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Preface to the Online Edition

Still today I am receiving requests for reprints of the book, but unfortunately it
is out of print. Therefore, since the book still seems to receive some attention, I pro-
posed to Springer Verlag to provide a free online edition. I am very happy that Springer
agreed. Except for the correction of some typographical errors, the online edition is just
a copy of the printed version, no updates have been made. In particular, Table 13.1
gives the status of TSPLIB at the time of publishing the book. For accessing TSPLIB the
link http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/ should be
used instead of following the procedure described in Chapter 13.

Heidelberg, January 2001
Gerhard Reinelt



Preface

More than fifteen years ago, I was faced with the following problem in an assignment
for a class in computer science. A brewery had to deliver beer to five stores, and the task
was to write a computer program for determining the shortest route for the truck driver to
visit all stores and return to the brewery. All my attemps to find a reasonable algorithm
failed, I could not help enumerating all possible routes and then select the best one.

Frustrated at that point, I learnt later that there was no fast algorithm for solving this
problem. Moreover, I found that this problem was well known as the traveling salesman
problem and that there existed a host of published work on finding solutions. Though
no efficient algorithm was developed, there was a tremendous progress in designing fast
approximate solutions and even in solving ever larger problem instances to optimality. I
started some work on the traveling salesman problem several years ago, first just writing
demos for student classes, but then trying to find good and better solutions more effec-
tively. I experienced the fascination of problem solving that, I think, everyone studying
the traveling salesman problem will experience. In addition, I found that the problem has
relevance in practice and that there is need for fast algorithms.

The present monograph documents my experiments with algorithms for finding good
approximate solutions to practical traveling salesman problems. The work presented here
profited from discussions and meetings with several people, among them Thomas Christof,
Meinrad Funke, Martin Grötschel, Michael Jünger, Manfred Padberg, Giovanni Rinaldi,
and Stefan Thienel, not naming dozens of further international researchers.

It is the aim of this text to serve as a guide for practitioners, but also to show that
the work on the traveling salesman problem is not at all finished. The TSP will stimulate
further efforts and continue to serve as the classical benchmark problem for algorithmic
ideas.

Heidelberg, June 1994
Gerhard Reinelt
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Chapter 1

Introduction

The most prominent member of the rich set of combinatorial optimization problems is
undoubtly the traveling salesman problem (TSP), the task of finding a route through
a given set of cities with shortest possible length. It is one of the few mathematical
problems that frequently appear in the popular scientific press (Cipra (1993)) or even
in newspapers (Kolata (1991)). It has a long history, dating back to the 19th century
(Hoffman & Wolfe (1985)).
The study of this problem has attracted many researchers from different fields, e.g.,
Mathematics, Operations Research, Physics, Biology, or Artificial Intelligence, and there
is a vast amount of literature on it. This is due to the fact that, although it is easily
formulated, it exhibits all aspects of combinatorial optimization and has served and
continues to serve as the benchmark problem for new algorithmic ideas like simulated
annealing, tabu search, neural networks, simulated tunneling or evolutionary methods
(to name only a few of them).
On the other hand, the TSP is interesting not only from a theoretical point of view.
Many practical applications can be modeled as a traveling salesman problem or as
variants of it. Therefore, there is a tremendous need for algorithms. The number of
cities in practical applications ranges from some dozens up to even millions (in VLSI
design). Due to this manifold area of applications there also has to be a broad collection
of algorithms to treat the various special cases.
In the last two decades an enormous progress has been made with respect to solving
traveling salesman problems to optimality which, of course, is the ultimate goal of every
researcher. Landmarks in the search for optimal solutions are the solution of a 48-city
problem (Dantzig, Fulkerson & Johnson (1954)), a 120-city problem (Grötschel

(1980)), a 318-city problem (Crowder & Padberg (1980)), a 532-city problem (Pad-

berg & Rinaldi (1987)), a 666-city problem (Grötschel & Holland (1991)), a
2392-city problem (Padberg & Rinaldi (1991)), a 3038-city problem (Applegate,

Bixby, Chvàtal & Cook (1991)), and of a 4461-city problem (Applegate, Bixby,

Chvàtal & Cook (1993)). This progress is only partly due to the increasing hardware
power of computers. Above all, it was made possible by the development of mathemat-
ical theory (in particular polyhedral combinatorics) and of efficient algorithms. But,
despite of these achievements, the traveling salesman problem is far from being solved.
Many aspects of the problem still need to be considered and questions are still left to
be answered satisfactorily.
First, the algorithms that are able to solve the largest (with respect to the number of
cities) problems to optimality are not stable in the following sense: solution times vary
strongly for different problems with the same number of cities and there is no function
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2 Chapter 1. Introduction

depending on the number of cities that only gives a slight idea of the time necessary
to solve a particular problem. Already problems with some hundred nodes can be very
hard for these algorithms and require hours of CPU time on supercomputers. And,
there is a lot of theoretical knowledge that has not yet gone into implementations.
Second, problems arising in practice may have a number of cities that is far beyond
the capabilities of any exact algorithm available today. There are very good heuristics
yielding solutions which are only a few percent above optimality. However, they still
can be improved with respect to running time or quality of the computed solutions.
Third, requirements in the production environment may make many algorithms or
heuristics unsuitable. Possible reasons are that not enough real time or CPU time is
available to apply certain algorithms, that the problem instances are simply too large,
or that not enough real time or man power is at hand to code a method one would like
to apply.
These arguments visualize the potential that is still inherent in the traveling salesman
problem.
The present monograph is meant to be a contribution to practical traveling salesman
problem solving. Main emphasis will be laid on the question of how to find good or
acceptable tours for large problem instances in short time. We will discuss variants
and extensions of known approaches and discuss some new ideas that have proved to
be useful. Furthermore we will indicate some directions of future research. Literature
will be reviewed to some extent, but a complete coverage of the knowledge about the
TSP is beyond the purpose and available space of this tract. For an introduction we
recommend the book Lawler, Lenstra, Rinnooy Kan & Shmoys (1985) and the
survey article Jünger, Reinelt & Rinaldi (1994).
Nevertheless, even without consulting further references the present text is meant to
be a guide for readers who are concerned with applications of the TSP and aims at
providing sufficient information for their successful treatment.
We give a short survey of the topics that will be addressed. Chapter 2 covers basic con-
cepts that we need throughout this monograph. This chapter contains an introduction
to complexity theory and describes some fundamental data structures and algorithms.
The many possible applications of the TSP are indicated in Chapter 3. Of particular
importance are Euclidean instances. To exploit the underlying geometric structure we
use Voronoi diagrams and convex hulls which are discussed in Chapter 4. A basic ingre-
dient of fast heuristics will be a limitation of the scope of search for good tours. This is
accomplished by candidate sets which restrict algorithms to certain subsets of promising
connections. The construction of reasonable candidate sets is the topic of Chapter 5.
Construction heuristics to find starting tours are given in Chapter 6. Emphasis is laid
on improving standard approaches and making them applicable for larger problems.
Many of these heuristics are also useful in later chapters. Chapter 7 is concerned with
the improvement of given tours. It is shown how data structures can be successfully
employed to come up with very efficient implementations. An important issue is cov-
ered in Chapter 8: the treatment of very large problem instances in short time. Several
types of approaches are presented. A short survey of recent heuristic methods is con-
tained in Chapter 9. Lower bounds are the topic of Chapter 10. Besides variants of
known approaches we comment on heuristics for computing Lagrange multipliers. The
algorithms described in this text have been successfully applied in an industry project.
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We discuss this project in depth in Chapter 11. Chapter 12 addresses the question of
computing optimal solutions as well as solutions with quality guarantee and discusses
some lines of future research. In particular, a proposal for a hardware and software
setup for the effective treatment of traveling salesman problems in practice is presented.
The appendix gives information of how getting access to TSPLIB, a publicly available
collection of TSP instances, and lists the current status of these problem instances.
In this monograph we will not describe the approaches down to the implementation
level. But, we will give enough information to facilitate implementations and point
out possible problems. Algorithms are presented on a level that is sufficient for their
understanding and for guiding practical realizations.
Extensive room is spent for computational experiments. Implementations were done
carefully, however, due to limited time for coding the software, not always the absolutely
fastest algorithm could be used. The main point is the discussion of various algorithmic
ideas and their comparison using reasonable implementations. We have not restricted
ourselves to only tell “success stories”, but we rather point out that sometimes even
elaborate approaches fail in practice.
Summarizing, it is the aim of this monograph to give a comprehensive survey on heuristic
approaches to traveling salesman problem solving and to motivate the development and
implementation of further and possibly better algorithms.



Chapter 2

Basic Concepts

The purpose of this chapter is to survey some basic knowledge from computer science
and mathematics that we need in this monograph. It is intended to provide the reader
with some fundamental concepts and results. For a more detailed representation of the
various subjects we shall refer to appropriate textbooks.

2.1 Graph Theory

Many combinatorial optimization problems can be formulated as problems in graphs.
We will therefore review some basic definitions from graph theory.
An undirected graph (or graph) G = (V,E) consists of a finite set of nodes V and a
finite set of edges E. Each edge e has two endnodes u, v and is denoted by e = uv or
e = {u, v}. We call such a graph undirected because we do not distinguish between the
edges uv and vu. However, we will sometimes speak about head and tail of an edge.
If e = uv then e is incident to v and to u. The set of edges incident to a node v is
denoted by δ(v). The number |δ(v)| is the degree of v.
A graph G′ = (V ′, E′) is called a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. For an
edge set E ⊆ E we define V (E) := {u, v ∈ V |uv ∈ E}. Conversely, for a node set V ⊆ V
we define E(V ) := {uv ∈ E | u ∈ V and v ∈ V }. We call the subgraph G′ = (V (E), E)
edge induced (by E) and the subgraph G′′ = (V ,E(V )) node induced (by V ).
A graph G = (V,E) is said to be complete if for all u, v ∈ V it contains edge uv. We
denote the complete graph on n nodes by Kn = (Vn, En) and assume unless otherwise
stated that Vn = {1, 2, . . . , n}.
Two graphs G′ = (V ′, E′) and G′′ = (V ′′, E′′) are isomorphic if there exists a bijective
mapping f : V ′ → V ′′ such that uv ∈ E′ if and only if f(u)f(v) ∈ E′′, e.g., the complete
graph Kn is unique up to isomorphism.
A graph G = (V,E) is called bipartite if its node set V can be partitioned into two
nonempty disjoint sets V1, V2 with V1∪V2 = V such that no two nodes in V1 and no two
nodes in V2 are connected by an edge. If |V1| = m, |V2| = n and E = {ij | i ∈ V1, j ∈ V2}
then we call G the complete bipartite graph Km,n.
An edge set P = {v1v2, v2v3, . . . , vk−1vk} is called a walk or more precisely a [v1, vk]–
walk. If vi �= vj for all i �= j then P is called path or [v1, vk]–path. The length of a
walk or path is the number of its edges and is denoted by |P |. If in a walk v1 = vk we
speak of a closed walk.
A set of edges C = {v1v2, v2v3, . . . , vk−1vk, vkv1} with vi �= vj for i �= j is called a cycle
(or k-cycle). An edge vivj , 1 ≤ i �= j ≤ k, not in C is called chord of C. The length of
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2.1. Graph Theory 5

a cycle C is denoted by |C|. For convenience we shall sometimes abbreviate the cycle
{v1v2, v2v3, . . . , vkv1} by (v1, v2, . . . vk) and also say that a graph G is a cycle if its edge
set forms a cycle. A graph or edge set is called acyclic if it contains no cycle. An
acyclic graph is also called forest.
A graph G = (V,E) is said to be connected if it contains for every pair of nodes a
path connecting them; otherwise G is called disconnected. A spanning tree is a
connected forest containing all nodes of the graph.
A nonempty edge set F ⊆ E is said to be a cut of the graph G = (V,E) if V can be
partitioned into two nonempty disjoint subsets V1, V2 with V1 ∪ V2 = V such that the
following holds: F = {uv ∈ E | u ∈ V1, v ∈ V2}. Equivalently, F is a cut if there exists
a node set W ⊆ V such that F = δ(W ).
Sometimes it is useful to associate a direction with the edges of a graph. A directed
graph (or digraph) D = (V,A) consists of a finite set of nodes V and a set of arcs
A ⊆ V × V \ {(v, v) | v ∈ V } (we do not consider loops or multiple arcs). If e = (u, v) is
an arc of D with endnodes u and v then we call u its tail and v its head. The arc e is
said to be directed from u to v, incident from u and incident to v. The number
of arcs incident to a node v is called the indegree of v and the number of arcs incident
from v is called the outdegree of v. The degree of v is the sum of its indegree and
outdegree. For a node v the sets of arcs incident from v, incident to v, and incident from
or to v are denoted by δ+(v), δ−(v), and δ(v), respectively. Two nodes are adjacent if
there is an arc connecting them.
Most of the definitions for undirected graphs carry over in a straightforward way to
directed graphs. For example, diwalks, dipaths and dicycles are defined analogously
to walks, paths, and cycles with the additional requirement that the arcs are directed
in the same direction.
A digraph D = (V,A) is said to be complete if for all u, v ∈ V it contains both arcs
(u, v) and (v, u). We denote the complete digraph on n nodes by Dn = (Vn, An).
For each digraph D = (V,A) we can construct its underlying graph G = (V,E) by
setting E = {uv | u and v are adjacent in D}.
A digraph D = (V,A) is called connected (disconnected) if its underlying graph is
connected (disconnected). D is called diconnected if for each pair u, v of its nodes
there are a [u, v]– and a [v, u]–dipath in D. A node v ∈ V is called articulation node
or cutnode of a digraph (graph) if the removal of v and all arcs (edges) having v as an
endnode disconnects the digraph (graph). A connected digraph (graph) is said to be
2-connected if it contains no articulation node.
To avoid degenerate situations we assume that, unless otherwise noted, all graphs and
digraphs contain at least one edge, respectively arc.
A walk (diwalk) that traverses every edge (arc) of a graph (digraph) exactly once is
called Eulerian trail (Eulerian ditrail). If such a walk (diwalk) is closed we speak of
a Eulerian tour. A graph (digraph) is Eulerian if its edge (arc) set can be traversed
by a Eulerian tour.
A cycle (dicycle) of length n in a graph (digraph) on n nodes is called Hamiltonian
cycle (Hamiltonian dicycle) or Hamiltonian tour. A path (dipath) of length n is
called Hamiltonian path (Hamiltonian dipath). A graph (digraph) containing a
Hamiltonian tour is called Hamiltonian.



6 Chapter 2. Basic Concepts

Often we have to deal with graphs where a rational number (edge weight) is associated
with each edge. We call a function c : E → Q (where Q denotes the set of rational
numbers) a weight function defining a weight c(e) (or ce, or cuv) for every edge e =
uv ∈ E. (In the context of practical computations it makes no sense to admit arbitrary
real-valued functions since only rational numbers are representable on a computer.) The
weight of a set of edges F ⊆ E is defined as

c(F ) :=
∑

uv∈F

cuv.

The weight of a tour is usually called its length, a tour of smallest weight is called
shortest tour. The problem in the focus of this monograph is the so-called (symmetric)
traveling salesman problem.

(Symmetric) Traveling Salesman Problem
Given the complete graph Kn with edge weights cuv find a shortest Hamiltonian tour
in Kn.

A symmetric TSP is said to satisfy the triangle inequality, if cuv ≤ cuw + cwv for
all distinct nodes u, v, w ∈ V . Of particular interest are metric traveling salesman
problems. These are problems where the nodes correspond to points in some space and
where the edge weights are given by evaluating some metric distance between corre-
sponding points. For example, a Euclidean TSP is defined by a set of points in the
plane. The corresponding graph contains a node for every point and edge weights are
given by the Euclidean distance of the points associated with the end nodes.
We list some problems on graphs related to the traveling salesman problem which will
be referred to at some places.

Asymmetric Traveling Salesman Problem
Given the complete digraph Dn with arc weights cuv find a shortest Hamiltonian tour
in Dn.

Chinese Postman Problem
Given a graph G = (V,E) with edge weights cuv for uv ∈ E find a shortest closed walk
in G containing all edges at least once.

Hamiltonian Cycle Problem
Given a graph G = (V,E) decide if G contains a Hamiltonian cycle.

Eulerian Tour Problem
Given a graph G = (V,E) decide if G is Eulerian.

Though quite similar, these problems are very different with respect to their hardness.
It is a topic of the next section to give a short introduction into complexity theory and
its impact on the traveling salesman problem.



2.2. Complexity Theory 7

2.2 Complexity Theory

When dealing with combinatorial problems or algorithms one is often interested in
comparing problems with respect to their hardness and algorithms with respect to their
efficiency. Often it is intuitively clear that some problem is more difficult to solve than
another problem and that one algorithm takes longer than another algorithm. The work
of Cook (Cook (1971)) laid the foundation for putting these questions into an exact
mathematical framework. Based on the notion of deterministic and nondeterministic
Turing machines it makes the classification of problems as “hard” or “easy” possible and
allows the measurement of efficiency of algorithms. Although being only a theoretical
model this concept had a great impact on the design and the analysis of algorithms.
For our purposes it is sufficient to introduce the concepts of complexity theory in a more
informal manner. If we omit certain subtleties we can take a real-world computer as our
computational model and think of an algorithm as a procedure written in some high-
level programming language. For a thorough study of complexity issues we recommend
Garey & Johnson (1979).
For reasons of exactness we distinguish in this section between “problems” and “in-
stances of problems”. A problem or problem class is a question defined on several
formal parameters, e.g., determine whether a graph contains a Hamiltonian cycle or
compute a shortest Hamiltonian tour in a weighted graph. If we associate concrete
values to these formal parameters we create a particular instance of the problem. A
particular graph defines an instance of the Hamiltonian cycle problem and a particular
weight function c : En → Q gives an instance of the traveling salesman problem for the
complete graph Kn = (Vn, En).
These two examples show in addition that we have to distinguish between two types
of problems. One type is the so-called decision problem which requires a “yes” or
“no” answer and the other type is the optimization problem demanding to exhibit a
solution which optimizes some objective function. We first give the basic terminology
which has been defined for decision problems and then show how optimization problems
can also be handled within this concept.
The performance of an algorithm has to be measured in some way depending on the
“sizes” of the problem instances to be solved. Therefore we associate with each instance
I of a certain problem class S a size or encoding length l(I) which is defined as
the number of bits required to represent the actual parameters in the usual binary
encoding scheme. If A is an algorithm for the solution of problem S then we define
its running time (for instance I) as the number of elementary operations (addition,
multiplication, etc.) which have to be executed on a computer to solve instance I. The
time complexity or running time of an algorithm A for a problem class S is then
defined as a function tA : N → N giving for each natural number n the number tA(n)
of elementary operations that the algorithm has to execute at most to solve an instance
of size n.
Note, that we assume that arithmetic operations are executed in constant time, i.e.,
independent of the size of the numbers involved. This is not correct in general, but is
feasible in our context.
Of course, in the usual case we will not be able to derive an explicit formula for evaluating
tA(n). On the other hand, we are not interested in concrete values of tA but rather in
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the rate of growth of tA with increasing n. If it is not possible to give the exact rate
of growth we are interested in lower and upper bounds for this rate. In the case of a
problem we are also interested in bounds for the running time of algorithms that are
able to solve the problem. We introduce some notations to express knowledge about
the rate of growth or bounds on this rate.

Definition 2.1 Let f : N → N and g : N → N be given.

(i) We say that f is O(g) if there exist positive constants c and n0 such that 0 ≤
f(n) ≤ c · g(n) for all n ≥ n0.

(ii) We say that f is Ω(g) if there exist positive constants c and n0 such that 0 ≤
c · g(n) ≤ f(n) for all n ≥ n0.

(iii) We say that f is Θ(g) if there exist positive constants c1, c2, and n0 such that
0 ≤ c1 · g(n) ≤ f(n) ≤ c2 · g(n) for all n ≥ n0.

The three notations define asymptotic upper, lower, and tight bounds, respectively, on
the rate of growth of f . An alternate definition of an asymptotic lower bound is obtained
by replacing “for all n ≥ n0” in 2.1 (iii) by “for infinitely many n”. Asymptotic upper
bounds are of practical interest since they give a worst case running time of an
algorithm. It is usually harder to derive nontrivial asymptotic lower bounds, but we
will occasionally be able to give such bounds.
We also use the Ω- and Θ-notation for problems. With the first notation we indicate
lower bounds on the running time of any algorithm that solves the problem, with the
second notation we indicate that an algorithm with best possible time complexity exists
to solve the problem.
An algorithm A is said to have polynomial time complexity if there exists a polyno-
mial p such that tA(n) = O(p(n)). All other algorithms are said to be of exponential
time complexity (although there are superpolynomial functions not being exponen-
tial). Edmonds (1965) was the first to emphasize the difference between polynomial and
nonpolynomial algorithms. It is now commonly accepted that only algorithms having a
polynomial worst case time complexity should be termed efficient algorithms.
We denote by P the class of decision problems which can be solved by polynomial time
algorithms.
The Eulerian tour problem can easily be solved in polynomial time. Using a result from
graph theory the following algorithm tests whether a connected graph G = (V,E) is
Eulerian.

procedure eulerian(G)

(1) For every v ∈ V compute its degree |δ(v)|.

(2) If all node degrees are even then the graph is Eulerian. If the degree of at least
one node is odd then the graph is not Eulerian.

end of eulerian
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This algorithm runs in time Θ(n+m). Surprisingly, also the Chinese postman problem
can be solved in polynomial time (Edmonds & Johnson (1973)).
However, many problems (in fact, most of the interesting problems in combinatorial
optimization) can up to date not be solved (and probably are not solvable) by polynomial
time algorithms. From a theoretical viewpoint they could be solved in the following way.
If the answer to an instance I (of a decision problem) is “yes”, then in a first step some
string s whose length is polynomial in the input size is guessed nondeterministically.
In a second step it is verified that s proves that the problem has a “yes” answer. The
verification step is performed (deterministically) in time polynomial both in the length
of s and in the size of I. If the answer to I is “no” then there exists no such string
and the algorithm is assumed to run forever. E.g., in the Hamiltonian cycle problem
the string s could be the encoding of a Hamiltonian cycle (if the graph contains such
a cycle); the length of s is polynomial in the input length, and it can be easily verified
whether s is indeed the encoding of a Hamiltonian cycle.
Obviously this procedure cannot be realized in practice. The formal model enabling
such computations is the so-called nondeterministic Turing machine. For our pur-
poses we can think of the instruction set of an ordinary computer enhanced by the
instruction “Investigate the following two branches in parallel”. The time complexity of
a nondeterministic algorithm is the maximal number of elementary steps that is required
to solve a decision problem if it has a “yes” answer.
The class of decision problems that can be solved in polynomial time using such non-
deterministic algorithms is called NP.
Note the important point that there is an asymmetry between “yes” and “no” answers
here. The question of how to show that a decision problem has a “no” answer is not
considered in this concept.
An important subclass of NP consists of the NP-complete problems. These are the
hardest problems in NP in the sense that if one of them is shown to be in P then
P=NP. Let A be an algorithm for the solution of problem B. We say that a problem
C is polynomially reducible to problem B if it can be solved in polynomial time by
an algorithm that uses A as a subroutine provided that each subroutine call of A only
counts as one step. A problem is then called NP-complete if every problem in NP is
polynomially reducible to it.
The Hamiltonian cycle problem is one member of the broad collection of NP-complete
problems (for a derivation of this result see Johnson & Papadimitriou (1985)).
The question P=NP? is one of the most famous unsolved questions in complexity theory.
Since this question has now been attacked for two decades and since NP-complete
problems proved to be substantially hard in practice it is commonly accepted that
P�=NP should be the probable answer to this question (if it can be decided at all).
We want to emphasize again that our representation is kept on an informal level, and it
is intended to give just an idea of the concepts of complexity theory. Especially we have
not considered space complexity which measures the amount of storage an algorithm
requires.
We now discuss how optimization problems like the traveling salesman problem can be
dealt with. With the TSP we associate the following decision problem which can be
analyzed using the above concepts.
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Traveling Salesman Decision Problem
Given the complete graph Kn with edge weights cuv and a number b decide if there
exists a Hamiltonian tour in Kn with length at most b.

This decision problem is NP-complete (Johnson & Papadimitriou (1985)).
If the traveling salesman problem is in P then obviously also the corresponding decision
problem is in P. An optimization problem having the property that the existence of
a polynomial time algorithm for the solution of an associated decision problem implies
the polynomial solvability of an NP-complete problem, is said to be NP-hard.
On the other hand, assume there exists a polynomial time algorithm for the solution
of the TSP decision problem. If all edge weights are integral and the largest weight in
absolute value of an edge is c then clearly the optimal solution of the traveling salesman
problem is not smaller than −c ·n and not larger than c ·n. Using the algorithm to solve
the decision problem we can find the shortest tour length using the following approach.

procedure tsplength(G)

(1) Set L = −c · n and U = c · n.

(2) As long as L < U perform the following steps.

(2.1) Set b = �L+U
2 �.

(2.2) If there exists a Hamiltonian tour of length at most b then set U = b, otherwise
set L = b+ 1.

end of tsplength

Applying this binary search technique we can find the length of the shortest tour by
at most �log(c · n)� + 1 calls of the solution algorithm for the TSP decision problem.
(Throughout this text we will use log to denote the logarithm with base 2).
To completely solve the optimization problem we have to exhibit an optimal solution.
This is now easily done once the shortest length is known.

procedure tsptour(G)

(1) Let U be the optimal tour length found by algorithm tsplength.

(2) For all u = 1, 2, . . . , n and all v = 1, 2, . . . , n perform the following steps.

(2.1) Set suv = cuv and cuv = c · n+ 1.

(2.2) If there does not exist a Hamiltonian tour of length U in the modified graph
then restore cuv = suv.

end of tsptour
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After execution of this procedure the edges whose weights have not been altered give
the edges of an optimal tour.
The procedures tsplength and tsptour call a polynomial number (in n and log c) of times
the algorithm for the solution of the traveling salesman decision problem. Optimization
problems with the property that they can be polynomially reduced to a decision problem
in NP are called NP-easy. Problems which are both NP-easy and NP-hard (like the
traveling salesman problem) are called NP-equivalent. If P �= NP then no NP-hard
problem can be solved in polynomial time, if P=NP then every NP-easy problem is in
P.
So far we have considered the general traveling salesman problem. One might hope
that there are special cases where the problem can be solved in polynomial time. Un-
fortunately, such cases rarely have practical importance (Burkard (1990), van Dal

(1992), van der Veen (1992), Warren (1993)). For most practical situations, namely
for symmetric distances with triangle inequality, for Euclidean instances, for bipartite
planar graphs, or even for grid graphs, the traveling salesman problem remainsNP-hard.
A different important issue is the question of whether algorithms can be designed which
deliver solutions with requested or at least guaranteed quality in polynomial time (poly-
nomial in the problem size and in the desired accuracy). Whereas for other NP-hard
problems such possibilities do exist, there are only discouraging results for the general
TSP. For a particular problem instance let copt denote the length of a shortest tour and
cH denote the length of a tour computed by heuristic H. There are two basic results
relating these two values.

Theorem 2.2 Unless P=NP there does not exist for any constant r ≥ 1 a polynomial
time heuristic H such that cH ≤ r · copt for all problem instances.

A proof is given in Sahni & Gonzales (1976).
A fully polynomial approximation scheme for a minimization problem is a heuristic
H which computes for a given problem instance and any ε > 0 a feasible solution
satisfying cH ≤ (1 + ε) · copt in time polynomial in the size of the instance and in ε−1.
It is an easy exercise to prove that to require polynomiality also in the encoding length
of ε is equivalent to require a polynomial algorithm for the exact solution. It is very
unlikely that fully polynomial approximation schemes exist for the traveling salesman
problem since the following result holds.

Theorem 2.3 Unless P=NP there does not exist a fully polynomial approximation
scheme for the Euclidean traveling salesman problem.

A proof can be found in Johnson & Papadimitriou (1985). The result holds in
general for TSPs with triangle inequality.
Despite these theoretical results we can nevertheless design heuristics that determine
good or very good tours in practice. The theorems tell us that for every heuristic there
are however problem instances where it fails badly. There are a few approximation
results for problems with triangle inequality which will be addressed in Chapter 6.
It should be pointed out that the complexity of an algorithm derived by theoretical
analysis might be insufficient to predict its behaviour when applied to real-world in-
stances of a problem. This is mainly due to the fact that only worst case analysis is
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performed which may be different from average behaviour, and, in addition, polynomial
algorithms can cause a large amount of CPU time if the polynomial is not of low degree.
In fact, for practical applications only algorithms having running time at most O(n3)
would be rated efficient, but even algorithms with running times as low as O(n2) may
not be applicable in certain situations.
Another point is, that the proof of NP-hardness of a problem does not imply the nonex-
istence of a reasonable algorithm for the solution of problem instances arising in practice.
It is the aim of this study to show that in the case of the traveling salesman problem
algorithms can be designed which are capable of finding good approximate solutions to
even large sized real-world instances within moderate time limits.

2.3 Linear and Integer Programming

Linear and integer programming is not a central topic of this tract. However, at some
points we will make references to concepts and results of linear and integer programming.
We give a short survey on these. Highly recommendable references in this area are the
prize-winning books Schrijver (1986) and Nemhauser & Wolsey (1988).
Let A be an m×n-matrix (constraint matrix), b be an m-vector (right hand side) and c
be an n-vector (objective function), where all entries of A, b, and c are rational numbers.
Given these data the linear programming problem is defined as follows.

Linear Programming Problem
Find a vector x∗ maximizing the objective function cTx over the set {x ∈ Q | Ax ≤ b}.

A linear program may be given in various forms which can all be transformed to the
above. For example we may have equality constraints, nonnegativity conditions for
some variables, or the objective function is to be minimized.
In its general form a linear programming problem is given as

max cTx+ dT y

Ax+By ≤ a

Cx+Dy = b

x ≥ 0

with appropriately dimensioned matrices and vectors.
A fundamental concept of linear programming is duality. The dual linear program
to the program given above (which is then called the primal linear program) is
defined as

min uT a+ vT b

uTA+ vTC ≥ cT

uTB + vTD = dT

u ≥ 0.

It is easily verified that the dual of the dual problem is again the primal problem.
One important aspect of the duality concept is stated in the following theorem.
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Theorem 2.4 Let P and D be a pair of dual linear programs as defined above.
Suppose there exist vectors (x∗, y∗) and (u∗, v∗) satisfying the constraints of P , resp.,
D. Then we have

(i) The objective function value of (x∗, y∗) (in problem P ) is less than or equal to
the objective function value of (u∗, v∗) (in problem D).

(ii) Both problems have optimal solutions and their objective function values are
equal.

Duality exhibits further relations between primal and dual problem. But since they
are not important in the sequel we omit them here. Note in particular, that the dual
problem can be used to give bounds for the optimal value of the primal problem (and
vice versa).
The first algorithm for solving linear programming problems was the Simplex method
invented by Dantzig (1963). Since then implementations of this method have been
considerably improved. Today, even very large sized linear programming problems with
several ten thousands of variables and constraints can be solved routinely in moderate
CPU time (Bixby (1994)). The running time of the Simplex method cannot be bounded
by a polynomial, in fact there are examples where exponential running time is necessary
to solve a problem.
However, the linear programming problem, i.e., the problem of maximizing a linear ob-
jective function subject to linear constraints is in P. This was proved in the famous
papers Khachian (1979) (using the Ellipsoid method) and Karmarkar (1984) (us-
ing an Interior-point method). Though both of these algorithms are polynomial, only
interior point methods are competitive with the Simplex method (Lustig, Marsten

& Shanno (1994)).
These facts illustrate again that complexity analysis is in the first place only a theoretical
tool to assess hardness of problems and running time of algorithms.
A step beyond polynomial solvability is taken if we require feasible solutions to have
integral entries. The integer linear programming problem is defined as follows.

Integer Linear Programming Problem
Let A, b, and c be appropriately dimensioned with rational entries. Find a vector x∗

maximizing the objective function cTx over the set {x ∈ Q | Ax ≤ b, x integer}.

This problem is NP-complete and no duality results are available. We show that the
traveling salesman problem can be formulated as an integer linear program.
To be able to apply methods of linear algebra to graph theory we associate vectors to
edge sets in the following way. Let G = (V,E) be a graph. If |E| = m then we denote
by QE the m-dimensional rational vector space where the components of the vectors
x ∈ QE are indexed by the edges uv ∈ E. We denote a component by xuv or xe if
e = uv.
The incidence vector xF ∈ QE of an edge set F ⊆ E is defined by setting xF

uv = 1 if
uv ∈ F and by setting xF

uv = 0 otherwise. Similarly, if we associate a variable xuv to
each edge uv we denote by x(F ) the formal sum of the variables belonging to the edges
of F .
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Now consider the TSP for the complete graph Kn with edge weights cuv. With the
interpretation that xuv = 1 if edge uv is contained in a tour and xuv = 0 otherwise, the
following is a formulation of the TSP as an integer linear program.

min
∑

uv∈E

cuvxuv

x(δ(v)) = 2, for all u ∈ V,

x(C) ≤ |C| − 1, for all cycles C ⊆ En, |C| < n,

xuv ∈ {0, 1}, for all u, v ∈ V.

The TSP can be successfully attacked within the framework of linear and integer pro-
gramming for surprisingly large problem sizes. We will comment on this issue in Chap-
ter 12.

2.4 Data Structures

In this section we discuss some data structures that are useful for implementing traveling
salesman problem algorithms. They are all used in the software package TSPX (Reinelt

(1991b)) with which all experiments in this monograph were conducted. The exposition
is based on the books Tarjan (1983) and Cormen, Leiserson & Rivest (1989) on
algorithms and data structures. A further reference on the foundations of algorithms is
Knuth (1973).

2.4.1 Binary Search Trees

A rooted tree is a connected acyclic graph with one distinguished node, the so-called
root or root node of the tree. Therefore, if the graph has n nodes a tree consists of
n− 1 edges. The depth of the tree is the length (number of edges) of the longest path
from the root to any other node. Every node v is connected to the root by a unique
path. The length of this path is said to be the depth or the level of v. We say that
a tree is binary if at most two edges are incident to the root node and at most three
edges are incident to every other node.
If node u is the first node encountered when traversing the unique path from v to the
root then u is called father of v, denoted by f [v] in the following. By definition f [r] = 0
if r is the root node. If v is a node in a binary tree then there are at most two nodes
with v as their father. These nodes are called sons of v, and we define one of them to
be the right son and the other one to be the left son of v. Either of them may be
missing. A node without sons is called leaf of the tree. To represent a binary tree we
store for every node v its father f [v], its right son r[v] and its left son l[v]. If one of
them is missing we assign 0 to the respective entry.
Figure 2.1 shows a binary tree with root 5 and leaves 2, 7, 3, and 9.
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Figure 2.1 A binary tree on 10 nodes

By assigning to each node v a number k[v], the key of the node, we can store information
in such a tree.
Let a1, a2, . . . , an be a sequence of keys assigned to a set of n nodes.

Definition 2.5 A binary tree on these nodes is called search tree if it satisfies the
following conditions.

(i) If u = r[v] then k[u] ≥ k[v].
(ii) If w = l[v] then k[w] ≤ k[v].

If the following procedure is called with the root of the search tree as parameter then
it prints the stored numbers in increasing order.

procedure inorder(v)

(1) If v = 0 then return.

(2) Call inorder(l[v]).

(3) Print k[v].

(4) Call inorder(r[v]).

end of inorder

Algorithms to find the smallest key stored in a binary search tree or to check if some
key is present are obvious.
The depth of an arbitrary binary search tree can be as large as n− 1 in which case the
tree is a path. Hence checking if a key is present in a binary search tree can take time
O(n) in the worst case. This is also the worst case time for inserting a new key into the
tree.
On the other hand, if we build the tree in a clever way, we could realize it with depth
�log n�. In such a tree searching can be performed much faster.
This observation leads us to the concept of balanced binary search trees which allow
searching in worst case time O(logn). There are many possibilities for implementing
balanced trees. We describe the so-called red-black trees.
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For the proper definition we have to change our notion of binary search trees. Now we
distinguish between internal nodes (having a key associated with them) and external
nodes (leafs of the tree). Every internal node is required to have two sons, no internal
node is a leaf of the tree.

Definition 2.6 A binary tree is called red-black tree if it satisfies the following
conditions.

(i) Every node is either red or black.

(ii) Every external node (leaf) is black.

(iii) If a node is red then its sons are black.

(iv) Every path from a node down to a leaf contains the same number of black nodes.

It can be shown that a red-black tree with n non-leaf nodes has depth at most 2 log(n+1).
Therefore searching in a red-black tree takes time O(logn).
Insertion of a new key can also be performed in time O(logn) because of the small
depth of the tree. But we have to ensure that the red-black property still holds after
having inserted a key. To do this we have to perform some additional fixing operations.
Basically, we color the newly inserted node red and then reinstall the red-black condition
on the path from the new node to the root. At every node on this path we spend constant
time to check correctness and to fix node colors and keys if necessary. So the overall time
spent for inserting a new node and reestablishing the red-black condition is O(logn).

2.4.2 Disjoint Sets Representation

Very frequently we need to manage a partition of some ground set V = {1, 2, . . . , n} into
disjoint subsets S1, S2, . . . , Sk, i.e., sets satisfying ∪k

i=1Si = V and Si ∩ Sj = ∅ for all
i �= j. Operations to be performed are merging two subsets and identifying the subset
containing a given element.
The data structure to store such a partition consists of a collection of trees each repre-
senting one subset. The nodes of each tree correspond to those elements of the ground
set which belong to the respective subset, and the root node of each tree is said to be
the representative of the respective set. For simplification of algorithms we define
here the father of the root to be the root itself.
Suppose we have an initialized data structure representing some partition. Identification
of the subset, i.e., the representative of the subset, to which an element v ∈ V belongs
is achieved by the following function.

function find(v)

(1) While f [v] �= v set v = f [v].

(2) Return v.

end of find

Joining two subsets S and T where we are given elements x ∈ S and y ∈ T is accom-
plished by the following procedure.
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procedure union(x, y)

(1) Set u = find(x).

(2) Set v = find(y).

(3) Set f [u] = v.

end of union

The representative of the new set is v.
We will exclusively use the disjoint set representation in the following context. The
ground set V is the node set of some graph with edge set E. Initially, the ground set
is partitioned into n sets containing one element each. We then scan the edges of E in
some order depending on the application. If the endnodes of the current edge satisfy
some condition then the sets containing these endnodes are merged. Usually n − 1
merge operations are performed so that the final partition consists just of the set V .
The number of find operations is bounded by 2|E|. An application of this principle is
used for implementing Kruskal’s spanning tree algorithm to be discussed in section 2.5.
Without further modifications the above implementation can result in trees which are
paths. This is the worst case for performing find operations. Ideally, we would like to
have trees of depth 1 for set representation. But to achieve this we have to traverse one
of the trees participating in a union operation. On the other hand, this can result in a
running time of O(m2) for m union operations if the wrong trees are chosen.
Fortunately, there are two improvements to overcome these problems. We implement
the find operations with additional path compression and union operations as union
by rank. In addition we now store for each node r the number of nodes n[r] in the tree
rooted at r. The modified procedures are now.

function find and compress(v)

(1) If v �= f [v] then set f [v] = find and compress(f [v]).

(2) Return f [v].

end of find and compress

After execution of this procedure for a node v all nodes on the path from v to the root
(including v) in the previous tree now have the root node as their father.

procedure union by rank(x, y)

(1) Set u = find and compress(x).

(2) Set v = find and compress(y).

(3) If n[u] < n[v] then set f [u] = v and n[v] = n[v] + n[u]. Otherwise set f [v] = u
and n[u] = n[u] + n[v].

end of union by rank
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This procedure makes the root of the larger tree the father of the root of the smaller
tree after the union operation. Looking more closely at this principle one realizes that
it is not necessary to know the exact number of nodes in the trees. It suffices to store
a rank at the root node which is incremented by one if trees of equal rank are merged.
This way one can avoid additions of integers.
Initialization of a single element set is simply done by the following code.

procedure make set(v)

(1) Set f [v] = v and n[v] = 1.

end of make set

The modified implementation of union/find turns out to perform very efficiently for our
purposes.

Theorem 2.7 If m operations are performed using disjoint sets representation by
trees where n of them are make set operations and the other ones are union operations
(by rank) for disjoint sets and find operations (with path compression) then this can be
performed in time O(m log∗ n).

A proof of this instructive theorem can be found in Tarjan (1983) or Cormen, Leis-

erson & Rivest (1989). The number log∗ n is defined via log(i) n as follows.

log(i) n =

{
n if i = 0,
log(log(i−1) n) if i > 0 and log(i−1) n > 0,
undefined otherwise,

and then
log∗ n = min{i ≥ 0 | log(i) n ≤ 1}.

In fact, in the above theorem a slightly better bound of O(mα(m,n)) where α denotes
the inverse of the Ackermann function can be proved. But this is of no importance for
practical computations since already log∗ n ≤ 5 for n ≤ 265536. So we can speak of
linear running time of the fast union-find algorithm in practice (for our applications).

2.4.3 Heaps and Priority Queues

A heap is a data structure to store special binary trees satisfying an additional heap
condition. These binary trees have the property that except for the deepest level all
levels contain the maximal possible number of nodes. The deepest level is filled from
“left to right” if we imagine the tree drawn in the plane. To every tree node there is an
associated key, a real number. These keys are stored in a linear array A according to a
special numbering that is assumed for the tree nodes. The root receives number 1 and if
a node has number i then its left son has number 2i and its right son has number 2i+1.
If a node has number i then its key is stored in A[i]. Therefore, if such a binary tree
has k nodes then the corresponding keys are stored in A[1] through A[k]. The special
property that array A has to have is the following.



2.4. Data Structures 19

Definition 2.8 An array A of length n satisfies the heap property if for all 1 < i ≤ n
we have A[� i

2�] ≤ A[i].

Stated in terms of binary trees this condition means that the key of the father of a node
is not larger than the key of the node. The heap property implies that the root has the
smallest key among all tree nodes, or equivalently, A[1] is the smallest element of the
array.
Alternatively, we can define the heap property as “A[� i

2�] ≥ A[i]”. This does not make
an essential difference for the following, since only the relative order of the keys is
reversed.
As a first basic operation we have to be able to turn an array filled with arbitrary keys
into a heap. To do this we have to use the subroutine heapify with argument i which
fixes the heap property for the subtree rooted at node i (where it is assumed that the
two subtrees rooted at the left, resp. right, son of i are already heaps).

procedure heapify(i)

(1) Let n be the number of elements in heap A (nodes in the binary tree). If 2i > n
or 2i+ 1 > n the array entries A[2i], resp. A[2i+ 1] are assumed to be +∞.

(2) Let k be the index of i, 2i, and 2i+ 1 whose array entry is the smallest.

(3) If k �= i then exchange A[i] and A[k] and perform heapify(k).

end of heapify

It is easy to see that heapify(i) takes time O(h) if h is the length of the longest path
from node i down to a leaf in the search tree. Therefore heapify(1) takes time O(logn).
Suppose we are given an array A of length n to be turned into a heap. Since all leaves
represent 1-element heaps the following procedure does the job.

procedure build heap(A)

(1) For i = �n
2
� downto 1 perform heapify(i).

end of build heap

A careful analysis of this procedure shows that an arbitrary array of length n can be
turned into a heap in time O(n). Note that the binary tree represented by the heap is
not necessarily a search tree.
Except for sorting (see section 2.5) we use the heap data structure for implementing
priority queues. As the name suggests such a structure is a queue of elements such
that elements can be accessed one after the other according to their priority. The
first element of such a queue will always be the element with highest priority. For the
following we assume that an element has higher priority than another element if its key
is smaller.
The top element of a heap is therefore the element of highest priority. The most fre-
quently applied operation on a priority queue is to extract the top-priority element and
assure that afterwards the element of the remaining ones with highest priority is in the
first position. This operation is implemented using the heap data structure. We assume
that the current size of the heap is n.
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function extract top(A)

(1) Set t = A[1].

(2) Set A[1] = A[n] and decrease the heap size by 1.

(3) Call heapify(1).

(4) Return t.

end of extract top

Because of the call of heapify(1), extracting the top element and fixing the heap property
needs time O(logn). Inserting a new element is accomplished as follows.

procedure insert key(k)

(1) Increase the heap size by 1 and set i to the new size.

(2) While i > 1 and A[� i
2
�] > k

(2.1) Set A[i] = A[� i
2�] and i = � i

2�.

(3) Set A[i] = k.

end of insert key

Since in the worst case we have to scan the path from the new leaf to the root, a call of
insert key takes time O(logn).

2.4.4 Graph Data Structures

Very frequently we have to store undirected graphs G = (V,E) with |V | = n nodes and
|E| = m edges where n is large, say in the range of 1,000 to 100,000. The number of
edges to be stored depends on the application.
Matrix type data structures are the (node-edge) incidence matrix and the (node-node)
adjacency matrix. The incidence matrix A is an n ×m-matrix whose entries aie are
defined by

aie =
{ 1 if i is an endnode of edge e,
0 otherwise.

The adjacency matrix is an n× n-matrix B whose entries bij are defined by

bij =
{ 1 if ij is an edge of G,
0 otherwise.

Since we need O(nm) or O(n2) storage for these matrices they cannot be used for large
graphs. This also limits the use of distance matrices for the definition of edge weights
in large problem instances. Fortunately, for large TSPs, distances between nodes are
usually given by a distance function.
If we just want to store a graph we can use an edge list consisting of two arrays tail
and head such that tail[e] and head[e] give the two endnodes of the edge e. This is
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appropriate if some graph is generated edge by edge and no specific operation has to be
performed on it.
Another possibility is to use a system of adjacency lists. Here we store for each node
a list of its adjacent nodes. This is done by an array adj of length 2m containing the
adjacent nodes and an array ap of length n. These arrays are initialized such that the
neighbors of node i are given in adj[ap[i]], adj[ap[i] + 1], through adj[ap[i+1]− 1]. This
data structure is suitable if we have to scan neighbors of a node and if the graph remains
unchanged. Adding edges is time consuming since large parts of the array may have to
be moved.
If we have to add edges and want to avoid moving parts of arrays, then we have to
use linked lists. Since this is our most frequent operation on graphs we have used the
following data structure to store an undirected graph. The two arrays tail and head
contain the endnodes of the edges. The arrays nxtt and nxth are initialized such that
nxtt[e] gives the number of a further edge in this structure having tail[e] as one endnode
and nxth[e] gives the number of a further edge having head[e] as an endnode. An entry 0
terminates a linked list of edges for a node. For each node v the array entry first[v]
gives the number of the first edge having v as an endnode.
To get used to this form of storing a graph we give an example here. Suppose we
have a subgraph of the complete graph on six nodes consisting of the edges {1, 2},
{1, 5}, {2, 5}, {2, 3}, {3, 5}, {4, 5} and {4, 6}. This graph could be stored e.g., by the
assignment shown in Table 2.2.

Index first

1 6
2 5
3 5
4 7
5 7
6 4

Index head tail nxth nxtt

1 1 2 0 0
2 3 5 0 0
3 2 5 1 2
4 4 6 0 0
5 2 3 3 2
6 1 5 1 3
7 4 5 4 6

Table 2.2 Example for subgraph data structure

Suppose the current graph has m edges and is stored using this data structure. Adding
a new edge can then be performed in constant time using the following piece of code.

procedure add edge(i, j)

(1) Set tail[m+ 1]=i, nxtt[m+ 1]=first[i], and first[i] = m+ 1.

(2) Set head[m+ 1]=j, nxth[m+ 1]=first[j], and first[j] = m+ 1.

(3) Set m = m+ 1.

end of add edge

Of course, if we add more edges than dynamic memory space has been allocated for we
have to allocate additional space.
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2.4.5 Representing Tours

An easy way to store a tour is to use an array t of length n and let t[k] be the k-th node
visited in the tour. However, this is not sufficient as we shall see below. We also have
to impose a direction on the tour. We therefore store with each node i its predecessor
pred[i] and its successor succ[i] in the tour with respect to the chosen orientation.
When using heuristics to find short tours one has to perform a sequence of local modi-
fications of the current tour to improve its length. We explain our method to perform
modifications in an efficient way using the example of 2-opt moves. A 2-opt move
consists of removing two edges from the current tour and reconnecting the resulting
paths in the best possible way. This operation is depicted in Figure 2.3 where broken
arcs correspond to directed paths.

ik

l

ik

lj j

Figure 2.3 A 2-opt move

Note that we have to have an imposed direction of the tour to be able to decide which
pair of new edges can be added to form a new tour. Adding edges jk and il would result
in an invalid subgraph consisting of two subtours. Furthermore, the direction on one of
the paths has to be reversed which takes time O(n).
Since we have to make a sequence of such 2-opt moves we do not update the tour
structure as in Figure 2.3 but rather store the current tour as a sequence of unchanged
intervals of the starting tour. This is of particular importance for some heuristics where
2-opt moves are only tentative and might not be realized to form the next tour. For
each interval we store the direction in which it is traversed in the current tour. The
result of the 2-opt move in our example would be a doubly linked sequence of intervals
as in Figure 2.4 where we also indicate that the path represented by the interval [k, j]
has been reversed.

[ l , i ] [ k , j ]

Figure 2.4 Result of the 2-opt move

To make the approach clearer we use concrete node numbers l = 4, i = 7, k = 3, j = 10
and perform another 2-opt move involving nodes 11 and 5 on the path from 4 to 7 and
nodes 8 and 16 on the path from 3 to 10 as in Figure 2.5.
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Figure 2.5 A second 2-opt move

After execution of this move we have the interval sequence shown in Figure 2.6. Note
that the segment between nodes 3 and 8 was reversed before the 2-opt move, so it is
not reversed any more after the move.

[ 4 , 11 ] [ 8 , 3 ] [ 7 , 5 ] [ 16 , 10 ]

Figure 2.6 Result of the second 2-opt move

The new interval sequence was obtained by splitting two intervals and reconnecting the
intervals in an appropriate way. Note that also in the interval representation of a tour
we have to reorient paths of the sequence. But, if we limit the number of moves in such
a sequence by k this can be performed in O(k).
One difficulty has been omitted so far. If we want to perform a 2-opt move involving
four nodes we have to know the intervals in which they are contained to be able to
choose the correct links. We cannot do this efficiently without additional information.
We store with each node its rank in the starting tour. This rank is defined as follows:
An arbitrary node gets rank 1, its successor gets rank 2, etc., until the predecessor of the
rank 1 node receives rank n. Since we know for each interval the ranks of its endnodes
and whether it has been reversed with respect to the starting tour or not, we can check
which interval contains a given node if we store the intervals in a balanced binary search
tree.
Applying this technique the interval containing a given node can be identified in time
O(log k) if we have k intervals.
This way of maintaining tour modifications is extensively used in the implementation
of a Lin-Kernighan type improvement method (see Chapter 7). Experience with this
data structure was also reported in Applegate, Chvátal & Cook (1990). They used
splay trees (Tarjan (1983)) instead of red-black trees in their implementation.
Of course, the number of intervals should not become too large because the savings in
execution time decreases with the number of intervals.
Finally, or if we have too many intervals, we have to clear the interval structure and
generate correct successor and predecessor pointers to represent the current tour. This



24 Chapter 2. Basic Concepts

is done in the obvious way. Note that the longest path represented as an interval can
remain unchanged, i.e., for its interior nodes successors, predecessors, and ranks do not
have to be altered.

[1] [2][11] [12]
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[ 5 , 4 ] [ 3 , 12 ]

[ 5 , 8 ] [ 2 , 3 ] [ 4 , 10 ] [ 7 , 12 ]
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Figure 2.7 An example for representing a tour

To visualize this approach we give a sequence of 2-opt moves starting from a basic tour
together with the resulting interval sequences and search trees in Figure 2.7. Ranks of
nodes are listed in brackets. Each node of the search tree represents an interval. We give
for each node the rank of the endnode with lower rank and in parentheses the number
of nodes in the interval.
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2.5 Some Fundamental Algorithms

In this chapter we review some basic algorithms which are not traveling salesman prob-
lem specific but are used as building blocks in many heuristics. For an extensive dis-
cussion we refer again to Cormen, Leiserson & Rivest (1989).

2.5.1 Sorting

Given a set A = {a1, a2, . . . , an} of n integer or rational numbers, the sorting problem
consists of finding the sequence of these numbers in increasing (or decreasing) order. In
many cases the numbers will correspond to the weights of the edges of a subgraph.
There is a variety of algorithms we cannot discuss here. One example of a very sim-
ple sorting algorithm shall be given first. This algorithm recursively subdivides a set
into two halves, sorts the subsets and then merges the sorted sequences. Suppose the
numbers are stored in B[1], B[2], through B[n].

procedure mergesort(B, l, u)

(1) If l ≥ u− 1 sort B[l] through B[u] by comparisons and return.

(2) Perform mergesort(B, l, � l+u
2
�).

(3) Perform mergesort(B, � l+u
2
�+ 1, u).

(4) Rearrange B to represent the sorted sequence.

end of mergesort

The call mergesort(B, 1, n) sorts the array in time O(n logn). This will follow from
considerations in section 2.5.3 since Step (1) is executed in constant time and Step (4)
can be performed in time O(u− l).
Another sorting algorithm makes use of the heap data structure presented in the pre-
vious chapter. Since in a heap the top element is always the smallest one we can
successively generate the sorted sequence of the elements of A using the heap.

procedure heapsort(B)

(1) Call build heap(B).

(2) For i = n downto 1 perform the following steps.

(2.1) Exchange B[1] and B[i].

(2.2) Decrement the heap size by 1.

(2.3) Call heapify(1).

end of heapsort
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After execution of heapsort(A) we have the elements of A sorted in increasing order in
A[n], A[n− 1], through A[1].
The running time is easily derived from the discussion in the section on heaps. Step (1)
takes time O(n), and, since Step (2.3) takes time O(log i), we obtain the overall running
time as O(n) +

∑n
i=1 O(log i) = O(n logn).

Therefore both merge sort and heap sort seem to be more or less equivalent. However,
heap sort has an important advantage. It is able to generate the sorted sequence as
long as needed. If for some reason the remaining sequence is not of interest any more
at some point we can exit from heapsort prematurely.
A final remark is in order. It can be shown that sorting based on the comparison of two
elements cannot be performed faster than in O(n logn) time. So the above discussion
shows that the sorting problem has time complexity Θ(n logn) (in this computational
model).
Faster sorting algorithms can only be achieved if some assumptions on the input can
be made, e.g., that all numbers are integers between 1 and n. Expected linear running
time of some sorting algorithms can be shown for specific input distributions.

2.5.2 Median Finding

We could also have implemented a sorting algorithm by recursively doing the following
for a set A = {a1, a2, . . . , an}. First identify a median of A, i.e., a value a such that half
of the elements of A are below a and half of the elements are above a. More precisely,
we identify a number a such that we can partition A into two sets A1 and A2 satisfying
A1 ⊆ {ai | ai ≤ a}, A2 ⊆ {ai | ai ≥ a}, |A1| = �n

2 �, and |A2| = �n
2 �. We then sort A1

and A2 separately. The concatenation of the respective sorted sequences give a sorting
of A.
In particular for geometric problems defined on points in the plane we often need to
compute horizontal or vertical lines separating the point set into two (approximately
equally sized) parts. For this we need medians with respect to the x- or y-coordinates
of the points.
A natural way to find a median is to sort the n points. The element at position �n

2
�

gives a median. However, one can do better as is shown in the following sophisticated
algorithm which is also very instructive. The algorithm requires a subroutine that for a
given input b rearranges an array such that in the first part all elements are at most as
large as b while in the second part all elements are at least as large as b. Assume again
that array B contains n numbers in B[1] through B[n].

function partition(B, b)

(1) Set i = 1 and j = n.

(2) Repeat the following steps until i ≥ j.

(2.1) Decrement j by 1 until B[j] ≤ b.

(2.2) Increment i by 1 until B[i] ≥ b.

(2.3) If i < j exchange B[i] and B[j].
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(3) Return j.

end of partition

After execution of this algorithm we have B[l] ≤ b for all l = 1, 2, . . . , i and B[l] ≥ b for
all l = j, j + 1, . . . , n.
The procedure for finding a median can now be given. In fact, the procedure does a
little bit more. It finds the i-th smallest element of a set.

procedure find ith element(B, i)

(1) Partition B into �n
5 � groups of 5 elements each and one last group containing the

remaining elements.

(2) Sort each set to find its “middle” element. If the last set has even cardinality l
we take the element at position l

2 + 1.

(3) Apply find ith element to find the median b of the set of medians found in Step (2).

(4) Let k = partition(B, b).

(5) If i ≤ k then find the i-th smallest element of the lower side of the partition,
otherwise find the (i− k)-th smallest element of the higher side of the partition.

end of find ith element

The call find ith element(B, �n+1
2 �) now determines a median of B.

A running time analysis shows that this algorithm runs in linear time which is best
possible since every element of B has to be considered in a median finding procedure.
Hence medians can be found in time Θ(n).

2.5.3 Divide and Conquer

We have already applied the divide and conquer principle without having named it
explicitly. The basic idea is to divide a problem into two (or more) subproblems, solve
the subproblems, and then construct a solution of the original problem by combining
the solutions of the subproblems in an appropriate way.
Since this is a very important and powerful principle, we want to cite the main result for
deriving the running time of a divide and conquer algorithm of Cormen, Leiserson

& Rivest (1989). Such an algorithm has the following structure where we assume that
it is applied to some set S, |S| = n, to solve some (unspecified) problem.

procedure divide and conquer(S)

(1) Partition S into subproblems S1, S2, . . . , Sa of size less than n
b
.

(2) For each subproblem Si perform divide and conquer(Si).

(3) Combine the subproblem solutions to solve the problem for S.

end of divide and conquer
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In the following we assume that f is the running time function for performing Steps (1)
and (3).
Theorem 2.9 gives a formula to compute the running time of divide and conquer algo-
rithms. (It does not matter that n

b
is not necessarily integral, we can both substitute

�n
b � or �

n
b �).

Theorem 2.9 Let a ≥ 1 and b > 1 be constants and let T (n) be defined by the
recurrence T (n) = aT (n

b )+f(n). Then T (n) can be bounded asymptotically (depending
on f) as follows.

(i) If f(n) = Θ(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a).

(ii) If f(n) = O(nlogb a), then T (n) = Θ(nlogb a logn).

(iii) If f(n) = Ω(nlogb a+ε) for some constant ε > 0 and if a · f(n
b ) ≤ c · f(n) for some

constant c < 1 and all sufficiently large n, then T (n) = Θ(f(n)).

This theorem provides a very useful tool. Take as an example the merge sort algorithm.
Step (1) is performed in constant time and Step (4) is performed in time O(u− l), hence
f(n) = O(n). For the theorem we have a = 2 and b = 2. Therefore case (ii) applies and
we obtain a running time of Θ(n logn) for merge sort.

2.5.4 Minimum Spanning Trees

Let G = (V,E), |V | = n, |E| = m, be a connected graph with edge weights cuv for all
uv ∈ E. A minimum spanning tree of G is an acyclic connected subset T ⊆ E such
that c(T ) is minimal among these edge sets. Clearly a spanning tree has n− 1 edges.
The following algorithm computes a minimum length spanning tree of G (Prim (1957)).

procedure prim(G)

(1) Set T = ∅ and Q = {1}.

(2) For all i = 2, 3, . . . , n set d[i] = c1i and p[i] = 1 if {1, i} ∈ E, resp., d[i] = ∞ and
p[i] = 0 if {1, i} /∈ E.

(3) As long as |T | < n− 1 perform the following.

(3.1) Let d[j] = min{d[l] | l ∈ V \Q}.

(3.2) Add edge {j, p[j]} to T and set Q = Q ∪ {j}.

(3.3) For all l ∈ V \ Q check if cjl < d[l]. If this is the case set d[l] = cjl and
p[l] = j.

(4) T is a minimum spanning tree of G.

end of prim
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The running time of this algorithm is Θ(n2). It computes in each iteration a mini-
mum spanning tree for the subgraph GQ = (Q,E(Q)), and so upon termination of the
algorithm we have a minimum spanning tree of G.
The implementation of Prim’s algorithm given here is best possible if we have complete
or almost complete graphs G. If we want to compute minimum spanning trees for graphs
with fewer edges then other implementations are superior. The idea is to maintain the
nodes not yet connected to the tree in a binary heap (where the keys are the shortest
distances to the tree). Since keys are only decreased, every update in Step (3.3) can
be performed in time O(logn). Because we have to scan the adjacency list of j to see
which distances might be updated, Step (3.3) takes altogether time O(m logn). Finding
the minimum of a heap and updating it has to be performed n − 1 times requiring
time O(logn) each time. Therefore we obtain running time O(m logn) for the heap
implementation of Prim’s algorithm.
Using more advanced techniques (as e.g., binomial heaps or Fibonacci heaps) one can
even achieve time O(m+ n logn).
A different approach to finding a minimum spanning tree was given in Kruskal (1956).
It is particularly suited for sparse graphs.

procedure kruskal(G)

(1) Build a heap of the edges of G (with respect to smaller weights).

(2) Set T = ∅.

(3) As long as |T | < n− 1 perform the following.

(3.1) Get the top edge {u, v} from the heap and update the heap.

(3.2) If u and v belong to different connected components of the graph (V, T ) then
add edge {u, v} to T .

(4) T is a minimum spanning tree of G.

end of kruskal

The idea of this algorithm is to generate minimum weight acyclic edge sets with in-
creasing cardinality until such an edge set of cardinality n− 1 is found (which is then a
minimum spanning tree of G).
This algorithm is implemented using fast union-find techniques. Combining results for
maintaining heaps and for applying fast union-find operations we obtain a running time
of O(m logm) for this algorithm.
Instead of using a heap we could sort in a first step all edges with respect to increasing
length and then use only union-find to identify different components. Using a heap we
can stop as soon as |T | = n− 1 and do not necessarily have to sort all edges.
If G is not connected a slight modification of the above computes the minimum weight
acyclic subgraph of cardinality n − k where k is the number of connected components
of G.
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2.5.5 Greedy Algorithms

The greedy algorithm is a general algorithmic principle for finding feasible solutions of
combinatorial optimization problems. It is characterized by a myopic view, performing
the construction of a feasible solution step by step based only on local knowledge of the
problem.
To state it in general, we need a suitable definition of a combinatorial optimization
problem. Let E = {e1, e2, . . . , em} be a finite set where each element has an associated
weight ci, 1 ≤ i ≤ m, and I ⊆ 2E be the set of so-called feasible solutions. For a set
I ⊆ E, its weight is given as c(I) =

∑
ei∈I ci. The optimization problem consists of

finding a feasible solution I∗ ∈ I such that c(I∗) = min{c(I) | I ∈ I}.
The greedy algorithm works as follows.

procedure greedy(I, c)

(1) Sort E such that c1 ≤ c2 ≤ . . . , cm.

(2) Set I = ∅.

(3) For i = 1, 2, . . . , m:

(3.1) If I ∪ {ei} ∈ I, then set I = I ∪ {ei}.
end of greedy

Due to the sorting in Step (1), the algorithm needs time Ω(m logm). It does not need
more time, if the test “I ∪ {ei} ∈ I?” can be performed in time O(logm).
Inspite of its simplicity, the greedy principle has some important aspects, in particular
in the context of matroids and independence systems, but we do not elaborate on this.
In general, however, it delivers feasible solutions of only moderate quality. Note, that
Kruskal’s algorithm for computing minimum spanning trees is nothing but the greedy
algorithm. Because the spanning tree problem is essentially an optimization problem
over a matroid, the greedy algorithm is guaranteed to find an optimal solution in this
case.
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Related Problems and Applications

For several practical problems it is immediately seen that the TSP provides the suit-
able optimization model. In many cases, however, this is either not straightforward
or the pure TSP has to be augmented by further constraints. In this chapter we first
discuss some optimization problems that are related to the TSP. Some of them can
be transformed to a pure TSP in a reasonable way, others are at least related in the
sense that algorithms developed for the TSP can be adapted to their solution. Then
we survey some application areas where the TSP or its relatives can be used to treat
practical problems. Further aspects are found in Garfinkel (1985). Finally, we intro-
duce the collection of sample problem instances that we will use in the sequel for testing
algorithms.

3.1 Some Related Problems

Note that we can assume without loss of generality that a symmetric TSP is always a
minimization problem and that all distances cij are positive. First, if we are looking
for the longest Hamiltonian cycle we can multiply all edge weights by −1 and solve
a minimization problem. Second, we can add a constant to all edge weights without
affecting the ranking of tours with respect to their lengths. Hence all edge weights can
be made positive. In the sequel we will not explicitly mention this fact. Without loss
of generality we can also assume that all edge lengths are integer numbers.
Observe, however, that approximation results may be no longer valid after having mod-
ified edge weights. For example, if a very large constant is added to each edge weight,
then every tour is near optimal.

3.1.1 Traveling Salesman Problems in General Graphs

There may be situations where we want to find shortest Hamiltonian tours in arbitrary
graphs G = (V,E), in particular in graphs which are not complete. If it is required that
each node is visited exactly once and that only edges of the given graph must be used
then we can do the following. Add all missing edges giving them a sufficiently large
weight M (e.g., M =

∑
ij∈E cij) and apply an algorithm for the symmetric TSP in

complete graphs. If this algorithm terminates with an optimal tour containing none of
the edges with weight M , then this tour is also optimal for the original problem. If an
edge with weight M is contained in the optimal tour then the original graph does not

G. Reinelt: The Traveling Salesman, LNCS 840, pp. 31-41, 1994.
 Springer-Verlag Berlin Heidelberg 1994
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contain a Hamiltonian cycle. Note however, that heuristics cannot guarantee to find a
tour in G even if one exists.
The second way to treat such problems is to allow that nodes may be visited more than
once and edges be traversed more than once. If the given graph is connected we can
always find a feasible roundtrip under this relaxation. This leads us to the so-called
graphical traveling salesman problem.

3.1.2 The Graphical Traveling Salesman Problem

For an arbitrary connected graph G with edge weights, the graphical traveling sales-
man problem (GTSP) consists of finding a closed walk in G for the salesman to visit
every city requiring the least possible total distance. The salesman may only use edges
of G, but is allowed to visit a city or to traverse an edge more than once. This is
sometimes a more practical definition of the TSP because we may have cases where the
underlying graph of connections does not even contain a Hamiltonian cycle and where
some direct transitions from a city i to a city j are not possible. In the formulation as
a GTSP we explicitly stick to the given graph.
To avoid degenerate situations we have to have nonnegative edge weights. Otherwise
we could use an edge as often as we like in both directions to achieve an arbitrarily
small length of the solution. We transform a GTSP to a symmetric TSP as follows.
Let Kn = (Vn, En) be the complete graph on n nodes. For every pair i, j of nodes we
compute the shortest path from i to j in the graph G. The length dij of this path is
taken as the weight of edge ij in Kn. Now the shortest Hamiltonian tour in Kn can be
transformed to a shortest closed walk in G visiting all nodes.
Naddef & Rinaldi (1993) discuss relation between the TSP and the GTSP in detail.

3.1.3 The Shortest Hamiltonian Path Problem

We are given a graph G = (V,E) with edge weights cij . Two special nodes, say vs and
vt, of V are also given. The task is to find a path from vs to vt visiting each node of V
exactly once with minimal length, i.e., to find the shortest Hamiltonian path in G from
vs to vt.
This problem can be solved as a standard TSP in two ways.

a) Choose M sufficiently large and assign weight −M to the edge from vs to vt.
Then compute the optimal traveling salesman tour in this graph. This tour has
to contain edge vsvt and thus solves the Hamiltonian path problem.

b) Add a new node 0 to V and edges from 0 to vs and to vt with weight 0. Each
Hamiltonian tour in this new graph corresponds to a Hamiltonian path from vs

to vt in the original graph with the same length.
If the terminating point of the Hamiltonian path is not fixed, then we can solve the
problem by introducing a new node 0 and adding edges from all nodes v ∈ V \{vs} to 0
with zero length. Now we can solve the Hamiltonian path problem with starting point
vs and terminating point vt = 0 which solves the original problem.
If neither starting point nor terminating point are specified, then we just add node 0
and connect all other nodes to 0 with edges of length zero. In this new graph we solve
the standard TSP.
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3.1.4 Hamiltonian Path and Cycle Problems

Sometimes it has to be checked if a given graph G = (V,E) contains a Hamiltonian
cycle or path at all. This question can be answered by solving a symmetric TSP in the
complete graph Kn (with n = |V |) where all edges of the original graph obtain weight
1 and all other edges obtain weight 2. Then G contains a Hamiltonian cycle if and only
if the shortest Hamiltonian cycle in Kn has length n. If this shortest cycle has length
n+ 1, then G is not Hamiltonian, but contains a Hamiltonian path.

3.1.5 The Asymmetric Traveling Salesman Problem

If the cost of traveling from city i to city j is not necessarily the same as of traveling
from city j to city i, then an asymmetric traveling salesman problem has to be solved.
Let D = (W,A), W = {1, 2, . . . , n}, A ⊆W ×W , and dij be the arc weight of (i, j) ∈ A.
We define a graph G = (V,E) by

V = W ∪ {n+ 1, n+ 2, . . . , 2n},
E = {(i, n+ i) | i = 1, 2, . . . , n}

∪ {(n+ i, j) | (i, j) ∈ A}.

Edge weights are assigned as follows

ci,n+i = −M for i = 1, 2, . . . , n,
cn+i,j = dij for (i, j) ∈ A,

where M is a sufficiently large number, e.g., M =
∑

(i,j)∈A dij . It is easy to see that
for each directed Hamiltonian cycle in D with length dD there is a Hamiltonian cycle
in G with length cG = dD − nM . In addition, since an optimal tour in G contains all
edges with weight −M , it induces a directed Hamiltonian cycle in D. Hence we can
solve asymmetric TSPs as symmetric TSPs.

3.1.6 The Multisalesmen Problem

We give the asymmetric version of this problem. Instead of just one salesman now there
are m salesmen available who are all located in a city n + 1 and have to visit cities
1, 2, . . . , n. The task is to select some (or all) of these salesmen and assign tours to
them such that in the collection of all these tours together each city is visited exactly
once. The activation of salesman j incurs a fixed cost wj . The cost of the tour of
salesman j is the sum of the intercity distances of his tour (starting at and returning
to city n+1). The m-salesmen problem (m-TSP) now consists of selecting a subset
of the salesmen and assigning a tour to each of them such that each city is visited by
exactly one salesman and such that the total cost of visiting all cities this way is as
small as possible.
In Bellmore & Hong (1974) it was observed that this problem can be transformed
to an asymmetric TSP involving only one salesman. We give their construction.
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Let D = (V,A) be the digraph where V = {1, 2, . . . , n, n+ 1} and A ⊆ V × V gives the
possible transitions between cities. Let dij be the distance from city i to city j.
We construct a new digraph D = (V ′, A′) as follows.

V ′ = V ∪ {n+ 2, n+ 3, . . . , n+m},
A′ = A

∪ {(n+ i, j) | 2 ≤ i ≤ m, (n+ 1, j) ∈ A}
∪ {(j, n+ i) | 2 ≤ i ≤ m, (j, n+ 1) ∈ A}
∪ {(n+ i, n+ i− 1) | 2 ≤ i ≤ m}.

The weights d′ij for the arcs (i, j) in A′ are defined via

d′ij = dij , for 1 ≤ i ≤ n, 1 ≤ j ≤ n, (i, j) ∈ A,

d′n+i,j = dn+1,j + 1
2
wi, for 1 ≤ i ≤ m, 1 ≤ j ≤ n, (n+ 1, j) ∈ A,

d′j,n+i = dj,n+1 + 1
2wi, for 1 ≤ i ≤ m, 1 ≤ j ≤ n, (j, n+ 1) ∈ A,

d′n+i,n+i−1 = 1
2wi−1 − 1

2wi, for 2 ≤ i ≤ m.

It is not difficult to verify that the shortest tour in D′ relates to an optimal solution of
the corresponding m-salesmen problem for D.
Observe in addition, that with an easy modification we can require that every salesman
is to be activated. We simply eliminate all edges (n + i, n + i − 1) for 2 ≤ i ≤ m. Of
course, the fixed costs wj can now be ignored.
A different transformation is given in Jonker & Volgenant (1988). Solution algo-
rithms are discussed in Gavish & Srikanth (1986).

3.1.7 The Rural Postman Problem

We are given a graph G = (V,E) with edge weights cij and a subset F ⊆ E. The Rural
Postman Problem consists of finding a shortest closed walk in G containing all edges
in F . If F = E we have the special case of a Chinese postman problem which can be
solved in polynomial time using matching techniques (Edmonds & Johnson (1973)).
The standard symmetric TSP can easily be transformed to a rural postman problem.
Therefore, in general the rural postman problem is NP-hard. In Chapter 11 we will en-
counter a special version of the rural postman problem and find approximative solutions
for it using TSP methods.

3.1.8 The Bottleneck Traveling Salesman Problem

Instead of tours with minimal total length one searches in this problem for tours whose
longest edge is as short as possible. This bottleneck traveling salesman problem
can be solved by a sequence of TSPs. To see this observe that the absolute values of the
distances are not of interest under this objective function. We may reduce distances as
long as they compare exactly as before. Hence we may assume that we have at most
1
2n(n−1) different distances and that the largest of them is not greater than 1

2n(n−1).
We now solve problems of the following kind for some parameter b.
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“Is there a Hamiltonian cycle of the original graph consisting only of edges with length
at most b?”
This problem can be transformed to a standard TSP. By performing a binary search
on the parameter b (starting with b = 1

4
n(n − 1)) we can identify the smallest such b

leading to a “yes” answer by solving at most O(logn) TSPs.

3.1.9 The Prize Collecting Traveling Salesman Problem

We are given a graph G = (V,E) with edge weights cij , node weights ui (representing
benefits received when visiting the respective city), and a special base node v0 (with
cv0 = 0). The Prize Collecting Traveling Salesman Problem consists of finding
a cycle in G containing the node v0 such that the sum of the edge weights of the cycle
minus the sum of the benefits of the nodes of the cycle is minimized. We can get rid of
the node weights if we substitute the edge weights cij by cij − 1

2vi − 1
2vj . Now the prize

collection TSP amounts to finding a shortest cycle in G containing v0. More details are
given in Balas (1989) and Ramesh, Yoon & Karwan (1992).

We have seen that a variety of problems can be transformed to symmetric TSPs or are
at least related to it. However, each such transformation has to be considered with
some care before actually trying to use it for practical problem solving. E. g., the
shortest path computations necessary to treat a GTSP as a TSP take time O(n3) which
might not be acceptable in practice. Most transformations require the introduction of
a large number M . This can lead to numerical problems or may even prevent finding
feasible solutions at all using only heuristics. In particular, for LP-based approaches,
the usage of the “big M” cannot be recommended in general. But, in any case, these
transformations provide a basic means for using a TSP code to treat related problems.

3.2 Practical Applications of the TSP

Since we are aiming at the development of algorithms and heuristics for practical travel-
ing salesman problem solving we give a survey on some of the possible applications. The
list is not complete but covers the most important cases. In addition we have included
problems which cannot be transformed to pure TSPs, but which can be attacked using
variants of the methods to be described later.

3.2.1 Drilling of Printed Circuit Boards

The drilling problem for printed circuit boards (PCBs) is a standard application of the
symmetric traveling salesman problem. To connect a conductor on one layer with a
conductor on another layer or to position (in a later stage of the PCB production) the
pins of integrated circuits, holes have to be drilled through the board. The holes may
be of different diameters. To drill two holes of different diameters consecutively, the
head of the machine has to move to a tool box and change the drilling equipment. This
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is quite time consuming. Thus it is clear at the outset that one has to choose some
diameter, drill all holes of the same diameter, change the drill, drill the holes of the
next diameter etc.
Thus, this drilling problem can be viewed as a sequence of symmetric traveling salesman
problems, one for each diameter resp. drill, where the “cities” are the initial position
and the set of all holes that can be drilled with one and the same drill. The “distance”
between two cities is the time it takes to move the head from one position to the other.
The goal is to minimize the travel time for the head of the machine.
We will discuss an application of the drilling problem in depth in Chapter 11.

3.2.2 X-Ray Crystallography

A further direct application of the TSP occurs in the analysis of the structure of crystals
(Bland & Shallcross (1989), Dreissig & Uebach (1990)). Here an X-ray diffrac-
tometer is used to obtain information about the structure of crystalline material. To
this end a detector measures the intensity of X-ray reflections of the crystal from various
positions. Whereas the measurement itself can be accomplished quite fast there is a con-
siderable overhead in positioning time since up to 30,000 positions have to be realized
for some experiments. In the two examples that we refer to, the positioning involves
moving four motors. The time needed to move from one position to the other can be
computed very accurately. For the experiment the sequence in which the measurements
at the various positions are taken is irrelevant. Therefore, in order to minimize the total
positioning time the best sequence for the measurements has to be determined. This
problem can be modeled as a symmetric TSP.

3.2.3 Overhauling Gas Turbine Engines

This application was reported by Plante, Lowe & Chandrasekaran (1987) and
occurs when gas turbine engines of aircrafts have to be overhauled. To guarantee a
uniform gas flow through the turbines there are so-called nozzle-guide vane assemblies
located at each turbine stage. Such an assembly basically consists of a number of
nozzle guide vanes affixed about its circumference. All these vanes have individual
characteristics and the correct placement of the vanes can result in substantial benefits
(reducing vibration, increasing uniformity of flow, reducing fuel consumption). The
problem of placing the vanes in the best possible way can be modeled as a symmetric
TSP.

3.2.4 The Order-Picking Problem in Warehouses

This problem is associated with material handling in a warehouse (Ratliff & Rosen-

thal (1981)). Assume that at a warehouse an order arrives for a certain subset of the
items stored in the warehouse. Some vehicle has to collect all items of this order to
ship them to the customer. The relation to the TSP is immediately seen. The storage
locations of the items correspond to the nodes of the graph. The distance between two
nodes is given by the time needed to move the vehicle from one location to the other.
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The problem of finding a shortest route for the vehicle with minimal pickup time can
now be solved as a TSP. In special cases this problem can be solved easily (see van Dal

(1992) for an extensive discussion).

3.2.5 Computer Wiring

A special case of connecting components on a computer board is reported in Lenstra

& Rinnooy Kan (1974). Modules are located on a computer board and a given subset
of pins has to be connected. In contrast to the usual case where a Steiner tree connection
is desired, here the requirement is that no more than two wires are attached to each
pin. Hence we have the problem of finding shortest Hamiltonian paths with unspecified
starting and terminating points.
A similar situation occurs for the so-called testbus wiring. To test the manufactured
board one has to realize a connection which enters the board at some specified point,
runs through all the modules, and terminates at some specified point. For each module
we also have a specified entering and leaving point for this test wiring. This problem also
amounts to solving a Hamiltonian path problem with the difference that the distances
are not symmetric and that starting and terminating point are specified.

3.2.6 Clustering of a Data Array

This application is also reported in Lenstra & Rinnooy Kan (1974). An (r, s)-
matrix A = (aij) is given representing relationships between two finite sets of elements
R = {R1, R2, . . . , Rr} and S = {S1, S2, . . . , Ss}. The entry aij gives the strength of
the relationship between Ri ∈ R and Sj ∈ S. The task is to identify clusters of highly
related elements.
To this end, a permutation of the rows and columns of A has to be found which max-
imizes the sum of all products of horizontally or vertically adjacent pairs of entries of
A. We transform this problem as follows.
If ρ and σ are permutations of R and S, respectively, then the corresponding measure
of effectiveness is

ME(ρ, σ) =
s−1∑
j=1

r∑
i=1

ai,σ(j)ai,σ(j+1) +
r−1∑
i=1

s∑
j=1

aρ(i),jaρ(i+1),j .

The two terms can be evaluated separately. We only consider the first one. Let V =
{1, 2, . . . , s} and E = V × V . We define weights for the edges of G = (V,E) by

cij = −
r∑

k=1

akiakj .

Then the problem of maximizing the first term amounts to finding a shortest Hamilto-
nian path in G with arbitrary starting and terminating node. The clustering problem
is then solved as two separate such problems, one for the rows and one for the columns.
The special cases where A is symmetric or where A is a square matrix and where we
only allow simultaneous permutations of rows and columns lead to a single Hamiltonian
path problem.
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3.2.7 Seriation in Archeology

Suppose archeologists have discovered a graveyard and would like to determine the
chronological sequence of the various gravesites. To this end each gravesite is classi-
fied according to the types of items contained in it. A distance measure between two
gravesites is introduced reflecting the diversity between their respective contents. A very
likely chronological sequence can be found by computing the shortest Hamiltonian path
in the graph whose nodes correspond to the gravesites and where distances are given
due to the criterion above. In fact, this was one of the earliest applications mentioned
for the TSP.

3.2.8 Vehicle Routing

Suppose that in a city n mail boxes have to be emptied every day within a certain
period of time, say 1 hour. The problem is to find the minimal number of trucks to do
this and the shortest time to do the collections using this number of trucks. As another
example, suppose that customers require certain amounts of some commodities and a
supplier has to satisfy all demands with a fleet of trucks. Here we have the additional
problem to assign customers to trucks and to find a delivery schedule for each truck so
that its capacity is not exceeded and the total travel cost is minimized.
The vehicle routing problem is solvable as a TSP if there is no time constraint or if
the number of trucks is fixed (say m). In this case we obtain an m-salesmen problem.
Nevertheless, one can apply methods for the TSP to find good feasible solutions for this
problem (see Lenstra & Rinnooy Kan (1974)).

3.2.9 Scheduling

We are given n jobs that have to be performed on some machine. The time to process
job j is tij if i is the job performed immediately before j (if j is the first job then its
processing time is t0j). The task is to find an execution sequence for the jobs such that
the total processing time is as short as possible.
We define the directed graph D = (V,A) with node set V = {0, 1, 2, . . . , n} and arc
set A = {1, 2, . . . , n} × {1, 2, . . . , n} ∪ {(0, i) | i = 1, 2, . . . , n}. Arc weights are tij for
(i, j) ∈ A. The scheduling problem can now be solved by finding a shortest (directed)
Hamiltonian path starting at node 0 with arbitrary terminating node.
Sometimes it is requested that the machine returns to its initial state after having
performed the last job. In this case we add arcs (i, 0) for every i = 1, 2 . . . , n where ti0
is the time needed to return to the initial state if job i was performed last. Now the
scheduling problem amounts to solving the asymmetric TSP in the new digraph.
Suppose the machine in question is an assembly line and that the jobs correspond to
operations which have to be performed on some product at the workstations of the line.
In such a case the primary interest would lie in balancing the line. Therefore instead of
the shortest possible time to perform all operations on a product the longest individual
processing time needed on a workstation is important. To model this requirement a
bottleneck TSP is more appropriate.
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In Lenstra & Rinnooy Kan (1974) it is shown that the following job-shop scheduling
problem can be transformed to an asymmetric TSP. We are given n jobs that have to
be processed on m machines. Each job consists of a sequence of operations (possibly
more than m) where each operation has to be performed on one of the machines. The
operations have to be performed one after the other in a sequence which is given in ad-
vance. As a restriction we have that no passing is allowed (we have the same processing
order of jobs on every machine) and that each job visits each machine at least once.
The problem is to find a schedule for the jobs that minimizes the total processing time.

3.2.10 Mask Plotting in PCB Production

For the production of each layer of a printed circuit board, as well as for layers of
integrated semiconductor devices, a photographic mask has to be produced. In our case
for printed circuit boards this is done by a mechanical plotting device. The plotter
moves a lens over a photosensitive coated glass plate. The shutter may be opened or
closed to expose specific parts of the plate. There are different apertures available to
be able to generate different structures on the board. Two types of structures have
to be considered. A line is exposed on the plate by moving the closed shutter to one
endpoint of the line, then opening the shutter and moving it to the other endpoint of
the line. Then the shutter is closed. A point type structure is generated by moving the
appropriate aperture to the position of that point then opening the shutter just to make
a short flash, and then closing it again. Exact modeling of the plotter control problem
leads to a problem more complicated than the TSP and also more complicated than the
rural postman problem.
We will discuss an application of the plotting problem in Chapter 11.

3.2.11 Control of Robots

In order to manufacture some workpiece a robot has to perform a sequence of operations
on it (drilling of holes of different diameters, cutting of slots, planishing, etc.). The
task is to determine a sequence to perform the necessary operations that leads to the
shortest overall processing time. A difficulty in this application arises because there
are precedence constraints that have to be observed. So here we have the problem of
finding the shortest Hamiltonian path (where distances correspond to times needed for
positioning and possible tool changes) that satisfies certain precedence relations between
the operations. This problem cannot be formulated as a TSP in a straightforward way,
but can be treated by applying methods similar to those presented in the forthcoming
chapters.
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3.3 The Test Problem Instances

Throughout this tract we will use a set of sample problems compiled from various sources
to compare the different approaches and to examine the behaviour of algorithms with
respect to problem sizes.
To choose a suitable test set one has to decide between contradicting goals.

– Too many computational results might bore the reader.
– Too few results may not exhibit too much insight.
– Problems from different sources might not be comparable in a fair way because

distance computations may be more complicated and time consuming in one case.
– Not all problems are suitable for every approach.

To overcome these difficulties we have chosen to proceed as follows.
– We have selected a set of sample problem instances which can always be treated

by our methods and which are of the same type. This set consists of twenty-four
Euclidean problems in the plane of sizes from 198 to 5934 nodes and is given
in Table 3.1. This table also gives the currently best known upper and lower
bounds for the respective problems. A number in boldface indicates that an
optimal solution is known (and proved!).

Problem Size Bounds

d198 198 15780
lin318 318 42029
fl417 417 11861
pcb442 442 50778
u574 574 36905
p654 654 34643

rat783 783 8806
pr1002 1002 259045
u1060 1060 224094

pcb1173 1173 56892
d1291 1291 50801
rl1323 1323 270199
fl1400 1400 [19849,20127]
u1432 1432 152970
fl1577 1577 [22137,22249]
d1655 1655 62128
vm1748 1748 336556
rl1889 1889 316536
u2152 2152 [64163,64294]
pr2392 2392 378032
pcb3038 3038 137694
fl3795 3795 [28594,28772]
fnl4461 4461 182566
rl5934 5934 [554070,556146]

Table 3.1 Bounds for sample problems

– In addition we sometimes report about results on other problems. Most of these
problem instances are contained in the library TSPLIB of traveling salesman
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problem instances (see Reinelt (1991a)) and are therefore at the disposal of the
reader to conduct own experiments.

In our experiments, we have almost completely dispensed of random problem instances.
Only at some points we have included a few random problems for extrapolating CPU
times. For these problem instances, the points are located in a square and are drawn
independently from a uniform distribution. To our opinion, this should be the primary
reason for considering random problems. With respect to the assessment of algorithms
one should prefer the treatment of real instances (if available) because these are the
problems whose solution is of interest. Moreover, real problems have properties that
cannot be modeled by random distributions in an appropriate way.
Concerning the CPU times that are either explicitly given or presented in a graphical
display the following remarks apply.

– All CPU times are given in seconds on the SUN SPARCstation 10/20. All software
(unless otherwise noted) has been written in C and was compiled using cc with
option -O4 under the operating system SUNOS 4.1.2. The function get rusage
was used for measuring running times.

– Distance matrices are not used. Except for precomputed distances for candidate
sets, distances are always computed by evaluating the Euclidean distance function
and not by a matrix-lookup.

– If a figure displays CPU times for problems up to size 6,000 then these are times
for the 24 standard problem instances listed in Table 3.1.

– If a figure displays CPU times for problems up to size 20,000 then this includes
in addition the times for further problem instances, in particular for the real
problems rl11849, brd14051, and d18512, and for random problems of size 8,000
to 20,000.

Usually, we will not give the explicit length of tours produced by the various heuristics.
Rather we give their quality with respect to the lower bounds of Table 3.1. More
precisely, if cH is the length of a tour computed by heuristic H and if cL is the lower
bound of Table 3.1 for the respective problem instance, we say that the heuristic tour
has quality 100 · (cH/cL − 1) percent.
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Geometric Concepts

Many traveling salesman problem instances arising in practice have the property that
they are defined by point sets in the 2-dimensional plane (e.g., drilling and plotting
problems to be discussed in Chapter 11). Though true distances can usually be not
given exactly or only by very complicated formulae, they can very well be approxi-
mated by metric distances. To speed up computations we can therefore make use of
geometric properties of the point set. In this chapter we introduce concepts for deriv-
ing informations about the structure of point sets in the plane and review some basic
algorithms. A textbook on computational geometry is Edelsbrunner (1987).

4.1 Voronoi Diagrams

Although known since quite some time (Voronoi (1908)) the Voronoi diagram has
only recently received the attention of many researchers in the field of computational
geometry. It has several attractive features and puts particular emphasis on proximity
relations between points.
Let S = {P1, P2, . . . , Pn} be a finite subset of Rm and let d : Rm × Rm −→ R be a
metric. We define the Voronoi region VR(Pi) of a point Pi via

VR(Pi) = {P ∈ Rm | d(P, Pi) ≤ d(P, Pj) for all j = 1, 2, . . . , n, j 	= i},

i.e., VR(Pi) is the set of all points that are at least as close to Pi as to any other point
of S. The set of all n Voronoi regions is called the Voronoi diagram VD(S) of S.
Other names are Dirichlet tessellation or Thiessen tessellation. In the following
we call the elements of S generators.
We consider only the 2-dimensional case. With each generator Pi we associate its
Cartesian coordinates (xi, yi). For the first part we assume that d is the Euclidean
metric (L2), i.e.,

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2.

For two generators Pi and Pj we define the perpendicular bisector B(Pi, Pj) = {P ∈
R2 | d(P, Pi) = d(P, Pj)}. If we define the half space Bij = {x ∈ R2 | d(Pi, x) ≤
d(Pj , x)} then we see that

VR(Pi) =
n⋂

j=1
j �=i

Bij.

G. Reinelt: The Traveling Salesman, LNCS 840, pp. 42-63, 1994.
 Springer-Verlag Berlin Heidelberg 1994
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This implies that in the case of the Euclidean metric the Voronoi regions are convex
polygons with at most n − 1 vertices. Figure 4.1 shows the Voronoi diagram for the
points defining the traveling salesman problem instance rd100, a random problem on
100 points.

Figure 4.1 Voronoi diagram for rd100 (L2-metric)

We call nonempty intersections of two or more Voronoi regions Voronoi points if they
have cardinality 1 and Voronoi edges otherwise. Note that every Voronoi point is
the center of a circle through (at least) three generators and every Voronoi edge is a
segment of a perpendicular bisector of two generators.
A generator configuration is called degenerate if there are four generators lying on a
common circle. We say that two Voronoi regions are adjacent if they intersect. Note
that only in degenerate cases two regions can intersect in just one point. Degeneracy
does not occur in Figure 4.1 as is usually the case for randomly generated points.
Some observations are important.

Proposition 4.1 The Voronoi diagram of a generator Pi is unbounded if and only if
Pi lies on the boundary of the convex hull of S.

Proof. If VR(Pi) is bounded then Pi is contained in the interior of the convex hull of
those generators whose regions are adjacent to VR(Pi). On the other hand, if VR(Pi)
is unbounded it cannot be situated in the interior of conv(S).
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An unbounded region does not necessarily imply that a generator is a vertex of the
convex hull. Consider for example the case where all generators are located on a line.
Then all regions are unbounded, but only two generators define the convex hull of the
set.

Proposition 4.2 If d(Pi, Pj) ≤ d(Pi, Pk) for all k 	= i, j then VR(Pi) and VR(Pj)
intersect in a Voronoi edge.

Proof. If Pj is a nearest neighbor of Pi then VR(Pj) and VR(Pi) intersect by definition.
If they intersect in only one point then this Voronoi point is the center of a circle through
Pi, Pj , and at least two more generators. At least two of these generators must be nearer
to Pi than Pj .

Proposition 4.3 The Voronoi diagram of n generators has at most 2n − 4 Voronoi
points and at most 3n− 6 Voronoi edges.

Proof. This property follows easily from Euler’s formula stating the relation between
the number of vertices, edges and facets of a convex polygon in the 3-dimensional
Euclidean space. Namely, if nv, ne, and nf denote the respective numbers we have
nf + nv = ne + 2.
We can apply this formula to a Voronoi diagram if we connect all Voronoi edges ex-
tending to infinity to a common imaginary Voronoi point (edges extending to infinity
in both directions are ignored here). We have nf = n Voronoi regions. Every Voronoi
point is the endnode of at least three Voronoi edges. Hence we obtain nv ≤ 2

3ne and
therefore ne ≤ 3n− 6. This implies nv ≤ 2n− 4.
The Voronoi diagram gives a concise description of proximity relations between the
generators and also exhibits the information about which generators lie on the boundary
of the convex hull of the set S.
Before talking about time complexity of Voronoi diagram computations we have to
specify what the result of such a computation has to be. As the result of a Voronoi
diagram algorithm we require a data structure that allows for an easy access to the
Voronoi edges forming a specific region as well as to all Voronoi edges containing a given
Voronoi point. This can, e.g., be achieved by a data structure proposed in Ottmann

& Widmayer (1990). We store a doubly linked list of the Voronoi edges together with
the following information for every edge:

– tail and head nodes, u and v, of the edge (the number −1 indicates that the edge
extends to infinity),

– the Voronoi regions Vl and Vr to the left and to the right of the edge (where left
and right are with respect to some arbitrarily imposed direction of the edge),

– pointers to the next Voronoi edge of region Vl (resp. Vr) having u (resp. v) as one
endnode.

A straightforward algorithm for computing the Voronoi diagram takes time O(n2). We
just compute each VR(Pi) as the intersection of the halfspaces Bij for j 	= i.
A lower bound on the running time of every Voronoi diagram algorithm is established
as follows. Consider the situation that all generators are located on the x-axis, i.e.,
their y-coordinates are 0. If we have the Voronoi diagram of this set we easily obtain
the sorted sequence of the generators with respect to their x-coordinates. Since sorting
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cannot be performed in less than O(n logn) time we have a lower bound on the running
time for Voronoi diagram computations. Note that sorting and computing the Voronoi
diagram are essentially equivalent in this 1-dimensional case. The following section will
describe an algorithm that achieves this best possible running time.
In the present and in the following sections which also deals with geometric problems
we will not discuss the algorithms in full detail. When solving geometric problems
very often certain “degenerate” situations can occur that may have the consequence
that some object or some operation is not uniquely specified. Explaining the idea of a
geometric algorithm is often easy but when it comes to implementing the algorithm one
will usually face severe difficulties. It is a commonly observed fact that, when coding
algorithms for geometric problems, about 10–20% of the code account for the “real”
algorithm while the remaining part is only necessary to deal with degenerate situations.
Almost the same is true when describing such algorithms in detail. We will therefore not
discuss degenerate situations explicitly, but will assume that points defining a geometric
problem are in general position, i.e., no degeneracy occurs. The reader should have in
mind, however, that an implementation must take care of these cases.
The O(n logn) algorithm to be described now was given in Shamos and Hoey (1975).
It is a divide and conquer approach that divides the set of generators recursively into
two halves, computes the respective Voronoi diagram for the two parts, and merges
them to obtain the Voronoi diagram of the whole set S.

procedure divide and conquer

(1) If the current set has at most three elements compute its Voronoi diagram and
return.

(2) Partition S into two sets S1 = {Pi1 , Pi2 , . . . Pil
} and S2 = {Pil+1 , Pil+2 , . . . , Pin

}
where l = 
n

2 � such that there is a vertical line separating S1 and S2.

(3) Perform the divide and conquer algorithm recursively to compute VD(S1) and
VD(S2).

(4) Obtain VD(S) from VD(S1) and VD(S2).

end of divide and conquer

The partition in Step (2) can be found in linear time if we have sorted the elements of
S in a preprocessing step with respect to their x-coordinates. There is also a more com-
plicated algorithm achieving linear running time without preprocessing (see Chapter 2
for median finding).
The critical step is Step (4). If this step can be performed in linear time (linear in
|S1|+ |S2|) then the basic recurrence relation for divide and conquer algorithms gives a
time bound of O(n logn) for the overall Voronoi computation.
Merging two Voronoi diagrams (where one set of generators is to the left of the other
set of generators) basically consists of identifying the thick “merge line” in the center
of Figure 4.2.
We cannot go into detail here and only discuss the principle of the construction of
this merge line. The line is constructed from the bottom to the top. One first has to
identify the respective generators in VD(S1) and VD(S2) with minimal y-coordinates
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(and therefore unbounded Voronoi regions). The perpendicular bisector between these
two generators then gives the lower part of the merge line. The process of merging the
two diagrams can now be visualized as extending the merge line upwards until an edge
of either of the two Voronoi diagrams is hit. At such a point the merge line may change
direction because it will now be part of the perpendicular bisector between two other
generators. This process is continued until the final part of the merge line is part of the
bisector of the two generators in the respective diagrams with maximal y-coordinates.

Figure 4.2 The merge line for merging two Voronoi diagrams

Implementing these steps carefully results in a running time of O(|S1| + |S2|) for the
merge process. This gives the desired optimal running time of the divide and conquer
algorithm.
The principle of the next algorithm (see Green & Sibson (1978)) is to start out with
the Voronoi diagram for three generators and then to successively take into account the
remaining generators and update the current Voronoi diagram accordingly.

procedure incremental algorithm

(1) Compute the Voronoi diagram VD({P1, P2, P3}).

(2) For t = 4, 5, . . . , n compute the diagram VD({P1, P2, . . . , Pt}) as follows.

(2.1) Find Ps, 1 ≤ s ≤ t− 1, such that Pt ∈ VR(Ps), i.e., find the nearest neighbor
of Pt among the generators already considered.
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(2.2) Start with the perpendicular bisector of Pt and Ps and find its intersection
with a boundary edge of VR(Ps). Suppose this edge is also the boundary
edge of VR(Pi). Find the other intersection of the bisector between Pt and
Pi with the boundary of VR(Pi). Proceed this way by entering neighboring
regions and computing intersections between the current bisector B(Pt, Pj)
and the boundary of VR(Pj) until the starting region VR(Ps) is reached
again. Eliminate everything within the resulting closed walk. (In the case of
an unbounded region VR(Pt) some further details have to be observed.)

end of incremental algorithm

Figure 4.3 shows a typical step of the incremental algorithm. The broken lines indicate
the bisectors that are followed in Step (2.2). The new diagram is obtained by deleting
everything inside the convex polygon determined by the broken lines.
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Figure 4.3 A step of the incremental algorithm

The running time of this algorithm can only be bounded above by O(n2). In Ohya,

Iri & Murota (1984) the algorithm is examined for application in practice. It turns
out that an enormous speed up can be obtained if the generators are considered in a
clever sequence. Ohya et al. use a bucketing approach which allows the nearest neighbor
in Step (2.1) to be guessed with high probability in constant time. Step (2.2) is not
that critical because usually only very local updates have to be performed to obtain the
new Voronoi diagram. In practical experiments linear running time on several classes of
randomly generated point sets was observed. In particular, the incremental algorithm
outperformed the divide and conquer method.
It is interesting to note, that selecting the next generator at random results in observed
O(n

3
2 ) running time.
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Expected linear running time is not proven in Ohya, Iri & Murota (1984), but some
evidence is given for it. For generators that are independently drawn from a uniform
distribution on the unit square, the expected number of generators to be examined
in Step (2.1) to find the nearest neighbor is bounded by a constant. In addition, the
expected number of Voronoi edges of a Voronoi region in any intermediate diagram is
bounded by a constant. These are two basic results that suggest that also a rigorous
mathematical proof of linear expected running time for this algorithm can be obtained.
A further algorithm for Voronoi diagram construction has been given in Fortune

(1987). This algorithm uses a sweep-line principle to compute the diagram in time
O(n logn).
Cronin (1990) and Ruján, Evertsz and Lyklema (1988) employ the Voronoi dia-
gram for generating traveling salesman tours.

4.2 Delaunay Triangulations

For most applications it is not the Voronoi diagram itself that is of interest. More
important are the proximity relations that it exhibits and not the concrete specification
of the Voronoi points and edges. To represent the topology of the diagram it suffices to
consider the “dual” of the diagram.
Given the Voronoi diagram of S, its dual D(S) is the undirected graph G(S) = (S,D)
where D = {{P1, P2} | VR(P1) ∩ VR(P2) 	= ∅}. It is easy to observe that G(S) is a
triangulated graph, i.e., every cycle of length at least four contains a chord. This graph
is called Delaunay triangulation (Delaunay (1934)).
An alternative definition excludes those edges {P1, P2} for which |VR(P1)∩VR(P2)| = 1.
In this case the name is misleading, because we do not necessarily have a triangulation
anymore, but the resulting graph is planar (implying |D| = O(|S|)). We will use this
definition in the sequel and speak about the Delaunay graph or the straight line
dual of the Voronoi diagram.
Note that in the case of nondegeneracy (no four generators lie on a common circle) both
definitions coincide and D(S) is a planar graph.
Besides planarity D(S) (according to the modified definition) has additional important
properties.

Proposition 4.4
(i) If Pi and Pj are generators such that d(Pi, Pj) ≤ d(Pi, Pk) for all k 	= i, j then

{Pi, Pj} is an edge of D(S).
(ii) D(S) has at most 3n− 6 edges.
(iii) D(S) contains a minimum spanning tree of the complete graph on n nodes where

the nodes correspond to the generators and the edge weights are respective Eu-
clidean distances.

Proof. Part (i) is clear because of Proposition 4.2 and part (ii) follows from Proposi-
tion 4.3.
For part (iii) consider Prim’s algorithm to compute a minimum spanning tree. In each
step we have a set V of nodes that are already connected by a spanning tree and the
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set S \ V (consisting of isolated nodes). The next edge to be added to the tree is the
shortest edge connecting a node in V to a node in S \ V . This edge must be contained
in D(S) since it connects two generators whose Voronoi regions intersect in a Voronoi
edge.
Figure 4.4 shows the Delaunay triangulation corresponding to the diagram of Figure 4.1.

Figure 4.4 The Delaunay triangulation for rd100

Note that Proposition 4.4 (ii) does not hold for the general Delaunay triangulation but
only for the Delaunay graph. For example, if all generators are located on a circle then
all Voronoi regions intersect in a common Voronoi point and the Delaunay triangulation
is the complete graph on n nodes. The Delaunay graph is only a cycle of length n.
Straightforward implementations of algorithms for computing the Voronoi diagram (or
the Delaunay triangulation), in which all numerical computations are carried out in
floating point arithmetic, run into numerical problems.
Voronoi points are given as intersection points of bisectors. Due to insufficient accuracy
it may not be possible to safely decide whether two lines are parallel or almost parallel.
Moreover, the intersection points may be located “far away” from the generators leading
to imprecise computations of Voronoi points.
The consequence is that due to incorrect decisions the algorithm may not work because
computed data is contradictory.
Consider the following example (Figure 4.5). We have three generators that are located
at three corners of a square. Depending on whether the fourth generator is at the fourth
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corner, or inside, or outside the square different Voronoi diagrams arise. If it cannot
be exactly differentiated between these three cases, then the correct computation of the
Voronoi diagram and hence of the Delaunay triangulation fails.

Figure 4.5 Inconsistent decisions due to round-off errors

The question of how to obtain correct results and avoid numerical difficulties is consid-
ered in Sugihara & Iri (1988), Sugihara (1988), and Jünger, Reinelt & Zepf

(1991). The principle idea is to not compute an explicit representation of the Voronoi
diagram, but to base the computation of the Delaunay graph on different logical tests.
Details are given in Jünger, Reinelt & Zepf (1991), we review the main results.
If all generators have integral coordinates between 0 and M , then one can compute
the Delaunay graph using integer numbers of value at most 6M4. On a computer
representing integers with binary 1-complement numbers having b bits, integers in the
interval [−2b−1, 2b−1 − 1] are available. The inequality 6M4 ≤ 2b−1 − 1 implies

M ≤
⌊

4

√
2b−1 − 1

6

⌋
.

For the usual word length of real-world computers that means that we can allow

M ≤
{ 8 if b = 16

137 if b = 32
35, 211 if b = 64 .

So, only 32-bit integer arithmetic is not enough for computing correct Delaunay trian-
gulations in practical applications. Only by using at least 64-bit arithmetic we can treat
reasonable inputs.
Of special interest are also the two metrics

– Manhattan metric (L1): d((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|, and

– Maximum metric (L∞): d((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|}.

This is due to the fact that very often distances correspond to the time a mechanical
device needs to travel from one point to the other. If this movement is performed
first in the horizontal direction and then in the vertical direction the L1-metric should
be chosen to approximate travel times. If the movement is performed by two motors
working simultaneously in horizontal and vertical directions then the L∞-metric is the
appropriate choice for modeling the movement times.
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For these metrics, bisectors are no longer necessarily straight lines. They may consist of
three line segments and we can also have degenerate situations as shown in Figure 4.6.

Figure 4.6 Bisectors for L1- and L∞-metric

Here the bisectors include the shaded regions. In the L1-metric (left) this situation
occurs when the coordinate differences in both coordinates are the same. In the L∞-
metric (right picture) we have this situation if both points coincide in one of the two
coordinates. It is convenient to restrict our definition of bisectors to the bold line
segments in Figure 4.6 (the definition of Voronoi regions is changed accordingly). The
L1-metric Voronoi diagram for problem rd100 is shown in Figure 4.7.

Figure 4.7 Voronoi diagram for rd100 (L1-metric)
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The numerical analysis of the L1-case shows that we can compute an explicit representa-
tion of the Voronoi diagram itself using only one additional bit of accuracy than needed
to input the data. It follows that we can carry out all computations with numbers of
size at most 2M , and depending on the word length b we have the following constraints
for M

M ≤
{ 16, 383 if b = 16

1, 073, 741, 823 if b = 32
4, 611, 686, 018, 427, 387, 903 if b = 64 .

Observe that also in diagrams for the Manhattan as well as for the maximum metric
the vertices of the convex hull of the generators have unbounded Voronoi regions. But
there may be further points with unbounded regions lying in the interior of the convex
hull. This is also reflected by the shape of the Delaunay graph in Figure 4.8 which
corresponds to the the Voronoi diagram of Figure 4.7.

Figure 4.8 Delaunay graph for rd100 (L1-metric)

Finally, we want to give an indication that Delaunay graphs can indeed be computed
very fast. We have used an implementation of the incremental Voronoi diagram algo-
rithm described in Ohya, Iri & Murota (1984) by M. Jünger and D. Zepf for the
L2-metric. This implementation uses floating point arithmetic, but was able to solve all
sample problem instances. Details for implementing an algorithm to compute Voronoi
diagrams for further metrics are discussed in Kaibel (1993).
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Figure 4.9 shows the running time of this implementation on our set of sample problems.
CPU times are given in seconds on a SUN SPARCstation 10/20.
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1.5

Figure 4.9 CPU times for computing Delaunay graphs

The figure seems to suggest indeed a linear increase of the running times with the
problem size. But, as we shall see throughout this monograph, we have to accept that
real-world problems do not behave well in the sense that smooth running time functions
can be obtained. Just the number of nodes of a problem is not sufficient to characterize
it. Real problems have certain structural properties that cannot be modeled by random
problem instances and can lead to quite different running times of the same algorithm
for different problem instances of the same size.
The number of edges of the respective Delaunay graphs is shown in Figure 4.10.
For random problems the expected number of edges forming a Voronoi region is six,
which is hence also the expected degree of a node in the Delaunay graph. Therefore we
would expect about 3n edges in a Delaunay graph which is quite closely achieved for
our sample problems.
We can conclude that Delaunay graphs can be computed very efficiently. For practical
purposes it is also important that running times are quite stable even though we have
problem instances from various sources and with different structural properties.
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Figure 4.10 Number of edges of the Delaunay graphs

CPU times are very well predictable (in our case as approximately n/5000 seconds on the
SPARCstation). Computing the Delaunay graph for problem d18512 took 19.4 seconds,
the number of edges of this graph was 61,126.

4.3 Convex Hulls

The convex hull of a set of points is the smallest convex set containing these points. It is
a convenient means for representing point sets. If the point set is dense then the convex
hull may very well reflect its shape. Large instances of traveling salesman problems
in the plane usually exhibit several clusters. Building the convex hull of these clusters
can result in a concise representation of the whole point set still exhibiting many of its
geometric properties.
A short description of complicated objects is also important in other areas, for example
in computer graphics or control of robots. Here movements of objects in space have
to be traced in order to avoid collisions. In such cases convex hulls can be applied to
represent the objects approximately.
We define the problem to compute the convex hull as follows. We are given a finite set
A = {a1, a2, . . . , an} of n points in the plane where ai = (xi, yi). The task is to identify
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those points that constitute the vertices of the convex hull conv(A) of the n points,
i.e., which are not representable as a convex combination of other points. Moreover,
we require that the computation also delivers the sequence of these vertices in correct
order. This means that if the computation outputs the vertices v1, v2, . . . , vt then the
convex hull is the (convex) polygon that is obtained by drawing edges from v1 to v2,
from v2 to v3, etc., and finally by drawing the edges from vt−1 to vt and from vt to v1.
We will review some algorithms for computing the convex hull that also visualize some
fundamental principles in the design of geometric algorithms.
Before starting to describe algorithms we want to make some considerations concerning
the time that is at least necessary to find convex hulls. Of course, since all n input
points have to be taken into account we must spend at least time of linear order in n.
It is possible to establish a better lower bound. Let B = {b1, b2, . . . , bn} be a set of
distinct positive real numbers. Consider the set A ⊆ R2 defined by A = {(bi, b2i ) | 1 ≤
i ≤ n}. Since the function f : R → R with f(x) = x2 is strictly convex none of the
points of A is a convex combination of other points. Hence computing the convex hull
of A also sorts the numbers bi. It is known that in many computational models sorting
of n numbers needs worst case time Ω(n logn).
A second way to derive a lower bound is based on the notion of maxima of vectors. Let
A = {a1, a2, . . . , an} be a finite subset of R2. We define a partial ordering “�” on A by

ai = (xi, yi) � aj = (xj , yj) if and only if xi ≥ xj and yi ≥ yj.

The maxima with respect to this ordering are called maximal vectors. In Kung,

Luccio & Preparata (1975) the worst case time lower bound of Ω(n logn) for identi-
fying the maximal vectors of A is proved. This observation is exploited in Preparata

& Hong (1977) for the convex hull problem. Suppose A is such that every ai is a vertex
of the convex hull. Identify the (w.l.o.g.) four points with maximal, resp. minimal x- or
y-coordinate. Let aj be the vertex with maximal y-coordinate and ak be the vertex with
maximal x-coordinate. The number of vertices between aj and ak may be of order n.
They are all maximal elements. Since convex hull computations can identify maximal
vectors it cannot be faster in the worst case than O(n logn). Note that this lower bound
is also valid if we do not require that the vertices of the convex hull are output in their
correct sequence.
Though the lower bound derived here may seem to be weak there are many algorithms
that compute the convex hull in worst case time O(n logn).
According to Toussaint (1985) the first efficient convex hull algorithm has been out-
lined in Bass & Schubert (1967). Their algorithm was designed to be the first step
for computing the smallest circle containing a given set of points in the plane. Though
the algorithm is not completely correct it already exhibits some of the powerful ideas
used in convex hull algorithms. It consists of an elimination step as in the throw-away
algorithm of section 4.3.3 and afterwards basically performs a scan similar to Graham’s
scan (to be described next). When corrected appropriately a worst case running time
of O(n logn) can be shown. Therefore, this algorithm can be considered as the first
O(n logn) convex hull algorithm.
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4.3.1 Graham’s Scan

This algorithm was given by Graham (1972). Its main step consists of computing a
suitable ordering of the points. Then the convex hull is built by successively scanning
the points in this order. The algorithm works as follows.

procedure graham scan

(1) Identify an interior point of conv(A), say P0. This can be done by finding three
points of A that are not collinear and by taking their center of gravity as P0.

(2) Compute polar coordinates for the points of A with respect to the center P0 and
some arbitrary direction representing the angle zero.

(3) Sort the points with respect to their angles.

(4) If there are points with the same angle then eliminate all of them but the one
with largest radius. Let ai1 , ai2 , . . . , ait

be the sorted sequence of the remaining
points.

(5) Start with three consecutive points Pr, Pm, and Pl, i.e., Pr = aik
, Pm = aik+1 ,

Pl = aik+2 for some index k where indices are taken modulo t.

(6) Perform the following step for the current three points until the same triple of
points occurs for the second time.
a) If Pm lies on the same side of the segment [Pl, Pr] as P0 or lies on the segment

then delete Pm and set Pm = Pr and Pr to its predecessor in the current sorted
list.

b) If Pm lies on the side of the segment [Pl, Pr] opposite to P0 then set Pr = Pm,
Pm = Pl, and Pl to its successor in the current sorted list.

end of graham scan
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Figure 4.11 Graham’s scan
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Correctness of this algorithm is easily verified. Step (6) has to be performed at most
2t times for scanning the necessary triples of nodes. In Step (6a) a point is discarded
so it cannot be performed more than t − 3 times. If Step (6b) is executed t times we
have scanned the points “once around the clock” and no further changes are possible.
Therefore the worst case running time is dominated by the sorting in Step (3) and we
obtain the worst case running time O(n logn).
This way we have established the worst case time complexity Θ(n logn) for computing
convex hulls in the plane.

4.3.2 Divide and Conquer

The divide and conquer principle also applies in the case of convex hull computations
(Bentley & Shamos (1978)). In this case, the basic step consists of partitioning a
point set according to some rule into two sets of about equal size, computing their
respective convex hulls and merging them to obtain the convex hull of the whole set.

procedure divide and conquer

(1) If the current set has at most three elements compute its convex hull and return.

(2) Partition A into two sets A1 = {ai1 , ai2 , . . . , ail
} and A2 = {ail+1 , ail+2 , . . . , ain

}
where l = 
n

2 � such that there is a vertical line separating A1 and A2.

(3) Perform the divide and conquer algorithm recursively to compute conv(A1) and
conv(A2).

(4) Merge the two convex hulls to obtain the convex hull of A.

end of divide and conquer

Figure 4.12 The divide and conquer algorithm
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The partition required in Step (2) can be easily computed if the points are presorted
(which takes time O(n logn)). So, the only critical step to be examined is Step (4).
When merging two hulls we have to add two edges (the so-called upper and lower
bridges) and eliminate all edges of conv(A1) and conv(A2) that are not edges of
conv(A). To find these bridges we can exploit the fact that due to the sorting step
we know the leftmost point of A1 and the rightmost point of A2 (w.l.o.g., A1 is left of
A2). Starting at these points it is fairly simple to see that the edges to be eliminated
can be readily identified and that no other edges are considered for finding the bridges.
Therefore, the overall time needed to merge convex hulls during the algorithm is linear
in n. Due to Theorem 2.9, this establishes the O(n logn) worst case time bound for the
divide and conquer approach.
Kirkpatrick & Seidel (1986) describe a refinement of the divide and conquer ap-
proach to derive a convex hull algorithm which has worst case running time O(n log v)
where v is the number of vertices of the convex hull.

4.3.3 Throw-Away Principles

It is intuitively clear that when computing the convex hull of a set A not all points
are equally important. With high probability, points in the “interior” of A will not
contribute to the convex hull whereas points near the “boundary” of A are very likely
vertices of the convex hull. Several approaches make use of this observation in that they
eliminate points before starting the true convex hull computation.
If we consider a convex polygon whose vertices are contained in the set A then all points
inside this polygon can be discarded since they cannot contribute to the convex hull. In
Akl & Toussaint (1978) an algorithm is given that makes use of this fact.

procedure throw away

(1) Compute the points axmax, axmin, aymax, and aymin with maximal (minimal) x-,
resp. y-coordinate.

(2) Discard all points inside the convex polygon given by these four points and identify
four regions of points to be considered. The regions are associated with the four
edges of the polygon.

(3) For each subregion, determine the convex hull of points contained in it.

(4) Construct conv(A) from these four convex hulls.

end of throw away

Any of the convex hull algorithms could be used in Step (3). Akl and Toussaint basically
use Graham’s scan modified in a way that no angles have to be computed.
In a refined version Devroye & Toussaint (1981) compute four additional points,
namely those with maximal (minimal) coordinate sum xi+yi, resp. coordinate difference
xi − yi. Elimination is now performed using the convex polygon given by these eight
points.
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Figure 4.13 A throw-away principle

4.3.4 Convex Hulls from Maximal Vectors

Every point in R2 can be viewed as the origin of a coordinate system with axes parallel
to the x- and y-directions. This coordinate system induces four quadrants. A point is
called maximal with respect to the set A if at least one of these quadrants (including
the axes) does not contain any other point of A. It is easily seen that every vertex of
conv(A) is maximal. Namely, let x be a vertex of conv(A) and assume that each of the
corresponding quadrants contains a point of A. Then x is contained in the convex hull of
these points and therefore cannot be a vertex of the convex hull of A. Kung, Luccio

& Preparata (1975) give an algorithm to compute the maximal vectors of a point
set in the plane in worst case time O(n logn). This leads to the following O(n logn)
algorithm for computing the convex hull.

procedure maximal vector hull

(1) Compute the set S of maximal vectors with respect to A.

(2) Let A′ = S.

(3) Compute the convex hull of A′ using any of the O(n logn) worst case time algo-
rithms.

(4) conv(A) = conv(A′).

end of maximal vector hull

The expectation is that very many points can be discarded in Step (1).
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Figure 4.14 Maximal vectors

4.3.5 A New Elimination Type Algorithm

We are now going to discuss a further elimination type algorithm that uses a particularly
simple discarding mechanism. This algorithm is best suited for large dense point sets
distributed uniformly in a rectangle. It is discussed in full detail in Borgwardt,

Gaffke, Jünger & Reinelt (1991).
Assume that the points of A are contained in the unit sqaure, i.e., their coordinates are
between 0 and 1. The function h : [0, 1] × [0, 1] → R is defined by h(x) = h(x1, x2) =
min{x1, 1 − x1} · min{x2, 1 − x2}.
The basic idea is to compute the convex hull of a small subset S of A such that conv(S) =
conv(A) with high probability. The value h(x) will express whether x is likely to be an
interior point of conv(A). With increasing h(x) the probability that x can be eliminated
as a candidate for a vertex of the convex hull increases.
We will discard points based on this function in a first phase and compute the convex
hull for the remaining points. It will turn out that we cannot guarantee that we have
obtained conv(A) this way. Therefore, in a second phase we have to check correctness
and possibly correct the results.
The following is a sketch of our elimination type algorithm where CH is some algorithm
to compute the convex hull of a set of points in the plane.

procedure elim hull

Phase1

(1) Choose a suitable parameter α.

(2) Let Sα = {ai ∈ A | h(ai) ≤ α}.

(3) Apply CH to compute the convex hull of Sα.
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(4) Compute the minimum γ such that conv(Sα) ⊇ {x ∈ [0, 1] × [0, 1] | h(x) > γ}.

(5) If α ≥ γ then STOP (conv(Sα) = conv(A)), otherwise perform Phase 2.

Phase2

(6) Compute conv(Sγ) where Sγ = {ai ∈ A | h(ai) ≤ γ}. Now conv(Sγ) = conv(A).

end of elim hull

Figure 4.15 gives an illustration of the algorithm. The set Sα is given by the solid
points (‘•’) and its convex hull by solid lines. The broken curve defines the set Sγ and
the additional points to be considered in Phase 2 are shown as small circles (‘◦’). The
extreme points of the correct convex hull resulting from Phase 2 are obtained by adding
one point in the north-east corner.
A detailed analysis shows that Step (4) can be performed in linear time. Therefore the
worst case running time of this algorithm is given by the worst case running time of CH
(independent of α).

Figure 4.15 Illustration of the algorithm

The analysis of the average time complexity of this algorithm exhibits some interesting
consequences. If α is chosen carefully, then in certain random models only very few
points are contained in Sα and with very high probability Phase 2 is not needed. In
particular, one can obtain a speed-up theorem for convex hull algorithms in the following
sense.
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Theorem 4.5 Let A be a set of n random points generated independently from the
uniform distribution on the unit square [0, 1]×[0, 1]. For any algorithm CH with polyno-
mial worst-case running time the two-phase method has linear expected running time.

For a detailed analysis of the algorithm and the proper choice of α as well as for
a discussion of the computation of convex hulls for random points in the unit disk
D(0, 1) = {x = (x1, x2) ∈ R2 | x2

1 + x2
2 ≤ 1} we refer to Borgwardt, Gaffke,

Jünger & Reinelt (1991). Our approach can be generalized to higher dimensions. A
complete coverage of the 3-dimensional case can be found in Thienel (1991).
Assuming a uniform distribution of the n independent points over the unit square, linear
expected time algorithms have been given by Bentley & Shamos (1978), Akl &

Toussaint (1978), Devroye (1980), Devroye & Toussaint (1981), Kirkpatrick

& Seidel (1986), and Golin & Sedgewick (1988). For a survey on these and related
subjects see Lee & Preparata (1984).
We have compared the practical behaviour of five linear expected time algorithms,
namely

[1] the divide and conquer algorithm (4.3.2),
[2] the maximal vectors approach (4.3.4),
[3] the throw-away principle based on eight points (4.3.3),
[4] the throw-away principle based on four points (4.3.3),
[5] the new algorithm.

For algorithms [2], [3], [4], and [5] we apply Graham’s scan to the selected points.
All five algorithms have been implemented as Pascal programs on a SUN SPARCsta-
tion SLC which is about four times slower than the SPARCstation 10/20. We have tried
to put the same efforts into all five programs to make the comparison as fair as possible.
For instance, in all throw-away type algorithms we found that the following trick helped
to reduce the computation time. As soon as the elimination area has been determined
(a closed polygon in case [3] and [4] and the curve defined by the function h in [5]) we
inscribe the biggest possible rectangle with vertical and horizontal sides into this area.
Assume that this rectangle (always a square in case [5]) has vertices (x1, y1), (x2, y1),
(x2, y2) and (x1, y2). The elimination criterion is satisfied for a point with coordinates
(x, y) if x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2 which takes only four comparisons to check. Only
if this criterion fails, we have to check the actual elimination criterion which, e.g., in
case [5] amounts to checking which quadrant (x, y) lies in, and depending on this, up
to two additions, one multiplication, and one comparison.

Figure 4.16 shows the computation times of the algorithms for computing the convex
hull of point sets in the unit square drawn independently form a uniform distribution.
The curves are based on 10 sample problems for each problem size n = 1 000, 2 000, . . .,
10 000, 20 000, . . . , 100 000, 200 000, . . . , 1 000 000. In our opinion, these curves should
be interpreted as follows. When doing practical computations, the throw-away principle
is superior compared to the divide and conquer algorithms. The four point method is
slightly better than the eight point method.
For our experiments with practical traveling salesman problems in the plane we have
coded the algorithm as follows. The points are mapped to the unit square by horizontal
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Figure 4.16 Comparison of convex hull algorithms

and vertical scaling and appropriate offsets. This is done in such a way that each of
the four sides of the square contains at least one problem point. Then the elimination
algorithm is performed using α = 4 logn/n. However, in the range of problem sizes
we had available, the new algorithm does not pay off since the convex hull of some
ten thousands of points can be computed in so little time that it is negligibly small
compared to the other algorithms employed for problem solving. Therefore we do not
report computing times for TSPLIB problems here.



Chapter 5

Candidate Sets

In many practical applications it is required to find reasonably good tours for a traveling
salesman problem in short time. When designing fast heuristics, one is faced with the
problem that, in principle, very many connections need to be considered. For example,
in the traveling salesman problem fnl4461, tours have to be constructed by selecting
4461 out of 9,948,030 possible connections. Standard implementations of heuristics
consider all these connections which leads to substantial running times.
On the other hand, it is intuitively clear, that most of the possible connections will not
occur in short tours because they are too long. It is therefore a reasonable idea, which
we will exploit extensively in the sequel, to restrict attention to “promising” edges and
to avoid considering long edges too frequently. To this end we employ several types of
candidate sets from which edges are taken with priority in the computations.
In geometric problem instances one has immediate access to long edges because their
length is related to the location of the points. In general, for problems given by a
distance matrix, already time Ω(n2) has to be spent to scan all edge lengths. We will
discuss three types of candidate sets in this chapter. The first one is applicable in
general, but can be computed very fast for geometric instances. The other two sets can
only be computed for geometric instances.

5.1 Nearest Neighbors

It can be observed that most of the edges in good or optimal tours connect nodes to near
neighbors. For a TSP on n nodes and k ≥ 1, we define the corresponding k nearest
neighbor subgraph Gk = (V,E) by setting

V ={1, 2 . . . , n},
E ={uv | v is among the k nearest neighbors of u}.

For example, an optimal solution for the problem pr2392 can be found within the
8 nearest neighbor subgraph and for pcb442 even within the subgraph of the 6 nearest
neighbors.
Figure 5.1 shows the 10 nearest neighbor subgraph for the problem u159. This subgraph
contains an optimal tour.

G. Reinelt: The Traveling Salesman, LNCS 840, pp. 64-72, 1994.
 Springer-Verlag Berlin Heidelberg 1994
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Figure 5.1 The 10 nearest neighbor subgraph for u159

A straightforward computation of the k nearest neighbors by enumeration takes time
Ω(n2) for fixed k. The following proposition shows that for Euclidean problem instances
we can exploit the Delaunay graph for nearest neighbor computations. The discussion
applies to other metrics as well.

Proposition 5.1 Let Pi and Pj be two generators.

(i) If the straight line connecting Pi and Pj intersects the interior of the Voronoi
region of a generator Pl different from Pi and Pj then d(Pi, Pl) < d(Pi, Pj).

(ii) If the smallest number of edges on a path from Pi to Pj in the Delaunay graph
is k then there exist at least k − 1 generators Pl different from Pi and Pj with
d(Pi, Pl) < d(Pi, Pj).

Proof. For part (i) suppose that the line intersects the boundary of VR(Pl) in the
points T1 and T2 where w. l. o. g. d(Pi, T1) < d(Pi, T2). By definition we have d(Pl, T1) ≤
d(Pi, T1) and d(Pl, T2) ≤ d(Pj , T2). Since Pi, Pl, and T1 are distinct we obtain

d(Pi, Pl) ≤ d(Pi, T1) + d(Pl, T1)
< d(Pi, T1) + d(T1, Pj)
= d(Pi, Pj).

Part (ii) is an immediate corollary.
Therefore, to compute the k nearest neighbors of some generator Pi we only have to
examine generators which are connected to Pi in the Delaunay graph by a path of length
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at most k− 1. Since, for random instances, the expected degree of a node in this graph
is six, we can expect linear running time of this procedure for fixed k.
The fast algorithm for Euclidean problem instances is the following.

procedure nearest neighbors

(1) Compute the Delaunay graph and initialize the empty candidate list.

(2) For i = 1, 2, . . . , n compute the k nearest neighbors of node i by breadth-first
search in the Delaunay graph starting at node i. Add the corresponding edges to
the candidate set.

end of nearest neighbors
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Figure 5.2 CPU times for computing 10 nearest neighbor graph

Figures 5.2 and 5.3 show the running times for the 10 nearest neighbor computations
for our set of sample problems as well as the number of edges in the resulting candidate
sets. A good approximation for the cardinality of the 10 nearest neighbor candidate set
is 6n.
It is interesting to note that computation of the 10 nearest neighbor set for problem
pr2392 takes 22.3 seconds if the trivial algorithm is used. If the complete distance
matrix is stored this time reduces to 18.8 seconds which is still substantially more than
the 0.5 seconds needed with the Delaunay graph. It should be kept in mind that we
do not use complete distance matrices in this tract, but that much CPU time can be
gained if they are available.



5.2. Candidates Based on the Delaunay Graph 67

0 1000 2000 3000 4000 5000 6000
0

10000

20000

30000

40000

50000

60000

70000

Figure 5.3 Number of edges of the 10 nearest neighbor graphs

There are further approaches for an efficient computation of nearest neighbors for geo-
metric problems instances, e.g., probabilistic algorithms and algorithms based on k-d-
trees (Bentley (1990)).

5.2 Candidates Based on the Delaunay Graph

In particular if point sets exhibit several clusters, the k nearest neighbor subgraph is not
connected and many edges to form good tours are missing. Here the Delaunay graph
should help since it contains important connections between the clusters.
Though it may seem to be true at a first glance, the Delaunay graph itself does not
necessarily contain a Hamiltonian tour. For example, in the case where all points
are on a line the Delaunay graph is just a path. There are also examples where the
Delaunay graph is a triangulation, but does not contain a tour or even a Hamiltonian
path (Dillencourt (1987a,1987b)).
First experiments have indicated that the Delaunay graph provides a candidate set too
small. We therefore decided to augment it using transitive relations in the following
way. If the edges {i, j} and {j, k} are contained in the Delaunay graph then we also
add edge {i, k} to the candidate set. We call this set Delaunay candidate set. The
cardinality of this set can be quite large. For example, if n − 1 generators are located
on a circle and one generator is at the center of this circle then the Delaunay candidate
set is the complete graph on n nodes. Figure 5.4 shows the Delaunay candidate set for
problem u159.
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Figure 5.4 The Delaunay candidate set for u159

The following procedure computes the Delaunay candidate set.

procedure Delaunay candidates

(1) Compute the Delaunay graph and initialize the candidate set with the edges of
the Delaunay graph.

(2) For every node i = 1, 2, . . . , n do

(2.1) For every two nodes j and k adjacent to i in the Delaunay graph add edge
{j, k} to the candidate set if it was not a candidate edge before.

end of Delaunay candidates

For random points in the plane, empirical observations show that we can expect about
9n to 10n edges in this candidate set.
Figure 5.4 illustrates that the candidate set is rather dense. Therefore we have to expect
more than 9n edges in this candidate set for practical problem instances. Furthermore,
due to long edges in the Delaunay graph, the candidate set may contain many long
edges. To avoid long edges, we usually first run a fast heuristic to compute an initial
tour (as the space filling curves heuristic described in Chapter 8) and then eliminate
all edges from the candidate set that are longer than the longest edge in this tour. For
dense point sets most long edges will be eliminated, for clustered point sets the edges
connecting the clusters will be kept. In general, however, elimination of long edges is
not critical for the performance of our heuristics.
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Figure 5.5 CPU times for computing Delaunay candidate sets

0 1000 2000 3000 4000 5000 6000
0

10000

20000

30000

40000

50000

60000

70000

Figure 5.6 Number of edges of Delaunay candidate sets

Figures 5.5 and 5.6 give the CPU times necessary for computing the Delaunay candidate
set and the cardinality of this set. CPU time and size of the candidate set depend highly
on the point configuration and not only on the problem size. For a random problem on
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15,000 nodes we obtained 44,971 (i.e., 2.99 ·n) edges in the Delaunay graph and 147,845
(i.e., 9.86 · n) edges in the Delaunay candidate set.

5.3 Other Candidate Sets

We discuss a further candidate set that is easily computed and does not require such
sophisticated computations as the Delaunay graph.
The idea is to obtain near neighbors without too much effort just based on coordinates.
We outline the procedure for horizontal coordinates. We sort the points with respect to
their x-coordinates. For every point i we consider the points that appear right before or
after i in this sorted sequence. To limit the amount of work we only take those points
into account which appear at most w positions before or at most w positions after i.
Among these points we compute the k points nearest to i and choose the corresponding
edges as candidate edges.
The complete heuristic also takes the vertical coordinates into account. This is accom-
plished as follows. The parameter w specifies a search width as sketched above, the
parameter k gives the number of candidate edges that are selected from each node.

procedure candidate heuristic

(1) Initialize two sorted lists of the points by sorting them with respect to their x-
coordinates and with respect to their y-coordinates. For every point i let ix and
iy be its respective positions in the lists.

(2) Initialize the empty candidate list.

(3) For every node i = 1, 2, . . . , n do

(3.1) Let Q1 = {j|jx ∈ {ix+1, . . . , ix+w}, jy ∈ {iy +1, . . . , iy +w}}, Q2 = {j|jx ∈
{ix +1, . . . , ix +w}, jy ∈ {iy − 1, . . . , iy −w}}, Q3 = {j|jx ∈ {ix − 1, . . . , ix −
w}, jy ∈ {iy − 1, . . . , iy − w}}, and Q4 = {j|jx ∈ {ix − 1, . . . , ix − w}, jy ∈
{iy + 1, . . . , iy + w}}.

(3.2) Add edges from node i to its two nearest neighbors in every set Qj , j =
1, 2, 3, 4 (or less, if Qj contains fewer than two elements) to the candidate set
and remove the corresponding nodes from the sets. (We incorporate this step
to have candidate edges connecting i to each of the sets Qj .)

(3.3) Compute the k− l nearest neighbors of i in the reduced set Q1∪Q2∪Q3∪Q4

(where l is the number of edges selected in (3.2)) and add the corresponding
edges to the candidate set.

end of candidate heuristic

Figure 5.7 shows the candidate set obtained with this heuristic for problem instance u159
(parameters were k = 10 and w = 20). It contains 94% of the edges of the 10 nearest
neighbor graph. Because of pathological conditions at the border of point sets we may
also incur a number of long edges in this heuristic. These could be eliminated as above,
but keeping them has no significant effects as our experiments showed.
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Figure 5.7 Result of candidate heuristic for u159
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Figure 5.8 CPU times for candidate heuristic
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Figure 5.9 Number of edges of heuristic candidate sets

Figures 5.8 and 5.9 display the CPU times for computing this candidate set and the
number of its edges, respectively. Both, sizes of the candidate sets and the times to
compute them, are very well predictable depending on the size of the problem instance.
An interesting further candidate set can be obtained by taking the union of the Delaunay
graph and an appropriate nearest neighbor graph. Here we have the short connections
as well as the important connections between distant clusters.
We will investigate the usefulness of our candidate sets in the subsequent chapters.



Chapter 6

Construction Heuristics

Starting with this chapter we will now consider computational aspects of the traveling
salesman problem. For the beginning we shall consider pure construction procedures,
i.e., heuristics that determine a tour according to some construction rule, but do not
try to improve upon this tour. In other words, a tour is successively built and parts
already built remain in a certain sense unchanged throughout the algorithm.
Many of the construction heuristics presented here are known and computational results
are available (Golden & Stewart (1985), Arthur & Frendeway (1985), Johnson

(1990), Bentley (1992)) We include them for the sake of completeness of this tract
and for having a reference to be compared with other algorithms on our sample problem
instances. Moreover, most evaluations of heuristics performed in the literature lack
from the fact that either fairly small problem instances or only random instances were
examined.
The following types of algorithms will be discussed:

– nearest neighbor heuristics,
– insertion heuristics,
– heuristics based on spanning trees, and
– savings heuristics.

This does not cover by far all the approaches that have been proposed. But we think
that the ideas presented here provide the reader with the basic principles that can also
be adapted to other combinatorial optimization problems.
For the following, we will always assume that we are given the complete undirected
graph Kn with edge weights cuv for every pair u and v of nodes. For ease of notation
we will denote the node set by V and assume that V = {1, 2, . . . , n}. The question to
be addressed is to find good Hamiltonian tours in this graph.

6.1 Nearest Neighbor Heuristics

This heuristic for constructing a traveling salesman tour is near at hand. The salesman
starts at some city and then visits the city nearest to the starting city. From there he
visits the nearest city that was not visited so far, etc., until all cities are visited, and
the salesman returns to the start,

6.1.1 The Standard Version

Formulated as an algorithm we obtain the following procedure.

G. Reinelt: The Traveling Salesman, LNCS 840, pp. 73-99, 1994.
 Springer-Verlag Berlin Heidelberg 1994
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procedure nearest neighbor

(1) Select an arbitrary node j, set l = j and T = {1, 2, . . . , n} \ {j}.
(2) As long as T �= ∅ do the following.

(2.1) Let j ∈ T such that clj = min{cli | i ∈ T}.
(2.2) Connect l to j and set T = T \ {j} and l = j.

(3) Connect l to the first node (selected in Step (1)) to form a tour.

end of nearest neighbor

This procedure runs in time Ω(n2). A possible variation of the standard nearest neighbor
heuristic is the double-sided nearest neighbor heuristic where the current path can
be extended from both of its endnodes.
No constant worst case performance guarantee can be given, since the following theorem
due to Rosenkrantz, Stearns & Lewis (1977) holds.

Theorem 6.1 For every r > 1 and arbitrarily large n there exists a TSP instance on
n cities such that the nearest neighbor tour is at least r times as long as an optimal
tour.

In addition, Rosenkrantz, Stearns and Lewis (1977) show that for arbitrarily
large n there exist TSP instances on n nodes such that the nearest neighbor solution is
Θ(log n) times as long as an optimal Hamiltonian cycle. This results still holds if the
triangle inequality is satisfied. Therefore it also applies to metric problem instances.

Figure 6.1 A nearest neighbor tour for rd100
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If one displays nearest neighbor tours one realizes the reason for their poor performance.
The procedure proceeds very well and produces connections with short edges in the
beginning. But, as can be seen from a graphics display, several cities are “forgotten”
during the course of the algorithm. They have to be inserted at high cost in the end.
Figure 6.1 shows a typical nearest neighbor tour.
Though usually rather bad, nearest neighbor tours have the advantage that they only
contain a few severe mistakes, but there are long segments connecting nodes with short
edges. Therefore, such tours can serve as good starting tours for subsequently performed
improvement methods and it is reasonable to put some effort in designing heuristics that
are based on the nearest neighbor principle. We will comment on improvement methods
in the next chapter. The standard procedure itself is easily implemented with a few lines
of code. But, since running time is quadratic, we describe some variants to speed up
and/or improve the standard nearest neighbor search.

6.1.2 Exploiting the Delaunay Graph

We have seen in Chapter 5 that the Delaunay graph can be used to speed up nearest
neighbor computations. We can apply these results here, too. Namely, when searching
the nearest neighbor of node l in step (2.1) among the nodes which are not yet contained
in the partial tour, we can use the principle of section 5.1 to generate the k-th nearest
neighbor of l for k = 1, 2, . . . , n until a node is found that is not yet connected. Due to
the properties of the Delaunay graph we should find this neighbor examining only a few
edges of the graph in the neighborhood of l. Since in the last steps of the algorithm we
have to collect the forgotten nodes (which are far away from the current node) it makes
no sense to use the Delaunay graph any further. So, for connecting the final nodes we
just use a simple enumeration procedure.
We have conducted several experiments to see how many neighbors of the current node
are examined and to what depth the breadth-first search to find the nearest neighbor is
performed.
Figure 6.2 shows the average depth in the breadth-first search tree needed to find the
next neighbor. The average depth varies between 3 and 5 for real-world problems and
is about 3.5 for random problems.
Figure 6.3 displays the average number of nodes examined to find the next neighbor,
which is then also the number of necessary distance evaluations per node. Here real-
world problems behave better than random problems.
Furthermore, we examined how search depth and number of neighbors to be examined
develop during the heuristic. Figures 6.4 and 6.5 depict the search depth and the number
of examined nodes, respectively, obtained during the execution of the nearest neighbor
heuristic on the problem pr2392.
We see that at the majority of nodes next neighbors can indeed be found in the local
neighborhood with a search depth below five in most cases. Only sometimes a large
part of the Delaunay graph has to be explored to find the next node. Note that we do
not use the Delaunay strategy for inserting the final 100 nodes, since the overhead for
identifying the nearest neighbor increases significantly at the end of the procedure.
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Figure 6.3 Average number of examined nodes

The worst case running time of this implementation is still quadratic. The running
times for the sample problems will be given below together with the running times for
all other variants.
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6.1.3 Precomputed Neighbors

Suppose we have computed a candidate subgraph representing “reasonable” connections,
e.g., the k nearest neighbor subgraph. A speed up of the nearest neighbor procedure
is then possible if we first look for nearest neighbors of a node within its adjacent
nodes in the subgraph. This way we reduce the exhaustive neighbor search and the
necessary costly distance computations. If all nodes adjacent in the subgraph are already
contained in the partial tour then we compute the nearest neighbor among all free nodes.
This modification does not improve worst case time complexity but should be faster
when run on practical problems.
Note, that even if the subgraph is obtained by computing the k nearest neighbors this
modified routine and the standard routine will usually come up with different results.
This is due to the fact that we may proceed from the current node l to a node j which
is not its nearest neighbor among all free nodes. This can occur, if edge {l, j} is in the
candidate set and l is among the k nearest neighbors of j, but j is not among the k
nearest neighbors of l.

6.1.4 Neighbors of Predecessors

In this modification we also use a precomputed set of candidate edges but apply the
following variant for the neighbor search. If all nodes adjacent to the current node in
the subgraph are already contained in the partial tour then we look for free neighbors
(in the candidate subgraph) of the predecessor of the current node. If this fails too,
we go back to the predecessor of the predecessor, etc. The backtrack to a predecessor
is only done a limited number of times, say 20 times, because then free neighbors are
usually already far away from the current node and it should be preferrable to look for
the exact nearest neighbor. Again, worst case time complexity is not affected, but a
significant speed up should be possible.

6.1.5 Insertion of Forgotten Nodes

As the main problem with nearest neighbor heuristics is that in the end nodes have to
be connected at high cost, we try to avoid that nodes become isolated. To do this we
first compute the degree of each node in the chosen candidate subgraph. (Without this
subgraph the procedure would not make sense.)
Whenever a node is connected to the current partial tour we decrease the degrees of its
adjacent nodes (in the subgraph) by 1. If the degree of a free node is decreased below
a specified limit (e.g., 2 or 3) this way, we insert that node immediately into the path.
To this end we look for the best insertion point before or after one of its neighbors in
the candidate subgraph. This way more nodes of degree less than or equal to the given
limit may occur which are also inserted rightaway. The selection of the next nodes in
the algorithm is accomplished as in variant 6.1.3. The worst case time complexity is
still quadratic.
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6.1.6 Using Rotation Operations

The idea of this heuristic is to try to grow the tour within the candidate subgraph. If
at the current node the tour cannot be extended using candidate edges it is tried to
perform a sequence of rotation operations. Such an operation introduces an unused
subgraph edge from the current node. Since this results in a cycle with the partial tour,
another edge has to be eliminated and we obtain a new last node from which we can
try to extend the path.

ik

l

Figure 6.6 A rotation operation

Figure 6.6 depicts a rotation operation. If at the current last node l the path cannot
be extended within the subgraph we try to use the subgraph edge {l, k}. To break the
resulting cycle we delete the edge {k, i} and try to extend the path now starting at i.
A sequence of rotations can be performed if also the extension from i fails. If the tour
cannot be extended this way using only subgraph edges a neighbor search like in one of
the previous variants can be performed.

6.1.7 Comparison of Variants

We compare the variants with the standard heuristic implemented according to 6.1.2.
It is clear that the tours produced by the algorithms heavily depend on the choice of
the starting point. Since we cannot look for the best starting point we always chose
to start with node �n

2 	, thus giving an unbiased starting node to the heuristics. The
chosen candidate subgraph was the 10 nearest neighbor subgraph for variants 6.1.3
through 6.1.6.
In variant 6.1.4 we examined at most 20 predecessors to extend the path. In variant 6.1.5
forgotten nodes were inserted as soon as they were merely connected to at most three
free nodes. In variant 6.1.6 a sequence of rotations was limited to be composed of at
most five single rotations.
Table 6.7 shows the tour lengths (given as deviation in percent from the best known
lower bounds) obtained by applying the different procedures to our set of test problems.
Variants 6.1.2 through 6.1.6 are denoted by Variant 1 through Variant 5 in this table.
The best solution found for every problem instance is marked with a ‘*’.
The results strongly support variant 6.1.5 which avoids adding too many isolated nodes
in the end. Usually, this decreases the tour length considerably. The quality of the
solutions can be expected to be in the range of 15% to 25% above optimality. In
Johnson (1990) an average excess of 24% over an approximation of the Held-Karp
lower bound (see Chapter 10) is reported for randomly generated problems.
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Problem Variant 1 Variant 2 Variant 3 Variant 4 Variant 5

d198 25.79 16.51* 25.86 20.88 28.09
lin318 26.85 22.52 33.06 15.90* 27.84
fl417 21.28 17.84* 36.42 25.36 31.80
pcb442 21.36 22.91 18.63 13.51* 27.15
u574 29.60 21.11 25.90 18.67* 29.16
p654 31.02 18.75* 25.80 25.98 24.43

rat783 27.13 24.76 27.98 18.86* 27.02
pr1002 24.35 25.18 28.96 18.16* 27.97
u1060 30.43 27.14 27.33 24.14* 29.42

pcb1173 28.18 27.69 27.30 18.09* 29.85
d1291 22.97 15.44* 25.54 17.33 16.09
rl1323 22.30 21.94 25.51 16.81* 25.10
fl1400 42.42 42.96 30.64 30.23* 48.39
u1432 25.50 28.04 31.55 19.21* 25.71
fl1577 27.65 20.34* 21.97 23.30 21.55
d1655 25.99 25.06 20.82 19.81* 23.38
vm1748 25.67 26.78 31.90 19.11* 31.89
rl1889 28.37 25.54 23.85* 25.62 25.41
u2152 25.80 25.85 23.22 18.97* 23.14
pr2392 24.96 27.23 26.09 22.68* 26.20
pcb3038 23.63 23.53 28.39 19.16* 26.92
fl3795 24.44 25.92 32.85 20.09* 35.24
fnl4461 25.31 23.24 26.98 19.53* 24.99
rl5934 22.93 23.41 24.77 18.75* 24.38

Average 26.27 26.58 27.04 21.45 28.28

Table 6.7 Results of nearest neighbor variants
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Figure 6.8 CPU times for nearest neighbor variants
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CPU times for the complete set of instances are shown in Figure 6.8. The running
times for the variants do not include the time to set up the Delaunay graph or the 10
nearest neighbor subgraph. These times were given in Chapters 4 and 5. To document
the speed up obtained by using the different variants we have also included the running
time for the standard implementation. Variant i is indicated by the number [i], the
standard implementation is indicated by [S].
Figure 6.8 clearly visualizes that already simple algorithms of quadratic time complexity
take quite some time when applied to large problems. The comparison of the variants
gives a clear picture. All the variants are much faster than the standard nearest neighbor
algorithm (even if the preprocessing times would be included). When considering larger
random problems (results are not displayed here), variants 2, 3, and 4 seem to exhibit
a quadratic component in their running time while variants 1 and 5 seem to have
subquadratic running times.

6.1.8 Stability of Nearest Neighbor Heuristics

Since we have performed only one run of each heuristic for every sample problem (start-
ing with node �n

2 	) we cannot be absolutely sure that Table 6.7 gives a correct assessment
of the five heuristics. We have therefore examined the average quality of each variant for
three sample problems. To this end we have performed each heuristic for every starting
node l = 1, 2, . . . , n.
Table 6.9 shows the results. Each line corresponds to one variant and gives (in that
sequence) the length of the best, resp. worst tour, the average tour length obtained, the
span between best and worst tour (i.e., worst quality − best quality), and the standard
deviation.

Variant Minimum Maximum Average Span Deviation
lin318

1 16.89 39.82 24.89 22.92 2.99
2 18.58 35.96 25.88 17.38 2.96
3 20.86 37.66 27.12 16.80 3.65
4 12.96 29.24 20.25 16.28 3.00
5 21.54 36.94 29.37 15.40 3.07

pcb442

1 18.01 38.15 29.66 20.14 3.63
2 16.60 32.23 22.11 15.63 2.84
3 17.19 34.31 26.06 17.12 3.44
4 11.77 30.03 16.63 18.27 2.74
5 15.67 36.30 25.81 20.63 3.26

u1060

1 22.33 36.51 26.11 14.17 1.93
2 21.25 39.19 30.05 17.94 3.45
3 24.18 37.99 28.89 13.81 2.21
4 19.04 28.46 22.95 9.42 1.70
5 24.98 37.44 30.03 12.46 2.29

Table 6.9 Sensitivity analysis for nearest neighbor variants

The results verify that insertion of forgotten neighbors leads to the best results. The
average quality of the tours obtained this way is substantially better than for the other
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four variants. The other variants perform more or less the same. The span is consider-
able, the quality of the tours strongly depends on the choice of the starting node.

6.2 Insertion Heuristics

A further intuitive approach is to start with tours on small subsets (including trivial
“tours” on one or two nodes) and then extend these tours by inserting the remaining
nodes. This principle is realized by the following procedure.

procedure insertion

(1) Select a starting tour through k nodes v1, v2, . . . , vk (k ≥ 1) and set W = V \
{v1, v2, . . . , vk}.

(2) As long as W �= ∅ do the following.

(2.1) Select a node j ∈W according to some criterion.

(2.2) Insert j at some position in the tour and set W =W \ {j}.
end of insertion

Using this principle a tour is built containing more and more nodes of the problem until
all nodes are inserted and the final Hamiltonian tour is found.

6.2.1 Standard Versions

Of course, there are several possibilities for implementing such an insertion scheme. The
main difference is the determination of the order in which the nodes are inserted. The
starting tour is usually just some tour on three nodes or, an edge (k = 2), or even a
loop containing only one node (k = 1). We will consider also another type of starting
tour below. The selected node to be inserted is usually inserted into the tour at the
point causing shortest increase in the length of the tour.
We say that a node is a tour node if it is already contained in the partial tour. For
j ∈ W we define dmin(j) = min{cij | i ∈ V \W}, dmax(j) = max{cij | i ∈ V \W}, and
s(j) =

∑
i∈V \W cij .

The following possibilities for extending the current tour are considered.

6.2.1.1 Nearest Insertion
Insert the node that has the shortest distance to a tour node, i.e., select j with dmin(j) =
min{dmin(l) | l ∈W}.
6.2.1.2 Farthest Insertion 1
Insert the node whose minimal distance to a tour node is maximal, i.e., select j with
dmin(j) = max{dmin(l) | l ∈W}.
6.2.1.3 Farthest Insertion 2
Insert the node that has the farthest distance to a tour node, i.e., select j with dmax(j) =
max{dmax(l) | l ∈W}.
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6.2.1.4 Farthest Insertion 3

Insert the node whose maximal distance to a tour node is minimal, i.e., select j with
dmax(j) = min{dmax(l) | l ∈W}.

6.2.1.5 Cheapest Insertion 1

Among all nodes not inserted so far, choose a node whose insertion causes the lowest
increase in the length of the tour. I.e., among all nodes not inserted so far, choose a
node which can be inserted causing the lowest increase in the length of the tour.

6.2.1.6 Cheapest Insertion 2

In the cheapest insertion heuristic, we have to know for every node not in the tour its
cheapest insertion point. Update of this information is expensive (see below). In this
variant, we only perform a partial update of the best insertion points in the following
sense. Suppose node j has just been inserted into the partial tour. This may have the
effect that the best insertion point changes for a non-tour node, say l. Now, we do not
consider all possibilities to insert l, but only insertions before or after j and a limited
number k of j’s successors and predecessors. This has the consequence, that, for some
nodes, not necessarily the best insertion point is determined.

6.2.1.7 Random Insertion

Select the node to be inserted at random.

6.2.1.8 Largest Sum Insertion

Insert the node whose sum of distances to tour nodes is maximal, i.e., select j with
s(j) = max{s(l) | l ∈ W}. This is equivalent to choosing the node with maximal
average distance to tour nodes.

6.2.1.9 Smallest Sum Insertion

Insert the node whose sum of distances to tour nodes is minimal, i.e., select j with
s(j) = min{s(l) | l ∈W}. This is equivalent to choosing the node with minimal average
distance to tour nodes.

There are also variants of these ideas where the node selected is not inserted at cheapest
insertion cost but as a neighbor of that tour node that is nearest to it. These variants
are usually named “addition” instead of insertion. Bentley (1992) reports that the
results are slightly inferior.
All heuristics except for cheapest Insertion have running time O(n2). Cheapest Insertion
can be implemented to be executed in time O(n2 logn) by storing for each external
node a heap based on the insertion cost at the possible insertion points. Because this
procedure requires O(n2) space it cannot be used for large problem instances. The fast
version of cheapest insertion runs in time O(n2) because of the limited update.
We give an illustration of insertion principles in Figure 6.10 for a Euclidean problem
instance. In the next step nearest insertion adds node i, farthest insertion adds node j,
and cheapest insertion adds node k to the tour.
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k

j

i

Figure 6.10 Illustration of insertion heuristics

Nearest insertion and cheapest insertion tours are less than twice as long as an optimal
tour if the triangle inequality holds (Rosenkrantz, Stearns & Lewis (1977)). It
can also be shown that there exist classes of problem instances for which the length of
the heuristic solution is 2 − 2

n times longer than the optimal tour, thus proving that
these approximation results are tight.
Recently it was shown (Hurkens (1991)) that for random or farthest insertion there
exist examples where these heuristics yield tours that are 13/2 times longer than an
optimal tour (although the triangle inequality is satisfied).
We have compared the nine insertion heuristics for our set of sample problems. Each
heuristic was started with the cycle (�n

2 	, �
n
3 	, �

n
4 	) to get unbiased starting conditions.

For the variant of cheapest insertion described in 6.2.1.6 we have set k = 30.
Table 6.11 displays the results (headings 1 through 9 corresponding to the insertion
heuristics 6.2.1.1 through 6.2.1.9). The best solution in each row is marked with a ‘*’.
Farthest insertion 1 performs best for our set of problems followed closely by random
insertion. The fast version of cheapest insertion performs as well as the full version, the
time for doing correct cheapest insertion does not pay off. In fact, the results were the
same except for two cases. However, though reasonable at first sight, cheapest insertion
performs significantly worse that farthest insertion. The relatively good performance of
farthest insertion can be explained when observing the development of the generated
tour: after few steps already, a good global outline of the final tour is obtained. Almost
the same is true for random insertion. An average excess over the Held-Karp bound
of 27% for the nearest insertion and of 13.5% for the farthest insertion procedure is
reported in Johnson (1990) for random problem instances.
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Problem 1 2 3 4 5 6 7 8 9

d198 13.19 3.85* 7.57 14.80 11.08 11.08 8.17 8.15 7.78
lin318 21.62 10.87 18.41 24.30 18.39 18.39 9.18* 20.02 16.27
fl417 12.50 5.48 13.37 13.37 12.39 12.39 3.29* 7.84 9.04
pcb442 20.89 13.83 16.99 29.06 21.15 21.15 12.23* 27.07 20.43
u574 22.33 11.39* 22.68 26.32 19.12 19.12 11.64 23.32 22.21
p654 10.81 6.89 11.33 5.94 5.79* 5.79* 9.87 11.30 12.64

rat783 23.04 12.09* 22.52 28.72 16.02 16.02 13.37 26.37 25.02
pr1002 18.57 10.85* 24.81 27.24 16.61 16.61 12.50 23.98 25.42
u1060 21.39 12.68 21.52 27.55 18.67 18.67 11.43* 23.94 21.58

pcb1173 25.84 14.22* 26.82 32.67 21.50 21.50 16.58 29.56 28.80
d1291 22.90 23.78 27.29 29.50 17.01* 17.01* 22.13 31.06 18.70
rl1323 31.01 18.89* 29.30 27.80 24.81 24.81 20.64 29.30 26.56
fl1400 20.28 8.45* 14.56 24.78 17.98 17.76 8.47 16.30 16.44
u1432 15.26 12.59* 20.43 20.08 12.65 12.65 12.63 23.84 20.54
fl1577 21.61 15.17* 20.04 25.21 17.08 17.08 18.70 26.66 17.97
d1655 20.18 17.09* 22.22 27.80 18.83 18.77 17.69 28.20 23.95
vm1748 21.26 13.54* 25.37 33.59 18.86 18.86 13.87 29.52 24.26
rl1889 23.82 19.10 27.74 32.70 21.24 21.24 17.30* 29.99 27.53
u2152 21.09 19.55 28.64 32.84 16.12* 16.12* 19.76 28.26 28.98
pr2392 24.70 14.32* 28.26 33.55 20.50 20.50 16.65 31.75 28.32
pcb3038 23.12 14.89* 24.54 27.84 17.08 17.08 16.69 27.57 27.28
fl3795 19.61 21.97 19.58 29.45 12.79* 12.79* 19.77 21.62 25.62
fnl4461 21.10 12.03* 27.69 28.90 15.97 15.97 12.99 28.99 28.03
rl5934 27.40 22.17 30.12 33.42 21.84* 21.84* 22.71 33.56 30.36

Average 20.98 13.99 22.16 26.56 17.23 17.22 14.51 24.51 22.24

Table 6.11 Results of insertion heuristics

Note that the quality of the solutions of the different heuristics is highly problem de-
pendent. Running time will be addressed in the next section.

6.2.2 Fast Versions of Insertion Heuristics

As in the case of the nearest neighbor heuristic we want to give priority to edges from
a candidate set to speed up the insertion heuristics.
To this end we base all our calculations on the edges contained in the candidate set.
E.g., now the distance of a non-tour node v to the current partial tour is infinite if there
is no candidate edge joining v to the tour, otherwise it is the length of the shortest such
edge joining v to the tour. Using this principle the heuristics of the previous chapter
are modified as follows.

6.2.2.1 Nearest Insertion

If there are nodes connected to the current tour by a subgraph edge then insert the node
connected to the tour by the shortest edge. Otherwise insert an arbitrary node.

6.2.2.2 Farthest Insertion 1

Among the nodes that are connected to the tour insert the one whose minimal distance
to the tour is maximal. If all external nodes are not connected to the tour insert an
arbitrary node.
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6.2.2.3 Farthest Insertion 2

Among the nodes that are connected to the tour insert the one whose distance to the
tour is maximal. If all external nodes are not connected to the tour insert an arbitrary
node.

6.2.2.4 Farthest Insertion 3

Among the nodes that are connected to the tour insert the one whose maximal distance
to the tour is minimal. If all external nodes are not connected to the tour insert an
arbitrary node.

6.2.2.5 Cheapest Insertion 1

Insert a node connected to the current tour by a subgraph edge whose insertion yields
minimal additional length. If no such node exists then compute the cheapest insertion
possibility. Insertion information is only updated for those nodes that are connected to
the node inserted last by a subgraph edge. This way insertion information may become
incorrect for some nodes since it may not be updated.

6.2.2.6 Cheapest Insertion 2

Insert a node connected to the current tour by a subgraph edge whose insertion yields
minimal additional length. If no such node exists then insert an arbitrary node. Update
of insertion information is further simplified as in 6.2.1.6.

6.2.2.7 Random Insertion

Select the node to be inserted at random where priority is given to nodes connected to
the current tour by a subgraph edge.

6.2.2.8 Largest Sum Insertion

For each node compute the sum of lengths of the subgraph edges connecting this node
to the current tour. Insert the node whose sum is maximal. If all external nodes are
not connected to the tour insert an arbitrary node.

6.2.2.9 Smallest Sum Insertion

For each node compute the sum of lengths of the subgraph edges connecting this node
to the current tour. Insert the node whose sum is minimal. If all external nodes are not
connected to the tour insert an arbitrary node.
We have performed the same experiment as for the heuristics in the complete graph.
Results are shown in Table 6.12. Now, the advantages of farthest or random insertion are
lost due to the restricted view. They still perform best but tour quality is significantly
inferior than before. The cheapest insertion variants give some very bad solutions which
is caused by the incomplete update of insertion information.
To visualize the CPU time for insertion heuristics we have compared five variants in
Figure 6.13: Farthest insertion 6.2.1.2 ([1]), Cheapest insertion 6.2.1.5 ([2]), Cheapest
insertion 6.2.1.6 ([3]), Farthest insertion 6.2.2.2 ([4]), Cheapest insertion 6.2.2.5 ([5]).
The diagram shows that standard farthest insertion compares favorably with all cheapest
insertion variants. Speed up using candidate graphs is considerable, but due to inferior
quality there seems to be no point in using these heuristics. This will be further justified
in Chapter 7.
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Problem 1 2 3 4 5 6 7 8 9

d198 15.31 7.84* 9.41 13.67 13.47 13.47 10.42 13.80 11.13
lin318 25.69 20.03 18.85 23.78 42.95 42.95 18.09 17.63* 24.41
fl417 36.20 31.08 33.92 44.57 24.36* 24.36* 26.82 38.90 31.99
pcb442 28.85 18.59 20.16 19.93 29.66 29.66 20.07 14.08* 27.33
u574 22.54 17.34* 19.97 18.60 25.28 25.28 17.53 19.02 26.72
p654 48.59 46.22 36.84* 42.62 78.21 78.81 49.36 44.91 54.21

rat783 26.07 15.35* 18.31 20.00 24.90 24.90 17.47 16.11 29.58
pr1002 19.89* 21.30 29.43 20.37 26.54 26.50 22.52 20.74 28.17
u1060 25.39 17.54* 20.42 20.78 22.95 24.07 18.52 19.97 25.55

pcb1173 28.93 19.28* 21.60 21.87 34.27 34.27 21.84 22.42 28.86
d1291 31.24 25.33 26.61 27.29 20.91 20.73* 24.78 26.81 28.16
rl1323 37.34 22.46* 26.82 32.97 31.19 31.43 26.04 31.16 35.37
fl1400 30.83 31.66 28.69 29.67 85.17 94.98 19.07* 27.06 30.59
u1432 21.61 17.81 20.29 20.27 28.08 29.89 20.25 16.51* 25.52
fl1577 34.75 27.27 28.95 28.19 31.09 31.09 23.67* 29.51 36.09
d1655 28.95 23.22 23.74 26.05 33.35 35.48 22.40* 24.38 29.23
vm1748 26.05 21.07* 21.82 23.34 22.90 22.90 22.27 21.20 29.31
rl1889 35.45 25.60* 29.58 30.32 42.91 42.39 31.51 28.60 35.12
u2152 28.99 24.68 28.89 24.46 21.34* 21.34* 25.03 25.06 30.82
pr2392 27.01 23.14* 27.88 28.22 35.15 32.68 24.56 24.28 31.41
pcb3038 25.19 18.48* 21.47 19.67 25.61 25.72 20.05 20.00 28.57
fl3795 35.77 24.96* 29.32 30.18 40.31 40.62 25.80 33.85 32.41
fnl4461 23.47 16.88* 17.23 20.27 31.74 36.16 17.64 18.11 28.51
rl5934 44.63 31.26* 29.81 35.55 51.60 48.17 32.91 33.31 37.97

Average 29.53 22.85 24.58 25.94 34.33 34.91 23.28 24.48 30.29

Table 6.12 Results of fast insertion heuristics
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Figure 6.13 CPU times for some insertion heuristics
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6.2.3 Convex Hull Start

The following observation suggests to use a specific starting tour for Euclidean problems.
Let v1, v2, . . . , vk be located on the boundary of the convex hull of the given points (in
this order). Then, in any optimal tour, this sequence is respected (otherwise the tour
would contain crossing edges and hence could not be optimal). Therefore it is reasonable
to use (v1, v2, . . . , vk) as starting tour for the insertion heuristics.
From the results of Chapter 4 we know that convex hulls can be computed very quickly
(in time Θ(n logn)). Therefore, only negligible additional CPU time is necessary to
compute this type of starting tour for the insertion heuristics in the Euclidean case.
Results with the convex hull start using the standard versions of the insertion heuristics
are displayed in Table 6.14.

Problem 1 2 3 4 5 6 7 8 9

d198 12.86 6.73 6.41 6.58 8.51 8.51 4.37* 7.03 7.34
lin318 15.08 10.82 19.70 16.82 11.42 11.42 7.97* 18.01 16.39
fl417 14.24 5.28 14.95 5.65 7.61 7.61 2.77 * 6.83 8.36
pcb442 16.52 10.37* 17.54 18.89 11.83 11.83 13.62 19.17 22.71
u574 17.24 9.95* 23.55 18.47 14.67 14.67 10.73 19.83 20.62
p654 17.07 3.05* 12.40 6.38 8.15 8.15 6.49 13.16 10.85

rat783 16.90 12.72 24.68 23.89 15.16 15.16 11.90* 22.31 23.80
pr1002 20.05 11.10* 25.65 21.66 14.23 14.23 13.27 26.71 21.76
u1060 22.78 10.69 24.71 22.79 16.65 16.65 10.39* 23.99 22.65

pcb1173 21.61 15.44* 26.14 26.62 19.18 19.18 18.25 28.45 26.35
d1291 25.58 21.80 25.52 26.22 14.69* 14.69* 21.03 22.06 22.37
rl1323 25.86 15.10* 28.57 25.74 20.30 20.30 20.18 27.73 27.59
fl1400 14.04 5.79* 14.62 12.05 9.73 9.73 8.35 13.69 17.90
u1432 15.34 12.65 21.06 18.73 11.73* 11.73* 13.19 22.48 21.66
fl1577 20.30 15.18* 18.72 28.25 18.09 18.09 15.58 37.73 24.71
d1655 20.94 15.05 21.55 27.26 13.23* 13.23* 15.99 26.67 24.03
vm1748 19.83 10.77* 25.31 24.04 16.94 16.94 12.03 26.52 25.48
rl1889 25.74 17.98* 29.40 31.63 18.72 18.72 18.15 30.07 27.26
u2152 19.03 18.26 29.05 27.32 13.98* 13.98* 19.73 27.73 27.05
pr2392 21.26 15.24* 28.88 27.07 17.52 17.52 15.83 29.87 26.18
pcb3038 22.41 14.31* 25.57 24.62 16.47 16.47 15.44 25.81 27.12
fl3795 24.06 21.60 16.23 27.65 13.81* 13.81* 18.35 25.40 19.04
fnl4461 22.21 11.94* 29.49 27.94 15.42 15.42 13.07 29.14 27.67
rl5934 26.54 20.28* 30.27 31.89 21.24 21.24 21.71 29.66 29.58

Average 19.90 13.00 22.50 22.01 14.55 14.55 13.68 23.34 22.02

Table 6.14 Results of insertion heuristics with convex hull start

There is a slight improvement in the quality of tours with respect to the starting tour
(�n

2 	, �
n
3 	, �

n
4 	). Farthest and random insertion do not profit very much from the convex

hull start since they generate good globals tours themselves. For the other heuristics,
this starting variant is more important, but still leading to poor final tours.
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6.2.4 Stability of Insertion Heuristics

As in the case of the nearest neighbor heuristic we also investigated how strongly our
results depend on the choice of the starting tour.
To get an impression of this, we performed experiments for problems d198, lin318, and
pcb442. Each heuristic was started with all possible tours consisting of just two nodes.
Numbers displayed in Table 6.15 have the same meaning as in Table 6.9 for the nearest
neighbor methods.

Variant Minimum Maximum Average Span Deviation
d198

1 8.52 17.78 12.59 9.25 1.70
2 1.53 10.72 6.08 9.18 2.11
3 4.75 16.90 7.70 12.15 2.07
4 6.95 17.00 12.14 10.05 1.77
5 7.57 15.65 10.95 8.08 1.40
6 8.25 14.18 11.01 5.93 1.30
7 2.63 8.86 5.53 6.23 1.10
8 5.87 19.99 11.55 14.13 3.56
9 3.83 13.24 7.75 9.41 1.73

lin318

1 17.18 25.97 22.00 8.79 1.82
2 5.47 13.24 9.00 7.77 1.50
3 12.93 22.38 18.72 9.45 1.30
4 20.13 29.30 24.92 9.17 1.73
5 13.81 22.15 18.61 8.35 1.46
6 13.81 22.15 18.69 8.35 1.47
7 6.67 14.18 10.89 7.51 1.65
8 16.48 26.60 21.78 10.12 1.69
9 11.99 23.34 18.92 11.35 1.86

pcb442

1 13.89 23.17 18.50 9.29 1.85
2 9.05 18.03 13.00 8.97 1.49
3 14.93 23.99 18.45 9.06 1.10
4 21.78 33.13 27.50 11.36 1.99
5 12.73 21.38 17.76 8.66 1.47
6 12.73 21.55 17.80 8.82 1.54
7 10.22 17.71 14.00 7.48 1.44
8 20.13 32.93 25.30 12.80 2.44
9 14.22 23.64 18.56 9.41 1.52

Table 6.15 Sensitivity analysis for insertion heuristics

Farthest insertion and random insertion also performed best here. Stability of insertion
heuristics is much better than for the nearest neighbor variants. The table also shows
that performance and stability are highly problem dependent.

6.3 Heuristics Using Spanning Trees

The heuristics considered so far construct in their standard versions the tours “from
scratch” in the sense that they do not exploit any additional knowledge about the
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problem instance. In their fast variants they used the presence of a candidate subgraph
to guide the tour construction.
The two heuristics to be described next use a minimum spanning tree as a basis for
generating tours. They are particularly suited for problem instances obeying the triangle
inequality. In this case performance guarantees are possible. Nevertheless, in principle
they can also be applied to general instances.
Before describing these heuristics, consider the following observation. Suppose we are
given some Eulerian tour containing all nodes of the given problem instance. If the
triangle inequality is satisfied we can derive a Hamiltonian tour which is not longer
than the Eulerian tour.
Let vi0 , vi1 , . . . , vik

be the sequence in which the nodes (including repetitions) are visited
when traversing the Eulerian tour starting at vi0 and returning to vik

= vi0 . The
following procedure obtains a Hamiltonian tour.

procedure obtain tour

(1) Set Q = {vi0}, T = ∅, v = vi0 , and l = 1.

(2) As long as |Q| < n perform the following steps.

(2.1) If vil
�∈ Q then set Q = Q ∪ {vil

}, T = T ∪ {vvil
}, and v = vil

.

(2.2) Set l = l + 1.

(3) Set T = T ∪ {vvi0}.

(4) T is a Hamiltonian tour.

end of obtain tour

Every connection made in this procedure is either an edge of the Eulerian tour or is
a shortcut replacing a subpath of the Eulerian tour by an edge connecting its two
endnodes. This shortcut reduces the length of the tour if the triangle inequality is
satisfied. Hence the resulting Hamiltonian tour cannot be longer than the Eulerian
tour.
Both heuristics start with a minimum spanning tree and differ only in how a Eulerian
graph is generated from the tree.

procedure doubletree

(1) Compute a minimum spanning tree.

(2) Double all edges of the tree to obtain a Eulerian graph.

(3) Compute a Eulerian tour in this graph.

(4) Call obtain tour to get a Hamiltonian tour.

end of doubletree
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Note that we get multiple edges in Step (2) which we have not allowed in our definition
of graphs in Chapter 2. But it is clear that this does not create any problems. Our graph
data structure is able to handle multiple edges. The running time of the algorithm is
dominated by the time needed to obtain a minimum spanning tree. Therefore we have
time complexity Θ(n2) for the general TSP and Θ(n logn) for Euclidean problems.
If we compute the minimum spanning tree with Prim’s algorithm (Prim (1957)), we
could as well construct a Hamiltonian cycle along with the tree computation. We always
keep a cycle on the nodes already in the tree (starting with the loop consisting of only
one node) and insert the node into the current cycle which is added to the spanning
tree. If this node is inserted at the best possible position this algorithm is identical
to the nearest insertion heuristic. If it is inserted before or after its nearest neighbor
among the cycle nodes, then we obtain the nearest addition heuristic.
Christofides (1976) suggested a better method to make spanning trees Eulerian.
Namely, it is sufficient to add a perfect matching on the odd-degree nodes of the tree.
(A perfect matching of a node set W , |W | = 2k, is a set of k edges such that each
node of W is incident to exactly one of these edges.) After addition of all edges of this
perfect matching, all node degrees are even and hence the graph is Eulerian.
Figure 6.16 illustrates this idea. The solid edges form a spanning tree and the broken
edges form a perfect matching on the odd-degree nodes of the spanning tree.

Figure 6.16 Illustration of spanning tree heuristic

The cheapest way (with respect to edge weights) to obtain a Eulerian graph is to add
a minimum weight perfect matching.
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procedure christofides

(1) Compute a minimum spanning tree.

(2) Compute a minimum weight perfect matching on the odd-degree nodes of the
tree and add it to the tree to obtain a Eulerian graph.

(3) Compute a Eulerian tour in this graph.

(4) Call obtain tour to get a Hamiltonian tour.

end of christofides

This procedure takes considerably more time than the previous one. Computation of
a minimum weight perfect matching on k nodes can be performed in time O(k3) (Ed-

monds (1965)). Since a spanning tree may have O(n) odd-degree nodes, Christofides’
heuristic has cubic worst case time.
The sequence of the edges in the Eulerian tour is not unique. So one can try to find
better solutions by determining different Eulerian tours. We do not elaborate on this
since the gain to be expected is small.
Since a minimum spanning tree is not longer than a shortest Hamiltonian tour and since
the matching computed in Step (2) of Christofides’ heuristic has weight at most half of
the length of an optimal tour the following theorem holds.

Theorem 6.2 Let an instance of the TSP obeying the triangle inequality be given.

(i) The double tree heuristic produces a tour which is at most twice as long as an
optimal tour.

(ii) Christofides’ heuristic produces a tour which is at most 1.5 times as long as an
optimal tour.

There are classes of instances (Cornuejols & Nemhauser (1978)) where the Chri-
stofides heuristic yields a tour that is (3n− 1)/(2n) times longer than the optimal tour,
thus proving that the above bound is tight.
Because of the cubic worst case running time, we avoid the computation of minimum
weight matchings and simplify the heuristic as follows. First we double all edges to
leaves, and then we compute a farthest insertion tour on the remaining (and newly
introduced) odd-degree nodes. This tour induces two perfect matchings and we add the
shorter one to our subgraph which is then Eulerian. Time complexity of this procedure
is O(n2).
Table 6.17 compares the two heuristics with respect to CPU time and length of the
generated tours.
The double tree heuristic has a very poor performance. But, also the performance
of the Christofides variant is disappointing (coinciding with the findings in Johnson

(1990)), in particular when taking into account that it has the best worst case bound
among the heuristics. This is not due to our simplification, but it was observed in
many experiments that it does not pay off to compute exact minimum weight perfect
matchings in Step (2).
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Problem Double tree Christofides

d198 22.62 15.67*
lin318 41.32 18.42*
fl417 36.04 24.52*
pcb442 39.64 18.59*
u574 36.29 20.08*
p654 36.89 21.73*

rat783 36.75 21.34*
pr1002 37.29 20.67*
u1060 34.30 18.97*

pcb1173 42.29 18.77*
d1291 48.16 24.31*
rl1323 39.04 14.05*
fl1400 39.40 22.10*
u1432 45.78 24.05*
fl1577 42.75 13.27*
d1655 37.47 18.92*
vm1748 31.68 21.73*
rl1889 40.50 14.00*
u2152 48.11 22.73*
pr2392 37.22 18.70*
pcb3038 43.23 20.58*
fl3795 41.38 17.25*
fnl4461 39.47 21.92*
rl5934 48.18 15.17*

Average 39.41 19.48

Table 6.17 Comparison of tree heuristics
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Figure 6.18 CPU times for tree heuristics
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Finally we depict the CPU times for both heuristics in Figure 6.18. The time for the
Christofides heuristic is highly problem dependent, because the number of odd-degree
nodes in the minimum spanning tree is basically responsible for the running time.

6.4 Savings Methods and Greedy Algorithm

The savings heuristic was originally developed for vehicle routing problems (Clarke &

Wright (1964)). But it can also be applied to the traveling salesman problem, since the
TSP can be considered as a special vehicle routing problem involving only one vehicle.
This heuristic successively merges short tours to eventually obtain a Hamiltonian tour.

procedure savings

(1) Select a base node b ∈ V and set up the n− 1 tours (b, v), v ∈ V \ {b} consisting
of two nodes each.

(2) As long as more than one tour is left perform the following steps.

(2.1) For every pair of tours T1 and T2 compute the savings that is achieved if
the tours are merged by deleting in each tour an edge to the base node and
connecting the two open ends. More precisely, if ub and vb are edges in
different tours then these tours can be merged by eliminating ub and vb and
adding edge uv resulting in a savings of cub + cvb − cuv.

(2.2) Merge the two tours giving the largest savings.

end of savings

Figure 6.19 shows the basic principle of this heuristic. In each step, we have a collection
of subtours involving the base node b. A new edge {i, j} is introduced, which allows
elimination of the edges {i, b} and {j, b} and gives fewer subtours.
Regarding the implementation, the crucial point is the update of the minimal merge
possibilities. We can consider the system of tours as a system of paths whose endnodes
are thought of as being connected to the base node. A merge operation essentially
consists of connecting two ends of different paths. For finding the best merge possibility
we have to know for each end node the best possible connection to an end node of
another path (“best” with respect to the cost of merging the corresponding tours).
Suppose that in Step (2.2) the two paths [i1, i2] and [j1, j2] are merged by connecting
i2 to j1. The best merge now changes only for those end nodes whose former best
merge was the connection to i2 or to j1, and for the end node i1 (j1) if its former best
merge was to j2 (i1). Because we do not know how many nodes are affected, we can
only bound the necessary update time by O(n2) giving an overall heuristic with running
time O(n3).
For small problems we can achieve running time O(n2 logn), but we have to store the
matrix of all possible savings which requires O(n2) storage space. Further remarks on
the Clarke/Wright algorithm can be found in Potvin and Rousseau (1990).



6.4. Savings Methods and Greedy Algorithm 95
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b

Figure 6.19 Illustration of savings heuristic

We implemented a fast version of this heuristic making use of a candidate subgraph.
Now, merge operations are preferred that use a candidate edge for connecting two paths.
The update is simplified in that for a node whose best merge possibility changes only
candidate edges incident to that node are considered for connections. If during the
algorithm an endnode of a path becomes isolated, since none of its incident subgraph
edges is feasible anymore, we compute its best merge possibility by enumeration.
Instead of using the particular savings criterion given above, we could as well build
systems of paths of increasing length in a different way. E.g., we obtain another heuristic,
if we discard the base node, start with a system of n paths of length 0, and then check in
each step if the shortest edge not considered so far can be used to join two paths. This is
exactly the greedy approach of section 2.5 applied to the TSP. Let En = {e1, e2, . . . , em}
(where m = n(n− 1)/2) be the edges of Kn.

procedure TSP greedy

(1) Sort En such that c1 ≤ c2 ≤ . . . ,≤ cm.

(2) Set T = ∅.
(3) For i = 1, 2, . . . , m:

(3.1) If T ∪{ei} can be extended to a Hamiltonian tour (or is a Hamiltonian tour),
then set T = T ∪ {ei}.

end of TSP greedy
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Problem Standard Fast version Greedy

d198 8.72 6.96 6.69*
lin318 8.14* 8.34 14.13
fl417 11.63 13.74 9.48*
pcb442 10.05* 10.20 14.62
u574 11.62 12.36 10.20*
p654 10.64* 10.66 18.82

rat783 10.06 9.88* 10.04
pr1002 11.24 10.24* 12.96
u1060 11.79 11.69* 12.16

pcb1173 9.98* 10.53 13.66
d1291 7.77 7.55* 9.89
rl1323 7.48* 8.07 8.13
fl1400 12.12* 14.41 16.30
u1432 10.27* 10.41 15.04
fl1577 14.43 15.90 8.63*
d1655 10.97 12.39 10.49*
vm1748 13.66 13.68 10.49*
rl1889 13.65 13.32 10.82*
u2152 10.69 10.67* 12.10
pr2392 12.24* 12.40 13.42
pcb3038 10.73 10.51* 13.28
fl3795 16.52 16.25 14.60*
fnl4461 10.84 10.65* 11.09
rl5934 11.36 12.53 10.04*

Average 11.11 11.39 11.96

Table 6.20 Results for savings heuristics and greedy
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Figure 6.21 CPU times for savings heuristics and greedy
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For TSPs with triangle inequality, the greedy tour can be almost logn times as long as
an optimal tour (for details see Frieze (1979)).
The check in Step (3.1) can be accomplished in constant type with appropriate data
structures. Due to the sorting step, the running time is Ω(n2 logn) and Ω(n2) space is
needed. We have therefore not implemented the pure greedy algorithm, but have “ap-
proximated” it for test purposes as follows. We first compute the 100 nearest neighbor
subgraph and apply the greedy algorithm using only this edge set. This will usually
result in a system of paths which we then connect using the savings heuristic with some
randomly chosen base node.
We compared these three approaches with respect to obtained quality and running time.
The results are shown in Table 6.20 and the CPU times in Figure 6.21 (diagrams [S], [FS],
and [G] corresponding to the running times of the standard savings, the fast savings, and
the approximate greedy heuristic, respectively). We used �n

2 	 as the base node for each
problem. For the fast version we used the 10 nearest neighbor subgraph. Surprisingly,
the simplified heuristic yields solutions of the same quality at a considerably reduced
running time.
We have also conducted an experiment concerning the stability of this heuristic. Ta-
ble 6.22 displays for some problems the results that were obtained when applying the
fast savings heuristic for every possible base node.

Minimum Maximum Average Span Deviation
d198 2.97 14.26 6.54 11.29 2.25

lin318 4.99 13.65 8.46 8.66 1.53
pcb442 6.52 13.56 9.75 7.04 1.29
u1060 9.17 14.28 11.44 5.11 0.82

Table 6.22 Sensitivity analysis for savings heuristic

Comparing these results with the figures given in Tables 6.9 and 6.15 we see that the
savings heuristic gives much better results and is more stable than nearest neighbor or
insertion heuristics.

6.5 Comparison of Construction Heuristics

We close this chapter with a comparative assessment of all construction heuristics dis-
cussed in this chapter.
Absolute qualities of the heuristics have been given in previous tables. We now assess the
performance of the construction heuristics in a different way. Namely, we compare the
tour generated by a heuristic not with the best known lower bound for the respective
problem instance, but with the best solution found by any of the other heuristics.
Qualities are computed with respect to these best solutions and are listed in Table 6.23.
This way we classify each heuristic relative to the other construction heuristics. In
addition we give the number of best solutions found by every heuristic.
The clear winners with respect to absolute quality as well as with respect to relative
quality are the savings heuristics, and because of the considerably less running time we
declare the fast implementation of the savings heuristics to be the best construction
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heuristic. For this heuristic we can expect an average quality of about 11 − 12%.
Moreover due to Table 6.23 we can expect that, on the average, no other construction
heuristic can produce a solution that is more than 1 − 2% better than the savings
solution.

Heuristic No. of best Relative
solutions quality

Savings (standard) 5 1.96
Savings (fast) 6 2.22
Savings (approx. greedy) 5 2.75
Farthest insertion 1 (convhull) 3 3.64
Random insertion (convhull) 3 4.26
Farthest insertion 1 1 4.55
Random insertion – 5.03
Cheapest insertion (convhull) – 5.08
Fast cheapest insertion (convhull) – 5.08
Fast cheapest insertion – 7.53
Cheapest insertion 1 7.54
Christofides – 9.67
Nearest insertion (convhull) – 9.99
Nearest insertion – 10.98
Nearest neigbor variant 4 – 11.55
Farthest insertion 3 (convhull) – 11.83
Minimum sum insertion (convhull) – 11.88
Farthest insertion 2 – 12.02
Minimum sum insertion – 12.07
Farthest insertion 2 (convhull) – 12.33
Farthest insertion (fast) – 12.81
Maximum sum insertion (convhull) – 13.07
Random insertion (fast) – 13.18
Maximum sum insertion – 14.14
Maximum sum insertion (fast) – 14.31
Farthest insertion 2 (fast) – 14.37
Farthest insertion 3 (fast) – 15.66
Farthest insertion 3 – 16.03
Nearest neigbor variant 2 – 16.20
Nearest neigbor variant 3 – 16.61
Standard nearest neigbor – 16.83
Nearest neigbor variant 5 – 17.77
Nearest insertion (fast) – 18.93
Minimum sum insertion (fast) – 19.60
Cheapest insertion (fast) – 23.39
Fast cheapest insertion (fast) – 23.94
Double tree – 27.90

Table 6.23 Comparison of construction heuristics

Finally, we give a diagram of the CPU time of the fast savings heuristic for problem
instances up to 18512 nodes. To show that the preprocessing times for computing the
Delaunay graph and the 10 nearest neighbor graph are small we give the CPU times
with (diagram [2]) and without (diagram [1]) preprocessing time. Figure 6.24 shows
that preprocessing time is negligible.
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Figure 6.24 CPU time for fast savings heuristic

Increasing effort and CPU time with respect to the fast savings heuristic do not pay
off. If one has to employ substantially faster heuristics then one should either use the
Christofides heuristic or the variant of the nearest neighbor heuristic where forgotten
nodes are inserted.
If still less CPU time is required one has to be satisfied with the results provided by the
double tree heuristic. All other heuristics do not seem to have particular advantages.
So, if one considers pure construction of tours they can be safely disregarded. The
situation is slightly different when using improvement heuristics to modify tours. This
will be addressed in the next chapter.



Chapter 7

Improving Solutions

The tours computed by the construction heuristics in the previous chapter were only of
moderate quality. Though these heuristics might be useful for some applications, they
are not satisfactory in general.
In this chapter we address the question of how to improve these tours. In general,
improvement heuristics are characterized by a certain type of basic move to alter
the current tour. We will proceed from fairly simple such moves to more complicated
ways of modifying a tour.
Throughout this chapter, running times will be given only for performing the improve-
ment heuristics. Times for computing starting solutions or for setting up candidate
subgraphs are not included. They can be recalled from previous chapters.

7.1 Node and Edge Insertion
It is clear that we have to restrict ourselves to fairly simple modifications of the current
tour if we do not want to spend too much CPU time.
We start with two straightforward modifications of the current tour which do not involve
much work for updating the tours after having performed these modifications.
The first alteration of the tour is called node insertion. It consists of removing a node
from the current tour and reinserting it at the best possible location. This operation is
visualized in the upper part of Figure 7.1. Having found an improving node insertion
move, the tour can be updated in constant time. It takes time O(n2) to check if tour
improvement by node insertion is possible since we have to examine for every node every
possible insertion point.
The heuristic based on this operation is the following.

procedure node insertion

(1) Let T be the current tour.

(2) Perform the following until failure is obtained.

(2.1) For every node i = 1, 2, . . . , n:
Examine all possibilities to insert i at a different position in the tour. If it is
possible to decrease the tour length this way, then choose the such best node
insertion move and update T .

(2.2) If no improving move could be found, then declare failure.

end of node insertion

G. Reinelt: The Traveling Salesman, LNCS 840, pp. 100-132, 1994.
 Springer-Verlag Berlin Heidelberg 1994
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Running time of the procedure node insertion cannot be polynomially bounded in the
worst case since it depends on the reductions achieved by the tour modifications. In the
worst case we may have the situation that every improvement decreases the tour length
by only one unit and hence the running time depends on the tour length (and not on
the logarithm of the length).

Figure 7.1 Node and edge insertion moves

A similar operation is edge insertion. Here, instead of a single node an edge is removed
from the tour and reinserted at the best possible position. The operation is depicted in
the lower part of Figure 7.1. Note that at every insertion point there are two possibilities
for connecting the eliminated edge (obtained by switching its endnodes).
The corresponding heuristic is implemented in the same way as the node insertion
heuristic.

procedure edge insertion

(1) Let T be the current tour.

(2) Perform the following until failure is obtained.

(2.1) For every node i = 1, 2, . . . , n:
Examine all possibilities to insert the edge between i and its successor at a
different position in the tour. If it is possible to decrease the tour length this
way choose the best such edge insertion move and update T .

(2.2) If no improving move could be found, then declare failure.

end of edge insertion

Concerning the running time the same remarks as for node insertion apply. In particular,
it also takes time O(n2) to check if an improving edge insertion move exists at all because
for every tour edge every possible insertion point has to be checked.
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To get an impression of the usefulness of these two heuristics we applied them on three
types of starting tours:

1) a random tour,

2) a nearest neighbor tour,

3) and a savings tour,

reflecting the situation that no, little or considerable effort is spent for constructing
the first tour. The latter two tour construction methods were executed in fast versions
taking the 10 nearest neighbor subgraph augmented by the edges of the Delaunay graph
as candidate set. Therefore we have no guarantee that the qualities are better than those
documented in Tables 6.7 and 6.20 (which were obtained using the 10 nearest neighbor
candidate set only).

Random Nearest neighbor Savings

Problem Node ins. Edge ins. Node ins. Edge ins. Node ins. Edge ins.

d198 65.70 38.05 16.98 19.49 5.11* 5.87
lin318 70.90 43.23 12.34 13.14 7.29 6.50*
fl417 83.34 74.99 19.96 22.53 2.47* 5.86
pcb442 30.25 33.09 8.30 8.37 4.54* 7.93
u574 39.51 45.72 14.23 12.15 8.02* 9.17
p654 177.40 130.44 32.68 30.33 11.77* 13.11

rat783 51.18 53.46 12.97 15.31 6.36* 8.09
pr1002 89.53 65.00 13.62 15.80 6.93* 8.49
u1060 76.39 60.49 17.59 17.17 6.66* 7.97

pcb1173 54.19 52.66 15.00 14.76 5.34* 8.38
d1291 71.19 73.08 16.24 18.03 5.07* 6.38
rl1323 89.13 78.66 15.00 18.17 5.26* 7.27
fl1400 232.27 140.03 24.77 23.58 12.44 9.36*
u1432 63.11 53.58 13.97 14.80 5.87* 7.97
fl1577 187.61 135.10 21.20* 21.29 21.61 22.32
d1655 84.74 77.50 11.42 11.80 9.30* 11.82
vm1748 73.22 77.48 13.90 14.93 7.75* 9.37
rl1889 86.22 80.93 16.38 17.78 7.19* 8.25
u2152 74.82 90.18 15.54 16.48 7.24* 9.53
pr2392 88.33 81.35 13.25 15.26 7.53* 9.54

pcb3038 56.39 70.74 13.08 14.20 6.10* 7.92
fl3795 318.65 202.75 29.49 29.34 21.12* 22.63

fnl4461 72.73 81.14 12.27 14.34 6.65* 8.75
rl5934 95.56 104.37 17.89 19.08 9.20* 11.30

Average 97.18 81.00 16.59 17.42 8.20 9.74

Table 7.2 Results of node and edge insertion heuristics

Table 7.2 displays the results (best solutions for each problem are marked by a ‘∗’).
The performance of these simple heuristics turns out to be rather poor, exhibiting their
limited ability to modify a tour. In particular, with a random start, the heuristics
terminate with solutions far away from an optimal solution. On the average, we obtain
tours twice as long as a shortest tour. Nearest neighbor tours can be shortened by about
10% and savings tours by only 2–3%.
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Figure 7.3 CPU times for node and edge insertion

We give the CPU times in Figure 7.3, where diagrams [1] through [6] correspond to
the six columns of Table 7.2. E.g., it took 165 minutes to perform the edge insertion
heuristic on a random tour for problem rl5934. Starting with a reasonable tour reduces
CPU time drastically, since search for an improving move terminates earlier.
But, since implementation of node or edge insertion is not difficult (because of the easy
tour update) it is worthwhile to think about speedup possibilities.
To reduce the CPU time one has to limit the number of moves that are checked. To
this end we make use of a candidate subgraph. In Step (2.1) of the heuristics, only
those moves are considered now that introduce a candidate edge into the tour. In the
experiments that are documented in Table 7.4 we used the 10 nearest neighbor subgraph
augmented by the edges of the Delaunay graph as the candidate set.
The quality of the tours found by this restricted search has now decreased. There is a
substantial loss in quality for random starts, but only a slight decrease for the savings
start. In particular, the moderate performance for random starting tours shows that
the limitation of the possible moves by the candidate set is restrictive in this case. Note
that bad tours can still be delivered after having performed this simple improvement.
For example, we can obtain tours that are four or even five times longer than an optimal
tour.
By using candidate sets, CPU time is decreased by a large factor. For example, it now
takes 16 seconds to perform the limited edge insertion on a random tour for problem
rl5934. Our restriction allows more node insertion than edge insertion moves, therefore
now the CPU times for the node insertion versions are larger than for the respective
edge insertions. CPU times are depicted in Figure 7.5.
To visualize that these simple heuristics usually give unsatisfactory tours we show in
Figure 7.6 a tour that was obtained from a random tour for problem rd100 by performing
node as well as edge insertions as long as improvements were possible. This tour is 16.5%
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Random Nearest neighbor Savings

Problem Node ins. Edge ins. Node ins. Edge ins. Node ins. Edge ins.

d198 49.54 15.09 16.03 25.28 5.11* 5.84
lin318 90.32 56.92 12.24 13.61 7.29 6.97*
fl417 174.67 95.46 14.30 17.07 2.39* 5.98
pcb442 33.52 33.24 8.07 9.99 4.54* 7.82
u574 75.77 63.41 13.60 17.44 7.90* 9.31
p654 168.84 136.80 32.55 37.69 13.05 12.64*

rat783 83.17 58.15 12.82 16.45 6.36* 8.02
pr1002 90.76 65.30 16.94 19.95 6.92* 8.50
u1060 82.48 88.38 16.94 21.96 6.66* 7.91

pcb1173 63.20 67.61 14.38 20.97 5.34* 8.41
d1291 90.03 130.10 17.17 20.52 5.10* 6.85
rl1323 103.31 115.98 16.20 19.35 5.29* 7.28
fl1400 384.68 250.66 25.27 27.12 12.17* 12.87
u1432 65.17 77.41 14.17 18.52 5.83* 7.75
fl1577 228.26 238.98 22.42 24.41 21.85* 22.82
d1655 115.39 114.82 10.99 13.54 9.31* 11.94
vm1748 87.59 101.15 15.24 16.33 7.86* 9.68
rl1889 121.49 138.38 16.38 19.70 7.19* 8.68
u2152 93.97 114.03 15.81 18.34 7.25* 9.46
pr2392 97.34 91.24 13.94 17.23 7.53* 9.68

pcb3038 75.01 91.15 13.11 16.98 6.12* 8.04
fl3795 421.10 321.70 30.22 34.29 22.07* 26.11

fnl4461 86.28 115.48 12.47 16.52 6.65* 8.75
rl5934 190.74 207.06 19.87 22.24 9.21* 11.77

Average 128.03 116.19 16.71 20.23 8.29 10.13

Table 7.4 Results of fast node and edge insertion heuristics

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

Figure 7.5 CPU times for fast node and edge insertion
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Figure 7.6 A tour found by node and edge insertion

above optimum and verifies that simple moves are not at all sufficient to turn a random
tour into an acceptable tour.
Furthermore, it can be observed that these heuristics very slowly approach their local
optimum. It is usually necessary to check a large number of useless moves before an
improving move is found. These simple insertion methods (in particular node insertion)
are suited, however, for finding further slight improvements of reasonable tours.
There are additional techniques to speed up the search for improving moves. We will
consider these techniques in the following sections. Their application to these simple
heuristics does not seem to be worthwhile.

7.2 2-Opt Exchange

The next tour improvement approach is motivated by the following observation. Con-
sider the Euclidean case. If a tour crosses itself it can be easily shortened. Namely,
erase two edges that cross and reconnect the resulting two paths by edges that do not
cross (this is always possible). The new tour is shorter than the old one.
A 2-opt move in general consists of eliminating two edges and reconnecting the two
resulting paths in a different way to obtain a new tour. Note that there is only one way
to reconnect the paths (if we do not use the eliminated edges again). For improving a
tour this way, the two eliminated edges do not necessarily have to cross (even in the
Euclidean case). Figure 7.7 displays a 2-opt move involving non-crossing edges.
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Figure 7.7 A 2-opt move

We implemented the 2-opt improvement heuristic in the following way.

procedure 2-opt

(1) Let T be the current tour.

(2) Perform the following until failure is obtained.

(2.1) For every node i = 1, 2, . . . , n:
Examine all 2-opt moves involving the edge between i and its successor in the
tour. If it is possible to decrease the tour length this way, then choose the
best such 2-opt move and update T .

(2.2) If no improving move could be found, then declare failure.

end of 2-opt

Again, since we have assumed integral data and since we perform only improving moves,
the procedure runs in finite time. But, in the worst case, it can only be guaranteed that
an improving move decreases the tour length by at least one unit. No polynomial worst
case bound for the number of moves to reach a local minimum can be given. Checking
whether an improving 2-opt move exists takes time O(n2) because we have to consider
all pairs of tour edges.
We performed this 2-opt heuristic starting with the same three tours as in the case of
node and edge insertion, namely
1) a randomly generated tour,
2) a nearest neighbor tour,
3) and a tour found by the savings heuristic.

Table 7.8 shows the results. The 2-opt procedure performs much better than the inser-
tion heuristics. In particular, random starting tours can now, on the average, be turned
into tours of about 15% above the optimum. An interesting observation is that per-
formance with nearest neighbor or savings starts is similar. Qualities differ not much,
yielding tours of about 9% above optimality on average. For a particular problem in-
stance, however, results can be rather different and none of these two starting tours
supersedes the other one.
For random problem instances, Johnson (1990) and Bentley (1992) report excess
of 2-optimal tours of 6.5%, resp. 8.7%, over an approximation of the Held-Karp lower
bound.
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Problem Random Nearest N. Savings

d198 8.04 3.18* 5.29
lin318 13.05 5.94* 8.43
fl417 12.25 7.25 5.38*
pcb442 12.64 7.82 7.70*
u574 14.24 7.02* 8.82
p654 12.40 12.37 8.66*

rat783 12.31 8.39 8.03*
pr1002 14.91 8.48* 9.07
u1060 13.05 9.11 8.94*

pcb1173 12.85 9.42 7.78*
d1291 17.72 9.62 6.22*
rl1323 15.89 7.88 6.56*
fl1400 12.50 9.79 8.85*
u1432 14.24 10.07 8.83*
fl1577 21.42 8.15* 12.59
d1655 16.42 8.29* 12.36
vm1748 12.74 8.58* 9.20
rl1889 14.22 8.64 8.55*
u2152 19.89 10.02 9.64*
pr2392 16.20 8.27* 9.57
pcb3038 16.29 8.34* 8.36
fl3795 13.52 8.57* 11.37
fnl4461 14.09 7.77* 8.90
rl5934 21.07 9.19* 10.98

Average 14.67 8.42 8.75

Table 7.8 Results of standard 2-opt for different starting tours
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Figure 7.9 CPU times for standard 2-opt heuristic
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The relatively good results for the nearest neighbor start are due to the fact that nearest
neighbor tours are locally quite reasonable. The few very “bad” edges are easily elim-
inated using the 2-opt heuristic. The random start exhibits that also 2-opt moves are
not powerful enough to give acceptable tours when started without additional knowl-
edge (as it is provided by the other heuristics). CPU times are displayed in Figure 7.9,
diagrams [1] to [3] corresponding to the different choices 1) to 3) of starting tours. Run-
ning times are considerable, about equal for the nearest neighbor and savings starts,
and substantially higher for the random start. This is due to the fact that more moves
are examined and performed to turn a random tour into a locally optimal tour.
We discuss some ideas for improving the running time of the 2-opt heuristic.
Recall section 2.4.5 explaining the necessity of having an imposed direction on the tour.
Having performed a move, the direction has to be updated for one of the two segments
of the tour. One could save CPU time if the direction on the longer path is maintained
and if only the shorter path is reversed. Therefore, a first reasonable improvement is
to incorporate this shorter path update. It can be accomplished by using an additional
array giving the rank of the nodes in the current tour (an arbitrary node receives
rank 1, its successor gets rank 2, etc.). Having initialized these ranks we can determine
in constant time which of the two parts is shorter, and the ranks have to be updated
only for the nodes in the shorter part.
A second idea is to avoid the unguided search for improving moves. A standard approach
is to use a fixed enumeration scheme, e.g., always scanning the nodes in Step (2.1) of
the heuristic in the sequence 1, 2, . . . , n and checking if a move containing the edge from
node i to its successor in the current tour can participate in an allowed move (taking
restrictions based on the candidate set into account). But usually, one observes that
in the neighborhood of a successful 2-opt move more improving moves can be found.
The fixed enumeration order cannot react on this. We have therefore implemented a
dynamic order in the following sense. If an improving move has been performed we
consider the nodes incident with the four edges participating in the move with priority
for finding further moves.
Figure 7.10 compares implementations of these two ideas with the standard implementa-
tion. In every case, a random starting tour was used. It turned out that the shorter path
update (diagram [2]) did not gain very much CPU time with respect to the standard
(diagram [1]). This is due to the fact that with random starts the number of examined
moves is large compared to the number of improving moves found. The situation is
different for the dynamic enumeration scheme. It is, in fact, suited for abbreviating the
search for improving moves, thus reducing CPU time significantly (diagram [3]). For
example, for problem rl5934 only 85,762,731 instead of 215,811,748 moves in the fixed
enumeration scheme were considered.
Since the 2-opt heuristic is very sensitive with respect to the sequence in which moves
are performed, one can obtain rather different results for the two versions even when
starting with the same tour. However, with respect to quality, both variants perform
equally well on average.
In the subsequent experiments we have therefore used the dynamic enumeration scheme
as well as the shorter path update (which is more effective if candidate subgraphs are
employed).
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Figure 7.10 Influence of shorter path update and dynamic enumeration

Still an enormous amount of CPU time is needed in this implementation. This is due
to the fact that most of the time is spent in examining useless 2-opt moves. The only
possibility to reduce the running time is to restrict the number of 2-opt moves that are
checked. Here again, a candidate subgraph comes into play. We compute a reasonable
candidate subgraph and reduce the number of 2-opt moves by considering only moves
that introduce at least one candidate edge into the current tour. Of course, we do this
again at the risk of missing possible improvements.
In the following experiment, we used the same starting tours as before, but this time we
used the 10 nearest neighbor subgraph augmented by the Delaunay graph to reduce the
number of steps of the 2-opt heuristic. The chosen candidate subgraph is also applied
for speeding up the nearest neighbor and the savings heuristic.
Table 7.11 shows the length of the tours obtained and Figure 7.12 displays the CPU
time (as usual not including the candidate set computations).
Quality is slightly worse than before. For particular problems, as e.g., problems p654
or fl1577, however, limited search can lead to substantial longer tours. On average, for
the reasonable starting tours, quality is reduced from about 9% to about 10%.
Before we decided to choose this candidate subgraph we have also conducted experi-
ments with the pure 10 nearest neighbor subgraph. In this case we obtained some very
bad results with the following explanation. There are some problem instances consisting
of clusters of points which are quite far apart from each other. Since the 10 nearest
neighbor subgraph contains no edges connecting these clusters, the restricted heuristic
often fails to recover from bad configurations. Several long edges cannot be eliminated.
To come up with better solutions, we have to provide connections between the clusters.
Therefore we added the edges of the Delaunay graph to the candidate set.
CPU times could be drastically reduced compared to the complete enumeration of all
possible moves.
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Problem Random Nearest N. Savings

d198 8.94 6.81 5.29*
lin318 13.21 9.67 8.00*
fl417 12.44 14.54 5.55*
pcb442 8.79 10.34 7.83*
u574 15.07 8.17* 8.79
p654 11.24* 21.82 23.07

rat783 13.82 9.01 8.03*
pr1002 13.02 7.39* 8.98
u1060 17.93 9.94 9.00*

pcb1173 12.75 10.44 7.97*
d1291 18.81 10.12 6.45*
rl1323 18.69 9.08 6.48*
fl1400 23.40 12.84 9.86*
u1432 14.96 10.18 8.83*
fl1577 23.91 15.77* 19.94
d1655 18.90 8.25* 12.61
vm1748 12.68 8.92* 9.43
rl1889 17.54 8.98 8.55*
u2152 18.65 10.72 9.56*
pr2392 15.08 9.29* 9.74
pcb3038 13.96 8.49 8.47*
fl3795 52.35 11.69* 18.85
fnl4461 12.64 7.70* 8.95
rl5934 19.65 11.17 10.88*

Average 17.02 10.47 10.05

Table 7.11 Results of fast 2-opt for different starting tours
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Figure 7.12 CPU times for fast 2-opt heuristic
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The comparison shows that random starts are not advisable for the 2-opt heuristic and
that restricted search to speed up the computations is necessary. Because of the limited
power of 2-opt, it is recommended to start out with reasonable tours.
We will briefly address a further idea that can be exploited to speed up the 2-opt
exchange heuristic. In section 2.4 we have discussed how a suitable data structure can
be employed to speed up tour updates arising from 2-opt moves. We can use this data
structure to avoid updating the direction of one part of the tour after each 2-opt move.
Rather, we collect a sequence of improving 2-opt moves before updating the tour. Recall
that it takes expected O(n) time to update a tour according to a 2-opt move (even if
only the direction on the shorter of the two paths is altered).
In experiments we used the interval data structure to store up to 50 2-opt moves before
really updating the tour. It turned out, that (at least in our implementation) signifcant
reduction of CPU time was only observed for very large problems, with sizes above
10,000 nodes, say.
In our further 2-opt experiments we have therefore not employed this idea. The interval
technique, however, turned out to be very useful for speeding up the Lin-Kernighan
heuristic to be discussed in section 7.5.
We have run some experiments to get an impression about the stability of the 2-opt
heuristic. For each of the six selected problems we used a random starting tour in the
first experiment and a nearest neighbor starting tour in the second one. The candidate
subgraph consisted of the 10 nearest neighbor subgraph augmented by the Delaunay
graph. We applied the dynamic enumeration strategy and had a run for each of the
starting lists Li = (i, i+1, . . . , n, 1, 2, . . . , i−1). Results are documented in Table 7.13.

Variant Minimum Maximum Average Span Deviation
rd100

1 3.20 21.01 10.84 17.81 3.21
2 4.74 14.25 9.90 9.51 1.82

d198

1 2.38 19.03 9.91 16.65 2.92
2 5.86 8.64 6.48 2.78 0.54

lin318

1 5.85 21.70 11.67 15.85 2.56
2 7.92 10.97 9.37 3.05 0.87

fl417

1 8.49 122.66 47.38 114.17 17.47
2 3.58 7.74 5.70 4.16 1.18

pcb442

1 8.19 18.90 13.05 10.71 1.91
2 5.18 9.69 6.43 4.51 0.76

u574

1 7.58 21.67 13.16 14.09 2.04
2 5.77 9.63 7.35 3.86 1.06

Table 7.13 Stability analysis of the 2-opt heuristic

Table 7.13 shows that there can be substantial differences if the nodes are considered in a
different sequence. In particular, for the random start, very long tours can be obtained.
With nearest neighbor starts we obtain a reasonable average performance with little
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deviation. This suggests to run several 2-opt improvements on a particular problem.
Due to the small deviation, one can then expect to achieve average performance.
The results displayed so far and further experiments that are not documented here show
that the 2-opt exchange heuristic outperforms the node and edge insertion heuristics
by far. They cannot compete at all. On the other hand, node insertion can help
to improve tours and only a few special node insertion moves are also 2-opt moves.
Since node insertion is not difficult to implement, we considered in a final experiment a
combination of 2-opt and node insertion.
In addition, though not of practical relevance, we first performed the combined heuristic
enumerating all possible moves.

Problem Random Nearest N. Savings

d198 4.39 2.26* 4.25
lin318 10.30 5.62* 5.77
fl417 8.36 3.99 1.96*
pcb442 10.89 3.51* 3.93
u574 7.76 5.74* 7.14
p654 3.85* 6.69 7.82

rat783 8.28 5.76* 6.27
pr1002 7.83 5.17* 6.66
u1060 7.48 6.34* 6.58

pcb1173 9.86 7.35 5.30*
d1291 13.61 6.06 4.88*
rl1323 11.87 4.89* 5.11
fl1400 6.94 5.39* 7.55
u1432 9.06 6.47 5.75*
fl1577 12.05 9.16 7.25*
d1655 12.24 6.26* 8.50
vm1748 8.18 5.71* 6.86
rl1889 11.42 6.75 6.71*
u2152 15.51 5.56* 6.95
pr2392 9.69 6.36* 7.41
pcb3038 8.76 5.99 5.60*
fl3795 10.21 6.30 5.54*
fnl4461 7.59 5.02* 6.57
rl5934 14.69 6.86* 8.69

Average 9.62 5.80 6.21

Table 7.14 Results of combined 2-opt/node insertion

Results on Table 7.14 display a substantial increase in quality compared to the pure
2-opt heuristic (cf. Table 7.8). Quality improves from 15% to 10% for random starts
and from 9% to 6% for the other two variants.
For random instances, Bentley (1992) reports performance of 6.7% above an approx-
imation of the Held-Karp bound for a combination of 2-opt and node insertion.
CPU times (given in Figure 7.15) are higher by a factor of about two. Again, complete
search is usually not of practical relevance and we incorporate the candidate subgraph
consisting of the 10 nearest neighbor graph and the Delaunay graph. Only those 2-opt
or node insertion moves that introduce at least one edge of this graph into the tour are
considered.
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Figure 7.15 CPU times for combined 2-opt/node insertion

Problem Random Nearest N. Savings

d198 3.42* 9.06 4.73
lin318 5.93 5.74* 6.01
fl417 10.44 8.50 2.43*
pcb442 8.80 3.95 3.93*
u574 7.19 7.12 7.08*
p654 37.81 27.47 6.98*

rat783 8.24 7.44 6.33*
pr1002 11.53 7.65 6.31*
u1060 11.75 8.14 6.31*

pcb1173 9.71 7.17 5.20*
d1291 17.82 8.69 4.95*
rl1323 16.30 8.85 5.23*
fl1400 14.80 13.55 8.69*
u1432 9.55 6.81 5.77*
fl1577 40.27 18.55* 19.10
d1655 12.54 7.91 8.58*
vm1748 9.28 5.88* 6.98
rl1889 15.33 7.22 7.10*
u2152 17.82 9.00 7.14*
pr2392 11.97 7.90 7.28*
pcb3038 8.71 5.92 5.96*
fl3795 54.15 15.63* 21.38
fnl4461 8.30 4.94* 6.56
rl5934 18.05 10.25 8.75*

Average 15.40 9.31 7.45

Table 7.16 Results of fast combined 2-opt/node insertion
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Results and CPU times are documented in Table 7.16 and Figure 7.17, respectively.
Due to limited possibilities to alter the current tour we have some loss in quality. It is
more important now to start with reasonable tours, and, on average, the savings start
is preferrable to the nearest neighbor start.
Looking at CPU times, we see that a random start causes much more time to reach
a local optimum and is therefore, besides the inferior quality, not advisable. For the
other starts, CPU time is moderate. For practical purposes, the fast combination of
node insertion and 2-opt yields acceptable results.
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Figure 7.17 CPU times for fast combined 2-opt/node insertion

At the end of this section we display a tour for problem rd100 that admits no more
2-opt or node insertion moves. This tour has length 8647, and is therefore 9.3% above
the optimal value 7910.
There are still further possibilities to speed up the 2-opt heuristic. In our enumeration
scheme, the nodes of the problem are stored in a list (initialized according to the se-
quence of the nodes in the tour). In every iteration step the first node is taken from the
list, scanned as described above, and reinserted at the end of the list. If i is the current
node to be scanned we examine if we can perform an improving 2-opt move which in-
troduces a candidate edge having i as one endnode. If an improving move is found then
all four nodes involved in that move are stored at the beginning of the node list (and
therefore reconsidered with priority). The crucial point for speeding up computations
further is to reduce the number of distance function evaluations which accounts for a
large portion of the running time. A thorough discussion of this issue can be found in
Bentley (1992).
One idea is to avoid reevaluation of the same moves. Namely, when considering a
candidate edge {i, j} for taking part in a 2-opt move, we check if i and j have the same
neighbors in the tour as when {i, j} was considered previously. In that case no 2-opt
move involving {i, j} can be successful.
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Figure 7.18 A tour optimal with respect to 2-opt and node insertion

In addition, one can perform a limited range search in the following sense. We only
consider {i, j} if this edge is not longer than the edges from i to both of its neighbors
in the tour. The heuristic is run until the search for an improving 2-opt node fails for
every node.
A further general observation is the following. Usually, decrease in the objective function
value is considerable in the first steps of the heuristic while it is “tailing off” later. In
particular, it takes a final complete round through all allowed move possibilities to verify
that no further improving move is possible. Therefore, if one stops the heuristics early
(e.g., if only a very slow decrease is observed over some period) not too much quality is
lost. In our experiments, appropriate limits for the number of examined nodes were 3n
or 4n.

7.3 Crossing Elimination

In the Euclidean case we have seen that every pair of crossing tour edges gives rise to
an improvement possibility. While, in general, it takes time O(n2) to check all pairs of
edges we can take advantage of the Euclidean case to identify tour crossings faster.
We apply methods from computational geometry for finding intersections of line seg-
ments. The algorithm we are going to outline uses the so-called scan line principle
or plane sweep approach. We only describe the algorithm for testing if there exists a
crossing at all (for details see Ottmann & Widmayer (1990)).
The algorithm uses a basic observation. Let A and B be two line segments (tour edges)
in the plane and let x be a horizontal coordinate. We say that A is above B with respect
to x if the vertical line with horizontal coordinate x intersects both A and B and if the
intersection point with A lies above the intersection point with B. For any fixed x this
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definition induces an ordering of the segments intersected by the vertical line through
(x, 0). It is easy to see that if two segments intersect then there is an x such that the
two segments are neighbors in the induced ordering.
A further observation is that only those x-values have to be considered which are hori-
zontal coordinates of endpoints of line segments.
The scan line approach can be visualized as moving a vertical scan line across the plane
from left to right stopping each time an endpoint of a line segment is hit. At such points
we look for pairs of intersecting segments. The algorithm can be implemented to run in
time O(n logn). Hence we can check in time O(n logn) whether a tour for a Euclidean
TSP instance contains crossing edges.
With a little more implementational effort we can also identify all crossing pairs quickly.
Basically, this can be accomplished by halting the scan line also at every intersection
point computed during the algorithm. Identification of all crossing pairs of segments
can then be performed in time O(n logn+k) where k is the number of such pairs. Note
that in the worst case we have k = O(n2).
Though the approach seems to be appealing, already a first experiment shows that it
is not worthwhile to implement this algorithm as a replacement for the 2-opt heuristic.
Figure 7.19 shows a tour for problem kroB100 which contains no crossings, but still is
82.9% above optimum.

Figure 7.19 A noncrossing tour for kroB100

Nevertheless, we can use this special crossing elimination for Euclidean TSPs as a pre-
processing step before using the 2-opt or another local improvement heuristic. We have
not elaborated on this.
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7.4 The 3-Opt Heuristic and Variants

A possible improvement of the 2-opt heuristic is obvious. To have more flexibility for
modifying the current tour we could break the tour into three parts instead of only two
and combine the resulting paths in the best possible way. Such a modification is called
3-opt move. The number of combinations to remove three edges of the tour is

(
n
3

)
and

there are eight ways to connect three paths to form a tour (if each of them contains at
least one edge).
Note that node insertion, edge insertion, and 2-opt exchange are special 3-opt moves.
Node (edge) insertion is obtained if one path of the 3-opt move consists of just one
node (edge). A 2-opt move is a 3-opt move where one eliminated edge is used again for
reconnecting the paths.
Out of the eight 3-opt moves only four are real 3-opt moves introducing new tour
modifications not captured by node/edge insertion or 2-opt moves.
To examine all 3-opt moves whether they can contribute to decrease the tour length
takes time O(n3). Tour update after a 3-opt move is also more complicated than in the
2-opt case. The direction of the tour may change on all but the longest of the three
involved paths.
Therefore, we decided to not consider a full 3-opt at all, but to limit in advance the
number of 3-opt moves that are considered. To give an impression of the time needed
for a full 3-opt: it takes about 3 hours to perform the 3-opt heuristic for problem p654
starting with a nearest neighbor tour.
The implemented procedure is the following.

procedure 3-opt

(1) Let T be the current tour.

(2) For every node i ∈ V compute a set of nodes N(i) (possible choices are discussed
below).

(3) Perform the following until failure is obtained.

(3.1) For every node i = 1, 2, . . . , n:
Examine all possibilities to perform a 3-opt move which eliminates three edges
having each at least one endnode in N(i). If it is possible to decrease the tour
length this way, then choose the best such 3-opt move and update T .

(3.2) If no improving move could be found, then declare failure.

end of 3-opt

If we limit the cardinality ofN(i) by some fixed constant independent of n, then checking
in Step (3.2) if an improving 3-opt move exists at all takes time O(n) (but with a rather
large constant hidden by the O-notation).
We implemented the 3-opt routine by using a dynamic enumeration order and maintain-
ing the direction of the tour on the longest path. The interval data structure was not
used in the experiments. A further speed-up can be obtained for very large problems if
it is employed.
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We considered the following three different candidate sets:

1) the 10 nearest neighbor subgraph,

2) the 10 nearest neighbor subgraph augmented by the Delaunay graph,

3) a subgraph generated by the candidate heuristic discussed in section 5.3 with
parameters w = 15 and k = 10.

For a given candidate subgraph GC we used the neighborhood set N(i) consisting of all
neighbors of i in GC . To limit CPU time (which is cubic in the cardinality of N(i) for
every node i in Step (3.1)) the number of nodes in each set N(i) was bounded by 50.
We applied the restricted 3-opt heuristic to the four starting tours:

1) random tour,

2) nearest neighbor tour,

3) savings tour,

4) Christofides tour.

The Christofides heuristic was executed in its simplified version as it is described in
section 6.3. Table 7.20 shows the results with the first candidate set.

Problem Random Nearest N. Savings Christofides

d198 2.86 5.27 1.69 1.24*
lin318 2.93 2.80 2.16* 4.62
fl417 5.90 3.68 0.62* 5.24
pcb442 5.67 1.66* 2.54 3.03
u574 5.83 3.98 4.21 3.07*
p654 7.69 3.80 1.06* 5.78

rat783 4.60 3.47* 4.26 3.88
pr1002 4.45 3.61 4.02 3.24*
u1060 7.06 6.17 4.04 3.20*

pcb1173 5.82 5.70 3.93* 4.29
d1291 14.40 4.26 2.74* 6.30
rl1323 7.61 4.51 3.43 3.35*
fl1400 10.06 6.34 3.86* 7.20
u1432 7.47 4.83 3.51 3.36*
fl1577 15.85 8.40 8.71 4.89*
d1655 9.43 4.23* 5.09 5.17
vm1748 5.98 6.05 3.84 3.69*
rl1889 8.22 6.91 5.54 3.78*
u2152 9.82 5.78 4.85* 4.62
pr2392 7.15 4.37 4.94 3.62*
pcb3038 6.82 4.12 4.63 4.09*
fl3795 17.48 10.27 7.35 4.53*
fnl4461 4.77 3.45 5.13 3.40*
rl5934 14.39 6.37 6.74 4.11*

Average 8.01 5.00 4.12 4.15

Table 7.20 Results of 3-opt (Variant 1)

The savings and the Christofides starting tours lead to the best average results. This
follows again our rule of thumb that all relatively simple heuristics profit from a starting
tour that gives some guidelines on how a good tour should look like. On the other hand,
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this starting tour should not be too good in the sense that improvements could only be
achieved if the global structure of the tour is changed. Therefore, not always will the
best starting tour lead to the best final result.
For their respective versions of 3-opt, an excess of 3.6% over an approximation of the
Held-Karp bound is reported in Johnson (1990) and an excess of 4.5% was achieved
in Bentley (1992).
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Figure 7.21 CPU times for 3-opt (Variant 1)

Figure 7.21 displays the CPU time for the 3-opt experiments of Table 7.20. Diagrams
[1] to [4] corresponding to the starting tour variants 1) through 4). Except for the
random starting tour, CPU times are moderate and similar for the other three starting
tours. Practical application of this heuristic even for large problems is therefore possible.
Observe again, that running time on real problems is not always well predictable. We
have a outlier in case of the random start for problem fl3795 which took much more
CPU time than it would have been expected from a simple extrapolation.
Tables 7.22 and Figure 7.23 display the results, CPU times resp., for the second candi-
date set.
Since this candidate set is larger and connected, one would expect a better performance
than before. With the exception of the savings tour start, this is indeed the case.
One generally observes, that it is hard to improve savings tours with simple exchanges.
These tours are close to local optima, and there is a high chance that one gets stuck in
a local optimum of inferior quality. Christofides’ heuristic seems to be the construction
procedure of choice in this case, giving solutions of average quality 3.55%. If we always
take the better of the two solutions given in columns 4 and 5 of Table 7.22 we get an
average quality of 3.23%. Due to the moderate CPU time requirements one could run
both of these heuristics.
Finally, we employed our heuristic for finding suitable candidate edges. Table 7.24 and
Figure 7.25 document the results and CPU times.
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Problem Random Nearest N. Savings Christofides

d198 1.67 0.81* 3.41 1.10
lin318 4.23 2.74 2.18* 4.37
fl417 4.02 5.30 1.36 1.02*
pcb442 5.17 3.40 2.73 2.60*
u574 4.00 3.27 5.13 2.49*
p654 10.72 1.03* 4.84 4.11

rat783 5.46 4.41 4.58 4.01*
pr1002 5.17 3.75 4.41 3.09*
u1060 4.11 4.18 4.35 2.42*

pcb1173 6.23 4.52 4.14 4.10*
d1291 7.87 6.89 3.93* 4.63
rl1323 8.92 4.64 4.18* 4.19
fl1400 9.01 5.18 4.92* 5.23
u1432 6.62 4.46 3.39* 3.81
fl1577 7.99 10.97 5.15 2.87*
d1655 7.99 5.21 4.37* 4.95
vm1748 7.33 4.81 4.04 3.75*
rl1889 8.42 5.74 5.13 3.72*
u2152 8.17 5.31 5.27 4.27*
pr2392 5.60 4.44 4.99 3.35*
pcb3038 6.18 4.65 4.70 4.05*
fl3795 15.22 8.65 10.86 4.64*
fnl4461 4.57 3.61 5.23 3.27*
rl5934 8.97 5.01 6.37 3.09*

Average 6.82 4.71 4.57 3.55

Table 7.22 Results of 3-opt (Variant 2)
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Figure 7.23 CPU times for 3-opt (Variant 2)
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Problem Random Nearest N. Savings Christofides

d198 2.43 1.76 2.77 1.04*
lin318 2.32* 4.73 2.36 4.20
fl417 2.81 17.56 1.44* 2.70
pcb442 5.83 3.22 2.55* 2.69
u574 5.41 3.76 4.71 2.37*
p654 4.16 2.32* 5.57 4.59

rat783 5.44 3.12* 4.49 3.54
pr1002 6.92 6.05 6.05 3.96*
u1060 5.74 6.30 4.67 2.46*

pcb1173 6.96 7.00 5.43 4.07*
d1291 12.19 8.80 5.93* 6.32
rl1323 7.52 6.74 4.90 3.16*
fl1400 4.45* 4.78 5.04 5.18
u1432 7.68 6.16 5.04 4.13*
fl1577 12.58 8.28 13.28 4.76*
d1655 9.68 9.03 7.97 4.50*
vm1748 8.00 5.89 4.16 4.25*
rl1889 11.14 6.48 5.76 3.41*
u2152 9.03 6.00 5.94 5.51*
pr2392 8.64 5.86 6.89 3.77*
pcb3038 9.22 6.31 6.39 3.59*
fl3795 21.96 13.51 8.02 3.96*
fnl4461 9.14 5.46 6.12 3.80*
rl5934 15.71 8.49 7.53 3.52*

Average 8.12 6.57 5.54 3.81

Table 7.24 Results of 3-opt (Variant 3)
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Figure 7.25 CPU times for 3-opt (Variant 3)
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Qualities decreased with respect to the previous experiment. Only with the Christofides
start, quality is comparable with the second candidate set. Note, however, that the
Christofides heuristic requires the availability of a spanning tree. Whereas the Delau-
nay graph allows for an efficient computation of a minimum spanning tree, this is not
possible with the third candidate set. Either, an efficient means for computing mini-
mum spanning trees has to be available, or we cannot use the Christofides start with
our candidate heuristic. An ordinary spanning tree computation would be too time
consuming.
A further increase of the candidate set by specifying parameter values w = 20 and
k = 15 lead to a further improvement giving solutions of average qualities 7.47%, 4.93%,
4.54%, and 3.5% resp., for the four different starting tours. However, it does not seem
worthwhile to enlarge candidate sets too much because CPU time grows considerably.
Finally, in Figure 7.26, we show a 3-optimal tour for problem rd100 which has length
8169 thus missing the optimal value by only 3.3%.

Figure 7.26 A 3-optimal tour for problem rd100

As in the case of the 2-opt heuristic we have also examined stability of the 3-opt heuristic.
We proceeded along the same way as for the 2-opt heuristic (cf. Table 7.13).
Table 7.27 shows the results of this analysis. Performance with the nearest neighbor
start is very stable with little deviation. With a few runs one can expect to achieve
average performance.
Since also in the restricted versions 3-opt is quite time consuming, there are further
approaches to reduce the amount of work. One particular variant is the so-called Or-
opt procedure (Or (1976)). In this variant of 3-opt it is required that one of the paths
involved in the move has a fixed prespecified length l. For example, edge insertion is
then Or-opt with l = 1, and node insertion corresponds to l = 0. Results obtained with
this procedure are not of high quality, so we do not go into details here.
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Variant Minimum Maximum Average Span Deviation
rd100

1 0.00 12.11 3.48 12.11 2.17
2 0.85 6.31 3.15 5.46 1.36

d198

1 0.32 11.02 2.98 10.70 2.08
2 2.12 7.67 7.02 5.55 1.04

lin318

1 0.67 7.71 4.43 7.04 1.31
2 1.74 5.76 3.47 4.02 1.14

fl417

1 0.51 32.75 9.11 32.24 5.38
2 5.57 6.42 6.21 0.84 0.08

pcb442

1 2.09 8.06 4.93 5.97 1.04
2 1.37 3.26 2.11 1.89 0.37

u574

1 1.95 10.80 5.10 8.85 0.97
2 2.09 4.48 3.24 2.39 0.52

Table 7.27 Stability analysis for the 3-opt heuristic

One might suspect that with increasing k the k-opt procedure should yield provably
better approximate solutions. However, it is proved in Rosenkrantz, Stearns &

Lewis (1977) that for every n ≥ 8 and every k ≤ n/4 there exists an instance of the
TSP and a k-optimal tour such that

ck−opt

copt
= 2− 2

n

where ck−opt and copt are the respective values of the k-optimal and the optimal tour.
Nevertheless, this is only a worst case result. We have seen in this section that it pays
off to consider larger values of k and design efficient implementations of restricted k-opt
procedures. The problem of designing efficient update procedures for k-opt heuristics
is addressed in Margot (1992).

7.5 Lin-Kernighan Type Heuristics

The final heuristic to be discussed in this chapter was originally developed by Lin

& Kernighan (1973). The motivation for this heuristic is twofold and is based on
experience we gained from the experiments described in the preceding sections of this
chapter.

(i) The more flexible and powerful the possible tour modifications are, the better
results are usually obtained (2-opt supersedes node insertion, 3-opt supersedes
2-opt, etc.).

(ii) Simple moves quickly get stuck in local optima of only moderate quality that
cannot be left anymore.
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The consequence of simply applying k-opt for larger k cannot be realized due to in-
creasing running time. A complete check of the existence of an improving k-move takes
time O(nk). One can, of course, also design restricted searches for several values of k,
but we have not examined this feature. Rather, we overcome this drawback by using
the ideas of Lin and Kernighan.
Their approach is based on the observation that sometimes a modification slightly in-
creasing the tour length can open up new possibilities for achieving considerable im-
provements afterwards. The basic principle is to build complicated tour modifications
that are composed of simple moves where not all of these moves necessarily have to de-
crease the tour length. To obtain reasonable running times the effort to find the parts
of the composed move has to be limited.
Many variants of this principle are possible (see also Mak & Morton (1993)). We
did not use the original version of Lin and Kernighan, but implemented an own version
where the basic components are 2-opt and node insertion moves. When building a
move, we have in each substep some node from which a new edge is added to the tour
according to some criterion. We illustrate our procedure by an example. Suppose we
start with the canonical tour 1, 2, . . . , 16 for a problem on 16 nodes and we decide to
construct a tour modification starting from node 16.
In the first step it is decided to eliminate edge {1, 16} and to introduce the edge from
node 16 to node 9 into the tour. Adding this edge creates a short cycle, and therefore
edge {9, 10} has to be deleted. To obtain a tour again, node 10 has to be connected to
node 1.

1 2 333 4 5555 66666 7 8 9 10 11 12 13 14 15 16| |

1 2 333 4 5555 66666 7 8 9 10 11 12 13 14 15 16| |

1 2 333 4 5555 66666 7 8 9 10 11 12 13 14 15 16

Figure 7.28 Lin-Kernighan moves
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If we stop at this point, we have simply performed a 2-opt move. The fundamental new
idea is now not to connect node 10 to node 1, but to search for another move starting
from node 10. Suppose we now decide to add edge {10, 6} to the tour. Again, one edge,
namely {6, 7} has to be eliminated to break the short cycle. The sequence of moves
could be stopped here, if node 7 is joined to node 1.
As a final extension we instead add edge {7, 13} and now perform a node insertion move
by removing edges {12, 13} and {13, 14}, adding edge {12, 14}, and connecting nodes 13
and 1 to form a tour.
Note that the direction on some parts of the tour changes while performing these moves
and that this new direction has to be registered in order to be able to perform the
next moves correctly. Building the final move, we obtained three different tours on the
way. The shortest of these tours can now be chosen as the new current tour. It is not
guaranteed (or required) that this is the final tour.
Realization of this principle is possible in various ways. We have chosen the following
options.

(i) Submoves are 2-opt moves and optionally also node insertion moves.

(ii) To speed up search for submoves a candidate subgraph was used. Edges to be
added from the current node to the tour were only taken from this set.

(iii) Edges to be added from the current node were selected according to the following
local gain criterion. Let i be the current node. The local gain gij achieved by
adding edge ij to the tour is computed as follows.
– Let jk be the edge to be deleted if a 2-opt move is to be performed. Then
gij = cjk − cij .

– Let jk and jl be the edges to be deleted if a node insertion move is to be
performed. Then gij = cjk + cjl − clk − cij .

The edge with the maximal local gain is chosen to enter the tour and the corre-
sponding move is performed.

(iv) The number of submoves in a move is limited in advance.

(v) Examination of more than one candidate edge to enter the tour is possible. The
maximal number of candidates examined from the current node and the maxi-
mal number of submoves up to which alternative edges are taken into account
are specified in advance. This corresponds to inserting a limited enumeration
component to the heuristic.

(vi) The interval data structure and a balanced binary search tree were used to store
the tentative moves.

The basic outline of the heuristic is then given as follows.

procedure lin-kernighan

(1) Let T be the current tour.

(2) Perform the following until failure is obtained.

(2.1) For every node i = 1, 2, . . . , n:
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Try to find an improving move (consisting of 2-opt and node insertion sub-
moves) starting from i according to the guidelines and parameters discussed
above. If such an improving move can be found, then update T .

(2.2) If no improving move could be found, then declare failure.

end of lin-kernighan

A dynamic enumeration scheme using a priority queue is used to determine the starting
node for the next move in step (2.1).
Possible choices of the parameters for this heuristic are so manifold that we cannot
document all experiments here. We restrict ourselves to discuss some basic insight we
obtained when conducting many series of evaluations.
In Tables 7.29 through 7.31 we display detailed results with several variants of the Lin-
Kernighan exchange heuristic. All variants use 2-opt as well as node insertion submoves.
They differ in the following respects.
1) Up to three submoves are considered for the first submove of a move. The number

of submoves is limited to 15.
2) For the first three submoves of a move up to two alternatives are examined. This

way up to eight moves are considered starting at node i selected in step (2.1).
The number of submoves is limited to 15.

3) Same as 2), but the number of submoves building a move is now limited to 100.

Problem Random Nearest N. Savings Christofides

d198 0.75* 5.55 1.48 1.03
lin318 1.68 2.48 1.64 1.44*
fl417 3.10 0.61* 1.29 2.74
pcb442 1.49 1.95 2.33 1.33*
u574 1.96 2.48 2.11 0.93*
p654 1.71 3.07 0.05* 1.12

rat783 2.07 2.03* 2.92 3.21
pr1002 3.06 2.69 2.77 2.30*
u1060 2.88 2.41 2.73 1.78*

pcb1173 2.87 2.64 2.65 2.41*
d1291 4.77 4.51 2.97* 3.26
rl1323 2.25 2.68 1.79* 2.90
fl1400 2.30* 3.16 3.89 5.14
u1432 2.34 2.29 2.04* 2.20
fl1577 6.38 10.90 6.27 2.29*
d1655 2.63* 3.54 3.85 3.27
vm1748 2.11 2.00* 2.80 2.60
rl1889 2.46 3.45 3.90 2.35*
u2152 3.88 3.00 4.33 2.49*
pr2392 3.17 3.05 3.15 2.04*
pcb3038 2.50 1.82* 2.67 2.58
fl3795 3.46* 6.81 3.55 3.64
fnl4461 2.06 1.98* 2.47 2.26
rl5934 3.27 2.39 3.55 2.40*

Average 2.71 3.23 2.80 2.40

Table 7.29 Results of Lin-Kernighan (Variant 1)
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We applied these three variants on the same four starting tours as in the case of the
3-opt heuristic, namely

1) random tour,

2) nearest neighbor tour,

3) savings tour,

4) Christofides tour.

The candidate subgraph consisted of the 10 nearest neighbor subgraph augmented by
the Delaunay graph.

Problem Random Nearest N. Savings Christofides

d198 1.12 1.62 0.60* 1.10
lin318 2.00 1.22* 2.54 1.24
fl417 3.33 3.68 0.51* 3.00
pcb442 2.44 2.82 1.42* 1.90
u574 1.83 1.49* 2.20 2.32
p654 0.40 2.85 0.39* 2.50

rat783 2.76 2.23 2.80 1.90*
pr1002 2.68 3.20 2.66* 2.70
u1060 2.52 1.64 2.17 1.64*

pcb1173 2.90 1.77* 2.84 2.16
d1291 3.79 1.95* 3.14 4.93
rl1323 1.53 1.89 1.00* 2.97
fl1400 2.76* 3.49 3.20 2.92
u1432 1.74 1.53 2.00 1.47*
fl1577 3.63 5.67 6.58 1.48*
d1655 3.23 3.79 4.18 2.85*
vm1748 2.58 2.48 2.22* 2.25
rl1889 2.98 2.62 3.45 2.18*
u2152 2.67* 3.26 4.34 3.00
pr2392 2.35 2.02* 3.13 2.39
pcb3038 2.51 2.12 2.45 2.05*
fl3795 4.69 3.98 9.22 2.78*
fnl4461 1.72* 1.98 2.11 1.82
rl5934 3.40 3.49 2.92 2.03*

Average 2.56 2.62 2.84 2.32

Table 7.30 Results of Lin-Kernighan (Variant 2)

Tables 7.29, 7.30, and 7.31 represent only a small part of the experiments we have
conducted with the Lin-Kernighan heuristic. In general, our observations can be sum-
marized as follows.

– The more effort is spent, the better the results. (This is not a trivial statement,
as the results in Chapters 6 and 7 show.)

– At least 15 submoves should be allowed for every move.

– It is better not to start out with a random tour, but to use locally good tours
containing some major errors. But, this difference decreases with more elaborate
versions of the Lin-Kernighan procedure.
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Problem Random Nearest N. Savings Christofides

d198 2.81 0.75 0.60* 1.10
lin318 1.54 2.55 2.42 0.69*
fl417 0.75 3.75 0.51* 3.00
pcb442 2.12 1.39 1.30 1.11*
u574 2.74 1.59* 2.03 1.83
p654 0.59* 3.13 0.25 2.46

rat783 1.57* 1.71 2.80 1.79
pr1002 2.22 2.27 2.44 1.71*
u1060 1.76 1.69 2.09 1.54*

pcb1173 2.95 2.61 2.43 1.97*
d1291 3.81 2.13* 3.14 2.19
rl1323 2.13 2.43 1.00 1.97*
fl1400 3.58 3.04* 3.09 3.11
u1432 2.12 2.52 1.57* 1.76
fl1577 4.39 6.70 4.40 1.33*
d1655 2.64* 3.48 4.04 3.05
vm1748 1.80 1.92 2.27 1.73*
rl1889 2.34 2.93 2.96 1.62*
u2152 3.80 2.37 4.30 2.10*
pr2392 2.30 2.27 3.07 2.15*
pcb3038 1.99 2.31 1.90 1.85*
fl3795 4.84 3.04 3.67 2.81*
fnl4461 1.88 1.84 1.85 1.81*
rl5934 2.55 3.36 2.74 2.22*

Average 2.47 2.57 2.37 1.95

Table 7.31 Results of Lin-Kernighan (Variant 3)

– It is advisable to consider several alternate edges to be added from the first node.

– Inclusion of insertion moves usually leads to better results.

The results document, that, in contrast to simpler heuristics, the dependence on the
starting tour is not very strong. Results and CPU times differ only slightly for the
various starting tours. Again, it can be observed that not the best starting tours
necessarily lead to the best final results. Our variant of the Christofides heuristic seems
to be an appropriate choice. If one does not spend any effort at all to construct a
starting tour (i.e., chooses a random starting tour) not much quality is lost, if at all.
We give an impression on the running times for the Lin-Kernighan heuristic in Fig-
ure 7.32. Diagrams [1] through [6] correspond to

1) Variant 1 with random start,

2) Variant 1 with Christofides start,

3) Variant 2 with random start,

4) Variant 2 with Christofides start,

5) Variant 3 with random start,

6) Variant 3 with Christofides start.
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Figure 7.32 CPU times for Lin-Kernighan variants

With the Lin-Kernighan heuristic, the starting tour has only a minor effect on the CPU
time. In particular, starting with a random tour now leads to about the same overall
CPU time as starting with a more sophisticated tour. The reason for this can be seen
when visualizing the Lin-Kernighan moves on a graphic screen. Even, when starting
with a random tour, after execution of relatively few tour modifications, already a tour
results that is of quality comparable to the quality of the best starting heuristics.
As every improvement heuristic, also the Lin-Kernighan heuristic has the problem of
running into a local optimum that it cannot escape from. In contrast to the other
improvement heuristics discussed before, the Lin-Kernighan has the feature that it can
generate intermediate submoves that are not improving. This is in some sense a way to
leave a local optimum. Each composite move, however, has to be improving.
A straightforward idea to escape from a local optimum that can be applied to every
heuristic is the following. After the heuristic has found its approximate tour, we perturb
the current tour by a random modification and then restart the heuristic. This seems of
particular interest for the Lin-Kernighan heuristic since it finds very good local optima.
For the other heuristics, this approach does not seem to be worthwhile. They terminate
with approximate solutions that are relatively far away from the optimum, and several
restarts will only slightly improve the quality.
We end this section reporting about a final experiment with this so-called iterated
Lin-Kernighan heuristic which was first discussed in Johnson (1990). Using this
idea, several optimal solutions of larger problems (e.g., pr2392) could be found. We
chose Variant 3 and iterated it 20 times in the following way. Every time the heuristic
terminated, a random 4-opt move was generated that did not increase the tour length
by more than 10% and the heuristic was restarted. Recall that a 4-opt move consists
of removing four edges from the current tour and patching together the resulting four
paths in a different way.
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Problem Iterated LK
d198 0.12

lin318 0.33
fl417 2.52
pcb442 0.61
u574 0.96
p654 0.07

rat783 1.25
pr1002 1.43
u1060 0.79

pcb1173 1.41
d1291 1.46
rl1323 1.00
fl1400 2.62
u1432 1.31
fl1577 1.01
d1655 2.00
vm1748 1.00
rl1889 1.15
u2152 1.66
pr2392 1.46
pcb3038 1.36
fl3795 1.38
fnl4461 1.33
rl5934 2.10

Average 1.26

Table 7.33 Results of the iterated Lin-Kernighan heuristic

Results for just one starting tour, namely the Christofides tour, are depicted in Ta-
ble 7.33. We see that further improvement in the quality of the final tour is achieved.
Of course, running time is considerable and the iterated Lin-Kernighan heuristic is
mainly suited for finding very good approximate solutions if enough CPU time can be
spent.

7.6 Comparison of Improvement Heuristics

We conclude this section by comparing all improvement heuristics discussed in this
chapter.
We apply the same method as in Chapter 6 to assess the relative quality of the im-
provement methods. For every problem instance, qualities are computed with respect
to the best tour found by any of the methods. In addition we give the number of best
solutions found by every heuristic. The comparison is given in Table 7.34. It should
be easy to identify the listed heuristics. We have given the respective starting tour in
parentheses. Furthermore, it is indicated if complete enumeration of all possible moves
was performed or which candidate subgraph was used.
The figures in Table 7.34 should reflect reasonably well what can be expected from the
various heuristics. In particular, if one wants to have solutions at most 1–2% above
optimality one has to implement a Lin-Kernighan type improvement heuristic.
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Heuristic No. of best Relative
solutions quality

Iterated Lin-Kernighan 18 0.10
LK (10nn+Del, Christofides, Var. 3) – 0.78
LK (10nn+Del, Christofides, Var. 2) 1 1.14
LK (10nn+Del, savings, Var. 3) – 1.19
LK (10nn+Del, Christofides, Var. 1) 1 1.23
LK (10nn+Del, random, Var. 3) – 1.29
LK (10nn+Del, random, Var. 2) – 1.39
LK (10nn+Del, NN, Var. 3) – 1.40
LK (10nn+Del, NN, Var. 2) – 1.44
LK (10nn+Del, random, Var. 1) 1 1.54
LK (10nn+Del, savings, Var. 1) 1 1.62
LK (10nn+Del, savings, Var. 2) 2 1.65
LK (10nn+Del, NN, Var. 1) – 2.05
3-opt (10nn+Del, Christofides) – 2.36
3-opt (cand.heu, Christofides) – 2.62
3-opt (10nn, savings) – 2.92
3-opt (10nn, Christofides) – 2.96
3-opt (10nn+Del, savings) – 3.37
3-opt (10nn+Del, NN) – 3.50
3-opt (10nn, NN) – 3.80
3-opt (cand.heu, savings) – 4.33
2-opt/NI (complete, NN) – 4.59
2-opt/NI (complete, savings) – 4.99
3-opt (cand.heu, NN) – 5.34
3-opt (10nn+Del, random) – 5.59
2-opt/NI (10nn+Del, savings) – 6.21
3-opt (10nn, random) – 6.76
3-opt (cand.heu, random) – 6.87
Node insertion (complete, savings) – 6.96
Node insertion (10nn + Del, savings) – 7.05
2-opt (complete, NN) – 7.18
2-opt (complete, savings) – 7.50
2-opt/NI (10nn+Del, NN) – 8.06
2-opt/NI (complete, random) – 8.35
Edge insertion (complete, savings) – 8.48
2-opt (10n+Del, savings) – 8.79
Edge insertion (10nn + Del, savings) – 8.86
2-opt (10n+Del, NN) – 9.21
2-opt (complete, random) – 13.34
2-opt/NI (10nn+Del, random) – 14.08
Node insertion (complete, NN) – 15.25
Node insertion (10nn + Del, NN) – 15.38
2-opt (10n+Del, random) – 15.66
Edge insertion (complete, NN) – 16.08
Edge insertion (10nn + Del, NN) – 18.86
Edge insertion (complete, random) – 78.87
Node insertion (complete, random) – 94.86
Edge insertion (10nn + Del, random) – 113.54
Node insertion (10nn + Del, random) – 125.25

Table 7.34 Comparison of improvement heuristics
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We think that for practical applications the methods presented in this chapter are basic
ingredients. They can be tuned to the running time that is available and come up with
reasonable solutions.
Further improvement methods have been designed. E.g., Gendreau, Hertz & La-

porte (1992) and Glover (1992) discuss additional types of exchange moves. The
effect of the choice of the starting tour on the final result of exchange heuristics is
considerd in Perttunen (1991). Recently, stochastic improvement methods became
rather popular. We will survey some of these approaches in Chapter 9.
Chapter 8 will present some further heuristics particularly suited for very large problems
that will use the heuristics of this chapter for treating subproblems.



Chapter 8

Heuristics for Large Geometric Problems

In the previous chapters we have considered several heuristics for finding approximate
solutions of traveling salesman problem instances. We have also shown how the use of
candidate subgraphs can speed up computations enormously. There may be situations,
however, where even these efficient implementations are too slow. If very restrictive real
time constraints have to be observed, the methods derived so far may not be appropriate.
In this chapter we address the question of finding traveling salesman tours for very large
instances in short time. It is clear that we will have to accept some loss in quality.
We will consider some approaches for the fast determination of tours for 2-dimensional
metric instances, i.e., instances defined by points in the 2-dimensional plane where the
distances between points are given by some metric (recall that all our sample problem
instances are Euclidean).
For the purposes of this chapter we have included some larger problems into our standard
test set (and omitted the smallest problems). In particular, we added the real problems
rl5915, rl11849, brd14051, and d18512 as well as the random problem rd15000. As
respective lower bounds we used the bounds 563416, 920847, 465044, and 644470 from
TSPLIB for the first four instances, and the bound 175204 obtained with a Lagrangean
approach based on 1-trees (see Chapter 10) for rd15000.

8.1 Space Filling Curves

We will begin our discussion of TSP heuristics with a fast heuristic suited only for
problem instances in the Euclidean plane. The heuristic was given by Bartholdi &

Platzman (1982) and has some interesting theoretical properties.
Assume that all points are located in the unit square (which can always be achieved by
suitable scaling) and that we want to find a short tour with respect to the Euclidean
distance. The heuristic is based on a surjective mapping ψ : [0, 1] → [0, 1] × [0, 1],
a so-called space filling curve. The name comes from the fact that when varying
the arguments of ψ from 0 to 1 the function values fill the unit square completely.
Surprisingly, such functions exist and, what is interesting here, they can be computed
efficiently and also for a given y ∈ [0, 1]× [0, 1] a point x ∈ [0, 1] such that ψ(x) = y can
be found quickly.
We will describe the function used by Bartholdi and Platzman, which is recursively
defined as follows.

G. Reinelt: The Traveling Salesman, LNCS 840, pp. 133-152, 1994.
 Springer-Verlag Berlin Heidelberg 1994



134 Chapter 8. Heuristics for Large Geometric Problems

ψ(x) =
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Looking more closely at this expression, one realizes that it models the recursive subdi-
vision of squares into four equally sized subsquares. The space filling curve is obtained
by patching the four respective subcurves. Observe the rotation operation in the above
formula which is necessary for making the subcurves fit smoothly.
The function ψ has interesting properties that are useful for the traveling salesman
problem.

Theorem 8.1 Let d2 denote the Euclidean distance and define f : [0, 1] → R by
f(x) = 2

√
x, if 0 ≤ x ≤ 1

2 , and f(x) = 2
√

1 − x, if 1
2 < x ≤ 1.

(i) Given y ∈ [0, 1] × [0, 1] in k-bit binary representation an x ∈ [0, 1] satisfying
ψ(x) = y can be computed in time O(k).

(ii) For every 0 ≤ x1, x2 ≤ 1 we have d2(ψ(x1), ψ(x2)) ≤ f(|x1 − x2|).

(iii) If 0 ≤ x1 ≤ x2 ≤ x3 ≤ 1 then f(x3 − x2) + f(x2 − x1) ≥ f(x3 − x1).

(iii) If 0 ≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ 1 then f(x3−x1)+f(x4−x2) ≥ f(x2−x1)+f(x4−x3)
and f(x3 − x1) + f(x4 − x2) ≥ f(x3 − x2) + f(x4 − x1).

For a set of numbers xi ∈ [0, 1] the function f can be used to bound the length of a
tour through the ψ(xi)’s from above. Moreover, the best such bound is obtained if the
points ψ(xi) are connected according to increasing values xi. Based on this observation
the space filling curves heuristic is given as follows.

procedure spacefill

(1) Scale the points to the unit square.

(2) For every scaled point xi = (x1
i , x

2
i ), i = 1, 2, . . . , n compute zi such that ψ(zi) =

(x1
i , x

2
i ).

(3) Sort the numbers zi in increasing order.

(4) Connect the points by a tour according to the sorted sequence of the zi’s (to
complete the tour connect the two points with smallest and largest z-value).

end of spacefill

Due to Theorem 8.1 (i) and the time complexity Θ(n logn) to sort the zi’s, this heuristic
runs in time Θ(n logn).
Figure 8.1 shows the result of this heuristic for a problem defined on the grid points of
a 30 × 30 grid. The figure exhibits the recursive nature of the space filling curve.
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Figure 8.1 A space filling curves tour

Suppose zi1 , zi2 , . . . , zin
is the sorted sequence computed in Step (3) of the heuristic.

Because of Theorem 8.1 (ii) the length of the tour obtained can be bounded above by∑n
k=2 f(zik

−zik−1)+f(zin
−zi1). Since f is concave the maximum is attained for equally

spaced arguments, i.e., zik
−zik−1 = 1

n
(note that f(zin

−zi1) = f(1+zi1 −zin
)). Hence

a bound on the tour length is n · f( 1
n ) = 2

√
n. In general, if the points are contained in

a rectangle of area F , then the tour is not longer than 2
√
nF . Bartholdi and Platzman

have shown in addition that the quotient of the length of the heuristic curve and the
shortest tour length is bounded by O(logn).
At this point we would like to comment briefly on average case analysis for the Eu-
clidean TSP. Suppose that the n points are uniformly distributed in the unit square.
Beardwood, Halton & Hammersley (1959) show that there exists a constant C
such that

lim
n→∞

copt√
n

= C

where copt is the length of an optimal tour and give the estimate C ≈ 0.765.
Such a behaviour can also be proved for the space filling curves heuristic with a different
constant C. Bartholdi & Platzman (1982) give the estimate C ≈ 0.956. Therefore,
for this class of random problems the space filling curves heuristic can be expected
to yield tours that are approximately 25% longer than an optimal tour as n tends to
infinity.
Table 8.2 shows the results of this heuristic and the CPU time for our set of sample
problems. Since the space filling curves tour does not depend on the concrete configu-
ration of the points (adding or deleting points does not change the relative order of the
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other points in the tour) it cannot be expected to perform too well in practice. In fact,
our results only give an average quality of 46.8%.

Problem Quality CPU time
p654 44.29 0.05

rat783 42.99 0.07
pr1002 42.89 0.08
u1060 59.03 0.09

pcb1173 39.05 0.09
d1291 60.78 0.11
rl1323 62.28 0.11
fl1400 35.81 0.10
u1432 25.68 0.11
fl1577 69.48 0.13
d1655 44.98 0.14
vm1748 43.39 0.14
rl1889 57.58 0.15
u2152 50.11 0.17
pr2392 36.82 0.19
pcb3038 32.69 0.24
fl3795 68.40 0.30
fnl4461 33.71 0.36
rl5915 60.60 0.49
rl5934 58.80 0.48
rl11849 50.79 1.00
brd14051 36.53 1.16
rd15000 33.72 1.26
d18512 32.92 1.58

Average 46.80

Table 8.2 Results of space filling curves heuristic
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Figure 8.3 Comparison of heuristic length with expected optimal length
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In Figure 8.3 we have depicted the quotients cSF/(0.765
√
n), i.e., the deviation of the

space filling curves tour from the expected optimal tour length, for a larger set of
problem instances (note that F = 1 in our case). There is a considerable deviation
of this quotient for real world problems, whereas for random problems instances the
quotient is quite stable. In this range we have approximately cSF/(0.765

√
n) = 1.26.

This verifies that for points drawn at random from a uniform distribution in the unit
square the heuristic yields tours about 25% above optimum. The same should be true
for dense point sets equally distributed in the plane. Figure 8.3 also shows that the
value 0.765

√
n (note that F = 1 in our case) is a very poor estimate for the optimal

tour length of practical problem instances. For problem fl3795 already the space filling
curves heuristic gives a value of 0.376

√
n.

8.2 Strip Heuristics

This is a well-known approach for finding tours for large geometric TSPs with little
effort. The problem area is cut into vertical strips. Then a tour is constructed as
follows. We start at the point in the first strip with lowest vertical coordinate, proceed
to the node of strip 1 with next higher vertical coordinate, etc., until all points of the
first strip are collected. The point with highest vertical coordinate in strip 1 is then
connected to the node with highest vertical coordinate in strip 2, and strip 2 is scanned
downwards. All remaining strips are then scanned connecting the points in the obvious
way. Connecting the final point to the first point yields a Hamiltonian tour. Figure 8.4
shows a tour for problem pr1002 obtained by a strip heuristic.

Figure 8.4 Tour for pr1002 found by a strip heuristic
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As well as cutting the point area using vertical cuts, we could also use horizontal cuts.
Furthermore, one can alternatively use cuts that result in strips of equal width or one
could cut in such a way, that all strips contain the same number of points. Depending
on the point configuration rather different results can arise. We used the following
implementation.

procedure strip(s)

(1) Apply the strip heuristic in the following four cases and choose the best tour.
(1.1) Cut into s vertical strips of equal width.
(1.2) Cut into s vertical strips each containing the same number of points.
(1.3) Cut into s horizontal strips of equal height.
(1.4) Cut into s horizontal strips each containing the same number of points.

end of strip

The heuristic requires sorting the points with respect to horizontal and vertical coor-
dinates. Since tour construction itself can then be done in linear time, the resulting
running time is Θ(n logn).
With a value of s =

√
n/2 we obtained the results of Table 8.5.

Problem Quality CPU time
p654 47.01 0.05

rat783 29.23 0.06
pr1002 52.74 0.08
u1060 53.81 0.08

pcb1173 27.37 0.09
d1291 76.51 0.10
rl1323 48.54 0.10
fl1400 106.06 0.11
u1432 34.65 0.11
fl1577 114.93 0.13
d1655 71.42 0.13
vm1748 56.39 0.14
rl1889 49.73 0.15
u2152 46.21 0.17
pr2392 42.00 0.19
pcb3038 27.68 0.25
fl3795 114.12 0.32
fnl4461 35.27 0.39
rl5915 42.66 0.53
rl5934 52.70 0.53
rl11849 41.33 1.14
brd14051 51.43 1.35
rd15000 33.42 1.46
d18512 39.65 1.82

Average 53.95

Table 8.5 Results of the strip heuristic

Johnson (1990) reports qualities of 30.2% for random problem instances. It is intu-
itively clear that the strip heuristic performs best for dense point sets and fails if there
are clusters of points. This is supported by the results given in Table 8.5. E.g., instance
rd15000 is a random instance, whereas fl3795 contains clusters of points.
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8.3 Partial Representations

The aim of this heuristic is to achieve a reduction of the number of nodes of the problem
in such a way that the remaining nodes still give a satisfactory representation of the
geometry of the original points. Then a traveling salesman tour on this set of represen-
tative nodes is computed in order to serve as a global approximation of the tour. In the
final step the original nodes are inserted into this tour (where the number of insertion
points that will be checked can be specified) and the representative nodes (if not original
nodes) are removed. More precisely, we use the following bucketing procedure.

procedure partial representation(m, k, l)

(1) Start with the rectangle enclosing the points whose vertices are determined by
the minimal and maximal horizontal and vertical coordinates of the points.

(2) Recursively subdivide each rectangle into four equally sized parts by a horizontal
and a vertical line until each rectangle

– contains no more than 1 point, or
– is the result of at least m recursive subdivisions and contains no more than
k points.

(3) Represent each (nonempty) rectangle by the center of gravity of the points con-
tained in it.

(4) Compute a tour through the representative nodes using some TSP heuristic.

(5) Insert the original points into this tour. To this end at most l/2 insertion points
are checked before and after the corresponding representative nodes in the current
tour. The best insertion point is then chosen.

(6) Remove all representative nodes that are not original nodes.

end of partial representation

The parameters m, k, and l, and the heuristic needed in Step (4) can be chosen with
respect to available CPU time. If the points of the problem are independently identically
distributed in the unit square according to a uniform distribution then the running time
of the above procedure is approximately O(n · (max{m, log n

k
}+ l)) plus the time spent

in Step (4) for computing the global tour.
We demonstrate our bucketing procedure for the 654-city problem p654. Figure 8.6
shows the bucketing obtained by setting m = 3 and k = 25. Figure 8.7 displays
the 57 representative nodes which still contain much information about the geometric
structure of the original problem. A global tour was computed in this case using the
nearest neighbor heuristic to compute a starting tour and then performing 2-opt moves
to improve this tour. The resulting tour is displayed in Figure 8.8. Subsequently, the
feasible solution shown in Figure 8.9 for the original problem was obtained by inserting
the original nodes into this tour considering at most 300 possible insertion points for
each original node.
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Figure 8.6 A bucketing for the problem p654

Figure 8.7 The corresponding set of representative nodes
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Figure 8.8 A global tour through the representative nodes

Figure 8.9 A feasible tour for the original problem
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We performed several tests of the bucketing approach. Since the crucial point is the
running time necessary to execute Step (4) we must reduce the number of nodes con-
siderably. On the other hand, the more the problem is reduced the more information
is lost. In the first two experiments we choose k = �

√
n � and m = �log2

4
√
n �. If we

have random problems then this setting will result in approximately
√
n buckets con-

taining about
√
n points each. This allows to use an O(n2) heuristic in Step (4) without

destroying the overall almost linear time complexity.
In the first experiment we apply the space filling curves heuristic in Step (4) and perform
two test runs, one with l = 5 logn and one with l = 50 logn. This reflects a version
with very few insertion checks in Step (5) and a version where more work is spent for
reinserting the original points. In either version we only allow a slight increase in the
parameter l depending on the problem size.

Problem Minimum #Buckets Variant 1 Variant 2
#subdiv.

p654 3 55 25.97 26.11
rat783 3 64 19.48 14.74
pr1002 3 65 20.96 16.37
u1060 3 71 22.09 17.00

pcb1173 3 64 27.83 25.04
d1291 3 84 28.53 22.42
rl1323 3 76 31.20 21.45
fl1400 3 97 19.11 14.00
u1432 3 70 17.74 15.90
fl1577 3 82 41.39 38.97
d1655 3 104 27.87 25.41
vm1748 3 102 20.61 15.49
rl1889 3 87 29.27 21.93
u2152 3 82 31.10 24.09
pr2392 3 133 23.75 19.84
pcb3038 3 97 27.40 21.49
fl3795 3 126 44.61 29.18
fnl4461 4 169 25.98 22.05
rl5915 4 229 35.73 26.26
rl5934 4 231 31.40 25.13
rl11849 4 244 45.48 25.40
brd14051 4 265 36.49 25.94
rd15000 4 256 34.83 19.05
d18512 4 286 35.84 25.85

Average 29.36 22.46

Table 8.10 Results of bucketing heuristic using space filling curves

Table 8.10 documents the results. It gives in the respective columns the problem name,
the minimal number of subdivisions, the number of buckets obtained, and the quality
of the computed tours for the two different choices of l.
Except for problem p654 it always paid off to check more insertion points, usually a
significant decrease of the tour length was achieved.
In the average, tours with the faster version were more than 6% longer than the tours
obtained with the second variant. Further experiments showed that checking even fewer
insertion points (say, for instance the constant number 20) leads to much inferior results.
In the next experiment we have put more effort in determining the global tour. To solve
the global TSP we computed the subgraph of 6 nearest neighbors, computed a nearest



8.3. Partial Representations 143

neighbor tour making use of this subgraph and performed the limited Lin-Kernighan
heuristic where each move consisted of at most 15 node insertion or 2-opt moves.
Table 8.11 gives the results. Parameter settings and columns are the same as for Ta-
ble 8.10. The results show that not always better tours are obtained by computing better
global tours. The difference in quality for the two experiments is not substantial.

Problem Minimum #Buckets Variant 3 Variant 4
#subdiv.

p654 3 55 7.32 7.64
rat783 3 64 20.11 19.96
pr1002 3 65 20.65 17.57
u1060 3 71 25.54 18.82

pcb1173 3 64 27.92 23.26
d1291 3 84 27.23 21.17
rl1323 3 76 31.74 22.93
fl1400 3 97 9.26 6.27
u1432 3 70 17.79 15.22
fl1577 3 82 21.61 17.97
d1655 3 104 23.91 20.08
vm1748 3 102 19.98 16.71
rl1889 3 87 30.16 23.93
u2152 3 82 28.74 25.98
pr2392 3 133 26.57 23.32
pcb3038 3 97 25.53 20.64
fl3795 3 126 31.28 20.87
fnl4461 4 169 24.59 21.79
rl5915 4 229 33.06 27.99
rl5934 4 231 29.99 25.14
rl11849 4 244 46.85 27.61
brd14051 4 265 36.13 25.39
rd15000 4 256 34.52 20.05
d18512 4 286 36.29 25.88

Average 26.53 20.67

Table 8.11 Results of bucketing heuristic using better global tours

It seems that the representation used was too coarse. As a final experiment we have
therefore increased the number of buckets by setting k = �√n�/2. This way we obtain
a finer representation of the original problem. We only got a slight increase (if at all)
in the running times. Table 8.12 displays the results.
Results show that both having a fine representation and checking enough insertion
points are important. Solutions get better if the representation is refined and if the
number of insertion checks is increased. Of course, this is not surprising, because we
approach the original problem this way. In any case running times grow. If we choose
a relatively coarse representation and check many insertion points, then we will obtain
nearest insertion like tours.
A graphical display of the running times for our experiments is given in Figure 8.13.
Running times increase linearly with the problem size and can therefore be estimated
quite precisely which can be important for some practical applications. To meet imposed
timing restrictions the node reduction heuristic can be tuned by choosing the parameters
m, k, and l and the heuristic in Step (4) appropriately.
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Problem Minimum #Buckets Variant 5 Variant 6
#subdiv.

p654 3 124 6.85 6.84
rat783 3 76 21.85 18.88
pr1002 3 138 19.20 14.60
u1060 3 160 18.92 15.56

pcb1173 3 175 21.84 18.51
d1291 3 130 23.09 19.74
rl1323 3 177 24.69 20.17
fl1400 3 136 6.82 5.63
u1432 3 184 13.71 13.24
fl1577 3 139 18.59 15.13
d1655 3 190 22.23 20.38
vm1748 3 198 17.26 15.06
rl1889 3 197 19.21 14.65
u2152 3 235 25.04 22.70
pr2392 3 196 21.39 19.62
pcb3038 3 246 21.07 19.38
fl3795 3 247 23.97 18.44
fnl4461 4 238 23.32 20.42
rl5915 4 312 30.95 27.17
rl5934 4 315 27.26 25.48
rl11849 4 565 29.69 25.36
brd14051 4 574 27.18 23.44
rd15000 4 517 28.30 19.22
d18512 4 686 26.97 23.80

Average 21.64 18.48

Table 8.12 Results of bucketing heuristic with a finer representation
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Figure 8.13 CPU times for variants of the bucketing heuristic
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One might also think of exploiting parallelism. For example, the further subdivision
of different rectangles can be performed in parallel (though the effect on the overall
running time will only be small). Insertion of the original nodes can also be parallelized.
Synchronization has to be observed here.

8.4 Decomposition Approaches

A further idea to reduce the complexity of a large scale problem instance is to partition
it into subproblems, where the partitioning is done (if possible) in a way that structural
properties of the problem instance are preserved.
We will examine three types of decompositions which are based on nearest neighbor
computations, on the Delaunay graph and on a simple geometric partitioning scheme,
respectively. In all cases we proceed as follows.

procedure decomposition

(1) Compute a partition of the points defining the problem instance into pairwise
disjoint sets.

(2) Represent each subset by its convex hull, or more precisely by those points of the
subset that are situated on the boundary of its convex hull.

(3) Compute a global tour connecting the subsets. To this end each subset is repre-
sented by a node. The distance between two such nodes is given by the shortest
distance between original nodes that are located on the boundary of the convex
hulls representing the respective subproblems. The global tour now gives an en-
tering and a leaving point for each of the subproblems. If these two points are
identical we apply a simple exchange to obtain different endpoints.

(4) Apply suitable TSP heuristics to find short Hamiltonian paths in every sub-
problem connecting the entering to the leaving point visiting all points of the
subproblem.

(5) Merge the global tour and the paths to form a tour for the original problem.

end of decomposition

The running time of this procedure depends on the partition that was obtained and
on the heuristics that are applied in Steps (3) and (4). We will see below that the
partition itself can be obtained very fast in all cases. The heuristic is similar to clustering
algorithm of Litke (1984) where clusters of points are represented by a single point.
Having computed an optimal Hamiltonian cycle through the representatives, clusters
are expanded one after another. For Litke’s clustering method, Johnson (1990) reports
an average excess over the Held-Karp bound of 23.2% for randomly generated problem
instances.
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8.4.1 Nearest Neighbor Partition

We compute the 3 nearest neighbor subgraph. Since only few neighbors are taken into
account, this subgraph will usually be highly disconnected. We take as a partition of
the node set the partition induced by the connected components of this subgraph. If
the partition is not appropriate (sometimes the 3 nearest neighbor partition has too few
components to yield a reasonable partition.) we take the 2 nearest neighbor subgraph.
The nearest neighbor partition can be computed in linear time from the Delaunay graph.

Figure 8.14 The traveling salesman problem u1060

Figure 8.15 A nearest neighbor partition for u1060
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We consider as an example problem u1060 which is displayed in Figure 8.14 (for reasons
of display, two points were eliminated). Figure 8.15 shows the partition given by the
computation of the 2 nearest neighbors (subproblems are shown together with their
respective convex hulls). Figure 8.16 displays the global tour (only the connections
between the subproblems are shown) and the tour obtained for the original problem is
given in Figure 8.17.

Figure 8.16 A global tour

Figure 8.17 A feasible tour for u1060

It should be mentioned that the partitions do not always look as nice as in the above
example. There are situations where convex hulls intersect or where one convex hull
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is contained in another. But this does not necessarily influence the quality of the tour
obtained. Also the sizes of the subproblems may be quite different. If the partition does
not turn out to seem reasonable one should either try to change the partition or one
should apply other heuristics. We will not elaborate on this here.
Experiments with the partitioning approach based on nearest neighbors were performed
in the following way. We applied the heuristic to the 3-neighbor subgraph and to
the 2-neighbor subgraph requiring that the decomposition consists of at least three
components and that no subproblem contains more than 800 points. Convex hulls
for representing the subproblems were determined using the elimination algorithm of
section 4.3.5.
Hamiltonian path problems were transformed to TSPs as follows. To meet the path
requirement the distance between the two end nodes of the path was set to −M (M a
large positive integer) and then TSP heuristics were applied. If this special edge did
not appear in the computed tour it was introduced by a simple local exchange.

Problem 3-N graph Length of 2-N graph Length of
#comp. tour #comp. tour

p654 14 5.78 25 7.20
rat783 1 – 34 10.64
pr1002 8 – 35 12.64
u1060 15 – 56 7.10

pcb1173 2 – 14 –
d1291 49 10.84 104 27.72
rl1323 24 16.61 109 16.96
fl1400 22 8.06 54 10.61
u1432 1 – 12 –
fl1577 19 12.61 31 24.05
d1655 20 5.82 53 9.67
vm1748 9 – 71 11.60
rl1889 41 – 121 16.04
u2152 55 9.48 108 11.68
pr2392 2 – 103 10.07
pcb3038 3 – 33 –
fl3795 28 19.64 49 20.26
fnl4461 3 – 41 –
rl5915 48 – 278 15.42
rl5934 64 – 297 17.95
rl11849 72 – 437 –
brd14051 8 – 176 –
rd15000 20 – 711 –
d18512 8 – 207 –

Average 11.10 14.35

Table 8.18 Results for nearest neighbor partitions

For finding a global tour as well as for finding paths in the subproblems we use the
following heuristic aproach. First, the 6 nearest neighbor candidate set is computed to
speed up the heuristics. Then a nearest neighbor tour is generated, which is improved
by applying the Lin-Kernighan heuristic. In the Lin-Kernighan heuristic, each move is
composed of at most 15 2-opt or node insertion submoves.
The computational results are displayed in Table 8.18. Missing entries are either due
to the fact that too few subproblems were generated or that at least one subproblem
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contained more than 800 points. In addition to the computed tour lengths for the two
variants we have displayed the number of components in the respective partitions. Since
many entries are missing, we do not give a figure of the CPU times here. E.g., it took
3.8, 7.3, and 11.9 seconds to perform the heuristic based on the 2 nearest neighbor graph
for problems pcn3038, fnl4461, and rl5915, respectively.
Nearest neighbor decompositions seem suitable for clustered problems. If the points are
equally distributed in the plane then this partition seems not to be appropriate.

8.4.2 Delaunay Decomposition

This partition also attempts to assign points that are very likely to be close in good tours
to the same subset. Subsets obtained from nearest neighbors seem to be reasonable since
in near-optimal tours many edges will connect nearby points. Also the Delaunay graph
should exhibit relevant neighborhood relations between points. We compute a subgraph
of the Delaunay graph as follows (l is the minimal number of connected components of
this subgraph and s is the maximal size of a connected component).

procedure delaunay partition(l, s)

(1) Sort the edges of the Delaunay graph with respect to increasing lengths.

(2) Examine the edges in this order and add an edge to the subgraph if
– the number of connected components does not fall below l, and
– no component’s size is increased above s.

(3) Take the partition induced by the subgraph as the partition of the problem.

end of delaunay partition

Due to the sorting Step (1) it takes time Ω(n logn) to obtain the Delaunay partition.
Note that this procedure cannot fail and always ends up with a partition meeting the
requirements.
Two experiments with the Delaunay partition were performed.

(1) Here we require to have at least 30 components with at most 50 nodes in each
component.

(2) The lower limit on the number of components is set to �√n � and the maximal
number of nodes in a component is set to �

√
n �.

The resulting subproblems were solved in the same way as for the nearest neighbor
partition. Computational results are displayed in Table 8.19. CPU times are given in
Figure 8.20.
Again, as in the case of all previous approaches there are many possibilities for con-
ducting further experiments.
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Problem Partition 1 Length of Partition 2 Length of
#comp. tour #comp. tour

p654 30 4.58 27 19.31
rat783 30 11.13 35 14.93
pr1002 30 12.68 32 17.59
u1060 32 15.78 34 14.79

pcb1173 30 13.60 37 14.14
d1291 30 12.48 36 10.33
rl1323 30 13.60 42 18.95
fl1400 70 21.92 88 28.29
u1432 45 13.92 59 13.80
fl1577 33 18.93 45 22.11
d1655 35 19.61 44 20.62
vm1748 47 16.40 52 15.69
rl1889 37 16.00 44 21.02
u2152 44 15.39 47 14.66
pr2392 52 14.55 52 14.55
pcb3038 70 14.50 70 12.75
fl3795 123 32.51 114 27.62
fnl4461 137 13.55 116 14.05
rl5915 136 22.37 90 21.88
rl5934 141 23.39 96 20.74
rl11849 277 18.22 130 16.50
brd14051 423 13.48 266 15.16
rd15000 430 13.88 264 13.70
d18512 578 13.68 355 13.53

Average 16.09 17.36

Table 8.19 Results for Delaunay partitioning variants

0 5000 10000 15000 20000
0

10

20

30

40

50

60

[1] [2]

Figure 8.20 CPU times for Delaunay partitioning heuristics
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8.4.3 Rectangle Decomposition

In Karp (1977) the problem area is divided by horizontal and vertical cuts such that
each segment contains no more than a certain number k of points. Then, for each
segment an optimal Hamiltonian cycle on the points of that segment is computed (using
dynamic programming), and in a final step all subtours are glued together according to
some scheme to form a Hamiltonian cycle through all points. For fixed k the optimal
solutions of the respective subproblems can be determined in linear time (however,
depending on k, a large constant associated with the dynamic programming part is
hidden). Some interesting results on average behavior can be found in Karp and

Steele (1985). A further decomposition approach is discussed in Hu (1965).
We consider an even simpler geometric partitioning scheme. We enclose the problem
area by the smallest rectangle parallel to the coordinate axes. Then this rectangle is
divided by k − 1 horizontal and k − 1 vertical cuts into k2 smaller rectangles of equal
width and equal height. Every nonempty rectangle defines one subset of the partition.
In our experiments, we have chosen k = 4

√
n − 1 and k = 4

√
n. For random problems,

the choice k = 4
√
n will yield about

√
n subproblems, each of size

√
n. Table 8.21 shows

the results for the two parameter settings, Figure 8.22 displays the CPU times. The
choice k = 4

√
n+ 1 gives similar results, therefore they are not listed here.

Problem k = 4
√
n−1 k = 4

√
n

p654 11.10 7.74
rat783 9.19 11.78
pr1002 9.85 16.54
u1060 11.80 16.33

pcb1173 9.43 12.02
d1291 17.79 15.56
rl1323 14.70 17.93
fl1400 10.41 8.93
u1432 6.85 8.05
fl1577 18.48 17.93
d1655 6.71 14.13
vm1748 10.21 13.23
rl1889 15.71 14.73
u2152 13.04 14.71
pr2392 11.33 10.63
pcb3038 9.36 9.37
fl3795 13.89 12.09
fnl4461 8.01 8.67
rl5915 13.10 15.18
rl5934 13.48 13.00
rl11849 11.12 12.71
brd14051 7.61 7.80
rd15000 8.95 9.83
d18512 7.56 7.47

Average 11.24 12.35

Table 8.21 Results for rectangle decomposition

Results compare favorably with the nearest neighbor and the Delaunay partition. For
the purpose of finding reasonable tours in very short time, this simple decomposition
seems to be appropriate.
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Figure 8.22 CPU times for rectangle decomposition heuristics

A particularly interesting property of partitioning heuristics is that solving the subprob-
lems can be parallelized easily because they are completely independent. To come up
with short tours, however, emphasis has to be given to find suitable partitions. More
research has to be undertaken here.
It is also possible to derive some quality guarantee for the tours obtained this way. If
we add up lower bounds for the length of the global tour and for the lengths of the
Hamiltonian paths for the subproblems we obtain a lower bound on the length of tours
that can be computed using this particular partition.
It should be emphasized that the heuristics of this chapter are meant to complement the
well-known approaches for finding approximate TSP solutions. They are mainly useful
for finding fast solutions in the range of 10–20% quality. In any case, decomposition
seems to be the key concept for treating large problems in short time and for introduc-
ing parallelism to TSP solving. Wottawa (1991) studies the implementation of TSP
heuristics on a parallel hardware architecture. Further research, in particular concerning
decomposition approaches for finding optimal solutions, has to be conducted.
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Further Heuristic Approaches

Every TSP heuristic has, at least in principle, the chance to find an optimal tour.
But, this is an almost impossible event. Usually, an improvement method only finds
a locally optimal tour in the sense that, although the tour is not optimal, no further
improving moves can be generated. The weaker the local moves that can be performed,
the larger the difference between the length of an optimal tour and of the tour found by
the heuristic. One way to obtain better performance is to start improvement heuristics
many times with different starting tours, because this increases the chance of finding
better local minima. Success is limited, though.
Another possibility is to perturb the current tour by some modification that increases
the length of the tour and to restart the heuristic. The iterated Lin-Kernighan heuristic
follows this principle by perturbing the locally optimal tour using a random 4-opt move.
Most of the heuristics we will consider in this section try to use a systematic rule
to escape from local minima or avoid local minima. A basic ingredient is the use of
randomness which contrasts these approaches to purely deterministic heuristics. We
have not implemented the various heuristics, but give references to the literature.

9.1 Simulated Annealing

The approach of Simulated Annealing originates from theoretical physics where
Monte-Carlo methods are employed to simulate phenomena in statistical mechanics. Its
predecessor is the so-called Metropolis filter (Metropolis, Rosenbluth, Rosen-

bluth, Teller & Teller (1953)). This simulation method can be motivated as
follows. Consider a huge number of particles (e.g., gas molecules) of fixed volume at
some temperature ϑ. Since the particles move, the system can be in various states. The
probability that the system is in a state of certain energy E is given by the Boltzmann
distribution f(E) = exp(−E/(κBϑ))/z(ϑ), where z(ϑ) is a normalization factor and κB

is the Boltzmann constant. This distribution characterizes the statistical equilibrium of
the system at temperature ϑ. The physical system is simulated as follows.

procedure Metropolis filter

(1) Generate an initial state given by the positions of the particles.

(2) Perform the following steps for a given number of iterations.

(2.1) Tentatively change the position of one particle by some random displacement
and evaluate the resulting change ∆E of the energy of the system.

G. Reinelt: The Traveling Salesman, LNCS 840, pp. 153-160, 1994.
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(2.2) Accept the new position if ∆E ≤ 0 and with probability exp(−∆E/(κBϑ)) if
∆E > 0.

end of Metropolis filter

Interestingly, if the procedure is iterated long enough, then the distribution of the states
it generates is indeed the Boltzmann distribution. The necessary number of iterations
to reach this statistical equilibrium is called relaxation time and depends on the
temperature ϑ. Relaxation time increases with decreasing temperature. For ϑ→ 0 only
states of minimal energy will receive a positive mass in the distribution.
Simulated annealing uses the Metropolis filter for several temperature steps. Consider
as an analogy the physical process of cooling a liquid to its freezing point with the goal
to obtain an ordered crystalline structure. Rapid cooling would not achieve this, one
rather has to cool (anneal) the liquid very slowly in order to allow improper structures
to readjust and to have a perfect order (ground state) at the crystallization temperature.
At each temperature step the system relaxes to its statistical equilibrium.
Kirkpatrick, Gelatt & Vecchi (1983) connect such a physical process with an
optimization method for a combinatorial minimization problem. Feasible solutions cor-
respond to states of the system (an optimal solution corresponding to a ground state,
i.e., a state of minimal energy). The objective function value resembles the energy in
the physical system. System dynamics is imitated by random local modifications of the
current feasible solution. Relaxation is modeled in that, depending on the level of the
temperature, alterations that increase the energy (objective function) are more or less
likely to occur. At low temperatures, it is very improbable that the energy of the system
increases. Pure improvement heuristics as we have discussed so far can be interpreted
in this context as rapid quenching procedures that do not allow the system to relax.
We give a general outline of a simulated annealing procedure for the TSP.

procedure simulated annealing

(1) Compute an initial tour T and choose an initial temperature ϑ > 0 and a repeti-
tion factor r.

(2) As long as the stopping criterion is not satisfied perform the following steps.

(2.1) Do the following r times.

(2.1.1) Perform a random modification of the current tour to obtain the tour T ′

and let ∆ = c(T ′)− c(T ) (difference of lengths).

(2.1.2) Compute a random number x, 0 ≤ x ≤ 1.

(2.1.3) If ∆ < 0 or x < exp(−∆/ϑ) then set T = T ′.

(2.2) Update ϑ and r.

(3) Output the current tour T as solution.

end of simulated annealing
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Step (2.1) is essentially the Metropolis filter. The formulation has several degrees of
freedom and various realizations are possible. Usually 2-opt or 3-opt moves are employed
as basic modification in Step (2.1.1). The temperature ϑ is decremented in Step (2.2)
by setting ϑ = γϑ where γ < 1 is a real number close to 1, and the repetition factor r
is usually initialized with the number of cities and updated by r = αr where α is some
factor between 1 and 2. Realization of Step (2.2) determines the annealing schedule or
cooling scheme. The scheme given above is named geometric cooling. The procedure
is stopped, if the length of the current tour was not altered during several temperature
steps. Figure 9.1 shows a typical run of a simulated annealing procedure. The x-axis
counts the moves accepted, the y-axis gives the objective function value.
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15000
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Figure 9.1 Example of a simulated annealing run

Expositions of general issues for the development of simulated annealing procedures are
Aarts & Korst (1989a) and Johnson, Aragon, McGeoch & Scheron (1991), a
bibliography is given in Collins, Eglese & Golden (1988). Computational experi-
ments for the TSP are, for example, reported in Kirkpatrick (1984), Cerny (1985),
van Laarhoven (1988), Aarts & Korst (1989b), and Johnson (1990). It is gen-
erally observed that simulated annealing can find very good or even optimal solutions
and beats Lin-Kernighan concerning quality. To be certain of this, however, one has to
spend considerable CPU time because temperature has to be decreased very slowly and
many repetitions at each temperature step are necessary.
We think that the most appealing property of simulated annealing is its fairly simple
implementation. The principle can also be used to approach very complicated problems,
since one only needs a basic subroutine that turns a feasible solution into another feasible
solution. But, a requirement that should not be underestimated is the proper choice of
the annealing scheme. This is highly problem dependent and only numerous experiments
can find the most suitable parameters.
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Hajek (1985) proves the interesting theoretical results that, if the basic move satisfies
some property and if a certain annealing schedule is used, this algorithm converges to an
optimal solution with probability 1. Unfortunately, the theoretically required scheme is
not suited for practical use, because it leads to very slow convergence.
A variant of simulated annealing enhanced by deterministic local improvement is dis-
cussed inMartin, Otto & Felten (1992). When properly implemented, near optimal
solutions can be found faster than with pure simulated annealing. A further heuristic
motivated by phenomena from physics is simulated tunneling described in Ruján

(1988).
Dueck & Scheuer (1990) propose a simpler variant of simulated annealing, where
acceptance of a length increasing move does not depend on probabilities. Rather, at
each major iteration step, an upper bound is given by which the length of the current
tour is allowed to be increased by the basic move. This threshold value is decreased
according to some rule. The procedure is stopped if changes of the tour are not registered
for several steps. In a purely deterministic variant, a certain number of 2-opt moves
based on a candidate subgraph is examined, thus avoiding the generation of random
moves.

procedure threshold accept

(1) Compute an initial tour T and choose an initial threshold Θ and a repetition
factor r.

(2) As long as the stopping criterion is not satisfied perform the following steps.

(2.1) Do the following r times.

(2.1.1) Perform a random modification of the current tour to obtain the tour T ′

and let ∆ = c(T ′)− c(T ) (difference of lengths).

(2.1.2) If ∆ < Θ, then set T = T ′.

(2.2) Update Θ and r.

(3) Output the current tour T as solution.

end of threshold accept

Computational results display similar behaviour as simulated annealing. Althöfer &

Koschnick (1989) give a theoretical convergence result.
An even simpler variant, called “Great Deluge” heuristic, is discussed in Dueck

(1993). Here, at each major iteration step, there is an upper limit on the length of
tours that are accepted. Every random move yielding a tour better than this length
is accepted. The name of this approach comes from the interpretation that (for a
maximization problem) the limit corresponds to the level of water which is rising during
the heuristic and moves leading “into the water” are not accepted.

procedure great deluge

(1) Compute an initial tour T and choose an initial upper limit U and a repetition
factor r.
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(2) As long as the stopping criterion is not satisfied perform the following steps.

(2.1) Do the following r times.

(2.1.1) Perform a random modification of the current tour to obtain the tour T ′.

(2.1.2) If c(T ′) ≤ U , then set T = T ′.

(2.2) Update U and r.

(3) Output the current tour T as solution.

end of great deluge

With fairly moderate computation time this method is reported to yield good results
for practical traveling salesman problems arising when drilling printed-circuit boards.

9.2 Evolutionary Strategies and Genetic Algorithms

The following two related approaches were motivated by trying to imitate evolution in
nature, which can find very good (or presumably optimal) solutions to highly complex
problems.
The first approach is termed evolutionary strategy since it is based on analogues of
“mutation” and “selection” to derive an optimization heuristic (Rechenberg (1973)).
Its basic principle is the following.

procedure evolution

(1) Compute an initial tour T .

(2) As long as the stopping criterion is not satisfied perform the following steps.

(2.1) Generate a modification of T to obtain the tour T ′.

(2.2) If c(T ′)− c(T ) < 0 then set T = T ′.

(3) Output the current tour T as solution.

end of evolution

Note, that moves increasing the length of the tour are not accepted. The term “evolu-
tion” is used because the moves generated in Step (2.1) should be biased by knowledge
aquired so far, i.e., somehow moves that have lead to a decrease of tour length should
influence the generation of the next move. This principle, however, is hardly followed
in practice, moves taken into account are usually k-opt moves generated at random.
Formulated this way, the procedure cannot leave local minima and experiments show
that it indeed gets stuck in rather poor local minima. Moreover, convergence is slow
justifying the name “creeping random search” which is also used for this method.
To leave local minima one has to incorporate the possibility for perturbations that
increase the tour length (Ablay (1987)). Then this method can resemble a mixture of
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pure evolutionary strategy, simulated anneling, threshold accept, and tabu search (see
below).
More powerful in nature than just mutation-selection is genetic recombination. Inter-
pretated in terms of the TSP this means that new tours should not be constructed from
just one parent tour but rather be a suitable combination of two or more tours. Based
on this principle, so-called genetic algorithms were developed.

procedure genetic algorithm

(1) Compute an initial set T of tours.

(2) As long as the stopping criterion is not satisfied perform the following steps.

(2.1) Recombine two or more tours of T to obtain a new tour T which is added
to T .

(2.2) Reduce the set T according to some rule.

(3) Output the best tour found during the heuristic as solution.

end of genetic algorithm

We see that Step (2.1) mimics reproduction in the population T and that Step (2.2)
corresponds to a “survival of the fittest” rule.
Concrete realizations are manifold. Usually, subpaths of given tours are connected to
form new tours and reduction is just keeping the set of k best tours of T . One can
also apply deterministic improvement methods to the newly generated tour T before
performing Step (2.2). For an introduction, see Goldberg (1989). Applications to
the TSP are reported in Fruhwirth (1987), Mühlenbein, Gorges-Schleuter &

Krämer (1988), Gorges-Schleuter (1990), and Ulder, Pesch, van Laarhoven,

Bandelt & Aarts (1990). Findings of optimal solutions are reported for some problem
instances with considerable amount of CPU time.

9.3 Tabu Search

Since the above heuristics allow length-increasing moves, local minima can be left during
computation. No precaution, however, is taken to prevent the heuristic to revisit a local
minimum several times. The approach of tabu search guarantees that it is forbidden
(tabu) to return to the same feasible solution.

procedure tabu search

(1) Compute an initial tour T and start with an empty tabu list L.
(2) As long as the stopping criterion is not satisfied perform the following steps.

(2.1) Perform a move that is not forbidden by L.
(2.2) Update the tabu list L.

(3) Output the best tour found during the heuristic as solution.

end of tabu search
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Again, there are various possibilities to realize a heuristic based on the tabu search
principle. Basic difficulties are the design of a reasonable tabu list, the efficient manage-
ment of this list, and the selection of the most appropriate move in Step (2.1). Glover

(1989) gives a detailed introduction to tabu search methods. Knox & Glover (1989),
Malek, Guruswamy, Owens & Pandya (1989), and Malek, Heap, Kapur &

Mourad (1989) report computational results for the TSP.

9.4 Neural Networks

The final heuristic is motivated by research on the functioning of the human brain.
Basically, it models a set of neurons connected by a certain type of interconnection
network. Based on the inputs that a neuron receives, a certain output is computed
which is propagated to other neurons. A variety of models addresses activation status
of neurons, determination of outputs and propagation of signals in the net with the
basic goal to realize some kind of learning mechanism. The result computed by a neural
network either appears explicitly as output or is given by the state of the neurons.
Interesting in this context is the report Henriques, Safayeni & Fuller (1987) which
discusses quality of manual solutions to small TSP instances.
We discuss one approach for the Euclidean TSP in more detail (Durbin & Willshaw

(1987)). Here with each neuron a position in the plane is associated. In the beginning,
the neurons are ordered along a circle. During the computation neurons are “stimulated”
and approach a tour through the given set of points.

procedure neural net

(1) Initialize a cycle of m neurons (e.g., m = 3n) in the area of the points defining
the problem instance.

(2) As long as the stopping criterion is not satisfied perform the following steps.

(2.1) Choose a TSP point i at random.

(2.2) According to certain rules move the neuron whose position is closest to i and
some of its neighbors in the neuron cycle towards i.

(3) Construct a tour from the final configuration of neurons.

end of neural net

Figure 9.2 visualizes this neural net, showing that the cycle of neurons approaches a
Hamiltonian tour. Fritzke & Wilke (1991) give a further neural network algorithm
for the TSP. A survey of different models is Potvin (1993).
We think that computational results are not yet convincing. In our experiments, we
found that the tours generated by the above algorithm are similar to nearest insertion
tours with respect to structure and quality.
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Figure 9.2 A neural net approaching a tour

For general reading on neural networks or connectionism see Hopfield & Tank

(1985), Rumelhart, Hinton & McClelland (1986), and Kemke (1988).

The randomized improvement heuristics or stochastic search methods dis-
cussed in this chapter certainly belong to the tool-kit of heuristic optimization for the
TSP. To date, it is not clear whether there are variants that can compete with the
purely deterministic approaches of Chapter 7 with respect to speed. If running time is
not a major concern, then heuristics of this type can be successfully employed since they
usually avoid bad local minima and have a chance to even find optimal solutions. We
encourage the reader to consult the cited publications to form his/her own opinion and
experiment with different variants. An attractive feature is, that these approaches are
generally applicable to combinatorial optimization problems and other types of prob-
lems. They can be implemented with comparatively low effort and also with little
knowledge about problem structure.
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Lower Bounds

When solving TSPs in practice, the main interest, of course, lies in computing good
feasible tours. But, in addition, one would like to have some guarantee on the quality of
the solutions found. Such guarantees can, except for weak a-priori guarantees for some
heuristics, only be given if a lower bound for the length of a shortest possible tour is
known.
In general, lower bounds are obtained by solving relaxations of the original problem
in the sense that one optimizes over some set containing all feasible solutions of the
original problem as a (proper) subset. Then (for a minimization problem) the optimal
solution of the relaxed problem gives a valid lower bound for the value of the optimal
solution of the original problem. Different relaxations provide different lower bounds.
The main goal is to find relaxation problems for the TSP that can be solved efficiently
and which are as tight as possible under this constraint.
For the purposes of this study, we are mainly interested in lower bounds which can
be computed fast enough to only slightly increase the overall computation effort and
running time. These lower bounds are not meant to give a very good estimate of the
achievable optimum (say within a few percent) but to give indications on the quality
of tours found by fast heuristics. This is usually sufficient for practitioners to get an
impression of the performance of a heuristic on a particular problem.
But, to really evaluate a heuristic one should spend more time for computing better
lower bounds. We will also address this question and indicate how CPU time can be
saved.

10.1 Bounds from Linear Programming

Employing linear programming to determine lower bounds for the traveling salesman
problem is not a major topic of this monograph. We will return to approaches for solving
the TSP to optimality using linear programming bounds in Chapter 12. For the purposes
of this chapter we need the theoretical framework provided by linear programming. The
(combinatorial) bounds to be discussed in the following section can be compared with
respect to related linear programming relaxations.
Consider the traveling salesman polytope PT = conv{χF ∈ {0, 1}(

n
2) | χF is the

incidence vector of tour F in Kn = (Vn, En)}, i.e., the convex hull of the incidence
vectors of all tours in the complete graph. For a given vector c of edge lengths the
optimal solution of the corresponding traveling salesman problem instance is obtained
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by solving the linear programming problem min{cTx | x ∈ PT}. The question of solving
this problem will be addressed in Chapter 12.
Now let P be a polytope (or polyhedron) such that PT ⊆ P . A solution of the problem
min{cTx | x ∈ P} yields a lower bound on the minimal tour length. Depending on how
well P approximates PT this lower bound may come close to the optimal tour length.
Two relaxations are of particular interest for the following.

10.1.1 The 2-Matching Relaxation

A perfect 2-matching in a graph G = (V,E) is a set of edges such that every node of
V is incident to exactly two of these edges. Every tour is therefore a perfect 2-matching,
but since also a collection of subtours is a perfect 2-matching we only have a relaxation.
The following is an integer linear programming formulation of the 2-matching problem.

min
∑

ij∈En

cijxij

x(δ(i)) = 2, for all i ∈ Vn,

xij ∈ {0, 1}, for all ij ∈ En.

This problem can be solved in polynomial time (Edmonds & Johnson (1973)). Im-
plementation of this algorithm is nontrivial, its worst case running time is O(n3). An
efficient implementation is discussed in Pekny & Miller (1994).
If we replace the requirement “xij ∈ {0, 1}” by “0 ≤ xij ≤ 1” we obtain the fractional
2-matching relaxation of the traveling salesman problem.

10.1.2 The Subtour Elimination Relaxation

In the 2-matching problem only the degree constraints are taken into account. Short
cycles are not forbidden. If we include conditions to eliminate such subtours we obtain
the following integer linear program.

min
∑

ij∈En

cijxij

n∑
j=1

xij = 2, for all i ∈ Vn,

x(E(S)) ≤ |S| − 1, for all S ⊆ Vn, 2 ≤ |S| ≤ �n
2
	,

xij ∈ {0, 1}, for all ij ∈ En.

Note that this formulation is equivalent to the one given in section 2.3. Feasible solutions
of this problem are exactly the incidence vectors of tours. Therefore solving this problem
is NP-hard. Relaxing the integrality stipulations and observing that the constraints
for the 2-element sets S yield upper bounds for the variables we obtain the subtour
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elimination relaxation of the TSP.

min
∑

ij∈En

cijxij

n∑
j=1

xij = 2, for all i ∈ Vn,

x(E(S)) ≤ |S| − 1, for all S ⊆ Vn, 2 ≤ |S| ≤ �n
2
	,

xij ≥ 0, for all ij ∈ En.

An equivalent formulation of this linear programming problem (Grötschel & Pad-

berg (1985)) is the following.

min
∑

ij∈En

cijxij

n∑
j=1

xij = 2, for all i ∈ Vn,

x(δ(W )) ≥ 2, for all W ⊆ Vn, 2 ≤ |W | ≤ �n
2
	,

xij ≥ 0, for all ij ∈ En.

Here subtour elimination constraints are given in their cut version. This corresponds to
requiring that every (nonempty) cut in Kn contains at least two tour edges.
The subtour elimination bound can be determined in polynomial time using the ellipsoid
method (Grötschel, Lovász & Schrijver (1988)) based on a polynomial time sepa-
ration algorithm for subtour elimination constraints (Padberg & Grötschel (1985)).
So far, no “nice” algorithm, i.e., an algorithm which does not explicitly need an LP solver
as subroutine, for solving this problem in polynomial time is known. Some interesting
properties of this relaxation are studied in Boyd & Pulleyblank (1990).

10.2 Simple Lower Bounds

We start the discussion of lower bounds for the TSP by considering several fairly simple
bounds. These bounds are “combinatorial” in the sense that they are derived directly
as obvious relaxations of the definition of tours.

10.2.1 The 1-Tree Bound

The 1-tree bound for the TSP is based on the following observation. If we select some
node of the problem, say node 1, then a Hamiltonian tour consists of a special spanning
tree (namely a path) on the remaining n − 1 nodes plus two edges connecting node 1
to this spanning tree. Hence we obtain a relaxation of the TSP if we take as feasible
solutions arbitrary spanning trees on the node set Vn \ {1} plus two additional edges
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incident to node 1. Of course, in the case of nonnegative edge lengths, the weight of the
minimum spanning tree alone also provides a (weaker) lower bound.
Figure 10.1 displays a 1-tree for problem pcb442. In this 1-tree the special node is the
node in the lower right corner. The corresponding lower bound is 46858. Recall that a
shortest possible tour has length 50778.

Figure 10.1 A 1-tree lower bound for pcb442

We use the following procedure to determine a 1-tree lower bound.

procedure simple 1tree

(1) Compute a minimum weight spanning tree T and let c(T ) be its weight.

(2) For every node i which is a leaf of this spanning tree compute the distance d2(i)
to its second nearest neighbor (an edge to the nearest neighbor is already in T ).
This gives the lower bound c(T ) + d2(i) on the minimal tour length.

(3) Take the best of the bounds computed in Step (2).

end of simple 1tree

Note, that we do not compute the best obtainable 1-tree. We just consider those nodes
as special nodes which have degree 1 in the minimum spanning tree, and we take the
best of these lower bounds. To compute the best 1-tree we have to compute n minimum
spanning trees which is too time consuming.
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In general, computing a minimum spanning tree in a complete graph on n nodes takes
time O(n2), and finding the additional edge takes time O(n) for every leaf. If we are
not interested in computing several 1-trees we can compute a minimum spanning tree
on the nodes 2, 3, . . . , n in time O(n2) and add the two shortest edges incident to node 1
in time O(n).
For geometric problems, we can do better by exploiting the Delaunay graph. Recall
that the Delaunay graph is planar and therefore has O(n) edges. Since the Delaunay
graph contains a minimum spanning tree (for the complete graph) this spanning tree
can be computed in the Delaunay graph in time O(n logn) using Kruskal’s algorithm.
Computing the various 1-trees for the leaves can be done with little additional time.
For every node i we only have to compute the distances to nodes that are connected to
i in the Delaunay graph by a path of length at most two. In the usual case these are
only very few nodes.
The 1-tree computation constitutes a relaxation of the problem of finding a shortest
Hamiltonian tour since we do not require every node to have degree 2. If a minimum
1-tree computed as above happens to satisfy this degree constraint, then it is an optimal
tour. Unfortunately, this can never be expected for practical problems.
For other metrics we can employ the respective Delaunay graphs to speed up compu-
tations as well. With the help of the Delaunay graph we can determine the possible
best 1-tree in time O(n2 log n). Computing this 1-tree, however, turned out not to be
worthwhile, because it only slightly (if at all) improves our simple 1-tree bound.
Frieze (1979) describes a tour construction heuristic based on 1-trees, that yields tours
at most 2− (k/n) times longer than an optimal tour in time O(n3+k) for 1 ≤ k ≤ n−2.
The 1-tree bound can be adapted in a fairly natural way to the asymmetric traveling
salesman problem. For the ATSP, so-called spanning 1-arborescences are relaxations
of directed Hamiltonian cycles. A 1-arborescence is an arc set with the property that
every node has indegree at most 1 and a special node has indegree and outdegree
equal to 1. The determination of minimum weight spanning 1-arborescences is more
complicated than the determination of minimum spanning 1-trees, but can still be done
very efficiently (Fischetti & Toth (1993).

10.2.2 The 2-Neighbor Bound

In a tour, each node is connected to exactly two other nodes. If we have a tour in which
each node is connected to its two nearest neighbors then this tour must be optimal.
Of course, this can only be achieved in very rare cases. In general, this observation
leads to the derivation of a further simple lower bound. If we compute for all nodes
the distances to their two nearest neighbors, sum up all these distances and divide by 2
then this number (rounded up) gives a lower bound on the minimal tour length. We
call the subgraph of the complete graph which is obtained by taking for each node the
two edges to its two nearest neighbors a 2-neighbor configuration. In this case we
keep multiple edges, so that such a configuration consists of 2n edges.
Figure 10.2 visualizes the 2-neighbor lower bound for problem pcb442. It provides the
lower bound 47304.
The 2-neighbor bound can be computed trivially in time O(n2). For geometric instances
we can do better by exploiting the Delaunay graph. Having computed the Delaunay
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graph in time O(n logn) we only have to compute for every node the distances to those
nodes that are connected to it by a path of length at most two. The two nearest
neighbors are among these nodes.

Figure 10.2 The 2-neighbor bound for pcb442

The quality of the bounds is, of course, highly problem dependent. The 2-neighbor
configurations can give very poor bounds if there are clusters of points. Some such
examples can be found in the computational results (e.g., d198, p654, u1060 or rl5934).
A large gap between 1-tree and 2-neighbor bound might indicate that the problem is
well suited for decomposition algorithms (described in Chapter 8) and also that the
nearest neighbor candidate set is not sufficient for finding good tours.

10.2.3 The Assignment Relaxation

Another example of an relaxation that is often discussed in the context of TSP relax-
ations is the assignment relaxation. It is usually employed for asymmetric problem
instances, but can also be formulated for the undirected problem.
An assignment for Vn = {1, 2, . . . , n} is a collection S of ordered pairs of the form
S = {(i, ni) | i = 1, 2 . . . , n} such that every node occurs exactly once as the second
component of a pair.
A tour gives a particular assignment as follows: we choose one of the two possible
orientations of the tour and assign to every node its successor in the tour according to
the chosen orientation. Such assignments have the additional property that for every
pair (i, ni) we have i �= ni. The cost of the assignment is exactly the length of the tour.
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Conversely, we can associate with every assignment the undirected graph given by the
edges {i, ni}, i = 1, 2, . . . , n. This graph can have loops or multiple edges. If we restrict
ourselves to assignments not containing pairs (i, ni) with i = ni then the associated
graph consists only of multiple edges and cycles.
Therefore, the assigment problem constitutes a relaxation of the TSP. It can be solved
in time O(n3) with several algorithmic approaches, e.g. with the Hungarian method
(see Carpaneto & Toth (1983) for an efficient implementation).
If we do not allow loops, then the following is an integer linear programming formulation
of the assignment relaxation for the TSP.

min
∑

ij∈En

cijxij

x(δ(i)) = 2, for all i ∈ Vn,

xij ∈ {0, 1, 2}, for all ij ∈ En.

The similarity to the 2-matching relaxation 10.1.1 is immediately seen. The important
difference is that edge variables are allowed to have values greater than 1. Therefore,
this relaxation is weaker than the 2-matching relaxation.

Figure 10.3 The assignment lower bound for pcb442

Figure 10.3 show the assignment lower bound for problem pcb442 with value 46830.
The optimal assignment does not even come close to a tour. It contains many multiple
edges and only short cycles.
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10.2.4 Geometric Bounds

The idea of the geometric lower bound described in the sequel originates from techniques
applied to the Euclidean matching problem (Jünger & Pulleyblank (1993)).
The geometric structure of Euclidean TSPs yields a very simple illustrative lower bound
for the TSP. We compute a system of circles around nodes and moats around sets of
circles and moats. This is done in such a way that circles and moats do not overlap
each other. Moreover, there has to be always at least one node inside and outside of
each circle and moat.
Each node has to be contained in a tour and every moat has to be crossed at least two
times (since there are nodes inside and outside of each moat). Hence twice the sum of
the radii of all circles and the width of all moats gives a lower bound on the minimal
tour length.
Figure 10.4 gives an illustration of such a system consisting of 7 circles and 5 moats.

Figure 10.4 A system of circles and moats

Different systems of circles and moats are possible for a collection of points. One such
geometric lower bound can be computed by extending Kruskal’s algorithm with little
additional computational effort. We give the procedure below.

procedure geometric bound

(1) For the sake of simplicity we shall always speak about moats in the sequel (circles
are just moats around a single node). Whenever a tree edge is selected during
Kruskal’s algorithm, it connects two components to form a new component. At
this point a weight w will be assigned to the new component. This weight depends
on the connecting edge and on the weights of the two participating components.
Initially all components are just single nodes and their respective weights are 0.
The lower bound lb is also set to 0.
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(2) Let e be a tree edge with length ce selected by Kruskal’s algorithm. Let C1 and
C2 be the two components to be connected to form the new component C. We
set lb := lb+ 2 · (ce − wC1 − wC2) and wC := ce/2, where wC , wC1 , and wC2 are
the weights associated with the respective components.
(Note that the weights are not the moat widths. The widths of the moats around
the components C1 and C2 used here implicitly are 1

2ce − wC1 and 1
2ce − wC2 .)

(3) The value lb computed above gives a geometric lower bound based on circles and
moats.

end of geometric bound

The geometric lower bound as defined above can be obtained with (practically) no
additional running time when implemented as in this procedure. Looking more closely
at the way how this particular lower bound is computed, one realizes that it is exactly
the sum of the length of a minimum spanning tree and the length of the final edge added
by Kruskal’s algorithm, i.e., the longest edge of the minimum spanning tree. Therefore,
this specific computation is not restricted to geometric instances only. It applies to
arbitrary TSPs.
The geometric bound seems to be rather weak. But we shall see below that the weak
bounds obtained are only due to our simple scheme for determining the radii of the
circles and the widths of the moats.
If we denote by zi the radius of the circle around node i and by yS the width of the
moat around set S, 2 ≤ |S| ≤ n− 1, then the problem of finding the best bound can be
formulated as a linear programming problem as follows.

max 2
n∑

i=1

zi + 2
∑
S

yS

zi + zj +
∑

S
i∈S,j /∈S

yS ≤ cij , for all ij ∈ En,(CM)

zi ≥ 0, for all i ∈ Vn,

yS ≥ 0, for all 2 ≤ |S| ≤ n− 1.

Dualizing this linear program we obtain

min
∑

ij∈En

cijxij

n∑
j=1

xij ≥ 2, for all i ∈ Vn,(CMD)

∑
S

i∈S,j /∈S

xij ≥ 2, for all 2 ≤ |S| ≤ n− 1,

xij ≥ 0, for all ij ∈ En.

Note that the first group of inequalities corresponds to a set S of cardinality 1 in the
second system.
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It is known that every vertex x∗ of the polytope defining (CMD) is given as the unique
solution of a system of

(
n
2

)
equations of the form

xij = 0, for all ij ∈ F,∑
i∈S,j /∈S

xij = 2, for all S ∈ B ⊆ 2Vn , |S| ≥ 1,

where B is a nested family, i.e., for every Si, Sj ∈ B we have either Si ⊂ Sj , Sj ⊂ Si, or
Si ∩ Sj = ∅, and where F ⊆ En, |F | =

(
n
2

)
− |B| (Cornuejols, Fonlupt & Naddef

(1985), Boyd & Pulleyblank (1990)). Due to this condition we obtain |B| ≤ 2n− 1.
In our application we have cij > 0 for all ij ∈ En and we are looking for the minimizer
of (CMD) (i.e., the maximal circles and moats lower bound). Let x∗ be the minimizer.
It is easy to see that for every i ∈ Vn we must have

∑n
j=1 xij = 2. Suppose this is not

the case for some i ∈ Vn and let S be the minimal element (with respect to inclusion)
of B containing node i. Then there is an edge ik with x∗ik > 0 and k ∈ S (otherwise
S /∈ B). We can set x∗ik = max{0, 2 −

∑
j �=k x

∗
ij} without violating any condition and

obtain a new solution having strictly less objective function value.
This proves that, for a nonnegative objective function, the best circles and moats bound
is equivalent to the subtour relaxation bound. Therefore, as noted above, this bound
can be determined in polynomial time making use of the ellipsoid method. It would be
interesting to design efficient heuristics providing good systems of circles and moats.

10.2.5 Computations

We have evaluated the above bounds for our set of sample problems. Except for the case
of the assignment bound all bounds were computed exactly. Because of the running time
O(n3) of assignment algorithms for complete graphs, the assignment bound was only
computed for the subgraph consisting of the Delaunay graph and the 10 nearest neighbor
subgraph. We tested several cases and always found that the assignment computed for
this subgraph had the same value as the minimum weight assignment computed for the
complete graph.
Table 10.5 displays the qualities of the computed bounds relative to the best known
upper bounds. I.e., if cL is a lower bound, we define its quality as 100 · (cL − cU )/cU
where cU is the length of the best known tour as given in Table 3.1. Best qualities in
each row are marked.
The table gives a clear picture. The 1-tree and the related geometric bound perform
best, providing on the average bounds about 10% below the optimal objective function
value. The 2-neighbor and the assignment bounds are significantly worse. In some
cases, however, the 2-neighbor bound is better than the tree bounds. Therefore, since it
is quickly computed, it is worthwhile to be also used as a fast lower bounding procedure
accompanying the tree bounds.
We end this section with an impression of the necessary CPU times. Figure 10.6 shows
the running times for minimum spanning tree, the simple 1-tree and the 2-neighbor
configuration bounding procedures. Running times are given without the necessary
preprocessing times for computing the Delaunay graph. The figure shows that very
little additional time is needed and that CPU times are well predictable.
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Problem MST 1-tree Geometric 2-neighbor Assignment

d198 25.61 18.16* 17.08 37.31 32.78
lin318 9.94 9.21 8.78* 18.91 35.17
fl417 14.27 11.98 10.37* 30.66 35.50
pcb442 8.70 7.72 7.82 6.84* 7.78
u574 13.08 12.14* 12.25 17.03 20.97
p654 14.97 12.99 11.58* 29.11 32.14

rat783 7.73 7.44* 7.47 9.33 15.47
pr1002 13.46 12.82 12.66* 15.07 17.23
u1060 12.78 11.72* 11.96 16.49 18.15

pcb1173 9.63 9.20* 9.25 8.58 10.18
d1291 7.62 5.08* 5.11 16.98 19.83
rl1323 11.18 10.82 10.43* 18.93 23.32
fl1400 15.20 12.53* 12.90 31.01 39.40
u1432 4.57 4.38 4.39 3.39* 3.42
fl1577 12.62 12.00 10.67* 23.34 24.77
d1655 8.99 6.62* 6.64 12.15 13.73
vm1748 12.46 12.16* 12.20 14.40 17.01
rl1889 12.09 11.85 11.83* 18.71 22.87
u2152 4.16 4.00* 4.00* 7.80 12.10
pr2392 9.46 9.35 9.33* 10.66 15.49
pcb3038 7.55 7.42 7.42 6.69* 8.00
fl3795 12.18 10.33* 10.86 21.39 19.23
fnl4461 7.73 7.65* 7.66 6.83 9.97
rl5934 7.24 7.17 7.09* 13.64 17.76

Average 10.97 9.78 9.57 16.47 19.68

Table 10.5 Quality of lower bounding procedures
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Figure 10.6 CPU times for tree lower bounds
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Figure 10.7 CPU times for assignment lower bounds

Figure 10.7 shows the running times for our implementation of the Hungarian method
for solving assignment problems. Running time, even for the sparse graphs, are con-
siderable. Therefore, the assignment bound is, not only because of its weakness, of no
interest for practical computations.

10.3 Lagrangean Relaxation

The 1-tree and the 2-neighbor bounds discussed in the previous sections are useful for
practical purposes, but are quite weak as the experiments have exhibited. In this section
we discuss how these bounds can be improved by fairly simple means requiring only little
additional implementational effort.
Before putting this bound improvement into a proper theoretical context, we will
describe an intuitive approach. In a tour exactly two edges are incident to each
node. If we associate with each node i some weight πi and use modified edge weights
c′ij = cij + πi + πj then the length of every tour is increased by 2 ·

∑n
i=1 πi. Hence

the relative order of the tours with respect to their length remains unchanged. If we
compute lower bounds using the new weights and subtract 2 ·

∑n
i=1 πi we obtain lower

bounds for the original problem. Therefore we can use the node weights to make nodes
more or less attractive to try, for example, to approach the satisfaction of the degree
constraints in 1-tree computations. Nodes having degree 1 in the current 1-tree should
become more attractive whereas edges to nodes with high degree should receive larger
weight. Simple examples show already that bounds can indeed be improved this way.
This intuitive idea is exactly reflected in Lagrangean relaxation approaches to the TSP.
We will first describe the general method.
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10.3.1 The General Approach

One of the most common approaches for obtaining bounds on the optimal objective
function value of an integer linear program is the method of Lagrangean relaxation.
Let the following integer linear programming problem be given.

z∗ := min cTx
Ax = b

Bx = d(P)
x ≥ 0
x integer.

For any y the following integer linear programming problem provides a lower bound for
the minimal value z∗ of (P).

L(y) := min cTx + (d−Bx)T y

Ax = b

x ≥ 0(Dy)
x integer.

The lower bound property can easily be seen since every feasible solution for (P) is
also feasible for (Dy) with the same objective function value. Note that, since y is not
restricted in sign, we could as well use the objective function cTx + (Bx− d)T y. The
vector y is called vector of Lagrange multipliers. The best such lower bound is then
given by solving the so-called Lagrangean dual problem

(LD) u∗ := max
y
L(y)

i.e., by finding the maximum of the function L.
The function L is piecewise linear and concave (and hence nondifferentiable). A suit-
able method for maximizing L is subgradient maximization. A vector d is called
subgradient of L at x, if dT (y − x) ≥ L(y) − L(x) for all y.
Suppose x∗ is the minimizer of Dy∗ for some vector of Lagrange multipliers y∗. Then
u∗ = d−Bx∗ is a subgradient of L at y∗ as is seen from

L(y∗ + h) − L(y∗) ≤ cTx∗ + (d−Bx∗)T (y∗ + h) − cTx∗ − (d−Bx∗)T y∗

= (d−Bx∗)Th

= hTu∗, for all h.

Hence solving problem Dy for some y, at the same time provides a subgradient of L at
y.
The subgradient method is an iterative method which at a given point yk computes
the next iterate yk+1 by

yk+1 = yk + λkd
k,
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where dk is a subgradient of L at yk and λk is a suitable step length.
If L is bounded from above and if the step lengths satisfy both limk→∞ λk = 0 and∑∞

k=0 λk = ∞, then the method converges to the maximum of L (Polyak (1978)).
It turned out in practice that the step length formula above leads to very slow con-
vergence. So the requirement

∑∞
k=0 λk = ∞ is usually dropped and there are several

formulas for computing the step length leading to satisfactory convergence in practical
applications. A widely used formula is e.g.,

λk = α · U − L(yk)
||dk|| ,

where U is an upper bound on L, and 0 < α < 2 is some constant which is periodically
decreased. The method is stopped as soon as there is no more significant increase in
the bound.
Clearly, the quality of the bound provided by the Lagrangean dual depends on the
choice of the constraint set Bx = d to be relaxed. This also influences the complexity
of the Lagrangean subproblems to be solved for each multiplier set y.
Consider the following series of problems.

z∗ := min
x

{cTx | Ax = b, Bx = d, x ≥ 0, x integer }(P)

z∗LP := min
x

{cTx | Ax = b, Bx = d, x ≥ 0}(PLP)

z∗D := max
u,v

{dTu+ bT v | uTB + vTA ≤ cT }

u∗D := max
u

{dTu+ max
v

{bT v | vTA ≤ cT − uTB}}

u∗LP := max
u

{dTu+ min
x

{(cT − uTB)x | Ax = b, x ≥ 0}}

u∗ := max
u

{dTu+ min
x

{(cT − uTB)x | Ax = b, x ≥ 0, x integer }}(LD)

In general we have z∗ ≥ z∗LP = z∗D = u∗D = u∗LP ≤ u∗.
In the special case where {x | Ax = b, x ≥ 0} is an integer polyhedron (i.e., has only
integer vertices), we have u∗ = u∗LP = z∗LP . In this case, the value of the Lagrangean
dual is equal to the value of the linear programming relaxation (PLP) of the integer linear
program (P). Moreover, as noted in Schrijver (1986), if we can solve min{(cT−uTB)x |
Ax = b, x ≥ 0} in polynomial time for each u, then we can also solve (LD) in polynomial
time and we can directly apply LP techniques on (PLP) to compute u∗. But, even
though (LD) might be solvable in polynomial time, this fact might not be exploitable
in practice, especially when larger problems have to be solved. Therefore, for each
choice of Lagrangean relaxation one has to think about the best way for computing or
approximating u∗.
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For convenience we have used equation systems for both the relaxed and the maintained
constraints. Treating inequality systems does not cause any problems. If inequalities
(“≥”) are relaxed then their corresponding Lagrange multipliers must be nonnegative.
We will now show that 1-tree and 2-neighbor relaxations are particular applications of
the general method for the TSP.

10.3.2 Lagrangean Relaxation with 1-Trees

In section 2.3 we have given an integer linear programming formulation of the TSP.
For the purposes of this chapter we write this formulation in a different, but equivalent
form.

c∗ := min
∑

ij∈En

cijxij

n∑
j=1

xij = 2, for i ∈ Vn \ {1},

n∑
j=1

x1j = 2,

∑
ij∈En

xij = n,

x(C) ≤ |C| − 1, for all cycles C in {2, 3, . . . , n},
xij ∈ {0, 1}, for all ij ∈ En.

If we now relax the first system of equations and associate multipliers πi with the nodes,
we obtain the following relaxation. For convenience we also define π1 and set it to 0.

L(π) := min −2
n∑

i=1

πi +
∑

ij∈En

(cij + πi + πj)xij

n∑
j=1

x1j = 2,

∑
ij∈En

xij = n,

x(C) ≤ |C| − 1, for all cycles C in {2, 3, . . . , n},
xij ∈ {0, 1}, for all ij ∈ En.

It is known that the condition xij ∈ {0, 1}, for all ij ∈ En, is not necessary in this
formulation because the system of linear equations and inequalities describes an integral
polyhedron whose vertices are exactly the incidence vectors of 1-trees. Therefore, due to
the observations above, the value of the Lagrangean dual based on 1-trees is equivalent
to the lower bound provided by the subtour elimination relaxation defined in 10.1.2.
Since feasible solutions of the integer programm are exactly 1-trees with special node 1,
the relaxation can be rewritten as follows.
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L(π) := min
∑

ij∈En

cijxij +
n∑

i=1

πi

( n∑
j=1

xij − 2
)

x is incidence vector of a 1-tree .

Determining L(π) for a given π amounts to computing a 1-tree with respect to the
modified edge weights cij+πi+πj and subtracting 2

∑n
i=1 πi. According to the preceding

section, the minimum 1-tree readily supplies a subgradient as follows. Let δi be the
degree of node i in the minimum 1-tree. Then the vector (δ1 − 2, δ2 − 2, . . . , δn − 2) is
a subgradient of L at π.
Held & Karp (1970,1971) describe the first algorithm for finding the maximum of
L, and we therefore call the best 1-tree bound also Held-Karp bound. There are
several variations concerning the choice of initial step sizes and update of step sizes
(Helbig-Hansen & Krarup (1974), Smith & thompson (1977), Volgenant &

Jonker (1982), and Balas & Toth (1985)). Based on these references and on own
experiments we used the following implementation.

procedure 1tree bound

(1) Let τ be the initial step length, λ a decrement factor for the step length, and m
the number of iterations.

(2) Set t1 = τ , π1
i = 0 for every node i, and k = 1.

(3) As long as k ≤ m perform the following steps.

(3.1) Compute a minimum spanning tree with respect to the edge weights cij +
πi + πj .

(3.2) Compute the best 1-tree obtainable from this spanning tree (section 10.2).

(3.3) Define the vector dk by dk
i = δi − 2, where δi is the degree of node i in the

1-tree computed in Step (3.2).

(3.4) For every node i set

πk+1
i = πk

i + tk(0.7dk
i + 0.3dk−1

i ).

(3.5) Set tk+1 = λtk and increment k by 1.

(4) Return the best bound computed.

end of 1tree bound

Differences to straightforward realizations are, that the direction of the subgradient step
is a convex combination of the current and the preceding subgradient, that the direction
vector is not normalized, and that the special node for the 1-tree computations is not
fixed. In theory, the same optimal value of the Lagrange dual is attained whatever node
is fixed. Actually, it is even incorrect to have varying nodes because the underlying op-
timization problem changes. But practical experiments have shown that better bounds
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are obtained this way and that it pays off to spend the additional running time for
computing various 1-trees.
Some authors propose to update the multipliers according to the formula

πk+1
i = πk

i + tk(U − L(πk))
dk

i

||dk||

where U is an estimate for the optimal solution and L(πk) is the currently computed
lower bound. We found that convergence is faster with this formula, but bounds are
inferior.
A general guideline for the performance is the following. If λ is close to 1 (say 0.98–0.995)
convergence is slow, but usually better bounds are reached. For values of λ between
0.95 and 0.97 faster convergence is achieved yielding reasonable bounds. Smaller values
of λ lead to considerably inferior bounds. Instead of fixing the number of iterations one
can stop, if no significant progress is observed any more.
Since no line search is performed it is not guaranteed that each iteration step improves
the bound. In fact, the behaviour shown in Figure 10.8 can be observed. This figure
displays the development of the bounds during application of the above subgradient
method to problem pcb442 for 150 iterations.

0 50 100 150
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47000

48000

49000

50000

51000

Figure 10.8 A run of the subgradient algorithm

The best bound obtained is 50459. In general, the evolution of the lower bounds does
not have to be as smooth as in this example. Depending on the problem instance the
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use of non-fixed special nodes can have the consequence that the bounds alternate even
at the end of the procedure. But, our emphasis does not lay on nice convergence but
on good bounds. Hence this is tolerable.
Concerning running time we are in a bad situation. Since edge weights are arbitrary
we can compute the best tree in Step (3.1) only in time O(n2) and the best 1-tree in
Step (3.2) in time O(kn) where k is the number of leaves of the spanning tree.
To speed up the procedure we compute trees in sparse subgraphs. This has the con-
sequence that the computed bound may not be valid for the true problem. Only if
the subgraph contains an optimal tour for the original problem, the bound is valid.
Of course, this cannot be verified. We therefore proceeded as follows for our sample
problems.

procedure fast 1treebound

(1) Construct the subgraph consisting of the 10 nearest neighbor edges and the edges
of the Delaunay graph.

(2) Perform the subgradient algorithm only in this graph to compute an approximate
lower bound.

(3) Compute a minimum 1-tree in the complete graph using the multipliers of the
final iteration in (2).

end of fast 1treebound

Problem Subgraph Subgraph Final
150 It. 300 It. iteration

d198 6.92 5.31 5.65
lin318 2.34 0.61 0.61
fl417 6.37 3.31 3.50
pcb442 2.55 0.63 0.63
u574 2.62 0.55 0.57
p654 10.00 4.19 4.23

rat783 2.13 0.40 0.41
pr1002 3.40 0.99 0.99
u1060 3.10 0.87 0.87

pcb1173 2.19 0.97 0.99
d1291 2.37 1.48 1.70
rl1323 1.98 1.59 1.72
fl1400 10.15 2.42 6.38
u1432 3.31 0.46 0.47
fl1577 6.19 5.34 5.40
d1655 2.34 1.24 1.24
vm1748 2.72 1.37 1.37
rl1889 2.29 1.61 1.74
u2152 2.08 0.55 0.60
pr2392 2.52 1.23 1.23
pcb3038 2.44 0.84 0.84
fl3795 7.13 4.46 4.61
fnl4461 2.49 0.58 0.58
rl5934 1.63 1.20 1.23

Average 3.80 1.76 1.98

Table 10.9 Results of Lagrangean relaxation based on 1-trees
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Running time is now O(n logn) + O(kn) for each iteration in Step (2) where k is the
number of leaves of the spanning tree and O(n2) for the final step. Due to this final
optimization a valid lower bound is determined.
Table 10.9 documents a sample run with this fast bounding procedure where we have
set λ = 0.98 and m = 300. As initial step length we choose 10 · (U − T )/n where U
is the tour length shown in Table 6.17 for the Christofides starting tour and T is the
1-tree bound listed in Table 10.5.
We give the bounds obtained from the subgraph optimization after 150 and after 300
iterations and the bound obtained in the final 1-tree computation. The table verifies
that our approach is indeed reasonable. The final iteration changes the bound only
marginally. In practical applications we can safely omit the final step and assume that
the bound determined in the first phase is correct.
Respective CPU times are given in Figure 10.10. They do not increase smoothly because
the running time of Kruskal’s algorithm depends on the distribution of edge lengths for
the respective subgraphs. This distribution influences the number of edges that are
checked for entering the spanning tree. A uniform distribution usually leads to earlier
termination.
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Figure 10.10 CPU times for Lagrangean relaxation (1-tree)

Methods for finding the optimum of the Lagrangean dual based on 1-trees are not limited
to subgradient approaches. One further iterative method is, e.g., dual ascent (Malik

& Fisher (1990)). As note above, a completely different way is to directly solve the
linear program corresponding to the subtour elimination relaxation.
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10.3.3 Lagrangean Relaxation with 2-Neighbor Configurations

We will now show that the 2-neighbor configurations are related to the fractional 2-
matching relaxation. It is known (Balinski (1970)) that the polytope defining the frac-
tional 2-matching problem has only vertices whose components have values in {0, 1

2 , 1}.
To treat 2-neighbor configurations we switch to (directed) arcs. We introduce variables
yij with the interpretation that yij = 1 if the arc from i to j is selected, and yij = 0
otherwise. We set also cij = cji and for notational convenience, we use variables yii in
the formulae (which then have to be ignored).
Consider the following integer programming problem

min
1
2

n∑
i=1

n∑
j=1

cijyij

n∑
j=1

yij = 2, for all i ∈ Vn,

n∑
j=1

yji = 2, for all i ∈ Vn,(F)

yij ∈ {0, 1}, for all i, j ∈ Vn.

If y∗ is a feasible solution of this problem then x∗ defined via x∗ij = 1
2
(y∗ij + y∗ji) is

a feasible solution of the fractional 2-matching problem. If x∗ with x∗ij ∈ {0, 1
2 , 1} is

feasible for the latter problem then y∗ij = y∗ji = x∗ij is feasible for the new problem.
If we formulate a Lagrangean relaxation approach for problem (F) by relaxing the second
set of constraints we obtain the following problem

L(π) := min
1
2

n∑
i=1

n∑
j=1

cijyij +
n∑

i=1

πi

( n∑
j=1

yji − 2
)

n∑
j=1

yij = 2, for all i ∈ Vn,

yij ∈ {0, 1}, for all i, j ∈ Vn.

Evaluating L(π) for a given π amounts to computing the minimum 2-neighbor configura-
tion for modified edge weights. The new edge weights c′ij are obtained as c′ij = 1

2cij +πj

(note that in general c′ij �= c′ji). Solving the Lagrangean dual, i.e., maximizing L
gives the fractional 2-matching bound. Concerning the implementation of a subgradi-
ent method, the same remarks as for the 1-tree relaxation apply.
Running time is O(n2) for each iteration of the subgradient method. To speed up
computations,we optimize in subgraphs only. If the subgraph hasm edges each iteration
takes time O(m) and the final iteration takes time O(n2) to yield a valid lower bound.
We ran experiments using the 10 nearest neighbor subgraph augmented by the edges of
the Delaunay graph. In this case each iteration runs in time O(n). Table 10.11 shows
the results. Again, the final step alters the bounds only slightly and the approach is
verified to be reasonable.
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Problem Subgraph Subgraph Final
150 It. 300 It. iteration

lin318 7.50 7.43 7.43
fl417 22.68 22.50 24.37
pcb442 1.63 1.34 1.34
u574 7.28 7.18 7.18
p654 18.39 17.53 17.71

rat783 2.83 2.70 2.70
pr1002 7.09 7.01 7.02
u1060 6.74 6.51 6.51

pcb1173 2.35 2.27 2.27
d1291 7.60 7.54 7.54
rl1323 9.37 9.27 9.28
fl1400 16.72 15.52 15.54
u1432 1.45 0.88 0.88
fl1577 19.48 19.28 19.28
d1655 5.37 5.24 5.24
vm1748 4.58 4.46 4.49
rl1889 9.23 9.11 9.12
u2152 4.45 4.22 4.22
pr2392 4.99 4.87 4.87
pcb3038 1.77 1.67 1.67
fl3795 16.09 15.49 15.49
fnl4461 1.90 1.82 1.82
rl5934 5.92 5.86 5.86

Average 8.79 8.54 8.63

Table 10.11 Results of Lagrangean relaxation based on 2-neighbors
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Figure 10.12 CPU times for Lagrangean relaxation (2-neighbor)
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CPU time statistics show that time per iteration is considerably less for the 2-neighbor
relaxation than for the 1-tree relaxation. Therefore, if one observes the development
of the bounds over time, for some problems during a certain first time period the 2-
neighbor bound will we above the 1-tree bound. In the end, according to the theoretical
results, the 1-tree bound will be better.
Lagrangean relaxations based on perfect 2-matchings are considered in Smith, Meyer

& Thompson (1990).

10.3.4 Multiplier Heuristics

Every assignment of node multipliers can be used to determine a lower bound using
1-trees or 2-neighbor configurations. The simple lower bounds implicitly use zero multi-
pliers, the subgradient method adapts the multipliers starting with zero multipliers. In
this section we briefly address the question of using a heuristic for guessing reasonable
multipliers.
To get an impression on how the πi values look like we show in Figure 10.13 near optimal
multipliers for the 1-tree relaxation for problem pcb442 giving the lower bound 50490.
Figure 10.14 displays multipliers for the 2-neighbor relaxation giving a lower bound of
50099.

Figure 10.13 Near optimal 1-tree multipliers for pcb442

Note that one can add the same constant to all multipliers without affecting the lower
bounds obtained by the relaxation. We have therefore subtracted the maximum πi
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from all multipliers. Now all values are nonpositive and the largest one is zero. Radii
of circles in the figures are the complemented πi values.
The only hint for estimating reasonable multipliers is that apparently isolated nodes
have large negative multipliers whereas the other nodes have multipliers related to their
nearest neighbor distance. This corresponds to the intuitive explanation that isolated
nodes have to be made more attractive since otherwise they would become leaves of the
1-tree.

Figure 10.14 Near optimal 2-neighbor multipliers for pcb442

We have implemented three variants of multiplier heuristics which also run fast. Let
d1(i) be the distance to the nearest neighbor of i and d2(i) be the distance to the second
nearest neighbor. The variants are

(1) Set πi = −0.5d1(i).

(2) Set πi = −0.5d2(i).

(3) Set πi = −0.25(d1(i) + d2(i)).

We have seen in preceding chapters that nearest neighbor distances for Euclidean prob-
lems can be computed very efficiently. For the general problem we need time O(n2) to
compute these multipliers. In any case, eve if multipliers can be computed fast, we have
to spend time O(n2) for proving the validity of the bounds.
Table 10.15 displays the results obtained with Variant 2 for the 1-tree and the 2-neighbor
relaxation which are significantly better than the simple bounds of Table 10.5. The other
two variants performed worse, so their results are not documented.
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Problem 1-tree 2-nn
d198 15.96 26.76

lin318 6.83 12.32
fl417 12.78 26.52
pcb442 4.53 2.51
u574 9.11 10.02
p654 10.70 19.78

rat783 5.28 5.30
pr1002 9.13 9.36
u1060 8.28 9.24

pcb1173 5.56 4.19
d1291 4.53 9.17
rl1323 9.69 12.79
fl1400 9.23 19.36
u1432 2.96 2.26
fl1577 11.69 20.73
d1655 5.01 6.91
vm1748 7.48 7.66
rl1889 10.33 12.36
u2152 3.18 5.57
pr2392 6.92 7.49
pcb3038 4.34 3.34
fl3795 8.91 16.41
fnl4461 4.57 3.70
rl5934 6.31 8.56

Average 7.64 10.93

Table 10.15 Results of multiplier heuristics

Further aspects of Lagrangean relaxation for the TSP are discussed in Shmoys &

Williamson (1990) and Smith, Meyer & Thompson (1990).

10.4 Comparison of Lower Bounds

We have seen that the optimal objective function value cT of the Lagrangean dual based
on 1-trees is the subtour elimination bound. The Lagrangean dual based on 2-neighbor
configurations gives the fractional 2-matching bound cN . Since the latter is itself a
relaxation of the subtour relaxation we get that cN ≤ cT . Normally, we have cN < cT .
For practical problems the difference between the two bounds will be considerable.
To examine how well our subgradient algorithm approximates the optima cN and cT we
have also computed the exact values using LP techniques. We used an branch and cut
code for solving TSPs optimally (Jünger, Reinelt & Thienel (1993)) to compute
these bounds for all of our sample problems. Table 10.16 displays the results and shows
that in some cases (e.g., d198, p654, or rl1323) the 1-tree bound computed in Table 10.9
misses the optimal 1-tree bound by some percent. Having a look at such problems, one
realizes that they are built of clusters of points. For such instances, our subgradient
method has problems in approaching the best bound. We can only overcome this by
enlarging the decrement factor and hence coming closer to the theoretically required
formula for obtaining convergence to the optimum of the Lagrangean dual. For example,
if we use λ = 0.995, then for problem d198 we obtain the lower bound 14769 after 800
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iterations. If the points are more or less uniformly distributed we have no difficulties in
finding rather close approximations to the best bound.

Problem Fractional Subtour
2-Matching elimination

d198 11793 15712
lin318 38964 41889
fl417 8961 11790
pcb442 50104 50500
u574 34256 36714
p654 28584 34596

rat783 8568 8773
pr1002 240878 256766
u1060 209529 222651

pcb1173 55600 56351
d1291 46971 50209
rl1323 245156 265815
fl1400 16783 19783
u1432 151676 152535
fl1577 17871 21886
d1655 58876 61544
vm1748 321552 332061
rl1889 287698 311705
u2152 61464 63859
pr2392 359620 373490
pcb3038 135391 136588
fl3795 24289 28478
fnl4461 179252 181570
rl5934 521629 548471

Table 10.16 Exact values of relaxations

Finally, in Table 10.17, we give the average qualities of all relaxations discussed in this
chapter taking only those 19 sample instances into account where true optimal solutions
are known.

Name of heuristic Average deviation
from optimum

Subtour Elimination 0.78
Lagrange 1-Tree bound (final step) 1.54
Multiplier heuristic (1-Tree) 7.58
Fractional 2-Matching 7.70
Lagrange 2-NN bound (final step) 7.72
Geometric bound 9.70
Simple 1-tree 9.93
Multiplier heuristic (2-NN) 10.09
Minimum spanning tree 11.15
Simple 2-neighbors 15.69
Assignment 18.90

Table 10.17 Comparison with optimal solutions

The table shows that the fractional 2-matching bound is about 7% below the sub-
tour elimination bound. Our fast schemes to approximate the subtour bound and the
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fractional 2-matching bound perform fairly well on the average. Whereas the frac-
tional 2-matching bound is almost met by our heuristic, the subtour bound is missed
by about 1%. As we pointed out, we can improve the approximation by tuning the
parameters of the subgradient algorithm.
Multiplier heuristics improve the simple bounds considerably. If Delaunay graphs are
available, then at least the simple bound computations should be performed in any case.
The subgradient method used in this chapter is not the only way for attacking nondif-
ferentiable optimization problems. A more elaborate approach is the so-called bundle
method (Kiwiel (1989)). It is also based on subgradients, but in every iteration the
new direction is computed as a convex combination of several (10–20) previous subgra-
dients. Moreover, line searches are performed. In this sense, our approach is a simple
version of the bundle method keeping only a “bundle” of two subgradients (which are
combined in a fixed way) and not performing line searches.
Schramm (1989) considers an extension of this principle which combines the bundle
approach with trust-region methods. Whereas, in general, this algorithm outperforms
pure subgradient methods this is not the case for the 1-tree relaxation. Here performance
is similar.
Several further relaxations are available for the TSP. Among them are n-path relax-
ation or so-called additive bounding procedures. For information on further ap-
proaches see Houck, Picard, Queyranne & Vemuganti (1980), Balas & Toth

(1985), Maculan & Salles (1989). Carpaneto, Fischetti & Toth (1989), and
Fischetti & Toth (1992).



Chapter 11

A Case Study: TSPs in Printed Circuit

Board Production
The wide range of applicability of the TSP covers in particular some problems arising in
design and production of printed circuit boards and very large scale integrated circuits.
In this chapter we will discuss two such applications in depth and show how the methods
developed in the previous chapters can be successfully employed for practical problem
solving. Results for real world data sets are presented.
The two applications we consider occur in the process of manufacturing printed circuit
boards. Even more combinatorial optimization problems have to be treated in the design
phase which is not discussed here. One problem (plotting of masks) is to be solved at
an early stage of the production process while the other problem (drilling of boards)
constitutes a final step.
Since the latter problem is less complicated, we consider it first. In this chapter we will
review part of the paper Grötschel, Jünger & Reinelt (1991) where a preliminary
version of the software was used for solving the problems.

11.1 Drilling of Printed Circuit Boards

One of the final steps in printed circuit board (PCB) production consists of the drilling
of holes into the board. These holes are necessary for placing components (integrated
circuits, transistors, etc.) onto the board or for realizing contacts between the different
layers of the boards. A simplified view of such a board is given in Figure 11.1.
In general, holes are of different diameters. Hence drills have to be changed. In our
application drills cannot be changed “on the fly”. The head containing the drill has
to move to an origin where the drill can be changed. Since time to change drills is
considerable it only makes sense to drill all holes of one diameter before changing the
drill.
The problem to be solved here is to find a sequence in which the holes are to be drilled
such that the total production time is minimized. Following the remarks above, this
problem decomposes into a set of single problems for each diameter.
We will now consider such a subproblem. Since the corresponding drill has to be loaded
the machine has to move to the origin. Then all holes of the chosen diameter are
drilled and the machine returns to the origin to start the next drilling sequence. The
time to drill the holes cannot be influenced. Production time can only be decreased if
positioning time, i.e., total time needed to reach the positions of the holes, is reduced.
This amounts to solving a symmetric traveling salesman problem in the complete graph
on n+ 1 nodes, if n holes are to be drilled (the node n+ 1 represents the origin).

G. Reinelt: The Traveling Salesman, LNCS 840, pp. 187-199, 1994.
 Springer-Verlag Berlin Heidelberg 1994
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The distance between two nodes i and j corresponds to the positioning time the machine
needs to move from position i to position j, and therefore depends strongly on the
machine characteristics. In practice, usually, this positioning time cannot be computed
exactly. Positioning consists of three phases: accelerating the machine, running at
full speed, slowing down to a complete stop. For small distances, full speed may not
be reached and we may have anomalies in the sense that a farther position can be
reached faster than a nearer position. Even if a timing function is available it may
be not accurate or so complicated that its evaluation takes too long for large problem
instances (where we cannot store a distance matrix). Therefore one has to be satisfied
with making reasonable approximations on the true movement time.

Figure 11.1 A printed circuit board

In the application treated in the following, the drilling head was moved by two motors
running simultaneously in horizontal and vertical direction. Forgetting about machine
characteristics, the longer of the two coordinate differences between two consecutive
points in absolute value determines the positioning time. If we do not take into account
acceleration and slowing down phase then the distance corresponds to the positioning
time. In our example, the maximum distance between two points in the plane reflects the
positioning time and can be taken as a reasonable approximation of the real situation.
Note that, if the drilling head is moved by only one motor, then the Manhattan distance
(if movement is only possible horizontally or vertically) or the Euclidean distance (if
free movement is possible) can be appropriate.
The problem of minimizing drilling time for a printed circuit board therefore corresponds
to solving a sequence of (unrelated) symmetric traveling salesman problem instances in
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the plane where distances are given as maximum distances. We specify the distances in
machine units. In the particular application, movement in horizontal direction was 10%
faster than in vertical direction, but this can be easily taken into account by appropriate
scaling.
Four problems of moderate sizes were examined to test our algorithms. Their charac-
terizations are displayed in Table 11.2.

da1 da2 da3 da4

Number of holes 2457 423 2203 2104

Number of drills 7 7 6 10

Size of problem 1 492 209 2114 656

Size of problem 2 1666 72 72 1302

Size of problem 3 156 51 2 1

Size of problem 4 122 66 3 117

Size of problem 5 16 14 4 3

Size of problem 6 4 5 8 7

Size of problem 7 1 6 - 7

Size of problem 8 - - - 4

Size of problem 9 - - - 6

Size of problem 10 - - - 1

Total length of moves

in industry solution 3518728 1049956 1958161 4347902

Table 11.2 Characteristics of the drilling problems

These problems are not very large but there was one fact impeding the heuristics: For
any printed circuit board, solutions had to be found within 5 minutes on a medium-sized
computer.
This severe time restriction was met as follows. If the subproblem size was smaller than a
limit of 300 nodes a nearest neighbor tour was computed. Otherwise the node reduction
heuristic described in the preceding chapter was used to reduce the problem below this
limit. For the representative TSP a farthest insertion tour was computed from which a
tour for the original problem was derived (considering at most 200 insertion points).
To assess these solutions and to try to convince the engineers of spending more CPU
time for optimizing the problems we also ran more elaborate heuristics, namely a simple
Lin-Kernighan implementation (without node insertion and enumeration, and without
use of efficient data structures) applied to a nearest neighbor tour.
We list the results obtained this way (CPU times are given for a SUN 3/60 workstation
whose speed is about 3 MIPS).
Results published in Grötschel, Jünger & Reinelt (1991) are given in Tables 11.3
and 11.4. Relative comparison between two figures is always given as follows. Let a, b
be two total lengths of positioning moves. Then the improvement yielded by b with
respect to a is defined as 100 · (a− b)/a.
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It should be remarked here that the industry solutions were already obtained by em-
ploying a heuristic.

da1 da2 da3 da4

CPU time (min:sec) 1:58 0:05 1:43 1:43

Length of positioning moves 1695042 984636 1642027 1928371

Improvement w. r. t.

to industry in % 51.83 6.22 16.14 55.14

Table 11.3 Previous results (fast version)

CPU time (min:sec) 96:03 6:27 169:15 70:03

Length of positioning moves 1517748 896669 1430556 1809556

Improvement w. r. t.

to industry in % 56.87 14.60 26.94 58.38

Improvement w. r. t.

to Table 10.3 in % 10.46 8.93 12.88 6.16

Table 11.4 Previous results

We repeated these experiments with the new implementations described in Chapters 6
and 7. Parameters were chosen based on the experience gained from previous compu-
tational experiments.
Since distances are given as maximum distances, the use of Voronoi diagrams for the
L∞-metric would be appropriate. However, we did not have a code for this Voronoi
diagram at hand. Therefore we “approximated” computations using the L2-metric
diagram. Candidate subgraphs were computed taking nearest neighbors with respect to
the Euclidean distance and also edges of the Delaunay graph for the L2-metric Voronoi
diagram.
We implemented a generic optimization routine which is called for every subproblem P.
Depending on the size of the problem more or less work is spent for finding tours.

procedure optimize

(1) If the problem has less than three nodes compute the trivial solution and stop.

(2) Let n be the problem size and denote parameters as follows:
k number of nearest neighbors,
l number of moves that are examined in the Lin-Kernighan heuristic,
d maximal number of submoves for each move,
c number of alternate candidates for the first submove

Depending on the size of the problem set the parameters as follows.

(2.1) If n < 100 then set k = 9, d = 15, l = 10 · n, c = 2.

(2.2) If 100 ≤ n < 500 then set k = 8, d = 12, l = 10 · n, c = 2.
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(2.3) If 500 ≤ n < 1500 then set k = 7, d = 10, l = 10 · n, c = 2.

(2.4) If n ≥ 1500 then set k = 6, d = 10, l = 10 · n, c = 1.

(3) Compute the (Euclidean) k-nearest neighbor subgraph by enumeration if n < 100,
otherwise by using the Delaunay graph.

(4) Use the nearest neighbor graph augmented by the edges of the Delaunay graph
as candidate subgraph and switch to the maximum distance.

(5) Compute a nearest neighbor tour where the candidate edges are used to speed
up computations.

(6) Perform the Lin-Kernighan heuristic (including node insertion moves) according
to the parameter setting.

end of optimize

For assessing the quality of the tours found we also computed the simple 1-tree lower
bound for every subproblem. Since the L∞-metric Delaunay graph was not available we
used Prim’s algorithm to obtain a lower bound. The running time for the spanning tree
computation is not included in Tables 11.5 and 11.6, because the computation takes
time O(n2). If the L∞-metric Voronoi diagram is available one can include this lower
bound calculation into the problem solving code. L∞-metric Delaunay graphs should
be computable at least as fast as for the L2-metric and their computation only slightly
increases the overall running time.
In the first experiment we used a fast heuristic similar to the one used used to obtain
the results of Figure 11.3.

procedure fastopt

(1) Partition the problem into subproblems.

(2) For every subproblem do the following.

(2.1) If the problem has fewer than 100 nodes then call optimize.

(2.2) If the problem has at least 100 nodes perform the node reduction heuristic
with at least m = �log 4

√
n� subdivisions and at most �

√
n�/2 points in a

bucket (see Chapter 8). For finding a global tour through the representative
points call optimize. To reconstruct a tour for the original problem check
50 · logn insertion points.

end of fastopt

The results with this heuristic are documented in Table 11.5. We give comparisons
with the tours provided by industry and with the tours computed by the fast heuris-
tic of Table 11.3. To compare CPU times of the new experiments (obtained using a
SUN SPARCstation SLC with 12.5 MIPS) with CPU times of the previous results we
multiplied them by a factor of 4. For example, the running time for problem da4 in
Table 11.5 was about 26 seconds on a SPARCstation SLC, which in turn corresponds
to about 6 seconds on a SPARCstation 10/20.
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With about the same amount of CPU time results are considerably better than for the
old version, in particular for problem da2. The quality guarantees derived from the
1-tree bound are about 20% which might be of interest for practitioners.

da1 da2 da3 da4

CPU time (min:sec) 1:39 1:33 1:32 1:43

Length of positioning moves 1615031 844563 1537623 1878545

Improvement w. r. t.

to industry in % 54.10 19.56 21.48 56.79

Improvement w. r. t.

to Table 11.3 in % 4.72 14.23 6.36 2.58

Quality guarantee in % 21.24 21.22 20.55 19.66

Table 11.5 Results and comparison of fast heuristic

In the next experiment we applied the routine optimize to every subproblem. Results
are displayed in Table 11.6. The tours obtained are compared with the industry solu-
tion, with the new fast heuristic (Table 11.5) and with the previously used heuristics
(Tables 11.3 and 11.4).

da1 da2 da3 da4

CPU time (min:sec) 3:15 1:32 1:59 3:33

Length of positioning moves 1440915 829484 1343011 1691869

Improvement w. r. t.

to industry in % 59.05 21.00 31.41 61.09

Improvement w. r. t.

to Table 11.3 in % 14.99 15.76 18.21 12.64

Improvement w. r. t.

to Table 11.4 in % 5.06 7.49 6.12 6.50

Improvement w. r. t.

to Table 11.5 in % 10.78 1.78 12.66 9.94

Quality guarantee in % 11.73 19.79 9.04 10.79

Table 11.6 Results and comparison of more elaborate heuristics

Table 11.6 exhibits a considerable improvement. The solutions found are still about 6%
better than the solutions of Table 11.4. Quality guarantees are now in a range where one
can safely conclude that the solutions computed are very good. But, what is even more
surprising, the running time for the more sophisticated approach is only about double
the CPU time of the fast heuristic. This shows that for problems of those moderate
sizes we can still use sophisticated heuristics without spending too much CPU time.
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Already with the solutions for da1 and da4 of Table 11.3, which are of rather moderate
quality, production time could be reduced by 6%, respectively 10%. Since production
time depends on the number of holes to be drilled, we cannot conclude from these
figures to the possible reduction achievable if the heuristics documented in Table 11.6
were implemented.
But it is clearly seen that the TSP heuristics developed here can lead to substantial sav-
ings in industrial production processes. The heuristics are powerful enough to compute
very good solutions in short time.
This final discussion leads to a side remark. Production time can also be reduced if
the number of holes to be drilled is reduced. Many of these holes are just needed to
connect wires on different layers, i.e., they are so-called vias. In the design phase for
printed circuit boards (as well as for integrated circuits) one can apply combinatorial
optimization to reduce the number of vias. For a report on this see Grötschel,

Jünger & Reinelt (1989).

11.2 Plotting of PCB Production Masks

The second application we are concerned with deals with one of the first steps in the
production process of printed circuit boards.
Complex printed circuit boards are usually produced by a photochemical process. For
each layer of the board, the pattern of wires and contacts is produced by a sequence
consisting of covering the board with light sensitive material, exposing this material
to light, etching, cleaning, etc. The process is similar to the usual production of pho-
tographs. The structures that later on should appear on the board have been “drawn”
on a mask (a negative) that is between the board and the light source so that certain
parts of the board are not exposed to light. These unexposed areas will finally form
the conductors, pads, and contacts of the layer. The question we address here is the
generation of these masks.
The masks are made of glass and the patterns on the glass are generated optically using
either ultraviolet light or laser beams. In our case, a photo plotter is used for the mask
production.
The photo plotter works as follows. It has two modes, a “drawing mode” with which
lines are plotted and a “flashing mode” to plot points. Points may be of various sizes
and shapes and lines of different width. So, before plotting, an aperture has to be chosen
that produces the required shape or width.
Points are plotted by moving the light source to certain coordinates on the board,
choosing the aperture, and flashing the light. Lines are plotted by moving the head to
one end of the line, choosing the aperture, opening the shutter, moving along the line
with open shutter and closing the shutter at the end of the (not necessarily straight)
line.
There is, given a pattern, nothing to be done about the time needed for drawing and
flashing. This process requires a certain fixed time depending on the plotter character-
istics. What can be optimized is the time needed for positioning head moves, i.e., moves
of the head without drawing.
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As for the drilling problem simultaneous movements in horizontal and vertical direction
are possible to position the plotter head. This time, speeds were the same in both
directions. Again, as no better means was available, maximum distances between points
were taken to reflect positioning time. Korte (1989) states an explicit function for
computing the positioning time of a different plotter.
Figure 11.7 displays part of a mask from one of our application problems.

Figure 11.7 A mask for PCB production

In addition to the fact that not only points have to be flashed, but also lines have to be
drawn, there are some further complicating points.

– There is no toolbox as in the drilling case. Apertures may be changed any time
and also during movement.

– For small moves an aperture change may contribute to positioning time whereas
it does not for long moves.

– Lines do not have to be drawn in one piece. In principle, preemptions are allowed,
i.e., a line is plotted in several parts.

In particular, the last point makes the problem mathematically intractable. But it is
also difficult to handle arbitrary aperture changes.
In our particular application we could discard at least some of these problems. Due to
the required high accuracy of the plot, preemptions were not allowed and the number
of aperture changes should be kept at a minimum.
Therefore we decided to decompose the plot into subplots where each subplot is com-
posed of the structures to be plotted using the same aperture.
Still, there is the problem of determining the sequence in which the subplots are treated.
Exact modeling of this problem seems to be hardly possible. Computation of the mini-
mal length of positioning moves for a given aperture sequence involves the exact solution
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of NP-hard problems. Fortunately, in our problems only a few apertures were used. So
it was clear in advance that the aperture sequence only had a negligible effect on the fi-
nal result. In Grötschel, Jünger & Reinelt (1991) a nearest neighbor heuristic was
applied to determine a sequence during the optimization process. In the experiments to
be reported here we constructed the subproblems for every aperture and solved them
in the order in which they were generated.
For every subproblem we have a starting point, namely the point where the previous
subproblem solution terminated (for the first problem this is the origin). The final
position reached in a subproblem solution is arbitrary. For the last problem we can
include the origin and require that it is the final position to be reached.
Basically, we have therefore two types of subproblems, depending on whether an aper-
ture for flashing or for drawing is selected.

Point flashing subproblem

Determine a shortest Hamiltonian path which starts at some given point and visits all
points to be flashed.

Line drawing subproblem

Starting at some given point determine a sequence in which the lines are plotted such
that the total length of positioning moves is minimized.

The point flashing problem is easily modeled. It amounts to solving a shortest Hamilto-
nian path problem with given starting node and unspecified (except for a final problem)
terminating node. Modeling of path problems has been discussed already in Chapter 3.
To avoid adding an artificial node we simplified the problem as follows. We computed
a Hamiltonian tour and then removed the shorter one of the two edges between the
starting node and its neighbors in the tour. The corresponding neighbor is then taken
as endnode of the Hamiltonian path.
Treating the drawing subproblems is more complicated. The various aspects of modeling
this problem which is a special case of the rural postman problem are discussed in
Grötschel, Jünger & Reinelt (1991), an explicit transformation from the rural
postman problem to the symmetric TSP is given in Jünger, Reinelt & Rinaldi

(1994). Further transformations as well as computational results for a different problem
set-up are presented in Korte (1989).
We consider here a transformation particularly suited for the instances of the mask
plotting problem we are faced with. A feature of the drawing subproblems occuring
here is that only few lines touch. Most of the lines are isolated.
Suppose m lines are to be plotted. We also represent the starting point as a line (of
length zero) and, if required, also the terminating point (the origin). It is straighforward
to take a specified terminating point into account, so we assume in the following that
the final position reached after having plotted all lines is arbitrary.
With each line i we associate two nodes i and m + i (corresponding to the endpoints
of the line) and represent the line drawing problem using the weighted complete graph
K2m = (V,E) on 2m nodes. Nodes corresponding to the same coordinate are not
identified. Edge weights cij are given as maximum distance between the points on the
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printed circuit board represented by the nodes i and j. Edge weights ci,m+i are set to
−M (M a large positive number).
We then find a feasible solution for the line drawing subproblem by solving the traveling
salesman problem in this graph. If M is large enough then all edges (i,m + i) are
contained in the solution and we can derive a sequence of machine moves for plotting
the lines. If the edge (1, m+ 1) represents the starting node, then either the neighbor
of 1 (different from m+1) or the neighbor of m+1 (different from 1) will be selected as
terminating point (depending on the length of the edge that can be eliminated). Note,
that this does not necessarily lead to the best choice of the termination point. But, this
slightly incorrect modeling will certainly have only negligible effect on the quality of the
solutions of the practical problem.
Before describing our solution approach, we discuss the problem instances and list the
results published using a preliminary implementation of the TSP software.
Five problem instances were available. Table 11.8 lists their respective characteristics
and the properties of the industry solution which was obtained by a simple procedure
based on sorting with respect to vertical coordinates.

uni1 uni2 uni3 uni4 uni5

Number of

drawn lines 6139 869 1360 49 38621

Length of

lines 19123502 2102549 25552950 4761800 124351961

Number of

flashes 2157 2496 1477 2478 1060

Number of

apertures 7 9 5 5 5

Number of

aperture changes 33 261 5 5 5

Length of moves

in industry solution 41285752 26445205 77629210 38382300 296730563

Table 11.8 Characteristics of the plotting problems

Again, for this set of five problem instances, solutions were computed with a fast and
with a more elaborate heuristic in Grötschel, Jünger & Reinelt (1991). CPU
times are again from a SUN 3/60 workstation.
The first step for treating the five problems consists of a problem size reduction. In
particular, problems uni1 and uni5 have a very large number of lines to be drawn.
However, when looking closely at the respective plots we saw that many connections
were realized as “wavy” lines. In order to achieve this form such lines were composed
of many short (straight) lines connected in a zig-zag manner (this technique is used
to obtain a denser packing of wires). It is reasonable to treat such lines as single
lines and ignore that they really are composed of many very small segments. Having
performed this reduction we now get the new plotting problems whose characteristics
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are displayed in Table 11.9. (The sizes of the flashing subproblems have not changed, of
course). Tables 11.10 and 11.11 give the results from Grötschel, Jünger & Reinelt

(1991).

uni1 uni2 uni3 uni4 uni5

Number of

drawn lines 1411 41 355 18 610

Size of drawing

problem 1 574 31 258 12 604

Size of drawing

problem 2 63 10 87 2 2

Size of drawing

problem 3 49 - 10 4 2

Size of drawing

problem 4 725 - - - -

Number of

flashes 2157 2496 1477 2478 1060

Size of flashing

problem 1 3 3 1432 2319 1060

Size of flashing

problem 2 2152 136 45 159 -

Size of flashing

problem 3 2 1817 - - -

Size of flashing

problem 4 - 1 - - -

Size of flashing

problem 5 - 1 - - -

Size of flashing

problem 6 - 478 - - -

Size of flashing

problem 7 - 60 - - -

Table 11.9 Characteristics of the reduced problems

In the new experiments, the flashing subproblems were treated in an analogous way as
the drilling problems in the previous sections.
For the drawing subproblems we created a candidate subgraph in the same way as for
the drilling problems (i.e., based on the Delaunay graph for the endpoints of the lines
and nearest neighbor computations with respect to the Euclidean distance). In addition,
we added the edges (i,m+ i), 1 ≤ i ≤ m, to the candidate set. Recall that these edges
have length −M .
We are now looking for a traveling salesman tour containing all edges (i,m+ i). Most
of the construction heuristics cannot guarantee to find solutions satisfying this require-
ment. Here the nearest neighbor heuristic is appropriate. It will automatically generate
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uni1 uni2 uni3 uni4 uni5

CPU time (min:sec) 4:33 2:36 1:37 3:47 1:19

Number of

aperture changes 7 9 5 5 5

Length of

positioning moves 17731273 16345805 26870050 32935300 49737209

Improvement w. r. t.

industry solution in % 57.0 38.19 65.39 14.19 83.24

Table 11.10 Previous results (fast version)

uni1 uni2 uni3 uni4 uni5

CPU time (min:sec) 128:01 15:57 16:29 13:30 57:47

Number of

aperture changes 7 9 5 5 5

Length of

positioning moves 15611483 15337249 23499950 30871300 41270713

Improvement w. r. t.

industry solution in % 62.19 42.00 69.73 19.57 86.09

Improvement w. r. t.

Table 11.10 in % 11.96 6.17 12.54 6.27 17.02

Table 11.11 Previous results

a feasible tour, also if we speed it up using our candidate set because this set contains
the critical edges. If we choose the number M carefully and large enough then none of
our improvement heuristics will ever remove a critical edge from the current tour. In
turned out that choosing M is indeed not always easy. In our application, for example,
M = 600, 000 was not big enough because some distances were in about this range.
In view of the results for the drilling problem we did not use bucketing any more in the
new experiments. For the drawing subproblems it is not appropriate anyway. We only
used the procedure optimize defined in the previous section on all subproblems.
In addition a lower bound was computed. For all subproblems a minimum weight
spanning tree was computed. Since we had to use Prim’s algorithm here, running times
for lower bound computations are not included. Note that if an L∞-metric Delaunay
graph procedure is available then these computations only add a few percent to the
total running time.
Results and comparisons with the previous experiments are given in Table 11.12. Again,
the SUN SPARCstation SLC times were multiplied by 4 to obtain running times com-
parable with the SUN 3/60 times.
Using the new efficient algorithms the results documented in Tables 11.10 and 11.11
were outperformed by far. Even the solutions of Table 11.11 can be considerably im-
proved in much less CPU time. By running the present code checking more moves in
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the Lin-Kernighan procedure or by running it several times on different starting solu-
tions we believe that further reductions by 1–2% are possible (still in less time than in
Table 11.11).

uni1 uni2 uni3 uni4 uni5

CPU time (min:sec) 9:18 4:13 4:34 2:35 6:39

Number of

aperture changes 7 9 5 5 5

Length of

positioning moves 14386383 13998943 22555428 29766067 38056072

Improvement w. r. t.

industry solution in % 65.15 47.06 70.94 22.45 87.17

Improvement w. r. t.

Table 11.10 in % 18.86 14.36 16.0 9.62 23.49

Improvement w. r. t.

Table 11.11 in % 7.85 8.73 4.02 3.58 7.79

Quality guarantee in % 16.49 9.70 13.31 2.87 22.71

Table 11.12 Results for the plotting problems

Of course, all tables only reflect the improvement in the length of the positioning moves
measured in the maximum distance. The real effect on production time was only eval-
uated for the solutions given in Table 11.10. These solutions were compared with the
industry solutions in real runs of the photo plotter. The decrease in the overall produc-
tion time was 15.77%, 33.33%, 23.68%, 7.98%, and 8.78% for the respective problems.
Still there is a considerable decrease in production time. The small decrease for problem
uni5 of 8.78% compared to the enormous decrease in the length of the positioning moves
is due to a large number of long wavy lines consisting of many small segments. This
was also reflected by the reduction of the number of lines to be plotted from Table 11.8
to Table 11.9.
With the new solutions obtained here, production time can be reduced even further.



Chapter 12

Practical TSP Solving

In many practical applications, it is not required that true optimal solutions are com-
puted. Possible reasons are for example:

– Due to an incorrect modeling of the real underlying problem, an optimal TSP
solution may not correspond to an optimal solution for the application.

– Real time is not available to attempt to find an optimal solution.

– The size of the problem instances is too large for an exact optimization algorithm.

But, as theory improves and as ever more powerful hardware becomes available, the
sizes of problem instances for which even optimal solutions can be found in reasonable
time will also increase. Solving TSPs in practice should not mean to be satisfied with
approximate solutions, but rather to try to find the best possible solution within the
time that is available. If optimal solutions cannot be determined, then solutions should
be delivered that are accompanied by a quality guarantee (which can be obtained by
computing lower bounds). The fact, that the traveling salesman problem is NP-hard,
only means that for every algorithm there are difficult problem instances (provided
P�=NP), but it may well be the case that many problems arising in practice can be
solved to optimality even if they are large.
It is beyond the purpose of this tract to discuss methods for the exact solution of the
traveling salesman problem in depth. But, we want at least to indicate, how a hardware
and software setup for the treatment of the TSP in practice should look like, that is able
to find optimal solutions if time permits or that computes approximate solutions with
certified quality guarantee. Detailed expositions for the TSP are Jünger, Reinelt &

Thienel (1993) and Jünger, Reinelt & Rinaldi (1994), more general aspects are
addressed in Jünger, Reinelt & Thienel (1994).

12.1 Determining Optimal Solutions

Every algorithm for finding exact solutions for larger TSP instances is built of methods
for finding upper and lower bounds and of an enumeration scheme. For a given instance,
lower and upper bounds (feasible solutions) are computed. In most cases, these bounds
will not be equal, and therefore, only a quality guarantee for the feasible solution can
be given, but optimality cannot be proved. An instance has then to be split into
subproblems such that the union of feasible solutions of the subproblems gives the

G. Reinelt: The Traveling Salesman, LNCS 840, pp. 200-210, 1994.
 Springer-Verlag Berlin Heidelberg 1994
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feasible solutions of the master problem. Subproblems are then processed in the same
way. This approach can be visualized as generating a branching tree where each node
corresponds to a problem and the sons of a node represent the subproblems into which
it is split.
To make this approach practical, the most important task is to keep the generated tree
small. This is only possible, if subproblems are solved at an early stage, i.e., at a low
level of the branching tree, since we may have an exponential growth of the number
of subproblems. A subproblem is solved if its upper and lower bound coincide or if its
lower bound is above the best feasible tour found so far. Therefore, both determination
of good tours and derivation of strong lower bounds are the keys to a successful search
for optimal solutions.
In principle, an algorithm of this type can be composed of any lower bounding procedure
and of any collection of heuristics. Whereas there has been a lot of work and progress
in designing heuristics, the situation for lower bounds is not as satisfying.
We classify algorithms for finding the optimal solutions of the traveling salesman prob-
lem as follows.

Branch & bound algorithms

Lower bounds are derived by purely combinatorial means, i.e., discrete relaxations of
the TSP are solved using discrete methods.

Branch & cut algorithms

Lower bounds are obtained from linear programming relaxations.

An abundant number of branch & bound algorithms that are based on the relaxations
mentioned in Chapter 10 have been designed and implemented. Most approaches use
the 1-tree or the 2-matching relaxation for the symmetric TSP and the assignment
relaxation for the asymmetric TSP (Balas & Toth (1985), Miller & Pekny (1991),
Miller, Pekny & Thompson (1991)).
Yet, up to date all these algorithms are outperformed by branch & cut approaches.
Prime contributions in this area, which laid the foundations for successful TSP solving,
are Grötschel (1977), Crowder & Padberg (1980), Padberg & Rinaldi (1991)
and Grötschel & Holland (1991) which also visualize the enormous progress that
has been made in the recent past. Since the same upper bounding heuristics are used
in both branch & bound and branch & cut methods, the success of the latter approach
depends on the superiority of the linear programming bounds.
Linear programming lower bounds are obtained by optimizing the objective function
over a polytope P such that PT ⊆ P (where PT is the traveling salesman polytope).
The strongest such relaxation we have discussed so far is the subtour relaxation. It
turns out that this relaxation is not sufficient for successful problem solving. This is
also the reason why branch & bound algorithms based on 1-trees are quite limited in
their ability to solve problems to optimality.
What is needed is a deeper knowledge about the polytope PT . More exactly, we are
interested in knowledge about the facet structure of PT . Since the traveling salesman
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problem is NP-hard, there is no hope of finding the complete description of PT with
linear equations and inequalities. But, even though the complete characterization can-
not be determined, it is reasonable to look for classes of facets because every new class
leads to a stronger relaxation.
To date, many classes of facets of PT are known (see Grötschel & Padberg (1985)
and Naddef & Rinaldi (1991,1993) for extensive discussions), among them are sub-
tour elimination constraints, 2-matching constraints, comb constraints, or
clique tree constraints. The degree equations define the affine hull of PT , so also its
dimension

(
n
2

)
− n is known.

To get an impression of the exploding complexity of the facet structure of PT , we mention
that the traveling salesman polytope on 7 nodes has 3,437 facets (Boyd & Cunning-

ham (1991)). Using a computer code, Christof, Jünger & Reinelt (1991) show
that for 8 nodes the number of facets is already 194,187. These figures exhibit a fur-
ther difficulty that arises when trying to solve LP relaxations using linear programming
techniques: the number of inequalities is simply too large to be listed explicitly.
This difficulty is overcome by generating inequalities only “as needed” using the so-called
cutting plane approach. We give the principle idea.

procedure cutting plane

(1) Select an initial polytope P ⊇ PT , e.g., {x ∈ Q(
n
2) | 0 ≤ xij ≤ 1, for all ij ∈ En}

or the fractional 2-matching polytope.

(2) Repeatedly perform the following steps.

(2.1) Solve the linear programming problem min{cTx | x ∈ P} to obtain an optimal
solution x∗.

(2.2) If x∗ is the incidence vector of a tour, then stop (an optimal tour is found).

(2.3) Find an inequality aTx ≤ α which is valid for PT , but not satisfied by x∗,
i.e., aTx∗ > α.

(2.4) If no such inequality could be found, then stop (the best possible bound is
determined).

(2.5) Add the inequality found in Step (2.3) to the current linear program.

end of cutting plane

The hope is to terminate this procedure in Step (2.2), since then the traveling salesman
problem is solved. But, because we do not know all facets describing PT and because
we are not able to identify all violated ones from the classes that are known, we will
very likely terminate in Step (2.4). In that case, we have to follow the branch & bound
approach and split the current problem under examination into subproblems according
to some scheme. For solving the subproblems, the same cutting plane procedure is used.
Note that all inequalities derived for some problem remain valid for the subproblems.
Since this approach is different from the usual branch & bound, Padberg and Rinaldi
coined the name “branch & cut” for this procedure.
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In the core of the cutting plane approach there is the problem of finding violated in-
equalities in Step (2.3). This is not only intuitively clear, but also verified from theory
as we will indicate now.
Let Ax ≤ b be a system of inequalities and consider the following problem.

Separation problem

Given a rational vector y decide if Ay ≤ b or not. If this is not the case then provide
an inequality of this system that is violated by y.

Note, that this is not a trivial problem, because we may not have an explicit list of the
inequalities or it may require exponential time to list all inequalities. It is a fundamen-
tal theorem (Grötschel, Lovász & Schrijver (1988)) that the linear programming
problem min{cTx | Ax ≤ b} is solvable in polynomial time if and only if the separa-
tion problem for Ax ≤ b is solvable in polynomial time (with appropriate complexity
measures).
Therefore, a basic ingredient to make the cutting plane approach work for solving travel-
ing salesman problems is to have powerful procedures for generating violated inequalities
in Step (2.3). Though many facet defining inequalities are known for PT , only for a
small minority there are efficient separation heuristics or exact algorithms.
It is surprising enough that indeed large problems with several thousand nodes can be
solved to optimality by branch & cut.
Concerning the implementation of a branch & cut procedure, several issues have to be
addressed. In the following we give a list of some aspects that have to be taken into
consideration.

– A first observation is that it is not possible to keep all variables (edges) explicitly
in the linear program. For example, for problem pr2392 there are 2,859,636 vari-
ables to be considered. To overcome this problem, one only keeps a set of active
variables and then uses reduced cost pricing to price out the inactive variables.
If they do not price out correctly, they have to be added to the active set and the
corresponding columns have to be generated.

– Usually, there are many heuristics or exact algorithms for separation available.
It has to be decided which routines are executed how often. To speed up com-
putations one should use heuristics as long as possible and then switch to exact
separation.

– In the first phases of the cutting plane procedure many inequalities might be gen-
erated. One has to decide if part or all of them are added to the current relaxation.
Criteria according to which inequalities are selected have to be specified.

– One has to choose an LP package for the efficient treatment of the linear programs.
So far, only implementations of the Simplex algorithm proved to be appropriate
here, since they allow easy addition of constraints and computation of reduced
costs.

– If it comes to branching, a branching strategy has to be developed. Normally, one
generates two subproblems according to fixing a selected variable to 0 or to 1. A
rule for selecting this variable has to be found.



204 Chapter 12. Practical TSP Solving

– To keep the LP size handy, one occasionally must reduce it by eliminating con-
straints. A reasonable criterion is to eliminate those constraints that are not
binding at the current optimal solution. However, during the optimization pro-
cess eliminated inequalities may become necessary again. So it can be useful to
keep eliminated inequalities in storage and check their violation after each phase
(in particular, if it took a long time to identify them).

– To prevent the search tree from growing too large, very good upper bounds, i.e.,
feasible solutions, have to be computed. Moreover, if the gap between upper and
global lower bound for a problem becomes small enough, then it is possible to
eliminate variables permanently based on reduced costs. Lower bounds obtained
at some non-root node are only valid for the subproblem represented by that
node. Such bounds can be used for fixing variables temporarily.

– When solving a relaxation problem using cutting planes, bounds usually improve
fast in the first cutting plane phases. After some time, however, the increase
becomes very small. One has to decide if it is preferrable to suspend working on
the current subproblem or to enforce a branching step.

– In the branching tree, several nodes are active in the sense that their correspond-
ing subproblem is not yet solved. The node (or nodes) which are to be worked
on next have to be selected.

– Suitable data structures have to be developed for storing inequalities in a compact
way. In particular, one has to be able to check whether an active variable occurs
in some inequality or not. This is important for performing an efficient reduced
cost pricing.

There are no best solutions to the questions listed here. Answers are always problem
dependent and can only be based on experience with the branch & cut procedure for a
specific problem.
We think that some further quality can be gained if we take interactions between lower
and upper bounding procedures into account. In the next section we will present an
implementation concept that supports such interactions.

12.2 An Implementation Concept

We now address the question of how an implementation of traveling salesman algorithms
should look like. We will present a concept for a hardware and software setup to solve
traveling salesman problems in practice.
What should a practical TSP package accomplish? To our opinion, it should be designed
according to the principle: “Find the best possible traveling salesman tour within the
available CPU time and within the limits given by the hardware and supply it with a
quality guarantee”. This principle covers three particular situations.

(i) If CPU time is a scarce resource, then it must be possible to obtain reasonable
solutions even for large problem instances.
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(ii) If moderate CPU time is available then, depending on the problem size, (proved)
qualities of 2–10% should be achieved. The real quality should be between 1%
and 5%.

(iii) If CPU time is virtually unlimited, then the package must have a possible path
to optimality, i.e., must be capable of finding an optimal solution (in principle).

In this view, an optimal solution for a problem instance is not the shortest tour, but
rather the best tour that can be computed obeying the limits imposed by the production
environment. The shortest tour, if it is found after some deadline was missed, is of no
value for the application.
The hardware setup we are going to describe is motivated by the fact that today’s
computer equipment does not limit the software developer any more. Even powerful
hardware is cheap, huge main memory sizes and virtual storage management allow
almost arbitrary program sizes. Also disk space is available as needed. A new feature
that can (and has to) be employed is parallelism, be it at a workstation level (where
we have clusters of workstations) or at a processor level (where a parallel processor
consists of several thousands of microprocessors). New architectures are available that
will influence algorithm design.
Discussion in previous chapters has shown that we need three basic ingredients to meet
the goals stated at the beginning of this chapter:

– an upper bound component (comprising heuristics of all kinds for finding
approximate solutions quickly),

– a lower bound component (necessary for proving optimality or deriving quality
guarantees),

– and a branch & cut component (providing the possibility to find optimal
solutions).

Since the user of this software cannot be expected to have the knowledge to exploit
the potential of the software, we have provided in our setup a supervisor component
that guides the optimization process and coordinates interaction between the various
algorithms.
Figure 12.1 gives a schematic view of the components of the system showing the three
basic components.
The supervisor component is responsible for guiding the optimization and controlling the
flow of information between the various components. It analyzes the problem instance
to be treated and, based on the given time constraints, it selects algorithms to be
performed. The supervisor constitutes kind of an expert system that has knowledge
about the CPU time requirement and the expected quality of the various heuristics
depending on characteristics of the problem instance (Euclidean, metric, geographical,
clustered configuration, number of nodes, etc.).
In this text we have described a lot of experiments that can be used to initialize the
data base of the supervisor. In the ideal case, the supervisor has a learning ability that
adapts the internal data base according to acquired knowledge when solving problems.
In particular, the supervisor decides whether the branch & cut part is activated at all.
The heuristic component selects heuristics as needed in the time range given by the
supervisor. It must contain all types of heuristics we discussed so far to be prepared
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to find reasonable tours fast or very good tours in moderate time. It has to be able to
treat problems of virtually any size. The heuristic component may also contain special
auxiliary parts that are used by several heuristics. This is indicated here by specifying
components for computing the convex hull or the Delaunay triangulation.

Heuristic 1 Relaxation 1

Relaxation 2

Relaxation r

Separation 1

Separation 2

Separation s

Delaunay T.

Convex hull

Maximum flow

Lower boundsUpper bounds Branch & Cut

Supervisor

Heuristic 2

Heuristic h

Figure 12.1 Components of the algorithmic framework

Besides the branch & cut part, we also have another component for providing lower
bounds. As discussed in Chaper 10, there are many possibilities for deriving lower
bounds of different qualities. This is of importance if the branch & cut component
cannot be used due to a too large problem size. If branch & cut can be applied then
it usually makes no sense to use this component since the linear programming bounds
will be superior.
The third basic component constitutes the branch & cut part which should be activated
whenever possible. It has to contain a powerful LP solver because a major part of the
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CPU time will be spent for solving linear programs. Furthermore, it should provide
as many separation algorithms as are available, comprising fast heuristics for simple
inequalities, more elaborate heuristics for complicated inequalities, and exact separation
routines. Though much is known about exact separation, there still is need for further
research. Separation is the crucial part for extending capabilities of present codes. Also
in this part, we may have auxiliary routines needed by many separation procedures.
One example is maximum flow computation which is heavily used in TSP separation
algorithms and heuristics.
We have intentionally drawn the various components and subcomponents separately.
The reason is that we have a high degree of parallelism in this concept. All heuristics
can be performed in parallel. The same is true for relaxation procedures or for the
separation components. In particular, it should be annotated that separation procedures
do not have to provide inequalities derived for the current LP. Since LPs do not change
very much in later phases, an inequality derived for some previous LP might as well be
violated in the current LP. Therefore we may have an identical program running several
times in parallel, each supplied with a different fractional solution.
For the technical realization of this concept, we have a cluster of workstations or a
transputer network in mind where each box of Figure 12.1 is assigned to one processor.
Based on the available hardware, the supervisor can decide how to exploit it. If many
processors are at hand, boxes may be duplicated several times. We can also make use of
special parallel architectures to implement special purpose algorithms. So the concept
permits employment of different hardware in an integrated framework.

12.3 Interdependence of Algorithms

In this final section we will indicate that the three components of our concept are not
independent, but, on the contrary, exchange of information adds to problem solving
capabilities. We will discuss some examples showing that communication between the
various algorithmic components is highly desirable.

12.3.1 Selecting an Initial Set of Active Variables

As noted above, we cannot perform branch & cut for large problems keeping the full
set of variables in the linear programs. A reasonable initial set of active variables is,
for example, given by the k nearest neighbor graph. Using the Delaunay graph we
can compute this set very efficiently for Euclidean problems. If the nodes form several
clusters then the nearest neighbor subgraph is not connected. In such a case we can
augment it by adding the edges of the Delaunay graph. To make sure that the active set
contains a Hamiltonian tour one can add the edges of a tour found by some heuristic.
Another possibility is to use several heuristics to compute a set of tours and then take
the union of all tour edges as the initial set.
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12.3.2 Augmenting the Set of Active Variables

During the algorithm, we will reach the point where all active variables price out cor-
rectly. Then the reduced costs of all variables have to be checked and some (or all) of
them have to be introduced into the current linear program. Since this full pricing is
very time consuming, it is reasonable to have heuristics run in parallel that compute
very good tours and, hence, can provide the cutting plane part with promising new
active variables.

12.3.3 Augmenting the Candidate Subgraphs for Heuristics

Also for the heuristics, we have the problem of determining a reasonable candidate
subgraph. If reduced cost pricing introduces a variable into the linear program then
it should also appear in the candidate set. Therefore, both components can share
information about promising edges.

12.3.4 Driving the Heuristics

Possibly never a linear program solved during the branch & cut algorithm will yield
an incidence vector of a tour as its optimal solution. Nevertheless, it can provide
information on how parts of an optimal tour could look like. Figure 12.2 shows the LP
solution of the subtour relaxation for problem dantzig42 (solid edges correspond to
variables with value 1, broken edges to variables with value 1

2
).

Figure 12.2 A fractional solution for problem dantzig42

The complete right part of this solution is identical to the optimal tour. We therefore
exploit fractional LP solutions to drive heuristics. This is done in the following way.
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procedure exploit lp

(1) Sort the variables appearing with positive value in the current LP solution ac-
cording to their value (if they have equal values they are sorted with respect to
increasing objective function coefficient).

(2) Scan these edges and select an edge if it does not create a cycle with the edges
selected so far. This is essentially the greedy algorithm and will yield a system
of paths.

(3) Apply the Clarke-Wright savings heuristic to connect these paths in a cheap way.

(4) Improve the current tour by employing the Lin-Kernighan heuristic.

(5) Add the tour edges to the current candidate subgraph and add also the corre-
sponding variables to the current linear program (if they were not yet taken into
account).

end of exploit lp

Finally, we show results of two experiments visualizing the above connections. To
this end we have employed the branch & cut implementation of Jünger, Reinelt &

Thienel (1993) to solve the relaxation of the TSP consisting of subtour elimination and
2-matching constraints. After the solution of each LP we have performed the heuristic
exploit lp to construct tours based on the current LP solution. Exchange of knowledge
about reasonable edges was performed as in 12.3.2 and 12.3.3. The initial active set
consisted of the six nearest neighbors.
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Figure 12.3 An optimization run for problem fl417



210 Chapter 12. Practical TSP Solving

Figure 12.3 shows the development of upper and lower bounds obtained this way for
problem fl417. The horizontal axis gives the number of the LP that is solved and the
vertical axis gives lower and upper bounds. The optimal tour length is 11861. Note
in particular the LPs where the lower bound drops considerably. At such points, the
heuristic introduced new edges into the LP.
Problem fl417 is difficult because it has several clusters of points and it is therefore
not clear which connections between the clusters should be chosen. Here the heuristic
provides the necessary edges.
The second example is a run for problem pcb442 (Figure 12.4). Here the optimal
solution value 50778 is depicted as horizontal line in the figure.
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Figure 12.4 An optimization run for problem pcb442

By exploiting the fractional solution of the 30th LP, the heuristic found an optimal
tour. Throughout the optimization run, very good solutions were found. Note again,
that sometimes the lower bound decreases because of newly introduced variables.
Using this LP based approach for determining tours, we generally found better solutions
than using the methods described in Chapters 6 and 7.
Another very important property of the setup we have developed here is that at any
time during the solution process an individual quality guarantee is available. The user
can halt the programs as soon as a satisfying guarantee is reached. (To be precise, note
that the LP lower bound derived at the root node of the branching tree is only valid if
all variables price out correctly. For practical purposes, however, the bound provided
based on the active variables is sufficient.)
As the examples show, after short time, the most relevant variables are in the LP and
the gap between lower and upper bound is very small. Detailed computational results
are documented in Jünger, Reinelt & Thienel (1993).



Appendix

TSPLIB

All our sample problem instances have been taken from the library TSPLIB, which is
a publicly available set of TSP and vehicle routing problem data. It comprises most
of the problem instances for which computational results have been published. The
reader is invited to conduct own experiments with this test set. A detailed description
is Reinelt (1991a).

Access

TSPLIB is electronically distributed and is available at Konrad-Zuse-Zentrum für Infor-
mationstechnik Berlin (ZIB) where data for various mathematical programming prob-
lems is collected. We give the instructions for using the eLib service at ZIB.
Data files are arranged in a two level directory structure. There is an index file in
each directory that contains names of available files or subdirectories, info files con-
tain descriptions of data formats, readme files containing more information are usually
included in specific problem libraries.
All files can be obtained by e-mail, by anonymous ftp, or interactively via the ZIB
electronic mail library service eLib. The respective addresses are:

E-mail:
elib@ZIB-Berlin.de

Datex-P:
+45050939033 (WIN)
+2043623939033 (IXI)

Internet:
telnet elib.zib-berlin.de (130.73.108.11)
rlogin elib.zib-berlin.de (130.73.108.11) (login as elib; no password is required)
gopher elib.zib-berlin.de (130.73.108.11)
anonymous ftp elib.zib-berlin.de (130.73.108.11)

In remote dialogue mode, eLib provides a command line interface and selection menus
for browsing files. File selections are offered in top-down fashion according to directory
structure. Select MP-TESTDATA at the top level menu displayed after login. Use the
SEND command for obtaining a local copy of a file, it will be sent to you by e-mail in
response. When using ftp, cd to pub/mp-testdata/tsp.
Help information on how to use eLib is provided online or can be obtained by sending
a mail just containing “help” to elib@ZIB-Berlin.de.

G. Reinelt: The Traveling Salesman, LNCS 840, pp. 211-213, 1994.
 Springer-Verlag Berlin Heidelberg 1994
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Status of Problems

We give the current status of the symmetric TSP instances in TSPLIB. Distance types
are described in Reinelt (1991a)

Name #cities Type Bounds

ali535 535 GEO 202310
att48 48 ATT 10628
att532 532 ATT 27686
bayg29 29 GEO 1610
bays29 29 GEO 2020

bier127 127 EUC 2D 118282
brazil58 58 MATRIX 25395

brd14051 14051 EUC 2D [465044,479357]
burma14 14 GEO 3323

d198 198 EUC 2D 15780
d493 493 EUC 2D 35002
d657 657 EUC 2D 48912
d1291 1291 EUC 2D 50801
d1655 1655 EUC 2D 62128

d2103 2103 EUC 2D [79743,80259]

d18512 18512 EUC 2D [644470,651320]
dantzig42 42 MATRIX 699

dsj1000 1000 EUC 2D 18659688
eil51 51 EUC 2D 426
eil76 76 EUC 2D 538
eil101 101 EUC 2D 629
fl417 417 EUC 2D 11861

fl1400 1400 EUC 2D [19849,20127]

fl1577 1577 EUC 2D [22137,22249]

fl3795 3795 EUC 2D [28594,28772]
fnl4461 4461 EUC 2D 182566
gil262 262 EUC 2D 2378
gr17 17 MATRIX 2085
gr21 21 MATRIX 2707
gr24 24 MATRIX 1272
gr48 48 MATRIX 5046
gr96 96 GEO 55209
gr120 120 MATRIX 6942
gr137 137 GEO 69853
gr202 202 GEO 40160
gr229 229 GEO 134602
gr431 431 GEO 171414
gr666 666 GEO 294358
hk48 48 MATRIX 11461

kroA100 100 EUC 2D 21282
kroB100 100 EUC 2D 22141
kroC100 100 EUC 2D 20749
kroD100 100 EUC 2D 21294
kroE100 100 EUC 2D 22068

Table 13.1 Symmetric traveling salesman problems (Part I)
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Name #cities Type Bounds

kroA150 150 EUC 2D 26524
kroB150 150 EUC 2D 26130
kroA200 200 EUC 2D 29368
kroB200 200 EUC 2D 29437
lin105 105 EUC 2D 14379
lin318 318 EUC 2D 42029

linhp318 318 EUC 2D 41345
nrw1379 1379 EUC 2D 56638

p654 654 EUC 2D 34643
pcb442 442 EUC 2D 50778
pcb1173 1173 EUC 2D 56892
pcb3038 3038 EUC 2D 137694

pla7397 7397 CEIL 2D [23076619,23262472]

pla33810 33810 CEIL 2D [65667327,66138592]

pla85900 85900 CEIL 2D [141603586,142514146]
pr76 76 EUC 2D 108159
pr107 107 EUC 2D 44303
pr124 124 EUC 2D 59030
pr136 136 EUC 2D 96772
pr144 144 EUC 2D 58537
pr152 152 EUC 2D 73682
pr226 226 EUC 2D 80369
pr264 264 EUC 2D 49135
pr299 299 EUC 2D 48191
pr439 439 EUC 2D 107217

pr1002 1002 EUC 2D 259045
pr2392 2392 EUC 2D 378032
rat99 99 EUC 2D 1211

rat195 195 EUC 2D 2323
rat575 575 EUC 2D 6773
rat783 783 EUC 2D 8806
rd100 100 EUC 2D 7910
rd400 400 EUC 2D 15281

rl1304 1304 EUC 2D 252948
rl1323 1323 EUC 2D 270199
rl1889 1889 EUC 2D 316536

rl5915 5915 EUC 2D [563416,565585]

rl5934 5934 EUC 2D [554070,556146]

rl11849 11849 EUC 2D [920847,923473]
st70 70 EUC 2D 675

swiss42 42 MATRIX 1273
ts225 225 EUC 2D 126643
u159 159 EUC 2D 42080
u574 574 EUC 2D 36905
u724 724 EUC 2D 41910
u1060 1060 EUC 2D 224094
u1432 1432 EUC 2D 152970
u1817 1817 EUC 2D 57201

u2152 2152 EUC 2D [64163,64294]

u2319 2319 EUC 2D [234256,234519]
vm1084 1084 EUC 2D 239297
vm1748 1748 EUC 2D 336556

Table 13.1 Symmetric traveling salesman problems (Part II)
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D. Applegate, V. Chvátal & W. Cook (1990), “Data Structures for the Lin-Kernighan Heuristic”, Talk
presented at the TSP-Workshop 1990, CRPC, Rice University. [23]

J.L. Arthur & J.O. Frendeway (1985), “A Computational Study of Tour Construction Procedures for
the Traveling Salesman Problem”, Research Report, Oregon State University, Corvallis. [73]

E. Balas (1989), “The Prize Collecting Traveling Salesman Problem”, Networks 19, 621–636. [35]

E. Balas & P. Toth (1985), “Branch and Bound Methods”, in: E.L. Lawler, J.K. Lenstra, A.H.G. Rin-
nooy Kan & D.B. Shmoys (eds.) The Traveling Salesman Problem, John Wiley & Sons, Chichester,
361–401. [176, 186, 201]

M.L. Balinski (1970), “On Recent Developments in Integer Programming”, in: H.W. Kuhn (ed.) Pro-
ceedings of the Princeton Symposium on Mathematical Programming, Princeton Univ. Press,
Princeton, 267–302. [180]

J.J. Bartholdi & L.K. Platzman (1982), “An O(n log n) Planar Travelling Salesman Heuristic Based on
Spacefilling Curves”, Operations Research Letters 4, , 121–125. [133, 135]

L.J. Bass & S.R. Schubert (1967), “On Finding the Disc of Minimum Radius Containing a Given Set
of Points”, Math. Computation 21, 712–714. [55]

J. Beardwood, J.H. Halton & J.M. Hammersley (1959), “The Shortest Path Through Many Points”,
Proc. Cambridge Philos. Society 55, 299–327. [135]

M. Bellmore & S. Hong (1974), “Transformation of Multisalesmen Problem to the Standard Traveling
Salesman Problem”, Journal of the ACM 21, 400–504. [33]

J.L. Bentley (1990), “K-d-trees for Semidynamic Point Sets”, Sixth Annual ACM Symposium on Com-
putational Geometry, Berkeley, 187–197. [67]

J.L. Bentley (1992), “Fast Algorithms for Geometric Traveling Salesman Problems”, ORSA Journal
on Computing 4, 387–411. [73, 83, 106, 112, 114, 119]

J.L. Bentley & M.I. Shamos (1978), “Divide and Conquer for Linear Expected Time”, Information
Processing Letters 7, 87–91. [57, 62]

R.E. Bixby (1994), “Progress in Linear Programming”, ORSA Journal on Computing 6, 15–22. [13]



References 215

R.E. Bland & D.F. Shallcross (1989), “Large Traveling Salesman Problems Arising from Experiments
in X-ray Crystallography: A Preliminary Report on Computation”, Operations Research Letters
8, 125–128. [36]
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