

This page intentionally left blank

ENTERPRISE CLOUD COMPUTING
Technology, Architecture, Applications

Cloud computing promises to revolutionize IT and business by making
computing available as a utility over the internet. This book is intended pri-
marily for practicing software architects who need to assess the impact of
such a transformation. It explains the evolution of the internet into a cloud
computing platform, describes emerging development paradigms and tech-
nologies, and discusses how these will change the way enterprise applications
should be architected for cloud deployment.

Gautam Shroff provides a technical description of cloud computing tech-
nologies, covering cloud infrastructure and platform services, programming
paradigms such as MapReduce, as well as ‘do-it-yourself’ hosted development
tools. He also describes emerging technologies critical to cloud computing.
The book also covers the fundamentals of enterprise computing, including a
technical introduction to enterprise architecture, so it will interest program-
mers aspiring to become software architects and serve as a reference for a
graduate-level course in software architecture or software engineering.

Gautam Shroff heads TCS’ Innovation Lab in Delhi, a corporate R&D lab that
conducts applied research in software architecture, natural language process-
ing, data mining, multimedia, graphics and computer vision. Additionally
he is responsible for TCS’ Global Co-Innovation Network (COIN), which
works with venture-backed emerging technology companies to create and
take to market solutions that have disruptive innovation potential. Further, as
a member of TCS’ Corporate Technology Board, he is part of the process of rec-
ommending directions to existing R&D efforts, spawning new R&D efforts,
sponsoring external research and proliferating the resulting technology and
intellectual property across TCS’ businesses.

ENTERPRISE CLOUD
COMPUTING

TECHNOLOGY, ARCHITECTURE,
APPLICATIONS

GAUTAM SHROFF

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,
São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521760959

© G. Shroff 2010

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-76095-9 Hardback
ISBN 978-0-521-13735-5 Paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to in

this publication, and does not guarantee that any content on such websites is,
or will remain, accurate or appropriate.

Contents

Preface page xi

List of abbreviations xiv

Part I Computing platforms 1

Chapter 1
Enterprise computing: a retrospective 3

1.1 Introduction 3
1.2 Mainframe architecture 5
1.3 Client-server architecture 7
1.4 3-tier architectures with TP monitors 10

Chapter 2
The internet as a platform 16

2.1 Internet technology and web-enabled applications 16
2.2 Web application servers 19
2.3 Internet of services 22

Chapter 3
Software as a service and cloud computing 27

3.1 Emergence of software as a service 27
3.2 Successful SaaS architectures 29

v

vi CONTENTS

3.3 Dev 2.0 platforms 31
3.4 Cloud computing 32
3.5 Dev 2.0 in the cloud for enterprises 36

Chapter 4
Enterprise architecture: role and evolution 39

4.1 Enterprise data and processes 40
4.2 Enterprise components 40
4.3 Application integration and SOA 42
4.4 Enterprise technical architecture 44
4.5 Data center infrastructure: coping with complexity 47

Part II Cloud platforms 49

Chapter 5
Cloud computing platforms 51

5.1 Infrastructure as a service: Amazon EC2 51
5.2 Platform as a service: Google App Engine 56
5.3 Microsoft Azure 60

Chapter 6
Cloud computing economics 64

6.1 Is cloud infrastructure cheaper? 64
6.2 Economics of private clouds 67
6.3 Software productivity in the cloud 71
6.4 Economies of scale: public vs. private clouds 73

Part III Cloud technologies 75

Chapter 7
Web services, AJAX and mashups 77

7.1 Web services: SOAP and REST 77
7.2 SOAP versus REST 83
7.3 AJAX: asynchronous ‘rich’ interfaces 85
7.4 Mashups: user interface services 87

CONTENTS vii

Chapter 8
Virtualization technology 89

8.1 Virtual machine technology 89
8.2 Virtualization applications in enterprises 95
8.3 Pitfalls of virtualization 103

Chapter 9
Multi-tenant software 104

9.1 Multi-entity support 105
9.2 Multi-schema approach 107
9.3 Multi-tenancy using cloud data stores 109
9.4 Data access control for enterprise applications 111

Part IV Cloud development 115

Chapter 10
Data in the cloud 117

10.1 Relational databases 118
10.2 Cloud file systems: GFS and HDFS 121
10.3 BigTable, HBase and Dynamo 123
10.4 Cloud data stores: Datastore and SimpleDB 128

Chapter 11
MapReduce and extensions 131

11.1 Parallel computing 131
11.2 The MapReduce model 134
11.3 Parallel efficiency of MapReduce 137
11.4 Relational operations using MapReduce 139
11.5 Enterprise batch processing using MapReduce 142

Chapter 12
Dev 2.0 platforms 144

12.1 Salesforce.com’s Force.com platform 145
12.2 TCS InstantApps on Amazon cloud 148

viii CONTENTS

12.3 More Dev 2.0 platforms and related efforts 153
12.4 Advantages, applicability and limits of Dev 2.0 154

Part V Software architecture 159

Chapter 13
Enterprise software: ERP, SCM, CRM 161

13.1 Anatomy of a large enterprise 161
13.2 Partners: people and organizations 164
13.3 Products 167
13.4 Orders: sales and purchases 168
13.5 Execution: tracking work 170
13.6 Billing 172
13.7 Accounting 174
13.8 Enterprise processes, build vs. buy and SaaS 176

Chapter 14
Custom enterprise applications and Dev 2.0 178

14.1 Software architecture for enterprise components 178
14.2 User interface patterns and basic transactions 180
14.3 Business logic and rule-based computing 188
14.4 Inside Dev 2.0: model driven interpreters 194
14.5 Security, error handling, transactions and workflow 198

Chapter 15
Workflow and business processes 203

15.1 Implementing workflow in an application 203
15.2 Workflow meta-model using ECA rules 205
15.3 ECA workflow engine 207
15.4 Using an external workflow engine 210
15.5 Process modeling and BPMN 211
15.6 Workflow in the cloud 216

CONTENTS ix

Chapter 16
Enterprise analytics and search 217

16.1 Enterprise knowledge: goals and approaches 218
16.2 Business intelligence 219
16.3 Text and data mining 225
16.4 Text and database search 235

Part VI Enterprise cloud computing 241

Chapter 17
Enterprise cloud computing ecosystem 243

17.1 Public cloud providers 244
17.2 Cloud management platforms and tools 246
17.3 Tools for building private clouds 247

Chapter 18
Roadmap for enterprise cloud computing 253

18.1 Quick wins using public clouds 254
18.2 Future of enterprise cloud computing 257

References 264

Index 269

Preface

In today’s world virtually all available information on any technical topic is
just a few clicks away on the web. This is especially true of an emerging area
such as cloud computing. So why write a book, and, who should read this
book and why?

Every few years a new ‘buzzword’ becomes the rage of the technology world.
The PC in the 80s, the internet in the 90s, service-oriented architecture in
the early 2000s, and more recently ‘cloud computing’: By enabling computing
itself to be delivered as a utility available over the internet, cloud computing
could transform enterprise IT. Such a transformation could be as significant as
the emergence of power utilities in the early twentieth century, as eloquently
elucidated in Nicholas Carr’s recent book The Big Switch.

Over the years large enterprises have come to rely on information technol-
ogy to run their increasingly complex business operations. Each successive
technology ‘revolution’ promises tremendous gains. It falls upon the shoul-
ders of the technical architects in the IT industry to evaluate these promises
and measure them against the often significant pain that is involved in adapt-
ing complex IT systems to new computing paradigms: The transition to cloud
computing is no exception.

So, this book is first and foremost for technical architects, be they from IT
departments or consulting organizations. The aim is to cover cloud comput-
ing technology, architectures and applications in detail, so as to be able to
properly assess its true impact on enterprise IT.

Since cloud computing promises to fundamentally revolutionize the way
enterprise IT is run, we also revisit many principles of enterprise architecture
and applications. Consequently, this is also a book on the fundamen-
tals of enterprise computing, and can therefore serve as a reference for a

xi

xii PREFACE

graduate-level course in software architecture or software engineering. Alter-
natively, software professionals interested in acquiring the ‘architect’ tag may
also find it a useful read.

From a personal perspective this book is also an attempt to capture my
experience of a decade in the IT industry after an initial career in academic
computer science: The IT industry seemed ever busier dealing with constant
changes in technology. At the same time, every generation of profession-
als, in particular the technical architects, were constantly reinventing the
wheel: Even though automation techniques, such as large-scale code genera-
tion using ‘model driven architecture’ often actually worked in practice, these
were far from the panacea that they theoretically appeared to be.

Nevertheless, the academic in me continued to ask, what after all does
an enterprise application do, and why should it be so complex? In 2004 I
wrote an interpreter for what appeared to me to be a perfectly reasonable 3-
tier architecture on which, I thought, any enterprise application should run.
This was the seed of what became TCS’ InstantApps platform. At the same
time Salesforce.com was also experimenting with an interpretive architecture
that later became Force.com. While software as a service was the rage of the
industry, I began using the term Dev 2.0 to describe such interpretive hosted
development platforms.

In the meantime Amazon launched its elastic computing cloud, EC2. Sud-
denly, the entire IT infrastructure for an enterprise could be set up ‘in the
cloud.’ ‘Dev 2.0 in the Cloud’ seemed the next logical step, as I speculated in
a keynote at the 2008 ACM SIGSOFT FSE conference. After my talk, Heather
Bergman from Cambridge University Press asked me whether I would be
interested in writing a book. The idea of a book had been in my mind for
more than a year then; I had envisaged a book on software architecture. But
maybe a technical book on cloud computing was more the need of the hour.
And thus this book was born.

In my attempt to present cloud computing in the context of enterprise
computing, I have ended up covering a rather vast landscape. Part I traces the
evolution of computing technology and how enterprise architecture strives
to manage change with continuity. Part II introduces cloud computing plat-
forms and the economics of cloud computing, followed by an overview of
technologies essential for cloud applications in Part III. Part IV delves into
the details of cloud computing and how it impacts application development.
The essentials of enterprise software architecture are covered in Part V, from
an overview of enterprise data models to how applications are built. We also
show how the essence of what an enterprise application does can be abstracted

PREFACE xiii

using models. Part V concludes with an integrated picture of enterprise ana-
lytics and search, and how these tasks can be efficiently implemented on
computing clouds. These are important topics that are unfamiliar to many
architects; so hopefully, their unified treatment here using matrix algebra is
illuminating. Finally, Part VI presents an overview of the industry ecosys-
tem around enterprise cloud computing and concludes by speculating on the
possible future of cloud computing for enterprises.

A number of people have helped bring this book to fruition: First of all,
Heather Bergman who suggested that I write, helped me finalize the topic and
table of contents, and led me through the book proposal process in record
time. Once the first draft was written, Jeff Ullman reviewed critical parts of
the book in great detail, for which I remain eternally grateful. Rob Schreiber,
my PhD advisor from another lifetime, also took similar pains, even 20 years
after doing the same with my PhD thesis; thanks Rob! Many of my colleagues
in TCS also reviewed parts of the manuscript; in particular Ananth Krishnan,
C. Anantaram, Puneet Agarwal, Geetika Sharma, Lipika Dey, Venkatachari
Raghavan, Surjeet Mishra, Srinivasan Varadanarayanan and Harrick Vin. I
would also like to thank David Tranah for taking over as my editor when
Heather Bergman left Cambridge University Press soon after I began writing,
and for shepherding the book through the publication process.

Finally, I am grateful for the continuous encouragement and support I
have received over the years from TCS management, in particular F.C. Kohli,
S. Ramadorai and Phiroz Vandrevala, as well as, more recently, N. Chan-
drasekaran. I would also like to thank E. C. Subbarao and Kesav Nori, who
have been my mentors in TCS R&D, for serving as role models, influencing
my ideas and motivating me to document my experience.

I have learned that while writing is enjoyable, it is also difficult: Whenever
my intrinsic laziness threatened this project, my motivation was fueled by the
enthusiasm of my family. With my wife, sister-in-law and mother-in-law all
having studied at Cambridge University, I suspect this was also in no small
measure due to the publisher I was writing for! Last but not least, I thank my
wife Brinda, and kids Selena and Ahan, for tolerating my preoccupation with
writing on weekends and holidays for the better part of a year.

I sincerely hope that you enjoy reading this book as much as I have enjoyed
writing it.

Abbreviations

Term Description

AJAX Asynchronous JavaScript and XML
AMI Amazon Machine Image
API Application Programming Interface
BPMN Business Process Modeling Notation
CGI Common Gateway Interface
CICS Customer Information Control System
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
CRM Customer Relationship Management
CRT Cathode Ray Tube
EAI Enterprise Application Integration
EBS [Amazon] Elastic Block Storage
EC2 Elastic Compute Cloud
ECA Event Condition Action
EJB Enterprise Java Beans
ERP Enterprise Resource Planning
GAE Google App Engine
GFS Google File System
GL General Ledger
GML Generalized Markup Language
HDFS Hadoop Distributed File System
HTML Hypertext Transport Protocol and Secure Socket Layer
HTTP Hypertext Transport Protocol
HTTPD Hypertext Transfer Protocol Daemon

xiv

LIST OF ABBREVIATIONS xv

Term Description

IA [TCS] InstantApps
IaaS Infrastructure as a Service
IBM International Business Machines
IDL Interface Definition Language
IDMS Integrated Database Management System
IDS Integrated Data Store [Database System]
IIS Internet Information Server
IMS [IBM] Information Management System
IT Information Technology
ITIL Information Technology Infrastructure Library
J2EE Java 2 Enterprise Edition
JAAS Java Authentication and Authorization Service
JCL Job Control Language
JSON JavaScript Object Notation
LDAP Lightweight Directory Access Protocol
MDA Model Driven Architecture
MDI Model Driven Interpreter
MDX Multidimensional Expressions [Query Language]
MVC Model View Controller
MVS Multiple Virtual Storage [Operating System]
OLAP Online analytical processing
OMG Object Management Group
PaaS Platform as a Service
PKI Public Key Infrastructure
REST Representational State Transfer
RMI Remote Method Invocation
RPC Remote Procedure Call
SaaS Software as a Service
SCM Supply Chain Management
SGML Standardized Generalized Markup Language
SNA Systems Network Architecture
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SQL Structured Query Language
SQS [Amazon] Simple Queue Service
SVD Singular Value Decomposition

xvi LIST OF ABBREVIATIONS

Term Description

TCP/IP Transmission Control Protocol/Internet Protocol
TCS Tata Consultancy Services
T&M Time and Materials
TP Monitor Transaction Processing Monitor
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locater
VM Virtual Machine
VMM Virtual Machine Monitor
VPC Virtual Private Cloud
VPN Virtual Private Network
VSAM Virtual Storage Access Method
VTAM Virtual Telecommunications Access Method
W3C World Wide Web Consortium
WSDL Web Services Description Language
WYSIWYG What You See is What You Get
XHTML Extensible Hypertext Markup Language
XML Extensible Markup Language

PART I

Computing platforms

Barely 50 years after the birth of enterprise computing, cloud computing
promises to transform computing into a utility delivered over the internet. A
historical perspective is instructive in order to properly evaluate the impact
of cloud computing, as well as learn the right lessons from the past. We
first trace the history of enterprise computing from the early mainframes,
to client-server computing and 3-tier architectures. Next we examine how
the internet evolved into a computing platform for enterprise applications,
naturally leading to Software as a Service and culminating (so far) in what
we are now calling cloud computing. Finally we describe how the ‘enterprise
architecture’ function within IT departments has evolved over time, playing
a critical role in managing transitions to new technologies, such as cloud
computing.

CHAPTER 1

Enterprise computing:
a retrospective

1.1 INTRODUCTION

By ‘enterprise computing’ we mean the use of computers for data processing
in large organizations, also referred to as ‘information systems’ (IS), or even
‘information technology’ (IT) in general. The use of computers for enterprise
data processing began in the 60s with the early mainframe computers. Over
the years enterprise computing paradigms have changed dramatically with
the emergence of new technology: The advent of the PC in the 80s led to the
replacement of large mainframe computers by client-server systems. The rise
of the internet in the 90s saw the client-server model give way to web-based
enterprise applications and customer-facing e-commerce platforms.

With each of these advances, enterprise systems have dramatically
improved in terms of scale and ubiquity of access. At the same time their
complexity, and consequently cost, has increased as well: Trillions of dol-
lars are spent world-wide on information technology, including hardware
and software purchases as well as application development (in-house or out-
sourced). It is also estimated that enterprises spend between two and ten
percent of their revenues on IT.1

1 From Gartner reports.

3

4 ENTERPRISE COMPUTING: A RETROSPECTIVE

Now, cloud computing offers the potential for revolutionizing enterprise
computing once more, this time by transforming computing itself into a utility
that can be accessed over the internet. In his recent book The Big Switch
[8], Nicholas Carr compares the possible ramifications of such a change to
the creation of the electricity grid in the early twentieth century. Before the
grid, industries built and ran their own power generation plants, much as
enterprises deploy and manage their own computing systems today. After the
grid came along, by 1930, 90 percent of electricity in the US was produced by
specialized power utilities and delivered to consumers over power lines [8].
Barely 50 years had elapsed since Edison’s invention of a reliable incandescent
light-bulb. Will there be a similar revolution in enterprise computing, 50 years
after its birth? Only time will tell.

The key elements of cloud computing, as we see it today, are: (a) comput-
ing resources packaged as a commodity and made available over the internet,
(b) the ability for end-users to to rapidly provision the resources they need
and (c) a pricing model that charges consumers only for those cloud resources
they actually use. Further, as a result of centralization of computing, signifi-
cant economies of scale can be exploited by a cloud provider and passed on
to enterprise IT. Not surprisingly, much of the interest in cloud computing
today is based on expectations of such cost savings. Finally, the concentration
of massive clusters of computing resources within cloud providers opens up
possibilities for large-scale data analysis at scales unheard of until now. In the
process a number of new programming models and development tools have
been developed, both to enable large-scale computations as well as dramati-
cally improve software development productivity, and these also fall within
the purview of cloud computing.

In this book we shall delve into the technical details of all the above
elements of cloud computing: The major cloud platforms are covered in
Chapter 5. Chapter 6 examines the potential cost savings from cloud com-
puting. Key technologies essential for building cloud platforms are covered in
Chapters 7, 8 and 9. New programming models and development paradigms
are the subject of Chapters 10, 11 and 12. The impact of cloud comput-
ing on many of the essential aspects of enterprise computing, from data
models to transaction processing, workflow and analytics, is examined in
Chapters 13, 14, 15 and 16. Chapter 17 presents a snapshot of the cloud com-
puting ecosystem, as it stands today. Finally we conclude, in Chapter 18,
by discussing how enterprise IT is likely to adopt cloud computing in
the near future, as well as speculate on the future of cloud computing
itself.

1.2 Mainframe architecture 5

However, before embarking on this journey, we first revisit the history
of enterprise computing architectures in Chapters 1, 2 and 3. As we shall
see, in many ways we have come full circle: We began with large centralized
computers and went through phases of distributed computing architectures,
saw the reemergence of a centralized paradigm along with the emergence of
the internet as a computing platform, culminating (so far) in what we now
call cloud computing.

1.2 MAINFRAME ARCHITECTURE

We can trace the history of enterprise computing to the advent of ‘third-
generation’ computers in the 60s; these used integrated circuits as opposed
to vacuum tubes, beginning with the IBM System/360 ‘mainframe’ computer
and its successors, which continue to be used to date, e.g. the IBM z-series
range.

Until the 80s, most mainframes used punched cards for input and teleprint-
ers for output; these were later replaced by CRT (cathode ray tube) terminals.
A typical (post 1980) ‘mainframe’ architecture is depicted in Figure 1.1. A
terminal-based user interface would display screens controlled by the main-
frame server using the ‘virtual telecommunications access method’ (VTAM)

VSAM / IMS / DB2

OS – MVS
TPM – IMS / CICS

Logic – Cobol / PL1

Sched: JCL

n/w Protocol – SNA
Transport – LU

Term Ctr Layer – VTAM

3270
Terminals

FIGURE 1.1. Mainframe architecture

6 ENTERPRISE COMPUTING: A RETROSPECTIVE

for entering and viewing information. Terminals communicated with the
mainframe using the ‘systems network architecture’ (SNA) protocol, instead
of the ubiquitous TCP/IP protocol of today.

While these mainframe computers had limited CPU power by modern stan-
dards, their I/O bandwidth was (and is, to date) extremely generous relative
to their CPU power. Consequently, mainframe applications were built using
a batch architecture to minimize utilization of the CPU during data entry or
retrieval. Thus, data would be written to disk as soon as it was captured and
then processed by scheduled background programs, in sharp contrast to the
complex business logic that gets executed during ‘online’ transactions on the
web today. In fact, for many years, moving from a batch model to an online
one was considered a major revolution in IT architecture, and large systems
migration efforts were undertaken to achieve this; it is easy to see why: In a
batch system, if one deposited money in a bank account it would usually not
show up in the balance until the next day after the ‘end of day’ batch jobs had
run! Further, if there was incorrect data entry, a number of corrective mea-
sures would have to be triggered, rather than the immediate data validations
we are now so used to.

In the early mainframe architectures (through the mid/late 80s), applica-
tion data was stored either in structured files, or in database systems based on
the hierarchical or networked data model. Typical examples include the hier-
archical IMS database from IBM, or the IDMS network database, managed now
by Computer Associates. The relational (RDBMS) model was published and
prototyped in the 70s and debuted commercially in the early 80s with IBM’s
SQL/DS on the VM/CMS operating system However, relational databases
came into mainstream use only after the mid 80s with the advent of IBM’s
DB2 on the mainframe and Oracle’s implementation for the emerging Unix
platform. In Chapter 10 we shall see how some of the ideas from these
early databases are now reemerging in new, non-relational, cloud database
models.

The storage subsystem in mainframes, called ‘virtual storage access mech-
anism’ (VSAM), built in support for a variety of file access and indexing
mechanisms as well as sharing of data between concurrent users using record
level locking mechanisms. Early file-structure-based data storage, including
networked and hierarchical databases, rarely included support for concur-
rency control beyond simple locking. The need for transaction control,
i.e., maintaining consistency of a logical unit of work made up of mul-
tiple updates, led to the development of ‘transaction-processing monitors’
(TP-monitors), such as CICS (customer information control system). CICS

1.3 Client-server architecture 7

leveraged facilities of the VSAM layer and implemented commit and roll
back protocols to support atomic transactions in a multi-user environment.
CICS is still in use in conjunction with DB2 relational databases on IBM
z-series mainframes. At the same time, the need for speed continued to see
the exploitation of so called ‘direct access’ methods where transaction con-
trol is left to application logic. An example is is the TPF system for the airline
industry, which is still probably the fastest application-embedded TP-monitor
around.

Mainframe systems also pioneered the large-scale use of virtual machine
technology, which today forms the bedrock of cloud computing infras-
tructure. Mainframes running the VM family of ‘hypervisors’ (though the
term was not used at the time; see Chapter 8) could run many indepen-
dent ‘guest’ operating systems, such as MVS (popular through the 90s),
to z-OS, and now even Linux. Further, virtual machine environments
and the operating systems running on mainframes included high levels of
automation, similar in many ways to those now being deployed in cloud
environments, albeit at a much larger scale: Support for hardware fault tol-
erance included automatic migration of jobs if CPUs or memory units failed,
as well as software fault tolerance, or ‘recovery’ facilities as pioneered in
the MVS operating system. Fine-grained resource measurement, monitoring
and error diagnostic capabilities were built into the mainframe architecture;
such capabilities are once again becoming essential for cloud computing
platforms.

Thus, we can see that far from being an academic exercise, during our
excursion into mainframe history we have found many design features of the
mainframe era that are now hallmarks of today’s emerging cloud computing
world; virtual machines, fault tolerance, non-relational databases, and last but
not least, centralized computing itself. We now continue our historical tour
beyond the mainframe era, continuing to look for early lessons that may stand
us in good stead when we delve deeper into cloud computing architectures
in later chapters.

1.3 CLIENT-SERVER ARCHITECTURE

The microprocessor revolution of the 80s brought PCs to business desktops
as well as homes. At the same time minicomputers such as the VAX family
and RISC-based systems running the Unix operating system and supporting
the C programming language became available. It was now conceivable to

8 ENTERPRISE COMPUTING: A RETROSPECTIVE

move some data processing tasks away from expensive mainframes to exploit
the seemingly powerful and inexpensive desktop CPUs. As an added benefit
corporate data became available on the same desktop computers that were
beginning to be used for word processing and spreadsheet applications using
emerging PC-based office-productivity tools. In contrast terminals were dif-
ficult to use and typically found only in ‘data processing rooms’. Moreover,
relational databases, such as Oracle, became available on minicomputers,
overtaking the relatively lukewarm adoption of DB2 in the mainframe world.
Finally, networking using TCP/IP rapidly became a standard, meaning that
networks of PCs and minicomputers could share data.

Corporate data processing rapidly moved to exploit these new technologies.
Figure 1.2 shows the architecture of client-server systems. First, the ‘forms’
architecture for minicomputer-based data processing became popular. At first
this architecture involved the use of terminals to access server-side logic in
C, mirroring the mainframe architecture; later PC-based forms applications
provided graphical ‘GUIs’ as opposed to the terminal-based character-oriented
‘CUIs.’ The GUI ‘forms’ model was the first ‘client-server’ architecture.

The ‘forms’ architecture evolved into the more general client-server archi-
tecture, wherein significant processing logic executes in a client application,

Form application–
Business logic

Stored procedures–
Business logic

Relational database

Terminal - CUI forms
• No application logic

PC - GUI forms
• Form application

Connectivity
• RS232 Term - CUI
• SQLNet - GUI

Unix (or NT) server

[Stored
procedures]

Relational
database

DB Server (Unix / NT)

Client application
4GL: VB / PB /
VC++ / Delphi /
Prosper ...

Connectivity: SQLNet (or equiv)

‘Forms’-based architecture ‘Fat-client’ architecture

FIGURE 1.2. Client-server architectures

1.3 Client-server architecture 9

such as a desktop PC: Therefore the client-server architecture is also referred
to as a ‘fat-client’ architecture, as shown in Figure 1.2. The client application
(or ‘fat-client’) directly makes calls (using SQL) to the relational database
using networking protocols such as SQL/Net, running over a local area
(or even wide area) network using TCP/IP. Business logic largely resides
within the client application code, though some business logic can also
be implemented within the database for faster performance, using ‘stored
procedures.’

The client-server architecture became hugely popular: Mainframe applica-
tions which had been evolving for more than a decade were rapidly becoming
difficult to maintain, and client-server provided a refreshing and seemingly
cheaper alternative to recreating these applications for the new world of desk-
top computers and smaller Unix-based servers. Further, by leveraging the
computing power on desktop computers to perform validations and other
logic, ‘online’ systems became possible, a big step forward for a world used to
batch processing. Lastly, graphical user interfaces allowed the development of
extremely rich user interfaces, which added to the feeling of being ‘redeemed’
from the mainframe world.

In the early to mid 90s, the client-server revolution spawned and drove
the success of a host of application software products, such as SAP-R/3, the
client-server version of SAP’s ERP software2 for core manufacturing process
automation; which was later extended to other areas of enterprise operations.
Similarly supply chain management (SCM), such as from i2, and customer
relationship management (CRM), such as from Seibel, also became popular.
With these products, it was conceivable, in principle, to replace large parts
of the functionality deployed on mainframes by client-server systems, at a
fraction of the cost.

However, the client-server architecture soon began to exhibit its limitations
as its usage grew beyond small workgroup applications to the core systems of
large organizations: Since processing logic on the ‘client’ directly accessed the
database layer, client-server applications usually made many requests to the
server while processing a single screen. Each such request was relatively bulky
as compared to the terminal-based model where only the input and final result
of a computation were transmitted. In fact, CICS and IMS even today sup-
port ‘changed-data only’ modes of terminal images, where only those bytes

2 SAP-R2 had been around on mainframes for over a decade.

10 ENTERPRISE COMPUTING: A RETROSPECTIVE

changed by a user are transmitted over the network. Such ‘frugal’ network
architectures enabled globally distributed terminals to connect to a central
mainframe even though network bandwidths were far lower than they are
today. Thus, while the client-server model worked fine over a local area net-
work, it created problems when client-server systems began to be deployed on
wide area networks connecting globally distributed offices. As a result, many
organizations were forced to create regional data centers, each replicating the
same enterprise application, albeit with local data. This structure itself led
to inefficiencies in managing global software upgrades, not to mention the
additional complications posed by having to upgrade the ‘client’ applications
on each desktop machine as well.

Finally, it also became clear over time that application maintenance was
far costlier when user interface and business logic code was intermixed, as
almost always became the case in the ‘fat’ client-side applications. Lastly,
and in the long run most importantly, the client-server model did not scale;
organizations such as banks and stock exchanges where very high volume
processing was the norm could not be supported by the client-server model.
Thus, the mainframe remained the only means to achieve large throughput
high-performance business processing.

The client-server era leaves us with many negative lessons: the perils of dis-
tributing processing and data, the complexity of managing upgrades across
many instances and versions, and the importance of a scalable computing
architecture. As we shall see in later chapters, many of these challenges con-
tinue to recur as wider adoption of the new cloud computing models are
envisaged.

1.4 3-TIER ARCHITECTURES WITH TP MONITORS

Why did client-server architectures fail to scale for high volume transac-
tion processing? Not because the CPUs were inferior to mainframes; in
fact by the late 90s, RISC CPUs had exceeded mainframes in raw process-
ing power. However, unlike the mainframe, client-server architectures had
no virtual machine layer or job control systems to control access to limited
resources such as CPU and disk. Thus, as depicted in Figure 1.3, 10 000 clients
machines would end up consuming 10 000 processes, database connections,
and a proportional amount of memory, open files and other resources, and
thereby crash the server. (The numbers in the figure represent a late 90s
view of computing, when 500MB of server memory was ‘too much,’ but the

1.4 3-tier architectures with TP monitors 11

10 000
clients

10 000 connections
+

10 000 processes
+

5000 MB RAM
+

100 000 open files
+

etc. x 10 000

OS / DB dies

No TP Middleware

FIGURE 1.3. Client-server fails

10 000
clients

50 connections
+

50 processes
+

25 MB RAM
+

500 open files
+

etc. x 50

OS / DB can
cope easily

Using TP Middleware with 50 server processes

TP
Monitor

FIGURE 1.4. 3-tier architecture scales

principle remains the same even with the gigabytes of server memory available
today.)

Transaction-processing monitors were redeveloped to solve this problem
for midrange database servers. (Recall that the first TP monitors, such as
CICS, were developed for mainframes.) These TP monitors were the first
examples of ‘middleware,’ which sat between clients and a database server
to manage access to scarce server resources, essentially by queuing client
requests. Thus, as depicted in Figure 1.4, by limiting concurrent requests
to a small number, say 50, the server could handle the large load while the
clients only paid a small price in response time while their requests waited

12 ENTERPRISE COMPUTING: A RETROSPECTIVE

in the TP monitor queues. Carefully configuring the middleware enabled the
average waiting time to be smaller than the processing time at the server, so
that the overall degradation in response time was tolerable, and often not even
noticeable.

In a TP monitor architecture, the requests being queued were ‘services’
implementing business logic and database operations. These were imple-
mented as a number of Unix processes, each publishing many such services,
typically as remote procedure calls. As such service-based applications began
to be developed, some of the lacunae in the client-server model of appli-
cation programming began to be addressed; services encoded the business
logic while the client applications limited themselves to purely user interface
management and behavior. Such applications turned out to be far easier to
maintain than the ‘fat-client’ applications where UI and business logic was
intermixed in the code.

The TP monitor model became known as the 3-tier architectural model,
where client, business and data layers are clearly separated and often also
reside on separate machines, as depicted in Figure 1.5. This model also
allowed the data layer to remain on mainframes wherever legacy systems
needed to be integrated, using mainframe-based transaction-processing mon-
itors such as CICS to publish ‘data only’ services to the business logic in the
middle tier.

TPM calls (Tuxedo / CICS)

Thin-client application
VB / PB / Java / Delphi ...

TPM server procs (Tux)
/ Regions (CICS)

Database server(s)

C / C++ / COBOL ...

Local
DB

Unix/Mainframe server m/c

FIGURE 1.5. 3-tier TP monitor architecture

1.4 3-tier architectures with TP monitors 13

We note here in passing that terminal-based ‘forms’ architectures as well
as some GUI-based client-server systems, i.e. those where business logic was
confined to the database layer in stored procedures, are also structurally ‘3-tier’
systems, but they lack the request queuing provided by the TP monitor layer
and hence architecturally belong to the client-server class.

A relatively minor but important enhancement to the 3-tier model was the
introduction of ‘object-based’ access to services, replacing flat remote pro-
cedure calls, together with the introduction of object-oriented distributed
communication systems such as CORBA. In CORBA, the client application
could communicate with services on the server via ‘methods’ on ‘distributed
objects,’ instead of having to build in application specific message handling for
passing parameters to services and receiving their responses. With the adop-
tion of Java for building client-side applications, such features were available
natively in the language through a built-in mechanism to ‘serialize’ objects.
We mention this aspect precisely because in the internet architectures to fol-
low, much of the complexities of web-based systems, especially ‘web services,’
have revolved around mechanisms to essentially recreate such facilities in an
intuitive yet efficient manner.

The essential lessons from the 3-tier model are (a) clear separation of user
interface and business logic and (b) load balancing using request queuing to
support high transaction volumes. Both of these have become fundamental
principles of enterprise software architecture design, continuing through the
advent of internet-based architectures and into the emerging cloud era. The
3-tier model never disappeared, it has instead become an integral aspect
of web-based computing using the internet standards that replaced the
proprietary technologies of the TP monitor era.

We have discussed mainframe, client-server and 3-tier architectures. In
Table 1.1 we compare essential features of each of these architectures, also
highlighting the key lessons learned from the perspective of our upcoming
foray into software architecture for enterprise cloud computing. In the next
chapter we trace the advent of the internet and its influence on enterprise
system architectures, and its evolution from a communication network into
a platform for computing.

14 ENTERPRISE COMPUTING: A RETROSPECTIVE

TABLE 1.1 Comparison of Architectures

Mainframe Client-server 3-tier

User interface Terminal screens
controlled by
the server

‘Fat-client’
applications
making
database
requests over
SQL/Net

‘Thin-client’
desktop
applications
making service
requests via
RPC or
CORBA

Business logic Batch oriented
processing

Online
processing in
client
application
and stored
procedures in
the database

Executed on a
middle tier of
services
published by
the TP
monitor layer

Data store File structures,
hierarchical or
network
databases
(later
relational)

Relational
databases

Relational
databases

Programming
languages

PL/1, Cobol 4GLs: Visual
Basic,
Powerbuilder,
(later Java)

4GLs on client,
3GLs such as
C and C++ on
server

Server operating
system

MVS, z/OS, VAX Unix Unix, Linux

Time line 70s to date 80s through late
90s

mid–late 90s

Advantages (at
the time)

Reliable
enterprise data
processing,
Virtual
machine
technology,
Fault
tolerance

Cheaper than
mainframes,
leveraged
desktop
computing
power; online
transactions
vs. batch
processing

Load balancing
for scalability
as compared
to
client-server;
structuring of
applications
into
presentation
and business
logic layers

(continued)

1.4 3-tier architectures with TP monitors 15

TABLE 1.1 (continued)

Mainframe Client-server 3-tier

Disadvantages
(at the time)

Batch oriented
processing

Did not scale
over wide area
networks or
for high
transaction
volumes

Lack of
standards

User/Developer
friendliness:

Cryptic user
interfaces and
low level
programming

Intuitive
graphical user
interfaces and
high-level
languages

Intuitive user
interfaces but
more complex
distributed
programming

Key lessons for
today –
especially in
cloud context

Virtualization
and fault
tolerance

Perils of
distribution

Load balancing

CHAPTER 2

The internet as a platform

As is well known, the internet was born as a communication infrastructure for
data sharing between large government research labs in the US, and soon grew
to include academic institutions across the world. The development of the
NCSA Mosaic web-browser in 1993 sparked the rapid expansion of internet
use beyond these boundaries into a platform for sharing documents, using
the HTTP protocol and HTML markup languages developed by Tim Berners
Lee at CERN, Geneva, in 1990. Using a browser, information ‘published’ over
the internet could be accessed anonymously by the public at large, giving rise
to the ‘world wide web’. The subsequent history of the commercialization
of the web and the dot-com boom is also well known. In this chapter we
explore how and why the internet also evolved into a platform for enterprise
applications, eventually giving birth to the cloud computing paradigm.

2.1 INTERNET TECHNOLOGY AND WEB-ENABLED APPLICATIONS

Internet-based applications rely fundamentally on HTTP, the HyperText
Transfer Protocol, and HTML, the HyperText Markup Language; both are now
standards defined by the world wide web consortium (W3C). Browsers, such
as Internet Explorer, and servers, such as HTTPD (HyperText Transfer Pro-
tocol Daemon) implement these standards to enable content publishing over
the internet. Other technologies such as XML and SOAP are also important,

16

2.1 Internet technology and web-enabled applications 17

Browser client

Web
server
(HTTPD)

Server
Programs

HTTP
Request

HTTP
Response

CGIPath-
based
file access

File
system

Response handler
threads

HTTPD in Operation

Legacy application:
• Mainframe
• CUI forms
• GUI forms w/ enabler
• TP monitor

Web server layer
• CGI
• Servlets

• TPM calls (Tuxedo / CICS)
• 3270 / vt200 data
• Forms proprietery data

HTTP carrying HTML / XML /
Serialized Java objects

Browser client
• HTML based
• Java applet based

Web Enabled Architecture

FIGURE 2.1. Internet technology and web-enabled applications

and will be covered in later chapters. Here we review the essential aspects of
these underlying technologies that are critical to understanding internet-based
enterprise applications and cloud computing.

As depicted to the left in Figure 2.1, a web server is a process, such
as the Apache HTTPD daemon (see below), that receives HTTP requests
from clients, typically web browsers. Requests are queued until assigned to a
request handler thread within the web-server process. The server returns an
HTTP response containing data, either retrieved directly from a file system
path or as computed by a server program initiated to respond to the request.
The CGI (common gateway interface) protocol is used by the web server to
launch server programs and communicate with them, i.e. pass parameters and
accept their results, such as data retrieved from a database. The browser client
merely interprets HTML returned by the server and displays it to the user.

The widespread use of web servers was further encouraged by the creation
of the open source HTTPD web server (written in C), and the birth of the
Apache community to support it. A group of people working in enterprise
IT roles, led by Brian Behlendorf, undertook this task because they feared
that the HTTP protocol would become corrupted if proprietary extensions to
the standard were proliferated by different vendors. The Apache web server

18 THE INTERNET AS A PLATFORM

also marked the first widespread use of open source software by enterprise IT
departments.

In the initial years of the web (through the late 90s), the HTTP proto-
col, together with features available in HTML supporting data entry forms,
presented the opportunity to develop browser-based (or ‘web-enabled’) inter-
faces to legacy systems. This became especially useful for accessing mainframe
applications that otherwise could be accessed only from dedicated terminals.
‘Screen scraping’ programs were developed to communicate with the main-
frame by emulating a terminal program and passing results back and forth
to a web server via CGI, as shown to the right in Figure 2.1. In this man-
ner mainframes as well as TP monitor or CUI-forms-based applications could
be made more easily accessible to internal enterprise users. Additionally, it
became possible to publish information residing in legacy systems directly to
the then nascent world wide web. Further, there was the additional benefit of
the browser becoming a ‘universal client application,’ thereby eliminating the
cumbersome task of propagating upgrades to user desktops. Finally, since the
internet protocol was easy to use and performed well over wide area networks,
web enabling made it easy to provide geographically distributed operations
access to applications running in data centers regardless of location; recall
that the client-server model was particularly poor in this regard. Unfortu-
nately, client-server systems were also the most difficult to web-enable, since
they incorporated a large part (even all) of their business logic in the ‘fat’
client-side applications deployed on user desktops. This meant that client-
server systems essentially had to be rewritten in order to web-enable their
functions.

The one marked disadvantage of a web-based application was the relatively
limited user interface behavior that could be created with plain HTML. While
this did not pose a serious limitation when web-enabling the terminal-based
interfaces of mainframes, it did result in a sacrifice of functionality in the
case of client-server applications as well as 3-tier applications that provided
more interactive user interfaces through client-side code. As we shall see
in Chapter 7, this limitation has receded significantly in recent years with
new technologies, such as AJAX, enabling ‘rich internet applications’ in the
browser.

In view of the many potential advantages of a web-based interface, the late
90s saw a flurry of web-enabling projects wherein legacy applications were
connected to the internet through a variety of mechanisms, all highly case
specific and non-standard; thus, in the process another set of problems were
created in the bargain.

2.2 Web application servers 19

2.2 WEB APPLICATION SERVERS

In a web-enabled application architecture, processing logic, including
database access, took place outside the web server process via scripts or pro-
grams invoked by it, using CGI for interprocess communication. Each such
‘CGI-script’ invocation included the costly overhead of launching the required
server program as a fresh operating-system process. To overcome this ineffi-
ciency, FastCGI was developed, whereby the web server could communicate
with another permanently running server-side process via inter-process com-
munication. Another alternative was to dynamically link application C code
in the web server itself (as was possible with the mod_cmodule of the Apache
HTTPD); however this latter approach was not widely publicized, and rarely
used in practice.

The invention and proliferation of the Java language, designed to be
portable across machine architectures with its interpreted yet efficient exe-
cution model made possible alternative approaches to execute application
functionality inside the web-server process, leading to the birth of the ‘appli-
cation server’ architecture, as illustrated on the left in Figure 2.2: In addition
to serving HTTP requests from files or CGI scripts, requests could also be
processed by multi-threaded execution environments, called ‘containers,’
embedded within the web server. The ‘servlet’ container, for example, first

R
un tim

e
com

pilation

HTTP
listener

JSP files

Servlet container

Database
Files

HTTP request/response

Business logic
servlets

User interface
servlets

Servlet and EJB containers JavaServer pages (JSPs)

HTTP
listener Static page

handlers

Processing
threads

Servlet container

EJB container

Database
Files

HTTP request/response

FIGURE 2.2. Web application server

20 THE INTERNET AS A PLATFORM

introduced in the ‘pure Java’ Apache Tomcat server, allowed Java programs to
execute in a multi-threaded manner within the server process as ‘servlet code.’
The container would also manage load balancing across incoming requests
using these threads, as well as database connection pooling, in a manner simi-
lar to TP monitors. Thus, the application-server architecture also enjoyed the
advantages of a 3-tier architecture, i.e., the ability to handle larger workloads
as compared to the client-server model. The fact that Tomcat was a pure Java
implementation of the HTTP protocol also contributed to its popularity, as it
could run without recompilation on any machine that supported a Java virtual
machine (JVM). Note that there is a common confusion between the HTTPD
web server and Tomcat since both are servers of HTTP requests. Recall that
HTTPD is written in C, and is a pure web server, while Tomcat is written
in Java, and includes a servlet container, thus making it an application server
rather than a web server.

Servlet code was used to respond to HTTP requests; because of the nature
of the HTTP protocol, this code also had to manage user interface behavior,
since the HTML returned from the server determined what was displayed in
the browser. Recall that a major drawback of client-server systems was that
they mixed-up user interface and business logic code, resulting applications
that were difficult to maintain. ‘Java server pages’ (JSPs), also introduced
in Tomcat, allowed user interface behavior to be encoded directly as Java
code embedded within HTML. Such ‘JSP’ files are dynamically compiled into
servlets, as illustrated on the right in Figure 2.2. Using JSPs enabled a clear
separation of user interface and business logic to be enforced in application
code, resulting in better maintainability.

While elements of the load balancing feature of TP monitors were present
in servlet containers, these could not yet scale to large transaction volumes.
As an attempt to bridge this gap, the ‘Java 2 Enterprise Edition’ (J2EE) spec-
ification was developed by Sun Microsystems in 1999, introducing a new
application execution container called ‘Enterprise Java Beans’ (EJBs). Appli-
cation code packaged as EJBs could be deployed in separate processes from the
controlling web application server, thereby opening up the possibility of dis-
tributed multiprocessor execution to boost performance. The EJB container
also provided a host of additional services, such as security, transactions,
greater control on database connection pooling and Java-based connectors to
legacy systems.

Note that strictly speaking, Tomcat was the first ‘web application server,’
as we have mentioned earlier; however common parlance often mistakenly
refers to this as a web server, reserving the term application server only where
an EJB container is provided.

2.2 Web application servers 21

Legacy application:
• Mainframe
• TP monitor

Web application server
(Webshpere, Weblogic, Oracle,
Netweaver, JBoss…)
• JSP – presentation layer
• EJBs – logic layer

TPM Calls (CICS)

HTTP carrying HTML / XML

Browser client
• HTML + Javascript
• Java applets

Mainframe host

‘Middle-tier’

Microsoft IIS
• ASPs – presentation layer
• COM Servers – logic layer
• VB.NET / VC++ / C#

HTTP carrying HTML / XML

IE Browser client
• HTML + Javascript
• ActiveX controls

Database

Windows Server ‘Middle-tier ’

ODBC

J2EE stack Microsoft (.NET) stack

JDBC

Database

FIGURE 2.3. Web application server technology stacks

Our description above has focused on the Java family of web and appli-
cation servers; at the same time a competing family from Microsoft was
being developed, as depicted alongside the J2EE stack in Figure 2.3. The
Microsoft web/application server, IIS (Internet Information Server), runs only
on the Windows operating system. However, unlike the J2EE stack, multiple
language support was provided, including C, C++, and Microsoft specific lan-
guages such as C# (C ‘sharp’) and VB (visual basic). The application container
in this case was simply Microsoft’s COM environment on the Windows oper-
ating system that enabled multiple processes to execute and communicate.
Recent versions of this stack are now referred to as the .NET framework.

The raison d’être of the application server, to be able to process large-scale
business transactions in a purely web-oriented architecture, has to a large
extent been achieved. High-performance web applications all employ hor-
izontal scaling by distributing requests across large clusters of application
servers, called ‘server farms.’ At the same time, deploying, load balancing and
generally managing such large-scale distributed environments, which often
contain hundreds or even thousands of servers, has become a major challenge.
The built-in fault tolerance and manageability of the mainframes has largely
been lost, driving up management costs and impacting agility. These data cen-
ters have become essentially large ‘IT plants’ akin to complex nuclear power
plants. The complexity of these environments has been a driving factor for the

22 THE INTERNET AS A PLATFORM

large-scale interest in cloud computing architectures wherein the attendant
complexities are managed in a scalable and largely automated manner.

Through the 2000s, the application server architecture has become per-
vasive across enterprise IT, virtually replacing all other alternatives for new
application development. The only major choice to be made has been between
a Java or Microsoft stack. Furthermore, a number of open source Java appli-
cation servers (such as JBoss) have encouraged this trend even further. As
a result, internet technology (HTTP and its siblings), which started off as
a communication protocol, has come to permeate enterprise IT as the core
platform for application development.

2.3 INTERNET OF SERVICES

Once applications began to be web-enabled, it became natural to open up
access to some of their functionality to the general public. For example, web-
based access to back-end applications meant that end-users could themselves
perform tasks such as tracking courier shipments, getting quotations for ser-
vices, or viewing their bank balances; soon secure payment mechanisms were
also developed that enabled users to place orders and make payments online.

With web-based access to applications becoming uniformly available to
users through a browser interface, the next step was programmatic access
to the same applications over the internet. Simplistically, a program could
of course emulate a browser without the web-enabled interface knowing the
difference; besides being a cumbersome approach, this mechanism was (and
is) open to abuse and malicious behavior (denial of service attacks etc.). Web
services were developed initially to address this need. While we shall cover
web services in detail in Chapter 7, here we review their emergence from a
historical perspective.

The W3C defines a ‘web service’ as interoperable machine-to-machine
interaction over HTTP. The HTML format for data exchange over the inter-
net initially evolved from SGML (standardized general markup language), a
descendant of IBM’s GML developed in the 60s and used extensively in the
mainframe world for generating reports. While hugely successfully, HTML
was less suited for machine-to-machine communications as its syntax is not
‘well-formed.’ For example, it is not required to ‘close’ a statement such as
<body> in HTML with a matching </body>. SGML on the other hand
was a well-structured but complex language. In 1997 W3C published XML
(extensible markup language), a simplified version of SGML, using which one

2.3 Internet of services 23

could also write well-formed HTML (XHTML), thereby driving browsers to
support XML in addition to HTML.

The web also provided a universal mechanism for naming and locating
resources, viz. the URI. The well-known URL, or web address is an exam-
ple of a URI that specifies an actual web or network location; in general the
URI format can be used to name other resources or even abstractions. This,
together with XML as a basis for interoperable message formats, laid the
foundation for formal web service standards. The XML-RPC standard mimics
remote procedure calls over HTTP with data being transferred in XML. Like
RPC, XML-RPC limits itself to simple data types, such as integers, strings
etc. To support complex, nested (object oriented) types, the SOAP proto-
col was developed, whereby the schema of the messages exchanged as input
and output parameters of published ‘services’ was defined using an XML for-
mat called WSDL (web services description language) and communicated
over HTTP as SOAP messages (another XML format). Using SOAP, appli-
cations could call the web services published by other applications over the
internet.

Around the same time as the web services standards were being developed
and put to pioneering use by companies such as Fed-Ex, Amazon and eBay (for
placing and tracking orders and shipments via web services), there was a storm
brewing inside the data center of large enterprises over how to integrate the
proliferating suite of applications and architectures ranging from mainframes,
client-server and TP monitor technologies to the emerging systems based on
web application servers. Traditional integration techniques revolved around
carefully identifying and publishing functions in each enterprise system that
could be called by external applications. The semantic differences in how
different systems dealt with similar data meant that integration itself was an
application in its own right. For example, ‘employee’ in an HR system might
include retirees while in another system, say payroll, retirees usually would
not be included.

The emerging application server architecture that enabled users to seam-
lessly access legacy systems was seen as the ideal mechanism to use when
building such integration layers. Software vendors built products using appli-
cation servers, called ‘enterprise service buses,’ that abstracted aspects of the
integration problem. Finally, seeing that the SOAP protocol was proving use-
ful in connecting applications of different enterprises (B2B integration) over
the internet, such integration middleware began to build in and promote
SOAP and XML-based integration layers within the enterprise data center as
well. The term ‘service oriented architecture’ (SOA) began to receive a lot of

24 THE INTERNET AS A PLATFORM

attention, most often used as a term to describe the use of SOAP and XML for
application integration.

While sometimes the use of standards, such as data models using XML,
forced the resolution of semantic integration issues between application data,
more often than not this fundamental feature of the integration problem
got lost in the details of the new technology. SOA promised interoperability
between applications and savings over time: By packaging application systems
as bundles of published services it would eventually become easier to evolve
their usage as business needs changed. Only time will tell if this promise is
redeemed; so far, a lot of effort has been spent on misguided technology-
focused SOA projects with very little return.

Meanwhile, the world of services over the internet was not necessarily
content with the standardization of SOAP-based interfaces. In 2000, an seem-
ingly obscure protocol called XMLHTTPRequest was made available in the
Javascript language. Javascript code running within browsers was being used
to provide dynamic user interface behavior within HTML pages, such as sim-
ple type validations. Using XMLHTTPRequest, however, such ‘in-browser’
code could also make HTTP requests, possibly to servers other than the one
that served up the main HTML page being displayed. Google was the first
to make extensive use of this protocol to provide rich interactive behavior
in Gmail, and more importantly for ‘publishing’ its Google Maps service as
a ‘mashup’, whereby any HTML page, published by anyone, could include
some Javascript code to display a Google Map. This code, provided by
Google, would internally call the Google servers for data regarding the map
in question. Thus came about a new approach for integrating applications,
at the client side instead of between servers. The term AJAX (Asynchronous
Javscript and XML) began to be used to describe this style of user interfaces.
AJAX-based mashups also, in a sense, democratized application integration,
and led to a proliferation of rich Javascript applications that enabled users to
‘mashup’ services of their choice to create their own personalized pages.

Figure 2.4 depicts both the web services and mashup architectures for
integration over the internet: A mashup provides a rich client-side inter-
face (such as a Google Map) implemented in Javascript that accesses the
server over HTTP using asynchronous requests via XMLHTTPRequest. In
traditional server-to-server web services, application server code accesses
published services from another server via SOAP over HTTP.

Note that SOAP services use standardized XML messages to transfer data.
No such requirement is there for mashups, since both the server-side and
client-side (Javascript) code for accessing the service comes from the same

2.3 Internet of services 25

XML-HTTP
requests

Mashup-services
(proprietary XML
services)

Web-services
URIs via REST
WSDLs via SOAP

(X
M

L)
 w

eb
 s

er
vi

ce
re

qu
es

t/r
ep

ly
ov

er
 H

T
T

P

Browser
Clients /
Javascript UI

Service
implementations
(in application server
containers)

FIGURE 2.4. Internet of services

provider, thereby allowing more efficient, but proprietary, formats to be used.
In Chapter 7 we shall explore these mechanisms in more detail, as also an
alternative to the SOAP protocol, called REST (representational state trans-
fer), which is rapidly emerging as preferred protocol for remote data access
especially in the context of cloud computing.

In the early years of web-services standards, a lot of interest was generated
in UDDI (universal description, discovery and integration), whereby busi-
nesses would list the web services they published on a public UDDI registry,
so that applications could automatically and dynamically discover the ser-
vices they needed. The UDDI concept was also promulgated as a panacea
for application integration within enterprises; a technological solution that
would resolve semantic discrepancies between application services. In both
these cases the optimism was misguided: The application integration problem
requires resolution of semantic differences by humans, and so is unlikely to be
solvable in such an automated manner. On the web, web services technology,
especially in its broader sense to include mashups and REST interfaces, has
made machine to machine interaction over the internet commonplace. At the
same time the idea of a universal ‘service broker’ based on UDDI overlooks
a fundamental aspect: Meaningful collaboration among users and providers

26 THE INTERNET AS A PLATFORM

also implies contractual obligations where human decisions, rather than mere
automation, are required.

The software as a service and cloud computing paradigms bring in this
contractual aspect formally, while also re-emphasizing the human element.
As we shall see, this is also a lesson for the future of cloud computing. Many
accounts paint a picture of cloud computing analogous to the largely anony-
mous electricity grid [8], enabled in part by many layers of organizational
separation and contractual obligations from generation to consumption; we
shall revisit these possibilities in Chapter 18.

To conclude, we note also that communication between enterprises and
consumers, be it through their personal computers or mobile devices, is
increasingly being driven through the web-based applications that run on the
public internet and which are often hosted by independent providers. Thus
it becomes increasingly apparent that not only internet technologies, but the
internet itself is becoming a platform for computing. As we shall argue in
Chapter 18, enterprise IT will, sooner or later, need to embrace this platform
and moreover, become a part of it.

CHAPTER 3

Software as a service and
cloud computing

3.1 EMERGENCE OF SOFTWARE AS A SERVICE

Even during the early days of the internet it had become evident that soft-
ware products could be packaged and sold as remotely hosted ‘application
services.’ A number of ASPs (application service providers) were born (such
as Corio), for the most part offering the same software packages as enterprises
used within their data centers, but in a hosted model wherein the software
ran within the ASPs’ data centers with users accessing it over the internet.
For a variety of reasons this first wave of ASPs did not succeed. First, the
internet bandwidth was simply not adequate at that time. Second, since most
of the popular software products, such as ERP and CRM systems, were client-
server applications, ASPs resorted to the highly inefficient practice of ‘screen
scraping’ to enable remote access to these applications, using remote-desktop-
sharing mechanisms (such as Citrix MetaFrame) that essentially transmitted
screen-buffer images back and forth over the network. More importantly,
the early ASPs were simply not structured to offer significant cost advan-
tages over the traditional model; they had to pay similar license fees to the
providers of packaged software while being unable to add sufficient value
through economies of scale.

27

28 SOFTWARE AS A SERVICE AND CLOUD COMPUTING

A notable early exception was Intuit with its successful hosted offering
of QuickBooks, a desktop accounting solution. This was soon followed by
the success of Salesforce.com and its hosted CRM (customer relationship
management) solution. An important factor in these successes was that the
applications were completely web-based and designed for sharing across mul-
tiple customers (via multi-tenancy, which we shall cover in Chapter 9).
These successes spawned a new wave of hosted applications, all built from
scratch using web-based architectures; these were referred to as ‘software as
a service’ (SaaS) to differentiate them from the earlier ASPs based on legacy
architectures.

From a customer perspective these SaaS solutions offered three main advan-
tages over traditional software development by corporate IT: First, business
users could subscribe to these services over the web using just a credit card;
corporate IT was not involved. For users frustrated with the often cumber-
some and long-drawn-out process of engaging their corporate IT departments,
long lead times for project delivery, delays, mismatched requirements, etc.,
this came as a breath of fresh air. Second, users found that they could even
make some minor customizations to their ‘instances’ of the SaaS solutions: In
the case of Salesforce.com, for example, users could add custom fields, create
new forms, as well as configure workflows, all from the same browser-based
interface. In contrast, making similar modifications to leading CRM systems,
such as Siebel, was a task that had to be done by corporate IT with the usual
delays. Thus, business users could create a customized CRM for themselves,
again with no involvement of corporate IT. Third, users did not have worry
about product upgrades. Salesforce.com would upgrade its solution in a seam-
less manner to all users, who merely discovered that their application had been
enhanced. Further, such upgrades seemed to take place on a far more regular
basis than for applications managed by corporate IT, with upgrade frequen-
cies of weeks rather than many months or years. In fact, a direct consequence
of the popularity of Salesforce.com was the eventual demise of Siebel, the
leading CRM vendor at that time, forcing it to get acquired by its largest
competitor, Oracle. A point to be noted is that these perceived advantages of
the SaaS model were compelling enough to override the fact that with SaaS,
user data was housed within data centers controlled by the SaaS provider; in
the case of CRM this included customer lists and contacts, which are clearly
business sensitive and critical data.

The fact that early success of the SaaS model involved a CRM applica-
tion was no accident also: In many organizations the sales process is the
most autonomous and least integrated with product delivery. Once orders are

3.2 Successful SaaS architectures 29

generated by sales, these can be entered into the core ERP systems to drive
delivery, financial processing and analytics. (We will review the nature of
enterprise computing in detail in Chapter 13.) Thus, having sales data ‘outside
the system’ was relatively easier to digest. Subsequent SaaS providers found
that they had to choose their offerings carefully: HR management or cus-
tomer support, for example, were well accepted as SaaS applications, whereas
supply chain, or core ERP functions such as payroll and corporate finan-
cial accounting have seen far less success in a SaaS model. Lastly, analytics
remains an emerging area where SaaS models might become popular in the
future, especially in the context of cloud computing.

3.2 SUCCESSFUL SAAS ARCHITECTURES

Unlike the first-generation ASPs, both Inuit and Salesforce.com built their
hosted solutions from ground up; they used completely web-based architec-
tures as well as exploited internal cost advantages from ‘multi-tenancy’ and
‘configurability.’ These architectural features enabled these solutions to offer
sustained economic advantages over traditional on-premise software, as we
examine below.

Key elements of a successful, economically advantageous, SaaS architecture
are depicted in Figure 3.1. If one considers the costs of managing a software
product in the traditional manner (i.e. installed within customer premises),

SaaS product

Configurability

throughinterpretation

Application
data

Multi-tenancy: single data store with data for multiple customers

Configuration
data

Customer B

Application
data

Configuration
Data

Customer C

Application
data

Configuration
data

Customer A

Single code base

FIGURE 3.1. SaaS architecture

30 SOFTWARE AS A SERVICE AND CLOUD COMPUTING

a large part of the costs go into managing different versions of the product
and supporting upgrades to multiple customers. As a consequence, often
fewer and larger upgrades are made, introducing instability in the product
together with the need for releasing and managing intermediate ‘patches.’
On the customer side, there are corresponding costs as well: receiving and
applying upgrades, testing them, and also redoing any local customizations
or integrations as required.

A hosted SaaS model virtually removes these costs from the customer side,
and on the provider, the ‘multi-tenant’ architecture brings down the costs of
releasing upgrades by an order of magnitude: With multi-tenancy, the hosted
SaaS application runs a single code base for all customers, while ensuring
that the data seen by each customer is specific to them; i.e depending on who
is logged in and the customer organization they belong to, an appropriate
data partition is accessed. In Chapter 9 we shall examine how to implement
multi-tenancy in more detail.

Thus, releasing a new version of a SaaS product amounts to a single pro-
duction upgrade for all customers, who are in effect forced to upgrade, often
without even being aware. Multiple versions of the product do not need to
be maintained in production; further, as the costs of a new release are small,
upgrades can be more frequent, smaller and therefore also more likely to be
stable. Multi-tenancy is a major reason why modern SaaS offerings are able
to offer a real cost advantage over in-house systems.

With traditional on-premise software, corporate IT is responsible for the
development and maintenance of customizations to software products and
their integration with other IT systems. It has often been documented that
software maintenance costs are often two to three times greater than the
costs of developing software, for some of the reasons discussed above, such
as version management. The complexity of modern multi-tier architectures
which require different technologies at each layer also adds to maintenance
costs, as we shall argue in more detail in Chapter 12.

Thus, custom-built on-premise software is costly and time-consuming to
develop and maintain, and packaged software products need extensive cus-
tomizations that are often equally expensive. The SaaS platform developed by
Salesforce.com introduced the ability for end-users to customize the function-
ality of their view of the product. This was a significant innovation in that
it dramatically reduced the time to implement a usable CRM system; further
business users could customize and begin using the platform without the
overhead of going through their corporate IT. Customer specific customiza-
tions were captured as just another form of data rather than code, as shown in

3.3 Dev 2.0 platforms 31

Figure 3.1. Such data ‘about the application functionality’ is more appropri-
ately called meta-data. The SaaS application code, which is the same for each
customer (or ‘tenant’), interprets this meta-data at runtime, thereby rendering
and executing varied functionality for each customer. We examine how this
is technically achieved in more detail in Chapter 14.

By enabling end-users to make certain customizations themselves in the
above manner, Salesforce.com enabled customers to avoid high costs of
traditional software development. Additionally, as we have already seen,
multi-tenancy allowed their own internal costs to be significantly reduced,
some of which were also passed on to the customer. Overall, customers expe-
rienced real cost savings in addition to the advantages of rapid deployment
and independence from corporate IT.

3.3 DEV 2.0 PLATFORMS

The ability to render functionality by interpreting meta-data was soon
expanded by Salesforce.com to cover many more application features, thereby
enabling, to a certain extent, independent applications to be created using the
same hosted SaaS platform. Later, a scripting language was added to position
these features as an independent hosted development platform; today this is
called Force.com and has a separate identity from the CRM product. Simul-
taneously other startup companies (Coghead, Zoho) as well as some large
organizations (TCS1) had embarked on their own efforts at developing such
interpretive platforms where applications could be developed ‘over the web,’
potentially by end-users. We use the term Dev 2.02 to describe platforms such
as the above, because they aim to bring end-user participation into applica-
tion development, much as Web 2.0 technologies, such as blogs and social
networking, have brought end-user publishing of content to the web.

Figure 3.2 depicts the architecture of a Dev 2.0 platform; an ‘application
player’ renders application functionality defined by meta-data, in a manner
analogous to a media player playing a video file, or a word processor dis-
playing a document. As in the word processor analogy, the Dev 2.0 platform
also allows users to edit the functionality of the application, often at the
same time it is being ‘played.’ Just as WYSIWYG word processors largely

1 Tata Consultancy Services.
2 The term Dev 2.0 was first coined by the author in [51].

32 SOFTWARE AS A SERVICE AND CLOUD COMPUTING

Designer
(manipulates
meta-data)

Application player
(interprets meta-data)

Application
data

C
om

m
on

 w
eb

-b
as

ed
 in

te
rf

ac
e

Meta-data

T
es

t

U
se

FIGURE 3.2. Dev 2.0 architecture

replaced typesetting languages which had to be compiled for formatting, Dev
2.0 aims to replace application specific code with meta-data that is rendered
(and edited) in the web application player. At the same time, for large com-
plex documents (such as this book), one prefers to use a typesetting language
(in this case LATEX); similarly Dev 2.0 is most applicable for smaller applica-
tions, rather than very large ones. In Chapter 12 we discuss more Dev 2.0
platforms, their applicability, limitations and possible future directions. We
explain how Dev 2.0 platforms are designed in Chapter 14.

Dev 2.0 platforms are still a nascent technology. In the future, even custom-
built applications may incorporate the idea of interpreting meta-data. So, it
is possible that Dev 2.0, coupled with cloud computing will lead to new
paradigms for enterprise system architecture. We shall return to this topic
after first discussing the emergence of cloud computing.

3.4 CLOUD COMPUTING

Whereas software as a service is about packaged applications made available
over the internet, cloud computing makes a lower level of infrastructure and
tools available over the internet in data centers maintained by a cloud provider.

3.4 Cloud computing 33

We must note that alongside the evolution of the internet, hosting services,
such as for websites, have been around for years. However these are not by
themselves ‘cloud’ services (we explain why in Chapter 17). To understand the
additional features that account for the surge of interest in cloud computing,
we first need to trace the evolution of cloud computing by the pioneers in the
field, viz. Amazon and Google.

The SaaS providers such as Salesforce.com could implement their sys-
tems using web application server architectures as discussed in the previous
chapter. Since these offerings usually catered to small or medium businesses,
the number of users for each tenant application was relatively small, so it
was relatively straightforward to provision servers as the number of tenants
increased, with each server catering to many tenants. In rare cases, such as for
the few large customers who had probably a few thousand users each, again
a traditional application server architecture suffices, by balancing the load
across many machines just as it would in the case of an on-premise deploy-
ment. Thus, the scale of usage was very similar to that of traditional enterprise
software.

Amazon, the first ‘cloud’ provider, faced a different set of challenges as it
grew from an online bookseller to an online retail hub, but solved them in
a highly innovative and reusable manner, leading eventually to a new cloud
computing business. First, the complexity of Amazon’s application suite; to
display one page featuring a book, a number of services from fairly complex
applications are needed, such as reviews, recommender systems, and collab-
orative filtering. Next, the peaks and troughs of the seasonal retail business
necessitated Amazon to continuously monitor load and automatically provi-
sion additional capacity on demand. Finally, as they became a retailer catering
to the ‘long tail’ of small niche products, they saw the need to support their
suppliers with some minimal IT, many of whom had no systematic computing
systems apart from a few personal computers.

Recall the virtual machine concept which had been developed during the
mainframe era. In recent years virtual machine technologies have been devel-
oped (or rather, redeveloped) for popular modern hardware architectures,
such as the Intel X86 family. (Examples are VMware, Xen and KVM; the latter
two being open source tools.) Using virtualization many logical operating sys-
tems can share a single physical machine resource through a hypervisor that
emulates an underlying hardware model, and which is used to run different
guest operating systems. This is similar, at a high level, to multi-tenant SaaS,
where a single application player ‘runs’ different meta-data configurations.
We shall cover virtualization in detail in Chapter 8.

34 SOFTWARE AS A SERVICE AND CLOUD COMPUTING

Amazon exploited virtualization extensively, just as many large enterprises
are also now doing, to automatically and dynamically provision hardware with
those applications that were most utilized as demand fluctuated through the
year. The high degree of automation they were able to achieve in this pro-
cess enabled them to conceive of and launch their S3 (simple storage system)
and EC2 (elastic compute cloud) whereby users could rent storage and com-
pute power on Amazon servers. First intended for use by Amazon suppliers
and partners, this was opened up to the general public as an experiment. Its
popularity resulted in Amazon becoming, inadvertently, a pioneer of cloud
computing.

There are key differences between the Amazon cloud and traditional host-
ing providers: (a) the degree of automation made available to end-users, as
web services, to control the number of virtual instances running at any point
in time, (b) the ability for users to package and save their own configurations
of virtual machines (as Amazon machine images, or AMIs) and (c) charging
per hour of actual usage as opposed to the monthly or yearly charges for tra-
ditional hosting. In addition, Amazon also made available their own system
software tools, such as Amazon SQS (simple queue service) and SimpleDB
(a non-relational database). These enabled many users of the cloud to build
complex applications without having to rely on deploying and configuring
traditional middleware and database products.

In the case of Google, on the other hand, the scale of computing power
needed to support large-scale indexing of the web, the immense volume of
searches, and machine-learning-based targeting of advertisements across this
volume meant orders of magnitude larger computational needs as compared
to even the largest enterprise. Large banks today often have tens of thousands
of servers; Google, on the other hand is estimated as running over a million
servers, as of today.

In the process of solving its computational problems, Google developed
innovations in programming models for large-scale distributed processing,
such as the Map Reduce model for partitioning a sequence of tasks to be
performed on a very large data set and executing it in parallel across a very
large set of machines. Supporting this was their ‘big table’ model of a data
store, a non-relational database distributed across a very large set of physi-
cal storage with built-in redundancy and fault tolerance. Finally, supporting
the massive volume of search queries necessitated building a highly scalable
application server architecture designed from the beginning to execute in
parallel.

3.4 Cloud computing 35

Thus, when Google announced its cloud offering, the Google App Engine,
it looked very different indeed from the Amazon cloud. Users could program
using development libraries (initially in Python, now also in Java) and deploy
their code on the App Engine. The code so deployed would be always ‘run-
ning’ in response to any web request to the corresponding URL. Further the
application would automatically scale on the App Engine’s large-scale dis-
tributed execution infrastructure. Thus, users did not need to do anything
special to make their application scale from supporting very few to many mil-
lions of requests per day (apart from paying for higher load volumes, with a
base level of 5 000 000 hits a month being free!). Data services were provided
through the Google Datastore, also a non-relational distributed database. If
properly exploited by application code, highly parallel distribution and query-
ing of data would be automatic. The Google App Engine thus represents a
completely new application architecture, based on automatic distributed exe-
cution and load balancing. In the Java version of the App Engine, the JVM
itself is custom built by Google to support this model at the lowest level; sim-
ilar modifications are also likely to be present in Google’s Python interpreter,
since it is well known that vanilla Python does not scale well to many CPUs
on a normal machine. As Google has not publicized the distributed execution
architecture we can only speculate about its structure.

Figure 3.3 displays the Amazon and Google cloud models side by side.
In contrast to App Engine, users do need to deal with scaling issues using
Amazon, and must explicitly provision a parallel architecture using the web
services provided. On the other hand, they get full (root) access to virtual
machines, either Linux or Windows, and are free to deploy any software they
wish on them. With App Engine, users must develop fresh applications using
the App Engine SDK.

Microsoft has also entered the cloud market with its Azure platform. This
is along the same lines as Google’s, i.e. it provides a software platform for
application development rather than access to raw virtual machines. More
importantly, Azure is based on the already popular Microsoft programming
stack. Azure also includes the ability to describe the runtime characteristics of
an application explicitly, bringing back some indirect control over application
deployment to the user.

The Amazon model is an example of infrastructure as a service (IaaS) while
the Google and Microsoft models are ‘platform as a service’ (PaaS) offerings.
In Chapter 5 we shall cover each of these cloud models in detail. Now we
return to our discussion of Dev 2.0 and examine what Dev 2.0 and cloud
computing together may mean for large enterprises.

36 SOFTWARE AS A SERVICE AND CLOUD COMPUTING

VM

VM

VM

VM

VM

VM

VM

VM

VM

…

S3–Simple storage

Simple DB Simple queue

Internet

Application deployment
and

distributed execution platform

Google datastore

Map reduce

Big table

….

Provisioning services

Development
SDK

Amazon cloud Google cloud

FIGURE 3.3. Cloud models

3.5 DEV 2.0 IN THE CLOUD FOR ENTERPRISES

The IaaS cloud model offers potentially important implications for soft-
ware development processes in IT organizations, especially in the context
of outsourcing and globally distributed development:

1. The issue of ‘control’ of server infrastructure is often a bottleneck; tradi-
tionally a server is controlled by either the ‘customer’ organization or the
‘services provider.’ In the cloud, control can be ‘shared’ and transferred at
will, enabling efficient distributed development regardless of geographic
location. Similarly for globally distributed teams; using the cloud, no
team is more equal merely because they are co-located with the server
infrastructure.

2. Procurement and provisioning in the cloud is orders of magnitude faster,
and can be time bound; this can greatly speed project execution, user
testing, analyzing production defects, etc.

3. Early performance testing is possible using ‘true’ replicas of the actual
production environment dynamically provisioned in the cloud for a limited
time, which would otherwise be too costly.

3.5 Dev 2.0 in the cloud for enterprises 37

Thus, because of the high degree of control offered by the IaaS cloud model,
it is likely to find many applications in large enterprises sooner than PaaS
clouds.

At the same time, the question of overall cost advantages of cloud comput-
ing depends a lot on the computational profile required by an organization. It
is not immediately clear why enterprises cannot replicate these models inter-
nally (after all Amazon was a retail enterprise first, and cloud provider only
later), nor that replicating them will necessarily be worth the while for all
enterprises. This question is addressed in more detail in Chapter 6 where we
explore the economics of cloud computing.

The emergence of cloud platforms is also an opportunity to revisit the
‘success’ of the SaaS model. In spite of its widespread use in certain applica-
tion areas and markets, ‘control over data’ has been the traditional inhibitor
to wider adoption of SaaS in large enterprises. However, if SaaS vendors
and customers share the same cloud infrastructure, SaaS applications could
potentially use storage and databases that are ‘controlled’ by their customers,
without adversely affecting performance or losing the benefits of the SaaS
model. This would also enable closer integration with the internal IT systems
of the end customer.

Similarly, hosted Dev 2.0 platforms could be used on ‘customer-owned’ data
in the cloud rather than a proprietary database owned by the Dev 2.0 platform
vendor. Further, many Dev 2.0 platforms (from the same or different platform
vendors) could be used together while sharing the same customer-owned data
in the cloud, e.g. one tool for forms-based workflows and another for analyt-
ics. We explore some of these possibilities in Chapter 12, and describe one
Dev 2.0 platform (TCS InstantApps) that can work with user-controlled data
in the cloud.

Finally, the new highly scalable distributed PaaS platforms such as App
Engine and Azure open up new opportunities for enterprises to perform large-
scale analytical tasks that are currently prohibitive: For example, if a retail
chain could benefit by occasionally performing a highly compute intensive
computation on large volumes of data (e.g. point-of-sale data), it currently
might not do so since this would entail investing in a thousands of servers
which would normally lie unused. However, with applications developed on
scalable distributed cloud platforms, scaling would be automatic and use a
large set of hardware resources only when needed. At other times, the same
applications could run consuming far lower resources but still having access
to (and maybe updating) the large data set as new information streamed in.

38 SOFTWARE AS A SERVICE AND CLOUD COMPUTING

Analytics applications would need to be rebuilt to exploit the underlying non-
relational but highly distributed data stores provided by these models, as we
discuss in Chapter 16.

What could the future enterprise IT environment look like, when it is a
mix of traditional systems, internet services as well as in-house enterprise
clouds? What is the future of software development using model-based inter-
preters when they start operating in a cloud environment? We speculate that
as IT infrastructure gets increasingly complex, all organizations, large and
small, will eventually either need to implement cloud computing and Dev 2.0
technologies internally, or have to leverage such publicly available services
to be efficient. They will take decisions on distributing their data across their
internal ‘private’ clouds and external ‘public’ clouds. They will use a mix of
traditional and SaaS applications to operate on this data. They will build these
applications with traditional tools and processes, and increasingly with Dev
2.0 platforms. We envision ‘Dev 2.0 in the cloud’ as a potential paradigm
shift for business applications and corporate IT; we shall explore such future
possibilities in more detail in Chapter 18. For the remainder of this book we
now go into technical details of cloud computing and related technologies as
well as the needs of enterprise architecture.

CHAPTER 4

Enterprise architecture: role
and evolution

As technology evolved from mainframes through client-server to the internet
era and now to cloud computing, each large enterprise has had to continuously
evaluate emerging architectures and plan the evolution of its IT environ-
ment, at the same time ‘keeping the lights on’ by ensuring stable IT systems
to support running its business. In this process, each IT department has
become characterized by a mix of technologies, as a continuous balancing
act is maintained between the stability of legacy systems, demands of new
business requirements and the adoption of new technologies.

The ‘enterprise architecture’ function within enterprise IT has evolved to
manage the complexities of an ever-changing technical environment. In the
process enterprise architects found it useful to maintain a description of all
of an enterprise’s software applications, how they fulfill business needs, how
they are implemented technically and how they communicate with each other.
Additionally, defining and enforcing technical standards to guide the choice of
new technical platforms has become another integral part of this function. To
examine how cloud computing can and will be adopted in large enterprises,
we need to view this potential paradigm shift from the perspective of the
enterprise architecture function.

39

40 ENTERPRISE ARCHITECTURE: ROLE AND EVOLUTION

4.1 ENTERPRISE DATA AND PROCESSES

Information systems, by definition, need to keep track of the core information
vital to the functioning of an enterprise. We shall examine in detail what
information large enterprises maintain and how these are organized as data
models in Chapter 13. Information systems also manage the core business
processes of an enterprise; in Chapter 15 we shall describe how these processes
are modeled and enacted. Enterprise architecture views business processes
and the information they access at a higher, macro level.

Enterprise architecture definition begins with a compilation of all business
processes, such as ‘prospect to order’, ‘order to cash’, etc. The first step is iden-
tifying and naming each process, and identifying business events that mark
its start and end. Deeper analysis includes identifying intermediate business
events and human decisions made during the process, participants in the pro-
cess, exceptional conditions and how these are resolved. Also documented
are non-functional aspects of a process, such as how often it changes, and its
expected time of completion.

Enterprise processes can often be classified as ‘vertical’ or ‘horizontal’. Ver-
tical processes typically operate within a single organizational function, such
as sales or accounting, manage a cohesive information set pertaining to that
function, and are typically supported by software packages or systems dedi-
cated to that department. ‘Prospect to order’, for example, is a vertical process
limited to the sales function. Horizontal processes, on the other hand, cut
across functional units; ‘order to cash’ is a horizontal process since it spans
sales, production and finance.

4.2 ENTERPRISE COMPONENTS

The term ‘component’ has traditionally been taken to mean to a ‘software
sub-system that has well-defined interfaces which can be used independently
of its internal implementation’ [50]. Structuring software into components
drives modularity in software development and makes it is easier to evolve a
large system by incrementally replacing its components over time.

Zachman [63] first defined a formal approach to structuring collections of
software applications that need to work together to run an enterprise. Building
on the Zachman framework, a ‘component’ view of enterprise architecture
was proposed in [54], extending the component concept beyond individual
software systems. In this approach, each enterprise application comprises

4.2 Enterprise components 41

of enterprise components, which, like software components, also have well-
defined interfaces that are used by components in other applications. Defining
enterprise components also aids in internally structuring application systems
as software components.

The coarsest level of enterprise components are business components,
defined as collections of high-level enterprise processes, be they vertical or
horizontal. These processes are grouped by business function; horizontal
processes often stand alone. At the next level of granularity, high-level enter-
prise processes are broken down into sequences of smaller processes, and also
regrouped so as to be implemented in a set of applications. This process results
in application components: Each application component is a set of smaller
processes such that the information needs of this set is largely restricted to a
cohesive set of data, such as ‘customer data’ or ‘payments data.’ Therefore, one
or more application components can be conveniently implemented within a
single enterprise application.

When implemented in software systems, application components are them-
selves decomposed into software components. These software components
can be ‘entity components,’ that deal with the manipulation of enterprise
data, and ‘process components’ that deal with the business logic and workflow
needs of the application component.

Figure 4.1 illustrates this component view of enterprise architecture. High-
level business processes are refined and regrouped systematically, ultimately
residing in separate application systems. The set of application compo-
nents define the functional architecture of each application system. Their
further decomposition into process and entity software components can
be directly mapped to a software implementation in a multi-tier technical
architecture: Entity components define data models and process compo-
nents define user interfaces, business logic and workflows. We shall return
to this view in Chapter 14 where we examine how enterprise software is
implemented.

It is important to note that each application system need not be cus-
tom built; rather it may be implemented using an off-the-shelf software
package, and in fact this is often the case. The top-down approach
using enterprise components clearly defines the process requirements being
sought from such software packages while remaining flexible enough to
drive the refinement process in a manner so as to exploit the function-
ality of available packages as much as possible. Most importantly how-
ever, this process also identifies what functionality not to use in some of
the packaged applications, since many packages often have overlapping

42 ENTERPRISE ARCHITECTURE: ROLE AND EVOLUTION

Application components

Business components

Process / Transaction components

Entity components

Technical architecture

Business logic and
workflow

Database

C
us

to
m

er
se

rv
ic

e
A

dm
in

is
tr

at
io

n
sy

st
em

A
cc

ou
nt

in
g

sy
st

em

Enterprise
Applications

Operations Coordination Management Intelligence

User interfaces

FIGURE 4.1. Enterprise components

functionality. The problems that arise from such overlaps are responsible for
much of the complexity of application integration, which we cover in the next
section.

4.3 APPLICATION INTEGRATION AND SOA

As we have seen above, enterprise applications implement processes, which
may be sub-processes of larger horizontal or vertical business processes. For
this reason alone it becomes obvious that enterprise applications need to
communicate with each other. Additionally, the decomposition of business
components into application components that are closely tied to subsets of
information is never exact and applications will often need to access data that
is owned by other applications. Next, while sourcing application systems
via packaged solutions, it is likely that some of these will include over-
lapping processes or data, once again requiring some form of integration
to resolve conflicts and redundancy. Finally, another driver for application
integration is the often perceived need for a unified view of data residing

4.3 Application integration and SOA 43

in disparate application systems, say for end-to-end process monitoring,
real-time decision support, or for data warehousing and business intelligence.

There are a number of mechanisms that applications can use to communi-
cate with each other at different ‘levels’:

1. Data level integration: direct data transfer using batch programs or on-line
exchange using database triggers

2. API level integration: applications publish API libraries that are used by
other applications to access their data

3. Service-method-level integration: applications publish services using say,
web service protocols, in an organized manner so that many different
applications can use a particular service

4. User interface level integration: applications publish mashup APIs that
are used to provide a common user interface to functionality from many
applications

5. Workflow level integration: tasks performed in one application lead to
work items being created in others, thereby driving the flow of work in a
business process

We shall discuss the technology used for each level of integration, such
as web services, AJAX and workflow in subsequent chapters. The choice
of what integration level to use is often driven by technical considerations
and limitations such as the degree of access one has to packaged software.
Deployment of some enterprise applications in a cloud infrastructure rather
than the enterprise data center can also play a part in determining the level
of integration possible.

An EAI (enterprise application integration) strategy is usually an integral
part of an enterprise architecture definition. In recent years, as web ser-
vices technologies have become popular, application integration has come
to become synonymous with ‘service oriented architecture’ (SOA), and many
of the features of traditional EAI strategies have been reborn as ‘SOA strate-
gies.’ Apart from detailing the mechanisms and technical standards preferred
for integration, such an EAI/SOA strategy essentially provides a roadmap for
evolution of an enterprise IT environment as new applications are built to
replace old ones. Given the nature of enterprise IT and technology change,
this cycle of evolution is a continuous activity; the EAI/SOA process main-
tains a bridge between the ‘to be’ enterprise architecture picture (which also
evolves) and reality of systems as they are at any given point of time.

Let us consider a sample EAI strategy: (i) use data level integration to con-
nect legacy systems and ERP packages (ii) develop a common data [exchange]

44 ENTERPRISE ARCHITECTURE: ROLE AND EVOLUTION

model (iii) develop new application components using the common data
model, using it to manage coexistence with legacy systems (iv) develop a
unified user interface via an enterprise portal (v) replace legacy systems and
application components gradually without impacting users.

To illustrate the point that EAI and SOA are quite similar apart from tech-
nology choices, let us see what such a strategy may look like under an SOA
paradigm: (1) wrap legacy systems with web services and call these from
other applications (2) develop an enterprise service model with well-defined
schemas for data exchange (3) develop new application components that
publish and use service interfaces (4) develop a common user interface using
enterprise mashups (5) replace legacy systems and application components
while retaining the same service interfaces without impacting users, and at a
lower cost.

The point, if not already clear, is that the critical problems of application
integration remain the same, i.e. resolving the semantics of data and func-
tionality across different applications, regardless of the technical standards
used for integration.

4.4 ENTERPRISE TECHNICAL ARCHITECTURE

So far we have not considered the issue of where enterprise applications
and their underlying components are deployed, whether in-premise or in
the cloud. To adequately highlight some of the issues that arise in making
such decisions, we first need to consider another major function of enterprise
architecture, namely the definition and management of standards defining the
technical architecture, tools and technical components used in an enterprise.

4.4.1 Unformity or best of breed

Cost and simplicity is the motivation for standardizing technical components
such as application servers, databases and integration tools used in an enter-
prise. As a common example, organizations often decide whether they want
to standardize on a Java or Microsoft-based technology stack. In practice,
it is often found that large organizations end up using dozens of different
technical products for similar functions, especially when it comes to, say,
integration technology such as EAI/SOA tools. Using a large variety of such
components increases integration and maintenance efforts as well as software

4.4 Enterprise technical architecture 45

licensing costs. Therefore, a common enterprise architecture practice has
been to attempt to limit this variety as far as possible.

This ‘uniformity’ approach is clearly sound when most of the inte-
gration between disparate technologies is carried out by the enterprise
itself. However, with modern software architectures the internal structure
of packaged components becomes increasingly invisible, and uniformity
becomes less important: When packaged components are accessible using
web services and web-based interfaces that follow standard communication
protocols (SOAP, HTTP), their internal technology is irrelevant as far as
integration mechanisms are concerned. For example, whether a network
router internally uses Linux or another operating system is largely irrel-
evant from an enterprise architecture perspective. Similarly, it would be
incongruous to object to using the Amazon cloud, which uses the Xen virtual
machine, merely because one’s internal standard for hypervisors happens to be
VMware!

To conclude, standardization of interfaces allows relaxation of uniformity
regarding product internals and even choices made by application develop-
ment teams, making a ‘best-of-breed’ approach possible. For this reason, it is
more likely that deploying some applications on Amazon, some on Google,
and others internally is far more acceptable today as compared to a few years
ago, at least from the technical architecture perspective.

4.4.2 Network and data security

Security issues arising from technology choices are also part of the enterprise
architecture function. While considering the option of cloud deployment the
question of security of data that will reside outside the enterprise data center
is a common concern, as we have also mentioned earlier in Chapter 3. Given
the fact that the sophistication of cloud data centers considerably exceeds
that of most enterprise data centers, concerns on data security for purely
technical or physical safety reasons are easily addressable. More important are
concerns arising from regulatory restrictions on geographical data location,
which are partially being addressed by some cloud vendors. Probably the
most important issue with data in the cloud is not security but the ability to
exchange large volumes of data: Some cloud vendors, such as Amazon, have
started allowing customers to physically ship data to them for uploading on
the cloud; of course, the physical security of these logistics becomes another
issue to evaluate carefully.

46 ENTERPRISE ARCHITECTURE: ROLE AND EVOLUTION

Network security, or rather securing applications on the network, is a
more serious concern when considering cloud deployment. In practice, a
large number of applications developed for use within an enterprise network,
or using a virtual private network (VPN) over the internet, are simply not
secure enough. As a simple example, most Java applications use the default
authentication mechanism (basic JAAS, see Chapter 14), which is not safe
against eavesdropping or replay attacks as it transmits a password (albeit
encrypted) over the network. Very few such applications exploit the option to
plug in more secure underlying key exchange protocols (such as Kerberos),
even though it is easily possible. Further, many internal applications are
developed without sufficient testing for common security flaws, such as SQL
injection and cross-site scripting. Thus, before moving applications to the
cloud, their network security needs to be revisited and most often it will be
found that this needs to be strengthened.

An important feature introduced by Amazon is the ability to offer a virtual
private network for enterprises on their servers. This ‘virtual private cloud’ fea-
ture will certainly alleviate some security concerns and mitigate the additional
effort needed to secure applications sufficiently for cloud deployment.

4.4.3 Implementation architectures and quick-wins

One of the aspects enterprise architects pay attention to are the ‘imple-
mentation architectures’ required for adopting any new technology. These
include the people skills required, along with development, testing and
deployment tools needed, as well as the impact on business-continuity and
disaster-recovery environments. Architects need to grapple with the choice
of platforms based on minimizing the total cost of ownership including tran-
sition costs to any new technology. At the same time they have to strive for
maximizing the longevity of any decisions they make, while ensuring adapt-
ability and maintainability in the long term. As a result, enterprise architects
tend to be a conservative lot, and are unlikely to embrace new technology
hastily, especially for mission-critical enterprise applications.

Instead, it is more likely that new technology, including cloud comput-
ing, will be first deployed in peripheral arenas far removed from core IT
systems, while at the same time significantly enhancing user experience and
business capabilities. For example, web-server technology was first used to
create enterprise ‘portal’ architectures so that users could experience a single
entry point to different enterprise applications, each often using disparate

4.5 Data center infrastructure: coping with complexity 47

technologies. (Web-enabling legacy systems using ‘screen-scraping’ is such
an example.) It is likely that cloud platforms can play a similar role for safe,
user interface level, integration of enterprise systems with the burgeoning
variety of ‘mashup’ applications becoming available on the web.

Another problem that enterprise architects are now grappling with is
mobility: Users now expect access to enterprise applications from mobile
devices. Providing a rich mobile experience requires a return to ‘fatter’ client
applications, as well as supporting disconnected operation via intelligent
asynchronous data replication. Moreover, the fact that mobile devices are
personal, rather than enterprise owned and controlled, introduces the need
for an added layer of security. Cloud-based applications serving mobile clients
could potentially provide such a secure intermediate layer.

We shall re-visit both of the above ‘peripheral’ applications of cloud
computing in Chapter 18, along with a few other potential ‘quick-wins’.

4.5 DATA CENTER INFRASTRUCTURE: COPING WITH COMPLEXITY

We have discussed many of the architectural issues and decisions involved
while considering applications for cloud deployment. But why consider cloud
deployment in the first place? In the next chapter we shall look at the eco-
nomics of cloud computing in more detail to examine whether or not there
are savings and if so how much. Here we first outline some of the challenges
being faced today by many large enterprises in managing their own increas-
ingly complex data centers. These problems are most often the primary drivers
for considering cloud computing, at least for large enterprises.

Let us consider a typical large enterprise, such as a major North American
bank, for instance. If one were to do an inventory of such an enterprise’s
IT infrastructure and applications, what should one expect? In reality, we
will likely find hundreds of thousands of desktops and tens of thousands of
servers. Thousands of business applications would be running on this sprawl
of hardware, in an equally complex software environment running thousands
of application server and as database instances, using petabytes of storage. The
variety of software infrastructure is equally complex, with dozens of different
application server, database, and other middleware products and business
intelligence tools. Additionally, in spite of the best efforts at application level
consolidation through enterprise architecture, significant functional overlap
across applications will be found at any given instance. Thus, there could
often be between five and twenty-five different applications with very similar

48 ENTERPRISE ARCHITECTURE: ROLE AND EVOLUTION

functions running in parallel for a variety of perfectly legitimate reasons. Lastly
hundreds of the many thousands of applications may be legacy systems which
are ten or even twenty years old, running on obsolete technology.

It is important to realize that such complexity is neither exceptional nor
a result of oversight; rather it arises out of a very complex business that is
continuously evolving. New business requirements often cannot be supported
by legacy systems and demand that fresh applications be built; these need to
remain in synchrony with data in legacy systems, as well as other applica-
tions. Technology is continuously evolving in the background, resulting in
the variety of platforms. So, to an extent, it may seem that such complexity
in inevitable and simply a fact of life.

However, an important observation is that server sprawl is also a result
of the ‘one application, one server’ paradigm assumed by most middleware
products, especially application servers. So, even if many different applica-
tions are deployed on the same middlware, if one of them requires a restart
of the application server, all applications suffer. As a result, development
teams often assume and insist that each new application be deployed on an
independent server. The resulting server proliferation is both difficult to man-
age and wasteful, since rarely does each application fully utilize the capacity
of its server. This has been the primary driver for the use of virtualization
technology, which is also heavily exploited in cloud infrastructure platforms.
Chapter 8 covers virtualization in detail, and its use to manage server sprawl.

Last but not least, the costs of such complexity most often reflect in the
cost of the manpower required to manage IT infrastructure. Provisioning new
servers, replacing faulty servers and monitoring the health of running servers
are all largely manual activities, albeit supported by tools. An important fea-
ture of cloud infrastructure platforms is that they make many of these tasks
possible to do via services (web service APIs), thereby opening up the poten-
tial for automation of some of this manual management activity. In fact, the
cloud providers themselves exploit such automation internally to achieve sig-
nificant efficiencies in their own business offerings, i.e. retail for Amazon, or
search in the case of Google.

It is the promise of being able to harvest significant savings by exploiting
virtualization and automation that is making cloud computing an attrac-
tive option to explore and invest in, whether using external providers or
as an internal strategy within the enterprise. In subsequent chapters we
shall explore in more detail the available external cloud platforms as well
as technologies that they exploit.

PART II

Cloud platforms

Publicly available cloud computing began with the launch of Amazon’s Elastic
Compute Cloud, offering Infrastructure as a Service. Soon afterwards, Google
launched its Google App Engine, which took a different path, offering a
development Platform as a Service. In due course, Microsoft took a path
similar to Google’s, with its recently launched Azure platform. We first present
a user’s picture of each of these major public cloud offerings. Next we consider
the economics of cloud computing, again from the perspective of an enterprise
user. We examine whether, when and why using a public cloud for enterprise
applications might be cheaper than deploying the same systems in-house, i.e.,
in a ‘private’ cloud.

CHAPTER 5

Cloud computing platforms

In this chapter we shall describe the major public cloud platforms from
Amazon, Google and Microsoft, outlining the services they provide from
an end-user’s perspective. (While there are other providers who have sim-
ilar offerings, as of this writing they are smaller. In Chapter 17 we also
describe other cloud providers as well as the larger cloud computing ecosys-
tem including cloud management applications and tools for building private
clouds.)

5.1 INFRASTRUCTURE AS A SERVICE: AMAZON EC2

The Amazon cloud provides infrastructure as a service (IaaS), whereby com-
puting infrastructure such as for servers, storage or network end points of a
desired capacity are virtually provisioned in minutes through an automated
web-based management console. This core IaaS service, called Elastic Com-
pute Cloud, or EC2, is but one of a set of services that constitute the Amazon
cloud platform, but the term EC2 is also often used to describe the entire
cloud offering.

Figure 5.1 illustrates the services provided by the Amazon infrastructure
cloud from a user perspective. These services are implemented on a very
large network of servers, shown as dashed boxes in the figure. The Elastic
Compute Cloud service provides users access to dedicated virtual machines
of a desired capacity that are provisioned on these physical servers, with

51

52 CLOUD COMPUTING PLATFORMS

VM1
VM6

VM3

VM4

VM5

D
6

VM2

Simple Queue Service

S3 Storage
SimpleDB

E
lastic B

lock S
torage

Virtual Private Cloud

Elastic Compute Cloud

REST
web

services

A

B

C

D

internet
users

Internet

= server

http

AMIs

tuple

operations

RES
T

web
se

rv
ice

s

mount

TCP/IP

E
lastic Load B

alancing
A

utoS
cale, C

loudW
atch

M
anagem

ent C
onsole

V
P

N
 over Internet

FIGURE 5.1. Amazon infrastructure cloud

details of the actual physical server, such as its location, capacity, etc. being
transparent to the end-user. Through the management console users generate
PKI1 key-pairs using which they can securely login to these virtual servers
over the internet. In Figure 5.1, user C provisions the virtual server VM4
through the management console, and accesses it using ssh, for a Linux
server, or via ‘remote desktop’ for a Windows server. Users have a choice of
virtual machine images (called Amazon machine images, or AMIs) to choose
from when provisioning a server. All AMIs are stored in common storage in
the Amazon S3 storage service (which we shall return to below), and used to
boot the desired configuration of virtual server.

The user’s account is charged on an hourly basis based on actual consump-
tion, i.e. time that the server is up. Charges vary depending on the AMI used
and capacity of server chosen while provisioning. For example, a ‘small’ Linux
server costs a few cents per cpu-hour, whereas a larger server preloaded with

1 RSA keys and X.25 certificates.

5.1 Infrastructure as a service: Amazon EC2 53

licensed software, such as Windows, as well as other database or middleware
products, could end up costing close to a dollar per hour.

Cloud users have root/administrator access to these servers, and therefore
control them completely. For example, they can deploy applications and
make them publicly accessible over the internet. Static network addresses
required for such purposes can also be provisioned through the management
console. Thus, VM4 is also accessible by internet users at large over HTTP.
Such publicly available static IP addresses are charged on a fixed monthly
basis; note that network data transfer to any server, with or without a static
IP address, is charged on usage basis, at rates of a few cents per gigabyte
transferred.

Users can provision and access many servers that can communicate with
each other over the fast internal network within the Amazon cloud. For exam-
ple, user C in Figure 5.1 has provisioned VM5 and VM6 in addition to VM4.
If VM4 is a web server, VM5 may be a database server, and these two commu-
nicate over the internal cloud network using TCP/IP. Since VM5 is a database
server, it needs to store and retrieve data. The Amazon SimpleDB service
provides an object store where key-value pairs can be efficiently stored and
retrieved. It is important to note that SimpleDB is not a relational database,
and we shall describe the features provided by such key-value pair cloud
databases in a later section.

Instead of using SimpleDB, virtual servers could instead use a relational
database system, which may come either pre-installed as part of the AMI,
or separately by users in the normal manner. However, it is important to
understand that virtual servers do not have any persistent storage; so any
user data on file system (i.e. whatever is not part of the AMI) is lost when
the server shuts down. In order to store data persistently, such in a relational
database, Elastic Block Storage needs to be mounted on a virtual server. The
Elastic Block Storage service maintains persistent data across all users on a
large set of physical servers. After a virtual server boots, it must attach user
data from the EBS as a logical storage volume mounted as a raw device (disk).
Any database service, or for that matter any application relying on persistent
data, can be run once this step is performed.

In our illustration in Figure 5.1, VM6 might be an archival server where
VM5 sends logs of whatever updates it makes to the SimbleDB datastore.
Note that VM6 has mounted a logical volume D6, where it possibly maintains
archived data. Now notice that VM5 sends data to VM6 not over TCP/IP,
but using the Amazon Simple Queue Service (SQS). The SQS is a reliable
persistent message queue that is useful for temporarily storing data that needs

54 CLOUD COMPUTING PLATFORMS

to eventually get to a processing server such as VM6, but in a manner that does
not rely on VM6 always being available. Thus, VM6 may be booted say, only
on a daily basis, when all it does is process the messages waiting for it in the
SQS and log them in its persistent database. Usage of the SQS is charged based
on data volumes and how long data resides in the queue. Thus, VM5 need not
concern itself with archiving apart from logging data in the SQS, and VM6
needs to be up only when required. SQS is normally used for managing such
asynchronous transfer of data between processing servers in a batch-oriented
workflow.

Persistent storage in the EBS as described above can be accessed only if it
is attached to a running virtual server. Further, any other servers can access
this data only via the server where the EBS is attached. The Amazon S3 Stor-
age Service provides a different storage model. Data in S3 can be files of any
type, and in general any blob (binary large object). Users access and mod-
ify S3 objects via URIs, using REST web services (which we shall cover in
Chapter 7). S3 objects are accessible over the internet as well as from virtual
servers within the Amazon cloud. S3 is especially useful for reliably storing
large collections of unstructured data that need to be accessed by many client
applications. It is important to note that all data in S3 is automatically repli-
cated at least three times for fault tolerance. The S3 storage model provides
‘eventual’ consistency across replicas: A write may return while data has not
yet propagated to all replicas, so some clients may still read old data; even-
tually, however, all replicas will be updated. This consistency model and its
underlying implementation architecture, which is also shared by SimpleDB,
is discussed in more detail in Chapter 10.

Storage in S3 is also used for storing machine images (AMIs) that users
define themselves, either from scratch by packaging OS and application files
from their own physical servers, or by ‘deriving’ from an already available
AMI. Such images can also be made available to other users, or to the public
at large. Further, such sharing can be combined with the Amazon payments
gateway through a DevPay agreement whereby a portion of the charges paid
by users of such AMIs are credited to the AMI creator’s account. Thus DevPay
based sharing of AMIs in S3 has created a new software distribution channel,
and many industry standard databases and middleware packages, such as
from Oracle or IBM are now available in this manner. The mechanism is
also secure in that ‘derived’ AMIs still maintain their DevPay lineage and are
charged appropriately.

An important goal of any cloud service is insulating users from variable
demand by automatically managing scaling up and down of the resources

5.1 Infrastructure as a service: Amazon EC2 55

allocated to a cloud application. In an infrastructure cloud, such as Amazon
EC2, the user needs to explicitly define an architecture that enables scalability
using tools provided by Amazon to manage elasticity: Runtime performance
parameters, such as CPU and I/O utilization, of a user’s virtual servers can
be monitored in real-time by Amazon Cloud Watch; this data can be used by
Amazon Auto Scale to add (or remove) virtual servers from an application
cluster and automatically provision them with predefined machine images.
Finally, Elastic Load Balancing allows a group of servers to be configured
into a set across which incoming requests (e.g. HTTP connections) are load
balanced. The performance statistics of the load-balanced requests can also
be monitored by Cloud Watch and used by Auto Scale to add or remove
servers from the load balanced cluster. Using these tools users can configure a
scalable architecture that can also elastically adjust its resource consumption.
Note however that for a complex architecture, such as multi-tier transaction
processing system, there may need to be many layers of clustering, e.g. at
the web server, application server, database server etc. It remains the user’s
responsibility to configure a scalable cluster for each of these layers, define
what performance parameters need to be monitored in Cloud Watch and set
the Auto Scale parameters for each cluster.

Enterprises seeking to adopt cloud computing also need to address the secu-
rity concerns of corporate IT. Network security is an important element of
these concerns: An enterprise’s computing resources are usually protected by
firewalls, proxy servers, intrusion detection systems etc. Naturally, enterprise
security requires that virtual servers running in the cloud also be protected
in this manner, using the same policies and safeguards that apply to any
resources in their own data centers. Amazon EC2 provides a Virtual Private
Cloud service, whereby virtual servers can be connected to an enterprise’s
internal network using a VPN (virtual private network). For example, users
A and B in Figure 5.1 access virtual servers VM1, VM2 and VM3 through
a VPN running over the public internet. These servers then have private IP
addresses controlled by the enterprise’s network operations center. Access to
and from this network to the outside world can be controlled by the same
set of policies, firewalls and proxies as for other resources in the enterprise’s
own data center. Of course for efficiency, these firewalls, proxies etc. should
ideally be replicated on virtual servers in the cloud even while maintain-
ing the same enterprise-wide policies, just as proxy servers and firewalls
are often replicated in a large enterprise network distributed across many
locations.

56 CLOUD COMPUTING PLATFORMS

5.2 PLATFORM AS A SERVICE: GOOGLE APP ENGINE

The Google cloud, called Google App Engine, is a ‘platform as a service’ (PaaS)
offering. In contrast with the Amazon infrastructure as a service cloud, where
users explicitly provision virtual machines and control them fully, including
installing, compiling and running software on them, a PaaS offering hides
the actual execution environment from users. Instead, a software platform
is provided along with an SDK, using which users develop applications and
deploy them on the cloud. The PaaS platform is responsible for executing the
applications, including servicing external service requests, as well as running
scheduled jobs included in the application. By making the actual execution
servers transparent to the user, a PaaS platform is able to share application
servers across users who need lower capacities, as well as automatically scale
resources allocated to applications that experience heavy loads.

Figure 5.2 depicts a user view of Google App Engine. Users upload code,
in either Java or Python, along with related files, which are stored on the
Google File System, a very large scale fault tolerant and redundant storage
system which we shall describe in detail in Chapter 10. It is important to note
that an application is immediately available on the internet as soon as it is

App
server

App
server

App
server

G
oo

gl
e

D
at

as
to

re

G
oo

gl
e

F
ile

 S
ys

te
m

G
A

E
 front-end

users code and files

Schedulers

M
em

ca
ch

e

G
A

E
 front-end

FIGURE 5.2. Google App Engine

5.2 Platform as a service: Google App Engine 57

successfully uploaded (no virtual servers need to be explicitly provisioned as
in IaaS).

Resource usage for an application is metered in terms of web requests served
and CPU-hours actually spent executing requests or batch jobs. Note that this
is very different from the IaaS model: A PaaS application can be deployed and
made globally available 24×7, but charged only when accessed (or if batch jobs
run); in contrast, in an IaaS model merely making an application continuously
available incurs the full cost of keeping at least some of the servers running
all the time. Further, deploying applications in Google App Engine is free,
within usage limits; thus applications can be developed and tried out free
and begin to incur cost only when actually accessed by a sufficient volume
of requests. The PaaS model enables Google to provide such a free service
because applications do not run in dedicated virtual machines; a deployed
application that is not accessed merely consumes storage for its code and data
and expends no CPU cycles.

GAE applications are served by a large number of web servers in Google’s
data centers that execute requests from end-users across the globe. The
web servers load code from the GFS into memory and serve these requests.
Each request to a particular application is served by any one of GAE’s web
servers; there is no guarantee that the same server will serve requests to
any two requests, even from the same HTTP session. Applications can also
specify some functions to be executed as batch jobs which are run by a
scheduler.

While this architecture is able to ensure that applications scale naturally
as load increases, it also means that application code cannot easily rely on
in-memory data. A distributed in-memory cache called Memcache is made
available to partially address this issue: In particular HTTP sessions are imple-
mented using Memcache so that even if requests from the same session go to
different servers they can retrieve their session data, most of the time (since
Memcache is not guaranteed to always retain cached data).

5.2.1 Google Datastore

Applications persist data in the Google Datastore, which is also (like Ama-
zon SimpleDB) a non-relational database. The Datastore allows applications
to define structured types (called ‘kinds’) and store their instances (called
‘entities’) in a distributed manner on the GFS file system. While one can
view Datastore ‘kinds’ as table structures and entities as records, there are

58 CLOUD COMPUTING PLATFORMS

CUST

ckey1
ckey2

CUST

ckey1
ckey1

ACCT

akey1
akey2

PROD

pkeyA
pkeyB

PROD

pkeyA

pkeyB

CUST

ckey3
ckey1

SELECT * FROM ACCTS

WHEREACCT.ckey= :ckey

SELECTPRODS.*, FEATURES.* FROM

PRODS, TXNS, FEATURES WHERE
TXNS=:ckeyAND PRODS.pkey=

TXNS.pkey
AND FEATURES.pkey=PRODS.pkey

Custs(db.Model):

…
Accts(db.Model):

cust=db.ReferenceProperty(Custs)

C=Custs(……)

A=Accts(….., parent=C)
A.cust=C

T=Txn(…., parent=C)
…SELECT * FROMCUSTS

WHERE CUSTS.name>=’B’
AND CUSTS.name <‘D’

ACCTS

CUSTS

TXNS

PRODS

Txns(db.Model):

cust=db.ReferenceProperty(Custs)
prod=db.ReferenceProperty(Prods)

C=Custs.get(ckey)
plist=[]

for cr in C.custprods_set:
plist.append(cr.prod)

C=Custs.get(ckey)

for act in C.accts_set:
….

Relational SQL Datastore

CREATE TABLE ACCTS …

CREATE TABLE CUSTS…
….

INSERT INTO ….
….

SELECT * FROM CUSTS

WHERE CUSTS.name>=’B’
AND CUSTS.name <‘D’

PROD

pkeyA
pkeyA

FEATURES

NAME VALUE

FIGURE 5.3. Google Datastore

important differences between a relational model and the Datastore, some of
which are also illustrated in Figure 5.3.

Unlike a relational schema where all rows in a table have the same set of
columns, all entities of a ‘kind’ need not have the same properties. Instead,
additional properties can be added to any entity. This feature is particularly
useful in situations where one cannot foresee all the potential properties in
a model, especially those that occur occasionally for only a small subset of
records. For example, a model storing ‘products’ of different types (shows,
books, etc.) would need to allow each product to have a different set of
features. In a relational model, this would probably be implemented using a
separate FEATURES table, as shown on the bottom left of Figure 5.3. Using
the Datastore, this table (‘kind’) is not required; instead, each product entity
can be assigned a different set of properties at runtime.

The Datastore allows simple queries with conditions, such as the first query
shown in Figure 5.3 to retrieve all customers having names in some lexico-
graphic range. The query syntax (called GQL) is essentially the same as SQL,
but with some restrictions. For example, all inequality conditions in a query

5.2 Platform as a service: Google App Engine 59

must be on a single property; so a query that also filtered customers on, say,
their ‘type’, would be illegal in GQL but allowed in SQL. The reasons for this
shall be explained in more detail in Chapter 10 where we describe the internal
structure of the Google Datastore.

Relationships between tables in a relational model are modeled using for-
eign keys. Thus, each account in the ACCTS table has a pointer ckey to the
customer in the CUSTS table that it belongs to. Relationships are traversed
via queries using foreign keys, such as retrieving all accounts for a particular
customer, as shown. The Datastore provides a more object-oriented approach
to relationships in persistent data. Model definitions can include references
to other models; thus each entity of the Accts ‘kind’ includes a reference to
its customer, which is an entity of the Custs ‘kind.’ Further, relationships
defined by such references can be traversed in both directions, so not only
can one directly access the customer of an account, but also all accounts of
a given customer, without executing any query operation, as shown in the
figure.

GQL queries cannot execute joins between models. Joins are critical when
using SQL to efficiently retrieve data from multiple tables. For example, the
query shown in the figure retrieves details of all products bought by a partic-
ular customer, for which it needs to join data from the transactions (TXNS),
products (PRODS) and product features (FEATURES) tables. Even though
GQL does not allow joins, its ability to traverse associations between entities
often enables joins to be avoided, as shown in the figure for the above exam-
ple: By storing references to customers and products in the Txns model, it
is possible to retrieve all transactions for a given customer through a reverse
traversal of the customer reference. The product references in each transac-
tion then yield all products and their features (as discussed earlier, a separate
Features model is not required because of schema flexibility). It is important
to note that while object relationship traversal can be used as an alternative
to joins, this is not always possible, and when required joins may need to be
explicitly executed by application code.

The Google Datastore is a distributed object store where objects (entities)
of all GAE applications are maintained using a large number of servers and
the GFS distributed file system. We shall cover this distributed storage archi-
tecture in detail in Chapter 10. From a user perspective, it is important to
ensure that in spite of sharing a distributed storage scheme with many other
users, application data is (a) retrieved efficiently and (b) atomically updated.
The Datastore provides a mechanism to group entities from different ‘kinds’
in a hierarchy that is used for both these purposes. Notice that in Figure 5.3

60 CLOUD COMPUTING PLATFORMS

entities of the Accts and Txns ‘kinds’ are instantiated with a parameter ‘par-
ent’ that specifies a particular customer entity, thereby linking these three
entities in an ‘entity group’. The Datastore ensures that all entities belonging
to a particular group are stored close together in the distributed file system
(we shall see how in Chapter 10). The Datastore allows processing steps to
be grouped into transactions wherein updates to data are guaranteed to be
atomic; however this also requires that each transaction only manipulates
entities belonging to the same entity group. While this transaction model suf-
fices for most on line applications, complex batch updates that update many
unrelated entities cannot execute atomically, unlike in a relational database
where there are no such restrictions.

5.2.2 Amazon SimpleDB

As we mentioned earlier in Section 5.1, Amazon SimpleDB is also a non-
relational database, in many ways similar to the Google Datastore. SimpleDB
‘domains’ correspond to ‘kinds’, and ‘items’ to entities; each item can have a
number of attribute-value pairs, and different items in a domain can have
different sets of attributes, similar to Datastore entities. Queries on Sim-
pleDB domains can include conditions, including inequality conditions, on
any number of attributes. Further, just as in the Google Datastore, joins are
not permitted. However, SimpleDB does not support object relationships as
in Google Datastore, nor does it support transactions. It is important to note
that all data in SimpleDB is replicated for redundancy, just as in GFS. Because
of replication, SimpleDB features an ‘eventual consistency’ model, wherein
data is guaranteed to be propagated to at least one replica and will eventually
reach all replicas, albeit with some delay. This can result in perceived incon-
sistency, since an immediate read following a write may not always yield the
result written. In the case of Google Datastore on the other hand, writes suc-
ceed only when all replicas are updated; this avoids inconsistency but also
makes writes slower.

5.3 MICROSOFT AZURE

Microsoft’s cloud offering, called Azure, has been commercially released to
the public only recently, though a community preview beta has been publicly

5.3 Microsoft Azure 61

available for longer. Thus, it is important to note that some elements of the
Azure platform are likely to change in future commercial editions.

Like the Google App Engine, Azure is a PaaS offering. Developers create
applications using Microsoft development tools (i.e. Visual Studio along with
its supported languages, C#, Visual Basic, ASPs, etc.); an Azure extension to
the standard toolset allows such applications to be developed and deployed
on Microsoft’s cloud, in much the same manner as developing and deploying
using Google App Engine’s SDK. There are also similarities with aspects of
Amazon’s IaaS offering, such as the use of virtualization, user control over
the number of virtual servers allocated to an application and user control on
elasticity. However, unlike the non-relational Google Datastore and Amazon
SimpleDB, the recently released commercial edition of Azure provides rela-
tional storage services, albeit with certain limitations as we cover below. Azure
also allows storage of arbitrary files and objects like Amazon S3 as well as a
queuing service similar to Amazon SQS.

Figure 5.4 illustrates a user’s view of Microsoft Azure. Application code
deployed on Azure executes in a number of virtual machines (called instances)
with each virtual machine running the Windows Server operating system.
While users do not have any control on when instances boot and how long
they stay up, they can specify the number of instances a particular application
is likely to require. (As of this writing, each virtual server runs on a dedicated

Web
role

Worker
roleIIS

Load balancer

Azure storage

Queues

Application instances (VMs)

Blobs
REST web
services

HTTP

SQL Data Services
(replaced by SQL Azure)

Tables

authorities

containers

entities with
properties

Access
control

Workflow

Service
bus

.NET services

FIGURE 5.4. Microsoft Azure

62 CLOUD COMPUTING PLATFORMS

CPU core, though this may change in the future.) Thus, Azure provides a
finer level of control on the resources to be allocated to an application as
compared to Google App Engine, but not to the extent of an IaaS offering
such as Amazon EC2.

Application code can be deployed on Azure as a web role or a worker role.
Code in web-role instances is run through a web server (Microsoft IIS) that
is included in the instance. Web roles respond to HTTP requests that are
automatically load balanced across application instances. Worker role code
can run as a batch process that can communicate with a web role through
Azure data storage, such as queues or tables. Worker role applications cannot
be accessed from an external network, but can make external HTTP requests,
either to worker roles or over the internet.

Azure data storage allows storage of blobs, non-relational tables (similar
to SimpleDB) as well as queues. In addition, an alternative database-storage
scheme was provided by SQL Data Services in the beta edition of Azure. SQL
Data Services are implemented on a number of clusters running Microsoft’s
SQL Server database, deployed in various Microsoft-owned data centers called
authorities. Each authority can host a number of containers, which are sim-
ilar to database tables. Applications access SQL Data Services at the level of
containers, through a global address scheme. Each container contains entities
which have properties, and like SimpleDB or Google Datastore, properties for
each entity can differ in type and number. Microsoft SQL Data Services was re-
branded as ‘SQL Azure’ in the commercial edition of Azure. The architecture of
authorities, containers and tables has been replaced by a traditional relational
model supported by Microsoft SQL Server. In particular this includes support
for joins between tables, transactions and other features of relational database.
However, as of this writing, each SQL Azure database is limited to under 10
GB in size. In case larger volumes of data need to be stored, multiple vir-
tual database instances need to be provisioned. Further, since cross-database
queries are not permitted, queries on larger data sets, including joins, need to
be implemented within application code. The SQL Azure model represents a
practical compromise between the limitations of non-relational models versus
a traditional relational database: Full relational queries are permitted, but only
on small data sets, which are likely to suffice for many of the early adopters
of cloud services.

In addition to compute and storage services, Microsoft Azure also provides
what are called .NET services. These include access control services that
provide globally configurable and accessible security tokens, a service bus that

5.3 Microsoft Azure 63

enables globally published service end points and a configurable web-service-
based workflow-orchestration service. Like SQL Data services and SQL Azure,
these are all based on Microsoft’s enterprise middleware products for identity
management and web services, deployed in the cloud on a distributed and
globally accessible platform.

As compared to Google’s PaaS offering, Microsoft Azure enjoys the advan-
tage of a large base of Microsoft applications already in use within enterprises.
From what was available in the community preview of Azure and its rapid
evolution in the commercial edition (such as the addition of full relational
database support, at least for small applications), it is likely to become even
easier to migrate existing Microsoft applications to Azure in the future. There-
fore it may well be that Microsoft Azure becomes a more popular PaaS platform
at least for large enterprises, as compared to Google’s App Engine.

CHAPTER 6

Cloud computing economics

One of the reasons for the growing interest in cloud computing is the popular
belief, propagated also by cloud providers, that by using public cloud offer-
ings one can significantly reduce IT costs. In this chapter we examine the
economics of cloud computing. Given that there are two varieties of cloud
offerings, infrastructure clouds as well as platform clouds, we consider infras-
tructure costs as well as possible advantages in a development environment,
including productivity. We look at cloud economics from the perspective of
the user, as well as from that of the cloud provider. We also compare the
economics of private and public clouds.

6.1 IS CLOUD INFRASTRUCTURE CHEAPER?

As of this writing, published rates for cloud infrastructure (using Amazon
EC2) start from $0.10 per CPU-hour of computing, and $0.10 per GByte
month of storage, for the smallest possible server configuration; larger servers
cost more per hour. In our example later in this chapter we shall use the
‘extra-large’ server costing $0.68 per CPU-hour. We shall compare this with
an actual purchase order for an equivalent server to examine whether and
to what extent cloud computing is cheaper than using equivalent in-house
infrastructure running within an enterprise data center.

The important driving factor for cloud economics is the way hardware
capacity is planned for and purchased. From an end-user perspective cloud

64

6.1 Is cloud infrastructure cheaper? 65

computing gives the illusion of a potentially infinite capacity with the ability to
rapidly leverage additional capacity when needed, and pay only for what one
consumes. Using a public cloud offering therefore obviates the need to plan
ahead for peak load and converts fixed costs into variable costs that change
with actual usage, thereby eliminating wastage. In contrast, provisioning for
peak capacity is a necessity within private data centers; and without ade-
quate scale there is limited opportunity to amortize capacity across different
applications, and so most data centers operate at ridiculously low average
utilizations of 5–20 percent!

6.1.1 IaaS economics

Let us consider, as a simple example, the ‘extra-large’ server on the Amazon
EC2 cloud that has 8 compute units, 15 GB of memory and 1600 GB of disk. As
mentioned earlier, such an instance costs $0.68 per CPU-hour. Now consider
purchasing an equivalent server for in-house deployment: Based on recent
experience, an x86 server with 3 quad-core CPUs (i.e. 12 processing cores),
12 GB of memory and 300 GB of disk cost $9500.

Let us compare the costs of running the in-house server for three years,
or 26 260 hours, as compared with running an equivalent ‘extra-large’ server
in Amazon EC2; Table 6.1 summarizes our calculations, as worked out in
detail below: At a $9500 purchase price, the price of an in-house server is
$0.36 per-hour over its life cycle; or $0.03 per core-hour. On the other hand,
we find that the price of a core-hour on an EC2 server is $0.085 (0.68/8,
since the large server has 8 cores), which is 2.82 times more expensive than
the in-house server. Even if we discount the fact that the in-house server
has 12 cores compared to the EC2 server’s 8 cores, which is actually jus-
tifiable given the larger memory and disk of the EC2 server, we find the
per-hour price of an ‘extra-large’ EC2 server to be 1.88 times the in-house
server.

So it seems that the cloud server is more expensive. But now consider
the fact that most servers in the data center are heavily underutilized, say
only 40 percent, whereas cloud usage can be easily scaled up or down with
demand and therefore enjoys a far higher utilization, say 80 percent. Factoring
this in, the cost per-hour of effective capacity in-house becomes $0.90 (i.e.,
$0.36/0.4), essentially the same that for a server deployed in the cloud (i.e.,
$0.85 = $.68/0.8). Further, power and cooling for an in-house server over its
lifetime is at least as much as the amortized base price of the server ($0.36

66 CLOUD COMPUTING ECONOMICS

TABLE 6.1 Infrastructure cloud economics

In-house server Cloud server

Purchase cost $9600
Cost/hr (over 3 yrs) $0.36 $0.68
Price: Cloud/In-house 1.88
Efficiency 40% 80%
Cost/Effective-hr $0.90 $0.85
Power and cooling $0.36
Management cost $0.10 $0.01

Total Cost/Effective-hr $1.36 $0.86

Cost ratio: In-house/Cloud 1.58

per-hour), and often more; so in Table 6.1 we assume that power and cooling
adds an extra $0.36 per-hour for the in-house server.

Next, we consider manpower costs for infrastructure management, i.e.
tasks such as taking backups, monitoring and periodic maintenance. In prac-
tice, with the kind of automation used in cloud data centers, infrastructure
management costs follow a power-law1; so the number of servers n that p peo-
ple can manage is proportional to p2. While an in-house data center can, in
principle, achieve similar efficiencies in infrastructure management as cloud
data centers, it is unlikely to be able to operate at the same scale. It has been
found that the manpower costs of managing a very large data center, say a
few hundred thousand servers, can be as low as $0.01 per-hour per server,
whereas a smaller data center with only a few thousand servers would spend
$0.1 per-hour on each server.

Now, consider an enterprise that runs thousands of servers in the cloud as
opposed to in-house. To a large extent, the cloud provider is already managing
these servers, and the management costs have been built into the per-hour
price of a server. So theoretically, the enterprise incurs no cost for managing
cloud servers. Nevertheless, even if we assume that there is still some cost
incurred on the part of an enterprise to manage cloud-based servers, it will be
far less than for the servers deployed in-house. For our calculations we assume
that an in-house data center comprises of thousands of servers costing $0.1
per-hour per server to manage, while the cost incurred by an enterprise to

1 Private communication, using US salary costs.

6.2 Economics of private clouds 67

manage cloud-based servers is taken as $0.01 per-hour per server, based on
the power-law behavior of management costs as described above.

Table 6.1 summarizes our calculations including utilization efficiencies,
power and cooling, as well as management costs. With all costs factored
in, it now appears that the cloud server in EC2 has a clear cost advantage
(almost factor of 1.6) over the in-house server. (A similar example has been
described in [4]; however we have found some calculation errors in that
example, though the conclusion therein is similar to ours here.) Note that
for our analysis we have assumed a large in-house data center (thousands
of servers) running at an efficiency of 40 percent. In practice, the benefits
of cloud computing will be even greater for smaller data centers running at
more typical efficiencies in the range of 20 percent, and where infrastructure
management costs begin to outweigh server costs.

We do not go into the details of comparing storage and network costs
in-house vs. the cloud. Instead we refer to [4], where it is shown that in-
house storage is only 20–50 percent cheaper than on Amazon S3. When
one additionally considers the fact that that cloud storage on S3 is automati-
cally replicated at least three times, the total cost of ownership works out far
cheaper in the cloud. The equation for network bandwidth is similar; network
costs are simply two to three times cheaper in the cloud [4].

6.2 ECONOMICS OF PRIVATE CLOUDS

It may appear that the economics worked out in the previous section is
based on an assumption of poor utilization for an in-house data center. It
is often argued that using virtualization and automatic provisioning tech-
nologies in-house it should be possible to create a private cloud where these
inefficiencies would disappear and the benefits of cloud computing could be
achieved on premise. The availability of open source software such as Eucalyp-
tus (see Chapter 17), which essentially enables Amazon EC2-like automated
provisioning, means that such an approach is also quite feasible. Let us ana-
lyze the economics of such private clouds in more detail and see how they
compare with costs using public clouds:

Let di(t) be the computing demand of the ith application running in an
enterprise at time t, the aggregate demand D(t) = ∑

i di(t), and the peak
demand be Dmax = maxt D(t). The relationship between D(t) and Dmax can
vary widely depending on the relative operational profiles of the set of appli-
cations, as illustrated in Figure 6.1. If the peaks and troughs of different

68 CLOUD COMPUTING ECONOMICS

di(t)

D(t)

Dmax

V(t)

private cloud over-provisioning: worst case

private cloud over-provisioning: best casepublic cloud
over-provisioning

FIGURE 6.1. Over provisioning in private clouds

applications are highly correlated, as in the left illustration in the figure, D(t)
can vary widely from the peak; on the other hand if there is little or no cor-
relation on the average, and for a large number of applications, D(t) may be
smooth and quite close to Dmax , as shown in the right illustration in the figure.

Now let us also assume that we have managed to create a highly virtualized
environment within the data center where the actual resources provisioned
for use (i.e. powered up and allocated) can vary dynamically and automati-
cally over time. More specifically, let δ be the time delay to provision extra
computing resources on demand. Clearly, in cases where the provisioning
rate 1/δ is far smaller than the rate of change of demand dD/dt, there is no
benefit of dynamic virtual provisioning and one may just as well provision the
peak capacity Dmax at all times. We consider the case when δ is small, so that
the provisioned capacity can closely track demand, as illustrated by the curve
V(t) in the figure. Note that because of the provisioning delay δ, some excess
virtual capacity always needs to be provisioned in order to ensure adequate
capacity to meet demand; and this is proportional to the rate of change of
demand, so the virtual capacity needed at time t is

V(t) = D(t) + δ
dD

dt
. (6.1)

The total virtual capacity provisioned over a time interval T is therefore

V =
∫

T

(
D(t)dt + δ

dD

dt

)
= DT + δ(Dmax − Dmin), (6.2)

where DT is the area under the demand curve D(t).

6.2 Economics of private clouds 69

Now, let us compare the costs incurred in a private cloud versus using
a public cloud. For an in-house data center, the total physical capacity that
needs to be purchased must meet the peak demand Dmax ; thus if the amortized
cost per hour of this CPU purchase is c, this entails a cost of cTDmax . On the
other hand, consider using a public cloud service whose price is 2c per CPU
hour, then the cost would be 2cV. (The factor of two comes from our earlier
calculations, see Table 6.1 where the cloud server price per-hour is 1.88 times
the purchase price of an in-house server amortized over three years.) We also
need to factor in power costs, which are included in the cloud price but must
be paid for in-house: Suppose the amortized power cost is p per computing
hour, then the total power cost is at least pV, assuming servers that are not
used can be completely turned off so as to consume no power. Then, the
ratio of in-house costs to that of an equivalent cloud infrastructure can be
approximated as:

Cprivate

Cpublic
= cDmaxT + pV

2cV
. (6.3)

Further, for simplicity we shall assume that p = c, as has often been observed
in practice [4]. Using (6.2), the expression (6.3) above works out to

Cprivate

Cpublic
= 1

2DT
TDmax

+
(

1 − Dmin

Dmax

)
2δ

T

+ 1

2
. (6.4)

To verify our result, note that with perfect amortization of capacity across
demand DT = TDmax and Dmax = Dmin and there is no difference between
private and public cloud costs.

However, in practice typical transaction processing loads can vary by fac-
tors of 5 or 10 in the course of each day, and by orders of magnitude at peak
times of the year. Further the demand profile for many business-facing appli-
cations in the same enterprise is likely to be similar, so in practice usually
Dmax � Dmin and DT � TDmax , so public cloud wins as per our calculation
above.

Equation (6.4) quantifies the benefits of elasticity, i.e. the ability to rapidly
provision resources that one needs and pay only for these. Our analysis shows
that even if one manages to improve utilizations in the data center through vir-
tualization, because of critical applications that consume significant resources
and need to be provisioned for peak load, the potential benefits of virtual-
ization are rarely realized fully. In practice, over provisioning of capacity

70 CLOUD COMPUTING ECONOMICS

will always be required; and more so in-house because of the above reason.
Figure 6.1 illustrates the degree of over provisioning needed in a private versus
a public cloud.

6.2.1 Economics of PaaS vs. IaaS

We now compare the IaaS and PaaS cloud models from an economic perspec-
tive: The PaaS model, exemplified by the Google App Engine and Microfsoft
Azure cloud offerings, can exhibit economic advantages as compared to an
IaaS model for certain classes of applications. Consider a web application
that needs to be available 24×7, but where the transaction volume is highly
unpredictable, and can vary rapidly. Using an IaaS cloud, a minimal number
of servers would need to be provisioned at all times to ensure availability of
the web service.

In contrast, with a PaaS model such as Google App Engine, merely deploy-
ing the application costs nothing. Thus an application can be made 24×7
available with no cost. As usage increases beyond the free limits, charges
begin to be incurred, and a well-engineered application scales automatically
to meet the demand. As soon as demand drops, resources are no longer con-
sumed and no charges are incurred. (Microsoft Azure does charge based on
resources consumed, so the above argument does not directly apply.)

Further, since provisioning additional servers for an application takes a
finite amount of time, say a few minutes, the minimum capacity provisioned
in IaaS needs to account for this delay by planning and paying for excess
capacity even in the cloud environment (the dotted line in Figure 6.1 corre-
sponding to V(t)). With a PaaS platform such as Google App Engine, a large
number of web servers catering to the platform are always running, so every
user’s application code is available to all servers via the distributed file sys-
tem. Sudden spikes in demand are automatically routed to free web servers
by the load balancer, ensuring minimal performance degradation; the only
additional overhead incurred is that of loading code and data from the file
system when such a web server handles a request to a new application for the
first time.

Thus, for low or variable-volume web-based services PaaS is a cheaper
alternative, provided one is willing to re-architect or rebuild applications for
the non-standard data formats provided by these platforms (both Google App
Engine as well as Microsoft Azure). For heavier, back-end applications (such
as those behind web front ends, or for batch processing), IaaS is better suited.

6.3 Software productivity in the cloud 71

It is possible that a combination of PaaS and IaaS may be a viable architecture
in certain cases, with PaaS providing the web front end and IaaS provisioning
processing power when needed.

6.3 SOFTWARE PRODUCTIVITY IN THE CLOUD

The infrastructure needs for developing and testing enterprise applications
are different from those of a production environment, for example data secu-
rity requirements are lower. At the same time the variability of demand is
high, with new development servers being required for each project, many
of which become redundant once the application is released to production.
In this particular case, infrastructure demands from different development
projects are likely to be largely uncorrelated, so virtualization is likely to
succeed in improving utilizations. However, the time for provisioning and
configuring a development environment can often become a significant over-
head in many large organizations due to procurement and ITIL procedures.2

For agile business environments where new development projects are initi-
ated regularly, such delays can become an obstacle and impact IT agility. In
such cases leveraging a public cloud infrastructure for development and test-
ing can be fast, cost effective as well as low risk, thereby improving business
agility by reducing delays while starting new IT projects.

Along with development and testing, designing applications for good per-
formance requires stress testing early in the development life cycle, preferably
on a production-capacity hardware configuration. This is often difficult, espe-
cially early in the development cycle, simply because of non-availability of
such an environment for testing purposes. Production capacity configurations
are expensive so it is not cost effective to invest in spare capacity at this scale
for occasional performance testing needs. Using public cloud infrastructure a
production class infrastructure can be provisioned on demand and disbanded
once performance testing is complete.

Apart from agility and availability, software development using public
cloud infrastructure is also often better suited to supporting globally dis-
tributed development teams. The public cloud enables such teams to rely on
a ‘central’ build infrastructure that is easily accessible over the internet; thus
no one part of the team is naturally more advantageously placed in terms of

2 Procedures based on the ‘information technology infrastructure library’ standard.

72 CLOUD COMPUTING ECONOMICS

being physically ‘closer’ to the build servers. It is often underestimated how
important such democratization is in terms of driving team dynamics; groups
physically co-located with the build environment often have higher access
privileges or at least experience better network performance than others,
thereby making them ‘more fit’ than the rest of the team for certain devel-
opment tasks. Using the public cloud one eliminates such artificial barriers
(at the risk of reducing everyone to the lowest common denominator of inter-
net bandwidth!). Such teams can better leverage geographically distributed
talent as well be more flexible in moving work around the world by ‘following
the sun’ to leverage time zone differences to their advantage.

So far we have considered public IaaS clouds and how they may impact
software development. PaaS clouds provide development tools using which
developers can create applications; we now examine whether these also impact
development productivity in some manner. It is important to reemphasize that
both (Google as well as Microsoft) PaaS platforms are unique in comparison
to widely used development tools: They both rely on a non-relational data
model which impacts portability of applications to these platforms from other
more standard ones. Also, both platforms build in scalability so that develop-
ers do not need to be concerned about how many servers their application
will run on, how the different components of the application will execute
in parallel using multiple servers or how data will be distributed. Develop-
ers are supposed to write to the platform APIs, and scaling will be managed
automatically by the cloud.

The economic benefits of automatic scalability are significant: It is
widely accepted in the software industry that end-to-end development pro-
ductivity in ‘mission critical’ projects where high transaction volumes and
scalability are critical is demonstrably lower. Moreover the difference in pro-
ductivity is often a factor of two or more, as compared to smaller ‘departmental’
level projects where such concerns are not as important. If indeed cloud plat-
forms are able to factor out scalability and make it a feature of the platform
itself, then this itself can result in an order of magnitude improvement in
productivity for large-scale systems. However, it is equally important to note
that this claim that has yet to be proven given that it is still early days for
cloud computing and even more so for PaaS platforms.

Finally, a certain class of cloud-based offerings, ‘configurable SaaS plat-
forms,’ allow the creation of small to medium-sized business applications
with little or no programming. An example is Salesforce.com’s APEX devel-
opment environment, now called Force.com. We refer to these as Dev 2.0
platforms and cover them in detail in Chapter 12. While these are also software

6.4 Economies of scale: public vs. private clouds 73

development platforms, they are are constrained to a particular class of appli-
cations, i.e. web-based transaction processing. Therefore as a class of cloud
offerings these are more accurately labeled SaaS platforms for specific types
of application development, unlike the more versatile PaaS platforms where a
full programming language is available. Nevertheless, for this widely required
class of systems, Dev 2.0 platforms also promise at least an order of magnitude
improvement in development productivity, as we shall see in Chapter 12.

6.4 ECONOMIES OF SCALE: PUBLIC VS. PRIVATE CLOUDS

We now return to our discussion on infrastructure costs. We have argued that
public cloud services can be cheaper than using similar virtualized infrastruc-
ture in-house. One needs to ask how this has become possible while also
allowing for profit margins. Amortizing capacity across demand from a large
number of customers enables better utilizations, but surely this alone cannot
be the basis for a profitable cloud business.

From the perspective of cloud providers, the primary advantage they enjoy
is scale: First, purchasing hardware, network capacity and storage is three
to seven times cheaper at a scale of tens or hundreds of thousands of servers
versus that at a scale of a medium-sized enterprise data center, i.e. a few
thousand servers or less. Second, they have been able to amortize the cost of
server administration over a larger number of servers as well as reduce it with
high levels of automation, also estimated to result in a factor of seven gain.
Next, the cloud providers are all leveraging significantly lower power costs
(by up to a factor of three) by locating their data centers in power-producing
regions, such as Idaho and Washington in the US. Finally, cloud providers
are able to enjoy far higher degrees of server utilization, say 60–80 percent,
as compared to smaller data centers, by multiplexing the needs of a large
number of users across the available capacity.

Last but not least, it is very important to understand that the leading cloud
providers, viz. Google and Amazon, developed these capabilities for other
businesses (search, retail), and so, there was very little marginal investment
involved in adapting this infrastructure for providing cloud services and open-
ing up a new business model. Very few, if any, enterprises have the size to
leverage such large economies of scale; and if they did it is likely that they
may begin making available some of this infrastructure as yet another public
cloud. After all, Amazon has for many years been a retail company first, and
only now is it becoming equally known for cloud computing!

74 CLOUD COMPUTING ECONOMICS

To summarize cloud computing economics, we can comfortably state
that cloud infrastructure services promise significant cost reductions even
as compared to privately deployed cloud infrastructure. The agility of cloud
infrastructure management provides additional benefits, especially so in the
context of agile development. Further, cloud development platforms promise
an order of magnitude improvement in development productivity for large-
scale high-performance applications, and finally Dev 2.0 platforms promise
a similar order of magnitude improvement in productivity for small and
medium applications, albeit so far limited to the small but important class
of transaction-processing applications.

PART III

Cloud technologies

A few technologies have been crucial in enabling the development and use of
cloud platforms. Web services allow applications to communicate easily over
the internet: Composite applications are easily assembled from distributed
web-based components using ‘mashups.’ If there is one technology that has
contributed the most to cloud computing, it is virtualization. By decoupling
the software platform from hardware resources, virtualization enables massive
cloud data centers to function seamlessly in a fault-tolerant manner. Similarly,
multi-tenancy allows the same software platform to be shared by multiple
applications, and can thus be looked upon as application-level virtualization.
Multi-tenancy is critical for developing software-as-a-service applications and
Dev 2.0 platforms.

CHAPTER 7

Web services, AJAX and
mashups

The internet is based on a universally accepted set of protocols, HTTP, DNS,
and TCP/IP, that provide the foundation for web-based cloud computing
offerings. In this chapter we examine three critical web-based technologies
at the next level of granularity that have been instrumental in improving
the usability of web-based applications: Web services are used to request for
and access infrastructure services in the cloud; AJAX-based user interfaces
allow web-based applications to be user friendly; finally mashups bring a new
dimension to software as a service by enabling users to compose multiple SaaS
applications into a single user interface.

7.1 WEB SERVICES: SOAP AND REST

We have discussed the genesis and evolution of web services briefly in
Chapter 2. Here we give a brief technical overview of both SOAP/WSDL and
REST-based web services, and also compare these in the context of their util-
ity in building cloud-based offerings. For a more detailed description of web
services protocols, see [30].

77

78 WEB SERVICES, AJAX AND MASHUPS

7.1.1 SOAP/WSDL Web services

SOAP/WSDL web services evolved from the need to programmatically inter-
connect web-based applications. As a result SOAP/WSDL web services are
essentially a form of remote procedure calls over HTTP, while also includ-
ing support for nested structures (objects) in a manner similar to earlier
extensions of RPC, such as CORBA; we shall return to this point later.

The elements of a SOAP/WSDL web service are illustrated in Figure 7.1,
using as an example the service provided by Google for searching the web.
A client application can invoke this web service by sending a SOAP request
in XML form, as illustrated at the bottom left of the figure, to the desig-
nated service URL. The specifications of the service, including the service
URL and other parameters, are made available by the service provider (in
this case Google) as another XML file, in WSDL1 format, as illustrated in the
rest of the figure. The WSDL file specifies the service endpoint, i.e. the URL
that responds to SOAP requests to this web service, as shown in the bottom
right of the figure. Above this are a number of port types, within which are
listed the operations (functions, methods) that are included in this service,
along with their input and output parameter types; for example the opera-
tion doGoogleSearch has input and output messages doGoogleSearch and
doGoogleSearchResponse respectively. The types of these messages are also
specified in detail in the WSDL file, as XML schemas. For example in the
case of a doGoogleSearch operation, the input messages are composed
of simple types (i.e. strings, etc.), whereas the output, i.e. search result, is a
complex type comprising of an array of results whose schema is also specified
in the WSDL (not shown in the figure). Finally, the WSDL binding links these
abstract set of operations with concrete transport protocols and serialization
formats.

SOAP documents, i.e. the XML messages exchanged over HTTP, com-
prise of a body (as shown in bottom left of the figure) as well as an optional
header that is an extensible container where message layer information can
be encoded for a variety of purposes such as security, quality of service,
transactions, etc. A number of WS-* specifications have been developed to
incorporate additional features into SOAP web services that extend and uti-
lize the header container: For example, WS-Security for user authentication,
WS-Transactions to handle atomic transactions spanning multiple service

1 WSDL: web service definition language.

<
!-

-B
in

di
ng

 f
or

 G
oo

gl
e

 W
e

b
A

P
Is

 -
R

P
C

,
S

O
A

P
 o

ve
r H

T
T

P
 -

->

<
bi

nd
in

g
na

m
e

=
"G

oo
gl

e
S

e
ar

ch
B

in
di

ng
"

ty
pe

=
"t

yp
e

ns
:G

oo
gl

e
S

e
ar

ch
P

or
t"

>
<

so
ap

:b
in

di
ng

st
yl

e
=

"r
pc

"
tr

an
sp

or
t=

"h
ttp

:/
/s

ch
e

m
as

.x
m

ls
oa

p.
or

g/
so

ap
/h

ttp
"

/>

<
op

e
ra

tio
n

na
m

e
=

"d
oG

oo
gl

e
S

e
ar

ch
">

<
so

ap
:o

pe
ra

tio
ns

oa
pA

ct
io

n=
"u

rn
:G

oo
gl

e
S

e
ar

ch
A

ct
io

n"
 />

<

in
pu

t>
<

so
ap

:b
od

yu
se

=
"e

nc
od

e
d"

 n
am

e
sp

ac
e

=
"u

rn
:G

oo
gl

e
S

e
ar

ch
"

e
nc

od
in

gS
ty

le
=

 …
/>

<

/in
pu

t>
… <
/o

pe
ra

tio
n>

…
..

<
/b

in
di

ng
>

<
!-

-E
nd

po
in

t
fo

r
G

oo
gl

e
 W

e
b

A
P

Is
 -

->

<
se

rv
ic

e
 n

am
e

=
"G

oo
gl

e
S

e
ar

ch
S

e
rv

ic
e"

>
<

po
rt

 n
am

e
=

"G
oo

gl
e

S
e

ar
ch

P
or

t"
 b

in
di

ng
=

"t
yp

e
ns

:G
oo

gl
e

S
e

ar
ch

B
in

di
ng

">
<

so
ap

:a
dd

re
ss

lo
ca

tio
n=

"h
ttp

:/
/a

pi
.g

oo
gl

e
.c

om
/s

e
ar

ch
/b

e
ta

2
"

/>

<
/p

or
t>

<
/s

e
rv

ic
e

>
<

/d
e

fin
iti

on
s>

<
de

fin
iti

on
s

na
m

e
=

"G
oo

gl
e

S
e

ar
ch

"
ta

rg
e

tN
am

e
sp

ac
e=

"u
rn

:G
oo

gl
e

S
e

ar
ch

“
 …

.>
<

!-
-T

yp
e

s
fo

r
se

ar
ch

 -
re

su
lt

e
le

m
e

nt
s,

 d
ir

e
ct

or
y

ca
te

go
ri

e
s

--
>

<

ty
pe

s>
<

xs
d:

sc
he

m
ax

m
ln

s=
 …

>
<

xs
d:

co
m

pl
e

xT
yp

en
am

e
=

"G
oo

gl
e

S
e

ar
ch

R
e

su
lt"

>
<

xs
d:

al
l>

<
xs

d:
e

le
m

e
nt

na
m

e
=

"r
e

su
ltE

le
m

e
nt

s"
 t

yp
e

=
"t

yp
e

ns
:R

e
su

ltE
le

m
e

nt
A

rr
ay

"
/>

<

xs
d:

e
le

m
e

nt
na

m
e

=
"s

e
ar

ch
Q

ue
ry

"
ty

pe
=

"x
sd

:s
tr

in
g"

 /
>

…

.
<

/x
sd

:a
ll>

…
.

<
/ty

pe
s>

<
!-

-M
e

ss
ag

e
s

fo
r G

oo
gl

e
 W

e
b

A
P

Is
 -

…
.-

->

<
m

e
ss

ag
e

 n
am

e
=

"d
oG

oo
gl

e
S

e
ar

ch
">

<
pa

rt
 n

am
e

=
"k

e
y"

 t
yp

e
=

"x
sd

:s
tr

in
g"

 />

<
pa

rt
 n

am
e

=
"q

"
ty

pe
=

"x
sd

:s
tr

in
g"

 /
>

…

..
<

!-
-P

or
t f

or
 G

oo
gl

e
 W

e
b

A
P

Is
,

"G
oo

gl
e

S
e

ar
ch

"
--

>

<
po

rt
T

yp
en

am
e

=
"G

oo
gl

e
S

e
ar

ch
P

or
t"

>
<

op
e

ra
tio

n
na

m
e

=
"d

oG
oo

gl
e

S
e

ar
ch

">
<

in
pu

t m
e

ss
ag

e
=

"t
yp

e
ns

:d
oG

oo
gl

e
S

e
ar

ch
"

/>

<
ou

tp
ut

 m
e

ss
ag

e
=

"t
yp

e
ns

:d
oG

oo
gl

e
S

e
ar

ch
R

e
sp

on
se

"
/>

<

/o
pe

ra
tio

n>
<

/p
or

tT
yp

e>
…

.

W
S

D
L

S
er

vi
ce

/P
or

ts

P
or

tT
yp

es

M
es

sa
ge

s

O
pe

ra
tio

ns

B
in

di
ng

s

Ty
pe

s
“G

oo
gl

eS
ea

rc
hR

es
ul

t”

“d
oG

oo
gl

eS
ea

rc
h”

“d
oG

oo
gl

eS
ea

rc
h”

“G
oo

gl
eS

ea
rc

hP
or

t”

“G
oo

gl
eS

ea
rc

hB
in

di
ng

”

“G
oo

gl
eS

ea
rc

hS
er

vi
ce

”

<
?x

m
l v

e
rs

io
n=

"1
.0

"
e

nc
od

in
g=

"U
T

F
-8

"
?>

<

S
O

A
P

-E
N

V
:E

nv
e

lo
pe

xm
ln

s:
S

O
A

P
-E

N
V

=
ht

tp
:/

/
 …

/>
<

S
O

A
P

-E
N

V
:B

od
y>

<
ns

1
:d

oG
oo

gl
e

S
e

ar
ch

 x
m

ln
s:

ns
1

=
"u

rn
:G

oo
gl

e
S

e
ar

ch
"

…
.>

<
ke

yx
si

:ty
pe

=
"x

sd
:s

tr
in

g"
>

…
…

<
/k

e
y>

<

qx
si

:ty
pe

=
"x

sd
:s

tr
in

g"
>

C
lo

ud
 C

om
pu

tin
g<

/q
>

… <

/n
s1

:d
oG

oo
gl

e
S

e
ar

ch
>

<
/S

O
A

P
-E

N
V

:B
od

y>
<

/S
O

A
P

-E
N

V
:E

nv
e

lo
pe

>

S
er

vi
ce

pr
ov

id
er

S
O

A
P

m
e

ss
ag

e

ht
tp

://
ap

i.g
oo

g
le

.c
om

/s
ea

rc
h/

be
ta

2

 SOAP client

FI
G

U
RE

7.
1.

SO
AP

/W
SD

L
W

eb
Se

rv
ic

e

79

80 WEB SERVICES, AJAX AND MASHUPS

requests across multiple service providers, WS-Resource Framework enabling
access to resource state behind a web service (even though each web service
is inherently stateless) and WS-Addressing to allow service endpoints to be
additionally addressed at the messaging level so that service requests can be
routed on non-HTTP connections (such as message queues) behind an HTTP
service facade, or even for purely internal application integration.

The origin of the rather complex structure used by the SOAP/WSDL
approach can be traced back to the RPC (remote procedure call) standard
and its later object oriented variants, such as CORBA. In the original RPC
protocol (also called SUN RPC), the client-server interface would be spec-
ified by a <..>.x file, from which client and server stubs in C would be
generated, along with libraries to handle complex data structures and data
serialization across machine boundaries. In CORBA, the .x files became IDL
descriptions using a similar overall structure; Java RMI (remote method invo-
cation) also had a similar structure using a common Java interface class to
link client and server code. SOAP/WSDL takes the same approach for enabling
RPC over HTTP, with WSDL playing the role of .x files, IDLs or interface
classes.

7.1.2 REST web services

Representational State Transfer (REST) was originally introduced as an archi-
tectural style for large-scale systems based on distributed resources, one of
whose embodiments is the hypertext driven HTML-based web itself. The use
of REST as a paradigm for service-based interaction between application pro-
grams began gaining popularity at about the same time as, and probably in
reaction to, the SOAP/WSDL methodology that was being actively propagated
by many industry players at the time, such as IBM and Microsoft.

REST web services are merely HTTP requests to URIs,2 using exactly
the four methods GET, POST, PUT and DELETE allowed by the HTTP
protocol. Each URI identifies a resource, such as a record in a database.
As an example, consider accessing a customer record with the REST ser-
vice http://x.y.com/customer/11998, which returns the record in
XML format. In case the record contains links (foreign keys) to related

2 See Chapter 2.

7.1 Web services: SOAP and REST 81

records, such as the customer’s accounts or address, links to these are embed-
ded in the returned XML, such as http://x.y.com/account/334433.
Alternatively, these links might be directly accessed via a REST service
http://x.y.com /customer/11998/accounts. The client applica-
tion merely accesses the URIs for the resources being managed in this ‘RESTful’
manner using simple HTTP requests to retrieve data. Further, the same mech-
anism can allow manipulation of these resources as well; so a customer
record may be retrieved using a GET method, modified by the client pro-
gram, and sent back using a PUT or a POST request to be updated on the
server.

Figure 7.2 illustrates REST web services with the above example as well as
two real-life examples using Yahoo! and Google, both of whom also provide a
REST web service interface to their core search engine. Notice that the URLs
of these search services include parameters (appid and query for Yahoo!, ver
and q for Google); strictly speaking these service definitions deviate from the
‘strong’ REST paradigm, where resources are defined by pure URIs alone. In
principle, such purity could have easily been maintained: Note that version
is part of the URI in the Yahoo! service while it is a parameter in the case of
Google, which need not have been the case; the input URL would simply need
to have been processed differently. In practice however, the use of parameters
in REST services has now become widespread.

Note that while the Yahoo! service returns XML, the Google Service
returns JSON (JavaScript Serialized Object Notation). A JSON string is sim-
ply a piece of JavaScript code that defines a ‘map’3 data structure in that
language. The advantage of using JSON is that XML parsing is avoided;
instead, the response string is simply evaluated by client-side JavaScript
code (e.g. res=eval(response)). In the case of our Google service,
this would allow the results to be accessed directly from JavaScript, so that
res["responseData"]["results"][0]["url"] returns the first
result URL, etc. As far as REST is concerned, this is perfectly legal since
in theory any allowable internet media types, such as HTML, XML, text, pdf
or doc, can be exchanged via a REST service. Finally, we mention in passing
that client and server authentication is easily handled in REST just as with
normal HTML web pages by using SSL (i.e. HTTPS).

3 A set of key-value pairs, for example {‘a’:1, ‘b’:2}.

<
?x

m
l v

e
rs

io
n=

"1
.0

"
e

nc
od

in
g=

"U
T

F
-8

"
?>

<

R
e

su
ltS

e
tx

m
ln

s:
xs

i=
"h

ttp
:/

/w
w

w
.w

3
.o

rg
/2

0
0

1
/X

M
L

S
ch

e
m

a-
in

st
an

ce
"

…
.

to
ta

lR
e

su
lts

A
va

ila
bl

e=
"1

1
1

0
0

0
0

0
0

"
to

ta
lR

e
su

lts
R

e
tu

rn
e

d=
"1

0
"

f
…

.>
<

R
e

su
lt>

<
T

itl
e

>
C

lo
ud

 c
om

pu
tin

g
-W

ik
ip

e
di

a,
 th

e
 f

re
e

 e
nc

yc
lo

pe
di

a<
/T

itl
e

>

<
S

um
m

ar
y>

C
lo

ud
 c

om
pu

tin
g

se
rv

ic
e

s
of

te
n

pr
ov

id
e

 c
om

m
on

 b
us

in
e

ss
ap

pl
ic

at
io

ns
 o

nl
in

e
 th

at
 .

..

<
/S

um
m

ar
y>

<

U
rl

>
ht

tp
:/

/e
n.

w
ik

ip
e

di
a.

or
g/

w
ik

i/C
lo

ud
_

co
m

pu
tin

g<
/U

rl
>

<

C
lic

kU
rl

>
ht

tp
:/

/e
n.

w
ik

ip
e

di
a.

or
g/

w
ik

i/C
lo

ud
_

co
m

pu
tin

g<
/C

lic
kU

rl
>

<

D
is

pl
ay

U
rl

>
e

n.
w

ik
ip

e
di

a.
or

g/
w

ik
i/C

lo
ud

_
co

m
pu

tin
g<

/D
is

pl
ay

U
rl

>

<
M

od
ifi

ca
tio

nD
at

e>
1

2
5

0
7

5
1

6
0

0
<

/M
od

ifi
ca

tio
nD

at
e>

<M

im
e

T
yp

e>
te

xt
/h

tm
l<

/M
im

e
T

yp
e>

<

C
ac

he
>

… <
/C

ac
he

>
<

/R
e

su
lt>

<
R

e
su

lt>
<

T
itl

e
>

C
lo

ud
 C

om
pu

tin
g

Jo
ur

na
l<

/T
itl

e
>

<

S
um

m
ar

y>
T

he
 P

e
op

le
 C

lo
ud

 C
om

pu
tin

g
F

or
go

t.V
M

W
ar

e
's

V
ir

tu
al

 …

"P
la

tin
um

 S
po

ns
or

”…
<

/S
um

m
ar

y>

<
U

rl
>

ht
tp

:/
/c

lo
ud

co
m

pu
tin

g.
sy

s-
co

n.
co

m
/<

/U
rl

>

… <
/R

e
su

lt>

ht
tp

:/
/s

e
ar

ch
.y

ah
oo

ap
is

.c
om

/W
e

bS
e

ar
ch

S
e

rv
ic

e
/V

1
/w

e
bS

e
ar

ch
?a

pp
id

=
Y

ah
oo

D
e

m
o&

qu
e

ry
=

C
lo

ud
%

2
0

C
om

pu
tin

g

{"
re

sp
on

se
D

at
a"

:
{"

re
su

lts
":

[{"
G

se
ar

ch
R

e
su

ltC
la

ss
":

"G
w

e
bS

e
ar

ch
",

"u
rl

":
"h

ttp
:/

/e
n.

w
ik

ip
e

di
a.

or
g/

w
ik

i/C
lo

ud
_

co
m

pu
tin

g"
,

"t
itl

e
N

oF
or

m
at

tin
g"

:"
C

lo
ud

co

m
pu

tin
g

-W
ik

ip
e

di
a,

 th
e

 f
re

e
 e

nc
yc

lo
pe

di
a"

,
"c

on
te

nt
":

"\
u0

0
3

cb
\u

0
0

3
e

C
lo

ud
 c

om
pu

tin
g\

u0
0

3
c/

b\
u0

0
3

e
 is

 a
 s

ty
le

 ..
."

} {"
G

se
ar

ch
R

e
su

ltC
la

ss
":

"G
w

e
bS

e
ar

ch
",

"u
rl

":
"h

ttp
:/

/s
e

ar
ch

cl
ou

dc
om

pu
tin

g.
te

ch
ta

rg
e

t.c
om

/s
D

e
fin

iti
on

/0
,,

si
d2

0
1

,
"t

itl
e

N
oF

or
m

at
tin

g"
:"

W
ha

t
is

 c
lo

ud
 c

om
pu

tin
g?

 -
D

e
fin

iti
on

 fr
om

 W
ha

tis
.c

om
 .

.."
,

"c
on

te
nt

":
"M

ay
 2

1
, 2

0
0

9
\u

0
0

3
cb

\u
0

0
3

e
...

\u
0

0
3

c/
b\

u0
0

3
e

 D
e

fin
iti

on
 fr

om
 ..

."

} {"
st

ar
t"

:"
2

8
",

"la
be

l":
8

}
], "c

ur
so

r"
:{

"p
ag

e
s"

:[
{"

st
ar

t"
:"

0
",

"la
be

l":
1

}
...

],
"e

st
im

at
e

dR
e

su
ltC

ou
nt

":
"1

6
5

0
0

0
0

0
",

"c
ur

re
nt

P
ag

e
In

de
x"

:0
,

"m
or

e
R

e
su

lts
U

rl
":

"h
ttp

:/
/w

w
w

.g
oo

gl
e

.c
om

/s
e

ar
ch

?o
e\

u0
0

3
du

tf8
\..

...
\u

0
0

3
de

n\
u0

0
2

6
q\

C
lo

ud
+

C
om

pu
tin

g"
}

},

"r
e

sp
on

se
D

e
ta

ils
":

 n
ul

l,
"r

e
sp

on
se

S
ta

tu
s"

:
2

0
0

}

ht
tp

:/
/a

ja
x.

go
og

le
ap

is
.c

om
/a

ja
x/

se
rv

ic
e

s/
se

ar
ch

/w
e

b
?v

=
1

.0
&

q=
C

lo
ud

%
2

0
C

om
pu

tin
g

Y
ah

oo
! R

E
S

T
 s

ea
rc

h
se

rv
ic

e
G

oo
gl

e
R

E
S

T
 s

ea
rc

h
se

rv
ic

e
fo

r
A

JA
X

R
E

S
T

se
rv

ic
e

pr
ov

id
er

X
M

L
JS

O
N

…

G
E

T
,

 P
O

S
T

, P
U

T
,

D
E

L
E

T
E

re
so

ur
ce

 =
 U

R
I :

 e
.g

. /
x.

y.
co

m
/c

us
to

m
e

r/
1

1
9

9
8

re
su

lt
do

cu
m

e
nt

 (
X

M
L

,
JS

O
N

,
…

)
co

nt
ai

ns
 h

yp
e

rl
in

ks
 to

 a
ss

oc
ia

te
d

re
so

ur
ce

s:
e

.g
.

/x
.y

.c
om

/a
cc

ou
nt

/3
3

4
4

3
3

, /
x.

y.
co

m
/a

dd
re

ss
/1

1
2

2
8

8

P
O

S
T

, P
U

T
 a

nd
 D

E
L

E
T

E
 r

e
qu

e
st

s
ca

n
m

a
n

ip
u

la
te

 th
e

 r
e

so
ur

ce

FI
G

U
RE

7.
2.

RE
ST

w
eb

se
rv

ic
es

82

7.2 SOAP versus REST 83

7.2 SOAP VERSUS REST

Many discussions of SOAP versus REST focus on the point that encod-
ing services as SOAP/WSDL makes it difficult to expose the semantics
of a web service in order for it to be easily and widely understood,
so that many different providers can potentially offer the same service.
Search is a perfect example. It is abundantly clear that the SOAP/WSDL
definition of Google search does not in any way define an ‘obvious’ stan-
dard, and it is just as acceptable for an alternative API to be provided
by other search engines. However, in the case of REST, there is the
potential for such standardization: If for example, the REST standard for
search were http://<provider-URL>/<query-string>, multiple
providers could make this available; the response documents in XML could
be self-describing by referring to provider specific name spaces where needed
but adhering to a publicly specified top-level schema. We do not take a view
on this aspect of the SOAP vs. REST debate, since standardization and reuse
are difficult goals. As is apparent from the two very different REST APIs for
web search, it is not SOAP or REST that drives standardization. Nevertheless,
the relative simplicity of creating and using REST-based services as compared
to the more complex SOAP/WSDL approach is immediately apparent from
our examples. Further, REST can avoid expensive XML parsing by using
alternatives such as JSON. So our view is that the case for using SOAP/WSDL
needs to be explicitly made depending on the context, with REST being the
option of choice from the perspective of simplicity as well as efficiency.

To examine when SOAP services may in fact be warranted, we now compare
the SOAP and REST paradigms in the context of programmatic communica-
tion between applications deployed on different cloud providers, or between
cloud applications and those deployed in-house. In Table 7.1 we compare
these along six dimensions: The location where servers providing the service
can reside; how secure the interaction is; whether transactions can be sup-
ported; how dependent the protocol is on HTTP technology; the extent of
development tools and support required; the efficiency of the resulting imple-
mentations; and finally the software development productivity to be expected
using each. We conclude from this analysis that for most requirements SOAP
is an overkill; REST interfaces are simpler, more efficient and cheaper to
develop and maintain. The shift from SOAP to REST especially in the cloud
setting is apparent: The Google SOAP service is now deprecated, and essen-
tially replaced by the REST API using JSON. While Amazon web services
publish both SOAP as well as REST APIs, the SOAP APIs are hardly used

84 WEB SERVICES, AJAX AND MASHUPS

TABLE 7.1 SOAP/WSDL versus REST

SOAP/WSDL REST Comments

Location Some endpoints
can be behind
corporate
networks on
non-HTTP
connects, e.g.
message queues

All endpoints
must be on the
internet

Complex B2B
scenarios
require SOAP

Security HTTPS which can
be augmented
with additional
security layers

Only HTTPS Very stringent
security needs
can be
addressed only
by SOAP

Efficiency XML parsing
required

XML parsing can
be avoided by
using JSON

REST is lighter and
more efficient

Transactions Can be supported No support Situations
requiring
complex
multi-request /
multi-party
transactions
need SOAP

Technology Can work without
HTTP, e.g.
using message
queues instead

Relies on HTTP REST is for pure
internet com-
munications
and cannot mix
other transports

Tools Sophisticated tools
required (and
are available) to
handle client
and server
development

No special tools
required
especially if
using JSON

REST is lighter
and easier to use

Productivity Low, due to
complex tools
and skills
needed

High, due to
simplicity

REST is faster and
cheaper for
developers to
use

7.3 AJAX: asynchronous ‘rich’ interfaces 85

(15 percent is a number quoted on the web). In our opinon REST web ser-
vices will gradually overtake SOAP/WSDL, and it is likely that mechanisms
to address more complex functionality, such as transactions, will also be
developed for REST in the near future.

7.3 AJAX: ASYNCHRONOUS ‘RICH’ INTERFACES

Traditional web applications interact with their server components through a
sequence of HTTP GET and POST requests, each time refreshing the HTML
page in the browser. The use of client-side (i.e., in-browser) JavaScript is
limited to field validations and some user interface effects such as animations,
hiding or unhiding parts of the page etc. Apart from any such manipulations,
between the time a server request is made and a response obtained, the browser
is essentially idle. Often one server request entails retrieving data from many
data sources, and even from many different servers; however requests are still
routed through a single web server that acts as a gateway to these services.

We described the historical evolution of the AJAX paradigm in Chapter 2.
Using AJAX JavaScript programs running in the browser can make asyn-
chronous calls to the server without refreshing their primary HTML page.
Heavy server-side processing can be broken up into smaller parts that are
multiplexed with client-side processing of user actions, thereby reducing the
overall response time as well as providing a ‘richer’ user experience. Further,
client-side JavaScript can make REST service requests not only to the pri-
mary web server but also to other services on the internet, thereby enabling
application integration within the browser.

From a software architecture perspective, AJAX applications no longer
remain pure thin clients: Significant processing can take place on the client,
thereby also exploiting the computational power of the desktop, just as was the
case for client-server applications. Recall that using the client-server architec-
ture one ran the risk of mixing user interface and business logic in application
code, making such software more difficult to maintain. Similar concerns arise
while using the AJAX paradigm.

Figure 7.3 illustrates how AJAX applications work; these are also called ‘rich
internet applications’ (RIA), in comparison to traditional web applications.
A base HTML page is loaded along with JavaScript code that contains the
remainder of the user interface. This JavaScript program renders a ‘rich’ user
interface that can often look like a traditional client-server application. When
data is required from the server, asynchronous requests are made via REST

86 WEB SERVICES, AJAX AND MASHUPS

HTTP server
(accesses DB,
returns HTML)

HTTP server
(accesses DB,
returns JSON)

HTML forms UI:
largely HTML +
some JavaScript

AJAX controller:
– queues requests
– calls response
handlers

Rich Internet UI:
largely JavaScript
some HTML

HTML over HTTP HTML +
JavaScript code

REST service calls
JSON over HTTP

JavaScript functions

Traditional internet application Rich internet application

FIGURE 7.3. Rich internet applications with AJAX

web services, which return JSON structures that are directly used by the
JavaScript code running in the browser.

Because of the nature of the HTTP protocol, a web server expects that an
incoming request from a single client session will not be followed by another
until the server has responded to the first request. If a client violates this
protocol by sending many requests at a time, at best these will be ignored
and at worst some poorly implemented servers may even crash! Therefore
an AJAX controller is required to serialize the asynchronous requests being
made to the server; each request is queued and sent to the server only after
the previous request has returned with a response. Each response triggers
a handler function which is registered with the controller when placing the
request.

Using AJAX, highly interactive yet completely browser-based user inter-
faces become possible. Using this approach, software as a service application
can begin to provide a user experience similar to thick client applications
which typically run inside the enterprise, thereby making SaaS offerings more
acceptable to enterprise users. Further, using AJAX, services from multi-
ple cloud providers can be integrated within the browser, using JavaScript,
instead of using more complex server-side integration mechanisms based on
web services. Also, unlike server-side integration that needs to be performed

7.4 Mashups: user interface services 87

by corporate IT, simple JavaScript-based integrations can often be performed
by business units themselves, in much the same manner as Dev 2.0 platforms
allow simple applications to be developed by end-users. This has resulted in a
proliferation of user-driven integration of services from multiple cloud-based
services and SaaS applications, often without the knowledge and participation
of corporate IT.

7.4 MASHUPS: USER INTERFACE SERVICES

We have seen that using AJAX a JavaScript user interface can call many dif-
ferent web services directly. However, the presentation of data from these
services within the user interface is left to the calling JavaScript program.
Mashups take the level of integration one step further, by including the
presentation layer for the remote service along with the service itself.

Figure 7.4 illustrates mashups, again using the Google search service that is
also available as a mashup. In order to display a Google search box, a developer
only needs to reference and use some JavaScript code that is automatically
downloaded by the browser. This code provides a ‘class’google that provides
the AJAX API published by Google as its methods. (Strictly speaking this is
a function, since JavaScript is not truly object orientated, but in colloquial
usage such JavaScript functions are referred to as classes.) User code calls
these methods to instantiate a search control ‘object’ and render it within the
HTML page dynamically after the page has loaded. Notice that there is no

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script src="http://www.google.com/jsapi" type="text/javascript">

</script>

<script type="text/javascript">

google.load('search', '1.0');

function OnLoad() {

var searchControl= new google.search.SearchControl();

searchControl.addSearcher(new google.search.WebSearch());

searchControl.draw(document.getElementById("searchcontrol"));

}

google.setOnLoadCallback(OnLoad, true);

</script>

</head>

<body>

<div id="searchcontrol">Loading</div>

</body>

</html>

FIGURE 7.4. Mashup example

88 WEB SERVICES, AJAX AND MASHUPS

AJAX controller or REST service visible to the user; all this is hidden within
the API methods. Recall that the purpose of an AJAX controller was to serialize
HTTP requests from a running session to a particular web server: There is no
need for serialization across calls to different service providers, and therefore
it is perfectly okay for different mashup services to provide their own AJAX
controllers within their APIs.

From a user perspective, mashups make it easy to consume web services. In
fact, the actual service call need not even be a REST service, and may instead
involve proprietary AJAX-based interaction with the service provider. In this
sense, mashups make the issue of a published service standard using REST or
SOAP/WSDL irrelevant; the only thing that is published is a JavaScript library
which can be downloaded at runtime and executed by a client application.

At the same time, the fact that mashups require downloading and running
foreign code is a valid security concern especially in the enterprise scenario.
JavaScript code normally cannot access resources on the client machine apart
from the browser and network, so it may appear that there is no real security
threat, unlike say ActiveX controls which have essentially complete access to
the desktop once a user installs them. However, this may no longer remain
the case in the future: For example Google Gears is a framework that enables
offline operation of applications by caching data on the client desktop. This
presents a potential security threat, though not as serious as ActiveX controls:
For example, if a user has installed Gears for some reason, such as accessing
Gmail in offline mode, another site the user accesses may ask for permission
to use Gears (note that such a prompt is always shown, making Gears a bit
safer), and if granted store some executables on a user’s disk, and present
the user with a link which runs these as a side effect. As a result of such
potential security risks, enterprise adoption of mashups has been slower than
warranted by the technology’s advantages.

Note that Google initially published a SOAP/WSDL service but later
replaced it with an AJAX mashup API, and as a by product also made available
the REST web service which we discussed earlier. Another popular mashup
is Google Maps. It is becoming increasingly apparent that mashup-based
integration of cloud-based services is easy, popular and represents the direc-
tion being taken by the consumer web service industry. Enterprise usage
of mashup technology is only a matter of time, not only in the context of
cloud-based offerings, but also for integrating internal applications with cloud
services, as well as amongst themselves.

CHAPTER 8

Virtualization technology

If one had to choose a single technology that has been most influential in
enabling the cloud computing paradigm, it would have to be virtualization.
As we have seen earlier in Chapter 1, virtualization is not new, and dates back
to the early mainframes as a means of sharing computing resources amongst
users. Today, besides underpinning cloud computing platforms, virtualiza-
tion is revolutionizing the way enterprise data centers are built and managed,
paving the way for enterprises to deploy ‘private cloud’ infrastructure within
their data centers.

8.1 VIRTUAL MACHINE TECHNOLOGY

We begin with an overview of virtual machine technology: In general, any
means by which many different users are able simultaneously to interact with
a computing system while each perceiving that they have an entire ‘virtual
machine’ to themselves, is a form of virtualization. In this general sense, a
traditional multiprogramming operating system, such as Linux, is also a form
of virtualization, since it allows each user process to access system resources
oblivious of other processes. The abstraction provided to each process is
the set of OS system calls and any hardware instructions accessible to user-
level processes. Extensions, such as ‘user mode Linux’ [17] offer a more
complete virtual abstraction where each user is not even aware of other user’s
processes, and can login as an administrator, i.e. ‘root,’ to their own seemingly

89

90 VIRTUALIZATION TECHNOLOGY

private operating system. ‘Virtual private servers’ are another such abstraction
[36]. At a higher level of abstraction are virtual machines based on high-level
languages, such as the Java virtual machine (JVM) which itself runs as an
operating system process but provides a system-independent abstraction of
the machine to an application written in the Java language. Such abstractions,
which present an abstraction at the OS system call layer or higher, are called
process virtual machines. Some cloud platforms, such as Google’s App Engine
and Microsoft’s Azure, also provide a process virtual machine abstraction in
the context of a web-based architecture.

More commonly, however, the virtual machines we usually refer to when
discussing virtualization in enterprises or for infrastructure clouds such
as Amazon’s EC2 are system virtual machines that offer a complete hard-
ware instruction set as the abstraction provided to users of different virtual
machines. In this model many system virtual machine (VM) instances share
the same physical hardware through a virtual machine monitor (VMM), also
commonly referred to as a hypervisor. Each such system VM can run an inde-
pendent operating system instance; thus the same physical machine can have
many instances of, say Linux and Windows, running on it simultaneously.
The system VM approach is preferred because it provides complete isolation
between VMs as well as the highest possible flexibility, with each VM seeing
a complete machine instruction set, against which any applications for that
architecture are guaranteed to run.

It is the virtual machine monitor that enables a physical machine to be
virtualized into different VMs. Where does this software itself run? A host
VMM is implemented as a process running on a host operating system that
has been installed on the machine in the normal manner. Multiple guest
operating systems can be installed on different VMs that each run as operating
system processes under the supervision of the VMM. A native VMM, on the
other hand, does not require a host operating system, and runs directly on
the physical machine (or more colloquially on ‘bare metal’). In this sense,
a native VMM can be viewed as a special type of operating system, since it
supports multiprogramming across different VMs, with its ‘system calls’ being
hardware instructions! Figure 8.1 illustrates the difference between process
virtual machines, host VMMs and native VMMs. Most commonly used VMMs,
such as the open source Xen hypervisor as well as products from VMware are
available in both hosted as well as native versions; for example the hosted
Xen (HXen) project and VMware Workstation products are hosted VMMs,
whereas the more popularly used XenServer (or just Xen) and VMware ESX
Server products are native VMMs.

8.1 Virtual machine technology 91

Hardware

Operating system

Hardware Hardware

Guest OS

Operating system

Guest OS

Guest OS Guest OS

A
pp

lic
at

io
n

A
pp

lic
at

io
n

A
pp

lic
at

io
n

A
pp

lic
at

io
n

A
pp

lic
at

io
n

A
pp

lic
at

io
n

A
pp

lic
at

io
n

A
pp

lic
at

io
n

A
pp

lic
at

io
n

A
pp

lic
at

io
n

A
pp

lic
at

io
n

VM VM VM
Virtual Machine Monitor

(Host VMM)

Process Virtual Machines System Virtual Machines
(Host)

System Virtual Machines
(Native)

Virtual Machine Monitor
(Native VMM)

FIGURE 8.1. Virtual machines

In the next section we shall briefly describe how system virtual machines
are implemented efficiently and how individual virtual machines actually run.

8.1.1 System virtual machines

A system virtual machine monitor needs to provide each virtual machine
the illusion that it has access to a complete independent hardware system
through a full instruction set. In a sense, this is very similar to the need
for a time-sharing operating system to provide different processes access to
hardware resources in their allotted time intervals of execution. However,
there are fundamental differences between the ‘virtual machine’ as perceived
by a traditional operating system processes and a true system VM:

1. Processes under an operating system are allowed access to hardware
through system calls, whereas a system VMM needs to provide a full
hardware instruction set for use by each virtual machine

2. Each system virtual machine needs to be able to run a full operating system,
while itself maintaining isolation with other virtual machines.

Going forward we will focus our discussion on native VMMs that run
directly on the hardware, like an operating system; native VMMs are more
efficient and therefore the ones used in practice within enterprises as well
as cloud platforms. One way a native system VMM could work is by emu-
lating instructions of the target instruction set and maintaining the state of

92 VIRTUALIZATION TECHNOLOGY

different virtual machines at all levels of memory hierarchy (including reg-
isters etc.) indirectly in memory and switching between these as and when
required, in a manner similar to how virtual memory page tables for dif-
ferent processes are maintained by an operating system. In cases where the
target hardware instruction set and actual machine architecture are different,
emulation and indirection is unavoidable, and, understandably, inefficient.
However, in cases where the target instruction set is the same as that of
the actual hardware on which the native VMM is running, the VMM can be
implemented more efficiently.

An efficient native VMM attempts to run the instructions of each of is
virtual machines natively on the hardware, and while doing so also maintain
the state of the machine at its proper location in the memory hierarchy, in
much the same manner as an operating system runs process code natively as
far as possible except when required.

Let us first recall how an operating system runs a process: The process
state is first loaded into memory and registers, then the program counter is
reset so that process code runs from thereon. The process runs until a timer
event occurs, at which point the operating system switches the process and
resets the timer via a special privileged instruction. The key to this mecha-
nism is the presence of privileged instructions, such as resetting the timer
interrupt, which cause a trap (a program generated interrupt) when run in
‘user’ mode instead of ‘system’ mode. Thus, no user process can set the timer
interrupt, since this instruction is privileged and always traps, in this case to
the operating system.

Thus, it should be possible to build a VMM in exactly the same manner
as an operating system, by trapping the privileged instructions and running
all others natively on the hardware. Clearly the privileged instructions them-
selves need to be emulated, so that when an operating system running in a
virtual machine attempts to, say, set the timer interrupt, it actually sets a
virtual timer interrupt. Such a VMM, where only privileged instructions need
to be emulated, is the most efficient native VMM possible, as formally proved
in [45].

However, in reality it is not always possible to achieve this level of effi-
ciency. There are some instruction sets (including the popular Intel IA-32,
better known as x86) where some non-privileged instructions behave differ-
ently depending on whether they are called in user mode or system mode. Such
instruction sets implicitly assume that there will be only one operating system
(or equivalent) program that needs access to privileged instructions, a natural
assumption in the absence of virtualization. However, such instructions pose
a problem for virtual machines, in which the operating system is actually

8.1 Virtual machine technology 93

running in user mode rather than system mode. Thus, it is necessary for the
VMM to also emulate such instructions in addition to all privileged instruc-
tions. Newer editions of the x86 family have begun to include ‘hardware
support’ for virtualization, where such anomalous behavior can be recti-
fied by exploiting additional hardware features, resulting in a more efficient
implementation of virtualization: For example, Intel’s VT-x (‘Vanderpool’)
technology includes a new VMX mode of operation. When VMX is enabled
there is a new ‘root’ mode of operation exclusively for use by the VMM; in
non-root mode all standard modes of operation are available for the OS and
applications, including a ‘system’ mode which is at a lower level of privilege
than what the VMM enjoys. We do not discuss system virtual machines in
more detail here, as the purpose of this discussion was to give some insight
into the issues that are involved through a few examples; a detailed treatment
can be found in [58].

8.1.2 Virtual machines and elastic computing

We have seen how virtual machine technology enables decoupling physical
hardware from the virtual machines that run on them. Virtual machines can
have different instruction sets from the physical hardware if needed. Even if
the instruction sets are the same (which is needed for efficiency), the size and
number of the physical resources seen by each virtual machine need not be
the same as that of the physical machine, and in fact will usually be different.
The VMM partitions the actual physical resources in time, such as with I/O
and network devices, or space, as with storage and memory. In the case of
multiple CPUs, compute power can also be partitioned in time (using tradi-
tional time slices), or in space, in which case each CPU is reserved for a subset
of virtual machines.

The term ‘elastic computing’ has become popular when discussing cloud
computing. The Amazon ‘elastic’ cloud computing platform makes extensive
use of virtualization based on the Xen hypervisor. Reserving and booting
a server instance on the Amazon EC cloud provisions and starts a virtual
machine on one of Amazon’s servers. The configuration of the required virtual
machine can be chosen from a set of options (see Chapter 5). The user of
the ‘virtual instance’ is unaware and oblivious to which physical server the
instance has been booted on, as well as the resource characteristics of the
physical machine.

An ‘elastic’ multi-server environment is one which is completely virtual-
ized, with all hardware resources running under a set of cooperating virtual

94 VIRTUALIZATION TECHNOLOGY

machine monitors and in which provisioning of virtual machines is largely
automated and can be dynamically controlled according to demand. In gen-
eral, any multi-server environment can be made ‘elastic’ using virtualization
in much the same manner as has been done in Amazon’s cloud, and this is
what many enterprise virtualization projects attempt to do. The key success
factors in achieving such elasticity is the degree of automation that can be
achieved across multiple VMMs working together to maximize utilization.
The scale of such operations is also important, which in the case of Amazon’s
cloud runs into tens of thousands of servers, if not more. The larger the scale,
the greater the potential for amortizing demand effciently across the available
capacity while also giving users an illusion of ‘infinite’ computing resources.

Technology to achieve elastic computing at scale is, today, largely pro-
prietary and in the hands of the major cloud providers. Some automated
provisioning technology is available in the public domain or commercially
off the shelf (see Chapter 17), and is being used by many enterprises in their
internal data center automation efforts. Apart from many startup companies,
VMware’s VirtualCentre product suite aims to provide this capability through
its ‘VCloud’ architecture.

We shall discuss the features of an elastic data center in more detail later in
this chapter; first we cover virtual machine migration, which is a pre-requisite
for many of these capabilities.

8.1.3 Virtual machine migration

Another feature that is crucial for advanced ‘elastic’ infrastructure capabilities
is ‘in-flight’ migration of virtual machines, such as provided in VMware’s VMo-
tion product. This feature, which should also be considered a key component
for ‘elasticity,’ enables a virtual machine running on one physical machine
to be suspended, its state saved and transported to or accessed from another
physical machine where it is resumes execution from exactly the same state.

Virtual machine migration has been studied in the systems research com-
munity [49] as well as in related areas such as grid computing [29]. Migrating a
virtual machine involves capturing and copying the entire state of the machine
at a snapshot in time, including processor and memory state as well as all vir-
tual hardware resources such as BIOS, devices or network MAC addresses. In
principle, this also includes the entire disk space, including system and user
directories as well as swap space used for virtual memory operating system
scheduling. Clearly, the complete state of a typical server is likely to be quite
large. In a closely networked multi-server environment, such as a cloud data

8.2 Virtualization applications in enterprises 95

center, one may assume that some persistent storage can be easily accessed
and mounted from different servers, such as through a storage area network
or simply networked file systems; thus a large part of the system disk, includ-
ing user directories or software can easily be transferred to the new server,
using this mechanism. Even so, the remaining state, which needs to include
swap and memory apart from other hardware states, can still be gigabytes in
size, so migrating this efficiently still requires some careful design.

Let us see how VMware’s VMotion carries out in-flight migration of a virtual
machine between physical servers: VMotion waits until the virtual machine
is found to be in a stable state, after which all changes to machine state start
getting logged. VMotion then copies the contents of memory, as well as disk-
resident data belonging to either the guest operating system or applications, to
the target server. This is the baseline copy; it is not the final copy because the
virtual machine continues to run on the original server during this process.
Next the virtual machine is suspended and the last remaining changes in
memory and state since the baseline, which were being logged, are sent to the
target server, where the final state is computed, following which the virtual
machine is activated and resumes from its last state.

8.2 VIRTUALIZATION APPLICATIONS IN ENTERPRISES

A number of enterprises are engaged in virtualization projects that aim to
gradually relocate operating systems and applications running directly on
physical machines to virtual machines. The motivation is to exploit the addi-
tional VMM layer between hardware and systems software for introducing a
number of new capabilities that can potentially ease the complexity and risk
of managing large data centers. Here we outline some of the more compelling
cases for using virtualization in large enterprises.

8.2.1 Security through virtualization

Modern data centers are all necessarily connected to the world outside via
the internet and are thereby open to malicious attacks and intrusion. A
number of techniques have been developed to secure these systems, such
as firewalls, proxy filters, tools for logging and monitoring system activity
and intrusion detection systems. Each of these security solutions can be
significantly enhanced using virtualization.

For example, many intrusion detection systems (IDS) traditionally run on
the network and operate by monitoring network traffic for suspicious behavior

96 VIRTUALIZATION TECHNOLOGY

by matching against a database of known attack patterns. Alternatively, host-
based systems run within each operating system instance where the behavior
of each process is monitored to detect potentially suspicious activity such as
repeated login attempts or accessing files that are normally not needed by user
processes. Virtualization opens up the possibility of building IDS capabilities
into the VMM itself, or at least at the same layer, i.e. above the network but
below the operating system. The Livewire and Terra research projects are
examples of such an approach [24, 25], which has the advantage of enabling
greater isolation of the IDS from the monitored hosts while retaining com-
plete visibility into the host’s state. This approach also allows for complete
mediation of interactions between the host software and the underlying hard-
ware, enabling a suspect VM to be easily isolated from the rest of the data
center.

Virtualization also provides the opportunity for more complete, user-group
specific, low-level logging of system activities, which would be impossible or
very difficult if many different user groups and applications were sharing the
same operating system. This allows security incidents to be be more easily
traced, and also better diagnosed by replaying the incident on a copy of the
virtual machine.

End-user system (desktop) virtualization is another application we cover
below that also has an important security dimension. Using virtual machines
on the desktop or mobile phones allows users to combine personal usage
of these devices with more secure enterprise usage by isolating these two
worlds; so a user logs into the appropriate virtual machine (personal or enter-
prise), with both varieties possibly running simultaneously. Securing critical
enterprise data, ensuring network isolation from intrusions and protection
from viruses can be better ensured without compromising users’ activities in
their personal pursuits using the same devices. In fact some organizations
are contemplating not even considering laptops and mobile devices as cor-
porate resources; instead users can be given the flexibility to buy whatever
devices they wish and use client-side virtual machines to access enterprise
applications and data.

8.2.2 Desktop virtualization and application streaming

Large enterprises have tens if not hundreds of thousands of users, each having
a desktop and/or one or more laptops and mobile phones that are used to con-
nect to applications running in the enterprise’s data center. Managing regular

8.2 Virtualization applications in enterprises 97

system updates, such as for security patches or virus definitions is a major
system management task. Sophisticated tools, such as IBM’s Tivoli are used to
automate this process across a globally distributed network of users. Managing
application roll-outs across such an environment is a similarly complex task,
especially in the case of ‘fat-client’ applications such as most popular email
clients and office productivity tools, as well some transaction processing or
business intelligence applications.

Virtualization has been proposed as a possible means to improve the man-
ageability of end-user devices in such large environments. Here there have
been two different approaches. The first has been to deploy all end-client sys-
tems as virtual machines on central data centers which are then accessed by
‘remote desktop’ tools, such as Citrix Presentation Server, Windows Terminal
Services (WTS), or VNC (Virtual Network Computer). At least theoreti-
cally this is an interesting solution as it (a) eases management of updates
by ‘centralizing’ all desktops (b) allows easier recovery from crashes by sim-
ply restarting a new VM (c) enables security checks and intrusion detection
to be performed centrally and (d) with all user data being central, secures it
as well as enables better data sharing and potential reduction of redundant
storage use. However, this approach has never really become popular, pri-
marily because of the need for continuous network connectivity, which in
spite of the advances in corporate networks and public broadband penetra-
tion, is still not ubiquitous and ‘always on.’ Additionally, this approach also
ignores the significant computing power available on desktops, which when
added up across an enterprise can be very costly to replicate in a central data
center.

The second approach is called ‘application streaming.’ Instead of running
applications on central virtual machines, application streaming envisages
maintaining only virtual machine images centrally. An endpoint client, such
as a desktop, runs a hypervisor that also downloads the virtual machine
image from the server and launches it on the end point client. In this man-
ner the processing power of the end point is fully exploited, a VM image
can be cached for efficiency and only incrementally updated when needed,
and finally user data, which can be large, need not be centrally maintained
but mounted from the local disk as soon as the virtual machine boots.
Such a solution is implemented, for example, in the XenApp product from
Citrix (incorporating technology from Appstream, which was acquired by
Citrix). Application streaming additionally allows the isolation of personal
and corporate spaces for security purposes as mentioned in the previous
section.

98 VIRTUALIZATION TECHNOLOGY

8.2.3 Server consolidation

The most common driver for virtualization in enterprise data centers has been
to consolidate applications running on possibly tens of thousands of servers,
each significantly underutilized on the average, onto a smaller number of
more efficiently used resources. The motivation is both efficiency as well as
reducing the complexity of managing the so-called ‘server sprawl.’ The ability
to run multiple virtual machines on the same physical resources is also key
to achieving the high utilizations in cloud data centers.

Here we explore some implications and limits of consolidation through a
simplified model. Suppose we wish to consolidate applications running on
m physical servers of capacity c onto one physical server of capacity nc. We
assume that virtual machines are either perfectly efficient, or any inefficiency
has been built into the factor n. We focus on a few simple questions: (i)
whether the single server should have n processors (or cores), or a clock
speed n times that of each original server; (ii) how much smaller than m
(the number of physical servers) can we make n while retaining acceptable
performance; and finally (iii) what is the impact on power consumption and
whether this changes the preferred strategy.

A simple model using basic queuing theory provides some insight: A server
running at an efficiency of e can be thought of as a single server queuing system
where, for whatever reason, either light load or inefficient software, the arrival
rate of requests (instructions to be processed) is e times less than that which
can be served by the server. In queuing theory terminology, e = λ/µ, where
λ is the arrival rate and µ the service rate. We define the average ‘normalized
response time’ as the average time spent in the system T normalized by average
time between requests, 1/λ, as r = Tλ. (Note: response time is a good measure
of performance for transactional workloads; however it may not be the right
measure for batch processing.)

Using standard queuing theory [7] we can compute ro, the normalized
response time using m physical servers as

ro = e

1 − e
(8.1)

for each of the original servers. Now consider consolidating these servers into
one server with m processors, wherein the queue becomes one with m servers
working at the same rate µ, servicing an arrival rate of mλ. Queuing theory

8.2 Virtualization applications in enterprises 99

yields rp, normalized response time using one server with p processors as

rp = me + PQ

1 − e
. (8.2)

(Here PQ is the ‘queuing probability’, which is small for light loads.1) If, on
the other hand, we have a single server that is m times faster, we once again
model it as a single server queue but with service rate mµ. Since e remains
unchanged, the normalized response time in this case (rc) remains the same
as ro in (8.1).

Thus we see that for light loads, i.e., underutilized servers where e � 1,
the consolidation onto a multi-processor machine versus one with faster clock
speed can result in significant degradation in performance, at least as mea-
sured by average normalized response time. For heavy loads, on the other
hand, the second term in (8.2) dominates, and response time is poor (large)
in both cases.

Now consider the case where the single server onto which we consolidate
the workload is only n times faster than the original servers. In this case we
find that the normalized response time rn is

rn = me

n − me
. (8.3)

Using this we can see that it is possible to use a server far less powerful than
the aggregate of the m original servers, as long as n/m remains reasonably
large as compared to e; and if indeed n � me then the average normalized
response time degrades only linearly by the factor of n/m.

Thus we see that a simple queuing theory analysis yields some natural
limits to server consolidation using virtualization. The theoretical maximum
benefit, in terms of a reduction in number of servers, is n/m = e, at which
point the system becomes unresponsive. In practice it is possible to get fairly
close to this, i.e. if n/m = e(1+ε), then the average normalized response time
becomes 1/ε. In effect, whatever the initial inefficiency, one can decide on
an acceptable average normalized response time and plan the consolidation
strategy accordingly.

It is instructive to bring into consideration another factor in this analysis,
namely power consumption, an issue which is becoming increasingly impor-
tant in data center management. Power consumption of chips is related to the
voltage at which a chip operates, in particular power P grows as the square of

1 The formula for computing PQ can be found in [7].

100 VIRTUALIZATION TECHNOLOGY

the voltage, i.e. P ∝ V2. It is also a fact that higher clock speeds require higher
voltage, with almost a linear relationship between the two. Thus, a system
that runs at a clock speed n times faster than a ‘base’ system, will consume n2

the power of the base system, whereas the n core system will consume only n
times the power. In fact this is one of the reasons for the shift to ‘multi-core’
CPUs, with systems having four to eight cores per CPU being commonplace
as of this writing, and CPUs with dozens of cores expected to be the norm in
the near future.

Revisiting our queuing model, in the case of consolidation onto an n pro-
cessor/core server, instead of one that is n times faster, we can compute the
average normalized response time, call it rP, as:

rP = me + PQ

1 − m

n
e
. (8.4)

Notice that the response time remains the same as rp in (8.2) for light loads,
i.e., when PQ is small. Thus the response time still degrades by a factor of m,
independent of n, as compared to the faster clock speed case (8.1). However,
in the case of heavy load, where the second term dominates, there is a marked
degradation in performance in the multi-processor case if n � m, as compared
to the m = n case, i.e. (8.2).

Thus there is a trade off, at least theoretically, between reducing power
consumption by consolidating onto multi-processors or multi-core CPU sys-
tems, versus improved performance on systems with faster clock speeds but
at the cost of non-linear growth in power consumption per server. In practice
this trade off is less significant since there are limits on how far clock speed
can be increased, for both power as well as due to fundamental physical
constraints. Lastly, apart from consolidation, it is important to note that indi-
vidual applications implemented using multi-threaded application servers can
also exploit multi-core architectures efficiently. Therefore, both enterprise
as well as cloud data centers today rely almost exclusively on multi-core,
multi-processor systems.

8.2.4 Automating infrastructure management

An important goal of enterprise virtualization projects is to reduce data cen-
ter management costs, especially people costs through greater automation. It
is important to recognize that while virtualization technology provides the

8.2 Virtualization applications in enterprises 101

ability to automate many activities, actually designing and putting into place
an automation strategy is a complex exercise that needs to be planned. Fur-
ther, different levels of automation are possible, some easy to achieve through
basic server consolidation, while others are more complex, requiring more
sophisticated tools and technology as well as significant changes in operating
procedures or even the organizational structure of the infrastructure wing of
enterprise IT.

The following is a possible roadmap for automation of infrastructure man-
agement, with increasing sophistication in the use of virtualization technology
at each level:

1. Level 0 – Virtual images: Packaging standard operating environments for
different classes of application needs as virtual machines, thereby reduc-
ing the start-up time for development, testing and production deployment,
also making it easier to bring on board new projects and developers. This
approach is not only easy to get started with, but offers significant reduc-
tion in infrastructure management costs and saves precious development
time as well.

2. Level 1 – Integrated provisioning: Integrated provisioning of new vir-
tual servers along with provisioning their network and storage (SAN)
resources, so that all these can be provisioned on a chosen physical server
by an administrator through a single interface. Tools are available that
achieve some of these capabilities (such as VMware’s VirtualCenter inte-
grated suite). In the majority of enterprises such tools are currently in
the process of being explored and prototyped, with only a few enterprises
having successfully deployed this level of automation on a large scale

3. Level 2 – Elastic provisioning: Automatically deciding the physical server
on which to provision a virtual machine given its resource requirements,
available capacity and projected demand; followed by bringing up the
virtual machine without any administrator intervention; rather users
(application project managers) are able to provision virtual servers them-
selves. This is the automation level provided by Amazon EC2, for example.
As of this writing, and to our best knowledge, no large enterprise IT organi-
zation has deployed this level of automation in their internal data center at
any degree of scale, though many projects are under way, using commercial
products or the open source Eucalyptus tool (see Chapter 17).

4. Level 3 – Elastic operations: Automatically provisioning new virtual
servers or migrating running virtual servers based on the need to do
so, which is established through automatic monitoring of the state of all

102 VIRTUALIZATION TECHNOLOGY

virtual physical resources, and which can arise for a number of reasons,
such as:
1. Load balancing, to improve response time of applications that either

explicitly request for, or appear to need more resources, and depending
on their business criticality.

2. Security, to quarantine a virtual machine that appears to have been
compromised or attacked.

3. Collocation, to bring virtual machines that are communicating with
each other physically closer together to improve performance.

4. Fault tolerance, to migrate applications from physical machines that
have indicated possible imminent failure or need for maintenance.

5. Fault recovery, to provision a new instance virtual machine and launch
it with the required set of applications running in order to recover from
the failure of the original instance, so as to restore the corresponding
business service as soon as possible.

While tools such as VMotion provide the underlying capability to migrate
virtual machines ‘in-flight,’ as we have described in the previous section,
exploiting this capability to achieve this level of automation of opera-
tions is really the holy grail for virtualization in enterprises, or even in
infrastructure cloud platforms such as Amazon.

Virtualization projects in enterprises today are either at Level 0 or 1. Level
2 is available in Amazon EC2 in the cloud, whereas Level 3 automation has
hardly ever been achieved in totality, at least with system virtual machines.
EveninAmazonEC2, whilemonitoringandauto-scalingfacilitiesareavailable,
in-flightmigrationof virtualmachines isnot available, at least asof thiswriting.

If, however, one considers process virtual machines, such as Google App
Engine, or efficient software-as-a-service providers, one can argue that to
a certain extent the appearance of Level 3 is provided, since an application
deployed in such a platform is essentially ‘always on,’ with the user not needing
to be aware of any infrastructure management issues. Taking a process VM or
even application virtualization (i.e. Dev 2.0) route may enable enterprises to
provide pockets of services that can appear to achieve nearly Level 3 elastic
automation, whereas achieving this degree of automation at a lower level of
abstraction, such as system virtual machines is likely to be much harder to
deploy at a large scale.

Where to start? An enterprise virtualization strategy needs to systematically
plan which classes of applications should be moved to a virtual environment
as well as whether and when the progression to increasing levels of automation
should be attempted. Often the best place to start a virtualization exercise is

8.3 Pitfalls of virtualization 103

within the IT organization itself, with the ‘test and dev’ environments that are
used by developers in application development projects. Developers regularly
require many of the capabilities enabled by virtualization, such as being able
to manage project-specific sets of standard operating environments, re-create
and re-start servers from a check pointed state during functional testing, or
provision servers of different capacities for performance testing. As an addi-
tional benefit, having developers experience virtualization during application
development also makes supporting applications in a virtualized production
environment much easier. Finally, exactly the same argument holds for cloud
computing as well; using a cloud data center for development is a useful first
step before considering production applications in the cloud.

8.3 PITFALLS OF VIRTUALIZATION

As our discussion so far has revealed, virtualization is critical for cloud
computing and also promises significant improvements within in-house data
centers. At the same time it is important to be aware of some of the common
pitfalls that come with virtualization:

1. Application deployments often replicate application server and database
instances to ensure fault tolerance. Elastic provisioning results in two such
replicas using virtual servers deployed on the same physical server. Thus
if the physical server fails, both instances are lost, defeating the purpose
of replication.

2. We have mentioned that virtualization provides another layer at which
intrusions can be detected and isolated, i.e., the VMM. Conversely how-
ever, if the VMM itself is attacked, multiple virtual servers are affected.
Thus some successful attacks can spread more rapidly in a virtualized
environment than otherwise.

3. If the ‘server sprawl’ that motivated the building of a virtualized data center
merely results in an equally complex ‘virtual machine sprawl,’ the purpose
has not been served, rather the situation may become even worse than ear-
lier. The ease with which virtual servers and server images are provisioned
and created can easily result in such situations if one is not careful.

4. In principle a VMM can partition the CPU, memory and I/O bandwidth of a
physical server across virtual servers. However, it cannot ensure that these
resourcesaremadeavailabletoeachvirtualserverinasynchronizedmanner.
Thus the fraction of hardware resources that a virtual server is actually able
to utilize may be less than what has been provisioned by the VMM.

CHAPTER 9

Multi-tenant software

Applications have traditionally been developed for use by a single enterprise;
similarly enterprise software products are also developed in a manner as to be
independently deployed in the data center of each customer. The data created
and accessed by such applications usually belongs to one organization. As
we discussed earlier in Chapter 3, hosted SaaS platforms require a single
application code to run on data of multiple customers, or ‘tenants’; such
behavior is referred to as multi-tenancy. In this chapter we examine different
ways to achieve multi-tenancy in application software.

Before proceeding it is important to also note that virtualization, as dis-
cussed in the previous chapter, is also a mechanism to achieve multi-tenancy
at the system level. In a virtualized environment, each ‘tenant’ could be
assigned its own set of virtual machines. Here we examine alternatives for
implementing multi-tenancy through application software architecture rather
than at the system level using virtual machines. Thus, such multi-tenancy can
also be termed application-level virtualization. Multi-tenancy and virtualiza-
tion are both two sides of the same coin; the aim being to share resources while
isolating users from each other: hardware resources in the case of system-level
virtualization and software platforms in the case of multi-tenancy.

104

9.1 Multi-entity support 105

9.1 MULTI-ENTITY SUPPORT

Long before ASPs and SaaS, large globally distributed organizations often
needed their applications to support multiple organizational units, or ‘enti-
ties,’ in a segregated manner. For example, consider a bank with many
branches needing to transition from separate branch specific installations
of its core banking software to a centralized deployment where the same
software would run on data from all branches. The software designed to
operate at the branch level clearly could not be used directly on data from all
branches: For example branch-level users should see data related only to their
branch and branch-wise accounting should consider transactions segregated
by branch. If there was a need to enhance the system, say by introducing a
new field, such a change would need to apply across all branches; at the same
time, sometimes branch specific extensions would need to be supported as
well. These requirements are almost exactly the same as for multi-tenancy!
In a multi-entity scenario there are also additional needs, such as where a
subset of users needed to be given access to data from all branches, or a sub-
set of branches, depending on their position in an organizational hierarchy.
Similarly, some global processing would also need to be supported, such as
inter-branch reconciliation or enterprise-level analytics, without which the
benefits of centralization of data might not be realized. Such advanced fea-
tures could be implemented using ‘data access control’ as covered later in
Section 9.4. We first focus on basic multi-entity support as it will lead us
naturally to understand how multi-tenancy can be implemented.

Figure 9.1 depicts the changes that need to be made in an application to
support basic multi-entity features, so that users only access data belong-
ing to their own units. Each database table is appended with a column
(OU_ID) which marks the organizational unit each data record belongs to.
Each database query needs to be appended with a condition that ensures that
data is filtered depending on the organizational unit of the currently logged-in
user, which itself needs to be set in a variable, such as current_user_OU,
during each transaction. An exactly similar mechanism can be used to sup-
port multi-tenancy, with OU_ID now representing the customer to whom
data records belong. Note that the application runs on a single schema con-
taining data from all organizational units; we shall refer to this as the single
schema model.

Many early implementations of SaaS products utilized the single schema
model, especially those that built their SaaS applications from scratch. One
advantage of the single schema structure is that upgrading functionality of the

106 MULTI-TENANT SOFTWARE

Other fields OU_ID

North

North

North

South

South

SELECT … FROM T WHERE OU_ID=:current_user_OU

FIGURE 9.1. Multi-entity implementation

application, say by adding a field, can be done at once for all customers. At
the same time, there are disadvantages: Re-engineering an existing applica-
tion using the single schema approach entails significant re-structuring of
application code. For a complex software product, often having millions
of lines of code, this cost can be prohibitive. Further, while modifications
to the data model can be done for all customers at once, it becomes diffi-
cult to support customer specific extensions, such as custom fields, using
a single schema structure. Meta-data describing such customizations, as
well as the data in such extra fields has to be maintained separately. Fur-
ther, it remains the responsibility of the application code to interpret such
meta-data for, say, displaying and handling custom fields on the screen.
Additionally, any queries that require, say, filtering or sorting on these cus-
tom fields become very complex to handle. Some of these issues can be
seen more clearly through the example in Figure 9.2 that depicts a multi-
tenant architecture using a single schema model which also supports custom
fields:

In the single schema model of Figure 9.2, a Custom Fields table stores meta-
information and data values for all tables in the application. Mechanisms for
handling custom fields in a single schema architecture are usually variants of
this scheme. Consider a screen that is used to retrieve and update records in
the Customer table. First the record from the main table is retrieved by name,
suitably filtered by the OU attribute of the logged in user. Next, custom fields
along with their values are retrieved from the Custom Fields table, for this
particular record and the OU of the logged in user. For example, in OU 503,
there are two custom fields as displayed on the screen, but only one in OU

9.2 Multi-schema approach 107

ID Name Address Value OU_ID

100

101

102

Entity Custom
Field

OU_ID KeyV alue

Customer Hobby 503 101 Golf

Customer Hobby 503 102 Tennis

Customer Birthday 503 102 10/10/72

Customer Risk 490 101 High

Name

Address

Hobby

Birthday

Edit Customer screen

Customer table Custom Fields table

fetch_customer(<name>,<ou>) fetch_custom_fields
(‘customer’, id, <ou>)

update()

update()
or
insert()

1

2

3

4

Value

FIGURE 9.2. Multi-tenancy using a single schema

490, and none otherwise. Furthermore, some records may have missing values
for these fields, so while saving the record care must be taken to appropriately
either insert or update records in the Custom Fields table.

The above example is a simple case; more complex requirements also need
to be handled, for example where a list of records is to be displayed with
the ability to sort and filter on custom fields. It should be clear from this
example that the single schema approach to multi-tenancy, while seemingly
having the advantage of being able to upgrade the data model in one shot for
all customers, has many complicating disadvantages in addition to the fact
that major re-engineering of legacy applications is needed to move to this
model.

9.2 MULTI-SCHEMA APPROACH

Instead of insisting on a single schema, it is sometimes easier to modify even
an existing application to use multiple schemas, as are supported by most
relational databases. In this model, the application computes which OU the
logged in user belongs to, and then connects to the appropriate database
schema. Such an architecture is shown in Figure 9.3

108 MULTI-TENANT SOFTWARE

ID Name Address Hobby Birthday Value

Entity Custom
Field

OU_ID

Customer Hobby 503

Customer Birthday 503

Customer Risk 490

Name

Address

Hobby

Birthday

Edit Customer screen

Customer table–schema 503

Meta-Data

fetch_customer (<name>,<ou>):

exec (SQL)
SQL = “USE” + <ou>

SQL = “SELECT ...”

fetch_schema (‘customer’,<ou>)

update()

1

2

3

Value

ID Name Address Risk Value

Customer table–schema 490

FIGURE 9.3. Multi-tenancy using multiple schemas

In the multiple schema approach a separate database schema is maintained
for each customer, so each schema can implement customer-specific cus-
tomizations directly. Meta-data describing customizations to the core schema
is also maintained in a separate table, but unlike the Custom Fields table of
Figure 9.2, this is pure meta-data and does not contain field values in individ-
ual records. As a result, the application design is simpler, and in case a legacy
application needs to be re-engineered for multi-tenancy, it is likely that the
modifications will be fewer and easier to accomplish.

Consider implementing the Edit Customer screen as discussed earlier
using a multiple schema approach: The application renders the appropri-
ate fields on the screen using information from the Meta-Data table. When
making a database query, the application sets the database schema before
issuing data manipulation (i.e. SQL) statements so as to access the appro-
priate schema. Note that supporting the multiple schema model involves
incorporating elements of an interpretive architecture, very similar to the Dev
2.0 model discussed in Chapter 3, and which we shall return to in more

9.3 Multi-tenancy using cloud data stores 109

detail in Chapters 12 and 14. Thus, it is natural that SaaS offerings based on
the multiple schema model are quite naturally able to morph into Dev 2.0
platforms.

We have described a rather simple implementation to illustrate the concept
of using multiple schemas for multi-tenancy. In practice, web-application
servers need to have schema names configured during deployment so that they
can maintain database connection pools to each schema. Therefore, another
level of indirection is usually required, where customer name (i.e. OU) is
mapped to the actual schema name, so that customers can be added or deleted
online without bringing the system down.

In the case of a multi-entity scenario within a single organization, the
number of users was relatively small, probably in the thousands at most.
For a SaaS application, the number of users will be orders of magnitude
larger. Thus additional factors need to be considered for a multi-tenant SaaS
deployment, such as how many applications server and database instances are
needed, and how a large set of users are efficiently and dynamically mapped to
OUs so as to be connected to the appropriate application server and database
instance.

9.3 MULTI-TENANCY USING CLOUD DATA STORES

As discussed in the previous chapter, cloud data stores exhibit non-relational
storage models. Furthermore, each of these data stores are built to be multi-
tenant from scratch since effectively a single instance of such a large-scale
distributed data store caters to multiple applications created by cloud users.
For example, each user of the Google App Engine can create a fixed number of
applications, and each of these appears to have a separate data store; however
the underlying distributed infrastructure is the same for all users of Google
App Engine, as we shall describe in more detail in Chapter 10.

Here we focus on a different problem: As a user (application developer) of
a cloud platform , how does one create one’s own multi-tenant application?
In the case of Amazon EC2 the answer is straightforward; since this is an
infrastructure cloud it gives users direct access to (virtual) servers where
one can recreate exactly the same multi-tenant architectures discussed earlier
using standard application servers and database systems.

However the situation is different using a PaaS platform such as Google’s
App Engine with its Datastore, Amazon’s SimpleDB or even Azure’s data ser-
vices. For example, a single App Engine application has one data store name

110 MULTI-TENANT SOFTWARE

space, or schema (so, if we create one ‘Customer’ model, then we cannot have
another by the same name in the same application). Thus, it appears at first
that we are constrained to use the inefficient single schema approach.

However, an interesting feature of the Google Datastore is that entities are
essentially schema-less. Thus, it is up to the language API provided to define
how the data store is used. In particular, the Model class in the Python API
to App Engine is object-oriented as well as dynamic. As we have seen earlier
in Chapter 5, the properties of all entities of a ‘kind’ are derived from a class-
definition inheriting from the Model class. Further, as Python is a completely
interpretive language, fresh classes can be defined at runtime, along with their
corresponding data store ‘kinds.’

Figure 9.4 shows one possible implementation of multi-tenancy using
multiple schemas with Google App Engine, in Python. Separate classes are
instantiated for each schema, at runtime. This approach is similar to simulat-
ing multiple schemas in a relational database by having table names that are
schema dependent.

A similar strategy can be used with Amazon’s SimpleDB, where domains,
which play the role of tables in relational parlance and are the equivalent of

Customer 503

ID Name Address Hobby Birthday Value

ID Name Address Risk Value

Customer 490

Normal schema definition (not used)
#Class Customer(db.Model):
ID = db.IntegerProperty()
Name = db.StringProperty()
... ...

Dynamic OU specific classes for ‘Customer’
for OU in OUList:
#Gets ALL fields from meta-data
schema=fetch_schema(‘Customer’ OU)
Create OU specific class at run-time
OUclass=type(‘Customer’+OU,(db.Model,), schema)

FIGURE 9.4. Multi-tenancy using Google Datastore

9.4 Data access control for enterprise applications 111

‘kind’ in the Google Datastore, can be created dynamically from any of the
provided language APIs.

9.4 DATA ACCESS CONTROL FOR ENTERPRISE APPLICATIONS

So far we have covered the typical strategies used to achieve multi-tenancy
from the perspective of enabling a single application code base, running in
a single instance, to work with data of multiple customers, thereby bringing
down costs of management across a potentially large number of customers.

For the most part, multi-tenancy as discussed above appears to be of use
primarily in a software as a service model. There are also certain cases where
multi-tenancy can be useful within the enterprise as well. We have already
seen that supporting multiple entities, such as bank branches, is essentially
a multi-tenancy requirement. Similar needs can arise if a workgroup level
application needs to be rolled out to many independent teams, who usually
do not need to share data. Customizations of the application schema may
also be needed in such scenarios, to support variations in business processes.
Similar requirements also arise in supporting multiple legal entities each of
which could be operating in different regulatory environments.

As we mentioned earlier, in a multi-entity scenario a subset of users may
need to be given access to data from all branches, or a subset of branches,
depending on their position in an organizational unit hierarchy. More gen-
erally, access to data may need to be controlled based on the values of any
field of a table, such as high-value transactions being visible only to some
users, or special customer names being invisible without explicit permission.
Such requirements are referred to as data access control needs, which while
common, are less often handled in a reusable and generic manner. Data access
control (or DAC) is a generalization of multi-tenancy in that the latter can
often be implemented using DAC. In Figure 9.5 we illustrate how data access
control can be implemented in a generic manner within a single schema to
support fairly general rules for controlling access to records based on field
values.

Each application table, such as Customer, is augmented with an additional
field DAC_ID. The DAC Rules table lists patterns based on value ranges of
arbitrary fields using which the values of the DAC_ID in each Customer
record are filled through a batch process. Users are assigned privileges to
access records satisfying one or more such DAC rules as specified in the User
DAC Roles table. This information is expanded, via a batch process, to data

112 MULTI-TENANT SOFTWARE

DAC_ID Name Value OU_ID

001 … 1000 North

081 H.E.…. 35000 North

902 … 150000 South

002 … 5000 South

UserID DAC_ID

100 001

101 001

101 081

101 082

101 002

103 002

SupID UserID

100 100

100 101

100 102

102 103

DAC_RULE DAC_PAT Field Operator Value

1 xx1 OU_ID EQUAL North

2 xx2 OU_ID EQUAL South

3 x8x Name IN {…,…,…}

4 9xx VALUE > 100000

UserID DAC_RULE

100 1

101 1

101 2

101 3

103 2

Using RDBMS
SELECT … FROM CUSTOMER AS C, USER AS U, ORG AS O1 OUTER JOIN ORG AS O2 WHERE
O1.SupID = :user AND /* current user
O1.UserID = O2.SupID AND /* current user and supervisors
O2.UserID = U.UserID AND /* DAC_IDs of these users
U.DAC_ID = C.DAC_ID /* filter Customer table by these DAC_IDs

Org

User

Customer

User DAC Roles DAC Rules

Using GQL queries on Google Datastore:
USER_LIST = fetch_team_for_user(:user) /* execute self join on ORG in memory
DAC_LIST = SELECT DAC_ID from USER WHERE UserID in USER_LIST
SELECT … FROM CUSTOMER WHERE DAC_ID IN DAC_LIST

FIGURE 9.5. Data access control

in the User table where there is a record for each value of DAC_ID that a user
can access. For example, the user 101 has access to three DAC rules, which
translate to five records in the User table. This calculation involves computing
the complete set of mutually exclusive and unique DAC range combinations
based on the DAC Rules and thereafter which subset of these a particular
user has access to based on the User DAC Roles information; note that this
computation is independent of the actual DAC_ID values in the Customer or
other application tables.

It is straightforward to limit access to records of the Customer table to
only those a particular user is permitted, as specified in the User table using a
join. In the illustration of Figure 9.5, we introduce an additional complication
where users are also given access to the DAC permissions of all their direct
reports, as specified in the Org table.

In a traditional relational database, SQL queries on the Customer database
can be modified to support data access control by introducing a generic join,

9.4 Data access control for enterprise applications 113

including a self-join on the Org table to find all direct reports of a user,
which is then joined to the User table and the Customer table. However, in
a cloud database, such as Google Datastore or Amazon’s SimpleDB, joins are
not supported. Therefore the same functionality must be implemented in code
as shown in the figure: The self-join on Org is done in memory giving a list
of reportees, including the user; this is used as a filter to get the permissible
DAC_IDs from the User table. Finally this list is used to filter the application
query on the Customer table.

It is important to note that when adding or modifying Customer records the
DAC_ID needs to be recomputed based on the DAC Rules; this computation
also needs to be optimized, especially if there are a large number of DAC
Rules. Adding new DAC Rules or modifying existing ones will also require
re-computation and updates to the DAC_ID values in the Customer table.
Care also needs to be taken when filling the DAC Rules table to ensure that
DAC ranges on the same field are always non-overlapping.

We thought it fit to cover data access control here, as part of our treatment
of multi-tenancy, first because these requirements are closely related, but
also to bring out the complexities of real enterprise applications even for
incorporating a generic requirement such as data access control. Beyond the
example itself the lesson to be learnt is that migrating applications to a multi-
tenancy model, especially using cloud databases, is not a trivial task.

PART IV

Cloud development

The emergence of cloud platforms has given rise to new paradigms for
dealing with distributed data in the cloud, parallel computing using very
large computing clusters as well as rapid application development tools for
specialized domains: Cloud-based data stores differ significantly from tradi-
tional relational databases, with different query and consistency semantics
as well as performance behavior. The MapReduce programming paradigm
makes large-scale analytics tasks easy to define. MapReduce implementations
allow massive computing clusters to be used while tolerating faults that are
inevitable at such scales. Similarly, but in a very different context, Dev 2.0 plat-
forms allow simple business applications to be developed by end-users using
always-on hosted platforms in the cloud, obviating the need for traditional
development and thereby increasing business agility.

CHAPTER 10

Data in the cloud

Since the 80s relational database technology has been the ‘default’ data storage
and retrieval mechanism used in the vast majority of enterprise applications.
The origins of relational databases, beginning with System R [5] and Ingres
[60] in the 70s, focused on introducing this new paradigm as a general purpose
replacement for hierarchical and network databases, for the most common
business computing tasks at the time, viz. transaction processing.

In the process of creating a planetary scale web search service, Google in
particular has developed a massively parallel and fault tolerant distributed
file system (GFS) along with a data organization (BigTable) and program-
ming paradigm (MapReduce) that is markedly different from the traditional
relational model. Such ‘cloud data strategies’ are particularly well suited for
large-volume massively parallel text processing, as well as possibly other
tasks, such as enterprise analytics. The public cloud computing offerings
from Google (i.e. App Engine) as well as those from other vendors have made
similar data models (Google’s Datastore, Amazon’s SimpleDB) and program-
ming paradigms (Hadoop on Amazon’s EC2) available to users as part of their
cloud platforms.

At the same time there have been new advances in building specialized
database organizations optimized for analytical data processing, in particular
column-oriented databases such as Vertica. It is instructive to note that the
BigTable-based data organization underlying cloud databases exhibits some
similarities to column-oriented databases. These concurrent trends along with

117

118 DATA IN THE CLOUD

the ease of access to cloud platforms are witnessing a resurgence of interest
in non-relational data organizations and an exploration of how these can best
be leveraged for enterprise applications.

In this chapter we examine the structure of Google App Engine’s Datas-
tore and its underlying technologies, Google’s distributed file system (GFS)
and BigTable abstraction, as well as the open source project Hadoop’s HBase
and HDFS (clones of BigTable and GFS respectively). In the next chapter
we cover the MapReduce parallel programming model along with additional
abstractions that together present an alternative query processing model as
compared to parallel and distributed relational database systems.

10.1 RELATIONAL DATABASES

Before we delve into cloud data structures we first review traditional relational
database systems and how they store data. Users (including application pro-
grams) interact with an RDBMS via SQL; the database ‘front-end’ or parser
transforms queries into memory and disk level operations to optimize execu-
tion time. Data records are stored on pages of contiguous disk blocks, which
are managed by the disk-space-management layer.

Pages are fetched from disk into memory buffers as they are requested,
in many ways similar to the file and buffer management functions of the
operating system, using pre-fetching and page replacement policies. However,
database systems usually do not rely on the file system layer of the OS and
instead manage disk space themselves. This is primarily so that the database
can have full control of when to retain a page in memory and when to release
it. The database needs be able to adjust page replacement policy when needed
and pre-fetch pages from disk based on expected access patterns that can be
very different from file operations. Finally, the operating system files used
by databases need to span multiple disks so as to handle the large storage
requirements of a database, by efficiently exploiting parallel I/O systems such
as RAID disk arrays or multi-processor clusters.

The storage indexing layer of the database system is responsible for locating
records and their organization on disk pages. Relational records (tabular rows)
are stored on disk pages and accessed through indexes on specified columns,
which can be B+-tree indexes, hash indexes, or bitmap indexes [46]. Normally
rows are stored on pages contiguously, also called a ‘row-store’, and indexed
using B+-trees. An index can be primary, in which case rows of the table are
physically stored in as close as possible to sorted order based on the column

10.1 Relational databases 119

specified by the index. Clearly only one such primary index is possible per
table; the remaining indexes are secondary, and maintain pointers to the actual
row locations on disk.

While B+-tree indexes on a row-store are optimal for write oriented work-
loads, such as the case in transaction processing applications, these are not the
best for applications where reads dominate; in the latter case bitmap indexes,
cross-table indexes and materialized views are used for efficient access to
records and their attributes. Further, a row-oriented storage of records on disk
may also not be optimal for read-dominated workloads, especially analytical
applications. Recently column-oriented storage [61] has been proposed as a
more efficient mechanism suited for analytical workloads, where an aggrega-
tion of measures columns (e.g. Sales) need to be performed based on values
of dimension columns (e.g. Month). Figure 10.1 illustrates the difference
between row-oriented and column-oriented storage. Notice that in a column
store, projections of the table are stored sorted by dimension values, which
are themselves compressed (as bitmaps, for example) for ease of comparison
as well as reduced storage. Notice also that the column store needs additional
‘join indexes’ that map the sort orders of different projections so as to be able
to recover the original row when required. When the cardinality of dimen-
sion values are small these join indexes can also be efficiently compressed

Date Month City Sales Sales City

Jan NYC 10K
00

00

00

01

10K

15K 010.. 10K

Pages of rows

R
ec

or
ds

Pages of column projections

B+-tree index Join index

Row-oriented database Column-oriented database

SalesMonth

FIGURE 10.1. Row vs. column storage

120 DATA IN THE CLOUD

Disk / SAN NAS / SAN Disk Disk Disk

C
P

U

C
P

U

C
P

U

P
ro

ce
ss

or

P
ro

ce
ss

or

P
ro

ce
ss

or

P
ro

ce
ss

or

P
ro

ce
ss

or

P
ro

ce
ss

or

Storage network
Share memory SMP

operating system

Network

Shared memory Shared disk Shared nothing

FIGURE 10.2. Parallel database architectures

(which we have not shown in the figure). When we cover cloud data stores
later in this chapter we will see some of the similarities between their meta-
data indexes and B+-tree indexes, as well as between their data organization
structures and column oriented databases.

Over the years database systems have evolved towards exploiting the paral-
lel computing capabilities of multi-processor servers as well as harnessing the
aggregate computing power of clusters of servers connected by a high-speed
network. Figure 10.2 illustrates three parallel/distributed database architec-
tures: The shared memory architecture is for machines with many CPUs (and
with each having possibly many processing ‘cores’) while the memory address
space is shared and managed by a symmetric multi-processing operating sys-
tem that schedules processes in parallel exploiting all the processors. The
shared-nothing architecture assumes a cluster of independent servers each
with its own disk, connected by a network. A shared-disk architecture is
somewhere in between with the cluster of servers sharing storage through
high-speed network storage, such as a NAS (network attached storage) or a
SAN (storage area network) interconnected via standard Ethernet, or faster
Fiber Channel or Infiniband connections. Parallel database systems capable of
exploiting any of these parallel architectures have existed since the 80s. These
systems parallelize SQL queries to execute efficiently and exploit multiple

10.2 Cloud file systems: GFS and HDFS 121

processors [46]. In the case of shared-nothing architectures, tables are par-
titioned and distributed across processing nodes with the SQL optimizer
handling distributed joins as best possible. Each of the traditional transaction-
processing databases, Oracle, DB2 and SQL Server support parallelism in
various ways, as do specialized systems designed for data warehousing such
as Vertica, Netezza and Teradata.

Traditional relational databases are designed to support high-volume trans-
action processing involving many, possibly concurrent, record level insertions
and updates. Supporting concurrent access while ensuring that conflicting
actions by simultaneous users do not result in inconsistency is the responsi-
bility of the transaction management layer of the database system that ensures
‘isolation’ between different transactions through a variety of locking strate-
gies. In the case of parallel and distributed architectures, locking strategies are
further complicated since they involve communication between processors
via the well-known ‘two-phase’ commit protocol [46].

It is important to note that the parallel database systems developed as exten-
sions to traditional relational databases were designed either for specially
constructed parallel architectures, such as Netezza, or for closely coupled
clusters of at most a few dozen processors. At this scale, the chances of
system failure due to faults in any of the components could be sufficiently
compensated for by transferring control to a ‘hot-standby’ system in the case
of transaction processing or by restarting the computations in the case of
data warehousing applications. As we shall see below, a different approach is
required to exploit a parallelism at a significantly larger scale.

10.2 CLOUD FILE SYSTEMS: GFS AND HDFS

The Google File System (GFS) [26] is designed to manage relatively large
files using a very large distributed cluster of commodity servers connected
by a high-speed network. It is therefore designed to (a) expect and tolerate
hardware failures, even during the reading or writing of an individual file
(since files are expected to be very large) and (b) support parallel reads,
writes and appends by multiple client programs. A common use case that is
efficiently supported is that of many ‘producers’ appending to the same file in
parallel, which is also being simultaneously read by many parallel ‘consumers’.
The reason for this particular use case being mentioned will become clearer
in the next chapter when we cover the MapReduce programming model and
its applications.

122 DATA IN THE CLOUD

As discussed in the previous section traditional parallel databases, on the
other hand, do not make similar assumptions as regards to the prevalence of
failures or the expectations that failures will occur often even during large
computations. As a result they also do not scale as well as data organizations
built on GFS-like platforms such as the Google Datastore. The Hadoop Dis-
tributed File System (HDFS) is an open source implementation of the GFS
architecture that is also available on the Amazon EC2 cloud platform; we refer
to both GFS and HDFS as ‘cloud file systems.’

The architecture of cloud file systems is illustrated in Figure 10.3. Large files
are broken up into ‘chunks’ (GFS) or ‘blocks’ (HDFS), which are themselves
large (64MB being typical). These chunks are stored on commodity (Linux)
servers called Chunk Servers (GFS) or Data Nodes (HDFS); further each
chunk is replicated at least three times, both on a different physical rack as
well as a different network segment in anticipation of possible failures of these
components apart from server failures.

When a client program (‘cloud application’) needs to read/write a file, it
sends the full path and offset to the Master (GFS) which sends back meta-data

…

C
lient–

‘cloud application’
…/pub/<file>

…/pub/<file>

Chunk Servers (GFS)
Data Nodes (HDFS)

Master (GFS)
Name Node (HDFS)

offset

1

2

replicas

EOF

XXX

FIGURE 10.3. Cloud file systems

10.3 BigTable, HBase and Dynamo 123

for one (in the case of read) or all (in the case of write) of the replicas of the
chunk where this data is to be found. The client caches such meta-data so
that it need not contact the Master each time. Thereafter the client directly
reads data from the designated chunk server; this data is not cached since
most reads are large and caching would only complicate writes.

In case of a write, in particular an append, the client sends only the data to
be appended to all the chunk servers; when they all acknowledge receiving this
data it informs a designated ‘primary’ chunk server, whose identity it receives
(and also caches) from the Master. The primary chunk server appends its
copy of data into the chunk at an offset of its choice; note that this may be
beyond the EOF to account for multiple writers who may be appending to
this file simultaneously. The primary then forwards the request to all other
replicas which in turn write the data at the same offset if possible or return a
failure. In case of a failure the primary rewrites the data at possibly another
offset and retries the process.

The Master maintains regular contact with each chunk server through
heartbeat messages and in case it detects a failure its meta-data is updated
to reflect this, and if required assigns a new primary for the chunks being
served by a failed chunk server. Since clients cache meta-data, occasionally
they will try to connect to failed chunk servers, in which case they update
their meta-data from the master and retry.

In [26] it is shown that this architecture efficiently supports multiple par-
allel readers and writers. It also supports writing (appending) and reading the
same file by parallel sets of writers and readers while maintaining a consistent
view, i.e. each reader always sees the same data regardless of the replica it
happens to read from. Finally, note that computational processes (the ‘client’
applications above) run on the same set of servers that files are stored on.
As a result, distributed programming systems, such as MapReduce, can often
schedule tasks so that their data is found locally as far as possible, as illustrated
by the Clustera system [16].

10.3 BIGTABLE, HBASE AND DYNAMO

BigTable [9] is a distributed structured storage system built on GFS; Hadoop’s
HBase is a similar open source system that uses HDFS. A BigTable is essentially
a sparse, distributed, persistent, multidimensional sorted ‘map.’1 Data in a

1 In the programming language sense, i.e. a dictionary of key-value pairs.

124 DATA IN THE CLOUD

location:city location:region products: details products: types

ACME Detergent
XYZ Soap
KLLGS Cereal A

NYC US East Coast
Txn ID 0088997

sale: value

US North East

Cleaner
Breakfast item$ 80

FIGURE 10.4. Data organization in a BigTable

BigTable is accessed by a row key, column key and a timestamp. Each col-
umn can store arbitrary name–value pairs of the form column-family:label,
string. The set of possible column-families for a table is fixed when it is cre-
ated whereas columns, i.e. labels within the column family, can be created
dynamically at any time. Column families are stored close together in the
distributed file system; thus the BigTable model shares elements of column-
oriented databases. Further, each Bigtable cell (row, column) can contain
multiple versions of the data that are stored in decreasing timestamp order.
We illustrate these features below through an example.

Figure 10.4 illustrates the BigTable data structure: Each row stores infor-
mation about a specific sale transaction and the row key is a transaction
identifier. The ‘location’ column family stores columns relating to where the
sale occurred, whereas the ‘product’ column family stores the actual prod-
ucts sold and their classification. Note that there are two values for region
having different timestamps, possibly because of a reorganization of sales
regions. Notice also that in this example the data happens to be stored in a
de-normalized fashion, as compared to how one would possibly store it in a
relational structure; for example the fact that XYZ Soap is a Cleaner is not
maintained.

Since data in each column family is stored together, using this data orga-
nization results in efficient data access patterns depending on the nature of
analysis: For example, only the location column family may be read for tra-
ditional data-cube based analysis of sales, whereas only the product column
family is needed for say, market-basket analysis. Thus, the BigTable structure
can be used in a manner similar to a column-oriented database.

Figure 10.5 illustrates how BigTable tables are stored on a distributed file
system such as GFS or HDFS. (In the discussion below we shall use BigTable
terminology; equivalent HBase terms are as shown in Figure 10.5.) Each table
is split into different row ranges, called tablets. Each tablet is managed by a
tablet server that stores each column family for the given row range in a
separate distributed file, called an SSTable. Additionally, a single Metadata

10.3 BigTable, HBase and Dynamo 125

H
store(H

base)
S

S
T

able (B
igtable)

=
 G

F
S

/H
D

F
S

 files

Metadata
tablets/regions

Table N

.

.

.

Region/
Tablet

Table 1

Root
tablet/region

Metadata table:

Master Server

Region/Tablet Server

C
ol

um
n

fa
m

ily

FIGURE 10.5. Google BigTable/Hadoop HDFS

table is managed by a meta-data server that is used to locate the tablets of
any user table in response to a read or write request. The Metadata table itself
can be large and is also split into tablets, with the root tablet being special in
that it points to the locations of other meta-data tablets. It is instructive to
notice how this multi-layer structure is in many ways similar to a distributed
B+-tree index on the row keys of all tables.

BigTable and HBase rely on the underlying distributed file systems GFS
and HDFS respectively and therefore also inherit some of the properties of
these systems. In particular large parallel reads and inserts are efficiently sup-
ported, even simultaneously on the same table, unlike a traditional relational
database. In particular, reading all rows for a small number of column fami-
lies from a large table, such as in aggregation queries, is efficient in a manner
similar to column-oriented databases. Random writes translate to data inserts
since multiple versions of each cell are maintained, but are less efficient since
cell versions are stored in descending order and such inserts require more
work than simple file appends. Similarly, the consistency properties of large
parallel inserts are stronger than that for parallel random writes, as is pointed
out in [26]. Further, writes can even fail if a few replicas are unable to write
even if other replicas are successfully updated.

126 DATA IN THE CLOUD

We now turn to another distributed data system called Dynamo, which was
developed at Amazon and underlies its SimpleDB key-value pair database.
Unlike BigTable, Dynamo was designed specifically for supporting a large
volume of concurrent updates, each of which could be small in size, rather
than bulk reads and appends as in the case of BigTable and GFS.

Dynamo’s data model is that of simple key-value pairs, and it is expected
that applications read and write such data objects fairly randomly. This model
is well suited for many web-based e-commerce applications that all need to
support constructs such as a ‘shopping cart.’

Dynamo also replicates data for fault tolerance, but uses distributed object
versioning and quorum-consistency to enable writes to succeed without wait-
ing for all replicas to be successfully updated, unlike in the case of GFS.
Managing conflicts if they arise is relegated to reads which are provided
enough information to enable application dependent resolution. Because of
these features, Dynamo does not rely on any underlying distributed file system
and instead directly manages data storage across distributed nodes.

The architecture of Dynamo is illustrated in Figure 10.6. Objects are key-
value pairs with arbitrary arrays of bytes. An MD5 hash of the key is used
to generate a 128-bit hash value. The range of this hash function is mapped

B

C

D

E

A

F

A D

B E

C F

key valueTx Ty Tz

Tx

Ty

Tz

Each key hashed to a ring of values

Vector timestamp

object replicated on N (=3 here) virtual nodes

virtual nodes

physical node X

physical node Y

physical node Z

FIGURE 10.6. Amazon Dynamo

10.3 BigTable, HBase and Dynamo 127

to a set of virtual nodes arranged in a ring, so each key gets mapped to one
virtual node. The object is replicated at this primary virtual node as well as
N − 1 additional virtual nodes (where N is fixed for a particular Dynamo
cluster). Each physical node (server) handles a number of virtual nodes at
distributed positions on the ring so as to continuously distribute load evenly
as nodes leave and join the cluster because of transient failures or network
partitions. Notice that the Dynamo architecture is completely symmetric with
each node being equal, unlike the BigTable/GFS architecture that has special
master nodes at both the BigTable as well as GFS layer.

A write request on an object is first executed at one of its virtual nodes which
then forwards the request to all nodes having replicas of the object. Objects are
always versioned, so a write merely creates a new version of the object with its
local timestamp (Tx on node X) incremented. Thus the timestamps capture
the history of object updates; versions that are superseded by later versions
having a larger vector timestamp are discarded. For example, two sequential
updates at node X would create an object version with vector timestamp to
[2 0 0], so an earlier version with timestamp [1 0 0] can be safely discarded.
However, if the second write took place at node Y before the first write had
propagated to this replica, it would have a timestamp of [0 1 0]. In this case
even when the first write arrives at Y (and Y ’s write arrives symmetrically at
X), the two versions [1 0 0] and [0 1 0] would both be maintained and returned
to any subsequent read to be resolved using application-dependent logic. Say
this read took place at node Z and was reconciled by the application which
then further updated the object; the new timestamp for the object would be set
to [1 1 1], and as this supersedes other versions they would be discarded once
this update was propagated to all replicas. We mention in passing that such
vector-timestamp-based ordering of distributed events was first conceived of
by Lamport in [35].

In Dynamo write operations are allowed to return even if all replicas are not
updated. However a quorum protocol is used to maintain eventual consistency
of the replicas when a large number of concurrent reads and writes take place:
Each read operation accesses R replicas and each write ensures propagation to
W replicas; as long as R + W > N the system is said to be quorum consistent
[14]. Thus, if we want very efficient writes, we pay the price of having to
read many replicas, and vice versa. In practice Amazon uses N = 3, with R
and W being configurable depending on what is desired; for a high update
frequency one uses W = 1, R = 3, whereas for a high-performance read store
W = 3, R = 1 is used.

128 DATA IN THE CLOUD

Dynamo is able to handle transient failures by passing writes intended for
a failed node to another node temporarily. Such replicas are kept separately
and scanned periodically with replicas being sent back to their intended node
as soon as it is found to have revived. Finally, Dynamo can be implemented
using different storage engines at the node level, such as Berkeley DB or even
MySQL; Amazon is said to use the former in production.

10.4 CLOUD DATA STORES: DATASTORE AND SIMPLEDB

The Google and Amazon cloud services do not directly offer BigTable and
Dynamo to cloud users. Using Hadoop’s HDFS and HBase, which are avail-
able as Amazon AMIs, users can set up their own BigTable-like stores on
Amazon’s EC2. However, as we have seen in Chapter 5, Google and Amazon
both offer simple key-value pair database stores, viz. Google App Engine’s
Datastore and Amazon’s SimpleDB. Here we describe how the Google Datas-
tore is implemented using an underlying BigTable infrastructure, as illustrated
in Figure 10.7.

All entities (objects) in a Datastore reside in one BigTable table, the Entities
table having one column family. In addition to the single Entities table there
are index tables that are used to support efficient queries.

Cust: BBB, Amount: $2.5M
City: NYC, Status: Paid

Txn:0221/
Inv:101

Cust: BBB, Amount: $2.5M
City: NYC, Status: Pending 13:07:09::10:39

10:08:09::12:19

Inv/Cust:

Inv/Cust: BBB

Inv/Cust: BBC

Inv/Amount:3M

Inv/Amount:2.5M

Inv/Amount:1.8M

Inv/City:NYC/Status:Pending

Inv/City:NYC/Status:Pending

Inv/City:NYC/Status:Paid

key

key

key

key

key

key

key

key

key

key

key

key

key

key

key

Entities Table

Single Property Index Tables ‘Kind’ index tablesComp osit e Index Tables

Inv

Inv

key

key

keyTxn

FIGURE 10.7. Google Datastore using BigTable

10.4 Cloud data stores: Datastore and SimpleDB 129

For the purposes of this discussion, it is useful to think of a BigTable as
an array that has been horizontally partitioned (also called ‘sharded’) across
disks, and sorted lexicographically by key values. In addition to single key
lookup, this structure also enables highly efficient execution of prefix and
range queries on key values, e.g. all keys having prefix ‘Txn,’ or in the range
‘Amount:1M’ to ‘Amount:3M.’ From this feature derive the key structures of
entity and index tables that implement Datastore.

Recall from Chapter 5 that Datastore allows entities to be ‘grouped’ (entity
groups) for the purposes of transactions and also efficiency. Entity keys are
lexicographic by group ancestry, so if the entity Inv:101 has parent Txn:0221,
then its key in the entities table would look like ‘Txn:0221/Inv:101,’ which
is lexicographically near that of its parent ‘Txn:0221.’ As a result these enti-
ties end up being stored close together on disk, whereas another group, say
‘Txn:9999’ and ‘Txn:9999/Inv:875’ may be far apart from these. Notice that
this is very different from a relational model where the location of records from
Txn and Inv tables on disk would be unrelated to any foreign key relationships
between such records.

Index tables support the variety of queries included in the Datastore API.
Some indexes, such as single property indexes and ‘kind’ indexes are auto-
matically created when a ‘kind’ is defined, whereas others such as composite
indexes need to be created by developers. Index tables use values of entity
attributes as keys, e.g. the index entry ‘Inv/Cust:BBB’ allows efficient lookup
of the record with the WHERE clause ‘Cust = BBB’. Similarly, the index on
Amount enables efficient range queries such as ‘Amount ≥2M AND Amount
≥3M’. ‘Kind’ indexes support queries of the form SELECT ALL Invoices,
retrieving all entries of a given ‘kind.’ Composite indexes support more
complex queries such as retrieving all invoices ‘WHERE City=NYC AND Sta-
tus=Pending.’ In cases where composite indexes are not present (because
developers did not provide them), single property indexes are used in such
queries with the results being merged in memory. A query is executed by
choosing indexes with highest selectivity first, which is efficient unless the
selectivity of all of the query parameters is low (e.g. ‘Status=Pending’). Notice
that index operations are efficient precisely because of the efficiency of prefix
and range scans in BigTable.

The entities table stores multiple versions of each entity, primarily in order
to support transactions spanning updates of different entities in the same
group. Only one of the versions of each entity is tagged as ‘committed,’ and this
is updated only when a transaction succeeds on all the entities in the group;
journal entries consisting of previous entity versions are used to rollback if
needed.

130 DATA IN THE CLOUD

Note that many App Engine applications are small, so it is likely that a
large number of tables within the App Engine Datastore have only a single
tablet; in this case the structure of BigTable allows many tablets possibly from
different applications to share GFS files (SSTables), each of which may have
only one or just a few chunks.

Notice also that this mapping of the Datastore API onto BigTable does
not exploit the column-oriented storage of BigTable, since a single column
family is used. Thus while BigTable (and HBase) are potentially useful in
large analytical tasks for the same reason that column-oriented databases
are, Datastore as an application of BigTable does not share this property.
Datastore is much more suited to transactional key-value pair updates, in
much the same manner as Amazon’s SimpleDB is, with the difference that its
consistency properties are stronger (as compared to the ‘eventual’ consistency
of SimpleDB), at the cost of a fixed overhead even for small writes.

While it is widely speculated that SimpleDB is similarly based on an under-
lying Dynamo infrastructure, and its eventual consistency model substantiates
this claim, there is no published information that confirms this. Nevertheless,
as both Datastore and SimpleDB share many similarities, we expect that our
discussion of Datastore may also shed some light on how SimpleDB might
be implemented on Dynamo. While SimpleDB objects are easily mapped to
Dynamo objects, indexes are probably maintained differently since Dynamo
does not share any underlying sorted array structure similar to BigTable that
can make queries efficient.

CHAPTER 11

MapReduce and extensions

The MapReduce programming model was developed at Google in the pro-
cess of implementing large-scale search and text processing tasks on massive
collections of web data stored using BigTable and the GFS distributed file
system. The MapReduce programming model is designed for processing and
generating large volumes of data via massively parallel computations utiliz-
ing tens of thousands of processors at a time. The underlying infrastructure
to support this model needs to assume that processors and networks will
fail, even during a particular computation, and build in support for handling
such failures while ensuring progress of the computations being performed.
Hadoop is an open source implementation of the MapReduce model devel-
oped at Yahoo, and presumably also used internally. Hadoop is also available
on pre-packaged AMIs in the Amazon EC2 cloud platform, which has sparked
interest in applying the MapReduce model for large-scale, fault-tolerant com-
putations in other domains, including such applications in the enterprise
context.

11.1 PARALLEL COMPUTING

Parallel computing has a long history with its origins in scientific computing
in the late 60s and early 70s. Different models of parallel computing have
been used based on the nature and evolution of multiprocessor computer
architectures. The shared-memory model assumes that any processor can

131

132 MAPREDUCE AND EXTENSIONS

access any memory location, albeit not equally fast.1 In the distributed-
memory model each processor can address only its own memory and
communicates with other processors using message passing over the network.
In scientific computing applications for which these models were developed,
it was assumed that data would be loaded from disk at the start of a parallel
job and then written back once the computations had been completed, as
scientific tasks were largely compute bound. Over time, parallel computing
also began to be applied in the database arena, as we have already discussed
in the previous chapter; as illustrated earlier in Figure 10.2, database systems
supporting shared-memory, shared-disk and shared-nothing2 models became
available.

The premise of parallel computing is that a task that takes time T should
take time T/p if executed on p processors. In practice, inefficiencies are
introduced by distributing the computations such as (a) the need for syn-
chronization among processors, (b) overheads of communication between
processors through messages or disk, and (c) any imbalance in the distri-
bution of work to processors. Thus in practice the time Tp to execute on p
processors is less than T, and the parallel efficiency [21] of an algorithm is
defined as:

ε = T

p Tp
. (11.1)

A scalable parallel implementation is one where: (a) the parallel efficiency
remains constant as the size of data is increased along with a corresponding
increase in processors and (b) the parallel efficiency increases with the size
of data for a fixed number of processors.

We illustrate how parallel efficiency and scalability depends on the algo-
rithm, as well as the nature of the problem, through an example that we
shall later use to illustrate the MapReduce model. Consider a very large col-
lection of documents, say web pages crawled from the entire internet. The
problem is to determine the frequency (i.e., total number of occurrences)
of each word in this collection. Thus, if there are n documents and m dis-
tinct words, we wish to determine m frequencies, one for each word. Now
we compare two approaches to compute these frequencies in parallel using p
processors: (a) let each processor compute the frequencies for m/p words and

1 Referred to as NUMA, or ‘non-uniform memory access,’ using a hierarchy of memory buses.
2 The same as distributed-memory.

11.1 Parallel computing 133

(b) let each processor compute the frequencies of m words across n/p docu-
ments, followed by all the processors summing their results. At first glance it
appears that approach (a) where each processor works independently may be
more efficient as compared to (b) where they need to communicate with each
other to add up all the frequencies. However, a more careful analysis reveals
otherwise:

We assume a distributed-memory model with a shared disk, so that each
processor is able to access any document from disk in parallel with no con-
tention. Further we assume that the time spent c for reading each word in
the document is the same as that of sending it to another processor via inter-
processor communication. On the other hand, the time to add to a running
total of frequencies is negligible as compared to the time spent on a disk read
or interprocessor communication, so we ignore the time taken for arithmetic
additions in our analysis. Finally, assume that each word occurs f times in a
document, on average. With these assumptions, the time for computing all
the m frequencies with a single processor is n×m× f × c, i.e. since each word
needs to be read approximately f times in each document.

Using approach (a) each processor reads approximately n × m × f words
and adds them n × m/p × f times. Ignoring the time spent in additions, the
parallel efficiency can be calculated as:

εa = nmfc

pnmfc
= 1

p
. (11.2)

Since efficiency falls with increasing p the algorithm is not scalable.
On the other hand using approach (b) each processor performs approxi-

mately n/p×m× f reads and the same number of additions in the first phase,
producing p vectors of m partial frequencies, which can be written to disk
in parallel by each processor in time cm. In the second phase these vectors
of partial frequencies need to be added: First each processor sends p − 1
sub-vectors of size m/p to each of the remaining processors. Each processor
then adds p sub-vectors locally to compute one pth of the final m-vector of
frequencies. The parallel efficiency is computed as:

εb = nmfc

p

(
n

p
mfc + +cm + p

m

p
c

) = nf

nf + 2p
= 1

1 + 2p

nf

. (11.3)

Since in practice p � nf the efficiency of approach (b) is higher than that of
approach (a), and can even be close to one: For example, with n = 10 000

134 MAPREDUCE AND EXTENSIONS

documents and f = 10, the condition (11.3) works out to p � 50 000, so
method (b) is efficient (εb ≈ 0.9) even with thousands of processors. The
reason is that in the first approach each processor is reading many words that
it need not read, resulting in wasted work, whereas in the second approach
every read is useful in that it results in a computation that contributes to the
final answer. Algorithm (b) is also scalable, since εb remains constant as p and
n both increase, and approaches one as n increases for a fixed p.

11.2 THE MAPREDUCE MODEL

Traditional parallel computing algorithms were developed for systems with a
small number of processors, dozens rather than thousands. So it was safe to
assume that processors would not fail during a computation. At significantly
larger scales this assumption breaks down, as was experienced at Google in the
course of having to carry out many large-scale computations similar to the one
in our word counting example. The MapReduce [12] parallel programming
abstraction was developed in response to these needs, so that it could be used
by many different parallel applications while leveraging a common underlying
fault-tolerant implementation that was transparent to application developers.

Figure 11.1 illustrates MapReduce using the word counting example where
we needed to count the occurrences of each word in a collection of documents.
MapReduce proceeds in two phases, a distributed ‘map’ operation followed
by a distributed ‘reduce’ operation; at each phase a configurable number of
M ‘mapper’ processors and R ‘reducer’ processors are assigned to work on the
problem (we have used M = 3 and R = 2 in the illustration). The computation
is coordinated by a single master process (not shown in the figure).

A MapReduce implementation of the word counting task proceeds as fol-
lows: In the map phase each mapper reads approximately 1/Mth of the input
(in this case documents), from the global file system, using locations given
to it by the master. Each mapper then performs a ‘map’ operation to compute
word frequencies for its subset of documents. These frequencies are sorted by
the words they represent and written to the local file system of the mapper.
At the next phase reducers are each assigned a subset of words; in our illus-
tration the first reducer is assigned w1 and w2 while the second one handles
w3 and w4. In fact during the map phase itself each mapper writes one file
per reducer, based on the words assigned to each reducer, and keeps the mas-
ter informed of these file locations. The master in turn informs the reducers
where the partial counts for their words have been stored on the local files of

11.2 The MapReduce model 135

(d1, ‘’w1 w2 w4’)

(d2, ‘ w1 w2 w3 w4’)
(w2, 3)

(w2,4)

(w3, 2)

(w3,2)

(w2,3)

(d4, ‘ w1 w2 w3’)

(d5, ‘w1 w3 w4’)

(d8, ‘ w2 w2 w3’)

(d9, ‘w1w1w3 w3’)

(d3, ‘ w2 w3 w4’)
(w2,4)

(w1,3)

(w3,2)

(w4,3)

(w3,2)

(w1,7)

(d10, ‘ w2 w1 w4 w3’)
(w3,4)

(w2,3) (w2,15)

M = 3 mappers R = 2 reducers

(w1, 2)

(w4,3)

(w1,3)

(w4,3)

(w1,3)

(w4,1)

(d6, ‘ w1 w4 w2w2’)

(d7, ‘ w4 w2 w1’)

(w1,3)

(w4,3)

(w2,3)

(w1,2)

(w3,4)

(w4,1)

(w3,8)

(w4,7)

FIGURE 11.1. MapReduce model

respective mappers; the reducers then make remote procedure call requests
to the mappers to fetch these. Each reducer performs a ‘reduce’ operation that
sums up the frequencies for each word, which are finally written back to the
GFS file system.

The MapReduce programming model generalizes the computational struc-
ture of the above example. Each map operation consists of transforming one
set of key-value pairs to another:

Map: (k1, v1) → [(k2, v2)]. (11.4)

In our example each map operation takes a document indexed by its id and
emits a list if word-count pairs indexed by word-id:

(dk, [w1 . . . wn]) → [(wi, ci)].

The reduce operation groups the results of the map step using the same key
k2 and performs a function f on the list of values that correspond to each

136 MAPREDUCE AND EXTENSIONS

key value:

Reduce: (k2, [v2]) → (k2, f ([v2])). (11.5)

In our example each reduce operation sums the frequency counts for each
word:

(wi, [ci]) →
(

wi,
∑

i

ci

)
.

The implementation also generalizes. Each mapper is assigned an input-key
range (set of values for k1) on which map operations need to be performed.
The mapper writes results of its map operations to its local disk in R parti-
tions, each corresponding to the output-key range (values of k2) assigned to
a particular reducer, and informs the master of these locations. Next each
reducer fetches these pairs from the respective mappers and performs reduce
operations for each key k2 assigned to it.

If a processor fails during the execution, the master detects this through
regular heartbeat communications it maintains with each worker, wherein
updates are also exchanged regarding the status of tasks assigned to workers.
If a mapper fails, then the master reassigns the key-range designated to it to
another working node for re-execution. Note that re-execution is required
even if the mapper had completed some of its map operations, because the
results were written to local disk rather than the GFS. On the other hand if
a reducer fails only its remaining tasks (values k2) are reassigned to another
node, since the completed tasks would already have been written to the GFS.
Finally, heartbeat failure detection can be fooled by a wounded task that has
a heartbeat but is making no progress: Therefore, the master also tracks the
overall progress of the computation and if results from the last few processors
in either phase are excessively delayed, these tasks are duplicated and assigned
to processors who have already completed their work. The master declares
the task completed when any one of the duplicate workers complete.

Such a fault-tolerant implementation of the MapReduce model has been
implemented and is widely used within Google; more importantly from an
enterprise perspective, it is also available as an open source implementation
through the Hadoop project along with the HDFS distributed file system.

The MapReduce model is widely applicable to a number of parallel com-
putations, including database-oriented tasks which we cover later. Finally we
describe one more example, that of indexing a large collection of documents,

11.3 Parallel efficiency of MapReduce 137

or, for that matter any data including database records: The map task consists
of emitting a word-document/record id pair for each word:

(dk, [w1 . . . wn]) → [(wi, dk)].

The reduce step groups the pairs by word and creates an index entry for each
word:

[(wi, dk)] → (wi, [di1 . . . dim]).
Indexing large collections is not only important in web search, but also a
critical aspect of handling structured data; so it is important to know that it
can be executed efficiently in parallel using MapReduce. Traditional parallel
databases focus on rapid query execution against data warehouses that are
updated infrequently; as a result these systems often do not parallelize index
creation sufficiently well.

11.3 PARALLEL EFFICIENCY OF MAPREDUCE

As we have seen earlier, parallel efficiency is impacted by overheads such as
synchronization and communication costs, or load imbalance. The MapRe-
duce master process is able to balance load efficiently if the number of map
and reduce operations are significantly larger than the number of processors.
For large data sets this is usually the case (since an individual map or reduce
operation usually deals with a single document or record). However, commu-
nication costs in the distributed file system can be significant, especially when
the volume of data being read, written and transferred between processors is
large.

For the purposes of our analysis we assume a general computational task,
on a volume of data D, which takes wD time on a uniprocessor, including
the time spent reading data from disk, performing computations, and writing
it back to disk (i.e. we assume that computational complexity is linear in
the size of data). Let c be the time spent reading one unit of data (such as a
word) from disk. Further, let us assume that our computational task can be
decomposed into map and reduce stages as follows: First cmD computations
are performed in the map stage, producing σD data as output. Next the reduce
stage performs crσD computations on the output of the map stage, producing
σµD data as the final result. Finally, we assume that our decomposition into

138 MAPREDUCE AND EXTENSIONS

a map and reduce stages introduces no additional overheads when run on a
single processor, such as having to write intermediate results to disk, and so

wD = cD + cmD + crσD + cσµD. (11.6)

Now consider running the decomposed computation on P processors that
serve as both mappers and reducers in respective phases of a MapReduce-
based parallel implementation. As compared to the single processor case, the
additional overhead in a parallel MapReduce implementation is between the
map and reduce phases where each mapper writes to its local disk followed
by each reducer remotely reading from the local disk of each mapper. For the
purposes of our analysis we shall assume that the time spent reading a word
from a remote disk is also c, i.e. the same as for a local read.

Each mapper produces approximately σD/P data that is written to a local
disk (unlike in the uniprocessor case), which takes cσD/P time. Next, after
the map phase, each reducer needs to read its partition of data from each of
the P mappers, with approximately one Pth of the data at each mapper by each
reducer, i.e. σD/P2. The entire exchange can be executed in P steps, with each
reducer r reading from mapper r + i mod r in step i. Thus the transfer time
is cσD/P2 × P = cσD/P. The total overhead in the parallel implementation
because of intermediate disk writes and reads is therefore 2cσD/P. We can
now compute the parallel efficiency of the MapReduce implementation as:

εMR = wD

P

(
wD

P
+ 2c

σD

P

) = 1

1 + 2c

w
σ

. (11.7)

Let us validate (11.7) above for our parallel word counting example dis-
cussed in Section 11.1: The volume of data is D = nmf . We ignore the time
spent in adding word counts, so cr = cm = 0. We also did not include the
(small) time cm for writing the final result to disk. So wD = wnmf = cnmf , or
w = c. The map phase produces mP partial counts, so σ = mP/nmf = p/nf .
Using (11.7) and c = w we reproduce (11.3) as computed earlier.

It is important to note how εMR depends on σ , the ‘compression’ in data
achieved in the map phase, and its relation to the number of processors p.
To illustrate this dependence, let us recall the definition (11.4) of a map
operation, as applied to the word counting problem, i.e. (dk, ‘w1 . . . wn]) →
[(wi, ci)]. Each map operation takes a document as input and emits a partial
count for each word in that document alone, rather than a partial sum across

11.4 Relational Operations using MapReduce 139

all the documents it sees. In this case the output of the map phase is of size mn
(an m-vector of counts for each document). So, σ = mn/nmf = 1/f and the
parallel efficiency is 1

1+ 2
f
, independent of data size or number of processors,

which is not scalable.
A strict implementation of MapReduce as per the definitions (11.4) and

(11.5) does not allow for partial reduction across all input values seen by
a particular reducer, which is what enabled the parallel implementation of
Section 11.1 to be highly efficient and scalable. Therefore, in practice the map
phase usually includes a combine operation in addition to the map, defined as
follows:

Combine: (k2, [v2]) → (k2, fc([v2])). (11.8)

The function fc is similar to the function f in the reduce operation but
is applied only across documents processed by each mapper, rather than
globally. The equivalence of a MapReduce implementation with and with-
out a combiner step relies on the reduce function f being commutative and
associative, i.e. f (v1, v2, v3) = f (v3, f (v1, v2)).

Finally, recall our definition of a scalable parallel implementation: A
MapReduce implementation is scalable if we are able to achieve an efficiency
that approaches one as data volume D grows, and remains constant as D and P
both increase. Using combiners is crucial to achieving scalability in practical
MapReduce implementations by achieving a high degree of data ‘compression’
in the map phase, so that σ is proportional to P/D, which in turn results in
scalability due to (11.7).

11.4 RELATIONAL OPERATIONS USING MAPREDUCE

Enterprise applications rely on structured data processing, which over the
years has become virtually synonymous with the relational data model and
SQL. Traditional parallel databases have become fairly sophisticated in auto-
matically generating parallel execution plans for SQL statements. At the same
time these systems lack the scale and fault-tolerance properties of MapReduce
implementations, naturally motivating the quest to execute SQL statements
on large data sets using the MapReduce model.

Parallel joins in particular are well studied, and so it is instructive to exam-
ine how a relational join could be executed in parallel using MapReduce.
Figure 11.2 illustrates such an example: Point of sale transactions taking

140 MAPREDUCE AND EXTENSIONS

(AddID=0..N/2, Sale)

(AddrID=N/2..N, Sale)

(AddrID=N/2..N, City)

(SUM(Sale),City=0-M/2)

(SUM(Sale),City=0-M/2)

(AddrID=0..N/2, City)

SQL: SELECT SUM(Sale), City FROM Sales, Cities WHERE Sales.AddrID=Cities.AddrID GROUP BY City

Map1: record -> (AddrID, rest of record)

Reduce1: Sale, Cities-> SUM(SALES) GROUP BY City

(AddrID=1..N/2, Sale)

(AddrID=N/2..N, Sale)

(AddrID=1..N/2, City)

(AddrID=N/2..N, City)

(SUM(Sale),City=M/2-M)

(SUM(Sale),City=M/2-M)

(SUM(Sale),City=0-M/2)

(SUM(Sale),City=M/2-M)

Map2: record -> (City, rest of record)

Reduce2: records -> SUM(SALES) GROUP BY City

Cities

Sales

FIGURE 11.2. Join using MapReduce

place at stores (identified by addresses) are stored in a Sales table. A Cities
table captures the addresses that fall within each city. In order to compute
the gross sales by city these two tables need to be joined using SQL as shown
in the figure.

The MapReduce implementation works as follows: In the map step, each
mapper reads a (random) subset of records from each input table Sales and
Cities, and segregates each of these by address, i.e. the reduce key k2 is
‘address.’ Next each reducer fetches Sales and Cities data for its assigned
range of address values from each mapper, and then performs a local join
operation including the aggregation of sale value and grouping by city. Note
that since addresses are randomly assigned to reducers, sales aggregates for
any particular city will still be distributed across reducers. A second map-
reduce step is needed to group the results by city and compute the final sales
aggregates.

Note that while the parallel MapReduce implementation looks very similar
to a traditional parallel sort-merge join, as can be found in most database
textbooks [46], parallel SQL implementations usually distribute the smaller
table, Cities in this case, to all processors. As a result, local joins and aggre-
gations can be performed in the first map phase itself, followed by a reduce
phase using city as the key, thus obviating the need for two phases of data
exchange.

11.4 Relational Operations using MapReduce 141

SQL:SELECT SUM(Sale), City from Sales, Cities WHERE Sales.AddrID=Cities.AddrIDGROUP BY City

Map-> [(AddrID,Sale/City)]

Reduce-> (AddrID, [(Sale,City)]

Map-> (City, [(Sale)])

Reduce-> (City, SUM(Sale)]

Pig Latin:
tmp = COGROUP Sales BY AddrID, Cities by AddrID
ioin = FOREACH tmp GENERATE FLATTEN(Sales), FLATTEN(Cities)
grp = GROUP join BY City
res = FOREACH grp GENERATE SUM(Sale)

HiveQL:
INSERT OVERWRITE TABLE join
SELECT s.Sale, c.City FROM Sales s

JOIN Cities c ON s.AddrID=c.AddrID;

INSERT OVERWRITE TABLE res
SELECT SUM(join.Sale) FROM join GROUP BY join.City

FIGURE 11.3. Pig Latin and HiveQL

Naturally there have been efforts at automatically translating SQL-like
statements to a map-reduce framework. Two notable examples are Pig Latin
[42] developed at Yahoo!, and Hive [62] developed and used at Facebook.
Both of these are open source tools available as part of the Hadoop project,
and both leverage the Hadoop distributed file system HDFS.

Figure 11.3 illustrates how the above SQL query can be represented using
the Pig Latin language as well as the HiveQL dialect of SQL. Pig Latin has fea-
tures of an imperative language, wherein a programmer specifies a sequence
of transformations that each read and write large distributed files. The Pig
Latin compiler generates MapReduce phases by treating each GROUP (or
COGROUP) statement as defining a map-reduce boundary, and pushing
remaining statements on either side into the map or reduce steps. HiveQL,
on the other hand, shares SQL’s declarative syntax. Once again though, as in
Pig Latin, each JOIN and GROUP operation define a map-reduce boundary.
As depicted in the figure, the Pig Latin as well as HiveQL representations of
our SQL query translate into two MapReduce phases similar to our example
of Figure 11.2.

Pig Latin is ideal for executing sequences of large-scale data transformations
using MapReduce. In the enterprise context it is well suited for the tasks
involved in loading information into a data warehouse. HiveQL, being more
declarative and closer to SQL, is a good candidate for formulating analytical
queries on a large distributed data warehouse.

There has been considerable interest in comparing the performance of
MapReduce-based implementations of SQL queries with that of traditional

142 MAPREDUCE AND EXTENSIONS

parallel databases, especially specialized column-oriented databases tuned for
analytical queries [44, 59]. In general, as of this writing, parallel databases are
still faster than available open source implementations of MapReduce (such as
Hadoop), for smaller data sizes using fewer processes where fault tolerance is
less critical. MapReduce-based implementations, on the other hand, are able
to handle orders of magnitude larger data using massively parallel clusters in a
fault-tolerant manner. Thus, MapReduce is better suited to ‘extract-transform-
load’ tasks, where large volumes of data need to be processed (especially using
complex operations not easily expressed in SQL) and the results loaded into
a database or other form of permanent structured storage [59]. MapReduce
is also preferable over traditional databases if data needs to be processed only
once and then discarded: As an example, the time required to load some large
data sets into a database is 50 times greater than the time to both read and
perform the required analysis using MapReduce [13]. On the contrary, if data
needs to be stored for a long time, so that queries can be performed against
it regularly, a traditional database wins over MapReduce, at least as of this
writing.

HadoopDB [2] is an attempt at combining the advantages of MapReduce
and relational databases by using databases locally within nodes while using
MapReduce to coordinate parallel execution. Another example is SQL/MR
[22] from Aster Data that enhances a set of distributed SQL-compliant
databases with MapReduce programming constructs. Needless to say, rela-
tional processing using MapReduce is an active research area and many
improvements to the available state of the art are to be expected in the
near future. As an example of a possible improvement, neither Pig Latin
nor Hive currently (as of this writing) leverage HBase’s BigTable model and
instead work directly with the file system. Using the opportunities for column-
oriented storage in HBase, it should be possible to introduce optimizations
similar to those used by specialized column oriented parallel databases, as has
also been suggested in [13].

11.5 ENTERPRISE BATCH PROCESSING USING MAPREDUCE

In the enterprise context there is considerable interest in leveraging the
MapReduce model for high-throughput batch processing, analysis on data
warehouses as well as predictive analytics. We have already illustrated how
analytical SQL queries can be handled using MapReduce, and we shall cover
predictive analytics applications in more detail in Chapter 16.

11.5 Enterprise batch processing using MapReduce 143

Daily portfolio revaluation:
prices=SELECT s.sym,s.price, s.dtFROM Stocks s WHERE s.dt=`today’
tmp=COGROUP prices BY sym, Holdings BY sym
join=FOREACH tmp GENERATE FLATTEN(prices), FLATTEN(Holdings)
mult=FOREACH join j GENERATE j.price* j.qty
grp=GROUP multBY name
values=FOREACHgrp g GENERATE SUM(g.mult)
STORE values INTO `Portfolios’

Map: fetch Stocks, Holdings

Reduce: join on stock symbol

Map: multiply price and quantity

Reduce: sum and group by name

name sym qty sym price dt

Holdings Stocks

name dt val

Portfolios

FIGURE 11.4. Batch processing using MapReduce

High-throughput batch processing operations on transactional data, usu-
ally performed as ‘end-of-day’ processing, often need to access and compute
using large data sets. These operations are also naturally time bound, having
to complete before transactional operations can resume fully. The time win-
dow required for daily batch processing often constrains the online availability
of a transaction processing system. Exploiting parallel computing leveraging
cloud technology presents an opportunity to accelerate batch processing.

As an example, illustrated in Figure 11.4, consider an investment bank that
needs to revalue the portfolios of all its customers with the latest prices as
received from the stock exchange at the end of a trading day. Each customer’s
Holdings (the quantity of each stock held by the customer) needs to be joined
with prices from the latest Stock feed, the quantity of stock held by each cus-
tomer must be multiplied by stock price, and the result grouped by customer
name and appended to a set of Portfolio valuation files/tables time-stamped
by the current date. Figure 11.4 depicts a Pig Latin program for such a batch
process. This eventually translates to two MapReduce phases as shown. It is
important to note that we append to the Portfolio file rather than update an
existing table; this is because MapReduce leverages the distributed file system
where storage is cheap and bulk record appends are far more efficient than
updates of existing records.

The challenge in deploying public cloud-based batch processing is the cost
of data transfer: Thus until transactional data is itself stored in the cloud
MapReduce-based parallel batch processing can best be leveraged within
enterprises using open source tools such as Hadoop.

CHAPTER 12

Dev 2.0 platforms

The cloud development paradigms covered so far have focused on scale, i.e.
how data and computations can be organized in a very large distributed envi-
ronment where hardware and network failures are to be expected as a matter
of course rather than as exceptions. As we pointed out during our discussion
on cloud economics in Chapter 6, PaaS clouds additionally offer the promise
of improving development productivity while also catering for large volumes.

We now turn our attention to enterprise applications that may not nec-
essarily require large volume computing, but which nevertheless account
for a very large fraction of software development efforts: These are the
numerous inter-organizational workflow and transaction-processing appli-
cations that enterprise IT departments spend significant development and
maintenance efforts on. The computational requirements of this class of appli-
cations are typically an order of magnitude less than that of mission-critical
transaction-processing or large-scale analytics applications. At the same time
these constitute an important class of applications because of the sheer num-
ber of such systems being used. In Chapter 13 we shall examine in more detail
the functionalities typically covered by such applications within the overall
context of enterprise software needs.

Technically this class of applications can be described as ‘forms-based
transaction-processing and workflow systems using a relational database,’
restricted also by scale; so we exclude those where very high transaction
and data volumes need to be supported. It has long been recognized that
such medium-scale ‘office automation’ systems share many common features,

144

12.1 Salesforce.com’s Force.com platform 145

and over the years there have been numerous attempts to develop common
abstractions to model such systems so that they can be more efficiently built,
and we shall recount such earlier efforts in Section 12.3.

More recently we have also seen the emergence and growing popularity of
software as a service (SaaS) offerings. Some SaaS providers, having rediscov-
ered the commonalities of office automation systems, have begun to include
highly configurable forms-based workflow as part of their hosted SaaS offer-
ings. Further, the configurable features provided in many of these systems
are so powerful that they enable, within limits, fully functional applications
to be developed from scratch, over the web, with little or no programming.
Thus, in a sense, the ‘product’ these SaaS providers offer is an ‘empty’ office
automation application that instead of pre-built functionality enables users
to configure (not program) the functionality they require. Users can immedi-
ately begin using such an application once configured, since it is in any case
already hosted on the internet as a multi-tenant SaaS platform.

We believe this confluence of software as a service and end-user config-
urable application frameworks for vanilla office automation tasks represents
a potential paradigm shift for a large class of enterprise IT development. We
call this paradigm ‘Dev 2.0’ [51]: Non-programmers can now use Dev 2.0
platforms to create a limited class of business applications, in much the same
manner as ordinary (read-only) users of the internet were empowered to pub-
lish content using Web 2.0 tools, such as blogs and wikis. In this chapter we
shall describe some Dev 2.0 platforms and compare their features. We shall
also examine and speculate on the advantages of Dev 2.0, where it may impact
enterprise IT and most importantly its limits. However, we shall reserve our
discussion on the technical details of how Dev 2.0 platforms are architected
to Chapter 14.

12.1 SALESFORCE.COM’S FORCE.COM PLATFORM

Salesforce.com was one of the first successful software as a service offerings,
with its hosted, multi-tenant, customer relationship management (CRM)
product. The hosted model enabled highly mobile sales people to have access
to CRM data over the internet, which was one of the reasons for its popularity.
However, a more important factor that contributed to the success of Sales-
force.com’s CRM product was its configurability. Right from the beginning,
end-users could easily add custom fields to any of the screens provided by
the core CRM product; such fields would automatically be included in the

146 DEV 2.0 PLATFORMS

database, but only for the customer who had added them. Further, this pro-
cess could be performed from a web-browser whilst using the CRM product,
as a configuration setting. No programming or separate development tool was
required. Similarly, simple custom workflows could be added; these resulted
in tasks being placed in users’ work-lists based on creation or modification
of data satisfying certain conditions: For example a supervisor could be noti-
fied whenever an opportunity with value greater than some threshold was
registered by any sales person. Configurability allowed end-users to tailor the
CRM system to their needs without requiring the assistance of developers. The
hosted platform enabled them to begin using the application in the field with-
out the involvement, or even knowledge, of their enterprise IT department!

As such usage became established, users naturally began to require data
in the Salesforce.com CRM system to integrate with data within their enter-
prise systems. To enable this, Salesforce.com began providing access to the
hosted CRM product using SOAP/WSDL web services, using which program-
mers could develop such integration solutions. Once programmers began to
get involved with the hosted CRM, they became users of the platform and
began to create additional functionality over and above that of CRM using
the configurability features provided by Salesforce.com; for example ‘order
management’ was once such natural and popular extension to CRM. Recog-
nizing that such add-on applications created by programmers would require
platform features beyond the basic configurability provided to end-users,
Salesforce.com added a server-side programming language, called APEX.

At this point, the hosted product began to look like considerably more than
a CRM product; rather it had all the elements of an application development
platform, but for the specific class of web-based transaction processing appli-
cations. Salesforce.com re-branded this new platform, first as Sforce.com and
now simply as Force.com. It also created an online application sharing forum,
called AppExchange, where third-party developers could create applications
using the Force.com platform and resell them to end-users of the hosted
platform, such as users of the CRM product.

While we will not go into details of the Force.com platform, we illustrate its
use with a simple example as outlined in Figure 12.1: Consider an Employee
Services application that stores Employee records with their names and leave
balance, i.e., the number of days of leave they have not utilized. The appli-
cation allows Leave Request records to be created via a screen, wherein the
employee for whom the leave is being requested can be chosen via a picklist.
Furthermore, a simple calculation needs to be performed while creating a new
Leave Request that rejects the request (i.e., saves it with a ‘rejected’ status)

12.1 Salesforce.com’s Force.com platform 147

Request No

Employee

Start Date

No. of Days

Submit

1. Retrieve Employee record
2. Check if LeaveBalance> No. Days
3. If so, create a Leave record

4. Reduce Leave Balance by No. Days

FIGURE 12.1. Leave Request example

if the employee does not have enough leave balance. If however the leave
balance is sufficient, its value is decremented by the quantity of leave applied
for, and the request is approved (i.e., saved in ‘approved’ status).

This simple example includes features that cover many needs of basic
forms-based office automation: Forms with fields of different types (including
dates), the ability to link a field from one form to that of another, such as the
picklist to look up employees, as well as forms for creating, searching and
editing records. While this feature set is far from complete, it suffices to illus-
trate the idea of Dev 2.0, i.e., a reasonably complex forms-based application
can be assembled rather than programmed, from a simple browser interface as
opposed to a programming environment. Dev 2.0 platforms enable such con-
figurability in an end-user friendly manner. Many also include more complex
features such as forms with data from multiple tables, the ability to configure
the ‘look and feel’ of the user interface, as well as definition and execution
of workflows. (We shall cover workflow in more detail in Chapter 15; in
Chapter 14 we shall describe how Dev 2.0 platforms achieve such end-user
configurability.) When it comes to calculations such as computing and decre-
menting the leave balance, Salesforce.com requires programming using its
APEX language, and this is one area where Dev 2.0 platforms differ: Some do
not allow such computations, while others enable some simple computations
also to be achieved in an end-user friendly manner.

Some of the steps involved in creating the Leave Request form using
Force.com, such as adding a field, are shown in Figure 12.2. This involves a
number of steps during which various details of the field need to be entered;
however these can all be performed while using the application, and no sepa-
rate development environment is needed. In particular, a linkage between the
Leave Request form and the Employee table is automatically created simply
by defining the Employee field in Leave Request as a lookup of the Employee
object during one the steps of field creation.

148 DEV 2.0 PLATFORMS

d

FIGURE 12.2. Adding fields in Force.com

Figure 12.3 depicts the leave request form created in Force.com via the
above steps, as well as the APEX code required to execute the server-sided
computations required when a new Leave Request record is created. This
code defines a ‘trigger’ on the Leave Request object, so that it executes as
soon as such a record is inserted. The code is able to access the database
using SQL, and can update records in any table. By uploading such code that
runs against triggers, fairly general computations can be performed. However,
APEX development is a programmer, rather than end-user activity; in fact it
is usually done from a development environment such as Eclipse. At this
point the Force.com platform ceases to be an end-user configurable tool and
becomes a hosted development platform for programmers.

12.2 TCS INSTANTAPPS ON AMAZON CLOUD

The Dev 2.0 platform offered by Force.com is based on the software as a ser-
vice model in which computation and data reside on software and storage
running on servers belonging to and managed by the SaaS provider, in this

12.2 TCS InstantApps on Amazon cloud 149

Trigger leaveTriggeron LeaveRequest(after insert){

for (LeaveRequest lvrq : Trigger.new){

ename = lvrq.Employee;

Employee emp= [select * from Employee where EmployeeName=:ename]

if (emp.LeaveBalance >= lvrq.Quantity){

emp.LeaveBalance -= lvrq.Quantity;

lvrq.Status = `Approved’;

update emp;

update lvrq;

} else {

lvrq.Status = `Rejected’;

update lvrq;

} } }

FIGURE 12.3. Leave Request in Force.com with APEX code

case Salesforce.com. Users, be they developers or end-users of applications,
merely use the functionalities provided by the platform over the internet. In
particular, end-users have limited visibility or access to the database where
application data resides. Further, ensuring performance of their applications
in response to increasing load is entirely left to the provider of the SaaS plat-
form: Users neither need, nor have the ability, to manage allocated resources
in anticipation of fluctuations in demand. Other Dev 2.0 platforms, which we
shall briefly outline in the next section, also share a similar approach. Here we
describe a different approach taken by a Dev 2.0 platform called InstantApps
developed by the author’s research group in TCS1 R&D.

1 Tata Consultancy Services, www.tcs.com

150 DEV 2.0 PLATFORMS

A precursor to InstantApps has been work on traditional model-driven
architecture, where code is generated from models [32]. This experience of
using code generators in enterprise software projects led to a realization that
while the code-generation approach worked well in practice for large, complex
projects, it had its limitations when applied to smaller application develop-
ment, for reasons we shall elaborate in more detail in Section 12.4 below.
InstantApps also takes a model-driven-architecture approach, but replaces
code generation by model interpretation, an approach we term model-driven
interpretation, or MDI. (We shall compare the MDA and MDI approaches
in more detail in Chapter 14.) Further, instead of traditional ‘modeling’
using notations such as UML, InstantApps incorporates an end-user-focused
WYSIWYG2 design environment. Finally, the model interpretation approach
naturally leads to a multi-tenant platform. We shall cover some of the Dev
2.0 features of InstantApps below; but first we examine its deployment model
that differs significantly from other Dev 2.0 tools.

InstantApps is not a hosted SaaS platform such as Force.com or other Dev
2.0 tools. Instead, it is made available on the Amazon EC2 platform as an AMI
image, just as many other development tools are packaged. At the same time
the deployment model shares many of the characteristics of a SaaS product,
including a mechanism whereby users are able, and also forced, to get regular
upgrades, similar to a SaaS model where upgrades are done in a manner
invisible to the end-user.

Figure 12.4 illustrates how InstantApps is deployed and used on the
Amazon infrastructure cloud as compared to traditional SaaS-based Dev 2.0
products. Users provision EC2 servers using the appropriate InstantApps
AMIs. The InstantApps Designer AMI includes features that allow applica-
tions to be built and customized; the InstantApps Player AMI only allows
applications to run against production data. Data is stored in permanent elas-
tic block storage (EBS) that needs to be attached to InstantApps AMI-based
servers after they boot. In this manner, production data, as well as control on
the size and number of servers to boot, remains in control of the user. (Along
with this also comes the responsibility for ensuring sufficient resources to
meet demand.) In particular, users can access their production data using
SQL or connect other applications to their data. Since the servers and stor-
age are all in their Amazon EC2 account, the data is effectively in ‘control’
of the user, as opposed to a SaaS-based Dev 2.0 platform where production

2 ‘what you see is what you get’.

12.2 TCS InstantApps on Amazon cloud 151

IA
Player
on EC2

IA
Designer
on EC2

Model
repository

Database
server on

EC2

IA player AMI IA designer AMI

Data on EBS

End users

scaling

Application
designers

Data on SaaSprovider’s
storage

SaaS
Dev 2.0

End-users/
developers

SaaS Dev 2.0 InstantApps Dev 2.0 on Amazon

user’s virtual servers/data

FIGURE 12.4. InstantApps on Amazon EC2

data is less directly accessible to users, and is in effect controlled by the SaaS
provider.

The InstantApps Designer connects to one of the Model Repository servers
(common for all InstantApps users and managed by TCS); the application
meta-data is populated in this repository as designers create their applica-
tions. Additionally, newer versions of InstantApps are notified through this
connection, and users are asked to reboot their servers with the latest Instan-
tApps AMIs when such upgrades take place, which can be quite often, just as
in a SaaS model.

Once application design is complete, the application meta-data is trans-
ferred to the InstantApps Player as a binary file. This process is repeated each
time modifications are made to the application through the Designer. Note
that the InstantApps Player does not connect to a Model Repository, and
therefore can continue to run without upgrading to newer versions; though
such upgrades are required as soon as users wish to deploy in production any
changes made to application functionality through the InstantApps Designer.
In this manner, production servers can be insulated from upgrades unless
actually required. Thus, the InstantApps deployment model in the cloud
enjoys some of the benefits of both SaaS as well as traditional installed software
products where upgrades are concerned.

We now describe WYSIWYG design of an application, such as Leave
Request, using InstantApps. Starting with a blank application, a new form can
be created with a single mouse click by entering a form name; an empty form
is instantly created, with a blank field. Another mouse click on this blank field
prompts us to enter a fieldname and type, as shown in Figure 12.5, and a fully
functional new field immediately appears on the screen; this field is included

152 DEV 2.0 PLATFORMS

FIGURE 12.5. InstantApps designer

in the database and in all layers in between. These steps are repeated to add
several fields and other forms, such as the Employee form. Pages for create,
search, result, edit and delete functionality are available as soon as a form is
created, and can be linked from menu items as desired. An intuitive copy–
paste mechanism is provided, whereby the Employee form can be ‘copied’
and pasted on the Leave Request form to create the picklist-based lookup of
Employees in the Leave Request form. Similar copy–paste actions can cre-
ate forms on multiple tables, as well as enable navigation from a button to
a target form (one simply copies and pastes the target form onto the desired
button). Details of the WYSIWYG features of InstantApps can be found in
[53, 52].

Recall that in order to implement server-side computations, Force.com
required APEX code to be written and uploaded to the hosted platform.
InstantApps allows server-side code in Java to be linked to user interfaces, so
a new language is not needed. More importantly, InstantApps also provides
a visual modeling notation for server-side computations, called ‘logic maps’.
Figure 12.6 illustrates the Leave Request computation in such a logic map.
The logic map contains create, search, update, compute and decision nodes,
each of which are associated with forms in the application. The create, search
and update nodes perform functions similar to the create, search and update
pages that are created with each form, albeit on the server. The type of object
flowing along each edge in the logic map depends on the form associated
with the node it originates from. For example, the logic map in Figure 12.6
is called on the Leave Request form, so a Leave Request object flows into this
network, denoted by edges labeled L. Once such an object flows into a Search
Employees node, the output from this node is an Employee object match-
ing the one specified in the Leave Request object’s Employee field. Decision
nodes check if conditions are satisfied, and computation nodes modify the

12.3 More Dev 2.0 platforms and related efforts 153

FIGURE 12.6. Logic maps in InstantApps

objects flowing in the network. Update nodes are needed to modify database
records other than that on which the logic map is being triggered, such as
Employee. In this manner, simple server-side computations can be defined
without the need for programming. We shall cover logic maps in more detail
in Chapter 14, in particular highlighting their relationship to the MapReduce
model of cloud programming.

Finally, InstantApps, like other Dev 2.0 platforms including Force.com,
incorporates a lightweight workflow implementation, which we shall cover
briefly in Chapter 15. InstantApps also allows users to change the look and
feel of the user interface, with more complex changes requiring program-
ming, typically in JavaScript. InstantApps additionally allows its forms to be
displayed as mashups within other applications, through a JavaScript mashup
API, using which virtually any complex user interface can be developed, albeit
by adroit developers [52].

12.3 MORE DEV 2.0 PLATFORMS AND RELATED EFFORTS

Forms development platforms have a long history, and some of these also
use an interpretive approach: The FADS system [47] represents early work
in this area, and is actually an interpretive system similar in many ways to
modern Dev 2.0 platforms, but built for a VAX VMS platform! A similar
approach was later reused in the academic PICASSO framework [48] and in
the ABF (application by forms) tool of the INGRES database platform. These
represent what we call ‘first-generation’ forms interpreters, as compared to

154 DEV 2.0 PLATFORMS

the interpretive, multi-tenant architectures of Dev 2.0 platforms. (Various
form ‘painters’ have also been included in 4GL languages, such as [37], but
these are different in that they either generate code or executables rather than
interpret specifications.)

In recent years many web-hosted Dev 2.0 platforms similar to Force.com
have become available from startup companies. Some of these have either
been acquired by larger companies, such as Jotspot by Google, Nsite by SAP,
or have shut down, such as Coghead. At the same time others have risen
to take their place: As of this writing some of the available web-based Dev
2.0 platforms include Bungee Labs, TrackVia, Caspio, TeamDesk, Zoho Cre-
ator, QuickBase, Qrimp, Wolf, OutSystems, PerfectForms, Cordys, Iceberg,
WorkXpress and WorkLight. Each of these platforms is based on an interpre-
tive and multi-tenant architecture, and allows creation of simple forms-based
workflows. Many also allow scripting of server-side business logic in a manner
similar to Force.com’s APEX. Visual design of processing logic similar to that
in InstantApps was available in Coghead, and will surely become available in
other platforms in the future.

Other visual editors and interpretive runtimes for user interfaces have also
been proposed in literature and commercially: WebRB [1] is an XML language
for describing web applications that manipulate relational databases, which
lends itself to visual representation and editing using a graphical editor. Sim-
ilar to WebRB, Statesoft [31], is a commercial product that uses state-charts
to model user interface interactions.

12.4 ADVANTAGES, APPLICABILITY AND LIMITS OF DEV 2.0

Dev 2.0 platforms represent a potential paradigm shift for development of
small to medium enterprise applications, and can lead to significant improve-
ments in development productivity for this class of applications. Their
availability as cloud offerings further eases their adoption by end-users, cir-
cumventing possible objections from corporate IT. At the same time there
are limitations to what kinds of applications are amenable to the Dev 2.0
paradigm, as well how far one can take the interpretive approach.

We first examine why web-based applications are difficult to build. The
complexity of forms-based application development is compounded in a dis-
tributed web-based architecture that forces a multi-tier architectural style and
influences the software process, especially downstream (coding and test).
Each tier requires different technology, for example creating HTML pages,

12.4 Advantages, applicability and limits of Dev 2.0 155

JavaScript code, server-side Java code and database queries. Consequently
it is the norm (rather than exception) to have multiple developers involved
in the development of each functional feature. This necessitates a technical
integration phase, whereby functional elements are tested end-to-end across
all tiers. Multi-tier layering also results in a relatively large set of configurable
items (pieces of code) per functional feature, which complicates assembling,
compiling and building a running system as a precursor to each iteration of
functional system testing.

Automation can help with the issues described above, provided one can
control development and change at the level of functional features. Code
generation from domain-specific languages or models has often been used for
greater control. In a code-generation approach, code generators produce code
for each layer from a common model. After generation and compilation this
code needs to be deployed, integrated, and the system has to be reinitialized
and restarted to deploy a change in functionality. If the code generators in
each layer are known to be (a) correct and (b) produce code that correctly
inter-operates with code generated in other layers, the unit and integration
testing phases can be eliminated. However, the deployment, reinitializing and
restarting steps cannot be eliminated.

The interpretive Dev 2.0 architecture represents an alternative approach.
While code generation does shorten the development cycle, Dev 2.0 does
better: The ‘design and immediately play’ approach of Dev 2.0 allows func-
tional changes to be made from within a running application, so they can be
tested as soon as the change is made. Each developer can immediately see
the changes made by other developers. Thus, we have continuous integration
with a single, unified application model being interpreted by all the layers
in the runtime. Changes are implemented without changing running code,
avoiding the build and deploy process so that system testing can be done at
any level of granularity. Thus, in the multi-tier web-based setting, the inter-
pretive approach offers significantly greater benefits in practice, provided it
can be implemented efficiently.

The availability of WYSIWYG application development in platforms such as
InstantApps brings with it all the traditional advantages of rapid prototyping
platforms, including reduction in cycle times and reduction in defects due
to better requirements elicitation. Because of these features, such Dev 2.0
platforms are particularly well suited for agile development methodologies
such as extreme programming [6]. In addition, complications due to multi-
tier architectures are ameliorated, enabling a compressed development cycle
that avoids many technical steps, as described above and in more detail in [53].

156 DEV 2.0 PLATFORMS

All these benefits are multiplied by the fact that Dev 2.0 platforms enable
significant application features to be created by end-users, as opposed to
developers. A cloud-based deployment model enables access without any
infrastructure investments. Finally, the often-cited concern regarding data
ownership are mitigated by the hybrid cloud deployment model used by
InstantApps.

Having said all this, the Dev 2.0 model has its limitations. First, the extent
to which a pure model interpretation approach can suffice to capture the func-
tionality needed by even small enterprise applications is, in our experience,
inherently limited. This limits the features in applications that can be created
by end-users using a WYSIWYG designer to a fairly useful but still restricted
subset. Two major areas where the model-based approach remains essentially
incomplete are (i) processing logic and (ii) user interfaces, i.e., ‘look and feel’
as well as complex behavior.

As we have already seen, most Dev 2.0 platforms require coding to
implement processing logic, albeit in a scripting language (which is often pro-
prietary). Visual logic designers, such as offered in InstantApps and earlier
in Coghead, remain limited in the functionality they can model; for exam-
ple it is not possible to implement file I/O, or complex string processing
using such models as they are today. Next, note that the user interfaces
of applications built using Dev 2.0 tools follow some predetermined pat-
terns. Changing these patterns in a fundamental way is either impossible or,
once again, requires coding in either JavaScript or some other proprietary
language; so this level of customization too remains out of control of the
end-user.

Our experience with Dev 2.0 leads us to believe that these limitations are
in some way inherent. Therefore the Dev 2.0 paradigm is better viewed as a
mechanism for co-development between end-users and programmers, such
as in agile methodologies, rather than as an end-user development paradigm.
However, used in this manner, the Dev 2.0 paradigm is truly powerful and
can significantly improve software development productivity.

Finally, we have yet to see very complex applications created using Dev
2.0, such as those involving hundreds of tables and thousands of screens.
The apparent simplicity of the WYSIWYG approach can in fact lead to greater
complexity when the amount of functionality to be built increases by an order
of magnitude. As an analogy, a WYSIWYG word processor works fine for
small articles, but for a book (such as this one), LATEX, akin to programming
in this context, is more appropriate. We do however believe that this is an
arena where further research is likely to be fruitful and Dev 2.0 platforms

12.4 Advantages, applicability and limits of Dev 2.0 157

that support complex systems being developed by dozens if not hundreds
of designers will become possible in the future. Naturally, these advances
will have to be in tandem with increasing the scalability of Dev 2.0 platforms
to tens of thousands of concurrent users for a single application; a class of
systems which current Dev 2.0 platforms do not cater to either.

PART V

Software architecture

In this part of the book we review the fundamentals of enterprise software
architecture: The information needs of many large enterprises are similar, a
fact that has been exploited by packaged ERP, CRM and SCM products. Under-
standing how enterprise information is modeled assists in making choices
regarding the applications an enterprise needs, i.e., whether to buy packaged
products or build custom solutions, as well as whether to deploy systems in-
house or in the cloud. Software architecture principles are the key to building
custom enterprise applications efficiently. Abstracting architecture patterns
leads to re-use, and eventually to Dev 2.0 platforms that enable simple appli-
cations to be built without any programming. Modeling business processes
and executing them using workflow engines is also a mature example of
how abstraction can lead to re-use. Finally, decision support and knowledge
management are becoming increasingly crucial functions of enterprise appli-
cations. Therefore, we present an overview of search and analytics techniques
using a unified, and hopefully illuminating, matrix algebra formulation.

CHAPTER 13

Enterprise software: ERP,
SCM, CRM

So far we have traced the evolution of enterprise architectures from the early
mainframes to the emerging paradigms of software as a service and cloud
computing, and have examined these primarily from a technical perspective.
We now turn our focus to enterprise applications and the functions they
perform in the context of a large organization. In particular we study the
information maintained in cross-enterprise applications such as enterprise
resource planning (ERP), supply chain management (SCM) and customer
relationship management (CRM).

13.1 ANATOMY OF A LARGE ENTERPRISE

Our first step will be to abstract the anatomy of an large corporation inde-
pendent of the particular industry it may be a part of. In fact this picture is
also applicable for enterprises that may not be corporations, such as govern-
ments or educational institutions, and it is only for ease of exposition that we
focus on corporations. Further, since the cross-industry abstraction of enter-
prise software originated as MRP (‘manufacturing requirements planning’),
we begin by considering the manufacturing industry.

161

162 ENTERPRISE SOFTWARE: ERP, SCM, CRM

So, what does a manufacturing corporation do? It plans what products
to build, when, and in what quantities. It then executes sales and market-
ing of its products, coordinates manufacturing across plants and suppliers,
and distributes the product to customers and supports them after they have
bought the product. These processes are common across discrete manufactur-
ing (easily identifiable products such as computers or cars), as well as process
industries (undifferentiated products, such as salt or oil). These basic activi-
ties are also common to other industries apart from manufacturing, such as
services (financial, consulting, travel or health care). In order to generalize
our discussion to non-manufacturing industries we merely need to interpret
‘product’ more generally, so that an insurance policy, a consulting project, or
a hospital stay are also treated as ‘products.’

Enterprise applications first and foremost need to keep track of information
related to operations of the enterprise; after all that is why they are called
‘information’ systems. The core processes that take place in the enterprise are
then managed by creating and manipulating this information. Figure 13.1 is
our representation of a very high level ‘core data model’ for an enterprise.

Purchases

Inventory

Shipments

Orders

Planning

Customers

Marketing

Service

Billing

Execution (Work/Project)

Accounting HR

Assets MES Energy

SCM CRM

ERP

FIGURE 13.1. Core enterprise data

13.1 Anatomy of a large enterprise 163

An enterprise has customers, whom it reaches out to through market-
ing and sales campaigns. These customers place orders for products. The
organization then delivers products from an inventory and sends them to its
customers via shipments. Note that products are stocked as inventory if the
business model of the organization is to ‘make for stock.’ There can be alter-
native models such as ‘make to order,’ or even ‘design to order,’ especially
when one includes non-manufacturing industries.

Manufacturing a product takes place by executing a process, or more gener-
ally through some work effort. The cost of such work needs to be tracked along
with other material inputs required. Such material inputs also need to be pur-
chased. Finally, customers are billed, and after-sales services are supplied.
Incoming revenue together with the costs incurred need to be accounted to
compute the profit made by the corporation. In addition, the people (human
resources) in the organization need to be managed, as well as the material
assets owned and energy consumed.

All the above information needs are equally applicable, albeit with appro-
priately adjusted semantics, for manufacturing as well as other industries. In
the specific case of manufacturing industries, the micro level execution of
operations in the plant has recently become the focus of detailed informa-
tion tracking, analysis and optimization through ‘manufacturing execution
systems’, or MES. Last but not the least, the strategic value provided by the
corporation is in planning and coordinating all these activities through bud-
gets and plans. For a more detailed and colloquial exposition of information
systems for manufacturing industries, see [33].

Common cross-industry applications first emerged as MRP systems for
manufacturing. Later these went beyond pure manufacturing to cover
accounting, sales and supplies, and began to be referred to as ERP, or
‘enterprise resource planning’ systems. Eventually, the customer and sup-
plier functions became increasingly complex and began to take on separate
identities: Attracting customers, through sales and marketing, and servic-
ing them afterwards are now handled by ‘customer relationship management’
(CRM) systems. Similarly, ‘supply chain management’ (SCM) systems deal
with taking sales orders, issuing purchase orders, controlling the inventory
of raw and finished goods, and shipping them to customers. Most of what
remains falls within the purview of a core ERP system: This includes financial
accounting, dealing with costing of all work, assets and other inputs, billing
and counting incoming revenue, planning all operations, as well as managing
employees.

164 ENTERPRISE SOFTWARE: ERP, SCM, CRM

As is seen from Figure 13.1, there are overlaps in the high-level segregation
of functions across systems, such as between order management and billing
that both have close interactions with CRM, while usually being grouped
under SCM and ERP respectively. When dealing with packaged enterprise
software, or for that matter SaaS offerings for SCM, CRM or ERP, it is
important to recognize that different products may include or exclude such
overlapping functions. This can lead to redundancy or require extensions and
customizations to product offerings. There are also many cases where pack-
aged solutions may not be applicable, as well as very specific processes that
need custom-built software, as we shall cover in the next chapter. Here we
first explore enterprise data models in some more depth so as to understand
what kind of information models enterprise applications, packaged or custom,
need to support. In the next few sections we examine some of the information
models of Figure 13.1 in more detail. We use UML1 class models to describe
these information models; for an introduction to UML and object-oriented
modeling see [20]. A complete exposition of such enterprise models, albeit
as traditional data models rather than in object-oriented form, can be found
in [55]. Finally, it is important to note that the models we present below
are only indicative of how enterprise concepts could be modeled; in practice
actual models can be far more complex and may also differ significantly from
those illustrated here.

13.2 PARTNERS: PEOPLE AND ORGANIZATIONS

Corporations need to deal with other organizations, such as their customers
or suppliers. They also need to deal with people in these organizations as well
as with individuals as consumers of their products. Early information systems
kept track of customers, suppliers and people separately, often in different
applications. As a result important facts could often be overlooked during
normal operations; for example a consumer complainant who happened to
be a senior executive of a major corporate customer would not be treated
specially by a call-center employee. Opportunities for cross-sell and up-sell
to existing customers were also lost.

The current practice is to unify customer, supplier and people models
wherever possible. This involves representing both organizations and people

1 Unified Modeling Language.

13.2 Partners: people and organizations 165

Partner
Partner ID

Organization Person

Name
Tax ID

First Name
Last Name
SS No

Organization Role Person Role

Contractor Employee Contact

Partner Role
Role ID
Description

SupplierProspectCustomer

-Partner -Roles

1

Partner
ID

First
Name

Last Name

1001 ABC Inc

2003 John Doe

1040 XYZ Supplies

1699 EZ Software

Partner ID Role ID Description

1001 1 Customer

2003 5 Employee

2003 6 Contact

1699 1 Customer

1699 2 Prospect

PARTNER TABLE PARTNER–ROLE TABLE

FIGURE 13.2. Partner model

as ‘partners,’ who play different, and possibly multiple roles. A simple partner
model is illustrated in Figure 13.2, as a UML class diagram. We see that
a partner can be an organization or a person; this relationship is therefore
modeled in UML as a generalization, using class inheritance. Partners can play
one or more partner roles, and this relationship is modeled as an aggregation.
Partner role is also sub-classed into different actual roles, such as customer,
supplier, or employee, via a role hierarchy. A partial representation of aspects
of this class model in terms of relational tables, as shown in Figure 13.2, is
to have a PARTNER table and a PARTNER-ROLE table, with partner ID
being a foreign key representing a one-to-many relationship between these
tables. Note that for the sake of simplicity we have not shown how the role
hierarchy could be implemented in relational form and its impact on the
PARTNER-ROLE table. There are many steps involved in translating a logical
class model into a relational representation, including different options for
translating class inheritance to relational tables; see [55] for more details of
this process.

Communications with partners, as modeled in Figure 13.3, take place using
established contact mechanisms, which can be postal or electronic. As before,

166 ENTERPRISE SOFTWARE: ERP, SCM, CRM

–Partner ID

Partner

–From Date
–ToDate

Contact Mechanism

–EventID
–Date/Time
–Duration
–Description

Communication Event

Postal Address Electronic Address

–WON

Work Order

1

*

1

*

*
1

–RoleID
–Description

Partner Role

–Calls*

–In Role *

Event
ID

Partner
ID

Communication
In Partner Role

Communication
Description

Contact
Mechanism

0113 1001 Customer Invoice Reminder 123 ABC Ave …

0117 2003 Contact Invoice Reminder a@b.com

1207 1699 Customer Invitation 456 XYZ Ave …

1316 1699 Prospect Meeting Minutes b@c.com

COMMUNICATION–EVENT TABLE

FIGURE 13.3. Partner communications model

a partial relational representation of this model is also illustrated, where there
is a one-to-many relationship between the partner and communication event
classes captured through the inclusion ofPartner-ID as a foreign key in the
COMMUNICATION-EVENT table. Further, the many-to-many relationship
between communication event and partner role is de-normalized and cap-
tured by an attribute Communication-In-Partner-Role in this table.
Usually communications are also associated with other parts of the enterprise
model, such as with ‘work order’ (which we shall cover later) for charging
any costs incurred to effect the communication.

We have simplified the partner model considerably. In a real enterprise this
model is often highly complex, incorporating concepts such as the internal
structure of organizations, their employee hierarchies, the history of com-
munications captured as threads, and many more concepts. Further, as we
have discussed earlier in Chapter 10, the relational representation of an object
model is not necessarily optimal when using a cloud database. For this reason
and also since the models we explore in the sections to follow are more com-
plex than the simple partner model, we shall describe them as class models
only and refrain from illustrating any relational representations.

13.3 Products 167

13.3 PRODUCTS

An organization produces as well as uses products; these can be goods or
services, as depicted in the model of Figure 13.4. Often many products are
produced or consumed by an organization and it becomes important to clas-
sify them in many ways, such as by model, grade, segment or other product
category. Product categories may contain or be contained within other cate-
gories; for example ‘paper’ and ‘pencil’ are both in the ‘office supplies’ category.
Note how such a many-to-many relationship is modeled as an association class
in UML. In a normalized relational data model this would translate to a ‘link
table’ with both product-ID and category-ID as foreign keys pointing
to the PRODUCT and PRODUCT-CATEGORY tables.

A product may have one or more product features. How product is priced
can depend on price components associated with these features, with the
product itself, or with other order attributes, such as the value or type (e.g.
retail vs. bulk) of an order.

Figure 13.4 models actual instances of products and their supply. Instances
of physical goods, as opposed to services (which we shall cover later), are
maintained as inventory items, which are stored in a storage facility such as
a warehouse or production plant. Inventory items that are not produced by the
enterprise itself need to be purchased from some supplier organizations. The
product suppliers for such products along with their ratings, preferences and

–Product ID
–Name

Product Product Category
–Feature ID
–Description

Product Feature

Service

Good

–From Date
–To Date
–Is Primary?

Category Classification

**

–From Date
–To Date
–Type

Feature Applicability

**

–Item ID

Inventory Item

–Serial Number

Serialized Item

–Quanity

Non Serialized Item

–Facility ID
–Location
–Type

Facility

*

1

1
*

–Price Type
–Charge Type

Price Component

1

*

1

*

–From Amount
–To Amount
–Order Type

Order Attributes

* 1

FIGURE 13.4. Product model

168 ENTERPRISE SOFTWARE: ERP, SCM, CRM

Good

–Name

Organization

–Lead Time
–Preference
–Rating
–Contract Price

Product Supplier

*1

1 *

–Quantity
–Reorder Level
–From Date
–To Date

Reorder Guideline

Facility

1

*

*

1

FIGURE 13.5. Product supply model

contract rates are tracked. Additionally, information on which products any
particular supplier is capable of producing is also captured. Finally, policies
on how much inventory is to be maintained are defined by reorder guidelines
for each product.

13.4 ORDERS: SALES AND PURCHASES

A corporation conducts business by accepting sales orders and then ship-
ping goods or delivering services against these orders. In addition, it places
orders for products that it may require, i.e. procurements. Largely similar
aspects need to be tracked for both types of orders, such as who placed the
order, where and when it is to be delivered, for what price and against what
quotation, how the order was placed and who approved it.

Figure 13.6 illustrates a unified model for sales and purchase orders. Each
order is composed of a number of order items. Each order item can be for
a product or a product feature. Each order involves a number of partners
playing different roles, such as who placed the order, who is to be billed,
and to whom each order item is to be shipped. Further, orders are placed
through a contact mechanism of the partner concerned, and each order item
also captures the contact mechanism by which it needs to be shipped. When
shipments are made to fulfill orders, they contain a number of shipment
items. It is important to note that an order item may end up getting supplied
by multiple shipments, or conversely one shipment item may fulfill many
order items in possibly different orders. Therefore, order items and shipment

13.4 Orders: sales and purchases 169

–Order ID
–Order Date
–Entry Date

Order –Order Item ID
–Quantity
–Unit Price
–Shipping Instructions
–Deliver By
–Description

Order Item
Product

Product Feature

Placed By/On Bill To Ship To

Partner RolePartner

P
ar

tn
er

 C
on

ta
ct

 M
ec

ha
ni

sm

1 *

*

1

*

1

1

*

1 *

1

*

*
1

*
1

*

1

*1

–Quantity

Shipment Item
–Shipment ID
–Date

Shipment

1 *

–Quantity

Order Shipment

*

*

FIGURE 13.6. Order model

items are linked by a class association order shipment that tracks the quantity
in a particular shipment item against a particular order item.

The order model of Figure 13.6 is usually handled by a supply chain applica-
tion. However, getting from a customer request to a sales order is the purview
of the sales process usually handled by a CRM application. The corresponding
process for purchases is normally part of the procurement component of SCM.
In either case, before an order is placed, a request is usually received from
a customer, or placed on one or more suppliers. Figure 13.7 depicts a quote
model that tracks requests to orders via quotations and agreements: A request
may contain many request items. The receiving organization responds with
a quote, containing quote items, each of which is for some goods and/or
services that the organization can supply, for a quoted price. Once the quote
is exchanged, negotiations take place leading to an agreement (or contract)
being drawn up between the two organizations. The agreement lays out the
pricing arrangement comprising of a number of agreement items correspond-
ing to price components for the products requested, to include any discounts

170 ENTERPRISE SOFTWARE: ERP, SCM, CRM

–Request ID
–Date
–Deadline

Request

–Product
–Quantity
–Description

Request Item

–Quantity
–Unit Price

Quote Item

–Quote ID
–Date
–Valid Thru

Quote

Order Item

Service Good

–Agreement ID
–Date
–Date Thru

Agreement

–Item ID
–Item Text
–Contract Image

Agreement Item

Price ComponentProduct Feature

Partner1

*

1

*

1
*

1 *

1
1

1

*

1

*

*

1

1

*

*
1

*
1

*

1

FIGURE 13.7. Quote model

and terms negotiated. Orders are then placed against the quote, based on the
same price components contained in the agreement items.

13.5 EXECUTION: TRACKING WORK

In addition to supplying goods, corporations also provide services that involve
expending some work efforts by their employees, which may be directly
or indirectly billed. Additionally, designing and manufacturing products,
research and development, and all such internal efforts have associated costs
that need to be tracked. The model in Figure 13.8 tracks work orders; these
may be created in response to incoming sales orders, or internal require-
ments. Note that we have used multiple inheritance to describe the fact that
work orders may arise in two different ways. This also means that each sales
order or internal requirement is in fact also a work order, in other words our
model does not distinguish between these concepts. Work orders are often
also called ‘projects’ and have explicit names. Thus our model ensures that
as soon as an order is received (or some internal requirement approved), a
project to ensure its completion is also begun.

Work orders are fulfilled by expending effort, which captures the details of
the planned and actual efforts. Efforts can be broken down into sub-efforts as
captured by the effort breakdown class. Note that a work order can be fulfilled
by many efforts, likewise, the model also allows for an effort to contribute

13.5 Execution: tracking work 171

–Project Name
–Work Order ID
–Date
–Rate Type

Work Order

–Effort ID
–Description
–Planned Start Date
–Planned End Date
–Actual Start Date
–Actual End Date
–Status
–Cost

Effort

Effort Breakdown

Sales Order Item Internal Requirement Item

Work Order Fulfillment

*

*

1

*

1

*

FIGURE 13.8. Work model

to multiple work orders. However, in practice an effort is usually associated
with a single work order for simplicity.

Our work model captures the essential aspects of effort tracking, such
as how a requirement results in work orders for which a complex series of
efforts may be planned and executed. However, it leaves out other expenses
associated with fulfillment of a work order, such as the use of physical assets,
consumable items and expenditure on travel. Further, internal requirements
that arise out of planning can be quite complex, as they may arise for a number
of reasons to which linkages may need to be maintained, such as anticipated
sales, scheduled maintenance, sales and marketing efforts, or research and
development.

Effort is spent by people working on assigned tasks. The model in
Figure 13.9 captures the party assigned to a particular effort, where parties can
be employees of an organization or contractors. When effort is assigned to a
party, it can have an associated rate. Alternatively, the rate (cost or charge)
can be based on the level of an employee or the rate charged by a particular
contractor. The actual cost-rate or billed-rate is captured in the rate
class. Each rate can have an associated rate-type (or rate ‘schedule’). Note
that the rate schedule to use for a particular work order is also captured in
the work order class, as shown earlier in Figure 13.8, so efforts against the
work order can use the appropriate charging or costing rates.

172 ENTERPRISE SOFTWARE: ERP, SCM, CRM

Effort

Party
–Rate ID
–Rate Type
–Billed Rate
–Cost Rate
–From Date
–To Date

Rate

Level

Party Assigned

*

*

–Timesheet ID
–Date Entered

Timesheet

–Hours

Timesheet Entry

1

*

1 *

*

1

*

1

*

1

* 1

*

1

Employee Contractor

FIGURE 13.9. Rates and timesheets

Once parties complete some effort, they enter it into a timesheet, contain-
ing timesheet items. Each timesheet item corresponds to the time spent on
a particular work effort. Timesheets are central to large parts of the services
industry, as also to shop floor operations in manufacturing plants, and are
critical for billing, costing and accounting.

13.6 BILLING

Once products have been delivered, customers must billed and payments
received. Similarly, payments need to be disbursed for purchases made from
suppliers. In either case payments need to be traced to invoices along with the
billable goods or services against which an invoice was raised. Figure 13.10
illustrates a basic billing model. Billing involves raising an invoice on a partner
(or receiving an invoice from a supplier); so invoices can be sales invoices or
purchase invoices. Since there may be additional partners associated with an
invoice, such as the ‘ship to’ or ‘ordered by’ partner which may differ from
the ‘bill to’ partner, we include all of these via a class association invoice role
between invoice and partner.

An invoice may comprise of many invoice items each capturing the
amount being invoiced for some goods or services along with their

13.6 Billing 173

–Invoice ID
–Date
–Description

Invoice

–InvoiceItem ID
–Quantity
–Amount
–Item Description

Invoice Item

Product

Product Feature

0..1

*

0..1 *

1

*

Sales Invoice Purchase Invoice

Billed Item

Shipment Item Effort Timesheet Entry Order Item

Invoice Billing Item

*
*

Inventory Item

0..1

*

Partner

–Type
–Description

Invoice Role*

*

FIGURE 13.10. Billing model

description and quantity. Each invoice item can correspond to a
product, a product feature or a specific inventory item; these are therefore
shown as optional associations to the corresponding classes. Further, each
invoice item is linked to actual delivery of some goods or services, i.e. one or
more billed items: each billed item may be a shipment item, some effort or
timesheet entry. Alternatively invoices may be billed on order, in which case
a billed item may be an order item.

Once an invoice has been sent, payments are received against it. (For
procurements, this is reversed, i.e. payments are disbursed against invoices
received.) Figure 13.11 shows a payment model. Payments can be receipts or
disbursements and are made by a partner. A payment captures the amount
being paid, a reference-number, and the date when the payment
becomes effective (as opposed to when it is physically received). A payment
may be applied against one or more invoice items; likewise many payments
may be made against a single invoice item. This many-to-many relationship is
modeled as a payment invoice class association. Finally, each payment results
in a financial transaction in some bank account; receipts result in deposits
and disbursements result withdrawals. Note that financial transactions are

174 ENTERPRISE SOFTWARE: ERP, SCM, CRM

–Payment ID
–Effective Date
–Reference No
–Amount

Payment

Invoice Item–Transaction ID
–Transaction Date
–Entry Date

Financial Transaction

Withdrawal Deposit Receipt Disbursement

1 *
1 *

–Account ID
–Bank Name

Bank Account

1

*

1 *
–Amount Applied

Payment Invoice

*

*

Partner

FIGURE 13.11. Payment model

real-world transactions between legal entities through a third-party financial
institution (such as a bank).

13.7 ACCOUNTING

Financial transactions, such as payments, clearly affect the financial position
of an enterprise. But so do invoices that are raised but not paid, as well as
inventory build up, which represents a potential loss if it cannot be sold.
The financial position of the enterprise is captured by its accounting model,
wherein accounting transactions are created to reflect the impact of each busi-
ness transaction (such as actual payments or mere invoices) on the financial
position of the enterprise.

The financial structure of an enterprise is captured through its chart of
accounts, comprising of a set of ‘general ledger’ (GL) accounts. Each GL
account represents a bucket into which accounting transactions are posted.
Figure 13.12 illustrates a simple accounting model. The general ledger
accounts each have a GL-ID, name, and description: Examples are
‘cash’ account, ‘accounts receivable,’ ‘payments owed’ and ‘travel expenses.’
A GL account also has an account-type that captures its place in the
organization’s balance sheet, specifying whether the account tracks revenues,
expenses, assets or liabilities.

The chart of accounts consisting of the set of GL accounts determines how
the enterprise captures financial information. However, in a large organiza-
tion financial reporting is needed at the level of each budget entity, i.e. an

13.7 Accounting 175

–GL ID
–Name
–Description
–Account Type

GL Account Budget Entity

Plant Work Order

Chargeable GL Account

* *

–Transaction ID
–Transaction Date
–Entry Date
–Description

Accounting Transaction

–TxnDet ID
–Amount
–Debit/Credit

Transaction Detail

*

*

Internal Acctg TxnExternal Accnt Txn

Receipt TxnDebit Txn Sales Txn Transfer Charge

Payment Invoice

1
1

1
1

FIGURE 13.12. Accounting model

entity that has the ability to spend or receive money, such as a manufac-
turing plant, or project. GL accounts are related to such budget entities via
chargeable accounts, against which actual accounting transactions are posted.
Using chargeable accounts and relationships amongst them (not shown in the
figure), a profit and loss statement or complete balance sheet can be drawn up
for any chargeable account or collection thereof, including the organization
as a whole.

As mentioned earlier, accounting transactions are posted for certain busi-
ness transactions. An accounting transaction may be an internal transaction,
such as a transfer charge between two parts of the organization, or an exter-
nal transaction. Such external transactions can be real financial transactions,
such as payments, and so posted to a ‘cash’ GL account. Alternatively these
could be invoices, representing a future obligation by another party to pay,
and therefore posted to an ‘asset’ GL account. In case an invoice is not paid
it becomes a bad debt, and needs to be transferred to another ‘liability’ GL
account through matching credit and debit accounting transactions.

176 ENTERPRISE SOFTWARE: ERP, SCM, CRM

Accounting is a complex function as can be seen even from the highly
simplified model above. It is also a core function of the IT systems of any enter-
prise. Accounting functions are very similar across enterprises, and almost all
enterprises use packaged software providing generalized accounting systems.
Original ERP systems grew out of such accounting packages as a means to
automate the capture of business transactions and relate them to account-
ing transactions in a configurable manner so that a single system could serve
the needs of an enterprise. As we discuss in the next section, this is both an
advantage as well as a disadvantage of integrated ERP packages.

13.8 ENTERPRISE PROCESSES, BUILD VS. BUY AND SAAS

Original ERP systems were designed around the accounting function, seeking
to expand it to cover different types of business transactions. Depending on
their roles, users would have access to different types of business transactions.
So, sales people would have access to order creation and invoice generation,
but not effort tracking or shipments. In such a scenario, the ability to easily
track an order from inception to collection of payments was missing. Tracking
such an ‘order to cash’ process is critical to organizational efficiency. Similar
end-to-end processes are involved in managing inventory or procurements.
Each such ‘horizontal’ (see Chapter 4) process usually cuts across different
parts of the enterprise data model.

If an organization were to build its systems from ground up, it should
ideally implement end-to-end processes on a unified underlying data model.
However the situation gets complicated when packaged software is used. For
example, suppose a core ERP package does not cover, say, shipments, and
custom software is developed to track these. Shipments need to be linked
to order items, as we have already seen. The order items must correspond
to those maintained in the core ERP system. All this is still doable, using
various APIs that a core ERP system usually provides. Now, consider the case
where two major packages are used, say an SCM and a core ERP system. The
SCM will also maintain order items and customer shipping details, which will
have to be kept synchronized with those in the core ERP system. Add a CRM
package and now customer information is being tracked in three systems,
which all need to remain synchronized.

Further complications arise because of domain specific functionality, as
opposed to the cross-industry functions we have covered so far: For example,
financial services organizations may need to deal with trading and securities

13.8 Enterprise processes, build vs. buy and SaaS 177

transactions. These require a complex partner model including brokers, cus-
tomers, stock exchanges and banks. A standard CRM package would be
unlikely to include these aspects. At the same time the core CRM function-
ality provided in a CRM package would be expensive to redevelop. Thus,
the ‘build vs. buy’ decision needs to consider the challenges of integration
between software packages, legacy systems, and custom applications need
to be weighed against the high costs of developing and maintaining a single
integrated application with a unified data model.

Additional considerations arise when deciding which enterprise applica-
tions are appropriate for software as a service (SaaS). Here, apart from data
security considerations (or fears), it is important to consider not only the
degree of replication of data but also the volume of data that would be need
to be regularly transferred from the SaaS system to applications deployed on
premise. From this point of view, CRM systems are well suited for SaaS, since
the only point of replication is some customer data. New customers are added,
or customer details updated, relatively slowly as compared to business trans-
actions; so synchronizing customer data in the SaaS product with on-premise
applications poses less of an overhead. Order management is another natural
candidate for SaaS, especially in conjunction with web-based orders. Human
resources is another such case where SaaS is a plausible option: A SaaS HR sys-
tem can generate a monthly payroll and even broker direct debits and credits
from bank accounts of the organization and employees. On the other hand, if
one considers SCM or other parts of core ERP, the situation is different as the
volume of data transfer involved may be significantly higher. Furthermore,
the closer these systems are linked to physical assets such as manufacturing
plants, inventories in warehouses, the less attractive they become as candi-
dates for SaaS, or cloud-based deployment. We shall return to this thread of
discussion towards the end of the book in Chapter 18.

CHAPTER 14

Custom enterprise
applications and Dev 2.0

In the previous chapter we examined the myriad information needs of a typ-
ical enterprise. We saw that at a high level these needs can be distributed
across CRM, SCM or core ERP systems, which can be implemented as enter-
prise systems using packaged products or SaaS offerings. At the same time
certain horizontal business processes, or domain-specific functionality may
necessitate custom application development.

In this chapter we shall explore how such enterprise systems are built,
whether as part of a packaged product or a custom-built application. In the
process we shall examine the technical architecture layers, abstractions and
principles required to build modern scalable enterprise applications.

In Chapter 12 we described the emerging Dev 2.0 paradigm that enables
application development to be done largely without custom programming.
Our discussion of technical architecture principles, common practices and
abstractions will also enable us to understand how Dev 2.0 platforms are
internally architected.

14.1 SOFTWARE ARCHITECTURE FOR ENTERPRISE COMPONENTS

As we saw in Figure 4.1 of Chapter 4, enterprise applications can be viewed
as consisting of application components, each of which is responsible for a

178

14.1 Software Architecture for Enterprise Components 179

S
er

ve
r

S
id

e
Presentation layer–server

Control layer

Business logic layer

Data access layer

Data store

Presentation layer–client

C
lie

nt
M

O
D

E
L

V
IE

W

S
er

vi
ce

s CONTROLLER

FIGURE 14.1. Architecture layers

collection of enterprise sub-processes that all access a cohesive set of data
items, such as a ‘partner,’ or ‘order’ model as covered in the previous chapter.

At the technical level each application component can be viewed as an inde-
pendent application, or a part (‘module’) of a larger enterprise application,
such as a CRM package. What is important for the discussion below is that
the application (component) performs the following tasks: It maintains some
information in a data store, supports user interactions with this information
through a presentation layer, and in the process executes some business logic
computations. Figure 14.1 depicts such a layered architecture. These archi-
tecture layers correspond to those of a traditional ‘model-view-controller’ (or
MVC) design, wherein the user interface and information model are separated
by a control layer. The useful properties of such a design are well known [34],
and we shall cover these in more detail in the next section.

To see how the layered architecture of Figure 14.1 is implemented in prac-
tice, consider, as an example, a typical ‘application server’ architecture (such
as Apache Tomcat, or a J2EE platform, as discussed in Chapter 2): The ‘client’
is a browser that connects via HTTP to an application server. The applica-
tion server could be deployed on a cloud platform such as Amazon EC2, on
any server on the internet or a server within an internal enterprise network.
The presentation layer comprises of client-side JavaScript code that runs in
the browser as well as server-side JSPs. The business logic layer is Java code
that executes in the appropriate application server container (i.e. servlet or
EJB). The business logic layer accesses the data store (typically a relational
database) via a data access layer. The controller layer is responsible for (a)
regulating access from the presentation to the business logic and data layers

180 CUSTOM ENTERPRISE APPLICATIONS AND DEV 2.0

as well as (b) implementing access control, i.e. application level security.
Finally, in addition to these layers, the entire application can make some of
its functionality available to other applications through services, such as web
services or mashups as discussed in Chapter 7.

14.2 USER INTERFACE PATTERNS AND BASIC TRANSACTIONS

14.2.1 Layered MVC and the AJAX Paradigm

Functions performed by typical transaction-processing applications, such
as capturing orders, or maintaining inventory data, involve users viewing,
entering and modifying information stored in the data store through data-
entry and manipulation screens, such as the ‘order entry’ screen illustrated
in Figure 14.2. Let us consider the sequence of steps that take place while
entering a new order using this screen. We assume a layered architecture such
as in Figure 14.1; in particular a browser-based J2EE architecture: The user
accesses a URL that returns an HTML page and enters data. This data needs to
be validated, ensuring for example that numeric data is entered into numeric

Cancel

Order Entry FormOrder Entry Form

Customer Name

01/01/09Order Date

Order Item ID Product Name Quantity

Order Value

Price

1 Widget A 10 $150

Submit

Order Details

Order ID 29

ACME Inc.

Add Item

FIGURE 14.2. An order entry Form

14.2 User interface patterns and basic transactions 181

fields. Such validations are usually done through JavaScript functions embed-
ded in the HTML page. Next the data is sent across the network, as an HTTP
POST request (or an AJAX request, see Chapter 7) to the server side of the
presentation layer. The server-side presentation layer is implemented using
a servlet container1 in the J2EE architecture. The server-side presentation
layer manages user-interface state, i.e. data entered or modified by the user,
before it is submitted to the remaining layers. For example, while entering a
single object, such as an order and its associated order items, a fresh HTML
page is invoked for each order item via the ‘Add Item’ button. Since the HTTP
protocol is essentially memoryless and asynchronous, it is more efficient to
maintain partially entered data in memory on the server rather than exchange
this information repeatedly over the network. (In J2EE parlance, server-side
memory constructs called ‘form-beans’ are used for such purposes.) However,
we note that in a traditional client-server architecture, such server-side func-
tionality was not needed, since state could be maintained within the ‘fat-client’
application itself. Similarly, in the emerging AJAX paradigm, user inter-
face state can also be cached in the browser between different asynchronous
requests from the same HTML page. Thus, the server-side presentation layer
is once again becoming partially redundant. (When the user navigates to a
new HTML page, however, the JavaScript memory space is lost, so main-
taining server-side presentation state can still be useful even in the AJAX
paradigm.)

Now let us understand the motivation for the controller layer in more
detail: Consider again a data entry task that spans multiple ‘pages.’ How does
the user navigate from page to page? In a client-server architecture, as also
with the AJAX paradigm, such navigation is implemented by the client appli-
cation or JavaScript user interface respectively. However, in a traditional web
architecture, each such page would be retrieved in response to a HTTP POST
request, with the decision of which page to return being taken on the server.
This architectural constraint led to the development of sophisticated con-
troller frameworks, such as ‘Struts,’2 and ‘Spring.’3 Navigation rules defining
which page follows another could be coded in the controller layer using such
frameworks. The controller layer also decides which ‘model’ functions, either
business logic or data access, to call, and in what order. It is also respon-
sible for exchanging data between the model and presentation layers along

1 See Chapter 2.
2 http://struts.apache.org
3 http://www.springsource.org

182 CUSTOM ENTERPRISE APPLICATIONS AND DEV 2.0

with data type transformations entailed by the fact that data received from the
client over HTTP comprises of ASCII strings, while implementations of busi-
ness logic and data access are expected to accept strongly typed parameters
in binary representation.

Let us now examine the above layered web architecture from the perspec-
tive of the traditional MVC paradigm [34]: The controller layer as described
above performs many of the functions required by MVC; for example it isolates
the presentation layer from remaining layers, so that in cases where model
functions change (e.g. new business logic is introduced) these can be easily
introduced into the application code in a maintainable manner. However, an
important feature of traditional MVC, which the layered web architecture does
not fulfill, is that in case model information changes value, the controller is
supposed to immediately reflect this change in the ‘view’ or presentation layer:
Clearly if a user accesses a database record its latest value is shown. However,
if the record changes while a user is viewing it, the user’s view of the record
is not immediately updated; since no new HTTP request has been made so
no new data can received from the server! It is important to note that in the
AJAX paradigm the client can, and usually does, make periodic asynchronous
calls to the server so that a true MVC model is far easier to implement.

Now let us examine how the controller layer changes in an AJAX paradigm
as compared to the traditional layered web architecture: Using AJAX, naviga-
tion from one page to another within the same logical database transaction is
most often possible without requesting a new HTML page. Thus, some of the
navigation functions of the controller move to the client side, much as in the
traditional client-server architecture. The remaining functions of a controller,
such as interfacing with other layers are implemented on the server side as
before. The modified layered architecture in the AJAX paradigm is shown in
Figure 14.3.

Finally, recall that modern AJAX-based user interfaces make use of mashup
services, as described in Chapter 7. Note that each mashup service must
also essentially replicate a layered architecture as in Figure 14.3. In addition
the client-side controller of the calling application must also handle calls to
different mashups, taking care of parameter passing between these.

14.2.2 Common UI patterns

We have covered in some detail how a browser user interface communicates
with a server. It is just as important to focus on what functionality such an

14.2 User interface patterns and basic transactions 183

Presentation layer (RIA)

Client-side controller layer

Server-side controller layer

Business logic layer

Data access layer

Data store

S
er

ve
r

si
de

C
lie

nt
 s

id
e

FIGURE 14.3. MVC layering with AJAX

interface should contain. As we have seen in the previous chapter, there are
many data model patterns that are common across enterprises. These can form
a basis for defining the information maintained by an enterprise application.
Similarly, it is possible to elicit commonly occurring user-interaction patterns
for a class of applications. For example, ‘transaction-processing’ applications,
wherein users enter, modify and search for data records in the course of exe-
cuting a business process, such as ‘order management,’ form one such class.
In contrast, ‘decision-support’ applications involve complex visualizations of
data based on different kinds of analytics, and we shall cover such applications
in detail in Chapter 16.

Consider again the order-entry transaction of Figure 14.2, wherein a new
order needs to be entered, either by an order-entry clerk or by an end customer
via an online form. Referring to the order model of Figure 13.6 of Chapter 13,
the order-entry transaction needs to ensure that a new order record along with
all associated order item records are created. During this process information
regarding the product or product features being ordered, for which customer,
along with appropriate billing and shipping addresses need to be searched,
chosen and linked to the order object being created. It should be clear that
even such a simple process can potentially have many complex variations
depending on the structure of the products and features being ordered, the
way customers and their various addresses are stored, as well as intricacies
of product pricing and shipping charges. Consequently the user interface of
even a simple order-entry transaction can involve detailed design and custom

184 CUSTOM ENTERPRISE APPLICATIONS AND DEV 2.0

development. Developing such user interfaces makes up a large component
of application programming efforts.

14.2.3 Formal models and frameworks

Now let us see whether we can find some abstractions within the order entry
transaction that might enable us to more formally model its behavior. Let us
formally define a form as a set of fields corresponding to columns in the appli-
cation database. These fields could correspond to columns of multiple tables,
but for the moment we assume all fields in a form correspond to columns
from a single table. For example, fields customer_name, order_date,
and order_id comprise the ‘order’ form, and each corresponds to a col-
umn of the ORDER table. At the same time another ‘customer’ form might
have fields customer_name and customer_address, corresponding to
columns of the CUSTOMER table. Similarlyorder_id, quantity, etc., are
fields in the ‘order item’ form. Fields with the same name in different forms,
such as customer_name in the ‘order’ and ‘customer’ forms, or order_id
in the ‘order’ and ‘order item’ forms, have a special significance, as we shall
see below. Let us define the following primitive user interface patterns, or
‘pages’ for any form F:

Pages of a form: (14.1)

1. A Search page retrieves a set of records matching any values entered into
F’s fields and returns them as a result set R.

2. AResult page displays the result set R from a search operation and allows
any one of the displayed records to be selected for editing or deletion.

3. An Edit page allows any fields of F for a particular record to be edited by
the user and the changes submitted to the server.

4. A Create page allows a new record to be created via an entry screen
displaying the fields of F.

The ‘order entry’ screen shown in Figure 14.2 is an example of a Create
page for the ‘order’ form. Figure 14.4 depicts a ‘search orders’ screen, which
is an example of the Search and Result ‘pages’ of the ‘order’ form: Here
two ‘pages,’ i.e., Search and Result, albeit of the same form, ‘order,’ are
included in the same screen. In general a ‘page’ of a form can include other

14.2 User interface patterns and basic transactions 185

Cancel

Search Orders

Customer Name

01/01/09Order Date

Order ID Order Date Customer

Order ID

Value

30
29

01/01/09
01/01/09

XYZ Inc
ACME Inc

$240
$150

Delete

Orders

Edit

Find

FIGURE 14.4. Search orders form

‘pages,’ possibly of different forms: For example, the Create ‘page’ of the
‘order’ form in Figure 14.2 includes theResult ‘page’ of the ‘order item’ form.
Note that the two pages from different forms are linked through the common
field order_id, so that the order items shown in the screen correspond to
the particular order being entered.

Notice also that an entry field of F could be one whose value is directly
entered by the user, chosen via a fixed set of choices presented as a drop-down
list, or chosen from a ‘list of values’ (LOV) thrown up by another search form
that opens in a pop-up window. For example, the customer_name field in
the ‘order’ form may be defined in this manner as an LOV, taking values from
the ‘customer’ form. Here the fact that the two forms share the same field is
again important, with this field, customer_name being used to search the
customer form.

A form can also have any number of buttons that enable a user to navigate
from one form to another, or alternatively, to display other ‘related’ forms on
the same page. For example, the ‘Add Item’ button in the order-entry screen
of Figure 14.2 navigates to the Create page of the ‘order items’ form. Once
again, the fact that the ‘order’ and ‘order item’ forms are related by the common
field order_id is used to ensure that the order_id field is automatically
populated with the correct value (i.e. the order_id of the order being entered)

186 CUSTOM ENTERPRISE APPLICATIONS AND DEV 2.0

in the Create page of the ‘order item’ form each time it is invoked via the
‘Add Item’ button.

We now illustrate how the simple order-entry screens depicted in
Figure 14.2 and Figure 14.4 might be formally defined using the abstractions
(14.1):

order
has fields−→ order_date, customer_name, order_id

Create(order)
invokes−→ Create(order_item)

Edit(order)
invokes−→ Create(order_item)

Create(order)
includes−→ Result(order_item)

Edit(order)
includes−→ Result(order_item)

customer_id
type−→ LOV(customer, customer_id)

menu
has items−→ New Order, Search Orders

New Order
invokes−→ Create(order)

Search Orders
invokes−→ Search(order)

Here each line is generated using a production rule of a formal grammar
based on the abstractions (14.1). Therefore the type of each token is defined
implicitly, so order is a form and customer_id is a field. Using such a formalism
one can define which fields the order form contains, their types, and which
other forms are either included in or linked to from this form. For example
both the Create and Edit page of the order form include a Result page
of the order_item form, which displays the order items for the particular
order being created or edited. In addition, both these forms also display a
button to invoke the Create page of the order_item form, so that new order
items can be entered for the order while creating or editing an order. As
already mentioned above, the common field order_id between the order and
order_item forms ensures that the OrderItem record being created or edited
corresponds to the correct Order record in either case. Further, the main
menu of the application is seen to ‘have’ items New Order and Search Orders
that invoke the appropriate pages of the order form.

To see how such a formal approach can be useful, consider a web-based
order-entry interface where the customer is first entering his own details and

14.2 User interface patterns and basic transactions 187

then placing an order, as opposed to the scenario above that was more suited to
an order-entry clerk entering orders on behalf of already existing customers.
All we need to add is a navigation rule:

Create(customer)
invokes−→ Create(order)

Now the Create customer page will include a link to a Create order page.
Further, as before, since these forms share a common field customer_name,
this field will be automatically filled when the user navigates the link.

Clearly, our formalism does not include many aspects of what goes into
programming a user interface, such as the color scheme, which widgets are
used for entry fields and links, how results are displayed (tabular formats), or
how data which is entered is validated (including complex cross validations
across data fields). Covering all of these aspects through a similar formalism
would be cumbersome to say the least, and these are best left for programming.
So what use is a formalism such as ours? The important thing is that once
this ‘programming’ has been done for an instance of each page type (i.e.
Search, Edit, etc.) and for each production rule of the grammar, the same
‘framework’ can be simply reused for all the forms in the application, and in
fact for other applications as well. This is in fact what is done while building
large enterprise application suites, such as ERP packages (SAP, Oracle 11i,
etc.). It is also the basis for Dev 2.0 platforms such as Salesforce.com and
InstantApps, as we shall cover in detail later in this chapter.

The creation and maintenance of such technical architecture frameworks
is widespread in the industry. It is tempting to hope that there could be a
universal framework that could be reused more widely across organizations.
Unfortunately, the advance of technology makes any such framework rapidly
obsolete. For example, many such frameworks created using JSPs and Struts
are now considered antiquated in the face of the AJAX paradigm for web
interfaces. Many AJAX-based frameworks will emerge, and will in turn be
replaced as technology advances further.

At the same time, it is in the face of such rapidly advancing technology
that the value of formalisms becomes most evident: If one has captured the
user-interface behavior of an application in a formal model, with the program-
ming details of how exactly this behavior is rendered left out, one can reuse
the model of the application by re-encoding the patterns underlying the for-
malism (i.e the meta-model) using new technology. As we shall see later, this
process can be automated via code generators, or interpreters as in the Dev
2.0 paradigm.

188 CUSTOM ENTERPRISE APPLICATIONS AND DEV 2.0

However there is a small but important caveat; what if new technology
enables a completely new pattern? In this case the formalism (i.e. meta-model)
itself needs to be extended, so the model of the application will need to change
as well. We shall return to this issue in Section 14.4 below.

14.3 BUSINESS LOGIC AND RULE-BASED COMPUTING

14.3.1 What does business logic do?

Clearly there is more to an application than the user interface. How data is
retrieved, and what happens when data is entered, manipulated and submitted
to the server is often referred to as ‘business logic.’ Once again we consider
a J2EE web application server architecture to illustrate how business logic
works.

Business logic is part of the ‘model’ layer in MVC parlance. Pure
presentation-related aspects are strictly not part of this layer. The controller
layer in a layered MVC architecture is responsible for passing data to the
model layer after it has been stripped of presentation-related aspects. For
example, when an HTML form is submitted via a POST request, it is parsed
by the controller layer, field values are extracted from the received REQUEST
object and converted to, say, Java classes, which are passed to appropriate
class methods inside the servlet container. Alternatively, business logic code
may execute in a separate container, such as an EJB container (as described
in Chapter 2). In modern web architectures using the AJAX paradigm, apart
from serving up new pages and handling page submissions, the server also
needs to process asynchronous HTTP requests initiated by JavaScript code
running in the browser.

The functionality handled by the business logic layer can vary widely even
within the same application. However, as in the case of user interfaces, we can
identify some common primitive abstractions here as well. Consider again
our order entry transaction example: As data regarding a new order along
with all its order items is entered by the user, many server-side requests are
likely to be made to save intermediate data, such as each order item as it is
entered. The job of storing this intermediate data, usually in memory, remains
the responsibility of the server-side presentation layer, as mentioned earlier.
When all the data pertaining to a single order has been entered, the user will
perform some action, such as press the ‘submit’ button, which is recognized by
the controller layer causing it to invoke the appropriate business logic method,

14.3 Business logic and rule-based computing 189

say Order.enterOrder(), on an object Order. The attribute values of
this object are populated by the controller using data captured during the
entry process. Note that such an object may contain many nestedOrderItem
objects, i.e. it may represent many database records that need to be created.

What does enterOrder() do? It could for example (i) verify whether
the order has been completely entered, such as whether a customer-id has
been entered, and whether each order item has a product-id and quan-
tity; (ii) it may compute the total value of the order after adding shipping
charges (which may depend on where the order is being shipped to); (iii)
it would then prepare and submit all the required data manipulation (SQL)
statements to the database as part of a single database transaction. In the pro-
cess it would also take care to (iv) retrieve the order-id that may have been
assigned by the database after inserting the ORDER record for this order, and
ensure that this order-id value is also included in each inserted ORDER ITEM
record so as to link it to the parent order. In addition, it may be necessary
to enter records in other tables, such as an accounting transaction for the
order. This would usually be done by (v) calling methods on other objects
(e.g. the OrderAccountingTransaction object). Clearly similar logic
is required when modifying an existing order.

Similarly, while retrieving orders and their items against a search criterion,
say ‘all orders placed in the past ten days,’ (vi) complex or possibly mul-
tiple SELECT statements may need to be executed; for example retrieving
orders and items together in a complex join or fetching orders first and fol-
lowed by related items for each order. (The method used will differ depending
on whether one is using a traditional relational database, or a more object-
oriented cloud database where, while there are no joins, traversing from an
order to its items is fast and easy, as we have already seen in Chapter 10.)
We can now summarize the tasks a business logic method needs to handle as
follows:

Functions of business logic: (14.2)

1. Validations (e.g. verifying whether the order is complete)
2. Computations (e.g. computing a total)
3. Transaction Management (e.g. accomplishing all required operations in

the scope of a single database transaction)
4. Data Manipulation (e.g. actually inserting the order and order item

records) and Object Relational Mapping (e.g. ensuring that the order items
have the correct order id)

190 CUSTOM ENTERPRISE APPLICATIONS AND DEV 2.0

5. Calling other Business Logic Methods (e.g. posting an accounting trans-
action)

6. Complex Search (e.g. retrieving a set of orders and their related items)

A number of design strategies and architecture frameworks attempt to ease
the task of writing the large volume of business logic needed in a typical enter-
prise application. Object relational mapping (ORM) tools such as Hibernate4

attempt to provide an abstraction that allows users to program using opera-
tions on nested objects such as Order and leave the job of translating such
operations into multiple SQL statements for the framework to handle. The
EJB container of J2EE makes a similar attempt; it also handles transaction
management to a certain extent. Unfortunately all of these approaches are
in one way or another lacking: For example, consider ensuring that orders
and items are linked by the same foreign key value, which is set only when
the order record is actually created in the database; even this simple task
remains cumbersome using most ORM frameworks. Cloud databases, such
as Google’s Datastore, on the other hand, do better; one can link Order and
OrderItem objects in memory before persisting them, and exactly the same
references are persisted in the Datastore.

In the next two sections we consider formally modeling business logic
using primitive abstractions such as (1)–(6) above. Rule-based computing
uses models based on formal logic, whereas business ‘logic maps’ are an
example of a more informal model loosely based on the MapReduce paradigm.

14.3.2 Rule-based computing

Rule-based computation is an abstraction based on formal logic. Rules are
especially useful for modeling validation rules, as well as many other com-
putations, such as evaluating risk or rating insurance policies. A rule system
contains logical statements5 (i.e. rules) that may or may not become true when
evaluated against facts6.

For example, a ‘valid’ order may be defined by the following rules:

R1 : ∀x∀y∀z Order(x) ∧ OrderItem(y) ∧ OrderOf (y, x)

∧ ValidOrderItem(y) ∧ CustomerOf (x, z) ∧ Customer(z)

⇒ ValidOrder(x)

4 http://www.hibernate.org
5 Typically in first-order predicate logic (FOPL).
6 More formally, facts are true propositions on application data.

14.3 Business logic and rule-based computing 191

R2 : ∀x∀y∀z∀p Order(x) ∧ OrderItem(y) ∧ ¬OrderOf (y, x)

∧ CustomerOf (x, z) ∧ Customer(z)

∧ ProductOf (x, p) ∧ Product(p)

⇒ ValidOrder(x)

In the above example, predicates such as Order(x) and Customer(z) eval-
uate to true if x, y and z are Order, OrderItem and Customer objects
respectively; similarly, OrderOf (y, x) evaluates to true if x is the Order object
pointed to by y (via a foreign key). There are many algorithms for evaluating
rule systems given data, which in the above example would be an Order
object passed to the business logic layer. Additionally, to evaluate predicates
such as Customer(z) one would need to access the application database to
check for existence of such a record.

Note that there are two possible rules that could result in the predicate
ValidOrder(x) evaluating to true: In R1 we state first that that x is an Order
object. Next, we state that all OrderItem objects for this order are them-
selves all valid. Alternatively R2 may apply, which states that there are no such
OrderItem objects and the order object x itself contains a valid product
(i.e. such a Product record exists in the database). Both rules also insist that
the Customer for the order exists in the database. The rule system would
also include rules stating similar conditions for an OrderItem object to be
valid, i.e. for the predicate ValidOrderItem(y) to evaluate to true.

The fact that there are alternative rules for the same predicate, such as
ValidOrder(), is typical of rule systems and gives them their power. When
there are many alternative ways a validation can be performed it can lead to
messy nested if-then-else statements in code, which are difficult to maintain
and extend. In contrast, adding additional rules is a simpler task.

Rule engines are used to evaluate rule systems. There are two varieties of rule
engines: Backward-chaining engines evaluate whether a particular predicate,
say ValidOrder(x) is true or not, evaluating all possible rules that are required
to verify this. Forward-chaining engines, on the other hand, take a set of avail-
able facts and determine the complete set of predicates that evaluate to true,
including ValidOrder(x), as well as any other predicates that may be implied by
these facts. Traditionally, backward-chaining rule engines have been used in
applications, as they are more attuned to procedural programming paradigms
(i.e. a predicate needs to be explicitly checked). However forward-chaining
engines are useful in specific contexts, such as user interfaces or other event-
driven systems, since they support ‘reactive’ programming, i.e. any rules that

192 CUSTOM ENTERPRISE APPLICATIONS AND DEV 2.0

‘fire’ because of the current state of application data can trigger exception
conditions that are handled in an event-oriented programming style. See [40]
for a more detailed explanation of rule-based deduction systems.

An important advantage of the rule-based approach is that many rule
engines allow rules to added and changed while the application is running.
In this sense, the rule engine approach embodies the spirit of Dev 2.0, with
the rule system being the model that is interpreted at runtime by the rule
engine.

Commercial rule engines include products such as Blaze Advisor and iLog.
Recently open source rule engines such as Drools have also emerged. Most
of these rule engines use XML schemas, programming language constructs
(such as Java’s JSR-94), or ‘structured English’ for defining rules so as to ease
development and avoid having to deal with formal logic. At the same time,
none of these have become widely used in large enterprise application archi-
tectures, perhaps owing to the relative novelty of the rule-based approach
as compared to the procedural style in which business logic is typically
written.

14.3.3 Modeling business logic using MapReduce

In Section 14.3.1 we have seen that data access and transaction manage-
ment functions of business could potentially be handled using architectural
frameworks incorporating preferred patterns to resolve these problems in a
repeatable manner. Similarly, as we have seen in the previous section, val-
idation rules can be abstracted using rule-based computing. What remains
from the list (14.2) are Computations, Data Manipulation, Calling other
Business Methods and Complex Search. Some Dev 2.0 platforms discussed
in Chapter 12 attempt to abstract these functions of business logic as well.
For example, TCS InstantApps uses a visual formulation called Logic Map
that is based on the MapReduce cloud programming paradigm, borrowing
also from the Map-reduce-merge [10] model that extends MapReduce for
relational processing.

A Logic Map is a graph with create, search, and update nodes, each cor-
responding to ‘pages’ (as defined in (14.1)) of some application form. These
nodes manipulate relational records in the same manner as the correspond-
ing pages of their associated forms, but without a user interface. Such nodes
can also be viewed as map nodes in the MapReduce parlance; they take
key/value pairs (relational records) as input and produce new pairs, while

14.3 Business logic and rule-based computing 193

Search
Orders

Search
Products

Compute
Valued Orders

Reduce
Customers

[C:<cid,…>]

[C:<cid,…>]

[O:<oid,cid,pid…>]

[P:<pid,…>] [VO:<oid,cid,pid,value…>]

[C:<cid, bill$…>]

FIGURE 14.5. Logic map

accessing/manipulating database tables in the process. In addition there are
‘compute nodes’ merge and reduce that perform computations on records
obtained after joining (in the case of merge) or aggregating (in the case of
reduce) records flowing along the edges of a logic map. (The merge abstrac-
tion, defined in [10], extends reduce by allowing inputs from independent
map steps to be grouped together.)

For example, the logic map in Figure 14.5 performs a billing function for
one or more customer records. Customer records flow into the logic map as
instances of a customer form C, with fields < cid, . . . > (where cid is the
primary key of the customer table). This set of ‘form instances’ flows into a
search node associated with the order form O. Because of the attribute cid is
common between the order and customer forms, the search node retrieves
all orders (from the order table) that were placed by any of the customers
flowing into the node. Note that the output of the Search Orders node is
now a set of instances of the order form. In parallel, the current prices of all
products are retrieved using another search node on a product form P. These
parallel record sets are then joined using a merge node on an intermediate
‘valued order’ form VO. The value of each order is computed in this merge
operation using the product prices and quantities ordered, with the common
attribute pid being used to associate records from the two incoming sets.
Finally, instances of the VO form flow into a reduce node on the customer
form C where valued orders are added to compute the billing amount bill$
for each customer.

Logic maps also allow decision nodes that are similar to compute nodes
but filter rather than manipulate records in the flow. Using decision nodes
makes loops possible, thereby enabling a fairly general class of business logic
functions to be modeled using logic maps. By leveraging the MapReduce
paradigm, there is the possibility of parallel execution of logic maps in cloud
environments, or efficiently using cloud data stores even though these do not
explicitly support joins, since the join functionality is included in the merge
abstraction.

194 CUSTOM ENTERPRISE APPLICATIONS AND DEV 2.0

14.4 INSIDE DEV 2.0: MODEL DRIVEN INTERPRETERS

Throughout our discussion so far, we have concentrated on finding patterns
that could be formally modeled, such as user-interface patterns via the form
abstraction, rules for business logic validations, and logic maps for the data
manipulation, control flow and search functions of business logic. Our moti-
vation has been two-fold: (a) Once application functionality has been modeled
in terms of such patterns, migrating an application to another technical archi-
tecture (such as from a traditional web architecture to an AJAX paradigm) can
be accomplished by first re-encoding the elementary patterns of the model
using new technology and then reassembling the application from a higher
level representation expressed in terms of patterns. We also saw that (b) in
cases where the patterns can be directly interpreted, such as in the case of
some rule engines, application functionality could be dynamically changed at
runtime.

The Model Driven Architecture (MDA) approach popularized by OMG7

generalizes the first approach (a) above. Modeling application functionality
at different levels of abstraction is used as the basis for model transforma-
tions. Models at a higher level of abstraction are transformed to those at a
lower level; at the lowest level actual code in a general purpose programming
language is generated. The OMG view of MDA is shown in Figure 14.6. Each
model transformation involves encoding higher-level abstractions in terms of
patterns of lower-level constructs. At the lowest level, each encoding is noth-
ing but an architecture framework for a particular behavior pattern, such as
a form.

The Dev 2.0 platforms discussed in Chapter 12, on the other hand, gen-
eralize the second approach (b), i.e. runtime interpretation of higher-level
abstractions. Thus, instead of generating code, a Dev 2.0 platform is in
essence a model driven interpreter (MDI), as opposed to MDA that is tradition-
ally associated with code generation. Figure 14.7 highlights the differences
between the MDA and MDI (Dev 2.0) approaches.

In both MDA and MDI, patterns used to abstract application behavior are
represented by a meta-model that describes the application model. For exam-
ple, the user interface meta-model discussed in Section 14.2.2 consists of a
formal model for the form abstraction that specify that forms can have fields,
and can link to and include other forms. Similarly rule systems and the logic

7 Object Management Group: www.omg.org

14.4 Inside Dev 2.0: model driven interpreters 195

Computation-
independent
model (CIM) CIM >> PIM

mapping

PIM >> PSM
mapping

PSM >> Code
mapping

Platform-specific
model
(PSM)

Code

Platform-
independent
model (PIM)

Created by developer or tester
to implement solution

Created by architect/
designer to describe

architecture

Created by business
analysts to describe
business processes

FIGURE 14.6. Model driven architecture paradigm

map model of sections 14.3.2 and 14.3.3 are also specified by meta-models.
Taken together these constitute the overall meta-model for the class of appli-
cations being considered. The meta-model merely describes application models
that represent actual applications. For example, a specific set of forms, rules
and logic maps that constitute say, the order management application, is an
example of an application model. This is illustrated in Figure 14.7, where the
meta-model captures the simple concept of an object and its attributes, while
the application model captures actual instances of these, such as an Employee
object and its attributes such as EID, Name, and Address.

The difference between MDA and MDI is in how these models are used. In
the MDA approach, code generators associated with the meta-model use code
templates to generate application code from a specific application model. For
example, the code template for generating a class definition from the simple
meta-model of an object and its attributes is illustrated in Figure 14.7. In
MDI, on the other hand, the meta-model is interpreted directly at runtime:
In the simple example of an object and its attributes forming a class, the
MDI interpreter uses one generic class that creates its attributes dynamically
when instantiated at runtime, by looking up the application model. It also
sets its meta-properties in a similar manner, such as its name (e.g. ‘Employee’
in this case). For efficiency, the application model is cached in memory and
kept synchronized with a persistent model repository, as in the InstantApps
platform [53].

D
es

cr
ib

es

A
pp

lic
at

io
n

C
od

e

C
la

ss
 E

m
pl

oy
ee

:
E

ID

N
am

e

A
dd

re
ss

M
et

a-
m

od
el

A
pp

lic
at

io
n

m
od

el

A
tt

ri
b

u
te

s

A
tt

ri
b

u
te

N
am

e
O

b
je

ct
N

am
e

C
o

lu
m

n
N

am
e

P
ID

P
ro

pe
rt

yI
D

A
dd

re
ss

A
dd

re
ss

O
w

ne
r

O
w

ne
r

T
em

pl
at

es

C
la

ss
 <

O
bj

ec
tN

am
e>

:
<

A
ttr

ib
ut

es
>

Code Generator

V
is

ua
l m

od
el

in
g

D
e

sc
rib

es

M
od

el
 in

te
rp

re
te

r
C

la
ss

 E
nt

O
bj

:
at

tr
s=

 [(
,)

]

de
f _

in
it_

(n
am

e)
:

cl
as

sn
am

e=
na

m
e

lo
o

ku
p

M
M

()
fil

lA
ttr

s(
)

M
od

el
 r

ep
os

ito
ry

A
tt

ri
b

u
te

s

A
tt

ri
b

u
te

N
am

e
O

b
je

ct
N

am
e

C
o

lu
m

n
 N

am
e

E
ID

E
m

pI
D

E
m

pN
am

e

E
m

pA
dd

r

N
am

e
E

m
pl

oy
ee

E
m

pl
oy

ee

A
dd

re
ss

In-memory Model

W
Y

S
IW

Y
G

“D
es

ig
ne

r”

M
et

a-
m

od
el

M
od

el
 d

riv
en

 a
rc

hi
te

ct
ur

e
M

od
el

 d
riv

en
 in

te
rp

re
te

r:
 D

ev
 2

.0

P
ro

pe
rt

yO
bj

P
ro

pe
rt

yO
bj

P
ro

pe
rt

yO
bj

E
m

pl
oy

ee

FI
G

U
RE

14
.7

.
De

v
2.

0:
M

DA
vs

.M
DI

196

14.4 Inside Dev 2.0: model driven interpreters 197

A second difference between MDA and Dev 2.0 platforms that use MDI
is in how the application model is constructed and maintained. The tradi-
tional MDA approach usually involves visual modeling (using UML models)
or specifications in higher-level languages, which are then translated into code
using code generators. Dev 2.0 platforms, on the other hand, use a WYSIWIG
(‘what you see is what you get’) approach: As soon as a change is made to
the application model it is instantly reflected in the running platform. Thus
the Dev 2.0 platform is ‘always on,’ and does not need to go through com-
pile and build cycles. It is always running the application embodied in the
application model. This model may be empty to start with; as functionality is
incrementally added it can be immediately tested and even used. The poten-
tial for vastly improving development productivity because of this feature has
already been discussed in Chapter 12.

14.4.1 Multi-tenant Dev 2.0: application virtualization

In Dev 2.0 platforms using MDI, application specifications are merely data in a
model repository. Thus, in addition to interpreting and rendering any applica-
tion model, a single instance of a Dev 2.0 interpreter can potentially interpret
multiple application models simultaneously. Thus, a Dev 2.0 platform is also a
multi-tenant platform. However, unlike the multi-tenancy of Chapter 9, where
we considered a single application that needed to be used by multiple tenants,
a Dev 2.0 platform can enable multiple tenants to use the same platform
instance for different applications! In a multi-tenant Dev 2.0 platform, we
usually use a single schema for all application models, but multiple schemas
for each application database, so that conflicts between applications do not
arise: So, for example, different applications can have their own definitions
of an ‘Employee’ table, without any conflicts.

We now explore the relationship between hardware virtualization as cov-
ered in Chapter 8 and multi-tenant Dev 2.0: Just as a hypervisor implements
an abstract machine model, on which different operating systems can run
simultaneously, a Dev 2.0 platform implements an abstract application model
on which many different applications run simultaneously. Thus, we can view
multi-tenant Dev 2.0 as implementing application virtualization analogous
to hardware virtualization provided by hypervisors. Consequently, just as
hardware virtualization enables cost optimization in the face of dynamically
changing hardware requirements, application virtualization can drive produc-
tivity improvements in the face of rapidly changing application functionality

198 CUSTOM ENTERPRISE APPLICATIONS AND DEV 2.0

and needs. Therefore application virtualization should also be considered an
integral element of cloud computing along with traditional virtualization.

14.5 SECURITY, ERROR HANDLING, TRANSACTIONS

AND WORKFLOW

So far we have focused on developing abstractions for forms-based
transaction-processing architectures so that application functionality could
be modeled and interpreted by Dev 2.0 platforms. However, an enterprise
application also needs architectural support for technical features that are not
directly related to functional components. Figure 14.8 depicts such technical
architecture components that perform the following functions:

1. Access to application functionality needs to be controlled via application
security so that only authenticated users can access the application and
perform only those functions that they are authorized to.

2. Uniform error handling is essential for informing users about errors,
managing error messages, and handling different classes of errors appro-
priately.

3. Transaction management is needed to ensure that each logical user inter-
action is atomic from the perspective of concurrency control, over and
above maintaining data integrity via underlying database transactions.

4. The flow of work from user to user in order to accomplish a business
process needs to be handled through workflow management.

We cover the first three issues in the remainder of this section; workflow is
covered in detail in the next chapter.

Application security

Business logic Error handling Workflow

Data access and transaction management

Presentation and control

FIGURE 14.8. Technical architecture layers

14.5 Security, error handling, transactions and workflow 199

14.5.1 Application security

Secure user authentication in a distributed environment, whether a client-
server or web-based architecture, is an involved subject. The Kerberos [39]
protocol was developed to enable authentication over an unsecured network
that would be still be safe from eavesdropping as well as replay attacks.
Using such a protocol, a user’s password is never transmitted on the net-
work, even in encrypted or hashed form. Instead, a trusted server generates
session keys used by client and server to communicate, as well as short-lived
tickets that serve to authenticate clients to servers, and vice versa. Variants
of Kerberos are now deployed as a core element of distributed security at the
operating system level, in Windows as well as Linux operating systems, and
in Windows Active Directory as well as LDAP-based identity-management
servers.

A security framework for a web-based architecture needs to decide what
level of secure authentication it will utilize and how. Simple security involves
transmitting a hashed userid and password across the network which is then
matched for authentication. The basic JAAS library of Java supports such
authentication as well as more secure authentication (such as a Kerberos
implementation) in a pluggable manner. Cloud computing platforms such as
Google’s App Engine or Microsoft Azure also provide the option for authen-
tication using their public identity services, such as Google Accounts, or
Microsoft’s Live ID (earlier called Passport).

Once a user is logged in securely, each HTTP request contains a ‘user
context’ that carries the security tokens or tickets required by the chosen
authentication mechanism. The user context needs to be validated on the
server by every application service before it is processed; this is usually
ensured by the controller layer as it processes each request made to the
server.

An authenticated user may be authorized to access all or only a subset of
application functions, or data. We have already discussed data access control
in some detail in Chapter 9. Function access control can be implemented
using underlying features of the web application server, or as a part of the
application architecture. Web application servers usually allow control access
to application resources through access control lists (ACL) based on the URL
or server-side code packages (e.g. a Java .jar file) being accessed. However this
is often inadequate to support the fine-grained level of access control required
by most enterprise applications. Further, rich internet interfaces (RIA) that

200 CUSTOM ENTERPRISE APPLICATIONS AND DEV 2.0

Users

Users Role
Role Function

Functions
Roles

–Role Name–userid
–password

–userid
–rold=eid

–roleid
–functionid

–functionid
–formName
–formMode
–menuItem

–roleid

* *

* *

FIGURE 14.9. Function access control

make heavy use of JavaScript cannot leverage these features easily. Thus, most
often function access control, like data access control, is implemented at the
application level.

Figure 14.9 illustrates a simple data model for function access control.
Users have Roles, a many-to-many association through the User Role class.
Roles have access to Functions, again a many-to-many association through
the Role Function class, with each Function being either ‘page’ of a particular
‘form’ (e.g. Create, Edit, Search, etc.), or some menu item. The applica-
tion security layer looks up the function access control model during login
and adds the list of functions that the user can access to the user context.
Thereafter, security needs to be checked in the presentation layer as well as
controller layer to limit user access to only those forms and menus permitted
by the function access control model. Note that application security is an
example of a ‘cross-cutting’ concern in that its implementation spans multiple
architecture layers.

14.5.2 Error handling

As users perform business transactions they will come across many different
types of errors of which they will need to be informed. Apart from technical
errors that could be due to bugs in the application, these also include business
errors, such as when validation checks fail, or a warning that data being
searched does not exist. Additionally alerts such as confirming success of
a transaction need to be conveyed along with related information, such as
the order-id automatically generated by the system. Mechanisms enabling an

14.5 Security, error handling, transactions and workflow 201

application to report such errors and allow the user to respond constitutes an
error handling strategy; an error management framework implements such a
strategy in a uniform manner across all user interactions in an application.

An important issue that needs to be handled is when to show an error.
Clearly a fatal error such as a system fault needs to be shown to the user
as soon as it occurs. Other errors, such as validations and warnings need
not be sent to the user immediately, and can be bundled together until the
application is no longer able to proceed from a business perspective. An error
management framework should allow for such behavior to be included in
business logic through suitable abstractions. Finally, as mentioned above, it
should be possible to convey information to the user both during as well as
after completion of a user transaction.

The implementation details of an error-handling framework are closely
tied to the technology components and design strategies being used in the
application architecture. Therefore, even more so than application security,
error handling is also a cross-cutting concern: When an error or set of errors
need to be communicated to the user, all architecture layers between the point
where the error occurs to the presentation layer are involved.

14.5.3 Transaction management

Each user interaction in a transaction-processing application that involves
creating, modifying or deleting data needs to be atomic from the perspective
of concurrency control. It is important to note the difference between an
atomic user interaction and an atomic database transaction as implemented
by the controller layer. Recall that the controller gathers together all informa-
tion that may have been sent by a user during the course of possibly multiple
HTTP requests. It then submits all of these to the business logic layer to be exe-
cuted as a single database transaction, thus guaranteeing database integrity.
However, this may still not be sufficient to ensure concurrency control from
the user’s perspective in a multi-user scenario:

Consider a case where two users simultaneously access a database record,
say to reserve a particular resource (e.g. a conference room), via an Edit form.
Each makes their own modifications before submitting the changes, which
are sent to the server via HTTP POST requests from these independent user
sessions. Note that in the layered MVC architecture, reading a database record
is deliberately not kept within the scope of a database transaction, to avoid
long transactions and consequent timeouts and deadlocks. Therefore, both
these user interactions appear to succeed, since each results in a separate

202 CUSTOM ENTERPRISE APPLICATIONS AND DEV 2.0

database transaction being sent to the server. As a natural consequence, the
final state of the database will be that sent by one of the two users; however,
the other user will not know that his transaction has been overwritten, and
that in fact he has not succeeded in booking the resource (conference room).
The problem in this scenario is that users do not perceive a sufficiently high
level of ‘transaction isolation’: one of them is reading and making decisions
based on ‘dirty’ data. However, it is impossible to tell which until one of them
succeeds!

The solution most commonly used in web-based architectures is ‘optimistic’
concurrency control using version numbers. Each table includes an additional
field ver which is incremented by each update. When a record is read, its
version number is also read. The update statement as executed by the data
access layer has the following structure:

UPDATE <table> SET <col1>=:1, <col2>=:2, ver=ver+1
WHERE <key>=:key AND ver=:ver

Thus, in cases where the version number has changed between the time a
record is read and the attempt to write it, the version number mismatch will
result in no data being found (an error), which can be communicated to the
user as a ‘transaction failed’ message. Thus, only one of the users will succeed
in booking the conference room (i.e. the one that acts first!)

Transaction management via optimistic concurrency control is often called
‘soft locking,’ and is also a cross-cutting concern since each architecture layer
needs to track the version number, which is also transported across HTTP
requests, even though the actual check is only at the data access layer.

Note that we have emphasized that all the architectural issues discussed in
this section are ‘cross-cutting concerns’. Aspect-oriented programming (AOP)
[19] is emerging as a mechanism to introduce and manage such cross-cutting
concerns in complex applications, so that modifying the implementation
strategies for such concerns can be conveniently done even after an application
architecture has been deployed. For example, by incorporating AOP within
Dev 2.0 architectures it becomes possible to efficiently modify cross-cutting
functionality for the platform as a whole.

CHAPTER 15

Workflow and business
processes

In the previous chapter we saw how basic forms-based transactions are assem-
bled into an application. The resulting application resembles a ‘playground’
where each user can access available forms to create, modify or view data. In
the process any business logic attached to the forms is also executed. In such
a scenario, it is up to the user to decide what form to access and which trans-
action to perform. However, in real life users do not perform such tasks in a
vacuum; rather they perform these tasks as part of an overall business process
in which the user is participating. In this chapter we examine mechanisms by
which an enterprise application can track such business processes and drive
the ‘flow of work’ to users.

15.1 IMPLEMENTING WORKFLOW IN AN APPLICATION

We consider a simple ‘leave approval’ process. An employee places a leave
request that goes to a supervisor. If approved it is forwarded to the HR depart-
ment for their records; simultaneously the result, i.e. approval or rejection,
is conveyed back to the employee. First let us design an application that
implements this process, using a data model as shown in Figure 15.1. A

203

204 WORKFLOW AND BUSINESS PROCESSES

E
m

pi
d

D
et

ai
ls

S
up

er
vi

so
r

E
m

pi
d

R
eq

id

D
et

ai
ls

S
ta

tu
s

A
pp

ro
ve

r

LEAVEREQUEST EMPLOYEE

approves
supervisor

has applicant

FIGURE 15.1. Leave request model

LEAVEREQUEST table keeps track of the requests placed. The EMPLOYEE
table captures each employee’s supervisor as a self-referential foreign key.
The application provides a New-Leave-Request form using which an employee
can apply for leave. When a user submits a leave request using this form, a
record is inserted in the LEAVEREQUEST table with the Status field set to
‘pending approval,’ and the Approver field containing the supervisor of the
employee applying for leave. A Pending-Requests-List form lists all requests
awaiting approval by a particular employee: The user can chose any par-
ticular request and navigate to an Approve-Request form that displays the
chosen leave request with buttons to either approve or reject it. Each of
these buttons in turn invokes business logic to update the Status field to
‘Approved’ or ‘Rejected’ respectively. Finally, an employee in the HR depart-
ment accesses a Completed-Requests-List form listing all requests that have
either been approved or rejected. Similarly the My-Requests-List and My-
Request-Status forms enable each employee to view their individual requests
and their status.

To approve a leave request, any employee who is also a supervisor needs
to access the Pending-Requests-List form and approve or reject each pending
request. But how does a supervisor come to know that there is something in
this list that needs their attention? Similarly, how does an employee come to
know that their request has been processed? One possibility is to augment the
business logic attached to the New-Leave-Request and Approve-Request forms
so as to send email to the next person who needs to pay attention to the
request. The operation of this simple application is depicted pictorially in
Figure 15.2.

15.2 Workflow meta-model using ECA rules 205

cancelsubmit

….
compute value of Approver

send email to empid=Approver
……

RejectApprove

….
compute all HR Managers

send email to all of these
send email to Applicant

……

cancelSave

cancelOK

FIGURE 15.2. Operation of workflow

15.2 WORKFLOW META-MODEL USING ECA RULES

Let us now examine what abstractions can be derived from the above imple-
mentation of workflow: The process consists of a set of activities, such as
applying for leave, approving leave, recording and viewing the result. These
activities are performed by different actors (employees) each performing dif-
ferent roles, such as the applicant, supervisor and HR manager. Some of the
activities are performed in sequence, such as applying and approval, and
others can be in parallel, such as recording the request in HR and the appli-
cant viewing the final result. For each activity there is a corresponding form
using which the actor performs the activity in the application. During each
execution (or ‘instance’) of this process, each of these forms is accessing the
same object, i.e. a particular record in the LEAVEREQUEST table. Further,
an activity can change the state of this object, in this case the Status field of
the record. We shall refer to this object as the process object.

Let us construct a meta-model using these abstractions to generalize the
workflow implementation. In particular, a key feature of the application is
the sending of email to the next participant in the process, also referred to

206 WORKFLOW AND BUSINESS PROCESSES

PROCESS ACTIVITY

FORM

TABLE

ATTRIBUTE

STATE

ACTOR

ROLE

entry state of

exit state

can perform

can perform

points
to actor of

FIGURE 15.3. Workflow meta-model

as a workflow notification. This involves computing who is the next partic-
ipant and which activity they need to perform. We now make the following
important observation: The ‘Pending Approval’ value of the Status field can
be considered as being the entry state for the approval activity. Similarly the
‘Approved’ or ‘Rejected’ values are exit states for approval, and entry states
for the next two activities, recording and viewing respectively. Thus, at any
point of time, the activities that are ‘ready’ to perform are those having all
their entry states true and exit states false, with states being computed using
attributes of the process object. As a second observation, note that the identi-
ties of the individual actors who play the role of applicant and approver can
be obtained from the Applicant Name and Approver attributes of the pro-
cess object. Figure 15.3 depicts a possible workflow meta-model using these
abstractions.1 The corresponding application model for the Leave Approval
process would have entries such as those shown in Figure 15.4. The Instan-
tApps Dev 2.0 platform discussed in Chapter 12 includes a workflow engine
based on a similar model.

The meta-model of Figure 15.3 relies on state changes to model process
flow. This is a special case of a more general approach using events, conditions
and actions to model processes, also referred to as ECA-based workflow [30].
In the specific case above, conditions are entry and exit states defined on
database record values, actions are email notifications being sent to users to

1 Figure 15.3 uses the ‘logical data model’ notation [55].

15.3 ECA workflow engine 207

ACTIVITY

FORM

ATTRIBUTE

STATE

view

record

approve

apply
View-Leave

Record-Leave

Approve-Leave

New-Leave-Request

RejectedStatus

ApprovedStatus

Pending-ApprovalStatus

entry states for

Empidpo
in

ts
 to

 a
ct

 o
r

fo
r

Approver

Status

FIGURE 15.4. Workflow model instance

perform certain activities, and events are modifications to record values in
any database columns that are part of state definitions for some activity.

15.3 ECA WORKFLOW ENGINE

A simple workflow engine using the ECA-based meta-model of Figure 15.3 can
be implemented as follows: A process instance comes into existence as soon
as the form corresponding to the first activity in the process is executed, for
example when a record is created in the LEAVEREQUEST table through the
New-Leave-Request form. This process instance is identified by the primary-
key value of this record. We shall refer to this record as the ‘object’ on which
the process instance is running.

After every transaction involving any form associated with a workflow
activity, a generic function wf_update() is invoked to update the list
of ‘ready’ activities, and send notifications as required. This function can
be called either in course of transaction execution through business logic,
by using database triggers or by polling the database for changes. The
wf_update(p) function takes as input the object p on which the process
instance is running: Entry and exit states of activities are computed using the
attribute values of this object. Activities for which all entry states are true
and all exit states false are added to a ready list. Next, for each entry in the
ready list, a list actors who should be notified is computed using appropriate
attribute values of p; for example the Approver field in the LEAVREQUEST

208 WORKFLOW AND BUSINESS PROCESSES

wf_update(object p)

LA= [activities ai]

initialize ‘ready-list’ r
for each ai: all entry states and no exit state of p true:

add ai to r

for each entry in r:
R = list of roles that can perform ai

if pointer to actor defined for activity ai:
get actor u from p; if u can play any role in R:

send email to actor u

else,
send email to all actors that play any roles in R

FIGURE 15.5. Workflow update

object determines the supervisor who needs to be notified. If there is no such
field specified in the model, such as for the ‘recording by HR’ activity, or
if the field is empty, all actors who have roles that are empowered to perform
the activity are notified. So, in the above example, all employees who have the
HR manager role will be notified. The generic wf_update() function that
drives our simple workflow engine is summarized in Figure 15.5.

We have used email notifications to inform participants that they need to
performanactivity.Oftenasingleusercanparticipateinmanyprocessinstances
andactivitiesat anypointof time. Insuchasituation, havingemailnotifications
‘pushed’ to the user may not be always desirable. Therefore most workflow
implementations also include a ‘pull’ model via a worklist, i.e. a form where a
user can see all items pending for action. The worklist form is similar to the
Pending-Requests-List form in the above example, except that it contains items
from a number of processes, so that a user can see all pending work at one
place instead of navigating to separate lists for say leave requests, hardware
requests etc. The worklist form enables the user to navigate directly to the
corresponding application form for a chosen workitem. Email or other ‘push’
notificationmechanismscanbeusedconcurrentlywithaworklist-basedengine
for selected items or to escalate items that remain unattended for too long.

Note that our workflow engine does not keep any persistent state apart
from the process definitions, i.e. all information for a process instance level
remains in the business tables, e.g. LEAVEREQUEST. Many workflow engines

15.3 ECA workflow engine 209

my_worklist(user u)

R = roles played by user u
A = activities that can be performed by roles in R
for each a in A:

compute entry states of a
compute exit states of a
let O be the list of objects containing ‘state attributes’ of a
search for instances of objects in O where all entry states are

… satisfied and no exit states are satisfied
for each such object o, add (a,o) to the worklist w for u

FIGURE 15.6. Worklist computation

do maintain persistent state at the process instance level and use it for gener-
ating and keeping track of worklists. However, in theory it is not necessary to
maintain persistent state merely for generating a worklist, provided the activ-
ities in the process are driven by their entry and exit states. The algorithm
my_worklist(user) computes the list of workitems for a given user at
any point in time: First compute the set of activities that are available to the
roles played by user, and of these which have ready instances, i.e. corre-
sponding objects in the database with all entry states for the activity true and
exit states false. Next check if any of these have ‘points to actor’ defined in
the model, and if so whether the user is the actor indicated. This algorithm
my_worklist to compute a user’s worklist is outlined in Figure 15.6. Note
that the step of searching all objects to see which activities are potentially
ready is likely to be computationally expensive. In practice this step can be
more efficiently carried out by maintaining a cache of each user’s potential
worklist that is updated during wf_update(); this can significantly reduce
the overhead by limiting the search to a much smaller number of objects as
contained in the cache.

Note that the ECA-based workflow implementation described above does
not separately track each process instance. However, most commercial work-
flow engines do keep persistent state at the process instance level, using which
it is possible to track which transitions have fired, which activities have taken
place in an instance, when, and by which actors, or more generally at which
step the process instance is at any point of time. Having process state infor-
mation available enables more efficient worklist computations as well as more

210 WORKFLOW AND BUSINESS PROCESSES

sophisticated analysis on process execution, such as which actors are more
efficient than others and which steps in a process could be taking longer than
others. ‘Process analytics’ is an emerging research area that investigates these
issues in depth; and commercial workflow engines often include ‘business
activity monitoring’ features that provide analysis of this nature. On the other
hand, by not maintaining its own persistent state at the instance level, the
workflow engine does not have to track every process instance to ‘closure.’
This makes it possible for large process diagrams to be modeled using the
workflow meta-model even whilst the workflow engine operates on only one
part of the flow.

15.4 USING AN EXTERNAL WORKFLOW ENGINE

In practice, when transactions from multiple applications including enterprise
software such as ERP systems need to be directly invoked by users, using
an external workflow engine becomes essential. The interaction between
an application and a generic workflow implementation can be viewed as
consisting of:

1. Updating [the flow]: determining what activities are next
2. Notification: signaling users that tasks are pending for them to do
3. Worklist: allowing users to view what tasks are pending for them to do
4. Navigation: enabling a user to navigate to the appropriate application form

Furthermore, in order to compute the next step in the flow, i.e. updating, as
well as for other functions, a workflow engine needs access to application
data and application events, such as completion of an activity. A fundamen-
tal difference between an internal implementation of workflow, such as our
ECA-based workflow engine described above, and an external implementa-
tion, is how the workflow engine gets access to application events and data. An
external workflow engine needs application data passed to it explicitly along
with application events as they occur, whereas for an internal implemen-
tation ‘state’ information can be derived directly from application database
tables.

Figure 15.7 depicts the typical interaction between an application and an
external workflow engine. The application updates the workflow engine when
a transaction is completed. The workflow engine (from its worklist interface)
enables invocation of the appropriate application transaction (form). Alter-
natively the application may request worklist data for each user from the

15.5 Process modeling and BPMN 211

Application

Application
data

Workflow
engine

Process
instances

Process
model

Invoke
application
transaction

Update on completion
of transaction

FIGURE 15.7. Using an external workflow engine

workflow engine and display its own worklist integrated with its user interface.
Note also that the process model, as well as information about each process
instance, needs to be tracked explicitly by an external workflow engine, since
it cannot efficiently access application data internal to an application.

15.5 PROCESS MODELING AND BPMN

While ECA models of workflow are adequate to describe processes of signifi-
cant complexity, process diagrams that explicitly depict the flow of activities
are often found to be more intuitive than a set of rules that can be difficult
to define and verify in practice. The Business Process Modeling Notation
(BPMN2) is a graphical notation to capture process behavior. Consider the
diagram in Figure 15.8 that depicts the example Leave Request process as
an activity-transition graph. In fact Figure 15.8 is a also a simple example of
a BPMN diagram. However, without ECA rules such as entry and exit con-
ditions on activities, such a diagram is not adequate; further many process
features require more sophisticated notation to describe them. For this reason
the InstantApps platform includes the ability to draw BPMN diagrams while

2 www.bpmn.org

212 WORKFLOW AND BUSINESS PROCESSES

APPLY APPROVE RECORD

VIEW

employee supervisor HR manager

FIGURE 15.8. Leave request process

still using the meta-model of Figure 15.3 to execute processes. To motivate
BPMN we consider a few such features and how they can be represented using
BPMN:

First, consider a case where two transitions point to an activity a. It is not
clear from the activity-transition graph alone whether both these need to fire
before activity a can be considered ready, or only one of them; entry and exit
states are needed to define this. Similarly, it is normally assumed that if more
than one transition emanates from an activity, both fire at the same time in
parallel (e.g. so that the recording and view-result activities can take place
in parallel). This need not be the case in all situations, and one may wish to
have only one of these fire. Actual situations can be even significantly more
complex with subsets of transitions behaving differently, e.g. two firing in
parallel but only if a third does not.

The BPMN notation includes special nodes (i.e. other than activities) that
capture flow behavior: Gateway nodes control the sequence of the process
flow as transitions converge or diverge; decision nodes, and fork/join nodes
are the most commonly used gateways. At the same time if the flow does
not need to be controlled gateways are not required, and in their absence
an activity becomes ready if any of its incoming transitions fire; also, all
outgoing transitions fire on completion of the activity. A decision node (more
precisely an ‘exclusive OR’ node) is used to ensure that only one outgoing
transition fires, usually based on some decision criterion. (Note that such
decision criteria would also be modeled as possible ‘exit states’ for decision
nodes in our ECA-based workflow meta-model, with different states leading
to different outgoing transitions firing.)

15.5 Process modeling and BPMN 213

In our ECA-based workflow meta-model, we made an implicit assumption
that a process instance was directly related to a particular object instance, and
identified by its primary key value. The entry and exit states for the activi-
ties in the process were also assumed to be determined by attribute values
of this object. In this sense, one could view this object as ‘flowing’ along a
path directed by values of some of its attributes. The BPMN notation does not
include the concepts of entry and exit states or ECA rules. Instead it allows
information artifacts to be explicitly associated with transitions to define data
flow and decisions based on data. In BPMN an activity can consume those arti-
facts associated with incoming transitions, and an activity is assumed to create
or modify artifacts associated with its outgoing transitions. Further, decision
criteria (for decision nodes) are assumed to use values that are contained in
these artifacts.

The diagram in Figure 15.9 shows another BPMN diagram for the Leave
Request process. The LEAVEREQUEST object is shown to explicitly flow
along the transitions. A fork node explicitly captures parallel execution of the
flow to the record and view activities. Participants, such a employee, supervisor
and HR manager are depicted as horizontal ‘swimlanes’; activities residing in
a lane are performed by actors who play these roles.

The diagram in Figure 15.9 also explicitly depicts an ‘exception’ condi-
tion: Suppose during the approval activity it is determined that an employee
requesting leave needs to be replaced for the duration of his leave. In this
case the approve activity generates an exception that results in a transition

H
R

 m
an

ag
er

APPLY

APPROVE

RECORD

VIEW

em
pl

oy
ee

su
pe

rv
is

or

LEAVE-
REQUEST

LEAVE-
REQUEST

LEAVE-
REQUEST

FIND
REPLACEMENT

LEAVE-
REQUEST

FIGURE 15.9. BPMN model for leave process

214 WORKFLOW AND BUSINESS PROCESSES

to the find replacement activity. Once this is completed, the flow returns
to the approve activity, which resumes at the point after the exception was
called. Thus, exceptions capture situations where normal processing needs to
be interrupted and continue only after the exception has been ‘handled.’ The
exception is an example of an event. Events include ‘start’ and ‘end’ events,
which can trigger or be triggered by a process, as well as intermediate events,
such as the exception above, which occur during a process execution. Note
that find replacement is not part of the approve activity itself, rather the
approve activity is suspended pending the execution of find replacement,
which may not take place immediately, and may not be done by the same
actor that performed in the approve step.

Exceptions represent elaborations of activities, i.e. an exception handler
such as find replacement is an example of ‘sub’ activity. BPMN also allows
elaboration of processes themselves. A process can have compound activi-
ties that represent sub-processes. In this manner a process can be defined
hierarchically at increasing levels of detail.

Transactions are another important construct included in BPMN. An
elaboration, i.e. compound activity (sub-process) can be designated as a trans-
action: This means it can be ‘rolled back’ during its execution, so that it
behaves like an atomic activity even while representing a sub-process. Unlike
the more commonly known concept of database transactions, workflow trans-
actions can be long-running and involve many participants. Further, different
activities within the transaction may be performed using possibly different
software applications. So there may not be a single system, such as a database
management system, to handle roll backs of data modifications. Instead, activ-
ities within the transaction have associated ‘compensating’ activities that are
triggered by a compensation event that represents a roll back of the trans-
action. The workflow implementation needs to ensure that the appropriate
compensating activities are performed, i.e. only those corresponding to activ-
ities that have already taken place at the time the transaction ‘fails’ and needs
to be rolled back.

We illustrate some of these and other BPMN constructs in Figure 15.10,
where the approve and find replacement activities are elaborated as sub-
processes. The exception is raised in the approve process and results in the
find replacement process being invoked. ‘Link’ events are used to return to
the appropriate position in the approve process once the exception is handled,
i.e. a replacement is found for the employee requesting leave. Note that the
diagram includes decision gateways, as well as transitions having conditions
attached to them (such as those outgoing from the decide request activity).

15.5 Process modeling and BPMN 215

Duration
>1w

Replacement
Found

Leave
Balance

> Duration

REVIEW
REQUEST

SEARCH FOR
REPLACEMENT

ASSIGN
REPLACEMENT

RELEASE
REPLACEMENT

EMPLOYEE

LEAVE-
REQUESTno

No Replacement

No Replacement

yes

Replacement found

Replacement found

APPROVE

FIND REPLACEMENT

DECIDE
REQUEST

APPROVE
REQUEST

LEAVE-
REQUEST

LEAVE-
REQUEST ASSIGNMENT

denied

approved

REJECT
REQUEST

yes

Approval transaction

FIGURE 15.10. BPMN model with transactions

Also note that in cases where the request is rejected, the approve process ends
with a ‘cancellation,’ rather than a normal termination. This event causes a
rollback of any long-running transactions that may be running. In this dia-
gram, both the approve and find replacement processes are enclosed within
a ‘group’ that has been labeled as a transaction. So, in case of a rollback, if the
request is denied even after a replacement has been assigned, the assignment
will be reversed by invoking the ‘compensating’ release replacement activity.

Automatic support for long-running transactions is usually not provided
in generic workflow platforms, and is usually left to enterprise applications to
incorporate into their implementation. If transactional behavior is required in
large parts of a business process, implementing a generic mechanism for long-
running transactions inside the application architecture may be called for.

In the above discussion we have described how some complex process
features are covered in BPMN. There are also limitations to BPMN, many of
which have been pointed out in [64]. For example, in BPMN we do not capture
participant information beyond swim-lanes: So if we require a particular actor
only to perform an activity, it is difficult to capture this using BPMN alone.
Note however that the ECA-based workflow meta-model described earlier

216 WORKFLOW AND BUSINESS PROCESSES

does enable this by capturing the attribute from where the actor value can be
found in the application database.

BPMN-based process models are easy to capture and understand. At the
same time modeling exception conditions using pictorial notation can become
complex, as we have seen above; when the number of exceptions is large the
difficulty is further compounded. ECA rules, on the other hand, are ideal for
modeling even a large number of exception conditions. In practice therefore,
a combination of both approaches can provide a happy compromise, as is
followed in the InstantApps Dev 2.0 platform.

15.6 WORKFLOW IN THE CLOUD

As we have covered in Chapter 12, elements of service-oriented workflow
are provided as a cloud service by Microsoft Azure’s .NET services. Similarly,
many Dev 2.0 platforms such as InstantApps and Force.com also include
workflow in their meta-models. Workflow services are an ideal candidate for
cloud deployment. It is through workflow and web-services orchestration
that disparate applications can be made to behave as an integrated system.
This need becomes even more important as applications are deployed on a
mix of platforms, some on-premise and others in public clouds. While today
there are few cloud-based inter-application workflow platforms, this is an area
where more solutions are likely to emerge, and we reiterate this in Chapter 17
while discussing the evolving cloud computing ecosystem.

CHAPTER 16

Enterprise analytics
and search

So far we have studied enterprise applications from the perspective of what
data they typically need to store, and how business transactions can best be
encoded into such applications so as to efficiently process and update such
data. We have also seen how the execution of transactions can be orches-
trated so as to drive the flow of work between users. Information captured by
enterprise systems in this manner is used to drive the operational functions of
an organization by maintaining accounts, tracking execution plans, receiving
payments or disbursing a payroll.

However, another equally important motivation to maintain data about an
enterprise’s operations is to unearth hidden patterns and discover knowledge
that can improve business strategy or optimize operational processes. Such
knowledge discovery tasks are supported by analytical applications.

Additionally, with the advent of the web and the ubiquity of internet search,
any knowledge discovery or creation exercise today includes web search as an
integral supporting activity. This naturally leads to the question of whether
similar search technologies can be applied to enterprise information retrieval.
Interest in enterprise search has also been fueled by the increasing amounts of
text (and other unstructured) information generated and maintained by large
enterprises and the use of search technologies to index such data. There is

217

218 ENTERPRISE ANALYTICS AND SEARCH

also interest in exploring whether search techniques apply to structured data
as well as combinations of structured and unstructured data.

In this chapter we study some motivations for and solutions to enter-
prise search and analytics problems. However, rather than an overview of
a large number of standard techniques, we present a limited, and perhaps
non-standard but unified view of enterprise search and analytics. This for-
mulation has been chosen to illustrate techniques suited for scalable parallel
implementation using MapReduce (see Chapter 11).

16.1 ENTERPRISE KNOWLEDGE: GOALS AND APPROACHES

Being able to search for and find information in a manner analogous to the
web is an important knowledge discovery task that we shall explore in a
subsequent section. Apart from search, other important knowledge discovery
tasks include:

1. Segmenting customers, suppliers, markets or employees based on their
behavior. Such analysis can be used to decide which customers to give a
discount to, which suppliers to give more business to, which employees
to retain and reward, as well as predict which segment new data might
belong to.

2. Targeting advertising and marketing campaigns more effectively by deter-
mining what information needs to be pushed to which consumers, based
on, for example, similarities in buying patterns.

3. Detecting anomalies and other rare events, such as credit card and insur-
ance claim fraud, illegal duplication of mobile phone SIMs, and even
terrorist activities.

4. Identifying problems and opinions, using data such as from customer
feedback, blogs and emails.

5. Assessing overall situations and trends by fusing evidence from multi-
ple sources to determine high-level explanations from large volumes of
ground-level evidence.

A variety of techniques have been used for solving problems that arise in each
task, some of which we explore in the rest of this chapter, motivating the
discussion using the above examples.

We first cover traditional ‘business intelligence’ tasks involving aggregating,
slicing and dicing data using OLAP (‘online analytic processing’) tools that
allow users to view complex summaries of large volumes of data. OLAP-based

16.2 Business intelligence 219

analysis is the most popular approach to human-assisted segmentation of data
towards optimizing business strategies, such as deciding which customers to
target. In fact, segmentation remains the major goal of most of what is referred
to as analytics in large enterprises.

Nevertheless, the other knowledge discovery tasks described above are
equally important, and OLAP is often also used for these even though it
may not be best suited for the task. Many traditional ‘data mining’ tech-
niques proposed for solving these problems are less generalizable (unlike
OLAP), and therefore less used. Text mining techniques have similar under-
lying roots but are applied on textual, or more generally, unstructured data.
A unified approach that uses similar, possibly generalizable, formulations
of mining techniques for unstructured as well as structured data is there-
fore desirable. There is also a close relationship between search technology
and mining, beginning with text search, but also applicable to searching
structured data.

16.2 BUSINESS INTELLIGENCE

An end-user’s view of a business intelligence application is that of a variety
of reports that aggregate operational details of the enterprise summarizing
business performance. For example, sales analysis may require viewing quar-
terly sales of products from different categories (such as ‘consumer’ versus
‘enterprise’), segregated by region, to arrive at a summary report as shown in
Table 16.1. In the next two sections we describe the steps required to compute
such a report from operational data.

16.2.1 Data warehousing

As discussed in Chapter 13, actual operational data maintained by the enter-
prise is in terms of orders placed by customers, shipments dispatched, invoices
raised and payments made. Further, the number of such records can be very
large. For example, a large global retail chain might generate a few mil-
lion such records a day. Operational data needs to be transformed into a
form on which a variety of reports, such as that in Table 16.1 can be com-
puted. The process of extracting and transforming operational data into such
a ‘reporting database’ is called data warehousing. This is not as simple a pro-
cess as may appear at first glance; data warehousing usually involves steps

220 ENTERPRISE ANALYTICS AND SEARCH

TABLE 16.1 Quarterly product revenue by category and region

Category → Consumer Enterprise

Region ↓ Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

US 100 130 120 150 90 100 110 120
UK 50 40 35 29 65 68 64 60
EMEA 80 95 100 120 80 75 70 65
APAC 10 20 15 18 45 50 55 60

such as:

1. Removing all purely operational data, such as remarks or shipping
reference numbers.

2. Time stamping and related restructuring of data so that it represents his-
torically valid snapshots: For example, the category of a product may
change over time; therefore the product category at the time of sale needs
to be stored along with a sales record instead of in a separate product cate-
gory table, so that even if a product changes category, historically correct
information is maintained.

3. Computing and inserting derived data, such as the location of a sale, which
is possibly defined by the city and country specified in the customer’s
address, if available, or by the address of the retail store where the sale was
made. Moreover, which rule to apply may differ from one sales record to
another.

4. Aggregating measures by the lowest expected granularity required for
reporting, such as aggregating sales figures at a weekly level rather than
by date, if it is determined that this is the finest level to which reporting
may be needed.

5. Computing any required aggregates based on the desired semantics. For
example, is a ‘sales record’ an order, a payment, or an invoice? The period
in which a sale may be counted may be different in each case. More-
over, some invoices may be unpaid or some orders rejected. Such facts
would need to be accounted for while creating ‘sales records’ in the data
warehouse.

Usually an enterprise data warehouse aggregates many different measures
of enterprise performance. Thus, in addition to sales, other measures such

16.2 Business intelligence 221

as income, costs, shipment delivery times and average manufacturing pro-
duction throughput are also captured along with relevant dimensions. Such a
large data model becomes difficult to navigate and query; therefore purpose-
specific data is often extracted from the enterprise data warehouse into a data
mart. For example, a sales data mart would include only sales information
with relevant dimensions, leaving out dimensions such as manufacturing
location, or product cost.

16.2.2 OLAP on a star schema

Business intelligence tasks aggregate measures of business performance along
a set of dimensions: For example, in Table 16.1, the measure is sales, and
dimensions are product category, region and time period in quarters. At a data
mart level, the star schema is a popular data model for capturing multidimen-
sional information, especially where dimensions are hierarchical. Figure 16.1
illustrates a simple star schema for sales data. The name ‘star’ comes from
its structure: A central fact table surrounded by associated dimension tables.
The dimension tables capture the hierarchical structure of each dimension,
such as time period in days, weeks and months, or product category in
terms of a hierarchy of categories (such as board games, toys, entertainment,

-Product ID
-Customer ID
-Address ID
-Day ID
-Quantity
-Amount

Sales facts

-Product ID
-Category ID
-Category name

Product dimension

-Day ID
-Year
-Financial year
-Quarter
-Month
-Week

Time dimension-Address ID
-City
-State
-Country
-Sales region

Location dimension

1

*

1

*

1

*

1

*

FIGURE 16.1. Star schema

222 ENTERPRISE ANALYTICS AND SEARCH

consumer). If the star schema is stored in a relational database, computing a
sales analysis report as in Table 16.1 can be done via a SQL query as shown
below:

SELECT SUM(AMOUNT), P.CATEGORY, L.SALES_REGION, T.QUARTER
FROM SALES_FACTS S, PRODUCT P, LOCATION L, TIME T
WHERE S.PID=P.PID AND S.AID=L.AID AND S.DID=T.DID
GROUP BY P.CATEGORY, L.SALES_REGION, T.QUARTER

(Note that we have abbreviated attributes such as ‘Product ID’ to ‘PID’ etc.)
The result is a set of tuples capturing sales for a each combination of category,
region and quarter. Displaying the result in a format such as Table 16.1 can
be easily handled through application logic since the number of records in
the result will almost always be small (otherwise the report would be difficult
for a human to comprehend).

Data marts are usually stored using specialized databases optimized for
multidimensional queries, so that drilling down or rolling up through hier-
archical dimensions becomes easy. For example, the next step in an analysis
may be to investigate why consumer products are doing poorly in the APAC
region as compared to enterprise products, unlike in other regions. For this
the user may wish to view data at the next level of product hierarchy, and by
months instead of quarters. However, handling recursive hierarchical dimen-
sions, such as product, becomes cumbersome using SQL; notice that our SQL
query above fails if for example, there is a nested hierarchy of categories.

To support iterative data analysis along a hierarchy of dimensions, many
multidimensional databases support the MDX query language. For example
the following MDX query computes the same results as the SQL query shown
earlier:

SELECT {[PRODUCT].[CATEGORY].[Consumer],
[PRODUCT].[CATEGORY].[Enterprise]},

[TIME].[2009].Children ON COLUMNS
[LOCATION].[SALES_REGION].Children ON ROWS
FROM [SALES_FACTS]

Here the two-dimensional structure of the desired result is also encoded in
the query. Complex dimension hierarchies can be encoded in MDX, and these
may not be linear, e.g. computer games could be in both the ‘toy’ and ‘software’
categories. Lastly, multidimensional databases can optimize query execution
better using MDX as it is a higher-level abstraction as compared to SQL.

16.2 Business intelligence 223

16.2.3 OLAP using MapReduce

As we have already seen in earlier chapters, cloud databases, such as Google’s
Datastore or Amazon’s SimpleDB, are not relational, do not support joins and
grouping as in SQL, and certainly do not support MDX, at least as of now. We
now examine how an OLAP query could be efficiently executed on a cloud
database by exploiting parallel computing using the MapReduce paradigm
covered in Chapter 11.

Say we are given a fact table with a very large number of records containing
multiple measures and dimensions. The task is to compute the set of tuples
aggregating the measures along a set of dimensions as chosen via an OLAP
query. It is easy to see that such a query can be executed in parallel with each
processor executing the query on a subset of records (the ‘map’ stage) followed
by a ‘reduce’ stage in which these intermediate results are aggregated.

We illustrate this algorithm in more detail, primarily to introduce a matrix
representation of data that will be used throughout the rest of this chapter:
Suppose the fact table has n data records (also referred to as data ‘points’),
each with m features. We can represent these data points as an m×n matrix A.
For example, considering a subset of the SALES_FACTS table of Figure 16.1,
i.e., using only three dimensions (day, region and category) and one measure
(sales):

A =

n data points →⎡
⎢⎢⎣

01/01 . . . 02/10 . . . 04/13 . . . 05/25
UK . . . UK . . . US . . . UK
ENT . . . ENT . . . CONS . . . CONS
10 . . . 8 . . . 5 . . . 11

⎤
⎥⎥⎦ .

(16.1)

We shall use the above matrix representation of data repeatedly in the rest
of this chapter, albeit with different interpretations of ‘features’ in different
contexts. (Note that a relational table, such as SALES_FACTS, can be written
in the form (16.1) by transposing columns and rows. For readers unfamil-
iar with matrix algebra concepts, a comprehensive treatment can be found
in [27]. However, the discussion below does not require more than basic
understanding of matrix notation and operations.)

The OLAP computation involves calculating c aggregates, each an m-vector
that aggregates a subset of features (i.e., the ‘measures’) corresponding to data
records having a unique combination of dimension values. For the purposes
of the discussion below we shall replace A by a subset of rows consisting only

224 ENTERPRISE ANALYTICS AND SEARCH

of the rows representing measures. Thus, for our example above, m = 1, and
we use only the last row of A, corresponding to the single measure ‘sales.’

We can view the computation of m aggregates as multiplying our new
matrix A with a n× c ‘selection and summation matrix’ S, where each column
of S has ones in rows corresponding to those data records (columns of A)
corresponding to a particular unique combination of dimension values:

� = [
10 . . . 8 . . . 5 . . . 11

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . .
...

...
... . . .

1 0 0 . . .
...

...
... . . .

0 1 0 . . .
...

...
... . . .

0 0 1 . . .
...

...
...

...
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A S

(16.2)

Each of the c columns of � yields a set of m aggregate measures to be
placed at the appropriate cell in the final OLAP matrix. Thus, the first
two sales values shown contribute to the same cell of the output, i.e.,
Q1, UK and ENT, so the first column of S has ones in two rows corre-
sponding to these values. In contrast, the remaining values contribute to
different cells of the output. Note that we assume that the aggregation func-
tion is ‘summation’ (as opposed to, say, ‘average’). The algorithm we derive
below also works for other measures, but is no longer easily represented in
matrix form.

Consider p = n/k ‘mappers’ working on arbitrary subsets of k columns
of A, multiplying each subset with a k × c matrix constructed as is S above,
i.e. whose columns have ones in positions based on dimension values of the
columns of the sub-matrices Ak (each sub-matrix Ak consists of k columns of
A): Then (16.2) can be rewritten as follows:

� = [
A1 . . . Ap

]
⎡
⎢⎣

S1
...

Sp

⎤
⎥⎦ = A1S1 + . . . ApSp. (16.3)

Each of the p partial sums �j = AjSj computed in the map phase is an m ×
c matrix, or equivalently a vector of length mc. The final result � can be

16.3 Text and data mining 225

computed by r reducers adding these p vectors in a ‘reduce’ phase, with each
reducer summing p sub-vectors of length mc/r each. Since the size of the
result, mc, is usually small, r has to be small as well, and often r = 1 suffices.
If r = 1, the reduce phase involves mcp computations.

16.2.4 Parallel efficiency of OLAP using MapReduce:

It is instructive to compute the parallel efficiency of OLAP using MapReduce,
especially since in this case, unlike earlier in Chapter 11, the number of
reducers is a small constant unrelated to the data size. Note first that each
column of A contributes to exactly one of the columns of �. Let us assume that
the distribution of this contribution is uniform, so each of the c aggregates in
the final result is, on average, a sum of n/c columns of A. With this assumption,
each column of S has approximately n/c non-zeros and T1, the time taken to
compute (16.2) on one processor is approximately m × n/c × c = mn. (Here
the unit of time is that required for a single addition.)

Similarly, the time to compute each product �j = AjSj in (16.3) is m ×
k/c × c = mk. Additionally, the reduce phase involves each mapper sending
a vector of length mc to the single reducer. So the time to compute � using
(16.3) with p processors and one reducer is Tp = mk + dpmc, where d is
the time required for data transfer. Therefore the parallel efficiency of OLAP
using MapReduce is:

εOLAP = T1

pTp
= mn

pmk + p2dmc
= 1

1 + p2dc

n

. (16.4)

Thus efficiency is high if p2 � n/dc. In practice this will be the case for large n,
especially as the size of the output, c, is much smaller than, and independent
of, the input size n. However, also note that εOLAP shrinks rapidly with p,
which is to be expected since no parallelism has been used in the reduce
phase (r = 1).

16.3 TEXT AND DATA MINING

Using OLAP, analysts can perform some of the knowledge discovery tasks
mentioned in Section 16.1 by looking through reports that slice and dice
data in different ways. For example, if one categorizes suppliers by their
average prices, delivery schedules and number of products being supplied,

226 ENTERPRISE ANALYTICS AND SEARCH

one can gain some insight into an organization’s supply chain to identify
and evaluate dominant suppliers. A similar analysis could also evaluate cus-
tomers, or employees. On the other hand, detecting fraud, finding patterns
in product purchases or identifying trends and opinions, are more difficult,
and are perhaps impossible to achieve solely through OLAP. Further, when
the number of dimensions on which data needs to be analyzed becomes
large, slicing and dicing becomes difficult to comprehend and results in a
trial-and-error process of iteratively choosing dimensions to see if they yield
insight.

Instead, the data mining approach mathematically models the analysis task.
This results in a few broad categories of problems that can be solved (using a
variety of computational techniques), rather than relying on human analysis
alone:

1. Classifying data by manually assigning labels (e.g. ‘valuable’) to a known
subset of data, and using this to construct a classifier, i.e. a mathemati-
cal model, which can then be used to automatically assign the labels for
remaining data, or for new records as they arrive.

2. Clustering data into groups that are more ‘similar’ to each other than to
other clusters, for example to determine which documents discuss the
same set of topics, or which customers exhibit similar buying patterns.

3. Identifying anomalies, which are records very dissimilar from the vast
majority of data, such as in fraud detection, or crime and intelligence
investigations.

4. Analyzing patterns in subsets of data that have particularly strong con-
nections to each other, especially in conjunction with other techniques,
such as anomaly detection or clustering: For example, automatically
characterizing anomalous behavior in terms of ‘explanations’ that yield
deeper insight, or describing the actual behavior patterns of customers
belonging to the same cluster.

5. Making predictions by choosing hypotheses that might explain data, by
constructing probabilistic models, such as in tracking a moving target,
modeling price movements or fault diagnosis.

In the next few sections we examine some of these tasks along with selected
solution techniques. The choice of algorithms used is more to bring out a
common matrix formulation of each of the problems, rather than cover the
state of art in the field, which is too vast to accomplish here. As we shall see, the
advantage of our common matrix formulation is that it brings out the close
interrelation of different techniques, presents the opportunity to treat text

16.3 Text and data mining 227

and structured data using a unified approach, and highlights computational
techniques that can exploit a distributed cloud computing environment using
the MapReduce paradigm.

16.3.1 Data classification

Let us consider our data matrix as defined earlier in (16.1), with n data points
characterized by m feature attributes. (Note that we no longer distinguish
between ‘measures’ and ‘dimensions.’) These could be actual attributes of
structured data records, or features derived from actual attributes. For exam-
ple customers may be characterized by structured features such as the number
of products they buy, their average spend, as well as features of unstruc-
tured data such as the words they use in their communications. If the data is
unstructured text, columns are documents, and rows represent m terms, or
keywords, for which each column entry in the matrix indicates whether that
term is present in the corresponding document, or counts the frequency of
the term in the document.

In a classification problem we assume that each data point has already
been labeled as belonging to one of a number of classes. As an example con-
sider 8 documents characterized by the occurrence or absence of 11 possible
keywords, represented by the data matrix:

A =

program
string

gravity
code

graph
velocity
random

quantum
chip

protein
cell

p1 p2 p3 c1 c2 c3 b1 b2⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 0 0
1 0 0 0 1 0 0 1
1 1 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 1 1 1 0 0
1 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 1 0 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
1
0
1
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(16.5)

Here aij = 1 if the ith term occurs in document j, and aij = 0 otherwise. As
can be observed from the words they contain, the documents pi are likely to
be on physics, ci on computing and bi on biology. We assume we have already

228 ENTERPRISE ANALYTICS AND SEARCH

labeled each document as to which of these classes it belongs to. Given a new
document d as also shown in (16.5) above, we would like to automatically
determine which class label to assign to it.

Note that in practice we usually consider the normalized frequency of each
term across all documents, for example if fij is the frequency of the ith term in

document j, a common practice is to set aij = fij∑
i fij

log n/ni where n is the total

number of documents and ni the number of documents containing the term
i. This particular normalization, often referred to as ‘TF-IDF’ (term-frequency
times inverse document frequency) ensures that overly common terms do not
dominate the rarer but more meaningful ones. However, for simplicity we have
used a simpler representation in our example. Also, in practice the number of
keywordswill be large, andAwill behighly sparse andnever actually computed
in its entirety. For example, since a document naturally stores only the words it
contains, eachdocument is itself a compressed representationof a columnof A.

Let us partition the data matrix as:

A = [
AP , AC, AB

]
. (16.6)

Clearly, each class is characterized by a different set of words, or features, so
the columns of AP will be, on the average, ‘further away’ from those in AC

and AB than within themselves (and vice versa). A common measure of the
distance between data points ai and aj is the ‘cosine’ distance between two
vectors, defined as:1

< ai, aj >≡ 1 − |aT
i aj|

((aT
i ai)

1
2 (aT

j aj)
1
2)

. (16.7)

A naive algorithm for classification then follows naturally, i.e. compare d with
each of the columns and determine which class it is closer to, on the average.
For example, the cosine distances of d with each of the columns of A can
easily be computed:

[< dTai >] = [
1.0 0.75 0.75 0.42 0.25 0.33 1.0 1.0

]
.

The document d is closer to the columns ci, i.e. AC than to AP or AB. Examining
the words contained in d it is clear that this classification is indeed correct,
i.e. the words in document d mostly relate to computing.

1 aT
i is the ‘transpose’ of ai; and aT

i aj the ‘dot product’ [27].

16.3 Text and data mining 229

The above approach of determining which class a new data point belongs
to is highly inefficient if the number of columns of A is large, which will
usually be the case. The classification algorithm needs to use a more compact
representation of the pre-classified sets AP, AC and AB. For example, one
could represent each set, P, by its centroid, i.e. the (normalized) sum of all the
columns in that class: cP = ∑

i∈P ai/n. Then we need only compare d with the
three centroids, or more generally with k centroids if there are k classes. Many
such classification algorithms are possible, ranging from the simple centroid
method to fairly sophisticated algorithms called ‘support vector machines’
[38].

We introduce an algorithm for classification using the ‘singular value
decomposition’, not because it is superior, but because it brings out a uni-
fied understanding of the structure of data when viewed in matrix form. This
formulation will also come in useful in later sections as a common basis for
understanding various data mining tasks.

Singular Value Decomposition:

A =
[

u1 . . . um

↓ ... ↓

] [
�1

m×m , 0
]

⎡
⎢⎣

vT
1 →
... . . .

vT
n →

⎤
⎥⎦.

Um×m �m×n VT
n×n

(16.8)

It turns out that any matrix can be written as a product of three matrices
as in (16.8), which is called the singular value decomposition, or SVD of the
matrix [27]. The matrices U and V are orthogonal matrices, i.e. UTU = I and
VTV = I (where I is a diagonal matrix of all ones). Another way of looking
at this is that the columns of U and V are pairwise orthogonal, meaning that
they are very ‘far apart’ from each other according to our earlier definition of
cosine distance, i.e. < ui, uj > and < vi, vj > are 1 if i = j, and 0 if i = j.

The matrix � is a diagonal matrix whose entries (σi) are called the ‘singular
values’ of A. Note that since in general A is an m × n matrix, � will have a set
of n−m columns of zeros at the end if n > m (if n < m, these would instead be
rows of zeros at the bottom). It is important to note that the SVD of a square
matrix (i.e., m = n) is essentially unique2 if one orders the diagonal entries of
� in say descending order; we say ‘essentially’ because it is possible to change
the sign of any column of U and the corresponding column of V and still

2 Except in the special case of repeated singular values.

230 ENTERPRISE ANALYTICS AND SEARCH

preserve the decomposition. (For a non-square matrix, say m > n, only the
first n singular vectors of V are unique, since the remaining n − m columns
of V can be any ‘orthogonal complement’ to the first n columns. Similarly, if
m < n, it is the last n − m columns of U that are not unique.)

To understand how the SVD provides insight into the structure of large data
sets modeled as matrices, we make a few observations (proofs are available in
any matrix algebra text, such as [27]):

1. Each column of A is a linear combination of the columns of U (which are
called ‘left singular vectors’; similarly the columns of V are called ‘right
singular vectors’).

2. If the columns of A are very similar to each other, it is highly likely that
it would be possible to express them as linear combinations of a small set
of, say k, columns of U where k � n.

3. In the above situation, there will be k ‘large’ singular values σ1 . . . σk with
the rest being relatively much smaller. We will refer to these as the k
‘dominant’ singular values and the corresponding k columns of U as the
dominant singular vectors of A.

The matrix approach to data mining, including observations such as the above,
are treated in more detail in [56].

Returning now to our classification problem with two classes: Let us com-
pute the SVD each of the matrices AB, AC and AB to yield dominant singular

vectors ŨP ≡ U
1...kp
P , ŨC ≡ U1...kn

C and ŨB ≡ U1...kn
B (as defined in 3 above).

Since these smaller sets of vectors approximately represent all the columns of
AP, AC and AB respectively, we can classify any new data point d by computing
the average cosine distance of d to each of these sets. Performing the above
computation for our example data matrix A and document d of (16.5), and
using only the largest singular vector of each matrix AB, AC and AB, i.e. k = 1,
we find that < d, u1

P >= 0.78, < d, u1
C >= 0.25, and < d, u1

B >= 1.0, clearly
indicating that d belongs to the same class as the columns of AC.3

Computing the SVD is expensive, so in practice other methods of choosing
‘representative’ points are often used. For example one could choose a random
set of points from each set, or choose a set of points from each set that are as
far apart from each other as possible [28].

Finally we note that in our matrix formulation of the classification we do
not distinguish between structured data with features and unstructured text
with keyword terms. In fact the same algorithm works for both cases, and

3 The SVD can be computed using packages such as MATLAB or Octave (open source).

16.3 Text and data mining 231

also for the mixed case, where a data point includes a lot of structured data
as well as unstructured text: In this case some rows of A represent features
of structured data and others represent keyword terms for unstructured text
associated with the each data point. Last but not least, it is very important
to note that the actual performance of the algorithm in practice does depend
significantly on how the features and keywords characterizing a data point are
defined. In the next few sections we shall apply the matrix formulation and
SVD to other problems of data mining. However, before this we first describe
what is involved in computing a large SVD and how it could be done using
cloud computing paradigms such as MapReduce.

16.3.2 Computing the SVD using MapReduce

There are many algorithms for computing the SVD of a matrix, each of which
perform better or worse depending on the nature of the matrix. All techniques
for computing the SVD are iterative, i.e. the number of steps is not determin-
istic, and the computation converges after some steps so that the results are
accurate to the extent of machine precision. Details of SVD algorithms can be
found in [27]. Here we focus on the nature of the computations involved and
how these can be executed in parallel using MapReduce.

Many iterative SVD algorithms rely on repeated matrix-vector multiplica-
tions namely Avi and ATui, where the ui and vi are approximations to the left
and right singular vectors of A, which are continuously refined and ultimately
converge to the actual values, with the singular values also being revealed in
the process. Such methods are especially preferred when A is large sparse, as
they do not destroy the sparsity of A during the computation. Further, the
techniques work just as well when applied to computing only the k largest
singular values and vectors, in which case only k vectors u1 . . . uk and v1 . . . vk

have to be maintained during the computation.
Let Ū and V̄ be m × k matrices with columns u1 . . . uk and v1 . . . vk respec-

tively. To see how the multiplications AV̄ and ATŪ can be executed in parallel
using MapReduce, we split the matrix A into p sets of columns, as we did ear-
lier for OLAP in (16.3). Similarly V̄ is also split, as it also has a large number
of columns (n). We then rewrite these products as follows:

AV̄ = [
A1 . . . Ap

] ⎡
⎢⎣

V̄1
...

V̄p

⎤
⎥⎦ = A1V̄1 + · · · ApV̄p. (16.9)

232 ENTERPRISE ANALYTICS AND SEARCH

ATŪ =
⎡
⎢⎣

AT
1
...

AT
p

⎤
⎥⎦ Ū =

⎡
⎢⎣

AT
1 Ū
...

AT
p Ū

⎤
⎥⎦ . (16.10)

To compute AV̄, p mappers compute each of the products AiV̄i and a reduce
operation computes the sum. For computing ATŪ, no reduce is required since
once the computations AT

i Ū are done by p mappers, the result is ready.
The parallel efficiency of computing (16.9) can be computed in a man-

ner similar to (16.4); moreover its behavior with p and n is also similar.
The parallel efficiency of computing (16.10), on the other hand, is one, if
communications costs are ignored.

Finally, it is important to note that in practice the matrix A will be large
and sparse, and will be stored in a compressed manner: For example, if
each column of A represents a document, as in the example (16.5), only
the words present in each document will be stored; i.e. the non-zero values
of A will be stored by columns. Therefore our parallel algorithm described
above partitions A by columns, thereby distributing documents to proces-
sors. On the other hand, we may use an alternative representation by rows,
such as illustrated in Figure 16.3 of Section 16.4.2 below. Then we would
need to partition A by rows instead, and compute AV̄ in the manner ATŪ is
computed above, and vice versa for ATŪ. The choice of which representa-
tion and corresponding technique to use depends on the relative size of m
and n. If m � n, we partition A by columns, and if m � n we partition
by rows.

For example, if we consider A to be a term-document matrix for a docu-
ment repository, m can be as large as the number of possible words, which
(in English) is a few hundred thousand. If the repository in question is the
entire web, at least as many proper nouns, if not more, will occur. Further
documents can be in many different languages; so we could end up with
m of the order of a few million. Nevertheless, the total number of docu-
ments on the web is already over 50 billion, so in this case we find that
n � m. However, for a typical enterprise document repository with at most
tens of thousands of documents, we will usually find m > n. On the other
hand, if we consider structured data, such as records in a database, the num-
ber of features (i.e., columns) of interest for, say classification purposes, is
usually much smaller than the total number of records; so once again we
find n � m.

16.3 Text and data mining 233

16.3.3 Clustering data

Classification is an example of ‘supervised learning’, where we are provided
a set of labeled data and we use it to classify further data. Clustering, on the
other hand, is when we attempt to learn what classes there are in an ‘unsu-
pervised’ manner. For example, we may wish to determine which customers
have similar buying patterns, or which products are bought by the same sets of
customers, without any pre-existing knowledge apart from the data at hand.

Once again we examine what insight the matrix formulation and SVD can
bring: The n columns of A (i.e. data points) are linear combinations of the
columns of U (singular vectors). In terms of these new axes, which we call
‘U-space,’ the ‘coordinates’ of each data point is given by the columns of �VT .
It is observed in practice that the maximal variation in the data set is captured
by the first few singular vectors U1...k [57]. Thus the first few coordinates of
each data point in U-space, which are the first few rows of �VT , reveal the
clusters. Using our example (16.5) we find that the first two coordinates of
each data point in U-space, i.e. the first two rows of �VT are:

p1 p2 p3 c1 c2 c3 b1 b2

−0.94 −1.40 −1.40 −1.03 −1.29 −1.74 −0.03 −0.26
−0.81 −1.38 −1.38 1.08 1.14 1.17 0.01 0.05

Viewing each column as a point in two-dimensional space, as shown in
Figure 16.2, we see that the clusters are revealed. In this manner, using

–2

–1.5

–1

–0.5

0

0.5

1

1.5

–2 –1.5 –1 –0.5 0

Entries in first row of Σ VT

E
ntries in second row

 Σ
 V

T p3

p2 p1

c1c2c3

b1b2

FIGURE 16.2. Clustering using the first two rows of ΣVT

234 ENTERPRISE ANALYTICS AND SEARCH

the SVD one can cluster high-dimensional data by reducing the problem to a
simpler clustering problem in a low-dimensional space.

There are many related clustering algorithms, and the one we have
presented is far from optimal; it does however bring out the close con-
nection between classification and clustering through the insight offered by
the SVD.

16.3.4 Anomaly detection

Often we are concerned with detecting if there are a few data points that stand
out from the vast majority of data, i.e. ‘outliers,’ which could represent some
form of anomalous behavior, either suspicious, fraudulent or eccentric. Once
again our matrix formulation together with the SVD provides some insight: In
practice we often find that the vast majority of data points are well represented
by a smaller (than m) subset of singular vectors corresponding to the largest
k singular values. In such a situation, if there is a small set of data points
that are different from the vast majority, they will not be well represented
by these k singular vectors. Instead they will be closer to some of the latter
singular vectors, most often to um, corresponding to the smallest singular
value: This is because the singular values also have an intuitive meaning;
the larger values and corresponding singular vectors represent the dominant
feature combinations in the data set. Similarly, the smaller ones represent
those combinations that are rare. A clustering perspective provides another
view: outliers are clusters having very few data points.

So, outliers can often be identified by those columns of VT in which the
first k values (corresponding to the dominant singular vectors) are all small.
The corresponding columns of A are likely to be outliers representing some
kind of anomalous behavior. For example, using the matrix in (16.5), we find
that the columns of VT

k (with k = 2) are:

[−0.29 −0.43 −0.43 −0.31 −0.39 −0.53 −0.01 −0.08
−0.29 −0.48 −0.48 0.38 0.39 0.40 0.00 0.02

]
.

The fact that the entries in the last two columns are much smaller than the rest
indicate that the cluster AB is smaller than the other two clusters. As before,
there are many mechanisms for outlier detection, the SVD-based technique
is only one. However it clearly illustrates the relationship between outliers,
clustering and classification.

16.4 Text and database search 235

16.4 TEXT AND DATABASE SEARCH

16.4.1 Enterprise search

The ubiquity of access to web search naturally raises the question of whether
searching for information within an enterprise can be made as simple as it
appears to be on the web. At the same time, the apparent simplicity of web
search belies the tremendous complexity of what is taking place in the back-
ground behind every query, with the scale of information on the web being
orders of magnitude larger than the data stored in even the largest enterprises.
So it may appear at first glance that applying the same search technology
within an organization should be relatively simple. Unfortunately, there are
also many differences between web search and ‘enterprise search,’ such as:

1. Ranking search results is more difficult for enterprise data: On the web
more ‘popular’ results are assumed to be better. However, in an enterprise,
one is usually more interested in ‘correct’ results, rather than merely pop-
ular ones. At the same time, more information is often available about the
user, such as their role, or the context in which a search is being per-
formed. Further, it is easier to track user behavior in response to search
results as compared to the web.

2. The structure of the web provides explicit information on how pieces of
information are linked to each other, i.e hyperlinks; such links are far less
explicit for enterprise data. For example, documents may contain names of
the same important customer, but these are unlikely to be explicitly linked,
and any such relationship would have to be derived. For structured data,
such as in databases, some explicit linkages in the form of foreign keys are
present; equally often however, it is the absence of such information that
drives the need to ‘search’ structured data.

3. Information on the web is public, whereas enterprise data can have security
restrictions that need to be enforced while deciding whether and how much
access a particular user has to some piece of information.

4. The vast majority of information on the web is textual, and uniformly
located via URIs. Enterprise data, on the other hand, is a mixed bag of tex-
tual information linked to structured records in databases, which in turn
are linked to others via often circuitous foreign key relationships. Further,
enterprise data exists in a greater variety of document and database for-
mats, as well as sometimes being available only through calls to application
services.

236 ENTERPRISE ANALYTICS AND SEARCH

16.4.2 Indexing and search using MapReduce

The search problem can also be studied using the matrix formulation as in
(16.1). For text search, as in (16.5), the columns of A are documents and rows
(features) are keyword terms. For database records the columns correspond
to tuples (possibly from many different tables), and features are distinct values
that can occur in field of a record, or may instead represent meta-data.

In practice the matrix A will always be highly sparse, and also there may
be a huge number of features, both terms and ‘key’ values as in the above
example. So the issue of how such a matrix is actually formed and stored is also
important. An example of such a sparse storage scheme is a ‘postings list’ [38]
as shown in Figure 16.3: Along with each keyword we store a list of documents
in which the word occurs; this can also be viewed as a sparsity preserving row-
wise storage of the matrix A. In the parlance of search technology, this is also
referred to as an ‘inverted index’ on the documents: Just as each document is
a list of words, each entry in this ‘inverted’ index is a list of documents. As we
have already seen in Chapter 11, index computation can be efficiently carried
out in parallel using MapReduce.

We now examine how keyword search can be carried out using our matrix
formulation. For simplicity we assume that data points are all documents (i.e.
no database records). Recall that we could measure the closeness of any two
documents ai and aj (columns of A) by the cosine distance (16.7) < ai, aj >.
To model search, we view any query also as a (very short) document, defined
by a vector q. Then, the search problem reduces to finding documents ai that
have small di =< q, ai >.

Clearly it is inefficient to compute the product of q with all documents.
Instead, we exploit the sparse storage mechanism shown in Figure 16.3 to
access only the entries (rows of A) of terms present in q. As we traverse

graph

gravity

protein

….

c1 c2 c3

p1 p2 p3

b1 b2

FIGURE 16.3. Inverted index

16.4 Text and database search 237

each of these lists sequentially, we accumulate the distances di for only those
documents encountered along the way (as for all other documents that do not
contain any query term, di will be 1). A detailed explanation of ‘vector-space’
based retrieval using the ‘postings-list’ structure can be found in [38].

It is also easy to see how this search can be performed in parallel using
MapReduce: Each mapper accesses an index on a small subset of docu-
ments and computes a partial set of products, i.e. for those documents that it
encounters. Each map operation returns a set of documents with small query
distances di. Note that this may still be a large set. The reduce operation then
computes (in parallel) the k smallest of these products to determine the search
result.

16.4.3 Latent semantic indexing

The search model described above is that of simple keyword search, i.e. the
result set contains only those documents that contain some or all of the query
terms, ranked by how closely they match the query in this sense. Simple
keyword search ignores two aspects of natural language that may be important
in certain kinds of search, synonymy and polysymy. Consider our example of
(16.5): Two terms, such as ‘code’ and ‘program,’ could have the same meaning.
We would like to discover this synonymy and exploit it, so that a search on
‘code’ also yields documents containing to ‘program.’ The cosine distance
distance < q, ai > ignores such synonyms and underestimates similarity.
Polysymy, on the other hand, is when the same term, such as ‘string’ is used
in multiple contexts (e.g. ‘string theory’ in physics, text strings in computing,
and nucleotide strings in biology); in this case simple search overestimates
similarity.

It turns out that using the SVD one can automatically take into account
both synonymy and polysymy to a certain extent. The technique that achieves
this is called Latent Semantic Indexing [15] (or LSI). In LSI one computes the
SVD of the document matrix A, and truncates it to the first k singular vectors
and values, to obtain an approximation Ak:

A = [
Uk Um−k

] [
�k 0 0
0 �m−k 0

] [
Vk Vn−k

]T ≈ Ak = Uk�kVT
k . (16.11)

(Note that Ak is still an m×n matrix, just like A.) Now, a query q is compared
with Ak instead of A. Consider the data matrix (16.5) and a single term query

238 ENTERPRISE ANALYTICS AND SEARCH

‘code,’ whose corresponding query vector will have qi = 0, i = 4 and q4 = 1.
The cosine distances between q and columns of Ak, for k = 3, are:

0.88 0.97 0.97 0.59 0.74 0.59 0.80 0.85.

We see that using LSI the query vector q is found to be close to c2 that contains
the term ‘program’ in addition to c1 and c3 that contain the exact query term
‘code.’

Note that unlike earlier, Ak is no longer likely to be a sparse matrix; further-
more the number of rows (all possible query terms) m is likely to be large.
However, because of its structure, and the fact that k � n, m computing
the distance of q to the columns of Ak also lends itself to efficient parallel
implementation.

The LSI algorithm is computationally more intensive than simple keyword
search. However, it is found in practice that LSI captures synonymy and
polysymy to a certain extent; theoretical as well as experimental research con-
tinues into understanding this phenomenon better [43]. Nevertheless, if the
volume of records n, or number of features m, is very large the computational
requirement of LSI can become prohibitive.

Recent results have shown that we can use a much smaller random sample
of columns of A to approximate Ak to a high degree of accuracy [23]; further
the random sample can also be efficiently computed in parallel. Nevertheless,
even if we are able to compute Ak using only a fraction of the columns of A,
the fact remains that Uk and Vk are no longer sparse matrices. In this regard
the CUR decomposition [18] provides an alternative approximation, where C
and R are k columns and rows of A respectively, thereby maintaining sparsity.
It is shown in [18] how to choose C and R such that the product CUR is a
close approximation to Ak.

16.4.4 Searching structured data

Searching structured data has traditionally been through query languages,
such as SQL. However, for a variety of reasons, there is renewed interest in
applying search technology, such as used for text, to structured data:

1. Applications that issue SQL queries are limited in the extent to which they
enable search using keywords. Moreover, often many different screens
need to be accessed to find all occurrences of a keyword as each screen
accesses only a particular set of tables.

16.4 Text and database search 239

2. Enterprises often have a large number of applications that maintain their
own interrelated but independent databases. Searching all these simulta-
neously can be looked upon as a cheap and user friendly way to provide
integrated access to information across applications.

3. Related to the above case, often information about the same ‘objects,’ say
a product, is present in a number of systems that are not well integrated.
Search-based technologies could ‘discover’ data relationships by automat-
ically traversing common foreign key values, thereby possibly retrieving
related data from multiple systems.

4. SQL queries rely heavily on joins between tables; however, as we have seen
earlier, cloud databases (such as Google’s Datastore or Amazon SimpleDB)
do not support joins. Therefore it is likely that while using cloud platforms,
search-based access to databases, even from within an application, may
become increasingly important.

5. It is often important to examine linkages between data items that are not
explicitly maintained as joins, such as while trying to determine if two
sets of information (objects) actually represent the same real-world entity
(such as the same person).

6. Increasingly, structured data is augmented with unstructured information
and it may be desirable to search both kinds of data at once.

A number of techniques for each of the above problems are the subject of
much current research, such as [3]. For structured data (i.e. tuples from one
or more tables, in one or more databases), the matrix A is once again large
and sparse, as before. The entries of A are 0 or 1 depending on whether a term
is present in a particular tuple or not. Exactly the same indexing scheme and
search technique works as before, returning a set of disjoint tuples that contain
the keywords in the query. For such an application, the terms included in A
should ideally be limited to text fields or data with categorical values, rather
than continuous data such as amounts. Just as earlier, MapReduce-based
parallel implementations are possible. Note however that using simple key-
word search, we completely ignore joins and other interrelationships between
tuples. Mechanisms to incorporate such linkages, without using joins, are
currently the subject of research, as are techniques for exploiting joins when
available, and ranking the results of such searches. The relevance of tech-
niques such as LSI when used on structured data is also a topic that remains
to be investigated.

PART VI

Enterprise cloud computing

The ecosystem of technologies related to the enterprise adoption of cloud com-
puting is constantly evolving. In addition to the three major cloud providers,
new ones are emerging from amongst those already in the data center hosting
business. Apart from cloud providers, there are also tools to manage combi-
nations of in-house and cloud resources. Similarly, there are frameworks to
assist enterprises in creating ‘private’ clouds within their own data centers.
As cloud computing matures, many of the concerns surrounding its use for
enterprise applications are likely to be addressed. In the meantime, there are
a few quick-wins that can result in immediate benefits by leveraging avail-
able cloud platforms. In the longer term, cloud computing will itself evolve
in hereto unknown directions, and we speculate on a few of these: In par-
ticular, the convergence of public and private clouds, and the emergence of
‘cloud-services.’

CHAPTER 17

Enterprise cloud computing
ecosystem

So far we have covered a number of cloud computing technologies as well
as explored their impact on the software needs of enterprises. In the process
we have limited our discussion to the major cloud computing providers, viz.
Amazon, Google and Microsoft, with most of our examples taken from the
first two, given that Microsoft’s offering is still in its nascent stages at the time
of writing.

However, the cloud computing ecosystem includes other cloud providers,
albeit smaller than the three major ones. Additionally, there are a range of
emerging technologies that complement public clouds, enable interoperabil-
ity between private data centers and public clouds, or facilitate the creation
of private clouds within enterprises.

Figure 17.1 depicts our classification of the cloud ecosystem from an enter-
prise perspective, also indicating the organizations involved in creating and
bringing these technologies to market. Needless to say this list of organi-
zations is incomplete and evolving; moreover, given the rate of innovation
in the cloud space, it is possible that additional technology categories may
emerge in the future. (Note: there are other similar classifications, such as the
OpenCrowd taxonomy1, which includes a far broader range of technologies
and applications.)

1 www.opencrowd.com/views/cloud.php

243

244 ENTERPRISE CLOUD COMPUTING ECOSYSTEM

Virtualization

Infrastructure
self-service

Dynamic monitoring
and load balancing

Development
platform

Application
virtualization

Infrastructure
self-service

Virtualization

Virtualization

Dynamic monitoring
and load balancing

Dedicated
hosting

Virtualization

Infrastructure
self-service

Dynamic monitoring
and load balancing

IAAS Providers
PAAS providers

Hosting providers

Enterprise IT

Virtualization

SaaS providers

Business
application

Dev2.0
platform

Technical
software

SaaS on PaaS PaaS on IaaS

Tools (Dev, Dev2 + Sys S/W)

Cloud systems
software

Applications (Bus, Tech) Private cloud

Web hosting

Cloud management

Dev2.0
platforms

Archival
& BCP

FIGURE 17.1. Enterprise cloud computing ecosystem

The enterprise cloud ecosystem comprises of three main categories; cloud
service providers, tools for using and managing cloud deployments and tools
for building private clouds. Each of these categories include a number of
underlying technologies as illustrated in Figure 17.1 (some are shaded to
indicate that they are directly available to enterprise while others are used
internally by public cloud providers). We cover each of these categories in the
next few sections. We also examine in detail some open source technologies
that mimic public cloud implementations, which can therefore be used by
enterprises embarking on creating private clouds.

17.1 PUBLIC CLOUD PROVIDERS

Let us recall the key elements of a public cloud platform, such as Amazon
EC2, Google App Engine or Microsoft Azure. An infrastructure as a service
(IaaS) cloud (such as Amazon EC2) offers self-service infrastructure (both
compute and storage) provisioning built on an underlying large-scale data
center based on virtualization. Dynamic monitoring and load balancing ser-
vices are the latest addition to the Amazon cloud, i.e. CloudWatch, Auto
Scaling and Elastic Load Balancing. Platform as a service (PaaS) clouds, such

17.1 Public cloud providers 245

as Google App Engine and Microsoft Azure, offer a software development and
deployment platform while hiding much of the underlying virtualization and
dynamic resource management layers. The common feature of these offer-
ings is the ability of users to pay only for the resources they actually consume,
at a very fine granularity. From a business perspective this is the essence of
classifying any offering as a public cloud service.

Data center hosting services are not new to the IT industry and have been
around for decades. The traditional service offering from such providers has
been ‘dedicated server’ hosting, where a set of physical servers and storage
were provisioned and dedicated for use by a particular enterprise customer.
In recent years, these providers have also begun to offer virtual servers, based
initially on process virtual machines such as user-mode Linux and virtual
private servers (see Chapter 8), but now almost universally based on native
hardware virtualization, typically using the open source Xen VMM. Similarly,
web-hosting services have been mainstream for a number of years as well.
Many websites today, especially of small and medium enterprises, are hosted
and managed by web-hosting providers. These providers have offered hosted
storage and database space as part of their web-hosting services, and are now
offering additional services based on virtual servers.

Hosting services (dedicated server as well as web) have traditionally
charged on a monthly basis depending on the resources, dedicated or vir-
tual, deployed for a user. Many traditional hosting providers are now offering
additional features similar to cloud providers, such as self-service provision-
ing, while continuing to offer their traditional hosting offerings: Rackspace,
Savvis, Voxel, ServerVault and ServePath fall into this category, as shown in
Figure 17.1. However, only some, such as Terremark and GoGrid (which
is operated by ServePath) have also begun to offer true cloud pricing, i.e.
charging only for resources that users actually consume on an hourly basis.
Therefore we have classified GoGrid and Terremark as an IaaS cloud along
with Amazon EC2, but not the other hosting providers even though they are
also ‘cloud providers’ in the more general sense of the term. It is likely, how-
ever, that many of these will enter the IaaS space in the near future, resulting
in a rapid expansion of the number of public IaaS clouds. Still others may
evolve towards niche infrastructure services with cloud pricing models, such
as Vaultscape for storage backup.

The platform as a service (PaaS) space, as compared to IaaS, is still sparse,
with very few entrants apart from Google and Microsoft. An example of a
niche PaaS offering is Engine Yard, which provides a development platform
using Ruby on Rails, based on underlying infrastructure running on Amazon

246 ENTERPRISE CLOUD COMPUTING ECOSYSTEM

EC2; i.e. an example of ‘PaaS over IaaS.’ In a similar vein AppScale is an open
source implementation of the Google App Engine interface on Amazon EC2.
AppScale also leverages the Hadoop project’s open source versions of Google’s
BigTable and GFS (covered in Chapter 10). We describe AppScale in more
detail in Section 17.3.2 below.

Finally, recall our extensive treatment of the Dev 2.0 paradigm (end-
user-driven application development tools) exemplified by Salesforce.com’s
Force.com platform, TCS’s InstantApps, as well many others as mentioned
in Chapter 12. We classify most Dev 2.0 platforms, including Force.com,
in the software as a service category, since they limit application features as
compared to a PaaS platform where access to a full programming language is
provided. InstantApps on Amazon EC2, however, can be considered to be a
PaaS (on IaaS) offering, since this tool allows users to write native client and
server-side code (in JavaScript as well as Java), thereby in principle allowing
any web application feature to be developed on it, just as for a full PaaS plat-
form such as Google App Engine or Azure. (Additionally, InstantApps is also
deployable on-premise as a traditional software development tool.)

17.2 CLOUD MANAGEMENT PLATFORMS AND TOOLS

Configuring and managing a small set of servers on an IaaS cloud can be
accomplished easily using an IaaS offering’s own infrastructure self-service
APIs and tools. Managing a larger and more complex deployment requires
more tools support and automation, just as it does within an enterprise
data center. Cloud management platforms such as 3tera, RightScale, Kaavo,
EnStratus and Ylastic provide web-based graphical tools to configure and man-
age complex configurations of servers deployed in the cloud. Some of these
tools work only with Amazon EC2, while others, such as RightScale, enable
management of multi-cloud deployments; for example, spanning Amazon
EC2 and GoGrid. Further, all these cloud management platforms are them-
selves deployed in the cloud, either on an IaaS platform such as Amazon EC2
(e.g. RightScale) or in partnership with smaller, hosting providers (e.g. 3tera).

In addition to graphical self-service infrastructure management, some
cloud management tools also offer dynamic monitoring and load balancing.
These capabilities were crucial in the initial stages of IaaS before Amazon
EC2 itself introduced Elastic Load Balancing, CloudWatch and Auto Scaling.
Though no longer required if one is only using Amazon EC2, in a multi-cloud
scenario they may become increasingly important when the number of IaaS
clouds grows.

17.3 Tools for building private clouds 247

From an enterprise IT perspective though, at least for the foreseeable future
private data centers (including those managed by dedicated hosting providers)
will remain part and parcel of enterprise IT. Cloud deployments will only
complement this infrastructure. Therefore, the ability to manage complex
IT environments that span local infrastructure as well as cloud deployments
will be required. Traditional infrastructure management tools, such as from
CA or IBM, will certainly respond to this need. In the meanwhile, some
cloud management tools, such as 3tera, Appistry or ServiceMesh can also be
deployed within the enterprise and used to manage a combination of local
and public cloud infrastructure.

Recall how application software is made available on an IaaS cloud: Amazon
EC2 packages a virtual server along with its software configuration as an AMI;
GoGrid has its own similar format called GSI. However, creating such virtual
images from scratch, say from a deployment of an enterprise application,
is not simple, further the images so created are large. Niche, ‘application
virtualization’ technology from rPath or AppZero makes such tasks simpler
and also optimizes the application images in size. Such tools also promise to
enable portability of application images across different clouds and private
data centers.

Finally, there is another emerging trend related to infrastructure manage-
ment: Hosted technical software for email security and virus scanning, such
as MessageLabs (recently acquired by Symantec). We foresee that even more
technical software, such as middleware for managing web services, work-
flows, or identity, moving to hosted models. Leading in this arena are the
.NET services included in Microsoft’s cloud platform, as we mentioned briefly
in Chapter 5.

17.3 TOOLS FOR BUILDING PRIVATE CLOUDS

Automation of data center operations within the enterprise using technologies
such as virtualization promises to improve efficiencies by increasing server
utilization, as we have seen in Chapter 8. Self-service infrastructure provision-
ing together with dynamic monitoring and load balancing are equally critical
elements in achieving such higher utilization levels as well as in reducing
manpower requirements and costs of infrastructure management.

There is considerable interest amongst enterprises, especially within cor-
porate IT, in creating ‘private clouds.’ For the most part, such private cloud
projects involve a combination of virtualization, self-service infrastructure
and dynamic monitoring and load balancing. Many are re-branded versions

248 ENTERPRISE CLOUD COMPUTING ECOSYSTEM

of already on-going data center automation projects. Others have been driven
by the emergence of public clouds as an attractive option for enterprise appli-
cation deployments, motivating efforts to achieve similar efficiencies within
the enterprise.

Tools for self-service infrastructure as well as some dynamic resource con-
trol capabilities are now being provided by products from virtualization tool
vendors such as VMware. Cloud management tools that are deployed within
the enterprise such as 3tera and Appistry (which are also available in the
cloud), as well as others such as Elastra and Enomaly also provide such fea-
tures. In high-performance computing environments, such as trading floors
of investment banks or for scientific computing, Grid computing technolo-
gies such as from GigaSpaces, Platform Computing and DataSynapse (now
acquired by TIBCO) offer similar features tuned for applications exhibiting
large real-time demand fluctuations.

The question remains as to what extent data center automation using such
technologies constitutes a ‘private cloud,’ and if so whether it can achieve
efficiencies nearing those of public clouds. We shall return to this question
in the next chapter. In the meantime, we examine the design of two open
source projects that implement systems resembling Amazon EC2’s IaaS plat-
form and Google App Engine. One of these, Eucalyptus, is already available as
a commercial open source offering: While data center automation technology
aims to improve the efficiency of the entire data center, including a variety
of platforms, legacy systems and hardware configurations, these open source
projects (as well as some cloud management tools such as Enomaly) can be
used to create private-cloud-like islands within enterprise data centers, but
without promising to include all legacy platforms in their ambit. Deploying
applications on these platforms involves similar steps as deploying on a public
cloud, only that the hardware resources may be located in-house. It is also
possible that hosting providers may leverage such platforms in the future to
offer cloud-like services that mimic the larger cloud platforms, and in the
process also offering interoperability and competing on price, location and
personalized service. For this reason both these platforms, Eucalyptus and
AppScale, merit a more detailed study.

17.3.1 IaaS using Eucalyptus

Eucalyptus [41] is an open source framework (developed at the University of
California, Santa Barbara) that implements infrastructure as a service (IaaS)
on a collection of server clusters. Eucalyptus Systems is a commercial offering

17.3 Tools for building private clouds 249

based on this open source project, targeted at enterprises interested in build-
ing private clouds. The design of Eucalyptus also provides insights into the
issues that need to be handled while creating an IaaS cloud, and serves as
a platform for research in this emerging area. Since Eucalyptus implements
external APIs identical to Amazon EC2, it also provides clues as to the possible
internal architectures of such public clouds. For the same reason, Eucalyp-
tus deployments can also be controlled by cloud management tools, such as
RightScale (which in fact offers management of the experimental Eucalyptus
cloud at UCSB).

Figure 17.2 illustrates the Eucalyptus architecture. Eucalyptus can run on
a collection of one or more server clusters. Servers within each cluster are
connected via a fast local Ethernet, while clusters can be connected to each
other via possibly slower networks, such as private wide area networks or
even the internet. Each server node runs the Xen hypervisor on which user
virtual machines are provisioned on demand. Each cluster node also runs a
Eucalyptus Instance Manager (IM) process on the XenLinux host operating
system (provisioned automatically when Xen boots). One node in each cluster

Instance manager
IM VM

IM VM

IM VM

IM VM

IM VM

IM VM

IM VM IM VM

Group manager Group manager Group manager

Virtual

machine

Virtual

machine

Software
VDE switch

Software
VDE cable

Local bridge Local bridge

Public bridgeXenVMM

Cloud
manager

Web interface

Persistent meta-data

VM control

Groups Keys Images

VM State Requests

FIGURE 17.2. Eucalyptus IaaS framework

250 ENTERPRISE CLOUD COMPUTING ECOSYSTEM

runs a Eucalyptus group manager (GM) process, and a single cloud manager
(CM) process server is responsible for overall control of the Eucalyptus cloud,
i.e. all clusters. The group managers and cloud manager run natively on
specially designated servers rather than as virtual machines.

The cloud manager provides a web interface, including REST APIs identical
to that of Amazon EC2, using which users can request for virtual servers and
monitor their status. The cloud manager also maintains persistent meta-data
describing the cloud, such as groups, their addresses, access keys given to
users to connect to their assigned servers, as well as virtual machine images
using which user virtual servers ma be provisioned. The cloud manager is
responsible for controlling the entire cloud, and therefore also needs to track
the dynamic state of all virtual machines in the cloud, the load, performance
and utilizations of each cluster, as well as the status of all user requests.

Each instance manager on a cluster node is responsible for provisioning
virtual machines as requested by its group manager, as well as communicating
the status of the node, i.e. resource utilization and available capacity, to its
group manager on request. Each group manager in turn monitors the status
of its entire cluster and communicates that back to the cloud manager on
request. The group manager also makes intra-cluster scheduling decisions in
response to the requests it receives from the cloud manager.

Eucalyptus allows virtual servers allocated to a single cloud user (a vir-
tual cluster) to span across groups; this feature ensures scalability as well as
enable the creation of virtual clusters where some servers reside within an
enterprise and others on an external cloud (akin to Amazon’s virtual private
cloud). Virtual machine instances in such virtual clusters need to be con-
nected to each other, but must not be able to access any VMs belonging to
another user. Vanilla virtualization does not cater to such isolation needs,
i.e. a Xen VM that has access to the physical network of its server can in
principle send packets to any server on that network. Therefore, to imple-
ment network isolation between users as well as provide transparent network
connectivity within a user’s virtual cluster, even if it spans across groups,
Eucalyptus implements a virtual distributed Ethernet (VDE) 2. Such a VDE
is implemented using software switches on each server and software ‘cables’
between servers that hide the actual network topology, effectively providing
a VLAN for each virtual cluster. Routing intra virtual cluster communica-
tion between groups via the VDE is therefore an additional responsibility of

2 http://vde.sourceforge.net

17.3 Tools for building private clouds 251

Eucalyptus group managers. Finally, any virtual machine can additionally
be connected to the ‘public’ network (via the local Ethernet), and publish a
public IP address (via network address translation). Note that the ‘public’ net-
work in this context could be the internet, a corporate wide area network or
even a local LAN. At least one VM in a virtual cluster needs to be connected in
this manner so as to enable users to access the virtual cluster from the public
network.

17.3.2 PaaS on IaaS: AppScale

Recall (from Chapter 5) that the Google App Engine platform provides devel-
opers with an open source Python-based web-server (dev_appserver.py)
that allows deployment of GAE applications on desktops, using which appli-
cations can be tested and debugged while being developed before they are
uploaded to the Google PaaS cloud. The AppScale [11] open source project
(also developed at the University of California, Santa Barbara) mimics the GAE
platform through distributed deployment of the GAE development web-server
on a cluster of virtual machines. Using AppScale, a GAE-like PaaS environ-
ment can be implemented in a scalable manner on an IaaS platform, such as
EC2 or Eucalyptus.

Figure 17.3 illustrates the AppScale architecture. Instances of the GAE
development web-server, dev_appserver.py are deployed on multiple
virtual machines as an AppScale application server (AS) component. Since
the datastore included with dev_appserver.py is a local file-based imple-
mentation that emulates the actual Google datastore APIs, this component is
modified in AppScale so as to connect to a Hadoop HBase+HDFS deployment.
(Recall that HBase and HDFS are open source implementations of Google’s

DB
manager

App load
balancer

App controller
VM - EC2 or
Eucalyptus

DB
serverApp

server

App controller

HTTPSHTTPS

Hadoop TCP/IP

HBase over HDFS

Hbase
Hstore

Hbase
ROOT

VM - EC2 or
Eucalyptus

FIGURE 17.3. AppScale PaaS on IaaS architecture

252 ENTERPRISE CLOUD COMPUTING ECOSYSTEM

BigTable and GFS architectures.) Therefore, AppScale also includes a collec-
tion of database server (DBS) components on a number of virtual machines
on which HBase and HDFS run (these virtual machines can be the same
ones on which AS components are deployed). Each AppScale node also
runs an application controller (AC) that controls the AppScale components
deployed on it.

An AppScale cluster includes one head node that implements a database
manager (DBM) component that functions as the master node for the HBase
and HDFS deployment. When an AS node needs to access the datastore, they
communicate (via HTTPS) with the DBM to retrieve HBase meta-data follow-
ing which it can communicate with the files storing HBase tables directly.
A user interacts with the AC on the AppScale head node upload application
code, which is also stored in the distributed AppScale datastore. Through
this AC users also configure a set of virtual machines running AS servers;
these VMs are dedicated to serve that user. The head node also includes an
application load balancer (ALB) component which is responsible for directing
incoming HTTP requests to one of the AS nodes assigned to a user.

It is important to note that the user’s view of AppScale differs from GAE
in an important respect: In GAE users are oblivious of which web-servers
are used to serve their applications, how many servers are running, and how
many different applications (belonging to different users) are served by each
web-server. On the other hand, while AppScale enables execution of GAE
applications, the level of control given to users as regards the VMs dedi-
cated to serve their applications more closely resembles Microsoft Azure. For
example, by combining AppScale and Amazon’s dynamic monitoring and load
balancing tools, it should be possible, in principle, to allow the set of virtual
machines actually serving a user’s application to vary automatically within
pre-defined limits, just as in Azure.

CHAPTER 18

Roadmap for enterprise
cloud computing

We are nearing the conclusion of our exploration of cloud computing; along
the way we have also covered many aspects of enterprise architecture. Cer-
tain aspects of enterprise architecture may need to adapt to or be replaced
by emerging paradigms, such as PaaS or Dev 2.0. At the same time many
enterprise applications can, technically, be easily deployed in an IaaS cloud.
We have also examined the question of cloud economics and shown that in
principle public cloud can be cheaper, due to elasticity, and also faster to
use, due to automated provisioning. We have also noted the additional cost
advantages of PaaS platforms that enable public facing applications to be made
available at no cost, with charges accruing only once load increases.

So, where could, and should, an enterprise begin leveraging the cloud?
There are valid concerns with using public clouds from an enterprise per-
spective, especially with respect to (a) data confidentiality, lock-in, and
auditability as well as (b) software licensing. Enterprises are still wary of plac-
ing production or sensitive data in the cloud, since current cloud offerings are
essentially public networks and hence exposed to more attacks. While there
are no fundamental obstacles to making a cloud environment as secure as an
in-house data center, this requires careful planning using encrypted storage,
virtual LANs and network middleware. Some cloud providers have begun to
take the first steps towards these levels of security, such as Amazon’s VPC.

253

254 ROADMAP FOR ENTERPRISE CLOUD COMPUTING

When it comes to software licensing, while a few software vendors have
begun making tools available in the cloud as bundled cloud-based AMIs, most
have yet to transition to a usage-based model. High up-front software licensing
costs can obviate any advantages of usage-based pricing at the infrastructure
level, and to that extent limits the number of enterprise applications that can
advantageously leverage IaaS public clouds.

Finally, when it comes to PaaS or Dev 2.0 platforms, these usually involve
application migration or fresh development, primarily because of the novel
development paradigms involved or non-relational data models. To what
extent this will change with Microsoft Azure’s support for standard relational
SQL remains to be seen.

18.1 QUICK WINS USING PUBLIC CLOUDS

While keeping the above concerns in mind, we believe that the following
areas, some of which have been briefly mentioned earlier in Section 4.4.3,
represent opportunities for leveraging public clouds in the near term, with-
out compromising on security or data risk. Further, each of these use cases
specifically exploits the elasticity properties of public clouds.

18.1.1 Development and testing

The infrastructure needs for developing and testing enterprise applications are
different from those of a production environment, for example the require-
ments regarding data security are lower. At the same time, variability and
volatility is high, with servers being required for each new project, many
of which can be released once the application is rolled out. Further, the
time for provisioning and configuring a development environment can often
become a significant overhead in many large organizations due to procure-
ment and infrastructure management procedures. Leveraging cloud services
for development-and-testing servers is therefore a cost-effective and low-risk
option, which can also improve business agility in terms of how rapidly new
applications can be developed.

Performance testing of new applications on a production capacity hard-
ware configuration is difficult, especially early in the development cycle,
simply because of non-availability of such an environment. Using the cloud a
production-class infrastructure can be provisioned on demand and disbanded
once the performance testing is complete.

18.1 Quick wins using public clouds 255

18.1.2 Analytics in the cloud

We have already discussed the MapReduce-based cloud programming
paradigm that enables massively parallel computations while automatically
compensating for inevitable hardware and software failures. Such analytical
tasks need the cloud and would be next to impossible in traditional data cen-
ters. On the other hand, normal enterprise analytics may not share such scale,
but can benefit greatly from elasticity. Often enterprises need to run regular
analytics on customers, supply chains or manufacturing operations, say on a
daily basis. Such jobs may run for a few hours on dedicated hardware, and
occasionally require even larger capacity, thus leading to over provisioning
of infrastructure. Using the cloud, the required infrastructure can be provi-
sioned when needed and disbanded thereafter. (Note that especially in the
case of analytics, large volumes of data may be involved; it is important to
recognize that one can circumvent this constraint by physically shipping data
and transferring only small volumes over the network.)

18.1.3 Disaster planning in the cloud

Maintaining a disaster-recovery site that can be rapidly brought into produc-
tion when needed to ensure business continuity requires replicating hardware
infrastructure at least partially, which in normal circumstances may remain
unutilized. Instead, it is possible to store a virtual image of the production
environment in the cloud so that actual backup servers can be provisioned
only when required. Similarly production data backups can be physically
shipped to a location near the cloud provider on a regular basis and loaded
into the cloud only when needed. Alternatively, updates can be replicated
regularly over the network and exported to disk remotely rather than locally.
Such cloud-based disaster-recovery mechanisms can be orders of magni-
tude cheaper than replicating infrastructure, while offering similar levels of
protection and business continuity.

18.1.4 Low/Variable volume 24×7 portals

As a common scenario in the case of small or medium enterprises, consider a
web-based portal or application that needs to be made available 24×7, but it
is not clear how much traffic will flow to this site. Using a PaaS platform such
as GAE such an application can be deployed without incurring any running

256 ROADMAP FOR ENTERPRISE CLOUD COMPUTING

costs, while also ensuring that the site will scale automatically if load increases.
In fact, this model can be combined with IaaS processing, by using the PaaS
platform to queue requests that are actually processed by more traditional
applications that run on an IaaS cloud. Virtual resources on the IaaS cloud
can be provisioned on demand when queues build up.

18.1.5 Enterprise mashup portals

A number of useful applications and data are available on the web in the form
of ‘mashups,’ such as the Google Map mashup, that run as JavaScript code
within the browser on a user’s desktop. Allowing such mashups to be deployed
within the user interface of an enterprise application is a potential security
risk, since it requires the user’s browser to allow ‘cross-site scripting,’ thereby
allowing the browser to simultaneously connect to a server on the internet as
well as the application server on the corporate network.

Instead, those pieces (i.e., pages) of enterprise applications that include
public mashup applications can be hosted on servers deployed in a public
cloud. Access to application services within the corporate network can be re-
directed through secure web services instead of direct access from the user’s
browser, which is likely to be safer due to the additional layer of security
introduced within the cloud-based server.

Thus, just as web-server technology was first used to create enterprise
‘portal’ architectures so that users could experience a single entry point to
different enterprise applications, cloud platforms can play a similar role by
integrating publicly available mashups with enterprise applications at the user
interface level.

18.1.6 Mobile enterprise applications

Users now expect access to enterprise applications from mobile devices. Pro-
viding a rich mobile experience requires a return to ‘fatter’ client applications,
as well as supporting disconnected operation via intelligent asynchronous
data replication. Moreover, the fact that mobile devices are personal, rather
than enterprise owned and controlled, introduces the need for an added layer
of security. Cloud-based applications serving mobile clients could potentially
provide such a secure intermediate layer, in a manner similar to that described

18.2 Future of enterprise cloud computing 257

above for mashups: Mobile clients could connect to specific subsets of applica-
tion functionality deployed in cloud-based servers. Support for asynchronous
data replication as well as secure access to web services published by applica-
tions within the corporate network would be provided within the cloud-based
server.

18.1.7 Situational applications using Dev 2.0

As we have seen in Chapters 12 and 14, it is possible to achieve order-of-
magnitude improvements in software development productivity using Dev
2.0 platforms, such as Force.com or TCS InstantApps. If one were to take an
inventory of all applications in a large enterprise, we would typically find a
small number of complex, highly loaded, mission-critical applications, a mod-
erate number of departmental applications of medium complexity and usage,
and finally a large ‘long tail’ of small, lightly loaded, ‘situational’ applications.
Examples includes custom workflow and mashup applications assembled to
drive simple internal automation or pilot new business processes within indi-
vidual business units. Dev 2.0 platforms deployed in public clouds are ideal for
situational applications, since business units can rapidly provision, configure,
use and then discard such applications.

18.2 FUTURE OF ENTERPRISE CLOUD COMPUTING

Moving beyond the immediate, let us now consider what technological and
industry trends are likely to drive the cloud computing ecosystem in the
future. In the process we may unearth some clues as to how cloud computing
may eventually come to impact enterprise IT.

As has been well elucidated in the popular book The Big Switch [8], the
evolution of industrial use of electricity from private generating plants to a
public electricity grid can serve as an illuminating analogy for the possible
evolution of enterprise IT and cloud computing. In such an analogy, privately
run enterprise data centers are analogous to private electric plants whereas the
public electricity grid illustrates a possible model towards which the public
clouds of today may evolve.

As another analogy, let us consider data communications: In the initial
days of digital networks, corporations owned their own data communication

258 ROADMAP FOR ENTERPRISE CLOUD COMPUTING

lines. Today all data communication lines are owned by operators who lease
them out, not only to end-users, but also to each other. The physical resource
(bandwidth) has become a commodity, and it is only in the mix of value
added services where higher profits are to be made.

18.2.1 Commoditization of the data center

We are already seeing trends towards commoditization of computation and
storage hardware. It is precisely by utilizing commodity hardware efficiently
that the large cloud providers have been able to achieve their operational
efficiencies of scale. The next stage of evolution is for larger collections of
hardware to become standardized, starting with racks of servers, and eventu-
ally the data center itself. We are already seeing evidence of this in dedicated
hosting providers who are now striving to move ‘up’ the value chain into cloud
computing, as their core business comes under margin pressure. Eventually,
it is possible that the highly virtualized, power efficient data center, offering
on-demand resource provisioning, also becomes a commodity product, much
like servers and storage today, as illustrated in Figure 18.1.

Apart from the natural process of standardization and commoditiza-
tion, there are additional drivers leading data center commoditization: An

Physical resources

Virtualized resources (CPU, Storage, N/W)

On-demand provisioning

Value Added Services

Development platform
Dynamic monitoring
and load balancing

Tools (Sys S/W or Dev 2.0)Applications (Bus, Tech)

Application virtualizationCloud management

co
m

m
od

iti
za

tio
n

+
st

an
da

rd
iz

at
io

n resource sharing
(as for telecom

 links today)

FIGURE 18.1. Commoditization of the data center

18.2 Future of enterprise cloud computing 259

important concern for enterprise adoption of cloud computing is the physical
location of data centers on which clouds operate. In certain industries, such
as financial services and health-care, many governments regulate the location
of physical storage of data to be within a specified geographical area, such as
a country or continent. As a result, cloud providers such as Amazon maintain
data centers in different geographical regions, and allow users to choose which
‘regions’ their virtual resources and data will be provisioned in. At the same
time, a large number of enterprises already rely on managed hosting providers
instead of housing their servers in-house, and as we have seen, many of these
are already beginning to exploit virtualization and automated provisioning
technologies. These data centers also need to be physically located so as to
conform to the same regulations. The resulting possibility for evolution of
the cloud ecosystem is outlined below:

18.2.2 Inter-operating Virtualized Data Centers

So far, data centers managed by different providers operate in isolation in the
sense that while end-users can often provision resources on-demand in these
facilities, trading of capacity between such facilities, such as is the case for
electricity or even data communications bandwidth, does not take place.

The key technology elements that could enable on-demand exchange of
capacity are already in place: It is possible to programmatically provision and
access resources using web services, as demonstrated by IaaS providers and
frameworks such as Eucalyptus. What is missing is standardization of such
APIs so that business models and trading can be based on a non-proprietary
mechanism of making requests and ensuring service levels. However, we
believe this is not far away. What could become possible if and when such
standardization does happen?

Recall that the larger data centers (such as maintained by cloud providers)
are almost always located near cheap power sources, thereby significantly
lowering their running costs. Now, we speculate whether a natural evolution
of such an ecosystem might not see data center owners, be they providers of
dedicated hosting or cloud computing, begin leasing data center resources
to each other and not only to end-users. From an enterprise perspective this
could, for example, enable a managed hosting provider to ensure that a cus-
tomer’s applications are run on a mix of servers, some physically nearby,
while others are leased from a larger-scale provider who reaps economies of
scale, while also ensuring that any geographical constraints on data storage
are maintained.

260 ROADMAP FOR ENTERPRISE CLOUD COMPUTING

Shared DCs?

Company B
private cloud

Company C
private
cloud

Company A
private cloud

Amazon cloud

Google cloud

Microsoft cloud

EU DC

US DC

India DC

FIGURE 18.2. Future of enterprise cloud computing?

Further, with standardization of the virtualized data center and capacity
exchange APIs, it should also become possible for different cloud providers to
either co-locate or cross-lease their data centers, so that, for example a portal
running on Google App Engine can communicate with a database running on
an Amazon EC2 virtual server without having to traverse the public internet:
In other words, while these services are managed by different providers, the
servers they happen to use for a particular user reside in data centers that are
‘near’ each other from a network perspective, i.e. on a high-speed LAN rather
than a WAN. Speculating even further, even some of the servers that an enter-
prise considers ‘in-house’ may also actually reside in the same or ‘nearby’ data
centers, as part of a managed hosting service. Finally, of course, users con-
nect to applications using VPNs over the internet, or through dedicated leased
lines for better performance. Such a scenario is illustrated in Figure 18.2.

18.2.3 Convergence of private and public clouds

As we have mentioned earlier in Chapter 6, all but the largest enterprises are
unlikely to enjoy economies of scale similar to public clouds, and those who
do may end up becoming public cloud providers themselves in the future.

18.2 Future of enterprise cloud computing 261

Further, the virtualized data center with on-demand provisioning may end
up being a commodity that one can buy off the shelf, much like a basic server
today. As we have discussed above, it may become the case that enterprises
will use servers in managed data centers, be they based on dedicated hosting or
clouds, with many of these servers naturally being co-located or at least ‘near’
each other from a network perspective. Moreover, whether or not servers are
dedicated to an enterprise, or are virtual servers on shared resources, they
can all be connected on the same virtual private network so that from both a
performance as well as network address space perspective, they are essentially
indistinguishable.

What this means is that the distinction between public and private clouds
becomes blurred, just as it is today for communications: Users are essentially
oblivious as to exactly which physical cables their data traffic travels on, even
on an internal corporate WAN, and whether or not at the lowest levels it is
multiplexed with traffic from other users.

So, what technologies should an enterprise focus on when exploring how
their data centers will be managed? Virtualization and on-demand provision-
ing, we believe, will become available off the shelf. The areas to focus on
when exploring private clouds are the higher layers of Figure 18.1, i.e. cloud
management, dynamic load balancing, application virtualization and software
tools. These are more complex features, where there is likely to be more com-
petition and value addition, and where standardization is unlikely, at least
in the near future. At the same time, it is also precisely these areas where
the cloud ecosystem will provide many alternative solutions to choose from.
Finally, the cloud ecosystem itself will become far more usable once such ser-
vices deployed ‘in the cloud’ appear, for all practical purposes, to be ‘inside’
the enterprise, from either a network address or performance perspective.

18.2.4 Generalized ‘cloud’ services

As we conclude our exploration of cloud computing, it is natural to ask
whether the efficiencies promised by the cloud computing model can, in any
way, be generalized to other arenas of knowledge-based work. Recall the key
elements of cloud computing, as we outlined at the outset of our journey in
Section 1.1:

• Computing resources packaged as a commodity and made available over
the internet.

• Rapid provisioning of resources by end-users.

262 ROADMAP FOR ENTERPRISE CLOUD COMPUTING

• A usage-based pricing model that charges consumers only for those cloud
resources they actually use.

In Chapter 12 and 14 we introduced and described Dev 2.0 platforms. In a
sense, Dev 2.0 platforms offer similar ‘cloud-like’ features, but in the domain
of software development:

• Application functionality packaged as re-usable templates; a commodity of
sorts.

• Rapid provisioning of new applications using multi-tenant platforms.
• Usage-based pricing, on the basis of the number of users, transaction

volume or application complexity.

Can such ‘cloud-like’ features be achieved in other arenas? We consider
here the case of services, such as those often outsourced to a software develop-
ment provider, a call-center or an insurance claims processor; more generally,
any other knowledge-based task that can be outsourced using information
technology.

The traditional outsourcing model has been that of ‘time-and-materials’
(T&M) billing. Using cloud vs. in-house resources as an analogy, T&M is the
equivalent of deploying an ‘in-house’ data center, where the onus of making
efficient use of the resources deployed lies entirely with the customer rather
than the provider.

Another outsourcing model is that of fixed-price projects, where detailed
specifications are drawn up by the customer and executed in by the services
provider according to a pre-determined price and schedule. A fixed-price
project is analogous to a data center managed by a dedicated infrastructure
provider at a fixed price while adhering to stringent SLAs1. In the fixed-
price model, all the risk lies with the supplier, be it a data-center provider
or services contractor. Naturally, providers of fixed-price projects account
for their risks within their pricing models. Further, the onus of providing
detailed specifications or defining service levels falls on the customer. Thus,
even the fixed-price model has inefficiencies built into it.

Is there something better, i.e., a model for outsourcing services that exhibits
some of the ‘cloud-like’ features described above? For example, how can we
define services as a composition of commodity tasks? How can end-users
easily request for and ‘provision’ services once having broken up their project
into such tasks? And finally, how can the price of such tasks be objectively

1 Service-level agreements.

18.2 Future of enterprise cloud computing 263

estimated, as unambiguously as, say, the price per cpu-hour in the domain of
cloud-based resources?

Hopefully such questions can and will be answered. Perhaps the model-
based abstractions used to architect Dev 2.0 platforms may also have a role to
play in the process. Only time will tell how far and how rapidly the transition
to ‘cloud-like’ infrastructure, development tools and services will take place
in the complex world of enterprise IT.

References

[1] A. Leff and J. Rayfield. WebRB: Evaluating a visual domain-specific lan-
guage for building relational web-applications. In Proceedings, OOPSLA,
2007.

[2] Azza Abouzeid, Kamil BajdaPawlikowski, Daniel Abadi, Avi Silber-
schatz and Alexander Rasin. Hadoopdb: An architectural hybrid of
MapReduce and dbms technologies for analytical workloads. In Inter-
national Conference on Very Large Databases (VLDB), 2009.

[3] Sanjay Agrawal, Surajit Chaudhuri and Gautam Das. Dbxplorer:
enabling keyword search over relational databases. In Proceedings of the
2002 ACM SIGMOD International Conference on Management of Data,
2002.

[4] M. Armbrust, A. Fox, R. Griffith, et al. Above the clouds: A Berkeley
view of cloud computing. Technical report, UC Berkeley, 2009.

[5] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, et al. System r:
A relational approach to database management. ACM Transactions on
Database Systems, 1–2, 1976.

[6] K. Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley Professional, 1999.

[7] Dimitri P. Bertsekas and Robert G. Gallagher. Data Networks. Prentice
Hall, 1987.

[8] Nicholas Carr. The Big Switch. W.W. Norton, 2008.

[9] F. Chang, J. Dean, S. Ghemawat, et al. BigTable: A distributed storage
system for structured data. In Symposium on Operating Systems Design
and Implementation (OSDI), 2006.

264

REFERENCES 265

[10] Hung chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. Map
Reduce-merge: simplified relational data processing on large clusters. In
Proceedings of the ACM SIGMOD International Conference on Management
of Data, 2007.

[11] Navraj Chohan, Chris Bunch, Sydney Pang, et al. Appscale design
and implementation. Technical report, Computer Science Department,
University of California, Santa Barbara, 2009-02.

[12] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters. In Proceedings of the 6th Symp. on Operating
Systems Design and Implementation, 2004.

[13] Jeffrey Dean and Sanjay Ghemawat. MapReduce: A flexible data
processing tool, Communication of the ACM, 53(1), 2010.

[14] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, et al. Dynamo:
Amazon’s highly available key-value store. In Proceedings of SOSP, 2007.

[15] S. Deerswster, S. Dumais, T. Landauer, G. Furnas and R. Harshman.
Indexing by latent semantic analysis. J. American Society for Information
Science, 41, 1990.

[16] David J. DeWitt, Erik Paulson, Eric Robinson, et al. Clustera: an inte-
grated computation and data management system. In Proceedings of the
VLDB Endowment, August 2008.

[17] Jeff Dike. A user-mode port of the linux kernel. In 2000 Linux Showcase
and Conference, 2000.

[18] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Subspace
sampling and relative-error matrix approximation: Column-row-based
methods. In Algorithms-ESA 2006, Lecture Notes in Computer Science
4168, Springer, 2006.

[19] Robert Filman, Tzilla Elrad, Siobhán Clarke and Mehmet Aksit. Aspect
Oriented Software Development. Addison-Wesley Professional, 2004.

[20] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley, 2004.

[21] G. C. Fox. Solving Problems on Concurrent Processors. Prentice Hall,
1988.

[22] Eric Friedman, Peter Pawlowski and John Cieslewicz. SQL/MapReduce:
A practical approach to selfdescribing, polymorphic, and paralleliz-
able userdefined functions. In International Conference on Very Large
Databases (VLDB), 2009.

266 REFERENCES

[23] A. Frieze, R. Kannan and S. Vempala. Fast Monte Carlo algorithms for
finding low-rank approximations. Journal of the ACM, 51(6), 2004.

[24] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum and D. Boneh. Terra: A
virtual machine based platform for trusted computing. In Proceedings of
SOSP 2003, 2003.

[25] T. Garfinkel and M. Rosenblum. A virtual machine introspection based
architecture for intrusion detection. In Network and Distributed Systems
Security Symposium, February 2003, 2003.

[26] S. Ghemawat, H. Gobioff and S.T. Leung. Google File System. In
Proceedings of the 19th ACM SOSP Conference, Dec 2003.

[27] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns
Hopkins University Press, 1989.

[28] Sudipto Guha, Rajeev Rastogi and Kyuseok Shim. Cure: an efficient
clustering algorithm for large databases. Information Systems, 26(1),
2001.

[29] E. Huedo, R. S. Montero and I. M. Llorente. A framework for adaptive
execution in grids. Software Practice and Experience, 34, 631–651, 2004.

[30] Michael N. Huhns and Munindar P. Singh. Service Oriented Computing.
John Wiley & Sons, 2005.

[31] J. Dobrowolski and J. Kolodziej. A method of building executable
platform-independent application models. In OMG’s MDA Implementers’
Workshop, 2004.

[32] K. Kulkarni and S. Reddy. A model-driven approach for developing
business applications: experience, lessons learnt and a way forward. In
1st India Software Engineering Conference ISEC 2008, 2008.

[33] Pat Kennedy, Vivek Bapat and Paul Kurchina. In Pursuit of the Perfect
Plant. Evolved Technologist, 2008.

[34] Glenn E. Krasner and Stephen T. Pope. A description of the model-view-
controller user interface paradigm in the smalltalk-80 system. Journal of
Object-oriented Programming, 1(3), 26–49, 1988.

[35] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. ACM Communications, 21(7), 1978.

[36] B. D. Ligneris. Virtualization of linux-based computers: The linux-
vserver project. In 19th International Symposium on High Performance
Computing Systems and Applications, HPCS 2005, 40–346, 2005.

[37] Albert Lulushi. Oracle Forms Developer’s Handbook. Prentice Hall, 2000.

REFERENCES 267

[38] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schutze. An
Introduction to Information Retrieval. Cambridge University Press, 2008.

[39] B. C. Neuman and T. Ts’o. Kerberos: An authentication service for
computer networks. IEEE Communications, 32(9), 1994.

[40] Nils J. Nilsson. Principles of Artificial Intelligence. Springer, 1982.

[41] D. Nurmi, R. Wolski, C. Grzegorczyk, et al. The eucalyptus open-
source cloud-computing system. In Proceedings of the 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, 2009.

[42] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar
and Andrew Tomkins. Pig Latin: A not-so-foreign language for data
processing. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, 2008.

[43] Christos H. Papadimitrou, Prabhakar Raghavan, Hisao Tamaki and San-
tosh Vemela. Latent semantic indexing: A probabilistic analysis. Journal
of Computer and System Sciences, 61(2), 217–235, 2000.

[44] Andrew Pavlo, Erik Paulson, Alexander Rasin, et al. A comparison of
approaches to large-scale data analysis. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data, 2009.

[45] G. Popek and R. Goldberg. Formal requirements for virtualizable third
generation architectures. Communications of the ACM, 17, 12–421, 1974.

[46] Raghu Ramakrishnan and Johanes Gehrke. Database Management Sys-
tems. McGraw-Hill, 2003.

[47] L. A. Rowe and K. A. Shoens. A form application development sys-
tem. In Proceedings of the ACM-SIGMOD International Conference on the
Management of Data, 1982.

[48] Lawrence A. Rowe, Joseph A. Konstan, Brian C. Smith, Steve Seitz,
and Chung Liu. The Picasso application framework. In Proceedings 4th
Annual ACM Symposium on User Interface Software and Technology, 1991.

[49] C. P. Sapuntzakis, R. Chandra, B. Pfaff, et al. Optimizing the migration
of virtual computers. In 5th Symposium on Operating Systems Design and
Implementation (OSDI), ACM Operating Systems Review, 2002.

[50] Mary Shaw and David Garlan. Software Architecture: Perspectives on and
Emerging Discipline. Prentice Hall, 1996.

[51] Gautam Shroff. Dev 2.0: Model driven development in the cloud.
In Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), 2008.

268 REFERENCES

[52] Gautam Shroff, Puneet Agarwal and Premkumar Devanbu.
InstantApps: A wysiwyg model driven interpreter for web applica-
tions. In 31st International Conference on Software Engineering, ICSE
Companion Volume, 2009.

[53] Gautam Shroff, Puneet Agarwal and Premkumar Devanbu. Multi-tier
web applications without tears. In Proceeding of the 2nd Annual India
Software Engineering Conference (ISEC), 2009.

[54] Gautam Shroff and S. Santhanakrishnan. Methodologies for software
architecture definition: A component based view. In International
Conference on Software Systems and Applications, Paris, 2001.

[55] Len Silverston. The Data Model Resource Book, Vol. 1: A Library of
Universal Data Models for All Enterprises. John Wiley & Sons, 2008.

[56] David Skillicorn. Understanding Complex Datasets. Chapman &
Hall/CRC, 2007.

[57] D. B. Skillicorn. Clusters within clusters: SVD and counter-terrorism.
In SIAM Data Mining Conference, March 2003.

[58] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems
and Processes. Morgan Kaufmann, 2005.

[59] Michael Stonebraker, Daniel Abadi, David J. DeWitt, et al. MapRe-
duce and parallel DBMSs: Friends or foes?, Communications of the ACM,
53(1), 2010.

[60] Michael Stonebraker, Gerald Held, Eugene Wong and Peter Kreps. The
design and implementation of ingres. ACM Transactions on Database
Systems, 1–3, 1976.

[61] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, et al. ’-store: a column-
oriented dbms. In Proceedings of the 31st International Conference on Very
Large Databases, Trondheim, Norway, 2005.

[62] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, et al. Hive a warehous-
ing solution over a MapReduce framework. In International Conference
on Very Large Databases (VLDB), 2009.

[63] John A. Zachman. A framework for information systems architecture.
IBM Systems Journal, 26(3), 1987.

[64] L. Zhu, L. Osterweil, M. Staples, U. Kannengiesser, and B. I. Simid-
chieva. Desiderata for languages to be used in the definition of reference
business processes. International Journal of Software and Informatics,
1(1), 97–121, 2007.

Index

AJAX
and layered MVC, 182
architecture, 86
description, 85
emergence of, 24
rich internet application, 86

Amazon EC2, 51–55
Auto Scale, 54
Cloud Watch, 54
DevPay, 54
Elastic Block Storage, 53
Simple Queue Service, 53
SimpleDB, 53, 60
Virtual Private Cloud, 55

Amazon’s Dynamo, 126–128
eventual consistency model, 128
and SimpleDB, 128

application server
and EJBs, 21
Apache Tomcat, 20
J2EE, 21
JBoss, open source, 22
Microsoft .NET framework, 21

architecture
3-tier, 10

and aspect oriented
programming, 202

application server, 20
client-server, 7–10
error handling, 201
function access control, 200
Kerberos authentication, 199
layered web applications, 179
layering and AJAX, 182
layering and MVC, 182
mainframe, 5–6
MVC: model/view/controller, 182
of business logic, 190
soft locking, 202
transaction isolation, 202
web-enabled, 18

BigTable, 123–125
and HBase, 123

BPMN, 212–216
and exceptions, 213
and transactions, 215

business intelligence
data mart, 221
data warehousing tasks, 220
MDX query language, 222

269

270 INDEX

business intelligence (cont.)
multidimensional databases, 222
OLAP, 219
star schema, 222

cloud economics
economies of scale, 73
elasticity quantified, 69
public vs. private clouds, 69

cloud management tools
3tera, 246
Appistry, 246
Enstratus, 246
Kaavo, 246
Rightscale, 246
ServiceMesh, 246
Ylastic, 246

cloud providers
Amazon, 245
GoGrid, 245
Google, 245
Microsoft, 245
vs. dedicated or web hosting, 245

cloud-like properties, 4, 261
for services?, 262
in software development, 262

components
application, 41
business, 41
enterprise, 41
entity and process, 41
software, 41

CRM, 176
components of, 163

data mining, 226
anomaly detection, 234

using the SVD, 234
classification, 227

using the SVD, 229
clustering, 233

using the SVD, 233
databases

B+-tree index, 119
file structures, 118
Ingres, 117
parallel database models, 120
row vs. column stores, 119
System R, 117

dedicated hosting
Rackspace, 245
Savvis, 245
Voxel, 245

Dev 2.0
and SaaS, 37
available platforms, 154
definition, 145
implementation of, 194
model driven interpreters, 150,

194–195
overview, 31
versus code generation, 155, 195

enterprise architecture
application integration, 23, 43
defined, 39
security, 45
SOA, 44
technical standards, 44

enterprise cloud computing
and electricity grid, 258
concerns, 253
convergence of private and public

clouds, 261
data center commoditization, 259
inter-operation of clouds, 259
quick wins, 253

analytics, 255

INDEX 271

development and test, 254
disaster recovery, 255

enterprise data model, 162
accounting model, 175
billing model, 172, 173
order model, 168, 169
partner model, 164, 165
product model, 167, 168
work/projects model, 171

enterprise search
inverted index, 236
latent semantic indexing (LSI),

237
matrix formulation, 236
structured data, 239

search vs. SQL, 239
using MapReduce, 237
vs. web search, 235

ERP, 163
components of, 163

Force.com
business logic using APEX, 148
form design, 147

Google App Engine, 56
Google Datastore, 58–59
use of Google File System, 57

Google Datastore, 128–130
Google File System, 121–123

and Hadoop HDFS, 121

Hadoop, 121, 123

infrastructure as a service
Amazon EC2, 51
defined, 35

InstantApps
business ‘logic maps’, 153, 192

cloud deployment model, 151
WYSIWYG form design, 151

knowledge discovery tasks, 218

latent semantic indexing, 238

MapReduce, 134–143
and batch processing, 142
and HadoopDB, 141
and HiveQL, 141
and OLAP, 223
and Pig Latin, 141
definition, 136
joins using, 139
parallel efficiency, 137
performance vs. databases, 141

mashups
architecture, 87
defined, 87
enterprise adoption, 88
Google Search mashup, 87

meta-models
for business logic, 192
for user interfaces, 186–187
rule-based abstractions, 191

Microsoft Azure, 61
application roles, 62
SQL Azure, 62
SQL Data Services, 62

model driven architecture
and Dev 2.0, 150, 195

MRP, 161, 163
multi-core, 98, 100
multi-tenancy

and cloud databases, 110
and data access control, 111–113
and Dev 2.0, 108, 197
and multi-entity, 105
and virtualization, 104

272 INDEX

multi-tenancy (cont.)
using a single schema, 106
using multiple schemas, 108

multi-threading
in application servers, 20
on multi-core, 100

open source
Apache community, 18
Apache HTTPD web server, 18

parallel computing, 131–134
parallel databases, 120
parallel efficiency, 132

of MapReduce, 137
of OLAP, 225

platform as a service
cost advantages, 70
defined, 35
Google App Engine, 56
Microsoft Azure, 61

REST services
and JSON, 81
Google REST API, 82
structure, 81, 82
Yahoo

REST API, 82

SCM, 169, 176
components of, 163

singular value decomposition
and latent semantic

indexing, 238
singular value decomposition

(SVD), 229
using MapReduce, 231

SOAP/WSDL services
and RPC/CORBA, 80

structure, 78–80
WS* specifications, 80

software as a service, 27–31
vs. ASP, 27

software productivity
using cloud infrastructure, 71
using Dev 2.0, 72
using PaaS, 72

tools for private clouds
AppScale, 251
Eucalyptus, 249

UML, 164
aggregation, 165
association class, 167
generalization, 165

virtual machine
in mainframes, 7

virtualization
efficient, definition of, 92
and multi-tenancy, 104
in mainframes, 7
application level, 102, 104,

197
application streaming, 97
formula for virtual capacity, 68
hardware support for, 92
host vs. native VMMs, 90
hypervisors, VMM, 90
in Amazon, 33
live migration of VMs, 95
pitfalls and dangers of,

103
server consolidation, 98

and power consumption,
100

queuing analysis, 99
system vs. process VMs, 90

INDEX 273

VMWare, 91
Xen, 91

web services
emergence of, 23
REST, 80
SOAP/WSDL, 78

workflow
and BPMN, 212
ECA rules, 206
functions of, 210
implementation of,

207
meta-model for, 205

	Cover
	Half-title
	Title
	Copyright
	Contents
	Preface
	Abbreivations
	Part I: Computing platforms
	CHAPTER 1 Enterprise computing: a retrospective
	1.1 INTRODUCTION
	1.2 MAINFRAME ARCHITECTURE
	1.3 CLIENT-SERVER ARCHITECTURE
	1.4 3-TIER ARCHITECTURES WITH TP MONITORS

	CHAPTER 2 The internet as a platform
	2.1 INTERNET TECHNOLOGY AND WEB-ENABLED APPLICATIONS
	2.2 WEB APPLICATION SERVERS
	2.3 INTERNET OF SERVICES

	CHAPTER 3 Software as a service and cloud computing
	3.1 EMERGENCE OF SOFTWARE AS A SERVICE
	3.2 SUCCESSFUL SAAS ARCHITECTURES
	3.3 DEV 2.0 PLATFORMS
	3.4 CLOUD COMPUTING
	3.5 DEV 2.0 IN THE CLOUD FOR ENTERPRISES

	CHAPTER 4 Enterprise architecture: role and evolution
	4.1 ENTERPRISE DATA AND PROCESSES
	4.2 ENTERPRISE COMPONENTS
	4.3 APPLICATION INTEGRATION AND SOA
	4.4 ENTERPRISE TECHNICAL ARCHITECTURE
	4.4.1 Unformity or best of breed
	4.4.2 Network and data security
	4.4.3 Implementation architectures and quick-wins

	4.5 DATA CENTER INFRASTRUCTURE: COPING WITH COMPLEXITY

	Part II: Cloud platforms
	CHAPTER 5 Cloud computing platforms
	5.1 INFRASTRUCTURE AS A SERVICE: AMAZON EC2
	5.2 PLATFORM AS A SERVICE: GOOGLE APP ENGINE
	5.2.1 Google Datastore
	5.2.2 Amazon SimpleDB

	5.3 MICROSOFT AZURE

	CHAPTER 6 Cloud computing economics
	6.1 IS CLOUD INFRASTRUCTURE CHEAPER?
	6.1.1 IaaS economics

	6.2 ECONOMICS OF PRIVATE CLOUDS
	6.2.1 Economics of PaaS vs. IaaS

	6.3 SOFTWARE PRODUCTIVITY IN THE CLOUD
	6.4 ECONOMIES OF SCALE: PUBLIC VS. PRIVATE CLOUDS

	Part III: Cloud technologies
	CHAPTER 7 Web services, AJAX and mashups
	7.1 WEB SERVICES: SOAP AND REST
	7.1.1 SOAP/WSDL Web services
	7.1.2 REST web services

	7.2 SOAP VERSUS REST
	7.3 AJAX: ASYNCHRONOUS `RICH' INTERFACES
	7.4 MASHUPS: USER INTERFACE SERVICES

	CHAPTER 8 Virtualization technology
	8.1 VIRTUAL MACHINE TECHNOLOGY
	8.1.1 System virtual machines
	8.1.2 Virtual machines and elastic computing
	8.1.3 Virtual machine migration

	8.2 VIRTUALIZATION APPLICATIONS IN ENTERPRISES
	8.2.1 Security through virtualization
	8.2.2 Desktop virtualization and application streaming
	8.2.3 Server consolidation
	8.2.4 Automating infrastructure management

	8.3 PITFALLS OF VIRTUALIZATION

	CHAPTER 9 Multi-tenant software
	9.1 MULTI-ENTITY SUPPORT
	9.2 MULTI-SCHEMA APPROACH
	9.3 MULTI-TENANCY USING CLOUD DATA STORES
	9.4 DATA ACCESS CONTROL FOR ENTERPRISE APPLICATIONS

	Part IV: Cloud development
	CHAPTER 10 Data in the cloud
	10.1 RELATIONAL DATABASES
	10.2 CLOUD FILE SYSTEMS: GFS AND HDFS
	10.3 BIGTABLE, HBASE AND DYNAMO
	10.4 CLOUD DATA STORES: DATASTORE AND SIMPLEDB

	CHAPTER 11 MapReduce and extensions
	11.1 PARALLEL COMPUTING
	11.2 THE MAPREDUCE MODEL
	11.3 PARALLEL EFFICIENCY OF MAPREDUCE
	11.4 RELATIONAL OPERATIONS USING MAPREDUCE
	11.5 ENTERPRISE BATCH PROCESSING USING MAPREDUCE

	CHAPTER 12 Dev 2.0 platforms
	12.1 SALESFORCE.COM'S FORCE.COM PLATFORM
	12.2 TCS INSTANTAPPS ON AMAZON CLOUD
	12.3 MORE DEV 2.0 PLATFORMS AND RELATED EFFORTS
	12.4 ADVANTAGES, APPLICABILITY AND LIMITS OF DEV 2.0

	Part V: Software architecture
	CHAPTER 13 Enterprise software: ERP, SCM, CRM
	13.1 ANATOMY OF A LARGE ENTERPRISE
	13.2 PARTNERS: PEOPLE AND ORGANIZATIONS
	13.3 PRODUCTS
	13.4 ORDERS: SALES AND PURCHASES
	13.5 EXECUTION: TRACKING WORK
	13.6 BILLING
	13.7 ACCOUNTING
	13.8 ENTERPRISE PROCESSES, BUILD VS. BUY AND SAAS

	CHAPTER 14 Custom enterprise applications and Dev 2.0
	14.1 SOFTWARE ARCHITECTURE FOR ENTERPRISE COMPONENTS
	14.2 USER INTERFACE PATTERNS AND BASIC TRANSACTIONS
	14.2.1 Layered MVC and the AJAX Paradigm
	14.2.2 Common UI patterns
	14.2.3 Formal models and frameworks

	14.3 BUSINESS LOGIC AND RULE-BASED COMPUTING
	14.3.1 What does business logic do?
	14.3.2 Rule-based computing
	14.3.3 Modeling business logic using MapReduce

	14.4 INSIDE DEV 2.0: MODEL DRIVEN INTERPRETERS
	14.4.1 Multi-tenant Dev 2.0: application virtualization

	14.5 SECURITY, ERROR HANDLING, TRANSACTIONS AND WORKFLOW
	14.5.1 Application security
	14.5.2 Error handling
	14.5.3 Transaction management

	CHAPTER 15 Workflow and business processes
	15.1 IMPLEMENTING WORKFLOW IN AN APPLICATION
	15.2 WORKFLOW META-MODEL USING ECA RULES
	15.3 ECA WORKFLOW ENGINE
	15.4 USING AN EXTERNAL WORKFLOW ENGINE
	15.5 PROCESS MODELING AND BPMN
	15.6 WORKFLOW IN THE CLOUD

	CHAPTER 16 Enterprise analytics and search
	16.1 ENTERPRISE KNOWLEDGE: GOALS AND APPROACHES
	16.2 BUSINESS INTELLIGENCE
	16.2.1 Data warehousing
	16.2.2 OLAP on a star schema
	16.2.3 OLAP using MapReduce
	16.2.4 Parallel efficiency of OLAP using MapReduce:

	16.3 TEXT AND DATA MINING
	16.3.1 Data classification
	16.3.2 Computing the SVD using MapReduce
	16.3.3 Clustering data
	16.3.4 Anomaly detection

	16.4 TEXT AND DATABASE SEARCH
	16.4.1 Enterprise search
	16.4.2 Indexing and search using MapReduce
	16.4.3 Latent semantic indexing
	16.4.4 Searching structured data

	Part VI: Enterprise cloud computing
	CHAPTER 17 Enterprise cloud computing ecosystem
	17.1 PUBLIC CLOUD PROVIDERS
	17.2 CLOUD MANAGEMENT PLATFORMS AND TOOLS
	17.3 TOOLS FOR BUILDING PRIVATE CLOUDS
	17.3.1 IaaS using Eucalyptus
	17.3.2 PaaS on IaaS: AppScale

	CHAPTER 18 Roadmap for enterprise cloud computing
	18.1 QUICK WINS USING PUBLIC CLOUDS
	18.1.1 Development and testing
	18.1.2 Analytics in the cloud
	18.1.3 Disaster planning in the cloud
	18.1.4 Low/Variable volume 24×7 portals
	18.1.5 Enterprise mashup portals
	18.1.6 Mobile enterprise applications
	18.1.7 Situational applications using Dev 2.0

	18.2 FUTURE OF ENTERPRISE CLOUD COMPUTING
	18.2.1 Commoditization of the data center
	18.2.2 Inter-operating Virtualized Data Centers
	18.2.3 Convergence of private and public clouds
	18.2.4 Generalized ‘cloud’ services

	References
	Index

