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Preface

Current search paradigms for the Web, direct access through search engines and
navigational access via static taxonomies, have recently been strongly criticized.
A third paradigm, dynamic taxonomies or faceted search, is gaining acceptance to
the extent that it is now the de facto standard in product selection for e-commerce.

This new paradigm is based on a simple and easily understood visual environ-
ment which supports both direct access and guided exploration of complex infor-
mation bases. While focusing on structured, guided exploration, it also bridges the
gap between traditional querying and browsing. In general, query services are ei-
ther too simplistic (e.g. free text queries in IR systems or Web search engines), or
too complex for casual users (e.g. SQL queries, or Semantic Web queries). Brows-
ing as well, is either too simplistic (e.g. “plain” Web links) or application specific
(dynamic pages derived by specific application programs), and does not support
conceptual exploration.

Dynamic taxonomies work on multidimensional taxonomies (usually organized
by facets) and provide a single, coherent visual framework in which users can focus
on one or more concepts in the taxonomy, and immediately see a conceptual sum-
mary of their focus, in the form of a reduced taxonomy derived from the original
one by pruning unrelated concepts. Concepts in the reduced taxonomy can be used
to set additional, dependent foci and users iterate in a guided yet unconstrained way
until they reach a result set sufficiently small for manual inspection.

The access paradigm supported is a conceptual exploration, far more frequent in
“search” tasks than the retrieval by exact specification supported by search engines
and database queries. The underlying model is simple and easily understood by
users, offers substantial benefits over traditional approaches, and has an extremely
wide application range, and a potential for important extensions. Dynamic taxon-
omy/faceted search is a heavily interdisciplinary area, where data modeling, human
factors, logic, inference, and efficient implementations must be considered holisti-
cally.

The goal of this book is to provide a complete and clear guide to all of the relevant
aspects of dynamic taxonomies and faceted search. These include modeling, user
interaction, taxonomy design, system implementation, and performance. The pri-
mary audience for this book are university students, professionals, and researchers
in computer science and computer engineering who are interested in understanding
and applying dynamic taxonomies, possibly in combination with other access meth-
ods, in real environments. The book may be of interest also to university students,
professionals and researchers in Library and Information Science.

The book is organized as follows. Chapter 1 introduces dynamic taxonomies and
faceted search. Chapter 2 formally describes faceted taxonomy-based sources. In
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viii Preface

Chap. 3, dynamic taxonomies and faceted search are compared to other techniques
including information retrieval, OLAP, dynamic result clustering, static taxonomies,
decision trees, formal concept analysis, description logics, and the Semantic Web.
Chapter 4 is devoted to user interface design and issues, and includes an analy-
sis of information presentation, interaction modes, user interface design patterns,
and personalized faceted search. Chapter 5 introduces important extensions to the
base model, addressing data mining, structured documents, and extended expres-
sivity through logical information systems. Chapter 6 discusses several engineering
aspects of taxonomy-based sources including the integration of different and dis-
tributed taxonomy-based sources. Chapter 7 describes guidelines for schema design
and the automatic construction of dynamic taxonomy schemata from textual infor-
mation sources. System implementation issues are discussed in Chap. 8. Chapter 9
analyzes current and emerging application areas, including e-commerce, multime-
dia, e-government, human resource management and diagnostic systems. Finally,
Chap. 10 synopsizes and identifies challenges and directions for further research.

Color reproductions for selected figures are included at the end of the book.
These figures are referenced with a trailing C, e.g. 9.15C.

The following table cross-references some relevant topics that readers might be
familiar with.

Aspect/Topic Chapters and Sections

Real-World Applications Chap. 8 (8.3.1), 9
Formal Concept Analysis (FCA) Chap. 3 (3.4)
Text-Based Information Retrieval Chap. 3 (3.1.2), 7 (7.2), 8 (8.3.1)
Web Searching Chap. 3 (3.1.2), 8 (8.3.1)
Logics and Semantic Web Chap. 3 (3.5), 5 (5.4, 5.5), 8 (8.5, 8.4)
Databases and OLAP Chap. 3 (3.1), 7 (7.1.1.2), 8 (8.2)
(Graphical) User Interfaces Chap. 4, 9
Mathematical Foundations Chap. 2, 3, 5, 6, 8 (8.5)
Facet Analysis Chap. 2 (2.3), 7 (7.1)

Additional and accompanying material is (and will be) available through the ed-
itors’ web pages.1

Torino (Italy) Giovanni Maria Sacco
Heraklion (Greece) Yannis Tzitzikas

1http://www.di.unito.it/~sacco/dt-book, http://www.ics.forth.gr/~tzitzik/fbook/.
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Chapter 1

The Model

Giovanni Maria Sacco

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

T.S. Eliot, Choruses from ‘The Rock’, 1934

We live in a world where the quantity of available information and its rate of growth
are rapidly becoming limiting factors as important as the lack of information has
been for thousands of years. The Internet and the World Wide Web are the main
enabling technologies for this shift. In the past few years, the global distribution of
information through Internet has made an enormous mass of information available
to any web-connected location in the world. The physical location of information
(large libraries, museums, etc.), one of the largest limiting factors in information
availability, is now immaterial. With recent advances in wireless communications,
all the information is also available on-the-move.

At the same time, the conversion of existing information (books, images, etc.)
to digital format and the creation of new information in the appropriate format, has
proved less overwhelming than it appeared in the early 1990’s. Social networking
and collaborative work and the distributed gathering/conversion of information has
caused the quantity of electronically available information to grow at an extremely
fast rate.

This situation has resulted in a dramatic information overload. After a decade of
using traditional access paradigms, such as queries on structured database systems
and information retrieval or search engines, the feeling that “search does not work”
and “information is too hard to find” is now reaching a consensus level.

Two different information access modes can be identified: focalized search vs.
exploratory search. In focalized search, the user attempts to quickly locate relevant
information items on the basis of their contents. In exploratory search (also called
browsing) the user explores relationships among items in a database. For exam-
ple, consider a student using an electronic encyclopedia to produce a term paper on
Michelangelo [236]. He quickly locates the section on Michelangelo (among several
thousand other sections). This is focalized search. At that point, he explores rela-
tionships between Michelangelo and other painters, sculptors, architects, the Italian
Renaissance at large, and the political situation in Italy during that period, etc. This
is exploratory search.

Traditionally, research focused on focalized search. Examples include queries
on structured databases and information retrieval (IR) techniques [311], recently
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dubbed search engines. Database queries require structured data and are not easily
applicable to many practical situations, in which most information is unstructured
or semi-structured. IR techniques try to implement querying for precise results on
textual unstructured information bases.1 Despite their wide usage, the limitations
of IR techniques are well known: Blair and Maron [44] report that only 20% of
relevant documents are actually retrieved. Such a significant loss of information is
due to the extremely wide semantic gap between the user model (concepts) and the
model used by commercial retrieval systems (words or strings of characters). Other
problems include poor user interaction because the user has to formulate her query
with no or very little assistance, and no exploration capabilities since results are
presented as a flat list with no systematic organization.2

In order to overcome the semantic gap inherent in current IR technology, static
taxonomies (such as Yahoo!’s) can be used. Such taxonomies are based on a hierar-
chy of concepts which can be used to select areas of interest and restrict the portion
of the infobase to be retrieved. Taxonomies support abstraction and are easily under-
stood by end users. Document classification according to taxonomy entries, usually
a manual process although automatic and semiautomatic techniques have been pro-
posed, eliminates the IR semantic gap because documents are now semantically
organized. Taxonomies no longer deal with actual data, but rather with metadata,
i.e., with a uniform, standardized and controlled description of content which is in-
dependent of format and, in the case of textual documents, of the actual terms found
in the document.

However, static taxonomies are not scalable for large information bases [247],
and the average number of documents retrieved becomes rapidly too large for man-
ual inspection. The rapid decline of Yahoo!’s taxonomy as a primary tool to access
information provides pragmatic evidence.

Solutions based on semantic networks, general ontologies, and the Semantic Web
[40] are more powerful than traditional taxonomies. However, general semantic
schemata are intended for programmatic access and are known to be difficult to
understand and manipulate by the casual user. Therefore, user interaction must be
mediated by specialized agents, and this increases costs, time to market, and de-
creases the transparency and flexibility of user access. In particular, agent-mediated
search is based on the classic knowledge-based system paradigm, which does not
take the user into account, but rather establishes a master-slave relationship between
the system and the user. Brézillon [48] identifies this as the primary cause of failure
for knowledge-based systems and, in particular, the fact that such systems behave
as oracles, providing answers they are usually unable to explain to the user.

Regardless of approach, the underlying access paradigm is still focalized search:
the user is assumed to know what he wants and the system tries to materialize the

1The term information base or infobase, instead of database, is used here to denote a collection of
heterogeneous data objects of different format (text, images, video, etc.) which is not necessarily
structured.
2Recent advances, including tag clouds, additional keyword suggestions, and result clustering ad-
dress part of these problems and are reviewed in Chap. 3.
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result. The techniques differ mainly in the amount of intelligence the system devotes
to understanding what the user wants.

1.1 Exploratory Search

We contend that most “search” tasks are exploratory and imprecise in essence, and
that using a focalized search paradigm in this context leads perforce to inadequate
or frustrating user interactions. There are many different reasons why a user needs
to explore an information base and consequently many exploratory patterns occur
in practice and often depend on the application domain.

Perhaps the most common exploratory pattern is the pragmatic find the right ob-

ject or object-seeking pattern which commonly occurs in e-commerce and in other
object-selection tasks. We are given an information base consisting of objects char-
acterized by features, and a user who wants to find the object which best suits his
needs. For example, consider the purchase of a digital camera. Each camera is char-
acterized by features such as price, weight, resolution, etc. If the user’s primary goal
is to minimize cost, he will strive for the best inexpensive camera, with the definition
of best inexpensive camera depending on his secondary goal (e.g., high resolution).
Thus, for this exploratory approach to be effective, the user needs to:

• quickly find all possibly relevant features. The number of features might be over-
whelming and they should be organized in a systematic way to allow user data
access at different levels of abstraction: a taxonomic organization is a requirement
in most cases;

• freely focus on the most relevant feature according to his individual requirements
and discard objects without that feature. In the example above, the user might
select a certain price range (e.g., cameras costing less than $200) as a starting
point. Cameras outside that range must be discarded;

• explore all the features correlated with the selected one. What are the features
(e.g., resolution, zoom, etc.) for cameras under $200? If the user is unable to
determine them easily, the next focus cannot be set and the user has to inspect
all the inexpensive cameras and find their features by enumeration. On the other
hand, if related features are available, she can add to the current focus the next
feature in the order of perceived importance and focus on it, thereby discarding
other cameras which do not have that feature and consequently further thinning
the number of candidate objects.

Advocates of the system-centric approach adopted by agent-mediated search
might contend that these requirements are artificial, because the problem can be
stated as a classical optimization problem: the “best” camera is the one which min-
imizes a weighted combination of features. Hence, a precise search rather than user
exploration can be used.

From a user-centered perspective, weights cannot be obviously predefined, even
for a specific user. Different users have different perceptions, but even the same
user can be cost-conscious today, and less so tomorrow after a raise in salary. Thus,
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weights must be supplied each time by the user according to his perceptions. The
user must supply a potentially large number of weights, which is cumbersome, and
understand the effects of these weights on the selection mechanism of the agent,
which is hopelessly difficult.

On the other hand, the mechanism sketched above only requires that the user
identifies the most important feature: ranking instead of weighting, further simpli-
fied by the hierarchical abstraction mechanism of a taxonomy. Easy understanding
of the consequences of focusing and real-time implementations allow the user to ex-
periment with different strategies and gives the user the feeling to have considered
all the possibilities.

The same pattern applies to all object-selection tasks in which different criteria
must be reconciled to find a number of good candidates. E-commerce is an obvious
application, but personnel selection, medical diagnosis, person identification, etc.
fall in the same paradigm.

Not all the exploratory search patterns are so pragmatic and require the se-
lection of objects. The exploratory search on Michelangelo discussed above, is a
knowledge-seeking rather than an object-selection task. In other words, here we use
Michelangelo as a focus to get additional relevant knowledge on a specific topic: the
goal is to increase our knowledge, rather than pragmatically using this knowledge
to select an object.

At the extreme end of this scale, there are wisdom-seeking exploratory patterns
which are becoming increasingly important, in which the goal of exploration is to
understand the inner laws of the information base, and gain insight into the working
of the phenomena described by the information base. In these emerging applica-
tions, so to say, the journey is much more important than the destination. These
exploratory patterns require data-mining capabilities.3 Some applications are dis-
cussed in Sect. 8.5.5.

The best known technique for explorative search is currently hypertext/hyperme-
dia [124]. Hypermedia connects items in the information base through explicit links
which the user can traverse at runtime according to his needs. As the vast literature
on this subject shows, hypermedia is able to accommodate a large number of user
exploratory access patterns. Hypermedia is quite flexible, but it gives no systematic
picture of the relationships among documents because there is no systematic orga-
nization of links by abstractions, and exploration must consequently be performed
one-document-at-a-time, which is quite time consuming and ineffective.

1.2 Dynamic Taxonomies Defined

Traditional access paradigms are not suited to search tasks that are exploratory and
imprecise: the user needs to explore the information base, find relationships among

3See Sect. 5.1.
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concepts, and thin alternatives out in a guided way. New access paradigms support-
ing exploration are needed. Dynamic taxonomy and faceted search systems focus
on user-centered interactive exploratory access, and propose a holistic approach in
which modeling, interface, and interaction issues are considered together.

One of the key factors of this model is an explicit quest for simplicity and min-
imality, as opposed to current research trends which tend to high-complexity so-
lutions. The effort in reducing the model to its minimal components makes it eas-
ily understandable and usable by end-users with no need for the mediation of any
agent. As importantly, it makes the model easily understandable to researchers as
well, and represents a solid foundation on which several extensions and solutions to
real-world problems can be built.

Dynamic taxonomies [231, 232, 234, 236] (DT, also recently known as faceted

search systems) are a general knowledge management model based on a mul-
tidimensional4 classification of heterogeneous data objects5 and are used to ex-
plore/browse complex information bases in a guided yet unconstrained way through
a visual interface. The model is primarily concerned with user-centered access, and
object classification is not addressed in the base model.

The conceptual schema or intension of a dynamic taxonomy is a plain taxon-
omy designed by an expert of the domain: a concept hierarchy going from the most
general to the most specific concepts and not requiring any other relationship in ad-
dition to subsumptions. A concept A is subsumed by a concept B (A ≤ B) if the
set of instances classified under A is intensionally constrained to be equal to or a
subset of the set of instances classified under B: A ⊆ B . Subsumption models tax-
onomic IS-A relationships. In this case, A ≤ B means either that A ≡ B or that A

is a descendant of B in the taxonomy, so that subsumptions define a partial order
among concepts. Directed acyclic graph taxonomies modeling multiple inheritance
are supported.

Objects in the extension are abstract, and consequently objects of any type and
format can be managed in a uniform way. Abstract objects can be freely classified
under n (n > 1) concepts at any level of abstraction (i.e. at any level in the concep-
tual tree). This multidimensional classification is a generalization of the monodi-
mensional classification scheme used in conventional taxonomies and models com-
mon real-life situations. First, objects are very often about different concepts: for
example, the present book can be classified under “information retrieval”, “ontolo-
gies”, “multimedia databases”, etc. Second, objects to be classified usually have
different features, perspectives, or facets (e.g., Time, Location, etc.), each of which
can be described by an independent taxonomy. Taxonomies with a multidimensional
classification will be called multidimensional taxonomies.

4The reader is referred to Gärdenfors [116] for a detailed discussion of multidimensional spaces in
cognitive science and concept formation, induction and semantics.
5The term object is used to denote an abstract information item which is atomic and whose con-
tent and medium are transparent to the model. Objects have been called terms, documents, items,
resources, and atoms in literature.
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1.2.1 Concepts

A concept C is just an abstract label which identifies all the objects classified un-
der C. Concepts are not textual terms. Although concepts are often externally shown
as textual labels, these labels need not have any connection with terms contained
in the objects they represent; incidentally, such objects are not necessarily textual.
In addition, although concept labels are used to convey the concept meaning to
users, such a meaning is not exploited by the model, so that for modeling purposes,
each concept can be identified by a unique abstract identifier (such as a unique nu-
meric id).

Concepts are defined by their extension rather than by specific properties they
exhibit. Two different types of extension for a concept C are defined. The shallow
extension of C (denoted by shallowExtension(C)) is defined as the set of objects di-
rectly classified under C. The deep extension of C (denoted by deepExtension(C))
includes all the shallow extensions for the conceptual subtree rooted in C:

deepExtension(C)

=
{

d | d ∈ shallowExtension
(

C′
)

∧
(

C′ = C ∨ C′ is a descendant of C
)}

or, equivalently

deepExtension(C) =
{

d | d ∈ shallowExtension
(

C′
)

∧
(

C′ ≤ C
)}

By construction, the shallow and the deep extension for a terminal (leaf) con-
cept are the same. An example of each type of extension is given in Fig. 1.1. The
intension is above the line, and the extension is below the line. Circles represent con-
cepts, and objects are represented by rectangles. Solid arcs represent subsumptions,
and dotted arcs represent classifications.

We claim that the ‘natural’ semantics of C is the deep extension of C, because
a specific level of abstraction subsumes all its specializations. When we refer to
animals we include dogs, cats, aardvarks, etc., and all the objects classified under
them. Therefore objects(C) = deepExtension(C). For this reason, the extension of

Fig. 1.1 Shallow (at left) and deep (at right) extensions for concept B
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a concept C refers to the deep extension of C in the following, unless otherwise
noted.

Subsumptions require that an inclusion constraint is maintained. If C′ is a de-
scendant of C in the taxonomy, then objects(C′) ⊆ objects(C). If shallow and deep
extensions are explicitly stored, this results in a form of backward inheritance. An
object in the shallow extension of a concept C is also classified in the deep exten-
sion of each ancestor of C. The deep extension of the root concept of the taxonomy
includes the entire universe U of objects.

The shallow extension is needed only if objects can be classified at any level of
the conceptual tree. In the rather common case in which objects are only classified
under terminal concepts, the shallow extension is not required, because it is empty
for non terminal concepts, and equivalent to the deep extension otherwise.

An immediate consequence of the interpretation of concepts as sets of objects
is that logical operations on concepts can be performed by the corresponding set
operations on their extensions. The information base can be manipulated and derived
concepts created by combining concepts through the normal logical operations (and,
or, not).

1.2.2 Relationships Among Concepts

1.2.2.1 The Base Extensional Inference Rule

In conventional taxonomies, concepts are only related by subsumptions. In a
dynamic taxonomy, concept relationships other than subsumptions are inferred
through the extension only, according to the following base extensional inference
rule:

Two concepts A and B are related (denoted by A ⇄ B) iff there is at least one

object d in the extension which is classified at the same time under A or under one

of A’s descendants and under B or under one of B’s descendants.

For example, an unnamed 6 relationship between terrorism and New York can be
inferred, if an object classified under terrorism and New York exists. At the same
time, since New York is a descendant of USA, also a relationship between terrorism
and USA can be inferred. The extensional inference rule can be seen as a device to
infer relationships on the basis of empirical evidence.

Equivalent definitions of the base extensional inference rule are:

A ⇄ B iff ∃o ∈ U : o ∈ objects(A) ∧ o ∈ objects(B)

A ⇄ B iff objects(A) ∩ objects(B) �= ∅

Subsumption relationships in the taxonomy are, by definition, a special case of
the extensional inference rule.

6Although the name or type of relationships cannot be known through the inference rule only, they
can be conveyed through specific design rules for the taxonomy as discussed in Sect. 7.1.1.
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1.2.2.2 The Extensional Inference Rule

The base extensional inference rule can be extended to cover the relationship be-
tween a given concept C and a concept expressed by an arbitrary subset S of the
universe: C is related to S iff there is at least one object o in S which is also in
objects(C) or, equivalently, iff objects(C) ∩ S �= ∅.

Hence, the extensional inference rule can infer relationships not only for base
concepts, but also for any logical combination of concepts. Since it is immaterial
how S is produced, dynamic taxonomies can infer relationships between a concept
and sets of objects produced by other retrieval methods such as database queries,
shape retrieval, etc. and, therefore, access through dynamic taxonomies can be easily
combined with any other retrieval method. The extensional inference rule reduces
to the base rule when the set S is the deep extension of a concept C′.

Given a taxonomy, the set of concepts related to a set S is called the related

set of concepts (RS(S)) and is defined as: RS(S) = {C | objects(C) ∩ S �= ∅}. Be-
cause of the inclusion constraint in subsumption, if C ∈ RS(S) and C′ is an ancestor
of C, then C′ ∈ RS(S). Conversely, if C �∈ RS(S) and C′ is a descendant of C, then
C′ �∈ RS(S).

In interaction, it is quite useful to know for each C related to S, how many ob-
jects are in the intersection objects(C) ∩ S. We call this quantity related count,
rc(C|S): rc(C|S) = |objects(C) ∩ S|. By definition, rc(C|U) = |objects(C)|. The
related set of concepts can be reformulated in terms of the related count: RS(S) =

{C | rc(C|S) > 0}.

1.2.3 Reduced Taxonomies and Exploration

Given a set of objects S, the extensional inference rule can be used to produce a con-
ceptual summary of S according to the original taxonomy by simply pruning from
the taxonomy all those concepts C which are not related to S, i.e. all C /∈ RS(S).
This taxonomy is called a reduced taxonomy, RT(S).

The fundamental idea for user-centered exploration is to use the taxonomy to:

(a) set an interest focus as a boolean combination of concepts or through an external
query, and

(b) summarize concepts related to the interest focus through a reduced taxonomy,
from which unrelated concepts are pruned.

This means that the original taxonomy can adapt to and summarize any subset of the
universe (hence the term dynamic taxonomy), whereas traditional static taxonomies
can only summarize the entire universe.

The initial user interest focus F0 is the universe U , i.e., all the objects in the in-
formation base. The user is initially presented with a tree representation of the initial
taxonomy for the entire knowledge base. Each concept C has also a related count
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rc(C|Fi).7 The related count is a function of the current focus Fi . Since F0 = U ,
rc(C|F0) is equivalent to |objects(C)|, i.e., to the cardinality of the deep extension
of C.

In the simplest case, the user selects a concept C in the taxonomy and zooms
over it. The zoom operation8 changes the current state in two ways. First, the current
focus Fi becomes Fi−1 ∩objects(C). Objects not in the focus are discarded. Second,
the tree representation of the taxonomy is modified to summarize the new focus. All
and only the concepts related to Fi are retained and the count for each retained
concept C′ is updated to reflect the number of objects in the focus Fi which are
classified under C′, i.e., rc(C′|Fi). The reduced taxonomy is derived from the initial
taxonomy by pruning all the concepts not related to Fi ,9 and it is a conceptual
summary of the set of objects identified by Fi , in the same way as the original
taxonomy is a conceptual summary of the universe.

The retrieval process can be seen as an iterative thinning of the information base:
the user selects a focus, which restricts the information base by discarding all the
objects not in the current focus. Only the concepts used to classify the objects in the
focus and their ancestors are retained. These concepts, which summarize the current
focus, are those and only those concepts which can be used for further refinements.
From a human-computer interaction perspective, the user is effectively guided to
reach his goal by a clear and consistent listing of all possible alternatives, and this
interaction is often called guided thinning or guided navigation.

Figures 1.2–1.5 show how the zoom operation works. Figure 1.2 shows a dy-
namic taxonomy.

We assume that the user zooms on concept C. First, the interest set (i.e. the ex-
tension of the interest focus) is computed. In this case, the interest set is the deep
extension of C, i.e., deepExtension(C) = {b, c, d}. This set is computed by follow-
ing downwards in Fig. 1.3 all the arcs incident to C or one of its descendants {H,I }.
All the objects not in the interest set can be removed from the extension, which is
therefore reduced.

Then the reduced taxonomy for this interest set is computed. First, all the con-
cepts related to the interest focus (RS(C)) are computed. According to the exten-
sional inference rule, these are all the concepts under which at least an object in the
interest set is classified. In Fig. 1.4, we compute this set by following all the arcs
originating from the interest set. The set of concepts related to the focus is therefore
RS(C) = {F,G,H, I,B,C,A}.10

7Related counts are generally considered very important in guiding user interactions. However,
some systems do not show them, for performance reasons.
8Also called zoom-in afterwards.
9For simplicity, we assume here that pruned concepts are not shown to the user. However, the very
fact that a concept was pruned might be an important information for the user. In this case, pruned
concepts are shown to the user in an appropriate format which indicates that they have a related
count equal to zero and are not selectable for additional zoom operations.
10As remarked before, if a concept is related to a set S, also all of its ancestors are related to S.
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Fig. 1.2 A dynamic taxonomy: the intension is above the line, the extension below. Solid arcs

denote subsumptions, and dotted arcs represent classification

Fig. 1.3 Computing the deep extension for C

Finally, in Fig. 1.5, all the concepts not in RS(C) are removed from the intension,
thus producing a reduced taxonomy which fully describes all and only the objects
in the current focus C.

A subsequent zoom operation can only be performed on concepts in the reduced
taxonomy, i.e., on concepts in RS(F1). This guarantees that no empty results are ever
found, by construction, and that, at any stage, unrelated (and therefore irrelevant)
concepts are discarded. The selection of a concept C2 from the reduced taxonomy
determines a new focus F2 = F1 ∩ C2. For example, the selection of G in the context
of F1 determines F2 = {b, c} and RS(F2) = {G,H,B,C,A}.

It is possible to extend zoom operations defined on a single concept to zooms
defined on expressions of concepts or on the result of external query methods.



1 The Model 11

Fig. 1.4 Computing the related set for C (RS(C))

Fig. 1.5 The reduced taxonomy for focus C

1.3 Implications for Schema Design

The derivation of concept relationships through the extensional inference rule has
important implications on conceptual modeling. First, a fundamental point is that
relationships among concepts need not be anticipated but can be inferred from the
actual classification. This simplifies taxonomy creation and maintenance. In tradi-
tional approaches, only the relationships among concepts explicitly described in the
conceptual schema are available to the user for browsing and retrieval. Therefore,
all possible relationships must be anticipated and described: a very difficult if not
impossible task. In dynamic taxonomies, no relationships in addition to subsump-
tions are required, because conceptual relationships are automatically derived from
the actual classification. For this reason, dynamic taxonomies easily adapt to new
relationships and are able to discover new, unexpected ones.
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Second, since dynamic taxonomies synthesize compound concepts, these usually
do not need to be represented explicitly. This property removes the main cause of
the combinatorial growth of traditional taxonomies. Sacco [236] developed guide-
lines which produce taxonomies that are compact and easily understood by users.
Some are similar to faceted classification [134, 224], at least in its basic form: the
taxonomy is organized as a set of independent, ‘orthogonal’ subtaxonomies (facets
or perspectives) to be used to describe data. Additional guidelines [236] address
human-computer interaction and recommend a fanout (number of children for a
given concept) no larger than ten and a taxonomy depth no higher than four levels.
A larger fanout results in longer lists which have to be scanned to find the desired
concept; a larger depth makes hierarchy traversal harder. Fanout and depth guide-
lines suggest taxonomies with a number of terminals ranging from 1,000 to 10,000,
which are usually adequate for faceted taxonomies.

As an example of faceted design guidelines, consider a compound concept such
as ‘15th century Italian paintings’. It can be split into its facets: a Location tax-
onomy (of which Italy is a descendant), a Time taxonomy (of which the fifteenth
century is a descendant) and finally an Art taxonomy (of which painting is a de-
scendant). The objects to be classified under the compound concept are classified
under Location>Italy, Time>15th century and Art>Painting instead. The exten-
sional inference rule establishes a relationship among these concepts and the com-
pound concept can be recovered by zooming on any permutation of them.

In a conventional classification scheme, such as Dewey indexing [87], in which
every object is classified under a single concept, a number of different concepts
equal to the Cartesian product of the terminals in the three taxonomies must be de-
fined.11 Such a combinatorial growth either results in extremely large conceptual
taxonomies or in a gross conceptual granularity [236]. In addition, faceted design
coupled with dynamic taxonomies makes it simple to focus on a concept, e.g., 15th
century, and immediately see all related concepts such as literature, painting, pol-
itics, etc., which are recovered through the extensional inference rule. In the com-
pound concept approach, these correlations are unavailable because they are hidden
inside the concept label.

An often overlooked consequence of faceted schemata is that the faceted de-
sign process breaks relationships into ‘primitive’ or ‘free-standing’ concepts which
do not depend on other concepts [236]. In our experience, such primitive concepts
are relatively stable in time, so that faceted schemata need little maintenance. It is
the relationship among these primitive concepts that tends to vary over time, and
dynamic taxonomies easily accommodate such variability by computing such rela-
tionships dynamically.

In summary, dynamic taxonomies require a simpler schema, dynamically adapt
to new relationships, and simplify user discovery of unexpected relationships.

11Usually, many of these concepts are meaningless (see Sect. 6.1).
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1.4 Advantages

The advantages of dynamic taxonomies are especially significant in the areas of:

• user interaction, which is simple and natural;
• exploration, where dynamic and unexpected relationships are fully accounted for;
• schema design, where a faceted structure leads to minimal and flexible schemata,

and
• search effectiveness, because dynamic taxonomies have an extremely fast conver-

gence to small result sets.12

Dynamic taxonomies require a very light theoretical background: the concept of
a taxonomic organization and the zoom operation, which seems to be very quickly
understood by end-users. The user is effectively guided to reach his goal, because
at each stage he has a complete list of all the concepts related to the current focus,
which can be used to further refine his exploration. By construction, no empty re-
sults can occur because all the unrelated concepts which can cause empty results are
automatically pruned and cannot be selected. Though guided, the user is in control
of interaction and is free to explore the information base according to his interests:
only the concepts which lead to dead ends are pruned, and inferred concept relation-
ships are symmetric.

User control and the adaptive mechanism of dynamic taxonomies, which rapidly
becomes clear and transparent, encourage the user to experiment and explore, and
gives him the feeling that he has considered all the alternatives in reaching a result.
This is confirmed by usability studies [134, 327] conducted on a corpus of art im-
ages. Despite slow response times, access through a dynamic taxonomy was shown
to produce a faster overall interaction and a significantly better recall (both actual
and perceived) than access through text retrieval.

We believe that significant advantages in ease of interaction are a result of using
the same representation for querying (setting the focus) and summarizing, so that
the user always deals with a single conceptual representation of the infobase. We
call this property self-adapting exploration.13

The user-centered approach of dynamic taxonomies is inherently more accept-
able to users than the system-centered approach of agent-mediated knowledge-based
systems, so that dynamic taxonomies appear to be the model of choice for several
important areas, such as medical diagnosis where knowledge-based systems have
not been successful.

Exploration of complex infobases is free. Any combination of concepts (AND,
OR, NOT) is supported by the corresponding set operations on their deep exten-
sions, so that arbitrarily complex foci can be defined. Since the reduced taxonomy is
dynamically produced, the model adapts to dynamic relationships among concepts
(i.e., relationships which can vary in time) and lead to the discovery of unexpected

12See Sect. 3.2.
13Self-adapting exploration structures will be discussed in detail in Chap. 3.
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relationships that even the designer might not be aware of. Most importantly, ex-
ploration is not restricted to conceptual manipulation only, but can applied to any
traditional search method (e.g. text retrieval, shape retrieval, etc.) because any subset
of the universe can be summarized by dynamic taxonomies through a dynamically-
created reduced taxonomy.

Since concepts can be dynamically combined at run-time, schemata for dynamic
taxonomies are simple and minimal. They are based on subsumptions only and there
is no need for compound concepts, which are the major cause of the combinatorial
explosion of conventional taxonomies. No assumption is made on object contents,
type or format, so that any type of heterogeneous information can be managed in
a uniform way. Finally, in dynamic taxonomies, concepts are abstract entities, and
no assumption is made on concept labels. Consequently, an appropriate architecture
makes the support of multilingual access very easy because it only requires the
translation of concept labels into a different language.

The advantages of dynamic taxonomies with respect to the convergence of ex-
ploratory patterns are dramatic. The analysis by Sacco14 [247] shows that 3 zoom
operations on terminal concepts are sufficient to reduce a 10,000,000 object infor-
mation base described by a compact taxonomy with 1,000 concepts to an average of
10 objects. Experimental data on a real newspaper corpus of over 110,000 articles,
classified through a taxonomy of 1,100 concepts, reports an average 1,246 objects
to be inspected by the user of a static taxonomy vs. an average 27 objects after a
single zoom on a dynamic taxonomy.

Finally, the conceptual organization of dynamic taxonomies simplifies the gath-
ering of user interests at a precise conceptual level by simply (and unobtrusively)
monitoring the zoom operations issued and the concepts the user focuses on. At the
same time, such an organization also allows the user to explicitly specify his own
interests in terms of concepts so that precise push strategies can be implemented
[231, 232, 242]. Recommendations can also be easily integrated, since reviews, pop-
ularity, etc. can be represented by specific facets in the dynamic taxonomy.

1.5 Application Areas

The main industrial application is currently e-commerce. Assisted product selection
is a critical step in most large-scale e-commerce systems and the advantages in inter-
action are so significant as to justify the restructuring of most e-commerce portals,
such as Yahoo! Shopping.

However, dynamic taxonomies have an extremely wide application range and
a growing body of literature indicates that their adoption benefits most web ap-
plications. In addition to e-commerce, e-auctions, and e-catalogs, key areas such
as e-government, human resources and job placement, news portals, multimedia,

14See Sect. 3.2.
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medical guideline and diagnostic systems are being investigated and commercial
solutions deployed.

Although most current applications fall in the object-seeking category, there is an
emerging and growing interest in knowledge-seeking applications, while wisdom-
seeking applications are currently at an initial stage. A detailed discussion of exist-
ing and emerging application areas is found in Chap. 9.

1.6 Faceted Search and Dynamic Taxonomies

Thus far, we have used the term faceted search as a synonym of dynamic tax-

onomies. However, faceted classification is just a design guideline, akin to normal-
ization in relational databases, and the dynamic taxonomy model only requires a
multidimensional taxonomy. Indeed, there are practical situations in which the vio-
lation of the orthogonal organization of facets is beneficial or required. For example,
consider the topic taxonomy of a legal database organized for experts, and the same
taxonomy organized for laymen. These two subtaxonomies are not facets as they
are not orthogonal, but provide two different and useful access paths to the same
infobase. So, it can be contended that the term faceted search is misleading since
it focuses on an unessential feature. The concepts of extensional inference and of
reduced taxonomies, which are a fundamental part of dynamic taxonomies, are not
implied by (and do not require) a faceted classification.

In addition, faceted search is presented in literature through examples rather than
being formally defined [248], and this has obviously caused a certain amount of
confusion. Faceted search can be (and sometimes has been) taken at face value to
mean any system based on a faceted classification. This covers very diverse solu-
tions, ranging from the work of Prieto-Diaz [216], based on a faceted classification
which can be composed by boolean operators but with no conceptual summariza-
tion capabilities, to early attempts by Amazon and Microsoft Knowledge Manager,
where faceted subtaxonomies are completely independent and cannot be composed.
Most importantly, it is impossible to reason in a rigorous way on features, extensions
and challenges without a formal model.

Faceted search systems, though later, are subsumed by the more general dynamic
taxonomy model. Although there is a clear evolution towards the more general
model, some commonly found restrictions include, among others:

• attribute-value shallow taxonomies. In most systems, a two-level taxonomy is
used, describing attributes with their values as immediate children. For example,
attributes for a digital camera can be Price, Brand, Weight, etc. Each attribute A

will have a number of children, each representing a value of A. This is a signifi-
cant restriction with respect to the more general multi-taxonomy model supported
by dynamic taxonomies, since it does not support any abstraction capabilities.
However, this is a frequent approach because it allows a straightforward mapping
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of database relations to a dynamic taxonomy in which the top-level facets are the
attributes.15

• objects classified under terminal concepts only. This is really an implication of
the previous restriction, because in attribute-value shallow taxonomies attributes
are obviously abstract, and it makes no sense to classify an object directly under
a specific feature. In general dynamic taxonomies this is not true. For example, a
news item may be about an entire nation, a specific region, or a specific town.

• AND only refinement. Whereas dynamic taxonomies support all boolean oper-
ations on concepts, most faceted search systems only support refinement by a
single selected concept. The lack of OR composition capabilities implies that the
user is unable to focus on custom groups obtained by considering different con-
cepts in the taxonomy as equivalent. As an example, consider a user interested in
Balkan countries only: either a specific concept grouping such countries has been
anticipated and exists in the schema or the user is unable to explore features for
Balkan countries, unless OR composition is supported.

1.7 Book Roadmap

Dynamic taxonomies are user-centered and deal holistically with a number of differ-
ent aspects which include modeling, user interaction, schema design, system imple-
mentation and performance. All of these aspects are fundamental in our approach,
even though the final yardstick is whether the user can easily and effectively un-
derstand and use the model. Dynamic taxonomies are at the crossroads of several
independent computer science research areas, and, for this reason, their initial accep-
tance by the research community was a relatively slow and difficult process because
it was hard to classify them in the ‘appropriate’ conferences and journals, and con-
tributions were usually and incorrectly considered from a single perspective only.
On the contrary, the acceptance by the industrial community, once started, was very
quick and pervasive.

For the purpose of exposition, the book has been divided into the following five
main areas:

• Modeling issues. This is the focus of the next two chapters. Chapter 2 describes
faceted taxonomy-based information sources. In Chap. 3, dynamic taxonomies
and faceted search are compared to other techniques including information re-
trieval, OLAP, dynamic result clustering, static taxonomies, decision trees, formal
concept analysis and description logics. Finally, Chap. 5 extends the model by ad-
dressing data mining, structured documents, and extended expressivity through
logical information systems, and deals both with modeling and user interaction
issues.

• User Interaction issues. Chapter 4 provides an extensive analysis of information
presentation, interaction modes, user interface design patterns, and personalized
faceted search.

15See Chap. 7.
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• Taxonomy design. Chapters 6 and 7 focus on taxonomy design. Chapter 6 intro-
duces the Compound Term Composition Algebra and addresses the integration of
different and distributed taxonomy-based sources. Chapter 7 describes guidelines
for schema design, and discusses the automatic generation of dynamic taxon-
omy schemata for structured databases, focusing on relational views and on E–R
schemata. Finally, the automatic construction of dynamic taxonomy schemata
from text infobases is discussed.

• Architecture, implementation, and performance issues. Effective user interaction
with dynamic taxonomies requires real-time response for zoom operations, even
for very large databases. Chapter 8 discusses architectural alternatives, and ana-
lyzes RDBMS-based and special implementations. It also discusses the composi-
tion of taxonomies with Logic components.

• Applications. Chapter 9 analyzes current and emerging application areas, includ-
ing e-commerce, multimedia, e-government, human resource management, di-
agnostic systems, multidimensional file systems, and geographical information
systems.



Chapter 2

Faceted Taxonomy-Based Sources

Yannis Tzitzikas

“μέγ α βιβλίoν μέγ α κακóν”

(Big book, big evil)

Kαλλίμαχoς , 310 BC–240 BC

The objective of this chapter is to explain the underlying mathematical structure
of faceted taxonomy-based sources and to provide some common notions and no-
tations that are used in some parts of the book. Subsequently, and on the basis of
the introduced formalism, this chapter describes the interaction between a user and
an information source that supports dynamic taxonomies and faceted search. The
comparison with other formalisms is described in Chap. 3 while a more detailed
description of the interaction accompanied by examples of user interfaces is given
in Chap. 4.

2.1 Introduction

Roughly, a taxonomy is a hierarchically-organized set of terms. A term can be a
string but it can also be considered as a concept. A concept can be an abstract idea
or a mental symbol, typically associated with a corresponding representation in a
language or symbology. Therefore the same concept may have different represen-
tations in different natural languages (or even in the same language), as well as in
different computer systems. For reasons of generality and simplicity, in this chapter
we shall use terms to refer to both concepts and to plain names/values which are not
necessarily concepts but are used for indexing/describing the objects of the domain
of interest.

A faceted taxonomy is a set of taxonomies, each one describing the domain of
interest from a different (preferably orthogonal) point of view [225]. Although ex-
ploratory search and dynamic taxonomies do not presuppose faceted taxonomies,
i.e. they can be defined over single taxonomies, a faceted taxonomy has several
advantages by comparison to a single taxonomy, such as conceptual clarity, com-
pactness, and scalability (for more see [216, 300]).

Having a faceted taxonomy, each domain object (e.g., a book, a product, a Web
page) can be indexed (or described) using a compound term, i.e., a set of terms

G.M. Sacco, Y. Tzitzikas (eds.), Dynamic Taxonomies and Faceted Search,
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DOI 10.1007/978-3-642-02359-0_2, © Springer-Verlag Berlin Heidelberg 2009

19



20 Y. Tzitzikas

Fig. 2.1 A materialized faceted taxonomy

from one or several facets. A materialized faceted taxonomy (or faceted taxonomy-

based source) is a faceted taxonomy accompanied by a set of object descrip-
tions. Figure 2.1 shows a sample materialized faceted taxonomy that consists of
two facets, namely Location and Facilities, and three indexed hotel Web
pages.

2.2 Taxonomies and Partially-Ordered Sets

Definition 2.1 A terminology is a set of names, called terms.

Later on we will broaden the notion of term and we will show that in addition to
names, we can consider numbers, sets, and intervals as terms.

Definition 2.2 A taxonomy is a pair (T ,≤), where T is a terminology and ≤ is a
reflexive and transitive binary relation over T , called subsumption.

If a and b are terms of T and a ≤ b then we say that a is subsumed by b, or that
b subsumes a. We also say that a is narrower than b, or that b is broader than a.
For example, Crete ≤ Greece and SeaSports ≤ Sports.
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The basic principle (or guideline when designing taxonomies) is the following:

the more narrow a term is,

the more information it carries

(i.e. the larger its intension is)

and the smaller its extension is.

Roughly speaking, the extension of a term, refers to the set of domain objects
upon which the term is applicable.

We say that two terms a and b are equivalent, and write a ∼ b, if both a ≤ b and
b ≤ a hold, e.g., Greece ∼ Hellas.

Note that the subsumption relation is a preorder over T and that ∼ is an equiv-
alence relation over the terms of T . Moreover ≤ is a partial order over the equiva-
lence classes of terms. For reasons of simplicity we shall hereafter assume that ≤ is
a partial order (i.e. no cycles can be formed).

When using diagrams to depict a taxonomy, such as the ones of Fig. 2.1, term
subsumption is indicated by a continuous-line arrow from the narrower term to the
broader term. Note that we do not illustrate the entire subsumption relation but only
a subset sufficient for generating it. In particular, we do not represent the reflexive,
nor the transitive arrows of the subsumption relation (i.e. we illustrate the reflexive
and transitive reduction of ≤). The resulting diagram is also called Hasse diagram
if it has an upward orientation.1

A linearly ordered set, e.g. the set {1,2,3,4,5}, can also be considered as a par-
tially ordered set (i.e. the relation ≤ over the set of integers is reflexive, transitive and
antisymmetric), and thus it can also be considered as a taxonomy. Generalizing, any
subset of a linearly ordered set (e.g. the set of real numbers) could be considered as a
taxonomy. Furthermore, even a plain set (e.g. {a, b, c}) could (somehow abusively)
be considered as a taxonomy (where ≤ in such cases comprises only reflexive re-
lationships). Also note that we can define intervals over linearly ordered sets, and
intervals can be ordered according to the cover relation. It follows that a set of inter-
vals ordered by the cover relation can also be considered as a taxonomy. Figure 2.2
shows some examples of taxonomies. However, the desired ordering depends on the
semantics as it will be clarified later on. Taxonomies can be handcrafted or derived
automatically from structured data (e.g. see Sects. 7.1 and 8.2), from textual sources
(e.g. see Sects. 7.2 and 8.3.1), by composing other taxonomies and logics (e.g. see
Sects. 6.1 and 8.5), etc.

2.3 Faceted Taxonomies

A faceted taxonomy comprises a set of facets, where each facet Fi has a name and
as range a taxonomy. Table 2.1 shows all notations that are used in this chapter.

1If a < b then the point corresponding to a appears lower in the drawing than the point correspond-
ing to b.
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Fig. 2.2 Examples of taxonomies

Table 2.1 Basic notions and notations

Name Notation Definition

terminology T a set of names, called terms

subsumption ≤ a preorder relation (reflexive and transitive)

taxonomy (T ,≤) T is a terminology, ≤ a subsumption relation over T

broaders of t Br(t) {t ′ | t < t ′}

narrowers of t Nr(t) {t ′ | t ′ < t}

direct broaders of t Br(1)(t) minimal≤(Br(t))

direct narrowers of t Nr(1)(t) maximal≤(Nr(t))

faceted taxonomy F = {F1, . . . ,Fk} Fi = 〈nm, (Ti ,≤i)〉, for i = 1, . . . , k

and all Ti are disjoint

compound term over T s any subset of T (i.e., any element of P(T ))

object domain Obj any denumerable set of objects

interpretation of T I any function I : T → P(Obj)

model of (T ,≤)

induced by I Ī Ī (t) =
⋃

{I (t ′) | t ′ ≤ t}

materialized (F , I ) F is a faceted taxonomy {F1, . . . ,Fk},

faceted taxonomy I is an interpretation of T =
⋃

i=1,...,k Ti

extension of s

in I and in Ī I (s), Ī (s) I (s) =
⋂

{I (t) | t ∈ s} and Ī (s) =
⋂

{Ī (t) | t ∈ s}

Note that the same taxonomy can be used as range of more than one facets (for
instance, for indexing flights we may have two facets named “from” and “to” whose
range is the same taxonomy “Location”). However, by prefixing the name of each
term with the facet name we can assume that the facet terminologies are all disjoint
(as stated in Table 2.1).
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A faceted taxonomy is actually a taxonomy. Suppose that F = {F1, . . . ,Fk}

where Fi = (Ti,≤i), for i = 1, . . . , k and all Ti are disjoint. If we define:

T = T1 ∪ · · · ∪ Tk

≤ = ≤1 ∪· · ·∪ ≤k

it is evident that (T ,≤) is again a taxonomy. So the only difference is that the ter-
minology and the subsumption relation of a faceted taxonomy is partitioned. The
word “partitioned” raises questions of the form: on what criteria such partitions

should be based on, or what a facet is, or should be? Unfortunately we cannot give
a strict definition. In general, the decision of what a facet is or should be, is a mod-
eling/methodological rather than technical issue, and a detailed discussion of such
questions is beyond the scope of this chapter. Recall that facet-like structures occur
in several disciplines: library and information science (originated from Ranganathan
work [225] referring to subdivisions of a class hierarchy based on re-occurring fea-
tures), object-oriented languages and systems (the notion of class), databases (the
notion of attribute), formal context analysis (the notion of scale), software engineer-
ing (the notion of aspect in aspect-oriented analysis). Some of these are discussed
in more detail in Chap. 3, while a discussion of this structuring mechanism in vari-
ous domains is provided in [218]. Let us just include some comments coming from
the area of library and information science. Vickery [313] compares the semantic
model of human memory structures used by Linsday and Norman [172] with the
analysis of subjects by facet, used by himself and others in subject classification.
For instance, they described “roles which characterize parts of an event” as:

Action, Agent, Conditional, Instrument, Location,

Object, Purpose Quality, Recipient, Time.

These correspond closely to some of the facets defined by Vickery [313] as being
useful within a science and technology classification:

Attributes, Object, Parts, Place, Processes, Properties, Substances, Time,

Recipient.

Research based on facet analysis [95] has been able to define facets which may
be labeled differently in different domains, but which are essentially transferable.
The following examples are taken from knowledge bases built for research purposes
using the hypertext system “NoteCards”. Notice that the labels in each row although
different are semantically similar.

Generic labeling Catering Social skills

parts ingredients attitudes
processes processes processes
procedures recipes procedures
agents equipment people
properties characteristics situations
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Facet analysis is also discussed in Sect. 7.1. Finally, we want to note that facet
orthogonality is not a strict constraint.

2.4 Taxonomy-Based Sources

Let Obj be a finite set of objects called domain. We write “objects” (and not “items”)
just to stress that each one of them has a unique identity. In our running example of
Fig. 2.1, Obj = {h1,h2,h3}.

Definition 2.3 A taxonomy-based source S is a quadruple S = 〈T ,≤, I,Q〉 where:

• T is terminology
• ≤ is a partial order over T called subsumption

• I is a function I : T → P (Obj) called interpretation (where P (Obj) denotes the
power set of Obj),

• Q is the set of all queries defined by the grammar q ::= t |q ∧ q ′ |q ∨ q ′ |

¬q | (q) | ǫ where t is a term in T and ǫ the empty query.

Browsing and query answering in a taxonomy-based source S is founded on the
notion of model.

Definition 2.4 An interpretation I is a model of a taxonomy (T ,≤) if for all t, t ′

in T , if t ≤ t ′ then I (t) ⊆ I (t ′).

Definition 2.5 Given an interpretation I of T , the model of (T ,≤) generated by I ,
denoted Ī , is given by:

Ī (t) =
⋃

{

I
(

t ′
) ∣

∣ t ′ ≤ t
}

Notice that I (t) is what is called the shallow extension of t , while Ī (t) is the deep

extension of t .

Definition 2.6 Given two interpretations I , I ′ of T , we call I less than or equal
to I ′, and we write I ⊑ I ′, if I (t) ⊆ I ′(t) for each t ∈ T .

Clearly, Ī is the minimal model of (T ,≤) that is greater than I with respect to ⊑.
Any interpretation I can be extended to an interpretation of queries as follows:

I (q ∧ q ′) = I (q) ∩ I (q ′), I (q ∨ q ′) = I (q) ∪ I (q ′), and I (¬q) = Obj − I (q),
where − denotes set difference.

Given a source S = 〈T ,≤, I,Q〉 and a query q ∈ Q, the answer of q is the
set Ī (q).

Given an object o ∈ Obj , we can define its description according to an interpre-
tation I , denoted by DI (o), as follows:

DI (o) = {t ∈ T | o ∈ I (t)}
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So DI (o) is a set of terms also called compound term (a compound term is any
subset of T ). In our example, DI (h1) = {Crete}, while with respect to the model
Ī we have DĪ (h1) = {Crete,Islands,Greece}. We may refer to the latter as
the expanded (or complete) description of h1. If s = {t1, . . . , tm} is a compound
term, then I (s) = I (t1) ∩ · · · ∩ I (tm), i.e. we treat compound terms as conjunctions
of terms.

Above we defined descriptions through interpretations. The reverse is also pos-
sible (i.e. to define interpretations through descriptions). Specifically, we may con-
sider a description function D : Obj → P (T ) (where P (T ) denotes the power set
of T ). From such a function D we can define an interpretation, denoted by ID , as
follows:

ID(t) = {o ∈ Obj | t ∈ D(o)}

This approach is more close to the way data are usually entered by users in appli-
cations. For instance, when users annotate images with tags, they actually provide
descriptions of these images which can then be used to define the interpretations of
tags.

It is worth mentioning that the terminologies may not be defined explicitly
a-priori, but they can consist of those terms (or values) that appear in the descrip-
tions of the indexed objects. For instance, consider a facet with name age whose
range is the set of all integers. Suppose we have three persons with ages 11, 18
and 81. In that case we can consider that the terminology of the facet age is the
set {11,18,81}. In this example it would not be useful to assume any ordering for
this set (e.g. 11 < 18 < 81). In general this depends on the semantics (the more
narrow a term is, the more information it carries so the smaller its extension is).
For instance, consider a facet priceRange and two hotels whose price ranges are
[70,80] and [60,100]. In this case it is reasonable to assume that [70,80]
< [60,100] as the former is contained in the latter.

In brief the notion of taxonomy-based source as defined is very broad and it can
be used to capture any attribute whose range is a partially ordered set. For instance,
we can consider taxonomy-based sources as attribute-value pairs of:

• single quantitative attributes:
For example, age= 18.

• single categorical attributes:
For example, color= red.

• single hierarchically-ordered categorical attributes:
For example, location= Athens where Athens is a term of a taxonomy.

• multi-valued quantitative or categorical attributes:
For example, age = {11,18} and color = {white,blue}. The seman-
tics of the multiple values determine the ordering that should be assumed. For
instance, if we assume that color = {white,blue} means that the color is
both white and blue (e.g. the flag of Greece or Finland), then we should con-
sider that:
{white,blue} ≤ {white}
{white,blue} ≤ {blue}
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If we assume that age = {11,18} means that age is either 11 or 18, then we
should consider that
{11} ≤ {11,18}
{18} ≤ {11,18}

• intervals:
For example, priceRange= [80,140]. Again the semantics of intervals de-
termine the ordering of the intervals, as it is described in the subsequent section.

2.5 On Intervals

An interval, specifically a closed interval of reals (of any linearly or partially ordered
set in general), is any pair of elements [a, b] such that a ≤ b. We can define a partial
order (≤) over a set of intervals  as follows: [a, b] ≤ [c, d] iff c ≤ a and b ≤ d .
Clearly, this is the interval inclusion relation.

An interpretation of a set of intervals  over a set of objects Obj is again any
function I :  → P (Obj). However we can distinguish two different meanings to
an interpretation I , the universal and the existential one:

(a) Universal meaning
Here, o ∈ I (φ) means that object o appears in the whole φ, or equivalently, that
the entire interval φ applies to o. For instance, in the context of a variable life we
can have Aristotle ∈ Ilife([−384,−322]) as Aristotle lived from 384 B.C.
until 322 B.C., or Einstein ∈ Ilife([1879,1955]). In the context of a variable
shoeSizes we can have Timberland ∈ IshoeSizes([36,44]).

(b) Existential meaning
Here, o ∈ I (φ) means that object o appears somewhere within φ. For instance,
in the context of a variable date we can have Easter ∈ Idate([March,May]), or
in the context of a variable prices we can have HolidayInn ∈ Iprices([70,200]).

If I is an interpretation with universal meaning, it follows that if o ∈ I (φ) and
φ′ ≤ φ then o appears in the whole φ′ too. This can be captured by the notion of
universal model introduced next.

Definition 2.7 An interpretation of I of  is a universal model of (,≤) if for any
φ,φ′ ∈ , if φ ≤ φ′ then I (φ) ⊇ I (φ′).

We can always extend an interpretation I of  to a universal model of (,≤),
denoted by I , as follows:

I (φ) =
⋃

{I (φ′) | φ ≤ φ′}

Clearly, I is the minimal universal model of (,≤) that is greater than I with re-
spect to ⊑.

If I is an interpretation with existential meaning, it follows that if o ∈ I (φ) and
φ ≤ φ′ then o also “appears” somewhere within φ′. This can be captured by the
notion of existential model introduced next.
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Definition 2.8 An interpretation of I of  is an existential model of (,≤) if for
any φ,φ′ ∈ , if φ ≤ φ′ then I (φ) ⊆ I (φ′).

We can always extend an interpretation I of  to an existential model of (,≤),
denoted by Ī , as follows:

Ī (φ) =
⋃

{I (φ′) | φ′ ≤ φ}

Clearly, Ī is the minimal existential model of (,≤) that is greater than I with
respect to ⊑.

We can call interval-based source, for short source, any triple (,≤, I ) where
 is a set of intervals, ≤ is the inclusion relation over  and I is an interpretation
of .

We can query a source (,≤, I ) in order to find objects that satisfy certain prop-
erties. Let us now introduce a basic query language for intervals. A query is any
string derived by the following grammar, q ::= U [a, b] | E[a, b], where [a, b] is an
interval. We will denote by Q the set of all queries. The queries of the form U [a, b]

are called universal queries, while the queries of the form E[a, b] are called exis-

tential queries. Roughly, a universal query U [a, b] seeks for objects that appear in
the whole interval [a, b], while an existential query E[a, b] seeks for objects that
appear somewhere in the interval [a, b].

Let’s now define query answering, i.e. define ans(q) where q ∈ Q. Of course the
answer of queries over a source (,≤, I ) depends on the meaning of I . Below we
discuss query answering for each possible case.

• universal queries over interpretations with universal meaning:

ans(U [a, b]) = I ([a, b]) =
⋃

{I (φ) | [a, b] ≤ φ}

• existential queries over interpretations with existential meaning:

ans(E[a, b]) = Ī ([a, b]) =
⋃

{I (φ) | φ ≤ [a, b]}

• universal queries over interpretations with existential meaning:
The answers of these queries are always empty. This is because from premises

of the form ∃ X P(X) we cannot yield conclusions of the form ∀ X P(X), unless
our intervals are points but this is a special case of limited practical interest.

• existential queries over interpretations with universal meaning:
Let us first introduce some auxiliary definitions. Two intervals [a, b] and [c, d]

are overlapping, if c ≤ b. The intersection of two intervals [a, b] and [c, d], de-
noted by [a, b] ∩ [c, d], is defined as: [a, b] ∩ [c, d] = [c, b] if they are overlap-
ping, and [] otherwise. One can easily see that if q is an existential query, then
the answer of q (over a universal interpretation) is given by:

ans(E[a, b]) =
⋃

{I (φ) | φ overlaps [a, b]}
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2.6 Modeling Interaction

As interaction is of prominent importance, this section introduces the basic notions
for describing interaction. It describes the essentials from various works and systems
either called dynamic taxonomies or not (e.g. [213, 300, 302]). However a more
detailed treatment of the subject is available in Chaps. 3 and 4.

In brief, the user explores or navigates the information space by setting and
changing his/her focus. The notion of focus can be intensional or extensional.
Specifically, any set of terms, i.e. any conjunction of terms (else called compound
term) is a possible focus (more in Chap. 4). Of course we could generalize and con-
sider any query as a possible focus. However hereafter we shall concentrate on foci
that are conjunctions of terms. For example, the initial focus could be the empty
compound term, or the top term of a facet. However, and as we shall see in Sect. 2.7
(as well as in the chapter that describes systems, e.g. in Sect. 8.3.1), the user could
also start from an arbitrary set of objects. In that case we could say that the focus is
defined extensionally.

For reasons of minimality, we shall hereafter consider foci that are redundancy

free. A focus ctx (i.e. ctx ⊆ T ) is redundancy free if and only if ctx = minimal≤(ctx).
For example, ctx = {Greece,Crete} is not redundancy free because minimal≤(ctx) =

{Crete}.
The contents (or extension) of a focus ctx, is the set of objects Ī (ctx). We can

refine this notion and distinguish the shallow contents I (ctx), from the deep contents
Ī (ctx).

Consider the materialized faceted taxonomy shown in Fig. 2.3 (notice that the
third facet comprises intervals that have an existential meaning). In this case we

Fig. 2.3 A materialized faceted taxonomy comprising three facets
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have:

I ({Islands,SeaSports} = ∅

Ī ({Islands,SeaSports} = {h2}

2.6.1 Zoom Points

Given a context ctx, we can define the set of all zoom points with respect to a par-
ticular facet Fi , denoted by AZi(ctx) as follows:

AZi(ctx) =
{

t ∈ Ti | Ī (ctx) ∩ Ī (t) �= ∅
}

These zoom points can be categorized to various categories, e.g. zoom-in/out/side
points, as shown in Table 2.2 and are discussed in the subsequent sections.

When building GUIs, an area is usually dedicated to each facet and the zoom
points with respect to a facet Fi are actually those terms of Ti that should be shown
in that area (these are the extensionally related terms as introduced in Chap. 1). Each

Table 2.2 Interaction notions and notations

Name Notation Definition

focus ctx any subset of T such that
ctx = minimal≤(ctx)

focus projection on a facet i ctxi ctxi = ctx ∩ Ti

Kinds of zoom points w.r.t.
a facet i while being at ctx

Notation Definition(s)

zoom points AZi(ctx) = {t ∈ Ti | Ī (ctx) ∩ Ī (t) �= ∅}

zoom-in points Z+
i (ctx) = AZi(ctx) ∩ Nr(ctxi)

immediate zoom-in points Zi(ctx) = maximal≤(Z+
i (ctx))

= AZi(ctx) ∩ Nr(1)(ctxi)

zoom-side points ZR+
i (ctx) = AZi(ctx) \ {ctxi ∪ Nr(ctxi) ∪ Br(ctxi)}

immediate zoom-side points ZRi(ctx) = maximal≤(ZR+(ctx))

zoom-out points ZO+
i (ctx) = Br(ctxi)

immediate zoom-out points ZOi(ctx) = Br(1)(ctxi)

Restriction over an object set Notation Definition(s)

restricted object set A any subset of Obj

reduced interpretation I ′ I ′(t) = I (t) ∩ A

reduced terminology T ′ = {t ∈ T | Ī ′(t) �= ∅}

= {t ∈ T | Ī (t) ∩ A �= ∅}

=
⋃

o∈A Br(DI (o))
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zoom point tx is usually accompanied by a number (related count) that indicates the
number of objects that will be obtained if the user selects that point. Specifically
that number equals the cardinality of the set Ī (ctx) ∩ Ī (tx) = Ī (ctx ∪ {tx}), which is
certainly greater than zero.

The zoom points can be ranked according to various criteria like, number of in-
dexed objects, user preferences, popularity, usage workload. In addition, other crite-
ria can be employed to suppress the visibility of some points. For instance, we may
hide those zoom points leading to contexts with contents size below a predefined
threshold, or we may decide to present only the top-K zoom points for each facet.
More details are given in Chap. 4.

2.6.2 Zoom-in

Now we introduce elements allowing the refinement of a focus. To this end we intro-
duce the notion of zoom-in points. A zoom-in point is actually a term that indicates
where the user could zoom in.

Given a focus ctx, we can define its projection to a facet Fi , denoted ctxi , as
follows ctxi = ctx ∩ Ti .

For example, assume we use the number 1 for Location, the number 2 for
Facilities, and 3 for Prices. If ctx = {Islands,SeaSports} then

ctx1 = {Islands},
ctx2 = {SeaSports} and
ctx3 = ∅.
Now we can define the zoom-in points with respect to a particular facet Fi .

Specifically we will define the immediately narrower zoom-in points (of course
these points can have more narrower zoom-in points, and so on). Consider a fo-
cus ctx and suppose that ctxi �= ∅. The candidate zoom-in points with respect to Fi ,
denoted by CZi(ctx), are defined as:

CZi(ctx) = Nr(1)(ctxi)

i.e. the direct narrower terms of ctxi . In our example we have:

CZ1({Mainland,WinterSports}) = {Pilio,Olympus}

CZ2({Mainland,WinterSports}) = ∅

CZ3({Mainland,WinterSports}) = ∅

The above definition can also be applied in cases where |ctxi | > 1, by assuming that
Nr(1) is defined also for sets of terms.2

2If S ⊆ T then Nr(1)(S) =
⋃

t∈S Nr(1)(t).
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We can now filter out those points that would yield empty contents. So we can
define the (immediately narrower) zoom-in points as:

Zi(ctx) =
{

tx ∈ CZi(ctx) | Ī (ctx) ∩ Ī (tx) �= ∅
}

In our example we have:

CZ1({Mainland,WinterSports}) = {Pilio,Olympus}

Z1({Mainland,WinterSports}) = {Olympus}

So Zi(ctx) comprises those terms of Ti that should be shown in the UI area dedicated
to facet Fi when user focus is ctx.

When the user selects a zoom-in point t , then the current focus is updated, i.e.
ctx′ = ctx ∪ {t}. If we want ctx′ to be redundancy free we should remove those
elements of ctx that are broader than t . Subsequently, all new zoom-in points are
computed and presented, and so on.

Of course we could pre-compute (and even show in the UI area in a hierarchical
way) all zoom-in points (not only the immediately narrower ones). Specifically, the
set of all zoom-in points with respect to a facet Fi are defined as:

Z+
i (ctx) = AZi(ctx) ∩ Nr(ctxi)

and of course Zi(ctx) comprises the maximal elements of Z+
i (ctx):

Zi(ctx) = maximal≤(Z+
i (ctx))

= AZi(ctx) ∩ Nr(1)(ctxi)

2.6.3 Zoom-Side

Now we introduce another kind of zoom points. This kind of points is useful for
taxonomy-based sources that satisfy at least one of the following conditions:

(a) comprise more than one taxonomy (i.e. they are faceted taxonomies),
(b) comprise a taxonomy that is not a tree, e.g. it is a DAG (Directed Acyclic

Graph),
(c) multiple classification (i.e. an object can be indexed with more than one terms)

is allowed with respect to at least one facet.

If none of the above conditions hold, then this notion is not useful. Figure 2.4
highlights the corresponding conditions. In each diagram, the focus term is black-
colored, while the (maximal) zoom-side terms are grey-colored.

Definition 2.9 From a materialized faceted taxonomy M = (F , I ) we can define a
symmetric binary relation ⇄ over T , called extensionally related, as follows

t ⇄ t ′ iff Ī (t) ∩ Ī (t ′) �= ∅ and t‖t ′
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Fig. 2.4 Cases where
zoom-side points are useful

where t‖t ′ means that t and t ′ are incomparable with respect to ≤ (i.e. neither t ≤ t ′

nor t ′ ≤ t).

Notice that this relation is symmetric, but not transitive. Let Ri(t) denote the
terms of Ti that are extensionally related to t , i.e.

Ri(t) =
{

t ′ ∈ Ti | t ⇄ t ′
}

We can now define the zoom-side points of a context ctx w.r.t. a facet Fi , denoted
by ZRi(ctx), as follows:

ZRi(ctx) = maximal≤
({

t ∈ Ti | Ī (t) ∩ Ī (ctx) �= ∅ and t‖ctxi

})

Notice that if ctx is a single term, say ctx = t , then ZRi(t) = maximal≤(Ri(t)).
Above we used the maximal elements just to reduce the number of points (and

thus avoid cluttering the user screen). Of course we could define the set of all zoom-
side points as follows:

ZR+
i (ctx) = AZi(ctx) \ {ctxi ∪ Nr(ctxi) ∪ Br(ctxi)}

ZRi(ctx) = maximal≤
(

ZR+(ctx)
)

Some examples over our running example follow.

ZR1({Mainland}) = ∅

ZR2({Mainland}) = {Sports}

ZR3({Mainland}) = {[60,100], [70,200]}

2.6.4 Zoom-out

The user can also zoom out by deselecting one term t of the focus. In that case t

is replaced by its direct broader term(s) i.e. by Br(1)(t). Alternatively, the user may
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select any broader term t ′ of t (in that case t is replaced by t ′), or even remove t

without replacing it with any other term. We could define:

ZO+
i (ctx) = Br(ctxi)

ZOi(ctx) = Br(1)(ctxi)

To capture the cases where the user wants to delete all terms coming from a par-
ticular facet, we could assume that each facet has a top element denoted by ⊤ that
subsumes all other terms (so ⊤ is the maximum element of Br(ctxi) for every ctxi ).

2.7 Restriction

As faceted exploration can be combined easily with other access methods (e.g. in-
formation retrieval queries, structured queries, or application-specific queries), the
user could start interacting not only by selecting some terms (i.e. by specifying a
focus), but through a set of objects, e.g. the objects returned by a full text query. To
this end in this section we introduce a notion useful for capturing such scenarios.

Let M = (F , I ) be a taxonomy-based source. Let A be a subset of Obj (A ⊆ Obj)

which could be the result of an arbitrary access method. Below we will define the
restriction of M on A, hereafter denoted by (F , I )|A.

The restriction of M on A, i.e. (F , I )|A, is again a materialized faceted taxon-
omy, and let us write (F , I )|A = (F ′, I ′). It comprises a restriction of the interpreta-
tion function I and a restriction of the faceted taxonomy F . The later is the reduced

taxonomy (as mentioned in Chap. 1).
Specifically, the interpretation I ′ is an interpretation that is smaller than I , i.e.

I ′ ⊑ I (according to Def. 2.6). In particular, I ′ is defined as follows:

∀t ∈ T , I ′(t) = I (t) ∩ A

So the range of I ′ is the power set of A (and not the power set of Obj as it is for I ).
As mentioned in Sect. 2.4, from a given interpretation I , we can define a descrip-

tion function, denoted by DI (o) as follows:

∀o ∈ Obj, DI (o) = {t ∈ T | o ∈ I (t)}

and vice versa (i.e. from a description function D we can define an interpretation I ),
as in the example of Table 2.3.

Table 2.3 From
Interpretations to
Descriptions and vice versa

I DI

I (t1) = {obj1} D(obj1) = {t1, t2}

I (t2) = {obj1,obj2} D(obj2) = {t2}
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The domain of the function DI is the set Obj. We can restrict the domain of DI

on A, i.e. we can define the function DI |A (where DI |A denotes the restriction of the
domain of DI on A). It is equivalent to say that the interpretation I ′ of the restriction
of M on A, is the interpretation obtained by the description function DI |A.

Now the reduced taxonomy F ′ comprises a terminology T ′ (T ′ ⊆ T ) defined as
follows

T ′ =
{

t ∈ T | Ī (t) ∩ A �= ∅
}

Equivalently,

T ′ =
⋃

o∈A

Br
(

DI (o)
)

i.e. it comprises those terms that are associated with the objects in A plus all broader
terms of these terms. We could denote this terminology by T|I,A.

Definition 2.10 The restriction of a materialized faceted taxonomy M = (F , I )

over a set of objects A, denoted by (F , I )|A, is again a materialized faceted taxon-
omy, comprising a reduced taxonomy with terminology T ′ = {t ∈ T | Ī (t)∩ A �= ∅}

and an interpretation I ′ such that I ′(t) = I (t) ∩ A for each t ∈ T .

For example, consider the materialized faceted taxonomy shown in Fig. 2.1. If
A = {h2} then I ′({Crete}) = {h2} and Ī ′({Islands}) = {h2}. Regarding the re-
duced terminologies of T1 and T2, we have:

T ′
1 = T1 − {Mainland,Pilio,Olympus}

T ′
2 = T2 − {WinterSports}

where “−” denotes set difference.



Chapter 3

Comparison with Other Techniques

Giovanni Maria Sacco, Sébastien Ferré,

and Yannis Tzitzikas

“Every day I remind myself that my inner and outer life are

based on the labors of other men, living and dead, and that I

must exert myself in order to give in the same measure as I have

received and am still receiving.”

Albert Einstein, 1879–1955

We compare dynamic taxonomies with the other main approaches to information ac-
cess and discuss analogies and differences. The approaches we analyze range from
traditional retrieval paradigms, such as queries on structured data, to the most recent
approaches, including the current effort on the Semantic Web:1

• queries on structured data, and OLAP data analysis techniques;
• information retrieval on textual material, and recent extensions such as dynamic

clustering and term suggestion;
• static taxonomies, and multidimensional taxonomies without concept composi-

tion;
• decision trees;
• Formal Concept Analysis (FCA), and
• Description Logics and the Semantic Web.

3.1 Structured Access and Information Retrieval

Traditional techniques such as queries on structured databases or information re-
trieval queries on textual unstructured data address the retrieval of information on
the basis of precise specifications, and are consequently used for focused retrieval
rather than for exploration. However, extensions giving limited exploration capa-
bilities have been recently proposed and a comparison with dynamic taxonomies is
relevant.

For comparison purposes, we introduce two models of interaction: the retrieval
model and the exploration model. The retrieval model, has two components:

1Dynamic taxonomies were influenced by the minimalistic philosophy of the Fact Model, an early
semantic data model [235].
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• the query component, which is used to formulate a query, i.e., a specification
which must be satisfied by the objects retrieved, and

• the result component, which is used to present the result to the user.

The user submits a query through the query component, and the state of the system
changes by computing a new result component for the query. The result component
is empty if no object satisfies the query.

The query component can be free-form, structured, or guided. In a free-form
query component no system assistance is given to the user. The best known example
of free-form queries is the Google query page [148]: a text field where the user can
input any search expression with no system assistance. For structured data, free-
form queries allow the user to directly enter queries in a specific query language
such as SQL [69].

Free-form queries are quite unsatisfactory from the interaction perspective, es-
pecially when accessing structured data. In such cases, a free-form query inter-
face requires an intimate knowledge of the underlying conceptual schema, which
cannot be expected from a casual user. For this reason, applications which access
structured data normally use a structured-form query component, in which different
query fields are presented to the user as an input form. The query component ac-
cepts the values entered by the user and generates the actual query. This approach
is often used for text-retrieval applications as well (e.g., Google’s Scholar [122]).
The motivation here is not to simplify user interactions, but rather to make users
queries more precise. As shown in Fig. 3.1, entering a search term in the Author
field restricts the query to a specific field within each document rather than to the
entire text.

In guided query components, users do not enter query terms or expression di-
rectly, but select them from a predefined set of choices. Each choice available to
the user is called a selector in the following. The best known example of a guided
query component is Yahoo!’s [321], where the query component is organized as a
taxonomy of topics, with each topic being a selector. A simpler approach which

Fig. 3.1 Google Scholar: different query fields for Author, Publication, Date
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still qualifies as a guided query component is a query form in which users can only
select items from widgets such as combo boxes, radio, or checkbox groups and can-
not enter values directly. Since human-computer interaction research indicates that
recognizing and selecting is considerably easier than remembering and entering,
guided query components are desirable where appropriate.

The result component presents the retrieved objects, by listing them by their ‘ti-
tle’ and usually supports ordering operations on specific fields and, in some cases,
on multiple fields. In text-retrieval or information retrieval applications, objects in
the result can also be ordered by decreasing relevance with respect to the query.

The only component in the retrieval model modified by a user query is the result
component.

In the second model we introduce, the exploration model, a query submitted by
the user modifies, in general, the query component itself. The query component is
represented by self-adapting exploration structures (SAES). which present a uni-
form view of the infobase consisting of multiple choices (selectors or filters) and
use the same structure to set interest sets (foci) and summarize results. SAES’s have
two fundamental properties:

• selectors are used to set interest sets (foci), i.e., to ‘query’ as in the guided retrieval
model;

• selectors are used to summarize results. This is a fundamental point and we claim
that there are no effective exploration capabilities in systems which do not support
summaries of the result set.

In addition we characterize these structures according to six dimensions

• completeness of iteration. Iteration is complete if the process of selecting a focus
and summarizing it can be iterated at will, or at least until a singleton result set
is obtained. Incomplete iteration results in the impossibility of further restricting
the infobase;

• completeness of reach. Reach is complete if it can be guaranteed that there are
no objects in the infobase which are not reachable through at least one selector.
Incomplete reach cause a loss of potentially relevant documents because some
objects are never considered during exploration. Consequently, reach-incomplete
structures should never be used as the only access path to an infobase;

• self-sufficiency. A SAES is self-sufficient if the use of selectors is always sup-
ported, and it is the only required operation although other types of queries (e.g.,
text retrieval) can be supported. Non self-sufficient structures often use faster
query methods in the initial state (i.e., the entire infobase) as the only querying
method. This is done primarily for performance reasons, and it results in asym-
metric interactions;

• no-zero-result. It is a property satisfied when selectors which do not describe the
result are pruned from summaries, or made non selectable. Consequently, the use
of a selector is guaranteed never to produce an empty result;

• expressivity. In the simplest case, only one selector can be chosen. In the most
general case, any boolean combination of selectors can be used;
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• taxonomic vs. flat organization. In the first case, selectors can be organized ac-
cording to a taxonomy so that the user can select the appropriate level of abstrac-
tion and user orientation among selectors is simpler.2

It is straightforward to show that dynamic taxonomies are SAES and that, ad-
ditionally, they are taxonomically organized, are self-sufficient, no-zero result and
complete from the perspective of iteration and reach.

Most SAES can be mapped to dynamic taxonomies. For example, consider the
familiar tag cloud access structure [127], where the idea is to use the most frequent
tags occurring in document descriptions as selectors. Normally more frequent tags
are larger, but this is a human-computer interaction issue. Current systems do not
provide any summary capabilities and, therefore, they are not self-adapting explo-
ration structures.

We can extend the access structure by summarizing the result of a tag query
through a tag cloud built for the documents in the result only. At this point, we have
a SAES: the selectors are the tags in the cloud which are used both to ‘query’ and
to summarize. Although this structure is complete from an iteration perspective, it
is incomplete from perspective of reach. In general, only the k most frequent tags
are used and, therefore, there is no guarantee that all the objects in the infobase are
reachable through a query on the structure. Finally, tag clouds normally use a flat
organization rather than a taxonomic one.3

However, there are SAES which cannot be mapped to DTs. Geographic maps,4

for instance, are SAES because they can be used (a) to select objects by using the
geographic coordinates of the displayed portion of the map as a selector or filter,
and (b) to summarize retrieved objects, by showing them on the displayed portion
of the map itself. However, SAES geographic maps cannot be mapped to dynamic
taxonomies.

3.1.1 Queries on Structured Data

As mentioned above, access to structured data is traditionally implemented using
the retrieval, rather than the exploration, model.

Due to human factors, the interaction is usually performed through predefined
query forms, rather than the query language itself. Widgets, such as radio and check
buttons, are used to show admissible and selectable values, and implement selectors.

2SAESs supporting taxonomic organizations subsume flat SAESs because a flat organization can
be represented by a trivial taxonomy comprising a root with all the flat selectors as immediate
children.
3An extended tag cloud can be mapped to a dynamic taxonomy by considering tags as concepts in
a shallow taxonomy. As we will show in Sect. 5.7.2, SAESs can be used as selectors in dynamic
taxonomies. Specifically, the integration of tag clouds with DTs will be discussed.
4See also Sect. 5.7.
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Some primitive summary information can be provided by sorting the result accord-
ing to the values of one or more attributes. Summarizing by sorting is obviously
much less effective than summarizing through a taxonomy, and fails to give a pre-
cise view of the result except for small result sets for which summaries are of little
assistance. Most importantly, this type of access does not satisfy our definition of
a SAES. Specifically, selectors are not used for summaries, and users refine their
queries by adding new selectors in an unconstrained way. This can obviously lead
to empty result sets.

3.1.1.1 OLAP and Data Warehousing

Introduced in the early 90’s [70], OLAP (on line analytical processing) is used for
the analysis of transaction data. The initial motivation for OLAP was the need for
reports that were more complete, more sophisticated and easier to construct than
those offered by existing systems. Central requirements for these flexible reporting
capabilities are the extraction of data from large databases and aggregation capa-
bilities according to different perspectives. These initial motivations have gradually
expanded to encompass a wide area called business intelligence that extends the
analysis capabilities of OLAP towards data mining and what-if analyses. Since data
analysis usually requires historical data and massive computations, a clear separa-
tion between the structures needed for daily operations (OLTP, online transaction
processing) and the structures needed for OLAP analysis (data warehouses) is re-
quired.

Data are represented through multidimensional tables, called fact tables. Each
dimension of the table represents a different perspective that can be useful for analy-
sis, e.g., product, location, date. Each dimension in the table can be hierarchically
organized so that data aggregation can be performed. For example the Location di-
mension can be organized by states/provinces, nations and continents. Each fact in a
table records an event, such as a sale, that contains appropriate values for all the di-
mensions and, in addition, values for additional attributes that are useful to describe
the fact, e.g., price, quantity, etc. These additional attributes are called variables,
properties, metrics, or indicators.

In a relational representation, the dimensions are the primary key of the fact
relation: Fact(Product, Location, Date, Price, Quantity). In a geometric interpreta-
tion, a specific combination of values for dimensions identifies a cell. The entire
n-dimensional hypercube has a number of cells equal to the Cartesian product of all
the dimensions, so that, in practice, the vast majority of cells is empty. In both inter-
pretations, the fact is the atomic level of aggregation for events. In the sale example
with dimensions Product, Location and Date, the fact aggregates all the sales for a
specific product at a specific location on a specific date: all the sales for product P
at location L on date D will be aggregated into a single fact, and the individual sale
transactions will not be available for analysis.

The central operations in OLAP are restriction, which is used to select a subspace
for subsequent analysis, and aggregation, which is used to compute aggregates for
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the metrics according to the dimensions selected for analysis. As mentioned be-
fore, the initial motivation and still the main application of OLAP is the flexible
production of reports, and the import of data into spreadsheets in order to perform
additional analysis.

In order to restrict a fact table, OLAP offers a number of primitive operations:

• Roll-up and drill-down: increases (roll-up) or decreases (drill-down) the level of
aggregation for a dimension. For example, assume that the current level of ag-
gregation for Location is Nation; this means that sales aggregated by Nations are
currently shown. A roll-up will increase the current level to Continents, while a
drill-down will decrease it to states/provinces;

• Slice and dice: allows to fix a value for one or more dimensions, thereby re-
ducing both the dimensionality of the table, and the number of facts to be con-
sidered. For instance, we could set a specific location X, which transforms our
three-dimensional sale table into a two-dimensional table on product and date;

• Filtering: reduces the number of facts to be considered through a selection crite-
rion;

• Pivoting or Rotation: changes the dimensional orientation of data. In our exam-
ple, data is initially aggregated by Product, Location, Date. By rotating, we can
aggregate, for instance, by Location, Date and Product.

Although OLAP produces flexible and sophisticated summaries of results, it uses
the retrieval, rather than the exploration, model. Consequently, OLAP per se does
not support exploration.5 However, the underlying model is similar [247]. In fact,
OLAP is based on a multidimensional model and explicitly exploits multidimen-
sionality to support extracting and viewing data from different perspectives. A di-
mension in OLAP is equivalent to a facet in the dynamic taxonomy model. Both
models allow hierarchical dimensions/facets. Such a substantial similarity suggests
that design strategies for OLAP data warehouses, such as star schemata [62], can be
used in dynamic taxonomies as well.

Figure 3.2 shows the difference between OLAP and DTs with respect to explo-
ration. We have a two-dimensional hypercube, or equivalently, a two facet shallow
taxonomy, where black cells are non-empty. A slice operation (OLAP) on a value
x3 for dimension x and a zoom operation (DT) on a value x3 for facet x retrieve
the same objects. However, the slice operation has no effect on the other dimension
y, whereas the zoom operation prunes from facet y all the concepts which have an
empty intersection with the cells with value x3.

It should be noted that also a relation in the relational model is inherently mul-
tidimensional. Each attribute defines a different dimension, so that each record can
be seen as a point (or a hypercube cell) in the n-dimensional space defined by the
n attributes of a relation. This interpretation will be used in Chap. 7 to derive trans-
lations from relational views to dynamic taxonomies. As mentioned before, fact
tables can be represented by relations in which the dimensions of the fact table are

5An integration of DTs exploration capabilities with OLAP summary capabilities is proposed
in [37].
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Fig. 3.2 A zoom/slice
operation on a two-facet
taxonomy/two-dimensional
hypercube, with the result for
OLAP and DT. Black cells
are non-empty

the primary key. So OLAP only allows the attributes in the primary key to be used
as dimensions, even though any attribute could be used.

3.1.2 Information Retrieval

Information retrieval systems allow the retrieval of objects on the basis of their con-
tents. Although the focus is on textual documents, information retrieval techniques
can be applied to any type of objects described by metadata or tags or textual de-
scriptions. Two major models were proposed in the past: the boolean model and
vector space model. The first model is an exact retrieval model which retrieves sets
of objects, whereas the second model is a best match retrieval model which retrieves
ranked lists of objects.

In the basic boolean model, query terms are composed in a boolean expression
and the system retrieves all the documents satisfying that expression. We are not
concerned here with the system architecture and the performance of systems based
on this model [28], but we remark that the result list is a flat list, because of boolean
evaluation: each document either satisfies the expression and it is retrieved, or it
does not and it is not.

The vector space model, proposed by Salton [258], characterizes both documents
and queries as vectors in an n-dimensional space. Each dimension in this space cor-
responds to a term found in the corpus,6 so that the space considered has usually

6The term corpus denotes the entire document collection, i.e., the infobase.
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a very high dimensionality in practical applications. Thus, a document x is repre-
sented by its vector x = 〈x1, . . . , xi, . . . , xn〉. xi can be a boolean value (1 denoting
the presence of term ti , 0 its absence), or a function of the number of occurrences of
the corresponding term ti in the document. Often, the tf-idf (term frequency-inverse
document frequency) is used, so that

xi = fti log
|D|

Fti

where fti is the frequency of term ti in document x, normalized with respect to the
total term occurrences in the document; |D| is the total number of documents and
Fti is the number of documents containing ti in the corpus.

In the vector space model, the similarity between a document and a query (or
between any two documents in the corpus) can be formally defined in terms of the
distance between the corresponding vectors. The most popular measure of similarity
is the cosine measure

sim(x,y) =
x.y

‖x‖‖y‖
=

∑n
i=1 xiyi

√

∑n
i=1 x2

i

√

∑n
i=1 y2

i

which uses the cosine of the angle between the two vectors. The cosine measure
is 1 when the two vectors are equal (the angle between them is zero degrees) and
is 0 when the two vectors are independent (no terms in common). Other similar-
ity measures were proposed. Among these, the Jaccard coefficient [150] for binary
vectors

sim(x,y) =
|x ∩ y|

|x ∪ y|

shows perhaps more clearly that the notion of similarity is actually based on the
co-occurrence of the same terms in the two vectors/documents. Differently from the
boolean model, the result list can be ordered by “relevance”, i.e., by similarity of
retrieved documents with respect to the query.

The retrieval effectiveness of both the boolean and the vector space model de-
pends heavily on the definition of term. Very often, a term is just a string of char-
acters in the document between predefined separators. In this case, the dramatic
semantic gap between the system model and the user model is quite evident. The
user wants to retrieve documents containing specific concepts, such as “architecture
in the Renaissance”, whereas the system works at a string level, so that the system
might retrieve architecture but not architectures, church, or 15th century buildings.
Several approaches attempt to bridge this gap: grammatical variants can be conflated
into a single form, either by recording the word stem [215] or some normal form;
thesauri such as WordNet [100] can be used to expand queries with synonyms or
related words. Still, it is very difficult to guarantee an accurate match between the
query as intended by the user and the query as understood by the system. In the ex-
ample at hand, Leon Battista Alberti’s De Re Aedificatoria, the most important book
on Renaissance architecture, does not contain the term Renaissance simply because
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it was coined at a later time. From this point of view, one of the most important
differences between information retrieval and dynamic taxonomies, as well as one
of main motivations of dynamic taxonomies [236], is that dynamic taxonomies are
defined on concepts.

In order to assess the effectiveness of an information retrieval system, two mea-
sures are used: precision and recall:

Precision =
|{retrieved_documents} ∩ {relevant_documents}|

|{retrieved_documents}|

Recall =
|{retrieved_documents} ∩ {relevant_documents}|

|{relevant_documents}|

These measures are based on a subjective expert evaluation of the relevant doc-
uments for a given user query.7 Precision measures the absence of noise (irrele-
vant documents) in the result, while recall measures the completeness of the result.
Ideally, precision = recall = 1.0, but empirical evidence [44] shows that precision
tends to be good (in the order of .80), while recall is usually quite poor (around .20,
in the reported study). Consequently, the central problem of information retrieval is
the improvement of recall, without reducing precision.

3.1.2.1 Extensions

Once a measure of similarity among documents is defined, it can be used to cluster
documents in such a way that similar documents are grouped together. There are
many different clustering techniques (see [152] for a review) and they have been
applied to different domains. The basic idea in clustering is to group documents in
such a way that the similarity of any two documents a and b in a group C is larger
than the maximum similarity between one of a or b and document d not in C. That
is, documents in a cluster are more similar among them than with documents not in
the cluster.

The barycenter of a cluster,8 called centroid of the cluster, is often used as a rep-
resentative of the cluster itself. In addition to flat clustering, hierarchical clustering
can be implemented by clustering in step i the centroids of the clusters computed
in step i − 1. The hierarchical structures produced by hierarchical clustering are
not taxonomies [236]. Clustering, in fact, is based on co-occurring terms. Consider
the concept crime, which is an abstraction of several possible types of crime, e.g.,
crimes against property (further specialized into theft, fraud, . . . ), crimes against
persons (murder, assault, rape, . . . ), etc. This natural taxonomy would not be pro-
duced by clustering because the resulting abstraction will probably contain clusters

7These measures are appropriate for the exact match retrieval models (e.g., the boolean model). For
best match retrieval models (like the vector space model) other measures are used (e.g., Precision-
Recall curves [178]) which measure the quality of ranking.
8The concept of a barycenter requires an underlying vector-space model.
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such as (rape, murder), (rape, assault) since these crimes tend to co-occur and, al-
most certainly, no cluster (theft, fraud) since these do not co-occur. Consequently,
the taxonomy tends to be based on the co-occurrence of concepts, rather than on an
IS-A relationship, which the user implicitly assumes in a taxonomy.

Clustering can be used to speed up execution because of the cluster hypothesis:
if a document d in a cluster C is relevant for a query, all the other documents in C,
being similar to d , are also relevant for that query. Consequently, the system need not
to compute the similarity of each document with the query, but can simply compute
the similarity of the query with each centroid and subsequently expand the relevant
centroids into their clusters.9

For the purpose of our discussion, clustering is interesting because it can be used
to provide exploration capabilities to information retrieval systems. The Scatter–
Gather algorithm [77] implements a SAES structure through dynamic (re)clustering
in the following way. Initially, the user is presented with the topmost clusters for
the corpus. Upon the selection of one or more specific clusters (taken as a union),
which become the focus, the system will dynamically recluster (scatter) the selected
documents, producing more refined clusters, and so on. Since the computational
cost of reclustering is extremely high and unsuitable for real-life information bases,
this process can be optimized [76] by precomputing a hierarchy of clusters so that
the simple explosion of a cluster does not require any reclustering since its children
were precomputed. Scatter (i.e., dynamic reclustering) is used when the user takes
the union of two or more clusters at the same level. In this case, the centroids of
the children clusters (rather than the actual documents) are reclustered, in order to
achieve a reasonable performance.

When compared with dynamic taxonomies, however, Scatter–Gather appears in-
herently less effective [236]. First, hierarchical clustering does not really implement
a taxonomy, as we noted above, so that the organization implemented is not the
‘natural’ IS-A organization that a user expects. Second, hierarchical clustering is
monodimensional, i.e., a specific document belongs to a single cluster, whereas dy-
namic taxonomies are multidimensional.10 As we show in the following section,
multidimensional access is much more selective than monodimensional access. In
fact, the only way of changing the predefined hierarchical structure is by taking the
union of two or more clusters: this may change the hierarchical structure, but obvi-
ously increases the size of the result. Third, clusters need to be identified by a clearly
understandable label: as the example in [236] clearly shows, this is quite difficult, so
that user orientation is quite difficult. Finally, clustering techniques are inherently
language-dependent whereas dynamic taxonomies are language-independent.

Although Scatter–Gather cannot be applied to large corpora, it inspired a simpli-
fied strategy that is becoming popular [205], and is used, among others, by Vivisimo

9Search performance was one of the early motivations for clustering but it is no longer valid, as
brute force strategies that would benefit are no longer used in practice.
10Some hierarchical clustering algorithms (e.g., the Suffix Tree Clustering algorithm [330], see
also Chap. 8) produce overlapping clusters and an object can belong to more than one cluster.
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Fig. 3.3 Results for web full-text search “dynamic taxonomies”; clusters to be used for refinement
are on the left

[314]. The idea is to cluster the result of an information retrieval query, not consid-
ering the entire document but only the small portion containing the query terms
that search engines such as Google show (usually called snippets). For large result
sets, only part of the results can be used for clustering: this improves performance,
but obviously decreases the quality of clustering. A sample interaction is shown in
Fig. 3.3.11

With respect to our framework, clustering represents a SAES with restrictions.
In fact, the interaction is not self-sufficient, because it starts with a full-text query,
and the organization, although hierarchical, is not taxonomical for the reasons ex-
plained above. So, the benefits are really in improving precision by allowing the
user to focus on interesting subsets of the result, rather than in improving the recall.
Obviously the same arguments against clustering in Scatter–Gather [236] hold in
this case as well (see also the later paper by Hearst [130]).

Another improvement over plain information retrieval is the suggestion of re-

lated queries in search engines such as Google [148] (see also [30]). When the user
enters a search term, the system automatically displays popular queries that include
that search term either as a whole or as a prefix. An example is shown in Fig. 3.4.
With respect to SAES, this suggestion applies only to the query structure, supply-
ing additional selectors with respect to the query term (selector) that the user has

11Result clustering can be combined with DTs (see Sect. 8.3.1).
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Fig. 3.4 Google toolbar
suggestions for the term
“dynamic”

to manually enter without assistance12 anyway. So the impact of this technique, as
well as in Vivisimo, is really in improving the precision of the query rather than its
recall.

Finally, both query expansion (based either on local or on global analysis) and
relevance feedback help users to improve their query [28]. The first method (espe-
cially when a thesaurus is used for expansion) improves query recall by considering
additional terms, while relevance feedback exploits user feedback (e.g., documents
approved or discarded) to adjust relevance weights and consequently improve pre-
cision. Neither method offers exploratory capabilities.

3.2 Static Taxonomies

In classical taxonomies, such as Linnaeus’s,13 an object (e.g., the dog) is classified
under one and only one concept. The taxonomy can be seen as an efficient encoding
of properties of objects, which can be recovered by following the path from the
concept under which the object is classified to the root concept: thus, we can state
that a dog is a mammalian, has a spinal cord, is an animal.

More interestingly in our context, taxonomies systematically organize data in or-
der to make the search for specific objects14 more efficient. The user starts from
the root concept and iteratively discriminates among son concepts, in order to
find the appropriate one. Each time a concept is selected for expansion, the to-
tal number of objects to be considered is reduced because the objects classified
under discarded concepts need not be considered. Thus, the user iteratively re-
duces the number of documents to be manually inspected, by descending the taxon-
omy.

In classical, static monodimensional taxonomies, the maximum reduction occurs
at terminal concepts: a terminal concept is not further specializable, and therefore
all the documents classified under it must be manually inspected. In dynamic tax-
onomies, however, a terminal concept C can be reduced by another concept C′

12Other than the autocomplete mechanism.
13Carl Nilsson Linnaeus, Species Plantarum, 1753.
14As we will note in the Sect. 3.3, a taxonomy used for search defines a decision tree.
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related to C through the extensional inference rule, so that a larger reduction is
expected.

We are interested here in the retrieval effectiveness of different taxonomic ap-
proaches [247]. Retrieval effectiveness will be measured by the maximum resolution

of the taxonomy (MR) which represents the average minimum number of documents
to be manually inspected, after a refinement through operations on the taxonomy
only.15 The larger MR is, the less effective the access through the taxonomy is as
far as discriminative power is concerned, and the more work the user has to do. For
concreteness, we will assume a target MR = 10. This is an approximation of the
maximum number that most users will be willing to manually inspect.

We will analyze the following approaches:

• Static monodimensional taxonomies. It is the most common browsing paradigm,
and it is used, among others, by Yahoo!

• Multidimensional taxonomies with no concept composition capabilities. This par-
adigm simply extends monodimensional taxonomies by allowing documents to
be classified under several concepts, but retains the visual framework of con-
ventional taxonomies, i.e., level-by-level expansion, so that concept composition
is not available to end-users. This approach was used in the past by Microsoft
Knowledge Manager v. 1.0 16 among others.

• Multidimensional taxonomies with concept composition capabilities. This para-
digm is implemented by dynamic taxonomies, and by all the systems that support
boolean queries on taxonomic metadata. The maximum resolution is the same for
the two approaches. The fundamental difference is that dynamic taxonomies are
SAESs and integrate both concept composition and feedback in the same visual
framework. Boolean queries on metadata do not provide any feedback to the user
who therefore has to guess which concepts to compose and suffer from most of
the user interaction problems found in text retrieval systems.

In our analysis of the maximum resolution, an information base of D objects
and a taxonomy with T terminal concepts with objects classified under terminal
concepts only, will be assumed. In addition, a uniform classification probability dis-
tribution and the independence of terminal concepts will also be assumed. These
latter assumptions are used to simplify the following analysis but are acknowledged
not to be realistic (violation of these hypotheses is discussed in Sect. 3.2.6). For
this reason, the analysis validation reported in Sect. 3.2.7 is especially important,
since it is performed on a real corpus, for which these assumptions are not veri-
fied.

15Since we are interested in the average minimum number of documents, our analysis will consider
terminal concepts, rather than the higher levels of the taxonomy.
16Circa 1999.
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3.2.1 Static Monodimensional Taxonomies

In static monodimensional taxonomies no concept composition is possible, except
trivial ones: for any two concepts C and C′, C ∩ C′ = ∅ unless C′ is a descendant
or an ancestor of C, in which case, trivially, C ∩ C′ = C′.17 The zoom operation
on a concept C trivially preserves only the descendants and the ancestors of C.
In monodimensional taxonomies, terminal concepts cannot be further refined, and
consequently the entire set of objects classified under a terminal concept must be
manually inspected. Under our assumptions of a uniform distribution of documents,
MR = D/T .

With a static monodimensional taxonomy, a target of MR = 10 requires T =

D/10, i.e., that the number of terminal concepts be just one order of magnitude
smaller than the size of the information base. This implies that very large tax-
onomies are required for real-life information bases and that the taxonomy must
grow as the corpus grows and therefore that terminal concepts must be indefinitely
specializable, which is a condition very difficult to satisfy.

3.2.2 Static Multidimensional Taxonomies with no Concept

Composition Capabilities

This approach extends monodimensional taxonomies in a straightforward way,
by allowing objects to be classified under several concepts while retaining the
same access paradigm as static monodimensional taxonomies: the user navi-
gates the taxonomy tree in the same top-down way as in monodimensional tax-
onomies.

Access through the taxonomy suffers from the same problems as in static
monodimensional taxonomies. The most important problem is that concept com-
position cannot be exploited because, once a branch of the taxonomy is chosen,
subsequent refining can only involve the descendants of the selected branch. All
the different branches of a taxonomy are independent and all the relationships
among concepts, other than the subsumptions explicitly defined in the taxonomy,
are completely lost. Consequently, terminal concepts cannot be further refined, and
the entire set of objects classified under a terminal concept must be manually in-
spected.

If we extend static monodimensional taxonomies to a multidimensional classifi-
cation, the maximum resolution becomes considerably worse. In fact, if each object
is classified under j terminal concepts, the resulting MR is equal to the MR for the
monodimensional classification of jD objects, i.e., MR = jD/T . In order to reach
our objective, we must have T = jD/10, which means that the required number of
terminal concepts may well exceed the size of the information base when a non-
trivial number of dimensions is used.

17Even if C and C′ are incomparable (none of them is descendant of the other), it could still hold
C ∩ C′ 	= ∅, if the taxonomy is a DAG and C and C′ have a common descendant.
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3.2.3 Multidimensional Taxonomies with Concept Composition

Capabilities

This approach supports the composition of concepts through boolean operators,
which can be translated into the corresponding set theoretic operations on the deep
extension of the concepts involved. Concept composition can be supported ‘syntac-
tically’, in the sense that the user enters a boolean query on concepts in the taxon-
omy, as in an early implementation of factiva.com. Alternatively, a dynamic
taxonomy can be used both to compose concepts and to give the user a systematic
summary of the result of such composition. Such summaries include all the concepts
related to the result, which can be used in further composition, and therefore guide
the user to reach his goal.

We are concerned here with composition in and (which results in the intersection
of the deep extension of the concepts involved) since it restricts the information
base. As a consequence of concept composition, a leaf or terminal concept L can be
composed with another concept C (possibly a terminal concept as well), so that L

is further “specializable” even if it is a terminal. One of the differences between the
two approaches is that in the former ‘syntactic’ approach L and C can result in an
empty set, whereas in dynamic taxonomies this cannot occur, by construction.

Since terminal concepts can be refined by other terminal concepts, the maximum
resolution MR depends on the most restrictive combination of terminal concepts
which can be performed on the dynamic taxonomy. If each object is classified under
j terminal concepts, the maximum number of terminal concepts which can be inter-
sected is j .18 Clearly, the intersection of k (k < j ) terminal concepts is no smaller
than the intersection of j terminal concepts, and the intersection of j concepts, some
of which are non-terminal, is likewise no smaller.

In order to compute the maximum resolution of a dynamic taxonomy, in which
each object is classified under j terminal concepts, we will consider the two scenar-
ios described below. In practice, real scenarios are usually a mix of these scenarios
and, quite often, the number of concepts under which an object is classified is not
fixed, but varies within the corpus.

3.2.3.1 Faceted Classifications

In the first scenario, each object is described by a set of j facets, each represented
by an independent taxonomy. As an example, consider a digital camera which is
described by features such as Price, Weight, Resolution, etc. The values of each
feature can be arranged taxonomically. In this case, we assume that the set of ter-
minal concepts in the dynamic taxonomy is partitioned into j subsets of the same
size.

18The intersection of more than j terminal concepts is guaranteed to produce a null result.
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Fig. 3.5 Two zoom
operations on a two-facet
taxonomy/two-dimensional
hypercube

Under this assumption, each partition has T/j (T/j � 2) terminal concepts. Each
object d is classified under one and only one leaf concept L in each partition. In
addition, we assume that the probability of classifying d under L is uniform for
each partition.

In this case, MR can be computed as MR = D(j/T )j , T � 2j . As a geometric
interpretation, note that the present scenario corresponds to a j -dimensional hyper-
cube, in which each side has T/j elements. By subsequent zooming, we iteratively
remove (fix) a dimension to the hypercube, until, after j zoom operations, we arrive
at the 0-dimensional hypercube, i.e., the cell. The cell represents, in our context,
the objects to be inspected. Figure 3.5 shows two zoom operations on an infobase
described by a two facet taxonomy, or, equivalently for our current purposes, by a
2-dimensional hypercube. The first zoom operation on a specific concept C1 slices
the 2-dimensional hypercube according to C1, and produces a 1-dimensional hyper-
cube. The second zoom operation operates on the other facet/dimension, and slices
a 1-dimensional hypercube, producing a 0-dimensional hypercube, i.e., a cell. In
OLAP the cell contains the fact variables, whereas in DTs it contains the objects to
be manually inspected by the user. In this geometric interpretation, therefore, MR

is the average number of objects in cells obtained by zooms on terminal concepts
only.

Incidentally, the geometric interpretation shows that there is a strong correlation
between dynamic taxonomies and OLAP techniques based on hypercubes, and that,
as mentioned before, the browsing system of dynamic taxonomies can be useful for
interactive exploration in the context of OLAP as well [37, 247].

3.2.3.2 Unrestricted Multidimensional Classifications

The second scenario, which is common in textual applications, has a single taxon-
omy (e.g., Topics), j terminal concepts are chosen to classify each object, and the
only constraint is that a specific concept C can be chosen only once. In this case, we
can compute MR as a function of the number Sj of the sets generated by the inter-
section of j distinct terminal concepts, i.e., MR = jD/Sj . The maximum number
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of different intersections Sj is equal to

Sj =

(

T

j

)

=
∏

1�k�j

(

T + 1 − k

k

)

which, assuming T ≫ j , can be grossly approximated by Sj = T j . Consequently,
MR = jD/T j .

3.2.4 A Comparison

A dynamic taxonomy has an MR which is at least (T /j)j−1 better than a static
multidimensional taxonomy. The analysis above shows that static taxonomies can-
not provide efficient access to large information bases. With a static monodimen-
sional taxonomy, our target MR (MR � 10) requires D = T/10, i.e., the number
of terminal concepts must be just one order of magnitude smaller than the size of
the information base. Static multidimensional taxonomies have a worse MR than
monodimensional taxonomies. In this case, D = jT /10, which means that the re-
quired number of terminal concepts may well exceed the size of the information
base when a non-trivial number of dimensions is used.

The situation immediately becomes manageable with a j -dimensional dynamic
taxonomy. In fact, the target MR requires D = 10(T /j)j or D = 10T j/j for sce-
nario 1 and 2, respectively. This means that a compact taxonomy of 1,000 terminal
concepts and a classification scheme in which each object is classified under 10 ter-
minal concepts are sufficient to reach MR = 10 for information bases with as many
as 1021 (scenario 1) or 1030 (scenario 2) objects. A static taxonomy with the same
number of terminal concepts reaches MR = 10 for infobases no larger than 104 ob-
jects.

It can be interesting to perform analysis in the reverse direction, i.e., to determine
the minimum number of terminal concepts (MT) required by a dynamic taxonomy
with a faceted classification vs. a static taxonomy, as a function of the infobase under
the constraint of MR = 10. In the case of a static taxonomy MT = D/10. In the case
of a faceted dynamic taxonomy, assuming a complete tree taxonomy with a constant
fanout of f ,

MT = fj such that D/(f j ) = 10 and fj is minimum.

Since fj is minimized by the minimum fanout 2, we have MT = 2j s.t. 2j = D/10,
that is, MT = 2 log2(D/10). Assuming now, for concreteness, an infobase of 1 bil-
lion objects, a static taxonomy requires 100 million terminal concepts, whereas the
most compact faceted dynamic taxonomy requires 60 terminal concepts. The mini-
mum number of terminals is a theoretical quantity because a classification by binary
facets might not be useful, or even possible, in practice. However, it provides a clear
perception of the difference in expressive power between dynamic taxonomies and
static taxonomies.
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Because of the high reduction factor obtained by dynamic taxonomies, zooms on
less than j terminal concepts are usually sufficient. We call MR(i) the maximum
resolution deriving by the intersection of i terminal concepts, i � j :

MR(i) =

{

j iD/T i in scenario 1,
jD/T i in scenario 2.

The maximum information base size D with MR(i) = 10, under the assumptions
above, varies from D = 102i+1 to D = 103i for scenario 1 and 2, respectively. This
means that the composition of three concepts is sufficient for information bases with
10 million to 1 billion objects.

Finally, it could be contended that the same reducing effect of dynamic tax-
onomies can be achieved by representing all the possible concept intersections19 as
explicit concepts in the taxonomy. However, this strategy results in an exponential
growth of the taxonomy. Consider a faceted taxonomy on j facets and T/j terminals
per facet: the number of different facet combinations which can be obtained at the
terminal level is (T /j)j . An equivalent monodimensional taxonomy would require
these many terminals. Assuming j = 10 and T = 1000, the equivalent monodimen-
sional taxonomy would require 10010 terminals, which is obviously impractical.20

Dynamic taxonomies can synthesize all the possible non-empty concept intersec-
tions. Although such an exhaustive synthesis would require an exponential time,
concept intersections are generated on request, and in general, only an extremely
small subset of all the possible intersections is generated.

3.2.5 Taxonomy Pruning in Dynamic Taxonomies

One of the most important features of dynamic taxonomies is the production of
conceptual summaries of arbitrary sets of objects from the universe. Conceptual
summaries are extremely important to guide the user towards his goal, since they
show the user all and only those concepts which can be used for further refine-
ments. These summaries are computed on the basis of the actual classification only,
according to the extensional inference rule. The usual way of displaying such sum-
maries is through a reduced taxonomy, i.e., the original taxonomy from which all
the concepts which are not related to the current focus are pruned.

Although concept pruning is not required per se in order to guarantee a good
convergence, an aggressive pruning simplifies user interaction because it reduces
the number of selectors the user has to consider. For this reason, it is interesting to
analyze the expected pruning in the taxonomy. We keep our simplifying assumptions
of a uniform classification distribution and concept independence, and we want to

19Only concept intersections are considered here, whereas dynamic taxonomies allow all the
boolean operations on concepts. Obviously, this considerably reduces expressivity.
20Many of these concepts will be meaningless (see Sect. 6).
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estimate the number of unique terminal concepts under which the s objects in set S

that we want to conceptually summarize are classified.
This problem can be reduced to the problem of estimating the number of block

accesses in database systems, for which well-known solutions exists. The block
accesses estimation problem is formulated as follows:

given a file of P pages with a blocksize (number of records per page) equal to b, we want
to estimate the number of unique pages U which are selected when k random records must
be accessed.

The number of block accesses is estimated by Yao’s function [325], which is
computationally expensive but can be approximated by Cardenas formula [58]

U = P
(

1 − (1 − 1/P )k
)

In order to reduce our problem for unrestricted multidimensional classifications
to this one, we will draw the following equivalences:

1. the number of pages P in the file are equivalent to the T terminal concepts in the
taxonomy

2. the blocksize b (which is ignored by Cardenas approximation) is given by jD/T ,
i.e., by the average number of documents which are classified under each termi-
nal

3. the k random records are equivalent to the number of classification descriptors in
the set S which we summarize: i.e., to j |S|.

Since we are interested in the pruning ratio, we will concentrate on the portion
(1 − 1/P )k of Cardenas formula, which becomes (1 − 1/T )j |S| for our problem.
Now, we investigate the pruning ratio p as a function of the number i of concept
compositions we perform:

p =

(

1 −
1

T

)j (jD/T i )

In order to get a feeling of the estimated pruning, consider an information base
of 100,000 documents classified under 10 dimensions through a taxonomy of 1000
terminal concepts. While the amount of pruning is negligible for a single zoom,
focusing on two concepts prunes an estimated 90% of the total terminal concepts.

The faceted classification case is similar but the number of pages P is no longer
equivalent to T , but to T/j , because all the facets are independent. The estimation
formula becomes:

p =

(

1 −
j

T

)j i (jD/T i )

and, under the same assumptions, the composition of two concepts prunes an esti-
mated 36% of total concepts.
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3.2.6 Relaxing the Assumptions

The assumptions used to simplify the analysis are not valid in general. In many
practical situations, we will expect the classification probability distribution to devi-
ate from uniformity: for example, a small number of concepts (e.g., the main focus
of the infobase) will be quite popular, while a large number of concepts will oc-
cur rarely if ever. In general we expect distributions such as Zipf [337] or 80–20
[137] to occur in practice. The assumption on concept independence may also be
violated. Consider a concept such as “aerospace” and a location index. We know
that aerospace is closely correlated to developed countries such as USA, Europe,
Russia, etc. while other countries, such as African ones, will have no occurrences of
this concept.

If we consider the impact of violations of these assumptions, it is obvious that
the critical assumption is the independence of concepts. Assume that concepts A
and B are totally correlated: in this case, obviously, A will be useless to refine B
and vice versa, since focusing on a concept will preserve all the occurrences in the
other concept. Such a complete correlation is unlikely to occur in practice, because
it implies that the two concepts are really aliases. However, we can expect “local”
deviations from independence, i.e., some correlation among groups of concepts, so
that the actual discriminative power of a dynamic taxonomy will be lower than the
estimation we provided.

The assumption on uniform classification distribution is less critical, if the in-
dependence assumption holds. Assume that we have a faceted classification, and
that, for each facet, the classification distribution is Zipfian. In a naïve static multi-
dimensional classification this is likely to be a problem: while the vast majority of
concepts will select a number of documents lower than the average, a small num-
ber of concepts will select a very large number of documents. A user interested in
high-frequency concepts will be forced to inspect a significant percentage of the
infobase.

If the independence assumption holds, however, the first zoom operation will
considerably reduce the maximum number of documents to be inspected. Let us
consider the highest-frequency concept in a facet. Its probability, assuming a Zipfian
distribution and T/j terminals per facet, is 1/HT/j , where HT/j ≈ ln(T /j) + γ is
the (T /j)th harmonic number and γ ≈ 0.67 is Euler’s constant. The intersection of
the highest frequency concept for i facets will select a number of objects equal to
D/(ln(T /j) + γ )i .

In our example, the maximum number of documents selected by a concept is
18,975, but the combination of three concepts reduces this quantity to 683. Thus,
if the user intersects the highest frequency concepts he will experience a slower
convergence: each high-frequency concept added to the intersection reduces the
selected documents by a factor equal to (ln(T /j) + γ ) instead of T/j . However
this slower convergence occurs only when the user continues to select the highest-
frequency concept for each partition: as soon as the user selects a low-frequency
concept the system will converge faster than under the uniform distribution assump-
tion.
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3.2.7 Experimental Results

In order to assess the behavior of dynamic taxonomies in the large, we worked on
three different collections of documents. The first two collections include a collec-
tion of Italian news from 1992 and 1993, respectively. The third collection is the
union of the first two. Although the collections we consider are very small when
compared to the infobases managed by web search engines, they are real-world
infobases with a general focus and are sufficiently large to insure the statistical sig-
nificance of our experiments.

All the collections were automatically reclassified from an existing classification
based on a controlled set of keywords, and are characterized by a multidimensional
classification which is a mix between the two scenarios described in the previous
section: in fact, each article is characterized as in Scenario 1 by the values of several
independent features, such as Location, Type of Article (e.g., interview, editorial),
etc. In addition, the “information content” of the article is described, as in Sce-
nario 2, by several concepts in the Subject taxonomy.

As we expected, the classification distribution for articles is not uniform. As an
example, the reader is referred to Fig. 3.6, which reports the counters for articles
organized by location. The distribution is probably Zipfian since we have more than
25,000 articles related to Northern Italy, whereas the vast majority of countries (e.g.,
Haiti, Honduras, etc.) has one or no document associated. This is entirely to be ex-
pected since the focus is on internal news and on such international news likely
to affect or interest the Italian reader. In addition to deviations from uniformity,

Fig. 3.6 Number of articles
per country
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Table 3.1 Collection statistics

Collection Total docs Size Concepts Terminal
concepts

Avg. docs
per terminal

Avg. terminals
per doc

1992 57590 179.0 MB 1106 1021 609.41 10.80

1993 56452 180.6 MB 1109 1024 639.05 11.59

1992+1993 114042 359.6 MB 1109 1024 1246.22 11.19

Table 3.2 Experimental results

Collection Avg. result size Estimated MR(2) range

1992 1.87 0.6–6.44

1993 2.47 0.72–7.23

1992+1993 5.25 1.22–13.62

Collection Number of
nonempty sets

Avg. size of
nonempty sets

Nonempty sets
with size > 10

1992 1415 13.22 270

1993 1674 14.77 339

1992+1993 1897 27.68 491

the experimental corpora also violates the assumptions we made on concept inde-
pendence. As an example, the concept “movies” (as seen from Italy) has a higher
correlation with Italy, USA, France than it has with Haiti, Honduras, etc.

Table 3.1 reports the principal statistics for the three collections. The columns
Concepts and Terminal concepts count non-empty concepts only, i.e. concepts un-
der which at least one document is classified. About 1000 concepts were used to
classify the collections. The average concepts per document indicates under how
many different terminal concepts each document is classified: about 11 concepts
were used on the average to describe a single document. The average document
per terminal concept measures how many documents are retrieved by simply ex-
ploding the taxonomy to a terminal concept, i.e., the MR for a conventional mul-
tidimensional taxonomy. As expected, the number of documents to be manually
inspected is very large and consequently the conventional taxonomy is not useful
for retrieval.

The benefits in terms of information thinning are reported in Table 3.2. For each
corpus, we computed 10,000 intersections of two concepts conservatively selected
at any level in the tree, rather than only at the terminal level which is obviously much
more discriminative. We note that at worst only 491 intersections out of 1897 non-
empty intersections (about 25%) resulted in sets with a size larger than 10, for which
additional intersections are required. In addition, about 80% of the intersections
resulted in an empty set, which indicates a quite effective pruning of concepts in the
computation of reduced trees, as expected by our analysis.
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The observed measures match our estimates21 and show that the deviations from
uniformity and from concept independence that occur in practice do not degrade the
expected performance of dynamic taxonomies in any significant way. Interestingly,
the average size of non-empty sets seems to be twice the estimated MR for a faceted
classification. Additional experiments are required to verify if this relation holds for
different infobases.

The advantages of dynamic taxonomies over conventional access methods are
dramatic: whereas a static taxonomy would require the user to inspect result lists
of several hundreds documents, a dynamic taxonomy requires only one additional
zoom operation to produce an average result size of 13 to 27 documents.

In conclusion, we have shown that static taxonomies, and especially those which
support a multidimensional classification, are not appropriate for non-trivial infor-
mation bases. In static taxonomies, the finest specialization level (terminal concepts)
cannot be further refined. If we place a reasonable bound on the number of docu-
ments to be manually inspected, the number of terminal concepts required becomes
so large to be unfeasible. Simple multidimensional extensions or naïve faceted or-
ganizations make these problems even worse.

On the other hand, dynamic taxonomies are inherently extremely effective for
reducing very large information bases. A very limited number of concept intersec-
tions is sufficient to produce result sets which are no larger than 10, on the average,
even for very large information bases. We conclude that dynamic taxonomies are
a requirement for effective taxonomic retrieval. If they are not used, taxonomic re-
trieval is impossible per se, due to the large size of result sets, and the user has to
resort to other retrieval techniques (database queries, text retrieval queries, etc.) to
thin information out.

3.3 Decision Trees

Moret [194] defines a decision tree as a device to identify objects, in the following
way:

given a boolean function on n variables (tests), a decision tree can be regarded as a deter-
ministic algorithm for deciding which variable to test next, based on the previously tested
variables and the results of their evaluation, until the function’s value can be determined.
Decision trees are rooted, ordered and labeled trees.

Hence, in information access, the user of a decision tree is presented with a fixed,
predefined decision structure which he has to explore in the order defined by the
designer. In most implementations, the decision tree has to be followed in its entirety
up to a leaf, with no indication of candidate objects after each test.

The main differences between decision trees and dynamic taxonomies are in ob-
ject access and in the creation/evolution of the decision structures.

21The estimated range reports unrestricted classification and faceted classification MR estimates,
respectively.
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Using a static monodimensional taxonomy for object access is obviously equiva-
lent to a decision tree with the same hierarchical structure of the taxonomy (and the
reverse holds). At each stage, the test selects a single son among the set of available
sons of the current node. In dynamic taxonomies, instead, there is no notion of order
among features and the user can freely focus on any feature he finds relevant, in or-
der to restrict the portion of the information base to be considered and to determine
all the other features which can be tested, in a totally dynamic way. In fact, by se-
lecting an arbitrary sequence of zoom operations, the user dynamically synthesizes
a specific decision tree out of all the possible ones.

A predefined order is inappropriate for most explorative tasks, because it forces
a predefined order on user perspectives, and consequently constrains exploration.
For example, consider the typical object-seeking task, the selection of a product in
e-commerce. A decision tree implies a predefined order on n features. For example,
for a digital camera, the predefined order could be Price > Resolution > Zoom
> Weight. Dynamic taxonomies, instead, offer an unconstrained exploration which
results in the dynamic synthesis of any of the n! possible orders on n features.

Although in most cases the cost of a test is a constant, there are a number of
important applications in which this is not true. For example, consider medical di-
agnosis. Here a decision tree á la Oncodoc [267] requires the tests to be performed
in a rigid, predefined order. However, the cost of a specific test can depend on the
capabilities of the medical unit where the user is located: thus, a test which can be
performed in a few hours in a central hospital, might require the transportation of a
patient from a decentralized unit. This indicates that access through a decision tree
can be significantly suboptimal in some cases. Optimization of decision trees with
respect to the cost of tests is known to be an NP-complete problem [194].

In dynamic taxonomies, total freedom in selecting the sequence of tests allows
the user to perform low-cost tests first, and adapt to his specific environment. In
addition, at each step, the user has a complete indication of all the objects which
satisfied the tests performed so far. This is especially important, because the user can
often rely on his knowledge/memory to select the right object in a relatively small
set of candidates, instead of applying additional tests. Finally, dynamic taxonomies
support the notion of a taxonomic organization of features, which guides users in
easily locating available tests and allows them to select the appropriate level of
abstraction for their inquiry.

From the user interaction point of view, selection by decision trees is the analog
of interacting through a predefined modal dialog in which the system asks the ques-
tions: this is a system-centric master-slave architecture. Access through dynamic
taxonomies guides the user to reach his goal by simply hiding selections and fea-
tures which do not apply in the current state. As such, interaction is modeless and
the system is perceived as an assistant rather than as a master.

As regards information classification, the notion of order is required in decision
trees in order to select a specific tree among all the trees equivalent to the given
boolean function. As we mentioned above, selecting an order for tests is critical for
two reasons. First, different tests may have different costs: we want to anticipate
low-cost tests and defer high-cost test, in order to minimize the total system costs.
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Second, we might want to minimize the average or the maximum number of tests re-
quired. Decision trees are usually incomplete binary trees, so that very skewed trees
can arise in practice. In addition, the probability of selecting a specific information
object is usually not uniform: it makes sense to select a tree which minimizes the
number of tests for the most frequently occurring pathologies. All these consider-
ations call for the optimization of decision trees: but, as we said, this problem is
known to be NP-complete [194].

The construction of a decision tree for m information objects requires identify-
ing n features which can be used to discriminate among objects, and then use these
features to construct the decision structure. This approach has two undesirable side
effects. First, the addition of a new object requires the modification of the decision
tree and in practical situations it may disrupt it. Second, and more importantly, since
we use features to discriminate among objects, such discriminators are globally de-
fined. That is, each object has to be compared against any other object in order to
define appropriate discriminators: this means a quadratic complexity in the number
of objects, so that applications of decision trees do not easily scale up.

In dynamic taxonomies, instead, m features are used to describe each object,
in isolation. The classification of a single object o, i.e., the values of these fea-
tures for o, depends on o only, which means that the complexity of the con-
struction of the decision structure does not depend on the size of the information
base.

3.4 Formal Concept Analysis

In this section, we review basic Formal Concept Analysis (FCA), following in part
the introduction by Priss [217], and compare it to Dynamic Taxonomies (DT).
A complete mathematical characterization of FCA can be found in Ganter and
Wille [114]. Although FCA and DT are apparently two distinct approaches to infor-
mation modeling and access, and they use a different terminology, they are closely
related. We demonstrate in the following that they share a similar data model, a sim-
ilar navigation space, and mostly differ in the way they interact with users. We think
this sets a bridge so that each theory can gain from the other.

3.4.1 Data Model

FCA concerns with formal objects and formal attributes. Objects are usually real-
word objects that are characterized by attributes. Thus, for example, digital cameras
are objects for which attributes such as resolution, price are recorded. The sets of
formal objects and formal attributes together with their relation to each other (e.g.
what resolution a specific camera has), called the incidence relation, form a formal

context, which can be represented by a cross table. A simple example, famous an-
imals [217], is given in Table 3.3, where a × in the cell corresponding to object o

and attribute a means that a applies to o.
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Table 3.3 A formal context of “famous animals”

Cartoon Real Tortoise Dog Cat Mammal

Garfield × × ×

Snoopy × × ×

Socks × × ×

Greyfriar’s Bobby × × ×

Harriet × ×

Fig. 3.7 Concept lattice for
the context in Table 3.3

A formal concept c is then defined as a pair (O,A) where O is a set of objects,
and A is a set of attributes, such that each attribute a in A applies to all objects
o in O , and that each o in O has all the attributes a in A. A is called the intent

of c, O the extent of c. A difference with concepts in dynamic taxonomies is that
they are defined a posteriori, as a consequence of data, similarly to clustering ap-
proaches.

A duality called a Galois connection applies between extents and intents of con-
cepts. A Galois connection implies that if one makes the sets of one type (e.g. the
intension) larger, the corresponding sets of the other type (e.g. objects) become
smaller or equal, and vice versa. Because of this property, a hierarchical ordering
of concepts can be derived. In particular, a concept (O1,A1) is called a subconcept
of (O2,A2) if A1 ⊇ A2 (and equivalently, O1 ⊆ O2). Such a hierarchical ordering
of concepts (which defines a concept lattice) can be visualized by a line diagram
such as the one in Fig. 3.7 [217].

All edges in the line diagram of a concept lattice represent subconcept–
superconcept relations. The top (supremum) and bottom (infimum) concepts in a
concept lattice are special. The top concept has all formal objects in its extension,
and it is therefore the most general concept (in most cases, its intension is empty).
The bottom concept has all formal attributes in its intension, and is empty if at least
two attributes in the context are mutually exclusive, or if less than the total number
of attributes is used to classify objects. Subconcept–superconcept relations are tran-
sitive, and therefore a concept is subconcept of any concept that can be reached by
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traveling upwards from it. All the attributes in a formal concept are inherited by all
its subconcepts.

In basic FCA, an attribute is a boolean value—either it applies or it does not.
In most practical situations, however, attributes (e.g. prices, weights, brands) are
multivalued. In order to deal with this problem, FCA introduces a mechanism (called
conceptual scaling) in which an attribute can be exploded into its values.

Every taxonomy-based source can be translated into a formal context, and recip-
rocally, without any loss of information. The only condition is that a scale context be
used in order to represent the taxonomy. In short, the translation can be summarized
by the following correspondences.

DT ↔ FCA

object ↔ object
concept ↔ attribute

classification ↔ formal context
taxonomy ↔ scale context

infobase ↔ scaled context
focus ↔ formal concept

There is a clear correspondence between objects in the two models, as real-world
entities, and between DT concepts and attributes, as elementary descriptors for those
entities. The DT sentence “concepts are labels under which objects can be classi-
fied” can be transposed to FCA without difficulty: “attributes are labels under which
objects can be classified”. However, note that DT concepts play a different role than
FCA formal concepts. In the following, we distinguish between DT concepts and
formal concepts, unless the context makes it clear which kind of concept is relevant.
There is also an equivalence between the classification of objects under DT concepts
and a formal context K = (O,A, I), where the extent of an attribute corresponds to
the shallow extension of the corresponding DT concept. Both are binary relations
between objects and DT concepts/attributes. However, in DT, a second source of in-
formation comes from the taxonomy that organizes DT concepts in a subsumption
ordering ≤. This is naturally represented in FCA by a scale context S = (A, A,≤),
where A is the set of all attributes [114]. There is a cross in the scale context at
position (a1, a2) as soon as a2 is an ancestor DT concept of a1. From there, FCA
allows to combine the formal context and the scale context to form a scaled (formal)
context KS = (O,A, IS), where the extent of an attribute corresponds to the deep
extension of the corresponding DT concept. The incidence relation of the scaled
context is defined by

(o, b) ∈ IS ⇐⇒ ∃a ∈ A : (o, a) ∈ I ∧ a ≤ b.

Therefore, there is a total correspondence between the infobase of a dynamic
taxonomy, and the combination of a scale context and a formal context. A first dif-
ference is that, in FCA, this is the scaled context that is effectively used to compute
the concept lattice and support information access. However, in the scaled context,
the taxonomy information is made implicit, so that when two attributes are ordered
in the concept lattice, we cannot tell whether this is imposed by the taxonomy, or by
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the classification of objects. We think it is important to distinguish the two cases, be-
cause they correspond to different levels of knowledge: general well-known knowl-
edge in the first case (e.g., a taxonomy of continents and countries), and specific
to-be-discovered knowledge in the second case (e.g., implications between coun-
tries and cultural features).

A second difference is in the correspondence between focus and formal concept.
Both characterize a set of objects, but only FCA has the corresponding intent, and
constrains the focus to be the extent of a formal concept. On one hand, the intent
makes formal concepts more informative. On the other hand, the extent constraint
limits the expressivity of the queries that can be used. The consequences of these
differences on information access are discussed in detail in the following section.

3.4.2 Information Access

Formal Concept Analysis is applied to data analysis, information retrieval and ex-
ploration, and knowledge representation and discovery in domains as different as
social sciences, software engineering and multimedia data [217]. We here focus on
information retrieval and exploration. In fact, FCA has been recognized as a good
solution for tightly combining querying and navigation [121], hence for supporting
exploration. A query is defined as a set of attributes, and every query leads to the
most general concept that has all the query attributes in its intent. The extent of this
concept represents the set of answers to the query. The intent of this concept may
have more attributes than the query. The additional attributes are consequences of
the query attributes in the context, i.e., every object that has all query attributes also
has these additional attributes as properties. From there, it is possible to navigate
downward to reach more specific concepts (less answers), or upward to reach more
general concepts (more answers). Compared to databases, the FCA approach has the
advantage to guide users in their browsing, rather than just asking for queries. Com-
pared to hierarchies (e.g., file systems), the FCA approach provides several paths
to reach a set of objects because the order in which attributes are given is not con-
strained, and the navigation structure (the concept lattice) is automatically derived
from data (the formal context).

A number of FCA systems, like the CEM (Conceptual Email Manager), display
concept lattices like the one in Fig. 3.7. Navigation then simply consists in following
edges from concepts to concepts. In order to allow for smaller and more readable
diagrams, the formal context can be restricted to subsets of objects and attributes.
However, because concept lattices are generally too large to be read entirely, most
tools resort to local views over them [92, 181]. In the most complete form, every
local view displays the intent and extent of the current concept, as well as children
and parent concepts. These related concepts are represented only by the difference
between their intent and the current concept intent, i.e., sets of attributes to be added
or removed from the current intent. The computation of the concept lattice is ex-
ponential in the number of objects or attributes. This imposes strong limitations on
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the size of formal contexts that can be browsed. A first solution is to extract a small
formal context from a large information system by usual search techniques, and
then apply FCA on it (e.g., CREDO for the Web [59], Docco for the desktop [72]).
A second solution is to avoid the computation of the concept lattice, but to compute
related concepts on demand [103, 171]. Thus, only the visited part of the concept
lattice has to be computed.

The navigation space of DTs, when restricted to AND-composition, is exactly
the concept lattice of FCA. If the zoom operation in DT is restricted to a AND-
composition of concepts, every focus that can be reached is the extent of a for-
mal concept, and reciprocally, every non-empty extent of a formal concept can be
reached by a succession of zoom operations. Initially, the query is empty, and the
focus is equal to the universe, i.e., all objects. This corresponds to the supremum
formal concept. After k zoom operations on DT concepts a1, . . . , ak , the query is
qk = a1 AND . . . AND ak , and hence, the focus is Fk =

⋂

i∈1..k objects(ai). As
every DT concept is an attribute of the scaled context, the focus Fk is necessarily
the extent of a formal concept ck = (Fk,F

′
k), where F ′

k is the intent of ck . From
there, the dynamic taxonomy presents a conceptual summary of the focus by retain-
ing only DT concepts that are extensionally related to it, i.e. any DT concept a such
that Fk ∩ objects(a) 	= ∅. In fact, every such DT concept a can be seen as a selec-
tor from the focus Fk to the focus Fk+1 = Fk ∩ a, corresponding to the query qk

AND a. Of course, every focus Fk+1 is again the extent of a formal concept ck+1.
Every concept ck+1 is a subconcept of ck , or equal to ck in the case the DT concept a

is in the intent of ck . Moreover, every immediate subconcept of ck is among those
concepts ck+1, i.e., can be reached in one step from ck . Therefore, every subconcept
of ck can be reached in a finite number of steps. Similarly, it can be demonstrated
that the removal of DT concepts in the query corresponds to navigation links to-
wards superconcepts.

Although DTs are able to eventually reconstruct the whole concept lattice
through an exhaustive navigation, each zoom step has a very low complexity. If
the deep extension of each DT concept is explicitly stored, each intersection can be
computed in a linear time, either by using ordered inverted lists or bitmaps for stor-
age.22 Since the number of intersections to be performed is no larger than the total
number of DT concepts, the overall time complexity is O(mn), where m is the num-
ber of DT concepts/attributes and n is the number of objects. The lazy computation
paradigm used by DT, where relationships are inferred on demand, makes DT scal-
able to large and very large databases.23 Most importantly, DT being entirely based
on dynamic computations, it can easily deal with dynamic databases in which new
objects are inserted, deleted or modified. The concept lattice, by converse, is a static,
precomputed structure that cannot easily accommodate variations in the database,
except for incremental object insertion [196]. For this reason, FCA techniques seem
more suitable for data analysis of static sets rather than for intelligent information
access in a dynamic environment.

22See Sect. 8.1.
23See Chap. 8.
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The dynamic computation of dynamic taxonomies over arbitrary subsets of ob-
jects allows to considerably extend the expressiveness of the model. Whereas the
concept lattice is derived by the AND-ing of attributes only, the combination of DT
concepts using all the logic operations: AND, OR, and NOT is allowed in DT.

The informativeness of dynamic taxonomies is intermediate between the global
and local views on concept lattices. We have shown above that every immediate sub-
concept and superconcept of the current formal concept can be reached by selecting
some DT concept in the dynamic taxonomy. Also, every attribute in the intent of the
current formal concept appears in the dynamic taxonomy, as a DT concept whose
count is equal to the size of the extent, i.e., a DT concept/attribute that is shared
by all objects in the current focus/concept. Therefore, the local view on the concept
lattice, which is used by several FCA tools, is fully included in DT. However, a dy-
namic taxonomy shows only extensional relation between the focus and each DT
concept, whereas the concept lattice shows extensional relations between the focus
and every combination of DT concepts, i.e., between the current formal concept and
every other concepts. On one hand, FCA gives a complete picture of the conceptual
structures laying in data, which is suitable to data mining tasks. On the other hand,
DT is less informative, but it ensures the results displayed to users is manageable
because they are expressed in terms of the original taxonomy. This reduces the cog-
nitive effort of users and is a simpler and more intuitive representation than the line
diagrams generally used in FCA.

3.4.3 Conclusion

In summary, we have shown that FCA and DT share a similar data model, and a
similar navigation space that enables to tightly combine querying and navigation in
a same search. The concept lattice has a strong value for data-mining tasks, but does
not scale well, both computationally and visually, for information access. However,
the concept lattice is still useful in information access as a characterization of the
navigation space, where each concept corresponds to a focus. Compared to the con-
cept lattice, DT is a dynamic view on it, in the form of a taxonomy, that scales up to
large and very large infobases, and requires less cognitive effort. DT can be seen as
an extension of local views on concept lattices, which consists in a concept and its
neighbors. Because of the similarity of their data model, it should be possible to ap-
ply similar extensions to FCA and DT, as this was done for logics [102, 106]. Also,
DT could be used as a front-end for the exploration of large concept lattices, and
the ample body of results around FCA could be used to improve it, or even extend
it towards data-mining tasks.

3.5 Semantic Web

The Semantic Web (SW) [23] is an evolving extension of the World Wide Web in
which Web content can be expressed not only in natural language but also in a format
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that can be read and used by software agents, thus permitting them to find, share
and integrate information more easily. It comprises a variety of formally specified
languages (RDF/S,24 OWL25), associated formats (e.g. RDF/XML, N3, Turtle, N-
Triples) and related technologies for their management. In contrast to XML, which
also allows expressing structured documents, SW languages have a clear semantic
interpretation.

Resources (e.g. Web pages, books, people, places, hotels) can be described us-
ing RDF statements. RDF statements are actually object-attribute-value triples, e.g.
Yannis bornIn Athens. Such descriptions may refer to ontologies, i.e. they
can be considered as instantiations of ontologies. This allows expressing statements
of the form Yannis typeOf Professor (i.e. Yannis is an instance of the class
Professor) where the class Professormay be defined in an ontology that contains
also the statement Professor subclassOf Person. This allows inferring
that Yannis is a person although that statement has not been specified explic-
itly.

Regarding languages and formats:

• XML is a meta-language for defining markup. It provides a syntax for structured
documents but does not impose any semantic constraint on the meaning of these
documents.

• XML Schema is a language for restricting the structure of XML documents.
• RDF is a data model for objects (resources) and relations between them. It is

actually a data model based on object-attribute-value triples. Such triples can be
represented and exchanged in various formats including XML (i.e. RDF/XML)
and TriG [43].

• RDF Schema is a vocabulary description language for describing properties and
classes of RDF resources equipped with subsumption semantics. It allows ex-
pressing ontologies.

• OWL is a richer vocabulary than RDF Schema that allows expressing disjointness
and cardinality constraints as well as other properties like equivalence, symmetry,
transitivity.

In one sentence, an ontology is an explicit and formal specialization of a
conceptualization [126]. Ontologies allow capturing domain knowledge using the
classical knowledge representation mechanisms (classes, attributes, generaliza-
tion/specialization hierarchies). Specifically, they comprise a finite list of terms and
relationships between these terms. The terms denote concepts (classes of objects) of
the domain, while the relationships allows forming class hierarchies (e.g. Profes-
sor subclassOf Person) and defining properties (e.g. Yannis teaches
InformationRetrieval), as well as various value restrictions (e.g. only pro-
fessors can teach courses). Ontologies can be expressed in RDF Schema and OWL
(also see Sect. 8.4). The following section explains how OWL is based on a logical
formalism, description logics, and how it can be compared to taxonomies.

24http://www.w3.org/TR/rdf-schema/.
25http://www.w3.org/TR/owl-features/.
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3.5.1 Description Logics and OWL Ontologies

The purpose of OWL is to define ontologies for modeling and reasoning about ap-
plication domains. OWL is mapped onto the description logics. Description logics
provide the required theoretical background, such as proving the consistency of an
ontology, or classifying concepts. The OWL standard includes three expressivity
levels: OWL Lite, OWL DL and OWL Full. OWL Lite does not contain the no-
tion of cardinality on roles, but inference is decidable and efficient. OWL Full uses
all the primitives of OWL, and is the most expressive language (and fully includes
RDF), but becomes undecidable. Here, we focus on OWL DL, because it is decid-
able, a good compromise between expressivity and inference efficiency, and well
supported by most existing tools (unlike OWL Full). In the following, we recall
the basic definitions of OWL DL, and we adopt the terms and notations of descrip-
tions logics rather than those of the OWL standard, because they provide a much
more compact syntax, and because our focus is more on theory than on technol-
ogy.

Description Logics (DL) are logical formalisms that have been adopted to rep-
resent and reason about ontologies [143], which are domain-specific knowledge
bases. They have points in common with dynamic taxonomies such as concepts,
subsumption between concepts, and instance relation between objects and concepts.
There are however several important differences. First, concepts are not only con-
cept names, but complex combinations of concepts by logical constructors. Second,
the subsumption relations are derived automatically from a set of axioms modeling
the domain. Third, relations (called roles) can be set between objects, so that the
concepts to which an object belongs depend on other objects to which it is con-
nected.

The definition of description logics is based on three kinds of entities: concepts,
roles and objects. Given a domain of individuals (e.g., persons in genealogy, docu-
ments in bibliography), the concepts are sets of individuals that share some char-
acteristics (e.g. Women); the roles are binary relations between individuals (e.g.
sibling); the objects are particular individuals (e.g. BOB). The syntax gathers these
three kinds of entities, plus constructors for building complex concepts and roles,
which determine the expressivity of the description logic.

Definition 3.1 (Signature) The language of concepts of a description logic is char-
acterized by a signature S = (O,Ca,Ra,Cstr), where:

• O is a set of object names;
• Ca is a set of concept names (denoted ci );
• Ra is a set of role names (denoted ri );
• Cstr is a set of constructors used to create complex concepts (denoted Ci ) and

complex relations (denoted Ri ). Classes of constructors of the common descrip-
tion logics are represented by letters.
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Table 3.4 Set of constructors of the description logic SHOIQ, with their syntax and interpretation

Letter Definition Syntax Interpretation

S top (most general concept) ⊤ �I

bottom (most specific concept) ⊥ ∅

conjunction of two concepts C1 ⊓ C2 CI
1 ∩ CI

2

disjunction of two concepts C1 ⊔ C2 CI
1 ∪ CI

2

concept negation ¬C �I \ CI

qualified universal quantification ∀r.C {i ∈ �I | ∀j : (i, j) ∈ r I → j ∈ CI}

qualified existential quantification ∃r.C {i ∈ �I | ∃j : (i, j) ∈ r I ∧ j ∈ CI}

O at least one of objects {o1, . . . , on} {oI
1, . . . , o

I
n}

Q minimal cardinality ≥ n r.C {i ∈ �I | #{j ∈ CI | (i, j) ∈ r I} ≥ n}

maximal cardinality ≤ n r.C {i ∈ �I | #{j ∈ CI | (i, j) ∈ r I} ≤ n}

exact cardinality = n r.C {i ∈ �I | #{j ∈ CI | (i, j) ∈ r I} = n}

In OWL, objects are called individuals, concepts are called classes, and roles are
called properties. The description logic OWL DL is based on the description logic
SHOIQ, whose constructors are listed in Table 3.4 (the notation #S represents the
cardinality of a set S). Each letter in SHOIQ corresponds to a set of constructors
or to axioms (letter H and I , see below). This list of constructors determines the
expressivity of OWL DL.

The second notion to be defined for a description logic is semantics. The main
difference between classical logic and description logics is the interpretation func-
tion. Where classical logic interprets each formula as a truth value, description log-
ics interpret each concept as a set of individuals, its instances, and each role as a
binary relation between individuals. The interpretation function for the constructors
of the description logic SHOIQ is given in Table 3.4.

Definition 3.2 (Interpretation) Let S = (O,Ca,Ra,Cstr) be a signature. An inter-
pretation I = (�I, ·

I) of S is a set of individuals �I , called the interpretation domain,
and an interpretation function ·I , that associates:

• to each object name oi an individual oI
i ∈ �I ;

• to each concept name ci a set of individuals cI
i ⊆ �I ;

• to each role name ri a binary relation between individuals r I
i ⊆ �I × �I .

The third notion to be defined for a description logic is the knowledge base. In
OWL, a knowledge base is called an ontology. A knowledge base divides the knowl-
edge in two parts: the terminological part, which represents general knowledge, true
for all individuals, and the assertional part, which represents particular knowledge,
only true for particular individuals.
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Definition 3.3 (Knowledge base) We define a knowledge base as a pair Σ = (T ,A),
where:

• T is the terminological part (T-Box), represented by a set of axioms like “Ci is
subsumed by Cj ”, denoted Ci ⊑ Cj , which means that every instance of Ci

is necessarily an instance of Cj . The equivalence of two concepts, denoted
by Ci ≡ Cj , is equivalent to the two axioms Ci ⊑ Cj and Cj ⊑ Ci ;

• A is the assertional part (A-Box), represented by a set of assertions like o : C

and (oi, oj ) : R, which respectively means that “o belongs to the concept C”, and
“a connection R exists between oi and oj ”.

Moreover, the description logic SHOIQ allows additional axioms in the knowl-
edge base (letters H and I ). The following axioms on roles can be added to the
T-Box:

• ri ⊑ rj (called role hierarchy);
• ri inverse of rj ;
• r functional;
• r transitive.

In the following, the notation r−1 is used to denote the role that is defined to be the
inverse of the role r , when defined.

Figure 3.8 presents the T-Box of an example knowledge base Σex, with 3 con-
cepts (Person, Team, Bigteam), and 2 roles (hasleader, hasmember). An instance
of Team is defined as having a leader and at least 2 members. An instance of
Bigteam is defined as having a leader and at least 3 members. The 3 axioms on
roles say that every leader is a member, isleaderof is the inverse of hasleader,
and there is a unique leader per team. To help the reading of knowledge bases,
concepts are written with an uppercase, relations in lowercase, and objects in up-
percase letters. Figure 3.9 presents the A-Box of Σex, with the description of the
team LIS, leaded by OLIVIER and composed of 2 other members, PIERRE and
SEBASTIEN.

Fig. 3.8 Example of T-Box

Fig. 3.9 Example of A-Box
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Given a knowledge base Σ , some interpretations are distinguished as models

of Σ .

Definition 3.4 (Model) Let Σ = (T ,A) be a knowledge base and I an interpreta-
tion, for the same signature S. We call I a model of Σ , denoted I |= Σ , when:

• for each Ci ⊑ Cj in T , CI
i ⊆ CI

j ;

• for each o : C in A, oI ∈ CI ;
• for each (oi, oj ) : R in A, (oI

i , o
I
j ) ∈ RI .

The definition of SHOIQ gives additional properties to be checked:

• for each ri ⊑ rj in T , r I
i ⊆ r I

j ;
• for each ri inverse of rj in T ,

r I
i = {(i, j) ∈ �I × �I | (j, i) ∈ r I

j };
• for each r functional in T ,

(i, j) ∈ r I ∧ (i, j ′) ∈ r I → j = j ′;
• for each r transitive in T ,

(i, j) ∈ r I ∧ (j, k) ∈ r I → (i, k) ∈ r I .

From this notion of model, statements and their inference from a knowledge
base can be defined: classification and instantiation. The classification statements
establish subsumption relations between concepts, and hence help to organize or
classify them. The instantiation statements establish the belonging of objects to
concepts, and hence help to place objects in the concept classification.

Definition 3.5 (Classification and Instantiation) Let Σ be a knowledge base. Two
kinds of statements can be inferred from Σ :

• Classification: Σ |= Ci ⊑ Cj iff I |= Ci ⊑ Cj , for every model I of Σ ;
• Instantiation: Σ |= o : C iff I |= o : C, for every model I of Σ .

For instance, it can be proved in our example that every big team is also a team:
Σex |= Bigteam ⊑ Team. Also, OLIVIER being the leader of LIS, hence a member of
it, and SEBASTIEN and PIERRE being members too, we can prove that LIS is a big
team, i.e. Σex |= LIS : Bigteam.

Clearly, Semantic Web languages allow defining complex semantic structures
that are more expressive than taxonomies and taxonomy-based classifications. The
availability of such structures allows formulating and answering queries that could
not be expressed precisely using keyword queries, e.g. find all used cars manufac-

tured in Germany that were owned by a citizen of Greece. However the formulation
of such queries is a rather difficult and hard task for end users: the above query can
be translated by the concept

Car ⊓ ∃user.⊤ ⊓ ∃manufacturer.{GERMANY} ⊓ ∃owner.∃citizen−1.{GREECE}.

Therefore it is worth investigating methods that allows creating complex query pat-
terns in an intuitive and gradual/progressive manner, and exploratory search is cer-
tainly an approach that is worth investigating.



70 G.M. Sacco et al.

Therefore, an interesting question is how an OWL ontology, i.e. a DL knowledge
base, could fit into the framework of dynamic taxonomies. The key notions are the
classification and instantiation statements that can be inferred from a knowledge
base.

• Classification statements define a subsumption ordering over concepts, which can
play the role of a taxonomy. This forms a multi-dimensional taxonomy because
an individual can belong to an arbitrary number of concepts, and concepts can
have several super-concepts.

• Instantiation statements determine whether an object is an instance of a concept,
and hence define the deep extension of concepts.

Therefore, all ingredients are present to apply the framework of dynamic tax-
onomies onto Web ontologies. The important differences with the usual application
of DTs is that (1) the concepts may be complex and in infinite number, (2) the tax-
onomy shape and extensions are defined through logical inference, and (3) there are
relations between objects that may be followed to reach a set of related objects from
the current focus (e.g., the Greek owners of some set of cars).

3.5.2 Semantic Web and Exploratory Search

The question is how dynamic taxonomies and faceted exploration could be exploited
for ontologies and ontology-based descriptions. We could identify the following
challenges:

• Ability to navigate through properties of resources of any type and to make se-
lections based on properties of other, semantically related, types. Note that most
facet browsers provide an interface to a single type of resource. Including mul-
tiple types, could lead to an explosion of the number of properties and thus the
number of available facets.

• Ability to handle any RDF/S or OWL dataset without any additional configura-
tion.

• Efficient computation of zoom points.

Below we discuss in brief some possible approaches that can be followed. Let
us first consider the case where resources are classified with respect to ontologies
that have a plain taxonomic structure, i.e. comprise classes organized hierarchically
through the subclassOf relation and these classes have no properties. This case
matches exactly with the data model of taxonomy-based sources therefore the pro-
vision of dynamic taxonomies and faceted search is straightforward. If all SW data
are loaded in main memory then the implementation of exploratory search can be
based on the existing SW main memory APIs. If on the other hand ontologies and
ontology-based descriptions are stored in secondary memory, specifically in a triple-
store that offers a query language (e.g. RQL [157], or SPARQL [8]), then that lan-
guage could be used for computing the zoom points.
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Let us now consider the general case, i.e. the case where ontologies also contain
properties (whose domain and range are classes or literal types). The question is how
properties should be exploited during browsing. Below we sketch some approaches
that could be adopted:

• View-based approach
If the ontologies and the ontology-based descriptions of the resources are

stored in a triple-store that offers a query language, then that language could be
used for defining the desired view(s) for exploration. Specifically, one may define
several views each having the form of a taxonomy-based source.

If some attributes have a big number of distinct values, then methods that group
these values and define taxonomies on the fly (like in [61]) can be adopted in order
to avoid overloading the user.

• Generic approach
Another approach would be to directly apply it on RDF or OWL, without the

need of a special configuration. Examples of systems that attempt this include:
/facet [139], Ontogator [175], BrowseRDF [200] and are described in more details
below.

Below we describe in brief some view-based and generic approaches that have
been proposed or used.

• Ontogator [175]
It is an open source tool that has been applied in several semantic portals on

the Web. It supports several views and their configuration is done using RDF. It
employs (Prolog) rules for articulating values with background knowledge and
follows the view-based approach. Labeling schemes (e.g. [17]) are employed for
speeding up the computation of zoom-in points.

• BrowseRDF [200]
It is an RDF browser for semi-structured RDF data. The mapping of RDF to

Dynamic Taxonomies (DT) is the following:

DT ↔ RDF

object ↔ RDF subjects
facet ↔ RDF predicates

restriction-values/zoom-in points ↔ RDF objects

During interaction, the user not only is able to restrict the focus by selecting a
value, but he can also exploit the following operators:
– Existential selection

For example, consider a knowledge base that describes persons and their re-
lationships. Existential selection allows selecting all resources (e.g. persons)
with a spouse, or all resources without a spouse. This means that the user
does not have to select a particular value.

– Join selection
This operator allows forming restrictions on paths of properties, for exam-

ple, all resources who know somebody, who in turn knows somebody named
Tonia.
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– Inverse selection
This operator allows forming conditions on properties that point to (instead

of originating from) the current objects.
As the facets could be many, metrics for automatically ranking facets according
to their quality (for browsing) are introduced.

• /facet [139]
It is a facet browser for Semantic Web repositories and it has been applied

for browsing and searching museum collections. The repository may contain
more than one RDF schemas and thesauri. It supports several resource types (i.e.
rdf:type is treated as a facet) and during browsing the user can switch the type
of sought objects. The user, apart from browsing, is able to search a facet, and
autocompletion facilities (during typing) are also provided. Regarding the pre-
sentation of the facets, some visualization and interaction plug-ins are supported.
For instance, geographical data are displayed in an interactive map, while time-
related facets (e.g. dc:date) are visualized using a timeline plug-in. However,
runtime reasoning causes delays and for this reason some deductively derived
data are materialized.

Examples of other systems that follow similar approaches include: MuseumFin-
land [147], and Longwell RDF Browser [7].

In Sect. 5.5, we present an extension of DTs that follows the generic approach. It
applies to any OWL DL ontology, and is directly defined on top of OWL. It allows
users to gradually build complex queries by successive selections in dynamic tax-
onomies, which are computed with the help of existing OWL reasoners. It handles
different types of resources, and provides most OWL operators (existential selec-
tion, inverse property, join selection) through both querying and navigation.

3.5.3 Conclusions

In conclusion: (a) SW languages and formats can be used for representing and ex-
changing taxonomies and taxonomy based descriptions, (b) SW technologies (e.g.
triple stores, query languages) can be used for storing and querying taxonomy-based
sources, (c) in the SW user access is usually done through specialized and propri-
etary software agents. The application of the interaction paradigm of dynamic tax-
onomies and faceted search requires tackling issues similar in spirit to those for
supporting exploratory search over relational databases (for more see Sects. 7.1
and 8.2).

In addition, and as pointed out in [292], we would like to remark that in a very
broad domain such as the set of all Web pages, it is not easy to identify the classes
of the domain because the domain is too wide and different users, or application
needs, conceptualize it differently, e.g. one class of the conceptual model according
to one user may correspond to a value of an attribute of a class of the conceptual
model according to another user. For example, Fig. 3.10 shows two different ways to
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Fig. 3.10 Two different ontologies (conceptual models) for the same domain

Fig. 3.11 An ontology that consists of terms and subsumption links only

conceptualize the same domain. Our example shows only two objects of the domain
which are denoted by the natural numbers 1 and 2.

The conceptual model of Fig. 3.10(a) seems appropriate for building an in-
formation system for a store that sells furniture, while the conceptual model of
Fig. 3.10(b) seems appropriate for building an information system for a supermar-
ket.

We can say that the classes of the ontology (a), i.e. the classes Tables, Chairs
and Couches, have been defined in order to distinguish the objects of the domain
according to their use. On the other hand, we can say that the classes of the on-
tology (b), i.e. the classes Wooden, Plastic and Glassware, have been de-
fined in order to distinguish the objects of the domain according to their mate-

rial. This kind of distinction is useful for a supermarket, as it determines (in a
degree) the placement of the objects in the various departments of the supermar-
ket.

Figure 3.11 shows an ontology for the same domain which consists of terms
and subsumption links only. This ontology seems to be more application indepen-
dent. All criteria (characteristics) for distinguishing the objects are represented in
the same way, in a truly faceted approach.
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This modeling approach is simple and scalable, and remains to be effective as
long as the access/exploration criteria for the objects are based on their properties
and attribute values, and not on their associations with the rest objects. To access
and explore objects based on their associations with other objects, techniques like
those described in Sects. 5.5 and 7.1 can be applied.



Chapter 4

User Interface Design

Moritz Stefaner, Sébastien Ferré,

Saverio Perugini, Jonathan Koren, and Yi Zhang

“Design is not just what it looks like and feels like.

Design is how it works.”

Steve Jobs, 1955–

As detailed in Chap. 1, system implementations for dynamic taxonomies and faceted
search allow a wide range of query possibilities on the data. Only when these are
made accessible by appropriate user interfaces, the resulting applications can sup-
port a variety of search, browsing and analysis tasks.

User interface design in this area is confronted with specific challenges. This
chapter presents an overview of both established and novel principles and solutions.
Based on a definition of core principles (see Sect. 4.1) and challenges (see Sect. 4.2),
we define a taxonomy of navigation modes observed in existing applications (see
Sect. 4.3). On that basis, design patterns for enabling these navigation modes in user
interfaces (see Sect. 4.4) as well as extensions and related approaches (see Sect. 4.5)
are discussed. The chapter closes with an approach to personalizing faceted search
(see Sect. 4.6).

4.1 Principles

Extending traditional models of Information Retrieval, search for digital resources

has lately been widely recognized as multi-step processes [32, 130, 179, 228]. To
follow the terminology introduced in [130], a search usually involves an initial con-

straint definition, followed by an orienteering and refinement phase based on first
inspections of the result, and finished with a closer examination of individual results
in the so-called endgame.

In this context, the exploration of dynamic taxonomies [236] with facet browsers

is often seen as a most promising candidates for “rich exploration of a domain across
a variety of sources from a user-determined perspective” [155]. These make differ-
ent aspects of the underlying data accessible in parallel. Selecting one of the values,
and thus filtering the result set, restricts the available metadata values only to those
occurring in the results. Consequently, the user is visually guided through an itera-
tive process of query refinement and expansion, never encountering situations with
zero results.

G.M. Sacco, Y. Tzitzikas (eds.), Dynamic Taxonomies and Faceted Search,

The Information Retrieval Series 25,
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Fig. 4.1 The advanced search interface for the Oakville Public library at http://opl.
bibliocommons.com/search

Applications for faceted search and dynamic taxonomies offer the following key
features to support a wide range of search and browsing tasks:

• Unrestricted query formulation over multi-dimensional classification

Facet browsing applications impose no restrictions, in which order, or in which
granularity filters are applied on a result set. Filters stem from various, orthogonal
dimensions that can be combined by Boolean operators. This allows the formu-
lation of complex queries, such as “All documents created before date A, related
to topic B, and of file type C or D”. The equal treatment of multiple dimensions
differs from, e.g. typical web site structures or file systems, where a single tax-
onomy is the pre-dominant organization principle, and other metadata are only
supplements for sorting or filtering.

• Poka yoke: no more empty result sets

One of the core principles of dynamic taxonomies is to restrict the available
filtering options in the given focus to only those, which will lead to a non-empty
result set. Hence, the user can never run into a situation with zero results. This
is opposed to the process in a typical advanced search situation, where first a
complex boolean query is constructed, which is then evaluated on demand (see
e.g. Fig. 4.1). That, however, can result in empty result sets, often without fur-
ther indication on which part of the query could be relaxed in order to retrieve
some results. The exclusion of potentially frustrating situations by design is often
referred to as poka-yoke principle.1

1See e.g. http://en.wikipedia.org/wiki/Poka-yoke.
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• Orienteering and domain understanding

It is a common pattern to visualize the number of occurrences of a concept in
the given focus. The simplest option is to provide it after the concept label (e.g.
“Europe (5)”). Advanced techniques include the application of visual indicators,
such as bar height or small bar charts (see Sect. 4.4.7).

This provides valuable information scent [212], i.e. “a user’s (imperfect) per-
ception of the value, cost, or access path of information sources obtained from
proximal cues” [317]). Orienteering, or “directed situated navigation” [284] is
the process of reaching a goal through a series of small actions, supported by
continuous evaluation of the respective focus. In this context, knowing before-
hand how many resources to expect after adding a concept as a filter, can be a
valuable indicator of the utility of the filtering action. Additionally, this princi-
ple can be extended in order to foster domain understanding by learning about
characteristic metadata distributions (see Sect. 4.4.7).

4.2 Challenges

The prototypical facet browsing application has at least two main interface areas:
one for presenting facets and their values, one for displaying the result set. Addi-
tional components might include a detail view for selected resources and a bread-
crumb strip for filter summary and selection history navigation (see Sect. 4.4.5).

Based on this basic setup, a number of dimensions can vary in the system and
user interface design, and need to be carefully decided upon:

• Which is the data type of the different facets—nominal, hierarchical, ordinal, real
valued?

• How are facet values presented to the user? Are all facets and values visible, or
only a selection?

• Can the user select multiple values per facet? If so, does this result in conjunctive
or disjunctive queries?

Based on these fundamental considerations in setting up a faceted navigation
scheme, and designing an appropriate interface, the following recurring challenges
in designing these systems will have to be tackled [131, 133, 163]:

• Boolean query logic A selection of single concepts from different facets is usu-
ally understood as conjunction (AND-query). If, however, multiple values within
one facet are selectable (for instance, “red” and “green” from the “color” facet),
depending on context and data set, either a conjunctive (“red” AND “green”) or
a disjunctive (“red” OR “green”) interpretation are conceivable. If an application
only uses one of these selection modes, this needs to be communicated to the
user; if both are possible, separate controls for both modes will be needed (see
Sect. 4.4.1).
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• Cluttered interfaces The paradigm of making all filter options available in paral-
lel naturally leads to the challenge of having to fit many controls and text fields on
the user screen. Hence, clear visual structure and hierarchy as well as strategies to
reduce visual clutter are vital. If a full exposure of all facets is not possible due to
size constraints, strategies and user controls for showing and hiding, or expanding
and collapsing facets will have to be integrated (see Sects. 4.4.2 and 4.4.3).

• Incorporating keyword search A free-form keyword field in order to search for
arbitrary terms in addition to the pre-defined classification scheme is a “key com-
ponent to successful faceted search interfaces” [131]. One source of confusion
can be the question, if the search field will act as a plain text filter (e.g. searching
over titles and descriptions of the resources) or if it will also match classification
terms. A third conceivable option is a “search within the results”, which just fil-
ters the result display, but does not act as a full-fledged facet. In either case, the
relation of the free-form search to the rest of the filters has to be signalized clearly
in order to avoid misconceptions (see Sect. 4.4.4).

• Change blindness Change blindness is a well-known psychological phenomenon
[222]: a person viewing a visual scene apparently fails to detect large changes in
the scene, if the change in the scene coincides with some visual disruption such as
a saccade (eye movement) or a brief obscuration of the observed scene or image.
This situation often occurs in web applications, where the web page briefly flashes
after actions demanding a new server request. In this context, animated transitions
can facilitate perception of changes in user interface design [135, 286, p. 84].
Perception of change is especially important for facet browsing, as the sudden
disappearance of list items after a click can be a source for misconceptions and
confusion. Besides animation, clear marking of the current focus and the resulting
effects are recommended (see Sect. 4.4.6).

4.3 Navigation Modes

As a basis for comparing user interface design patterns in the next section, this
section defines and illustrates different navigation modes, that enable the user to
navigate the available information space by consecutively applying operators on the
query.

Given an infobase over a taxonomy (T ,≤) of concepts, a query is a Boolean com-
bination of concepts. We recall the extension of such a query can be computed from
the extensions of concepts by applying set operations: intersection for conjunction
(and), union for disjunction (or), and complement for negation (not).

From this perspective, browsing an infobase consists in navigating from query to
query. This is more general than defining browsing as navigating from sets of objects
to sets of objects, because every query determines a set of objects, its extension, and
not all navigation modes can be defined as a function from sets of objects to sets of
objects. The queries are constructed by following navigation links or using interface
controls. Most navigation links are provided by dynamic taxonomies, which also
summarize the extension of the current query.
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Based on an analysis of existing applications, we can distinguish the following
navigation modes:

• zoom-in makes the query more specific,
• zoom-out makes it more general,
• shift replaces a part of the query by a related concept,
• pivot replaces the whole query by a related concept,
• slice-and-dice allows the disjunctive selection of multiple concepts within a facet,
• range selection offers the options to specify query intervals within ordinal or real

value facets.

The change from a query to another query, and hence, from a focus to another
focus, is defined as a navigation link. A navigation link is decomposed into a se-

lection and a navigation mode. This means that a same selection can be used in
different ways to reach different foci. In the simple case, a selection is a concept
in the dynamic taxonomy of the current focus. In the general case, a selection is
the disjunction of the concepts that are selected in the dynamic taxonomy (e.g.,
France or Germany or Italy). Controls in the interface can be activated
to apply modifiers on such selections: adding negation (e.g., not (Animal or
Plant) from the selection of Animal and Plant), replacing equalities by in-
equalities (e.g., date >= 2002 from the selection of date = 2002). Given
those selections, the above navigation modes can be reduced to only two primitive
navigation modes, zoom and pivot:

• zoom-in is a zoom on a selection whose extension contains some objects of the
focus, but not all,

• zoom-out is a zoom on a selection whose extension contains all objects of the
focus,

• shift is a combination of zoom-in and zoom-out,
• pivot is a basic mode,
• slice-and-dice is a zoom on a selection with disjunction,
• range selection is a zoom on a selection with inequalities.

An additional navigation mode is querying-by-examples, which defines the query
from the selection of a set of objects, the examples.

The definitions of navigation modes rely on the fact that queries can be put in con-
junctive normal form, i.e. conjunctive sets of simpler queries. For instance, France
and not date <= 2000 and (Building or Landscape) is equiva-
lent to {France, not date <= 2000, Building or Landscape}.

In the following, these interaction modes are illustrated with an example scenario
using Camelis,2 a system for browsing a personal photo collection spanning the
period 1999–2007. This collection contains 5,820 photos, which are described by
date, location, event, type, visible persons and objects, and EXIF descriptors (e.g.,
time, flash, orientation).

2The version used here is 1.4, and can be downloaded at http://www.irisa.fr/LIS/ferre/camelis/.



80 M. Stefaner et al.

Fig. 4.2 The graphical interface of CAMELIS

Figure 4.2C shows a screenshot of Camelis. The current query is at the top. The
extension of this query, i.e., the current focus, is at the right, where each object is
represented by a thumbnail or a text snippet depending on its type. The dynamic
taxonomy is at the left, in the form of concept trees whose nodes are expanded on
demand. The number at the left of each concept represent its count in the current
focus, and the font scale is logarithmically proportional to this count. At the top
of the dynamic taxonomy, there are check and radio buttons to modify the current
selection (insertion of negation and inequalities), and two buttons for applying the
two primitive navigation modes (zoom and pivot).
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4.3.1 Zoom-in

First, suppose some user, say Lisa, wants to find some photos from a trip in Aus-
tralia at the conference ICFCA’04. She first expands the concept Location, and
finds she has photos from Europe (5,346), Africa (162), and Australia (148). After
selecting the concept Australia:3

• the query becomes Australia,
• the extension displays 12 photos (out of 148),
• the concept Australia has now maximal font scale because all photos in the

extension belong to it, and it is automatically expanded to show sub-locations of
Australia (Lisa finds that she has been mainly in Sydney (105), and in the Blue
Mountains (18)),

• the concepts Europe and Africa are no longer visible, because they are no
longer relevant, i.e., count = 0.

Now she expands the concept Type and sees there are different types of photos:
buildings (29), animals (34), and plants (6). She becomes interested in Australian
organisms, so she selects both Animal and Plant, which leads her to the refined
query Australia and (Animal or Plant), whose extension contains 40
photos. One of these photos is a portrait, which Lisa does not want, so she se-
lects the negation of Portrait. This leads her to the new query Australia
and (Animal or Plant) and not Portrait (39 photos). By expand-
ing more concepts, she discovers that these photos were taken in February and
March 2004, mainly in Sydney and at the Feather Dale Park, and that 5 photos
of three different species of marsupials are present: kangaroo, koala, wallaby.

Figure 4.2C shows the interface obtained after the previous navigation opera-
tions. At this stage, Lisa can either browse the 39 photos in CAMELIS, or launch a
slideshow in an external application.

These three navigation steps lead to local views with increasingly more precise
queries, and hence increasingly smaller extensions. This is called zoom-in naviga-
tion, because it corresponds to moving towards smaller extensions. Its principle is
to specialize the current query q by the selection x. A simple definition of the re-
sulting query would be q and x, but this would entail redundancy in queries: e.g.,
Australia and Sydney which is equivalent to Sydney because Sydney is
subsumed by Australia in the taxonomy. A better definition is to replace by x

every part of the query that subsumes x:

q � (q \ {y ∈ q | x ≤ y}) ∪ {x} = Min≤(q ∪ {x}).

The extension of the new query is extension(q) ∩ extension(x). Therefore, in case
the extension of x contains the extension of the query, the new query has the same

3There are French words in the screenshot as it is a personal photo collection, but English transla-
tions are used in the text for better consistency.
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extension as the query q . So, we restrict zoom-in to selections x such that

extension(q) ∩ extension(x) �= extension(q),

i.e., to selections whose extension contains some of the objects of the focus, but not
all.

4.3.2 Zoom-out

During navigation, the user may want to remove or generalize concepts in the query
so as to reach larger extensions: this is the zoom-out navigation mode. For instance,
Lisa realizes she needs more photos of animals and plants. The back button can
be used to retract the previous refinement. Hence if she wants to remove the first
refinement Australia, she needs to move three steps backwards, and then re-
select the last two refinements. She could also edit the query by hand, but users
usually prefer to navigate rather than to edit queries [121].

Besides, selections whose extension contains all objects in the focus, i.e.
extension(q) ⊆ extension(x), cannot be used for zoom-in. This makes them avail-
able for zoom-out. When such a selection is part of the query, it is removed from
the query:

q � q \ {x}.
For instance, if Lisa selects Australia, the new query is (Animal or
Plant) and not Portrait (282 photos from many locations). When such a
selection subsumes some query parts, it replaces such parts in the query:

q � (q \ {y ∈ q | y ≤ x}) ∪ {x} = Max≤(q ∪ {x}).

For instance, if she selects Pacific, the new query is (Animal or Plant)
and not Portrait and Pacific. It is now clear how zoom-in and zoom-
out can be reduced to a single primitive navigation mode. When zooming on a se-
lection, the relationship between this selection and the current query determines
whether this is a zoom-in or a zoom-out.

Compared to existing approaches, i.e., a list of removable concepts, this approach
has three advantages: (1) it is integrated into the dynamic taxonomy, (2) it allows
the replacement of a concept by a more general one, and (3) it extends to selections
with disjunction and negation by extending the ordering ≤ to such selections.

4.3.3 Shift

Zoom-in and zoom-out can be combined in two forms of shift navigation modes.
From the previous query Australia and (Animal or Plant) and not
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Portrait, Lisa first chooses to zoom-in on the concept Plant, resulting in the
query Australia and not Portrait and Plant (6 photos). This is her
starting point for shift navigation.

At this point, Lisa sees that 1 photo has also the type Landscape, which inter-
ests her. She selects this concept (zoom-in) and, since the result has only 1 photo,
she generalizes it by removing the concept Plant from the query (zoom-out).
Therefore, she has executed a shift from Australian plants (6 photos) to Australian
landscapes (80 photos), replacing in the query the concept Plant by the concept
Landscape. From there, she performs a new shift from the concept Landscape
to the concept Building, resulting in 28 photos of Australian buildings. These
navigation steps are suggested and supported by photos belonging to two concepts,
i.e., by extensional relations [236]. This illustrates the relevance of assigning several
types to photos, which is common in this photo infobase. The same would apply to
persons visible on photos, as a photo can contain several people.

However, the same does not apply to locations, as a photo cannot be taken in
two incomparable locations (e.g., in Australia and in Europe). Nonetheless, it is
still possible to shift between locations through the taxonomy of locations. Suppose
Lisa wants to find building photos from other locations. She first generalizes Aus-
tralia by Location in the query (zoom-out), and then browses suggested loca-
tions before selecting Spain (zoom-in). Thus, she has performed a shift from Aus-
tralian buildings to Spanish buildings, and find 48 photos (mainly churches taken in
the north-west of Spain in 2003).

The former form of shift is a zoom-in/zoom-out combination, and can be qual-
ified as extensional because it relies on extensional relations in the infobase. The
latter form of shift is a zoom-out/zoom-in combination, and can be qualified as con-

ceptual because it relies on conceptual relations in the taxonomy.

4.3.4 Pivot

The user may not remember a concept she wants to use to refine the query, but she
can find it through another query. For instance, suppose Lisa wants to retrieve the
photos of the building of some town. She does not remember which town it is, but
she remembers that the ICFCA conference took place there in 2004. Therefore, she
can first reach the query event contains "ICFCA" and date = 2004
by zoom-in navigation. The resulting extension shows photos of ICFCA’04, and the
dynamic taxonomy shows relevant information about these photos, such as precise
dates, locations, and so on. By browsing the dynamic taxonomy, she discovers that
Sydney, in Australia, is the location of ICFCA’04. Then, she can make the query
become Sydney, and refine it to the desired query Sydney and Building by
zoom-in. The concept Sydney plays the role of a pivot between the two queries.

Pivot navigation relies on the ability of DTs to answer queries not only by a set
of objects (the extension), but also by a set of concepts (the dynamic taxonomy). In
previous navigation modes, these concepts where added or removed from the query,
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whereas here they are used as new queries. Given a query q and a selection x, the
query transformation is defined by

q � x.

Therefore, pivot navigation is a way to restart a search from the results of a first
search. This kind of navigation has already been applied in collaborative web-
sites [189, 335].

There is an interesting analogy with natural language. Indeed, the query above
can be rephrased as “photos of buildings in the town, where the ICFCA conference
took place in 2004”. The idea of pivot is reflected by the fact that Sydney occurs
in the main sentence as “town”, and in the relative sentence as the relative pro-
noun “where”. The relative pronoun indicates which facet to browse for a pivot:
e.g., “where” indicates a location, “when” indicates a date, and “who” indicates a
person. Iterated pivot navigation then corresponds to nested relative sentences, such
as “photos of buildings in the town, where the ICFCA conference took place in the
year, when I also visited Hinterzarten”. The first pivot to be applied is the year 2004,
and the second pivot is the town Sydney.

4.3.5 Slice and Dice

Section 4.3.1 shows how the query (France or Italy) and Building

can be reached by performing a zoom-in successively on France or Italy and
Building, thus selecting French and Italian buildings. The disjunction is intro-
duced because both concepts France and Italy were selected when the zoom
mode was activated. Now suppose Lisa wants to extend the selection to landscapes,
while retaining the current selection of locations. She just has to extend the selection
Building to the selection Building or Landscape, and activate the zoom
mode. Because the new selection is more general than the old one, the zoom is inter-
preted as a zoom-out. According to the definition of zoom-out (Sect. 4.3.2), the new
query is (France or Italy) and (Building or Landscape). Now,
Lisa wants to refine the selection to Italy only. To this end, Lisa unselects France
in the selection of locations, and applies the zoom mode. Because the new selec-
tion is more specific than the old one, the zoom is here interpreted as a zoom-in.
According to the definition of zoom-in (Sect. 4.3.1), the new query is Italy and

(Building or Landscape). This short navigation scenario demonstrates that
in a query each facet can be refined and extended independently from other facets,
simply by applying the zoom mode on the new selections. In fact, it is not necessary
that the different concepts in a selection belong to the same facet, while this is the
most common case.



4 User Interface Design 85

4.3.6 Range Selection

Range selection is similar to slice-and-dice (Sect. 4.3.5), except disjunctions of con-
cepts are replaced by inequalities as selections. This makes sense because an in-
equality date >= 2002 is equivalent to the infinite disjunction date = 2002
or date = 2003 or ... . Then, every range is the composition of two in-
equalities. For instance, the date range date in [2002, 2007] is equiva-
lent to date >= 2002 and date <= 2007. Therefore every range can be
reached by two successive zoom-in steps on inequalities: one for the lower bound,
and the other for the upper bound. It is assumed that the user interface allows the
selection of inequalities even if the dynamic taxonomies contains only values (e.g.,
date = 2003).

Starting from date >= 2002 and date <= 2007 and France, the
date range can be refined by zooming on date >= 2003 or date <= 2006
(zoom-in), or extended by zooming on date >= 2000 or date <= 2008
(zoom-out). The upper bound of the range can also be removed altogether by zoom-
ing on date <= 2007 (zoom-out); and similarly for the lower bound. The above
formulas are used to give the logic of the navigation, and to reduce range selection
to basic navigation modes; but a user interface may render it in a more graphical
way, e.g., with the help of a double slider on a scale covering the relevant values.

4.3.7 Querying by Examples

A query can be determined by the selection of a subset of objects, thus supporting
querying by examples. The idea is to construct the query as a conjunction of all most
specific concepts which are shared by the selected objects O:

q � Min≤{y ∈ T | O ⊆ extension(y)}.

For instance, suppose Lisa starts with Australia and not Portrait.
While browsing photos in the result, she sees interesting photos of buildings (e.g.,
2 photos of the Opera, and 1 photo of the Harbour Bridge), and she would like to
find more. By selecting them she moves to a new query that is the conjunction of
the concepts shared by those 3 photos. As usual with this form of navigation, the
resulting query is very specific and she receives no additional photos. At this stage,
Lisa can use zoom-out navigation to generalize the query. Unlike approaches based
on metrics, Lisa can choose which properties of the query should be generalized
or removed [20]. By removing in the query concepts related to date and event, the
query becomes Sydney and Building, and Lisa finds 29 photos. Figure 4.3
shows the three selected photos in the initial query (left side), and the resulting view
of the final query (right side). From there, she can further zoom-out, zoom-in to find
photos of modern buildings, or shift to find buildings in different countries. Inter-

active query relaxation [136] is similar, except that only one facet is retained in the
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Fig. 4.3 A screenshot of CAMELIS before and after querying by examples

generalized query. For instance, starting with the same photos, Lisa could reach the
query Sydney or the query Building, but not Sydney and Building.

A special case of querying by examples is when selecting only one photo. Then
there is only one object in the extent, because there are enough properties to uniquely
characterize each photo, and the query contains all the object properties, which are
more easily read in the dynamic taxonomy. So this is an easy way to access the full
description of any object.

4.4 Design Patterns

This section gives an overview of solutions for solving the issues and challenges
in the user interface design of applications for faceted browsing and dynamic tax-
onomies, with a special focus on how to enable the previously introduced navigation
modes. Where applicable, these are referred to the respective user interface design
patterns from established pattern libraries.
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Fig. 4.4 Mixing multi-select
and single-select facets in the
yelp (http://yelp.com)
application

Fig. 4.5 The ContentLandscape application (see Sect. 4.5.3) combines bar chart representations
with slider controls for range selection

4.4.1 Selection Management

Filter selection and de-selection is of central importance in faceted search. The basic
navigation modes of zoom-in and zoom-out are present in all examined user inter-
faces.

If only one concept should be selectable at a time within a facet (thus avoiding the
possible confusion if multiple values are to be connected by AND or OR), traditional
single-select controls such as radio buttons, dropdown list controls or simple links

(in web applications) are advisable. The standard multi-select elements, on the other
hand, are check boxes.

Interfaces that allow only one concept selection per facet support shift navigation
in the easiest manner, since only one click is necessary to replace a selection with
another one from the same facet. If multiple selections are allowed per facet (slice-

and-dice navigation mode), a distinction has to be made between zooming-in, adding
the clicked value to the active filters, and shift, i.e. replacing the previously selected
concepts from the same facet.

For instance, the yelp4 web application provides check buttons for multi-select
facets and simple links for facets with exclusive selection (see Fig. 4.4). Alternatives
for allowing both modes in a facet would be dedicated controls (e.g. a “jump to”
button), or modifier keys (such as pressing “shift” while clicking).

For range selection navigation mode, slider controls can allow the specification
of upper and lower bounds on the result set (see Fig. 4.5C).

Additional UI functionality, however, is usually accompanied by additional com-
plexity and visual clutter. Intelligently limiting users’ options can help in allowing

4http://yelp.com.
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Fig. 4.6 The Exhibit
(http://simile.mit.edu/exhibit)
user interface signalizes
missing concept assignments
in a facet

the user to focus on his core tasks without additional burden of rarely used func-
tionality. For example, for a web shop application, it might be sufficient to split
the “price facet” into 3–5 discrete regions from low- over mid-priced to expensive
goods, instead of giving the more fine-grained option to filter from 37 to 82.

Either way, concept de-selection should be as easy as concept selection. Ad-
ditionally, if breadcrumbs or a similar filter summary indicator are present, these
should include the option to clear individual filters as well. Also, buttons for reset-
ting single facets or all filter options can help to zoom-out quickly.

Pivoting is usually supported not directly in the facet panels, but from the de-
tail views for single contents. First established in Web 2.0 applications [189], it has
become a common practice that a metadata value clicked in the content presenta-
tion leads to a new view with the respective value as the only selected concept. The
same holds for Querying by examples, as this action is intrinsically related to re-
source instances, and not to individual facet concepts. Consequently, querying by
example is usually realized with context menus or buttons adjacent to the result list
presentations or detail view.

If the data is only partially tagged, it is advisable to include a “no value assigned”
concept, as for instance, demonstrated in the Exhibit prototype [145] (see Fig. 4.6).

4.4.2 Revealing Hierarchy

For flat facets, i.e. not featuring a hierarchical relation between the concepts, simple
list widgets are usually used. List sorting can either be alphabetical, or dynamically
updated by the number of assigned items in the current result set. For navigating
hierarchies, a number of different presentation and navigation options exist, which
are discussed in the following.

4.4.2.1 Explorer Tree

The expandable explorer tree constitutes an established representation for hierarchi-
cal structures. This principle is, for example, used in the Camelis application (see
Fig. 4.2C). Given the usually quite limited screen estate, however, the expanded lists
often exceed the available facet widget space. This leads to the need for scrolling,
which makes it difficult to orient in the hierarchical structure, especially if multiple
levels are expanded.
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Fig. 4.7 Zoom-and-replace
and breadcrumbs in the
Flamenco application

4.4.2.2 Zoom and Replace

The Flamenco application5 [327] zooms into selected values, replacing the facet
widget content with the level below the selected concept. The path from the root
of the hierarchy to the current level is accessible via breadcrumbs in the header of
each facet widget (see Fig. 4.7). This pattern works only for single-select facets,
and optimizes for item presentation on one level. Consequently, navigation across
the tree is facilitated.

4.4.2.3 Collapsible Panels

The ContentLandscape application [279] features compact, hierarchical widgets
based on the accordion pattern,6 where each hierarchy level is represented as an
individual accordion level. On concept selection, the respective level is collapsed,
and the subsequent level opened, to allow further drill-down in the hierarchy. More-
over, opening a level is possible by simply clicking the respective accordion header
(see Fig. 4.8C).

4.4.2.4 Continuous Zooming

In the FacetZoom prototype7 [78], hierarchical facets are displayed as space-filling
widgets which allow a fast traversal across all levels while simultaneously main-
taining context (see Fig. 4.9). It supports both horizontal panning for exploring a
whole hierarchy level, as well as tap-and-center navigation, allowing to dynami-
cally zoom-in on tree nodes. For selected concepts, the child nodes are displayed
on top of the widget. Navigating one level up the tree is supported by a bottom row
presentation of the parent node.

5Online demos available at http://flamenco.berkeley.edu/.
6See e.g. http://www.welie.com/patterns/showPattern.php?patternID=accordion.
7Open source version available at http://advancingusability.wordpress.com/2008/03/31/
facetzoom-first-open-source-release/.
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Fig. 4.8 The ContentLandscape application applies the collapsible panel pattern for zooming into
concepts within a hierarchy

Fig. 4.9 The FacetZoom
widget combines ideas from
zoomable user interfaces
(ZUIs) with faceted search

4.4.3 Facet Management

A variety of options to overcome the problem that, often, more facets are available
than can be put on screen at the same time, are discussed in [131] and [133]. The
options range from collapsible facet widgets (such as used by, for instance, Getty im-
ages’ faceted navigation interface8) over expandable filter areas (“More . . . ” button)
to dynamically selecting the shown facets based on the existing query (as demon-
strated in the yelp application).

8http://gettyimages.com.
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Fig. 4.10 The yelp application automatically selects the presented facets based on the search term

4.4.4 Keyword Search

As noted above, a free-form keyword field in order to search for arbitrary terms
in addition to the defined classification scheme is a “key component to successful
faceted search interfaces” [131]. This task is especially challenging, since a search
field can either act as a filter on the resources, e.g. searching over titles and descrip-
tions, or if it can also match classification terms. The following sections discuss
further variations within these two options.

4.4.4.1 Keyword Search as Additional Resource Filter

When search engines are enhanced with faceted search, often, a keyword search is
used to define the initial result set, which can be further refined by concept selections
from facets. For instance, the yelp application (see Fig. 4.10) asks for a topic (e.g.
“auto repair”) and a location (e.g. “San Francisco”) to be entered, before entering the
faceted search mode. In this application, displayed facets and concepts are selected
dynamically depending on the type of query, i.e. a search for “auto repair” will yield
different filtering options than one for “Chinese restaurant”.

The Flamenco application [327] allows to choose between a full-text search over
all results (overriding other filters) or within the current focus (see Fig. 4.11).

Obviously, when integrating keyword search with dynamic taxonomies, there
might be zero hits, due to the unrestricted nature of the input. This violates the
poka-yoke principle that we identified as one of the key features of applications in
this domain. One solution could be to check for results after the user submits the
keyword query, and leave the keyword filter in a “tentative” state if no results are
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Fig. 4.11 The Flamenco application allows to choose between a full-text search over all results
(overriding other filters) or within the current focus

found within the current focus. This would give the user the option to either zoom-
out some other filters, or re-tract the query. In this case, it would be helpful to have
a preview, of how many results could be achieved, if the respective concept would
be removed from the query.

4.4.4.2 Keyword Search Within Facets

In order to avoid having to navigate large hierarchies, even though the target con-
cept is already known by name, direct access to facet items can be achieved with a
keyword search over the concept labels.

For instance, the /facet system [139], provides a keyword search box for each
facet (see Fig. 4.12). This interface dynamically suggests matching concept labels
after the user has typed a few characters; only keywords that produce actual results
are suggested. This makes the interaction often faster than manually navigating the
tree. The results are presented in a collapsible tree structure. Additionally, if the
target concept is known, but it is unclear, in which facet it is located, a global search
box executes the described operation over all search boxes in parallel.

A similar approach is described in [30], which is even extended to finding facets
by label, and can thus be applied to very large and heterogeneous resource bases.

The ContentLandscape application [279] features a combo box component for
quick access to concepts across all hierarchy levels (see Fig. 4.13C). It can be
opened by clicking a search button in the facet box. In its initial state, the text field
is empty, and a scrollable, alphabetical list presents all concept labels from that
facet, regardless of depth level. When the user starts typing, this list is dynamically
reduced to terms matching the query.
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Fig. 4.12 The /facet system
allows to quickly search
within the concept labels of
a facet

Fig. 4.13 Quick access to
concepts with a combo box
in the ContentLandscape
application

4.4.5 Filter Summary and History Navigation

Breadcrumbs can be used to summarize the current selection status in one central
place in the user interface. These usually record the sequence of selection actions
across all facets [131]. Breadcrumb entries should be clickable, leading to a zoom-
out action on the respective concept. The footnote web site combines breadcrumbs
with the option to refine with an additional keyword search (see Fig. 4.14).

4.4.6 Animated Transitions

Animated transitions can facilitate awareness of transformations and responses in
user interface design [135, 291]. Perception of change is especially important for
facet browsing, as the sudden disappearance of list items after click can be a source
for misconceptions and confusion. In fact, studies have shown that so–called change

blindness [222] is a common psychological phenomenon: changing details of visual
scenes are often remain unnoticed, if the two states are separated by a short flash, as
it is common, for example, in web applications. The Elastic Lists facet browser [278]
demonstrates how smooth transitions can help in understanding filtering processes.9

9Available at http://moritz.stefaner.eu/projects/elastic-lists/.
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Fig. 4.14 The footnote web
site combines a filter
summary with the option
to refine with an additional
keyword search

Fig. 4.15 The RAVE system visualizes metadata value proportions in horizontal bar charts

4.4.7 Visualizing Proportions

As stated above, one common and useful technique is to exclude concepts with zero
occurrences from the presented filter options, in order to avoid selections with zero
results. For exploratory tasks, it can be useful to additionally see how many items
match each of the respective concepts in the given focus.

Besides support for orienteering (see Sect. 4.1), analyzing metadata distribution
can constitute a valuable information source by itself, e.g. in order to understand
what makes a data set special compared to the whole collection and to generate
hypothesis about the underlying reasons.

The simplest option is to provide this information in brackets after the concept
label (e.g. “Europe (5)”). While this presents an economic and easy solution, the
user is left with the task of processing and understanding these numbers. Visualiza-
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Fig. 4.16 Elastic lists indicate the number of matched resources in scaling list entry height. Addi-
tionally, unusually high proportions (compared to the global distribution) are indicated by bright-
ness of the list entries

tion can help to make the relevant information available pre-attentively and in an
intuitive manner.

For instance, the RAVE system [332] visualizes metadata proportions in hori-
zontal bar charts, below the concept label (see Fig. 4.15). While the graphic layout
could be improved in order to introduce less visual clutter, the prototype shows how
additional information about local and global weights can be integrated without loss
of screen estate.

In the Elastic Lists prototype [278], the height of a list item indicates the relative
proportion of items associated with the respective metadata value in the given con-
text (see Fig. 4.16). Additionally, a brighter color indicates that the current weight
is significantly higher when compared to the global distribution. List entries with a
weight of zero (i.e. not occurring in the current context) are collapsed to a minimal
visible height.

The Visgets system [91] extends this principle by featuring a whole number
of visualizations, with a weighted, coordinated brushing scheme (see Fig. 4.17C).
The visualization elements include bar charts with range sliders, a map, and a tag
cloud.10 Visual representations for concepts and metadata values are scaled accord-
ing to their global proportion. The coloring indicates, on the one hand, presence or
absence of the respective value in the current result set. Additionally, on rollover
on any concept or metadata value, more strongly associated items receive a higher
opacity (weighted brushing).

4.5 Extensions and Related Approaches

Lately, the described principle of faceted search and dynamic taxonomies are being
extended and translated to other types of search and browsing applications. This
section provides some brief pointers to current research in this area, and introduces
the novel principle of out-of-turn interaction.

10See http://www.welie.com/patterns/showPattern.php?patternID=tag-cloud.
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Fig. 4.17 Weighted, coordinated brushing in the Visgets system

4.5.1 FaThumb

FaThumb [156] enables faceted search on mobile devices (see Fig. 4.18C). The filter
area is grouped in nine zones, corresponding to the nine digit keys on mobile phones.
The middle zone serves as a spatial overview during navigation. The surrounding
eight zones allow the user to select hierarchy branches and repeatedly zoom in on
subtrees. The left short shortcut key adds the currently selected concept to the query,
the right one allows to quickly jump back to the top.

Fig. 4.18 Faceted search for
small screens in the FaThumb
prototype
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Fig. 4.19 The parallax application allows to jump to related sets of items from a faceted browsing
situation

4.5.2 Browsing Related Entities

Usually, the type of resource entity to be browsed (e.g. book, car, web page . . . )
remains fixed in a faceted browsing application. In [159], a conceptual prototype
of a browsing application named Humboldt is described, which allows to switch the
type of displayed entities based on relations to the current result set. In principle, the
application allows to treat any facet value space as a search result list, and arrange
the interface accordingly. To cite an example given in [159], “a user who filters films
on certain directors and then pivots11 on actors will see all actors in the result list,
who are related to any film in the previous result list”.

This principle has also been demonstrated in the parallax application based on
the freebase12 public database [144] (see Fig. 4.19). It allows, for example, to query
the data set for architects, then filter down to all modern architects: a classical zoom-
in. The novel principle, however, is that the user can explore related collections, like
the buildings they designed, their birth places etc. in the same facet browsing space.
The jump to these new results is offered in a “connections” box on the top right of
the interface. History navigation for these “related set” browsing steps is provided
by a breadcrumb control.

11Note that the semantics of pivoting in this case differs from the definition introduced in
Sect. 4.3.4.
12http://freebase.com.
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Fig. 4.20 The dashboard view of the ContentLandscape application

4.5.3 Resource Analytics

Understanding resource production, use and distribution across departments, re-
gions, and product groups is one of the core challenges of knowledge management
in the enterprise [230]. “What are the most downloaded contents?”, “do the pre-
sentation materials for a given product cover all important sales regions?”, “what
parts of my resource collection are growing? and which are declining?” are typical
questions in this area.

The ContentLandscape application13 [279] is part of the BizSphere14 application
suite and uses faceted browsing and search in order to facilitate the understanding
of resource distributions. In addition to traditional result set views, a dashboard
view presents statistical measures for the resource set in the current selection (see
Fig. 4.20C). It features visualizations of trend measures such as the quarter to quarter
growth, a detailed age histogram, and the rating distribution. Moreover, the cover-
age of the selected resource set with respect to the three main taxonomies ‘region’,
‘offering’ and ‘resource type’ is presented in squarified treemaps [52, 270]. At first

13http://moritz.stefaner.eu/projects/content-landscape.
14http://bizsphere.com.
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Fig. 4.21 Illustration of the pruning conducted as a result of out-of-turn interaction. (left) Sample
hierarchy, simplified for purposes of presentation, with characteristics similar to those in PVS.
(right) Site schema resulting from supplying ‘Republican’ out-of-turn

glance, this visual display allows to see, for instance, if all product groups are repre-
sented by resources in the current selection, and in which specificity. This statistical
analysis can be further decomposed into in several matrix views. Inspired by OLAP
approaches [70], these allow the user to split the result set according to up to three
dimensions, and compare the statistical measures for the resulting sub-collections
in parallel.

4.5.4 Out-of-turn Interaction

Out-of-turn interaction [195] is a technique for navigating hierarchical websites
which augments traditional browsing by empowering the user to supply a hyperlink
label which is presented beyond the current webpage (hence out-of-turn) to initiate a
search over the site’s hierarchical schema. When the system receives an out-of-turn
input, it removes all paths through the site which do not contain a hyperlink labeled
with the input and removes the hyperlink labeled with the input from the remaining
paths. Figure 4.21 illustrates how a sample hierarchy with a structure similar to that
of PVS would be pruned based on supplying ‘Republican’ out-of-turn. Notice that
all paths leading to the webpages of Democratic politicians (nodes 20, 21, 24, 25,
26, 27, 30, 31, 32, and 33) have been removed. In addition, the hyperlinks labeled
‘Republican’ in the remaining paths (those leading to nodes 22, 23, 28, 29, 34, 35,
36, and 37) have been removed.

Figure 4.22 illustrates an out-of-turn interaction through a browser toolbar we
call Extempore (as it permits the user to supply terms extemporaneously). Here the
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Fig. 4.22 Illustration of an out-of-turn interaction with PVS through the Extempore toolbar

user supplies ‘Republican’ out-of-turn (see Fig. 4.22, top). This causes some of the
hyperlinks presented on the root page (e.g., Hawaii), those which do not lead to the
webpages of Republican congresspeople, to be pruned out (see Fig. 4.22, bottom).
When used in conjunction with traditional browsing, the unsolicited reporting [19]
involved in supplying an out-of-turn input supports a simple form of mixed-initiative
interaction [211] and can be viewed as an approach to integrating querying and
browsing in information hierarchies [45].

In sites where each level of the hierarchy corresponds to a facet of information
assessment, such as PVS, out-of-turn interaction permits the user to explore the
facets in any order without the designer enumerating all possible paths of navigation.
In hierarchies where each level does not correspond to a facet, such as Yahoo! and
the Open Directory Project (ODP) at dmoz.org, out-of-turn interaction behaves more
as a pruning operator and reveals to the user the portions of the taxonomy pertaining
to their query. For example, ODP contains 16 top-level categories and a user starting
from the homepage would be hard-pressed to know that only four (Home, Shopping,
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Fig. 4.23 (top) A query for ‘ice cream makers’ in the Open Directory Project and (bottom) its
result as a flat list

Business, and Regional) contain links to information about ‘ice cream makers’. An
out-of-turn interaction reveals these categories. In fact, the search feature provided
in ODP is similar to out-of-turn interaction with the exception that ODP flattens
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Fig. 4.24 Facility for automobile-make lookup by model in the online Kelley Blue Book

the hierarchical structure in response to a query (see Fig. 4.23) whereas out-of-turn
interaction preserves the hierarchical nature in order to retain context.

Notice that with the interpretation of out-of-turn interaction presented here, an
unexpanded query will yield the same result as its expanded version and therefore
query expansion here is simply a feedback mechanism to expose dependencies, un-
like its use in traditional IR.

There are other means of exposing dependencies underlying information hier-
archies during information-seeking. For example, the Kelley Blue Book (KBB)
online at kbb.com provides a facility for automobile-make lookup by model (see
under heading titled ‘Helpful Information’ in Fig. 4.24) since FDs of the form
‘model → make’ are implicit in the domain of automobiles. When browsing new
cars in KBB, users are first asked to make a selection for automobile make (see
under heading titled ‘SELECT A MAKE AND MODEL’ in Fig. 4.24). The lookup
facility allows the user to search for the make of an automobile based on the model
so that they can proceed with the information-gathering dialog on the left side of the
window in Fig. 4.24. A more sophisticated example of support for dependency ex-
ploration is Sony’s Advisor facility available through sonystyle.com when browsing
products such as digital cameras and camcorders.

4.6 Personalizing Faceted Search

4.6.1 Introduction

One of the primary ways users manipulate a faceted search interface is by refining
their current query by clicking a facet–value pair from a list of possible system
suggestions. How effective users are at finding their documents of interest is related
to the quality of the query refinements suggestions. Traditionally, ad hoc approaches
have been used to determine which values for a facet should be presented to the
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user during interaction. One common approach is to simply display all available
values for a facet. While this may be effective when the number of available values
is small, this approach may overwhelm users when the number too large [271].
Another approach is to display only the first few alphabetically ordered values [134].
While this approach avoids overwhelming the user with many values, it arbitrarily
biases the interface towards values earlier in the alphabet. A better method is to
display the most frequent values for a facet. However this method is not user centric
since the most frequent values are endemic to the corpus instead of the users.

This chapter focuses on a user centric approach to determine which values are
most useful to users: personalizing faceted search. Personalization allows the system
to present the facet–value pairs that can help the user quickly find the document(s)
that the current user is most interested. In order to determine which facet–values are
most useful to a particular user, we analyze the distribution of values in corpus, and
user’s feedback on documents while using the system. With this knowledge, we can
tailor the faceted search interfaces to individual users.

4.6.2 Related Work: Personalized Search and Filtering

The idea of personalizing search is not new in the information retrieval commu-
nity [16, 41, 53, 74, 108, 140, 153, 268, 285, 289, 320]. Dumais, Cutrell, Sarin and
Horvitz automatically generate queries based on keywords within an email being
read or composed by a user [94]. To improve retrieval results, Bharat treats the pre-
vious information requests from the user as the context of the current query [41],
whereas Shen, Tan and Zhai use the preceding queries and clicked-document sum-
maries as the context of the current query [268]. On the other hand, researchers
have developed personal information integration environments that store a particu-
lar individual’s heterogeneous information and the context of the information, pro-
viding content and context-based retrieval [14, 89, 117]. Rui et al. [170] explored
biasing cosine similarity methods based on user feedback in order to retrieve more
documents that were similar to a user’s interests. Abrol et al. personalized semi-
structured search interfaces by using a user’s transactional feedback from his/her
queries [12]. Shen et al. used implicit user feedback, such as query refinement and
click logs, to customize a KL-divergence model for document retrieval [268]. Per-
sonal WebWatcher passively observed a user’s browsing behavior in order to high-
light links that matched the inferred task [192].

On the other hand, personalization is a heavily studied problem in the informa-
tion filtering research community and the research can be traced back to 1970s. For
example, content-based adaptive filtering studies the scenario in which a recom-
mendation system monitors a document stream and pushes documents that match
a user profile to the corresponding user. The user may read the delivered docu-
ments and provide explicit relevance feedback, which the filtering system then uses
to update the user’s profile using relevance feedback retrieval models or machine
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learning algorithms (e.g. Boolean models, vector space models, traditional proba-
bilistic models [229], inference networks [55], language models [75], Support Vec-
tor Machines, K-nearest neighbors clustering, neural networks, logistic regression,
or Winnow [167, 324]). Collaborative filtering goes beyond merely using document
content to recommend items to a user by leveraging information from other users
with similar tastes and preferences. Memory-based heuristics and model-based ap-
proaches have been used [15, 36, 49, 85, 138, 141, 154, 160].

4.6.3 Personalization Based on Collaborative Filtering

Faceted search interfaces share three characteristics. The interfaces present a num-
ber of facets along with a selection of their associated values, any previous search
results, and the current query.15 By choosing from the suggested values of these
facets, a user can interactively refine the query. The interface also provides a mech-
anism to remove previously chosen facets, thus widening the current search space.

In personalized faceted search, the key problem is to rank facet–value pairs ac-
cording to how helpful they are for a particular user to use for query refinement.
Complicating this task is the fact that rarely, if ever, does the system have access
to user ratings of individual facet–value pairs. Instead, most of the existing faceted
search systems, such as Amazon.com and Netflix.com, are designed so that users
rate each individual document. This design trade-off is reasonable since the rele-
vance/rating of a facet–value pair is not a well defined problem and thus hard for the
user to provide. Besides, a user usually has seen a overwhelming number of indi-
vidual facet–value pairs, and users rarely experience any particular facet–value pair
in isolation. By rating the whole document, a user express a preference over many
facet–value pairs simultaneously, especially for facet–value pairs that they may only
be tangentially aware of.

Personalized faceted search is a comparatively new field that has not been well
studied. Fortunately, we can develop personalized faceted search interface based on
the earlier work in personalized search. For example, we can first use traditional col-
laborative filtering techniques to predict a user’s ratings on unseen documents, and
then propagate information from ratings on whole documents to individual facet–
value pairs.

The basic assumption of collaborative filtering is that users that have similar pref-
erences on some documents may also have similar preferences on other documents.
Therefore the algorithm provides recommendations for a user based on the opinions
of other like-minded users.

In collaborative filtering, users ratings over items are represented as a matrix A,
where Au,i is user u’s rating on item i. Many collaborative filtering techniques have

15For an interactive faceted search interface, the current query is the facet–value pairs the user has
selected so far.
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been proposed to predict the missing cells in the matrix [15, 36, 49, 85, 138, 141,
154, 160].

In this chapter, we first introduce two basic collaborative filtering techniques:
K nearest neighbor and singular value decomposition. We choose the two tech-
niques because they are commonly used, very different from each other and are
complementary to each other. Variations of these two techniques have been success-
fully used in the Netflix movie recommendation competition [36]. Then we discuss
how to go from document ratings to facet–value pair ranking.

4.6.4 K-Nearest Neighbors Based on Item–Item Similarity or

User–User Similarity

There are two very commonly used collaborative filtering approaches: the first one
compares each user to the other users, while the second one compares the items
to each other. These are called user–user similarity and item–item similarity re-
spectively. We describe Konstan et al.’s Pearson’s correlation based user–user algo-
rithm [160] below.

For each user, we calculate the average rating assigned by that user Āu to all
rated items. Each unknown rating is then estimated as the user’s average rating,
perturbed by sum of the difference between every other user’s assigned rating and
his/her average rating, weighted by the correlation among the commonly rated items
of the current user to every other user.

Formally, this is stated:

Au,i = Āu +

k
∑

v=1

wu,v(Av,i − Āv)

|wu,v|
(4.1)

where k is the number of users that have at least one rated item in common with
user u, and wu,v is the Pearson’s correlation between user u’s ratings and user v’s
ratings. Recall that Pearson’s correlation is:

wu,v =

∑m
j=1((Av,j − Āv)(Au,j − Āu))

σvσu

=

∑m
j=1((Av,j − Āv)(Au,j − Āu))

√

(
∑m

j=1(Av,j − Āv)2)(
∑m

j=1(Au,j − Āu)2)

(4.2)

where σu and σv are the standard deviations in user u’s and user v’s ratings, and m

is the number items that user u and user v have both rated.
Herlocker et al. [138] examined using other similarity methods such as Spear-

man’s correlation, information entropy, mean-squared difference, and found they
performed similar to Pearson’s correlation.
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In its simplest form, the item-item algorithm is similar to the user-user algorithm,
only with the rows and columns exchanged. Item-item similarity can be extended
to take into account the content of the items being rated. For example, Sawar et
al. [263] estimated ratings by summing the ratings of the other rated items, weighted
by the cosine similarity of the rated and unrated plain text documents.

4.6.5 Singular Value Decomposition

One problem with the collaborative filtering techniques discussed in Sect. 4.6.4 is
that the user–item matrix can become very sparse as the number of items and users
increase. This sparseness can sometimes lead to poor predictions. By creating a low
dimensional approximation of the rating matrix, it is possibly to improve the accu-
racy of the predicted ratings. One such technique that has been used successfully in
the personalization and collaborative filtering domains is singular value decompo-

sition (SVD) [36, 113, 209, 262, 264].
SVD, also known as latent semantic indexing (LSI) in the information retrieval

community [83], works by combining rows and columns that are found to be strong
correspondence. These correspondences are called latent factors.

Applying SVD to collaborative filtering task, we factor the m × n user–item ma-
trix A into three smaller matrices U , Σ , and V . U is m × h, Σ is an h × k diagonal
matrix, and V is n × h matrix.

A ≃ UΣV T (4.3)

The values along the main diagonal of Σ are the biggest h singular values of A in
decreasing order. Each row of U and V contain orthogonal singular vectors. The
vectors in U are known as the left singular vectors, while the vectors in V are the
right singular vectors. Since we want a low dimensional approximation of the rating
matrix, only the first h < rank(A) singular values and singular vectors are used.

Typically, A is approximated as the product of two matrices:

A ≈
(

U
(
√

Σ
)T )((

√
Σ

)T
V

)

(4.4)

We can view the first matrix as the hidden representation of the users, and the
second matrix as the hidden representation of the items. With this approxima-
tion, the predicted rating for a user u on item i can be calculated as Au,i =
Āu + (U(

√
Σ)T )Tu ((

√
Σ)T V )i .

4.6.5.1 Recommending Facet–Value Pairs

There are many methods to propagate information from ratings on whole documents
to individual facet–value pairs. One method is to assign facet–value pair xi a score
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based on the expected rating a user u gives to a document d containing that facet–
value pair:

f (u, xi) = E[Ru(d)|xi ∈ d]
=

∑

d∈D

Ru(d)P (xi |d)

≃
∑

d∈D Ru(d)Ixi∈d
∑

d∈D Ixi∈d

(4.5)

where D is the set of documents selected by the current query, Ru(d) is the rating
of user u on document d , and I is the indicator function.

One simple way to suggest facet–value pairs for query refinement is presenting
the top scoring facet–value pairs that are contained in the documents selected by the
current query. While this is an attractive option, this approach can suffer when the
top scoring values are redundant, where an extreme case is that if they co-occur in
the same documents. One elegant solution proposed by Chen and Karger [63] is to
condition each suggestion on the assumption that none of the previous suggestions
are relevant to the current query. For our purposes, this means that the (k + 1)th
suggestion is the top scoring value that is not contained in a document that contains
any of the previous k suggested values.

To determine the order that the facets are presented to each user, a simple ap-
proach is using the average score of the suggested values for each facet for the null
query and then fix order of the facets throughout the lifetime of the user interaction
session(s).

4.6.6 Personalization Using Content Based Filtering

In this section we provide a complementary approach to personalization based on
the content of the documents. Motivated by relevance feedback retrieval models and
content based adaptive filtering techniques, we focus on two statistical models: a
model of the documents being searched, and a model of a user.

4.6.6.1 Document Model

While every faceted document has a set of facets associated with it, the number of
values that each facet has in a particular document can vary a lot. We model this
by expressing the number of values each facet has in a random document as a draw
from multivariate Normal distribution:

〈n1, . . . , nK〉 ∼ MVN( �μ,Σ) (4.6)
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where nk contains the number of values for facet k in the document, �μ is
a K-dimensional vector containing the mean number values for each facet, and Σ is
the corresponding K × K covariance matrix.

Each facet in a document has a certain semantic meaning that dictates the type
and thus the probability distribution of the values that can be associated with it. Five
common types of facets are: nominal, ordinal, interval, ratio, and free-text. Nom-
inal facets take discrete and orderless values. The values to this type of facet can
be modeled as draws from a multivariate Bernoulli distribution. Ordinal facets also
take discrete values, but there is an implicit ordering to these values. An example of
this would be field that identified the sensitivity of a document as being for “full re-
lease”, “limited release”, or “secret”. Interval facets can take any value on a defined
range, as long as the range excludes an explicit zero point. Ratio typed facets on
the other hand can take zero as a value. Values for ordinal, interval, and ratio facets
can be modeled as draws from a normal distribution. Free-text facets allow arbitrary
text to be associated with documents. Traditional statistical information retrieval
techniques represent each word in unstructured text as a draw from a multinomial
distribution.

After identifying the type and the proper probability distribution over the values
associated with facet, the probability of a document existing is simply the product
of the probability of each desired value occurring for the appropriate facet.

4.6.6.2 User Model

Instead of estimating a user rating for a document, in this approach we estimate the
probability of a document being relevant to a particular user. Similarly, instead of
calculating a suitability score for a facet–value pair to a user, we estimate the prob-
ability of a particular facet–value pair appearing in a document relevant to a user.
For simplicity and without lose of generality, we assume that a document is either
relevant or nonrelevant to a user. From this we can estimate the probability that any
document will be relevant to a particular user, and the probability that a particular
facet–value pair xk will be contained in a relevant or a nonrelevant document. This
tuple is the user relevance model and is represented as:

θu = {P(rel | u), P(xk | rel, u)P(xk | non, u)} (4.7)

where k = 1, . . . ,K .
These individual probabilities can be estimated from training data. For ex-

ample, assume for a particular user u, there exists a set of training data Du =
〈Du,rel,Du,non〉, where Du,rel is the set of documents marked by u as being rele-
vant, and Du,non are the set of documents marked as nonrelevant. If the facet type is
free text, the maximum likelihood estimation of θu is:

P(rel | u) = |Du,rel|
|Du|

(4.8)
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Table 4.1 Facet types and distributions

Facet type Values Example Distribution Prior

Nominal Unique tokens Director Multivariate Multivariate

Bernoulli Gamma

Ordinal Repeatable Critic’s rating Normal Normal

ordered tokens (e.g. A, B, C, . . . )

Interval Repeatable numbers Year of release Normal Normal

excluding zero

Ratio Repeatable numbers Running time Normal Normal

including zero

Free-text Repeatable tokens Synopsis Multinomial Dirichlet

P(xk | rel, u) =
1

|Du,rel|

∑

d∈Du,rel

Ixk∈d (4.9)

P(xk | non, u) = 1

|Du,non|
∑

d∈Du,non

Ixk∈d (4.10)

This setup is very similar to the commonly used relevance language model in
information retrieval [331]. We leave it as an exercise for the readers to derive the
estimation for other facet types.

As stated in Sect. 4.6.1, it may take a while before enough user specific feedback
information is gathered from a particular user, thus user could suffer from the so
called “cold start” problem. To handle this problem and get a level of acceptable
performance from the very beginning, a hierarchical Bayesian model is used and
found success in user modeling experiments [328, 334, 336]. In this model, each in-
dividual user model is considered as a draw from a prior distribution that is common
to all users. By using common prior, gaps in a particular user’s model can be filled
in by using information from the community of users. To applying the hierarchical
Bayesian modeling approach for personalized faceted search, each distribution for
each facet needs a separate prior that is estimated from the training data of all users
in the system. Table 4.1 suggests different priors for different facet types.

Based on document models and user models described above, one can generate
faceted search interface in various ways. For example, we can rank the facet–value
pair based on (4.9).

4.6.7 An Ontological Approach

An alternative approach to personalize faceted search is using ontology created man-
ually or automatically. Tvarožek and Bieliková [290] use the distance between val-
ues in a hierarchical ontology to measure similarity, and thus relevance to users.
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In cases where an explicit ontology does not exist, one can be automatically con-
structed [42, 282, 288, 323].

The technique works as follows: Let Lu(x) be the relevance of a facet x to user
u ∈ U as computed by the ontological similarity of the facet and the user model [22].
In this case, the ontological similarity is the reciprocal of the maximum number of
links needed to traverse from each value being compared, to a value common to
both.

Each user model is then compared to the other users in the system, in order to
calculate the cross relevance of a facet x to a user. This value, Cu(x), is the average
of the relevance of the facet to each user, weighted by the similarity of the each user
v to the current user u.

Cu(x) =
∑

v∈U similarity(u, v)Lv(x)

|U | (4.11)

The global relevance of a facet, G(x), is calculated as the average relevance of
the facet to every user. The static relevance of facet to a user is a weighted combi-
nation of the cross relevance and the global relevance.

In order to make recommendation to a user regarding a specific query, the tem-
porary in-session relevance of each facet x to the current user u is introduced. This
value, Tu(x), is simply the fraction of query refinements (i.e. clicks) that utilize a
facet x of all refinements in the current search session. This number is combined
with the static relevance of the facet to determine the current dynamic relevance of
a facet to the user. Values from facets with the highest dynamic relevance are then
suggested to the user for query refinement. Evaluated with the Factic system, the
ontology based approach reduce the number actions required for users to find their
documents of interest when compared to an un-personalized baseline [290].

4.6.8 Evaluation Regime

Considering various personalized faceted search techniques, which one works better
on a particular task? To compare personalization methods, an evaluation metric is
needed. Traditionally user studies have been used to determine satisfaction with dif-
ferent user interfaces. While undeniably useful, user studies have some drawbacks.
First, they are expensive to hold. A number of users must be gathered and then
tested on the proposed system. This takes a nontrivial amount of time for even user
studies with a moderate number of subjects. User studies also problematic when be-
ing used to evaluate personalized systems, as the test subjects may not interact with
the system long enough for a sufficient user profile to be learned. This can lead to
inconclusive, or possibly even contradictory results.

Koren et al. [162] proposed a complementary inexpensive evaluation metric
based on calculating the expected utility to a user of a faceted search interface,
through the use of simulated user interactions. This method allows designers to
quickly compare various algorithms and determine which algorithms are the most
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promising. By using this method, or a similar one, designers can conduct fewer user
studies by only submitting the top performing algorithms for an in depth user study.
A similar approach has seen success when evaluating spoken dialog systems [118,
166].

The evaluation system works as follows: Assume that the goal of the search in-
terface is to enable users to find their documents of interest with the least amount
of effort. In order to measure this effort, the actions that a user can perform when
interacting with the system are identified and the system is rewarded or penalized de-
pending on what action is performed. A series of user interactions are simulated us-
ing a combination of real-user feedback and heuristics. The interface is then scored
according to the expected total reward for an interaction session.

Given S user interaction sessions, the empirical utility of the interface can be
estimated easily:

U =

S
∑

s

Ts
∑

t

R(qs,t+1, as,t , qs,t ) (4.12)

where R(qs,t+1, as,t , qs,t ) is the reward the system receives if the user s takes an
action as,t at time t , which changes the query from qs,t to qs,t+1.

Let us now define the reward function. As stated earlier, we assume that the goal
of the interface is to allow users with the least amount of effort on their part. In order
to measure this effort, the designer must identify which actions a user can perform
at each step of the interaction. Koren et al. identified eight actions common to many
personalized faceted search interfaces, along with the rewards the system receives
for each. These actions are listed in Table 4.2.

Instead of employing real users through a user study, actions are simulated based
on certain assumptions about how real users interact with faceted search systems.
Without loss of generality, it is assumed that each simulated user is searching for
exactly one target document and that the simulated user can recognize the document
and the facet–value pairs that are indicative of that document. At each step of the
search session, the simulated user scans the top ranked documents that match current
query looking for the target document. If it is found, then it is selected and the

Table 4.2 User actions and
rewards Action Reward

Select facet–value pair negative

De-select user selected facet–value pair zero

De-select system selected facet–value pair negative

View more facet–value pairs negative

Mark document as relevant positive

Mark document as non-relevant negative

View more documents negative

End session zero
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session ends. If the target document is not found, the simulated user removes any
facet–value pairs that are contained in the current query that do not match the target
document. Once the query is cleaned of incorrect terms, the simulated user scans the
list of presented facet–value pairs. A pair is selected by some method for inclusion
in the query from the set of pairs that match the target document. If none of the
suggested facet–value pairs match the target document, then a facet is chosen at
random and all of its values are examined until a matching facet–value pair is found
for inclusion. If no matching value can be found for any facet, then the simulated
user scans through the complete list of returned documents until the target document
is found.

When there are multiple matching facet–value pairs, deciding which one to in-
clude in the query can greatly impact how much additional searching is required to
find the target document. Koren et al. suggested four possible selection methods.
Stochastic users simply select one of the matching facet–value pairs randomly from
a uniform distribution. First-match users scan the list from top to bottom, and se-
lect the first matching facet–value pair found. This heuristic is modeled after how
users select matching documents from a ranked list of results. Myopic users select
the matching facet–value pair that is contained in the least number of documents.
With this method assumes that users are trying to reduce the search space as quickly
as possible. Optimal users that perform actions that directly optimize the utility of
interface were also identified, but not examined in detail due to the complexity in
searching for the optimal policy for the user to execute.

Although the simulated users differ from real users, the evaluation methodology
does provide insight into understanding how various faceted interface design algo-
rithms perform [162]. This evaluation method is neither better or worse than user
studies. Instead, the approach serves to complement user studies by being cheap,
repeatable, and controllable.

4.6.9 Conclusions

This section presented the problem of determining which facet–value pairs the sys-
tem interface should provide to a user for query refinement. In particular, we focus
on personalized faceted search techniques that try to find facet–value pairs most use-
ful to individual users. We introduced three major approaches, collaborative filtering
based faceted search personalization, content based personalization, and ontology
based personalization. We present a utility based evaluation framework for various
faceted search interfaces, and the general idea is that the best interface should min-
imize the number/cost of interactions needed to find a document of interest. This
general evaluation framework can applied to all kinds of facets, including facets
whose values are organized as taxonomies.



Chapter 5

Extensions to the Model

Giovanni Maria Sacco and Sébastien Ferré

“The important thing is not to stop questioning.”

Albert Einstein, 1879–1955

This chapter describes the principal extensions to the dynamic taxonomy model,
which include:

• data-mining functionalities in dynamic taxonomy exploration, which support
both a sophisticated visual environment for data-mining applications, and
wisdom-seeking exploration tasks;

• the extension to non-atomic, structured objects (such as video material) for which
access at different levels of granularity must be supported;

• the virtualization of parts of the taxonomy, which are dynamically computed
rather than explicitly defined. These extensions (virtual concepts, logics, and web
ontologies) increasingly extend the base model from the expressive point of view,
by dealing with an infinite number of concepts (such as those which represent
numeric or date values), to concepts that are logical formulas, and to taxonomy
shapes and extensions defined through logical inference;

• fuzzy dynamic taxonomies, in which the membership of object o to concept C is
represented by a probability. Fuzzy dynamic taxonomies allow to model several
practical situations (e.g., the frequency of a specific symptom in a pathology for
medical diagnosis applications) in a more precise way, while retaining the ease of
use and the normal operations supported by DTs.

In Sect. 5.7, we describe a number of useful techniques which use some of the
features of DTs in a non-obvious way. These include:

• using predefined foci in order to personalize or control access;
• embedding SAES facets in dynamic taxonomies. We consider tag clouds, geo-

graphic maps and object clusters;
• accounting for popularity, recommendations, and authoritativeness by specific

facets or taxonomic ordering;
• using a DT as a thesaurus to expand the IR index for a textual object in order to

improve IR recall.

G.M. Sacco, Y. Tzitzikas (eds.), Dynamic Taxonomies and Faceted Search,

The Information Retrieval Series 25,
DOI 10.1007/978-3-642-02359-0_5, © Springer-Verlag Berlin Heidelberg 2009
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5.1 Data Mining

In this section we present an extended model [232, 252] that combines dynamic
taxonomies and association rules in order to support interactive and guided data
mining capabilities, with traditional measures such as support and confidence [18]
and measures of statistical significance of associations. This extended model can be
used for user-centered data mining in alternative to traditional approaches, but, most
importantly, it also increases the user understanding of inner laws of the information
base in normal applications, and can be especially important in wisdom-seeking
tasks.

5.1.1 Association Rule Mining

Association rules can be formally defined as follows [18]:

Let I = {il, i2, . . . , im} be a set of m distinct literals, called items. Let D be a set of transac-
tions, where each transaction T is a set of items such that T ⊆ I . We say that a transaction
T contains X, a set of some items in I , if X ⊆ T . An association rule is an implication of
the form X ⇒ Y , where X ⊆ I , Y ⊆ I and X ∩ Y = ∅.
In an association rule X ⇒ Y , X is called the antecedent, and Y is called the consequent of
the rule.

The traditional (and minimal) measures for association rules are support and
confidence [18]:

• Support(X ⇒ Y) measures the “coverage” of the association rule, i.e., the proba-
bility P(XY) that the rule holds.

• Confidence(X ⇒ Y) measures the conditional probability of Y given X, i.e.,
P(Y |X) = P(XY)/P (X).

Additional measures were proposed. Of these, lift [51],

Lift(X ⇒ Y) = P(XY)/P (X)P (Y ),

is widely used. Lift measures deviations from uniformity and, more specifically,
how many times more often X and Y occur together than expected if they where
statistically independent. Lift is susceptible to noise in small databases and rare
itemsets which occur by chance a few times (or only once) together can produce
very large lift values, without any statistical significance.

5.1.2 Dynamic Taxonomy Foci and Association Rules

The market basket model underlying association rules can be mapped into the dy-
namic taxonomy model by observing that the set I of market-basket items can be
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mapped into the set of terminal concepts in dynamic taxonomies,1 and that the set D

of transactions in association rules is equivalent to the set of objects to be classified
under concepts in dynamic taxonomies. The dynamic taxonomy model extends (in
a manner analogous to [60, 277]) the base association rule model, because it con-
siders a taxonomic organization of items rather than the flat organization assumed
by most research on association rules.

As an example, consider a transaction T = {beer, chips, light bulbs}. Such a
transaction is a dynamic taxonomy object. Each item in T is a terminal concept in
the taxonomy. Thus, beer is represented by Beverages > alcoholic > beer, while
chips is the terminal concept in Food > snacks > chips. In practice, the translation
of a set of market-basket transactions requires: first, that a taxonomy is built from
the set of items referenced in each transaction and second, that an object is created
for each transaction, and classified under the terminal concepts corresponding to the
items referenced in the transaction.

The key concept in dynamic taxonomies is the reduced taxonomy, that summa-
rizes the focus set through the original taxonomy, by pruning from the taxonomy
those concepts that are not extensionally related to the focus set. Such a pruning can
be implemented by eliminating unrelated concepts altogether, or by showing them
in an appropriate format while inhibiting their use for further focus refinements.

In producing such a reduced taxonomy for a focus F , RT(F ), dynamic taxonomy
systems usually count the cardinality of the intersection of each concept C in the
taxonomy T with the current focus F , i.e. the related count of C with respect to F :
rc(C|F) = |objects(C) ∩ F |, for every C ∈ T ; rc(C|U) = |objects(C)|, because the
intersection of the deep extension of C with the universe U is trivially equal to the
deep extension of C.

If we consider the reduced taxonomy RT(F ) for the current focus F in terms
of association rules, every concept C in the reduced taxonomy RT(F ) represents
two association rules: F ⇒ C and C ⇒ F , where F is, in general, the conjunct of
several concepts, although all boolean operations can be supported.

In this framework, confidence and support can be easily computed as:

support(F ⇒ C) = support(C ⇒ F) = P(FC) = rc(C|F)/|U |

confidence(F ⇒ C) = P(C|F) = P(FC)/P (F ) = rc(C|F)/|F |

confidence(C ⇒ F) = P(F |C) = P(FC)/P (C) = rc(C|F)/rc(C|U)

The time overhead for computing these quantities is negligible. As regards storage
overhead, we need to store, for each concept C ∈ T , rc(C|F), usually computed
anyway, and rc(C|U), i.e. |objects(C)| in the original taxonomy, which is a constant
quantity. In addition, we need the total number of objects in the database, and the
cardinality of the current focus.

1By mapping market-basket items to terminal concepts in DT, the DT terminal level represents
“real world” objects.
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5.1.3 Integrating Association Rules with Dynamic Taxonomies

Each zoom operation in a dynamic taxonomy updates the current focus F and pro-
duces a reduced taxonomy RT(F ), which summarizes that focus. By construction,
each concept C in RT(F ) acts as a representative of two association rules: F ⇒ C

and C ⇒ F .
Differently from traditional data mining systems, the discovery of meaningful

association rules is interactive. The user can freely focus on the concepts he is in-
terested into, and be presented with “meaningful” association rules that bind the
current focus to other concepts. This freedom in exploring association rules solves
one of the problems of traditional data mining, namely the fact that many if not most
mined rules are not really interesting, so that the identification of interesting rules
within a large quantity of noise is often a mining task in itself. In addition, zoom op-
erations can be applied and consequently association rules discovered, at any level
of abstraction.

In addition to data mining techniques, human–computer interaction plays a fun-
damental role. The central problem is how to convey the appropriate information
(support, confidence, statistical significance) to the user in a clear and easily per-
ceived way. Although alternate techniques can be used,2 we focus on the following
graphical representation.

The main indicator is confidence vs. expected confidence (ECF). ECF is com-
puted assuming a uniform distribution of values and antecedent/consequent inde-
pendence: ECF(X ⇒ Y) = P(XY)/P (X) = (P (X)P (Y ))/P (X) = P(Y ). Both are
represented on the same percentual scale, as shown in Fig. 5.1, where the association
rule’s confidence is shown in solid color (green in this case, for reasons discussed
below), while the expected confidence is indicated as a vertical white line.

Confidence and expected confidence, represented on the same percentual scale,
give an immediate graphical indication of whether the co-occurrence of X and Y is
larger or smaller than the one expected under the independence of the two parts of
the association rule.

For each of the two rules implied by a concept in the reduced taxonomy, a mea-
sure of statistical significance of the deviation of observed from expected confi-
dences is also computed.3 We use the χ2 test [65], a well known statistical test that
is used to evaluate statistically significant differences between proportions for two
or more groups in a data set. In this case, we want to determine whether the devia-
tion from independence is significant in the two rules associated to each concept in
the reduced taxonomy.

Fig. 5.1 Confidence and
expected confidence

2See Chap. 4 on human factors.
3Measures such as lift show the ratio between the two values but do not report the statistical sig-
nificance of deviation.
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Table 5.1 Contingency table
for F ⇒ C F ⇒ C Observed Estimated

C rc(C|F) (F/|U |) · rc(C|U)

∼ C U − rc(C|F) U − (F/|U |) · rc(C|U)

Table 5.2 Contingency table
for C ⇒ F . C ⇒ F Observed Estimated

F rc(C|F) (rc(C|U)/|U |) · F

∼ F rc(C|U) − rc(C|F) rc(C|U) − (rc(C|U)/|U |) · F

The contingency 1-degree of freedom tables shown in Tables 5.1 and 5.2 are used.
The χ2 value is computed using Yates’ correction for continuity [326] in order to
avoid the overestimation of statistical significance when frequencies are small, a
frequent case after a few zoom operations:

χ2
Yates =

N
∑

i=1

(|Oi − Ei | − 0.5)2

Ei

, 0 ≤ i ≤ 1

where Oi are observed values and Ei are estimated values.4 The null hypothesis
states that the antecedent and the consequent in a rule are independent. It is conser-
vatively rejected at a confidence level of 95% (χ2 � 3.841).5

Statistical significance is indicated in the graphical indicators by color-coding in
the following way:

• non statistically significant difference: solid gray
• statistically significant difference in which confidence is below expected confi-

dence: solid red
• statistically significant difference in which confidence is above expected confi-

dence: solid green, as shown in Fig. 5.1.

Such a color coding makes the implicit rules F ⇒∼ C and C ⇒∼ F more easily
visible.

Finally, we do not use support as normally defined, but for each concept we
indicate the ratio rc(C|F)/|F |, which gives the support within the focus and hence
a picture of how objects in the current focus are subdivided among concepts.

The number of association rules computed during zoom operations can be ex-
tended by noting that also the rules ∼ F ⇒ C, ∼ C ⇒ F , ∼ F ⇒∼ C, and
∼ C ⇒∼ F can be computed by similar contingency tables, on the same avail-
able data. So, for each concept in the taxonomy, 6 different indicators can be com-
puted. However, the problem of displaying such rules without cluttering the display

4In a 1-degree contingency table for an event e, index i = 0 records e occurring, and i = 1 records
e not occurring.
5The default confidence level can be varied by knowledgeable users.
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Fig. 5.2 The Italian wines infobase

and confusing the user seems quite challenging, even with the use of explanatory
tooltips.

5.1.4 An Example

The example presented here is taken from a database tracking Italian wines on sale
on wine.com in 2006. These data are taken from a demo application managed
by an extended version of Knowledge Processors’ Universal Knowledge Processor
[220]. The infobase is online at [221].

Figure 5.2 shows the entire database. As you know, red wines tend to improve
with age, while white wines do not. This is confirmed by Fig. 5.3C, where a zoom on
red wines is performed. The first bar represents the F ⇒ C association rule, while
the second bar represents the C ⇒ F association rule. As you notice, the second bar
in the years 1999 to 2002 indicates that 100% of wines from this vintage are red
wines.

Figure 5.4 shows the reduced taxonomy after a zoom on red wines and wines
costing more than $100. Here we notice that there is a significant correlation with
the 2001 vintage (an exceptional vintage, actually), and that expensive red wines
are significantly from Piedmont. If you just concentrate on 2001, the two bars read
respectively:

• More than average “Type: red AND Price: more than 100” wines are “Year: 2001”
wines. This is statistically significant
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Fig. 5.3 The Italian wines infobase, after a zoom on Red wines

Fig. 5.4 The Italian wines infobase, after a zoom on Red wines and on wines costing more than
$100

• More than average “Year: 2001” wines are “Type: red AND Price: more than
100” wines. This is statistically significant

and this is what tooltips on each bar will show to the user.
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This example, and especially Fig. 5.4C, shows that it is advisable to avoid prun-
ing unrelated concepts from the reduced taxonomy. Unrelated concepts cannot not
be selectable for additional zooms, but the standard measures are as interesting for
unrelated as for related concepts, and sometimes even more, especially for wisdom-
seeking tasks. In Fig. 5.4, for instance, the negative correlation between expensive
red wines and recent vintages is quite important and is not readily seen in the exam-
ple where unrelated concepts are pruned.

5.1.5 Father–Son Correlation in the Taxonomy

In addition to the association rules discussed above, an indication of whether the
documents in the deep extension of concept C are uniformly distributed among C’s
sons can be interesting for the user. In the example above, it may be interesting to
know if wines are uniformly distributed among years, or some years deviate from
uniformity in a significant way. This is a different indicator from association rules
because, association rules measure the correlation between the antecedent and the
consequent, while here we are concerned with the distribution of data among the
sons of the same father in the conceptual hierarchy.

Since these indicators are independent of any antecedent, they can be used at
every stage of interaction, including the initial (unreduced) taxonomy. The indica-
tor can be again based on the χ2 value computed through the contingency table
indicated in Table 5.3. For simplicity, we assume that no documents are directly
classified under Father.6 The extension to non-empty shallow extensions is straight-
forward.

Deviations from uniformity can be presented through a percentage scale for ex-
pected and observed values, as before.

5.1.6 General Association Rules

The associations rules described so far are in the form F ⇒ C, where F is an expres-
sion on concepts in conjunctive normal form, and C is a single concept. In normal

Table 5.3 Contingency table for Father–Son, under a focus F ⊆ U , nSons(Father) is the number
of Father’s sons in F

Observed Estimated

Son rc(Son|F) rc(Father|F)/nSons(Father|F)

∼Son rc(Father|F) − rc(Son|F) rc(Father|F) − rc(Father|F)/nSons(Father|F)

6If they are not, the cardinality of the shallow extension of Father must be subtracted from
rc(Father|F) in Table 5.3.
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interaction, in fact, each zoom operation ANDs the disjunction of selected concepts
with the current focus.7

In order to allow for more general association rules in which both the antecedent
and the consequent are in conjunctive normal form, we introduce the concept of
a secondary focus. In normal operations, the focus is iteratively produced by zoom
operations starting with an initial focus, which is the universe U . At any point in this
zoom sequence, the user can “freeze” the current focus, which becomes the primary

focus F1. Any subsequent zoom operation does not change the primary focus, which
becomes a fixed antecedent in the association rule, but defines a secondary focus F2,
which is applied to the computation of the consequent.

Obviously, the current focus is given by the intersection of the primary and the
secondary focus. Equivalently, secondary foci are applied to a universe represented
by the primary focus. In this way, conjunctive normal form clauses can be used for
both the antecedent and the consequent.

The contingency 1-degree of freedom tables shown in Tables 5.4 and 5.5 are
derived from the contingency tables shown in Tables 5.1 and 5.2, by substituting F

with F1 and C with F2 ∩ C.
As an example, assume that the current focus is defined as {Type: Red ∧

Year: 2001}. We now freeze this primary focus, which becomes the fixed an-
tecedent for all further analysis until it is “unfrozen”. We now perform a zoom
on {Price: more than $100}, which becomes the secondary focus and the
prefix of the current consequent. The concept Location: Northern Italy:
Piedmont which survives in the current reduced taxonomy represents part of the
consequent in the following association rule:
{Type: Red ∧ Year: 2001} ⇒

{Price: more than $100 ∧

Location: Northern Italy: Piedmont}

Table 5.4 Contingency table for F1 ⇒ F2 ∩ C

F1 ⇒ F2 ∩ C Observed Estimated

F2 ∩ C rc(F2 ∩ C|F1) (F1/|U |) · rc(F2 ∩ C|U)

∼ (F2 ∩ C) F1 − rc(F2 ∩ C|F1) F1 − (F1/|U |) · rc(F2 ∩ C|U)

Table 5.5 Contingency table for C ⇒ F

F2 ∩ C ⇒ F1 Observed Estimated

F1 rc(F2 ∩ C|F1) (rc(F2 ∩ C|U)/|U |) · F1

∼ F1 rc(F2 ∩ C|U) − rc(F2 ∩ C|F1) rc(F2 ∩ C|U) − (rc(F2 ∩ C|U)/|U |) · F1

7Conjunct expressions with NOT are also supported.
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5.1.7 Side-by-Side Comparison

It is often important to compare two or more views on the same data, but based on
different foci. As an example, one might want to compare 2004 wines with 2006
wines, or red wines vs. white wines for all years, or just 2004 red wines with 2006
red wines. Temporal comparison is common, but the examples above show that the
temporal facet is just one of the possible foci that can be used.

For simplicity, we assume that only two views are compared. The first view is
called the reference view, the other view is called the test view. While there is only
a single reference view, there can be multiple test views.

Initially, the user will manually set the focus for each of the views. Each test
view will be compared with the reference view in the following way. The χ2 test is
applied to test whether the distribution of data among concepts in each test view is
significantly different from the distribution in the reference view. The test is applied
to the same concept C in both views.

In order to allow an unconstrained exploration on data, the user can add one
or more concepts to the focus (i.e., zoom) in any view, such concepts being auto-
matically added to the current focus of each view. Thus, after initial different foci
are set for all views, all the other zoom operations are “coordinated”, in the sense
that the same concept(s) are automatically added to the focus in each view. Such a
coordination allows the exploration of different data sets in a meaningful way.

The null hypothesis to be tested is that the distribution of a concept C in the test
view is the same as the distribution of C in the reference view. The contingency
table to be used is reported in Table 5.6.

The example in Fig. 5.5C shows the comparison of a test view with focus Re-
gion: Northern Italy: Piedmont, with a reference view with focus Region: Central
Italy: Tuscany. Both views are coordinated on Type: red, i.e., after setting the initial
focus for each view, the user performed a zoom on Type: red, coordinating all the
other views on this secondary focus. Therefore, the hypothesis to be tested is cur-
rently that red wines from Piedmont have the same distribution as red wines from
Tuscany. Differences are indicated by arrows, where red arrows8 denote statistical
significativity, and an arrow pointing downwards indicates that the value in the test
view is lower than expected. A representation similar to the one shown before could
also be used.

Table 5.6 Contingency table for side-by-side comparison

Observed Estimated

C rc(C|Fview) (rc(C|Fref)/Fref) · Fview

∼C Fview − rc(C|Fview) Fview − (rc(C|Fref)/Fref) · Fview

8In gray in the b&w Fig. 5.5.
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Fig. 5.5 Side-by-side comparison on the Italian wines infobase

5.2 Structured Objects

In the basic dynamic taxonomy model, objects are atomic entities and the exten-
sional inference rule is used to infer unnamed relationships between two concepts
if they (or their descendants) are both used to classify at least one object. In some
important cases however, objects have an internal structure. Such a structure may be
flat as in news summaries (i.e., a single textual document including several different
news stories) or hierarchical as in videos, which can be organized on several levels.
In these cases, the extensional inference rule can lead to false coordinations or can
fail to capture all the interesting relationships.

Consider a news video. It is usually hierarchically organized by news stories,
each of which may have several sequences or scenes, which in turn are composed
by frames. It seems reasonable to assume that the “strength” of the relationship
between two concepts C and C′ decreases for higher levels of this structure. Thus,
if two people appear in the same frame they are closely related in space and time,
whereas if the same two persons only appear together at the entire video level, their
relationship is indirect: it is derived by the fact that they appear in different stories
which are part of the same video. Such stories are somehow related, possibly from
the temporal point of view (as in a newscast) or because they are about the same
topic (as in documentaries).

The meaning of a relationship between two concepts which only occurs at the
global level can be difficult to understand by users, and sometimes can lead to false
coordinations which make the inference mechanism of dynamic taxonomies seem
unreliable. As an example, consider a textual news summary composed by several
stories. The first story is about the Prime Minister making a speech in Rome, the
second one is about fog in Milan. This object can be classified under terminal con-
cepts such as {political speech, Prime Minister, Rome, fog, Milan}. In this case, a



124 G.M. Sacco and S. Ferré

“false” relationship between fog and Rome, or Prime Minister and Milan will be
established by extensional inference.

One might try to solve the problem by “exploding” the news summary into its
constituent news stories, and consider each story as an atomic object instead of
the entire summary. In this way, the false coordination problem disappears, be-
cause fog and Rome will not be related, since they are used to classify different
objects.

However, this approach does not really solve the problem for more complex
structures, such as news videos. In this case, breaking up the video into its con-
stituent stories, which are considered as objects, only eliminates the indirect rela-
tionship inferred at the highest level. However, we still have to account for the fact
that two persons appearing in the same frame are more closely (or at least differ-
ently) related than two persons appearing in the same news story. In addition, while
relationships inferred from the topmost level only do not seem appropriate in a news
video, they would be so if we consider a movie. In this case, two actors performing
in the same movie seem correctly related even if they do not appear together in any
single story.

The approach we propose9 [241] explicitly accounts for the structure of objects
and allows the user to specify in an intuitive way the appropriate level of granularity
for his exploration of the information base.

For simplicity and concreteness, we focus here on video material. In this case,
the standard, four-level structure we informally introduced before should capture
the vast majority of situations: at the highest level, we have the entire video,
which is split into “stories”, each of which is split into “scenes”, each composed
of frames. General object structures can conceivably have an arbitrary number of
levels, but the approach described here can be easily extended to more general
cases.

A multilevel structure description is included in the taxonomy itself by adding
a taxonomic facet, “structure”, whose immediate sons are “entire video”, “story”,
“scene” and “frame”. Each component (video, story, scene, frame) is an object
in itself and is classified under the appropriate concepts. One of these concepts is
the appropriate structure type for the object, e.g., scene. Appropriate classification
strategies for structured components, a key part of our approach, will be discussed
shortly.

First, we note that, because of the PART-OF relationship, each structured level
in an object subsumes all the lower levels in the same object. The entire video sub-
sumes all the stories in it, each of which subsumes all the scenes in it, each of which
subsumes all the frames in it. If X ⇄ Y because at least one frame is classified un-
der both concepts, the same relationship holds at the scene level, at the story level,
and at the entire video level. This property is similar to subsumption in dynamic
taxonomies, and results in a similar backward inheritance: each level inherits the
classification of its lower levels.

9First used in 2001 in a demo system for RAI, the Italian public broadcasting company.
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On browsing, the user has two choices. First, he can focus on a specific structure
level, say “story”. In this case, only the relationships which are valid at the story
level and (because of subsumption) at lower levels, are preserved by the zoom oper-
ation: X and Y are related if they appear in (i.e., are used to classify) the same story,
or in the same scene or in the same frame. However, X and Y are not related if they
only appear at the “entire video” level.

Second, the user can focus on a concept not in the structure facet, e.g., “Sean
Connery”. If subsequently he explodes the structure facet, he will see a summary of
the structure levels in which Sean Connery appears, so that he can later focus on the
appropriate levels.

In order to obtain this type of exploration, component objects of a structured
object must be appropriately classified. On classification, the human or automatic
classifier will initially structure the document, i.e., tag a sequence of frames as a
scene and tag a sequence of scenes as a story. Once the structure is defined, the
material has to be classified according to the taxonomy.

Component objects will be classified under the appropriate concepts in the tax-
onomy. As we mentioned above, a backward inheritance applies. So, if we tag a
frame with Actor> Sean Connery, Sean Connery is also considered an actor
of the scene which subsumes the frame, of the story which subsumes the scene, and
of the entire video in which the story appears. Obviously, backward inheritance re-
quires that the union of classifications is taken: thus if Sean Connery is tagged for
frame X and Tippi Hedren for frame Y in the same scene S, the actors for S will
be {Sean Connery, Tippi Hedren}. The inclusion constraint maintains consistency
in the classification, and can be used to describe the document at the lowest, appro-
priate, structural level: each level “inherits” all the classification descriptors defined
at the lower level.

In addition to the “bottom-up” inheritance defined by the inclusion constraint,
we can also have a “top-down” inheritance: if the classifier tags the movie
with Director> Alfred Hitchcock as the movie director, this relation-
ship will hold for all the structural descendants of the movie, down to the frame
level.

Consequently, these two types of inheritance can be exploited in order to sim-
plify the classification task. When the user tags a structure element X with a de-
scriptive concept C, C will be added by union to the classification of all the an-
cestors of X, and C will be added by replacement to all the structural descendants
of X.

As an example, consider the movie “Boccaccio 70”, a 1972 Italian movie in-
spired to the novels by Boccaccio and composed by four stories, each directed by
a different director, De Sica, Fellini, Visconti and Monicelli. The classifier will
tag each story with his own director. As a consequence, the entire video will be
classified under Director> {De Sica, Fellini, Visconti, Moni-

celli}. By specifying the director at the story level, all the lower levels (scenes
and frames) will be automatically tagged with the appropriate director.
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5.3 Virtual Concepts

Dynamic taxonomies assume that the entire taxonomy is designed and defined be-
fore it is used, just as the conceptual schema of a database system. The taxonomy
can be obviously modified afterwards, but concepts must be defined before they are
used. There are many practical cases in which this requirement can be quite cumber-
some, and, most notably, when a subtree (facet) of the taxonomy is used to describe
a domain with a potentially very large number of values. Examples include prices,
weights, dates, but also authors, performers, etc. Although we can represent them
in the current framework, they considerably add to the size and complexity of the
taxonomy and might require a careful, anticipatory design. On the other hand, if
they are exclusively managed by external search methods, the system will be unable
to summarize sets of documents through their facet: in many cases, this will reduce
the exploration capabilities of the system.

As an alternative, we propose a new construct, the simple virtual concept

[231–233], for which neither its actual children (i.e., actual values) nor the actual
extension (i.e., the actual objects which have a specific value) are stored, but they
are computed from additional, external structures.

A simple virtual concept V̄ (e.g., Price) can be fully characterized by four ab-
stract operations:

1. Given V̄ , find all its sons. In our example, this means finding all the distinct
values of Price in the infobase;

2. Given V̄ , find its deep extension: e.g., find all the objects for which Price is
defined;

3. Given the son s of V̄ , find its deep extension. In the example, find all the objects
which have the specified value s of Price; and

4. Given an object d , find all the descendants of V̄ under which d is classified. In
the example, find all the Prices for a specific object.

Virtual concepts provide a simple way to “virtualize” parts of the taxonomy and
materialize such parts, when appropriate, from additional, external structures. Im-
plementation strategies for simple virtual concepts are discussed in Sect. 8.1.7.1.

Simple virtual concepts describe a shallow taxonomic subtree, i.e., a facet and
its actual values. Derived virtual concepts allow to group these values in some way
which is meaningful for the end-user. A derived virtual concept δ(V̄ ) is derived
from a virtual concept V̄ by specifying additional restrictions on the virtual con-
cept V̄ .

For example, consider the facet “Price” in an e-catalog. With a virtual concept
its actual values (i.e., the values of Price used to classify at least one object in the
extension) are not explicitly defined in the taxonomy, but are retrieved from exter-
nal structures through the abstract operations defined above. With a derived virtual
concept, we can define an arbitrary hierarchy through additional restrictions. For ex-
ample, we can specialize “Price” into “Budget”, “Medium”, and “High”, by adding
to each abstract operation for the virtual concept representing “Price”, the restric-
tions “Price < 50” for “Budget”, “Price ≥ 50 ∧ Price ≤ 100” for “Medium”, “Price
> 100” for “High” respectively.
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Derived virtual concepts can be derived from other derived virtual concepts, in
order to define an arbitrary hierarchy: in this case the additional restrictions are
composed in AND. For example, “Bargain” can be derived from the derived virtual
concept for “Budget” by adding the restriction “Price < 10”. It is also important to
note that derived concepts are dynamic in nature, so that it is conceivable and some-
times beneficial that the end-user be able to dynamically specify custom groupings
by entering specific restrictions.

5.4 Logics

In this section, we introduce logics as implicitly-defined taxonomies, where the set
of concepts is possibly infinite, and the hierarchy relation is defined as a logical
entailment. Classical hand-designed taxonomies can easily be integrated into this
framework.

The introduction of logics is motivated by the goal of a tight combination of
expressive querying and flexible navigation. Suppose we have documents that are
described by a date (e.g., publication date). An expressive query language over these
documents should comprise arbitrary date intervals, e.g., “between 10th March 2000
and 14th July 2008”. It is easy to compute the extension of such a date interval
given the date associated to each document. In order to provide flexible navigation,
a taxonomy should be defined over dates. However, there are too many possible
date intervals. If we build a taxonomy out of a small number of date intervals (e.g.,
years and decades), then we have flexible navigation, but we loose the expressivity
as most date intervals cannot be used. Of course, the two systems could be used
side by side: the language of date intervals and the taxonomy of some date intervals.
However, this could hardly be considered as a tight combination; and it would be
useful to insert new date intervals from user queries into the taxonomy, for future
navigation.

The idea is to define through a logic (syntax and semantics), both an expressive
query language and a possibly infinite taxonomy. Then, given a logic and a descrip-
tion of documents, a finite taxonomy is automatically generated as a subset of the
logic that is relevant to the descriptions. This taxonomy can be customized by users,
in the course of browsing, by adding and removing concepts. In the following, we
first define logics as a generalization of taxonomies, then we show how logics can
be used in the framework of dynamic taxonomies.

5.4.1 From Taxonomies to Logics

A taxonomy can be defined as a partially ordered set of concepts (T ,≤). These
concepts are used in both object descriptions and queries, and the ordering ≤ states
subsumption relations between concepts. An example is the taxonomy of locations,
where concepts are places, regions, countries, continents, etc. Reading a place as “is
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somewhere in this place”, the subsumption between places corresponds to spatial
inclusion. For instance, Paris ≤ France, but not Paris ≤ Spain; and both
France ≤ Europe and Spain ≤ Europe.

A taxonomy is generally assumed finite, and with an ordering that is explicitly
defined, i.e., as an enumeration of concepts and subsumption links. However, it is
easy to conceive partial orderings that are both infinite and implicitly defined.

• The set of all strings, ordered by the “contains” relation: "The Jungle
Book" ≤ "Jungle".

• The set of intervals on integers, ordered by inclusion: 2007 ≤ [2000,2010] ≤

[2000,+∞[.
• The set of intervals on dates, ordered by inclusion: 3 sep 2007 ≤ sep 2007 ≤

[sep 2007,dec 2007].

In these examples the ordering can be given a mathematical definition, and im-
plemented as a function that takes any 2 elements x and y and returns whether
x ≤ y holds. With these implicitly-defined taxonomies, it is possible to describe a
photo with a free comment (string), a size (integer), and a date. Then it is possi-
ble to retrieve photos where some word occurs in the comment, that were taken in
some period of time, or whose size is in some interval. For navigation, only a fi-
nite subset of the concepts are made visible (see Sect. 5.4.2), but the insertion of an
additional concept is automatic because its relation to other concepts can be com-
puted.

These implicitly-defined taxonomies can be seen as logics because (1) the con-
cepts are properties over objects, and so can be seen as unary predicates, and (2) the
ordering is reflexive and transitive, and so can be seen as an entailment. More pre-
cisely, this entailment is called subsumption (noted ⊑) because it does not apply to
statements, but to properties over objects, as in description logics [90].

Definition 5.1 (Logic) A logic is a partially ordered set of formulas (L,⊑), where
formulas are used as descriptors on objects and patterns in queries, and the ordering
is the subsumption relation between formulas, and can be implicitly defined.

A logic is implemented as a module that defines an internal representation, a
parser and a printer for user interaction, and a subsumption checker. This defini-
tion is compatible with hand-designed taxonomies. The taxonomy of locations is
the logic whose formulas are location names, and the subsumption relation is the
transitive closure of the taxonomy seen as a graph. In other words, a taxonomy is a
particular case of a logic.

Definition 5.2 (Taxonomy as a logic) Let (T ,≤) be a taxonomy. This taxonomy
can be defined as a logic (L,⊑) by simply stating that L = T , and x ⊑ y iff x ≤ y.

In order to make things more concrete, we now define an example logic that
covers common needs for describing objects. We first define the set of formu-
las, then we define the subsumption ordering over them. A formula is either the
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keyword thing, which represents the most general formula, or a compound for-
mula p v, where p represents a property, and v represents a value for this prop-
erty. For example, if objects are persons, possible properties are age, birthdate,
lives_in, comes_from, position. Each property takes its values from some
domain:

• age takes integers and intervals over integers;
• birthdate takes dates and intervals over dates;
• position takes strings and string patterns (e.g., “contains”, “begins with”);
• lives_in and comes_from take locations (e.g., towns, countries, continents).

All these formulas are partially ordered by subsumption, from the more general to
the more specific. The formula thing is the most general, and subsumes all other
formulas. It plays the role of the root of a taxonomy. Two compound formulas can
be compared if and only if their properties are the same: e.g., one cannot compare
an age and a birthdate. For a given property, formulas are ordered according to their
values. A subsumption ordering is defined for each value domain:

• an integer interval subsumes the integers and other intervals it contains (e.g., in
[30,40] subsumes = 32);

• a date interval subsumes the dates and other intervals it contains, and a low-
resolution date subsumes higher-resolution dates (e.g., 2008 subsumes jul
2008, which subsumes 13 jul 2008);

• a string pattern subsumes the strings it matches (e.g., contains "science"
subsumes is "computer science");

• a location subsumes the locations that are contained in it (e.g., France subsumes
Paris).

The subsumption relation over locations is derived from a hand-designed taxonomy
of locations. On the contrary, in other value domains, the subsumption is defined
for any 2 values out of an infinite set. Concretely, this means there is an algorithm
that decides for any 2 values, whether the first is subsumed by the second or not.
Section 5.4.2 shows how dynamic taxonomies can cope with and profit from such
infinite partial orderings.

The following arborescence represents a small subset of the logic we just defined.
Every item represents a formula, and the child-parent relation represents subsump-
tion.

thing

• lives_in somewhere
– lives_in Italy
– lives_in France

· lives_in Paris
· lives_in Strasbourg

• comes_from somewhere
– comes_from Italy
– comes_from France

• birthdate in ..
– birthdate in [1970,1980]
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· birthdate = 1976
· birthdate = mar 1976

. birthdate = 19 mar 1976
– birthdate in [1980,1990]

• position contains ""
– position contains "engineer"
– position contains "professor"

· position is "assistant professor in computer science"

Section 8.5 presents a framework for allowing application designers to build
complex logics from simple and reusable components, without requiring expertise
in logic from them.

5.4.2 From Logics to Dynamic Taxonomies

The objective of this section is to show how a logic can fit into the framework of
dynamic taxonomies. The principle is that, given a finite subset of formulas X, it
is possible to construct a taxonomy from it by defining the set of concepts as X,
and ordering them by subsumption, which results in a taxonomy (X,⊑). The im-
portant differences with usual taxonomies is that (1) concepts are logical formulas
with a syntax and a semantics (not only names), (2) the taxonomy shape is defined
through logical inference (subsumption ⊑), and (3) extensions of concepts are de-
fined through logical inference too, rather than through the taxonomy ordering (see
below). The problem of an infinite number of possible concepts is solved by select-
ing which concepts should appear in taxonomies.

An important issue is which subset X of formulas should be used. The idea is
to make it depend on actual data, rather than to define it a priori, which would
not be very different from designing usual taxonomies. Given a logic (L,⊑), and
a description function D that maps each object to a set of formulas in L, we want
to specify how the set of concepts X should be derived. Whenever the description
function D changes, i.e., addition of removal of an object from the (shallow) ex-
tension of a formula, this set X should be updated accordingly. Users should also
have the ability to add and remove formulas in the taxonomy in order to customize
it.

Suppose we use the logic presented in the previous section, and the following
description function:

Object (o) Properties (D(o))

Martin birthdate = 12 dec 1961, lives_in Paris,
comes_from Strasbourg, position is "engineer"

Luciano birthdate = 1961, lives_in Strasbourg,
comes_from Roma, position is "full professor"

. . . . . .
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A first fact is that all formulas appearing in a description should be part of the
taxonomy X, because they are obviously relevant to it. However, this is not suffi-
cient because it would make dynamic taxonomies almost flat lists of concepts. In
the above example, only the two birthdates would be ordered because we know
that Martin and Luciano are born the same year, and we do not know the precise
date for Luciano. We can safely exclude from X any formula whose extension is
empty as it would never appear in dynamic taxonomies. Of course, when the de-
scription function changes, a formula can become relevant by gaining instances,
hence the need to synchronize the set X with regard to the description function.
A strong advantage of logics is that they enable to define and compute the exten-
sion of a formula over a description function, independently of a finite taxonomy of
concepts.

Definition 5.3 (Extension) Let (L,⊑) be a logic, and D be a description function
over a set of objects O . The extension of a formula f ∈ L is defined as the set of
objects having a property that is subsumed by f :

extension(f ) = {o ∈ O | ∃d ∈ D(o) : d ⊑ f }

This is possible because the subsumption is defined (and computable) over an
infinite set of formulas, unlike in taxonomies. For instance, in the above example, the
extension of birthdate in [1960,1970] contains both Martin and Luciano,
and the extension of comes_from France contains only Martin.

We may define the set of concepts as the set of all formulas whose extension is
not empty,

X = {f ∈ L | extension(f ) �= ∅}

but this is in general too large or even infinite. Indeed, we would get all date intervals
containing any date occurring in descriptions, and all substrings of strings occurring
in descriptions. An alternative is to extend the logic with an additional operation
that returns a set of abstract formulas from a concrete formula.

Definition 5.4 (Abstractions) Let (L,⊑) be a logic. An abstraction operation over
the logic L is a function from any formula f ∈ L to a finite set of formulas
abstr(f ) ⊆ L such that for every g ∈ abstr(f ) we have f ⊑ g.

In the logic defined above, we can define the abstraction operation such that every
precise date generates the month, the year, and the decade; every location generates
encompassing locations; and, every string generates a substring for each word. For
instance, the formula birthdate = 12 dec 1961 generates the formulas

• birthdate = dec 1961,
• birthdate = 1961, and
• birthdate in [1960,1970];

and the formula position is "full professor" generates
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• position contains "full", and
• position contains "professor".

From this abstraction operation, we can now define the default definition of X, as
proposed by the system given a logic and a description function.

Definition 5.5 (Derived taxonomy) Let (L,⊑) be a logic, and D be a description
function over objects O . The derived taxonomy is the partial ordering (X,⊑), where

X = {f ∈ L | ∃o ∈ O : ∃d ∈ D(o) : f = d ∨ f ∈ abstr(d)}

As said above, the derived taxonomy is incrementally synchronized with descrip-
tions. If an object is assigned to a property that is already in X, then only extensions
are updated. If an object is assigned to a new property f , then f and all its abstrac-
tions are automatically inserted into the derived taxonomy. If, after removing an
object from a concept, some concepts have their extension empty, they are removed
from the derived taxonomy. In this way, the derived taxonomy is always maintained
consistent with the actual data.

Because the derived taxonomy is automatically produced, it may not fit exactly
user needs. It may contain spurious concepts, and lack useful concepts. This is why
users are allowed to add or remove concepts in the taxonomy at any time, e.g., in the
course of browsing the infobase. In order to add concepts, users do not have to place
them in the taxonomy. The user just names it by a formula, and the system places it
in the taxonomy with the help of the subsumption operation. For instance, a concept
for the “summer 2007” can be created by naming the formula birthdate in

[21 jun 2007,22 sep 2007]. Another way to extend the taxonomy is to
query the infobase. All formulas defined in the logic can be used in queries, because
their extension can always be computed (see Definition 5.3), and not only formulas
in the taxonomy X. Whenever a query entered by a user contains a formula that
is not present in the taxonomy and has instances, that formula is inserted into the
taxonomy, because if the user has found this formula useful, she may find it useful
in the future.

To summarize, logics offer a methodology for automatically generating tax-
onomies from the descriptions of a collection of objects. Those taxonomies are
defined as subsets of possibly infinite partial orderings, whose elements, called for-
mulas, can be complex expressions (e.g., date intervals, string patterns). They are
automatically updated upon changes in descriptions, and can also be customized by
users. While only a finite and relatively small subset of the logic is available in dy-
namic taxonomies (for navigation), the full logic is available for querying because
the extension can be computed for all formulas, even those absent from the tax-
onomy. This enables to combine an expressive querying language with the flexible
navigation provided by dynamic taxonomies.
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5.5 Web Ontologies

The objective of this section is to show how a Web ontology, i.e. a knowledge base
as defined in Sect. 3.5.1, can fit into the framework of dynamic taxonomies. The key
notions are the classification and instantiation statements that can be inferred from a
knowledge base. Classification statements define a subsumption ordering over con-
cepts, which can play the role of a taxonomy. Instantiation statements determine
whether an object is an instance of a concept, and hence define the deep extension of
concepts. Therefore, all ingredients are present to apply the framework of dynamic
taxonomies on web ontologies. The important differences with respect to the usual
application of DTs is that (1) the concepts may be complex and in infinite number,
and (2) the taxonomy shape and extensions are defined through complex logical in-
ference. The problem of an infinite number of concepts is solved by selecting which
concepts should appear in taxonomies, and also by computation-on-demand when
expanding concepts (Sect. 5.5.1). The roles that connect objects together seem ab-
sent from this picture, but in fact, they appear as parts of complex concepts and are
exploited by additional navigation modes (Sect. 5.5.2).

5.5.1 Re-defining Extensions and Dynamic Taxonomies

In dynamic taxonomies, a local view is defined at each focus as the combination
of a query, an extension, and a dynamic taxonomy. The query specifies the current
focus, i.e. the user location in the vast navigation space, or her point of view over
the whole knowledge base. The extension is the set of answers of the query, i.e.
a set of objects. The dynamic taxonomy gives feedback about this extension, and
it is the support of most navigation links. In this section, these three components
of local views are formally re-defined on top of description logics (DL).10 In the
following, we assume a DL signature S = (O,Ca,Ra,Cstr), where O is a set of
object names, Ca is a set of concept names, Ra is a set of role names, and Cstr is
the set of constructors of OWL DL.

Definition 5.6 (Query) A query is a (complex) concept, i.e., a combination of object
names, concept names, role names, and OWL DL constructors (see Table 3.4). In
particular, the three Boolean constructors are available (conjunction, disjunction,
negation).

Sometimes, it is useful to see the query as a conjunctive set of simpler concepts,
which can be obtained from any query by putting it in conjunctive normal form. In
this paper, we use alternately the two forms, whichever is the most convenient. For
instance, the query

q = Team ⊓ ≥ 6 hasmember.Person

10See Sect. 3.5.1.
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is identical to

q = {Team,≥ 6 hasmember.Person}

Next, given a query q , the extension is defined as the set of objects that can be
proved to be instances of q .

Definition 5.7 (Extension) Let Σ be a knowledge base and q be a query. The ex-

tension of q is the set of objects which are instances of this concept:

ext(q) = {o ∈ O | Σ |= o : q}

This definition explains why we assume the knowledge base has an A-Box (asser-
tional box). The A-Box introduces objects, assigns concepts to them, and connects
them together with roles. Without an A-Box, no instantiation statement could be
inferred, and so all extents would be empty. An important property of extensions is
that they are monotonic with regard to subsumption. For every concepts C,D, if C

is subsumed by D, then the extension of C is included in the extension of D:

Σ |= C ⊑ D �⇒ ext(C) ⊆ ext(D)

This is consistent with dynamic taxonomies, where we observe the same relation
between taxonomic relations and (deep) extensions.

Before defining the dynamic taxonomy associated to a query, we first have to
define the taxonomy itself. It is made of a subset of the concept language, ordered
by subsumption.

Definition 5.8 (Taxonomy) Let Σ be a knowledge base. The taxonomy derived
from Σ is the partially ordered set TΣ = (XΣ ,⊑Σ ). The set of concepts XΣ is the
set that contains:

• the most general concept, ⊤;
• all concept names in Ca ;
• for every role name r ∈ Ra , every concept name c ∈ Ca , and every natural num-

ber n ∈ N, the concepts ∃r.⊤, ∃r.c, ≥ n r.⊤ and ≥ n r.c.

Any two concepts C,D ∈ XΣ are ordered by ⊑Σ , i.e. C ⊑Σ D iff Σ |= C ⊑ D.

The three Boolean constructors (⊓, ⊔, and ¬) are excluded from the taxonomy
because they are easily introduced into queries through the navigation process (see
Sect. 4.3). The “at least one of objects” can also be introduced through navigation
by a direct selection of objects in the extension. Other constructors are excluded
from the taxonomy because they are redundant according to the following equiva-
lences:

• ∀r.C ≡ ¬∃r.¬C;
• ≤ n r.C ≡ ¬ ≥ (n + 1) r.C;
• = n r.C ≡ ≥ n r.C ⊓ ≤ n r.C.
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Another motivation for not having the constructors ∀, ≤ and = is the Open World
Assumption (OWA). Indeed, description logics, hence OWL, work under this as-
sumption. For example, in the knowledge base Σex of Sect. 3.5.1, we have declared
3 objects as persons and members of the team LIS. The OWA implies that there
could be other members of LIS, unknown to the knowledge base designer. Hence,
the team LIS is not an instance of the concept ≤ 5 hasmember.Person (“at most 5
members”), whose extension is empty in our knowledge base. In fact, this extension
is empty in most practical knowledge bases, except if a team is explicitly declared
to have at most 5 members or less. By excluding these rare concepts from the tax-
onomy, we make it more compact and more efficient, while retaining the ability to
insert them manually in queries.

Now, given a query q , this taxonomy is pruned to retain only concepts that are
extensionally related to the query, which results in the dynamic taxonomy.

Definition 5.9 (Dynamic taxonomy) Let Σ be a knowledge base, and q be a query.
A concept x ∈ TΣ is extensionally related to the query q iff

ext(x) ∩ ext(q) �= ∅

This definition is the same as in classical dynamic taxonomies. It can be refined by
using a minimal support m (putting m = 1 is equivalent to the last definition):

#
(

ext(x) ∩ ext(q)
)

≥ m

The dynamic taxonomy DTΣ (q) is the pruning from the taxonomy TΣ of all the
concepts that are not extensionally related to the query q .

Because of concepts ≥ n r.C, there is an infinite number of concepts in the tax-
onomy TΣ . However, every dynamic taxonomy is finite because a knowledge base
is finite, and therefore for every role r and every concept C, there is necessarily a
number k such that for every n ≥ k, the extension of ≥ n r.C is empty. Still, dynamic
taxonomies are often too large to be computed and displayed entirely at once. This is
why users are initially presented with a fully collapsed dynamic taxonomy, showing
only the most general concept ⊤, and are allowed to expand concepts on demand,
i.e. computing and displaying children concepts. This computation is performed by
the function children(x, q,m) that returns the children of the concept x in DTΣ (q),
given the current query q and a minimum support m.

We now sketch the definition of the function children(x, q,m), depending on the
shape of the parent concept x:

• x = ⊤: x is the root of the dynamic taxonomy. We must return both concept
names and existential restrictions:
– the most general concept names in Ca ,
– for every most general role r in Ra (and their inverses), the concept ∃r.⊤;

• x ∈ Ca : x is a concept name. We must return the most general concept names
in Ca that are subsumed by x;
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• x =≥ n r.C: x is a qualified cardinality (this includes every concept ∃r.C as an
equivalent to ≥ 1 r.C). We must return:
– for every most general concept name D ∈ Ca subsumed by C, the con-

cept ≥ n r.D,
– for every most general role name s ∈ Ra subsumed by r , the concept ≥ n s.C,
– the concept ≥ (n + 1) r.C.

In fact, among the returned concepts, only those that are extensionally related to
the query are retained, which requires the computation of an extension and an
intersection for each candidate concept. For example, if we apply these defini-
tions to the example knowledge base from Sect. 3.5.1, given a query q = Person

and a minimum support m = 1, we obtain the following dynamic taxonomy (par-
tial).

⊤

• Person (3)

• ∃ismemberof .⊤ (3)

– ∃ismemberof .Team (3)

∗ ∃ismemberof .Bigteam (3)

∗ ∃isleaderof .Team (1)

– ∃isleaderof .⊤ (1)

More pruning can be done with the help of the T-Box (terminological box). For
instance, knowing r is a functional role, it is not necessary to return the increment
≥ 2 r.⊤, because its extension will necessarily be empty. Other prunings can be done
with inverse functional or transitive roles. Also, concepts in the form ∃r.⊤ could be
made more informative by replacing ⊤ by the concept describing the range of the
role r (e.g. ∃ismemberof .Team instead of ∃ismemberof .⊤).

5.5.2 Additional Navigation Modes

In Sect. 4.3, a number of navigation modes are defined. Each navigation mode ap-
plies on the current query and a selection to form a navigation link that leads to
a new query, hence a new focus. The selection can be a set of concepts from the
dynamic taxonomy, or a set of objects. A succession of navigation links leads to
queries that are Boolean combinations of concepts. All navigation modes defined
in Sect. 4.3 fully apply to web ontologies. However, the existence of objects, roles
and quantifiers in description logic concepts necessitates the definition of additional
navigation modes to allow their introduction into queries through the navigation
process. The following sections show that navigation modes can also apply to parts
of queries, and defines three additional navigation modes: zoom and pivot on object
selections, reversal on a query part, and traversal on a role-based concept.
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5.5.2.1 Zoom and Pivot on Object Selection

The navigation modes ‘zoom’ and ‘pivot’ are defined on concepts from the dynamic
taxonomy. Because description logics allow to form a concept as an enumeration
of objects, it becomes possible to apply the ‘zoom’ and ‘pivot’ on object selec-
tions. Given an object selection o1, . . . , on, the selection x to be used by ‘zoom’
or ‘pivot’ is simply defined as the concept x = {o1, . . . , on}, using the construc-
tor “at least one of objects” (see Table 3.4). For example, starting with the query
∃ismemberof .Team, the extension contains the objects OLIVIER, SEBASTIEN, and
PIERRE. Both zoom and pivot on the selection of SEBASTIEN and PIERRE lead to
the new query {SEBASTIEN,PIERRE}. When selecting a subset of the extension,
the zoom has always the same effect as the pivot because of DL inference mecha-
nisms. Every query part subsumes any subset of the extension of the query,

∀q : ∀O ⊆ ext(q) : ∀y ∈ q : Σ |= O ⊑ y

which entails that the whole query is replaced by the object selection. By selecting
the negation of an object selection, it is also possible to explicitly exclude some
objects from the current focus, like in ∃ismemberof .Team ⊓ ¬{OLIVIER}. The use
of the constructor “at least one of objects” does not form a new navigation mode,
but merely extends zoom and pivot to another type of selection, i.e., sets of objects.
This is different from querying by examples (Sect. 4.3.7) because the query is not a
combination of concept names derived from the selected objects, but directly uses
the explicit name of those objects.

5.5.2.2 Reversal

Roles are already present in dynamic taxonomies through quantified concepts (e.g.,
∃r.C and ≥ n r.C). So, they can be introduced in queries by zoom-in and pivot
navigation links. For instance, the following query can be reached in 2 zoom-in
steps: q = {Bigteam,∃hasleader.Person}, i.e. “the big teams with a leader”. A useful
navigation link would be to reach the related query: {Person,∃isleaderof .Bigteam},
i.e. “the leaders of big teams”, where the role isleaderof is defined as the inverse
of the role hasleader. This navigation mode, called reversal, changes the point of
view by crossing a role in the query, and turning upside-down the query accordingly.
In the above example, the point of view has been changed from teams to persons,
through the role hasleader.

A query element x can be used as a selection for the reversal mode if it has the
form x = ∃r.C, and then the new query is defined as:

q ← C ⊓ ∃ r−1.(q \ {∃ r.C}).

It can be verified that, if we use again the reversal mode on ∃r−1.(q \ {∃ r.C}), we
come back to the initial query q .
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5.5.2.3 Traversal

The second type of navigation mode using roles is a composition of two navigation
modes defined above, and is called traversal. Indeed, it often happens that the user
wants to cross a role that is not yet present in the query, but already visible in the
dynamic taxonomy. Hence, for a concept x = ∃r.C, x is successively used for zoom-
in and reversal. These two steps can be simplified by the following definition of the
traversal mode:

q ← C ⊓ ∃ r−1.q.

For instance, we can move in one step from the query Bigteam to the query
{Person,∃isleaderof .Bigteam} by traversing the concept ∃hasleader.Person.

In the definitions of reversal and traversal, we assume that the role r has an
inverse that is defined in the knowledge base. If a role has no inverse, we can either
prevent it to be reversed or traversed, or we can automatically define an inverse role
in the knowledge base.

5.6 Fuzzy Dynamic Taxonomies

Dynamic taxonomies are based on boolean logic and traditional set theory. The
probability of the classification of an object o to a concept C, assigned by the classi-
fier, is either 0 or 1. There are many practical situations in which a boolean member-
ship function is not sufficiently accurate and a fuzzy set membership [329] should be
used [142, 241]. As an example, a document can have a primary and secondary top-
ics, and each topic used to describe a document should be appropriately weighted,
according to its relative importance. Clustering is often fuzzy: for instance, we can
assign membership probabilities to the objects in a cluster according to their dis-
tance from the centroid of the cluster. As another example, the probability that an
actor is associated with a movie can be defined as the ratio between the number of
frames in which the actor appears and the total number of frames. This technique
allows to model the difference between key and cameo roles. Finally, in medical
diagnosis (see Sect. 9.4), the occurrence of symptoms can be more or less frequent
in pathologies.

Standard fuzzy set operations are usually defined, after Zadeh [329], as:

• Standard complement: ∼ A(x) = 1 − A(x);
• Standard intersection: (A ∩ B)(x) = min[A(x),B(x)];
• Standard union: (A ∪ B)(x) = max[A(x),B(x)]

where A(x) is defined as the probability that x belongs to A.
Fuzzy membership has a potential impact on the way selected documents are

presented to users: fuzzy document membership can be used to order the list of the
documents associated to a concept by decreasing membership probabilities, so that
the first documents in the list are those most closely related to the selected concept.
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This technique is similar to the relevance ranking principle proposed by Robertson
and Sparck Jones [229] in the context of text retrieval.

Fuzzy membership also has an impact on the extensional inference rule, used by
dynamic taxonomies in order to infer concept relationships. If we account for fuzzy
classification, then we must reformulate this rule in order to model fuzzily inferred
concepts relationships. In this way, we will have different relationship probabilities
among concepts: for instance, two secondary concepts for an object are ‘less’ related
than two primary concepts.

The standard fuzzy set operations (and especially fuzzy intersections) can be
applied to zoom operations in order to compute fuzzy focuses and fuzzy extensional
inference. However, the problem of how to convey fuzzy inference to users in a clear
and unambiguous way must be solved. One solution is discussed in Sect. 9.4, where
a higher color saturation is used to indicate a higher average membership probability
of objects, at any level in the taxonomic tree. Such a coding can effectively guide
the user towards the “strongest” relationships and orient thus his search.

A format for exchanging fuzzy descriptions is described in Sect. 8.4.

5.7 Miscellanea

In this section we present a number of useful techniques which, while not extending
the model, use some of its features in a non-obvious way.

5.7.1 Predefined Foci for Personalization and Access Control

The first technique we describe is the use of a predefined focus. In normal dynamic
taxonomy operations, the initial focus is the entire infobase U . There are two situa-
tions in which one might want a different initial focus.

First, for personalization. As an example, consider a diagnostic system based on
dynamic taxonomies, such as the one described in Sect. 9.4. There, diseases are
classified by symptoms and features such as Sex and Age. We can associate a focus
to a specific profile, and produce an appropriate reduced taxonomy immediately,
instead of the initial taxonomy. As an example, if patient X is male and aged 20, a
reduced taxonomy which only retains diseases which can occur to young males can
be immediately produced, rather than the more complex initial taxonomy. A num-
ber of features are usually recorded in X’s clinical records so that a fairly accurate
profile can be produced and a “minimal” reduced taxonomy produced.

Second, a predefined focus can be used to implement access control for security
and privacy reasons. An access profile can be associated to each user as a predefined
focus. Such a predefined focus is usually expressed as a combination of concepts,
but it can be any subset of the information base. In this way, the user can only see
objects he is allowed to see by the predefined focus, and, most importantly, only
those concepts which occur in objects he can access. Other concepts will not be
shown.
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5.7.2 SAES Facets

The dynamic taxonomy model defines a concept as an abstract entity which defines
a set of objects. The model does not require a concept to be labeled by a symbol
which is necessarily textual. It is interesting to consider concepts which are self-
adapting access structures11 themselves, i.e., abstract structures which can be used
to query and to summarize results.

Three such SAES are especially interesting in this context: tag clouds, geo-

graphic maps and object clusters. We already remarked that tag clouds are indeed
SAES if their basic behavior is extended in such a way that on selecting a tag in
the cloud, the entire cloud is updated as to represent the set of objects selected.
A tag can be seen as concept, and a tag cloud can be seen as a flat dynamic taxon-
omy. As an alternative, however, we can see the entire tag cloud as an embedded
concept which can be used to explore the infobase. In fact, the tag cloud identifies
a set of objects and is therefore a concept, according to the definition of concepts
in DTs.

Figure 5.6 shows a sample interaction in a e-recruitment application. The user
has zoomed on Information technology/Internet as Latest work sector, and now sees
the most frequent tags used in the selected curricula. He can then click on any of the
tags in the cloud and zoom on it, exactly as if it were any clickable concept in the

Fig. 5.6 Tag clouds as concepts in a dynamic taxonomy

11See Sect. 2.7.
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Fig. 5.7 Geographic-enhanced real estate dynamic taxonomy

taxonomy. There can be more than one tag cloud, each with a different semantics:
in the example, we could have another tag cloud for spoken languages.

Maps12 (such as Google Maps) are another type of SAES. A (rectangular) map
can be used at the same time for

1. selection, because the geographic coordinates act as a filter, and
2. summary, because objects can be shown on the map itself.

The use of maps integrated in dynamic taxonomies is especially interesting for a
number of applications. One of these is real estate portals [233], where the user can
query “geographically” and see the features of properties in the selected geographic
area or, vice versa, restrict his focus through a combination of non-geographic fea-
tures, such as price range, number of rooms and see their geographic placement on
the map (Fig. 5.7).

Finally, clustering (reviewed in Sect. 3.1.2), and especially hierarchical cluster-
ing, is again a SAES structure, because it can be used for selection and summaries
as well. The justification and use of clustering schemes as facets for accessing im-
age infobases is discussed in details in Sect. 9.3, but this approach carries over to
other application domains, such as textual databases.13 This solution where clusters
represents facets is totally different in practice and in theory from the use of clusters
to dynamically describe the result of an information retrieval query (Sect. 3.1.2).

12See also Sect. 9.8.
13See also Sect. 8.3.1.
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Fig. 5.8 Inventory-based popularity for books in Europe

5.7.3 Popularity, Recommendations, and Authoritativeness

Facets can be used to account for popularity, recommendations and authoritative-
ness of objects. Popularity is computed as a function of the object, such as number
of times the object is accessed, or it is purchased, or simply on the number of copies
of objects in the infobase. As an example, Fig. 5.8 shows the popularity of authors
(the focus here is Europe) simply on the basis of the number of used books on sale
in a global used-book warehouse; Fig. 5.9 shows the global popularity of Asimov’s
books (not surprisingly Foundation is first). Here facet elements are ordered by de-
creasing number of objects classified under them, in chunks of ten (which keeps
the taxonomy readable according to the guidelines of [236]); concepts within each
chunk are lexicographically ordered. Interface widgets allow to scroll facet values
in chunks of ten at a time. This application is online at [4]. A similar approach is
also used in Complete Search DBLP [29].

In many situations, popularity by object counts is not a sufficient indicator. In
such cases, a specific facet can account for numeric indicators which can be com-
puted on the basis of number of accesses, number of sales, citations of the object
from other objects (especially relevant in scientific literature) or simply on the basis
of a grade supplied by users. These important indicators are not generally supported
in commercial applications.
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Fig. 5.9 Inventory-based popularity for Asimov’s books

5.7.4 Augmenting IR Recall

Dynamic taxonomies and IR engines14 are often integrated. The advantages are
many: they include smaller taxonomies because rare concepts, and person names
can be effectively queried through the IR engine, and an easier user interaction for
non-ambiguous terms, which can be entered directly rather than found through the
taxonomy.

A well-known problem for IR engines is the semantic gap between the user
model (concepts) and the system model (strings). In addition to dealing with in-
flections, accounting for synonyms and related terms can significantly improve the
recall of the user query. Usually, synonyms and terms which are related to query
terms are retrieved from a thesaurus, such as WordNet [100], and used to modify
the user query by query expansion.15

Although a dynamic taxonomy is not a thesaurus, it can be modified as to im-
prove query recall through index expansion [236] rather than query expansion, in a
way similar to a thesaurus.

Concepts in a DT are abstract entities with no relationships with lexical terms.
However, we can easily extend the DT framework by allowing the schema designer
to specify, for each concept C, a set of terms and phrases that are to be added to the

14See Sect. 3.1.2.
15See Sect. 3.1.2.
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term index for a textual object o, whenever o is classified under C. This approach is
complementary to query expansion, in the sense that synonyms and related terms are
“added” to the object rather than to the query. Consequently, it can produce larger
index structures16 but does not require thesaurus access at query-time, and it seems
more efficient in query-intensive environments.

In addition, index expansion deals easily with implied terms, i.e., terms which
do not appear in a textual object because they are implied by its topic. As an ex-
ample,17 Leon Battista Alberti’s Renaissance De Re Aedificatoria does not contain
the term Renaissance because it did not exist at the time the book was written. The
Unix manual corpus has very few occurrences of the term “Unix”, because it is
implied.

Backward inheritance in classification simplifies the selection of terms to be
added. Consider the following location index [236]

Europe [Europe]
EU [EU, European Union]

Italy [Italy]
Rome

where the terms in brackets are index terms to be automatically added when an
object is classified under the corresponding concept. The set of index terms added
for objects classified under Rome is {Europe, EU, European Union, Italy}. Querying
for “Chinese restaurants in Italy” will find the restaurants located in Rome, even if
the term Italy does not appear explicitly in the appropriate textual objects.

16The number of additional terms is usually fairly small.
17See Sect. 3.1.2.



Chapter 6

Engineering Taxonomy-Based Sources

Yannis Tzitzikas

“I have made this letter longer than usual,

because I lack the time to make it short.”

Blaise Pascal, 1623–1662

This chapter is divided into two parts. The first part introduces an algebra that en-
ables the interaction paradigm of dynamic taxonomies even if there are no indexed
objects. This algebra is fully intensional, in contrast to dynamic taxonomies which
are both intensional (due to the existence of hierarchies and their semantics) and
extensional (as they discard concepts with empty extension).

The second part describes other aspects of managing taxonomy-based sources,
specifically the adaptation of objects’ descriptions on the basis of user feedback, the
creation of inter-taxonomy mappings and issues concerning integration and distrib-
uted taxonomy-based sources. Figure 6.1 illustrates some of these tasks.

6.1 Compound Terms Composition Algebra (CTCA)

6.1.1 Motivation

The interaction paradigm of dynamic taxonomies cannot be supported unless we
have indexed objects. However it would be useful to have a similar in spirit func-
tionality that could aid the manual indexing (or tagging) of objects, especially in
cases where the domain of discourse is wide and there are several facets and terms
that are not applicable to every object of the domain. Compound Term Composition

Algebra (for short CTCA) [308] is an algebra that can be used for specifying the
meaningful compound terms over a faceted taxonomy in a flexible manner. Below
we describe the algebra and several associated issues, i.e. the dynamic generation
of navigational trees from CTCA expressions, the revision of CTCA expressions,
as faceted taxonomies evolve, the mining of CTCA expressions from materialized
faceted taxonomies, and other potential applications of CTCA.

G.M. Sacco, Y. Tzitzikas (eds.), Dynamic Taxonomies and Faceted Search,

The Information Retrieval Series 25,
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Fig. 6.1 Aspects of Engineering Taxonomy-Based Sources

6.1.2 The Algebra in Brief

As an example, consider the faceted taxonomy of Fig. 6.2 and ignore the indexed
objects. One can easily see that several compound terms over this faceted taxon-
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Fig. 6.2 A materialized faceted taxonomy

omy are meaningless, in the sense that they cannot be applied to any object of the
domain. For instance, we cannot do any winter sport in the Greek islands (Crete
and Kefalonia) as they never have enough snow, and we cannot do any sea sport in
Olympus because Olympus is a mountain. For the sake of this example, let us also
suppose that only in Kefalonia there exists a hotel that has a casino, and that this
hotel also offers sea ski and windsurfing sports.

To specify which compound terms are valid and which are not, one could follow
a number of approaches. One approach (which could be called positive) would be
to construct a list with all valid compound terms (and then assume that the rest are
invalid). A second approach (which could be called negative) would be to construct
a list with all invalid compound terms (and assume that the rest are the valid ones).

A better (less laborious) than the first (positive) approach would be to list only
the more specific (narrow) valid compound terms and from these to infer more
valid compound terms. The remainder compound terms are considered invalid.
For example, if we specify that {Crete,SeaSports} is valid then we can infer that
{Greece,SeaSports} is valid too. A better (less laborious) than the second (negative)
approach would be to list the more general (broad) invalid compound terms and
from these to infer more invalid compound terms. The remainder compound terms
are considered valid. For example, if we specify that {Crete,WinterSports} is invalid
then we can infer that {Iraklio,WinterSports} is also invalid. CTCA allows follow-
ing all the above approaches as well as more complex ones that allow combining
both valid and invalid compound terms.

CTCA has four basic algebraic operations, namely, plus-product (⊕),
minus-product (⊖), plus-self-product, (

∗
⊕), and minus-self-product (

∗
⊖). All these

are operations over P (T ), the power set of T , where T is the union of the termi-
nologies of all facets.
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A compound terminology S is any subset of P (T ) that includes ∅. We can order
the elements of a compound terminology using the notion of compound ordering.
A compound term s is narrower than (or subsumed by) a compound terms s′, and
we write s � s′, iff ∀t ′ ∈ s′ ∃t ∈ s such that t ≤ t ′. This ordering is usually referred
as Smyth order [273].

For example, and assuming the faceted taxonomy of Fig. 6.2, we have:

{Crete,SeaSports} � {Crete}

{Crete,SeaSports} � {Greece}

{Crete,SeaSports} � {Greece,SeaSports}

If s is a compound term we can define:

BR(s) = {s ′ ∈ P (T ) | s � s′}

NR(s) = {s′ ∈ P (T ) | s′ � s}

Let S be a compound terminology over T . The broader and the narrower compound
terms of S are defined as follows:

BR(S) = {BR(s) | s ∈ S}

NR(S) = {NR(s) | s ∈ S}

The initial operands, thus the building blocks of the algebra, are the basic compound

terminologies, which are the facet terminologies with the only difference that each
term is viewed as a singleton. In most cases, taxonomies are trees, specifically each
term has at most one direct parent. The basic compound terminology of such a
taxonomy (Ti,≤i) is defined as:

STi
=

{

{t} | t ∈ Ti

}

∪ {∅}

A definition that captures the general case (i.e. taxonomies containing terms that can
have more than one direct fathers) is:

STi
=

{

{t} | t ∈ Ti

}

∪ {∅} ∪
{

BR(t) | t ∈ Ti

}

The motivation for this difference is that every individual term of a taxonomy is
by default assumed that it is valid (meaningful), i.e. there are real-world objects (at
least one) to which this term applies. It follows that in the taxonomy C of Fig. 6.6,
the compound term {c2, c3} should be considered valid as it subsumes {c4}.

An expression e over F is defined according to the following grammar:

e ::= ⊕P (e, . . . , e) | ⊖N (e, . . . , e) |
∗
⊕P Ti |

∗
⊖N Ti | Ti,

where the parameters P and N denote sets of valid and invalid compound terms over
the range of the operation, respectively. Roughly, CTCA allows specifying the valid
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Table 6.1 The operations of CTCA

Operation e Se

product S1 ⊕ · · · ⊕ Sn { s1 ∪ · · · ∪ sn | si ∈ Si}

plus-product ⊕P (S1, . . . , Sn) S1 ∪ · · · ∪ Sn ∪ BR(P )

minus-product ⊖N (S1, . . . , Sn) (S1 ⊕ · · · ⊕ Sn) − NR(N)

self-product
∗
⊕ (Ti) P(Ti)

plus-self-product
∗
⊕P (Ti) Ti ∪ BR(P )

minus-self-product
∗
⊖N (Ti)

∗
⊕ (Ti) − NR(N)

compound terms over a faceted taxonomy by providing a small set of valid (parame-
ter P ) and a small set of invalid (parameter N ) compound terms. The self-product
operations allow specifying the meaningful compound terms over one facet. Specif-
ically, the definition of each operation of CTCA is summarized in Table 6.1, where
Si , i = 1, . . . , n, are compound terminologies. Two auxiliary operations, product
and self-product are also defined.

If e is an expression, Se denotes the outcome of this expression and is called the
compound terminology of e. In addition, (Se,�) is called the compound taxonomy

of e.
An expression e is well formed iff every facet appears at most once in e, and

the parameter sets P and N are always subsets of the corresponding set of gen-

uine compound terms. Specifically, each parameter P (resp. N ) of an operation
⊕P (e1, . . . , ek) (resp. ⊖N (e1, . . . , ek)) should be subset of the set of genuine com-
pound terms over the compound terminologies Se1, . . . , Sek

, i.e., subset of:

GSe1 ,...,Sek
= Se1 ⊕ · · · ⊕ Sek

−

k
⋃

i=1

Sei

Returning to the example of Fig. 6.2, the partition of the compound terms to
the set of valid (meaningful) compound terms and invalid (meaningless) compound
terms (according to our assumptions), can be defined using the following CTCA
expression (in infix notation):

e = (Location ⊖N Sports) ⊕P Facilities

with the following P and N parameters:

N = {{Crete,WinterSports}, {Kefalonia,WinterSports}}

P = {{Kefalonia,SeaSki,Casino}, {Kefalonia,Windsurfing,Casino}}

As another example assume that we want to build a catalog of traditional recipes
from all over the world and to this purpose we decide to define facets like Ingredi-

ents, LocationOfOrigin and CookingStyle as shown in Fig. 6.3. Notice that several
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Fig. 6.3 A faceted taxonomy for indexing traditional recipes

combinations of terms are invalid, even in this very small domain. For example, the
compound term {Truffle (from Ingredients), Greece (from Location)} is invalid as
it is impossible to find truffle in Greece, hence there cannot be a traditional Greek
recipe that contains truffle. For the same reason the compound term {Roquefort

(from Ingredients), Greece (from Location)} is invalid as well as the compound
term {Feta (from Ingredients), France (from Location)}. Moreover, the compound
term {Wok (from CookingStyle), Europe (from Location)} is invalid because wok
is used in Asia and not in Europe. According to these assumptions, the partition
of compound terms to the set of valid (meaningful) compound terms and invalid

(meaningless) compound terms is shown in Table 6.2. As the facet Ingredients has
5 terms, the facet LocationOfOrigin has 7 terms, and the facet CookingStyle has
3 terms, the number of compound terms that contain at most 1 term from each
facet is 6 · 8 · 4 = 192. This table contains 113 valid and 62 invalid compound
terms, thus 175 in total. By adding the (5 + 7 + 3 = 15) singletons (which were
omitted from the column of valid) and the empty set we reach the 192 compound
terms.

The partition shown in Table 6.2 can be specified using the following very short
CTCA expression:

erecipes = (Ingredients ⊕P LocationOfOrigin) ⊖N CookingStyle

with the following P and N parameters:

P = {{Feta,Greece}, {Roquefort,France}, {Truffle,France}, {Truffle, Italy},

{Cheese, Italy}, {Cheese, Japan}}

N = {{Europe,Wok}}

Figure 6.4 shows two facets A and B and two expressions: one plus-product and
one minus-product each having an empty parameter set. For each case the com-
pound taxonomy that is defined by each expression is shown. Subsequently, Fig. 6.5
shows how the same compound taxonomy, i.e. the same set of compound terms,
specifically those enclosed in the continuous curve, can be defined using either a
plus-product or a minus-product.

Figure 6.6 shows a faceted taxonomy consisting of three facets, A,B and C.
Some examples of compound terminologies that are defined by expressions of
CTCA are given in Table 6.3. Note that the empty compound term, i.e. ∅, is not
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Table 6.2 The valid and invalid compound terms of the Recipe example

Valid

Feta, Gr Feta, Eu
Feta, Ea Cheese, Gr
Cheese, Eu Cheese, Ea
Ingred, Gr Ingred, Eu
Ingred, Ea Roquefort, Fr
Roquefort, Eu Roquefort, Ea
Cheese, Fr Ingred, Fr
Truffle, Fr Truffle, Eu
Truffle, Ea Truffle, It
Cheese, It Ingred, It
Cheese, Ja Cheese, Asia
Ingred, Ja Ingred, Asia
Feta, Oven Feta, Wok
Feta, C.Style Roquefort, Oven
Roquefort, Wok Roquefort, C.Style
Cheese, Oven Cheese, Wok
Cheese, C.Style Truffle, Oven
Truffle, Wok Truffle, C.Style
Ingred, Oven Ingred, Wok
Ingred, C.Style Gr, Oven
Gr, C.Style It, Oven
It, C.Style Fr, Oven
Fr, C.Style Eu, Oven
Eu, C.Style Ea, Oven
Ea, Wok Ea, C.Style
Ja, Oven Ja, Wok
Ja, C.Style Asia, Oven
Asia, Wok Asia, C.Style
Feta, Gr, Oven Feta, Gr, C.Style
Feta, Eu, Oven Feta, Eu, C.Style
Feta, Ea, Oven Feta, Ea, Wok
Feta, Ea, C.Style Cheese, Gr, Oven
Cheese, Gr, C.Style Cheese, Eu, Oven
Cheese, Eu, C.Style Cheese, Ea, Oven
Cheese, Ea, Wok Cheese, Ea, C.Style
Ingred, Gr, Oven Ingred, Gr, C.Style
Ingred, Eu, Oven Ingred, Eu, C.Style
Ingred, Ea, Oven Ingred, Ea, Wok
Ingred, Ea, C.Style Roquefort, Fr, Oven
Roquefort, Fr, C.Style Roquefort, Eu, Oven
Roquefort, Eu, C.Style Roquefort, Ea, Oven
Roquefort, Ea, Wok Roquefort, Ea, C.Style
Cheese, Fr, Oven Cheese, Fr, C.Style
Ingred, Fr, Oven Ingred, Fr, C.Style
Truffle, Fr, Oven Truffle, Fr, C.Style
Truffle, Eu, Oven Truffle, Eu, C.Style
Truffle, Ea, Oven Truffle, Ea, Wok
Truffle, Ea, C.Style Truffle, It, Oven
Truffle, It, C.Style Cheese, It, Oven
Cheese, It, C.Style Ingred, It, Oven
Ingred, It, C.Style Cheese, Ja, Oven
Cheese, Ja, Wok Cheese, Ja, C.Style
Cheese, Asia, Oven Cheese, Asia, Wok
Cheese, Asia, C.Style Ingred, Ja, Oven
Ingred, Ja, Wok Ingred, Ja, C.Style
Ingred, Asia, Oven Ingred, Asia, Wok
Ingred, Asia, C.Style

Invalid

Feta, It Feta, Fr

Feta, Ja Feta, Asia

Roquefort, Gr Roquefort, It

Roquefort, Ja Roquefort, Asia

Truffle, Gr Truffle, Ja

Truffle, Asia Eu, Wok

Gr, Wok It, Wok

Fr, Wok Feta, Gr, Wok

Feta, Eu, Wok Cheese, Gr, Wok

Cheese, Eu, Wok Ingred, Gr, Wok

Ingred, Eu, Wok Roquefort, Fr, Wok

Roquefort, Eu, Wok Cheese, Fr, Wok

Truffle, Fr, Wok Truffle, Eu, Wok

Truffle, It, Wok Cheese, It, Wok

Ingred, It, Wok Feta, It, Oven

Feta, It, Wok Feta, It, C.Style

Feta, Fr, Oven Feta, Fr, Wok

Feta, Fr, C.Style Feta, Ja, Oven

Feta, Ja, Wok Feta, Ja, C.Style

Feta, Asia, Oven Feta, Asia, Wok

Feta, Asia, C.Style Roquefort, Gr, Oven

Roquefort, Gr, Wok Roquefort, Gr, C.Style

Roquefort, It, Oven Roquefort, It, Wok

Roquefort, It, C.Style Roquefort, Ja, Oven

Roquefort, Ja, Wok Roquefort, Ja, C.Style

Roquefort, Asia, Oven Roquefort, Asia, Wok

Roquefort, Asia, C.Style Truffle, Gr, Oven

Truffle, Gr, Wok Truffle, Gr, C.Style

Truffle, Ja, Oven Truffle, Ja, Wok

Truffle, Ja, C.Style Truffle, Asia, Oven

Truffle, Asia, Wok Truffle, Asia, C.Style
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Fig. 6.4 A plus-product and a minus-product both with empty parameters

Fig. 6.5 Two equivalent CTCA expressions
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Fig. 6.6 A faceted taxonomy
consisting of three facets

Table 6.3 Some examples of CTCA-defined compound terminologies

e Se

A ⊕P B, P = ∅ {{a1}, {a2}, {b1}, {b2}, {b3}}

A ⊖N B, N = ∅ {{a1}, {a2}, {b1}, {b2}, {b3},

{a1, b1}, {a1, b2}, {a1, b3}, {a2, b1}, {a2, b2}, {a2, b3}}

A ⊕P B, P = {{a2, b1}} {{a1}, {a2}, {b1}, {b2}, {b3}, {a1, b1}, {a2, b1}}

A ⊖N B, {{a1}, {a2}, {b1}, {b2}, {b3}, {a1, b1}, {a2, b1}}

N = {{a1, b2}, {a1, b3}}

(A ⊖N B) ⊕P C, {{a1}, {a2}, {b1}, {b2}, {b3}, {c1}, {c2}, {c3}, {c4},

N = {{a2, b2}}, {a1, b1}, {a1, b2}, {a1, b3}, {a2, b1}, {a2, b3},

P = {{a1, b3, c1}} {a1, b3, c1}, {a1, b1, c1}, {a1, c1}, {b3, c1}, {b1, c1}}

(A ⊕P B) ⊖N C, {{a1}, {a2}, {b1}, {b2}, {b3}, {a1, b1}, {c1}, {c2}, {c3}, {c4},

P = {{a1, b1}}, {a1, c1}, {a1, c2}, {a1, c3}, {a1, c4},

N = {{b3, c4}} {a2, c1}, {a2, c2}, {a2, c3}, {a2, c4},

{b1, c1}, {b1, c2}, {b1, c3}, {b1, c4},

{b2, c1}, {b2, c2}, {b2, c3}, {b2, c4},

{b3, c1}, {b3, c2}, {b3, c3},

{a1, b1, c1}, {a1, b1, c2}, {a1, b1, c3}, {a1, b1, c4}}

shown, and for reasons of brevity we adopt the basic compound terminologies for
trees, i.e. we do not show the compound term {c2, c3} (and all those that contain
this compound term).

As we have seen in the previous examples, there are several expressions that
could be used for defining the same partition of compound terms. Below we provide
some methodological tips that originate from our experience so far.

Consider the compound taxonomies S1, . . . , Sn and suppose that we have to spec-
ify those elements of GS1,...,Sn that are valid. If the majority of the elements of
GS1,...,Sn are valid then it is better for the designer to use a minus-product operation
so as to specify only the invalid compound terms because they are less in number
than the set of valid compound terms, so he will have to provide a less number of
parameters. Concerning the methodology for defining the set N of a minus-product
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operation, it is more efficient for the designer to put in N “short” compound terms
that consist of “broad” (w.r.t. ≤) terms. The reason is that from such compound
terms a large number of new invalid compound terms can be inferred. In particu-
lar, what we are looking for is a Sperner system1 of the maximal invalid compound
terms.

Conversely, if the majority of the genuine compound terms are invalid, then it is
better for the designer to employ a plus-product operation, so as to specify only the
valid compound terms (with a comparatively smaller parameter set). Concerning the
methodology for defining the set P of a plus-product operation, it is more efficient
for the designer to put in P “long” compound terms that consist of “narrow” terms,
since from such compound terms a large number of new valid compound terms can
be inferred. In particular, what we are looking for is a Sperner system of the minimal
valid compound terms.

Minus-product operations “follow better” the evolution of taxonomies, if they
evolve in a top-down manner (addition of leaves). On the other hand, if taxonomies
evolve in a bottom-up manner (e.g. assume the case where we have a rather fixed
set of leaves and new terms are added on top of these), then plus-product operations
follow better evolution.

From an application point of view, it is important to note that there is no need
to store the set of valid compound terms that are defined by an expression (i.e. the
set Se), as an algorithm (specifically the algorithm IsValid(e, s) given in [308]) can
check whether a compound term s belongs to the set of compound terms defined by
an expression e (i.e., whether s ∈ Se) in polynomial time. Specifically, the compu-
tational complexity of this algorithm is O(|T |3 · |s| · |P ∪ N|), where P denotes the
union of all P parameters and N denotes the union of all N parameters appearing
in e.2 Thus, only the faceted taxonomy F and the CTCA expression e need to be
stored.

6.1.3 Deriving Navigational Trees from CTCA Expressions

As we can infer the valid compound terms of a faceted taxonomy dynamically
(through the algorithm IsValid(e, s)), we can generate a single hierarchical navi-
gation tree on the fly, having nodes that correspond to valid compound terms only.
The navigation tree contains nodes that enable the user to start browsing in one facet
and then cross to another, and so on, until reaching the desired level of specificity.

The interaction paradigm supported is actually the same with that of dynamic
taxonomies. With respect to the formalization described in Sect. 2.6, the only dif-
ference is that instead of conditions of the form

Ī (ctx) = ∅

1A Sperner system [275] is a set system N such that if X,Y ∈ N and X = Y then X ⊂ Y and
Y ⊂ X.
2Note that |T | is not expected to be very large, in a faceted taxonomy.
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here we have conditions of the form

ctx ∈ Se

The former is extensional and intensional (extensional due to I and intensional
due to its hat, Ī ) while the latter is only intensional.

The algorithm for deriving navigation trees on the fly is described in [308] and
has been implemented and used in the FASTAXON system [302] (described in
Sect. 8.3.2).

Summarizing, the navigation trees can be exploited for aiding object indexing
and preventing indexing errors. For instance, to index (tag) an object the user can
browse the navigation tree until forming the desired compound term. The avail-
ability of the navigation tree not only could prevent mistakes but it could also be
considered as a recommendation service in the sense that during the interaction the
user can observe only the applicable facets and those terms of these facets that could
be applied. For example, consider a user who wants to index a new recipe. If he has
selected the term Roquefort, then only Europe, Italy and France will be displayed.
from the facet LocationOfOrigin.

In addition, browsing the valid compound terms is also useful for the designer
of a CTCA expression e for testing whether the compound taxonomy defined by e

contains the desired compound terms. This allows following a gradual expression
formulation process where the designer can immediately observe the effects of his
changes on e.

6.1.4 Tackling the Taxonomy Evolution Problem

Taxonomy updates (additions and deletions of terms or subsumption relationships)
may turn a CTCA expression e ill-formed and/or make the compound terminology
specified by e no longer reflecting the domain knowledge originally expressed in e.

For instance, consider Fig. 6.3 and erecipes. What should we do if we delete the
term Europe or the term Asia, or if we add a new term Roma under Italy?

A technique that aids the designer to “curate” the expression e would be very
helpful and could enhance the robustness of systems that are based on CTCA.

A technique for revising a CTCA expression e after a taxonomy update, so that
the new expression e′ is well-formed and its semantics (i.e. defined valid compound
terms) is as close as possible to the semantics of the original expression e before the
update, is possible [294]. Figure 6.7 illustrates the problem. F denotes the original
faceted taxonomy, and F ′ the modified one. SF

e denotes the compound terminology
defined by e, while SF ′

e′ the compound terminology defined by the revised expression
e′ over the modified F ′.

The key idea is to try finding an expression e′ such that the distance between SF ′

e′

and SF
e is minimal. Recall the Principle of Minimal Change [158], which can be

found in several forms in the literature, such as the Principle of Persistence of Prior
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Fig. 6.7 Revising CTCA expressions after taxonomy updates

Knowledge [80], or the Principle of Conservation [115]. This principle states that
the new knowledge base should be as close as possible to the original (a thorough
discussion can be found at [112]). Of course, closeness or distance has to be defined
formally. In our case we define the distance between two compound terminologies
S,S′ as the cardinality of their symmetric difference (in the classical set-theoretic
sense), i.e. we can write:

dist
(

S,S′
)

=
∣

∣

(

S − S′
)

∪
(

S′ − S
)∣

∣ =
∣

∣S − S′
∣

∣ +
∣

∣S′ − S
∣

∣

A set of basic taxonomy change operations is considered, namely rename(t, t ′),
delete(t), add(t), delete(t ≤ t ′), and add(t ≤ t ′).

Before an operation delete(t ≤ t ′) we assume that the relationship t ≤ t ′ be-
longs to the transitive reduction (Hasse diagram) of ≤. An example is shown in the
left part of Fig. 6.8.

Before an operation add(t ≤ t ′) we assume that the relationship t ≤ t ′ does not
already exist in ≤. An example is shown in the left part of Fig. 6.10.

Concerning the deletion of terms we consider that whenever a term t is deleted,
all subsumption relationships in which t participates are deleted too. However, as
the relation ≤ is transitive, if the transitive links of ≤ are not stored explicitly, i.e.
if only the transitive reduction of ≤ is stored, then whenever a term t is deleted, the
immediate parent(s) of t should become parent(s) of all immediate children of t . An
example is shown in the left part of Fig. 6.9.

Below we describe how e should be revised after each type of taxonomy change
operations. In brief, the deletion/addition of terms or subsumption relationships in
a faceted taxonomy can be handled by extending the P/N parameters of e, so that
the missing compound terms are recovered and the extra ones are removed. Ex-
amples are shown in Figs. 6.8 and 6.9. The revision is described in more detail
in Table 6.4. The left column lists the taxonomy change operations, except from
add(b ≤ a) (which we will describe later on), and for each one it shows how e′ is
derived from e.

Let us first introduce some notations. Given a compound term s and a term t , the
notation s#t is used to denote the compound term s − {t}. Now given a compound
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Fig. 6.8 Expression revision after subsumption relationship deletion

Fig. 6.9 Expression revision after term deletion
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Table 6.4 Expression revision after taxonomy updates

uF alg

(1) rename(a, a′) P ′ = {s#a#a′ | s ∈ P }, N ′ = {s#a#a′ | s ∈ N}

SF ′

e′ = {s#a#a′ | s ∈ SF
e }

(2) delete(a) P ′ =
⋃

s∈P {s#a#t | t ∈ Br
(1)
F (a)}

N ′ =
⋃

s∈N {s#a#t | t ∈ Nr
(1)
F (a)}

SF ′

e′ = SF
e − {s | a ∈ s}, thus SF ′

e′ ⊆ SF
e

(3) add(a) N ′ = N ∪ { {a,ui} | ei ∈ operands(e),

f (a) ∈ f (ei), uj ∈ maximal�(Sei
)}

SF ′

e′ = SF
e ∪ {{a}}

(4) delete(b ≤ a) P ′ = P ∪ { s#NrF (b)#{a} | s ∈ P }

N ′ = N ∪ { s#BrF (a)#{b} | s ∈ N}

SF ′

e′ = SF
e

term s and two terms t and t ′, the notation s#t#t ′ is used to denote the compound
term s if t ∈ s, otherwise the compound term derived from s by replacing t by t ′,
i.e.:

s#t#t ′ =

{

(s − {t}) ∪ {t ′} if t ∈ s,

s otherwise

For example, {a, b, c}#b#e = {a, e, c}, while {a, b, c}#e#f = {a, b, c}. We can gen-
eralize, and for every compound terms s, s1, s2, define:

s#s1#s2 =

{

(s − s1) ∪ s2 if s ∩ s1 = ∅,

s otherwise

For example, {a, b, c}#{b, c, d}#{e,f, g} = {a, e, f, g}.
Table 6.4 shows how e′ can be obtained for e for each of the basic change oper-

ations. In addition it shows the relationship between SF ′

e′ and SF
e . Specifically, rows

(1), (2) and (4) shows how each P and N parameter of e should be revised to a P ′

and N ′ parameter of e′. Row (3), which corresponds to term addition, means that for
every minus-product operation ⊖N (e1, . . . , ek) and for every ei (1 ≤ i ≤ k) such that
f (a) ∈ f (ei) (meaning the a belongs to a facet that does not appear in expression
ei ), we have to add to N the parameter {a,ui} for each ui ∈ maximal�(Sei

).
However, the addition of a subsumption relationship in a faceted taxonomy can-

not be handled, so straightforwardly. The reason is that, since the semantics of the
operations ⊕P /⊖N are defined on the basis of the transitive relation � (compound
ordering), after the addition of a subsumption relationship we may no longer be able
to separate (from the semantics) compound terms that were previously separable,
i.e., compound terms which were not �-related before the addition of the subsump-
tion link. In such cases, the resulting compound terminology of any revised expres-
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Fig. 6.10 Expression revision after subsumption relationship addition

sion may neither be subset nor superset of the original compound terminology. This
happens because the effects of adding a subsumption relationship is different in ⊕P

and ⊖N : the compound terminologies defined by ⊕P operations become larger,
while those defined by ⊖N operations become smaller. Now the combination of ⊕P

and ⊖N operations can lead to compound terminologies which are neither larger
nor smaller than the original one. Figure 6.10 shows an indicative example. It shows
two expressions and for each one of them two possible revisions. The treatment of
such cases as well as additional composite operations (addition of a new terminal
term, addition of an intermediate term) are described in detail in [294].

6.1.5 Expression Mining and Other Applications

Assuming a materialized faceted taxonomy M , the problem of automatically de-
riving an expression e (or the shortest expression e) that specifies all extensionally
valid compound terms of M , V (M), is elaborated in [295]. This problem is called
expression mining and is illustrated in Fig. 6.11.

Let V (M) be the set of all compound terms of a materialized faceted taxonomy
M that have a non empty extension, i.e. V (M) = {c ∈ P (T ) | Ī (c) = ∅}. Our goal is
to find an expression e such that Se = V (M).

We define the size of an expression e as the number of terms that participate in
the P and N parameters of e. The problem of shortest expression mining is to find
an expression e such that Se = V (M) and the size of e is the minimum.

This means that CTCA can be exploited both forthrightly and reversely, i.e.,
a designer can formulate an expression in order to specify quickly the set of valid
compound terms, while from an existing set of valid compound terms an algorithm
can find an expression that describes these compound terms. The latter direction



160 Y. Tzitzikas

Fig. 6.11 CTCA expression mining

Fig. 6.12 Various scenarios involving CTCA

has several other applications. For instance, it can be used for compressing large
symbolic data tables (as shown in [293]), and for exchanging in a compact way the
extensionally valid compound terms of a materialized faceted taxonomy.

A complex scenario that involves both directions is illustrated in Fig. 6.12. It
sketches a method for reorganizing the single-hierarchical taxonomies on the Web.
At first the terms of these taxonomies could be partitioned to facets, resulting to a
materialized faceted taxonomy. Subsequently expression mining could be used for
expressing all valid combinations as an expression. That expression can then be used
for browsing.

Other possible applications of CTCA are described next.

• Speeding up Navigation and Query Services.
The algebra can also be used to speedup navigation and querying. For example,

consider the materialized faceted taxonomy of Fig. 6.2, and assume that we have
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performed expression mining. Now suppose the user wants to retrieve all hotels
located in Greece that offer winter sports. As {Crete,WinterSports} is an invalid
compound term, the system does not have to perform any operation that involves
objects.

• Configuration Management
Another application of the algebra is configuration management. Consider a

product whose configuration is determined by a number of parameters, each as-
sociated with a finite number of values. However, some configurations may be
unsupported, unviable, or unsafe. For this purpose, the product designer can em-
ploy a CTCA expression which specifies all valid configurations, thus ensuring
that the user selects only among these.

6.2 Adaptation of Taxonomy-Based Sources Through User

Feedback

Dynamic taxonomies and faceted search offer flexible access and interaction. This
section describes some basic principles for offering flexibility also in updates.

The indexing (description) of objects is inherently imprecise independently of
whether it is performed manually or automatically (using statistical methods). One
approach that can be used to improve the index, or to adapt it according to the needs
and desires of users, is to enable users to provide feedback while interacting with
the system. Such feedback can then be exploited to modify the index. In this section
we describe index improvement/adaptation/personalization principles and methods.
These methods can be specialized according to the particular needs of an application
domain. One such domain is that of personal information systems (e.g. for tagging
photographs, emails, etc.).

Let S be a function S : Q → P (Obj). Specifically, S is the extension of Ī (for
the definition of Ī , see Table 2.1), from T to the set of queries Q. We assume
the classical query-and-answer and browsing interaction scheme. In both cases, the
“position” of a user while interacting with the system can be described by a pair (q ,
A). The query q may have been submitted by the user or it may correspond to his
focus while browsing the source through a dynamic taxonomy interface, while A is
the answer of that query q , i.e. A = S(q).

Now suppose that the user can modify the current answer A by deleting or adding
objects to it (deleting undesired objects, adding desired missing objects), and let A′

be the resulting answer. Subsequently the user may request adaptation, i.e. modifi-
cation of S to an S′ such that S′(q) = A′.

This means that the user wants a new source S′ such that S′(q) = A′. There
may be several sources S′ that satisfy this equation. Here we only consider the case
where the solution sources differ only in their interpretation. This means that the
taxonomy remains intact and only object descriptions may change. Let Isol be the
set of all such interpretations, i.e.

Isol = {I ∈ I | SI (q) = A′}



162 Y. Tzitzikas

Fig. 6.13 Additions/deletions of single objects from single term queries

where I denotes the set of all possible interpretations, and SI (q) denotes Ī (q). We
need a criterion for selecting one of them, and it is reasonable to select the inter-
pretation that is closest to the current interpretation I . We can define the distance
between two interpretations as follows:

dist
(

I, I ′
)

= |Ī ⊖ Ī ′|

where ⊖ denote the symmetric difference (in plain set-theoretic sense). We use Ī ⊖

Ī ′ instead of just I ⊖ I ′ in order to take into account the structure of the taxonomy.
Now we can define the desired new interpretation I◦ as follows:

I◦ = argI ′minimal
{

dist
(

I, I ′
)

| I ′ ∈ Isol

}

i.e. I◦ is the closest (to I ) interpretation(s) that can satisfy the user request.3 Tech-
nically, we need a method for modifying the existing I to the desired I◦ rather than
generating the entire set Isol and selecting the element that is closest to I . An ef-
ficient method for reaching I◦ by modifying I is given in [303, 304, 307]. Let
A+ = A′ − A and A− = A − A′, so A+ is the set of objects that have to be added
to the current answer, and A− is the set of objects that have to be deleted from the
current answer in order to reach A′, i.e. we can write A′ = (A∪A+)−A−, or equiv-
alently, A′ = (A−A−)∪A+. The complexity of the method described in [303, 307]
is polynomial. Specifically, the time complexity is

• O(|A+| + |A−||T |2) for a single term query,
• O(|A− ∪ A+|k|T |2) for a disjunctive query of the form t1 ∨ · · · ∨ tk , and
• O(|A−|k|T |2 + |A+|k) for a conjunctive query of the form t1 ∧ · · · ∧ tk .

Some indicative simple examples are shown in Fig. 6.13. It shows the results of
requests for adding/deleting an object to/from the interpretation of a single term.

3There can be more than one such interpretations.
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It is not hard to see that the same machinery could be used for other kinds of user
feedback. For instance, instead of modifying the answer set the user can change the
query, i.e. from q he may derive a q ′, and request from the system to adapt, i.e. to
reach a S′ such that S′(q ′) = A. We can exploit the same technique by considering
A+ = A − S(q ′) and A− = S(q ′) − A.

This section presented only the foundations of this method. In real applications
this method can be extended with various other aspects, e.g. for specifying which
facets are updatable and which are not, for specifying criteria (or ranking meth-
ods) for breaking ties (when there are several interpretations I◦ that have minimal
distance from I ), etc.

6.3 Mapping Taxonomy-Based Sources

Assume that we have two taxonomy-based sources and suppose that we want to
establish mappings between their taxonomies. If these sources share instances, i.e.
if there are objects classified with respect to both taxonomies, then the ostensive

method [296] can be used. The ostensive method is a data-driven method for es-
tablishing mappings. Cornerstone of the ostensive method is what is called naming

function (also analyzed in [307]). Intuitively, a naming function is a function that
takes as input a set of objects A and returns a query whose answer is the set A or a
set that is as “close” as possible (in set-theoretic sense) to A.

Let S be a function S : Q → P (Obj). Specifically, S is the extension of Ī (for the
definition of Ī , see Table 2.1), from T to the set of queries Q.

Ideally we would like a function n : P (Obj) → Q such that:

∀A ⊆ Obj, S
(

n(A)
)

= A

If such a function exists we call it exact naming function. If S(n(A)) = A we say
that n(A) is the exact name of A.

However as S is not always a surjective function we introduce “approximate”
naming functions. Let A be a set of objects (A ⊆ Obj). We define a lower naming

function n− and an upper naming function n+, as follows:

n−(A) = lub≤{q ∈ Q | S(q) ⊆ A}

n+(A) = glb≤{q ∈ Q | S(q) ⊇ A}

where lub stands for least upper bound, and glb stands for greatest lower bound
with respect to the query containment ordering. Query containment is defined as
follows: given two queries, q and q ′ in Q, we write q ≤ q ′ if S(q) ⊆ S(q ′), and we
write q ∼ q ′, if both q ≤ q ′ and q ′ ≤ q hold. Note that ∼ is an equivalence relation
over Q, and let Q∼ denote the set of equivalence classes induced by ∼ over Q. Note
that ≤ is a partial order over Q∼.

Now let A be a subset of Obj for which both n−(A) and n+(A) are defined, i.e.
the above lub and glb exist (each corresponding to one element of Q∼). It is clear
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that in this case it holds:

S
(

n−(A)
)

⊆ A ⊆ S
(

n+(A)
)

and that n−(A) and n+(A) are the best “approximations” of the exact name of A.
Note that if S(n−(A)) = S(n+(A) then both n−(A) and n+(A) are exact names
of A.

Let QN denote the subset of Q that contains queries that we would like to con-
sider as candidate names. In general, QN = Q. However we introduce QN because
we may want names to be queries of a specific form. For instance, we may want to
exclude queries that contain negation.

If QN is a query language that (a) supports disjunction (∨) and conjunction (∧)
and is closed with respect to these, and (b) has a top (⊤) and a bottom (⊥) element
such that S(⊤) = Obj and S(⊥) = ∅, then the functions n− and n+ are defined for
every subset A of Obj. In this case (Q∼,≤) is a complete lattice and these functions
are defined as:

n−(A) =
∨

{q ∈ QN | S(q) ⊆ A}

n+(A) =
∧

{q ∈ QN | S(q) ⊇ A}

As QN is usually an infinite language, n−(R) and n+(R), as defined earlier, are
queries of infinite length. This means that in practice we also need a method for
computing a query of finite length that is equivalent to n−(R) and another one that
is equivalent to n+(R).

Given an interpretation I and an object o, let DI (o) =
∧

{t ∈ T | o ∈ I (t)}. Let
QN = Q+ where Q+ denotes the set of boolean expressions of terms that do not
contain negation. It can be proven that:

n+(A) ∼
∨

{DI (o) | o ∈ A}

n−(A) ∼
∨

{

DI (o) | o ∈ A,S
(

DI (o)
)

⊆ A
}

,

The time complexity for computing these names is polynomial. Specifically, the
time complexity is O(|A||T |) for computing n+(A) and O(|A||Obj||T |2) for com-
puting n−(A).

The naming functions now will be exploited for establishing mappings. Consider
two sources Si : Qi → P (Obji), and Sj : Qj → P (Objj ). Ostensive mapping is
possible only if their domains are not disjoint, i.e. if Obji ∩ Objj = ∅. Let C de-
note their common domain, i.e. C = Obji ∩ Objj . The ostensive method can yield
relationships that are extensionally valid in C.

Suppose that Si wants to establish a mapping mi,j to a source Sj . A mapping
mi,j can contain relationships of the form:

(i) qi ≥ qj ,
(ii) qi ≤ qj
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where qi ∈ Qi , qj ∈ Qj . These relationships have the following meaning:

(i) qi ≥ qj means that Si(qi) ∩ C ⊇ Sj (qj ) ∩ C

(ii) qi ≤ qj means that Si(qi) ∩ C ⊆ Sj (qj ) ∩ C

The form (i) or (ii) of the relationships of a mapping depends on the intended
use of the mappings. For instance, suppose that Si acts as a mediator [316] over Sj .
If Si wants to compute sound (with respect to C) answers, then it should use only

relationships of type (i) during query translation. On the other hand, if Si wants to
compute complete (with respect to C) answers then it should use relationships of
type (ii) (e.g. see [165]).

Another remark is that if Si is a mediator that adopts a global-as-view4 modeling
approach, then all qi that appear in mi,j are primitive concepts. On the other hand,
if Si adopts a local-as-view approach then all qj that appear in mi,j are primitive
concepts of Sj .

Ostensive mapping for the more general case where Si is interested in relation-
ships of both, (i) and (ii), types, and where qi, qj can be arbitrary queries, is de-
scribed next. Let n−

j and n+
j be the naming functions of Sj as defined earlier. Also

let Sc
i (q) = Si(q) ∩ C and Sc

j (q) = Sj (q) ∩ C. Now suppose that Si wants to artic-
ulate a query qi ∈ Qi . The query qi should be articulated as follows:

• qi ≥ n−
j (Sc

i (qi)) if Sc
i (qi) ⊇ Sc

j (n
−
j (Sc

i (qi)))

• qi ≤ n−
j (Sc

i (qi)) if Sc
i (qi) ⊆ Sc

j (n
−
j (Sc

i (qi)))

• qi ≥ n+
j (Sc

i (qi)) if Sc
i (qi) ⊇ Sc

j (n
+
j (Sc

i (qi)))

• qi ≤ n+
j (Sc

i (qi)) if Sc
i (qi) ⊆ Sc

j (n
+
j (Sc

i (qi)))

Observe the role of the naming functions. Sj instead of checking all queries in Qj ,
it just uses its naming functions in order to compute the lower and the upper name of
the set Si(qi) ∩ C. Recall that the naming functions (by definition) return the most
precise (semantically close) mapping for qi .

It is worth mentioning that the above relationships can be obtained without exten-
sive communication. In fact, they can be obtained by a quite simple and efficient (in
terms of exchanged messages) distributed protocol. Fig. 6.14 illustrates the protocol
(i.e., the exchanged messages) for linking a query q expressed over the terminology
of S1 with a query expressed over the terminology of S2. Each source has to send
only one message.

The exact protocol is described in Fig. 6.15. Two messages have to be exchanged
between Si and Sj for articulating the query qi .

A source can run the above protocol in order to articulate one, several or all of its
terms (or queries).

Another remark is that Si and Sj need not a-priori know (or compute) their com-
mon domain C, as C is “discovered” during the execution of the protocol (this is the
reason why Sj stores in F and sends to Si those objects that do not belong to Objj ).

4For more about the distinction global-as-view versus local-as-view see [56, 165].
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Fig. 6.14 Messages for articulating q1 of S1 according to the ostensive method

Si : (1) A := Si(qi);
(2) SENDSi→Sj

(A)

Sj : (3) F := A \ Objj

(4) A := A ∩ Objj ;

(5) down := n−
j

(A) ; Bdown := Sj (down) ;

(6) up := n+
j

(A) ; Bup := Sj (up) ;

(7) SENDSj →Si
(F , down,Bdown,up,Bup)

Si : (8) If (A \ F) ⊇ (Bdown ∩ Obji) then set qi ≥ down ;
(9) If (A \ F) ⊆ (Bdown ∩ Obji) then set qi ≤ down ;
(10) If (A \ F) ⊇ (Bup ∩ Obji) then set qi ≥ up ;
(11) If (A \ F) ⊆ (Bup ∩ Obji) then set qi ≤ up

Fig. 6.15 The ostensive articulation protocol

If the desired query language QN does not satisfy the criteria mentioned earlier
(i.e. lub and glb do not alway exist), then the only difference of the protocol is that
the message that Sj sends to Si may contain more than one up and down queries.
This is clarified later on by examples.

Consider the sources shown in Fig. 6.16 and suppose that S1 wants to articulate
its terms with queries of S2. In the following examples we omit the set F (from the
message of line (7) of Fig. 6.15) as it is always empty.

The steps for articulating the term cabbages follow:

S1 → S2 : {1}
S2 → S1 : (⊥,∅), (green, {1,5,6})
S1 : cabbages ≤ green
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Fig. 6.16 An example of two sources S1 and S2. Here Obj1 ∩ Obj2 = {1,2,3,4,5,6,7}

The steps for articulating the term apples follow:

S1 → S2 : {4,5}
S2 → S1 : (⊥,∅), (red ∨ green, {1,2,3,4,5,6})
S1 : apples ≤ red ∨ green

The steps for articulating the term foods follow:

S1 → S2 : {1,2,3,4,5,6,7}
S2 → S1 : (red ∨ green, {1,2,3,4,5,6}),

(red ∨ green ∨ yellow, {1,2,3,4,5,6,7,8})
S1 : foods ≤ red ∨ green,

foods ∼ red ∨ green ∨ yellow

If S1 runs the protocol for each term of its taxonomy, it will infer the following
relationships:

cabbages ≤ green

tomatoes ≤ red

apples ≤ red∨ green

bananas ≤ green∨ yellow

vegetables ≤ green∨ red

fruits ≤ red∨ green∨ yellow

foods ≤ red∨ green

foods ∼ red∨ green∨ yellow

If S2 runs this protocol for each term of its taxonomy, it will infer the following
relationships:
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Fig. 6.17 An example of two
sources

red ≥ tomatoes

red ≤ tomatoes∨ apples

green ≥ cabbages

green ≤ cabbages∨ apples∨ bananas

yellow ≤ bananas

color ∼ cabbages∨ tomatoes∨ apples∨ bananas

The protocol can be used to articulate single terms to queries, but also to articu-
late queries to queries. For example, the steps for articulating the query apples ∨

bananas follow:

S1 → S2 : {4,5,6,7}
S2 → S1 : (red ∨ green ∨ yellow, {1,2,3,4,5,6,7,8})
S1 : apples ∨ bananas ≤ red ∨ green ∨ yellow

Now consider the case where we do not want to articulate terms with queries, but
terms with single terms only, i.e. consider the case where QN = T . Note that now
lub{t ∈ T | S(t) ⊆ A} and glb{t ∈ T | S(t) ⊇ A} do not always exist. For example,
consider the source shown in Fig. 6.17(a). Note that n+({1}) = glb{a, b} which does
not exist. Also note that n−({2,3}) = lub{c, d} which does not exist. Therefore, we
can define the upper and lower names of a set A as follows: n−(A) = maximal({t ∈

T | S(t) ⊆ A)}) and n+(A) = minimal({t ∈ T | S(t) ⊇ A)}). Consider for example
the source shown in Fig. 6.17(b). Here we have:

n−({1,2,3}) = maximal({c, d, e, b}) = {b}

n+({1,2,3}) = minimal({b, a}) = {b}

The relationships obtained by the term-to-term mapping are less expressive than
the relationships obtained by the term-to-queries mapping. For instance, suppose
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Fig. 6.18 Three examples

that we want to articulate the terms of the source S1 in each one of the three exam-
ples that are shown in Fig. 6.18. The bottom part of that figure shows the articulation
a1,2 that is derived by the term-to-term articulation and the term-to-queries articu-
lation in each of these three examples.

As an epilogue we could say that the ostensive method can be used for creating
mappings not only between individual terms but also between arbitrary queries. The
method is independent of the nature of the objects (i.e. the objects may be images,
audio, videos). It can be implemented efficiently by a communication protocol and
the common domain of the involved sources (or peers) is discovered during the
execution of the protocol. Reference collections could be used for the case where
the domain of sources are disjoint. For example in a peer-to-peer setting, each peer
could index a small set of objects before joining the network. This will enable peers
to run the articulation protocol on this reference collection.

Of course the method could be combined with other statistical methods. Other
works aiming at finding a common language include [26].

6.4 Distributed Taxonomy-Based Sources

6.4.1 Mappings and Mediators

Suppose that we have different taxonomy-based sources and that we wish to provide
a unified browsing or query interface to their indexed objects, either through one of
the existing taxonomies or through a different one. The notion of mediator (initially
proposed in [316]) can be adopted to this purpose. In brief, a mediator over a set of
taxonomy-based sources consist of a taxonomy and a number of mappings between
its taxonomy and the taxonomies of the underlying sources. These mappings aim at
bridging the inevitable naming, granularity and contextual heterogeneities that may



170 Y. Tzitzikas

Fig. 6.19 A mediator over three taxonomy-based sources

exist between the taxonomies of the sources. These inter-taxonomy mappings can
be defined either manually, automatically (e.g. using the ostensive method described
in Sect. 6.3), or semiautomatically.

The mediator does not have to store object descriptions. The users of the mediator
can pose queries using terms from the mediator taxonomy. By exploiting the inter-
taxonomy mappings, these queries can be translated to queries that can be answered
by the underlying sources. The answers returned by the underlying sources are then
aggregated and are displayed to the user. Furthermore they can be summarized and
explored according the interaction paradigm of dynamic taxonomies and faceted
search. Users do not necessarily have to formulate queries, but they can directly
start browsing using the taxonomy of the mediator. Figure 6.19 illustrates a mediator
M over three taxonomy-based sources S1, S2 and S3. The fat arrows that cross the
taxonomy boundaries indicate relationships that are part of the mappings of the
mediator. If we denote by ≤M the subsumption relation of the mediator and by
≤MS1 the mapping between the mediator M and the source S1, then in our example
we have: Thessaloniki ≤MS1 Macedonia ≤M Mainland ≤M Greece.

Integrating objects from several sources often requires restoring the context of
these objects, i.e. adding information that is missing from the original represen-
tation of the objects which concerns the context of the objects. An example that
demonstrates how the articulations can restore the context of the objects is shown
in Fig. 6.20(b). The illustrated mediator provides access to electronic products ac-
cording to the type of the products and according to the location of the stores that
sell these products. The mediator has two underlying sources S1 and S2, where the
former corresponds to a store located in Heraklion, while the latter corresponds to
a store located in Paris. The context of the objects of each source, here the location
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Fig. 6.20 Two examples of a mediator

of the store that sells each product, can be restored by adding to the articulations
appropriate relationships. Specifically, for defining that all PhotoCameras of the
source S1 are available through a store located in Heraklion, it suffices to put in
the articulation aM,1 the relationship PhotoCameras1 ≤ Heraklion, while for
defining that all products of the source S2 are available through a store located in
Paris, it suffices to put in the articulation aM,2 the following relationship ⊤2 ≤

Paris, where ⊤2 denotes the maximal element of the subsumption relation of S2.
If the underlying sources return answers that are accompanied by their complete

descriptions then the mediator can support the interaction paradigm of dynamic tax-
onomies and faceted search. Specifically, whenever an underlying taxonomy-based
source (Ti,≤i, Ii,Qi) (where Ii : Ti → Obji ) receives a query q ∈ Qi , it returns
the set of objects Īi(q) where each object is accompanied by the description DĪi

(o).
The complete descriptions of the objects allow the mediator to compute the zoom
points.

This can be explained using the example shown in Fig. 6.21. Suppose the
mediator receives the query q = a1. Subsequently the mediator sends the query
b1 ∨ b2 to source Si . The source Si then returns as answer the object o1 (because
ĪSi

(b1 ∨ b2) = {o1}). Note that DIi
(o1) = {b2}, while DĪi

(o1) = {b2, b1}. The term
b2 allows the mediator to conclude that a3 is a zoom-in point (because b2 ≤MSi a3)
while the term b1 in the complete description allows the mediator to conclude that
a2 is a zoom-side point (as b1 ≤MSi a2). Note that if Si returned only the “direct”
description (i.e. not the full description) of o1, then the mediator would not be able
to infer that a3 is a zoom-in point.

Consider a mediator M over k sources S1, . . . , Sk , and k mappings ≤MS1

, . . . ,≤MSk
. If o is an object, let Di(o) denote the description of the object with

respect to a source Si (i.e. Di(o) = DĪSi
(o)). The description of o with respect to
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Fig. 6.21 An example
of a mediator M over one
source Si

the mediator terminology TM is given by:

D(o) =
⋃

i=1..k

DMi(o), where DMi(o) = {t ∈ TM | ti ∈ Di(o) and ti ≤MSi t}

The interested reader can refer to [292] for more details.
So far we have seen a virtual integration approach. In a materialized integration

approach the integrated system by querying the underlying sources it gets and stores
the extension of all of its terms. In that case, it would be enough for the sources to
return objects with their (direct descriptions).

Query evaluation algorithms for several mediator operation modes are given
in [306]. By combining different modes of query evaluation at the sources and the
mediator, and different types of query translation, a flexible, efficient scheme of me-
diator operation is obtained, which can accommodate various application needs and
levels of answer quality.

6.4.2 Distributed Query Evaluation

The same integration problem in the context of a peer-to-peer setting consisting of
primary sources, mediators, and articulated sources (as illustrated in Fig. 6.22), is
elaborated in [185]. The difference between the P2P architecture and the classical
two-tiered mediator approach is that in a P2P system the mappings between the
peers may lead to cyclic dependencies between the query evaluation tasks of the
peers. Such cases require special treatment in order to avoid endless query evalua-
tion and to optimize the evaluation of queries.

One way of interpreting such a network is to view it as a single source which hap-
pens to be distributed along several sources, each dealing with a specific subtermi-
nology of the network terminology. The global source can be logically reconstructed
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Fig. 6.22 Peer-to-peer
systems of taxonomy-based
sources

Fig. 6.23 A network of three
sources and the inferred
global taxonomy

by removing the barriers which separate local sources, as if (virtually) collecting all
the network information in a single repository. Note that this global source does
not preexist. It emerges in a bottom-up manner by the mappings of the peers. This
is one difference that distinguishes peer-to-peer systems from federated distributed
databases. For example, Fig. 6.23(a) shows a network of three sources. Notice that
although the subsumption of each source is acyclic, the global subsumption has a
cycle:

a3 ≤31 c ≤23 b4 ≤2 b2 ≤2 b1 ≤13 a3

Figure 6.23(b) shows the global subsumption relation. The notation (a3 b1 b2 b4 c)
means that these terms are equivalent with respect to the global subsumption rela-
tion. Query answering and browsing should be based on this relation.

An arsenal of query evaluation algorithms for pure peer-to-peer systems for
computing sound and complete answers are presented in various works including
[185, 297].

Specifically, [297] identified two basic query evaluation approaches: one based
on query rewriting, the other based on direct query evaluation. For each approach a
centralized and a decentralized algorithm for carrying out the query evaluation task
was given.
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[185] approached the same problem by mapping sources into Datalog programs.
Several cases are examined along the following axis:

• taxonomy type
Taxonomies may comprise single terms, or complex concepts, e.g. relationships
of the form (Animal ∧ FlyingObject) ∨ Penguin ≤ Birds.

• query type (with negation or not), and
• mappings type (term-to-term, term-to-query, query-to-query).

For reasons of space, here we just mention a few of the results. In brief, if negation
appears in term-to-query mappings then query answering is coNP-hard. The same
holds even if we have not negation but we have query-to-query mappings. More
recent and detailed results are reported in [186].

6.5 Synopsis and Bibliographic References

Regarding the description of the valid compound terms in an intensional manner,
[299] allowed only positive or only negative statements, while CTCA (originally
presented in [301] and in more complete manner in [308]) combined these views.
The comparison of CTCA with Description Logics is analyzed in [305], while [21]
shows how CTCA can be efficiently represented using logic programming, provid-
ing an alternative kind of implementation.

A formulation of the index improvement problem (as described in Sect. 6.2).
founded on abduction is described in [184, 187].

Regarding inter-taxonomy mappings, there are several works on the general
problem of constructing mappings e.g. see [223]. An extension of the notion of
naming functions (as described in Sect. 6.3) for ordered sets is described in [298].

Acknowledgements Most of the work presented in this chapter is joint work with Anastasia
Analyti, Nicolas Spyratos, Carlo Meghini, and Panos Constantopoulos.



Chapter 7

Taxonomy Design

Wisam Dakka, Panagiotis Ipeirotis,

and Giovanni Maria Sacco

“Think simple” as my old master used to say—

meaning reduce the whole of its parts into the

simplest terms, getting back to first principles.

Frank Lloyd Wright, 1867–1959

This chapter discusses the design of taxonomies to be used in dynamic taxonomy
systems. Although the only actual requirement of dynamic taxonomies is a multidi-
mensional classification, i.e., objects are classified under more than one concept, an
organization by facets is normally used.

In the first section, we provide guidelines for the design of DT taxonomies, which
include the automatic construction from structured data, and the retrofitting of tradi-
tional monodimensional taxonomies. In the second section, we show how a faceted
taxonomy can be automatically extracted from the infobase itself when objects are
textual or are described by textual captions or tags.

7.1 General Guidelines for Taxonomy Design

The extensional inference rule of dynamic taxonomies has important implications
on conceptual modeling. Inference simplifies taxonomy creation and maintenance
because concept relationships are dynamically inferred, whereas all the possible re-
lationships need to be described in traditional taxonomies. In addition, the inference
rule coupled with conceptual summaries makes the relationships between different
concepts immediately visible to the user. Finally, dynamic taxonomies can synthe-
size compound concepts so that they do not need to be explicitly represented in the
taxonomy. This removes the principal cause of the combinatorial growth of tradi-
tional taxonomies.

These properties of dynamic taxonomies suggest to break down the conceptual
taxonomy to a minimal set of basic constituent concepts or fundamental facets,
whose combinations can fully describe the entire universe of discourse. This opera-
tion closely resembles normalization in relational database systems, because its goal
is the reduction of (conceptual) redundancy, and the factoring of common properties.
The reduction of redundancy minimizes the complexity of the resulting taxonomy.

G.M. Sacco, Y. Tzitzikas (eds.), Dynamic Taxonomies and Faceted Search,

The Information Retrieval Series 25,
DOI 10.1007/978-3-642-02359-0_7, © Springer-Verlag Berlin Heidelberg 2009
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At the same time, factoring common properties improves the exploration expres-
sivity of the navigation, because it substitutes complex concepts with relationships
among primitive concepts.

The principal guideline [236] is to organize the taxonomy as a set of independent,
‘orthogonal’ subtaxonomies (facets or perspectives), which behave as coordinates in
a multidimensional space. Taxonomies produced in this way are ‘minimal’ without
a decrease in expressivity. Such an organization, it must be stressed, is a design
guideline, and not a requirement of the model, because dynamic taxonomies only
require a multidimensional classification.

We can make the notion of ‘orthogonal’ facets clearer by recalling the analysis in
Sect. 3.2. In a faceted organization, we have the fastest convergence when each facet
F is independent of any other facet F ′, F ′ �= F , i.e., when given any two concepts
A < F and B < F ′, p(A|B) = p(B|A) = p(A)p(B). Such an independence can
only be verified on the extension, and this criterion is therefore a posteriori. How-
ever, it can be used in design by checking if the underlying independence hypothesis
is likely to hold in practice.1

The practical criterion in arriving at a set of facets is to identify a set of single
criteria which can be used to subdivide a given concept (initially, the universe of
discourse) [276].2 For example, a digital camera can be characterized by a set of
single criteria such as ‘Price’, ‘Weight’, and ‘Resolution’.

In addition to facets, we can usually define primitive concepts which partition
the corpus into disjoint sets. For example, a broad-scope corpus like an encyclopae-
dia can have primitive concepts like ‘art’, ‘science’, and ‘history’. These concepts,
which are partitioning aspects, are different from facets, such as ‘location’ or ‘time’.
Facets, which are rather cross aspects and tend to cover the entire corpus, rather than
partitioning it.

Once the fundamental concepts of the universe of discourse have been identified,
each will be described by a subtaxonomy, i.e., a hierarchy of subsumptions, typi-
cally specializations. Faceting and IS-A hierarchies are two independent conceptual
devices, though both can be represented by subsumptions. In an IS-A hierarchy, the
extension of a child of a concept C is generally a subset of the extension of C; the
union of the extensions of the children of C is usually equal to the extension of C.
In a subdivision of C by facets, the extension of each facet (e.g., Price) is usually
equal to the extension of C, as the digital camera example above shows.

The ‘faceting’ process can be repeated again at each level, but doing so constructs
a static decision tree and consequently decreases the exploratory flexibility of DT

1Statistical facet independence substitutes Ranganathan’s Canon of Concomitance [226] and the
Classification Research Group (CRG) Principle of Mutual Exclusion [125, 276] in traditional facet
analysis, which state that no two facets can overlap in content. Content overlap is determined on the
basis of concept labels, and is therefore imprecise and not easily applicable to DTs where concepts
are abstract.
2This is CRG’s Principle of Division [125].
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access.3 In our context, faceting is generally used once for determining the root
nodes of each subtaxonomy. There are however cases in which subsequent faceting
can be used to simplify the taxonomy, and consequently user access. Assume we
want to create an e-catalog for heterogeneous product types. Each of these product
types4 (i.e., cameras, refrigerators, tv sets) will have a set of disjoint features, with
Price being possibly the only feature common to them all.5 In this case, we can
have a first subdivision by product type, and a second one by specific features (e.g.,
resolution, energy class).

Traditional facet analysis uses multiple principles to guide the faceting process.
The most important ones, the Principle of Division and the Principle of Mutual Ex-
clusion, have already been discussed. The Principle of Relevance, i.e., that division
is performed according to criteria that are useful for access, clearly applies.

It is important to stress that the other two principles used by traditional facet
analysis, the Principle of Ascertainability and the Principle of Permanence, do not
apply in our present context. The Principle of Ascertainability requires that the di-
vision criterion must be always ascertainable: Ranganathan suggests that ‘date of
death’ should not be used as a facet, because it is impossible to know when peo-
ple will die [276]. This is obviously related to the problem of null values, and we
can apply common solutions such as using special facet values like ‘unknown’, ‘not
applicable’, etc., or simply not classifying under a facet if no child value applies.

The Principle of Permanence, i.e., facets should represent characteristics of divi-
sion which represent permanent qualities of the concept being divided, is the legacy
of the static physical medium underlying facet theory. In a traditional library, the
classification of a book cannot change. In our present context, we have no problem
in changing it, and this can be extremely useful in certain application areas such as
e-auctions. In e-auctions, a facet ‘Time to completion’, which is not permanent, can
be a fundamental access path.6

The extensional inference rule allows to represent multiple inheritance either ex-
plicitly (by a specific concept) or implicitly (by extensional inference). Consider the
classic ‘working student’ example. A working student has a multiple inheritance be-
cause he inherits his properties from both ‘worker’ and ‘student’. We can represent
this explicitly in the intension, by having a specific ‘working student’ concept in the
taxonomy, and make it a child of both ‘student’ and ‘worker’. The visual interface
remains the same, because the user will see ‘working student’ is he opens ‘student’,
and ‘working student’ if he opens ‘worker’. Although ‘working student’ appears in
different places in the taxonomy, it is actually the same concept, represented by the
same internal id, and consequently identifies the same extension.

3This is actually prescribed by facet analysis where the fixed, predefined order used for division is
called the ‘citation order’ and actually defines a static decision tree. This is one of the most evident
differences between traditional faceted approaches and DTs.
4These are partitioning aspects.
5Price is a cross aspect.
6See also Sect. 8.1.7.2.
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As an alternative, this multiple inheritance can be represented implicitly, by sim-
ply classifying every working student under ‘worker’ and ‘student’. This assumes
that the existence of a multiple inheritance is captured by the classification system.
In the case of multiple inheritance (and of any compound concept), the avoidance
of compound concepts is an opportunity rather than a rule. Although the need for
a compound concept often indicates that the taxonomy was not correctly defined,
we advise to use an explicit representation (specific concepts) when the topic is spe-
cific, well-known, or deserving user attention [236]. For example, Internet is best
described explicitly by a specific concept, rather than implicitly by the intersection
of ‘computers’ and ‘communication networks’.

With respect to the ‘shape’ of the taxonomy, human factors dictate some restric-
tions on the number of levels and on the average number of children for each node.
We believe that a number of children larger than approximately 10 objects makes
the selection of the appropriate child(ren) to zoom on too difficult [236]. At the
same time, an average number of levels larger than 3 or 4 is likely to result in tax-
onomies that require too much effort in order to access the terminal level and are
difficult to understand. These two constraints place the number of terminal concepts
for effective DTs roughly between 1,000 and 10,000.

Concepts with a large cardinality can cause an inordinate growth of the taxon-
omy. Such concepts include concepts with numeric values (prices, weights, etc.),
with dates (start date, birth date, etc.), and concepts such as Persons, Companies,
etc. Numeric and date concepts can be represented by ranges rather than by specific
values, but this causes a loss of information.

If the corresponding data is available in a database, the designer can opt for an
asymmetric approach and use an external query method (e.g., an SQL query) to
focus on specific values, and summarize the result through a reduced taxonomy.
Obviously, this approach does not allow to summarize focus sets through these con-
cepts, and should be consequently avoided if such summaries are important. For
example, in an infobase describing classical music recordings, it would probably
be a bad idea not to represent composers in the dynamic taxonomy, but only in an
external database. A focus on ‘String Quartets’ cannot be summarized by composer,
which is an important navigational dimension in this application.

An alternate approach, which is often more appropriate and is discussed in
Sect. 5.3, is the use of virtual concepts to virtualize part of the taxonomy. Virtual
concepts appear to the user as bona fide concepts, but they are synthesized on de-
mand from external concepts.

Although DTs taxonomies are usually balanced trees, it sometimes beneficial to
allow unbalanced subtrees in order to have terminal concepts with roughly the same
selectivity, and consequently less variance in the cardinality of concept intersec-
tions [236]. Since the selectivity of a terminal concept depends on the extension,
rather than on the intension, of the infobase, it is useful to periodically monitor the
extension. A high number of objects classified under a terminal concept C usually
indicates that a further refinement of C (increasing the abstraction level) is advis-
able. Conversely, a very small number of object classified under C indicates that
C’s specializations may be discarded and documents directly classified under C,
thereby decreasing the abstraction level.
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However, increasing the abstraction level is

1. not always possible, because concepts are not infinitely specializable; and
2. not strictly required, because concept intersections considerably reduce the prob-

lems deriving from skewed distributions.7

A decrease in the abstraction level is useful to simplify the taxonomy and to reduce
its storage requirements. The actual impact on user interactions is generally negli-
gible because, especially if related counters are shown, the user will not expand the
concept.

These considerations and our practical experience, suggest that dynamic tax-
onomies tend to be stable, and that schema update and maintenance is a relatively
rare event, in practice, after the initial design and test phase. Base, fundamental
concepts evolve slowly in time. The real dynamic part of a DT is given by the re-
lationships among concepts, which often change very rapidly. However, these rela-
tionships are dynamically computed through the extensional rule, and do not require
any change in the taxonomy.

Concept labels should be clearly understandable and unambiguous, and tax-
onomic abstractions should be clearly perceivable and consistent. Since the tax-
onomies designed according our guidelines minimize the number of required con-
cepts, this task is easier than in traditional approaches. In addition, in DTs the mean-
ing of any concept can be made clear by examples not only in the form of sample
objects, but also in terms of summaries which highlight related concepts [236].

Finally, children of concepts must be arranged in a clear, consistent way. In this
context, we can refer to traditional facet analysis [276] which proposes the Princi-
ple of Relevant Succession8 for child order. This principle identifies the following
ordering strategies:

1. Chronological Order;
2. Alphabetical Order;
3. Spatial/Geometric Order, which orders children by contiguity according to seven

possible ways: Bottom Upwards, Top Downwards, Left to Right, Clockwise Di-
rection, Counter-Clockwise Direction, Periphery to Center, and Center to Periph-
ery;

4. Simple to Complex Order vs. Complex to Simple Order;
5. Canonical Order, which is an established, traditional order for the subdivision

of a concept. For example, the canonical order for the children of Philosophy is
Logic, Epistemology, Metaphysics, Ethics, Aesthetics, etc.;

6. Increasing Quantity vs. Decreasing Quantity

Ranaganathan also includes ordering by ‘literary warrant’, which lists children by
decreasing number of objects listed under each concept. A similar, but more general,
notion was used in Sect. 5.7.3. This is a dynamic ordering scheme, and its variation
over time may disorient users.

7See Sect. 3.2.6.
8Also known as Ranganathan’s principles for helpful sequence.
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The guidelines discussed above are generally valid for all DT applications. Tax-
onomy design for structured data is clearly a design ‘in the small’, i.e., a design for
a limited, well-defined application domain. For example, the catalog of an e-shop
is usually already available as a relation in a RDBMS. The focus here is on the
automatic creation of taxonomies from structured data.

Taxonomy design for unstructured data (e.g., free text, images) is, at least poten-
tially, a design ‘in the large’, in that it can be applied to describe the entire present
(and future) knowledge. Often, these applications already use a monodimensional
taxonomy, which can be transformed to a faceted multidimensional taxonomy as we
discuss in the following.

7.1.1 Design ‘in the Small’

7.1.1.1 Automatic Construction for Views

To illustrate the basic design principles, we will consider the currently most frequent
application of dynamic taxonomies: the intelligent exploration of a relation, or, more
generally, of a relational view V , which can be derived from base relations and can
also obviously represent the temporary result of a query. This structure is inherently
multidimensional: each attribute in the view is an independent indexing dimension.
Each tuple in the view is a DT object, which is classified in the taxonomy according
to the values of its attributes.

The creation of a bare-bones shallow dynamic taxonomy from a relational view
V can be accomplished as follows:

for each attribute a in V,
create a facet f(a) in the taxonomy

for each value v in the domain of a
create a son v of f(a) in the taxonomy

Each record r in V is then indexed by taking, for each attribute a in V , its value
r.a and indexing r under the corresponding son of f (a). Since a concept that has no
object classified under it is automatically pruned from the initial taxonomy, we only
need to create for each facet f (a) as many sons as the unique values in the attribute
a in V .

This algorithm establishes a fundamental correspondence between facets and at-
tributes of a relational view, which helps to put the guidelines described above in a
more essential perspective. Interestingly, design techniques for relational databases,
which are based on the Entity–Relationship model [64], consider the selection of
attributes (facets) as an ‘intuitive’ initial step, and the design guidelines for it are
likely to be “each property of interest of a specific entity is represented by an at-
tribute”. This indicates that the fundamental principle for facet definition is really a
principle of relevant division: each attribute inherently defines a division criterion,
and only relevant attributes are defined.
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In considering the mapping of a general relational view to a dynamic taxon-
omy, there are multiple considerations. First, the integration between dynamic tax-
onomies access and access through any other retrieval method (database or XML
queries, in the present context) can be exploited, to reduce the number of facets.
Not all the attributes in the view must necessarily have a counterpart in the dynamic
taxonomy. However, attributes to be summarized must be explicitly described in the
taxonomy.

Second, in the approach proposed above, attribute values are enumerated in the
taxonomy as immediate children of a facet. While this is acceptable for ‘small’ enu-
merative domains, such as Brand, Country, etc. it becomes rapidly unwieldy as the
number of different values increases. In addition, such a flat representation does not
allow any systematic exploration. As an example, a global company would proba-
bly find a hierarchical grouping of locations into continents, nations, counties, etc.,
more useful than a flat list of locations. The same rationale holds for domains, such
as numeric domains, whose potential number of different values is infinite, and are
usually more manageable from the user point of view by structuring them in (multi-
level) ranges of values. Consequently, in general, an independent subtaxonomy is
defined for each attribute in order to structure existing values in a meaningful way.

Chakrabarti et al. [61] categorize results of relational queries by generating a
summary multi-level taxonomy on the fly. The taxonomy generated is a plain tax-
onomy, so that their approach is a special case and considerably less powerful than
dynamic taxonomies. The interesting point in their work is that the taxonomy is gen-
erated in such a way as to minimize a formally defined information overload cost for
users. The adaptation of the higher level of the taxonomic tree is especially valuable
as a way to define meaningful ranges of numeric values. As an example, consider
the catalog of a megasite carrying everything from pins to elephants.9 Prices in such
a store would exhibit such a large variance that it would be difficult to predefine
value ranges which are meaningful for all users.

However, taxonomies generated in this way are not generally applicable because
they do not necessarily capture the semantics of abstraction: e.g. the fact that Rome
is in Italy and that Italy is in the European Union, which we contend is fundamental
in most applications. An additional weakness of this method is that different query
results produce different taxonomies, thereby disorienting the user.

These considerations suggest that a correct design for a general taxonomy should
comprise both explicitly and implicitly defined concepts. Facets whose concepts can
be taxonomically arranged in a hierarchical way, to model IS-A or PART-OF rela-
tionships, must be explicitly defined in the taxonomy. An example is a Location
facet which can be organized by nations, continents, etc. We note here that more
than one facet can correspond to a given attribute. For instance, Locations can be
semantically structured in different ways: by nations and continents, or by organi-
zations (NATO, OPEC), or by climate, etc. On the other hand, attributes with a very
high number of different values and shallow facets (i.e., facets whose sons are ac-

9London’s Harrods motto.
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tual attribute values) are best represented in an implicit way by queries on the view
itself, as described in Sect. 8.1.

7.1.1.2 Dynamic Taxonomies for E–R Schemata

The mapping strategy outlined above is simple and effective, and has some affinities
with star schemata in OLAP applications [62]. However, it consolidates all attributes
together in a possibly large number of facets. This is undesirable because it makes
user orientation difficult: a taxonomy with tens of facets would pose a cognitive
challenge to most users.

A natural way of structuring the taxonomy in such a way as to make it easily
understandable by users, is by using an Entity–Relationship schema10 as a starting
point. An E–R schema structures the infobase as entities which represent real-world
object types, and their relationships. Entities in the schema therefore provide natural
top-level facets for the taxonomy, with the respective attributes appearing as imme-
diate sons. The objects to be classified in the dynamic taxonomy are the tuples in
the universal relation view constructed for the schema.

Regarding relationships, a first viable strategy is to represent them in the same
way as entities, i.e., each relationship defines a top-level facet, with only the at-
tributes of the relationship appearing as immediate sons. A relationship with no ad-
ditional attributes is not explicitly represented in the schema. Participating entities
need not be explicitly represented within the context of the relationship because the
extensional inference rule establishes the right relationships between the top-level
facets which represent the entities involved.

Consider the schema in Fig. 7.1 in which the primary keys of entities are assumed
to be represented by surrogates (i.e. unique identifiers). This schema can be mapped
into the following relational schema:

Part(Part#, Pname, Ptype)
Supplier(Supplier#, Sname, SLocation)
Plant(Plant#, PLname, PLlocation)
PlantUsesPart(Plant#, Part#)
SupplierSuppliesPart(Supplier#, Part#, Price)

First, we construct the universal relation view for this schema:

UR(Part#, Plant#, Supplier#, Pname, Ptype, PLname,
PLlocation, Sname, Slocation, Price)

by outer-joining all the entities and relationships in the schema.

10The Enhanced Entity–Attribute model [97], or other extensions of the E–R model to conceptual
hierarchies, are more adequate to the task at hand, but not as well known, and more complex.
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Fig. 7.1 Sample E–R schema; entities are implicitly identified by surrogates

This means that each object in the DT will be identified by a triplet (Part#, Plant#,
Supplier#) such that Part# is supplied by Supplier# and/or Part# is used by Plant#.
Both Plant# and Supplier# can be NULL.

Second, we decide which attributes will be described in the dynamic taxonomy,
whether subtaxonomies are needed for selected attributes, and whether concrete or
virtual concepts are to be used.

Third, we make entities and relationships explicit in the schema. A candidate
dynamic taxonomy schema for the example is reported in Table 7.1.

As an example of use, assume that we zoom on a specific supplier S. The objects
we are selecting are all those tuples in UR, such that Supplier# = S. The reduced
taxonomy will report all the Parts supplied by S, and in addition all the Plants which
are using such Parts (and their appropriate attribute values). In addition, also the
Prices for Parts supplied by S will be reported.

The taxonomy reported in Table 7.2 presents an alternate strategy for represent-
ing relationships. Here, all the relationships are explicit top-level facets in the tax-
onomy and, in addition, all participating entities are explicitly represented in the
context of each relationship as immediate sons.

This taxonomic schema shows a very important point: although the extensional
inference rule infers unnamed relationships among concepts, the meaning of specific
relationships can be made concrete and visible to the end-user. In this schema, rela-
tionship facets are used to disambiguate the unnamed relationships inferred by the
extensional inference rule. When zooming on Part>Name>XYZ, the extensional
inference rule establishes relationships among entity instances; the two facets repre-
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Table 7.1 Taxonomy for
sample E–R schema Part

Name

Type

Mechanical

Electric

Electronic

Supplier

Name

Location

Africa

America

Asia

Plant

Name

Location

Africa

America

Asia

SupplierSuppliesPart

Price

senting relationships disambiguate the role of the part: whether it is a used-by-plant
part or a supplied-by-supplier part or both. At the same time, if the user zooms on
PlantUsesPart>Part>Name>XYZ, he specifies a specific role for XYZ. No role is
specified by Part>Name>XYZ.

In summary, a top-level facet representing an entity represents such entity in any
role, whereas a specific role is specified when this same facet is set as the son of
another facet.

By converse, there might be attributes which are shared among different entities:
in the current example, Location is an attribute both of Supplier and Plant. Instead
of representing these attributes only as sons of the facets representing their entities,
it is more convenient to add a top-level facet for each of them. This allows the user
to zoom on a specific value of that attribute regardless of its role, i.e., of the entities
to which the attribute is associated. In the examples in Tables 7.1 and 7.2, this means
adding a top-level facet, Location: the user zooming on Location>Africa will select
Plants and Suppliers in Africa.

Similar considerations apply to domains, and in particular to dates. A facet repre-
senting dates would allow the user to zoom on a specific date, and have a summary
of all the entities and relationships related to that date. Obviously, this technique
should be applied to attributes and domains only if focusing on them in a role-free
way is useful for the user. Otherwise, the additional facets needed only make the
taxonomy more complex and harder to understand.
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Table 7.2 Alternate
taxonomy for sample E–R
schema

Part
Name
Type

Mechanical
Electric
Electronic

Supplier
Name
Location

Africa
America
Asia

Plant
Name
Location

Africa
America
Asia

PlantUsesPart
Plant

Name
Location

Africa
America
Asia

Part
Name
Type

Mechanical
Electric
Electronic

SupplierSuppliesPart
Supplier

Name
Location

Africa
America
Asia

Part
Name
Type

Mechanical
Electric
Electronic

Price
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Dynamic taxonomies represent an intermediate model between traditional tax-
onomies and complex semantic models. Dynamic taxonomies are more powerful
than plain taxonomies because traditional taxonomies only describe subsumptions,
whereas dynamic taxonomies are able to represent, in a dynamic way, any kind of
relationship that can be inferred from empirical evidence, that is from the classifi-
cation itself.

Dynamic taxonomies are less powerful than general semantic networks or se-
mantic data models, because these additional relationships are, in general, unnamed
and therefore ambiguous. However, we have shown that the meaning of unnamed,
inferred relationships can be made explicit by a careful design of the dynamic taxon-
omy. From the user point of view, both traditional and dynamic taxonomies are eas-
ily understood by end-users, whereas general semantic schemata are not. Whenever
user access is important, the use of dynamic taxonomies which represent complex
semantic schemata appears beneficial.

Dynamic taxonomies which are flexible and easily understandable by end-users
can be derived from relational views and E–R conceptual schemata. If a database or
a semantic information base already exists, the design methodology produces a dy-
namic taxonomy which captures the semantics of the information base and makes
it easily available to end-user. Even if no schema exists, starting with traditional
and well-understood data design techniques and applying the methodology we in-
troduced will produce consistent and effective dynamic taxonomies that are at the
same time exhaustive and easy to understand, even for demanding applications.

7.1.2 Design ‘in the Large’

The design of taxonomies ‘in the large’ is usually required for unstructured corpora
(e.g., free text, images) with a very broad application domain. Examples include en-
cyclopaedias, news feeds, very large image bases, catalogs of WWW resources, etc.
In this context, design can be carried out through the general guidelines described
above. Since the substantial equivalence between facets and E–R entities and at-
tributes indicates that fundamental facets depend on the application domain, there
are no predefined sets of facets for corpora with broad domains. Or, more precisely,
no fixed set of facets is likely to be acceptable for all broad domains.11

This does not necessarily mean that it is impossible to give indications for the se-
lection of fundamental facets and partitioning aspects for very broad domains. Cer-
tainly, ‘Space’ (intended as location) and ‘Time’ (intended as Chronology) belong
to the set of fundamental facets, as they are immediately relevant to most real-world
objects. Ranganathan proposed five fundamental categories [226] to describe the
entire universe of ideas:

• P (Personality, or Who): what the object is primarily ‘about’. This is the ‘main
facet’;

11This view is accepted also by many researchers in Information Sciences [276].
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• M (Matter, or What): the material of the object;
• E (Energy, or How): the processes or activities which take place in relation to the

object;
• S (Space, or Where): where the object happens or exists;
• T (Time, or When): when the object happens or exists.

The Bliss classification system [191] considerably extends the list of fundamental
facets:

• thing
• kind
• part
• property
• material
• process
• operation
• patient
• product
• by-product
• agent
• space
• time

and defines the following partitioning aspects:

• Generalia, Phenomena, Knowledge, Information science & technology
• Philosophy & Logic
• Mathematics, Probability, Statistics
• General science, Physics
• Chemistry
• Astronomy and earth sciences
• Biological sciences
• Applied biological sciences: agriculture and ecology
• Physical Anthropology, Human biology, Health sciences
• Psychology & Psychiatry
• Education
• Society
• History
• Religion, Occult, Morals and ethics
• Social welfare & Criminology
• Politics & Public administration
• Law
• Economics & Management of economic enterprises
• Technology and useful arts
• The Arts
• Music
• Language and literature
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Table 7.3 Dewey
classification fragment 800 Literature and Rethoric

. . .

810 American literature in English

811 Poetry

812 Drama

813 Fiction

814 Essays

815 Speeches

816 Letters

817 Satire and humor

818 Miscellaneous writings

820 English literature

821 Poetry

822 Drama

823 Fiction

824 Essays

825 Speeches

826 Letters

827 Satire and humor

828 Miscellaneous writings

830 German literature

831 Poetry

832 Drama

833 Fiction

834 Essays

835 Speeches

836 Letters

837 Satire and humor

838 Miscellaneous writings

840 French literature

841 Poetry

842 Drama

843 Fiction

844 Essays

845 Speeches

846 Letters

847 Satire and humor

848 Miscellaneous writings
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Other fundamental facets and partitioning aspects can be suggested by different
sources, such as WordNet [100], Wikipedia at wikipedia.org, and the Open
Directory Project at dmoz.org.

In many practical cases, the corpus might be already described by a taxon-
omy, but such a taxonomy is likely to be a traditional, monodimensional taxonomy.
Monodimensional classification schemes are intuitively a bad idea. It is very difficult
to find examples where only a single dimension or feature can be used to classify
items. In fact, monodimensional schemes such as the Dewey classification for li-
braries [87] ‘linearize’ a multidimensional scheme into a monodimensional one. To
do so, compound concepts are created and used. As an example, refer to the Dewey
classification fragment in Table 7.3.

The reader will note that the entries are the cross product of two sets of label
terms: {English, German, French, . . . } and {poetry, drama, fiction, . . . }. The first
set represents the ‘Language’ facet, whereas the second set represents the ‘Liter-
ary Genre’ facet. Now the same fragment can be reorganized by facets as in Ta-
ble 7.4. The retrofit of a monodimensional taxonomy to a faceted taxonomy is usu-
ally a fairly straightforward process, which mainly involves finding common terms
in concept labels and factoring them out. The factoring process is usually simpler
and more accurate if fundamental facets are preliminarily isolated. This allows one
to disambiguate polysemic terms such as English, which means ‘written in English’
in ‘English poetry’, and ‘located in England’ in ‘English history’.

The advantages of the resulting faceted taxonomy are

1. the minimization of concepts, which decrease from 32 concepts in the Dewey
fragment to 12 in the faceted fragment, i.e., from n · m to n + m;

2. an easy, symmetric correlation between features. If the user focuses on ‘drama’,
she will find that there are dramas in different languages; if she focuses on ‘Eng-
lish’, she will find the different literary genres for English, including ‘drama’. In

Table 7.4 Faceted
classification fragment Language

American English

English

German

French

Literary Genre

Poetry

Drama

Fiction

Essays

Speeches

Letters

Satire and humor

Miscellaneous writings
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the monodimensional taxonomy, access is asymmetric, and in the example only
the second type of access is allowed;

3. the combinatorial complexity of compound concepts in a monodimensional tax-
onomy forces the taxonomy designer to a biased view of the universe. In the
Dewey classification, each ‘major’ language has eight literary genre descriptors
(poetry, drama, fiction, essays, speeches, letters, satire and humor, and miscella-
neous writings). ‘Minor’ languages, such as Portuguese or Romanian have only
one descriptor, and all the languages in East and Southeast Asia are grouped
together into a single descriptor. It is easy to imagine that this will not be the
perspective of a Portuguese or Thai classifier or user.

7.2 Automatic Construction from Text Information Bases

Faceted searching and browsing can be improved by utilizing various facets. How-
ever, in the presence of many facets, we have to choose which ones to present to the
user. Presenting tens or hundreds of facets will make information access more diffi-
cult rather than easier. Hence, we have to select only the few that will be most use-
ful for browsing purposes. For example, we would identify and assign video clips
from a YouTube collection to the “Animals” or “Location” facets. Then, for each
item in the collection, we would supply text-annotated keywords to describe the re-
lationship between the item and the facet to which is has been assigned. Finally,
we would use these text-annotated descriptions to construct faceted hierarchies for
browsing the collection or lengthy search results. This chapter is dedicated to au-
tomation of this task to support wide deployment of faceted hierarchies over textual
and text-annotated collections. One example of a text-annotated collection is the
Corbis royalty-free image collection. Corbis has a large set of annotated images, in
which each image has a title, free-text description, and a set of keywords associated
with it. Each keyword is manually assigned by the Corbis annotators to one of the
38 facets that Corbis uses. The New York Times archive is an example of a large
textual collection of news articles, dating to 1851.

In this chapter, we present methods to automatically discover facets and their
useful browsing terms from a collection. In Sect. 7.2.1, we give a detailed overview
of the problem of finding useful facet terms, and in Sects. 7.2.2 and 7.2.3 we de-
scribe supervised and unsupervised methods for extracting such facets from col-
lections with textual and text-annotated data. In Sects. 7.2.4 and 7.2.5, we eval-
uate our approaches over two different textual and text-annotated collections. Fi-
nally, we elaborate on future work in Sect. 7.2.6 and conclude our chapter in
Sect. 7.2.7.

7.2.1 Problem Overview

One of the bottlenecks in the deployment of faceted interfaces over collections of
text or text-annotated documents is the need to manually identify useful dimen-
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Fig. 7.2 A Flickr image shot by Sephiroty Fiesta

sions or facets for browsing a collection or lengthy search results. Once the facets
are identified and assigned to the collection objects through descriptive keywords,
a hierarchy is built and populated with the collection objects to enable the user to lo-
cate the objects of interest through the hierarchy. Static, predefined facets and their
manually or semi-manually constructed hierarchies are usually used in commercial
systems such as Amazon and eBay, with their faceted hierarchies for consumer prod-
ucts. The first step to automate the construction of faceted hierarchies is to identify
the facets that are useful for browsing and assign them to the collection objects. In
this chapter, we focus on this step.

We consider two types of collections in this chapter. A collection of the first
type consists of objects that have some associated descriptive keywords or tags.
One example of this type of collection is the Corbis royalty-free image collection.
Corbis has a large set of annotated images, in which each image has a title, a free-
text description, and a set of keywords associated with it. Each keyword is manually
assigned by the Corbis annotators to one of the 38 facets that Corbis uses. Other
examples include Flickr and YouTube. In contrast, a collection of the second type
consists of free-text objects such as news articles in The New York Times archive
or Newsblaster.

These two types of collections need to be processed differently for facet extrac-
tion, as the following example illustrates:

Example 7.1 Consider the Flickr image in Fig. 7.2 of a dog and a cat on a rocky
beach. Typically, in Flickr-like collections each image (object) is tagged with sev-
eral descriptive keywords. The image in Fig. 7.2 is associated with keywords “dog”,
“cat”, “sea”, “beach”, “rock”, and “Tampico”. As we can see, these keywords de-
scribe several orthogonal aspects (facets) of the image: some describe the “Ani-
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mals” in the image, some describe the “Topographic Features”, and others describe
the “Location” where this image was taken. Knowing which keyword belongs to
which facet is key for generating a meaningful browsing hierarchy for each facet.
Unfortunately, we often do not have these keywords organized across facets and we
resort to generating a single hierarchy that fits all keywords in a large collection
such as Flickr or YouTube. A single hierarchy of this type is typically awkward
and confusing for browsing. Collections such as The New York Times archive bring
an additional challenge: news stories usually are neither associated with descriptive
keywords nor organized across facets. Therefore, we have to resort to the story text
to identify descriptive keywords and organize them across facets.

In this chapter, we investigate an extraction technique for each collection type.
First, for the text-annotated collections (e.g., Flickr) that already have some key-
words organized across different facets, we can use this facet data to train a machine
learning algorithm to classify keywords in the appropriate facets (Sect. 7.2.2). The
classifier can then be used to assign keywords of new objects to the right facets. For
example, for a new image on Flickr that has the user-provided tags “sheep”, “fox”,
“mountain”, and “fields”, our classifier will put the words “sheep” and “fox” un-
der the “Animals” facet, while the words “mountain” and “fields” go under “Topo-
graphic Features”, even though the classifier may not have encountered some of the
keywords beforehand. Second, for the collections with free-text objects such as The
New York Time archive, we present an unsupervised technique that fully automates
the extraction of useful facets from free-text objects (Sect. 7.2.3). In particular, we
observe, through a pilot study, that facet terms rarely appear in text documents,
which implies that we need external resources to identify useful facet terms. For
this, we first identify important phrases in each document. Then, we expand each
phrase with “context” phrases using external resources, such as WordNet [100] and
Wikipedia,12 causing facet terms to appear in the expanded collection. Finally, we
compare the term distributions in the original collection and the expanded collec-
tion to identify the terms that can be used to construct browsing facets. Our extensive
user studies, using the Amazon Mechanical Turk service, show that our techniques
produce facets with high precision and recall, superior to existing approaches, and
help users locate interesting objects fast.

7.2.2 Supervised Facet Extraction for Collections

of Text-Annotated Items

Now, we describe our approach for extracting useful facets when we have access
to some descriptive user-provided annotation, such as in the Corbis collection or on
YouTube. One of the potential problems for constructing a concept hierarchy for

12http://www.wikipedia.org.
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such a collection is that the same collection can be browsed in many different, or-
thogonal ways. Consider, for example, how a user can browse the schedule of TV
programs. It is possible to browse by the time facet, by the TV channel facet, or
by the title facet. It is also possible to browse by the actor facet, or by many other
facets. Mixing facet-specific terms from multiple facets while constructing a single
hierarchy can result in an awkward hierarchy. For example, an actor might be clas-
sified under the term “Monday” because he/she appears on a sitcom that is aired
every Monday night, and therefore, the hierarchy would have the parent–child rela-
tion that assigns the actor’s name under the node “Monday” in the hierarchy. While
it might be perfectly valid to assume this relation based on the co-occurrence of the
term “Monday” and the name of the actor across the collection, this is not a struc-
ture that is useful for browsing. This type of relation contributes to the awkwardness
of the resulting hierarchy. In short, having the items of a collection associated with
descriptive keywords, such as with YouTube video clips, is not sufficient to produce
useful hierarchies. Organizing these keywords across facets is a key step before pro-
ceeding to hierarchy construction.

While collections such as YouTube and Flickr lack such organization, a set of
items in the Corbis collection has its keywords organized across predefined facets.
For example, according to this Corbis set the words “cat” and “dog” are under the
“Animals” facet, while the words “mountain” and “fields” are under “Topographic
Features”. To be able to organize the keywords of a new item across the Corbis pre-
defined facets, we use the data in this set to train a machine learning algorithm to
classify keywords in the appropriate facets. In our approach, we treat the facet as a
target classification class and the keywords as classification features. Unfortunately,
such a straightforward approach does not generalize. A classifier trained in this way
will correctly classify only words that have been assigned to facets before. A clas-
sifier might correctly classify the words “cat” and “dog” in the “Animals” facet, but
a new word, such as “sheep”, that was not among the keywords of the training data
will not be assigned to any facet.

To allow our technique to generalize for unseen keywords, we rely on the obser-
vation that keywords under different facets tend to have different “hypernyms”.13

Based on this observation, we expand each keyword using its hypernyms from a
lexical corpus, such as WordNet. After the expansion, each keyword is represented
as a set of words. For example, the word “cat” is represented as “cat, feline, carni-
vore, mammal, animal, living being, object, entity”. The new representation allows
the classifier to generalize more easily and assign unseen words to the correct facets.

However, using hypernyms does not resolve the problem of sense disambigua-
tion. Each word can have different meanings according to its context. Consider the
word “kid”, which can mean either a young person or a young goat. Before assign-
ing this word to a facet, we have to first decide the intended meaning of the word. To
identify the correct meaning, we exploit the fact that keywords are associated with
objects and each object is characterized by a set of other keywords, which provide

13A hypernym is a linguistic term for a word whose meaning includes the meanings of other words,
as the meaning of vehicle includes the meaning of car, truck, motorcycle, and so on.
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valuable clues for the writer’s intended meaning of the word. (The use of context is
the basis of many techniques [178] for sense disambiguation.14) For example, when
the word “kid” appears together with the words “goat” and “grazing”, then “kid” is
much more likely to refer to a young goat than to a child.

Based on the observations noted above, we treat facet classification as a text clas-
sification problem. In text classification [93, 168], we characterize each document
using a set of words; based on the presence of these words across categories, we
train a classifier to assign documents to the appropriate categories. In our case, we
treat each keyword as three sets of words. The first set of words contains the key-
word itself, the second set contains the hypernyms of all the senses of the keyword,
and the third set contains the other keywords associated with the object.

Specifically, our algorithm for assigning keywords to facets performs the follow-
ing steps:

1. Obtain a collection D of text-annotated objects. Each object di ∈ D has a set of
associated keywords ki1, . . . , kin and each keyword kij is assigned to a facet Fij .

2. For each keyword–facet pair kij –Fij :
(a) Define the facet Fij as the target class.
(b) Add the keyword kij in the first set of words.
(c) Add the hypernyms of kij in the second set of words.
(d) Add the other keywords associated with di (and their hypernyms) in the third

set of words.
3. Train a document classifier over the prepared training data.

After training the classifier, we can use it over a new set of annotated objects
to identify the facets that appear in the collection. After running the classifier over
the keywords of the new objects, we can examine which facets appear frequently
in the new data and use these facets for browsing. Empirically, we observed that
facets that appear in 5% of the data can be useful for locating content of interest. We
gathered our training data from a set of annotated images from the Corbis collec-
tion, which contained a comprehensive set of facets.15 We describe the experimen-
tal settings and report the results in Sect. 7.2.4. One “disadvantage” of supervised
learning techniques is that they cannot “discover” new types of facets. In the next
section, we describe an approach to identify new, previously unknown dimensions
for browsing.

14We should emphasize that disambiguation for facet extraction is easier than the general prob-
lem of sense disambiguation. First, the context keywords are of high quality, something that is
not always the case in natural language sentences. Second, and most importantly, while a word
might have multiple senses, the senses are often closely related (see, for example, the WordNet
senses for “gear” and “battle”). While sense disambiguation is hard for such words, closely related
senses typically correspond to the same facet (“Generic Thing” for “gear” and “Action, Process, or
Activity” for “battle”), eliminating the need for disambiguation for facet extraction.
15The whole collection contains more than 3 million images and 38 facets.
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7.2.3 Unsupervised Facet Extraction for Collections of Text

Documents

So far, the identification of the facets was either a manual procedure, or relied on
a priori knowledge of the facets that can potentially appear in the underlying col-
lection. Now, we describe our approach for extracting useful facets when descrip-
tive keywords are not available for the collection items. In particular, we focus on
the important family of collection of text documents. A key characteristic of doc-
uments in such collections is that they contain a relatively large number of words
(and, correspondingly, of potential facets for interaction). This is in contrast to the
text-annotated collections of the previous section, where each item in the collection
generally has a much lower number of (often highly descriptive) keywords in the
user-provided annotations, and a portion of the items, as in Corbis, has its keywords
organized across a predefined set of facets.

To examine the largest hurdles for generating faceted hierarchies on top of news
collections, we ran a small pilot study (Sect. 7.2.3.1) to examine what navigational
structures would be useful for people who are browsing a news archive and to find
clues on how to discover useful facets accompanied with descriptive keywords for
each text document in Newsblaster. Our conclusions from the pilot study helped
shape our approach for extracting useful facets and descriptive keywords from news
articles (Sect. 7.2.3.2). Our approach assumes that high-level facet terms rarely ap-
pear in the documents. For example, consider the named entity “Jacques Chirac”.
This term would appear under the facet “People → Political Leaders”. Furthermore,
this named entity also implies that the document can be potentially classified under
the facet “Regional → Europe → France”. Unfortunately, these (facet) terms are
not guaranteed to appear in the original text document. However, if we expand the
named entity “Jacques Chirac” using an external resource, such as Wikipedia, we
can expect to encounter these important context terms with greater frequency. Our
hypothesis is that facet terms emerge after the expansion, and their frequency rank
increases in the new, expanded collection. In particular, we take advantage of this
property of facet terms to automatically discover, in an unsupervised manner, a set of
candidate facet terms from the expanded news articles. We then automatically group
together facet terms that belong to the same facet using a hierarchy construction al-
gorithm [274] and build the appropriate browsing structure for each facet using our
algorithm for the construction of faceted interfaces.

7.2.3.1 A Pilot User Study

For our initial pilot study, we recruited 12 students studying either journalism or art
history. We randomly chose a thousand stories from The New York Times archive,
and we asked the student annotators to manually assign each story to several facets
that they considered appropriate and useful for browsing. The most common facets
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Table 7.5 Facets identified
by human annotators in a
small collection of 1,000
news articles from The New
York Times

Facets

Location

Institutes

History

People

→֒Leaders

Social Phenomenon

Markets

→֒Corporations

Nature

Event

identified by the annotators were “Location”, “Institutes”, “History”, “People”, “So-

cial Phenomenon”, “Markets”, “Nature”, and “Event”. For these facets, the annota-
tors also identified other “sub-facets” such as “Leaders” under “People” and “Cor-

porations” under “Markets”.
From the results of the pilot study, we observed that the terms for the useful

facets do not usually appear in the news stories. (In our study, this phenomenon
surfaced in 65% of the user-identified facet terms.) Typically, journalists do not use
general terms, such as those used to describe facets, in their stories. For example,
a journalist writing a story about Jacques Chirac will not necessarily use the term
“Political Leader” or the term “Europe” or even “France”. Such (missing) context

terms are useful for identifying the appropriate facets for the story.
This pilot experiment demonstrated that a tool for the automatic discovery of

useful facet terms should exploit external resources that could return the appropriate
facet terms. Such an external resource should provide the appropriate context for
each of the terms that we extract from the collection. As a result, a key step of our
approach corresponds to an expansion procedure, in which the important terms from
each news story are expanded with context terms derived from external resources.
The expanded documents then contain many of the terms that can be used as facets.
Next, we describe our algorithm in detail, showing how to identify these important

and context terms.

7.2.3.2 Automatic Facet Discovery

The results of our pilot study from Sect. 7.2.3.1 indicate that general facet terms
rarely occur in news articles. To annotate a given story with a set of facets, we nor-
mally skim through the story to identify important terms and associate these terms
with other more general terms, based on our accumulated knowledge. For example,
if we conclude that the phrase “Steve Jobs” is an important aspect of a news story,
we can associate this story with general terms such as “personal computer”, “en-
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Input: Original collection D, term extractors E1, . . . ,Ek

Output: Annotated collection I (D)

Step 1: Extract all terms from each document d in collection D and compute for each
term t its term frequency FreqO (t).

Step 2: Execute all extractors E1, . . . ,Ek on each document d in collection D to
identify d’s important terms Ei(d) based on extractor Ei , and compute I (d) to
be the union E1(d) ∪ · · · ∪ Ek(d).

Algorithm 7.1: Identifying important terms within each document

tertainment industry”, or “technology leaders”. Our techniques operate in a similar
way. In particular, our algorithm follows these steps:

1. For each document in the collection, identify the important terms within the doc-
ument that are useful for characterizing the contents of the document.

2. For each important term in the original document, query one or more external re-
sources and retrieve the context terms that appear in the results. Add the retrieved
terms to the original document, in order to create an expanded, “context-aware”
document.

3. Analyze the frequency of the terms, both in the original collection and the ex-
panded collection, and identify the candidate facet terms.

Identifying Important Terms The first step of our approach (see Algorithm 7.1)
identifies important terms16 in the text of each document. We consider the terms
that carry information about the different aspects of a document to be important.
For example, consider a document d that discusses the actions of Jacques Chirac

during the 2005 G8 summit. In this case, the set of important terms I (d) may contain
two terms, as follows:

I (d) = {Jacques Chirac,2005 G8 summit}

We use the next three techniques in this term selection step:

• Named Entities (LPNE): We use a named-entity tagger to identify terms that
provide important clues about the topic of the document. Our choice is reinforced
by existing research (e.g., [107, 129]) that shows that the use of named entities
increases the quality of clustering and of news event detection. We build on these
ideas and use the named entities extracted from each news story as important
terms that capture the important aspects of the document. In our work, we use the
named-entity tagger provided by the LingPipe17 toolkit.

• Yahoo Terms (YTERM): We use the “Yahoo Term Extraction”18 web service,
which takes as input a text document and returns a list of significant words or

16By term, we mean single words and multi-word phrases.
17http://www.alias-i.com/lingpipe/.
18http://developer.yahoo.com/.
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phrases extracted from the document.19 We use this service as a second tool for
identifying important terms in the document.

• Wikipedia Terms (WTERM): We developed our own tool to identify important
aspects of a document based on Wikipedia entities. Our tool is based on the idea
that an entity is typically described in its own Wikipedia page. To implement the
tool, we downloaded the contents of Wikipedia and built a relational database that
contains (among other things) the titles of all the Wikipedia pages. Whenever
a term in a document matches a title of a Wikipedia entry, we mark the term
as important. If there are multiple candidate titles, we pick the longest title to
identify the important term.

Furthermore, we exploit the link structure of Wikipedia to improve the de-
tection of important terms. First, we exploit the “redirect” pages, to improve the
coverage of the extractor. For example, the entries “Hillary Clinton”, “Hillary R.
Clinton”, “Clinton, Hillary Rodham”, “Hillary Diane Rodham Clinton”, and oth-
ers redirect to the page with title “Hillary Rodham Clinton”. By exploiting the
redirect pages, we can capture multiple variations of the same term, even if the
term does not appear in the document in the same format as in the Wikipedia page
title. (We will also use this characteristic in Step 2, to derive context terms.) In a
similar manner, we also exploit the anchor text from other Wikipedia entries to
find different descriptions of the same concept. Even though the anchor text has
been used extensively in the web context [50], we observed that the anchor text
works even better within Wikipedia, where each page has a specific topic.

Beyond the three techniques described above, we can also follow alternative ap-
proaches in order to identify important terms. For instance, we can use domain-
specific vocabularies and ontologies (e.g., from the Taxonomy Warehouse20 by Dow
Jones) to identify important terms for a domain. Here, due to the lack of appropriate
text collections that could benefit from such resources, we do not consider this al-
ternative. Still, we believe that exploiting domain-specific resources for identifying
important terms can be useful in practice.

The next step of the algorithm uses important document terms to identify addi-
tional context terms, relevant to the documents.

Deriving Context Using External Resources In Step 2 of our approach, we use
the identified important terms to expand each document with relevant context (see
Algorithm 7.2). As we discussed in Sect. 7.2.3.1, in order to build facets for brows-
ing a text collection, we need more terms than the ones that appear in the collection.
To discover the additional terms, we use a set of external resources that can provide
the additional context terms when queried appropriately.

For example, assume that we use Wikipedia as the external resource, try-
ing to extract context terms for a document d with a set of important terms

19We have observed empirically that the quality of the returned terms is high. Unfortunately, we
could not locate any documentation about the internal design of the web service.
20http://www.taxonomywarehouse.com/.
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Input: Annotated collection I (D), external resources R1, . . . ,Rm

Output: Contextualized collection C(D)

Step 1: Query each external resource Ri to retrieve the context terms Ri(t) for each
important term t in I (d) of each document d .

Step 2: Create for each document d the context terms C(d) as the union of all context
terms Ri(t) of all terms t in I (d) and all external resources R1, . . . ,Rm.

Step 3: Augment document d with context terms C(d).

Algorithm 7.2: Deriving context terms using external resources (Sect. 7.2.3.2)

I (d) = {Jacques Chirac,2005 G8 summit}. We query Wikipedia with the two terms
in I (d), and we analyze the returned results. From the documents returned by
Wikipedia, we identify additional context terms for the two terms in the original
I (d): the term President of France for the original term Jacques Chirac and the
terms Africa debt cancellation and global warming for the original term 2005 G8

summit. Therefore, the set C(d) contains three additional context terms, namely,
president of France, Africa debt cancellation, and global warming.

In our work, we use four external resources, and our framework can be naturally
expanded to use more resources, if necessary. We used two existing applications
(WordNet and Google) that have proved useful in the past and developed two new
resources (Wikipedia Graph and Wikipedia Synonyms). Specifically, the resources
that we use are the following:

• Google (GOOG): The web can be used to identify terms that tend to co-occur
frequently. Therefore, as one of the expansion strategies, we query Google with
a given term, and then retrieve as context terms the most frequent words and
phrases that appear in the returned snippets.

• WordNet Hypernyms (WORDNET): Previous studies in the area of automatic
generation of facet hierarchies [79, 282] observed that WordNet hypernyms are
good terms for building facet hierarchies. Based on our previous experience [79],
hypernyms are useful and high-precision terms, but they tend to have low recall,
especially when dealing with named entities (e.g., names of politicians) and noun
phrases (e.g., “due diligence”). Therefore, WordNet should not be the only re-
source used but should be complemented with additional resources. We discuss
such resources next.

• Wikipedia Graph (WGRAPH): A useful resource for discovering context terms
is Wikipedia. In particular, the links that appear in the page of each Wikipedia en-
try can offer valuable clues about associations with other entries. To measure the
level of association between two Wikipedia entries t1 and t2 that are connected
with a link t1 → t2, we examine two values: the number of outgoing links out(t1)

from t1 to other entries and the number of incoming links in(t2) pointing to t2
from other entries. Using tf .idf -style scoring, we set the level of association to
log(N/in(t2))/out(t1), where N is the total number of Wikipedia entries. (No-
tice that the association metric is not symmetric.) When querying the “Wikipedia
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Graph” resource with a term t , the resource returns the top-k terms21 with the
highest scores. For example, there is a page dedicated to the Japanese samurai
“Hasekura Tsunenaga”. The “Hasekura Tsunenaga” page is linked to the pages
“Japanese Language”, “Japanese”, “Samurai”, “Japan”, and several other pages.
There are more than 6 million entries and 35 million links in the Wikipedia graph,
creating an informative graph for deriving context. As expected, the derived con-
text terms will be both more general and more specific terms. We will examine
in Sect. 7.2.3.2 how we identify the more general terms, using statistical analy-
sis of the term frequencies in the original collection and in the contextualized
collection.

• Wikipedia Synonyms (WSYNONYMS): We constructed Wikipedia Synonyms
as a resource that returns variations of the same term. As we described earlier, we
can use the Wikipedia redirect pages to identify variations of the same term. To
achieve this, we first group together the titles of entries that redirect to a particular
Wikipedia entry. For example, the entries “Hillary Clinton”, “Hillary R. Clinton”,
“Clinton, Hillary Rodham”, and “Hillary Rodham Clinton” are considered syn-
onyms since they all redirect to “Hillary Rodham Clinton”.

Although redirect pages return synonyms with high accuracy, there are still
variations of a name that cannot be captured like this. For such cases, we use
the anchor text that is being used in other Wikipedia pages to link to a particular
entry. For example, there is a page dedicated to the Japanese samurai “Hasekura
Tsunenaga”. The “Hasekura Tsunenaga” has also pointers that use the anchor
text “Samurai Tsunenaga”, which can also be used as a synonym. Since anchor
text is inherently noisier than redirects, we use a form of tf .idf scoring to rank
the anchor text phrases. Specifically, the score for the anchor text p pointing to a
Wikipedia entry t is s(p, t) = tf (p, t)/f (p), where tf (p, t) is the number of times
that the anchor phrase p is used to point to the Wikipedia entry t , and f (p) is the
number of different Wikipedia entries pointed to by the same text p.

At the end of Step 2, we create a contextualized collection in which each docu-
ment contains both the original terms and a set of context terms. Next, we describe
how we can use the term frequencies in the original and in the contextualized col-
lection to identify useful facet terms.

Comparative Term Frequency Analysis So far, we have identified important
terms in each document and used them to expand the document with general relevant
context for each document. In this section we describe how we process both the
expanded and original collections to identify terms that are good candidates for
facet terms.

Our algorithm is based on the intuition that facet terms are infrequent in the
original collection but frequent in the expanded one. So, to identify such terms, we
need first to identify terms that occur “more frequently” and then make sure that this
difference in frequency is statistically significant, and not simply the result of noise.
To measure the difference in frequency, we define the next two functions:

21We set k = 50 in our experiments.
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Input: Original collection D, contextualized collection C(D)

Output: Useful facet terms Facet(D)

Step 1: Compute df (t) for each term t in collection D as the total number of
documents that contain t .

Step 2: Compute df C(t) for each term t in collection C(D) as the total number of
documents that contain t .

Step 3: Let df (t) be equal to zero if term t occurs in collection C(D) but does not
occur in collection D.

Step 4: Compute the functions Shiftf (t) (equation (7.1)) and Shiftr (t) (equation (7.4))
for each term t in collection C(D), and add t to the facet terms Facet(D) if
both functions are positive.

Step 5: Sort Facet(D) in increasing order of − logλt (equation (7.5)) and return the
top-k terms.

Algorithm 7.3: Identifying important facet terms by comparing the term dis-
tributions in the original and in the contextualized collection (Sect. 7.2.3.2)

• Frequency-Based Shifting: For each term t , we compute the frequency differ-
ence as:

Shiftf (t) = df C(t) − df (t) (7.1)

where df C(t) and df (t) are the frequencies of term t in the contextualized col-
lection and the original collection, respectively. Due to the Zipfian nature of the
term frequency distribution [337], this function tends to favor terms that already
have a high frequency in the original collection. High-frequency terms demon-
strate higher increases in frequency, even if they are less popular in the expanded
collection compared to the original one. The inverse problem appears if we use
ratios instead of differences. To avoid the shortcomings of this approach, we in-
troduce a rank-based metric that measures the differences in the ranking of the
terms.

• Rank-Based Shifting: We use a function B that assigns terms to bins based on
their ranking in the original and the contextualized collections, as follows:

B(t) =
⌈

log2

(

Rank(t)
)⌉

(7.2)

BC(t) =
⌈

log2

(

RankC(t)
)⌉

(7.3)

where Rank(t) is the rank of the term t in the original collection, and RankC(t)

is the rank of the term t in the contextualized collection. After computing the bin
B(t) and BC(t) of each term t , we define the shifting function as follows:

Shiftr(t) = B(t) − BC(t) (7.4)

In our approach, a term becomes a candidate facet term only if both Shiftf (t) and
Shiftr(t) are positive. After identifying terms that occur more frequently in the con-
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textualized collection, the next test verifies that the difference in frequency is statis-
tically significant. A test such as the chi-square test [65] could be potentially used
to identify important frequency differences. However, due to the power-law distri-
bution of the term frequencies [337], many of the underlying assumptions for the
chi-square test do not hold for text frequency analysis [96]. Therefore, we use the
log-likelihood statistic, assuming that the frequency of each term in the (original and
contextualized) collections is generated by a binomial distribution:

• Log-Likelihood Statistic: For a term t with document frequency df in the orig-
inal collection D and frequency df C in the contextualized collection C(D), the
log-likelihood statistic for the binomial case is:

−logλt = logL(p1,df C, |D|) + logL(p2,df , |D|)

− logL(p,df , |D|) − logL(p,df C, |D|) (7.5)

where logL(p, k,n) = k log(p) + (n − k) log(1 − p), p1 =
df C

|D|
, p2 =

df
|D|

, and

p =
p1+p2

2 . For an excellent description of the log-likelihood statistic see the
seminal paper by Dunning on the subject [96].

The shift functions and the log-likelihood test return a set of terms Facet(D) that
can be used for faceted navigation (see Algorithm 7.3). Once we have identified
these terms, it is relatively easy to build the actual hierarchies. For our work, we
used the subsumption algorithm by Sanderson and Croft [260], with satisfactory
results, although newer algorithms [274] may improve performance further.

7.2.4 Evaluating Our Supervised Facet Extraction Technique

In this section, we present the experimental evaluation of our supervised extraction
technique of Sect. 7.2.2. First, we describe our experimental settings in Sect. 7.2.4.1,
then we evaluate our facet extraction technique in Sect. 7.2.4.2.

7.2.4.1 Experimental Settings

Our classifier variants are trained and tested over as a set of keywords associated
across a predefined set of facets. We now describe this data set in and then, we
briefly describe our classifier variants. Finally, we present the evaluation metrics
that we use to compare our classifier variants.

Data Collection To evaluate our classifier of Sect. 7.2.2, we need a collection of
items assigned to descriptive keywords across a set of predefined facet terms. For
our experiments, we use 36,820 annotated images from the Corbis image collection,
which we mentioned in Sect. 7.2.1. Each image has a title and free-text description,
and is associated with a set of keywords. Each keyword is assigned manually by the
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Table 7.6 List of the 14
most commonly used facets
in Corbis

Facet Description

ABC Abstract Concepts

APA Action, Process, or Activity

ATT Attributes

ATY Anatomy

GAN Generic Animal

GCF Generic Cultural Features and Works

GEV Generic Event

GPL Generic Plant

GTF Generic Topographic Feature

GTH Generic Thing

NCF Named Cultural Features and Works

NORG Named Organizations and Groups

NTF Named Topographic Feature

RPS Religious, Political, Philosophical, and Social Issues

Corbis annotators to one of the 38 facets that are used by Corbis. In total there are
65,521 unique keywords, primarily assigned to 14 of the 38 facets. The remaining
24 facets had less than 100 keywords assigned to them, so we ignored them for
the purposes of our evaluation. Table 7.6 lists the 14 most commonly used facets
with their full names. Since our facet extraction algorithm relies on the existence of
pre-annotated data, we picked 11,000 keywords and their associated facets to train
and test our algorithm. To avoid any bias, we randomly picked the 11,000 keywords
from 11,000 randomly selected images, choosing one keyword per image.

Techniques for Comparison We evaluated three versions of our classifier us-
ing Support Vector Machines (SVM) with linear kernels. The first classifier, which
serves as a weak baseline, does not use WordNet hypernyms or the associated key-
words as features. The second, which serves as a strong baseline, uses WordNet hy-
pernyms. The last classifier, which serves as our strongest version, uses both Word-
Net hypernyms and the associated keywords as additional features.

Evaluation Metrics To compare the three versions of our classifier, we use the
following metrics, which are commonly used in statistical classification:

Precision: The precision of a classification class c is defined as the number of key-
words (i.e., learning examples) that are truly labeled (by humans) and automat-
ically classified (by a classifier) as c divided by the total number of keywords
classified as c.

Recall: The recall of a classification class c is defined as the number of keywords
that are both truly labeled and automatically classified as c divided by the total
number of keywords that are truly labeled as c.
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Table 7.7 The average performance of the facet extraction technique (strong classifier) for each of
the 14 facets in the Corbis data set. Results are obtained using 10-fold cross-validation. (Table 7.6
contains the full names of the facets)

Facet Precision Recall F1-measure

ABC 85.20% 87.60% 86.38%

APA 75.80% 75.80% 75.80%

ATT 78.20% 83.50% 80.76%

ATY 80.00% 81.30% 80.64%

GAN 92.90% 92.90% 92.90%

GCF 74.70% 76.76% 75.72%

GEV 79.40% 56.30% 65.88%

GPL 81.70% 90.10% 85.69%

GTF 86.70% 75.00% 80.43%

GTH 87.70% 83.00% 85.29%

NCF 82.40% 87.57% 84.91%

NORG 75.40% 76.58% 75.99%

NTF 82.40% 80.30% 81.34%

RPS 85.60% 76.30% 80.68%

Average 82.01% 80.22% 80.89%

F1-measure: The F1-measure of a classification class is defined as the weighted
harmonic mean of precision and recall, or

2 · Precision · Recall

Precision + Recall

7.2.4.2 Experimental Results

Initially, we tested the accuracy of the weak baseline and, as expected, the classifier
could not generalize to unseen examples. Its accuracy, as measured by the average
F1-measure, was 10%, only slightly higher than the accuracy of a random classifier.
By adding the WordNet hypernyms, the performance of the baseline classifier im-
proved considerably, reaching an average F1-measure of 71%. This improvement
confirmed our hypothesis that hypernyms are useful features for allocating key-
words to facets. Nonetheless, the sense ambiguity is still a problem in this case:
after adding the remaining keywords from each document as extra features, perfor-
mance improved considerably. Our strong classifier reached an average F1-measure
of 81% (see Table 7.7).

We also compared our strong classifier against variations of other techniques.
One hypothesis was that we can create facets by picking some high-level hyper-
nyms from WordNet, which can serve as root nodes for the corresponding facets.
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For example, the term “animal/fauna” in WordNet could serve as the root node for
the “Animal” facet. Subsequently, all terms that have “animal/fauna” as a hypernym
could be assigned to the “Animal” facet. (This approach is close in spirit to the hi-
erarchy construction algorithm in [281].) To test the accuracy of this approach, we
trained RIPPER [71], a rule-based classifier, using the keywords and their hyper-
nyms as features. The average F1-measure in that case was close to 55%, signifi-
cantly worse than the corresponding results for SVMs. The results also highlighted
that some classes (facets) work well with simple, rule-based assignments of terms
to facets, but there are other classes that need more elaborate classifiers. For exam-
ple, for the facet GAN (Generic ANimals) the rule-based classifier resulted in an
F1-measure of 93.3%, showing that simple rules work well for this facet. However,
for the APA facet (Action, Process, or Activity) the F1-measure was only 35.9%,
showing that simple rules do not work well for such a complex facet.

7.2.5 Evaluating Our Unsupervised Facet Extraction Technique

In this section, we discuss the experimental evaluation of our unsupervised extrac-
tion technique of Sect. 7.2.3. First, we discuss the settings we used for our evalua-
tion, including the data sets and human judgments, our technique variations, and our
evaluation metrics. Then, we describe how we evaluated the recall and precision of
our techniques. Finally, we present our results on the efficiency of our techniques,
and finally we briefly discuss some results of a user study that demonstrates the
usefulness of the derived faceted navigational structures.

7.2.5.1 Experimental Settings

Our technique receives as input a set of free-text documents and produces as output
a set of hierarchically structured facets that can be used to browse the text collection
in an OLAP-like manner. Sect. 7.2.5.1 describes three data collections that we use
to evaluate the variants of our techniques, and an Amazon Mechanical Turk study
to evaluate the quality of the extracted facets by human annotators. Section 7.2.5.1
describes the variants of our technique. Finally, Sect. 7.2.5.1 presents the evaluation
metrics for the experiments.

Data Collections

Single Day of The New York Times (SNYT): A collection of 1,000 news stories
from The New York Times archive, covering one day of news from November
2005.

Single Day of Newsblaster (SNB): A collection of 17,000 news stories retrieved
by Newsblaster [183] from 24 news sources on one day in November 2005.
We use this data set to test how our techniques work over data from multiple
sources.
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Month of The New York Times (MNYT): A collection of 30,000 news stories
from The New York Times archive, covering one month of news from No-
vember 2005.

Human Extracted Facet Terms: Since our experiments required extensive input
from users and there is no standard benchmark for evaluating the quality of the
generated facets, we conducted a human study on the Amazon Mechanical Turk
service. Specifically, in our study each Mechanical Turk annotator had to read
a story and identify terms that can be used for faceted navigation. We informed
the annotators that the terms may or may not appear in the document, and it
was up to the annotator to determine whether the terms were useful for the task
of faceted navigation. For each article, the annotators were asked to provide
up to 10 candidate facet terms. We instructed them to choose terms that were
clearly defined, mutually exclusive, and covered as many aspects, properties,
or characteristics of the story as possible. Each of the 1,000 stories in SNYT

was examined by five annotators. For SNB and MNYT, we picked a random
sample of 1,000 stories, and again each story was annotated by five annotators.
To eliminate annotation errors or idiosyncratic annotations, we considered an
annotation to be valid if at least two of the annotators used the same facet term
for a given story. The final set contained 633 facet terms for SNYT, 756 facet
terms for SNB, and 703 terms for MNYT. This indicates that the number of facet
terms increases relatively slowly as the number of news sources rises (i.e., from
SNYT to SNB) and as we expand the examined time period (i.e., from SNYT to
MNYT). To make sure that this is not an artifact of our sampling approach,
we also performed a sensitivity test, examining how the number of facet terms
increases as we increase the number of stories in each data set from 100 to
1,000. At 100 documents, we discovered approximately 40% of the facet terms,
and at 500 documents we discovered approximately 80% of the facet terms
for each of the data sets. Therefore, we believe that the marginal increase in
facet terms if we annotated all 17,000 articles for SNB and all 30,000 articles
for MNYT would be relatively small. Figure 7.3 shows a sample of the most
frequently identified facet terms for the three data sets.

Precise Extracted Facet Terms: Our techniques extract a significant number of
terms that the Mechanical Turk annotators did not identify when marking the
important facet terms in the documents (see earlier details on the study). Still,
when examining the extracted faceted terms with the generated hierarchies, we
could easily determine whether a particular facet term accurately depicts the
contents of the underlying collection. So, we asked the annotators to examine
the extracted facet terms with the generated hierarchies and determine for each
facet term the following: (a) whether the term is useful in the facet hierarchy and
(b) whether the term is accurately placed in the hierarchy. To ensure the quality
of the annotations, the Mechanical Turk annotators that participated in this ex-
periment had to pass a qualification test. To conduct our test, we initially picked
random subtrees of the Open Directory22 hierarchy as our “correct” hierarchies.

22http://www.dmoz.org.
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Table 7.8 A list of our external resources (Sect. 7.2.3.2)

Name Description

GOOG Querying Google and using the results snippets.

WORDNET Querying WordNet for related Hypernyms.

WSYNONYMS Querying Wikipedia for related Synonyms.

WGRAPH Querying Wikipedia Graph for related aspects.

All Combining all resources.

Table 7.9 A list of our term extractors techniques

Name Description

LPNE Extracting terms using LingPipe’s name entity tagger.

YTERM Extracting terms using “Yahoo Term Extraction” web service.

WTERM Extracting terms using our Wikipedia term extractor.

All Combining all extractors.

To generate “noisy” hierarchies, we randomly perturbed some parent–child re-
lations and randomly swapped terms across separate hierarchy subtrees. Then,
during the qualification test, each prospective Mechanical Turk annotator had
to annotate 20 correct and incorrect hierarchies and was only allowed to pro-
ceed with the real annotation task if he or she gave the correct answer for at
least 18 out of 20 hierarchies. As in the case of the earlier study, each facet
term was examined by five Mechanical Turk annotators. We only consider a
term to be a precise facet term if at least four annotators marked the facet term
as precise.

Techniques for Comparison We create several variations of the general tech-
nique that we described in Sect. 7.2.3 based on (1) four external resources we
use to expand the collection, namely, GOOG, WORDNET, WSYNONYMS, and
WGRAPH; and (2) three term extractor techniques, namely, LPNE, YTERM, and
WTERM. Tables 7.8 and 7.9 list the details of our external resources and term ex-
tractors, respectively.

Evaluation Metrics To evaluate the different variations of our technique, we use
the following metrics.

Recall: This metric measures how many of the manually extracted facet terms were
also identified by our techniques. We define recall as the fraction of the manu-
ally extracted facet terms that were also extracted by our techniques.

Precision: We also evaluate the precision of the extracted facets using the same
methodology that we used for estimating recall. However, our techniques ex-
tract a significant number of concepts that the Mechanical Turk annotators did
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politics, money, market, government, history, competition, people, education, location,
new york, power, terrorism, war, baseball, event, biography, business, children, develop-
ment, health, music, real estate, sports, change, comeback, crime, entertainment, greed,
national security, nature poverty, spending, success, pride, technology, winning, anger,
architecture, branding, foreign lands, bush administration, campaign, capitalism, chal-
lenges, civil unrest, civil war, community, compromise, computers, consumer confi-
dence, corruption, countries, culture of fear, disagreement, distribution, power of the
Internet, expectations fear, humor, innovation, investigation, Iraq, Italian culture, jobs,
leadership, moving, opportunity, optimism, planning, players, police, public relations,
publicity, religion, religious, warfare rights, statistics, support, time, torture, U.S., vio-
lence, wealth, youth

Fig. 7.3 A sample of the most frequently identified facet terms, as extracted by human annotators.
All the terms above were anonymously selected by at least two annotators

year, new, time, people, state, work, school, home, mr, report, game, million, week, per-
cent, help, right, plan, house, high, world, american, month, live, call, thing

Fig. 7.4 Facet terms identified by a simple subsumption-based algorithm [260], without using our
techniques

not identify when marking the important facet terms in the documents. We con-
sider an extracted term to be a “precise” facet term if at least four annotators
marked it as precise. The precision is then the ratio of precise extracted terms
over the total number of extracted terms.

Efficiency: We also measure another important aspect of our techniques, namely,
the time required to extract useful facet terms for a collection.

7.2.5.2 Experimental Results

Recall Our first step was to measure how many of the manually extracted facet
terms were also identified by our techniques. To examine the individual effect of
each term extractor and of each external resource, we computed the fraction of
identified facet terms for each of the possible combinations of term extractor and
external resource. We also computed the recall for the case in which we used all the
term extractors and all the external resources.

We list the results in Tables 7.10, 7.11, and 7.12 for the SNYT, SNB, and MNYT

data sets, respectively. The results were consistent across data sets. In general, re-
call increases as we increase the number of term extractors and as we increase the
number of external resources. WSYNONYMS and WORDNET tend to perform
relatively poorly compared to Google and WGRAPH, especially when using named
entities (LPNE) as the term extractor. However, both resources are helpful when
combined with GOOG and WGRAPH, and increase the overall recall of the results.

Precision Recall that we consider a facet term to be “precise” if and only if it
was identified by our annotator as useful within the generated hierarchy of the facet
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Table 7.10 The recall of the extracted facets, as judged by the human annotators for the SNYT

data set

External Term extractors

resource LPNE YTERM WTERM All

GOOG 0.529 0.703 0.761 0.819

WORDNET 0.090 0.510 0.491 0.592

WSYNONYMS 0.105 0.156 0.345 0.408

WGRAPH 0.632 0.791 0.801 0.881

All 0.746 0.891 0.899 0.945

Table 7.11 The recall of the extracted facets, as judged by the human annotators for the SNB data
set

External Term extractors

resource LPNE YTERM WTERM All

GOOG 0.515 0.658 0.699 0.751

WORDNET 0.084 0.487 0.395 0.514

WSYNONYMS 0.112 0.162 0.306 0.314

WGRAPH 0.615 0.755 0.773 0.823

All 0.707 0.861 0.856 0.881

Table 7.12 The recall of the extracted facets, as judged by the human annotators for the MNYT

data set

External Term extractors

resource LPNE YTERM WTERM All

GOOG 0.522 0.658 0.699 0.793

WORDNET 0.087 0.487 0.395 0.555

WSYNONYMS 0.109 0.146 0.331 0.392

WGRAPH 0.627 0.778 0.790 0.853

All 0.733 0.859 0.860 0.921

and is accurately placed in the hierarchy. And we defined the precision to be the
ratio of precise terms over the total number of extracted facet terms. (We discuss the
generation of faceted hierarchies in the following chapter.)

We list the precision results in Tables 7.13, 7.14, and 7.15 for the SNYT, SNB,
and MNYT data sets, respectively. Again, the results were consistent across data
sets. The highest precision hierarchies are those generated by WordNet; this is not
surprising since the hypernyms naturally form a hierarchy. The use of Google as an
external resource tends to lead to a drop in precision. In our implementation, for
efficiency, we only use the terms that appear in the titles and snippets in the Google
results; we do not retrieve the actual HTML pages of the returned results. This
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Table 7.13 The precision of the extracted facets, as judged by the human annotators for the SNYT

data set

External Term extractors

resource LPNE YTERM WTERM All

GOOG 0.615 0.769 0.751 0.678

WORDNET 0.923 0.901 0.932 0.915

WSYNONYMS 0.734 0.815 0.845 0.819

WGRAPH 0.828 0.813 0.842 0.827

All 0.817 0.796 0.858 0.866

Table 7.14 The precision of the extracted facets, as judged by the human annotators for the SNB

data set

External Term extractors

resource LPNE YTERM WTERM All

GOOG 0.505 0.796 0.751 0.714

WORDNET 0.897 0.919 0.909 0.922

WSYNONYMS 0.633 0.904 0.875 0.853

WGRAPH 0.789 0.851 0.885 0.822

All 0.796 0.815 0.834 0.831

Table 7.15 The precision of the extracted facets, as judged by the human annotators for the MNYT

data set

External Term extractors

resource LPNE YTERM WTERM All

GOOG 0.487 0.818 0.834 0.794

WORDNET 0.878 0.925 0.932 0.917

WSYNONYMS 0.691 0.851 0.880 0.879

WGRAPH 0.801 0.824 0.837 0.810

All 0.713 0.836 0.855 0.861

approach introduces a relatively large number of noisy terms. An interesting direc-
tion for future research is to examine whether the introduction of a term extraction
mechanism from the HTML pages could improve the precision of our hierarchies. In
contrast to Google, the use of the Wikipedia resources produces more precise hier-
archies. Given the high precision of the WordNet- and Wikipedia-based hierarchies,
it would be interesting to see if we could use ontologies that combine WordNet and
Wikipedia in a single resource [283] as external resources.

Efficiency In our experiments, term extraction took 2–3 seconds per document,
and the main bottleneck was the Yahoo! Term Extractor. If we eliminate the Ya-
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hoo! Term Extractor, then we can process approximately 100 documents per sec-
ond. Similarly, document expansion takes approximately one second per document
when using Google as an external resource. Using Wikipedia and WordNet, which
are stored locally, is significantly faster: we can process more than 100 documents
per second, effectively making the term extraction the real bottleneck in the process.
The facet term selection phase is extremely fast (i.e., about a few milliseconds), and
we use an efficient hierarchy construction using the techniques described in [79], to
create the facet hierarchies in 1–2 seconds.

In a real deployment scenario, we can considerably increase facet extraction effi-
ciency by performing the term and context extraction offline. In this case, the results
are ready before the real facet computation, which then takes only a few seconds
and is almost independent of the collection size. (So, we can generate facet hier-
archies over the complete collection and dynamically over a set of lengthy query
results.) If term and context extraction need to be performed on-the-fly over thou-
sands of documents, and it is important to compute the facet hierarchies quickly,
then it would be preferable to avoid using web-based resources, such as Yahoo!
Term Extractor and Google, and instead use only locally available resources, such
as LingPipe, Wikipedia, and WordNet.

User Study Finally, we examine the reaction of users to automatically extracted
facets. For this, we recruited five subjects to use our system to locate news items of
interest, and we asked them to repeat the task 5 times. We provided a keyword-based
search interface that was augmented with our faceted hierarchies located on the side.
We measured how often during each search session the users clicked on the facet
terms and how often they used the keyword-based search. We also measured the time
required to finish the task. At the end of each session, we asked users to indicate
their level of satisfaction, on a scale of 0–3, where 0 = dissatisfied, 1 = slightly
dissatisfied, 2 = slightly satisfied, and 3 = satisfied.

We observed that, in the first interaction with the system, the users typed a key-
word query of a named entity associated with the general topic in which they were
interested (e.g., “war in Iraq”). Then they proceeded to locate news stories of interest
by clicking on the facet hierarchies until they had generated a small subset of news
stories associated with the same topic. Interestingly, in subsequent interactions with
the system, the users started by using the faceted hierarchies directly, and their use
of the keyword-search interface was gradually reduced by up to 50%. In addition,
the time required to complete each task dropped by 25%, and the level of satisfaction
remained statistically steady, with a mean level of 2.5 in the 0–3 scale. These results
are consistent with previous research studies that relied on manually generated facet
hierarchies [327] or on hierarchies extracted only from WordNet [282].

Results Summary The results of our user study indicate that users are generally
comfortable using facet terms, and grow even more comfortable with greater ex-
posure to them. Furthermore, by using the facets, users can locate items of interest
more quickly, without any decline in satisfaction. The similarity of the interface
with existing OLAP tools means that our techniques can be seamlessly integrated
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with current OLAP systems that provide easy access to structured, relational data.
Our techniques can expand existing OLAP systems to work over unstructured, or
semi-structured data, allowing OLAP users to quickly discover interesting associa-
tions.

7.2.6 Further Discussion and Future Work

We evaluated our supervised approach over a text-annotated collection, refined with
the use of training data in which descriptive keywords are assigned to the items in
the collection and the keywords are organized across facets terms. We evaluated
our unsupervised approach over a news collection with the benefit of a hypothesis
that useful high-level browsing terms can be found in external knowledge resources.
Unfortunately, we only evaluated the supervised approach over the Corbis collection
mainly because we do not have access to other collections that are annotated in a
similar manner as Corbis, and we only evaluated the unsupervised approach over
collections of news articles. For future work, we are interested in combining the
two approaches to extend our work for semi-annotated collections such as YouTube:
each YouTube item (or video clip) is tagged with several keywords, as in the Corbis
collection, but is not associated with useful facets, unlike in the Corbis collection.

Our unsupervised techniques rely on external informative resources and we only
query three such resources. In fact, there are several other useful resources within
specialized contexts that could be relatively straightforward to integrate into this
framework. For instance, the Taxonomy Warehouse23 developed by Dow Jones con-
tains a large list of controlled vocabularies and specialized taxonomies that can be
used for term identification and term expansion, respectively. For example, when
browsing literature for financial topics, we can use one of the available glossaries
to identify financial terms in the documents. Then, we can expand the identified
terms using one or more of the available financial ontologies and thesauri. In fact,
we plan to incorporate many such resources in our framework for a variety of topics,
and use them all, irrespectively of the topics that appear in the underlying collec-
tion. This will allow us to handle a variety of collections, beyond archives of news
articles.

7.2.7 Conclusion

We presented techniques for automatically identifying terms that are useful for
building faceted hierarchies over two kinds of collections. For a text-annotated col-
lection, such as Corbis, we built a classifier that can associate, with a high level
of accuracy, annotated keywords across a pre-defined set of facets. For a free-text

23http://www.taxonomywarehouse.com/.
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collection such as The New York Times archive, we built a set of techniques that
develop the idea that external resources, when queried with the appropriate terms,
provide useful context that is valuable for locating the facets that appear in a col-
lection of text documents. We demonstrated the usefulness of Wikipedia, WordNet,
and Google as external resources. Our experimental results, validated by an exten-
sive study using human subjects, indicate that our techniques generate facets of high
quality that can improve the browsing experience for users.



Chapter 8

System Implementation

Giovanni Maria Sacco, Yannis Tzitzikas,

and Sébastien Ferré

“We have too many high sounding words, and too few actions

that correspond with them.”

Abigail Adams, 1744–1818 (letter to John Adams, 1774)

This chapter discusses system implementation. Section 8.1 provides an analytical
discussion of the various implementation choices, and Sect. 8.2 reports experimen-
tal results over relational databases. Section 8.3 discusses existing systems and
Sect. 8.4 discusses formats that can be used for representing and exchanging tax-
onomies and taxonomy-based metadata, as well as a brief discussion on protocols.
Finally, Sect. 8.5 discusses taxonomies as an Abstract Data Type and shows how
taxonomies can be composed.

8.1 Architecture and Implementation Strategies

Real-time response to user navigation is required because a slower execution would
severely impair the sense of free exploration that the user of dynamic taxonomy sys-
tems experiences. The central operation is the zoom operation, i.e., the computation
of the user-defined focus set, the subsequent computation of related concepts and
the final reduction of the corpus taxonomy.

Implementations of dynamic taxonomies are not discussed in detail in literature
[236, 327]. The majority of current implementations manage a small number of
objects described by shallow taxonomies: in this case, any brute force implemen-
tation is probably adequate. However, large-scale applications on infobases in the
multi-million-object range, described by complex, multilevel taxonomies will grad-
ually become widespread. In this context, real-time zoom operations are indeed a
critical issue, and efficient structures and evaluation strategies are required. The ar-
chitecture described here was introduced by [231–233] and achieves a speedup of
more than two orders of magnitude with respect to a standard relational implemen-
tation.

In most real-life situations, we expect access by dynamic taxonomies to be a
component of a larger existing software infrastructure. In e-commerce applications,
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currently the most popular application area for dynamic taxonomies, product selec-
tion by dynamic taxonomies has to be integrated with other required components
such as shopping cart management and credit-card processing, inventory manage-
ment, etc. Therefore, dynamic taxonomy systems have to be engineered in such a
way as to facilitate integration into existing systems. In fact, the extremely wide
application range of dynamic taxonomies suggests that dynamic taxonomy engines
should be implemented as a component, or as a Web service, to be invoked by com-
plex applications.

Because of faceted design and of the quick convergence of dynamic taxonomies,
the taxonomy itself is expected to be quite compact and taxonomies with one
thousand terminal concepts or less to be the norm in practice. Exceptions usu-
ally arise when summarization must be supported on large domains, such as au-
thors, titles, etc. As an example, consider a classical music recording database. Al-
though the recordings for specific authors can be directly retrieved by information
retrieval queries, representing them explicitly in the taxonomy allows showing a
summary of the authors of, for instance, string quartets, and consequently supports
a more complete exploration of the infobase, especially for knowledge and wisdom-
seeking tasks. These exceptions will be discussed later in the section on virtual
concepts.

Finally, even if most current applications are essentially monolingual (English-
based, mostly), Internet applications are inherently transnational and the multilin-
gual capabilities of dynamic taxonomies are an important advantage which should
be exploited.

8.1.1 Logical Architecture

The goals of the general logical architecture described in the following are flexibility
and performance. There are three key points to be considered for a flexible archi-
tecture. First, dynamic taxonomies are explicitly concerned with information access
only and not with information classification. Objects are assumed to be classified
by some third entity, i.e., human beings or automatic/semiautomatic classifiers. It is
likely that machine classifiers will need additional structures and/or data, but these
will be ignored here, since our only concern is efficient exploration through dynamic
taxonomies. Consequently, the first separation we make is between information ac-
cess and information classification.

Second, information access is based on a conceptual (metadata) description of
information objects, which is completely independent of the actual object con-
tents [236]. This clean separation between conceptual descriptions and actual con-
tents is not always present in information access literature where, for instance, the
conceptual taxonomy is often considered equivalent to a hierarchical thesaurus, with
obvious problems and limitations.

Third, the definition of a concept C as a set of objects classified under C indicates
that the concept “name” is just a label and there may be different captions, possibly
multilingual, for C.
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The architecture described here makes a clear separation among several aspects
of dynamic taxonomies. First, the identification of an object is separated from its ac-
tual content, so that dynamic taxonomies can be used to manage any type of hetero-
geneous objects. Each object is identified throughout the system through its unique
abstract object identifier DID, generated by a single system-wide source. Object
contents are stored in a repository, whose responsibility is to provide storage, ex-
traction and display primitives, based on the object’s DID. We will not describe
the repository further, because we expect that in most real-life applications it will
be already operational and implemented by the host software infrastructure. This
provides the second separation: namely, we completely separate the metadata level
from the data level and provide interchange between the two levels through object
identifiers. Since the medium and type of a specific object are exclusively dealt with
by the repository (but can also be represented at the metadata level if required for
descriptive purposes), it is clear that the metadata level can effectively abstract from
these features: it becomes straightforward to deal with data of any type and format
and to interoperate with existing software.

Second, while it is conceptually feasible to represent metadata through a sin-
gle monolithic structure, such architecture severely impairs the flexibility of the
resulting system. The third separation is between the intension and the extension, so
that different applications can share the same conceptual schema. Interoperation be-
tween the intension and the extension can be provided by identifying each concept
by a unique concept identifier (CID). Thus the intension will hold the relationships
among concepts, while the extension will hold the classification of objects, each
identified by its abstract identifier DID, under concepts represented by their abstract
identifier CID.

The use of an abstract identifier for concepts also separates concept labels from
concept contents (i.e., the set of objects identified by the concept) and from the
topological representation of the taxonomy. Concept labels are stored separately in
dictionaries, one for each language. Concept labels are to be interpreted in the broad-
est sense: images, portions of images or icons can be used to identify a concept. The
resulting architectural schema is shown in Fig. 8.1.

Since dynamic taxonomies are usually compact, we expect intensions which can
be easily stored in RAM. The structures to be used for the intension are basically:

1. a father-to-son structure, FS, which lists for each concept CID the sequence of
its sons, ordered by display order. This structure is used to display the taxonomy
from the root down;

2. a son-to-father structure, SF, which lists for each concept CID the set of its fa-
thers, or its single father if multiple inheritance is not supported. This structure
allows upwards navigation from a concept to the taxonomy root;

3. a DESCENDANTS structure which lists for each concept the set of all its de-
scendants; and

4. an ANCESTORS structure which lists for each concept the set of all its ancestors.

The FS structure is always required, and the DESCENDANTS structure can be dy-
namically constructed from it, if required. As we will note shortly, upwards naviga-
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Fig. 8.1 General architecture

tion in the taxonomy is required to implement backwards inheritance.1 Usually the
ANCESTORS structure is used instead of the SF structure. All the stored structures
are updated when the intension is modified.

As regards the extension, the principal operation in dynamic taxonomies is the
zoom operation. This operation can be expressed in terms of two primitive opera-
tions:

1. setting a focus, i.e., computing the set of objects which satisfies a boolean con-
dition on concepts;

2. reducing the current taxonomy, by pruning all the concepts not related to the
current focus from it, and, optionally, computing for each concept C the number
of objects in the focus which belong to the deep extension of C.

8.1.2 Computing the Focus

The computation of the focus, as a boolean condition on concepts, is performed on
the deep extensions of these concepts. It is therefore a requirement for performance
that deep extensions be explicitly stored. If only the shallow extension is explicitly
stored, the deep extension of C must be dynamically computed by taking the union
of all the shallow extensions of all the descendants of C. This operation is obvi-
ously quite expensive, especially for deep and complex taxonomies and for large
information bases. The key to efficient operations is therefore to maintain the deep

1See Chap. 1.
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Fig. 8.2 Classification of d through backward inheritance

extension of each concept C explicitly in the extension. This strategy by itself can
improve the speed of operations by orders of magnitude, depending on the taxon-
omy.

The deep extension can be efficiently constructed during indexing by backwards

inheritance: if object d is classified under concept C, then d is inserted in the shal-
low extension of C and is also inserted in the deep extension of C and of all of C’s
ancestors (see Fig. 8.2 where “se” denotes shallow extension and “de” deep exten-
sion). This method constructs the deep extension bottom-up (from sons to fathers)
once, during classification, rather than top-down for each focus evaluation. By con-
struction, the deep extension of the root is equal to the universe, i.e., to the set of
all classified objects, and as such might not be explicitly maintained. In order to ef-
ficiently implement backwards inheritance, the intensional ANCESTORS structure
can be used.

The shallow extension is required only when objects can be classified under non-
terminal concepts. In fact, for terminal concepts, the shallow and the deep extension
are the same, by construction. In addition, if objects can be classified under terminal
concepts only, the shallow extension for non-terminal concepts is trivially empty.
For simplicity, we will assume in the following that objects can only be classified
at terminal nodes in the taxonomy, so that shallow extensions are not required. The
deep extension is stored in the form DEEPEXTENSION(CID, DID), where CID is
the concept id, and DID is the object id for each object in the deep extension of
concept CID.

One of the important features of dynamic taxonomies is that they can be seam-
lessly integrated with other search techniques, such as database or information re-
trieval queries. Dynamic taxonomies can be used in two different ways:

1. to summarize the result of traditional queries, according to the taxonomy;
2. to select a conceptual context through the taxonomy, to which the external search

will be restricted.
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Integration assumes that the external search mechanism can operate with the same
document identifiers used by dynamic taxonomies. This allows to compute the focus
set as the intersection of the focus F defined by a combination of concepts from the
taxonomy with the result set R computed by the external search mechanism. The
resulting focus set may be empty, if the two sets are disjoint, or if R is empty. This
accounts for the more general second case above. In the first case the focus set is
given by R.

8.1.3 Computing the Reduced Taxonomy

The reduced taxonomy RT(S) can be computed as a function of the focus set S, by
pruning from the original taxonomy all the concepts which are not in the related
set of S (RS(S)). The related set RS(S) can be represented by a set of concept ids
which are related to S: this is called the no-count strategy. In the count strategy,
instead, each element of RS(S) contains in addition to the concept id C also the
cardinality of C ∩ S. Such cardinality indicates how many objects in the focus are
also classified under C.2 Although count strategies are inherently more expensive
than no-count strategies, related counts represent an important point in interaction
because they indicate whether an additional zoom operation can be beneficial or
the infobase is sufficiently reduced to allow the manual inspection of the remaining
candidate objects.

The related set RS(S) itself can be computed in two different ways:

1. the focus-driven method
2. the taxonomy-driven method

The focus-driven method processes the focus set S and recovers all the concepts
used to classify any object in S. In order to compute RT(S), we need an abstract
relation which stores, for each object d in the infobase, the concepts used to clas-
sify d : CLASSIFICATION(DID, CID), where DID is the object id of d , and CID is
the concept id for each concept used to classify d . The related set RS(S) can then be
computed in the no-count strategy through the following SQL query:

SELECT DISTINCT T1.CID
FROM RESULT T, CLASSIFICATION T1
WHERE T.DID=T1.DID

where RESULT(DID) is the relation which represents the focus set.
The count strategy requires the following more complex SQL query:

SELECT T1.CID, CNT(*)
FROM RESULT T, CLASSIFICATION T1
WHERE T.DID=T1.DID
GROUP BY T1.CID

2If |C ∩ S| = 0, then C does not belong to RS(S).
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An implementation based on joins is used in Flamenco [99]. According to Yee
[327]:

query previews [i.e., reduced taxonomies] are generated using the SQL COUNT(*) and
GROUP BY operators to count the number of objects which fall into each subcategory.

It is worth mentioning that Flamenco does not store the deep extension of concepts
[132] and has to dynamically reconstruct it by taking the union of the shallow exten-
sions of descendant concepts. As we remarked above, this can easily translate into
an overhead of more than two orders of magnitude.

The taxonomy-driven method [231–233] is based on one of the alternate formu-
lations of the extensional inference rule:

given a concept C and a concept expressed by an arbitrary subset S of the universe, C is
related to S, C ⇄ S iff objects(C) ∩ S �= ∅

This formulation shows that the related set can be computed by performing, for
each concept C in the taxonomy, the intersection between the extension of C and the
focus set S. If the intersection is non-empty, then C belongs to the related set RS(S).
The taxonomy-driven method only requires the DEEPEXTENSION relation. In the
taxonomy-driven method/no-count strategy, the intersection operation between the
extension of a concept C and the focus set S can be stopped as soon as a common
object id is found. In the count strategy, instead, the entire intersection must be
performed.

By remembering that the inclusion constraint in subsumption implies that if C �∈

RS(S) and C′ is a descendant of C, then C′ �∈ RS(S), the evaluation of RS(S) can
be optimized by computing the related set in a top-down way, i.e., from the root
towards terminal concepts. Whenever a concept C has a null intersection with the
current focus, all of its descendants will have a null intersection as well and they can
be discarded without computation. The DESCENDANTS structure in the intension
can be used to quickly find all the descendants of C. This optimization is expected
to be more effective for smaller focus set cardinalities.

8.1.4 Presentation Strategies

In the previous section, we described how operations on dynamic taxonomies, and
especially the extensional inference rule, can be efficiently supported. In this section
we discuss presentation strategies for dynamic taxonomies, i.e., how the reduced
taxonomic tree is generated. We will assume that the dynamic taxonomy engine is
available at a web server, and that the interaction is stateless on the server side.

When the user establishes or modifies the current focus, the existing taxonomy
has to be recomputed, in order to prune irrelevant concepts. There are two main
strategies here:

1. a labor-intensive or full-loading strategy, in which the entire tree is reduced and
sent to the client. Any additional exploration not involving additional zooms can
be carried out client-side, thus minimizing the number of transmissions;
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2. a lazy or on-demand partial loading strategy, which only computes the high-
est levels of the taxonomic tree, i.e., the sons of the root, with other levels being
computed on demand. This strategy requires a larger number of smaller transmis-
sions, since the explosion of a node requires getting from the server the filtered
set of sons of that node.

Although both strategies can be used by focus-driven and taxonomy-driven meth-
ods, the lazy strategy benefits only the taxonomy-driven approach, because the
focus-driven approach always computes the entire related set. In the taxonomy-
driven approach, instead, each concept is individually tested for membership in the
related set, so that if dynamic taxonomies guidelines [236] are met and the taxon-
omy fanout is limited to 10–20 elements, the response time is usually at least two
orders of magnitude faster than the computation of the complete reduced taxon-
omy, because only the immediate sons are computed each time. In addition, a lazy
taxonomy-driven method minimizes the work to be done, because users do not usu-
ally explore the entire reduced taxonomy, but only expand a very limited number of
concepts in the tree.

With taxonomy-driven methods, the labor-intensive strategy requiring the com-
putation of the entire tree can very well be several orders of magnitude more ex-
pensive than the lazy strategy, at least as far as response time is concerned. It is
therefore important that the labor-intensive, full-evaluation strategy be optimized,
as discussed in the previous section.

8.1.5 Physical Storage Structures for the Extension

Although a relational implementation is viable, special structures can significantly
improve the performance of dynamic taxonomies. Here we consider four different
structures to represent the deep extension of concepts, i.e., the list of document ids
for the objects classified directly or indirectly under a concept:

1. Inverted lists;
2. Bit vectors, similar to the bitmap indices [199] currently supported by several

relational DBMSs, such as Oracle and Sybase, for OLAP applications;
3. An opportunistic hybrid compression scheme which uses bit vectors or inverted

lists depending on the number of objects to be recorded;
4. Other Bit Vectors compression schemes, such as the Word-Aligned Hybrid

(WAH) scheme proposed by Wu et al. [319].

In all of these structures, a pointer array keyed by concept id is used. Each element
points to the stored structure for the deep extension of the corresponding concept.
We anticipate the following analysis to state that we expect the entire deep extension
to be memory-resident, even for very large databases.

In order to simplify the analysis, we assume a faceted taxonomy on j indepen-
dent facets, in which each object is classified once under each facet. The taxonomy
is also assumed to be balanced, i.e., each terminal has the same distance L from the
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root. Finally, a constant concept fanout equal to j will be assumed. These assump-
tions are also used in the experiments described in the following, and represent a
fair approximation of common scenarios, such as e-commerce applications. When
expedient and for concreteness, a sample infobase of 800,000 objects described by
a taxonomy with a constant fanout of 10 and 1,000 terminals is used.

In considering alternate storage schemes, the primary concern is execution speed,
because of real-time response requirements. For this reason, data compression meth-
ods such as LZ77 ([338], used in gzip) are not considered, as they considerably slow
down logical operations.

Inverted lists are widely used in database and information retrieval systems. The
inverted list representation for the DEEPEXTENSION relation stores, for each con-
cept C, an ordered vector of object ids, such that an object id DID is in the list if DID
is in the deep extension of C. Since object ids are kept sorted in the list, boolean op-
erations are efficiently implemented by merging, with a linear time complexity. The
storage required is roughly half of the storage required by the raw data in DEEPEX-
TENSION, because the concept id CID for a set of entries {CID,DIDi} is stored
only once. Under our assumptions, the total space requirements for the deep exten-
sion stored as inverted lists is

S = w(N + jLN)

where N is the total number of objects and w is the size in bytes of an object id
(usually w = 4). In fact, N entries at each level of each facet are entered (jLN

entries). In addition, also the root has N entries. For the sample infobase, this results
in approximately 96 Mbytes, easily stored in RAM with current technology.

In the bit vector implementation, the extension is stored as a bit matrix B of K

rows by N columns, where K is the total number of concepts in the taxonomy and
N is the total number of objects in the corpus. B[i, j ] is set iff the object d such
that its abstract identifier DID is j is in the deep extension of concept C whose
abstract identifier CID is i. The implementation of all the set operations required
to set a focus, and of the intersection between two concepts required to implement
the extensional inference rule can be performed by logical operations on bit vectors
in linear time. Storage requirements for the deep extension of an infobase with N

objects classified under K concepts is

S = KN/8

In the example, bit vectors require 108 Mbytes.
We compare the space requirements of the two methods, in order to derive the

condition for inverted list storage to be smaller than bit vector storage:

wN(1 + jL) ≤ KN/8 or K ≤ 8w(1 + jL)

This condition does not depend on the number of objects stored, but rather on the
total number of concepts and on the number of facets and of levels in the taxonomy.
For the sample infobase, inverted lists require less space when K > 992.
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Table 8.1 Space requirements for Inverted List, Bit Vector and Compressed representations.
IL: Inverted List; BV: bit vector. Sizes are in 106 bytes

Level Concepts on
this level

IL total size BV total size Compression
type

Compressed
total size

0 1 3.2 0.1 BV 0.1

1 10 32 1 BV 1

2 100 32 10 BV 10

3 1000 32 100 IL 32

Total L = 3 1111 99.2 111.1 43.1

4 10000 32 1000 IL 32

Total L = 4 11111 131.2 1111.1 75.1

The motivation of strategies 3 and 4 is that bit vectors for concepts become denser
for concepts higher in the taxonomy. By definition, the bit vector of the root is all
set, while the bit vector for a terminal is expected to have a very small number
of bits set. Thus, from the one side, there are opportunities for compressing the
higher levels of the tree (strategy 4). On the other hand, the deep extension of the
lowest levels of the taxonomy, which is responsible for most of the space require-
ments, tends to be very sparse, and could be significantly compressed by storing
document ids explicitly in the form of an inverted list, rather than as a bit vector
(strategy 3).

Assuming a taxonomy on j independent facets with a constant concept fanout
equal to j and L levels, the average number of entries for a concept at level i is

N/j (i−1), 1 ≤ i ≤ L

The representation through an inverted list is then less expensive than the corre-
sponding bit vector when

wN/j (i−1) < N/8 or j (i−1) > 8w

Consequently, the compression strategy uses uncompressed bitmaps at the highest
level of the tree, and inverted lists at the lowest. Table 8.1 reports storage costs
for strategies 1, 2 and 3 on a sample infobase with 800,000 objects described by a
taxonomy with a constant fanout of 10. Even though the number of terminal con-
cepts found in most practical situations rarely exceeds 1000, we have considered a
taxonomy with 1,000 and a taxonomy with 10,000 terminals. From the total space
requirements, we find that the compressed total size is 43% of the Inverted List stor-
age and 39% of the Bit Vector storage, in the first case. It is 57% of the Inverted List
storage and 7% of the Bit Vector storage, in the second case. For increasing number
of levels, the size of the Compressed representation tends to the size of the Inverted
List representation, since only the very highest levels in the tree will be managed by
Bit Vectors, and these levels account for less and less space for increasing depth of
the taxonomy. However, 4 to 5 levels are rarely exceeded in practice.
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Boolean operations on the Compressed representation require additional care
when the operands are of different types. The AND of the deep extension of two
concepts C and C′, where objects(C) is represented by a Bit Vector and objects(C′)

by an Inverted List is solved by starting from the Inverted List and, for each
d ∈ objects(C′) testing if d belongs to objects(C). If the test is successful, C is
inserted in the result, otherwise it isn’t. The result is in the Inverted List format,
which is desirable since the result size will be no larger than |objects(C′)| for which
an Inverted List representation was beneficial.

The OR of the deep extension of two concepts C and C′, where objects(C) is
represented by a Bit Vector and objects(C′) by an Inverted List is solved by copying
objects(C) to the result, and, for each d ∈ objects(C′) setting the bit corresponding
to d in the result. The result is in the Bit Vector format, which is desirable since the
result size will be no smaller than |objects(C)| for which a Bit Vector representation
was beneficial.

Other Bit Vector compression methods cannot be easily combined with other
methods and execute boolean operations slower than Inverted Lists and uncom-
pressed Bit Vectors. The only reason to consider them is if we expect significant
storage savings. However, the results reported in [319] for WAH (Word-Aligned
Hybrid compression) indicate a compression ratio of less than 50% with respect to
Inverted Lists, which is in the same range as the compression we proposed. WAH is
not the most efficient compression method, but other methods such as BBC [24] are
known to execute boolean operations significantly slower [319].

As mentioned before, the taxonomy-driven method only requires the deep exten-
sion of concepts, because it computes the related set RS(S), by intersecting the deep
extension of each concept C with the focus set S.

In the no-count strategy, the intersection operation can be stopped as soon as
a non-empty intersection is produced. The count strategy requires instead that the
number of objects in the intersection result be counted. This is an expensive opera-
tion. A naïve counting algorithm works byte-by-byte on the result of the computed
intersection. For each byte, shift-mask-test can be performed for each bit, increas-
ing the counter if the bit is set. This algorithm is quite inefficient especially for large
sets. The Count strategy on Bit Vectors can be optimized by performing counting
in parallel with the evaluation of set operations, in the following way (see Fig. 8.3).
We precompute a byte vector V of size 2k , which for each V [i] holds the number
of bits set in the number i. In practice, k = 16 will be used and V will have 65,536
elements, one for each different bit configuration of a word. The intersection be-
tween two binary vectors is likely to be computed by logical operations on chunks
of 4 bytes: then, as soon as a resulting 4-byte chunk is computed, each of the 2-byte
chunks can be used as an index to V and the corresponding value of V used to
increase the counter.

As an additional optimization, it should be noted that the result of the intersection
needs not be stored, since only its cardinality is required in the related set.
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Fig. 8.3 Using a
precomputed vector to count
the number of objects in a bit
vector

8.1.5.1 Analysis of Taxonomy and Focus-Driven Evaluation

In comparing taxonomy-driven with focus-driven methods, we first note that
taxonomy-driven methods require roughly half the storage required by focus-driven
methods. In fact, taxonomy-driven methods only require the DEEPEXTENSION
relation both for the computation of the focus set and for the computation of the
related set. Focus-driven methods still require the DEEPEXTENSION relation for
the computation of the focus set, and the additional CLASSIFICATION relation
for the computation of the related set. Taxonomy-driven evaluation is therefore the
choice when main memory storage is at a premium, because using secondary stor-
age will generally produce a significant performance degradation with respect to
main memory solutions.

Intuitively, we expect focus-driven methods to be more efficient for smaller fo-
cus set cardinalities. The behavior of taxonomy-driven evaluation depends on the
count/no-count strategy used. For no-count strategies, taxonomy-driven evaluation
becomes more efficient as the focus set cardinality grows larger, because the prob-
ability of early detection of non-empty intersections increases. In count strategies,
unoptimized evaluation is constant, whereas optimized evaluation becomes more
efficient for smaller focus sets, because subtree pruning becomes more effective.
Finally, lazy taxonomy-driven strategies, though constant in cost, are faster than
labor-intensive strategies by one or more orders of magnitude.

In order to initially compare the two methods, we compare the cost of evaluation
of the related set for a count unoptimized taxonomy-driven evaluation (S1) in which
the deep extension is stored as a bitmap vector, with the cost of a count focus-driven
strategy (S2) in which the CLASSIFICATION relation is represented as an inverted
list structure. We compute the cost as a function of the number of accesses to 4-byte
words, and keep the same assumptions made before.

The cost of S1 is given by cost(S1) = K · 2(N/32). In fact, the unoptimized
strategy computes, for each of the K concepts, the intersection between the focus
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and the deep extension of the concept. Each bit vector is N/32 words long, and the
intersection requires the access to both vectors.

Strategy S2 joins the focus set with the CLASSIFICATION relation in order to
extract a number of concepts NC equal to NC = |S|Lj , where L is the depth of the
taxonomy and j the number of facets. These concepts are then sorted with an n logn

cost, and finally sequentially scanned to compute the result. Let N ′ = N/δ = |S|,
δ ≥ 1, the cost of S2 is given by cost(S2) = 2N ′Lj + 2N ′Lj log2(N

′Lj) + NLj .
The cost of S2 is smaller than the cost of S1 if

δ >
16Lj(3 + 2 log2(N

′Lj))

K

In the case of a lazy, on-demand evaluation, only j out of K concepts are going
to be tested, so that the cost of S2 is smaller than the cost of S1 lazy if

δ > 16L
(

3 + 2 log2

(

N ′Lj
))

Figure 8.4 reports the estimated break-even point for focus-driven strategy S2
with respect to taxonomy-driven on-demand lazy strategy S1, for the sample in-
fobase. S2 is better for focus set sizes smaller than the break-even point. Figure 8.5
reports the estimated ratio between the focus-driven strategy S2 with respect to
taxonomy-driven on-demand lazy strategy S1, for the sample infobase. The overall
ratio (i.e., considering all the concepts except the root as a possible focus) and the ra-

Fig. 8.4 Break-even result set cardinality for taxonomy and focus-driven evaluations
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Fig. 8.5 Estimated cost ratios of focus-driven over taxonomy-driven lazy evaluation

tio at the terminal, and immediately higher, levels are reported. The lazy taxonomy-
driven strategy is shown to be always better, for the sample infobase, than the focus-
driven strategy, and, as expected, larger improvements occur for the higher, denser
levels of the conceptual tree.

8.1.6 Experimental Data

In order to verify the strategies described above, we conducted experiments on a
synthetically generated sample. The sample simulates a faceted classification on 10
independent facets, each organized on three levels with a fixed fanout of 10. The
total number of terminal concepts is thus 1000, while the total number of con-
cepts in the taxonomy is 1111, including the root of the taxonomy which con-
tains all the documents, is explicitly stored but not used in the following exper-
iments. Each document is classified exactly once under each facet, at the termi-
nal level. Although this taxonomy is quite compact, it is a good representative of
taxonomies designed following the guidelines reported in [236].3 The experiments
were conducted on corpora ranging from 2,000 to 800,000 documents, with the cor-
pus size increasing by a factor of 2 in each experiment. All the possible reduced
taxonomies for single-concept foci were computed. This means that we concentrate

3See Sect. 7.1.
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on the very first and heaviest phase (zoom) of the iterative thinning of dynamic
taxonomies.

Our measures concentrate on the production of reduced taxonomies, since this is
the most critical operation in the model. We report our results in reduced taxonomies
per second (rtps), based on a Dell Dimension 8250, Intel Pentium 4 2.8 GHz,
512 MB RAM, Microsoft Windows 2000 Professional, an average machine with
current technology. The reader is cautioned that our measures do not include the
overhead due to HTTP processing, context switches, etc. We only measure low-
level implementation costs, because other overheads depend on the Internet server,
operating system, etc. and will be the same for all methods. The first experiments
compare three different implementations of bit vectors with counters (count by shift-
and-mask, by 1 byte table access and by 2 byte table access) with an in-memory
implementation of inverted lists. This latter strategy is a pointer array, with each
pointer addressing an ordered integer vector, and is significantly faster than sec-
ondary memory implementations based on hashing or B-trees.

The first experiment was conducted on the full-evaluation, labor-intensive strat-
egy, which fully evaluates the reduced taxonomic tree. The results are reported in
Fig. 8.6 and they show that 2 byte table count bit vectors clearly outperform the
other strategies. It is worth noting that this strategy has a throughput of 2.67 reduced
trees per second with 800,000 documents. Required main memory for the extension
ranged from 273 KB to 106 MB, with bit vector methods requiring about 12% more
memory than inverted lists. One byte table count bit vectors were included in the
comparison because it was contended that they might be faster than 2 byte table

Fig. 8.6 Full evaluation for selected strategies (logarithmic y axis)
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Fig. 8.7 Lazy on-demand evaluation for selected strategies (logarithmic y axis)

count bit vectors, due to a better cache locality. Our experiments show that this is
not the case in our environment, and we believe that this holds in general.

The second experiment, reported in Fig. 8.7, compares the same methods on the
lazy strategy, in which only the reduced top level of the taxonomy is computed.
Again, the 2 byte table count bit vector strategy outperforms the other ones, and it
achieves a throughput of 327 rtps with 800,000 documents. Note that the inverted
list strategy is now outperformed by all the bit vector strategies. This is because
the higher levels of the taxonomy are denser and consequently the corresponding
inverted lists longer and more expensive to process. In fact, the speed ratio between
2 byte bit vectors and inverted lists varies from 6.75 (2,000 documents) to 8.35
(800,000 documents), which indicates performance degradation for inverted lists,
as the lists grow longer.

The third experiment compares 2 byte table count bit vectors with the no-count
bit vector strategy which simply tests the intersection of two vectors for emptiness.
These two strategies are applied both to full (Fig. 8.8) and lazy (Fig. 8.9) evaluation.
While it is not surprising that the no-count strategy outperforms every counting
strategy, it is interesting to note that the reduced trees per second offered by the
no-count strategy for 800,000 documents range from 147 (full evaluation) to 23,244
(lazy evaluation). The no-count strategies works better for denser levels, because
non-empty intersections tend to be detected earlier.

The fourth experiment was conducted to test the improvements deriving from top
down evaluation with empty concept detection. Both 2 byte count bit vectors and
inverted lists were considered. The results, reported in Fig. 8.10, show that there is
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Fig. 8.8 Count and no count strategies for full evaluation (logarithmic y axis)

Fig. 8.9 Count and no count strategies for lazy on-demand evaluation (logarithmic y axis)

indeed a significant improvement for light loads (267% at 2,000 documents), which
becomes negligible for higher loads. Inverted lists are outperformed also in this case.
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Fig. 8.10 Optimized and non optimized full evaluation

Finally, we have conducted full evaluation experiments to compare our bitmapped
(2 byte table counters, conservatively non optimized) architecture to a plain rela-
tional database implementation. The experiments were run using MySql v. 4.0.20ant,
on the same synthetic information base used for the other experiments. We created
the relation DEEPEXTENSION as a memory-resident table through

Create Table DEEPEXTENSION (
did INTEGER, cid INTEGER
Primary Key (did, cid)
KEY(CID) ) TYPE=MEMORY

As before, we computed reduced taxonomies for all the possible single-concept
foci. The reduced taxonomy is computed by the following query:

SELECT T1.cid, COUNT(*)
FROM DEEPEXTENSION T, DEEPEXTENSION T1
WHERE T.did=T1.did AND T.cid=focus-concept_cid
GROUP BY T1.cid

Memory requirements for the DEEPEXTENSION relation were over 5.50 times
larger than our bitmapped implementation. This was to be expected because

• concept identifiers are not factored out of the deep extension table, so that the size
of the relational table is twice as large as the bitmapped table,

• two indices (one clustered and one unclustered) are defined in the relational im-
plementation and
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Fig. 8.11 2 byte table count nonoptimized bit vector and relational evaluation

• the dynamic relation and its indices, stored as B+ trees, have an average utilization
factor of 0.69.

Obviously, such a large storage overhead significantly reduces the size of informa-
tion bases which can be held in main memory.

The ratio between rtps for bitmapped and relational evaluation goes from 42.43
for a 2,000 object database to 91.73 for a 512,000 object database (rtps for the two
methods are reported in Fig. 8.11). This indicates that the performance of the re-
lational implementation degrades as the database size grows. The throughput for a
bitmapped evaluation on 512,000 objects is equivalent to the throughput of a rela-
tional implementation on 8,000 objects. Although the experiments depend on the
specific RDBMS used, so that the actual throughput for other systems might be
different, we are confident that bitmapped evaluation will outperform relational im-
plementations.4

It is worth mentioning that the Flamenco implementation [99] is considerably
less efficient than the one described above since it does not store the deep extension
of concepts [132] and has to dynamically reconstruct it by taking the union of the
shallow extensions of descendant concepts. As we remarked above, this can easily
translate into an overhead of more than two orders of magnitude.

Access through dynamic taxonomies is beneficial even when the number of doc-
uments to be accessed is very small. However, their superior, guided convergence to

4There are other factors, beyond performance, which can justify the use of a RDBMS. See
Sect. 8.2.
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small result sets makes them a clear winner over traditional methods for large and
very large information bases. In this context, dynamic taxonomy systems must offer
real-time interaction to a potentially large number of users.

We have shown that real-time dynamic taxonomies can be supported by common
hardware configurations if specialized software architectures are used. Bit vectors
were shown to be an efficient method, although they require slightly more memory
space than inverted lists.

The experiments indicate that different strategies can be used, in centralized ar-
chitectures, as the corpus size grows. Optimized full evaluation can be used for
smaller corpora, lazy evaluation for medium to large corpora and no-count lazy
evaluation for very large corpora. Memory requirements are rather moderate and a
1 GB RAM configuration can store the required dynamic taxonomy structures for
several million documents.

8.1.7 Further Performance Enhancements

Especially in the case of a stateless interaction, substantial computational savings
can be obtained by caching focus sets and related sets [231, 233]. We expect that
all the different foci are not equiprobable. In particular, we believe that, for each
facet, only a subset of its concepts will be used for focusing, the remaining ones
being used for summarization. As an example, consider an e-commerce application
with a Price facet divided into Budget, Medium, and High. Although possible, it is
highly unlikely that the first user focus will be Price > High. If Price is no objec-
tion, the first focus will probably be on some other feature, say high resolution. So
we believe that if Price is used to set the first focus, only Price > Budget is likely
to be used. The same holds for most other available features. As in the end-game
for e-commerce we discuss in Chap. 9, we believe that there is a ranking of con-
cepts for each facet, from most desirable to less desirable ones (all other features
being equal), and that only the most desirable concepts are likely to be used for
focusing.

If this is true, then caching related sets for high-probability foci would require
limited storage resources (because relatively few of all the possible foci occur)
and at the same time achieve a considerable speedup (because high-probability foci
need not be computed). The caching of related sets seems more beneficial than the
caching of foci especially in full-evaluation strategies, because the reduced taxon-
omy can be immediately transmitted to the client without any additional computa-
tion.

Although high-probability foci can be probably be determined a priori in some
application domains such as e-commerce, it may be quite difficult and time-
dependent in other domains. For these reasons, we believe that intelligent cache
replacement policies that account both for popularity and time, such as the well-
known LRU-K replacement policy [198], are especially suitable for this context.
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The hit-ratio of such caching strategies depends on the application and, as in vir-
tual memory systems and database buffer managers, on the size of the cache. How-
ever, by similarity with VM systems, hit ratios over 80–90% can be expected, which
would translate into a 5–10× speedup with respect to non-caching implementations.

Other improvements can be expected by parallel architectures. Viable strategies
include replication, vertical partitioning (different sets of documents are allocated
to different machines) and horizontal partitioning (different concepts are allocated
to different machines, i.e., the taxonomy is partitioned among different machines.
These strategies can be combined. Because our implementation requires small to
moderate amounts of main memory, we expect that most practical applications can
be parallelized by full replication on N machines. In this way, communication over-
head is minimum because the only requirement is that requests be balanced among
the available machines: we expect a speedup factor close to N . Only very large,
multi-million document applications will require some kind of partitioning.

8.1.7.1 Virtual Concepts

Simple virtual concepts and derived virtual concepts were introduced in Sect. 5.3
as a way to “virtualize” parts of the taxonomy and materialize such parts, when
appropriate, from additional, external structures.

A simple virtual concept V̄ (e.g., Price) is fully characterized by four abstract
operations:

1. Given V̄ , find all its sons. In our example, this means finding all the distinct
values of Price in the infobase;

2. Given V̄ , find its deep extension: e.g., find all the objects for which Price is
defined;

3. Given the son s of V̄ , find its deep extension. In the example, find all the objects
which have the specified value s of Price; and

4. Given an object d , find all the descendants of V̄ under which d is classified. In
the example, find all the Prices for a specific object.

A way in which these abstract operations can be implemented is to keep a re-
lation C[V̄ ](Value, DID) for each virtual concept V̄ , and a secondary index on
(DID,Value). In this way, the four operations can be implemented by the following
SQL queries:

1. SELECT DISTINCT Value FROM C[V̄ ]

2. SELECT DISTINCT DID FROM C[V̄ ]

3. SELECT DISTINCT DID FROM C[V̄ ] WHERE Value = s

4. SELECT DISTINCT Value FROM C[V̄ ] WHERE DID = d

Counting is easily added. Note that C[V̄ ] need not be explicitly stored but can be
synthesized on request. This implies that the Value considered here can be derived
from external data by, for instance, statistical operations such as means, totals, etc.
On the other hand, if C[V̄ ] is actually stored, multiple C[V̄ ], one for each virtual
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concept V̄ , can be stored in the same relation. When the reduced taxonomy for a
focus F is constructed, the operations are computed on C[V̄ ] ⋊⋉DID F .

A derived virtual concept δ(V̄ ) can derived from a virtual concept V̄ by specify-
ing additional restrictions on the (base) relation C[V̄ ] in the WHERE clause of each
SQL query.

For example, consider a virtual concept “Price”. Rather than exploding “Price”
into its actual values, we might want to group these values in a small number of
ranges. Assume that one such range is “Budget”, defined as Price < 50. Then the
four operations required to characterize the derived virtual concept “Budget” are
the same as for Price, with the addition of the clause WHERE Value < 50.

Derived virtual concepts can be derived from other derived virtual concepts, in
order to define an arbitrary hierarchy: in this case the additional restrictions are com-
posed in AND. Derived concepts are dynamic in nature, and the end-user could be
enabled to dynamically specify custom groupings through parametric restrictions.

8.1.7.2 Time-Varying Concepts

In many applications, and notably online auctions, part of the classification for an
object depends on time [231–233]. For instance, an object can be classified for time
to auction end, usually according to predefined intervals (one hour or less, one day or
less, etc.). Such time-varying concepts can be represented by virtual concepts in the
following way. A time instant t is represented as an abstract timestamp, containing
the number of clock ticks from a fixed time origin; the clock resolution depends on
the application. The difference between two timestamps t and t ′ defines the time
interval between the two times. We can define a virtual concept V̄ whose values are
the set of timestamps of all documents in the extension of V̄ . Let T be the timestamp
of the current time, and the sons of V̄ be represented as time intervals with respect
to the current timestamp T . The abstract operations for V̄ can be defined as:

1. Given the virtual concept V , retrieve all its sons: SELECT DISTINCT T -value
FROM C[V̄ ]

2. Given the virtual concept V , retrieve its deep extension: SELECT DISTINCT
DID FROM C[V̄ ]

3. Given the son s of the virtual concept V , retrieve its extension: SELECT DIS-
TINCT DID FROM C[V̄ ] WHERE value = T − s

4. Given an object d , find all the descendants of V under which a is classified:
SELECT DISTINCT T -value FROM C[V̄ ] WHERE DID = d

With virtual concepts, the classification of objects among intervals is dynamically
computed when the deep extension of an interval is required. An alternate way is
to split the values of a time-varying concept into N intervals (from more recent to
older ones), which are represented as real concepts. In this way, the deep extension
of each interval is pre-computed, but the classification of each document has to be
periodically recomputed. In order to minimize the number of objects which have to
be checked for reclassification, we keep, for each interval I :
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1. the list L(I) of pairs (DID, timestamp) in the interval ordered by decreasing
timestamps (i.e., newer to older);

2. in central memory, an interval representative IR(I ), which is the DID in the in-
terval with the oldest timestamp together with its timestamp; and

3. a classification criterion (e.g., T -value less than 1 week and no smaller than
1 day)

When objects need to be reclassified (i.e., after P ticks, where P is selected by
the system administrator), we will check, for each interval I , its interval representa-
tive IR(I ). If IR(I ) is null or meets the classification criterion for I , no documents
in I need to be reclassified. Otherwise, we will reclassify IR(I ), select a new repre-
sentative IR(I ) by picking the last (oldest) element in L(I) and repeat the test. The
list L(I) can be implemented as a queue, with new objects added from one end, and
old objects extracted, as interval representatives, from the other end.

It is easy to prove that we only consider, for each interval, only one object in
addition to those which have actually to be reclassified. This latter strategy is ex-
pected to be much faster when access by time-varying concepts is frequent and the
reclassification time interval P is reasonably large (i.e., a few minutes).

8.2 Implementation over a Relational Database Management

System

Since relational database technology is the de facto standard for business applica-
tions here we examine the case where all (meta)data are stored in a relational data-
base. We examine this case because sometimes the database is already in place and
its contents may change frequently. For such cases, it is worth investigating the case
where exploratory search is implemented on top of SQL and no special index (like
those described in Sect. 8.1) is created/maintained. This is the approach followed by
systems like Flamenco [327] and i411 (also see Sect. 8.3).

Suppose that we have a relational database and we want to offer exploration ser-
vices for its contents. One approach is to define a view (by exploiting the declarative
query language of the DBMS) containing the attributes that should be considered as
facets. This view may comprise attributes coming from different relations and its
definition may include joins and other transformations. Each attribute is considered
as a facet, and the set of distinct values of these attributes that appear in the tu-
ples of the view are considered as the terms of that facet. As it has been stressed
already, guided exploration can be combined with other access methods (e.g. prede-
fined query forms or plain SQL query answering) to summarize the results of these
methods. This means that it is not necessary that the faceted view includes all at-
tributes that characterize an object, or all the attributes that are being exploited by
the rest access methods; it can contain only those that are appropriate for explo-
ration. However, attributes like “price”, “weight”, “dates”, “locations” often have a
big number of distinct values. In such cases an additional step aiming at abstract-
ing/grouping the set of values is appropriate. Sometimes there may exist such a
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hierarchy that is already represented in a separate relational table (recall the design
strategies for OLAP data warehouses, such as star schemata). If a hierarchy is not
available it can be constructed manually or derived automatically. For the latter case
automatic methods for defining hierarchies, e.g. for defining intervals for prices,
can be adopted. For instance, [61] describes methods for creating multi-level tax-
onomies for attribute values on the fly. However, there is a trade-off between the
degree of automation and the quality of the produced hierarchy.

Regarding implementation let’s hereafter consider the case where all (meta)data
are stored in a (R)DBMS and taxonomies (i.e. their subsumption relations) are repre-
sented in the database in tables of the form (son-to-father) only. If only the reflexive
and transitive reduction of ≤ and the interpretation I (or equivalently the description
function DI ) is stored, then the computation of the zoom points can be done with
one SQL query only if we a priori know the depth of the taxonomies involved, or if
we adopt recursive SQL. Otherwise, more than one queries have to be issued. If the
model interpretation Ī (or equivalently the complete description function DĪ ) is rep-
resented explicitly in the database, then one SQL query is enough, but to maintain Ī

(and DĪ ) after updates in the database requires knowing the depth of the taxonomies
or using more than one queries.

Table 8.2 shows the schema of a bibliographic database storing information about
authors and papers where the latter are classified according to a subject hierarchy.
To measure efficiency we created a synthetic data set over this schema. The re-
lation subjectHierarchy forms a balanced and complete tree with degree 5
and depth 5. Each paper (through the relation paperSubjects) is associated
with one randomly selected subject term (that is a leaf), and (through the relation
paperAuthors) with 1 to 4 randomly selected authors. All fields of the tables

Table 8.2 Schema of the
synthetic bibliographic
database

Relation Attribute Number of tuples

paper pid 105

title

year

venue

author pid 4 × 104

authorName

paperAuthors pid 2.2 × 105

authorId

subjectHierarchy stId 3906

name

parentID

paperSubjects stId 105

pid
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Fig. 8.12 Experimental
results on synthetic databases

are indexed with B-trees and the size of the database is 30.1 MB (the indexes oc-
cupy 17.2 MB). The experiments were performed over PostgreSQL 8.3 (with shared
buffers parameter set to 1 GB) on a Pentium IV machine with 3 GHz CPU and
1 GB RAM. The database is redundancy free, in the sense that only the transitive
and reflexive reduction of the subject hierarchy is stored, and only the direct (not
the complete) descriptions of the papers are stored. Recall that this storage policy
is advantageous in terms of storage space and maintenance, but requires hierarchy
traversals (performed with more than one SQL queries as discussed earlier).

Figure 8.12(a) shows: (ta) the time for computing the answer of a query com-
prising one subject term from various term depths, (tb) the time to compute the
immediate zoom-in points with respect to the venue attribute (including count in-
formation), (tc) the time to compute the content of the new focus (we have selected
one zoom-in point from venue facet). Note that the cost ta is included in both tb
and tc, since we re-compute the results. The reported times are the average of 20
different runs of 5 randomly selected subject terms for each depth. Notice that all
times are less than 0.22 seconds. Figure 8.12(b) shows the corresponding average
result sizes.
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Fig. 8.12 (Continued)

The same experiments were run on a larger database that does not fit in main
memory. The database schema is shown in Table 8.3. Tables subjectHierarchy
and subjectHierarchy2 form a balanced and complete tree with degree 10 and
depth 5. Again, each paper is associated with one randomly selected leaf subject
term from each of the two hierarchies and with 1 to 4 randomly selected authors.
All fields of the tables have been indexed with B-tree access method and the size
of the database is 1.24 GB (the indexes occupy 718 MB). The experiments run
on the same machine as described above but with the shared buffers parameter of
postgreSQL set to 1 GB. Figure 8.12(c) shows the measured times (ta , tb and tc).
The reported times are the average times of 40 different runs for 10 randomly se-
lected subject terms for each depth. Notice that if the depth of the subject term is
greater than 1 then the times are less than 1.5 seconds. Times were gathered using
Java, meaning that the overhead of the JDBC driver is also included. Figure 8.12(d)
shows the corresponding average result sizes (for depth = 1 we get 200 thousands
papers).

A more detailed description of the SQL queries as well as a thorough experimen-
tal evaluation is available at [310].
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Table 8.3 Schema of larger
synthetic database Relation Attribute Number of tuples

paper pid 2 × 106

title

year

venue

author pid 5 × 105

authorName

paperAuthors pid 5 × 106

authorId

subjectHierarchy stId 111.111

name

parentId

paperSubjects stId 2 × 106

pid

subjectHierarchy2 stId 111.111

name

parentId

paperSubjects2 stId 2 × 106

pid

A variation of the previous approach is to use an ORDBMS (Object-Relational
Database Management System). This choice has reduced storage space require-
ments and better performance in some cases, especially if the complete descrip-
tions of objects are stored. Specifically, the set-valued attributes that are supported
by ORDBMS, allow having an inverted file-like database representation: for each
object we can have only one tuple containing a cell with the identity of the object
and a set-valued attribute storing the identifiers of all terms that have been assigned
to the object. Other variations are also possible. For instance, we can have a hybrid
approach where some of the data are always kept in main memory. For instance, the
hierarchically organized attributes values (i.e. the taxonomies) can be kept in main
memory while the rest in the DBMS.

8.3 Case Studies: Existing Systems

This section describes in brief architectural issues and existing systems. Fig-
ure 8.13(a) shows a general component diagram using the UML notation. It depicts
a component named Explorer that provides an interface (called IExplore) of-
fering methods for setting up the focus and for computing and getting the zoom
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Fig. 8.13 Component diagrams

points as well as other useful information (e.g. the count information for each
zoom point). That component (and through the IExplore interface) is used by
a GUIfrontend component that carries out the dialog with the end user (e.g.
through one or more tree view graphical components).

The component Explorer is fed through an interface, named IGeneral
Access. The methods of that interface depend on the application. For instance,
the component Source can be a plain file system. Alternatively, it can be an in-
verted file, a DBMS that can be accessed through an ODBC interface, or even a
remote source accessed through a number of Web services.

The way the interface IGeneralAccess is used (while the user interacts with
the system) depends on the adopted architecture. For instance, one architectural
choice is to load all metadata (i.e. entire materialized faceted taxonomy M) once
and at the beginning. A limitation of this architecture is that all data should fit in
main memory. Alternatively, in a partial loading approach, only the restricted ma-
terialized faceted taxonomy is loaded. Specifically, the part needed for describing
a given set of objects A (A ⊆ Obj), i.e. (F , I )|A (as defined in Sect. 2.7). This
approach is appropriate for cases where M is too big to fit in memory (e.g. the
metadata index of a Web Search Engine). Regarding implementation either the lazy

or the labor-intensive (Sect. 8.1.4) strategy can be adopted. Once a restricted (on a
set of objects A) materialized faceted taxonomy is loaded using the labor intensive
strategy, the component Explorer offers all services for restricting the focus with-
out having to call any method of the IGeneralAccess interface unless (a) the
user wants to use an alternative access method (e.g. to submit a free text query), or
(b) the user requests a zoom-out/side operation that can lead to a set of objects A′

that is not subset of A.
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Fig. 8.14 An indicative sequence diagram

Figure 8.13(b) shows how these components are articulated in case both ac-
cess methods (guided navigation and general access methods) have to be provided
through an integrated user interface. In this case, the GUIfrontend component
can send directly queries to the underlying source.

Figure 8.14 shows a Sequence Diagram, depicting an indicative sequence of mes-
sages, for the case where both guided exploration and general access methods are
provided through an integrated user interface that adopts the labor-intensive strat-
egy. The loop is continued as long as the requested NewAnswer is a subset of the
loaded Answer. If it is not, then Explorer has to be fed again. For instance, if the
user selects to zoom-out, and this operation yields to a focus ctx′ whose extension is
not subset of the current, i.e. Ī (ctx′) �⊆ A, then setFocusObject(Ī (ctx′)) has
to be issued. The same is true if the user submits a new query q ′.

There are several search engines that support (up to some degree), the interaction
paradigm of exploratory search. Table 8.4 lists a few representative systems. For
each one of them we list some sites in which they are used, plus some other features.
Subsequently (in Sects. 8.3.1 and 8.3.2), two systems are described in brief.
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Table 8.4 Faceted metadata search engines in commercial sites

Metadata
search
engines

Used in commercial
sites

Support
of
zoom-in
points

Over
DBMS

Support
of
remote
sources

I/O formats Other
supported
features

Knowledge
processors

Non commercial:
tiziano.di.unito.it,
erare.di.unito.it

Yes No Yes rule-base
autoclassifier
for XML
sources,
integrated IR
component

CAMELIS Personal data Yes No Yes
(URLs)

CSV, JPEG,
MP3,
BIBTEX

automatic and
manual
classification,
querying by
examples,
export of
playlists and
slideshows

FleXplorer Non commercial:
mitos search engine

Yes No Yes TXT,
XML, . . .

i411 ElectionsOntario.on.ca,
DeTelefoongids.nl,
iLocal.net

Yes Yes Yes HTML,
XML, PDF,
DOC, PPT,
XLS, . . .

Predefined
taxonomies
and
categories,
compressed
on-disk
storage

Mercado Blockbuster.com,
Sears.com,
USOPNet.com,
officemax.com

Yes Yes Yes

Siderean
seamark

Indiana Educational
Clearinghouse,
Fortunoff.com,
EnvironmentalHealth-
News.org

Yes Yes Yes XML, RDF,
RSS, flat
files

Predefined
taxonomies
and
categories,
uses RDF an
intermediate
storage
format

Endeca TowerRecords.com,
BarnesAndNoble.com,
Spiegel.com,
Cabot-Corp.com

Yes Yes Yes XML and
database
imports
(Oracle,
DB2, SQL
Server)

Predefined
taxonomies
and
categories
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Table 8.4 (Continued)

Metadata
search
engines

Used in commercial
sites

Support
of
zoom-in
points

Over
DBMS

Support
of
remote
sources

I/O formats Other
supported
features

Solr Repubblica.it,
StubHub.com,
Archive.com,
Chowhound.com,
CNet.com

Yes Yes Yes HTML,
OpenOffice,
DOC, XLS,
PPT, IMAP,
RTF, PDF,
etc.

Lucene
search library

Google base base.google.com Yes (but
without
count
informa-
tion)

No Yes PDF, XLS,
TXT,
HTML,
RTF, WPD,
ASCII,
XML

8.3.1 FleXplorer and Mitos

This section describes an implementation that is coupled with a Web search en-
gine. FleXplorer [309] is a main memory API (Application Programmatic In-
terface) that allows managing (creating, deleting, modifying) terms, taxonomies,
facets and object descriptions. It supports both finite and infinite terminologies (e.g.
numerically-valued attributes) as well as explicitly and intensionally defined tax-
onomies. The former can be classification schemes and thesauri, the latter can be
hierarchically organized intervals (based on the cover relation), etc.

The system is implemented in Java, so the predefined ordering of built-
in types (e.g. of int, float, String), as well as the customized order-
ing defined for user-defined Java classes (e.g. through the comparable inter-
face) can be exploited. To allow intensionally defined partially ordered domains,
a partiallyComparable interface has been defined and can be used by the
developer. The framework also supports parametric types.

Regarding user interaction, the framework provides methods for setting the focus
and computing all kinds of zoom points. In addition, the framework allows materi-
alizing on demand the relationships of a taxonomy, even if they can be inferred as
this can speed up the computation of direct narrower terms (the Nr(1)(t) as defined
in Sect. 8.2) at the cost of extra main memory space. Regarding deployment, the
framework can be used either at the server side or at client side.

As faceted exploration can be combined easily with other access methods (e.g.
information retrieval queries, structured queries, or application-specific queries), the
user could start interacting not only by selecting some terms (i.e. by specifying a
focus), but through a set of objects. To this end below we discuss one such scenario.
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Mitos5 is a prototype Web search engine [206, 207].6 FleXplorer is used
by Mitos in order to offer general purpose browsing and exploration services.
Currently, five facets are supported. Specifically, and on the basis of the top-L
(where L is typically less than 10,000) answer of each submitted query, the fol-
lowing facets/taxonomies are created and offered to users:

• web domain, a hierarchy is defined (e.g. csd.uoc.gr < uoc.gr < gr),
• format type (e.g. pdf, html, doc, etc.), no hierarchy is created in this case,
• encoding (or natural language) of a web page (e.g. utf-8, iso-8859-1),
• dates hierarchy (a taxonomy of dates is created automatically from the last mod-

ified dates of each page in the result set),
• a hierarchy derived by applying an on-line results clustering algorithm. In par-

ticular, a novel variation of the STC (Suffix Tree Clustering) method [330] is em-
ployed which is described in detail in [161]. The algorithm works on the snippets
and this can be done in real time for the top-100 documents.7

Figure 8.15 shows a sample screendump of the Web-based GUI (for more, see
[208]).

The system follows a partial on-demand loading approach. This approach is ben-
eficial in cases where the materialized faceted taxonomy is too big to fit in memory.
The shortcoming of this approach (in comparison to the full loading approach) is
that the loading time that has to be paid at every submitted query can be high if the
query answer is large. Figure 8.16 shows the loading time of the top-L answer for
various values of L: from 104 to 106. As the loading time depends on the format
employed (and the associated parsing costs), the figure reports the loading times for
four different formats, namely: (a) JDBC ResultSet, (b) XML, (c) a (proprietary)
TXT-based format, and (d) a main memory format, called ResultDocument that
is provided by the FleXplorer API.

The loading time reported for each answer size and for each different method
is the average time of 10 executions. As one would expect, ResultDocument
is the faster (as it is a main memory “format”), followed by the JDBC ResultSet.
Parsing the TXT file is much slower and parsing the XML file is the slowest choice.
For the experiments we used a Pentium IV 3 GHz with 2 GB RAM with Win-
dows XP.

Figure 8.17 shows the time to compute the zoom-in points (for the aforemen-
tioned set of five facets) after the selection of a zoom-in point, with and without
count information. We adopt the lazy, taxonomy-based approach. Each reported
time is the average time of 20 executions (5 executions for each for the four loading

5In Greek mythology, Thisseus succeeded to come out of the labyrinth (of Knossos) by wrapping
the “Mitos of Ariadne”, a ball of thread given to him by Ariadne which he had unwrapped when en-
tering the maze. Analogously, Mitos is an engine that aims at guiding users in the Web-labyrinth.
6©Department of Computer Science of the University of Crete, and FORTH-ICS, http://groogle.
csd.uoc.gr:8080/mitos/.
7It is worth noticing that the most time consuming subtask is not the clustering itself but the ex-
traction of the “best text” (snippet) from the cached copies of textual contents of the pages.
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Fig. 8.15 Application on a web search engine

format options). Clearly, the computation of zoom-in points with count information
is more expensive than without count information: in 1 s we can compute the zoom-
in points of 240,000 results with count information, while without count information
we can compute the zoom-in points of 540,000 results.

8.3.2 FASTAXON

FASTAXON is a system for designing compound taxonomies based on CTCA (that
was described in Sect. 6.1). Using the system, the designer first defines a number of
facets and then creates and assigns taxonomies to each one of them. Subsequently
the designer can formulate a CTCA expression for specifying the valid compound
terms. The formulation is done gradually and at any point the designer is able to
browse the dynamically generated navigation tree (as described in Sect. 6.1.3) de-
fined by the formulated expression.
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Fig. 8.16 Time to load
results to FleXplorer

Fig. 8.17 Time to compute
zoom-in points using
FleXplorer

FASTAXON is implemented as a client/server Web-based system written in Java.
The server is based on the Apache Web server, the Tomcat application server and
uses MySQL for persistent storage. The user interface is based on DHTML (dy-
namic HTML), JSP (Java Server Pages) and Java Servlet technologies (J2EE). The
client only needs a Web browser supporting JavaScripts. Figure 8.18 illustrates the
general architecture of the system.

The faceted taxonomy is stored using three tables:

FACETS(id:Int, name:String)
TERMS(id:Int, name:String, facetId:Int)
SUBS(termId:Int, broaderTermId:Int)

The first stores the names of the facets, the second stores the terms of T , and
the third the transitive reduction (Hasse diagram) of the subsumption relation ≤.
Clearly, we also have the corresponding foreign key constraints TERMS.facetId
⊆ FACETS.id, SUBS.termId ⊆ TERMS.id, and SUBS.broaderTermId
⊆ TERMS.id.
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Fig. 8.18 The architecture of
FASTAXON

Concerning the storage of the CTCA parameters we can distinguish two cases.
If all elements of the parameters P and N of e contain at most one term from each
terminology Ti then we can store all P and N parameters in one table PARAMS
that has one attribute Ai for each facet Fi , i = 1, . . . , k, and dom(Ai) = Ti . Specif-
ically, each element s = {t1, . . . , tm} in P (or N ) is stored as a tuple r such that
r(AJ (ti )) = ti , for each i = 1, . . . ,m where J (t) = m iff t ∈ Tm. To speed up the
lookup operations on the relation PARAMS (i.e. the selection queries), each opera-
tion in the parse tree of the expression e is assigned a unique identifier opId. This
identifier is associated with each element of the parameter, P or N , of the operation.
This has been implemented by adding one additional column opId to the relation
PARAMS. In this way, the elements of each parameter P or N can be collected and
searched more efficiently. However, in the general case where there are elements in
P or N that contain more than one term from one facet (e.g. when there are one or
more self-product operations), we cannot use the table PARAMS as defined earlier,
because we would need set-valued attributes and the relation would not be in 1NF.
For this reason we use a scheme which “simulates” set valued attributes (we assign
an identifier to each value set and store the values of the set in a separate table).
Specifically, we use two tables:

PARAMS(A1, . . . ,Ak , opId)
SETS(setId:Int, termId:Int)

where SETS.termId ⊆ TERMS.id.
Let s be a compound term that is element of one parameter P or N , which is

stored as a tuple r in PARAMS. If there is i = 1, . . . , k such that s ∩ Ti = {t1, . . . , tn}

with n > 1, then we create a new identifier setId for {t1, . . . , tn} and store setId
in the appropriate attribute of r , i.e. r(Ai) = setId. The correspondence between
setId and the terms {t1, . . . , tn} is stored in SETS.

For example, consider the expression

e = (Sports ⊕P 1 Location) ⊖N

( ∗
⊕P 2 (Facilities)

)
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where

P 1 = {{SeaSports,Crete}, {WinterSports,Greece}}

P 2 = {{IndoorSPool,OutdoorSPool}, {OutdoorSPool, Jacuzzi}}

N = {SeaSports,Crete, IndoorSPool}

where IndoorSPool, OutdoorSPool, and Jacuzzi are terms of the facet Facilities. The
contents of the tables PARAMS and SETS follow:

PARAMS
Sports Location Facilities opId

SeaSports Crete o1
WinterSports Greece o1

s1 o2
s2 o2

SeaSports Crete IndoorSPool o3
SETS
setId termId

s1 IndoorSPool
s1 OutdoorSPool
s2 OutdoorSPool
s2 Jacuzzi

8.4 Formats and Protocols

This section describes some formats that can be used to exchange taxonomies and
object descriptions (some of them have already been mentioned in Sect. 3.5).

• XML is a meta-language for defining markup. It provides a syntax for structured
documents but does not impose any semantic constraint on the meaning of these
documents.

• XML Schema is a language for restricting the structure of XML documents.
• RDF is a data model for objects (resources) and relations between them. It is

actually a data model based on object-attribute-value triples. Such triples can be
represented and exchanged in various formats including XML (i.e. RDF/XML)
and TriG [43].

• RDF Schema is a vocabulary description language for describing properties and
classes of RDF resources equipped with subsumption semantics. It allows ex-
pressing ontologies.

• OWL is a richer vocabulary than RDF Schema that allows expressing disjointness
and cardinality constraints as well as other properties like equivalence, symmetry,
transitivity.

As a sample, we describe XFML, an XML format for publishing and connecting
faceted metadata between Web sites.
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XFML (eXchangable Faceted Metadata Language) is described as an open XML
format for publishing and connecting faceted metadata between Web sites. It is
based on the Topic Map [11] standard but uses only a subset of its data representa-
tion capabilities. Roughly, XFML allows expressing topics, organized in hierarchies
(trees) within mutually exclusive containers called facets. These structures are called
maps. The topic concept is the same as it is in Topic Maps, e.g. “love”, “5 o’clock
in the afternoon”, “Shakespeare” are potential topics. The notion of topic does not
correspond to the notion of term as used in thesauri [149], because a topic is an
abstract entity, while a thesaurus term is a specific (set of) words. This means that
the topic “accessibility” could be described by the term “accessibility”, but also by
the terms “universal access” or “ease of access”. XFML doesn’t deal with terms, it
deals with topics, actually with topics organized in specialization/generalization hi-
erarchies (trees). Each topic belongs to one and only one facet and there can’t be two
representations of the same topic in a map. A topic can have only one other topic
as general topic. In addition, each topic may be associated to a published subject
indicator (psi), i.e. to a human readable resource that defines the topic.

Facets are mutually exclusive containers that contain hierarchies of topics. Mu-
tually exclusive means that a certain topic can only possibly belong to one facet.
ThingsToDo and PlacesToGo are good facets, because a topic can never be both a
thing to do and a place to go to. People and Colors are two other good facets. Cities

and PlacesToVisit are “bad” facets if used in the same map because Pisa (a potential
topic) could belong to both.

Concerning indexing and XFML, a Web page can be indexed with respect to a
map, by assigning to it a set of topics from that map.

XFML also allows establishing connections between different maps, by indicat-
ing that a topic in one map is equivalent to (synonym of) a topic in another map.

XFML allows publishing maps, page indices and connections in an XML based
format. The substantial part of the XFML DTD8 is shown in Fig. 8.19, while
Fig. 8.20 sketches the XFML representation of an example.

Note that the element occurrence has also an attribute strength (whose
range is [1,∞]) that allows indicating how strong the indexer believes that a par-
ticular topic is to a particular page. An occurrence strength of 1 means complete
confidence while higher numbers mean less confidence. Note that the availability of
such estimates motivate supporting best match (as opposed to exact match) retrieval
models over taxonomy-based sources. Such models are not described in this book,
however Sect. 5.6 discussed some of the rising issues.

In addition, XFML specification includes some processing instructions for the
applications9 which describe how one application can exploit a connection to a map
B in order to import the object indices of map B or to browse map B. There is already
software for XFML, including tools for creating and managing XFML maps, XFML
parsers and converters from XFML to XTM [11] and RDF [6].

8XFML DTD can be found in http://www.xfml.org/spec/xfml.dtd.
9See http://www.xfml.org/spec/1.0.html.
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Fig. 8.19 The DTD of XFML

Fig. 8.20 Example of XFML

Finally, RDF is clearly a format that can be used as dynamic taxonomies need
only two kinds of relations (hasType and subClassOf). However there is not
native notion of facet.

Regarding protocols, there is not a particular protocol dedicated to the needs
of exploratory search. However the design of such a protocol could be done quite
straightforwardly, and implementations over different technologies (e.g. Web Ser-
vices) could come up easily.
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As an example we could mention JSR-17010 which is a type of Object Database
tailored to the storage, searching, and retrieval of hierarchical data. The JCR API
grew out of the needs of content management systems, which require storage of
documents and other binary objects with associated metadata. In addition to object
storage the JCR provides APIs for versioning of data, transactions, observation of
changes in data, and import or export of data to XML in a standard way. An open
source implementation of JCR API is the Apache Jackrabbit JCR.11 It is not hard
to see that one could easily extend such APIs in order to enable exploratory search,
i.e. to add methods for computing and returning zoom-in points.

8.5 Composition of Taxonomies with Logic Components

Several information processing domains have components in which logic plays a
crucial role: e.g., information systems and information retrieval [259, 312], logic-
based diagnosis [214], logic-based programming [173, 180]. In particular, using
logics in information systems combining querying and navigation is the starting
point of Logical Information Systems (LIS) [101, 104]. Logics can also be used in
dynamic taxonomies, as shown in Sect. 5.4. Taxonomies are particular cases of log-
ics, and logics can be used to automatically generate taxonomies. Some advantages
of logics over usual taxonomies are a tighter combination of expressive querying
and flexible navigation, and the automatic extraction of a navigation vocabulary out
of large or infinite sets of concepts.

We are interested in logics as well-defined formalisms for representation and
reasoning. We start with concrete data-types such as integers or strings, e.g., for the
annotation of photos. Then, in order to extend the expressivity of descriptions and
queries, we want to add intervals on integers, patterns on strings (e.g., “contains”),
structures such as tuples or sets, boolean operators, etc. We do not claim that assem-
bling these features will lead to universal logics, but the other way round, universal
logics such as first-order logic do not provide such features, and cannot be extended
easily. Decidability and tractability is another constraint that prevents us from using
universal logics, especially if their universality is not required in practice.

Moreover, we do not want to fix the logic a priori, say to some description
logic [57], as we want the application designers to be able to customize it. Indeed, no
single logic will fit all needs, as different applications require different concrete do-
mains and different trade-offs between expressivity and efficiency of the subsump-
tion test. A second requirement on these logics is that they should be embeddable,
so that building an application only requires plugging a logic in a generic informa-
tion system. The problem of this approach is that defining a logic (i.e., its syntax,
its semantics, its decision procedure and correction proofs) requires logic expertise,
which application designers are unlikely to have. A work that shares our motivations

10http://en.wikipedia.org/wiki/JSR-170.
11Release 1.0, April 2006.
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for the customization and embeddability of logics is LeanTAP [33]. Their authors
propose a style of theorem proving that is so concise that it is very easy to mod-
ify it in order to accommodate a different logic. However they have overlooked the
fact that the average user is not a logic expert, and we think that few people could
effectively customize LeanTAP to their needs in practice. Moreover, if somebody
manages to perform such a customization, there is no guarantee that the result will
be a consistent and complete prover.

We present a toolbox of logic components that helps in constructing new log-
ics, i.e., define their syntax and semantics, and automatically derive their decision
procedure and proofs about their consistency/completeness. We formally introduce
logic functors as logic components. Each logic functor applies to logics, and returns
a new composed logic: e.g., the product or the sum of two logics, the boolean clo-
sure of a logic (connectors and, or, not), concrete domains like integers or strings.
Composing a logic is then similar to composing an algebraic expression from basic
operations: e.g., given two logics L1 and L2, and a binary functor F , F(L1,L2)

is a new logic with sub-logics L1 and L2. Every logic functor is equipped with a
partial decision procedure (as well as other procedures), and given the expression
of a composition of logic functors the Composer automatically produces a full de-
cision procedure (as well as other procedures). Every logic functor is also given
a set of partial proofs (its type) that expresses its behavior with regard to consis-
tency/completeness, so that checking and proving the properties of composed logics
can be done automatically by the Composer.

In Sect. 8.5.1, we introduce the notions of syntax, semantics, procedures, and
properties that make up a logic. Section 8.5.2 defines logic functors and their
composition, which includes the production of decision procedures and their type-
checking. A few logic functors are shortly presented (a full description of them
and others is available in a research report [105]), and a complete implementation
of them is also available.12 The effectiveness of our approach is demonstrated in
Sect. 8.5.3 by the definition of a logic combining various taxonomies and concrete
domains, and in Sect. 8.5.4 by the reconstruction of the description logic A L C with
logic functors only.

8.5.1 Logics

We are interested in logics for representing concrete values and data structures, and
querying such representations with patterns like intervals, substrings, and boolean
combinations of such patterns. This leads us to define logics in a very practical and
generic way, in the form of an abstract data type. This definition is an extension of
Definition 5.1. The notions of formulas, subsumption and abstraction have already
been discussed in Sect. 5.4.

12LogFun: a library of logic functors (http://www.irisa.fr/LIS/ferre/logfun).
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Definition 8.1 (Logic) A logic L is a tuple (L,S,P,T ), where:

• L is the abstract syntax, i.e., a set of formulas;
• S is a model theoretic semantics, i.e., a domain of interpretations I and a satis-

faction relation (|=) ⊆ I × L between interpretations and formulas;
• P is a set of logical procedures:

– (⊑) ⊆ L × L, a decision procedure for subsumption,
– ⊤ ∈ L, the most general formula,
– ⊥ ∈ L, the most specific formula,
– (⊓) ∈ L × L → L, the conjunction operation,
– (⊔) ∈ L × L → L, the disjunction operation,
– abstr ∈ L → P (L), the abstraction operation (see Definition 5.4);

• T is the type, i.e., a set of properties (and their proofs) about the behavior of
procedures with regard to semantics, e.g.:
– ⊑-consistency: for all f,g ∈ L, f ⊑ g =⇒ (∀i ∈ I : i |= f ⇒ i |= g),
– ⊑-completeness: for all f,g ∈ L, (∀i ∈ I : i |= f ⇒ i |= g) =⇒ f ⊑ g,
– abstr-consistency: for all f ∈ L, ∀g ∈ abstr(f ) : f ⊑ g.

The abstract syntax is let totally free, and can mix connectives and values such
as strings or numbers. Procedures are free to implement any algorithm, so that only
proved properties can guarantee they have their expected behavior. For instance, the
decision procedure ⊑ for subsumption is correct with regard to semantics iff con-
sistency and completeness are satisfied. If consistency is not satisfied, there may
be false positives, and if completeness is not satisfied, there may be false negatives
in subsumption tests. Similar properties are defined for other procedures. The ab-
straction operation is used to extract a taxonomy from the classification of a set of
objects by logical formulas. It is applied to every object descriptor, and the results
are joined to make up the taxonomy set of concepts. A property to be satisfied by
abstr(f ) is that every generated formula subsumes f .

Logics are implemented as modules. They implement a same signature L that
acts as an embeddability contract between generic systems and logics. This signa-
ture is composed of:

• a type for the internal representation of formulas (abstract syntax),
• a parser and a printer for the concrete syntax,
• a function for each procedure, e.g., the decision procedure is a function that takes

two formulas as arguments, and returns true or false,
• a function that returns for each property, either a proof of it, or an explanation

why no proof could be completed.

An information system relies on this signature to build a taxonomy (extracting a
finite set of concepts and computing subsumption relations between them), and to
compute extensions of concepts (computing subsumption relations between object
concepts and query concepts). Section 5.4.2 explains how logics are used in dynamic
taxonomies.
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8.5.2 Logic Functors

Suppose we have several logics that we want to combine so as to form a more
complex logic. We need an operation that takes one or several logics and returns a
composed logic. Such an operation is called a logic functor and is simply defined as
a function from logics to logics. We extend the definition of logic functors to 0-ary
functors, i.e., to logic components that need no argument to form a logic. Then
composing a logic consists in applying a logic functor to one or several sub-logics,
which can be either 0-ary functors, or again composed logics. This composition
process is illustrated in the following subsections.

For instance, the functor Prop(X) is the propositional logic (logical connectors
and, or, not), whose atoms have been abstracted by the formal parameter X,
and can thus be replaced by more complex formulas. The decision procedure of
propositional logic has been adapted to make use of the logical procedures of X.
For instance, given that a, b, c are X-formulas, we have a and b ⊑ c iff a ⊑X c

or b ⊑X c or a ⊓X b ⊑X c. The proofs of consistency and completeness of this
decision procedure are also parameterized by property proofs in X. For instance, the
subsumption of Prop(X) is consistent iff the procedures ⊑X,⊥X,⊔X are consistent
and the procedures ⊤X,⊓X are complete. The same applies for all components of a
logic, and for each logic functor.

Logics being implemented as modules, logic functors are implemented as para-

meterized modules [174], which correspond to generics in Java, templates in C++,
and functors in Objective Caml. This implementation allows to directly use the pro-
gramming language compiler for composing logic functors and logics, so that we
did not have to write a specific logic composer.

8.5.3 Combining Attributes, Concrete Domains, and Taxonomies

In this section, we show how a complex logic can be obtained from simple and
reusable components. These components are either atomic logics (0-ary functors)
that generally correspond to concrete domains, or n-ary functors for combining or
extending logics. In the following, when defining a logic functor, we only define its
abstract syntax, interpretation domain, the subsumption procedure, and the abstrac-
tion procedure. Indeed, syntax, subsumption and abstraction are what matters from
the point of view of dynamic taxonomies, and the interpretation domain clarifies the
meaning of formulas. Other procedures and properties are accessible in full details
in a research report [105].

To start with, we assume we have the following atomic logics (see Sect. 5.4 for
details and examples):

• Location: taxonomy of locations, as a logic,
• String: logic of strings and substrings,
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• Integer: logic of integers and intervals,
• Date: logic of dates and intervals of dates.

Logics Integer and Date could possibly be decomposed further as both manip-
ulate intervals.

These logics are generally used as monodimensional taxonomies, while this is
not required. For instance, a photo is usually given one location, one date, one size,
and one comment. We need to combine these logics to form a multidimensional
logic, where each object can be given at the same time a location, a date, a size, and
possibly several comments. To this purpose, the logic functor Sum can be used as
it produces the union of two logics. Its effect on taxonomies is to put them side by
side.

Definition 8.2 (Functor Sum) The functor Sum takes two logics L1 and L2, and
returns their union:

• L = L1 ∪ L2,
• I = I1 ∪ I2,
• (⊑) = (⊑1) ∪ (⊑2),
• abstr = abstr1 ∪ abstr2.

Then a common root is added by applying another logic functor Top, whose only
effect is to add a most general formula that subsumes all formulas.

Definition 8.3 (Functor Top) The functor Top takes a logic L1, and extends it with
a top (most general formula):

• L = L1 ∪ {thing},
• I = I1,
• (⊑) = (⊑1) ∪ (L × {thing}),
• abstr(f ) = abstr1(f ) ∪ {thing}, for all f ∈ L1.

The logic allowing to describe photos with 4 kinds of properties, as mentioned
above, is defined as

L1 = Top(Sum(Location,Sum(String,Sum(Integer,Date))))

In some applications, locations may be used under different roles. For instance
we may want to distinguish between where some person lives in, and where she
comes from. The composite logic Top(Sum(Location,Location)) is unsat-
isfying because (1) it duplicates the taxonomy of locations, and (2) elements from
the 2 copies cannot be distinguished. Instead we introduce a taxonomy of roles
as a logic Role, which contains at least the roles in, from, and a top role any
meaning “any role”. Then we combine this logic and Location with the logic
functor Prod, which produces the product of two logics.

L2 = Prod(Role,Location)

The formulas of the product logic are pairs, and two pairs are ordered by subsump-
tion iff the first and second parts are respectively ordered.
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Definition 8.4 (Functor Prod) The functor Prod takes two logics L1 and L2, and
returns their product:

• L = L1 × L2 (formulas are pairs),
• I = I1 × I2 (interpretations are also pairs),
• (f1, f2) ⊑ (g1, g2) ⇐⇒ f1 ⊑1 g1 ∧ f2 ⊑2 g2, for all (f1, f2), (g1, g2) ∈ L,
• abstr((f1, f2)) = abstr1(f1) × abstr2(f2), for all (f1, f2) ∈ L.

For instance, a person living in Paris and coming from Spain is described by in
Paris and from Spain (to be read “from somewhere in Spain”). The abstrac-
tions of from Spain are from Spain, from Europe, from somewhere,
any Spain, any Europe, and any somewhere. The following subsumption
relations are verified:

• from Spain ⊑ from Europe ⊑ any Europe,
• from Spain ⊑ any Spain ⊑ any Europe.

We emphasize the fact that these relations are automatically deduced from the rela-
tions between roles on one hand, and between locations on the other hand. If a new
location, say Italy, is inserted in the taxonomy of locations, all pairings of a role
with Italy become virtually present in L2. The same happens for the insertion of a
new role. This results in an expressive logic for describing and querying data, while
requiring no additional effort from the information system designer.

The logic L2 can replace the use of Location in logic L1 or, even better, the
notion of role can be generalized to all kinds of concrete domain logics, resulting in
the logic

L3 = Top(Prod(Role,Sum(Location,Sum(String,Sum(Integer,Date)))))

In this logic the formulas, i.e. concepts, can be seen as valued attributes over
various concrete domains. Additional concrete domains can then easily be added to
this logic definition.

8.5.4 Reconstructing the Description Logic ALC

Description Logics (DL)13 are widely used in knowledge representation and infor-
mation systems [57]. Like our logics, they are based on a notion of subsumption ⊑.
So, an interesting question is to know whether logic functors can be used to recon-
struct description logics. We show in this section that the subsumption test of A L C

(without terminological axioms) can be easily reconstructed. A L C is the subset of
OWL DL restricted to the constructors ⊤,⊥,¬,⊓,⊔,∃,∀.

For recall, the abstract syntax of the logic A L C is defined by:

C → A | ⊤ | ⊥ | ¬C | C ⊓ C | C ⊔ C | ∃r.C | ∀r.C

13See Sect. 3.5.1.
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where A and r respectively stand for concept names and role names. These are
properly represented by logical atoms (logic functor Atom).

Definition 8.5 (Functor Atom) The functor Atom takes no argument logic, and
simply defines a set of incomparable atomic formulas (i.e., names):

• L is a set A of atoms,
• I = A,
• f ⊑ g ⇐⇒ f = g, for all f,g ∈ L,
• abstr(f ) = {f }.

In the semantics of A L C a formula ∀r.C is equivalent to the formula ¬∃r.¬C, so
that we can restrict ourselves to the existential quantification ∃r.C. When some ob-
ject satisfies a formula ∃r.C, this means it is related to another object that is instance
of C, through a relation satisfying r . So the property ∃r.C can be represented as the
couple (r,C) of a role, and a complex concept (logic functor Prod): its concrete
syntax can easily be customized as ∃r.C for readability. All other connectors of the
language are provided by the logic functor Prop, shortly introduced above.

Definition 8.6 (Functor Prop) The functor Prop takes a logic L1, and returns its
propositional closure:

• L is the smallest set of formulas containing L1, the most general formula ⊤, the
most specific formula ⊥, and such that for every formulas f,g ∈ L, the formulas
¬f , f ⊓ g and f ⊔ g also belong to L,

• I = I1,
• the decision procedure ⊑ is based on existing provers for the propositional

logic [33], extended to make use of the decision procedure of L1 (see [105] for
details),

• for all f ∈ L,

abstr(f ) =

⎧

⎨

⎩

abstr1(f ) if f ∈ L1,

abstr(g) ∪ abstr(h) if f = g ⊓ h,

{f } otherwise

This leads to the following first attempt of defining the logic A L C with logic
functors.

ALC = Prop(Sum(Atom,Prod(Atom,ALC)))

The Composer produces a new logic ALC from its defining expression. Note
the way it is recursively defined in order to account for complex concepts inside
quantifiers. The Composer also performs its type-checking, whose result says the
subsumption is proved consistent, but not complete.

The above definition is correct with regard to syntax, but what about the interpre-
tation domain? According to the definition of functors (see above), it is recursively
defined as

I = A ∪ (A × I )
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i.e., an interpretation is either a primitive concept (an atom), or a pair made of a
primitive role (an atom), and another interpretation. This is not satisfactory because
an A L C -interpretation should not be a single atomic concept or single role, but
should be a set of atomic concepts and roles. This adaptation to the interpretation
domain can be obtained by the logic functor Set, whose interpretation domain is
the power set of the interpretation domain of its argument logic.

Definition 8.7 (Functor Set) The functor Set takes a logic L1, and returns a logic
with the same abstract syntax, but whose interpretation domain is the power set:

• L = L1,
• I = P (I1),
• (⊑) = (⊑1),
• abstr = abstr1.

By applying the functor Set on the argument of the functor Prop, we obtain
the new definition

ALC = Prop(Set(Sum(Atom,Prod(Atom,ALC))))

This time the interpretation domain is I = P (A ∪ (A × I )), and the resulting
subsumption prover is proved both consistent and complete by the Composer. The
formula of ALC

d(o) = Tall ⊓ ∃child.Male ⊓ ∀child.Tall

can be used to describe someone (object o) who is tall, has a male child, and has
only tall children. The formula

q = ∃child.(Male ⊓ Tall) ⊓ ∀child.(¬Male ⊔ Tall)

can be used as a query to get people who have a tall male child, and whose male
children are all tall. It can be proved in ALC that d(o) ⊑ALC q holds, hence o ∈

objects(q).

8.5.5 Conclusion

Logic functors provide an effective framework for the “engineering of logics” [27]
that makes it possible for an end-user to design safely a new logic that is tailored to
a specific application. A decision procedure for the subsumption test and its consis-
tency/completeness proofs are derived automatically. If necessary the proofs exhibit
prerequisites that may indicate how to build more consistent/complete variants of
the logic. The framework is implemented in Objective Caml, and uses in a crucial
way the capability of the ML family to develop parameterized modules (also called
functors in that domain). It could as well be implemented in object-oriented lan-
guages that support parameterized classes (generics in Java, and templates in C++).
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The framework occupies an original position between plain programming that al-
lows for arbitrary expressivity but in which almost nothing semantic can be proved
automatically, and option selection that is very easy to use but leaves very little
choice [84]. This original position offers a trade-off between expressivity and ease
of use, where logics as expressive as A L C can be designed and built by application
designers with no logic expertise.

A toolbox of logic functors has been developed and collected into a library, LOG-
FUN.14 It is compatible with a generic implementation of dynamic taxonomies,
CAMELIS,15 which is implemented along the lines of the base implementation of
dynamic taxonomies, except that it relies on logics rather than taxonomies. Given an
application domain, a logic can be composed from logic functors, and then plugged
in CAMELIS. This results in an application-specific software.

14http://www.irisa.fr/LIS/ferre/logfun/.
15http://www.irisa.fr/LIS/ferre/camelis/.



Chapter 9

Applications and Experiences

Giovanni Maria Sacco and Sébastien Ferré

“By far the best proof is experience.”

Sir Francis Bacon, 1561–1626

This chapter discusses a number of real-world applications of dynamic taxonomies.
Most current applications are object-seeking or knowledge-seeking exploratory
tasks, and address important areas such as e-commerce, multimedia infobases, di-
agnostic systems, digital libraries and news systems, e-government, file systems,
and geographical information systems. Applications in these areas are discussed in
detail in the following, and applications in cultural heritage, art and architecture,
e-recruitment, e-hrm, e-matchmaking, e-health, and e-learning are briefly reviewed.

9.1 Introduction

The application range of dynamic taxonomies is extremely wide and, in fact, most
tasks which are traditionally considered as search tasks are actually exploratory
tasks and can benefit from the superior exploration capabilities of dynamic tax-
onomies. As we mentioned in Chapter 1, there are basically three tasks in which
exploration is important:

1. pragmatic find the right object tasks in which the user has to find the object
which best fits his requirements. This is by far the most frequent task and the
best example is product selection in e-commerce;

2. knowledge-seeking tasks which feature an exploration similar to the one offered
by hypertext systems: the user attention is not focused on a specific requirement,
but he is following his interests in a free way, in order to increase his knowledge
on the topics described by the infobase. An example is access to an encyclopedia
with topics organized as dynamic taxonomies;

3. wisdom-seeking tasks, in which the goal is understanding the inner laws of the
corpus, in order to derive a deeper knowledge of the corpus itself. Data mining
extensions, which enable the use of dynamic taxonomies for this type of ap-
plications, were discussed in Sect. 5.1. Although the vast potentialities of this
approach are still to be tapped, an example may be given by web log analysis,
where the exploration capabilities of dynamic taxonomies allow to analyze web
logs according to user interests and discover in this way trends which are actually
interesting and statistically significant.
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Most current exploratory tasks fall in the pragmatic find the right object paradigm.
This class and the knowledge-seeking class include an extremely large number of
different applications which are, at least in part, reviewed in the following. We will
specifically describe

• e-commerce
• multimedia infobases
• diagnostic systems
• digital libraries and news systems
• e-government
• file systems
• geographical information systems and
• general-purpose Web search engines1

These topics are by no means exhaustive. Additional interesting application areas
are:

• cultural heritage, art and architecture. Applications in this area tend to follow the
knowledge-seeking paradigm. One of the best-known applications is probably
Flamenco’s faceted search access to the San Francisco Fine Arts Museum image
collection [134, 327]. A museum application is also discussed in [147], and a
more recent application managing architectural data within the MACE project is
reported by Stefaner et al. [280].

• e-recruitment, e-hrm, e-matchmaking. The object-seeking exploration paradigm
which applies to product selection also applies to the selection of persons, in two
important application areas: e-recruitment [5, 244] and e-hrm (electronic human
resource management) [38, 39] in general and their consumer-to-consumer coun-
terpart, match-making [233]. Both areas are high-growth Internet sectors, and
both benefit from the exploration capabilities provided by dynamic taxonomies.
The full integration of text retrieval allows to represent only common features
through the taxonomy, and use text retrieval to query for other features, so that
relatively simple taxonomies can be effectively used even for general applications
[244];

• e-health. The term e-health denotes healthcare practice supported by electronic
processes and media, usually through Internet. Applications in this area include
web-based diagnostic systems [243, 254] (reviewed below), medical guidelines
and literature [318], and general health portals [146];

• e-learning. E-learning systems have recently attracted a large interest because
they allow high-quality remote, asynchronous education which supports rich ma-
terial such a text, video, and offer a high level of involvement of teachers and stu-
dents by providing collaborative tools, such as forums. In this context, dynamic
taxonomies can play an important role for teachers and students alike. They pro-
vide a powerful exploration system for the large content bases of e-learning envi-
ronments, which makes locating and reusing relevant material a simple task, and

1Described in Sect. 8.3.1.
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at the same time encourages strong interdisciplinarity by making different aspects
of a same subject (discussed in different courses) immediately available. Demo
and Angius [86] describe the integration of dynamic taxonomies in Moodle [193],
a course management system for cooperative learning.

9.2 E-commerce

E-commerce portals have been one of the Internet areas experiencing the fastest
growth since the beginning. There are compelling and obvious economical reasons
behind this growth: low overhead, just-in-time supply, and the widespread accep-
tance of online credit card payments. The economics of small or no inventories is a
compelling force towards very large stores: successful stores such as amazon.com
have shifted from a focused line of products to selling quite diverse and heteroge-
neous items.

Although product selection is the critical point in an e-store, this was a most
frustrating experience in the early days, as traditional search technologies such as
database queries, information retrieval or primitive exploration techniques such as
hypermedia were used. Since customers do not know exactly the specific object they
want, but are rather looking for the object which best fits their individual require-
ments, system assistance in browsing and exploration is required.

Dynamic taxonomies have been applied to e-commerce [231–233, 237] since
1999 [220], with a prototype system for the selection of digital cameras.2 Other sys-
tems, such as Endeca [98] and Mercado [188],3 were introduced a few years later.
However, the single event which prompted the exponential growth of DT applica-
tions in e-commerce, was probably their adoption by Yahoo! Shopping [322] in late
2004.

E-commerce and e-auctions are perhaps the best examples of a find the right ob-

ject exploratory tasks [239, 245, 250]. Most users of e-commerce portals do not look
for a specific product but want to find the ‘right’ product in a possibly quite large
set of alternative products. The right product depends on how product features are
evaluated according to user requirements (perceptions, interests, financial capabili-
ties, etc.). Different users (and, most importantly, the same user at different times)
are likely to weigh each feature differently, and consequently select different prod-
ucts. It is unlikely that users are able to associate a precise numeric weight to each
feature, but they can easily rank features in decreasing order of importance. So, in
addition to a primary interest focus (e.g., budget price), users will have a secondary,
tertiary, etc. focus: e.g., budget cameras with the highest resolution vs. the lightest
budget cameras available. A secondary focus depends on the user preferences but
also on the features which items in the primary focus exhibit, and so on.

2This is historically the first application of dynamic taxonomies to e-commerce; an updated version
is available at [219], and it is shown in Fig. 9.1.
3Other systems are reviewed in Sect. 8.3.
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We split the interaction into two stages in cascade: the thinning-game and the
end game. In the thinning game, the user is confronted with a large number of items
and has to reduce it to a small set of candidates to be further inspected. The thinning
game works on a potentially quite large amount of data, and should assist the user
by providing fast and effective thinning of the product infobase on the base of se-
lected features. Dynamic taxonomies, which offer systematic and guided thinning,
represent the current solution of choice for the thinning game.

In the end game, a single product to be purchased has to be selected from the
set of candidate products, by comparing their features. Although the total number
of features to be compared might be quite large, the end game involves a small
number of products, and a small amount of data as compared to the thinning game.
The problem here is not data management, but rather a data presentation problem,
i.e., how to present data in order to assist the user to discriminate among different
products.

9.2.1 The Thinning Game

The product selection process is exemplified by a digital camera shop, with exam-
ples in Fig. 9.1.

In order to thin the number of alternatives the user has to:

1. find all the available features,
2. focus on the most relevant one for him (the primary focus), which discards all

the products without that feature,
3. find all the features for the products retained,
4. select the next focus among them, and iterate the process until the number of

candidates is sufficiently small.

The major critical point is the conceptual summary of related features, i.e., the re-
duced taxonomy which allows the user to easily find the features (e.g., resolution,
zoom) for his focus (say, cameras under $200) and zoom on one or more of them.
This discards the products which do not have those features and consequently thins
candidates out. If it is not available, the next focus cannot be set and the thinning
game is already over: the user has to inspect all the inexpensive cameras and find
their features by manual inspection.

Other important points in the thinning game are the ability to operate on products
at a set-at-a-time rather than at an instance-at-a-time level (the primary focus defines
a set of products, a secondary focus intersects the primary focus set with the set
defined by the secondary focus, etc.), and to have systematic summaries of sets (the
current focus) in real time. Finally, since the number of features for large stores
can be quite large, a taxonomic organization of features is usually required. As we
remarked, product presentation tends to be a second-order concern in the thinning
game.

When the user enters the digital camera shop, he finds a concise systematic sum-
mary of the products (Fig. 9.1a). The numbers before each feature indicate how
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Fig. 9.1 From left: a Initial taxonomy for digicam shop; b Preparing to zoom on high-resolution
digicams; c Reduced taxonomy after zoom on high-resolution digicams

many products have that feature (i.e., are classified under it). Assume the user is
interested in high-resolution (1600 × 1200 or more) digital cameras. With a con-
ventional taxonomy, he would retrieve 20 cameras, and he would need to inspect
each camera in order to select the right one. Instead, he performs a zoom on high-
resolution cameras (Fig. 9.1b). The zoom operation focuses on the cameras he just
selected (20 out of 60) and shows a concise summary (Fig. 9.1c) of all the features
for only and all such cameras. Here, he expands Size, but he could explore any other
relevant feature (Price, Shutter speed, etc.). If he is interested in Pocket cameras, he
does not need to perform another Zoom operation because only 3 cameras are se-
lected and he may reasonably look at them, i.e., he is now entering the “end game”.

A single zoom operation reduced the number of candidate cameras from 60 to 3
(the ones classified under Pocket cameras), with a total freedom to express require-
ments and a complete assistance from the system in selecting interesting features.
All the requirements for the thinning game are satisfied. The user is effectively
guided to reach his goal by a clear listing of all possible alternatives and the guidance
given by conceptual summaries makes product selection quicker and more accurate.
Quick product selection is not just a psychological impression, but derives from the
superior scalability and quick convergence of dynamic taxonomies.4

In addition, and most importantly, users feel they have considered all the alterna-
tives in reaching a result, and they clearly understand how the result was reached. By

4See also Sect. 3.2.
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contrast, text retrieval is usually perceived as a game of chance, while agent tech-
nologies [269] are not transparent and usually cannot explain how the result was
obtained to the casual, untrained user.

As we mentioned in Chap. 1, the product selection problem can be stated as
a classical optimization problem: the ‘right’ camera is the one which minimizes
a weighted combination of features. From this point of view, the thinning game
implemented by dynamic taxonomies is a heuristic strategy and can consequently be
suboptimal. There are two major shortcomings. First, boolean cutoffs (accept/reject)
for feature values are used. As an example, a boolean cutoff at a price of $200 (i.e.,
price no higher than $200) rejects both a potentially interesting product at $205 and
a clearly too expensive product at $1,000.5 Second, a non-compensatory strategy
is used: once an object is rejected because of any feature, that object is eliminated
from further consideration, even if some other features might compensate its local
suboptimality. For these reasons, the thinning game does not necessarily provide the
best deal for the user.

Optimal solutions can be obtained by the weighted additive (WADD) strategy,
which computes a weight for each object as the average weight of feature values for
that object; feature values are weighted over each feature, and features are weighted
among them [210]. The “best deal” is the object with the highest weight. WADD is
a compensatory strategy and allows high scores on one feature to compensate for
low scores on another feature.

Although optimal in theory, it is unlikely that strategies like WADD can produce
optimal results in practice, for the following reasons:

• optimal results in WADD depend on accurate weights, and it is unlikely that ca-
sual users are able to supply them and, most importantly, understand the impact
of different weights on the actual result.6 In dynamic taxonomies, the user is only
required to select, at each stage, the most important feature values, a much easier
task;

• in WADD, the number of weights to be supplied by the user is quite large in
practice and most of them are probably useless. In dynamic taxonomies, instead,
only the first most important features need to be selected, and, because of the
quick convergence to small candidate sets, the number of selections is very small
(2–3 in most practical situations);

• in WADD, an agent is required to derive the final solution, and it is usually dif-
ficult to clearly explain to the user how the answer was found. In dynamic tax-
onomies, it is the user himself who explores the information base according to his
interests and the effects of his operations are clearly understood.

In conclusion, even if the thinning game might be suboptimal and direct the user
towards products which are not the “best deal”, it is fast, concrete and easily un-

5This problem can be solved by extending dynamic taxonomies by using fuzzy [329] rather than
boolean logic. See also Sect. 5.6.
6Qualitatively specified preferences are more expressive than quantitatively specified preferences
[66, 109].
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derstood by users, so that it is probably the most effective practical solution to the
problem.

Other benefits of dynamic taxonomies for the thinning game over other ap-
proaches include [245]:

• easy support of multilingual access, which is more and more important because
of the transnational nature of most e-commerce sites;

• transparent and unobtrusive gathering of user preferences, by simply monitoring
the concepts used for zooming. This can be used for personalization and improve-
ment of user experience in a much more reliable than traditional techniques [25],
and also provides a more reliable and complete base for data mining and auto-
matic recommendation applications [265];

• advanced features such as user reviews or object popularity can be easily accom-
modated by specific facets and fully integrated in the exploration process. As an
example, a facet for popularity can be used to easily select the most popular prod-
ucts among candidates, e.g., the most popular cameras among high-resolution
10× zoom cameras. Global popularity indicators, by converse, are not really use-
ful: a user interested into high-resolution 10× zoom cameras would not care to
know that the most popular camera is a zoomless budget model.

9.2.2 The End Game

The second stage, the end game, is entered when the user has arrived at a suitably
small set of candidate items and must now select the single object to purchase, by
comparing features of candidate items. Although a growing number of e-commerce
portals let users compare different products, such functionality is usually primitive
and only supports the side-by-side display of features. A typical example is shown
in Fig. 9.2, which compares three Nikon digicams. Alternating gray and white back-
grounds are used to increase row readability: however, the user has no orientation
in the comparison of features, so that selecting the “right” camera requires the com-
parison of all the features.

Simple as this mechanism is, it poses significant cognitive problems because
there are usually many features to consider and the number of candidate items is
often larger than ten. Most practical situations may require hundreds of compar-
isons, but even the comparison of two items can be difficult: not only all the features
must be compared, but all the different features must also be remembered. Differ-
ent features will be stored in the user short-term memory [190] which holds 7 ± 2
items. Comparing more than nine feature values becomes therefore quite taxing and
usually leads to user disorientation so that users will need additional tools, such as
pencil and paper.

In order to simplify the end game and reduce the number of comparisons the user
must perform, the user should be assisted in quickly finding discriminants among
different items, i.e., features with different values which can guide the selection.
At the very minimum, features whose values are the same over all the items, and
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Fig. 9.2 Comparison of features for Nikon digicams

are therefore useless as discriminants, should be quickly perceived as such, and
discarded on demand.

In addition, the user selects the final object by informally “weighing” the desir-
ableness of a combination of features of interest. In many practical cases, values of
specific features can be ranked a priori from the less desirable to the most desirable
value, using an intuitive ceteris paribus7 semantics [128]. For instance, all the other
features being equal, a smaller price is always better than a higher one. These rank-
ings can be used in such a way that the user quickly perceives the desirableness of
feature values in a row, instead of comparing them exhaustively.

Figure 9.3C shows the enhanced feature display [237, 238, 245], according to the
requirements discussed above. Features with the same value over all the products are
identified by a gray background and can be hidden. For most of the features (e.g.,
price, resolution), values are ranked according to their desirableness: the color of
the background goes from a bright green (for the best values) to a bright red (for the
worst values); a white background is used for mean values. As an example, prices
higher than the mean price are red (the higher the price, the brighter the color) and
prices lower than the mean price are green. Some features, such as brand or body
color, cannot be ranked, so that they are not color-coded and their background is
white.

7Literally, everything else being equal.
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Fig. 9.3 Enhanced feature display for Nikon digicams

Color-coding shows quickly and clearly what’s different and what’s not, but also
indicates where products differ more dramatically: a preliminary assessment can
be usually done at a glance. In Fig. 9.3, the relative ranking of the three Nikon
cameras is immediate and simply based on the number of red and green features of
each camera, whereas it requires a careful inspection of all the features in Fig. 9.2.
Several variations on color-coding are discussed in [245].

The end-game can be further improved by highlighting skyline [46] products,
i.e., products which are not dominated by any other product according to a set of
features. For example, if price and optical zooms are the only features we consider,
product A with a $400 price and a 3× optical zoom is dominated by product B with
a $200 price and a 6× zoom, because product B is better (less expensive and a with a
better zoom) than product A. Non-dominated products are worse deals with respect
to skyline products and can be ignored.8 Skyline queries can be based on “ceteris
paribus” criteria, and are especially interesting here because they are applied to a
small number of items, and therefore require negligible computational resources.

Although we have separated the thinning-game and the end-game into two dif-
ferent phases, a tighter coupling between them might be desirable. Sacco [237] pro-
poses to use the color-coded grid as the single interface for product selection and to
integrate dynamic taxonomy feature selection and summaries in it.

8We show them in an appropriate way rather than ignore them, because users can be influenced by
incommensurable features, such as brands.
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9.3 Multimedia Information Bases

Very large multimedia information bases are a rapidly expanding and pervasive re-
ality thanks to advances in storage and network technologies: examples range from
music to video-on-demand applications, to large photo banks. In this section, we are
primarily interested into user-centric access to image infobases, but our approach
[240, 241, 256] can be extended to generic multimedia databases.

Current research focuses on two different and unreconciled approaches for ac-
cessing multimedia databases: the metadata approach as opposed to the content-
based approach. In the metadata approach, each image is described by metadata.
Metadata types range from a set of keywords (tags, as in Flickr [111]) or a textual
description, to standardized structures for metadata attributes and their relationships
like the MPEG-7 standard [182], to ontologies [266]. Some metadata (e.g., image
format) can be automatically derived from the image itself, but the vast majority
are manually entered. Once images are described by metadata, their actual contents
becomes irrelevant for browsing and retrieval so that it is straightforward to use
techniques such as database queries on structured metadata or text retrieval queries
on metadata consisting of a textual description of the multimedia object.

The content-based approach (CBIR, content-based image retrieval) describes the
image through low-level multimedia features (e.g., color [119], texture [177], shape
[151]) automatically extracted from images. Retrieval is based on similarity among
images: the user provides an image (selected through metadata or, in some cases, at
random) and requests similar ones.

Both approaches suffer from significant drawbacks. Semantic annotation is
costly, especially for large, existing databases. In addition, the metadata approach
relies on descriptions which are known to be inaccurate, heavily dependent on the
specific human classifier, ambiguous, etc. These problems can be alleviated by using
ontological metadata rather than plain text descriptions, but a level of subjectivity
remains. The CBIR approach is based on the automatic extraction of “descriptions”
from the image itself. This approach seems to solve all the problems because ex-
traction is inexpensive and image descriptions are objective, without the inconsis-
tencies caused by human classification. However, despite significant improvements,
the accuracy of CBIR systems is still less than satisfactory, because of “the lack of
coincidence between the information that one can extract from the visual data and
the interpretation that the same data have for the user in a given situation” [272]. No
CBIR system will be able to reconstruct all relevant information in all situations: in
many practical cases, the information is just not there [256].9

The dichotomy between the two approaches (metadata vs. primitive features)
is a major flaw in current image retrieval, because it forces the user to use differ-
ent access strategies which only depend on the type of feature (conceptual or low
level multimedia feature) he is considering. Most importantly, from the user point

9For example, it is usually impossible to derive the location of a photograph from low-level multi-
media features.
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of view, none of these approaches really supports an exploratory access to the im-
age collection, which we believe to be the most common access paradigm in these
applications. Exploration is not an additional, desirable feature of a multimedia in-
formation retrieval system. On the contrary, in most practical cases, retrieval without
exploration is just a trial-and-error task, with no guarantee of the quality of the user’s
final choice.

The access paradigm supported by most current image retrieval systems is quite
different. Systems based on metadata use access techniques such as queries on struc-
tured data or text retrieval techniques which do not support exploration. CBIR sys-
tems use information retrieval techniques which are centered on retrieval by simi-
larity. This type of access affords a very simple and intuitive user interaction, but
offers no clue on what the information base contains. Systems which organize im-
ages through hierarchical clustering do offer an initial systematic summary of the
collection, but do not account for the iterative refinement required by our working
definition of exploration. From this point of view, they are similar to traditional tax-
onomies which offer conceptual but static summaries. In addition, as we remarked
in Sect. 3.1.2.1, hierarchical clustering does not produce IS-A taxonomies.

There are very few exceptions. A dynamic taxonomy approach for multimedia
metadata was proposed by Sacco [236] and used by Hearst et al. [134] in their
Flamenco prototype system, which was successfully applied to a rather large im-
age collection [327]. These works rely on conceptual metadata features and ignore
primitive multimedia features.

From another perspective, El Niño, a prototype system by Santini and Jain [261],

focuses on browsing (rather than exploration) through low level multimedia features

and textual descriptions. El Niño works on a multi-feature weighted similarity mea-

sure and relies on a visual relevance feedback interface to modify these weights and

try to match the user notion of similarity. The system has some conceptual similari-

ties with the Scatter–Gather text retrieval system [76], discussed in Chap. 3.

The approach described here [240, 241, 256] proposes a significant change in ac-

cess paradigms, based on dynamic taxonomies. A working system (Rosso Tiziano,

available on-line at [287]) was implemented with several goals:

• to provide a single, coherent framework which seamlessly integrates access by

metadata and access by low level multimedia features for querying. This frame-

work considerably simplifies user access, and each access method reinforces the

effectiveness of the other one;

• to support the exploration of image collections, so that both metadata and primi-

tive features can be used to express interest foci, and at the same time to system-

atically summarize them, in order to guide the user towards his goal;

• to provide a test bed for the evaluation of different strategies, integrated access

and human factors in general, in which different primitive features approaches

can be easily integrated and compared.
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9.3.1 Combining Conceptual Access with Low Level Multimedia

Features

Access by primitive multimedia features is usually based on clustering: objects are
grouped on the basis of the values of one or more features, say color, according to
a measure of similarity between any two objects. Image clustering is conceptually
similar to clustering for textual documents.10

For all access purposes, how images are clustered is immaterial. A cluster merely
identifies a set of objects which are grouped together by some affinity. This defini-
tion is equivalent to the definition of a concept in a dynamic taxonomy: a concept
denotes a set of objects classified under it, rather than a set of properties which in-
stances of a concept must satisfy. This equivalence between concepts and clusters
suggests that clusters can be integrated in a dynamic taxonomy by adding a top-
most concept (or ‘facet’) for each clustering scheme, with its actual clusters being
the sons of this concept.

For instance, if a clustering scheme by dominant color exists, a facet labeled
“dominant color” will be added at the top-most level. Its sons will be all the clusters
grouping objects by dominant color similarity. For large information bases, where a
very large number of clusters is to be expected, hierarchical clustering can greatly
simplify user orientation and the effectiveness of interaction.

One of our major goals is to achieve an easy and complete integration between
access by metadata and access by low level multimedia features. The benefits of
such an integration are essentially two. First, combinations of concepts supply a
conceptual context, and consequently reduce noise. Such a context, as Santini and
Jain remarked [261] “is essential for determining the meaning of an image and for
judging image similarity”. Second, when the user starts from low level multimedia
features, dynamic taxonomies can be used to quickly summarize the result according
to the original conceptual taxonomy, thus increasing the precision of the result and
allowing to quickly correlate low level multimedia features with metadata.

As an example, consider a user starting from a low level multimedia feature such
as a blue dominant. Focusing on it, the system will show in the conceptual summary
that images with a blue dominant include skies, sea, lakes, cars, etc. Conversely,
a user focusing on skies will find that images of skies may have a blue dominant,
but also a yellow one, a red one, etc. In both cases, the conceptual summary indicates
which conceptual contexts are available to further refine user access.

The integration of metadata access with access by low level multimedia features
boosts the effectiveness of each type of access. Very simple features, such as domi-
nant color, are probably not sufficient per se to provide an effective access to a large
image base: however, when combined with other (low level or conceptual) features,
they can provide a useful discrimination. On the other hand, the availability of low
level features may reduce the number of metadata to be manually entered, and even

10Reviewed in Chap. 3.
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a simple and small metadata structure can produce significant benefits in access and
exploration because of the extremely fast convergence of dynamic taxonomies.11

Although our primary focus is the integration of low level multimedia features
and metadata, the dynamic taxonomy approach can be used in a number of vari-
ations, by considering metadata only or primitive features only, or by integrating
traditional CBIR retrieval by similarity with a dynamic taxonomy metadata descrip-
tion in order to clarify contexts for similar objects. Finally, our approach is neutral
with respect to classification and easily accommodates automatic concept recogni-
tion from visual features of images [81], an emerging and extremely promising field
in image retrieval.

9.3.2 Monodimensional vs. Multidimensional Clustering for Low

Level Features

Multimedia objects can be described by a growing number [81] of different low level
multimedia features such as color, texture, etc. Most current research computes an
overall similarity distance for the images in the database by a weighted combination
of the similarity of each individual feature. In fact, CBIR systems only support ac-
cess by similarity and consequently must have a single measure of similarity even
when several features are used.

Clustering groups objects together according to a single similarity measure, and
consequently each object belongs to one and only one cluster. We call this type
of clustering a monodimensional clustering by analogy with classification theory,
where a monodimensional classification scheme classifies each object under one
and only one concept. If a hierarchical clustering scheme is used, monodimensional
clustering is equivalent to a traditional, monodimensional taxonomy.

In alternative, we can consider each feature independently for clustering: each
feature will result, in general, into a different clustering scheme because, for in-
stance, two objects similar by texture may have different colors. In this case, an ob-
ject will belong to different clusters. We call this approach multidimensional clus-

tering because it is similar to a multidimensional classification scheme, where an
object o is classified under different concepts.12

We now compare monodimensional clustering schemes to multidimensional
clustering schemes. It is immaterial whether features are primitive multimedia fea-
tures (e.g., color) or conceptual features, such as a painter name. It also does not
matter whether some features are in fact derived from other features: for instance,
color which can be characterized by dominant or average. All the available features

11See Sect. 3.2.
12In order to avoid confusion, please note that classic clustering theory is indeed defined in a
multidimensional space: the difference being that in classic clustering an object o only belongs to
single cluster, whereas clustering schemes based on multidimensional classification can place the
same object in different clusters, according to different similarity measures.
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can be represented by independent clusters, and a single object o will belong to F

clusters. By switching from monodimensional clustering to multidimensional clus-
tering on F features, the cost of clustering increases by a factor F because all the
objects have to be fully clustered for each feature.

We criticize monodimensional clustering on two major points:

1. the notion of similarity, which we contend is inaccurate and ineffective in
monodimensional clustering and classification, and

2. the exponential growth in the number of clusters which is required if we want to
keep the number of objects in a cluster at a reasonable level.

In monodimensional clustering, a given multimedia object is represented by a
point in a multidimensional space, computed as the weighted combination of the
object’s primitive multimedia features. Similarity between any two objects is a func-
tion of their distance and depends on the weights used to combine low level features.
This single and fixed set of weights cannot be satisfactory in every situation. Con-
sider two features such as color and texture: user A may be more interested in color
than in texture, whereas user B could be more interested in texture than in color.
This implies different weights on these features and consequently different similar-
ity functions, so that objects a and b can be similar for user A and quite different
for user B.

However, since a single, predefined similarity function is used for clustering, the
resulting clustering scheme only accommodates those users whose notion of simi-
larity matches the predefined function. The only way to accommodate differences
among users, would be to perform clustering dynamically on a similarity function
given by the user himself. However, this is not feasible for two reasons:

1. cost, as the dynamic reclustering of large information bases requires substantial
resources and time. Reclustering is required in El Niño [261]. A similar approach

in textual databases, Scatter–Gather [76], was criticized in Sect. 4.6.9;

2. human factors, because it is unlikely that the average, unskilled user would be

able to understand the effects of weights and hence come up with appropriate

weights for different features. A similar problem occurs in product selection in

e-commerce, discussed above.

The effects of monodimensional clustering can also seriously bias experimental

results, because it may be difficult to discriminate between the actual advantages

offered by specific features and the random effects of a specific weighting scheme.

With respect to convergence, a hierarchical monodimensional clustering scheme

is analogous to a traditional monodimensional taxonomy. The analysis reported in

Chap. 3 applies, and indicates that multidimensional clustering schemes have a bet-

ter scalability, a dramatically faster convergence to small result sets and the ability to

correlate different features. In addition, custom similarities can be easily expressed.

As an example, users can zoom on a specific texture cluster, and immediately see

all the color clusters for that texture.
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In summary, we believe that multidimensional clustering strategies deserve close
attention,13 because of their faster convergence and, most importantly, because they
present visual similarities according to different perspectives (color, luminance,
etc.), and allow for a more articulated exploration of the information base.

9.3.3 Representing Low Level Multimedia Features

The information base used as an example in this section consists of 251 images of
five masters of the Italian Renaissance: Piero della Francesca, Masaccio, Antonello
da Messina, Paolo Uccello and Raphael. Each work was thoroughly classified ac-
cording to a number of topics which include, among others, the painter name, the
type of painting (single, polyptic, etc.), the technique used (oil, tempera, etc.), the
period in which it was painted, current locations, the themes (religious painting,
portrait), etc. Differently from other test image databases, which usually exhibit
widely different images, the images in the sample collection are relatively similar
and therefore harder to characterize by low level multimedia features. In addition,
the collection is a good representative of one of the important applications of image
retrieval: museum and art collections.

In addition to metadata, each image in the sample collection was automatically
described by a number of independent primitive features. These include:

• average image brightness
• average image saturation
• HSV histogram
• clustering on average color in CIE L·a·b color space on a 4 × 4 grid

Each image was first reduced to a 250 × 250 size, while preserving the aspect
ratio. For all the features except the last, images were converted to the HSV color
space, which separates brightness, saturation and hue, because it is perceptually
more accurate than the RGB color space, and because brightness and saturation are
important descriptive features.

Rather than an average image hue, the image color histogram was recorded, using
the color reduction technique proposed by Zhang et al. [333]. A Gaussian blur is
applied before conversion to the HSV color space, in order to avoid color noise.
Finally, HSV colors are mapped to 36 bins based on the perceptual characteristics
of the color itself.

The last primitive feature records average colors. Each image axis is subdivided
into 4 intervals, giving 16 areas: the average color of each area is computed. The
aspect ratio is not preserved. In order to compute average colors, the image is first
converted to the CIE L·a·b color space, because linear color combinations in this

13Multidimensional clustering is used also by the FCA-based approach of Amato and Meghini
[20].
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Fig. 9.4 From left: a Multidimensional primitive features: clustering of average color on a 4 × 4
grid. Clusters are labeled by their barycenter; b Monodimensional primitive features: average
brightness and average saturation; c Bidimensional primitive features: reduced HSV histogram

space are perceptually more accurate than in other spaces. Each image is then rep-
resented by a vector on 16 dimensions and clustering is applied, based on the cosine
measure. The entire collection was clustered into 10 clusters, by using an agglomer-
ative complete-link clustering algorithm, which minimizes the maximum pairwise
distance among elements in the cluster [152]. We predefined 10 clusters, a number
chosen according to the guidelines from [236]: a larger collection would require a
hierarchical clustering scheme. This organization is shown in Fig. 9.4Ca.

When clustering is required, the problem of conveying the “meaning” of each
cluster by appropriate labels has to be solved. In traditional clustering, clusters are
usually labeled by their centroid: either the cluster barycenter or the object closest
to it. Even with text-based clustering, the meaning of the cluster is often so unclear
as to pose serious cognitive challenges to the user [236, 260]. With image represen-
tations, these problems are considerably worse. As an example, assume that a tondo

painting14 is used to label a cluster produced by brightness clustering. Since tondos
are rather uncommon, users are likely to assume that the cluster contains tondos,
whatever the correct interpretation might be. In order to avoid these problems, we

14A painting which is circular instead of rectangular.
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chose to label clusters by their stylized barycenter rather than by the image closest
to the barycenter.

Although the discussion above focused on clustering, many primitive features
can be represented by a priori fixed hierarchical organizations of the feature space.
As an example, monodimensional image data such as average or dominant color,
overall luminance, etc., can be easily represented by a facet with k sons, each repre-
senting a possible value. The label of each son can usually be provided by the value
(color, luminance level, etc.) itself. In the example, we subdivided both average
brightness and saturation into 10 intervals (Fig. 9.4Cb). Although such a subdivi-
sion is rather gross, a finer subdivision would probably be useless from the percep-
tual point of view.

A similar organization can be used for a number of bidimensional features, such
as color histograms [110]. The color histogram facet can be represented by a 2-level
hierarchy, where colors are enumerated on the first level (immediate sons of the
facet). Each color is further characterized, at the next level, by its normalized count,
organized as range of values. The structure reported in the figures is slightly more
complex than normal histograms. Here, in fact, the highest level reports principal
colors (8 shades of gray and the 8 main colors, red to purple); at the lower level,
each main color is subdivided into 4 actual colors, by using different luminance and
saturation (Fig. 9.4Cc).

9.3.4 Examples of Exploration

Figures 9.5–9.7 report three different explorative sessions which show the signif-
icant advantages of the current approach. In the first session, the user starts her
exploration from a primitive feature, the average image brightness, and selects dark
paintings, i.e., paintings with a brightness of 20% or less. After the zoom operation,
the reduced taxonomy in Fig. 9.5C indicates that only Antonello da Messina and
Raphael painted dark paintings, and that almost all such paintings are portraits with
a black background. The explosion of the Technique topic shows that both painters
are the only masters in the collection who use oil painting, rather than tempera.15

In the second session, exploration starts from metadata: after a zoom on
Painter > Masaccio, followed by a zoom on Theme > Sacred, the result is sum-
marized according to the HSV histogram, and paintings which have an orange-ish
color are displayed (Fig. 9.6C). Almost all the sacred paintings by Masaccio fall in
this category: in fact, a golden background (the so-called fondo oro) is typical of
Italian sacred paintings of the fifteenth century.

Finally, the clustering on a 4 × 4 grid facet is used to summarize and explore
the Portraits by Antonello da Messina. Most portraits fall in a single cluster, which
means they are visually very similar. In fact, almost all the portraits by Antonello

15Tempera uses water and egg-yolk (instead of oil) as a binding medium. Tempera paintings tends
to be much lighter.
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Fig. 9.5 Exploring dark paintings: only Raphael and Antonello have dark items, and almost all
are portraits. Dark portraits are expanded

Fig. 9.6 Histogram summary of Masaccio’s sacred paintings: paintings with orange-ish colors are
displayed

have a very dark background (see the first session) and the face covers most of the
painting (Fig. 9.7C).

These sessions show how the information base can be effortlessly explored, gain-
ing insights on its contents: in fact, we discovered relationships and features of the
image collection which no other access method would have made available.
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Fig. 9.7 Cluster summary of Antonello’s portraits: displaying the selected cluster

Although formal usability studies are required, the first informal tests on people
reasonably familiar with the paintings in the information base show some inter-
esting trends. First, most explorations start from metadata with primitive features
used in later stages in order to find visual similarities among paintings character-
ized by semantic metadata descriptions. If confirmed, this would support our claim
that both access by metadata and by primitive features are required and must be
dealt with in a uniform way. In addition, low-level-feature-only CBIR’s which do
not support metadata access would not seem to match user interactions and require-
ments.

Second, users found that the ability to see images according to different and in-
dependent visual features quite important in exploring the information base, and in
discovering effective visual similarities. Again, if confirmed, this would make a case
for multidimensional clustering and simple, easy-to-understand primitive features.
Traditional CBIR systems strive to capture image “semantics” through a mix of sev-
eral high quality features. From our initial findings, it seems much more important
that the features used are easily understood by users and that they capture image
characteristics which are useful for exploration. Because of the very quick conver-
gence of dynamic taxonomies, we claim that an array of simple features, such as the
ones we used, may be adequate for exploration.16

16This approach is called RAIF (redundant array of inexpensive features) in [256] by analogy with
RAID techniques in disk technology. In both cases, the intelligent combination of very simple
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9.4 Diagnostic Systems

Medical diagnosis is becoming increasingly difficult because of the emergence of
pathologies which are infrequent, either because they are not locally endemic or
because they exhibit a small number of cases over the entire world. General practi-
tioners are very often required to diagnose and correctly treat diseases that they are
not familiar with and might have not even heard of. In this context, but also with
more frequent pathologies, computer assistance can be an essential tool in health-
care, especially if it also supports all relevant information such as protocols, best
practices, emergency alerts, etc.

Current systems are not successful because they do not involve the physician in
the diagnostic process. Dynamic taxonomies can be adapted to the problem of inter-
active diagnosis and provide a paradigm which places the practitioner at the center
of the decision process. Medical diagnosis is seen as the exploration and thinning
out of candidate pathologies on the basis of clinical signs and other features. Early
experiences with an interactive web-based freely available tool for the diagnosis of
rare diseases are presented.

9.4.1 Computer-Assisted Medical Diagnosis

Computerized medical diagnosis has a relatively long history and several theories of
diagnosis were proposed, with an evolution from systems based on empirical classi-
fication rules [54] to theoretical and model-based approaches, such as set-covering
[227], abductive diagnosis [73] and consistency-based diagnosis [82]. However,
traditional systems have not been successful, for the same reasons which affect
most knowledge-based systems [48]. The principal limitation is their system-centric
rather than user-centric approach: a master–slave relationship in which the system is
in charge of diagnosis, and the user is basically an input device which supplies the
system with observations. This dramatically limits their application in areas such
as healthcare, where highly skilled professional users do not readily accept such a
slave–master relationship. In addition, these systems tend to be oracles: they offer
a diagnosis, but are usually unable to explain why in a way users can understand.
Finally, the cost of building and maintaining these systems is often so large as to be
impractical.

As an alternative, the diagnostic problem can be seen in terms of information
access. Complex knowledge-based architectures can be replaced by a collection of
(possibly standardized) electronic texts which describe pathologies, which can be
searched by traditional techniques such as information retrieval. The creation and
maintenance of the knowledge base is greatly simplified, but the limitations of in-
formation retrieval are well known and indicate that locating the needed information
may be difficult.

items (features in the present context, disks in RAID) produces a holistic result which is much
better than the original components.
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Finally, systems based on hypertext technology have been recently proposed. On-
coDoc [267], a system for the assisted selection of guidelines for cancer treatment,
encodes domain knowledge as a decision tree implemented through pages linked by
hypertext links: the physician is presented with a sequence of choices which lead
him to the guideline to be applied. These systems are less system-centric but user
interaction is quite rigid and follows predefined paths. Creation and maintenance are
expensive, and the addition of a single new pathology may well disrupt the entire
structure, and consequently user familiarity with the system.

9.4.2 Diagnosis Through Dynamic Taxonomies

The visual exploratory search paradigm of dynamic taxonomy can be used for med-
ical diagnosis [243, 253, 254] by allowing users to focus on a clinical sign, and see
immediately all the other clinical signs related to the currently selected sign(s), in
addition to the pathologies which exhibit that sign. The summary of clinical signs
related to the current focus guides the user to refine his search while leaving him
completely in charge of the interaction: it is his responsibility to select the appro-
priate signs among the available ones, though the system guides him by discarding
unrelated signs which would result in dead-ends. Differently from traditional diag-
nostic systems, a dynamic taxonomy system is a transparent tool that assists the
practitioner in an easily understood and unobtrusive way. The basic dynamic taxon-
omy model is extended here by taking into account the frequency of clinical signs
in each disease:17 both pathologies and related clinical signs are ranked in order to
provide a better guidance in the assessment of candidate pathologies.

Diagnosis by dynamic taxonomies is not targeted to specialists, but rather to prac-
titioners not familiar with a specific area. We believe that the practical importance of
a diagnostic system is in dealing with the unknown and unexpected: a physician will
hardly use a computer system to diagnose a flue; diagnosing a rare tropical disease
which he has never seen nor read about is a completely different story. Because of
the very fast convergence to small results sets,18 the diagnostic activity is expected
to be very quick and effective. In addition, by showing at each step all related signs,
the physician can be confident to have considered all the relevant aspects in arriving
at a diagnosis and, in fact, this approach seems the only way to guarantee a high
quality standard on diagnosis.

17This technique actually extends the basic dynamic taxonomy model by using fuzzy membership
[329] (see Sect. 5.6).
18See Sect. 3.2.
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9.4.3 Application of Dynamic Taxonomies to the Diagnosis of Rare

Diseases

It is especially interesting to apply these techniques to the diagnosis of rare diseases.
Rare diseases affect an extremely low percentage of patients: less than 5 cases over
10,000 persons, but some rare diseases have less than ten known cases over the
entire world population. The early screening of rare diseases is extremely important
but has to be performed by physicians who are perforce not familiar with these
pathologies. According to the first Italian Report on rare diseases [68], rare diseases
are diagnosed mostly by specialists (80% of the cases), whereas pediatricians and
family doctors diagnose 16.7% and 4.2% of the cases, respectively. Diagnosis by a
specialist seems to be the key, but the failures in early screening make locating the
right specialist quite difficult, so that 25% of the patients are diagnosed after three
years and some patients after seven years.

A web-based dynamic taxonomies diagnostic system which assists physicians
in diagnosing a rare disease from observed clinical signs is freely available at
www.erare.di.unito.it. Over 2000 diseases, classified by clinical signs, are managed
by the system, which works as a diagnostic front-end to the Orphanet database [201],
currently the most authoritative database in this field.

The target is the general physician who has the responsibility of the early screen-
ing of rare diseases. The diagnostic problem is seen in terms of guided information
access, rather than in terms of logic manipulation or traditional information retrieval.
In the dynamic taxonomy used here, objects are pathological situations. Each object
is classified under one or more concepts which represent features that characterize
it. Such features may be clinical signs or causes of the pathology, but also loca-
tions in which a pathological situation is common, or age groups which exhibit it,
etc. In short, all the available information which can be used to characterize an ob-
ject can be used as features. Here, in addition to clinical signs, the Age of Onset is
used. Signs and features are taxonomically organized in order to support abstraction
(generalization/specialization) in accessing the knowledge base and to simplify the
access to a specific feature, especially when many features are present.

For each disease, symptoms are classified by frequency on a scale of three val-
ues: Very frequent, Frequent and Occasional, following the Orphanet classification.
These weights are used to rank candidate pathologies by decreasing average fre-
quency. A graphical indication of the frequency of the clinical signs in the current
focus is also displayed for each retrieved disease. In addition, frequency informa-
tion is used to discriminate among signs. For each sign, a shade of red gives a visual
indication of its average frequency in the current set of candidate pathologies. Since
signs are hierarchically organized, each entry has a color indication of the average
frequency of all its descendant signs.

The diagnostic process is an interactive exploration of the knowledge base. From
the initial taxonomy (Fig. 9.8), the user will focus on the first symptom, e.g., ataxia.
The zoom operation will produce a reduced taxonomy in which all and only the
features related to ataxia are retained (see Fig. 9.9C). Related features are auto-
matically computed from the extensional inference rule: thus ataxia and cardiac
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Fig. 9.8 Initial symptom taxonomy

anomalies are related because there is at least one pathology (14 pathologies in this
case) in the knowledge base which is classified under both concepts (or one of their
descendants). The 137 pathologies which exhibit ataxia are presented by decreasing
frequency. In addition, shades of red are used to orient the user to high-probability
signs: e.g., muscle anomalies are immediately perceived as more frequent than car-

diac anomalies for ataxia.
The user of a traditional taxonomy would have to inspect the 137 diseases which

exhibit ataxia. Here, instead, any symptom in the reduced taxonomy can be selected
to restrict the focus. Hyperglycemia is now selected, and Fig. 9.10C shows the re-
duced taxonomy and the pathologies which exhibit both ataxia and hyperglycemia.
The selection of two signs reduced the total number of candidate pathologies from
2,076 diseases to just 7 candidates.

The reduced taxonomy guides the user to reach his goal because it indicates re-
lated features and symptoms and focuses his attention on a complete list of features
which are useful for diagnosis and must be considered. At the same time, the user
can see unexpected features which can be used to discriminate among items.
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Fig. 9.9 Reduced taxonomy and diseases after a zoom on ataxia

Differently from traditional diagnosis, the diagnostic process can terminate at
any time, and usually when the number of candidate items in the current focus is
sufficiently small for manual inspection. The goal here is not to find the exact set
of pathologies, but rather a sufficiently small set of candidate pathologies which the
user will finally and independently evaluate.

Since the system was not available to the general public at the time of writing, its
validation is preliminary because it was shown to and used by only a limited num-
ber of physicians. The initial feedback was positive: the summary by taxonomic
signs was considered very important especially by physicians not familiar with rare
diseases, who fully understood its importance in guiding the search, in the actual
discovery of unknown candidate pathologies, and finally in the confidence of hav-
ing considered all the aspects of the problem before arriving at a conclusion. This
last benefit of dynamic taxonomy diagnostic systems is especially relevant, because
diagnosis is usually hypothesis-driven so that it is very hard in practice to be exhaus-
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Fig. 9.10 Reduced taxonomy and diseases after zooming on ataxia and hyperglycemia

tive and to guarantee a high quality. The interaction was considered very natural, and
a physician commented that the system closely mimics the actual way a diagnosis
is normally arrived at.

The relevance of this approach extends to diseases which can be endemic in
some regions and rare elsewhere, but also to diseases which cannot be satisfactorily
diagnosed, usually because some clinical signs are not being considered. A thorough
and high-quality classification of pathologies by clinical signs and other features
is obviously a condicio sine qua non for dynamic taxonomy diagnosis. The effort
required is not trivial, but it is lower than in other approaches because each disease
can be characterized independently, so that available collaborative techniques can
be used. In addition, the results and the benefits of dynamic taxonomy diagnosis
can be easily made available all over the world by the multilingual support offered
by dynamic taxonomies.

Diagnosis through dynamic taxonomies is obviously applicable to different do-
mains, and, most notably, to the diagnosis of mechanical, electronic and software
malfunctions. The quick guided interactive thinning of dynamic taxonomies, to-
gether with easy non-disruptive updates of symptoms and malfunctions, makes this
type of diagnosis attractive for online or phone assistance.
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9.5 Digital Libraries and News Systems

Digital libraries and news systems are an obvious application area for dynamic tax-
onomies, especially if documents are already classified under a taxonomy. The first
project in this area was the 1999 Final CS Encyclopedia19 prototype for the ACM
Digital Library (DL). This project relied on the ACM Computing Classification Sys-
tem [13] which is used by authors to classify most of the papers in the ACM DL,20

in addition to facets such as Author, Venue, Year, etc. The project provided superior
access capabilities with respect to the DL access facilities available then and for
several years afterwards.21

The Final CS Encyclopedia project was explicitly targeted to the ACM Digital
Library because its taxonomic classification could provide an extremely interesting
way of systematically tracking research trends and of encouraging interdisciplinary
awareness in Computer Science, which is becoming more and more rigidly subdi-
vided into different, independent areas, with the consequence of re-inventing, rather
then reusing, the same solutions in different contexts. So the central information was
really the topic classification. It was felt that the other facets were interesting (espe-
cially the Year facet, for the analysis of trends) but definitely second-order with re-
spect to the “Topic” facet. Other document collections, such DBLP [169], CiteSeer
[67] and IEEE Computer Society Digital Library [3], lacked a topic classification
and were not considered acceptable candidates for our goals.

One of the unusual features of this project was that, in addition to a conventional
web-server architecture, one of the prototypes used a distributed architecture which
managed over 1,000 papers in a single Java jar requiring about 300 KB and con-
taining indices, required data (titles, authors, links to the actual papers, etc.) and
the dynamic taxonomy engine itself. This was an important architectural option at
the time, because it offloaded the web server of the real-time computation of zooms
which could be performed at the client side, while requiring a small bandwidth for
the delivery (and continuing upgrade) of the information base. We are still con-
vinced that a centralized architecture is suboptimal for applications with frequent
access to large infobases (as in the case of the ACM DL), while a distributed archi-
tecture allows for a much cheaper infrastructure because it decreases both central
computational requirements and network traffic.

Other applications of dynamic taxonomies to digital libraries are consider-
ably later. In 2007, the DBLP repository was one of the targets of dynamic tax-
onomies/faceted search. Two applications are currently available on it, Complete-

19The name was inspired by the SF novel “The final encyclopedia” by Gordon R. Dickson.
20ACM papers are usually classified under several topics.
21An implementation was offered to ACM in 2000 [257] as a contribution to the research commu-
nity. The DL group was not interested, and dynamic taxonomy access was adopted eight years later.
At that time, ACM’s CEO John R. White wrote [315]: “New search technology recently integrated
has dramatically enhanced Digital Library searches and will enable a much richer, guided naviga-
tion experience of ACM’s (and other publishers’) content.” The late adoption of a technology that
‘dramatically enhances searches’ by one of the leading scientific and professional computer asso-
ciations is a good example of the early acceptance problems encountered by dynamic taxonomies.
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Search DBLP by the Max Planck Institut für Informatik [31] and FacetedDBLP by
the L3S Research Center, University of Hannover [88]. The two systems differ in
two respects. First, FacetedDBLP is non self-sufficient, according to our definition
of SEAS in Sect. 3.1. The only initial access is through a text-retrieval query, proba-
bly because of performance reasons. CompleteSearch DBLP shows instead the most
frequent values for each facet, and is therefore self-sufficient because SAES selec-
tors can be used from the very beginning of the interaction.

Second, topics are totally absent in CompleteSearch DBLP, whereas an attempt
to account for them is present in FacetDBLP, through the GrowBag [88] facet which
suggests keywords from retrieved paper titles.

The new version of the ACM Digital Library available since November 2008
[315] is based on dynamic taxonomies and is essentially similar to FacetDBLP,
though a different algorithm is used for suggesting additional query terms.

All these applications, though valuable in themselves, fall short of the goals of
the Final CS Encyclopedia project discussed above. The heavy reliance of all three
systems on information retrieval as a primary access paradigm, and the term sugges-
tion mechanism as the only way to support semantic content have all the shortcom-
ings which were discussed before, and certainly do not support knowledge-seeking
activities in an effective way.

The central point in order to achieve the full power of dynamic taxonomies in
this context is to allow the “topic” content of the infobase to be explicitly shown and
manipulated by users through a specific facet. The techniques described in Chap. 7
can be used to create such a facet and to classify documents.

With a digital library such as ACM’s, classified by topics and with most citation
data electronically available, one can efficiently support all three types of explorative
tasks we discussed, since all of them are actually of interest for researchers and
practitioners alike.

The object-seeking task usually occurs when writing a paper and needing to dis-
cuss previous research. A topic classification is invaluable in this context, because
it eliminates the need for information retrieval and all the problems associated with
it.

The knowledge-seeking task occurs when the user has to become familiar with
a new area: he will be looking for authoritative papers for an initial picture of the
new field. Here, the topic organization can be used to set the right context, a simple
facet with citation counts gives an indication of which papers are authoritative, and
the Year facet can be used to select initial or more current papers, as appropriate.
Another important knowledge-seeking tasks is to find interdisciplinary links among
material. With non-ambiguous terms, this can be done through information retrieval.
As an example, a query on “hashing” will retrieve topics (and papers) in database
systems, data structures, operating systems, etc.

Additional flexibility can be achieved by appropriate faceted design of the taxon-
omy. As an example, consider a facet taxonomy by topic (e.g., Database, Operating
Systems) and a simple facet taxonomy by task (e.g., searching, sorting, caching).
In this way, the fact that “caching” is a cross-disciplinary topic becomes immedi-
ately evident, since after zooming on it one will find Operating Systems>Virtual
Memory, Database systems>Buffer Manager, etc.
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Finally, the wisdom-seeking task means, in this context, the monitoring of topic
trends and of group leaderships. What research areas are currently “hot”? What are
the leading research centers in a specific area? Topic taxonomies are again funda-
mental in this context and the data-mining techniques described in Sect. 5.1 provide
an adequate framework.

News systems share most of the exploration requirements of digital libraries,
and stress the importance of push interactions. Especially in this area, the mas-
sive information flow requires the powerful filtering capabilities offered by dy-
namic taxonomies, but also asynchronous operations, in which the user spec-
ifies his own interests and the system advises him when interesting items ar-
rive.

The Dbworld Xtended project [2, 242] implemented an integrated semantic dis-
semination system based on dynamic taxonomies, in which dynamic taxonomies
were used to explore relevant information. The user could express his own inter-
ests at a conceptual level through the same taxonomic interface, so that precise
push strategies could be implemented. Dbworld Xtended was used to manage an-
nouncements coming from DBWorld [1], one of the best-known computer science
research mailing lists, but it represents a framework which can be easily adapted to
the dissemination needs of very diverse application areas such as e-government, to
e-commerce, personalized news, etc.

9.6 E-government

Although it is not really recognized by most current e-government research, the crit-
ical enabling factor for e-government and e-democracy is knowledge [246]. There
cannot be any real e-democracy or e-participation if the citizen has not complete
and easily accessible data on the issues he is asked to vote on or on which he is
asked to participate, or on the laws and regulations he is required to abide. Other
technologies, such as those which allow secure polling or voting, are required but
do not solve the main problem: how can a large mass of information be made
easily and effectively available to citizens so that they can make informed deci-
sions.

In fact, the knowledge which e-governments are asked to manage and make avail-
able to citizens is quite articulate and of different types:

• laws and regulations

This represents the normative part of governments and although the Latin maxim
“ignorantia legis non excusat”22 is a basic tenet of judgment, the number and
complexity of laws and regulations has become so large that “ignorance of law
is unavoidable” would probably be more accurate. There are laws at the town
level, at the district level, at the regional level, at the country level, at the federal

22Ignorance of law does not excuse.
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level, at the world level. Some of these conflict, some are superseded by oth-
ers in certain cases and in certain locations, and lawmakers at any jurisdictional
level are always busy and very productive. One of the greatest opportunities of
e-government is to overcome this information overload and to supply timely and
complete information to everybody. The electronic availability of information per

se is a minor aspect of this problem. Rather, effective, timely and accurate ways
of disseminating information are needed.

• government services

Government e-services are one of the most frequent and critical points of con-
tact between public administrations and citizens. Currently, typical e-government
portals provide 100–200 e-services, a number growing as more and more gov-
ernment agencies go online. In addition to common services such as id cards,
permits, they represent the only practical way of providing incentives and sup-
port to specific classes of citizens. For this reason, discovery of e-services, rather
than plain retrieval, is a critical functionality in e-government systems.

• government local promotion

Governments, especially local ones, are using the web to provide a number of
services which are mainly informative and aim at improving the quality of life
of citizens and at promoting the local community. These services include, among
others, job placement services, tourist information (hotels, restaurants, etc.), yel-
low pages to promote local industries and activities, etc. and are currently man-
aged through traditional retrieval methods which are not effective in this context,
where exploration is required instead.

Dynamic taxonomies can provide a framework to effectively manage all these
types of knowledge [255]. Laws and regulations can be effectively described and
accessed through dynamic taxonomies [246]. The push capabilities of dynamic tax-
onomies can be used to keep citizens informed of new laws and regulations which
are interesting in a continuous way. Sacco [246] proposes a simplified dynamic tax-
onomy in the form:

• Sector,
a facet describing sectors of activity (agriculture, chemistry, etc.)

• Location,
a facet describing the location(s) to which a specific document applies

• Subject,
a facet describing the subject(s) (e.g., persons or companies, public companies,
etc.) to which a specific document applies

• Document type,
a facet describing the type of document (law, regulation, opportunity, etc.)

• Issuer,
a facet describing the issuer (town, country, etc.)

• Time of validity,
a facet describing the time frame in which the object described is valid

which can be used to explore complex law and regulation corpora. The same grid
can be used to express interests so that new relevant documents can be sent to the
user.
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Dynamic taxonomies can be used to describe e-services and allow the discov-
ery of services which apply to the specific citizen [249, 251]. In [251], the sta-
tic taxonomic organization of the Italian e-government portal [10] is discussed, as
well as a simple directory of services agreed upon by the EU states [9]. In alter-
native to these architectures, a dynamic taxonomy organized into 7 facets is pro-
posed:

1. Services:
services which the government supplies, organized by major areas such as the
ones indicated in [9], e.g., Car registration, Income taxes, etc. This facet can be
ordered by the most common services first, in order to speed up access for the
“average” user;

2. Events of life:
events in the life of a citizen, such as the ones used in [10], e.g., Having a child,
Studying, etc.;

3. Type of information:
this facet describes what type of information is available, such as online guides,
online services, etc.;

4. Location of person:
abroad, or where in the nation. This facet is used to coordinate special services
offered by specific municipalities, or regions, etc.;

5. Type of citizenship:
whether the person is a citizen of this state, or a citizen of a different nation.
Citizens from specific groups of nations (e.g., EU citizens) might have special
provisions. This facet can also be used to describe restricted citizenship rights,
such as minor age or inhibition from public offices;

6. Person with special rights:
although the contents this facet can be represented in the following Person Pro-
file facet, it is used to attract the user attention to specific categories she/he might
belong to. Concepts in this facet may include age, sex, disabilities, personal re-
lationships (e.g., single parents, married couples), etc.;

7. Person profile:
this facet describes other features of the person which can be used to reduce the
number of services that apply. For instance, a useful criterion is Age: a person
younger than 18, for instance, cannot have a firearm permit or a driving license,
and cannot retire. Conversely, a senior citizen will not be directly interested in
primary education.

The following example shows how a senior citizen could quickly find all the
services and other relevant information which apply. In Fig. 9.11, the initial tax-
onomy is shown. Figure 9.12 shows the result of a zoom on Senior Citizen, which
reduces the overall number of object from 539 to 67. The user can further restrict
the total number of candidate documents by zooming on one of the facet values in
Fig. 9.12, but the important fact is that the senior citizen has immediately a complete
summary of all the services available to him, and of which he might not have been
aware.
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Fig. 9.11 E-government portal with a dynamic taxonomy on seven facets

Fig. 9.12 Reduced taxonomy after a zoom on Senior Citizens

Another important point [253] is that dynamic taxonomies make the evolution
(insertion, deletion, update) of services especially easy to manage, because of the
dynamic evaluation of relationships among concepts. In dynamic taxonomy designs,
the addition of a new service or of a new information object only requires its clas-
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sification according to the dynamic taxonomy. In traditional static designs, it can
require the manual restructuring of a significant part of the existing portal.

Finally, most of the information provided by government local promotion (job
placement services, tourist information, yellow pages, etc.) inherently require an
exploratory access [244], and they can be easily managed by dynamic taxonomies.
Current e-government portals manage these information by ineffective traditional
retrieval methods, and, frequently, data are just presented as plain lists.

9.7 File Systems

We present LISFS, a file-system implementation of logical information systems
(LIS), where objects are files or parts of files, and dynamic taxonomies replace
(monodimensional) trees of folders. This has the benefit to make DT features avail-
able right now to existing applications such as editors or compilers. This implemen-
tation can easily be extended and specialized through a plug-in mechanism. We also
present some applications in the field of personal databases (e.g., music, images,
emails), and demonstrate that building specialized interfaces for visualizing data-
bases can be done easily through LISFS navigation. LISFS has been implemented
by Yoann Padioleau during his PhD [202, 203].

9.7.1 Implementation

LISFS (LIS File System) implements the principles of a LIS at the system-level un-
der the interface of a file system. Objects are files or parts of files, and foci are pre-
sented as folders. Such a system approach makes DT access to files a commonplace,
regardless of their types and whatever application is used [101, 202]. Modern OSes
consider a file system as a set of methods that allows to manage files and folders.
Under Linux, VFS (Virtual File System) acts as an interface of which every method
is virtual. A file system is just an implementation of those methods; this is the case
of LISFS, which runs over the Linux kernel. LISFS has a plug-in mechanism. There
are two kinds of plug-ins: logics are used to describe, query and classify objects;
transducers compute intrinsic properties of files. With LISFS, paths are seen as for-
mulas. LISFS embeds boolean querying: / reads and, | reads or and ! reads not.
In LISFS, common Linux shell commands can be reinterpreted in the framework of
dynamic taxonomies.

• The Linux command cd is used to change the focus. If a relative path is given,
the current query (the pwd) is refined (zoom-in). If an absolute path is given,
the current query is replaced (pivot). For instance, the command cd /mu-
sic/disco|rock would select disco or rock music files, and the command
cd !bad would further refine the selection to those music files that are not
tagged as bad.
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• The Linux command ls has two modes. In the extensional mode, it returns the
extension of the current focus as a list of files. In the intentional mode (the de-
fault), it returns the most general selective concepts in the dynamic taxonomy,
where selective means that only concepts whose count is strictly lower than the
size of the extension are returned. So, only a flat subset of the dynamic taxon-
omy is returned. This is necessary because the result of ls commands must be
a list of sub-folders according to the VFS interface. Entering such a sub-folder
corresponds to a zoom-in, and allows to see further sub-folders.

• Extrinsic properties can be given to files by moving them (command mv) to sub-
folders. For instance, the command mv 12.mp3 good/ moves the music file
12.mp3 to the sub-folder good, which means it is classified as good, in addition
to existing properties (e.g., artist, title). Properties can also be removed, like in
the command mv good/12.mp3 ., where the file 12.mp3 is moved from the
sub-folder good to the current focus, and hence removed from the folder good.

It should be emphasized that LISFS operates on two levels. At the first level,
called inter-file, objects are files. At the second level, called intra-file, objects are
parts of files [203]. By design, querying and navigation within LISFS must be com-
patible with an interactive use. Current experiments show that it is the case up to
an order of 100,000 objects. While the stress is put on a fast answering to queries,
indexing might take longer. However, only the initial indexing of large data is ex-
pensive. Once it is done, the index is stored persistently on disk. If the data changes,
re-indexing is incremental and faster. To achieve speed, LISFS uses inverted indexes
to manage its meta-data. The indexes are hash tables, which are accessed with the
Berkeley DB library [197].

9.7.2 Applications

9.7.2.1 Managing a Music Database

Music files are easily managed within LISFS. As a matter of fact, music files gen-
erally come with meta-data; e.g., MP3 files embed the name of the artist, the title
of the song and so forth. Such meta-data can be extracted by a transducer and used
do describe a music file. Using a traditional UNIX shell as an interface, the cd
command queries the database and the ls command lists the related concepts as
sub-folders, as shown in the example below:
[1] cd /lfs/music/year:[1980..1990]
[2] cd !genre:Comedy
[3] cd time:<7min
[4] cd .ext
[5] playmp3 *
...
[6] cd /lfs/music/genre:Disco/
[7] ls
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artist:BeeGees/ artist:DonnaSummer/
...
year:1976/ year:1977/
...

Command 1 selects music files from the 80s (using an interval logic for years),
command 2 excludes comedy from the selected files (! denotes negation) and com-
mand 3 selects only short songs (using a time logic). From then, the user can switch
to the extension of its query (command 4) and listen to it (command 5). Command 6
selects disco music and command 7 then asks for related concepts. It can be seen
that they can be used as legitimate navigation links so as to refine the current query.
Those who prefer to use a graphical interface, as provided by popular tools such as
iTunes, may find the use of a command-line interface in the above example awk-
ward. This is not really a problem: since LISFS is implemented as a real file system,
every application can benefit from it. Therefore, a music manager a la iTunes comes
for free: it is barely a specialized interface over LISFS. Such an interface has been
written [204]. This approach has two advantages. First, the code of the interface is
very simple, since the hard work of indexing, querying and answering relies entirely
on LISFS. Second, the resulting application is more powerful than most popular
tools. For instance, iTunes allows the user to browse a music library first by genre
and then by artist but not the reverse; this is no problem with our application.

9.7.2.2 Managing a Bibliography Database

The intra-file mode of LISFS can be used to manage a bibliography database stored
in a BibTEX file. In this case, the objects are the entries of the BibTEX file, and a
transducer extracts properties such as author, title, etc. LISFS was successfully used
to manage a 100,000 lines BibTEX file. Navigation inside a BibTEX file is close to
data-mining. For example, the related concepts resulting from a query can easily be
used to look for frequent co-authors of a given author. Moreover, after performing
a query, the user is presented a partial view of the original file, showing only the
relevant entries. This view can not only be further queried, but also edited. Changes
are propagated to the original file in a consistent way, and the view is consequently
updated.

9.7.2.3 Managing E-mails

E-mails can also be managed within LISFS. Experiments were achieved on reposi-
tories holding up to 160,000 messages. A transducer extracts author, subject, thread,
date, etc., from a message and this information is used to index e-mails. By assigning
extrinsic properties to the e-mails, the user can organize its messages into custom
concepts. It should be noticed that, unlike most e-mail tools, e-mails can naturally
belong to several concepts.

A frequent user task is to look for old e-mails. Full-text indexing is required for
this task, but a native LISFS implementation would be inefficient, since there would
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be too many related concepts available. To alleviate this problem, Glimpse [176]
is used for full-text indexing of the messages, and the file system interacts with
Glimpse to process some queries. Queries of the form contains:foo call
Glimpse to select files that contain the text foo; however, rather than showing these
files, a dynamic taxonomy over them is computed. This demonstrates the flexibil-
ity of dynamic taxonomies by allowing the integration of external querying tools,
without breaking the querying/navigation combination.

9.7.2.4 Homedir

Apart from the few examples described above, LISFS is used to manage many other
kinds of files such as source code of programs, man pages, LaTEX files, etc. The idea
of managing a user’s entire home directory, which is nothing more than a collection
of numerous and heterogeneous files, sounds appealing. As we saw in previous ex-
amples, the user benefits from the different applications of LISFS on various kinds
of files. Moreover, LISFS allows him to perform transversal queries on different
kinds of data. For example, let us consider a user looking for files that contain the
word synchronization but who does not remember exactly their types nor
their places. With a home directory managed under LISFS, he will be able to use
the query contains:synchronization to select every data that mention the
word synchronization, regardless whether it is in an e-mail, a documentation,
a program, etc. Then, the system itself will propose navigation links for the user to
refine the query.

9.7.3 Related Works

LISFS differs from relational databases in several points. The main advantages of
LISFS are a schema-less organization of objects and a seamless integration between
querying and navigation. Since navigation links computed by LISFS are expressed
in the same language as queries, there is no need for the user to learn a query lan-
guage. Moreover, object descriptions in LISFS are not limited to flat attributes; the
use of specialized logics (e.g. date logic, string logic, interval logic) supports rich
descriptions. We believe that the low-level implementation as a file system is another
important point for LISFS. Being standalone applications, traditional databases are
hard to interface with. On the contrary, LISFS is totally integrated in the operat-
ing system by design, so that LISFS technology is made available to every single
application.

Non-hierarchical file systems were already proposed, e.g. SFS [120], Neb-
ula [47], HAC [123]. Each of them brings some interesting features like automatic
assignment of intrinsic properties, folders seen as queries, powerful querying or the
notion of view. Nevertheless, none of them supports all those features at once, nor
does provide such a seamless integration of querying and navigation as LISFS does.
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Finally, none of these systems supports these principles at the intra-file level, as
LISFS does.

LISFS can be seen as an answer to the problem of personal document retrieval.
This issue has recently been addressed by the computer industry in two different
ways. On the one hand, tools like Google Desktop indexes documents in a database;
on the other hand, file system approaches, such as Apple’s Spotlight, store indexes
as file system attributes. Both approaches provide a searching tools in the form of a
user application. LISFS goes a further step in that not only the indexes are stored in
the file system, but also the file system is the searching tool.

9.8 Geographical Information Systems

Layer organization is the prevailing model for handling information in Geograph-
ical Information Systems (GIS). This structure gathers geographical data under a
common theme e.g., soils, roads, water [164], and has become a standard for han-
dling data. However, this structure is rigid as it implies partitioning geographic in-
formation in predefined categories, and usually having the same description schema
for all the elements of a layer (pixels for raster data or features for vectorial data).
As a consequence, data belonging to several themes are often duplicated in cor-
responding layers. Furthermore, the layer model is not really designed to manage
relations between objects. If current GIS tools enable to query and to work on data
distributed in several layers, pre-processing or repeated operations are often neces-
sary.

Logical Information Systems (LIS) were proposed to avoid the rigidity of hierar-
chical data systems, and to merge querying facilities (as in databases) and navigation
facilities (as in hierarchical file systems), under the same principles as dynamic tax-
onomies. LIS use logic in a uniform way to describe data, query it, to navigate
through it and to update it. The LIS model has been implemented as a file system
(see Sect. 9.7); this permits to integrate this new methodology into existing applica-
tions.

In this section, we explore how GIS applications can gain in flexibility by using
LIS for handling geographical data. A prototype, GEOLIS, combining a naviga-
tion interface with data stored in a LIS, has been implemented by Olivier Bedel
during his PhD [34, 35]. We successively present the data model and querying lan-
guage, the interface and implementation of GEOLIS, and experiments on a real data
set.

9.8.1 Data Model and Querying Language

In GEOLIS, a geographical feature is represented by an object, and logics are used to
describe and query objects. We first define the description and querying languages.
Then we present the real dataset that has been used to test the model.
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Each object represents a geographical feature and is classified into a set of prop-
erties derived from the semantic attributes and a spatial description of the feature
(geometry and location). These properties are given a name and may be atomic or
valued.

There are several domains of values depending on the type of properties. They
can be simple (string, integer, float) or composite (coordinates). Each domain is
defined as a specialized logic (see Sect. 8.5) having its own language of formulas.
Here is an example of a possible description of the French city of Rennes:

name:"Rennes" AND point AND
population:260000 AND position:(48.08,-1.68) AND
description:"administrative center of Brittany".

In this description, point is an atomic property about the geometric shape of the
feature, population is an integer valued property, name is a string valued property
and position is a coordinate valued property (latitude, longitude).

Each specialized logic defines taxonomies of patterns over its domain of val-
ues, in order to improve the expressivity of querying, and the progressiveness of
navigation. For instance a string logic enables to build patterns like contains
“administrative center”. An interval logic on integer values provides
patterns like population:in [100000,300000] or population:>=
200000. The empty pattern, like in the query population: is the most
general pattern of a logic. For instance, we have population:265000 ⊑

population:>=200000 ⊑ population:, where ⊑ denotes logical sub-
sumption (Definition 5.1). A coordinate logic can be defined as the product of
two interval logics on real values (one for latitudes, and one for longitudes). It en-
ables to build patterns corresponding to axis-aligned rectangular areas. For instance,
Rennes’s position (48.08,-1.68) is subsumed by ([40,50],[-10,10]).
Of course, attributes, values and patterns can be freely combined with the three
Boolean connectors AND, OR, and NOT.

As an illustration of the GEOLIS data model, we now introduce the data set we
used to make our experiments. It deals with the distribution of several species of
rodents in Sahelo-Sudanian Africa. It is composed of one table where rows identify
rodents and columns give descriptive information about these animals. This infobase
is quite large (more than 20,000 individuals, potentially described by 92 attributes),
and is the result of the merging of several databases provided and maintained by
the French Institute for Research and Development (IRD) since 1980.23 It has been
mainly designed to study the actual distribution of rodents, and the possible causes
affecting this distribution. Therefore, the description of each rodent mainly con-
tains information about biometry (size, weight, sex, age), phylogeny (family, genus,
specy), localization (position where the animal was captured, habitat), and period
of capture. This semantic diversity, the various domains of values available (string,
integer, float, coordinates) and the simple geometry (point) of the features make this
base an interesting application for GEOLIS.

23Inventaire et caractérisation des espèces de rongeurs sahélo-soudaniens, http://www.mali.
ird.fr/activites/inventaire.htm.
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Fig. 9.13 The web interface of GEOLIS

9.8.2 Interface and Implementation of GEOLIS

The interface and interactions in GEOLIS are similar to what is presented in Chap. 4,
except that the current selection of objects is presented on a map instead of as a list.
Indeed, every object is a geographical feature with a position and a shape that can be
rendered graphically. Figure 9.13C is a screenshot of the web interface of GEOLIS.
The query box can be seen at the bottom (A), the dynamic taxonomy can be seen at
the left (B), and the map area rendering the current selection of objects can be seen
in the middle (C). The map area is a composed component. A main map (C1) includ-
ing fixed background layers (administrative boundaries, hydrography and isohyetal
lines) indicates by red points the position of rodents satisfying the current query.
A legend (C2) details symbology of the main map and enables to specify which
layers are visible on the main map. A keymap (C3) locates the boundaries of the
main map on the Sahelian band. Last, standard map tools are available: pan, rectan-
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gular zoom in, zoom out and zoom to full extents (C4). This first component comes
almost unchanged from an existing interface.24

In addition to the navigation modes presented in Sect. 4.3, GEOLIS defines
a geographical zoom. It works like the traditional zoom-in and zoom-out, ex-
cept it applies on a geographical region selected on the map. For instance, if
a rectangular region is selected, it is translated into a coordinate pattern (e.g.,
position:([40,50],[-10,10])), on which the zoom operation can be ap-
plied as usual. Its effect is to specialize or generalize the current query, and hence
to restrict or extend the selection of objects. It must be distinguished from the map
zoom (C4), whose effect is to show a smaller or larger part of the map, and has no
effect on the current query and extension.

The GEOLIS prototype results from the coupling of several technologies from
LISFS, web mapping and web domains. LISFS (see Sect. 9.7) constitutes the kernel
of GEOLIS, where the geographical data to be explored is stored, i.e. the rodents
base in our experimentations. The GEOLIS graphical interface is a web interface.
The navigation tree and the working query box have been designed using the server
side language PHP. The map area is built with the widely used map generator UMN
MapServer. Between the several geographical formats supported by MapServer, we
chose to use the Geographical Markup Language (GML) proposed by the Open-
Geospatial Consortium. GML is an XML based format with public specifications.
For our purpose, it has the advantages of gathering all information in one file whose
XML based structure may be rearranged with regard to GML specifications. Fur-
thermore, GML is supposed to become a standard for geographical data sharing.
These technologies were not designed to work together. However, their combina-
tion in GEOLIS did not require any modification. Much of the work has been to
interface them, i.e. to determine the geographical format the most appropriate for
LISFS integration, writing the corresponding transducer, building logics devoted to
geographical data and designing the navigation tree interface.

9.8.3 Experiments

The whole base (20,585 rodents with an average of 39 properties in each description)
has been loaded in GEOLIS. Response times of navigation commands increased
with the size of the context, but still allow human interaction (less than 10 seconds
on an Intel Pentium M 2 GHz with 1 GB memory). The response mainly depends
on LISFS, which is still under development and improvement.

Initial experiments in the rodents base highlight several occurrences of anom-
alous entries. These entries appear as properties with unexpected values and gener-
ally have a low support. In most cases, wrong entries do not belong to the domain
of value of the properties, e.g. sex:49 instead of sex:"F" or sex:"M". These
anomalies result from errors in data collecting and merging, but sometimes indicates

24MapServer, http://www.mapserver.gis.umn.edu.
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uncertainty about the stored value e.g. sex:"?" or even sex:"M?". Furthermore,
GEOLIS also enables to identify consistency problems in the base, like properties
having several semantically equivalent values, e.g. sex:"M" and sex:"m".

Initially, spatial information in the rodents base was limited to the trapping po-
sition. So, to take into account the impact of other spatial factors on the distribu-
tion of rodents, some spatial relations, e.g. minimum distance from natural barriers
(large rivers) or closest upper and lower isohyetal lines, have been processed for
each rodents using external GIS tools. Then they have been translated into semantic
properties. This enables to provide pseudo-spatial concepts in dynamic taxonomies.
Furthermore, as the main map gives a visual representation of the location and con-
centration of rodents it could rapidly suggest relevant spatial query refinements dur-
ing navigation.

As mentioned previously, the rodents base comes from an imperfect sampling.
This has been observed in the navigation. For instance, the count of rodents for prop-
erties pays (country) and annee_capture (year of trapping) shows that half of
information in the base comes from Senegal which clearly appears on the map to
represent a small part of the studied area. The trapping frequency for a given country
can be obtained by applying zoom-in on this country, and expanding years of trap-
ping in the dynamic taxonomy. For example, we noticed that, in Chad, data have
only been collected in year 2000, whereas in Mali and Senegal, data are available at
least every two years.

Knowledge about data origin could enable to balance future results concerning
rodents distribution. So we decided, as a first step, to study the sampling strategies
in the database. For instance, we looked for connections between rodents trapped
states (alive, dead), places and periods of capture. Within the navigation tree, we
can restrict navigation to rodents trapped alive, and visualize, at the same time,
properties annee_capture and habitat. For instance, selecting a particular
habitat, e.g. savane (savanna), and looking at property annee_capture shows
for each year, how many rodents were trapped alive in the savane. On the opposite,
the distribution of trapping places concerning a particular year could be observed by
selecting annee_capture and looking at habitat. This shows that GEOLIS
is appropriate to quickly check distribution hypotheses implying several criteria.
In only a few operations, we noticed that for rodents captured alive, the diversity
of trapping places tightly depends on the period of capture. For instance, 85% of
rodents found in savanna were trapped in year 2000, which also corresponds to more
than 60% of rodents trapped that year. Low diversity in trapping places could be
explained by trapping sessions led in order to confirm hypotheses implying location.
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Conclusions

Giovanni Maria Sacco and Yannis Tzitzikas

Frustra fit per plura quod potest fieri per pauciora

(It is futile to do with more things that which can be done with

fewer)

Occam’s razor

Dynamic taxonomies and faceted search support a new information access paradigm
which allows the guided exploration of complex information bases, and bridges the
gap between querying and browsing. Exploration through dynamic taxonomies is
quickly understood by users. An appropriate faceted design produces compact and
clear taxonomies which also afford a better correlation among concepts. Such cor-
relations, based on the extensional inference rule, are used to accommodate both
conceptual dynamicity and conceptual discovery, while keeping the underlying tax-
onomy relatively stable.

In this book, we provided the reader with a guide to all relevant aspects of dy-
namic taxonomies and faceted search. This is to be considered as an initial contri-
bution to an area which we believe is rapidly evolving as new and ambitious appli-
cations emerge. Several research directions deserve further investigation:

• New Applications and New Directions

Although we have discussed several applications of dynamic taxonomies, we
believe that the application scope of dynamic taxonomies is much wider. In par-
ticular, the application of dynamic taxonomies to knowledge and wisdom-seeking
tasks is still in its infancy. We are especially interested in the potential of dynamic
taxonomies to foster creativity, by revealing unexpected correlations among dif-
ferent concepts, and allowing to see and evaluate knowledge from different points
of view.

Another important direction is preventing the rigid separation of knowledge
into different, overspecialized sub-sub-disciplines. As we mentioned, this was
the driving idea behind the ‘Final CS Encyclopedia’ project. The current status of
our education and research has diverged from the ideal of the Renaissance man,
whose education encompassed arts and sciences, to the point that the complex-
ity of science seem to be such a centrifugal force that different disciplines often
do not even share a common ‘language’. A solid shared framework, and the au-
tomatically inferred connections among concepts can provide initial foundations
for systems which can help to reverse this trend, and is especially relevant for
e-learning.
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• Methodological Issues

There are huge and continuously increasing amounts of digital informa-
tion in various formats and systems. To aid the provision of faceted and dy-
namic taxonomy-based access services over existing sources, we need to develop
methodologies, auxiliary tools, and best practices for various frequently occur-
ring scenarios. For instance, the process of deriving zoom points to users (in-
stead of requesting them to formulate complex queries in sophisticated query lan-
guages), has to be elaborated for various kinds of representation frameworks and
query languages (although we have already described some cases in this book).
Furthermore, the provision of integrated access to different sources raises issues
analogous to those studied in information integration (e.g. extraction, cleaning).

• Efficiency, Scalability, and Distributed Architectures

Systems managing real-time interactions on a few million objects exists, and
practical implementations issues and solutions are described in this book. How-
ever, as the application scope increases, the size of the information bases to be
managed will increase as well. Real-time exploration of billions of objects is the
next challenge.

Another open question is whether a distributed architecture is more efficient
and scalable than the current, centralized approach. In addition, the application
of dynamic taxonomies to large scale peer-to-peer environments seems to be a
promising approach, since current peer-to-peer networks rely on rather primitive
search facilities.

• Taxonomy Design, Object Classification, and Quality ‘in-the-Large’

Rapidly evolving multimillion information bases are challenging in many re-
spects, especially when data are unstructured. Therefore, automatic classifiers and
taxonomy designers/maintainers should be explored.

A manual, cooperative, and distributed approach to both taxonomy design and
maintenance, and object classification seems also appropriate in many applica-
tions, and it is already successfully used in tagging systems. The problems arising
in this context involve the concurrent evolution of the taxonomy, where coherence
and non-redundancy are an obvious requirement, and the classification of objects,
which involves different persons and perspectives on data and is especially diffi-
cult to maintain as the taxonomy evolves. Moreover, the quality/accuracy of the
overall system must be guaranteed.

• Visualization and Adaptability

Several visualization strategies are discussed in this book, but this research
area is in its initial phase, especially with respect to wisdom-seeking tasks, and for
interactions on mobile devices with small displays (PDA’s and cell phones). The
compactness and fast convergence of dynamic taxonomies make them especially
interesting in this context. Their easy adaptability by focus pre-setting can make
them a good choice for ambient intelligence as well.

• Social Aspects

Current social networking systems rely on conventional techniques for
‘searching’ the network. As a consequence, the retrieval of potential contacts is
usually difficult, time-consuming, and error-prone. The first results of a (yet un-
published) pilot study on a subset of LinkedIn (a social network for professionals,
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at linkedin.com) shows significant benefits for the users of a dynamic taxon-
omy approach.

Social aspects also include extensions to the collaborative filtering and recom-
mendation techniques discussed in this book.

• Standardization

As we noted, standardization on exchange formats, protocols, and services is
almost nil, and a substantial effort on this topic is required, Standards which have
emerged from other areas (e.g., Digital Libraries, Semantic Web) can be adopted
and adapted to the needs of dynamic taxonomies.

Dynamic taxonomies represent an exercise in conceptual economy, both from the
modeling and from the user interaction point of view, which are considered holis-
tically. An important consequence of this approach is that users easily understand
the model to the extent that it quickly becomes transparent, and the interaction nat-
ural and fully under user control. This makes dynamic taxonomies accepted in ap-
plications, such as medical diagnosis, where knowledge-based systems and agent-
mediated interaction have not been successful. More generally, it shows that models
and paradigms which do not account for the user and are too complex to be quickly
understood by casual users are likely to be unsuccessful in practice. Conceptual
economy also allows researchers to extend the model and to apply it to different
problems. Although extensions perforce increase complexity, the minimal concep-
tual foundations of dynamic taxonomies allow significant extensions of the model
without negative effects on the ease of interaction.

The application range of dynamic taxonomies is quite wide, and includes the
three major exploration tasks we identified: pragmatic object selection (typical of e-
commerce applications), knowledge-seeking tasks (typical of knowledge manage-
ment), and emerging wisdom-seeking tasks, in which the inner laws of the infor-
mation base are the focus. The rapid acceptance of this paradigm in e-commerce,
where dynamic taxonomies are the de facto standard for product selection, shows
the vast potential of this approach in other, still untapped areas. We believe that
dynamic taxonomies and faceted search will become the paradigm of choice in all
those ‘search’ applications which are in fact exploratory in nature, and in which user
interaction is required.

“EN OI∆A, OTI OY∆EN OI∆A”

(One thing only I know, and that is that I know nothing)

Socrates, 469 BC–399 BC
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exploration structures, completeness
of iteration

Completeness of reach, see self-adapting
exploration structures, completeness
of reach

Component, 254
Composition, 256
Compound ordering, 148
Compound taxonomy, 247
Compound term, 25, 146
Compound terminology, 147
Concept, 6, 7, 60, 66

extension, 69
extent, 59
identifier, 217
intent, 59
label, 179
lattice, 60
ordering, 69
time-varying, 236

Concepts, 65
Concrete domain, 256
Confidence, 114, 116
Consistency, 255
Constructor, 66
Content-based image retrieval, 272
Cosine similarity, 42
Count strategy, 220
Cross aspect, 176
CTCA, 145, 247

application, 247
expression mining, 159
materialized faceted taxonomy, 159
revision, 155
semantics, 155
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Cultural heritage, 264
Customization, 132, 253

D

Data mining, 114
Database

ORDBMS, 240
relational, 237, 248
SQL, 237
view, 237

Datalog, 174
Decision procedure, 255
Decision tree, 57
Deep extension, 6, 24, 219
Derived virtual concepts, 235
Description

complete, 25
Description function, 130
Description Logics, 66, 133, 258

semantics, 67
SHOIQ, 67
signature, 66

Dewey classification, 12
Diagnostic systems, 282
Digital libraries, 288
Disjunction, 64, 84
Drill-down, 40
DT, 5
Dynamic taxonomy, 5, 8

E

E-auctions, 265
E-commerce, 265

end game, 266, 269
enhanced feature display, 270
product selection, 265
thinning game, 266
weighted additive strategy, 268

E-government, 290
laws and regulations, 290
local promotion, 291
services, 291

E-health, 264
E-hrm, 264
E-learning, 264
E-mail, 296
E-matchmaking, 264
E-recruitment, 264
Embeddability, 253
Endgame, 75
Entity–Relationship model, 180
Evolution, 155
Expected confidence, 116
Exploration model, 37

Exploratory patterns
knowledge-seeking tasks, 4
object-selection tasks, 3, 263
wisdom-seeking, 4, 114, 263, 289

Exploratory search, 1, 62
Expressivity, see self-adapting exploration

structures, expressivity, 66
Expressivity/efficiency trade-off, 253
Extension, 70, 131, 133

deep, 6, 24, 28, 219
shallow, 6, 24, 28, 219

Extensional, 145, 155
Extensional inference rule, 7, 8
Extensionally related terms, 31
Extent, 60
Extrinsic property, 295

F

Facet, 12, 21
analysis, 23
discovery, 196
extraction, 195
free-text, 108
interval, 108
nominal, 108
ordinal, 108
orthogonality, 19, 24
ratio-typed, 108
types, 25, 108

Facet Analysis
Canon of Concomitance, 176
fundamental categories, 186
Principle of Ascertainability, 177
Principle of Division, 176
Principle of Mutual Exclusion, 176
Principle of Permanence, 177
Principle of Relevant Succession, 179

Facet classification, 194
Facet orthogonality, 176
Facet–value pairs ranking, 104
Faceted search, 5, 15

personalized, 103
Faceted taxonomy, 19
Fact table, 39
FASTAXON, 247
FCA, 59
File, 294
File system, 294
Filtering, 40
FleXplorer, 245
Focalized search, 1
Focus, 8, 28, 62, 245

extensional, 28
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intensional, 28
redundancy free, 28

Formal concept, 60
Formal concept analysis, 59
Formal context, 59
Formats, 250
Full-text search, 296
Fundamental facets, 175
Fuzzy dynamic taxonomies, 138, 284
Fuzzy object descriptions, 251
Fuzzy sets, 138

G

Galois connection, 60
Geographic map, 140, 141
Geographical information system, 298
GEOLIS, 301
Global-as-view, 165
Graphical interface, 296, 300
Guided navigation, 9
Guided thinning, 9

H

Heterogeneous, 297
Home directory, 297
Hypermedia, 4
Hypernym, 193

I

Index expansion, 143
Index improvement, 174
Indexing, 295
Individual, 66
Infimum, 60
Infobase, 2
Information base, 2
Information filtering, 103
Information retrieval, 1, 62, 75, 103, 245
Information scent, 77
Initial constraint definition, 75
Instantiation, 69
Instantiation statement, 133
Integration

global-as-view, 165
local-as-view, 165
mappings, 163
materialized approach, 172
mediator, 165
P2P, 169
virtual approach, 172

Intensional, 145, 155
Intent, 60
Interaction

modeling, 28

Interest focus, 8
Interpretation, 24, 67

model, 24, 238
ordering, 24

Interval, 26, 129
existential meaning, 26
query answering, 27
universal meaning, 26

Intervals, 238, 254
Intrinsic property, 294
Invalid compound terms, 147
Inverted lists, 222

J

Jaccard coefficient, 42
JSR-170, 252

K

Knowledge base, 67, 133
assertional part, 67
terminological part, 67

Knowledge-seeking tasks, 4

L

Labor-intensive strategy, 243
Latent semantic indexing (LSI), 106
Layer, 298
Lift, 114
LISFS, 294, 301
Literary warrant, 179
Local view, 133
Local-as-view, 165
Logic, 127, 253, 254, 294, 298

Description Logics, 66
entailment, 127

Logic functor, 256
Logic programming, 174
Logical inference, 69
Logical information systems, 253, 294, 298
Logics composition, 253
Logics engineering, 260
Low-level multimedia feature, 272

M

Machine learning, 192
Map, 300
Mapping

construction, 174
ostensive, 163
protocol, 165
query-to-query, 174
term-to-query, 168, 174
term-to-term, 168, 174
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Mappings, 169, 174
inter-taxonomy, 170

Market basket model, 114
Materialized faceted taxonomy, 19, 28, 31, 159

restriction, 33
Materialized integration approach, 172
Maximum resolution of the taxonomy, 47
Mediator, 165, 169, 172
Medical diagnosis, 283
Meta-data, 2, 295
Minimal model, 24
Mining, 159
Mitos, 245
Model, 69

minimal, 24
Model interpretation, 24
Multidimensional taxonomy, 5
Multimedia infobases, 272
Multiple inheritance, 177
Music, 295

N

Named-entity
tagger, 197

Naming function, 163
Natural language, 84
Navigation, 62
Navigation link, 79
Navigation mode, 78, 136

pivot, 83
range selection, 85
shift, 82
slice and dice, 84
zoom-in, 81
zoom-out, 82

Navigation space, 63
Navigation tree, 154, 247
Negation, 64
News systems, 288
No-count strategy, 220
No-zero-result, see self-adapting exploration

structures, no-zero-result

O

Object, 5, 59, 66
Object cluster, 140
Object identifier, 217
Object selection, 137
Object-selection tasks, 3, 263
OLAP, 39–41, 205, 238
Ontological similarity, 110
Ontologies, 65
Ontology, 66, 109, 133, 198
ORBMS, 240

Order
partial, 24
Smyth, 148

Orienteering, 75, 77
Orthogonal subtaxonomies, 12
OWL, 64, 65, 133, 250
OWL Lite, DL, Full, 66

P

P2P, 169, 172
Parallel architectures, 235
Part-of-file, 294
Partial on-demand loading, 246
Partial order, 24
Partitioning aspect, 176
Path, 294
Peer-to-peer, 169, 172
Personal information management, 298
Personalization, 139
Personalized faceted search, 103
Pivot, 83, 137, 294
Pivoting, 40
Poka-yoke, 91
Poka-yoke principle, 76
Popularity, 142
Precision, 43
Predefined focus, 139
Principle of Conservation, 156
Principle of Persistence of Prior Knowledge,

156
Prolog, 71
Protocols, 252

Q

Query, 69, 78, 133
Query evaluation

distributed, 172
Query expansion, 46, 143
Query reversal, 137
Querying, 62
Querying-by-example, 85

R

Range selection, 85
RDBMS, 237
RDF, 65, 250
RDF Schema, 65, 250
RDF/S, 64
Recall, 43
Reduced taxonomy, 8, 33

computation, 220
count strategy, 225
focus-driven, 220
full-loading strategy, 221
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labor-intensive strategy, 221
lazy strategy, 222
no-count strategy, 225
on-demand partial loading strategy, 222
taxonomy-driven, 221

Reference view, 122
Related count, 8
Related queries, 45
Related set of concepts, 8
Relation, 66
Relational database, 297
Relational view, 181
Relative path, 294
Relevance feedback, 103
Repository, 217
Restriction of a materialized faceted taxonomy,

33
Results clustering, 246
Retrieval model, 35
Reward function, 111
Role, 66
Role traversal, 138
Roll-up, 40
RQL, 70

S

SAES, see self-adapting exploration structures
Scatter–Gather, 44, 276
Search engine, 242

Endeca, 243
faceted exploration, 245
Google Base, 243
i411, 243
Knowledge Processors, 243
Mercado, 243
metadata, 244
Mitos, 245
Siderean Seamark, 243
Solr, 243

Secondary focus, 121
Security and privacy, 139
Selection, 79
Selector, 36, 37
Self-adapting exploration, 13
Self-adapting exploration structures, 37

completeness of iteration, 37
completeness of reach, 37
expressivity, 37
no-zero-result, 37
self-sufficiency, 37

Self-sufficiency, see self-adapting exploration
structures, self-sufficiency

Semantic web, 64, 133
exploratory search, 70

ontologies, 65
OWL, 64
RDF/S, 64
RQL, 70
SPARQL, 70

Semantics, 24, 27, 67, 255
Sense disambiguation, 193
Shallow extension, 6, 24, 219
Shift, 82
Signature, 66, 255
Similarity function, 42
Singular value decomposition, 105, 106
Skyline, 271
Slice-and-dice, 40, 84, 205
Smyth order, 148
Snippet, 45, 246
SPARQL, 70
Sperner system, 154
SQL, 237
String pattern, 129
Structured objects, 123
Subsumption, 5, 24, 69, 70, 128, 255
Suffix Tree Clustering, 246
Support, 114
Support Vector Machines (SVM), 203
Supremum, 60
Symbolic data tables, 160
Syntax, 66, 255
Systems

architecture, 241
Semantic Web, 71

T

T-Box, 67, 136
Tag cloud, 140

extended, 38
Taxonomy, 19, 20, 127, 134

analysis of pruning, 52
as a logic, 128
automatic construction, 202, 238, 246
change, 156
composition, 146, 253
compound, 149, 247
convergence, 46
depth, 238
derived, 132
dynamic, 8, 33
evolution, 155
faceted, 19

implementation, 248
implicitly-defined, 128
infinite, 128
mappings, 163
materialized, 19
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materialized faceted, 28
maximum resolution, 47
monodimensional, 47
multidimensional, 5, 47
reduced, 8, 33, 34
retrofit of monodimensional, 189

Taxonomy-based source, 24
Term, 19

compound, 25, 146
invalid, 147
valid, 147

concept, 19
discovery, 196
extensionally related, 31
extraction, 197

Terminology, 20, 24
compound, 147

Test view, 122
Text classification, 194
Text-annotated collections, 192
Thesaurus, 143
Transducer, 294

U

UML, 241
component diagram, 241
sequence diagram, 243

User feedback, 103, 161
implicit, 103

User preferences, 104

User ratings, 104
User relevance model, 108

V

Valid compound terms, 147
Vector-space information retrieval, 41
View, 71
Virtual concept, 126, 178

derived, 126
implementation, 235
simple, 126, 235

Virtual integration approach, 172

W

Wikipedia, 198
Wisdom-seeking, 4, 114, 263, 289
WordNet, 193

X

XFML, 250
XML, 65, 250
XML Schema, 65, 250

Z

Zoom, 9, 137, 218, 301
in, 30, 81, 246, 294
out, 32, 82, 243
ranking, 30
side, 31, 171

Zoom point, 29



Appendix A

Color Images

Fig. 4.2C The graphical interface of CAMELIS
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Fig. 4.5C The ContentLandscape application (see Sect. 4.5.3) combines bar chart representations
with slider controls for range selection

Fig. 4.8C The
ContentLandscape
application applies the
collapsible panel pattern for
zooming into concepts within
a hierarchy

Fig. 4.13C Quick access to
concepts with a combo box in
the ContentLandscape
application
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Fig. 4.15C The RAVE system visualizes metadata value proportions in horizontal bar charts

Fig. 4.16C Elastic lists indicate the number of matched resources in scaling list entry height.
Additionally, unusually high proportions (compared to the global distribution) are indicated by
brightness of the list entries
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Fig. 4.17C Weighted, coordinated brushing in the visgets system

Fig. 4.18C Faceted search
for small screens in the
FaThumb prototype
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Fig. 4.20C The dashboard view of the ContentLandscape application

Fig. 5.3C The Italian wines infobase, after a zoom on Red wines
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Fig. 5.4C The Italian wines
infobase, after a zoom on Red
wines and on wines costing
more than $100

Fig. 5.5C Side-by-side comparison on the Italian wines infobase
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Fig. 9.3C Enhanced feature display for Nikon digicams

Fig. 9.4C From left: a Multidimensional primitive features: clustering of average color on a 4 × 4
grid. Clusters are labeled by their barycenter; b Monodimensional primitive features: average
brightness and average saturation; c Bidimensional primitive features: reduced HSV histogram
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Fig. 9.5C Exploring dark paintings: only Raphael and Antonello have dark items, and almost all
are portraits. Dark portraits are expanded

Fig. 9.6C Histogram summary of Masaccio’s sacred paintings: paintings with orange-ish colors
are displayed
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Fig. 9.7C Cluster summary of Antonello’s portraits: displaying the selected cluster
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Fig. 9.9C Reduced taxonomy and diseases after a zoom on ataxia
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Fig. 9.10C Reduced taxonomy and diseases after zooming on ataxia and hyperglycemia
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Fig. 9.13C The web interface of GEOLIS
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