translation of the com-
pilation, because compiler and decompiler are independently designed algo-
rithms and are unlikely to make the same design decisions for their mappings.
A trivial example: the decompiler δ, given a machine program τ(x) produced
by the compiler τ , will output a Java program δ(τ(x)) that almost certainly
differs from x with respect to the presence of blank spaces!
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Since compilation is a mapping between two languages which are not finite,
it cannot be specified by the exhaustive enumeration of the corresponding
pairs of source/target strings. The chapter continues with a gradual presen-
tation of methods to specify and implement such infinite translations.

6.3 Transliteration

A naif way to specify text transformations is to apply in each position of the
source string a local mapping. The simplest transformation is the translit-
teration or alphabetic homomorphism, introduced in Chapter 2, p. 80. Each
source character is transliterated to a target character (or more generally to
a string).

Let us read example 2.83 on p. 81 anew. The translation defined by an
alphabetic homomorphism is clearly single-valued whereas the inverse trans-
lation may or may not be single-valued; in the example the little square � is
the image of any Greek letter, hence the inverse translation is multi-valued:

h−1(�) = {α, . . . , ω}

If the homomorphism erases a letter, i.e., it maps it to the empty string, as
happens with characters start-text, end-text, the inverse translation is multi-
valued because any string made with erasable characters can be inserted in
any text position.

If the inverse function too is single-valued, the source/target mapping is
a one-to-one or bijective function and it is possible to reconstruct the source
string from a given target string. This situation occurs when encryption is
applied to a text. A historical example defined by transliteration is Julius
Caesar’s encryption method that replaces a letter at position i, with i =
1, ..., 26, in the Latin alphabet, by the letter at position (i+k) mod 26, where
k is the secret key, a constant.

To finish we stress that transliteration transforms a letter to another one,
totally ignoring the context of occurrence. It goes without saying that such
process falls short of the needs of compilation.

6.4 Regular Translations

Regular expressions can be modified in order to specify a translation rela-
tion, by a simple change: the arguments of the expression, instead of being
characters as customary, are pairs of source/target strings. Then a sentence
generated by such regular expression is a sequence of pairs; by separating the
source component of each pair from the target one we obtain two strings,
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which can be interpreted as a pair belonging to the translation relation.
In this manner such regular expression defines a translation relation to be
called regular or rational.

Example 6.1. Consistent transliteration of an operator
The source text is a list of numbers separated by a division sign “/” . The
translation may replace the sign by either one of the signs “:” or “÷”, but it
must consistently choose the same sign throughout. For simplicity we assume
the numbers to be unary. The alphabets are

Σ = {1, /} Δ = {1,÷, :}

The source strings have the form c(/c)∗, where c stands for a unary number,
1+. Two valid translations are

(3/5/2, 3 : 5 : 2), (3/5/2, 3 ÷ 5 ÷ 2)

On the contrary, (3/5/2, 3 : 5 ÷ 2) is wrong, because division signs are
differently transliterated.

Notice this translation cannot be expressed by a homomorphism, since
the image of the division sign is not single-valued. Incidentally the inverse
translation is an alphabetic homomorphism. The regular expression of the
translation is

(1, 1)+
(

(/, :)(1, 1)+
)∗ ∪ (1, 1)+

(

(/,÷)(1, 1)+
)∗

For readability, it is convenient to write the matching pairs as fractions, with
the source string over the target string:

(

1
1

)+
(

/

:

(

1
1

)+
)∗

∪
(

1
1

)+
(

/

÷

(

1
1

)+
)∗

The terms produced by applying a derivation are strings of fractions, i.e.,
string pairs, e.g., /

÷ . Consider the derived string

1
1

/

÷
1
1

1
1

and project it on the top and bottom components thus obtaining the pair of
source/target strings (1/11, 1 ÷ 11).

Definition 6.2. A regular or rational translation expression (r.t.e.) r is a reg-
ular expression with union, concatenation, star (and cross) operators, having
as arguments some pairs (u, v), also written as u

v , where u and v are possibly
empty strings respectively on the source and on the target alphabet.

Let C ⊂ Σ∗ × Δ∗ be the set of pairs (u, v) occurring in the expression.
The regular or rational translation relation defined by the r.t.e. consists of
the pairs (x, y) of source/target strings such that:
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• there exists a string z ∈ C∗ in the regular set defined by r;
• x and y are respectively the projection of z on the first and second com-

ponent.

It is straightforward to see that the set of source strings defined by an r.t.e.
(as well as the set of target strings) is a regular language. But notice that not
every translation relation, having as source and target languages two regular
sets, can be defined with an r.t.e.: an example, to be discussed later, is the
relation mapping each string to its mirror string.

6.4.1 Two-Input Automaton

Since the set C of pairs occurring in an r.t.e. can be viewed as a new ter-
minal alphabet, the regular language over C can be recognized by a finite
automaton, as illustrated in the coming example.

Example 6.3. Example 6.1 continued
The recognizer of the regular translation relation is shown in Figure 6.1.

q0 q1 q2 q3

q4 q5

→

↓

→

→

1
1

1
1

�

:

1
1

1
1

�

:�

÷

1
1

1
1

�

÷

Fig. 6.1 2I-automaton of the r.t.e. of examples 6.1 and 6.3.

This automaton can be viewed as a machine with two read-only input tapes,
in short a 2I-machine, each one with an independent reading head, respec-
tively containing the source string x and the target string y. Initially the
heads are positioned on the first characters and the machine is in the start-
ing state. The machine performs as specified by the state-transition graph;
e.g.,in q1, reading a slash “�” from the source tape and a sign “÷” from
the target tape, the automaton moves to state q4 and shifts both heads by
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one position. If the machine reaches a final state and both tapes have been
entirely scanned, the pair (x, y) belongs to the translation relation.2

This automaton can check that two strings such as

(11�1, 1 ÷ 1) ≡ 11�1
1 ÷ 1

do not correspond in the translation, because the computation

q0

1
1−→ q1

admits no continuation with the next pair, 1
÷ .

It is sometimes convenient to assume each tape is delimited to the right by
a reserved character marking the end.

At first glance, regular translation expressions and two-input machines
may seem to be the wrong idealizations for modelling a compiler, because
in compilation the target string is not given but must be computed by the
translator. Yet this conceptualization is valuable for specifying some simple
translations, and also as a rigorous method for studying translation functions.
Moreover, it offers a unified viewpoint towards the translations computed by
lexical and syntactic analyzers.

Forms of Two-Input Automata

When designing a two-input recognizer we can assume without loss of gen-
erality that each move reads exactly one source character while it may read
zero or more characters from the target tape.

Definition 6.4. 2I-automaton.
A finite automaton with two inputs or 2I-automaton is defined as a usual
finite automaton (p. 110) by a set of states Q, an initial state q0 and a set
F ⊆ Q of final states. The transition function is

δ : (Q × Σ × Δ∗) → powerset of Q

If q′ ∈ δ(q, a, u), the automaton has a move that reads a from the first tape
and u ∈ Δ∗ from the second one, and enters the next state q′. The condition
for recognition is that a computation reaches a final state.

Imagine now to project the arc labels of a 2I-automaton on the first com-
ponent. The resulting automaton has just one input tape with symbols from
the source alphabet Σ and is termed the input automaton subjacent to the
original machine; it recognizes the source language.

2 This model is known as a Rabin and Scott machine. For greater generality such machine
may be equipped with more than two tapes in order to define a relation between more
than two languages.
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Sometimes another normal form of a 2I-automaton is used characterized
by the fact that each move reads exactly one character either from the source
or from the target tape, but not from both. More precisely the arc labels are
of the following types:

a

ε
, a ∈ Σ, read from source

ε

b
, b ∈ Δ, read from target

This means that a normal form machine shifts only one head per move. It
is to be expected that such normalization may often increase the number of
states because a nonnormalized move

q r

a
b

is replaced by a cascade of normalized moves

q qr r

a
ε

ε
b

where qr is a new state.
On the other hand, in order to make the model more expressive and con-

cise, it is convenient to allow regular translation expressions as arc labels. As
for finite automata, this generalization does not change the computational
power but helps in hiding the details of complicated examples.
Finally a short notation: in an arc label we usually drop a component when
it is the empty string. Thus we may write

a∗b

d
| a∗c

e

in place of
a∗

ε

b

d
| a∗

ε

c

e

This expression says that a sequence of a’s, if followed by b, is translated to
d; if it is followed by c, it is translated to e.

Equivalence of Models

In agreement with the well-known equivalence of regular expressions and
finite automata, we state a corresponding property for translations.

Property 6.5. The families of translations defined by regular translation ex-
pressions and by finite (nondeterministic) 2I-automata coincide.
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We recall that an r.t.e. defines a regular language R over an alphabet con-
sisting of a finite set of pairs of strings (u, v) ≡ u

v , where u ∈ Σ∗, v ∈ Δ∗. By
separately extracting from each string in R the source and target elements,
we obtain a crisp formulation of the relation between source and target lan-
guages.

Property 6.6. Nivat theorem.
The following conditions are equivalent:

1. The translation relation ρ ⊆ Σ∗ × Δ∗ is regular.
2. There exists an alphabet Ω, a regular language R over Ω and two alpha-

betic homomorphisms h1 : Ω → Σ ∪ {ε} and h2 : Ω → Δ ∪ {ε} such
that

ρ = {(h1(z), h2(z)) | z ∈ R}

3. If the source and target alphabets are disjoint, there exists a regular lan-
guage R′ over the alphabet Σ ∪ Δ such that

ρ = {(hΣ(z), hΔ(z)) | z ∈ R′}

where hΣ and hΔ are respectively the projections from the alphabet Σ∪Δ
to the source and target alphabets.

Example 6.7. Division by two
The image string is the halved source string. The translation relation {(a2n, an) |
n � 1} is defined by r.t.e.

(aa

a

)+

An equivalent 2I-automaton A is shown below:

q0 q1 q2→ →
a
ε

a
a

a
ε

To apply the Nivat theorem (statement 2), we derive from automaton A the
following r.t.e.:

(a

ε

a

a

)+

and we rename for clarity the pairs:

a

ε
= c

a

a
= d

Next consider the alphabet Ω = {c, d}. The r.t.e. defines the regular language
R = (cd)+, obtained replacing each fraction with a character of the new
alphabet. The alphabetic homomorphisms

h1 h2

c a ε
d a a
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produce the intended translation relation. Thus, for z = cdcd ∈ R, we have
h1(z) = aaaa and h2(z) = aa.

To apply case 3. of the theorem, change first the target alphabet to
Δ = {b}, to make the two alphabets disjoint, and redefine the translation
as {(a2n, bn) | n � 1}. Propagating the change to the r.t.e.

(a

ε

a

b

)+

we obtain the regular language R′ ⊆ (Σ ∪ Δ)∗ to be used in the statement.
Concatenating the strings occurring at the numerator and denominator, then
erasing the fraction lines, we have

R′ = (aaεb)+ = (aab)+

The projections of this language on the source and target alphabets define
the source/target string mapping.

Applying the well-known equivalence of finite automata and right-linear
grammars (p. 106), we can represent a 2I-automaton by a so-called transla-
tion grammar . We illustrate with the previous example:

S → a
ε Q1 Q1 → a

aQ2 Q2 → a
ε Q1 | ε

Each grammar rule corresponds to a move of the 2I-automaton. Rule Q2 → ε
is a short notation for Q2 → ε

ε .
The notation using a translation grammar instead of a 2I-automaton or a
r.t.e. will be preferred for the syntactic translations, which have a context-free
grammar as their support.

Several but not all properties of regular languages have an analogous for-
mulation for regular translation relations.3 Thus the union of regular trans-
lation relations, but not always their intersection and set difference, yields a
regular translation relation; and for such relations it is possible to formulate
a pumping lemma similar to the one for regular languages on p. 73.

6.4.2 Translation Functions and Finite Transducers

It is time to abandon the overly static perspective of a translation as a relation
between two strings and to focus instead on the process of translation viewing
an automaton as an algorithmic implementation of a translation function.
The model offering this perspective is the finite transducer or IO-automaton.
This machine reads the source string from the input tape and writes the
image on the output tape. We shall mostly study single-valued translation and

3 See the books [8, 46].
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especially those that are computed by deterministic machines. We introduce
the model by an example.

Example 6.8. Nondeterministic translation
It is required to translate a string an to the image bn, if n is even, or to cn,
if n is odd. The relation

ρ = {(a2n, b2n) | n � 0} ∪ {(a2n+1, c2n+1) | n � 0}

defines the translation function

τ(an) =
{

bn, n even
cn, n odd

The r.t.e. is
(

a2

b2

)∗
∪ a

c

(

a2

c2

)∗

A simple deterministic two-input automaton recognizes this relation:

q2 q1 q0 q3 q4

↓

↓↓ ↓

a
b

a
c

a
b

a
b

a
c

a
c

To check for determinism, observe that only state q0 has two outgoing arcs
but their labels are different.4 Therefore the 2I-machine can deterministically
decide if a pair of strings memorized on the two tapes, such as aaaa

bbbb , are one
the image of the other in the translation relation.

Although the transducer or IO-automaton has the same graph as the 2I-

automaton, the meaning of an arc q0

a
b−→ q1 is entirely different: in state

q0 it reads a from the input, writes b to the output, and enters state q1. We

observe that arc q0

a
c−→ q3 instructs the machine to perform a different action,

while reading the same character a in the same state q0. In other words the
choice between the two moves is not deterministic. As a consequence, two
computations are possible for the input string aa:

q0 → q1 → q2; q0 → q3 → q4

but only the former succeeds in reaching a final state and only its output
is considered: τ(aa) = bb. Notice that the nondeterminism of the transducer
shows up in the input automaton subjacent to the transducer, which is non-
deterministic.

Moreover, it should be intuitively clear that the requested translation can-
not be done by a deterministic finite transducer because the choice of the

4 If the 2I-automaton has some moves that do not read from either tape, the determinism
condition has to be formulated more carefully, see e.g.,[46].
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character to emit may only be done when the input has been entirely scanned,
but then it is too late to decide how many characters have to be output.

To sum up the findings of this example, there are single-valued regular trans-
lations which cannot be computed by a deterministic finite IO-automaton.
This is a striking difference with respect to the well-known equivalence of
deterministic and nondeterministic models of finite automata.

Sequential Transducers

In some applications it is necessary to efficiently compute the translation
in real time, implying that the translator must produce the output while
scanning the input. At last, when the input is finished, the automaton may
append to the output a finite piece of text that depends on the final state
reached. This is the behavior of a sort of deterministic machine 3 called a
sequential transducer. 5

Definition 6.9. A sequential transducer or IO-automaton T is a determin-
istic machine defined by a set Q of states, the source alphabet Σ and target
alphabet Δ, the initial state q0, and a set F ⊆ Q of final states.
Moreover, there are three single-valued functions:

1. the state transition function δ computes the next state;
2. the output function η computes the string to be emitted in a move;
3. the final function ϕ computes the last suffix to be appended to the target

string at termination.

The function domains are

δ : Q × Σ → Q, η : Q × Σ → Δ∗, ϕ : F × {�} → Δ∗

In the graphical presentation the two functions δ(q, a) = r and η(q, a) = u

are represented by arc q©
a
u−→ r©, which means: in state q, reading character

a, emit string u and move to state r.
The final function ϕ(r,�) = v means: when the source string has been entirely
scanned, if the final state is r, then write string v.
For a source string x, the translation τ(x) computed by T is the concatenation
of two strings, produced by the output function and by the final one:

τ(x) = {yz ∈ Δ∗ | ∃ a labelled computation
x

y
ending in state r ∈ F

∧ z = ϕ(r,�)}

The machine is deterministic because the input automaton 〈Q, Σ, δ, q0, F 〉
subjacent to T is deterministic and the output and final functions are single-
valued.
5 This is the terminology of [46]; others [8] call subsequential the same model.
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However, the condition that the subjacent input automaton be determin-
istic does not ensure by itself that the translation is single-valued, because
between two states of T there may be an arc labelled a

{b}∪{c} , causing the
output to be nonunique.

We call sequential a translation function computable by a sequential trans-
ducer.

Example 6.10. Meaningless zeros
The source text is a list of binary integers separated by a blank (b). The single-
valued translation deletes all meaningless zeros. The translation is defined by
the r.t.e.:

((

0+

0
|
(

0
ε

)∗ 1
1

(

0
0
| 1

1

)∗)
b

b

)∗(0+

0
|
(

0
ε

)∗ 1
1

(

0
0
| 1

1

)∗) �
ε

The equivalent sequential transducer is in Figure 6.2. The final function ϕ
writes nothing in final state q1, whereas it writes 0 in state q2.

q0

q1 q2

↓

↓ ε
0

↓

1
1

0
ε

b
b

0
0
| 1

1

b
0b

1
1

0
ε

Fig. 6.2 Sequential transducer (IO-machine) of example 6.10.

Examples of computation. When translating 00b01, the machine traverses
the states q0q2q2q0q2q1q3 and writes ε.ε.0b.ε.1.ε = 0b1. For source string 00
the machine traverses the states q0q2q2, writes ε.ε, and at last writes 0.

We show a second example of sequential transducer that makes an essential
use of the final function to compute the translation specified by:

τ(an) =
{

e, n even
o, n odd

The sequential transducer has two states, both final, corresponding to the
classes of parity of the source strings. The machine writes nothing while it
commutes from one state to the other; at the end, depending on the final
state, it writes e or o.

To conclude, we mention a practically relevant property: the composition
of two sequential functions is a sequential function. This means that the
cascade composition of two sequential transducers can be replaced by just
one (typically larger) transducer of the same kind.
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Two Opposite Passes

Given a single-valued translation, specified by a regular translation expression
or by a 2I-automaton, we have seen that it is not always possible to implement
the translation by means of a sequential transducer, i.e., a deterministic IO-
automaton. On the other hand, even in such cases, the translation can always
be implemented by two cascaded (deterministic) sequential passes, scanning
the string in opposite directions. In the first pass a sequential transducer
converts the source string to an intermediate string. Then in the second pass
another sequential transducer scans the intermediate string from right to left
and produces the specified target string.

Example 6.11. Regular translation by two opposite passes (example 6.8 on p.
271 continued)
We recall the translation of string an to bn, if n is even, to cn, if n is odd,
cannot be deterministically computed by an IO-automaton. The reason is
that just at the end the parity class of the string becomes known, but then
it is too late for writing the output because number n exceeds the mem-
ory capacity of the machine. We show an implementation by two cascaded
sequential transducers scanning their respective input in opposite directions.

The first sequential machine computes the intermediate translation:

τ1 =
( a

a′
a

a′′

)∗ [ a

a′

]

which maps to a′ (resp. to a′′) a character a occurring at odd (resp. even)
position. The last term may be missing.

The second transducer scans the intermediate text from right to left and
computes the translation:

τ2 =
(

a′′

b

a′

b

)∗
∪
(

a′

c

a′′

c

)∗
a′

c

where the choice between the two alternatives is controlled by the first char-
acter being a′ or a′′ in the reversed intermediate string. Thus for the source
string aa we have

τ2

(

(τ1(aa))R
)

= τ2

(

(a′a′′)R
)

= τ2(a′′a′) = bb

We anticipate that a cascade of reversely operating sequential transducers is
equivalent to a transducer equipped with a pushdown stack, a more powerful
model to be studied soon.

In several applications the computing capacity of the sequential translator
model is adequate to the intended job. In practice, the sequential transducer
is often enriched with the capability to look-ahead on the input string, in
order to anticipate the choice of the output to be emitted. This enhancement
is similar to what has been extensively discussed for parsing. The model of
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sequential translator with look-ahead is implemented by widespread compiler
construction tools such as lex and flex .6

6.5 Purely Syntactic Translation

The sequential translations of the previous section are within the reach of a
deterministic algorithm with a finite memory, scanning the source text from
left to right. But surely the finite memory hypothesis is too constraining for
a majority of practically relevant text transformations. Possibly the simplest
example is string reflection. The relation {(x, xR) | x ∈ (a | b)∗} is not
regular, by two reasonings. First, the source string must be stored in an
unbounded memory before producing the translation. Second, in view of the
Nivat theorem (more precisely statement 3 on p. 269), if we concatenate the
source string x and the target string y = (x′)R, recoded in the alphabet
{a′, b′} disjoint from the source alphabet, the set of such strings is context-
free but not regular.
This and other relevant transformations can be easily obtained by the next
model of syntactic translation schemata or translation grammars.

Since the source language is defined by a grammar, it is natural to con-
sider a translation model where each syntactic component, i.e., a subtree, is
individually mapped to a target component. The latter are then assembled
into the target syntax tree that represents the translation. Such structural
translation is now formalized as a mapping scheme, relating source grammar
rules with target grammar rules.

Definition 6.12. A translation grammar G = (V, Σ, Δ, P, S) is a context-
free grammar having as terminal alphabet a set C ⊆ Σ∗ × Δ∗ of pairs (u, v)
of source/target strings, also written as a fraction u

v .
The translation relation ρ(G) defined by grammar G is

ρ(G) = {(x, y) | ∃z ∈ L(G) ∧ x = hΣ(z) ∧ y = hΔ(z)}

where hΣ : C → Σ and hΔ : C → Δ are the projections from the terminal
alphabet of the grammar to the source and target alphabets.
Such translation is termed context-free or algebraic.7

The syntactic translation scheme associated with the translation grammar is
a set of pairs of source/target syntax rules, obtained by respectively cancelling
from the rules of G the characters of the target alphabet or of the source
alphabet. The set of source/target rules respectively comprise the source
grammar G1 and the target grammar G2 of the translation scheme.

6 For a formalization of look-ahead sequential transducers we refer to Yang [58].
7 Another historical name for such translations is simple syntax-directed translations.
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A translation grammar and a translation scheme are just notational variations
of the same model. Intuitively a pair of corresponding source/target strings
are obtained taking a sentence z generated by G and projecting on the two
alphabets.

Example 6.13. Translation grammar for reflection
Take string aab; its translation is the mirror string baa. The translation gram-
mar G is

S → a

ε
S

ε

a
| b

ε
S

ε

b
| ε

ε

Equivalently, the translation grammar can be replaced with the translation
scheme:

Source grammar G1 Target grammar G2

S → aS S → Sa
S → bS S → Sb
S → ε S → ε

The two columns list the source and target grammars and each row contains
two corresponding rules. For instance, the second row is obtained by the
projections

hΣ

(

S → b

ε
S

ε

b

)

= S → bS

and

hΔ

(

S → b

ε
S

ε

b

)

= S → Sb

To obtain a pair of corresponding strings in the translation relation, we con-
struct a derivation

S ⇒ a

ε
S

ε

a
⇒ a

ε

a

ε
S

ε

a

ε

a
⇒ a

ε

a

ε

b

ε
S

ε

b

ε

a

ε

a
⇒ a

ε

a

ε

b

ε

ε

ε

ε

b

ε

a

ε

a
= z

and then project the sentence z of L(G) on the two alphabets

hΣ(z) = aab, hΔ(z) = baa

Otherwise, using the translation scheme, we generate a source string by a
derivation of G1 and its image by a derivation of G2, paying attention to use
corresponding rules at each step.

The reader may have noticed that the preceding translation grammar is al-
most identical to the grammar of palindromes. The latter, marking with a
prime the characters in the second half of a string, becomes

Gp = {S → aSa′ | bSb′ | ε}

Recoding a
ε as a, b

ε as b, ε
a as a′, and ε

b as b′, the two grammars G and
Gp coincide. This remark leads to the next property, which is a sort of re-
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statement of the Nivat theorem for the case of context-free instead of regular
translations.

Property 6.14. Context-free language and translation.
The following conditions are equivalent:

1. The translation relation ρ ⊆ Σ∗×Δ∗ is defined by a translation grammar
G.

2. There exist an alphabet Ω, a context-free language L over Ω, and two
alphabetic homomorphisms (transliterations) h1 : Ω → Σ and h2 : Ω → Δ
such that

ρ = {(h1(z), h2(z)) | z ∈ L}

3. If the alphabets Σ and Δ are disjoint, there exists a context-free language
L over the united alphabets Σ ∪ Δ, such that

ρ = {(hΣ(z), hΔ(z)) | z ∈ L}

where hΣ and hΔ are the respective projections of alphabet Σ ∪Δ on the
source and target alphabets.

Example 6.15. Example 6.13 continued
We illustrate with the translation of string x ∈ (a | b)∗ to its mirror.
From condition 2., the translation can be expressed using the alphabet
Ω = {a, b, a′, b′}, and the following language (quite similar to palindromes):

L = {u(uR)′ | u ∈ (a | b)∗} = {ε, aa′, . . . , abbb′b′a′, . . .}

where (v)′ is the primed copy of string v. The homomorphisms are

h1 h2

a a ε
b b ε
a′ ε a
b′ ε b

Then the string abb′a′ ∈ L is transliterated to the two strings

(h1(abb′a′), h2(abb′a′)) = (ab, ba)

belonging to the translation relation.

6.5.1 Infix and Polish Notations

A relevant application of context-free translation is to convert back and forth
between various representations of arithmetic (or logical) expressions, differ-
ing by the relative positions of operands and signs and by the use of paren-
theses or other delimiters.
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The degree of an operator is the number of arguments or operands it may
have. The degree can be fixed or variable and in the latter case the operator
is called variadic. Degree two or binary operators are the most common;
for instance, comparison operators, such as equal or nonequal, are binary.
Arithmetic addition has a degree � 1; but in a typical machine language the
add operation is binary, since it adds two registers. Moreover, since addition is
usually assumed to satisfy the associative property, a many operand addition
can be decomposed in a series of binary additions, to be performed, say, from
left to right.

Arithmetic subtraction provides an example of noncommutative binary op-
eration, whereas a change of sign (as in −x) is a unary operation. If the same
sign “−” is used to denote both operations, the operator becomes variadic,
with degree one or two.

Examining now the relative positions of signs and operands, we have the
following cases. An operator is prefix if it precedes its arguments, it is postfix
if it follows them.

A binary operator is infix if it is placed between its arguments. One may
also generalize the notion of being infix to higher degree operators. An op-
erator of degree n � 2 is mixfix if its representation can be segmented into
n + 1 parts

o0 arg1 o1 arg2 . . . on−1 argn on

that is, if the arguments list starts with an opening mark o0, is followed by
(n− 1) (possibly different) separators oi, and terminates with a closing mark
on. The opening and closing marks are sometimes missing.

For instance, the conditional operator of programming languages is mixfix
with degree two, or three if the “else” clause is present:

if arg1 then arg2 [ else arg3]

Because of the varying degree, this representation is ambiguous, if the sec-
ond argument can be in turn a conditional operator (as seen on p. 55). In
certain languages, e.g., ADA, to remove ambiguity, the conditional construct
is terminated by a closing mark “end if”.
In machine language the binary conditional operator is usually represented
in prefix form by an instruction such as

jump if false arg1 arg2

More generally every machine instruction is of the prefix type since it begins
with an operation code, and it is of fixed degree because a fixed number of
instruction fields is set for the operands.



6.5 Purely Syntactic Translation 279

A representation is called polish8 if it does not use parentheses and if
the operators are all prefix or all postfix. The elementary grammar of polish
expression is printed on p. 50.

The next example shows a frequent transformation performed by compilers
to eliminate parentheses, by converting an arithmetic expression from infix
to polish notation. For simplicity, we prefer to use disjoint source/target
alphabets, thus avoiding the need of fractions in the rules.

Example 6.16. From infix to prefix operators
The source language comprises arithmetic expressions with (infix) addition
and multiplication, parentheses, and the terminal i denoting a variable iden-
tifier. The translation is to polish prefix: operators are moved to the prefix
position, parentheses disappear, and identifiers are transcribed to i′.

Alphabets:

Σ = {+,×, (, ), i} Δ = {add , mult , i′}

Translation grammar:

E → add T + E | T T → mult F × T | F F → (E) | ii′

Notice that E → add T + E abridges E → ε
addT +

ε E , with no confusion
because the alphabets are disjoint.

The equivalent translation scheme is

Source grammar G1 Target grammar G2

E → T + E E → add TE
E → T E → T
T → F × T T → mult FT
T → F T → F
F → (E) F → E
F → i F → i′

An example of translation is the source-target syntax tree in Figure 6.3.
Imagine to erase the dashed part of the tree, then the source syntax tree of
(i+ i)× i, as the parser would construct using the source grammar G1, shows
up. Conversely, erasing from the tree the leaves of the source alphabet and
their edges, we would see a tree generated by the target grammar for the
image string: mult add i′i′i′.

8 From the nationality of the logician Jan Lukasiewicz, who proposed its use for compacting
and normalizing logical formulas.
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E

T

mult F

( E

add T

F

i i′

+ E

T

F

i i′

)

× T

F

i i′

Fig. 6.3 Source-target tree generated by the translation grammar of example 6.16.

Construction of Target Syntax Tree

In a translation scheme the rules of the two grammars are in one-to-one
correspondence. We observe that corresponding rules have identical left parts
and, in their right parts, the nonterminal symbols occur in identical order.

Given a translation grammar, in order to compute the image of a source
sentence x, we do the following. First we parse the string, using grammar G1,
constructing the source syntax tree tx of x (which is unique if the sentence
is unambiguous). Then we traverse tree tx, in some suitable order such as
pre-order. At each step, if the current node of the tree has a certain grammar
rule of G1, we apply the corresponding rule of grammar G2, thus appending
some sibling nodes to the target syntax tree. At the end of visit the target
tree is complete.

Abstract Syntax Tree

Syntactic translations are a convenient method for trimming and transform-
ing source syntax trees, to remove elements that are irrelevant for later stages
of compilation, and to reformat the tree as needed. This transformation is
an instance of a language abstraction (p. 25). A case has already been con-
sidered: elimination of parentheses from arithmetic expressions. One can eas-
ily imagine other cases, such as elimination or recoding of separators be-
tween elements of a list; or of the mixfix keywords of conditional instructions
if . . . then. . . else. . . end if. The result of such transformation is called an ab-
stract syntax tree.
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6.5.2 Ambiguity of Source Grammar and Translation

We have already observed that a majority of applications are concerned with
single-valued translations. However, if the source grammar is ambiguous, a
sentence admits two different syntax trees, each one corresponding to a target
syntax tree. Therefore the sentence will have two, generally different, images.

Example 6.17. Redundant parentheses
A case of multi-valued translation is exhibited by the conversion from prefix
polish to infix notation, the latter using parentheses. It is straightforward to
write the translation scheme, as it is the inverse translation of example 6.16
on p. 279; therefore it suffices to interchange source and target grammars,
obtaining

Source grammar G1 Target grammar G2

E → add TE E → T + E
E → T E → T
T → mult FT T → F × T
T → F T → F
F → E F → (E)
F → i′ F → i

Here the source grammar G1 has an unbounded degree ambiguity, coming
from the circular derivation

E ⇒ T ⇒ F ⇒ E

For instance, consider the multiple derivations of the source string i′:

E ⇒ T ⇒ F ⇒ i′, E ⇒ T ⇒ F ⇒ E ⇒ T ⇒ F ⇒ i′, . . .

each one produces a distinct image:

E ⇒ T ⇒ F ⇒ i, E ⇒ T ⇒ F ⇒ (E) ⇒ (T ) ⇒ (F ) ⇒ (i), . . .

The fact is hardly surprising since in the conversion from prefix to infix one
can insert as many pairs of parentheses as he wishes, but the translation
scheme does not prescribe their number and allows insertion of redundant
parentheses.

On the other hand, suppose the source grammar is unambiguous, so that
any sentence has a unique syntax tree. Yet it may happen that the translation
is multi-valued, if in the translation schema different target rules correspond
to the same source rule. An example is the next translation grammar:

S → a

b
S | a

c
S | a

d

where G1 = {S → aS | a} is nonambiguous, yet the translation τ(aa) =
{bd, cd} is not single-valued, because the first two rules of the translation
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grammar correspond to the same source rule. The next statement gives suf-
ficient conditions for avoiding ambiguity.

Property 6.18. Let G = (G1, G2) be a translation grammar such that

1. the source grammar G1 is unambiguous, and
2. two rules of the target grammar G2 do not correspond to the same rule of

G1.

Then the translation specified by G is single-valued, i.e., it defines a function.

In the previous discussion of ambiguity we did not consider the ambigu-
ity of the translation grammar G because it is not relevant to ensure the
single-value translation property. The next example shows a nonambiguous
translation grammar may have an ambiguous source grammar, thus causing
the translation to be ambiguous.

Example 6.19. End mark in conditionals
The translation places the end mark “end if” after an instruction if . . .
then . . . [ else]. The translation grammar G

S → if
if

c

c

then
then

S
ε

end if
| if

if
c

c

then
then

S
else
else

S
ε

end if
| a

is unambiguous, yet the underlying source grammar, which defines the con-
ditional instructions without end marks, is a classical case of ambiguity (p.
55). The translation produces two images of the source string

if c then if c then a
end if

↓ else a
end if

↓ ↑
end if end if

obtained by inserting the end marks in the positions indicated by arrows over
or under the line.

Compiler designers should pay attention to avoid translation grammars caus-
ing the translation to become multi-valued. Parser construction tools help,
because they routinely check the source grammar for determinism which ex-
cludes ambiguity.

6.5.3 Translation Grammars and Pushdown
Transducers

The finite-state IO-machine model, which recognizes a source string and
emits its image, can be naturally applied to context-free translations. Much
as the recognizer of a context-free language, context-free transducers too need
a pushdown or LIFO store.



6.5 Purely Syntactic Translation 283

A pushdown transducer or IO-automaton is like a pushdown automaton,
enriched with the capability to output zero or more characters at each move.
More precisely, to define such a machine eight items have to be specified:

Q, set of states;

Σ, source alphabet;

Γ , pushdown stack alphabet;

Δ, target alphabet;

δ, state transition and output function;

q0 ∈ Q, initial state;

Z0 ∈ Γ , initial symbol on the stack;

F ⊆ Q, set of final states.

The function δ is defined in the domain Q× (Σ ∪{ε})×Γ and has as range9

the set Q×Γ ∗×Δ∗. The function meaning, schematized in Figure 6.4, is the
following: if (q′′, γ, y) = δ(q′, a, Z) and the present state is q′, the machine
reads a from the input and Z from the stack top, enters state q′′, and writes
γ on top of the stack and y on the output. The final states coincide with Q,
if the automaton recognizes the source string by empty stack.

(q′′, γ, y) = δ (q′, a, Z)
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Fig. 6.4 Scheme of a move of a pushdown transducer.

9 As in the case of sequential finite transducers (p. 272), it would be possible to specify the
output by a separate output function. We skip the formalization of the case of nondeter-
ministic transducer: the range of function δ would become the powerset of the preceding
cartesian product.
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As in the finite case, the subjacent automaton of the translator is obtained
by erasing from the definitions the target alphabet symbols and the output
string actions.
We pass over the formalization of the translation computed by a pushdown
translator, as it is entirely similar to the case of finite transduction on p. 272.

From Translation Grammar to Pushdown Transducer

Translation schemes and pushdown transducers are two ways of represent-
ing language transformations: the former is a generative model suitable for
specification, the latter is procedural. Their equivalence is stated next.

Property 6.20. A translation relation is defined by a translation grammar or
scheme if, and only if, it is computed by a (nondeterministic) pushdown
transducer.

For brevity we only describe the conversion from a grammar to a transducer,
because the other direction is less pertinent to compilation.

Consider a translation grammar Gt. A first way to derive the equivalent
pushdown translator T is by applying essentially the same algorithm (Table
4.1 on p. 149) that is used to construct the pushdown recognizer of language
L(Gt). This machine is then transformed into a transducer by a small change
of the operations on target characters. After having pushed on the stack a
target symbol, when it surfaces on top, it is written to the output; but unlike
source characters, a target symbol is not matched against the current input
character.

Normalization of Translation Rules

To simplify the construction without loss of generality, it helps to reorganize
the source and target strings occurring in a grammar rule, in such a way
that, where possible, the first character is a source one. More precisely, we
make the following hypotheses on the form of the pairs u

v where u ∈ Σ∗ and
v ∈ Δ∗, which occur in the rules:

1. For any pair u
v it holds |u| � 1, i.e., u is a single character a ∈ Σ or the

empty string.
Clearly this is not a limitation because if the pair a1a2

v occurs in a rule, it
can be replaced by the pair a1

v
a2
ε , without affecting the translation.

2. No rule may contain the substrings

ε

v1

a

v2

ε

v1

ε

v2
where v1, v2 ∈ Δ∗

Should such combinations be present in a rule, they can be respectively
replaced by the equivalent pair a

v1v2
or by ε

v1v2
.
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We are ready to describe the correspondence between grammar rules of Gt =
(V, Σ, Δ, P, S) and the moves of so-called predictive transducers.

Algorithm. Construction of (nondeterministic) predictive pushdown trans-
ducer.
Let C be the set of pairs of type ε

v with v ∈ Δ+ and of type b
w with

b ∈ Σ, w ∈ Δ∗, occurring in some grammar rule. The transducer moves
are constructed as described in Table 6.1. Rows 1, 2, 3, 4, and 5 apply when
the stack top is a nonterminal symbol. In case 2 the right part begins with
a source terminal and the move is conditioned by its presence in the input.
Rows 1, 3, 4, and 5 give rise to spontaneous moves, which do not shift the
reading head. Rows 6 and 7 apply when a pair surfaces on top of stack. If the
pair contains a source character (7), it must coincide with the current input
character; if it contains a target string (6,7), the latter is output.

Table 6.1 Correspondence between translation grammar rules and pushdown translator
moves.

Rule Move Comment

1

A → ε
v
BA1 . . . An

n � 0,
v ∈ Δ+, B ∈ V ,
Ai ∈ (C ∪ V )

if top = A then write(v);
pop; push(An . . . A1B);

Emit the target string v and push
on stack the string (“prediction”)
BA1 . . . An

2

A → b
w

A1 . . . An

n � 0,
b ∈ Σ, w ∈ Δ∗,
Ai ∈ (C ∪ V )

if cc = b ∧ top = A
then write(w); pop;
push(An . . . A1); advance
the reading head;

b was the next expected char.
and has been read; emit the tar-
get string w; push the prediction
A1 . . . An

3
A → BA1 . . . An

n � 0, B ∈ V ,
Ai ∈ (C ∪ V )

if top = A then pop;
push(An . . . A1B);

push the prediction BA1 . . . An

4
A → ε

v
v ∈ Δ+ if top = A then write(v);

pop;
emit the target string v

5 A → ε if top = A then pop;

6
for every pair
ε
v
∈ C

if top = ε
v

then write(v);
pop;

the past prediction ε
v

is now com-
pleted by writing v

7
for every pair
b
w

∈ C
if cc = b ∧ top = b

w
then

write(w); pop; advance the
reading head;

the past prediction b
w

is now com-
pleted by reading b and writing w

8 −−− if cc =� ∧ stack is empty
then accept; halt;

the source string has been entirely
scanned and no goal is present in
the stack
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Initially the stack contains the axiom S, and the reading head is positioned
on the first character of the source string. At each step the automaton (non-
deterministically) chooses an applicable rule and executes the corresponding
move. Finally row 8 accepts the string if the stack is empty and the current
character marks the end of text.

Notice the automaton does not make use of states, i.e., the stack is the only
memory used; as we did for recognizers, we will later enrich the machine with
states in order to obtain a more efficient deterministic algorithm.

Example 6.21. Nondeterministic pushdown transducer
Consider language

L = {a∗ambm | m > 0}

and define translation
τ(akambm) = dmck

The transformation first changes b to d and then transcribes to c any letter
a which exceeds the number of letters b.
Transducer moves are listed next to the corresponding rules of the translation
grammar:

Rule Move
1 S → a

ε S ε
c if cc = a ∧ top = S then pop; push( ε

cS); advance the reading
head;

2 S → A if top = S then pop; push(A);
3 A → a

dA b
ε if cc = a ∧ top = A then pop; write(d); push( b

εA); advance
the reading head;

4 A → a
d

b
ε if cc = a and top = A then pop; write(d); push( b

ε); advance the
reading head;

5 — if top = ε
c then pop; write(c);

6 — if cc = b ∧ top = b
ε then pop; advance the reading head;

7 — if cc =� ∧ stack is empty then accept; halt;

The choice of moves 1 or 2 is not deterministic, and so is the choice of 3 or
4. Move 5 outputs a target character that had been pushed by move 1. The
subjacent pushdown automaton is not deterministic.

The following example reasserts for context-free translations a fact already
known for regular translations and finite transducers: that not all such trans-
lations can be computed by a pushdown transducer of the deterministic kind.

Example 6.22. Context-free nondeterministic translation
The translation function

τ(u) = uRu, where u ∈ {a, b}∗
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that maps any string into a reflected copy followed by the same string, is
easily specified by the scheme:

Source grammar G1 Target grammar G2

S → Sa S → aSa
S → Sb S → bSb
S → ε S → ε

This translation cannot be deterministically computed by a pushdown ma-
chine. The reason10 is that the machine should output the mirror copy of the
input before the copy of the input. The only way to reverse a string, using a
pushdown device, is to store it in the stack and to output it in the popping
order; but popping destroys the string and makes it unavailable for copying
to the output at a later moment.

Nondeterministic algorithms are rarely used in compilation. In the next sec-
tion we develop translator construction methods suitable for use with the
widespread deterministic parsers.

6.5.4 Syntax Analysis with Online Translation

Given a context-free translation scheme, the previous construction produces a
pushdown transducer, which is often nondeterministic and unpractical to use
in a compiler. To construct an efficient well-engineered translator, it is con-
venient to resume from the point reached in Chapter 4 with the construction
of deterministic parsers and to enrich them with output actions.

Given a context-free translation grammar or scheme, we make the as-
sumption that the source grammar is suitable for deterministic parsing. To
compute the image of a string, as the parser completes a syntactic subtree,
it emits the corresponding translation.
We know that bottom-up and top-down parsers differ in the construction
order of syntax trees. A question to be investigated is how the order inter-
feres with the possibility of correctly producing the target image. The main
result will be that the top-down parsing order is fully compatible, whereas
the bottom-up order places some restriction on the translation.

6.5.5 Top-Down Deterministic Translation

We assume the source grammar satisfies condition LL(1) on p. 183, or more
generally condition LL(k). For constructing an efficient translator, we only
have to explain how to add output actions to the parser.

10 For a proof see [2, 3].
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We recall there are two approaches for building such parsers: as pushdown
automata or as recursive descent procedures. Both will be simply extended
toward translator construction. The construction producing an automaton
is discussed first. For simplicity we assume translation grammar rules to be
normalized (p. 284).

Algorithm. Constructs a deterministic pushdown transducer from a given
translation grammar Gt = (Σ, Δ, V, P, S), such that the source grammar is
LL(1).
The stack alphabet comprises the nonterminal symbols and the set C of pairs
b
v occurring in the rules: remember b is a source character or is empty, and
v is a target string (excluding that both components are empty). The pro-
jection of string z on the source alphabet is denoted by hΣ(z). The current
input character is in variable cc.

1. The automaton starts with axiom S on stack.

2. Let A be the stack top. For any rule A → b
w β, where b ∈ Σ, w ∈ Δ∗, β ∈

{V ∪C}∗, the machine, if b is the cc, emits string w, replaces in the stack
the symbol A with the string βR, and steps forward the reading head.

3. Let A be the stack top. For any rule A → ε
v β, where v ∈ Δ∗ and

β ∈ {V ∪ C}∗, the guide11 set is the one computed for the corresponding
source grammar rule, i.e., the set Gui

(

A → hΣ

(
ε
v β
))

.
The automaton, if cc is in the guide set of the rule, emits the string v
and replaces in the stack symbol A with string βR, without shifting the
reading head.

4. With b
w , b ∈ Σ as stack top and b as cc, the machine writes w and reads

the next input character.

5. The machine has successfully completed the translation when the current
character is the text terminator and the stack is empty.

Notice that case 3. takes care of empty rules such as A → ε. In 3. the guide
set test is used to select the move and condition LL(1) guarantees the choice
is deterministic.

Example 6.23. Example 6.13 on p. 276 continued
A string is mapped to its mirror by the translation grammar:

S → a

ε
S

ε

a
| b

ε
S

ε

b
| ε

11 Also known as look-ahead set.
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The source grammar is LL(1), with respective guide sets {a}, {b} , and {�}.
The automaton is described by the table:

stack cc = a cc = b cc =� ε

S pop; push( ε
aS) pop; push( ε

b S) pop
ε
a write(a)
ε
b write(b)

Implementation by Recursive Procedures

In order to streamline the design of syntactic translation algorithms for gram-
mars extended with regular expressions, it is convenient to represent the
translation grammar Gt by means of a recursive network of finite machines,
as we did in Chapter 4.

We show how to realize the pushdown translator using recursive proce-
dures. Assuming the source grammar is LL(k), we recall the organization of
the recursive descent parser (p. 190). For each nonterminal symbol, a proce-
dure has the task of recognizing the substrings derived from it. The procedure
body blueprint is identical to the state-transition graph of the corresponding
machine, in the network representing the grammar.

For computing the translation, we simply insert a writing instruction in
the procedure body, in all the places where the machine graph has an arc
labelled by a target element. An example should be enough to explain such
straightforward modification of a recursive descent parser.

Example 6.24. Recursive descent translator from infix to postfix
The source language consists of arithmetic expressions with two levels of
operators and parentheses. The translation from infix expressions to postfix
polish notation, exemplified by

v × (v + v) ⇒ vvv add mult

is defined by the extended BNF translation grammar:

E → T (+
ε T ε

add | −
ε T ε

sub )∗

T → F (×ε F ε
mult | ÷

ε F ε
div )∗

F → v
v |

′(′

ε E
′)′

ε

where

Σ = {+,×,−,÷, (, ), v} and Δ = {add, sub, mult, div, v}

Figure 6.5 represents the first machine of the network, with guide sets en-
closed by braces. From the graph of machine ME it is straightforward to code
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the corresponding translator procedure. The programming style is terser if
while loops are used to implement the star operations of the grammar. We
recall that function Next returns the current input character.

4 2

0 1

5 3

E : → → {′)′,�}
T

+
ε

{+}

−
ε

{−}

T

T

ε
add

ε
sub

Fig. 6.5 Machine ME representing the first rule of the translation grammar of example
6.24.

procedure E
call T ;
while cc ∈ {+,−}
do

case
cc =′ +′: begin cc := Next; call T ; write(’add’); end
cc =′ −′: begin cc := Next; call T ; write(’sub’); end

end case
end do
end

The procedure can be refined so that at loop exit it checks whether the cur-
rent character is in the set {′)′,�}, thus anticipating error detection. Similar
procedures for the other nonterminals are omitted.

6.5.6 Bottom-Up Deterministic Translation

Consider again a context-free translation scheme, this time assuming the
source grammar (or machine network) is suitable for bottom-up determin-
istic parsing, no matter whether by the LR(k) or LALR(k) condition. We
also assume the grammar is in the basic context-free form. Unlike the top-
down case, it is not always possible to extend the parser with the writing
actions that compute the translation, without jeopardizing determinism. In-
tuitively the impediment is simple to understand. We know (from p. 212 and
following) the parser works by shifts and reductions; a shift pushes on stack a
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macro-state of the pilot finite automaton, i.e., a set of states of some machines
(tantamount to a set of marked grammar rules). Of course, when a shift is
performed, the parser does not know which rule will be used in the future for a
reduction, and conservatively keeps all the candidates open. Imagine two dis-
tinct marked rules occur as candidates in the current macro-state, and make
the likely hypothesis that different output actions are associated with them.
Then, when the parser shifts, the translator should perform two different and
contradictory writing actions, which is impossible for a deterministic trans-
ducer. This reasoning explains the impediment to emit the output during a
shift move of the translator.

On the other hand, when a reduction applies, exactly one source grammar
rule has been recognized (i.e., the final state of the corresponding machine
has been entered). Since the mapping between source and target rules in the
scheme is surjective, a reduction identifies exactly one target rule and can
safely output the associated target string.

Next we illustrate the shift-reduce translation algorithm.

Example 6.25. Translation of expressions to postfix notation
The grammar of example 5.16 on p. 222 specifies certain formulas that use two
infix signs, to be translated to postfix operators. The translation grammar
below is represented in Figure 6.6 as a machine network. Notice that care has
been taken to position all target characters as suffixes, at the end of rules:

E → E
+
ε

T
ε

add
| T T → T

×a

ε

ε

a mult
| a

ε

ε

a

The LR(1) pilot machine has been previously constructed, and can be easily
upgraded for translation by inserting the output actions in the reductions, as
shown in Figure 6.7. The parser will of course execute a writing instruction
when it performs the associated reduction.

0 1 2 3

4

E : → → ε
add

→

E
+
ε

T

T

5 6 7 8

9

T : → → ε
a mult

→ ε
a

T

a

× a

Fig. 6.6 Machine net of translation grammar of example 6.25.
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I4
9 ≡ T → a• � +× write(a)

I0
0 �
0 +
5 �
5 +

5 ×

I1
1 � +

I2
2 � +

5 � +

5 ×

I3
3 ≡ E → E + T• �, + write(add)
6 ≡ T → T • ×a � +×

I5
4 ≡ E → T• � +
6 ≡ T → T • ×a � +×

I6
7 � +×

I7
8 ≡ T → T × a• � +× write(a mult)

↓

E + T

a

T

a

×

a×

Fig. 6.7 Pilot of translator of example 6.25 with output actions in reduction states.

Postfix Normal Form

In practice, when specifying a context-free translation intended for bottom-
up parsing, it is necessary to put the translation grammar in a form that
confines writing actions within reduction moves.

Definition 6.26. Postfix translation grammar.
A translation grammar or scheme is in postfix normal form if every target
grammar rule has the form A → γw, where γ ∈ V ∗ and w ∈ Δ∗.

Differently stated, no target string may occur as inner substring of a rule, but
only as suffix. The previous example is in postfix form, as well as example
6.13 (p. 276). On the contrary, example 6.22 (p. 286) is not in postfix form.

One may wonder what loss, if any, is caused by the postfix condition. From
the standpoint of the family of translation relations that can be specified, it
is easy to show that postfix grammars have the same expressivity as general
context-free translation grammars, sometimes at the cost of some obscurity.
We explain the transformation of a generic translation grammar to postfix
normal form.

Algorithm. Converting a translation grammar to postfix form.
Consider in turn each rule A → α of the given translation grammar Gt. If
the rule violates the postfix condition, find the longest target string v ∈ Δ+

that occurs in the rightmost position in α, and transcribe the rule as

A → γ
ε

v
η
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where γ is any string, and η is a nonempty string devoid of target characters.
Replace this rule with the next ones:

A → γY η Y → ε

v

where Y is a new nonterminal. The second rule complies with the postfix
condition; if the first rule does not, find anew the rightmost target string
within γ, and repeat the transformation. Eventually all target elements oc-
curring in the middle of a rule will have been moved to suffix positions, and
the resulting grammar is in postfix normal form.

The coming example illustrates the transformation and should convince the
reader that the original and transformed grammar define the same transla-
tion.

Example 6.27. Grammar transformation to postfix normal form
The translation of an infix expression to prefix form is specified by grammar
Gt, where we ascertain that the first rule is not in postfix form, by looking
at the target grammar G2.

Gt original G1 G2

E → ε
addE +a

a E → E + a E → add Ea

E → a
a E → a E → a

The postfix version of the translation grammar is G′
t, whose target grammar

G′
1 complies with the postfix condition.

G′
t postfix G′

1 G′
2

E → Y E +a
ε

ε
a E → Y E + a E → Y Ea

E → a
ε

ε
a E → a E → a

Y → ε
add Y → ε Y → add

It is easy to check that this grammar defines the same translation as the
original one.

We proceed to the application of the previous discussion to bottom-up
translators.

Property 6.28. A translation defined by a translation grammar in postfix nor-
mal form, such that the source grammar satisfies condition LR(k), can be
computed by a bottom-up parser, which only writes on output at reduction
moves.



294 6 Translation Semantics and Static Analysis

Obviously the same holds true if LALR(.) are considered instead. In essence
the postfix form allows the parser to defer writing actions until the parser
reaches a state where the action is uniquely identified.

This method has some inconveniences. The introduction of new nonter-
minal symbols, such as Y in example 6.27, makes the new grammar less
readable. Another nuisance may come from rule normalization, when empty
rules, such as Y → ε, are added to the source grammar. We know empty
rules cause the grammar to lose the LR(0) property and tend to increase the
length k of look-ahead needed for parsing; in some cases the LR(k) property
may be lost.

Example 6.29. Loss of LR(1) property caused by normalization
This negative effect occurs when the grammar of example 6.27 is converted to
the normal form G′

t reproduced in Figure 6.8. The original source grammar
G1 satisfies the LR(0) condition, but the new rule Y → ε of the postfix
grammar introduces an LR(1) shift-reduce conflict in the macro-states I0

and I1 of the pilot machine shown in Figure 6.9.

0 1 2 3 4

5

6

E : → → ε
a

→ ε
a

Y : → → ε
add

Y

a
ε

E
+
ε

a
ε

Fig. 6.8 Machine net of normalized translation grammar (example 6.29.

Fortunately, in many practical situations grammar normalization to postfix
form does not hinder deterministic parsing.

Syntax Tree as Translation

A common utilization of syntactic translation (both bottom-up and top-
down) is to construct the syntax tree of the source text. Programs usually
represent a tree as a linked data structure. To construct such representation,
we need semantic actions, to be discussed in later sections. Here, instead of
producing a linked list, which would be impossible to do with purely syntactic
translations, we are content with outputting the sequence of labels of source
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I1
1 �
0 +
6 ≡ Y → ε• a

I2
2

I3
3

I4
5

I0
0 �
6 ≡ Y → ε• a

I5
5

→

Y

E

a

a

+ a
Y

Fig. 6.9 LR(1) pilot of the grammar of Figure 6.8, with conflicts in macro-states I0 and
I1.

rules, in the order they occur in the derivation of the tree.
Given a source grammar, with rules labelled for reference, the next syntactic
translation scheme produces the label sequence of a derivation:

label original translation rule modified rule
ri A → α A → α ε

ri

The image produced by this translation is exactly the sequence of rule labels
used by the rightmost derivation. Since by hypothesis the source grammar
is LR(1) and the scheme is postfix, the parser enriched with writing actions
easily computes this translation.

6.5.7 Comparisons

We recapitulate the main considerations on upgrading parsers to translators.
The main argument in favor of top-down methods is that they suffer no limi-
tation, as they allow the implementation of any syntactic translation scheme,
provided of course that the source grammar meets the suitable condition for
parsing. Moreover, a recursive descent translator can be easily constructed
by hand, and the resulting program is easy to understand and to maintain.

On the other hand, for bottom-up methods the limitation imposed by the
postfix normal form of the translation grammar may be compensated by the
superiority of LR(k) over LL(k) grammars for source language definition. In
conclusion, neither method is entirely superior to the other one.
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6.5.8 Closure Properties of Translations

To finish with purely syntactic translations, we focus on the formal language
families induced by such transformations. Given a language L belonging to a
certain family, imagine applying a translator computing a translation function
τ . Then consider the image language

τ(L) = {y ∈ Δ∗ | y = τ(x) ∧ x ∈ L}

The question is the following: which is the language family of the image
language? For instance, if the language L is context-free and the translator
is a pushdown IO-automaton, is the target language context-free?

One should not confuse the language L and the source language L1 of
the transducer, though both have the same alphabet Σ. The source language
includes all and only the strings recognized by the automaton subjacent to
the translator (i.e., the sentences of the source grammar of the translation
scheme). The transducer converts a string of language L to a target string,
if the string is a sentence of the source language of the transducer; otherwise
an error occurs and nothing is produced.

The essential closure properties are in the next table:

L Finite transducer Pushdown transducer
L ∈ REG 1 τ(L) ∈ REG 2 τ(L) ∈ CF
L ∈ CF 3 τ(L) ∈ CF 4 τ(L) not always ∈ CF

Cases 1 and 3 descend from the Nivat theorem (p. 269) and from the fact that
both families REG and CF are closed under intersection with regular lan-
guages (p. 160). In more detail, the recognizer of language L can be combined
with the finite transducer, thus obtaining a new transducer having as source
language the intersection L ∩ L1. The new transducer model is the same as
the model of the recognizer of L: a pushdown machine if L is context-free,
a finite machine if L is regular. To complete the proof of cases 1 and 3, it
suffices to convert the new transducer into a recognizer of target language
τ(L), by deleting from the moves all source characters while preserving all
target characters. Clearly the machine thus obtained is of the same model as
the recognizer of L.

For case 2 essentially the same reasoning applies and produces a pushdown
automaton as recognizer of the target language. An example of case 2 is the
translation of a string u ∈ L = {a, b}∗ to the palindromic image uuR, clearly
belonging to a context-free language.

Case 4 is different because, as we know from p. 79, the intersection of two
context-free languages L and L1 is not always in family CF . Therefore there
is no guarantee that a pushdown automaton will be able to recognize the
image of L computed by a pushdown translator.

Example 6.30. Pushdown translation of a context-free language
To illustrate case 4, consider the translation of the context-free language
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L = {anbnc∗ | n � 0}

to the three exponents language (example 2.80 on p. 76)

τ(L) = {anbncn | n � 0}

which is not context-free as we know.
The image is defined by the translation grammar

S → (
a

a
)∗X X → b

b
X

c

c
| ε

which constrains the numbers of b and c in a target string to be equal, whereas
equality of the numbers of a and b is externally imposed by the fact that any
source string must be in L.

6.6 Semantic Translations

None of the previous purely syntactic translation models is able to com-
pute but the simplest transformations, because they rely on too elementary
devices: finite and pushdown IO-automata. On the other hand, most compi-
lation tasks need more involved translation functions.

A first elementary example is the conversion of a binary number to decimal.
Another typical case is the compilation of data structures to addresses: for
example, a record declaration as

BOOK :
record
AUT: char(8); TIT: char(20); PRICE: real; QUANT: int;
end

is converted to a table describing each symbol: type, dimensions in bytes,
offset of each field relative to a base address; assuming the base address of
the record is fixed say at 3401, the translation is

symbol type dimension address
BOOK record 34 3401
AUT string 8 3401
TIT string 20 3409
PRICE real 4 3429
QUANT int 2 3433

In both examples, to compute the translation we need some arithmetic func-
tions which are beyond the capacity of pushdown transducers. Certainly it
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would not be a viable remedy to adopt more powerful automata, such as Tur-
ing machines or context-sensitive translation grammars, as we have argued
(Chapter 2, p. 87) that such models are already too intricate for language
definition, not to mention for specifying translation functions.

A pragmatic solution is to encode the translation function in some pro-
gramming language or in a more relaxed pseudo-code, as used in software
engineering. To avoid confusion, such language is called compiler language or
semantic metalanguage.

The translator is then a program implementing the desired translation
function. The implementation of a complex translation function would pro-
duce an intricate program, unless care is taken to modularize it, in accordance
with the syntax structure of the language to be translated. This approach to
compiler design has been used for years with varying degrees of formaliza-
tion under the title of syntax-directed translation. Notice the term “directed”
marks the difference from the purely syntactic methods of previous sections.

The leap from syntactic to semantic methods occurs when the compiler
includes tree-walking procedures, which move along the syntax tree and com-
pute some variables, called semantic attributes . The attribute values, com-
puted for a given source text, compose the translation or, as it is customary
to say, the meaning or semantics.

A syntax-directed translator is not a formal model, because attribute com-
puting procedures are not formalized. It is better classified as a software
design method, based on syntactic concepts and specialized for designing
input-output functions, such as the translation function of a compiler.

We mention that formalized semantic methods exist, which can accurately
represent the meaning of programming languages, using logical and mathe-
matical functions. Their study is beyond the scope of this book.12

A syntax-directed compiler performs two cascaded phases:

1. parsing or syntax analysis;
2. semantic evaluation or analysis.

Phase 1. is well known: it computes a syntax tree, usually condensed into a
so-called abstract syntax tree, containing just the essential information for
the next phase. In particular, most source language delimiters are deleted
from the tree.

The semantic phase consists of the application of certain semantic func-
tions, on each node of the syntax tree until all attributes have been evaluated.
The set of evaluated attribute values is the meaning or translation.

A benefit of decoupling syntax and semantic phases is that the designer has
greater freedom in writing the concrete and abstract syntaxes. The former
must comply with the official language reference manual. On the other hand,
the abstract syntax should be as simple as possible, provided it preserves the

12 Formal semantic methods are needed if one has to prove that a compiler is correct, i.e.,
that for any source text the corresponding image expresses the intended meaning. For an
introduction to formal semantics, see for instance [57, 16].
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essential information for computing meaning. It may even be ambiguous: am-
biguity does not jeopardize the single value property of translation, because
in any case the parser passes just one abstract syntax tree per sentence to
the semantic evaluator.

The above organization, termed two-pass compilation, is most common,
but simpler compilers may unite the two phases. In that case there is just
one syntax, the one defining the official language.

6.6.1 Attribute Grammars

We need to explain more precisely how the meaning is superimposed on a
context-free language. The meaning of a sentence is a set of attribute values,
computed by so-called semantic functions, and assigned to the nodes of the
syntax tree. The syntax-directed translator contains the definition of the
semantic functions, which are associated with the grammar rules. The set
of grammar rules and associated semantic functions is called an attribute
grammar.

To avoid confusion, in this part of the book a context-free grammar will
be called syntax, reserving the term grammar to attribute grammars. For the
same reason syntactic rules will be called productions.

Introductory Example

Attribute grammar concepts are now introduced on a running example.

Example 6.31. Converting a fractionary binary number to base 10 (Knuth13)
The source language, defined by the regular expression

L = {0, 1}+ • {0, 1}+

is interpreted as the set of fractional base 2 numbers, with the point sepa-
rating the integer and fractional parts. Thus the meaning of string 1101 • 01
is the number 13.25 in base ten. The attribute grammar is in Table 6.2. The
syntax is listed in column one. The axiom is N , nonterminal D stands for
a binary string (integer or fractional part), and B stands for a bit. In the
second column we see the semantic functions or rules, which compute the
following attributes:

13 This historical example by D. Knuth introduced [30] attribute grammars as a system-
atization of compiler design techniques used by practitioners.
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attribute domain nonterminals possessing the attribute

v, value decimal number N, D, B

l, length integer D

A semantic function needs the support of a production, but several functions
may be supported by the same production. Productions 1, 4, and 5 support
one function while productions 2 and 3 support two functions.

Table 6.2 Attribute grammar of example 6.31.

syntax semantic functions comment

N → D • D v0 := v1 + v2 × 2−l2 add integer to fractional value di-
vide by weight 2l2

D → DB v0 := 2 × v1 + v2 l0 := l1 + 1 compute value and length

D → B v0 := v1 l0 := 1

B → 0 v0 := 0 value initialization

B → 1 v0 := 1

Notice the subscript of attribute instances, such as v0, v1, v2, l2, on the
first row of the grammar. A subscript cross-references the grammar symbol
possessing that attribute, in accordance with the following stipulation:14

N
︸︷︷︸

0

→ D
︸︷︷︸

1

• D
︸︷︷︸

2

stating that v0 is associated with the left part N , v1 with the first nonterminal
of the right part, etc. However, if in a production a nonterminal symbol occurs
exactly once, as N in the first production, the more expressive notation vN

can be used instead of v0, without confusion.
The first semantic rule assigns to attribute v0 a value computed by the

expressions containing the attributes v1, v2, l2, the function arguments. We
can write in functional form:

v0 := f(v1, v2, l2)

We explain how to compute the meaning of a given source string. First we
construct its syntax tree, then for each node we apply a function supported
by the corresponding production. Functions are first applied to the nodes
such that the arguments of their functions are available. The computation
terminates when all the attributes have been evaluated.

14 Alternatively, a more verbose style is used in other texts, e.g.,for the first function:
v of N instead of v0.
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The tree is then said to be decorated with attribute values. The decorated
tree, representing the translation or semantics of source text 10•01, is shown
in Figure 6.10.

N

D • D

D B D B

B 0 B 1

1 0

v = 2.25

v = 2; l = 2 v = 1; l = 2

v = 1; l = 1 v = 0 v = 0; l = 1 v = 1

v = 1 v = 0

Fig. 6.10 Decorated syntax tree of example 6.31.

There are several possible orders or schedules for attribute evaluation: for
a schedule to be valid, it must satisfy the condition that no function f is
applied before the functions returning the arguments of f .

In this example the final result of semantic analysis is an attribute of the
root, v = 2.25. The other attributes act as intermediate results. The root
attribute is then the meaning of the source text 10 • 01.

6.6.2 Left and Right Attributes

In the grammar of example 6.31, attribute computation essentially flows from
bottom to top because an attribute of the left part (father) of a production is
defined by a function having as arguments some attributes of the right part
(siblings). But in general, considering the relative positions of symbols in the
supporting production, the result and arguments of a semantic function may
occur in various positions, to be discussed.

Consider a function supported by a production and assigning a value to
an attribute (result). We name left (or synthesized) the attribute if it is
associated with the left part of the production. Otherwise, if the result is
associated with a symbol of the right part of the production, we say it is a
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right (or inherited15) attribute. By the previous definition, also the arguments
of a function can be classified as left or right, with respect to the supporting
production.

To illustrate the classification we show a grammar featuring both left and
right attributes.

Example 6.32. Breaking a text into lines (Reps)
A text has to be segmented into lines. The syntax generates a series of words
separated by a space (written ⊥). The text has to be displayed in a window
having W character width and unbounded height, in such a way that each
line contains a maximum number of left-aligned words and no word is split
across lines. By hypothesis no word has length greater than W . Assume the
columns are numbered 1 to W .

The grammar computes the attribute last, which identifies the column
number of the last character of each word. For instance, the text “no doubt
he calls me an outlaw to catch” with window width W = 13, is displayed as
follows:

1 2 3 4 5 6 7 8 9 10 11 12 13
n o d o u b t h e
c a l l s m e a n
o u t l a w t o
c a t c h

Variable last takes value 2 for word no, 8 for doubt, 11 for he, . . . , and 5 for
catch.
The syntax generates lists of words separated by a blank space. The terminal
symbol c represents any character. To compute the text layout, we use the
following attributes:

length, the length of a word (left attribute);
prec, the column of the last character of the preceding word (right at-

tribute);
last, the column of the last character of the current word (left attribute).

To compute attribute last for a word, we must first know the column of the
last character of the preceding word, denoted by attribute prec. For the first
word of the text, the value of prec is set to -1.

Attribute computation is expressed by the rules of the attribute grammar
in Table 6.3. Two remarks on the syntax: first, the subscripts of nontermi-
nal symbols are added as reference for the semantic functions, but they do
not differentiate the syntactic classes; i.e., the productions with and without
subscripts are equivalent. Second, the syntax has an ambiguity caused by
production T → T⊥T , which is bilaterally recursive. But the drawbacks an
ambiguous syntax has for parsing do not concern us here, because the se-
mantic evaluator receives exactly one parse tree to work on. The ambiguous
syntax is more concise, and this reduces also the number of semantic rules.

15 The word inherited is used by object-oriented languages in a totally unrelated sense.
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Table 6.3 Attribute grammar of example 6.32.

syntax right attributes left attributes

1 S0 → T1 prec1 := −1;

2 T0 → T1⊥T2 prec1 := prec0

prec2 := last1 last0 := last2

3 T0 → V1 last0 :=

if (prec0 + 1 + length1) � W

then (prec0 + 1 + length1)

else length1

4 V0 → cV1 length0 := length1 + 1

5 V0 → c length0 := 1

The length of a word V is assigned to left attribute length in the rules as-
sociated with the last two productions. Attribute prec is a right one, because
the value is assigned to a symbol of the right part of the first two productions.
Attribute last is a left one; its value decorates the nodes with label T of a
syntax tree and provides the final result in the root of the tree.

In order to choose a feasible attribute evaluation schedule, let us examine
the dependencies between the assignment statements for a specific syntax
tree. In Figure 6.11 the left and right attributes are respectively placed to
the left and the right of a node; the nodes are numbered for reference. To
simplify drawing, the subtrees of V are omitted, but attribute length, which
is the relevant information, is present with its value.

The attributes of a decorated tree can be viewed as nodes of another
directed graph, the (data) dependence graph. For instance, observe arc
last(2) → prec(4): it represents a dependence of the latter attribute from the
former, induced by function prec2 := last1, which is supported by production
2. A function result has as many dependence arcs as it has arguments. Notice
the arcs interconnect only attributes pertaining to the same production.

To compute the attributes, the assignments must be executed in any order
satisfying the precedences expressed by the dependence graph. At the end,
the tree is completely decorated with all the attribute values.

An important quality of the attribute evaluation process is that the result
is independent of the application order of functions. This property holds for
grammars complying with certain conditions, to be considered soon.
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S0

last = 5 T1 prec = −1

last = 2 T2 prec = −1 last = 5 T4 prec = 2

length = 2 V3 last = 8 T5 prec = 2 last = 5 T7 prec = 8

length = 5 V6 last = 11 T8 prec = 8 last = 5 T10 prec = 11

length = 2 V9 length = 5 V11

no

doubt

he calls

←−

Fig. 6.11 Decorated tree with dependence graph for example 6.32.

Usefulness of Right Attributes

This grammar uses both left and right attributes, so the questions arise: can
we define the same semantics without using right attributes (as we did in the
first example of attribute grammar)? And then, is it convenient to do so?

The first answer is yes, since we show the position of the last letter of a word
can be computed by a different approach. Initially compute the left attribute
length, then construct a new left attribute list, having as domain a list of
integers representing word lengthes. In Figure 6.11, node T7, which covers
the text he calls, would have the attribute list =< 2, 5 >. After processing
all the nodes, the value list in the subroot T1 of the tree is available, list =<
2, 5, 2, 5 >. It is then straightforward, knowing the page width W , to compute
the position of the last character of each word.
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But this solution is fundamentally bad, because the computation required
at the root of the tree has essentially the same organization and complexity
as the original text segmentation problem: nothing has been gained by the
syntax-directed approach, since the original problem has not been decom-
posed into simpler subproblems.

Another drawback is that information is now concentrated in the root,
rather than distributed on all nodes, as in the previous grammar, by means
of the right attribute last.

Finally, to counterbalance the suppression of right attributes, it is often
necessary to introduce nonscalar attributes, such as lists or sets, or other
complex data structures.

In conclusion, when designing an attribute grammar the most elegant and
effective design is often obtained relying on both left and right attributes.

6.6.3 Definition of Attribute Grammar

It is time to formalize the concepts introduced by previous examples.

Definition 6.33. An attribute grammar H is defined as follows.

1. A context-free syntax G = (V, Σ, P, S), where V and Σ are the terminal
and nonterminal sets, P the production set, and S the axiom. It is conve-
nient to avoid the presence of the axiom in the right parts of productions.

2. A set of symbols, the (semantic) attributes, associated with nonterminal
and terminal syntax symbols. The set of attributes associated with symbol
D is denoted attr(D).
The attribute set of a grammar is partitioned into two disjoint subsets,
the left attributes and the right attributes.

3. Each attribute σ has a domain, the set of values it may take.
4. A set of semantic functions (or rules). Each function is associated with a

production
p : D0 → D1D2 . . . Dr, r � 0

where D0 is a nonterminal and the other symbols can be terminal or
nonterminal. The production is the syntactic support of the function. In
general, several functions may have the same support.
Notation: the attribute σ associated with a symbol Dk is denoted by σk,
or also by σD if the syntactic symbol occurs exactly once in production p.
A function has the form:

σk := f (attr ({D0, D1, . . . , Dr}) \ {σk})

where 0 � k � r ; the function assigns to attribute σ of symbol Dk the
value computed by the function body; the arguments of f can be any at-
tributes of the same production p, excluding the result of the function.
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Usually the semantic functions are total functions in their domains. They
are written in a suitable notation, termed semantic metalanguage, such as
a programming language or a higher level specification language, which
can be formal, or informal as a pseudo-code.
A function σ0 := f(. . .) defines an attribute, qualified as left, of the non-
terminal D0, which is the left part (or father) of the production.
A function σk := f(. . .) with k � 1, defines an attribute qualified as right,
of a symbol (sibling) Dk occurring in the right part.
It is forbidden (as stated in 2.) for the same attribute to be left in a func-
tion and right in another one.
Notice that since terminal characters never occur in the left part, their
attributes cannot be of the left type.16

5. Consider the set fun(p) of all the functions supported by production p.
They must satisfy the following conditions:

a. for each left attribute σ0 of D0, there exists in fun(p) exactly one
function defining the attribute;

b. for each right attribute δ0 of D0, no function exists in fun(p) defining
the attribute;

c. for each left attribute σi, where i � 1, no function exists in fun(p)
defining the attribute;

d. for each attribute δi, where i � 1, there exists in fun(p) exactly one
function defining the attribute.

The left attributes σ0 and right ones δi with i � 1, are termed internal
for production p, because they are defined by functions supported by p.
The right attributes δ0 and left attributes σi with i � 1, are termed exter-
nal for production p, because they are defined by functions supported by
other productions.

6. Some attributes can be initialized with constant values or with values com-
puted by external functions. This is often the case for the so-called lexical
attributes, those associated with terminal symbols. For such attributes the
grammar does not specify a computation rule.

Example 6.34. We refer again to example 6.32 (p. 302) where attributes are
classified as follows:

left attributes: length, last
right attributes: prec
internal/external: for production 2 the internal attributes are prec1, prec2,

and last0; the external ones are prec0, last0, and last2 (attribute length
is not pertinent to production 2).

16 In practice, the attributes of terminal symbols are often not defined by semantic func-
tions of the grammar, but are initialized with values computed during lexical analysis,
which is the scanning process preceding parsing and semantic analysis.
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Then we have

attr(T ) = {prec, last} attr(V ) = {length} attr(S) = ∅

A caution against misuse of not local attributes. Item 4. expresses a sort
of principle of locality of semantic functions: it is an error to designate as
argument or result of a semantic function supported by p, an attribute which
is not pertinent to production p. An instance of such error occurs in the
modified rule 2 below:

syntax semantic function

1 S0 → T1 . . .

2 T0 → T1⊥T2 prec1 := prec0 + length0
︸ ︷︷ ︸

non- pertinent attr.

3 . . .

Here the principle of locality is violated because length �∈ attr(T ): any at-
tribute of a node, other than the father or a sibling, is out of scope.

The rationale of the condition that left and right attributes be disjoint sets
is discussed next. Each attribute of a node of the syntax tree must be de-
fined by exactly one assignment, otherwise it may take two or more different
values depending on the order of evaluation, and the meaning of the tree
would not be unique. To prevent this, the same attribute may not be left and
right, because in that case there would be two assignments, as shown in the
fragment:

support function
1 A → BC σC := f1(attr(A, B))
2 C → DE σC := f2(attr(D, E))

A

B C, σ =?
D E

Clearly variable σC , internal for both productions, is a right attribute in
the former, a left one in the latter. Therefore the final value it takes will
depend on the order of function applications. Then the semantics loses the
most desirable property of being independent of the implementation of the
evaluator.

6.6.4 Dependence Graph and Attribute Evaluation

An advantage of a grammar as a specification of a translation is that it
does not get involved with details of tree traversing procedures. In fact, the
attribute evaluation program can be automatically constructed, starting from
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the functional dependencies between attributes, knowing of course the bodies
of the semantic functions.

To prepare for that, we introduce the dependence graph of a semantic
function: the nodes of this directed graph are the arguments and result and
there is an arc from each argument to the result. Collecting the dependence
graphs for all functions supported by the same production, we obtain the
dependence graph of a production.

Example 6.35. Dependence graph of productions
We reproduce from p. 303 in Figure 6.12 the grammar of example 6.32. For
clarity we lay each graph over the supporting production (dotted edges),
to evidence the association between attributes and syntactic components.
Production 2 is the most complex, with three semantic functions, each one

Grammar:

syntax right attributes left attributes

1 S0 → T1 prec1 := −1;

2 T0 → T1⊥T2 prec1 := prec0
prec2 := last1 last0 := last2

3 T0 → V1 last0 :=
if (prec0 + 1 + length1) � W

then (prec0 + 1 + length1)
else length1

4 V0 → cV1 length0 := length1 + 1

5 V0 → c length0 := 1

Dependence graph of production 2:

last T0 prec

last T1 prec last T2 prec

Dependence graphs of the remaining productions:

S0

last T1 prec ←

last T0 prec

length V1

length V0

c length V1

length V0

c

→

Fig. 6.12 Grammar of example 6.32 and dependence graphs of productions.
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with just one argument, hence one arc (visually differentiated by the style)
of the graph.

Notice a node with (respectively without) incoming arcs is an attribute of
type internal (respectively external).

The dependence graph of a (decorated) syntax tree, already introduced, is
obtained by pasting together the graphs of the individual productions used
in the tree nodes. For example, look back at Figure 6.11 on p. 304.

Attribute Values as Solution of Equations

We expect each sentence of a technical language to have exactly one meaning,
i.e., a unique set of values assigned to the semantic attributes; otherwise we
would be faced with an undesirable case of semantic ambiguity.

We know the values are computed by assignments and there is exactly
one assignment per instance of attribute in the tree. We may view the set
of assignments as a system of simultaneous equations, where the unknowns
are the attribute values. From this perspective, the system solution is the
meaning of the sentence.

For a sentence, consider now the attribute dependence graph of the tree,
and suppose it contains a directed path

σ1 → σ2 → . . . → σj−1 → σj , with j > 1

where each σk stands for some attribute instance. The attribute names of the
instances can be the same or different. The corresponding equations are

σj = fj(. . . , σj−1, . . .)
σj−1 = fj−1(. . . , σj−2, . . .)
. . .
σ2 = f2(. . . , σ1, . . .)

since the result of a function is an argument of the next one.
For instance, in Figure 6.11 on p. 304 one such path is

prec(T1) → prec(T2) → last(T2) → prec(T4) → prec(T5) → . . .

Revisiting the previous examples of decorated trees, it would be easy to
verify that, for any sentence and syntax tree, no path of the dependence
graph ever makes a circuit, to be formalized next.

A grammar is acyclic if, for each sentence, the dependence graph of the
tree17 is acyclic.

Property 6.36. Given an attribute grammar satisfying the conditions of def-
inition 6.33, consider a syntax tree. If the attribute dependence graph of

17 We assume the parser returns exactly one syntax tree per sentence.
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the tree is acyclic, the system of equations corresponding to the semantic
functions has exactly one solution.

To prove the property, we show that, under the acyclicity condition, the
equations can be ordered in such a way that any semantic function is applied
after the functions which compute its arguments. This produces a value for
the solution since the functions are total. The solution is clearly unique, as
in a classical system of simultaneous linear equations.

Let G = (V, E) be an acyclic directed graph, and identify the nodes by
numbers V = {1, 2, . . . , |V |}. The next algorithm computes a total order of
nodes, called topological. The result, ord[i], is the vector of sorted nodes: it
gives the identifier of the node that has been assigned to the i-th position in
the ordering.

Algorithm. Topological sorting.

begin
m := 1; - - node counter
while V �= ∅
do
n := any node of V having no incoming arc;

- - node n exists because G is acyclic
remove node n from V ;

ord[m] := n; m := m + 1;
- - insert n in the ordering and increment counter

E := E \ {outgoing arcs from node n};
end do

end

In general many different topological orders are possible, because the depen-
dence graph typically does not enforce a total order relation.

Example 6.37. Applying the algorithm to the graph of Figure 6.11 on p. 304,
we obtain a topological order:

length3, length6, length9, length11, prec1, prec2, last2, prec4,
prec5, last5, prec7, prec8, last8, prec10, last10, last7, last4, last1.

Next we apply the semantic functions in topological order. Pick the first
node, its equation is necessarily constant, i.e., it initializes the result at-
tribute. Then proceed by applying the next equations in the order, which
guarantees availability of all arguments. Since all functions are total, a result
is always computed. The tree is thus progressively decorated with a unique
set of values. Therefore for an acyclic grammar the meaning of a sentence is
a single-valued function.

Actually the above evaluation algorithm is not very efficient, because on
one hand it requires computing the topological sort, on the other hand, it
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may require multiple visits of the same node of the syntax tree. We are going
to consider more efficient, although less general, algorithms, operating under
the assumption of a fixed order of visit (scheduling) of the tree nodes.

Now consider what happens if the dependence graph of a tree contains a
path that makes a circuit, implying that in

σ1 → σ2 → . . . → σj−1 → σj , j > 1

two elements i and k with 1 � i < k � j, are identical, i.e., σi = σk. Then
the system of equations may have more than one solution, i.e., the grammar
may be semantically ambiguous.

A remaining problem is how to check whether a given grammar is acyclic:
how can we be sure that no decorated syntax tree will ever present a closed
dependence path? Since the source language is usually infinite, the acyclicity
test cannot be performed by the exhaustive enumeration of the trees. An al-
gorithm to decide if an attribute grammar is acyclic exists but is complex,18

and not used in practice. It is more convenient to test certain sufficient con-
ditions, which not only guarantee the acyclicity of a given grammar, but
also permit constructing the attribute evaluation schedule, to be used by the
semantic analyzer. Some simple yet practical conditions are described next.

6.6.5 One Sweep Semantic Evaluation

A fast evaluator should compute the attributes of each tree node with a
single visit, or at worst, with a small number of visits of the nodes. A well-
known order of visit of a tree, the depth-first traversal, permits in many cases
evaluation of the attributes with just one sweep over the tree.

Let N be a node of a tree and N1, . . . , Nr its siblings; denote by ti the
subtree rooted in node Ni.

A depth-first visit algorithm first visits the root of the tree. Then, in order
to visit the generic subtree tN , rooted in a node N , it recursively proceeds as
follows. It performs a depth-first visit of the subtrees t1, . . . , tr, in an order,
not necessarily coincident with the natural one 1, 2, . . . r, i.e., according to
some permutation of 1, 2, . . . r.

When a node is visited, the local attributes are computed. This semantic
evaluation algorithm, termed one-sweep, computes attributes according to
the following principles:

• before entering and evaluating subtree tN , it computes the right attributes
of node N (the root of the subtree);

• at the end of visit of subtree tN , it computes the left attributes of N .

18 See [30, 31]. The asymptotic time complexity is NP -complete with respect to the size
of the attribute grammar.
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We hasten to say that not all grammars are compatible with this algorithm,
because more intricate functional dependencies may require several visits of
the same node. The appeal of this method is that it is very fast, and that
practical, sufficient conditions for one-sweep evaluation are simple to state
and to check on the dependence graph dipp of each production p.

Experience with grammar design indicates it is often possible to satisfy the
one-sweep conditions, sometimes with minor changes to the original semantic
functions.

One-Sweep Grammars

For each production

p : D0 → D1D2 . . . Dr, r � 0

we need to define a binary relation between the syntactic symbols of the right
part, to be represented in a directed graph, called the sibling graph, denoted
siblp. The idea is to summarize the dependencies between the attributes of
the semantic functions supported by the production. The nodes of the sibling
graph are the symbols {D1, D2, . . . , Dr} of the production. The sibling graph
has an arc

Di → Dj with i �= j and i, j � 1

if in the dependence graph dipp there is an arc σi → δj from an attribute of
symbol Di to an attribute of symbol Dj .

We stress that the nodes of the sibling graph are not the same as the nodes
of the dependence graph of the production: the former are syntactical sym-
bols, the latter are attributes. Clearly all attributes of dipp having the same
subscript j are coalesced into a node Dj of siblp: in mathematical terms, the
sibling graph is related to the dependence graph by a node homomorphism.

Definition 6.38. One-sweep grammar.
A grammar satisfies the one-sweep condition if, for each production

p : D0 → D1D2 . . .Dr, r � 0

having dependence graph dipp, the following clauses hold:

1. dipp contains no circuit;
2. dipp does not contain a path

λi → . . . → ρi, i � 1

that goes from a left attribute λi to a right attribute ρi of the same symbol
Di, where Di is a sibling;

3. dipp contains no arc λ0 → ρi, i � 1, from a left attribute of the father
node D0 to a right attribute of a sibling Di;
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4. the sibling graph siblp contains no circuit.

We orderly explain each item.

1. This condition is necessary for the grammar to be acyclic (a requirement
for ensuring existence and uniqueness of meaning).

2. If we had a path λi → . . . → ρi, i � 1, it would be impossible to compute
the right attribute ρi before visiting subtree ti, because the value of the left
attribute λi is available only after the visit of the subtree. This contravenes
the depth-first visit order we have opted for.

3. As in the preceding item, the value of attribute ρi would not be available
when we start visiting the subtree ti.

4. This condition permits to topologically sort the siblings, i.e., the subtrees
t1, . . . , tr, and to schedule their visit in an order consistent with the prece-
dences expressed by dipp. If the sibling graph had a circuit, there would
be conflicting precedence requirements on the order of visiting the sibling
subtrees. In that case it would be impossible to find a schedule valid for
all the attributes of the right part of p.

Algorithm. Construction of one-sweep evaluator.
We write a semantic procedure for each nonterminal symbol, having as argu-
ments the subtree to be decorated and the right attributes of its root. The
procedure visits the subtrees and computes and returns the left attributes of
the root (of the subtree).

For each production

p : D0 → D1D2 . . .Dr, r � 0

1. Choose a topological order, denoted TOS, of the nonterminals D1, D2,
. . . , Dr with respect to the sibling graph siblp.

2. For each symbol Di, 1 � i � r, choose a topological order, denoted TOR,
of the right attributes of symbol Di with respect to the dependence graph
dipp.

3. Choose a topological order, denoted TOL, of the left attributes of symbol
D0, with respect to the dependence graph dipp.

The three orders TOS, TOR, and TOL together prescribe how to arrange
the instructions in the body of the semantic procedure, to be illustrated in
the coming example.

Example 6.39. One-sweep semantic procedure
For brevity we consider a grammar fragment containing just one production
and we leave the semantic functions unspecified. Production D → ABC has
the dependence graph dip shown in Figure 6.13. It is straightforward to check
the graph satisfies conditions 1., 2., and 3. of definition 6.38:

1. there are neither circuits,
2. nor any path from a left attribute λA, λB, or λC to a right attribute, such

as ρB, of the same node;
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λ μ D ρ

λ A ρ λ B ρ λ C ρ σ

Fig. 6.13 Dependence graph of the production of example 6.39.

3. nor any arc from a left attribute λD or μD to a right attribute of A, B, or
C;

4. the sibling graph sibl, below, is acyclic:

A B C

We explain where its arcs come from:

• A → C from dependence λA → ρC ;
• C → B from dependence ρC → ρB.

Next we compute the topological orders.

• sibling graph: TOS = A, C, B;
• right attributes of each sibling: since A and B have only one right attribute,

the topological sorting is trivial; for C we have TOR = ρ, σ;
• left attributes of D: the topological order is TOL = λ, μ.

To complete the design, it remains to list the instructions of the semantic
procedure of this production, in an order compatible with the chosen topo-
logical orders.

More precisely, the order of left attribute assignments is TOL, the order of
procedure invocations (to evaluate subtrees) is TOS, and the order of right
attribute assignments is TOR.
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procedure D(in t, ρD; out λD, μD)
begin

- - t root of subtree to be decorated
ρA := f1(ρD)

- - abstract functions are denoted f1, f2, etc.;
A(tA, ρA; λA)

- - invocation of A to decorate subtree tA;
ρC := f2(λA)
σC := f3(ρC)
C(tC , ρC , σC ; λC)

- - invocation of C to decorate subtree tC ;
ρB := f4(ρD, ρC)
B(tB , ρB; λB)

- - invocation of B to decorate subtree tC ;
λD := f5(ρD, λB , λC)
μD := f6(λD)

end

To conclude, this simple method is very useful for designing an efficient
recursive semantic evaluator, provided the grammar satisfies the one-sweep
condition.

6.6.6 Other Evaluation Methods

One-sweep evaluation is practical, but some grammars have complicated de-
pendencies which prevent its use. More general classes of evaluators and cor-
responding grammar conditions are available, which we do not discuss.19

To expand the scope of one-sweep evaluation methods, we develop a rather
intuitive idea. The evaluation process is decomposed into a cascade of two or
more phases, each one of the one-sweep type, operating on the same syntax
tree.

We describe the method focussing on two phases, but generalization is
straightforward. The attribute set Attr of the grammar is partitioned by
the designer into two disjoint sets Attr1 ∪ Attr2 = Attr, to be respectively
evaluated in phase one and two. Each attribute set, together with the corre-
sponding semantic functions, can be viewed as an attribute subgrammar .

Next we have to check that the first subgrammar satisfies the general
conditions 6.33 (p. 305) as well as the one-sweep condition 6.38 (p. 312).
In particular, the general condition imposes that every attribute is defined
by some semantic function, as a consequence no attribute of set Attr1 may

19 Among them we mention the evaluators based on multiple visits, ordered attribute
grammar (OAG) condition, and absolutely acyclicity condition. A survey of evaluation
methods and grammar conditions is in Engelfriet [19].
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depend on any attribute of set Attr2; otherwise it would be impossible to
evaluate the former attribute in phase one.

Then we construct the one-sweep semantic procedures for phase one, ex-
actly as we would have done for a one-sweep grammar. After phase one
execution, all the attributes in Attr1 have a value, and it remains to evaluate
the attributes of the second set.

For phase two we have again to check whether the second subgrammar
meets the same conditions. Notice, however, that for the second evaluator,
the attributes of set Attr1 are considered as initialized constants. This means
the dependencies between elements of Attr1 and between an element of Attr1

and an element of Attr2 are disregarded, when checking the conditions. In
other words, only the dependencies inside Attr2 need to be considered. The
phase two evaluator operates on a tree decorated with the attributes of the
first set, and computes the remaining attributes in one-sweep.

The crucial point for multi-sweep evaluation to work, is to find a good
partition of the attributes into two (or more) sets. Then the construction
works exactly as in one-sweep. Notice not all attribute values computed in
stage one have to be stored in the decorated tree produced by phase one, but
only those used as arguments by semantic functions applied in the second
sweep.

As a matter of fact, designing a semantic evaluator for a rich technical lan-
guage is a complex task, and it is often desirable to modularize the project
in order to master the difficulty. The partition of the global attribute set into
subsets associated with evaluation phases offers a precious help for modular-
ization. In practice, in many compilers the semantic analyzer is subdivided
into phases of smaller complexity. For instance, the first stage analyzes the
declarations of the various program entities (variables, types, classes, etc.)
and the second stage processes the executable instructions of the program-
ming language to be compiled.

6.6.7 Combined Syntax and Semantic Analysis

For faster processing, it is sometimes possible and convenient to combine
syntax tree construction and attribute computation, trusting the parser with
the duty to invoke the semantic functions.

There are three typical situations for consideration, depending on the na-
ture of the source language:

• the source language is regular: lexical analysis with lexical attributes;
• the source syntax is LL(k) : recursive descent parser with attributes;
• the source syntax is LR(k): shift-reduce parser with attributes.

Next we discuss the enabling conditions for such combined syntax-semantic
processors.
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Lexical Analysis with Attribute Evaluation

The task of a lexical analyzer (or scanner) is to segment the source text into
the lexical elements, called lexemes or tokens, such as identifiers, integer or
real constants, comments, etc. Lexemes are the smallest substrings which can
be invested with some semantic property. For instance, in many languages the
keyword begin has the property of opening a compound statement, whereas
its substring egin has no meaning.

Each technical language uses a finite collection of lexical classes, as the ones
just mentioned. A lexical class is a regular formal language: a typical example
is the class of identifiers (example 2.27) defined by the regular expression on
p. 28. A lexeme of identifier class is a sentence belonging to the corresponding
regular language.

In language reference manuals we find two levels of syntactic specifications:
from lower to higher, the lexical and syntactic levels. The former defines the
form of the lexemes. The latter assumes the lexemes are given in the text, and
considers them to be the characters of its terminal alphabet. Moreover, the
lexemes may carry a meaning, i.e., a semantic attribute, which is computed
by the scanner.

Lexical Classes

Focussing on typical lexicons, we notice that some lexical classes, viewed as
formal languages, have finite cardinality. Thus, the reserved keywords of a
programming language make a finite or closed class, including for instance

{begin, end, if, then, else, do, . . . , while}

Similarly, the number of arithmetic, boolean, and relational operation signs
is finite.
On the contrary, identifiers, integer constants, and comments are cases of
open lexical classes, having unbounded cardinality.

A scanner is essentially a finite transducer (IO-automaton) that divides
the source text into lexemes, assigning an encoding to each one. In the source
text lexemes are separated, depending on their classes, by blank spaces or
delimiters such as new-line. The transducer returns the encoding of each
lexeme and removes the delimiters.

More precisely, the scanner transcribes into the target string each lexeme
as a pair of elements: the name, i.e., the encoding of the lexical class, and a
semantic attribute, termed lexical.

Lexical attributes change from a class to another and are altogether miss-
ing from certain classes. Some typical cases are:
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• decimal constant: the attribute is the value of the constant in base ten;
• identifier: the attribute is a key, to be used by the compiler for quickly

locating the identifier in a symbol table;
• comment: a comment has no attribute, if the compilation framework does

not manage program documentation, and throws away source program
comments; if the compiler keeps and classifies comments, their lexical at-
tribute is instrumental to retrieve them;

• keyword: has no semantic attribute, just a code for identification.

Unique Segmentation

In a well-designed technical language, lexical definitions should ensure that,
for any source text, the segmentation into lexemes is unique. A word of cau-
tion is necessary, for the concatenation of two or more lexical classes may
introduce ambiguity. For instance, string beta237 can be divided in many
ways into valid lexemes: a lexeme beta of class identifier followed by 237 of
class integer; or an identifier beta2 followed by the integer 37, and so on.

In practice, this sort of concatenation ambiguity (p. 52) is often cured
by imposing to the scanner the longest prefix rule. The rule tells the scan-
ner to segment a string x = uv into the lexemes, say, u ∈ identifier and
v ∈ integer, in such a way that u is the longest prefix of x belonging to class
identifier. In the example, the rule assigns the whole string beta237 to class
identifier.
By this prescription the translation is made single-valued and can be com-
puted by a finite deterministic transducer, augmented with the actions needed
to evaluate the lexical semantic attributes.

Lexical Attributes

We have observed that some lexical classes carry a semantic attribute and
different classes usually have different attribute domains. Therefore, at first
glance it would seem necessary to differentiate the semantic functions for each
lexical class. However, it is often preferable to unify the treatment of lexical
attributes as far as possible, in order to streamline the scanner organization:
remember that a scanner has to be efficient because it is the innermost loop
of the compiler. To this end, each lexical class is assigned the same attribute
of type string, named ss, which contains the substring recognized as lexeme
by the scanner.

For instance, attribute ss of identifier beta237 is just string ‘beta237’ (or
a pointer thereto). Then the finite transducer returns the translation

〈class = identifier, ss = ′beta237′〉
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upon recognizing lexeme beta237. This pair clearly contains sufficient infor-
mation, to pass as argument to a later invocation of an identifier-specific
semantic function. The latter looks up string ss in the symbol table of the
program under compilation; if it is not present, it inserts the string into the
table and returns its position as a semantic attribute. Notice such identifier-
specific semantic function is better viewed as a part of the attribute grammar
of the syntax-directed translator, rather than of the scanner.

Attributed Recursive Descent Translator

Assume the syntax is suitable for deterministic top-down parsing. Attribute
evaluation can proceed in lockstep with parsing, if the functional dependen-
cies of the grammar obey certain additional conditions beyond the one-sweep
ones.

We recall a one-sweep algorithm (p. 312) visits in depth-first order the
syntax tree, traversing the subtrees t1, . . . , tr, for the current production
D0 → D1 . . . Dr in an order which may be different from the natural one.
The order is a topological sorting, consistent with the dependencies between
the attributes of nodes 1, . . . , r.

On the other hand, we know a parser constructs the tree in the natural
order, i.e., subtree tj is constructed after subtrees t1, . . . , tj−1. It follows that,
to combine the two processes we must exclude any functional dependence that
would enforce an attribute evaluation order other than the natural one, as
stated next.

Definition 6.40. L condition.
A grammar satisfies condition20 L if, for each production p : D0 → D1 . . . Dr:

1. the one-sweep condition 6.38 (p. 312) is satisfied; and
2. the sibling graph siblp contains no arc Dj → Di with j > i � 1.

Notice the second clause prevents a right attribute of node Di to depend on
any (left or right) attribute of a node Dj placed to its right in the production.
As a consequence, the natural order 1, . . . , r is a topological sort of the sibling
graph and can be applied to visit the sibling subtrees.

Property 6.41. Let a grammar be such that

• the syntax satisfies the LL(k) condition, and
• the semantic rules satisfy the L condition.

Then it is possible to construct a top-down deterministic parser with attribute
evaluation, to compute the attributes at parsing time.

The construction, presented in the coming example, is a straightforward com-
bination of a recursive descent parser and a one-sweep recursive evaluator.

20 The letter L stands for left-to-right.
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Example 6.42. Recursive descent parser with attribute evaluation
Revising example 6.31 (p. 299), we write a grammar to convert a fractional
number smaller than 1, from base two to base ten. The source language is
defined by the regular expression

L = •(0 | 1)∗

The meaning of a string such as •01 is decimal number 0.25. The grammar
is listed in Table 6.4. Notice the value of a bit is weighted by a negative
exponent, equal to its distance from the fractional point.
The syntax, as it can be checked, is deterministic LL(2).

Table 6.4 Grammar of example 6.42.

syntax left attributes right attributes

N → •D v0 := v1 l1 := 1

D → BD v0 := v1 + v2 l1 := l0 l2 := l0 + 1
D → B v0 := v1 l1 := l0
B → 0 v0 := 0
B → 1 v0 := 2−l0

Attributes:

attribute type associated nonterminal symbols

v, value left N, D, B
l, length right D, B

Next we verify condition L, production by production.

N → •D: The dependence graph has one arc v1 → v0, hence:

• there are no circuits in the graph;
• there is no path from left attribute v to right attribute l of the same

sibling;
• in the graph there is no arc from attribute v of father to a right attribute

l of a sibling;
• the sibling graph sibl has no arcs.

D → BD: The dependence graph

v D l

v B l v D l

• has no circuit;
• has no path from left attribute v to right attribute l of the same

sibling;
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• has no arc from left attribute v of father to right attribute v of a sibling;
• the sibling graph has no arcs.

D → B: same as above.
B → 0: the dependence graph has no arcs.
B → 1: the dependence graph has one arc l0 → v0, which is compatible

with one-sweep; there are no brothers.

Similar to a parser, the program comprises three procedures N, D, and
B, having as their arguments the left attributes of the father. To imple-
ment parser look-ahead, a procedure uses two variables to store the current
character cc1 and the next one cc2. Function “read” updates both variables.
Variable cc2 determines the choice between the syntactic alternatives of D.

procedure N(in ∅; out v0)
begin

if cc1 =′ •′ then read else error end if
l1 := 1

- - initialize a local var. with right attr. of D;
D(l1; v0)

- - call D to construct subtree and compute v0;
end
procedure D(in l0; out v0)
begin

case cc2 of
′0, 1′: begin

- - case D → BD
B(l0; v1)
l2 := l0 + 1
D(l2; v2)
v0 := v1 + v2

end
′ �′: begin

- - case D → B
B(l0; v1)
v0 := v1

end
otherwise error

end
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procedure B(in l0; out v0)
begin

case cc1 of
′0′ : v0 := 0

- - case B → 0
′1′: v0 := 2−l0

- - case B → 1
otherwise error

end

To activate the analyzer, the compiler invokes the axiom procedure.

Clearly a skilled programmer could improve in several ways the previous
schematic implementation.

Attributed Bottom-up Parser

Supposing the syntax meets the LR(1) condition, we want to combine
bottom-up syntax tree construction with attribute evaluation. Some prob-
lems have to be addressed: how to ensure that precedences on semantic func-
tion calls induced by attribute dependencies are consistent with the order of
tree construction, when to compute the attributes, and where to store their
values.

Considering first the problem of when semantic functions should be in-
voked, it turns out that right attributes cannot be evaluated during parsing,
even assuming the grammar complies with the L condition (that was sufficient
for top-down evaluation in one sweep). The reason is a shift-reduce parser de-
fers the choice of the production until it performs a reduction, when the parser
is in a macro-state containing the marked production D0 → D1 . . . Dr•. This
is the earliest time the parser can choose the semantic functions to be invoked.

The next problem comes from attribute dependencies. Just before reduc-
tion, the parser stack contains r elements from top, which correspond to the
syntactic symbols of the right part. Assuming the values of all the attributes
of D1 . . .Dr are available, the algorithm can invoke the functions and return
the values of the left attributes of D0.

But a difficulty comes from evaluation of the right attributes of D1 . . . Dr.
Imagine the algorithm is about to construct and decorate the subtree of D1.
In accordance with one-sweep evaluation, every right attribute ρD1 should be
available before evaluating the subtree rooted in D1. But ρD1 may depend on
some right attribute ρ0 of the father D0, which is not available, because the
syntax tree does not yet contain the upper part, including the node associated
with the father. The simplest way to circumvent this obstacle is to assume the
grammar does not use right attributes. This ensures that the left attributes
of a node will only depend on the left attributes of the siblings, which are
available at reduction time.



6.6 Semantic Translations 323

Coming to the question of memorization, the attributes can be stored in
the stack, next to the items (macro-states of the pilot machine) used by the
parser. Thus each stack element is a record, made of a syntactic field and
one or more semantic fields containing attribute values (or pointers to values
stored elsewhere); see the next example.

Example 6.43. Calculating machine without right attributes
The syntax of example 5.16 (p. 222) for certain arithmetic expressions meets
condition LR(1). The following grammar computes the expression value v, or
sets to true a predicate o in case of overflow. Constant maxint is the largest
integer the calculator can represent. A character a has an initialized attribute
v with the value of the integer constant a. Both attributes are left.

syntax semantic functions
E → E + T o0 := o1 or o1 or (v1 + v2 > maxint)

v0 := if o0 then nil else v1 + v2

E → T o0 := o1

v0 := v1

T → T × a o0 := o1 or (v1 × v2 > maxint)
v0 := if o0 then nil else v1 × v2

T → a o0 := false
v0 := value(a)

We trace in Figure 6.14 a computation of the pushdown machine, extended
with the semantic fields. The source sentence is a3 + a5, where the subscript
of a constant is its value. When the parser terminates, the stack contains
attributes v and o of the root of the tree.

Right Attributes Independent of Father

Actually, prohibition to use right attributes may badly complicate the task of
writing an attribute grammar. Attribute domains and semantic functions may
turn less simple and natural, although in principle we know any translation
can be specified without using right attributes.

Grammar expressivity improves if right attributes are readmitted, al-
though with the following limitation on their dependencies.

Definition 6.44. Condition A21 for bottom-up evaluation.
For each production p : D0 → D1 . . .Dr

1. the L condition (p. 319) for top-down evaluation is satisfied, and
2. no right attribute ρDk

, 1 � k � r, of a sibling depends on a right attribute
σD0 of the father.

21 The letter A stands for ascending order.
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Stack String

I0 a3 + a5 �
I0 a3 I4 + a5 �

I0

T
v = 3
o = false

I5 + a5 �

I0

E
v = 3
o = false

I1 + a5 �

I0

E
v = 3
o = false

I1 + I2 a5 �

I0

E
v = 3
o = false

I1 + I2 a5 I4 �

I0

E
v = 3

o = false

I1 + I2

T
v = 5

o = false

I3 �

I0

E
v = 3 + 5 = 8
o = false

�

Fig. 6.14 Shift-reduce parsing with attribute evaluation for example 6.43.

Positively stated, the same condition becomes: a right attribute ρDk
with

1 � k � r, may only depend on the right or left attributes of symbols
D1 . . .Dk−1.

If a grammar meets the A condition, the left attributes of nonterminal
symbols D1, . . . , Dr are available when a reduction is executed. Thus the
remaining attributes can be computed in the order:

1. right attributes of the same nonterminal symbols, in the order 1, 2, . . . , r;
2. left attributes of father D0.

Notice this order differs from the scheduling of top-down evaluation, in that
right attributes are computed later, during reduction.

Finally we observe that this delayed evaluation gives more freedom to
compute the right attributes in an order other than the natural left-to-right
order necessarily applied by top-down parsers. This would allow to deal with
more involved dependencies between the nodes of the sibling graph (p. 312),
similarly to one-sweep evaluators.

6.6.8 Typical Applications of Attribute Grammars

Syntax-directed translation is widely applied in compiler design. Attribute
grammars provide a convenient and modular notation for specifying the large
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number of local operations, without actually getting into compiler implemen-
tation. Since it would be too long to describe with some degree of complete-
ness the semantic analysis operations for a programming language, we simply
present in a schematic manner some typical interesting parts. Actually, it
is the case that the semantic analysis of programming languages comprises
rather repetitive parts, and it would not add to a conceptual understanding
of compilation to spell out them in detail.

We selected for presentation the following: semantic checks, code genera-
tion, and the use of semantic information for making parsing deterministic.

Semantic Checks

The formal language LF defined by the syntax is just a gross approxima-
tion by excess to the actual programming (or technical) language LT to be
compiled, that is, the set inclusion holds LF ⊃ LT . The left member is a
context-free language, while the right one is informally defined by the lan-
guage reference manual. Formally speaking, LT belongs to a more complex
language family, the context-sensitive. Without repeating the reasons pre-
sented at the end of Chapter 3, a context-sensitive syntax cannot be used in
practice and formalization must be contented with the context-free approxi-
mation.

To touch the nature of such approximations, imagine a programming lan-
guage LT . The sentences of LF are syntactically correct, yet they may violate
many prescriptions of the language manual, such as type compatibility be-
tween the operands of an expression, agreement between actual and formal
parameters of a procedure, and consistence between a variable declaration
and its use in an instruction.

A good way to check such prescriptions is by means of semantic rules
returning boolean attributes called semantic predicates. A given source text
violates a semantic prescription, if the corresponding semantic predicate turns
out false after attribute evaluation. Then the compiler reports a correspond-
ing error, referred to as a static semantic error.
In general, semantic predicates functionally depend on other attributes repre-
senting various program properties. For an example, consider the agreement
between a variable declaration and its use in an assignment statement. In the
program, declaration and use are arbitrarily distant substrings, therefore the
compiler must store the type of the declared variable in an attribute, called
symbol table or environment . This attribute will be propagated along the
syntax tree, to reach any node where the variable is used, in an assignment
or another statement. Such propagation is, however, just fiction, because, if
performed by copying the table, it would be too inefficient. In practice, the
environment is implemented by a global data structure (or object), which is
in the scope of all concerned semantic functions.
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The next attribute grammar schematizes the creation of a symbol table
and its use for checking the variables used in assignment statements.

Example 6.45. Symbol table and type checking
The example covers declarations of scalar and vectorial variables to be used in
assignments. For the sake of the example, we assume the following semantic
prescriptions have to be enforced:

1. a variable may not be multiply declared;
2. a variable may not be used before declaration;
3. the only valid assignments are between scalar variables and between vec-

tors of identical dimension.

The attribute grammar is in Table 6.5. The syntax, in rather abstract
form, distinguishes variable declarations from uses.

The symbol table is searched using as key the name n of a variable. For
each declared variable the table contains a descriptor descr with the type
(scalar or vector) and, if relevant, the dimension of the vector. During con-
struction, the table is hosted by attribute t. Predicate dd denounces a double
declaration; predicate ai type incompatibility between the left and right parts
of an assignment.

Attribute t is propagated to the whole tree for local controls to take place.
A summary of attributes follows:

attribute type associated symbols
n, variable name left id
v, constant value left const

dd, bool., double declaration left D
ai, bool., incompatibility left D

descr, descriptor left D, L, R
t, symbol table right A, P

The semantic analyzer processes a declaration D and sets to true predicate
dd, if the declared variable is already present in the symbol table. Otherwise
the variable descriptor is constructed and passed to the father node, together
with the variable name.

The left and right part L and R of an assignment A have attribute descr
(descriptor) that specifies the type of each part: variable (subscripted or not)
or constant. If a name does not exist in the symbol table, the descriptor is
assigned an error code.

For an assignment, the semantic rules control type compatibility and re-
turn predicate ai. The control that left and right parts of an assignment are
compatible is specified in pseudo-code: the error conditions listed in items 2.
and 3. make the predicate true.

For instance, in the syntactically correct text

D1
︷ ︸︸ ︷

a[10]

D2
︷︸︸︷

i

D3
︷︸︸︷

b

A4
︷ ︸︸ ︷

i := 4

A5:ai=true
︷ ︸︸ ︷

c := a[i]

D6
︷ ︸︸ ︷

c[30]

D7:dd=true
︷︸︸︷

i

A8:ai=true
︷ ︸︸ ︷

a := c
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Table 6.5 Grammar for checking variable declaration versus use in assignments (example
6.45).

syntax semantic functions

S → P t1 := ∅ - - initially empty table

P → DP t1 := t0 - - propagate table
t2 := insert(t0, n1, descr1)
- - add name and descr. to table

P → AP t1 := t0
t2 := t0
- - propagate table to both subtrees

P → ε

D → id - - scalar variable declaration
dd0 := present(t0, nid)
if ¬dd0 then descr0 := ′sca′

n0 := nid

D → id[const] - - vector variable declaration
dd0 := present(t0, nid)
if ¬dd0 then descr0 := ( ′vect′, vconst)
n0 := nid

A → L := R t1 := t0
t2 := t0
- - propagate table to both subtrees
ai0 := ¬〈descr1 is compatible with descr2〉

L → id descr0 :=< type of nid in t0 >

L → id[id] if 〈 type of nid1 in t0〉 =′ vect′ ∧ 〈 type of nid2 in t0〉 =′ sca′ then
descr0 := 〈 descr. of nid1 in t0〉 else error

R → id - - use of scalar/vector variable
descr0 := 〈type of nid in t0〉

R → const - - use of constant
descr0 :=′ sca′

R → id[id] - - use of subscripted variable
if 〈 type of nid1 in t0〉 =′ vect′ ∧ 〈 type of nid2 in t0〉 =′ sca′ then

descr0 := 〈 descr. of nid1 in t0〉 else error

semantic errors have been detected in assignments A5, A8 and in declaration
D7.

Many improvements and addition would be needed for a real compiler; we
mention a few.

To make diagnostic more accurate, it is preferable to separate various error
classes (undefined variable, incompatible type, wrong dimension, . . . ).

The compiler must tell the programmer the position (line number) of each
error occurrence. By enriching the grammar with other attributes and func-
tions it is not difficult to improve on diagnostic and error identification. In
particular, any semantic predicate, when it returns true in some tree position,
can be propagated towards the tree root, together with a node coordinate.
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Then in the root another semantic function will be in charge of writing com-
prehensive and readable error messages.

Other semantic errors are not covered by this example: for instance the
check that each variable is initialized before its first use in an expression;
or that, if it is assigned a value, it is used in some other statement. For
such controls, compilers adopt a more convenient method instead of attribute
grammars, called static program analysis, to be described at the end of this
chapter.

Finally, a program having passed all semantic controls in compilation may
still produce dynamic or run-time errors when executed. See for instance the
fragment

array a[10]; . . . read(i); a[i] := . . .

The read instruction may assign to variable i a value which falls out of interval
1 . . . 10, a condition clearly not detectable in compilation.

Code Generation

Since the final product of compilation is to translate a source program to
a sequence of target instructions, their selection is an essential part of the
process. The problem occurs in different settings and connotations, depending
on the nature of the source and target languages, and on the distance between
them. If the differences between the two languages are small, the translation
can be directly produced by the parser, as we have seen in Section 6.5.1 (p.
277) for the conversion from infix to polish notation of arithmetic expressions.

On the other hand, it is much harder to translate a high-level language, say
Java, to a machine language, and the large distance between the two makes
it convenient to subdivide the translation process into a cascade of simpler
phases. Each phase translates an intermediate language or representation to
another one. The first stage takes Java as source language, the last phase
produces machine code as target language. Compilers have used quite a va-
riety of intermediate representations: textual representations in polish form,
trees or graphs, representations similar to assembly language, etc.

An equally important goal of decomposition is to achieve portability with
respect to the target and source language. In the first case, portability (also
called retargeting) means the ease of modifying an existing compiler, when it
is required to generate code for a different machine. In the second case, the
modification comes from a change in the source language, say, from Java to
FORTRAN. In both cases some phases of a multi-phase compiler are inde-
pendent of the source or target languages, and can be reused at no cost.

The first phase is a syntax-directed translator, guided by the syntax of
say Java. The following phases select machine instructions and transform
the program, in order to maximize speed of target program execution, to
minimize memory occupation, or, in some cases, to reduce electric energy
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consumption.22 Notice the first phase or phases of a compiler are essentially
independent of the characteristic of the target machine; they comprise the
so-called front-end .

The last phases are machine dependent and are called the back-end com-
piler. The back-end actually contains several subsystems, including at least
a machine code selection module and a machine register allocation one. The
same front-end compiler is usually interfaced to several back-end compilers,
each one oriented towards a specific target machine.

The next examples offer a taste of the techniques involved in translating
from high-level to machine level instructions, in the very simple case of control
instructions. In a programming language, control statements prescribe the
order and choice of instructions to be executed. Constructs like if then else
and while do are translated by the compiler to conditional and unconditional
jumps. We assume the target language offers a conditional instruction ‘jump-
if-false’ with two arguments: a register rc containing the test condition, and
the label of the instruction to jump to.

In the syntax, the nonterminal L stands for a list of instructions. Clearly
each jump instruction requires a fresh label that differs from already used
labels: the translator needs an unbounded supply of labels. To create such
new labels when needed, the compiler invokes a function fresh that assigns
a new label to attribute n at each invocation.

The translation of a construct is accumulated in attribute tr, by concate-
nating (sign •) the translations of constituents, and inserting jump instruc-
tions with newly created labels. Labels have the form e397, f397, i23, . . .,
where the integer suffix is the number returned by function fresh.

Register rc is designated by the homonymous attribute of nonterminal
cond.

We illustrate with conditional and iterative instructions.

Example 6.46. Conditional instruction
The grammar of conditional instructions I is in Table 6.6. For brevity we omit
the translation of a boolean condition cond, and of other language constructs.
A complete compiler should include grammar rules for all of them.

We exhibit the translation of a program fragment, assuming the label
counter is set to n = 7:

if a > b tr(a > b);
then a := a − 1; jump-if-false rc, e7 ; tr(a := a − 1); jump f7 ;
else a := b; e7 : tr(a := b);

f7 : - - rest of program

22 Code selecting phases are often designed using specialized algorithms based on the
recognition of patterns on an intermediate tree representation. For an introduction to such
methods see, e.g.,[1] or [4].
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Table 6.6 Grammar for translating conditional instructions to jumps (example 6.46).

syntax semantic functions

F → I n1 := fresh

I → if cond tr0 := trcond • jump-if-false rccond, e • n0•
then L1 trL1 • jump f • n0•
else L2 e • n0• : trL2•

f • n0• :

Remember that tr(. . .) is the machine language translation of a construct.
Register rc is not chosen here, but when the compiler translates expression
a > b.

Next we show the translation of a loop.

Example 6.47. Iterative instructions
The grammar for a while do statement, shown in Table 6.47, is quite similar
and does not need comments. It suffices to display the translation of a pro-
gram fragment (assuming function fresh returns value 8):

while (a > b) do i8: tr(a > b);
jump-if-false rc, f8;

a := a − 1; tr(a := a − 1) ;
jump i8;

end while f8: - - rest of program

Table 6.7 Grammar for translating while do instructions to jumps (example 6.47).

syntax semantic functions

F → W n1 := fresh

W → while cond tr0 := i • n0• : •trcond•
do jump-if-false rccond, f • n0•

L trL • jump i • n0;
end f • n0• :

Other iterative and conditional statements require a similar set of compiler
rules.

However, the straightforward translations obtained are often inefficient and
need improvement, which is done by the optimizing phases of the compiler.23

23 The optimizer is by far the most complex and expensive part of a modern compiler; the
reader is referred to, e.g.,[4, 38, 1].
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A trivial example is the condensation of a chain of unconditional jumps into
a single jump instruction.

Semantics-Directed Parsing

In a standard compilation process, we know parsing comes before semantic
analysis; the latter operates on the syntax tree constructed by the former.
But in some circumstances, syntax is ambiguous and parsing cannot be suc-
cessfully executed on its own, because it would produce too many trees thus
puzzling the semantic evaluator. Actually this danger concerns just a few
technical languages, because the majority are designed so that their syntax
is deterministic. But in natural language processing the change of perspec-
tive is dramatic, because the syntax of human languages by itself is very
ambiguous.

We are here considering the case when the reference syntax of the source
language is indeterministic or altogether ambiguous, so that a deterministic
look-ahead parser cannot produce a unique parse of the given text. A syn-
ergic organization of syntax and semantic analysis permits overcoming this
difficulty, as explained next.

Focusing on artificial rather than natural languages, a reasonable assump-
tion is that no sentence is semantically ambiguous, i.e., that every valid sen-
tence has a unique meaning. Of course this does not exclude a sentence from
being syntactically ambiguous. But then the uncertainty between different
syntax trees can be solved at parsing time, by collecting and using semantic
information as soon as it is available.

For top-down parsing, we recall the critical decision is the choice between
alternative productions, when their LL(k) guide sets (p. 182) overlap on the
current input character. Now we propose to help the parser to solve the
dilemma by testing a semantic attribute termed a guide predicate, which
supplements the insufficient syntactic information. Such predicate has to be
computed by the parser, which is enhanced with the capability to evaluate
the relevant attributes.

Notice this organization resembles the multi-sweep attribute evaluation
method described on p. 315. The whole set of semantic attributes is divided
in two parts assigned for evaluation to cascaded phases. The first set includes
the guide predicates and the attributes they depend on; this set must be
evaluated in the first phase, during parsing. The remaining attributes may
be evaluated in the second phase, after the, by now unique, syntax tree has
been passed to the phase two evaluator.

We recall the requirements for the first set of attributes to be computable
at parsing time: the attributes must satisfy the L condition (p. 319). Conse-
quently the guide predicate will be available, when it is needed for selecting
one of the alternative productions, for expanding a nonterminal Di, 1 � i � r,
in production D0 → D1 . . . Di . . . Dr. Since the parser works depth-first from
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left to right, the part of the syntax tree from the root down to the subtrees
D1 . . .Di−1 is then available.

Following condition L, the guide predicate may only depend on the right
attributes of D0, and on other (left or right) attributes of any symbol, which
in the right part of the production precedes the root of the subtree Di under
construction.

The next example illustrates the use of guide predicates.

Example 6.48. A language without punctuation marks
The syntax of the historical Pascal-like language PLZ-SYS24 did without
commas and any punctuation marks, thus causing many syntactic ambigu-
ities, in particular, in the parameter list of a procedure. In this language a
parameter is declared with a type, and more parameters may be grouped
together by type.

Procedure P contains five identifiers in its parameter list, which can be
interpreted in three ways:

P proc (X Y T 1 Z T 2)

⎧

⎨

⎩

1. X has type Y ; T 1, Z have type T 2;
2. X, Y have type T 1; Z has type T 2;
3. X, Y, T 1, Z have type T 2.

Insightfully, the language designers prescribed that type declarations must
come before procedure declarations. If, for instance, the type declarations
occurring before the declaration of procedure P are

type T 1 record . . . end type T 2 = record . . . end

then case 1. is excluded, because Y is not a type, and T 1 is not a variable.
Similarly case 3. is excluded, and the ambiguity is solved.

It remains to be seen how the knowledge of preceding type declarations
can be incorporated into the parser, to direct the choice between the several
possible cases.

Within the declarative section D of language PLZ-SYS, we need to con-
sider just two parts of the syntax: the type declarations T , and the procedure
heading I (we need not concern us here with procedure bodies). Semantic
rules for type declarations will insert type descriptors into a symbol table t,
managed as a left attribute. As in earlier examples, n is the name or key of
an identifier.

Upon termination of type declaration analysis, the symbol table is dis-
tributed toward the subsequent parts of the program, and, in particular, to
procedure heading declarations. For downward and rightward propagation,
the left attribute t is (conceptually) copied into a right attribute td. Then
the descriptor descr of each identifier allows the parser to choose the correct
production.

24 Designed in the 1970s for an 8-bit microprocessor with minimal memory resources.
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To keep the example small, we make drastic simplifications: the scope (or
visibility) of declared entities is global to the entire program; every type is
declared as a record not further specified; we omit control of double dec-
larations; we do not insert in the symbol table the descriptors for declared
procedures and their arguments.

The grammar fragment is listed in Table 6.48.
Nonterminal V has two alternatives that violate the LL(2) condition, because

Table 6.8 Grammar for using type declaration for disambiguation (example 6.48).

syntax semantic functions

- - declarative part
D → TI tdI := tT

- - symbol table is copied

- - type declaration
T → type id = record. . . end t0 := insert(t2, nid,′ type′)

T - - descr. inserted in table

T → ε t0 := ∅
- - proc. heading
I → id proc (L) I tdL := td0

td3 := td0

- -table is passed to L and to I ≡ 3

I → ε

- - parameter list
L → V type id L tdV := td0

td3 := td0

L → ε

- -var. list (having same type)
V → var id V td1 := td0

td2 := td0

V → var id td1 := td0

type id → id

var id → id

type and variable identifiers are syntactically undistinguishable:
V → var id V : starts with var id var id, i.e., with id id
V → var id : starts with var id, that is, id followed by type id, i.e., id

Next the parser is enhanced with a semantic test, allowing it to choose the
correct alternative. Let cc1, cc2 respectively be the current terminal character
(or rather lexeme) and the next one.

The guide predicates for each alternative are listed:
production guide predicate

1 V → var id V 〈 the descr. of cc2 in table td0〉 �= ′type′ ∧
1’ 〈 the descr. of cc1 in table td0〉 �= ′type′

2 V → var id 〈 the descr. of cc2 in table td0〉 = ′type′ ∧
2’ 〈 the descr. of cc1 in table td0〉 �= ′type′
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The mutually exclusive clauses 1 and 2 act as guide predicates, to select
one alternative out of 1 and 2. Clauses 1’ and 2’ are a semantic predicate
controlling that the identifier associated with var id is not a type identifier.

Furthermore, we may add a semantic predicate to production L →
V type id L, in order to check whether the sort of type id ≡ cc2 in the
table is equal to ′type′.

In this manner the top-down parser gets help from the values of available
semantic attributes and deterministically constructs the tree.

6.7 Static Program Analysis

In this last part of the book we describe a technique for program analysis
and optimization, used by all compilers translating a programming language,
and also by many software engineering tools.

Imagine the front-end compiler has translated a program to an intermedi-
ate representation closer to machine or assembly language. The intermediate
program is then analyzed by other compiler phases, whose purpose and func-
tionality differ depending on circumstances:

verification, to further examine program correctness;
optimization, to transform the program into a more efficient version, for

instance by optimally assigning machine registers to program variables;
scheduling, to change instruction order, for a better exploitation of pro-

cessor pipelines and functional units, avoiding that such resources be at
times idle and at times overcommitted.

Although very different, such cases use a common representation of the pro-
gram, called a control flow graph, similar to a program flowchart. It is conve-
nient to view this graph as describing the state transition function of a finite
automaton. Here our standpoint is entirely different from syntax-directed
translation, because the automaton is not used to formally specify a pro-
gramming language, but just a particular program, on which attention is
focussed. A string recognized by the control flow automaton denotes a trace
of execution of that program, i.e., a sequence of machine operations.

Static analysis consists of the study of certain properties of control flow
graphs using various methods coming from logic, automata theory, and statis-
tic. In our concise presentation we mainly consider the logical approach.

6.7.1 A Program as an Automaton

In a program control flow graph each node is an instruction. At this level
instructions are usually simpler than in a high-level programming lan-
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guage, since they are a convenient intermediate representation produced by
the front-end compiler. Further simplifying matters, we assume instruction
operands are simple variables and constants (there are no aggregate data
types). Typical instructions are assignments to variables, and elementary
arithmetic, relational, and boolean expressions, usually with at most one op-
erator.

In this book we only consider intraprocedural analysis, meaning the control
flow graph describes one subprogram a time. More advanced studies are in-
terprocedural : they analyze the properties of a full program involving multiple
procedures and their invocations.

If execution of instruction p can be immediately followed by execution
of instruction q, the graph has an arc directed from p to q. Thus an arc
represents the immediate precedence relation between instructions: p is the
predecessor and q the successor.

The first instruction a program executes is the entry point, represented by
the initial node of the graph; for convenience we assume the initial instruction
has no predecessor. On the other hand, an instruction having no successors
is a program exit point, or final node of the graph.
Unconditional instructions have at most one successor. Conditional instruc-
tions have two successors (more than two for instructions such as C language
switches). An instruction with two or more predecessors is a confluence of so
many arcs of the graph.

A control flow graph is not a faithful program representation, but just
an abstraction: it suffices for extracting the properties of interest, but some
information is missing, as explained next.

• The true/false value determining the successor of a conditional instruction
such as if then else is not represented.

• An unconditional go to instruction is not represented as a node, but simply
as the arc to the successor instruction,

• An operation (arithmetic, reading, writing, etc.) performed by an instruc-
tion is replaced by the following abstraction:

– a value assignment to a variable, by means of a statement such as an
assignment or a reading instruction, is said to define that variable;

– if a variable occurs in an expression, namely, in the right part of an
assignment statement or in a boolean expression of a conditional, or in
the argument list of a writing instruction, we say the statement uses
(or makes reference to) that variable;

– thus, in the graph, a node representing a statement p is associated with
two sets: the set def(p) of defined variables and the set use(p) of used
variables.

Notice in this model the actual operation performed by a statement may
be often overlooked.
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Consider for instance a statement p : a := a ⊕ b, where ⊕ is an unspecified
binary operator; the instruction is represented in the control flow graph by a
node carrying the information:

def(p) = {a}, use(p) = {a, b}

In this abstract model the statements read(a) and a := 7 are undistinguish-
able, as they carry the same associate information: def = {a} and use = ∅.

In order to clarify the concepts and to describe some applications of the
method, we present a more complete example.

Example 6.49. Flowchart and control flow graph
We see in Figure 6.15 a subprogram, its flowchart, and control flow graph. In
the abstract control flow graph we need not list the actual instructions, but
just the sets of defined and used variables.

program:
a := 1

e1 : b := a + 2
c := b + c
a := b × 3
if a < m goto e1
return c

flowchart : control flow graph A:

1 a := 1

2 b := a + 2

3 c := b + c

4 a := b × 3

5 a < m

6 return c

↓

false

true

1 def(1) = {a}

2 def(2) = {b}, use(2) = {a}

3 def(3) = {c}, use(3) = {b, c}

4 def(4) = {a}, use(4) = {b}

5 use(5) = {a, m}

6 use(6) = {c}

↓

Fig. 6.15 Program, flowchart, and abstract control flow graph of example 6.49.

Instruction 1 has no predecessors and is the subprogram entry or initial
node. Instruction 6 has no successors and is the program exit or final node.
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Node 5 has two successors, whereas node 2 is at the confluence of two prede-
cessors. The sets use(1) and def(5) are empty.

Language of Control Flow Graph

We consider the finite automaton A, represented by a control flow graph. Its
terminal alphabet is the set I of program instructions, each one schematized
by a triple 〈 label, defined variables, used variables〉 such as 〈2, def(2) =
{b}, use(2) = {a}〉; for brevity sake, we often denote such instruction by
the first component, i.e., the instruction label or number.

Notice the terminal characters are not written on the arcs but inside the
nodes, as we did with the local automata studied on p. 128. Clearly all arcs
entering the same node “read” the same character. The states of the automa-
ton (as in syntax charts on p. 174) are not given an explicit name, since they
are anyhow identified by the terminal character of entering arcs. The ini-
tial state is marked by an entering arrow. The final states are those without
successor.

The formal language L(A) recognized by the automaton contains the
strings over alphabet I, that label a path from the entry node to an exit
node. Such path denotes a sequence of instructions which may be executed
when the program is run.

Clearly each node number is distinct since it corresponds to a different
instruction label. This confirms that the formal language L(A) belongs to
the family of local languages, which are a rather restricted subset of the
regular language family REG.

In the previous example, the alphabet is I = {1, 2, 3, 4, 5, 6}. A recognized
path is

1 → 2 → 3 → 4 → 5 → 2 → 3 → 4 → 5 → 6 ≡ 1234523456

The set of such recognized paths is the language L(A) = 1(2345)+6.

Conservative Approximations

Actually the automaton specifies only an approximation of the valid execution
paths of a program. Not all recognized paths are really executable by the
program, because our model disregards the boolean condition that selects a
successor node of a conditional statement. A trivial example is the program

1 : if a ∗ ∗ 2 � 0 then istr2 else istr3

where the formal language accepted by the automaton contains two paths
{12, 13}, but path 13 is not executable, because a square is never negative.
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As a consequence of such approximation,static analysis may sometimes
reach pessimistic conclusions: in particular, it may discover errors in a never
executed path.

Of course it is in general undecidable whether a path of a control flow
graph will ever be executed, because this would be equivalent to deciding
whether there exists a value assignment to input variables that cause the
execution of that path. The latter problem can be reduced to the halting
problem of a Turing machine, which is undecidable.

As it is generally impossible to know which paths are executable or not, it
would be much worse if the static analysis erred by disregarding some path
that turns out to be executable, because then it may fail to detect some real
errors.

In conclusion, the decision to examine all recognized paths (from the initial
to a final node) is a conservative approximation to program analysis, which
may cause the diagnosis of nonexisting errors, or the prudential assignment
of unnecessary resources, but it never misses real error conditions or real
resource requirements.

A usual hypothesis in static analysis is that the automaton is clean (p. 102),
i.e., each instruction is on a path from the initial to a final node. Otherwise
one or more of the following anomalies may occur in the program: some
executions never terminate, or some instructions are never executed (the
program contains so-called unreachable code).

6.7.2 Liveness Intervals of Variables

A professional compiler performs several passes of analysis over the interme-
diate representations of a program in order to improve it. A very interesting
analysis, allowing a variety of profitable optimizations, is the study of the
liveness intervals of program variables.

Definition 6.50. A variable a is live on the exit from a program node p if, in
the control flow graph, there exists a path from p to a node q (not necessarily
distinct from p) such that

• the path does not traverse an instruction r with r �= q that defines a, i.e.,
such that a ∈ def(r) ∧

• instruction q uses a, i.e., a ∈ use(q).

For brevity we say the variable is live out of node p. In other words, a variable
is live out of a certain node if some instruction, which may be successively
executed, makes use of the value the variable has in the former node.

To grasp the purpose of this definition, imagine that instruction p is the
assignment a := b⊕c and suppose we want to know if some instruction makes
use of the value assigned to a in p. The question can be rephrased as: is a live
out of node p? If not, the assignment is useless and can be deleted without
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affecting program semantics. Furthermore, if none of the variables used by
p is used in some other instruction, all the instructions assigning a value to
such variables may become useless, after p has been deleted.

Example 6.51. Example 6.49 continued
For the example of Figure 6.15 on p. 336, we reproduce in Figure 6.16 the
control flow graph, with the live variable sets for each arc, also referred to as
a program point. Observe in the picture the variables which are live in each

1 a := 1

2 b := a + 2

3 c := b + c

4 a := b × 3

5 a < m

6 return c

{c, m} ↓

{a, c, m}

{b, c, m}

{b, c, m}

{a, c, m}

{c}

{a, c, m}

Fig. 6.16 Control-flow graph with sets of variables live out of nodes (example 6.49).

program point. Thus variable c is live on entrance to node 1 because there
exists path 123, such that c ∈ use(3), and neither 1 nor 2 defines c.
It is customary to say variable a is live in the intervals (i.e., paths) 12 and
452; it is not live in the intervals 234 and 56, and so on.

More precisely we say a variable is live-out for a node, if it is live on any
arc outgoing from the node. Similarly a variable is live-in for a node, if it is
live on some arc entering the node. For instance, variables {a, c, m}∪ {c} are
live-out for node 5.

Computing Liveness Intervals

Let I be the instruction set. Let ⊆ I and U(a) ⊆ I respectively be the sets of
instructions defining and using some variable a. For instance, in the running
example it is D(b) = {2} and U(b) = {3, 4}.
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The liveness condition will be first expressed in terms of formal language
operations, then using a more expressive set theoretical notation.

It is not difficult to see that a is live-out for node p if, and only if, for the
language L(A) accepted by the automaton, the following condition holds:
L(A) contains a sentence x = upvqw, where u and w are (possibly empty)
arbitrary instruction sequences, p is any instruction, v is a possibly empty
instruction sequence not containing a definition of a, and instruction q uses
a. The above conditions are formalized as:

u, w ∈ I∗ ∧ p ∈ I ∧ v ∈ (I \ D(a))∗ ∧ q ∈ U(a) (6.1)

Observe again the set difference contains all the instructions which do not
define variable a, whereas instruction q uses a.

The set of all the strings x meeting condition (6.1), denoted Lp, is a sub-
language of L(A), i.e., Lp ⊆ L(A). Moreover, the language is regular, because
it can be defined by the intersection

Lp = L(A) ∩ Rp (6.2)

where language Rp is the regular language defined by the extended regular
expression:

Rp = I∗p (I \ D(a))∗ U(a)I∗ (6.3)

Formulas (6.2) and (6.3) prescribe that letter p must be followed by a letter
q taken from U(a), and that all the letters (if any) intervening between p and
q must not belong to set D(a).

It follows that, in order to decide whether a is live out of p, one has to check
that language Lp is not empty. We know one way of doing it: we construct
the recognizer of language Lp, that is, the product machine for intersection
(6.2), as explained in Chapter 3 on p. 138. If this machine does not contain
a path from the initial to a final state, then language Lp is empty.

This procedure is not practical, when taking into account the large di-
mension of the real programs to be analyzed. Therefore we introduce another
specialized method, which not only performs more efficiently, but it permits
computing at once all live variables in all program points. The new method
systematically examines all the paths from the current program point to some
instruction using some variable.

The computation of liveness will be expressed by a system of data-flow
equations . Consider a node p of control-flow graph or program A. A first
equation expresses the relation between the variables live-out liveout(p) and
those live-in livein(p). A second equation expresses the relation between vari-
ables live-out of a node and those live-in for its successors.

We denote by succ(p) the set of the (immediate) successors of node p, and
with var(A) the set of all the variables of program A.
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Data-flow equations:

for each final node (program exit) p:
liveout(p) = ∅ (6.4)

for any other node p :
livein(p) = use(p) ∪ (liveout(p) \ def(p))(6.5)

liveout(p) =
⊔

∀q∈succ(p)

livein(q) (6.6)

Comments:

• In equation (6.4) no variable is live out of the (sub)program graph. Here we
have disregarded the output parameters (if any) of the subprogram, which
are typically used after exit from the subprogram, and therefore may be
considered to be live out of the final node, though in another subprogram.

• For equation (6.5), a variable is live-in for p if it is used in p; or if it is
live-out for p but not defined by p.
Consider instruction 4 : a := b × 3 (Figure 6.15 on p. 336). Out of 4,
variables a, m, and c are live, because for each one there exists a path that
reaches a use of that variable, without traversing a node which defines the
same variable. On entrance to 4, the following variables are live: b because
it is used in 4; c and m because they are live-out for 4 and not defined in
4. On the contrary, variable a, though live-out for 4, is not live-in for 4,
because it is defined in 4.

• For equation (6.6), node 5 has successors 2 and 6; then the variables live-
out for 5 are those (a, c, and m) live-in for 2 and the one (c) live-in for
6.

Solution of Data-Flow Equations

Given a control flow graph, it is straightforward to write the two equations
for each instruction. For a graph with |I| = n nodes the resulting system
has 2 × n equations with 2 × n unknowns, livein(p) and liveout(p), for every
instruction p ∈ I. Each unknown is a set of variables, and the solution to be
computed is a pair of vectors, each one containing n sets.

To solve the systems we use iteration, taking the empty set as the initial
approximation, i = 0, for every unknown:

∀p ∈ I : livein(p) = ∅; liveout(p) = ∅

Let i be the current iteration. In each equation of system (6.5), (6.6), we
replace the unknowns occurring in the right hand sides with the values of
the current iteration, and thus we obtain the values of next iteration i +1. If
at least one unknown differs from the previous iteration, we execute another
iteration, otherwise we terminate, and the last vector pair computed is a
solution of the system of equations.



342 6 Translation Semantics and Static Analysis

This solution is termed the least fixed point of the transformation that
computes a new vector from the vector of the preceding iteration.

To see why a finite number of iterations always suffices to converge to the
least fixed point solution, observe the following:

• the cardinality of each set livein(p) and liveout(p) is bounded by the num-
ber of program variables;

• each iteration may only add some variables to some sets or leave them un-
changed, but it never removes any variable from a set; in other words, the
transformation is monotonic nondecreasing with respect to set inclusion;

• if an iteration does not change any set, the algorithm terminates.

We illustrate the algorithm on the sunning example.

Example 6.52. Example 6.49 continued: iterative computation of live vari-
ables
First we compute by inspection the sets of instructions defining (D) and using
(U) program variables:

D U

a 1, 4 2, 5
b 2 3, 4
c 3 3, 6
m ∅ 5

Next the equations for the program (Figure 6.15 on p. 336) are written in
Table 6.52.
Unknown names are shortened to in(p) and out(p) instead of livein(p)and
liveout(p).

Table 6.9 Liveness equations of the program in Figure 6.15 (example 6.52).

Equations:

1 in(1) = out(1) \ {a} out(1) = in(2)
2 in(2) = {a} ∪ (out(2) \ {b}) out(2) = in(3)
3 in(3) = {b, c} ∪ (out(3) \ {c}) out(3) = in(4)
4 in(4) = {b} ∪ (out(4) \ {a}) out(4) = in(5)
5 in(5) = {a, m} ∪ out(5) out(5) = in(2) ∪ in(6)
6 in(6) = {c} out(6) = ∅

Unknowns computed at each iteration:

in = out in out in out in out in out in out

1 ∅ ∅ a ∅ a, c c a, c c a, c, m c, m a, c, m
2 ∅ a b, c a, c b, c a, c b, c, m a, c, m b, c, m a, c, m b, c,m
3 ∅ b, c b b, c b, m b, c, m b, c, m b, c, m b, c, m b, c, m b, c,m
4 ∅ b a, m b, m a, c, m b, c, m a, c, m b, c, m a, c, m b, c, m a, c, m
5 ∅ a, m a, c a, c, m a, c a, c, m a, c a, c, m a, c, m a, c, m a, c, m
6 ∅ c ∅ c ∅ c ∅ c ∅ c ∅
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Then we compute and tabulate the successive approximations, starting from
the empty sets; at each iteration we first compute the in values and then the
out values. The least fixed point is reached after five iterations: it would be
easy to verify that a further iteration would not change the last result.

It is important to note that, although the solution does not depend on the
processing order of nodes, the speed of convergence to the fixed point is very
sensitive to the order.

We mention the time complexity of the iterative algorithm.25 The worst
case complexity is O(n4), where n is the number of nodes i.e., of instructions
of the subprogram. In practice, for many realistic programs the computational
complexity is close to linear in time.

Application of Liveness Analysis

We show two classical widespread applications of the previous analysis: mem-
ory allocation to variables and detection of useless instructions.

Memory Allocation

Liveness analysis is best applied to decide if two variables can reside in the
same memory cell (or in the same machine register). It is evident that if two
variables are live in the same program point, both values must be present in
memory when execution reaches that point, because they may have future
uses. Therefore the values cannot reside in the same cell: we then say the two
variables interfere.

Conversely, if two variables do not interfere, that is, they are never live
in the same program point, the same memory cell or register can be used to
keep their values.

Example 6.53. Interference and register assignment
In the control flow graph of Figure 6.16 on p. 339 we see variables a, c, and m
occur in the same set livein(2), therefore the three variables pairwise interfere.
Similarly, the pairs (b, c), (b, m), and (c, m) interfere in the set livein(3). On
the other hand, no set contains variables a and b, which therefore do not
interfere.

As stated before, two interfering variables must reside in different memory
cells. It follows each of variables c and m needs a separate cell, while both
variables a and b may reside in the same cell, that must be different from the
previous two cells, because a interferes with c and m. In conclusion we have
found that three cells suffice to store the values of four program variables.

Current compilers optimally assign registers to program variables by heuristic
methods relying on the interference relation.

25 For a proof refer for instance to any of [1, 4, 38].
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Useless Definitions

An instruction defining a variable is useless, if the value assigned to the
variable is never used by any instruction. This is tantamount to saying the
value is not live-out for the defining instruction. Therefore, to verify that a
definition of variable a by an instruction p is not useless, we have to check
whether a is present in the set liveout(p).

The program of Figure 6.15 on p. 336 has no useless definitions, in contrast
with the next example.

Example 6.54. Useless variable definition
Consider the program in Figure 6.17. The picture lists the live variables in and
out of each instruction. Variable c is not live-out for 3, hence instruction 3 is
useless. Useless instructions can be erased by the compiler. The elimination of
instruction 3 brings two benefits: the program is shorter and faster to execute,
and variable c disappears from the sets in(1), in(2), in(3), out(5). This reduces
interferences between variables and may bring a reduction in the number of
registers needed, which is often a bottleneck for program performance.

1 a := m

2 b := a + 2

3 c := b + c

4 c := b × 3

5 a < m + c

6 return b

{c, m} ↓

{a, c, m}

{a, b, c, m}

{a, b, m}

{a, b, c, m}

{b}

{a, c, m}

Fig. 6.17 Control flow graph with live sets applied to detect useless definition (example
6.54).

This is an example of the frequently occurring phenomenon of chain reac-
tion optimizations triggered by a simple program transformation.
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6.7.3 Reaching Definitions

Another basic and widely applied type of static analysis is the search for
variable definitions which reach some program point.

To introduce the idea by an application, consider an instruction assign-
ing a constant value to variable a. The compiler examines the program to
see if the same constant can be replaced for the variable, in the instructions
using a. The benefit of the replacement is manyfold. First, a machine instruc-
tion having a constant as operand (so-called “immediate” operand) is often
faster. Second, the substitution of a variable occurring in an expression with
a constant may produce an expression where all operands are constant; the
expression value can be computed at compile time, with no need to generate
code for it. Lastly, since the replacement eliminates one or more uses of a,
it shortens the liveness intervals and reduces interferences between variables;
the pressure on registers is consequently reduced.

The above transformation is termed constant propagation. In order to de-
velop it, we need a few conceptual definitions, which are also useful for other
program optimizations and verifications.

Consider an instruction p : a := b ⊕ c that defines variable a. For brevity,
we denote such variable definition as ap, while D(a) denotes the set of all the
definitions of the same variable a in the subprogram under analysis.

Definition 6.55. We say the definition of variable a in instruction q, aq,
reaches the entrance of an instruction p, if there exists a path from q to p,
such that it does not traverse a node, distinct from q, which defines a.

When this happens, instruction p may use the value of a computed in q.
Referring to automaton A, i.e., to the control flow graph of the subpro-

gram, the condition can be restated more precisely as follows. Definition
aq reaches instruction p, if language L(A) contains a sentence of the form
x = uqvpw, where u and w are (possibly empty) arbitrary instruction se-
quences, p is any instruction, v is a possibly empty instruction sequence not
containing a definition of a, and instruction q defines variable a. The above
conditions are formalized as

u, w ∈ I∗ ∧ q ∈ D(a) ∧ v ∈ (I \ D(a))∗ ∧ p ∈ I (6.7)

Notice that p and q may coincide.
Looking again at the program reproduced in Figure 6.18 (identical to the

one on p. 336), we find that definition a1 reaches the entrance of instructions
2, 3, and 4 but not the entrance of instruction 5. Definition a4 reaches the
entrance of instructions 5, 6, 2, 3, and 4.
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Data-flow Equations for Reaching Definitions

To compute reaching definitions in all program points, we set up a system of
equations similar to those for liveness analysis.

If node p defines variable a, we say any other definition aq of the same
variable in another node q, with q �= p, is suppressed by p. Formally, the set
of definitions suppressed by instruction p is:
{

sup(p) = {aq | q ∈ I ∧ q �= p ∧ a ∈ def(q) ∧ a ∈ def(p)}, if def(p) �= ∅
sup(p) = ∅, if def(p) = ∅

Notice the set def(p) may contain more than one name, in case of multiple
variable defining instructions, such as the read statement “read(a,b,c)”.

The sets of definitions reaching the entrance to and exit from a node p are,
respectively, denoted in(p) and out(p). The set of (immediate) predecessor
nodes of p is denoted pred(p).

Data-flow equations:

For the initial node 1:
in(1) = ∅ (6.8)

For any other node p ∈ I :
out(p) = def(p) ∪ (in(p) \ sup(p)) (6.9)

in(p) =
⊔

∀q∈pred(p)

out(q) (6.10)

Comments:
Equation (6.8) assumes for simplicity that no variables are passed as input
parameters to the subprogram. Otherwise, more accurately, in(1) should con-
tain all the definitions, external to the subprogram, of the input parameters.
Equation (6.9) inserts into the exit from p all local definitions of p and the
definitions reaching the entrance to p, provided the latter are not suppressed
by p.
Equation (6.10) states that any definition reaching the exit of some prede-
cessor node reaches also the entrance to p.

Similar to the liveness equations, the system can be solved by iteration,
until the computed solution converges to the first fixed point. In the starting
iteration all unknown sets are empty.

We illustrate with a program containing a loop.

Example 6.56. Reaching definitions
Observe in Figure 6.18 the same control flow graph of p. 336 with the reaching
definition sets, computed by solving the system of equations listed below in
Table 6.10.

Variables c and m are input parameters of the subprogram, and we may as-
sume they are externally defined in the calling subprogram, at some unknown
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1 a := 1

2 b := a + 2

3 c := b + c

4 a := b × 3

5 a < m

6 return c

{c?, m?} ↓

{a1, c?, m?}

{a1, a4, b2, c?, c3, m?}

{a1, a4, b2, c3, m?}

{a4, b2, c3, m?}

{a4, b2, c3, m?}

{a4, b2, c3, m?}

Fig. 6.18 Control-flow graph with reaching definitions (example 6.56).

points denoted c? and m?. Notice, for instance, that the external definition c?

of variable c does not reach the entrance of instruction 4, since it is suppressed
by instruction 3.

We list the constant terms occurring in the equations:

node def sup
1 a := 1 a1 a4

2 b := a + 2 b2 ∅
3 c := b + c c3 c?

4 a := b × 3 a4 a1

5 a < m ∅ ∅
6 return c ∅ ∅

At iteration 0 all sets are empty. After a few iterations, the unknown values
converge to the sets shown in Table 6.10.

Constant Propagation

Carrying further the previous example (Figure 6.18), we look for opportu-
nities to replace a variable by a constant value. An instance of the problem
is the question: can we replace variable a in instruction 2 with constant 1,
assigned by instruction 1 (i.e., definition a1)? The answer is negative because
set in(2) of reaching definitions contains another definition of a, namely, a4,
which implies that some computation may use for a the value defined in in-
struction 4. Therefore the program containing instruction b := 1 + 2 instead
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Table 6.10 Data-flow equations for reaching definitions (example 6.56 in Figure 6.18).

in(1) = {c?, m?}
out(1) = {a1} ∪ (in(1) \ {a4})
in(2) = out(1) ∪ out(5)

out(2) = {b2} ∪ (in(2) \ ∅) = {b2} ∪ in(2)

in(3) = out(2)

out(3) = {c3} ∪ (in(3) \ {c?})
in(4) = out(3)

out(4) = {a4} ∪ (in(4) \ {a1})
in(5) = out(4)

out(5) = ∅ ∪ (in(5) \ ∅) = in(5)

in(6) = out(5)

out(6) = ∅ ∪ (in(6) \ ∅) = in(6)

of b := a + 2 would not be equivalent to the original, which is quite evident
since a run can execute the loop body.

Generalizing this reasoning, it is easy to state a condition: it is legal to
replace in instruction p, a variable a used in p, with a constant k if

1. there exists an instruction q : a := k, assigning constant k to a, such that
definition aq reaches the entrance of p and

2. no other definition ar of variable a, with r �= q, reaches the entrance of p.

We show some program improvements produced by constant propagation and
by induced simplifications.

Example 6.57. Optimization following constant propagation
Figure 6.19 shows a simple control flow graph, and lists the reaching definition
sets and the live variable sets in relevant program points. Observe the only
definition of v reaching the entrance of 2 is v1. By the previous condition, it
is legal to replace variable v with constant 4 in the conditional instruction 2,
which afterwards becomes the constant boolean expression 4 × 8 � 0. Now
variable v ceases to be live-out for assignment 1, which becomes useless and
can be deleted.

But program simplification does not end here. The compiler can compute
the value of the constant expression26 32 � 0 = true, thus determining which
one of the successor legs of statement 2 will be taken, say the one to the left.
Then the right leg will never be taken, and can be deleted. We say instruc-
tion 4 becomes unreachable or dead code, since no computation starting in

26 Anticipating to compiler time a computation is termed constant folding .
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1 v := 4

2 v × 8 � 0

3 w := 7 4 w := 12

5 . . .
code using w but not v

6 . . .
code using w but not v

∅ ↓ livein = ∅

{v1} livein = {v}

{v1}
livein = ∅ {v1}

livein = ∅

{v1, w3}
livein{w} {v1, w4}

livein = {w}

{v1, w3, w4} livein = {w}

Fig. 6.19 A control flow graph, with reaching definitions and live variables, before con-
stant propagation (example 6.57).

the program entry will ever reach it. Now the conditional instruction 2 is
redundant, and can be eliminated.

After the transformations, the simplified program is shown in Figure 6.20.
Now analysis could proceed to determine if constant w = 7 can be legally
propagated to the rest of the program.

Availability of Variables and Initializations

A basic correctness check a compiler should perform is to control that vari-
ables are initialized before their first use. More generally, a variable used in
some instruction must have on entrance to the instruction a value computed
by means of a valid assignment (or by another variable defining statement).
Otherwise we say the variable is not available, and a compiler-time error
occurs.
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3 w := 7

5 . . .
code using w but not v

6 . . .
code using w but not v

∅ ↓ livein = ∅

{def3(w)}
livein{w}

{def3(w)} livein = {w}

Fig. 6.20 The control flow graph of Figure 6.19 after optimizations induced by constant
propagation.

Coming back to the control flow graph of Figure 6.18 on p. 347, observe
node 3 uses variable c, but on the path 123 no instruction executed before 3
assigns a value to c. This is not necessarily an error: if c is an input param-
eter of the subprogram, its value is supplied by the subprogram invocation
statement. In such case variable c has a value on entrance to node 3 and no
error occurs. The same discussion applies to variable m.

Variable b is available on entrance to 3 because its value was defined in
2 by an assignment, which uses variable a; the latter is in turn available on
entrance to 2, following initialization in 1.

This sort of reasoning becomes intricate, and we need to clarify the con-
cept of availability. For simplicity we assume the subprogram has no input
parameters.

Definition 6.58. A variable a is available on entrance to node p, i.e., just
before execution of instruction p, if in the control flow graph every path from
the initial node 1 to the entrance of p, contains a statement that defines
variable a.

Comparing this notion with the concept of reaching definitions introduced on
p. 345, we notice a difference in the quantification over paths. If definition aq

of variable a reaches the entrance of node p, there exists necessarily a path
from node 1 to node p traversing the defining instruction q. But this does
not guarantee that a is available on entrance to p, because we cannot exclude
that there exists another path from 1 to p, that avoids q as well as any other
node which defines variable a.
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It follows that the condition of a variable definition being available on
a node entrance is more constraining than that of the variable definition
reaching the same node.

To compute the variables available on entrance to node p, let us examine
more closely the set of definitions reaching the exits of p predecessors. If, for
every predecessor node q of p, the set of reaching definitions out(q) on the
exit from q contains (at least) one definition of variable a, then a is available
on entrance to p. In that case we also say that some definition of a always
reaches node p.

It is simple to convert the latter condition into an effective test that vari-
ables are correctly initialized. For an instruction q, the new notation out′(q)
denotes, as out(q), the set of variable definitions reaching the exit from q,
but with their subscripts deleted. For instance, for out(q) = {a1, a4, b3, c6},
we have out′(q) = {a, b, c}.

Badly Initialized Variables

An instruction p is not well initialized if the predicate holds:

∃q ∈ pred(p) such that use(p) �⊆ out′(q) (6.11)

The condition says there exists a predecessor node q of p, such that the set
of definitions reaching its exit does not include all the variables used in p.
Therefore, when program execution runs on a path through q, one or more
variables used in p do not have a value.

Example 6.59. Detecting uninitialized variables
Observe the control flow graph in Figure 6.21, completed with the sets of
reaching definitions. Condition (6.11) is false for node 2, since for every pre-
decessor (1 and 4) the set out′ contains a definition of a, which is the only
variable used in 2.

On the other hand, the condition is true in node 3, because no definition
of c reaches the exit from 2. Our analysis has thus detected a program error:
instruction 3 uses an uninitialized variable, c.

To find all the remaining initialization errors, we may proceed as follows.
We replace by a dummy no-operation instruction any so far discovered er-
roneous instructions, such as node 3. Then we update the computation of
reaching definition sets, and we reevaluate condition (6.11). By so doing, we
would discover that instruction 4 is not well initialized, because definition b3

although present in out(3) is not really available, since instruction 3 has al-
ready been marked as ineffective. Then also instruction 4 becomes ineffective.
Continuing in the same manner, no other errors would be discovered.

The previous analysis allows to catch at compile time many errors that had
gone unnoticed during the preceding phases of parsing and semantic analysis,
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1 a := 1

5 . . . . . . 2 a � 10

3 b := c + 1

4 a := b × 3

∅ ↓

{a1}

{a1, a4, b3}

{a1, a4, b3}

{a4, b3}

Fig. 6.21 Control-flow graph with available variables for example 6.59.

with the benefit that they will not cause hard-to-understand runtime errors,
or raise exceptions during program execution.

To conclude, static analysis27 encompasses many more conditions and
properties than the cases of liveness and reaching definitions we have been
able to present. It is a powerful general method for analyzing programs before
execution, in order to optimize them or to verify their correctness.

27 A book on the theory of static program analysis is [40]. For a survey of applications in
compilation see e.g.,[1, 4, 38].
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